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Preface

This book was mainly catalyzed by the SoC-Mobinet EU-project (IST 2000-
30094), where the editors have acted in 2001 - 2004 to create the European
System-on-Chip infrastructure for joint research and education. The topic was
seen very important especially after writing the previous book (Networks on
Chip) where the higher-level on-chip communication issues were tackled.

In this book, we have tried to create a comprehensive understanding about
on-chip interconnect characteristics, design methodologies, layered views on
different abstraction levels and finally about applying the interconnect-centric
design in system-on-chip design.

We owe very much to the authors of this book, who represent the expertise
on different aspects of interconnects, communication and system-on-chip and
network-on-chip development worldwide. One major contributing project was
also the Complain (Communication platform architectures for gigascale inte-
gration) project in the Finnish-Swedish EXSITE research programme, mainly
supported by TEKES, Vinnova, Nokia and Ericsson. We were happy to have
such a good crew to assist us in creating the book for the interested readers in
this field. We hope that you enjoy the book and, even more, wish that it will be
of professional benefit to you!

Tampere, Stockholm, Turku
January 2004

JARI NURMI

HANNU TENHUNEN

JOUNI ISOAHO

AXEL JANTSCH





Chapter 1

SYSTEM-ON-CHIP-CHALLENGES IN THE
DEEP-SUB-MICRON ERA
A case for the network-on-a-Chip

Jan M. Rabaey
EECS Dept., University of California at Berkeley
jan@eecs.berkeley.edu

Abstract: Continued scaling of semiconductor technology has created hopes for true sys-
tem-on-a-chip integration; that is, the integration of a complete system on a
single die of silicon. Yet, this prospect is seriously challenged by cost consider-
ations. Solutions that maximize flexibility and re-use may be the only way to
address the cost concerns, but necessitate offsetting the energy and perfor-
mance penalty that comes with software solutions through an aggressive use of
concurrency. A truly network-based solution is the only option to resolve the
many issues that come with massive parallelism such as reliability, robustness,
synchronization, and power management. This chapter presents an insight in
some of the approaches and methodologies that are currently under develop-
ment at the Gigascale Systems Research Center [GSRC].

Keywords: Platform-based Design, Network-on-a-Chip, Deep Sub-micron.

1 INTRODUCTION

It is commonly believed today that from a pure technological perspective
there are no reasons for Moore’s law to come to a screeching halt in the next
decade. The continued scaling of the semiconductor technology creates the
potential of true system-on-a-chip (SoC) integration; that is, the integration of
a complete electronic system including all its periphery and its interfaces to
the outside world on a single die. The reduction in size and cost that would
come with this high level of integration opens to the door to truly ubiquitous
electronics, and enables the realization of usage scenarios that were deemed to
belong to the realm of science fiction not so long ago. An example of such is
the “ambient intelligence” application [Boekhorst02, Rabaey03] that relies on
wide-spread networks of embedded sensor, control, and actuation nodes,
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embedded in the daily environment, to enhance a number of daily activities
and/or our living environment.

Yet, the enthusiastic embrace of the system-on-a-chip vision has cooled
down considerably over the last one or two years, as the approach has run into
some major roadblocks and hurdles. While these challenges were already
speculated on in the mid 90’s, they have come into full bearing today. The
combination of deep-submicron effects, manufacturing cost, and complexity
have caused a major shift in the economics of IC design, and have marked the
beginning of the end of the era of the Application Specific Integrated Circuit
(ASIC). The importance of ASICs in shaping the semiconductor success story
cannot be overemphasized. Very successful products were brought to market
using integrated circuits that were specific to the application, and that were
generated using a well understood design flow combining logic synthesis and
automatic place and route.

In response to these challenges, a new design methodology called “plat-
form-based design” was proposed, promoting reuse at higher levels of
granularity and relying heavily on flexibility and programmability to amortize
the NRE costs of complex IC design over a number of designs [Keutzer00]. A
summary of the main principles of platform-based design, as developed at the
Gigascale Systems Research Center or GSRC, is given in Section III of this
paper. For the approach to be ultimately successful in the realization of sys-
tems-on-a-chip and to address the challenges raised by further scaling of the
semiconductor technology, platform-based design has to come to grips with
some major roadblocks which are enumerated in the Section II of the paper.
One of the most important ones is the management of concurrency. While
solutions that maximize flexibility and programmability may be the only way
to address the cost concerns of design, they come with a major penalty in per-
formance and energy efficiency. Offsetting this penalty is only possible
through an aggressive use of concurrency. A truly network-based solution is
the only option to resolve the many issues that come with massive parallelism
such as reliability, robustness, synchronization, and power management. In
Section IV of the paper, we explore the advantages of a “network-on-a-chip”
(NoC) approach [Sgroi01] and discuss how it helps to address a number of the
concerns that were raised in Section II. The paper will be concluded with
some future perspectives.
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2 CHALLENGING THE SOC PROSPECTS

2.1 The Demise of ASIC

While the ASIC design methodology has very successful in bringing
cheap electronics into a wide range of applications, economic considerations
have dealt it a major blow. This is best illustrated in Figure 2.1., which plots
the number of (successful) design starts over the last decade, extrapolating
towards the future. The number of ASIC starts dropped by more than half in
the period from 1995 to 2002. The reasons for this major decline are
manifold:

� The NRE cost of IC manufacturing. The cost of mask making alone
for sub-micron design is approaching $1 M for the 0.13 µm CMOS
technology node, and it has been predicted to range between $2 M
and $5 M in 2 to 3 years from now. (See Figure 2.2.). ASIC starts suf-
fer the most from this trend forcing companies to change their busi-
ness model and product mix. It favors approaches where
customization is achieved by software running on embedded micro-
processors or configurable hardware (commonly called ASSPs, or
application-specific standard products), as is apparent in Figure 2.1.
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� Deep-submicron effects. With deep-submicron technologies readily
available through foundries, the ASIC designer became exposed to
the myriad of problems that have already plagued the designers the
leading-edge microprocessors for a while. Issues such as interconnect
delay, crosstalk and supply noise impact the predictability of the final
design. All EDA vendors are struggling to solve timing closure prob-
lems and the capacity issues due to increased miniaturization of cir-
cuit components in the attempt to extend the life of their tools and
methodologies. Other effects such as power dissipation, leakage, and
variability only compound the problem.Verification has come to dom-
inate the overall design cost.

� Complexity. The impact of these physical effects is already bad
enough, yet it is further aggravated by the increasing complexity of
the IC. Designs with more than 100 million transistors are not excep-
tional anymore. This complexity increase requires either larger design
teams, or raises the time-to-market. Only the aggressive reuse of large
modules and a raise in abstraction levels can help to address this chal-
lenging issues.

The platform-based design methodology described in Section III goes a
long way in addressing the above concerns. Yet, for it to be successful in the
System-on-a-Chip arena and to continue to do so in the next decade, some
other concerns and roadblocks need to be overcome.

2.2 The Soc Challenges of the Next Decade

In addition to the concerns raised above, we see some important new develop-
ments emerging when looking towards the future especially in the area of
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SoC:

� Managing and Exploiting Flexibility (that is, introducing higher
levels of abstraction)

The electronics industry is moving towards programmable solutions to
save NRE and design costs and reduce time-to-market. This trend requires
thinking of software as an essential component of an embedded system. A
radical movement is afoot to move towards a more scientific approach where
software design is thought of as a rigorous procedure of refinement from a
higher level of abstraction consisting of a mathematical model of the func-
tionality. This approach, which goes under the name of model-based software
design, is rapidly gaining attention and is now coming to terms with the com-
plexity of designing software that has to satisfy constraints on timing and
power consumption, quantities that were almost never an issue in standard
software design. It is this dimension that makes embedded software unique.
Hence, methods are needed that direct the embedded software design process
towards constraint satisfaction and that are aware of both functionality and of
the physical platform upon which the software is run. Timing and power esti-
mation for software, software synthesis, timing and power analysis of
software programs, formal verification of software are all important compo-
nents of the design methodology. We believe that the choice of
implementation techniques for a set of functions can be approached with the
same method at all levels of abstraction, thus linking the various levels in a
seamless environment that is based on the tenet of platform-based design. In
some sense, software design becomes in this view an implementation choice
on the same formal basis as a hardware implementation.

� Power and Energy

Power and energy management and minimization have been a concern in
CMOS for over more than a decade. Multiple solutions have been developed
and have helped to keep the problem within bounds. Yet, considering the pro-
jected increases in integration complexity and the unfortunate side-effects of
deep submicron transistor scaling such as drain-source and gate leakage, it is
fair to state that design for power and energy management has emerged as one
of the most dominant roadblocks on the horizon. In fact, we are coming to a
situation where power dissipation limits the levels of integration that can be
accomplished and hampers the further evolution of the semiconductor indus-
try. With no or little new technological miracle solutions on the horizon,
radical new design approaches (from innovative circuit fabrics, to micro-
architectures that exploit them, and the system software that controls them),
and accompanying design methodologies are a necessity. For instance, it
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becomes increasingly clear that we might want to scale supply voltages faster
than what is predicted in the roadmap. For very low-voltage design to be
effective, solutions have to be found to problems such as the management of
leakage and timing uncertainty. The combination of an increased vulnerability
to soft errors (resulting from the scaling of the signal charge) and a reduced
signal-to-noise ratio (caused by scaling of the supply voltage) seriously
impacts the reliability of future circuits. We believe that power and energy
management under these circumstances is best addressed as a system-level
problem. However, power optimization should not be performed at the
expense of performance. With fewer IC designs serving more applications we
believe that the speed demands for these IC designs will actually increase.
Application-specific standard parts (ASSPs) are demonstrably replacing
application-specific integrated circuits (ASICs). Since ASSPs are catalog
parts that compete with other designs for well-defined market niches, speed
will remain a key differentiating factor.

� Reliability and Robustness

A wide variety of factors are conspiring to dramatically reduce the short-
and long-term reliability of integrated systems. As already stated, power con-
siderations under increasing integration densities inevitably reduce the signal-
to-noise ratio of digital circuits. Under aggressive voltage scaling conditions,
soft errors caused by alpha particles and cosmic rays and thermal noise are
bound to inject dynamic errors into computations. Combine this with the
increased impact of process variations, quantum fluctuations in the operation
of very-deep submicron transistors, and the projected proneness to errors of
some of the emerging nano-technologies, and it becomes clear that the reli-
ability of computations is bound to be seriously impacted in the years to
come. The integration of multiple hybrid and mixed-signal technologies on
the same die further reduces the design robustness. While some of these con-
cerns will undoubtedly be addressed by improved technology and
manufacturing, design techniques and methodologies that provide reliable
computation in the presence of unreliable circuit fabrics are highly likely to
gain prominence. It is our conviction that a layered top-down design method-
ology as advocated in platform-based design is the only way of dealing with
dynamically occurring computational errors. Error-correction, re-computation
or retransmission of faulty results, redundancy, etc. are best addressed at the
right level of abstraction, as the communication and networking communities
have known for quite some time. The occurrence and detection of dynamic
errors further is at the base of an interesting phenomenon: when errors can
happen arbitrarily, it is hard to differentiate between design verification and
test. We believe that the verification and test approaches are on a conver-
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gence path and that substantial fractions of these tasks will be turned into on-
line activities. Enabling and augmenting this convergence are some other
interesting directions in verification and test, discussed in the next two
paragraphs.

� Predictability and Timing Strategies

While approaches such as constructive fabrics [Pileggi02] go a long way
toward addressing the predictability of the next-generation integrated sys-
tems, it is fair to state that timing predictability will continue to decline over
the years to come. This can be contributed to increased variations in both
device characteristics (declining supply/threshold voltage ratios, quantum
fluctuations in current draw, etc.) and interconnect parameters. At the same
time, clock frequencies will continue to increase. As a result, the ratio of
uncertainty margin over clock period will increase, causing synchronous (that
is, worst case) timing strategies to ultimately saturate. The only solution is to
step away from the worst-case design by either (i) allowing occasional timing
errors to occur—which trades-off reliability for performance and requires reli-
able computation strategies as stated above—, or (ii) by stepping away from
the synchronous paradigm. Meso, plesio, or a-synchronous approaches
become attractive when the overhead of the synchronization and handshaking
hardware becomes smaller than the uncertainty of the timing prediction. In
addition, a pure synchronous approach becomes untenable when supply and
threshold voltages of certain parts of the chip are dynamically varied for
speed gains or dynamic/leakage power reduction. In short, we predict that
asynchronous (or other non-synchronous) timing strategies will play an
important role in the system-on-a-chip of the next decade, and that appropri-
ate design methodologies and solutions have to be provided.

� Real-Time Emulation

The complexity of the integrated systems makes the verification task ever
harder. Further abstraction and formal techniques, while partially alleviating
the problem, do not suffice to address the rapidly increasing verification costs.
A complete portfolio of complementary verification techniques (including
simulation, emulation, on-line checking, as well as formal verification)
and an overlaying methodology for their deployment is necessary. One
interesting and attractive opportunity to bring system-level verification of
architectural platforms to new levels is offered by the availability of complex
heterogeneous field-programmable devices. An engine constructed of these
components, combined with a rapid mapping methodology, makes real-time
emulation of complex systems more affordable and feasible. A fast prototyp-
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ing path can go a long way in aiding the verification task.

� Mixed-Everything (Mixed-Signal Mixed-Technology)

With the ever-decreasing size of embedded or computational systems
comes a need for true integration of multiple hybrid technologies into a single
component or package. In fact, true integration of a complete system requires
not only the realization of the digital computational functions, but also the
periphery and the interfaces to the external world. These may include sensors
(realized as MEMS or other technologies), wired or wireless connections
(using RF, Infrared, or high-speed serial links), energy supplies (batteries,
energy-scavenging devices, and regulators), actuators, embedded storage, and
displays. The tight integration of these components requires a design method-
ology that considers them in concert. Hence, mixed-signal, mixed-technology
methodologies, re-use strategies and tool-sets are an essential component of
any system-on-a-chip development.

� Beyond Silicon

With the roadmap for silicon CMOS moving into what are probably its
last stages, new technologies and devices (commonly dubbed nano-technolo-
gies) are most likely to come into play over the next couple of decades. In
fact, some of these technologies (such as organic semiconductors) are already
making some in-roads. Other approaches such as molecular, quantum-effect,
bio, or nanotube devices might need a longer time to come to fruition (if
ever). Many efforts are under way exploring these exciting alternatives. It is,
however, certain that these technologies will lead to vastly different circuit
fabrics and system architectures. At GSRC, we contend that the platform-
based design methodology, based on a stacked layer of abstractions, is
universal and is well-suited to encapsulate late-silicon and nano-technol-
ogy devices and fabrics. The layers of abstractions between the
implementation layers are precisely what are needed to accommodate dramat-
ically different implementation technologies.

While addressing all of these issues and challenges is beyond the scope of
this paper, we will demonstrate that a well-executed platform-based strategy
combined with a formal network-on-a-chip approach goes a long way in
addressing at least some of the concerns such as programmability, power and
energy, reliability, and predictability.



Challenges in the Deep-Submicron Era 11

3 THE PLATFORM APPROACH TO SYSTEM-ON-
A-CHIP

3.1 Platform Definitions

The platform concept itself is not entirely new, and has been successfully
used for years. However, the interpretation of what a platform truly is, has
been, to say the least, confusing. In the IC domain, a platform is considered a
“flexible” integrated circuit where customization for a particular application is
achieved by “programming” one or more of the components of the chip. Pro-
gramming may imply “metal customization” (Gate Arrays), electrical
modification (FPGA personalization) or software to run on a microprocessor
or a DSP. These flexible integrated circuits can be defined as members of the
silicon-implementation platform family. With SOC integration, implementa-
tion platforms are becoming more diverse and heterogeneous, combining
various implementation strategies with diverging flexibility, granularity, per-
formance, and energy-efficiency properties.

For the case of software, the “platform” has been designed as a fixed
micro-architecture to minimize mask making costs but flexible enough to
warrant its use for a set of applications so that production volume will be high
over an extended chip lifetime. Micro-controllers designed for automotive
applications such as the Motorola Black Oak PowerPC are examples of this
approach. DSPs for wireless such as the TI C50 are another one. The problem
with this approach is the potential lack of optimization that may make perfor-
mance too low and size too large. A better approach is to develop “a family”
of similar chips that differ for one or more components but that are based on
the same microprocessor. The various versions of the TI C50 family (such as
the 54 and 55) are examples of such. Indeed this family and its “common”
programmatic interface is, in our definition, a platform; more specifically an
architecture platform.

The pure concept of platform-based design, as adopted and promoted by
GSRC, is however much broader and has far reaching implications in differ-
ent design styles and at different levels of design. In essence, it proposes a
methodology that advocates and formulates clearly defined and restrictive
articulation points. These articulation points between levels of design are crit-
ical to achieve a separation of concerns and to break the design process into
manageable parts amenable to subsequent automation and optimization.
Automation enables us to find high quality acceptable solutions in this
restricted design space.
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Again, the concept of a platform as a clearly defined articulation point
of restriction and abstraction, and its role in enabling methodology is not
new. The use of standard cells is a classic example of how a restriction in the
design space —a limited library of constrained cells— makes it possible to
use intellectual and computational capabilities to find high-quality acceptable
solutions through synthesis and place and route algorithms. The use of a syn-
chronous timing methodology adds another restriction on the design space,
enabling a separation of concerns between the logical and the timing aspects
of design. From a user’s perspective, the methodology offers a clear and
unambiguous Application Programmer Interface (API) —synchronous finite
state machines and Boolean algebra—, which makes it possible to capture and
implement the intentions of a designer, independent of the library and imple-
mentation tools. Synchronous standard cell based design as a platform, was
the key enabler of the ASIC design methodology.

The following are the salient aspects of the platform based design method-
ology [Sangiovanni02].

� The platform-based design paradigm is a meet-in-the-middle
approach. It leverages the power of top-down methods and the effi-
ciency of bottom-up styles. We view the design process as a stepwise
refinement of a specification into a lower level abstraction chosen
from a restricted library of available components. Components are
“computational” blocks and interconnects. This library is a platform.
In this view, a platform is a family of designs and not a single design.
A platform defines the design space that can be explored. Once a par-
ticular collection of components of the platform is selected, we obtain
a platform instance. The choice of the platform instance and the
mapping of the components of the specification into the components
of the platform instance represent the top-down process. In this pro-
cess, constraints that accompany the specification are mapped into
constraints on the components of the platform instance. Mapping
often involves budgeting, since a global constraint may have to be
distributed over a set of components.

� The stepwise refinement continues by defining the selected platform
instance as a specification and using a lower level platform to march
towards implementation. Whenever a component is fully instantiated
the stepwise refinement stops since we have an implementation for
that component.

� When selecting a platform instance and mapping constraints using
budgeting, it is important to guide the selection with parameters that
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summarize the characteristics of the components of the platform.
Delay, power consumption, size and cost are examples of such
parameters. When selecting a platform instance it is important to be
able to evaluate quickly and with the appropriate accuracy what
the performance of the design will be. The selection of the parameters
to use to guide the platform instance selection is one of the critical
parts of platform-based design.

� The component selection process and the verification of the consis-
tency between the behavior of the specification and the one of the
platform instance can be carried out automatically if a common
semantic domain is found where the selection process can be seen as
a covering problem. The concepts of platform-based design can be
used to describe the ENTIRE design process even when the design
style chosen is ASIC. The framework is the same. The platforms are
different. The number and the location of the platforms in the design
abstractions, the number and the type of components that constitute a
platform, the choice of parameters to represent the components are
critical aspects of the method.

� Platforms form a stack, from design specification to implementa-
tion. They demarcate boundaries that are critical in the electronics
supply chain, and define demarcation points that warrant special
attention. In the paragraphs above, we have already identified the cir-
cuit and architecture level platforms. The system level is another
potential demarcation point. At the circuit implementation level we
are redefining the platform from standard cells to fabrics that build on
high levels of regularity and predictability to address predictability
and manufacturability concerns. At higher levels of design we have
defined new platforms at the architecture level and the systems level.
The architecture level has emerged in our work as a new articulation
point in response to the increasing shift from ASICs to Application-
Specific Standard Parts (ASSPs) -a result of the variety of pressures
facing the ASIC design methodology. We call an architecture plat-
form the articulation point between system architecture and micro-
architecture. Micro-architecture can be seen as a platform whose
components are architectural elements such as microprocessors,
memories, networks, and interfaces. To find the common semantic
domain we need to abstract these components via an operating sys-
tem, device drivers and communication mechanism. In this domain
the hardware components are seen as supporting the execution of the
behavior of the specification. Similarly, system level platforms have
emerged as new articulation points in response to the increasing reuse
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of components as a way to manage increasing complexity. They pro-
vide for describing and designing systems as an integration of diverse
(and constrained) functions.

3.2 Some Platform Examples

The platform-concept has been particularly successful in the PC world,
where PC makers have been able to develop their products quickly and effi-
ciently around a standard “platform” that emerged over the years. The PC
standard platform consists of: the x86 instruction set architecture (ISA) that
makes it possible to re-use the operating system and the software application
at the binary level; a fully specified set of busses (ISA, USB, PCI); legacy
support for the ISA interrupt controller that handles the basic interaction
between software and hardware; and a full specification of a set of I/O
devices, such as keyboard, mouse, audio and video devices. All PCs should
satisfy this set of constraints. If we examine carefully the structure of a PC
platform, we note that it is not the detailed hardware micro-architecture that is
standardized, but rather an abstraction characterized by a set of constraints on
the architecture. The platform is an abstraction of a “family” of (micro)-
architectures.

A number of systems and semiconductor companies have fully embraced
the platform-concept in the design of integrated embedded systems. An excel-
lent example of such is the Nexperia platform, developed by Philips
Semiconductor [Claasen00]. Nexperia serves as the standard implementation
strategy for a wide range of video products within Philips. The platform com-
bines a set of processors (MIPS + TriMedia) with a family of peripheral
devices, accelerators, and I/O units. Essential is also a set of standardized bus-
ses, which form the core of the architecture and ensure that different modules
can be connected seamlessly together. Depending upon the needs of a particu-
lar product (family), the IC designer can choose to drop/add particular
components, as is illustrated in Figure 2.3. The system designers interface
however remains unchanged, which allows for maximum reusability and port-
ability. Since all components have been extensively tested and verified,
design risk is reduced substantially. Other examples of successful platforms at
different articulation points are the Ericsson Mobile Platform [Ericsson
Mobile], the TI OMAP architecture platform [OMAP], and the VertexPro Sil-
icon Platform of Xilinx [VertexPro]
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4 PLATFORM-BASED DESIGN AND NETWORKS-
ON-A-CHIP

Essential to the conception of a platform is not only the design of the com-
putation, that is the functional behavior of each core, but also of the
communication, that is the interaction between the cores. This orthogonaliza-
tion of concerns is essential to the success of a re-use strategy as has been
realized in recent years. The platform-based design methodology addresses
this concern by placing the computational cores and their interconnect strat-
egy on the same footing. This is, for instance, very clear in the Nexperia
architecture, shown in Figure 2.3, where the interconnect architecture acts as
the obvious cornerstone and integrating element of the platform.

4.1 Network-on-a-Chip Basics

As was learned by the telecommunications community a while ago, reli-
able communication between components requires the definition of a protocol
that provides a set of rules dictating how the interaction among components
takes place, so that the overall system communication and performance
requirements are met, while physical resources such as area and energy are
minimized. Traditionally, on-chip communication design has been done using
rather ad-hoc and informal approaches that fail to meet some of the chal-

Figure 2.3.Different instances of the Nexperia platform for multimedia applications.
Based on the application needs, computational modules can be added or dropped. The

core of the platform is formed by the communication network, which consists in this par-
ticular case of a set of busses.
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lenges posed by next-generation SOC designs raised earlier, such as
performance and throughput, power and energy, reliability, predictability,
synchronization, and management of concurrency

So far, designers have mainly stuck to traditional techniques such as point-
to-point connections, and busses. This approach is acceptable when only a
small number of blocks have to be interconnected and the performance/
latency trade-off is relatively simple. For SOCs with their broader sets of con-
straints, a richer set of interconnect schema should be explored. For example,
shared communication resources such as crossbars and meshes can help to
provide performance at a reduced energy cost. Solving the latency vs.
throughput trade-off now requires to take in consideration a large number of
design parameters, like the number of pipeline stages, arbitration, synchroni-
zation, routing and repeating schemes. In fact, it is our believe that the use of
diverse interconnect architectures present a major untapped opportunity.

To address these challenges and exploit these opportunities, it is critical to
take a global view of the communication problem, and decompose it along
lines that make it more tractable while not restricting the design space at the
same time. Communication design has to begin at higher levels of abstraction
than the architecture and RTL level. We believe that a layered approach sim-
ilar to that defined by the communication networks community (and
standardized as the ISO-OSI Reference Model (RM) [Zimmermann80]) to
address the problem of connecting a large number of computers on wide-area
networks should also be used for on-chip communication design. The layered
approach is well suited to describe protocol functions that operate on data
units at different levels of abstraction (in the form of streams, packets, bits or
analog waveforms) and that are subject to various time granularity con-
straints. Each layer may include one or more closely related protocol
functions, such as data fragmentation, encoding and synchronization.

Separating the communication protocol functions into layers that interact
only via well-defined interfaces allows for a decomposition of the design
problem into a set of simpler, tractable problems, and simplifies the synthesis
and validation tasks. As amply demonstrated in the communication-network
domain, the approach also maximizes re-use. An excellent example in case is
the 802.11 wireless local-area network standard, where a single media-access
layer supports different physical implementations through a unified interface.

The layered-stack approach to the design of the on-chip inter-core commu-
nications has been called the Network-on-Chip (NOC) methodology
[Sgroi01]. Designing NOCs is not an easy task, and may result in protocol
implementations that are incorrect (e.g. due to deadlocks and race conditions),
or sub-optimal (e.g. are power hungry or introduce unacceptable latency).
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Since its introduction in the early 2000’s, NOC design has attracted major
attention and multiple approaches have been proposed since then, some of
which are enumerated below and are highlighted in other chapters in this
book.

� The Virtual Socket Interface (VSI) Alliance [VSIA] has developed a
standard interface to connect virtual components (VCs) to on-chip
buses. VCs and buses are adapted to this interface wrapping them
with appropriate glue logic.

� The Sonics [SiliconBackplane] µ-network approach de-couples the
design of the communication among IPs. Each IP core communicates
with an agent in the Silicon Backplane using a protocol called OCP
(Open Core Protocol) and agents communicate with each other using
network protocols. Both protocols can be customized by the SOC
designer who can configure parameters such as data width and buffer
depth.

� One important aspect of the NOC problem— the reservation of net-
work resources such as buffers and bandwidth—is addressed by B.
Dally, who proposes the flit-reservation flow control ([Peh00]). This
approach makes use of packets sent over fast control wires to reserve
resources in the data connection layer and allows to optimize the use
of buffers without penalties in latency.

In parrallel, it is essential to develop a new generation of methodologies
and tools to avoid the problems that may result from an ad-hoc application of
NOC design. These environments should be centered along the following key
tenets:

� By applying a discipline to on-chip communication design transition
from ad-hoc SOCs to disciplined IC platforms.

� Are based on formal Models of Computation and support a correct-
by-construction synthesis design flow and a set of analysis tools for
broad design exploration.

� Maximize re-use with the definition of a set of interfaces between
layers.

� Provide an application programmer with a set of APIs abstracting
architecture details.

An example of an emerging environment that meets those requirements is
the Metropolis Framework, developed at UC Berkeley [Carloni02].

In this remainder of this section, we, first, describe the OSI Reference
Model (RM) and discuss its use for NOCs with an example of application, the
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Pleiades platform (which was probably one of the first SOCs that fully
embraced the NOC approach).

4.2 THE OSI REFERENCE MODEL APPLIED TO
NOCs

The OSI Reference Model is a framework that allows us to classify and
describe network protocols. Since its standardization, it has been used as a
reference for wired and wireless computer-network design. However, the
same layering concept and many of the protocol functions can be used also to
realize NOCs. Below, we briefly describe the seven OSI layers and for each
layer we give examples of on-chip application.

� Physical—The physical layer is concerned with the lowest-level
details of transmitting data (bits) on a medium. The NOC physical
layer protocols define such things as signal voltages, timing, bus
widths, and pulse shape. At this level delay and power consumption
may be difficult to predict. The floorplan of the chip can have a dra-
matic effect on both of these metrics, as well as the actual routes cho-
sen for the wires. Also of particular concern at this layer is the
synchronization of signals, since IPs may be in different clocking
domains or require asynchronous communication.

� Data Link—The data-link layer is responsible for reliable transfer of
data over the physical link, and may include error detection and cor-
rection functions. It must also arbitrate the access to a shared physical
medium, like a bus. Examples of Medium Access Control (MAC)
protocols are token ring and time division multiplex access (TDMA).
Delay predictability, throughput and power consumption may vary
significantly depending on which arbitration scheme is adopted.

� Network—The network layer provides a topology-independent view
of the end-to-end communication to the upper level protocol layers.
The connections established in the network could be static, such as
offered by the reconfigurable interconnect of FPGAs, or dynamic.
Similarly, data routes can be persistent over multiple transactions, or
each transaction can be dynamically routed. In the latter case, conges-
tion control may be required to reduce traffic through overburdened
links.

� Transport—Transport layer protocols establish and maintain end-to-
end connections. Among other things, they manage flow control, per-
form packet segmentation and reassembly, and ensure message order-
ing. This abstraction hides the topology of the network, and the
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implementation of the links that make up the network. Therefore, it is
used by the layers above the transport layer to provide components
with more formal methods of communication.

� Session—Session layer protocols add state to the end-to-end connec-
tions provided by the transport layer. A common session protocol is
synchronous messaging, which requires that the sending and receiv-
ing components rendezvous as the message is passed. The state main-
tained by the protocol is a semaphore that indicates when both the
sender and the receiver have entered the rendezvous. Many embedded
system applications utilize this sort of functionality to synchronize
system components that are running in parallel. This is especially true
when the system components are CPU-like processing elements that
execute software programs.

� Presentation—The presentation layer is concerned with the repre-
sentation of data within messages. Protocols at this level convert data
into compatible formats. For example, two system components may
exchange messages with different byte orderings, so this layer con-
verts them to a common format.

� Application—This layer exports to the system components the high-
est level of abstraction of the underlying communication architecture.
For example, in an embedded system that performs video processing
the basic communication function may be to transfer a video frame
from one system component to another. The application layer would
define a function that does exactly this by utilizing the functions
defined at lower stack layers. The system components can use these
abstract communication functions without concern for the details,
thus simplifying the component design.

Communication-based design uses the stack model as a tool to guide the
decomposition of the design problem. The separation of computation and
communication reveals the communication requirements of the system. The
application layer provides the set of communication functions that implement
those requirements. It does so by building upon the functionality defined at
lower levels in the stack model. In most cases, it is not necessary to imple-
ment protocols at all of the OSI stack layers to provide this high-level
functionality. One of the benefits of the OSI stack model is that it scales to
match the needs of the system components. If the system components do not
require connections with state, data format conversion or other features, the
corresponding stack layers can be omitted. However, as embedded systems
scale in complexity their communication architectures will have to scale in
functionality as well.
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The layered approach of OSI Model is a useful method for structuring and
organizing a protocol at an early stage of the design process. However, on the
way to implementation, designers may consider whether the original layering
structure should be maintained, or whether performance is optimized by com-
bining adjacent layers.

4.3 A NOC Example: The Pleiades Platform

The Pleiades platform (in its instantiation, the Maia processor) [Zhang00]
presents a reconfigurable integrated circuit for DSP applications that demon-
strates how the NOC layers of abstraction are applicable to existing designs.
The basic Pleiades architecture is a heterogeneous collection of satellites such
as arithmetic logic units (ALUs), memories, processors, FPGAs, and multi-
ply-accumulators (Figure 2.4.). This collection of interconnected satellites is
analogous to a set of IPs present in a SOC design. From a communication per-
spective, the computation at each satellite is arbitrary because each is wrapped
in an inter-satellite communication interface.

This interface is actually the physical layer in the NOC framework,
because it specifies the signal definitions, timing, and synchronization
between two satellites. In the Pleiades case, this means that data links are 18-
bits wide and have 2 control bits. Additionally, each satellite operates on a
local clock, which is not necessarily coincident with the other satellite clocks.
For this reason, the interface is self-timed through a two-phase asynchronous
handshaking scheme (Figure 2.5.a). This approach makes it possible for each
computational core to chose its own frequency, based on computational
requirements and workload. This could even be done dynamically, making it

Figure 2.4.The Pleiades Platform for Communication Applications.
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possible to save power through dynamic voltage scaling on a per module base.
Lastly, the communication reduces power consumption through reduced-
swing signaling (Figure 2.5.b). Individual links can be well characterized with
predictable delay and energy consumption. Since each link in the Pleiades
architecture is dedicated and error-free, no data-link layer is required.

It is in the network layer that the Pleiades architecture is especially novel.
The interconnect consists of a two-tiered hierarchical mesh to provide energy
efficiency as well as the required flexibility (Figure 2.6.). At the local level,
universal switchboxes provide a method for programmatically connecting
wires with a cluster. The global level provides switchboxes connected in a
larger-granularity mesh for inter-cluster communication. The switchboxes
enable persistent paths while allowing satellites reconnection to implement a
different algorithm. A network connection is set up at (re)configuration time,
and is rewired every time a new task is over-laid on the configurable fabric
Because of this flexibility, the energy consumption and delay are dependent
upon the actual path through the switchboxes. From a refinement perspective,
higher levels of abstraction cannot know these values a priori so upper bounds
or statistical averages can be used to provide early estimations of these met-
rics. Additionally, constraints can be used in the refinement process to
influence the programming of the actual routes.

Figure 2.5.The physical
layer of the Pleiades Plat-

form protocol stack: globally
asynchronous, locally syn-
chronous (a); and reduced

swing signaling (b).

(a)

(b)
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The Pleiades platform clearly demonstrates how a formal and structured
NOC-based approach can help to make the mapping of complex algorithms
on concurrent architectures manageable, verifiable, predictable, and automat-
able. It also illustrates how the approach can enable power-saving techniques
such as reduced swings, GALs, and distributed DVS, which otherwise would
be hard to implement in a repeatable and reliable fashion.

The opportunities offered by NOCs are however much broader and more
far-reaching. For instance, the stack-based approach is one of the premier
mechanisms to deal with the DSM reliability concerns. Just to use the analogy
with wireless communications again, it is indeed possible to create a wireless
link which is in essence error free. This comes however at an unacceptable
cost in transmission power. Instead, wireless systems allow errors to happen
(to a certain degree), and correct them at different levels of the stack using, for
instance, forward-error correction at the data-link layer or retransmission at
the transport layer. This not only helps to bring down the power dissipation,
but also reduces the interference wrt other neighboring links. The same princi-
ples can also be applied to NOCs, as has been demonstrated by a number of
researchers [e.g., DeMicheli03].

5 SUMMARY AND PERSPECTIVES

In this chapter, we have argued that the semiconductor industry is facing
some unprecedented challenges, which may jeopardize the continuation of its
spectacular run. The combination of design complexity, deep-submicron chal-
lenges and economics is increasingly undermining traditional design
approaches such as ASIC. The platform-based methodology presents an alter-
native approach, which addresses a number of the concerns through the use of
higher levels of abstraction, a higher level of re-use, and a larger role for “soft

Universal Switchbox

Cluster

Cluster

Cluster

Cluster

Level-1 Mesh Level-2 Mesh

Hierarchical Switchbox

Figure 2.6.Hierarchical Mesh Network as used in the Pleiades Platform.
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design”. At the core of the platform lies the communication strategy, that is
the way how functions interact with each other. In light of the increasing use
of concurrency, traditional interconnection strategies have proven to be either
inefficient or non-applicable. Hence, the rising importance of a formal net-
work-on-a-chip approach. We have also shown that a structured use of NOC
can help to address some crucial DSM problems such as power, reliability,
and synchronization. So far however, we have only set the first baby steps,
and much progress in research and development is still to be made. However,
the main question now is not if the NOC approach will ever become viable,
but when and how fast.
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WIRES AS INTERCONNECTS

Li-Rong Zheng and Hannu Tenhunen
Royal Institute of Technology (KTH), Stockholm, Sweden
lirong@imit.kth.se, hannu@imit.kth.se

Abstract: Deep submicron technology is rapidly leading to exceedingly complex, billion-
transistor chips. This has resulted in a new circuit paradigm - system-on-chip
(SoC). However, deep submicron physics indicates that wires, not transistors,
dominate power and performance. Interconnects have been a key design
objective in deep submicron SoC. In this chapter, we review interconnect
performance as technologies migrate from 0.25µm to 0.035µm feature sizes.
Challenges of deep submicron effects and their impacts on advanced chip design
are summarized. Basic concepts of signal integrity and various noise sources in
deep submicron SoC are illustrated. Finally, interconnect strategies and
interconnect-centric design methodologies are generally described; various
design techniques for signal and power integrity in deep submicron SoC are
discussed.

Key words: Interconnects, deep submicron CMOS, signal integrity, power integrity

1. EVOLUTION OF MICROELECTRONICS
TECHNOLOGY

1.1 Moore’s Law and Technology Scaling

In 1958, Jack S. Kilby, an employee of Texas Instruments, created the first
integrated circuits [1], which were, of course, very crude as measured by
today’s standards. Since then, with the rapid development of processing
technology, particularly in lithography, the number of components of a chip
increased very rapidly. With this pioneer work, Kilby earned the Nobel Prize
in 2000.
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In the beginning of the 1960’s, shortly after the invention of the IC,
Gordon Moore, one of the pioneers in Silicon Valley, formulated an empirical
law stating that the performance of an IC, including the number of
components on it, doubles every 18-24 months with the same chip price. This
became known as Moore’s law. Remarkably enough, it is still holding up after
forty years, and this trend is likely continuing for the next 10 years, as shown
in Figure 2.1. Today, the mainstream technology for IC fabrication has
already been in deep submicron (DSM) regime, and the increased integration
capacity has resulted in exceedingly complex chips such as system-on-chip
(SoC).
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Figure 2.1 ∗ Evolution of microelectronic technology that has so far followed Moore’s law very
well. For the future, there are different extrapolations, depending upon assumptions on the
development of the process technology. Also shown in the figure are the rapid development of
process technologies and the size of the silicon wafers.

1.2 Deep Submicron Effects

The system-on-chip design paradigm and deep submicron technology
bring two main challenges to the ASIC design community. The first challenge
is productivity, i.e., the ability to use millions of gates within the ever shorter
time-to-market, which is currently tackled with the design methodology based
on Intellectual Property (IP) right blocks. The second challenge is coping with

∗ The data of this figure are from several sources. Historical data are based on surveys,
including that from SCS (www.semiconsulting.com). Future trends are based largely on
projections by the NTRS’97 and ITRS’99. The division of LSI, VLSI, ULSI, and GSI is
based on some publications.
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the dramatically changed technology parameters, where interconnects invite
many signal integrity related problems. During the past three to five years, the
interconnect issues have been much explored and better understood. This
includes efficient parasitic extraction tools, circuit level modeling and
analysis, and new design techniques in coping with signal integrity challenges
and timing closure problems. However, as the complexity of chips
continuously rises, these newly developed tools show limited capacity in
dealing with complex SoCs. Therefore, the interconnect problem is still luring
and looming and not explored sufficiently yet, especially in relation to IP-
based design.

Typical signal integrity effects include interconnect delay, crosstalk,
transmission line effects, substrate coupling, power supply integrity, and
noise-on-delay effects. In the early days of VLSI design, these effects were
negligible because of relative slow chip speed and low integration density.
However, with the introduction of technology generations at about the 0.25µm
scale and below, there are many significant changes in wiring and electrical
characteristics. Interconnect started to be a dominating factor for chip
performance and robustness. First, as chip speed continually increases, the
inductance effect of interconnects tends to increase, which will cause ringings
at signal rise/fall edge and changes of crosstalk characteristics. Second, finer
line width and higher aspect ratio (wire cross section becomes narrower and
taller) wires are utilized. Because of their enhanced fringing field effects, both
capacitive and inductive voltage coupling coefficients increase, which raises
the level of coupled noise through wiring hierarchy. Third, the length of global
and semi-global interconnect lines when measured in units of wire pitch
increases dramatically despite the fact that the maximum on-chip interconnect
length grows commensurately with the chip size. Consequently, the circuit
delay of these interconnections increases quadratically on RC lines or linearly
on LC lines. Transmission line effects, which cause signal reflections at
impedance discontinuous junctions, start to matter when the signal rise/fall
edge is comparable with or shorter than two and a half times the time-of-flight
of the line. Inductive ringing, crosstalk, and transmission line effects combine
to produce more noise sources that are coupled to other circuit nodes globally
on the chip via the substrate, common return ground, and electromagnetic
interference. In addition, more and more aggressive usage of high-speed
circuit families (e.g. domino), scaling of power supply and threshold voltages,
and mixed-signal integration combine to make the chips more noise-sensitive.
Finally, higher device densities and faster switching frequencies cause larger
switching-currents to flow in the power and ground networks. As a result,
power supply is plagued with excessive IR voltage drops as well as inductive
voltage drops (simultaneous switching noise) over the on-chip power network
and package pins. Power supply noise not only degrades driver capability of
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gates (hence introduces additional signal delay), but may also cause false
switching of logic gates.

Noise has two deleterious effects on circuit performance. When noise acts
against a normally static signal, it can destroy the local information carried by
the static node in the circuit and ultimately result in incorrect machine-state
stored in a latch. When noise acts simultaneously with a switching node (the
signal rise/fall edge), this is manifest as a change in the timing (jitter and
skew) of the transient. The effect of noise-on-delay is anticipated to be as large
as 30~50% variations of the total signal delay in DSM chips. In today's deep
submicron circuits, there is little likelihood of achieving a sound and robust
quality design unless power and signal distributions are well managed to
minimize these bad effects. Signal and power integrity analysis has been of the
same importance as timing, area, and power analysis [2].

1.3 Impact of DSM Wires on VLSI Design Methodology

In deep submicron technologies, degraded interconnect performance and
high-speed operation reduce system noise immunity and timing budget which
in turn result in faults in system operation. Due to the complexity of the
system, chip design poses a difficult challenge to ensure that the resulting
system is reliable. The increased difficulty in designing, verifying, and testing
the chips has become a larger barrier to provide reliable chips within ever
shorter time-to-market than that of providing the technology for manufacturing
them.

A major impact of interconnects on chip design is that they blur the
traditional distinctions between logic design, circuit design and physical
design. In old design methods, unawareness of accurate interconnect
information in logic design causes the timing closure problem in DSM regime.
Figure 2.2 illustrates that design tools, which earlier could concentrate on
discrete parts of the design problem, now must be aware of a broader range of
factors. For example, logic synthesis tools now must take interconnect and
placement into account and increasingly accommodate the transistor-level
properties of dynamic circuit families and the noise effects at smaller feature
sizes and higher frequencies. The design flow must assure functional
correctness and timing, power, reliability, manufacturability, signal integrity,
and testability requirements.

State-of-the-art VLSI design tools have included signal integrity and
timing verifications at the post-layout stage. Parasitics of three-dimensional
interconnects are extracted based on pre-characterized interconnect library
and/or scalable interconnect parasitic models (built from electromagnetic field
simulations). However, the large number of circuit nodes makes it
computationally expensive or infeasible. Even if the circuit size is
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manageable, design problems revealed at this stage are usually very difficult
or expensive to fix. More advanced design techniques emphasize to improve a
priori prediction of interconnects [54]. Instead of finding and fixing the
interconnect problems in post-layout, a priori estimation improves wire
manageability in early design phases and hence reduces the number of design
iterations. However, due to the scaling, the total number of wires grows
rapidly. Future tools and design methodologies must provide a
commensurately increased capability for handling a large number of wires.
The exponential scaling of chip complexity will finally destroy the design
productivity. Emerging interconnect-centric system architectures such as
networks-on-a-chip or NoC, in part, provide a good solution for dealing with
interconnect difficulties. Many regular NoC structures specifically develop a
global floorplan to accommodate the interconnect constraints. The regularity
of these NoC structures eases interconnect design with predictable
performance by reducing the design space to a set of uniform wire segments
and standard interface circuits.

Figure 2.2 Issues in chip design in deep submicron technology in which the interconnect issues
blur the traditional distinctions between different design levels [3].
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2. SIGNAL INTEGRITY ILLUSTRATION

The signal integrity problem is sketched in Figure 2.3. Very basically, a
signal takes a certain finite amount of time (ttof ) to travel from the driver to the
receiver. This time is referred to as the “time-of-flight” (here the LC delay
instead of RC delay is assumed). In an ideal case, the received signal has the
same quality as its original one. However, in a real case, the received signal
quality is degraded because of many reasons such as crosstalk, signal
dispersion, and glitches in power supply. As a result, the signal is not
considered to be received, or latched in, until it has been stable for a finite
amount of time, which is called the “setting time”, tset. The setting time varies
with various signal qualities, which consequently contributes to timing skew
and jitter. If the signal quality is too poor to be judged by the receiver,
malfunction may occur.

transmitter receiver
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driver output driver output

receiver input
receiver input
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V/2

A: ideal signaling B: signal quality degraded

Figure 2.3 Illustration of signal integrity problem in VLSI circuits and systems

3. NOISE IN MIXED-SIGNAL VLSI CIRCUITS

Noise is a deviation of signal from its intended or ideal value. Most noise
in mixed-signal VLSI circuits is created by the system itself. Electromagnetic
interference could be an external noise source or coupling between
subsystems. In deep submicron circuits, the noise created on parasitic
components by digital switching exhibits the strongest effect on system
performance and robustness. Figure 2.4 illustrates these noise sources. The
following texts summarize these noise sources. Some of these noise
definitions are taken from [7].
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Figure 2.4 Illustration of noise created on parasitic components due to switching current and
voltage in deep submicron VLSI Circuits

3.1 Device Noise

The device noise is not a crucial issue in digital systems, but may be very
important in analog and mixed-signal circuits. The device noise is the lowest
level noise presented in VLSI circuits. It is caused by the random movement
of charges through resistance, across transistor junctions, and random
fluctuations in the charge recombinations in surface states and in the
semiconductor bulk. The level of noise generated and coupled by thermal
noise, avalanche noise, shot noise or Schottky noise, and 1/f noise represents a
minimal level in coupled noise and all other noise mechanisms treated are
usually orders of magnitude worse than these without special design.

3.2 Power Supply Noise

A. Resistive Voltage Drop and Simultaneous Switching Noise

When a current (I) flows through a power line or a ground line, the
following voltage drops are induced (see Figure 2.4):

IRVR =∆ (2.1)
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dt

di
LVL =∆ (2.2)

where R is the resistance of the power or ground line, L is the inductance of
the power or ground line. ∆VR is the dc voltage drop or resistive voltage. This
is a dominant noise source for on-chip power networks. ∆VL is known as
simultaneous switching noise or inductive noise. It is a dominant power supply
noise at package level. However, in deep submicron circuits, because of the
increasing switching speed, the inductive voltage drop over on-chip power
lines is increasing, which will soon be comparable with IR drops [4]. Further
reading of power supply noise analysis and power distribution design can be
found in many recent literatures such as [4-5] and [56-62].

B. Common-Mode Supply Noise and Differential-Mode Supply Noise

The ground noise is usually called ground bounce, and the noise glitch on
the power line is usually called power bounce. When the ground bounce and
power bounce are in phase (common-mode noise), they will not affect the
local logic cells but will degrade the signaling between distant transmitters and
receivers in the circuits. However, when power bounce and ground bounce are
out of phase (differential mode noise), they can adversely affect the operation
of local circuits, resulting in transmitter and receiver offsets and jitter in timing
circuits [5].

3.3 Crosstalk

Noise caused by one signal, A, being coupled into a different signal, B, is
called crosstalk. Crosstalk can occur over many paths, as shown in Figure 2.5.

A. Inductive Crosstalk and Capacitive Crosstalk

When interconnects are routed close to each other, signals on the lines can
crosstalk to each other via near field electromagnetic coupling, as shown in
Figure 2.5 (a). In circuit theory, the electric field coupling is described as
capacitive crosstalk and the magnetic field coupling is described as inductive
crosstalk. The influence of capacitive and inductive crosstalk is given by

( )
dt

VVd
CI AB

mB

−−=∆ (2.3)

dt

dI
LV A

mB −=∆ (2.4)

with Cm and Lm the mutual capacitance and the mutual inductance between
line A and line B. ∆ΙB and ∆VB will propagate along the interconnect lines and
eventually they give rise to noise waveforms on the line terminations. A large
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number of recent literatures on crosstalk and DSM interconnect design exist.
Some of them have been well summarized as books such as [63-66].

Figure 2.5 Illustration of noise coupling mechanisms via interconnections. (a) Near field
coupling via electromagnetic field when interconnect lines are routed close to each other. (b)
When wires (or active devices) are located far away from each other, the common substrate can
serve as a passive network through which crosstalk from aggressor components to victim
components occurs. (c) Due to the circuits sharing common power/ground and/or signal return
paths, crosstalk within the system occurs via these shared interconnect networks.

B. Substrate Crosstalk

When interconnects (or other active/passive components) are placed far
apart, the common substrate will serve as a channel for signal coupling, as
shown in Figure 2.5 (b). This noise source is known as substrate coupling or
substrate crosstalk. The substrate coupling is particularly harmful in mixed-
signal ICs where the low resistive silicon substrate can be modeled as a
resistive and capacitive network and the noise can spread globally through this
network. Substrate crosstalk is closely related to the chip package and the
power/ground distribution network. A good power and ground distribution
design is most important for reducing substrate crosstalk.

C. Power/Ground Crosstalk

Besides, signals can affect one another via a shared power supply or
ground, as illustrated in Figure 2.5 (c). The figure shows that two output
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drivers share the same power and ground lines. When driver A switches high,
the current it draws through the power line creates a glitch that appears on the
output of driver B, if drive B is at quiet high state. This signaling-induced
power supply noise is called power supply crosstalk. Similarly, the signaling
can also cause ground bounce and the corresponding noise coupling is called
ground crosstalk.

D. Return Signal Crosstalk

Whenever a pair of signals, A and B, share a return path that has finite
impedance, a transition on signal A induces a voltage across the shared return
impedance that appears as noise on signal B. This is the return signal crosstalk
and is illustrated both in Figure 2.4 and in Figure 2.5 (c) (ICAZS in the figures).
In a typical electronic system, shared wire bonds, package pins, board planes
and traces, connector pins, and cables all contribute to the impedance (largely
inductance) of the signal return. Unless differential signals are used, or each
signal is supplied with its own return, signals share returns, and crosstalk over
these returns is a major source of noise.

3.4 Transmission Line Effects

Usually, when a wire is longer than 1/10 wavelength of the signal
frequency component that is transmitted, neglecting the wave nature of the
signal propagated on it will result in obvious error in analysis. The wave
nature of the signal presents a spatial variation of signal amplitude across the
interconnect due to a phase difference. Such a line is electrically long and
needs to be modeled as a transmission line.

When a wire is a transmission line, the signals that propagate on it behave
as traveling waves. As the traveling waves see discontinuities on the line,
reflection waves will occur. The reflection coefficient is given by
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where Zo is the characteristic impedance of the line, and Zd is the impedance of
the discontinuity.

The discontinuity of a transmission line is defined as any change in
impedance of the line. A few of the basic discontinuities are series inductance,
shunt capacitance, capacitive loads, impedance steps, and unmatched
terminations. They are introduced by physical changes of the signal paths such
as vias, wire bends, stubs, wire crossovers, bonding wires, package pins,
connectors, and non-ideal receivers.
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(a) Unmatched terminations at driver and load cause reflection waves.

(b) Forward and backward waves after meeting an inductive discontinuity on the line.

(c) Forward and backward waves after meeting a capacitive discontinuity on the line.

Figure 2.6 Illustration of transmission line effects. T: time-of- flight of the line.

Figure 2.6 schematically illustrates some transmission effects of a 50 Ω
lossless transmission line. The incident wave is a step signal. Case (a) shows
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multiple reflections (wave steps) when the driver and the load are mismatched
(200 Ω). Case (b) shows a positive spike is reflected and the transmitted pulse
is smoothed when the incident step wave meets an inductive/resistive
discontinuity (Ld=1nH, Rd=200 Ω) at the middle of the line. Case (c) shows a
negative spike is reflected and the transmitted pulse is smoothed when the
incident step wave meets a shunt capacitance discontinuity (Cd=1pF) at the
middle of the line. More interesting examples can be found in [6].

In DSM global interconnects, the reactance of inductance starts to be
comparable to that of resistance, particularly in global buses, clock trees, and
global power lines. The effects of inductance become more and more
important, as indicated in Chapter 4. Usually, lumped RLC models are enough
to describe the circuit response, few papers use transmission line modes for
on-chip wires. However, there are some global interconnects for fast signals
and short signal rise edge, distributed circuit models or transmission line
models can better describe their circuit behavior. Reference [16] describes the
criteria when transmission line effects are important for on-chip wires. Further,
most of today’s off-chip interconnects behave as transmission lines.

3.5 Inter-Symbol Interference

Due to interconnect delay and noise (crosstalk, reflections in a transmission
line etc), a signal or symbol on an interconnect channel can corrupt another
symbol traveling on the same interconnect line at a later time. This is called
inter-symbol interference (ISI) that occurs as a result of energy from one
symbol being stored in the interconnect channel so that it sums with a later
unrelated signal [7]. This stored energy can take the form of reflections at
discontinuities in a transmission line, LC circuit ring, or charge storage in an
RC circuit.

3.6 Timing Noise

Timing noise affects the phase (or the time when a signal transition occurs)
rather than the magnitude of the signal. It changes when a signal transition is
detected rather than the value of the signal after transition. The DC component
of timing noise is called skew (i.e. the relative delay between two clock/signals
at two different nodes) and is usually caused by mismatched line lengths and
variations in the devices parameters. Jitter can be regarded the AC component
of the timing noise, i.e. the cycle-to-cycle variation when a signal transition
occurs [7]. Jitter is usually due to power supply noise modulating the delay of
active components or additive noise such as crosstalk or inter-symbol
interference moving the point when the transition is detected.
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3.7 EMI/EMC

Large external electric and magnetic fields can couple into circuit nodes
and cause EMI (electromagnetic interference) noise. Excessive emission of
electric and magnetic fields from an electronic system can adversely cause
other systems or subsystems to fail and violate EMC (electromagnetic
compatibility) requirements [8] [9].

In recent years, there is an ever-increasing demand for highly integrated
portable wireless communication units in which analog, RF, and digital
coexist. Managing EMI/EMC requires isolating not only the external emission
sources but also the electromagnetic coupling within the systems. In mixed-
signal systems, RF components, high-speed clock nets, global signal and
power buses, and any other long on-chip and package-level interconnects can
be the sources or receptors of EMI noise. EMI suppression in such systems
requires careful engineering to use shielding, decoupling, grounding, and
signal/power distributions [8] [10].

4. INTERCONNECT DELAY

As interconnect size is scaled down in DSM VLSI, interconnect delay
increases significantly. Currently, there are basically two delay domains – RC
delay domain and transmission line delay domain, depending upon circuit
parameters. The actual delay is related to the time constant of the circuit
response and the definition. For RC delay, usually td (0~50%)=0.69τ and tr

(10%~90%)=2.2τ, with τ the RC time constant.

4.1 Interconnect Delay Models

The interconnect delay model in VLSI has been improved as technology is
scaling. In early VLSI design, interconnects were modeled as a lumped
capacitive load for gates. It ignored resistance of wires. As feature sizes
decrease, wire resistance increases, invalidating this approximation. The
resistance of interconnects can be taken into account by approximating the
distributed RC structure using a lumped RC tree. One of the most popular RC
delay models is based on the Elmore time constant [11]. An overview of
different interconnect-delay models including RC and RLC lines can be found
in Chapters 3 and 4. Reference [67] systematically describes the on-chip
inductance effects in deep submicron VLSI circuits.

However, some global interconnects in deep submicron technology below
0.18µm generations and package level interconnects are sophisticated RLC
transmission lines. The RC tree model is inadequate to accurately model delay,
because RC models cannot model higher-order under-damped systems. A
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second or higher order RLC model of the interconnect can provide significant
improvements over the accuracy of a first-order RC delay model, since RLC
trees and higher order transfer functions may have oscillatory output voltages,
and are thus able to predict increased delays due to settling times of
interconnect waveforms.

A detailed second order RLC delay model for a nonlinear driver and a
single transmission line is presented in [12]. Closed-form solutions for the
50% delay, rise time, overshoots, and setting time of signals in a second-order
RLC tree are presented in [13] and [67]. Chapter 4 also extensively studied the
design methodology of high-order RLC interconnections. However, deriving
analytical equations for higher order RLC trees, particularly when parasitic
parameters are frequency dependent, is difficult due to the complexity of the
systems. Accurate estimates of actual delay for these RLC trees are thus
largely dependent upon simulations. Currently, efficient and widely used RLC
delay models are derived based on reduced-order-approximation techniques
such as reciprocal expansion (REX) and asymptotic waveform evaluation
(AWE). Good reviews of these techniques and derivation of high-order RLC
delay models can be found in [14] [15].

4.2 RC Delay versus LC Delay

For better accuracy, any interconnects can be modeled as RLC
transmission lines in which RC delay and LC delay coexist. When we say one
interconnect is an RC line, this implies that the contribution of the inductance
to the signal response in this line is negligible. Similarly, an LC line means the
resistance in this line is negligible. It was found that if the wire length and wire
impedance are chosen such that Rwl < Zo with Zo the wire characteristic
impedance, the LC delay will dominate the total interconnect delay; otherwise
the line delay is dominated by a slow RC response [16] [17]. This is illustrated
in Figure 2.7.

In practice, overshoots and oscillatory output voltages are usually damped
by sizing the driver impedance and utilization of a diode clamp [18][19]. In
this case, if an interconnect is an LC dominated line, the signal propagation
delay on this line is (if neglecting drive delay)

wwtofwire CLl
v

l
tt === (2.6)

where ttof is the time-of-flight delay representing the time required for a signal
traveling from one place to another at the wave velocity, l is the wire length, v
is the signal velocity, Lw and Cw represent respectively the per unit length
inductance and the per unit length capacitance of the interconnect. The total
circuit delay is a sum of wire delay and driver delay. On the other hand, if a
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line is a very resistive transmission line, the following empirical formula for
adding time-of-flight delay (ttof) and conventional RC delay (tRC) was found
well predicting the total wire delay [20]:

( ) 6.1/16.16.1
RCtofwire ttt += (2.7)

Figure 2.7 Output waveforms of match-terminated transmission lines with various ratio of Y=Rw

l/Zo . It is seen that when Y=10, slower RC response dominates the line delay, and when Y=0.4,
the waveform first exhibits a very sharp rise edge (LC response) followed by slower RC
charging. All these curves will finally reach a saturated voltage level which is determined bythe
DC voltage divider of this line and the terminations.

4.3 Interconnect Strategies in DSM VLSI Circuits

Figure 2.8 is a popular picture taken from [21], illustrating the interconnect
problem in DSM VLSI circuits. The figure shows calculated gate and
interconnect delays versus technology generation which illustrates the
dominance of interconnect delay over gate delay for aluminum metallization
and silicon dioxide dielectrics as feature sizes approach 100 nm. The figure
also shows the decrease in interconnect delay and improved overall
performance expected for copper and low k dielectric constant insulators,
attesting the urgent need for such new materials in silicon technology.
Utilization of low k materials and copper conductors considerably reduces
parasitic capacitance and resistance directly. It also reduces the wire aspect
ratio compared with the aluminum counterpart. The 1999 and later editions of
the roadmap [3] highlight a continued change to the new materials, being
introduced at an unprecedented pace. It should be noticed that the “gate”
delays shown in this figure are for unloaded single transistors, not for real
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logic devices. In [22], a scaling analysis was performed and it pointed out that
this old curve could be somewhat misleading. After detailed calculations of
wire delays and gate delays versus FO4 (fanout-of-four delay), they mentioned
that depending on wiring categories, local wires scale in performance and
hence are not as bad as this figure shows, while global wires and fixed wires
do not scale in performance and hence present more serious problems to
designers.

Figure 2.8 Calculated gate and interconnect delay (fixed line length) versus technology
generation in submicron and deep submicron technologies [21].

As the complexity of ICs continually increases, the length distribution of
on-chip wires has shown separated humps, initially one for local and another
for global interconnects but now being in 3~4 tiers [23] (local, intermediate,
and global). Local wires, consisting of very thin conductors, connect gates and
transistors within an execution unit or a functional block on the chip. These
wires usually span a few gates and occupy first, sometimes second, metal
layers in a multi-layered interconnect system. Their lengths tend to scale down
with the technology. Intermediate wires provide clock and signal distribution
within a functional block or inter-module communications between adjacent
blocks with typical lengths up to 3~4 mm. Global wires provide clock and
signal distribution between functional blocks, and deliver power/ground to all
functions on a chip. Global wires, which occupy the top one or two layers, are
longer than 4 mm and can be as long as half of the chip perimeter.

Implementation of copper and low k materials allows scaling of the
intermediate wiring levels and minimizes its impact on wiring delay, while
local wiring levels are relatively unaffected by traditional technology scaling.
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Figure 2.9 Delay for local and global wiring versus feature size. It indicates that local wiring is
relatively unaffected by traditional scaling due to its commensurate length scaling. However,
delay on global wires becomes worse and dominates chip performance [3].
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Figure 2.10 Typical interconnect length distribution (left) and chip cross section (right) showing
a hierarchical wiring approach with steadily increasing pitch and thickness at each conductor
level to alleviate the impact of interconnect delay on performance [3].

However, the benefit of material changes alone is insufficient to meet
overall performance requirements as delay is dominated by global
interconnection. Figure 2.9 shows the delay of local and global wiring in DSM
technologies. It shows that as technology migrates from 0.25µm to 0.035µm
feature sizes, local wires that shorten in length as technologies scale have
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delays that either track gate delays or grow slowly relative to gate delay;
whereas global wires present a more serious problem to designers. Although
repeaters insertion can be incorporated to mitigate the delay in global wires to
keep a constant delay, it consumes power and chip area whereas the delays
relative to gate delays still scale upwards. In addition, reverse scaling of global
(and intermediate) wires is necessary [24] [25].

Figure 2.10 is an example of the interconnect strategy in microprocessor
design. Here global (and semi-global) wires are wider and taller than local
wires and they are usually allocated to the top metal layers. Local wires are
narrow and short and they are usually allocated to the bottom metal layers.

5. NOISE-ON-DELAY EFFECT

As mentioned before, noise has two deleterious effects on circuit
performance. When noise adds to a normally static signal, it can destroy the
local information carried by the static node in the circuit and ultimately result
in incorrect operation or bad signal-to-noise ratio. When noise adds
simultaneously to a switching signal, this manifests a change in time (jitter and
skew) of the transient signal. This noise-on-delay effect is often referred to as
pushout.

5.1 Crosstalk-on-Delay

Figure 2.11 illustrates the effect of crosstalk on signal delay. Assuming
that the edges are approximately linear, the slew rate is Vsw /tr,f . The skew is
then by first order approximation the noise voltage times the inverse of the
slew rate:

sw

fr
noise V

t
Vt ,=∆ (2.8)

Figure 2.11 A sketch of the effect of crosstalk on signal delay ( © Magma [32]).
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5.2 Power-Supply-Noise-on-Delay

The delay due to power supply noise is caused by power supply variation
modulating the output current of drivers. When a short-channel MOS
transistor drives a load capacitor CL, the first order analysis gives the 50%
delay in terms of supply voltage (VDS) as [26] [7]
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where λ is the channel-length modulation constant of the MOS transistors. It is
obviously seen that a drop of supply voltage will significantly increase the
propagation delay.

6. DESIGN FOR SIGNAL AND POWER INTEGRITY

6.1 General Analysis Approach

Accurate prediction of signal and power integrity of high-performance
mixed-signal VLSI requires good modeling of the components including the
non-ideal drivers, receivers, signaling interconnects, and power distribution
systems. In order to capture the proper physical effects, each model must be a
standalone implementation of the correct physics such as bandwidth,
frequency dependent effects, and coupling. Awareness of these physical
effects and their significance by a first order rapid estimation are necessary for
designers. In addition to this, all of the models must work together properly.
Since all waveforms are analog in nature, analog simulations of digital signals
are required and SPICE or SPICE-like simulators are very commonly used. In
order to facilitate analysis, worst-case analysis is sometimes adopted, which
however requires construction of a correct worst-case model. After running a
number of simulations, the qualities of the signals and the power supply are
examined for violations of the specifications.

Nonetheless, accurate physical information of a system is usually available
only based on layout database. If the resulting system does not meet the
specifications whilst the problems cannot be fixed in the physical layer,
information of interconnects and non-ideal effects of components must be
back-annotated to higher-level simulators to improve the accuracy of higher-
level models. Iterations between higher-level design and physical level design
thus occur.
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6.2 Interconnect-Centric Design Methodology and
Networks-on-a-Chip

As interconnects have been a key limiting factor in VLSI design in DSM
regime, chip design must first consider the constraints of interconnects in each
design stage. An interconnect-centric design methodology aims to bring the
interconnect issues upfront not only in the whole design flow but also within
each design phase. System architecture, global communications, clock and
power distributions are pre-defined or planned to accommodate the
interconnect constraints. We tend to believe that once the physical hierarchy
and global interconnects are defined, existing synthesis and placement
algorithms can work efficiently at module level up to about 50K gates, which
contains mainly local interconnects, as argued in [27] [28]. The interconnect
information obtained in the early design phases, will be processively used in
logic design and circuit design in each module, and later in physical design, as
directives. Finally, a layout can be generated, that confirms the early timing
values by carefully tuning the gains of the gates and spreading the delays over
the paths. During the design process, a number of point tools should be used
for various tasks such as support of partitioning [29], efficient analysis of used
communication schemes [30], estimation of wireability and wire capacity
under noise and performance constraints [25]. In addition, some emerging
tools such as timing driven synthesis, timing driven and noise aware routing,
and gain-based synthesis and routing tools [31] [32], will help to improve the
design accuracy in the later phases.

One challenge of an interconnect-centric design methodology is to improve
the accuracy of a priori interconnection estimations [54]. An emerging
technique is to ease the global interconnect design by exploring innovative
system architectures such as networks-on-a-chip. This brings global
interconnect design one abstract-level higher and thus reduces design time and
improves interconnect predictability.

6.3 Techniques for Signal and Power Integrity Enhancement

In addition to the efficient models and the new design methodologies,
several techniques exist to enhance signal and power integrity. Excellent
books on these issues for board and package design include early work in [33],
[7] and [34]. This text summarizes some commonly used techniques in VLSI
design.

6.3.1 System Architectures and Methods

A. System Architectures and Performance Estimates

An appropriate system architecture is always of paramount importance to
signal integrity design. A good example is networks-on-a-chip, as mentioned
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previously, that facilitates the global interconnect design with predictable
performance and integrity by reducing the design space to a set of regular wire
segments and standard interfaces. Networks-on-a-chip architectures and their
design methods are the main focus in Part 2 and Part 3 of this book.

Due to the increasing importance of interconnects and other physical
effects, system level interconnect prediction and good physical models for
system performance estimations are crucial to the first success and system
optimization. Currently, there have been very successful techniques for
system-level performance modeling of microprocessors, early work includes
SUSPENS [35] and Sai-Halasz performance estimator [20], and late work
includes RIPE [36], BACPAC [37] which was further implemented in GTX
[55]. [38] and [39] present interconnect-centric design method and
performance estimation for SoC.

B. Signal Integrity and System Partitioning

Based on system performance estimates, optimized system partitioning can
be performed with respect to such characteristics as speed, cost, robustness,
noise isolation, manufacturability, component availability, and testability.
System-level decisions can thus be made with improved accuracy.

Systems are best partitioned so that higher performance can be achieved
using high-speed interconnects only where necessary. One example is a
microprocessor system where a memory hierarchy can be organized in many
ways: moving the L2 cache off the slow system bus and interconnecting the
L2 cache and the microprocessor with point-to-point connections can
considerably improve performance.

C. Bus Width and Speed

A direct way to increase the information carrying capacity of an
interconnect is to simply make the interconnect wider or faster. However,
wider buses require more interconnect resources and packaging pins, and the
extra drivers use more silicon real estate, dissipate more power and create
more noise; faster speed leads to higher power dissipation, noise and radiation
can be worse. All these issues must be considered in early decisions of bus
width and speeds.

In some cases, special communication architectures and protocols are
needed for the global information traffic in SoC. This could result in a system
with significant sub-optimal performance and with improved signal integrity
[40] [41] [42]. A good example is NoC. Bandwidth maximization in parallel
wire structures for NoC will be discussed in Chapter 3. Reference [68]
presents an efficient way of reducing effective delay in buses by coding.
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D. Topology and Loading

Topology plays a critical role in determining the maximum speed at which
an interconnect can be clocked. The fastest interconnect is a unidirectional
point-to-point connection between two devices or impedance controlled
transmission lines with a matching scheme to absorb any reflection that may
be generated by the source or load. Any deviation from this setup will lower
the maximum attainable clock speed. In particular, when three or more devices
must be connected (such as daisy chain and start cluster) impedance control is
compromised due to multiple reflections generated at the impedance
discontinuities where extra components must connect. After topology, loading
is the next most critical aspect regulating clock speeds on interconnects.
Heavy loading results in slow speeds, high power consumption, and bad signal
integrity (such as PCI-Bus). Good signal integrity can be achieved by limiting
the stub lengths and balancing the capacitive loads.

E. Noise Budgets and Signal Swing

A system designer manages noise by budgeting signal swing against noise
sources. In well-designed systems, the noise budget includes all relevant noise
sources often with worst-case analysis and leaves a comfortable margin for
safety. In cases where an unbounded noise, like over-shot noise, is large
enough to be important, we perform statistical noise analysis. It should be
noticed that the absolute value of the margin is not relevant; instead, the ratio
of the margin to the anticipated noise is the relevant measure of noise
immunity.

It is therefore of extreme importance for system designers to be aware of
the performance of different circuit families including their typical
propagation delay, noise margin, and signal swing. Circuits like static CMOS
have larger noise margin, but they also generate larger noise due to large
signal swing. The speed of dynamic CMOS is usually faster than static
CMOS, but it is more susceptible to crosstalk.

In addition to these, awareness of noise margin constraints to
interconnectivity is also important in estimating system wireability and system
performance. Reference [25] analyzed noise margin and interconnect delay
constraints on interconnectivity in DSM circuits. [43] presented an accurate
wire distribution model for VLSI circuits. These two analyses combined
together give an accurate early estimation of system wireability for noise
immunity and a similar analysis has been presented in [39].

6.3.2 Circuit Levels and Signaling

A. Differential Signaling Techniques

Differential signaling offers the highest signal integrity in which the
common-mode noise introduced by the return paths is rejected by the
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differential receiver. It forms the foundation of many high-performance
signaling standards, including LVDS and ECL. The price paid for this is more
complex drivers and receivers plus twice the amount of wires. Besides, mixed
standards are often used. For example, in many systems the clock is
transmitted fully differential to minimize clock skew, but the signals are not
differential (termed single-end).

B. Impedance and Termination Control

Control of line impedance and termination can dramatically enhance signal
quality for higher speeds by dissipating unwanted reflections. A variety of
terminations, series, parallel, Thevenin, RC network, and diode, can be used to
minimize the signal distortion due to reflections. In addition, when common-
mode current exists, energy will be exchanged between the common-mode
wave and differential-mode wave if the termination is not balanced. To avoid
this mode-coupling problem, care should be taken to terminate both the
differential modes and common modes properly at the receiver. In general, a
transmission line with significant return impedance should not be used to carry
single-ended signals. They should only be used with differential signals and
balanced terminations. The common-mode noise and differential-mode noise
on a power distribution network has been well addressed in [5].

C. Slew Rate Control

As slew rate increases both signal coupling and simultaneous-switching-
noise increases. This can be seen from Eqs.(2.2)-Eqs.(2.4). On the other hand,
a slow slew rate raises the timing skew, as indicated by Eq.(2.8). Repeater
insertion is a generally used technique to increase the slew rate by refreshing
the signal, as it will be described in Chapters 3 and 4. In addition to extra cost
for power and chip area, another drawback of repeater insertion is
unidirectional signal propagation. Booster circuits speed up slew rate for bi-
directional wires [44]. Recently, there are some load-aware transmitters which
adjust circuit slew rate by changing the driver capabilities for different load
conditions. Such kind of transmitters hence have much better signal integrity
characteristics.

D. Error Correcting Coding

Error correcting coding (ECC) is commonly used in communication
systems. In deep submicron VLSI circuits, when the cost of ECCs is
comparable with or lower than that of using buffer insertion and wire sizing,
ECCs become promising to combat digital noise in VLSI circuits. [45] [46]
examined the issues of high speed signing in DSM VLSI circuits and proposed
utilization of particular BCH codes to reduce bit error rate in face of crosstalk
and power supply noise.
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E. Low Noise Power Distribution

In the early days of VLSI, power distribution design was relatively simple
– making the wires wide enough to limit the maximum dc voltage drop.
Currently, with increased circuit density and speeds, power distribution
becomes complex and a number of topologies were employed such as power
rings [47], rooted and non-rooted trees, solid plans, meshed grids [48] [49],
and a mix of them. In principle, increasing the number of parallel
power/ground pins will effectively reduce the package inductance and hence
the switching noise. Further improvements can be achieved by appropriately
arranging power/ground/signal distributions to minimize the loop inductance
and to reduce the di/dt. It should be noticed that power impedance is frequency
dependent and hence needs to be managed in the frequency domain. Accurate
simulation and synthesis of the power distribution network over the whole
frequency range are essential to ensure reliable operation of the systems.

6.3.3 Physical and Package Level Techniques

A. Electrical Rule Definition

In a large system, detailed simulation of every net is impractical due to the
extremely high cost. Pre-characterization of several topologies can provide a
library of acceptable layouts, called wiring rules, which are guaranteed to
produce acceptable signal quality and delay. A system designed using such a
library is then correct by construction.

In practice however, complex VLSI systems are currently saddled with a
“construction by correction” in DSM technologies, instead of having a
“correct by construction” flow. This problem as mentioned previously will
need to be fixed by increasing the complexity and the flexibility of the
electrical rules (wiring rule, termination rule, noise aware, timing aware, and
dynamic modeling etc) or using pre-define wire structures such as NoC.

B. Critical Interconnect Length

In addition to the larger signal delay, long interconnects are more
susceptible to noise because of the long coupling lengths. Limiting the
maximum interconnect length not only reduces total delay but also reduces
coupled noise. Repeater insertion is a useful technique to reduce crosstalk both
in RC [50] [35] and LC/RLC lines [51] [12] by shortening critical interconnect
length. NoC, on the other hand, also shortens the critical length of global
wires.

C. Signal Isolation and Grounding

Isolation can dramatically suppress crosstalk. Placing a shielding wire
between coupled signal lines can suppress crosstalk by more than 15dB in
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DSM circuits [25]. For inter-module communication, using AC-coupled
(capacitor or transformer coupling) transmission lines can isolate the DC
ground shift between two modules. Optical isolation is commonly used in
board-level (or higher) systems. In mixed-signal ICs, guarding rings and
special isolation structures are usually made to prevent substrate coupling [52].
Besides, placing ground-plane and/or power-plane closely to signal lines can
reduce crosstalk. To suppress EMI, the system and each subsystem must be
well grounded, and the impedance of the ground must be low [10].

D. Power Supply Isolation

Power supply isolation includes power-power isolation and power-signal
isolation. In power-power isolation, sensitive circuitry (such as analog) uses a
clean power supply, isolated from dirty power supplies for digital circuitry. In
many cases, the power supply of the digital part is further partitioned into a
clean one for core logic cells and a dirty one (sometimes with higher voltage)
for I/O and buffer circuits.

In power-signal isolation, supplies are isolated from the signals and the
signal returns. To minimize direct coupling of supply noise into signals,
signals ideally should be run over a dedicated signal return plane that carries
no supply current and is isolated from the noisy supply by a shield plane that is
grounded at a single point. Such supply isolation precautions are expensive
and are common in analog and mixed-signal systems.

E. Decoupling Capacitors Allocation

Decoupling capacitor allocation is a common technique to suppress
switching noise on the power distribution networks. In electronic systems, a
power distribution network uses a hierarchy of capacitors, from board and
package level to on-chip level, and each stage of the hierarchy filters a
frequency band of current transients. Therefore, the final power impedance
must be well analyzed in the frequency domain that covers the whole spectrum
of all signals. In addition to using pn junction capacitors of n- or p-wells in the
silicon substrate, on-chip decoupling capacitors are often implemented by
using gate-oxide capacitors and hence consume expensive chip real estate.
Reference [53] proposed to use a self-decoupling power distribution
technique. This technique uses the mutual capacitance of the wiring hierarchy
of the power distribution network, and hence saves chip area. In modern VLSI
chips, excessive usage of on-chip decoupling capacitors is not recommended.
Implementing 10-15% of chip area for on-chip decoupling capacitors will be
regarded as too expensive and hence should be the maximum. To compensate
this, decoupling capacitors can also be allocated “near-the-chip” by for
example bonding discrete capacitor elements on the top of the chip, or be
allocated “off-the-chip” by placing discrete capacitor elements in the chip
package module.
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F. Low Inductance Package

A direct way to reduce power supply noise is to use low inductance
packages. As an example, the parasitic inductance of a package pin in a PLCC
or a PGA package is in several nano-Henry, while the inductance of a solder
bump in a flip-chip package is less than 100pH. Using such a low inductance
package could therefore results in orders of magnitude reduction of
simultaneously switching noise.

Besides, flip-chip packages allow area array distribution of the
power/ground pins. This solved the large-chip problem in a peripheral
counterpart where the center of the chip is susceptible to the excessive voltage
drop. The flip-chip connection also provides more I/O pins in large chips. This
is a very welcome result because the required pins for signal I/Os and
power/ground are rapidly growing as circuit complexity increases. The area
array connection combined with self-decoupling provides a very promising
power distribution structure in future VLSI chips, as shown in [4].

7. SUMMARY

Concern about the performance of wires in scaled technologies and
complexity in interconnect design have led to research exploring new
interconnect-centric design methodologies. Despite the fact that local
interconnects scale in performance, future design tools will still need more
sophisticated capability in dealing with these wires for signal and power
integrity as well as timing closure. Global interconnects and some intermediate
interconnects that do not scale in length present serious problems to designers.
The key focus of interconnect-centric design will be these global wires.

Interconnect-centric design methodology for SoC brings the interconnect
issues upfront not only in the whole chip design flow, but also in each design
stage. Once the physical hierarchy and global interconnects are defined to
accommodate the interconnect constraints, the design tasks start to be focused
on module or resource levels and common interface circuit issues. Networks-
on-a-chip architectures further facilitate the global interconnect design with
controlled predictability by reducing the design space to a set of regular wire
and standard interface circuits. Although this may not be an optimal solution
in interconnect-centric designs, it significantly reduces design time and wire
costs. A number of point tools and models for interconnect analysis are needed
at different design stages, for global communication and interconnect design,
for logic design and circuit design, as well as for physical design.

Therefore, a better understand of the magnitude of the wire problem and
interconnect constraints, better understanding of physical mechanisms of
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signal integrity and various design techniques at different design levels, are
essential to the success of interconnect design in the DSM regime.
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1. Introduction
The rapid development in deep submicron (DSM) technology makes

possible to design complex billion-transistor chips. To take full advan-
tage of increased integration density and cope with the difficulties in
designing such complex systems, the emphasis of design methodology
has changed from gate-level design to the exploitation of intellectual
property (IP) blocks. This IP-based design is rapidly becoming the
dominating design paradigm in System-on-Chip (SoC) era. IP blocks
themselves are usually verified by the supplier for some technology node
but the problem is how to ensure the correct performance when the IP
block is integrated in the SoC or even in Network-on-Chip (NoC) envi-
ronment. The problems occur in adapting the block interface into the
used communication frame. The main objective is to make computation
(IP blocks) and communication independent on each other.

Due to increasing integration density and diminishing wire dimen-
sions, communication using traditional SoC interconnect schemes (such
as buses) does not scale up properly compared with system complexity.
This leads to the communication scheme where traditional buses and
their arbitration are replaced with network switches connecting various
IP blocks in different network nodes to each other. Thus, a shift from
SoC to NoC is predicted when system complexity scales up on chip level.
Network nodes bring inherent pipelining and buffering onto system level
which is important when dealing with global wires that have more re-
sistive and inductive nature in current and future DSM technologies.
Additionally, undesired transmission errors can be reduced with error-
checking, e.g. in each network node. In this case, latency may increase
as a result of increased reliability.
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In this chapter, we first discuss parasitic modeling in the presence
of crosstalk and delay modeling of global wires. Inductance issues are
discussed in more detail in chapter 5 and thus we omit them here. Some
possible interconnect schemes in SoC and NoC are shortly discussed.
In section 3.3 we evaluate cost functions (e.g. power consumption and
area) that IP blocks set for the global communication network. We
present a method how to evaluate those costs in the early phase of design.
By evaluating costs of those resources we can better optimize global
interconnects to meet both signal and power distribution challenges.
We present one case study example on the cost evaluation. Finally, in
section 3.4 we apply methods and theories presented in earlier sections
and optimize global interconnects to meet different constraints. The
delay in global wires is optimized using repeaters that are sized properly
and placed in proper distances so that the overall delay is optimized.
Then we present optimal signaling having maximum throughput as a
constraint. Last, we present a case study in which both power and
signal distribution are simultaneously optimized. This is done by using
a method called interconnect partitioning and the design constraint in
this case is the maximum allowed variation of power supply levels in the
power distribution network. The variation depends on the grain size of
the power distribution grid and power consumption taking place in IP
(or functional) blocks due to simultaneous switching of large amount of
logic gates in a very short time interval.

2. Interconnect Modeling
Although there are different high-level abstract interconnect schemes

(such as point-to-point interconnect, bus architecture, switched network,
etc), the underlying physical global wire structure will be the same,
namely the parallel wire structure. For point-to-point connections, each
link is realized by a certain number of parallel wires; for the bus architec-
ture, the bus itself is a number of wires in parallel and the same applies
to a link connecting two switches in a Network-on-Chip. Therefore, it
is of great importance to study the interconnect in general, the parallel
wire structure in particular, and model them accurately. The following
wire models and the derived delay models [1] serve this purpose.

2.1 Characteristics of DSM Wires
Interconnects in deep submicron (DSM) technologies are typically

modeled as RC wires. Recently, the effect of inductance has been added
into the models of global, long wires. High operating frequencies and
fast signal transitions made possible by modern DSM technologies in-
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crease the impact of inductance on the electrical behaviour of the long
wires. However, we omit inductance in this chapter; chapter 5 deals with
inductance issues in more detail.

In order to keep the resistance to a minimum, the aspect ratio (the
ratio of height and width) of wires is increased, which gives rise to in-
creased inter-wire capacitance. This inter-wire capacitance results in
crosstalk which has an effect on the delay, depending on how the aggres-
sor lines switch. Crosstalk is of special significance in uniformly coupled
parallel wires, causing unpredictable delays. A crucial point here is that
when the geometry of the wire arrangement changes, the parasitics of
the wires change in a highly nonlinear fashion. In particular, the exact
manner in which the total capacitance is distributed into a ground com-
ponent and a capacitance component to the adjacent wires is important,
as this dictates the charging/discharging time.

An accurate analysis of interconnects requires solving Maxwell’s equa-
tions in three dimensions (3-D), which is prohibitively expensive in terms
of computation time. However, it is possible to use simplified models in
most cases to capture the important effects in the regime of interest
[2]. In the following text, parasitic modeling and delay modeling will be
described.

2.1.1 Parasitic Modeling. The skin depth at the highest
frequency of interest is usually large enough so that the DC resistance
(equation 3.1) is quite accurate [3]

R = ρ
l

hw
(3.1)

where l, h and w are the length, height and width of a wire, respec-
tively. If second order effects are ignored and the capacitance of a wire
is modelled solely by its parallel plate capacitance, changing the width
does not affect the RC delay, as a decrease (increase) in resistance by a
certain factor is accompanied by an increase (decrease) in capacitance
by the reciprocal of the same factor leaving the RC product unchanged.
However it is well known that for interconnects in submicron technologies
the higher aspect ratio results in the fringing component of the capaci-
tance being of similar or often greater than the parallel plate component
[4]. Hence the RC delay does change with the wire width and does so
in a highly nonlinear fashion. Further, most of the fringing capacitance
is to an adjacent wire, which results in capacitive cross-talk. Hence the
accurate distribution of the total capacitance into self and mutual terms
is very important. The parasitic capacitance is a very strong function
of the geometry and 3D field solvers are required to obtain accurate val-
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Figure 3.1. Configuration for investigating effect of crosstalk [1]. Geometrical ar-
rangement of the parallel multinet structure (upper figure) and electrical model for
delay modeling comprising victim net capacitance coupled to two aggressors in a
uniform and distributed manner (lower figure). c©2003 IEEE

ues. However over the years, empirical equations have been developed
which have reasonable accuracy and are very important in gaining an
intuitive understanding at a system level. The models can be broadly
classified into those that consider an isolated rectangular conductor and
those that consider a multi-wire structure. The geometrical parameters
mentioned below can be identified by referring to Figure 3.1.

The models in the first category describe the self capacitance of the
wire, and an overview can be found in [5]. One of the early approaches
detailed in [6] gives an empirical formula which decomposes the capac-
itance of a single rectangular wire over a ground plane into a parallel
plate component and a component proportional to a circular wire over a
ground plane, and hence has a straightforward physical motivation. The
accuracy of this equation however drops rapidly when the ratio w/h falls
below values of about 2-3. The trend in modern technologies is to have
increasing numbers of metal layers, thus increasing h, and shrinking wire
sizes, decreasing w, making the regime below this ratio the most inter-
esting, and hence rendering it unsuitable for on-chip wires. To calculate
the capacitance terms shown in Figure 3.1 we use the models proposed
in [7]. They use a technology dependent constant β which is calculated
from a database of values generated by a field solver, and are defined
in equations (3.2) through (3.7). Typical values of β range from 1.50 to
1.75, and 1.65 may be used for most DSM technologies.

Cf = εk

[
0.075

(
w

h

)
+ 1.4

(
t

h

)0.222
]

l (3.2)



Global Interconnect Analysis 59

C ′
f = Cf

[
1 +
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]−1

(3.3)

Cp = εk
wl

h
(3.4)

Cs,mid = Cp + 2C ′
f (3.5)

Cs,corn = Cp + Cf + C ′
f (3.6)

Cc = Cf − C ′
f + εk
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]
(
h

s
)1.34l (3.7)

2.1.2 Delay Modeling. From now on, whenever delay is
mentioned without further qualification, we are talking about the 50 %
point of the step response, which is the delay to the switching threshold
of an inverter. The most ubiquitous circuit model in MOS circuits is
a lumped capacitance (representing the load) driven through a series
resistance (representing the driver impedance), which has a single pole
response and a delay as shown in equation (3.8)

tlump = 0.7RC (3.8)

One of the most prevalent methods of estimating the delay of more
complex networks is to model the output by a single pole response, where
the pole is the reciprocal of the first moment of the impulse response.
This is often referred to as the Elmore delay after the person who first
proposed it as an upper bound to the delay in an analysis of timing in
valve circuits [8]. Now thin on-chip wires have a high resistance, and are
most often modeled by distributed RC lines. Signal propagation along
such lines is governed by the diffusion equation which does not lend
itself readily to closed form solutions for the delay at a given threshold.
However it turns out that a first order approximation results in very
good predictions [9], [10]. One way of explaining this is to recognize
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that a distributed line (which comprises cascaded RC sections in the
limit where the number of sections tends to infinity) is a degenerate
version of an RC tree, with the step response in consequence having a
dominant time constant. This time constant can be well approximated
by the Elmore delay, or 0.5RC, which leads to equation (3.9) as the
model for the delay of a distributed RC line [9].

tdistr = 0.4RC (3.9)

This is a very good approximation and is reported to be accurate to
within 4 % for a very wide range of R and C. Sakurai in [11] reports
heuristic delay formulae based on a single pole response which predicts
values which are very close to the Elmore delay.

In closely coupled lines the phenomenon of cross-talk can be observed.
Cross-talk may be both inductive and capacitive. In coupled micro-strip
lines for example, the mutual capacitance couples the time derivative
of voltage while the mutual inductance couples the spatial derivative of
voltage, so that a signal transition on one line may induce travelling
waves on another line [12], [13]. For DSM circuits capacitively coupled
lossy lines are the most relevant when the phenomenon of cross-talk
causes signal integrity and delay problems. Cross-talk couples a noise
pulse onto the victim net which can have two effects: it can result in a
functional failure by causing the voltage at a node to switch above or
below a threshold, and it affects the propagation velocity of signal pulses
on the victim line.

The effect of cross-talk on the delay depends on the switching of the
aggressor lines, and can truly be captured only by dynamic simulators
which take into account arrival times of different signals and carries out
a full transient analysis. It is possible however to limit the aggressor
alignment to a few specific cases and develop timing models for static
analyses. One such work is [14] where moment matching techniques
are used to obtain single pole responses for coupled lines. Most often
static timing models which take cross-talk into account are based on
a switch factor. The capacitance for a line is modelled as the sum of
two components, one of which represents the capacitance to ground,
while the other represents the capacitance to adjacent nets. This second
component is multiplied by a factor which takes the value of 0 and 2 for
the best and worst cases respectively. Kahng et. al. in [15] show that
2 does not necessarily constitute an upper limit on the delay in general,
where the inputs are finite ramps, and have different slew rates, and that
3 is a better factor for worst-case estimations in such situations.
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As we are only concerned with the influence on delay and other perfor-
mance metrics related to it, such as bandwidth, in the following text, we
ignore the inductive effects and use analytic delay models that are very
simple, yet model with good accuracy the most important phenomenon
in closely coupled wires: that of capacitive cross-talk. The lines are
modeled as coupled uniformly distributed RC lines, and a slightly modi-
fied switch factor based analysis of delay in long uniformly coupled nets
is presented, where the capacitance is distributed over two components
and two empirical constants are used to appropriately modify the dom-
inant time constant. This is shown to be more accurate than using a
factor of 2 to model the worst case, although the complexity is the same.

2.2 Interconnection Schemes in SoC and NoC
As the number of computational and functional units on a single chip

increases it also increases the need for communication between those
units. As a consequence, it is important to choose an appropriate inter-
connect scheme. This design methodology focusing on the interconnect
is called interconnect-centric design. It demands the network to be scal-
able, flexible and efficient. An interconnect scheme is scalable if it is
able to accommodate growth, i.e., if it is possible to attach additional
IP blocks to an existing network without severe degradation of per-
formance. Flexibility means that it should be easy (in a plug-and-play
fashion) to attach or remove a component from the interconnect network
without modifying the whole network. Other components attached to
the network should not be affected by the attachment or removal of one
or more IP components. At last, an interconnect scheme needs to be
efficient in terms of silicon area, provided bandwidth and power con-
sumption. It should be noticed that one interconnect scheme does not
necessarily exclude others. They can coexist to optimize the overall per-
formance. For example, a point-to-point connection may exist between
two components that require high bandwidth at the same time as one
or both of them are connected to a bus to communicate with other IP
components.

In SoC, typical interconnect schemes are point-to-point interconnect,
single-bus architecture and multi-bus architecture. Point-to-point inter-
connects are usually reserved for links demanding high bandwidths. It
is also easier to optimize the point-to-point link than the whole bus.
However, the point-to-point interconnect is not a very good solution in
future SoCs because it is neither scalable nor flexible. The most severe
problem with a single-bus architecture is scalability; if more IP blocks
are added the bandwidth per IP is decreased and there is also a problem
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of distributing a synchronous clock signal over the whole chip. Finally,
the advantages of a multi-bus architecture are segmentation of one bus
into many buses (by using bridges) and differentiated services for dif-
ferent traffic types (latency and bandwidth as parameters). Still, the
multi-bus architecture suffers from the same limitations as other shared-
bus implementations, it is not scalable as the number of IP blocks is
increased to tens or hundreds of blocks in the future.

In NoC, an interconnect scheme is a switch and IP blocks commu-
nicate with each other via these switches. The switches are connected
via point-to-point interconnect links (e.g. a 32-bit link) to each other.
Information (data, control and address) is embedded in packets. The
switched NoC fills all the requirements: it is scalable, flexible and ef-
ficient. The last property follows from packet-type communication. A
tiny disadvantage is that every time a new block is added into a NoC
system there is also a need for a wrapper (an adapter) that adapts the
block interface into the used communication frame. If the communica-
tion frame is changed also a new wrapper has to be designed. There is
a growing tendency to standardize communication frames.

3. Early characterization of functional blocks
In addition to modeling wires and different types of interconnect

structures in SoC and NoC, we need to model functional blocks as
well. Costs and performance of functional blocks define the require-
ments for the global interconnect structure, i.e. which type of inter-
connect scheme (see section 3.2.2) is chosen and how metal levels are
utilized to different operational purposes (e.g. clock and power distribu-
tion and local/semilocal/global signaling). Additionally, cost functions
of functional blocks, such as area and power consumption, affect directly
properties like a maximum length or wire length distribution of global
wires and also power supply voltage variation across the circuit.

In this section the focus is on modeling and estimating the charac-
teristics of functional blocks which then act as cost producers and set
constraints for global wiring.

3.1 Rent’s rule for characterization of processors
In 1971 Landman and Russo published their well-known paper [16]

on Rent’s rule. Rent’s rule describes a relationship between the number
of signal I/O connections to and from a logic block and the number of
logic gates it contains.
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Different interpretations have been given for the rule afterwards but
generally it has been applied to evaluate wire length distribution inside
a block and thus to help in a placement and routing process.

Rent’s rule can be described by equation 3.10 [16]

#I/O = KpN
p
gates, (3.10)

where Kp is Rent’s constant (number of average gate I/O), Ngates

is the number of gates in a block, p is Rent’s exponent and #I/O is
the number of I/O pins in the external interface of a block. Bakoglu
[10] has extracted some Rent’s constants and exponents for the most
general on-chip structures, such as static memory, microprocessor and
gate array, and also for module, board and system level in a high-speed
computer. The problem in using those values for Rent’s parameters is
that they match with the architectures that were used for about 15 years
ago. Today processors and other digital circuits are mainly designed
using logic synthesis tools which have developed very rapidly over the
years and can optimize logic structures to meet various constraints set
by an application. Synthesis-based Rent’s exponents and constants are
discussed in subsection 3.3.2. The way to apply Rent’s rule in that
subsection differs from the traditional approach; instead using the rule
to intrablock wiring design we apply it to inter-block (i.e. global) wiring
design.

Rent’s rule has been used directly or indirectly in many earlier models.
Bakoglu’s SUSPENS model [10] is an obvious example; there Rent’s rule
is used to estimate an average interconnection length and finally clock
frequency, power dissipation and chip size. This implies that the total
number of logic gates is known beforehand. Donath’s model [17] is used
for estimating average wire length. The problem with SUSPENS is that
it does not include an option for using modern metal level structures with
variable wire pitch. Additionally, it lacks an option for on-chip mem-
ory that is used in all modern on-chip processors and System-on-Chip
circuits. There are other chip performance models, which take modern
interconnect structures into account better than SUSPENS. Those mod-
els have later been integrated under a single estimator environment in a
design tool called GTX [18]. In GTX a user can additionally add own
rules to take new physical effects into account.

Usually those models use either one or two values for the Rent’s expo-
nent. In the latter case the exponent is divided into an internal and an
external exponent. The former exponent relates closely to wire length
distribution and placement optimization in a block and the latter is
used for external I/O connections from and to a chip. Because there



64

is the limited amount of signal I/O pins in a chip package (although
area-array bonding increases that number) the internal exponent tends
to be higher than the external exponent. However, there is a need for
a large set of functional blocks in modern reconfigurable processors de-
pending on an application. This implies that multiple Rent’s exponents
and constants have to be extracted. Additionally, modern logic synthe-
sis tools are given various constraints (e.g. the delay in a block) which
affect logic organization inside the block and the selection of standard
cell components to implement the required function.

3.2 Extraction of Rent’s exponents for
synthesized blocks

A designer has to be able to predict system level performance met-
rics already in the early phase of the design cycle thus avoiding many
time-consuming synthesis runs. We have developed a method for linking
different synthesis runs of given timing constraints to an early estimation
model. The model uses only a few parameters with which one can esti-
mate performance metrics of processor blocks accurately enough before
the implementation of a design. The key component in early estimation
analysis is Rent’s rule [16] presented already in section 3.3.1.

First, one block is taken under examination. By using Rent’s rule
(3.10) different Rent’s exponent values are calculated. Values for Rent’s
constant Kp (number of average gate I/O) and number of gates Ngates are
extracted from synthesis reports. The number of block I/O connections
(#I/O) is defined in the specification of the block. There are two ways
to evaluate the number of gates (Ngates), the first is an area-optimized
case and the second is a power-optimized case. In the area-optimized
case Ngates = Atot

Agate
, where Atot is the total area of the block and Agate

is the area of the gate type chosen to represent an average gate in the
block. In the power-optimized case Ngates = Ptot

Pgate
, where Ptot is the

power consumption of the block and Pgate is the power consumption of
the chosen average gate with a certain fanout. The block-level values for
area and power consumption are extracted from synthesis results and the
average gate values from datasheets of the standard cell library. Ngates,
and thus also exponent p, is usually a bit different for the two cases.

A few words have to be said about the evaluation of the number of
logic gates. First, by using power consumption values from the logic
synthesis a relatively bad accuracy can be reached because switching
activities of electrical nets vary. The use of area information can be bet-
ter argumented because in modern technologies there is enough wiring
capacity (6-8 metal layers) and thus the final area after placement and
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routing does not increase severely. The use of different metal layers to
different operational purposes is discussed more in section 3.4.3. Second,
we know the number of I/O connections to and from a block before the
actual design implementation but not the number of gates. That’s why
we apply the rule in a contrary way as usually. Third, our model assumes
that some estimate of the ratio of combinatorial and sequential logic in a
block can be given before the actual implementation of the block. This
should be roughly evaluated already when specifying the functionality
of the block. That ratio is important when estimating the area of the
block but especially when estimating power consumption. The different
values of switching activity can be applied to different types of logic and
thus to achieve a better estimate for power consumption.

The values of the Rent’s exponent p found in the literature very of-
ten refer to a specific design case implemented with specific technology
and specific logic design style. Hence, there is a need to derive Rent’s
exponent for individual blocks separately. Because in the logic synthesis
process a CAD tool changes the organization and the type of standard
cell components according to various delay, area and power consump-
tion constraints, we need to define a separate Rent’s exponent for each
individual block as a function of a specific constraint.

In this way one gets varying values (e.g., when a delay constraint is
changed) of both p and Kp for the block under examination. This result
is still inadequate if one needs to change the delay figure more freely.
Assume that one wants to use a delay constraint not matching with any
of the reference points (used in exponent’s calculation) but something in
between the synthesized values. Then one has to plot Rent’s exponent
p as a function of delay and make a regression analysis for the “data
points”. In our case study (see section 3.3.4), we decided to use linear
regression for curve fitting although it shows that some of the curves
could obey a polynomial expression or a step function.

3.3 Regression analysis for predicting Rent’s
exponent

A linear regression analysis is performed to Rent’s exponent variation
as a function of delay constraint. An error function is given by equation
(3.11) [19]

J =
1

2N

N∑
i=1

ε2i , (3.11)
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where εi is di − (b + wxi) and where di is the real exponent value
and xi is here the delay constraint. This is a mean square error (MSE)
function. The goal is to minimize the error function by setting partial
derivatives of J to zero with respect to an axis intercept value b and a
slope w. After doing this the following equations are derived [19]

b =
∑

i x
2
i

∑
i di −

∑
i xi

∑
i xidi

N [
∑

i(xi − xavg)2]
(3.12)

w =
∑

i(xi − xavg)(di − davg)∑
i(xi − xavg)2

, (3.13)

where xi and di are as defined earlier and xavg and davg describe
average (mean) values of the delay constraint and the Rent’s exponent,
respectively.
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Figure 3.2. Regression graphs (a) for an ALU (area-optimized case) and (b) for a
2-cycle multiplier (power-optimized case). c©2003 IEEE

3.4 Case study: Block-wise estimation of a
XIRISC processor

In this case study we used seven different delay constraints. We used
synthesis results to define a specific Rent’s exponent p for each block used
in our XIRISC processor case study as a function of delay constraint.
There were two separately optimized cases for deriving Rent’s exponent:
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area-optimized case and power consumption-optimized case as explained
in section 3.3.2. For both cases we used the information received from
the synthesis report and assume that a standard 2-input NAND gate
(with normal drive strength, fan-out of 2 and an input rise time of 17 ps)
represents an average gate. We used 0.18 µm, 6-metal silicon technology.

Regression graphs are presented for an ALU (area-optimized case) and
for a 2-cycle multiplier (power-optimized case) in Figure 3.2. The Rent’s
exponents as a function of the delay constraint for other processor blocks
as well as more details of this case study can be found in [20]. One can
see from Figure 3.2 that in the case of ALU Rent’s exponent decreases
gradually with tightening the delay constraint but in the case of 2-cycle
multiplier an abrupt change in the exponent is noticed. Synthesis reports
show that also the values of Rent’s constant were simultaneously changed
which we think is due to the change of the cell type used in the synthesis
as the delay constraint gets tighter.

4. Optimize Global Interconnections for
SoC/NoC

In subsection 3.4.1 we study different techniques to reduce the wire
delay in a parallel wire structure. In subsection 3.4.2, strategies on
repeater insertion under different constraints are investigated. The goal
is to maximize bandwidth of the wire structure. Finally, in subsection
3.4.3 we present a case study where both signal distribution and power
distribution have been optimized simultaneously. In the case study, a
method called interconnect partitioning has been used and the maximum
allowed power supply voltage variation in the power distribution network
has been used as a design constraint.

4.1 Delay Reduction with Optimized Repeater
Insertion

The most common method of reducing the delay over long intercon-
nects is to insert repeaters (inverters) at appropriate points. We use the
model derived in subsection 3.2.1.1 to show that both the number and
size of repeaters can be optimized to compensate for dynamic effects [1].

In the delay analysis, the victim line is assumed to switch from zero
to one, without loss of generality. When a line switches up(down) from
zero(one) it is assumed to have been zero(one) for a long time. For si-
multaneously switching lines in the configuration of Fig. 3.1, six distinct
switching patterns can be identified.

1) Both aggressors switch from one to zero. 2) One switches from one
to zero, the other is quiet. 3) Both are quiet. 4) One switches from one
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to zero, the other switches from zero to one. 5) One switches from zero
to one, the other is quiet. 6) Both switch from zero to one.

Consider 3) above as the reference delay, where the driver of the victim
line charges the entire capacitance. Cases 1) and 2) slow down the victim
line, 4) is equivalent to 3), and 5) and 6) speed up the victim. In all
cases except 5), the response of the distributed line for step inputs has
a dominant pole nature. Since the time constants in question are linear
combinations of R, Cs and Cc, changing coefficients are sufficient to
distinguish between the different cases. The delay is as given in equation
(3.14) where all λi take the values of Table 3.1. The coefficient µi in the
same table is an empirical constant to model the Miller effect and will
be used in the following equations.

tvic = 0.4RCs + λiRCc (3.14)

i switching λi µi

pattern
1 (a) 1.51 2.20
2 (b) 1.13 1.50
3 (c) 0.57 0.65
4 (d) 0.57 0.65
5 (e) N/A N/A
6 (f) 0 0

Table 3.1. Coefficients of the heuristic delay model for a distributed line with differ-
ent switching patterns [1]. c©2003 IEEE

These constants were obtained by running sweeps with the circuit
analyzer SPECTRE. Now the total delay of the line is affected by the
driver strength, and the load at the end of the line. The simplest charac-
terization of the driver is to consider it as a voltage source in series with
an output resistance Rdrv, with a capacitive load of Cdrv at the input.
The linear approximation of the buffers allows the use of superposition
to find the delay, which is given by equation (3.15)

tT,vic = 0.7Rdrv(Cs+Cdrv+µi×2Cc)+R(0.4Cs+λi×Cc+0.7Cdrv) (3.15)

The lumped resistance Rdrv combines with all the capacitances (both
lumped and distributed) to produce delay terms with a coefficient of 0.7.
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Similarly the distributed resistance of the line combines with various
capacitances to produce different delay terms (it is assumed that the
load at the end of the line is an inverter which is the same size as the
driving inverter). The terms containing mutual capacitance Cc model
crosstalk. The coefficients λi and µi make the expression for the total
delay more accurate than using a single coefficient of 2 for the coupling
capacitance to model the worst-case. For i=1, the above expression
reduces to equation (3.16)

tT,vic = 0.7Rdrv(Cs +4.4Cc +Cdrv)+R(0.4Cs +1.5Cc +0.7Cdrv) (3.16)

If a universal factor of 2 is used for the coupling capacitance, the
expression takes the form given in equation (3.17)

tT,vic = 0.7Rdrv(Cs + 4Cc + Cdrv) + R(0.4Cs + 1.6Cc + 0.7Cdrv) (3.17)

Hence, with the empirical constants that we propose, factors of 4.4
and 1.5 appear before Cc, while in a conventional worst-case analysis
they should be 4 and 1.6. If the driver impedance is set to zero, the
difference between the two expressions is very small, but with non-zero
driver impedances, the difference is significant. The accuracy of equa-
tions (3.16) and (3.17) was checked against simulated values. It shows
that the empirical model contains the error to under 5 %, while the tra-
ditional method is more sensitive to the value of the driver impedance
and has errors of up to 10 % for certain cases. To reduce delay, the long
lines in Figure 3.1 are broken up into shorter sections, with a repeater
(an inverter) driving each section as shown in Figure 3.3. Let the num-
ber of repeaters including the original driver be K, and the size of each
repeater be H times a minimum sized inverter (all lines are assumed to
be buffered in a similar fashion). The output impedance of a minimum
sized inverter for the particular technology is Rdrv,m and the output ca-
pacitance Cdrv,m both of which are assumed to scale linearly with size.
This arrangement is sketched out in Figure 3.3. In general, the line seg-
ments corresponding to the gain stages would not be equal in length, as
repeaters are typically situated in ”repeater stations”, the locations of
which are determined by overall layout considerations. Then the delay
is given by equation (3.18)

tuneq =
K∑

i=1

[Ai + Bi] +
tr
2

, (3.18)



70

Figure 3.3. Repeaters inserted in long uniformly coupled nets to reduce delay [1].
c©2003 IEEE

where

Ai = 0.7(
Rdrv,m

hi
+ Rvia)(csli + HiCdrv,m + µi × 2ccli) (3.19)

and

Bi = rli(0.4csli + λiccli + 0.7HiCdrv,m) (3.20)

It is assumed that the load CL is equal to the input capacitance of an
H sized inverter. Also the signal rise time has been included here. For
the long lossy lines that we consider here, usually the delay of the line
is much greater than the rise time of the signal with which the driving
inverter is gated, and the 50 % - 50 % delay from buffer input to output
interconnect node is independent of rise time [21].

Now the minimum delay is obtained when the repeaters are equalized
over the line, when the above expression reduces to equation (3.21)

teq = K
[
A′

i + B′
i

]
+

tr
2

, (3.21)

where

A′
i = 0.7

Rdrv,m

H
(
Cs

K
+ HCdrv,m + µi

2Cc

K
) (3.22)

and

B′
i =

R

K
(
0.4Cs

K
+ λi

Cc

K
+ 0.7HCdrv,m) (3.23)
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In order to find the optimum H and K for minimizing delay, the
partial derivatives of (3.21) with respect to K and H are equated to
zero, resulting in equations (3.24) and (3.25)

Ki,opt =

√
0.4RCs + λiRCc

0.7Rdrv,mCdrv,m
(3.24)

Hi,opt =

√
0.7Rdrv,mCs + 1.4µiRdrv,mCc

0.7RCdrv,m
(3.25)

When a number corresponding to a certain case is substituted for i
in the two equations, the number and size of repeaters to minimize the
delay for that particular switching pattern (see also Table 3.1) results.
Thus we have proposed a simple way to distribute the capacitance and
take the effect of switching aggressors into account.

4.2 Optimal Signaling Over Parallel Wires
In the previous subsection, we have seen how repeater insertion can

help to reduce delay over long interconnects. However, delay is not the
only concern associated with the interconnect. Another major issue is
the bandwidth supported by the interconnect under certain constraints,
such as limited area, limited power consumption and limited freedom
in choosing repeater insertion strategy. In the followin text we study
how delay and bandwidth are related and derive an optimal bandwidth
under different constraints.

For the wire arrangement shown in Figure 3.1, the worst-case delay
of a line is defined as tWC . Since in general it has to be assumed that
the worst-case aggressor-victim switching pattern will occur on a given
line, any calculation of bandwidth has to consider the worst-case delay
as the minimum delay over a line. This minimum delay, as we shall
show depends on the resources available for repeater insertion, but it
shall always correspond to the switching pattern in case 1). Hence for
all delay calculations, equation 3.21 with i = 1 is used. The line delay is
matched to the minimum pulse width T , by allowing a sufficient margin
of safety. The exact mapping depends on the type of line [22], but it
is generally accepted that three 0-50% propagation delays are sufficient
to let the signal cross the 90% threshold for RC lines [23]. Since we
already consider the worst-case delay with good accuracy, a factor of 1.5
is deemed to be sufficient, resulting in equation (3.26)

T = 1.5tWC (3.26)
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The total bandwidth in terms of bits per second is now given by
equation (3.27)

BW =
N

T
, (3.27)

where N is the number of signal wires that can be fitted into a given
area. This expression changes if pipelining is carried out so that at any
given time, more than 1 bit -up to a maximum of one bit per each gain
section- is on the line. Since each repeater will refresh the signal and
sharpen its rising or falling edge, the mapping between the propagation
delay and the pulse width needs to be carried out for each section. The-
oretically it is possible to gain an increase in bandwidth by introducing
repeaters up to the limit where the bit width is determined by consid-
erations other than the delay of a single stage, or where the delay of
the composite net is greater than its constraint. In practice one rarely
sees repeaters introduced merely for the sake of pipelining, when the
total delay of the net, and power consumption increases as a result. If
pipelining is carried out, it is a simple matter to multiply equation 3.27
by the appropriate factor.

The number of signal wires N that can be fitted into a given area
depends on whether shielding is carried out or not. In general, shielding
individual lines is only useful against capacitive crosstalk. The magnetic
field will in all probability permeate the entire breadth and length of the
bus, and can only be contained by very fat wires. Hence for the shielded
case it is assumed that the shielding wires are the thinnest permitted by
the technology, regardless of the size of the signal wires, as this serves the
intended purpose while minimizing area for non-signal wires. From the
geometry of Figure 3.1, we get the relation given in equation (3.28) for
unshielded wires, and in equation (3.29) for shielded wires. Our problem
definition is to maximize the bandwidth for a constant width WT .

WT = NW + (N − 1)S (3.28)

WT = NWsignal + (N − 1)(2S + Wshield) (3.29)

Typically in a process the wires in a certain layer are limited to tracks
determined by the minimum feature size of the technology. Within this
frame, the designer has freedom to vary the spacing and the width of
the wires. Now the problem definition can be stated as follows: for a
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constant width WT , what are the N (number of conductors), s (spacing
between conductors), and w (width of a conductor) values that give
the optimum bandwidth? The variables are discrete as s and w are
dictated by the process as well, and there are geometrical limits which
cannot be exceeded. The optimal arrangement depends very much on
the resources allocated for repeaters, and is investigated by simulations
first. Then approximate analytic equations are developed that give close
to optimal solutions, and can be used as guidelines to quickly obtain the
true solution.

The simulations are carried out for a future technology with param-
eters estimated from guidelines laid out in [24]. The minimum feature
size is 50 nm, and copper wires are assumed with the technology depen-
dent constant b being 1.65, height above substrate h being 0.2 µm, and
wire thickness t being 0.21 µm. The minimum wire width and spacing
are each assumed to be 0.1 µm and the output impedance of a minimum
sized inverter estimated to be 7kΩ and its input capacitance 1fF. In all
cases the constraint for the wires is set to a total width of 15 µm. Of
the three variables N , s and w, only two are linearly independent, as the
third is defined by 3.28 or 3.29 for any values that the other two may
take. We choose to vary N and s, and assume that w and s are variable
in multiples of the minimum pitch. In the subsequent sections different
constraints on the repeaters are considered.

4.2.1 Ideally Driven Line. Although ideal sources are never
present in practice, the wire arrangement for the optimum bandwidth is
interesting as it serves as a point of comparison for later results. Given
in Figure 3.4 is the plot of how the bandwidth varies with N and s. It
can be seen that there is a clear optimum of 16 conductors which is far
from the maximum number of 150 conductors allowed by the technology
constraints.

4.2.2 Unshielded Lines with Optimal Buffering. The
bandwidth for changing N and s where the repeaters are optimally sized
is plotted in Figure 3.5. It can be seen that the maximum bandwidth is
obtained when the parallelism is the maximum allowed by the physical
constraints of the technology, of w = s = 0.1 µm. This result is logi-
cal because the buffers which are optimally sized for each configuration
compensate for the increased resistance and cross-talk effect. The values
of H and K are 52 and 7 respectively, while the maximum bandwidth
is 345.5 Gbits/s.
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Figure 3.5. Bandwidth variation for unshielded lines with optimal repeater insertion
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4.2.3 Unshielded Lines with Constant Buffering. Opti-
mal repeater insertion results in a large number of huge buffers. Also, as
is the case with optimal buffering in general whether the load is lumped
or distributed, the delay curve is quite flat, and the sizes can be reduced
with little increase in delay. Instead of optimal repeater insertion, if a
constraint is imposed on the number and size of buffers for each line,
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the optimal configuration does not equate to the maximum number of
wires.

If a constraint of K = 1 and H = 20 is laid down for each line the
optimal configuration corresponds to w = 0.16 µm, s = 0.2 µm and
N = 42, so that the N ·H ·K product is 840. The maximum bandwidth
is now 171.1 Gbits/s.

4.2.4 Unshielded Lines with Constrained Buffering.
Typically the constraint would be on the total area occupied by the
buffers, and hence K and H would be affected by N . If 3.30 describes
the area constraint on the buffers, the optimum configuration is the
solution to the constrained optimization problem of maximizing (3.27)
subject to equations 3.28 and 3.30:

NKH ≤ Amax (3.30)

This adds a third independent variable to the objective function (3.27).
The variable could be either K or H since N is constrained by equation
(3.28) and Amax is a constant. It is a simple matter to incorporate all
the relevant equations presented here into an iterative algorithm that
can be used to obtain a computer-generated solution. As an example,
assume that Amax is set to 500 for the same boundary conditions. It
turns out that the optimal configuration is when K = 1, and shown in
Figure 3.6 is a plot of the bandwidth where K = 1 and H changes ac-
cording to N . The optimal wire arrangement turns out to be w = 0.26
µm, s = 0.4 µm and N = 23.

4.2.5 Shielded Lines with Optimal Buffering. In general,
shielding each signal wire results in a drop in the overall bandwidth. The
reason is that although shielding reduces the delay over each individual
line, the reduction in the number of signal lines more than negates this
effect. Shown in Figure 3.7 is a plot of the bandwidth where every other
wire is a minimum sized shielding wire, and the signal wires are buffered
optimally. The total bandwidth of 261.3 Gbits/s is less than in the
unshielded case. This reduction is however accompanied with a saving
in repeater size, and shielding can be considered as an option to reduce
area and power consumption for repeaters.
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4.3 Case study: Budgeting wire capacity for
robust power delivery and global signal
integrity

In this case study, a dynamic interconnect library [7] was first em-
ployed to model the characteristics of system-level interconnections. This
interconnect model consists of a network of 3D capacitance, resistance
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and inductance, and can accurately predict signal integrity and trans-
mission properties at system level [7], based on the placement planning
and wire planning of the system. Moreover, the model dynamically rep-
resents complex 3D multi-level interconnect structures, allows changing
of wiring cross section, spacing, and usage of shielding and repeater in-
sertion, to control the interconnect delay and crosstalk noise, and finally
directs both placement and routing in the subsequent design stages. De-
tails of the model were addressed in [7] and we will not discuss it in this
context. In this case study, we used it for global interconnect modeling
and checked the electrical performance of the longest wire.

4.3.1 Interconnect partitioning methodology. We present
a design methodology for partitioning interconnects (power supply, clock
and signal lines) on different metal levels. A group of metal levels that
have the same cross-sectional dimensions is called a tier. Different tiers
can be reserved for different operational purposes.

In our case study there were 6 metal levels available. The level 1
was used for intra-gate interconnections: a minimum pitch can be used
for wiring on that level. Because intra-gate interconnections are usually
inside a standard cell, this tier can be called a cell tier. Levels 2 and 3 are
usually reserved for inter-gate interconnections inside a functional block
(e.g. a decoder or an adder). In our case the interconnect layers 2 and 3
were identical in geometry. The tier consisting of these two metal levels
can be called a local tier. Level 4 is called a semi-global tier. On that
tier we assigned long-path signals such as control signals or bus signals.
Levels 5 and 6 were used for power distribution and also for clocking
hierarchy. Part of signal lines or even all of them can also be assigned
on these levels depending on the maximum clock skew, power supply
noise and supply voltage variation allowed between different parts of the
system. These upmost levels form a global tier.

The first step in using the interconnect partitioning methodology was
to find out the wiring capacity for each metal level. The equation for
overall wiring capacity WirCaptotal is then a sum of wiring capacities
over all levels:

WirCaptotal = ew×
nw∑
i=1

⎡⎣(Alogic − Apower
i − Aclk

i ) × 1
pw

i

×
nw−1∏
j=i

(0.85)
pw
i

pw
j+1

⎤⎦
(3.31)

where Alogic is the area needed by the logic, Apower
i is the area of the

power supply lines on a level i, Aclk
i the area of the clock tree intercon-
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nects on a level i (Aclk
i = 0 for levels 1..4), pw

i is the wire pitch in a level
i and ew is routing efficiency of a routing tool. Finally, nw is the number
of metal levels (in this case it was 6). The factor 0.85 in equation 3.31
models the effect of via blockage on wiring capacity; the effect increases
on lower metal levels. The value was suggested in [25].

After we calculated a wiring capacity for each level a constraint for the
maximum allowable supply voltage variation was set. Then we can cal-
culated power supply noise using our model for estimating core switching
noise on distributed LRC power grid [26]. This implied that we first esti-
mate area, power consumption, the used clock frequency and switching
activity of electrical nodes. The last property is the most difficult to
estimate in an early phase of the design flow.

After the constraint for the supply voltage variation was met we calcu-
lated how much there was space for signal wires after assigning wires for
power distribution and subtracting the power wiring demand from the
total wiring capacity. If there was enough space left on the upmost levels
for all global signal wires the speed of the signals could be increased and
thus a better performance was achieved. If not, we had to use lower
metal levels to route global signals which degraded signal integrity.

The same methodology of calculating wire capacity for signals was
applied also for local or semi-global signal wires (between logic gates)
on lower levels.

4.3.2 Noise estimation. The crosstalk noise arises from ca-
pacitive and inductive coupling of signal interconnections (e.g. in buses).
It depends on many parameters such as wiring pitch, coupling length,
driver/receiver impedance, and repeater insertion. Based on the dy-
namic interconnect model, we first check the maximum usable length
for fast LC response. The usable length is given by equation (3.32) [7]

Lc = 2th [(1 + α)ρ
√

εkε0cKc]
−1 (3.32)

where t is metal thickness, h inter-layer dielectric (ILD) thickness,
α is the ratio of return-path and signal-path resistance, Kc a fringing
factor for wire capacitance, εk the relative dielectric constant of ILD,
ε0 the dielectric constant of free space and c the light speed in free
space. If a wire is longer than this, it is broken into shorter sections by
repeater insertion. By such a procedure we can decrease the maximum
wire delay and increase the system performance. The reason is that by
breaking the wire with repeaters the wire delay is proportional linearly
to wire length while using long wires without repeaters produces wire
delays proportional to wire length squared. In section 3.4.1 the optimal
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repeater insertion to decrease the delay of a wire was discussed and
analyzed.

To model crosstalk and signal propagation, we assumed that the effec-
tive driver impedance is the same as the wire characteristic impedance
at high frequency. The receiver is a typical CMOS load that is modeled
as a load capacitance. We used a matrix computation method to solve
the coupled transmission line equations in frequency domain.

In addition, power supply noise, particularly the one caused by core
logic switching, is critical for the performance of DSM CMOS [26]. Be-
sides degrading the quality of power supply which in turn weakens the
driving capability of the gates and hence increases the overall circuit de-
lay, the noise is also coupled directly to signal lines in the circuit through
the substrate, the wiring hierarchy, and radiation. In this case study,
we assumed that the global power distribution was done on levels 5 and
6 with the topology of a meshed grid [27]. Two package structures,
namely wire bonded pin-grid array and C4 bonded pin grid array were
analyzed. Lead inductance for the packages was taken from [28]. We
used the algorithm of [26] to compute the power supply noise. The load
capacitance for each grid was calculated by CL = P/(V 2 · f), where P
is the estimated power consumption for this area, V is the power supply
voltage and f is the clock frequency. The symbiotic bypass capacitance
is estimated by Csym = [P/(V 2 ·f)]·(1−SF )/SF , with SF the switching
factor in this area. The symbiotic bypass capacitance refers to output
capacitances of logic gates that are not switching; their output capac-
itances are connected to either positive supply or ground (except for
tristate gates) [13].

4.3.3 Results for the case study. In our case study [29] we
used two technologies (0.18µm and 0.25µm) and a case study architec-
ture that has been presented in [30]. We assumed that metal level 1
belongs to a cell tier, levels 2-3 belong to a local tier, level 4 belongs to
a semi-global tier and levels 5-6 to a global tier. Both technologies have
6 metal levels to offer.

First we estimated the maximum allowable length for a wire without
repeaters on each level (see equation 3.32). We found that after the
estimation of the processor core size and thus the global interconnection
length, only levels 5 and 6 can offer a safe distribution for global sig-
nals. Thus we made an assumption that global signals are transported
on those levels and all other signals are transported on levels 1-4. Then
we had to evaluate if there was enough wiring space for signals. On the
other hand, we had a constraint set to a power supply voltage varia-
tion. The constraint for the power distribution network was set so that
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the maximum allowable supply voltage variation was 10% of Vdd. The
methodology how the power distribution network with a noise constraint
is designed can be found in [26].

Figure 3.8. On-chip power supply noise (voltage) distribution if a 180-pin wire-
bonded pin-grid-array package is used. It was found that 30 % of wiring resources
for metal level 6 and metal level 5 need to be dedicated to on-chip power distribution
(0.18µm).

In Figure 3.8, a 2-D power supply noise distribution is shown for a
180-pin wire-bonded PGA package. We used 30 by 30 meshed power
grid, 20 I/O pairs for power/ground peripherally, lead inductance was
24nH per pin. The wire width is allowed to change and wire spacing is
the minimum spacing allowed by the process on each level. We noticed
that only 30% of the wiring space on metal levels 5 and 6 was needed for
power distribution, the rest could thus be reserved for signaling (here
signaling inludes also clock signal distribution).

In Figure 3.9, a 2-D power supply noise distribution for a C4-bonded
multi-layered ceramic PGA package is shown. Pitch for area array con-
nection is 200µm, size is 13 by 13. Lead inductance is 8.2 nH. On-chip
power grid size is 30 by 30. The wire width is changeable, wire spacing
is the minimum spacing allowed by the process. Compared to the wire-
bonded case, 5 % less wiring space is needed to power distribution on
levels 5 and 6 which increases the wiring space for global signaling.

5. Conclusions
In this chapter we studied principles for system-level interconnect

modeling. The main focus was to examine global wires that distribute



Global Interconnect Analysis 81

Figure 3.9. On-chip power supply noise (voltage) distribution if a C4 bonded multi-
layered ceramic pin-grid-array package is used. For this case, 25% of wiring resources
for M6 and M5 are dedicated to on-chip power distribution. The remaining 75% is
left for signal distribution (0.18µm).

signals between different system blocks. Additionally, power distribu-
tion was dealt with in the end of the chapter by using the maximum
allowed power supply voltage variation as a constraint to design power
distribution network in a proper way. We examined electrical proper-
ties of on-chip wires and discussed shortly some possible interconnect
schemes in SoC and NoC. Some interconnect schemes in SoC and NoC
were shortly discussed. We used Rent’s rule and multiple Rent’s expo-
nents to evaluate cost functions that different system blocks set for the
global wiring (both signal and power distribution). We optimized our
signaling to achieve the maximum bandwidth, the minimum delay by
using properly sized and placed repeaters and finally presented a joint
optimization case study in which both power distribution and signal dis-
tribution in global wires were simultaneously optimized. Our analysis
revealed that both early cost/performance estimation of resources (i.e.
functional blocks) and the joint optimization of global signal and power
estimation are essential when designing future SoCs and NoCs.
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1. Introduction
On-chip interconnects are now the primary bottleneck in the flow of

signals through high complexity, high speed integrated circuits (ICs).
Operating an IC at high frequency while dissipating low power is the
primary objective for many modern circuit applications. The frequency
at which ICs operate increases each year. In order to satisfy these per-
formance objectives, the feature size of CMOS circuits is decreased for
each advanced generation of technology. The reduction in feature size
reduces the delay of the active devices. The effect on the delay due to
the passive interconnects, however, has increased rapidly as described in
the National Technology Roadmap [1].

Low power dissipation is another increasingly important design ob-
jective in current (and future) ICs. With shrinking feature size, the
number of wires grows exponentially [1]. The interconnect capacitance
often dominates the total gate load. On-chip interconnects therefore dis-
sipate a large portion of the total power dissipation. Long interconnect
that distribute clock signals and power can dissipate up to 40% to 50%
of the total power of an IC [2]. Additional interconnect layers may en-
hance circuit speed while increasing the power dissipation. Interconnect
design has, therefore, become a dominant issue in high speed ICs. Some
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insight into the complexity of modeling multilayer interconnects at high
frequencies is presented in this chapter.

Interconnect wires can be classified into two categories, local wires and
global wires. Local wires are those interconnects within logic units that
connect the active devices. The delay of the local wires decreases with
feature size since the distances among the devices decrease. Global wires
are those interconnects that connect different logic units (e.g., busses) or
distribute signals across the die (e.g., clock distribution networks). The
delay of local wires decreases while the delay of global wires increases
with advancing technology nodes [2]. Despite the reduction in feature
size, the die size has tended to increase. The die size has historically dou-
bled every ten years, as shown in Fig. 4.1. The length of the global wires
does not scale with technology, while the cross section decreases. The
reduction in crossection increases the line resistance and, consequently,
the delay required for a signal to propagate along a line. The increase
in die size further increases the length of the global lines which further
increases the delay. Special attention should therefore be placed on the
global lines, since these lines can limit the overall speed of a circuit [4].

In order to cope with these trends in advanced technologies, different
design methodologies have been developed to decrease the time required
for a signal to propagate through a long line. In this chapter, different
techniques to drive long interconnect are reviewed.

In subsection 1.1, different models for on-chip interconnect are de-
scribed. The increasing importance of considering line inductance in the
interconnect model is discussed in subsection 1.2.

1.1 Interconnect Modeling
Modeling on-chip interconnect is important to determine the signal

characteristics of a line. Accurate modeling enhances both the design
and analysis processes. Local lines can often be modeled as a single
lumped capacitor, as shown in Fig. 4.2a. If the line capacitance is
much smaller than the load capacitance, local lines can be neglected
in the delay analysis. Modeling local interconnect by a capacitive load
becomes more important as the line capacitance becomes comparable to
the load capacitance. Signal propagation through these lines is negligible
as compared to the gate delay. Since these lines are short, the resistance
is typically negligible. The contribution of the line resistance to the
degradation in the signal propagation characteristics is therefore not
significant.

The line resistance impedes the signal propagation in long lines. The
delay through these lines can be comparable to or greater than the gate
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Figure 4.1. Die size for different generations of Intel microprocessors [3]

delay. Modeling a global line as a lumped capacitor is often highly
inaccurate. Different models have been proposed to model RC lines.
The simplest model is a lumped RC model as shown in Fig. 4.2b.
In order to capture the distributed nature of the line impedance, RC
lines are often divided into sections of distributed impedances [5]. Each
section is modeled as an equivalent RC circuit. The T and Π circuits,
shown in Figs. 4.3a and 4.3b, respectively, are widely used in modeling
long interconnects. The accuracy of the model depends upon the number
of sections used to model the interconnect. An RC model is adequate
at low to medium frequencies (up to a few hundred MHz). However, at
high frequencies (on the order of a GHz), the RC model is inadequate
to accurately characterize the signal. An RLC model is necessary to
accurately characterize these interconnects.

Global lines are usually wide, exhibiting low resistance. With the
reduction in line resistance and the increase in clock frequencies, the line
inductance has begun to affect the signal propagation characteristics [6].
The inductance should therefore also be considered in the interconnect
model. A first order approximation of an inductive interconnect is shown
in Fig. 4.2c. The T and Π equivalent distributed models for an RLC
line are shown in Figs. 4.3c and 4.3d, respectively.
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1.2 Importance of On-Chip Inductance
Many studies have been made to determine the conditions at which

the line inductance should be considered in an interconnect model. The
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work described in [6] determines the limits on the line length and tran-
sition time at which the line inductance should be considered. As the
equivalent output resistance of the gate that drives the interconnect de-
creases, the limits presented in [6] become more accurate. The lower
limit on the line length beyond which the line inductance should be
considered is shown in Fig. 4.4 for different line impedance parameters
(L is the inductance and C is the capacitance per unit length, respec-
tively). Increasing signal frequencies typically require faster signal tran-
sition times. As the signal transition time decreases, the lower limit on
the line length also decreases, making shorter on-chip interconnects be-
have inductively. Medium length lines which do not behave inductively
at low frequency, behave inductively as the frequency increases.

Alternatively, the number of long interconnect has increased rapidly.
For example, an IC today may have only 10,000 to 20,000 global nets.
This number, however, is expected to grow to more than 100,000. Con-
sidering the line inductance is, therefore, becoming more crucial in high
speed, high complexity integrated circuits [7, 8].

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

5 80 155 230 305 380 455
Transition Time

Minimum
Interconnect

Length

(psec)

(mm)

L = 0.5, C = 0.1

L = 0.5, C = 0.5

L = 1, C = 0.1

L = 1, C = 0.5

L (nH/mm)
C (pF/mm)

Include Inductance
in line model

Do not include
Inductance in line model

Figure 4.4. Lower limit of interconnect length above which the inductance should
be considered in the line model

Another factor which increases the importance of line inductance is
the introduction of new materials. New metal and dielectric materials
have been introduced to reduce interconnect delay. Low-k dielectrics
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can decrease the line capacitance to half the capacitance of SiO2. Fur-
thermore, replacing aluminum lines with copper can also reduce the line
resistance by a factor of two to three. These new materials increase
the importance of considering the line inductance. As described in [6],
the damping factor ζ can be used to characterize the significance of the
inductance. For ζ < 1, the line is underdamped, causing ringing in the
signal. As shown in Fig. 4.5, when advanced materials are used, the
damping factor decreases, increasing the importance of considering the
line inductance.

In order to drive global interconnects, many design methodologies
have been proposed. Different design techniques have been developed
to reduce the propagation delay along a long resistive line. These tech-
niques ignore the line inductance, which may lead to area and/or power
inefficient circuits. In this chapter, efficient techniques to drive global in-
terconnects are reviewed. The importance and difficulties in considering
on-chip inductance in the design process are discussed. Trends in both
the signal delay and power dissipation for inductive lines are described.
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Figure 4.5. Damping factor as a function of the line inductance for different dielectric
and metal materials

The chapter is organized as follows. In section 2, effective techniques
to drive long resistive interconnect are described. In section 3, new
trends in design methodologies to drive inductive interconnects that op-
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erate at high frequencies are presented. A discussion of future trends
which may affect next generation circuit design methodologies is pro-
vided in section 4. In section 5, some comments and conclusions are
summarized.

2. Design Methodologies to Drive RC
Interconnects

As interconnect has become a dominant issue in high speed ICs, dif-
ferent design methodologies have been developed to improve the per-
formance of long interconnects. These methodologies have historically
concentrated on the distributed resistance of a long line. The most effec-
tive techniques used to drive long RC interconnect are discussed in the
following subsections. In subsection 2.1, wire sizing is presented as an
effective technique to increase circuit speed. Uniform repeater insertion
is another effective technique as described in subsection 2.2. In subsec-
tion 2.3, optimum wire shaping for minimum signal propagation delay
is discussed.

2.1 Wire Sizing
Interconnect widening decreases the interconnect resistance while

increasing the capacitance. Many algorithms have been proposed to de-
termine the optimum wire size that minimizes a target cost function.
Some of these algorithms address reliability issues by reducing clock
skew. Most of the previous work concentrate on minimizing delay [9].
The results described in consider simultaneous driver and wire sizing
based on the Elmore delay model with simple capacitance, resistance,
and power models. As the inductance becomes important, specific algo-
rithms have been enhanced that consider RLC impedance models.

Previous studies in wire and driver sizing have not considered changes
in the signal characteristics accompanied with changes in the character-
istics of the line impedance. The interconnect impedance characteris-
tics are more sensitive to the wire size in long, inductive interconnects.
The work described in considers power dissipation while ignoring the
inductive behavior of the interconnect and, therefore, the effect of line
inductance on the power characteristics. In subsection 4.1, the power
characteristics of an inductive interconnect are described. Changes in
the matching characteristics are discussed in terms of sizing the inductive
interconnect for minimum power and delay.
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2.2 Repeater Insertion
Uniform repeater insertion is an effective technique for driving long

interconnects. The objective of a uniform repeater insertion system is to
minimize the time for a signal to propagate through a long interconnect.
Based on a distributed RC interconnect model, a repeater insertion tech-
nique to minimize signal propagation delay is introduced in [10]. Uniform
repeater insertion techniques divide the interconnect into equal sections,
employing equal size repeaters to drive each section as shown in Fig.
4.6. Bakoglu and Meindl developed closed form expressions for the op-
timum number and size of the repeaters to achieve the minimum signal
propagation delay in an RC interconnect [10]. A uniform repeater struc-
ture decreases the total delay as compared to a tapered buffer structure
when driving long resistive interconnects while buffer tapering is more
efficient for driving large capacitive loads [11]. Adler and Friedman de-
veloped a timing model of a CMOS inverter driving an RC load [12].
The authors used this model to enhance the repeater insertion process
for RC interconnects. Alpert considered the interconnect width as a
design parameter [13]. He showed that, for RC lines, repeater insertion
outperforms wire sizing. As shown in subsection 4.2, this behavior is
not the case for an RLC line. The minimum signal propagation delay
always decreases with line width for RLC lines if a repeater system is
used.

R

C C
L

C

R

C

R

Figure 4.6. Uniform repeater system driving a distributed RC interconnect

The delay can be greatly affected by the line inductance, particularly
for low resistance materials and fast signal transitions. Ismail and Fried-
man extended previous research in repeater insertion by considering the
line inductance [14]. The authors showed that on-chip inductance can
minimize the speed, area, and power of the repeater insertion process
as compared to an RC line model. Banerjee and Mehrotra developed
an analytic delay model and methodology for inserting repeaters into
distributed RLC interconnect which demonstrated the importance of
including line inductance as technologies advance [15].

With increasing demands for low power ICs, different strategies have
been developed to minimize power in optimizing the repeater insertion
process. Power dissipation and area have been considered in previous
work. The line inductance, however, has yet to be considered in the opti-
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mization process of sizing a wire driven by a repeater system. Tradeoffs
in repeater systems driving inductive interconnect are described in sub-
section 4.2.

2.3 Interconnect Shaping
Another technique to reduce the signal propagation delay is to

shape the interconnect line. Interconnect shaping changes the inter-
connect width from the driver to the load as shown in Fig. 4.7. As
described in [16], the optimum interconnect shape which minimizes the
signal propagation delay in an RC interconnect is an exponential func-
tion. Different extensions to this work have been applied to consider
other circuit parameters such as fringing capacitance.

RC
Interconnect

CL

Driver

Figure 4.7. Tapered RC interconnect

The research described in [13] shows that wire tapering improves the
speed by only 3.5% as compared to uniform wire sizing if an optimum
repeater system is used to minimize the propagation delay of an RC line.
The inductance, however, has not been considered in the line model
described in [13]. The inserted repeaters increase the dynamic power
due to the additional input capacitance of the repeaters. In subsection
4.4, the optimum shape of an RLC line that minimizes the delay is
determined.

3. Integrating Inductive Effects into Existing
Design Methodologies

Different design methodologies to drive long, inductive interconnect
are discussed in this section. At high frequencies, long interconnects
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should be treated as lossy transmission lines. Transmission line prop-
erties affect the signal characteristics and change the nature of the cir-
cuit design methodologies. In the following subsections, different design
methodologies are reevaluated assuming an inductive environment. In
subsection 4.1, sizing a long inductive interconnect is discussed and the
optimum width for minimum power dissipation is determined. Tradeoffs
in sizing an inductive interconnect within a repeater system is presented
in subsection 4.2. In subsection 4.3, the shielding effect of on-chip in-
ductance is described. The optimum interconnect shape for minimum
propagation delay is determined for an RLC line in subsection 4.4.

3.1 Wire Sizing for Inductive Interconnects
The width of an inductive interconnect affects the power characteris-

tics of a circuit. A tradeoff exists between the dynamic and short-circuit
power in inductive interconnects. The dependence of the power dissipa-
tion on the interconnect width is illustrated in Fig. 4.8. For the circuit
shown in Fig. 4.9, a long interconnect line between two CMOS inverters
can be modeled as a lossy transmission line. As the line inductance-to-
resistance ratio increases with increasing wire width, the short-circuit
power decreases (due to a reduction in the signal transition time). If the
width of the interconnect exceeds a certain limit, the short-circuit power
increases due to the change in the matching characteristics between the
driver and the interconnect [17]. The dynamic power increases with line
width since the line capacitance is greater. As shown in Fig. 4.8, an
optimum interconnect width exists at which the total transient power is
a minimum.

To better understand the signal behavior in terms of the interconnect
width, an equivalent circuit of an inverter driving an inductive intercon-
nect line is shown in Fig. 4.10a. The characteristic impedance of a lossy
line can be described by the well known formula, Zlossy =

√
R+jwL

jwC . Dif-
ferent approximations have been made to estimate Zlossy in terms of per
unit length parameters [18]. A general form of Zlossy is Z0 + g R where
g is a constant which depends on the line parameters.

At the end of the high-to-low input transition, the NMOS transistor is
off. With the input low, the inverter can be modeled as an ideal voltage
source with a variable output resistance Rtr as shown in Fig. 4.10b.

At small interconnect widths, the characteristic line impedance is
large as compared to the equivalent output resistance of the transistor.
The line is overdriven (the underdamped condition). Zlossy decreases
with increasing line width. The line remains underdamped until Zlossy

equals Rtr. A further increase in the line width underdrives the line as
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Figure 4.8. Dynamic, short-circuit, and total transient power as a function of the
interconnect line width
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Figure 4.9. CMOS gates connected by an RLC interconnect line
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Figure 4.10. An inverter driving an RLC interconnect line (a) circuit diagram (b)
equivalent circuit of inverter at the end of the high-to-low transition

Zlossy becomes less than Rtr. As the line width is increased, the line
driving condition changes from overdriven to matched to underdriven.

Increasing the line width makes an overdriven line behave more induc-
tively. The resistance decreases linearly with a linear increase in width
while the inductance decreases sublinearly [19]. As described in [20], the
line approaches a lossless condition, where the attenuation constant ap-
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proaches zero at large line widths. This effect further reduces the signal
transition time. As the line width increases, Zlossy decreases until the
line impedance matches the driver impedance. A further increase in the
width underdrives the line. At these widths, the capacitance begins to
dominate the line impedance. With wider lines, the line becomes highly
capacitive which increases the transition time, thereby increasing the
short-circuit power dissipation in the load gate. For an overdriven line,
the short-circuit power dissipation changes with line width as shown in
Fig. 4.8. For an underdriven line, however, an increase in the line width
increases the short-circuit power component. If the line is underdriven,
the line should be as thin as possible to minimize the total transient
power by decreasing the dynamic power.

A CMOS inverter driving a capacitive load of 250 fF through a 5
mm long interconnect line is used to demonstrate the signal behavior.
Twenty RLC distributed impedance elements are used to model the in-
terconnect line. The input signal Vin is a ramp signal with a 100 psec
transition time. The signal Vc across the load capacitance is illustrated
by the waveforms depicted in Fig. 4.11. In Fig. 4.11a, the line is thin.
The line inductance does not affect the signal waveform since the resis-
tance dominates the overall line impedance. As the line width increases,
overshoots and undershoots appear in the waveform. As shown in Fig.
4.11b, the line inductance affects the signal characteristics and the signal
transition time decreases (the overdriven condition). A further increase
in the width matches the load with the driver and the overshoots dis-
appear (see Fig. 4.11c). The signal transition time is minimum at this
condition. As the wire is widened, some steps start to appear in the
waveform (the underdriven condition) and the transition time increases
(see Figs. 4.11d to 4.11f).

3.1.1 Optimizing Inductive interconnect Width for Mini-
mum Power. A closed form solution has been developed in [21, 22]
for the optimum interconnect width which minimizes the total transient
power dissipation of a line. Proposed criteria for interconnect width
optimization are applied to different target circuits. Using the opti-
mum width rather than the minimum width, the total transient power
is smaller since the short-circuit power is reduced.

As listed in Table 4.1, the optimum width of a copper line reduces
the total transient power by 68.5% for l = 5 mm as compared to 28.6%
for l = 1 mm. For aluminum, a reduction of 77.9% is achieved as com-
pared to 37.8%. The more inductive the interconnect, the more sensitive
the power dissipation is to a change in the line width (and the signal
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Figure 4.11. Output waveform at the far end of a long interconnect line driven by
an inverter with different line widths. (a) Resistive, (b) Overdriven (inductive), (c)
Matched, (d) Underdriven (inductive), (e) Underdriven, (f) Underdriven

characteristics). Wire width optimization is, therefore, more effective
for longer, more inductive lines.

For l = 5 mm, the per cent reduction in power is 27.8% for copper
as compared to 25.4% for aluminum. A reduction in copper of 41.9%
is obtained versus 37.4% in aluminum for l = 1 mm. The inductance-
to-resistance ratio of copper is higher, increasing the importance of the
optimum width for less resistive (more highly inductive) lines. Alterna-
tively, for thin lines, the line resistance has a greater effect on the signal
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characteristics. The reduction in power is higher for aluminum than for
copper.

Table 4.1. Transient power dissipation for different line parameters

Total Transient Power Dissipation (µW )
Resistivity ρ Resistive Line ( l = 1 mm )

µΩ cm Optimum Thin Reduction Wide Reduction

1.7 (Copper) 583 817 28.6% 808 27.8%

2.5 (Aluminum) 606 976 37.8% 813 25.4%

Inductive Line ( l = 5 mm )
1.7 (Copper) 1121 3563 68.5% 1931 41.9%

2.5 (Aluminum) 1236 5592 77.9% 1973 37.4%

3.2 Wire Sizing Within a Repeater System
Uniform repeater insertion, as shown in Fig. 4.12, reduces the time for

a signal to propagate through a long interconnect. Sizing an inductive
interconnect driven by an optimum repeater system for minimum signal
propagation delay is discussed in this subsection.

R(W   )int L(W   )int

C(W   )int C(W   )int

R(W   )int L(W   )int R(W   )int L(W   )int

C(W   )int CL

Figure 4.12. Uniform repeater system driving a distributed RLC interconnect

For an RC line, repeater insertion outperforms wire sizing [13]. Unlike
an RC line, the minimum signal propagation delay always decreases
with the line width for RLC lines if an optimum repeater system is
used. In RLC lines, wire sizing outperforms repeater insertion as the
minimum signal propagation delay with no repeaters is smaller than the
minimum signal propagation delay using any number of repeaters. The
minimum signal propagation delay always decreases with wider lines
until the number of repeaters equals zero.

As shown in Fig. 4.13, the minimum propagation delay decreases
while the power dissipation increases for wider interconnect. In the fol-
lowing subsections, the tradeoff between the minimum signal propaga-
tion delay and the total power dissipation is described in greater detail.
In subsection 4.2.1, the effect of wire sizing on the minimum signal propa-
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gation delay is presented. The total power dissipation within the system
is discussed in subsection 4.2.2. In subsection 4.2.3, the power delay
product is used as a criterion to size a line within a repeater system.

Interconnect Width

Minimum
Signal

Propagation
Delay

Total Transient
Power

Dissipation

Figure 4.13. Minimum signal propagation delay and transient power dissipation as
a function of line width for a repeater system

3.2.1 Propagation Delay in a Repeater System. The
interconnect resistance decreases with wider lines, increasing L

R , the ratio
between the line inductance and resistance, and decreasing the number of
inserted repeaters to achieve a minimum propagation delay. For an RLC
line, the minimum signal propagation delay decreases with wider wires
until no repeaters should be used. Wire sizing outperforms repeater
insertion in RLC lines.

For different line lengths l , the optimum number of repeaters kopt−RLC

is shown in Fig. 4.14. As shown in the figure, for an RLC line the opti-
mum number of repeaters which minimizes the signal propagation delay
decreases with increasing line width for all line lengths. The number of
repeaters reaches zero (or only one driver at the beginning of the line)
for an interconnect width = 3 µm and 4 µm for l = 5 mm and 10 mm,
respectively. Above a width of 4 µm, the wire should be treated as one
segment. A repeater system should not be used above a certain width
for each line length.

The line capacitance per unit length increases with line width. As
the number of inserted repeaters decreases with wider lines, a longer
line section is driven by each repeater. An increase in the section length
and width increases the capacitance driven by each repeater. To drive a
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Figure 4.14. Optimum number of repeaters for minimum propagation delay for dif-
ferent line widths

large capacitive load, a wider repeater is required to minimize the overall
delay. As shown in Fig. 4.15, the optimum repeater size hopt−RLC is an
increasing function of line width.
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Figure 4.15. Optimum repeater size for minimum propagation delay for different line
widths
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The minimum signal propagation delay using an optimum repeater
system decreases with increasing line width as the total gate delay de-
creases. For an inductive interconnect line, the total signal propagation
delay is

tpd−total = kopt−RLC tpd−section, (3.1)

where tpd−section is the signal delay of each RLC section [14]. The min-
imum delay [obtained from (3.1)] is shown in Fig. 4.16. An increase
in the inductive behavior of the line and a reduction in the number of
repeaters decrease the minimum signal propagation delay that can be
achieved for a particular repeater system.

The signal delay for different line lengths is shown in Fig. 4.16. The
lower limit in the propagation delay decreases with increasing line width
until the number of repeaters is zero. For a system of repeaters, there
is no optimum width at which the total propagation delay is minimum.
Rather, the delay is a continuously decreasing function of the line width.
This characteristic is an important trend when developing a wire sizing
methodology for a repeater system.
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x l = 10 mm
* l = 15 mm
� l = 20 mm

tpd-total

0.1 1 10

10-1

100

102
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Figure 4.16. Minimum signal delay as a function of interconnect width for different
line lengths

3.2.2 Power Dissipation within a Repeater System. The
dynamic power dissipated by a line increases with greater line capaci-
tance (as the line width is increased). The dynamic power of the re-
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peaters, however, decreases since fewer repeaters are used in RLC lines.
Increasing the line width has two competing effects on the short-circuit
power. As described in subsection 4.1, the short-circuit power decreases
when a line is underdamped.

Alternatively, increasing the length of a line section by reducing the
number of repeaters increases the short-circuit power of each section
because of a higher section impedance. The minimum transient power,
therefore, is dissipated with thin interconnect. The optimum line width
for minimum transient power dissipation is obtained in [23, 24].

For short interconnects, few repeaters are required to produce the
minimum propagation delay. For longer interconnect, an increase in
the line capacitance rapidly increases the power dissipation, while the
minimum propagation delay decreases more slowly.

In order to develop an appropriate criterion for determining the op-
timal interconnect width between repeaters, the total transient power
dissipation of a system needs to be characterized. The total transient
power can be described as

Ptotal(Wint) = Vddf [kopt−RLC(Wint)(
1
2
Ipeak(Wint) tbase(Wint)

+hopt−RLC(Wint)Vdd C0) + Vdd Cint(Wint)], (3.2)

where Wint is the interconnect width, Ipeak is the peak current that flows
from Vdd to ground through an inverter driving an RLC load, tbase is
the time period during which both transistors of the inverter are on, Vdd

is the supply voltage, f is the switching frequency, and C0 is the input
gate capacitance of a minimum size repeater. All of the terms in (3.2)
are functions of the line width except Vdd, C0, and f . As described in
subsections 3.1 and 3.2, both transient power components in repeaters
decrease with increasing line width, thereby decreasing the total power
until the line capacitance becomes dominant.

For an RLC interconnect, few repeaters are necessary to drive a line
while achieving the minimum propagation delay [14]. For an inductive
interconnect, the interconnect capacitance is often larger than the input
capacitance of the repeaters. Increasing the width reduces the power
dissipation of the repeaters and increases the power dissipation of the
line. The reduction in power dissipated by the repeaters overcomes the
increase in power due to the wider interconnect until the line capacitance
dominates the line impedance. After exceeding a certain width, the total
power increases with wider lines.

The total power dissipation as a function of line width for different
interconnect lengths is shown in Fig. 4.17. As the line width increases
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from the minimum width (i.e., 0.1 µm in this case), the total power dis-
sipation is reduced. The minimum transient power dissipation therefore
occurs with thin interconnect (see Fig. 4.17). The minimum transient
power dissipation is obtained from

∂Ptotal

∂Wint
= 0. (3.3)

∂Ptotal
∂Wint

is a nonlinear function of Wint. Numerical methods are used to
obtain values of Wint for specific interconnect and repeater parameters.

Interconnect Width (�m)

Ptotal

(mW)

� l = 5 mm
x l = 10 mm
* l = 15 mm
� l = 20 mm

0.1 1 10

30

0

20

10

5

15

25

Figure 4.17. Total transient power dissipation as a function of interconnect width

For a range of reasonable interconnect width, the total transient power
increases. As the line length increases, the total power dissipation in-
creases rapidly with increasing line width as the interconnect capacitance
becomes dominant. In subsection 4.2.3, the tradeoff between signal de-
lay and power dissipation is considered in the development of a criterion
for interconnect sizing.

3.2.3 Power Delay Product. From the discussions in sub-
sections 4.2.1 and 4.2.2, the minimum signal propagation delay of an
RLC interconnect driven by a repeater system decreases with increas-
ing line width. Alternatively, the total transient power has a global
minimum at narrow widths. Over the entire range of line width, the to-
tal transient power increases with increasing line width. At a line width
smaller than the line width for minimum power, the power and delay
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both increase. An upper limit on the line width is reached where the
minimum propagation delay of a repeater system is attained. Beyond
that limit, a single segment sizing criterion should be used to optimize
the width according to a cost function (i.e., delay or power [17]). Be-
tween these two limits, a tradeoff exists between the power dissipation
and signal propagation delay. An expression for the power delay product
as a function of the interconnect width is

PDP (Wint) = Ptotal(Wint)
wp tpd−total(Wint)

wd , (3.4)

where wp and wd are the weights of the cost functions. A local minimum
for the power delay product exists for each line length. The minimum
power delay product is obtained by numerically solving the nonlinear
equation,

∂PDP

∂Wint
= 0. (3.5)

In the following section, different criteria are applied to different sys-
tems to optimally size the interconnect within a repeater system. For
an RLC line, there are three criteria to size interconnect in an uncon-
strained system. The first criterion is for minimum power while sacri-
ficing speed. The optimum solution for this criterion is obtained from
(3.3).

The second criterion is for minimum delay. As no optimum intercon-
nect width exists for minimum propagation delay, the practical limit is
either the maximum repeater size or no repeaters, whichever produces
a tighter constraint. The criterion in this case is the maximum repeater
size or line width. The optimum number of repeaters for a target line
width is determined from [14]. Otherwise, no repeaters should be used
and the design problem reduces to choosing the width of a single section
of interconnect.

The third criterion is to satisfy both the power dissipation and speed.
The weights wp and wd determine which design objective is more highly
valued.

The three criteria are applied to a 0.24 µm CMOS technology to
determine the optimum solution for different line lengths. No limit on
the maximum buffer size is assumed. In order to characterize the line
inductance in terms of the geometric dimensions, an interconnect line
shielded by two ground lines is assumed. For a repeater system with the
following characteristics, C0 = 1 fF and wp = wd = 1, the optimum
solution for each criterion is listed in Table 4.2.

The optimum line width using each design criterion is listed in the
first row of each line length. The optimum number and size of the
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Table 4.2. Uniform repeater system for different optimization criteria, C0 = 1 fF
and wp = wd = 1

l = 5 mm Minimum Power No Repeaters Minimum PDP

Wint (µm) 0.8 2.1 2.1
# of Repeaters 1 0 0

Repeater Size (µm) 43.3 61.2 61.2
Minimum Delay Total 0.157 0.051 0.051

(nsec) Increase 208% 0% 0%
Power (µW ) Total 1730 1980 1980

Increase 0% 14.5% 14.5%

l = 15 mm Minimum Power No Repeaters Minimum PDP

Wint (µm) 0.8 20 3.9

# of Repeaters 5 0 1
Repeater Size (µm) 43.2 225.6 80.7

Minimum Delay Total 3.87 0.19 0.43
(nsec) Increase 1936% 0% 126.3%

Power (µW ) Total 5200 21,310 7580
Increase 0% 310% 45.7%

repeaters for each line width is listed in the second and third row of each
line length. The per cent increase in the minimum propagation delay
based on the optimum power and power delay product as compared to
no repeaters is also listed. The per cent increase in the total transient
power dissipation is provided.

For an l = 5 mm line, the optimum interconnect width for both
minimum power delay product and no repeaters is the same, producing a
14.5% increase in power as compared to the optimum width for minimum
power and a reduction of 68% as compared to the optimum width for
minimum signal propagation delay.

For short interconnects, few repeaters are required to produce the
minimum propagation delay. For longer interconnect, an increase in
the line capacitance rapidly increases the power dissipation, while the
minimum propagation delay decreases more slowly.

For l = 15 mm, the optimum solution for the minimum power delay
product increases the delay by 1.26 rather than 20 times for the solution
for minimum power. The power increases by 45% rather than 3.1 times
for the no repeater solution. Optimizing the interconnect to produce the
minimum power delay product produces a smaller increase in both the
power and delay as compared to separately optimizing either the power
or delay. A reduction in the minimum propagation delay of 89% and in
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the power dissipation of 65% is achieved if the optimum width for the
minimum power delay product is used rather than the optimum width
for either minimum power or no repeaters.

3.3 Shielding Effect of On-Chip Interconnect
Inductance

In this subsection, the effect of the line inductance on the effective
impedance of a line is described. An important aspect of on-chip in-
ductance is the shielding effect where the inductance hides (or shields)
part of the load capacitance from the driver. The shielding effect can
reduce the required size of a buffer to drive an RLC interconnect. The
interconnect inductance introduces a shielding effect which decreases the
effective capacitance seen by the driver of a circuit, reducing the gate
delay. The effective capacitance of an RLC load driven by a CMOS
inverter has been analytically modeled. The interconnect inductance in-
creases the line propagation delay and decreases the gate delay, reducing
the overall signal propagation delay to drive an RLC load as shown in
Fig. 4.18 [25]. The minimum delay occurs when the load is matched
with the driver. In subsection 4.3.1, the concept of an effective capaci-
tance is extended to an RLC load. The effect of line inductance on the
propagation delay is described in subsection 4.3.2. In subsection 4.3.3,
sizing a driver for an RLC interconnect is discussed.

Total Delay

Gate Delay

Line Delay

Line Inductance

Delay

Figure 4.18. Propagation delay as a function of the line inductance

3.3.1 Effective Capacitance of an RLC Load. Reduced or-
der models are used to increase the computation efficiency of the timing
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analysis process. A lumped model of an RLC load which uses the first
two moments of the transfer function of a line is shown in Fig. 4.19a. A
lumped RLC model can suffer from significant inaccuracy. Furthermore,
the shielding effect of the load inductance is not considered. The circuit
representation of a three moment reduced order model (π21 model) is
shown in Fig. 4.19b [26].

Tree
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C2 1
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C

LR L
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b)

Figure 4.19. Reduced order model for a general RLC tree a) Lumped model b) π21

model

An efficient technique is presented in [27] to determine the values
of Rπ, Lπ, C1, and C2 for a general RLC load. If the interconnect
inductance is not considered, the RLC π21 model reduces to an RC π21

model with the same values of Rπ, C1, and C2.
Intuitively, the effective capacitance is the equivalent capacitance which

replaces the reduced order π21 model while producing the same delay at
the load (as shown in Fig. 4.20). The effective capacitance of an RLC
load is

Ceff−RLC = C2 + Cx−RLC , (3.6)

where Cx−RLC is characterized in [25]. Cx−RLC is less than C1, reducing
the total capacitance seen by the driver for the π21 model. Cx−RC for
an RC model is determined for an RC load [28]. Cx−RLC is less than
Cx−RC for an inductive load. Cx−RLC decreases with increasing load
inductance as the inductive shielding effect increases. The gate delay
is linearly proportional to the effective capacitance seen at the driving
point. The gate delay becomes smaller since the effective capacitance
decreases for larger values of inductance. The interconnect inductance
shields part of the load capacitance, reducing the gate delay.

For a total load capacitance and resistance of 400 fF and 100 Ω, re-
spectively, the impedance parameters of the π21 model are Rπ = 48 Ω,
C2 = 67 fF, and C1 = 333 fF. The ratio between the effective capacitance
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Figure 4.20. Effective capacitance of RLC π21 model

of the RLC and RC π21 models for different load inductances is shown
in Fig. 4.21. The effective capacitance decreases as the load inductance
increases. The curve illustrated in Fig. 4.21 is non-monotone due to
the existence of the line inductance. The solution for the field equation
results in a non-monotone shape.
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Figure 4.21. Ratio between the effective capacitance of an RLC and RC load

The shielding effect of the interconnect inductance increases the effect
of the line inductance on the delay analysis. Ignoring the inductance
overestimates the circuit delay, requiring an oversized buffer to drive
the load. The effect of the interconnect inductance on the total signal
propagation delay is discussed in section 4.3.2.

3.3.2 Effect of Line Inductance on the Delay Model.
The effective capacitance can be used to characterize the gate delay.
The signal propagation delay depends on the active gate and passive
interconnect components of the signal path. The gate delay is the time
required to charge the capacitance seen by the driver through the equiva-
lent resistance of the driver. The interconnect delay is the time required
for the signal to propagate through the line. These two components can-
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not be separated as the driver and load represent a single system. The
interconnect inductance reduces both the capacitance seen by the driver
(as described in section 4.3.2) and the equivalent output resistance of
the driver, reducing the overall gate delay.

For an ideal source driving an RLC line, the line delay can be modeled
as [14]

tpd−RLC =
e−2.9ζ1.35

ωn
+ 0.74Rline(CL + 0.5Cline), (3.7)

ζ =
Rlineωn

2
(0.5Cline + CL), (3.8)

ωn =
1√

Lline(Cline + CL)
, (3.9)

where CL is the load capacitance driven by the line and Rint, Cint, and
Lint are the total line resistance, capacitance, and inductance, respec-
tively.

The line delay increases with line inductance as shown in [25]. As the
line inductance increases, two competing effects change the total delay
of the signal. The delay due to the active transistor decreases while the
delay due to the passive interconnect increases. A closed form solution
characterizing the signal propagation delay of an inverter driving a re-
duced order π21 model of a distributed RLC line is presented in [25]. A
comparison between this model and two related models is provided in
subsection 4.3.3.

To exemplify the effect of the line inductance on the propagation
delay, a CMOS inverter driving a long inductive interconnect with Rline

= 50 Ω and Cline = 400 fF is considered. The total delay for different
driver sizes based on a 0.24 µm CMOS technology is shown in Fig. 4.22.
Different values of the line inductance with CL = 50 fF are considered.

The propagation delay decreases with increasing line inductance until
a minimum delay is reached. The total delay decreases with higher line
inductance over a wide range of driver size (the NMOS transistor size
Wn ranges from 10 µm to 50 µm). For small drivers (i.e., Wn < 5µm),
the line inductance has no effect on the propagation delay as the delay is
dominated by the driver output resistance (and the line does not behave
inductively). For large drivers (i.e., Wn > 50µm), the line inductance
increases the delay. The output resistance of these drivers is small, and
the interconnect delay dominates the total delay. Large drivers are not
preferred as the decrease in signal delay is not significant, while the
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Figure 4.22. Total delay for different values of line inductance and driver size for a
distributed RLC interconnect

required area and dissipated power are large. Furthermore, the input
gate capacitance increases with larger drivers, increasing the delay of
the previous logic stage. Buffer tapering can be used for large drivers,
but the power dissipation increases with the addition of cascaded tapered
inverters [11] to reduce the delay.

Curve fitting is employed to determine the optimum value of the line
inductance to achieve the minimum propagation delay. The minimum
delay is determined over a wide range of line inductance (from 0.1 nH to
10 nH), load capacitance (from 10 fF to 250 fF), inverter size (from 5 µm
to 50 µm), line capacitance (from 100 fF to 1 pF), and line resistance
(from 25 Ω to 100 Ω). The minimum delay occurs when the ratio between
the equivalent output resistance of the driver Rtr equals the magnitude
of the lossy characteristic impedance of the line |Zline|, or ZT = 1,

ZT =
Rtr

|Zline|
, (3.10)

Rtr =
Vdd

kn(Vdd − Vtn)α +
Vdd

kn[2(Vdd − Vtn)Vdd − Vdd
2

2 ]
, (3.11)

|Zline| =

√√√√√Rline
2 + (ωLline)

2

ωCline
, (3.12)

ω =
2π
tr

, (3.13)
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α = 1.3 and models the velocity saturation in a short-channel transistor,
and tr is the signal transition time at the output of the driving inverter.

The total propagation delay increases if the line inductance is less
than the matched condition. Ignoring the line inductance overestimates
the delay and the size of the driver. The line inductance is considered
in subsection 4.3.3 in the design of an inverter driving a section of RLC
interconnect. The savings in both power and area if the line inductance
is considered is noted.

3.3.3 Driver Sizing under Inductive Environment. Three
different models are used to illustrate the importance of an accurate
model to represent both the driver and the interconnect. In Table 4.3, a
comparison between the model provided in [14], a lumped RLC model,
and the π21 model (which is described in [25]) is listed.

The line inductance reduces the total signal propagation delay as dis-
cussed in previous sections. Including the inductance in the interconnect
model is important in the design of an appropriate driver. Excluding the
inductance overestimates the delay of the circuit and underestimates the
current sourced by the driver. Including the line inductance can reduce
the driver size, saving area and power.

A 0.24 µm CMOS technology is used to demonstrate the effect of
including line inductance in the design of a line driver. An interconnect
line with Rline = 10 Ω/mm, Cline = 105 fF/mm, and Lline = 650 pH/mm
is assumed to exemplify the reduction in the size of the line driver if
inductance is considered. A symmetric CMOS inverter is used to drive
a line loaded by a capacitive load of 50 fF to achieve a target delay.
The target delay and driver size that achieves this delay are listed in
Table 4.4. A reduction in power dissipation of 5% and gate area of
13% is achieved if line inductance is considered. Using low-k dielectric
materials and copper interconnect will reduce both the line capacitance
and resistance, increasing the effect of inductance on the signal behavior.
A 17% reduction in power dissipation and 29% reduction in gate area
are achieved for a low-k copper interconnect example.

3.4 Optimum Wire Shape of an RLC
Interconnect

As described in subsection 4.2, repeaters can be used to minimize
the signal propagation delay through a long interconnect. Alternatively,
wire shaping can improve circuit speed. For RC lines, the optimum line
shaping function that minimizes the signal propagation delay is an ex-
ponential function [16]. Wire tapering increases the interconnect width
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Table 4.3. Propagation delay using different models for different line inductances

Wn = 20 µm, Rline = 50 Ω

Lline Cline = 400 fF

nH Cadence Ismail [14] Lumped π21

(psec) psec Err psec Err psec Err

0.0 77 35.2 -54.2 59.5 -22.7 68.2 -11.3

1.0 74 35.7 -51.7 62.2 -15.8 70 -5.4

2.0 67 38.1 -43 66.6 -0.5 64.7 -3.4

3.0 68 41.4 -39 97.8 43.8 63.3 -6.8

4.0 70 45 -35.6 101.8 45.5 72.6 3.8

5.0 73 48.6 -33.4 105.2 44.1 80.3 10

Maximum -54.27 -45.95 -11.35

Average 41.51 30.75 6.11

Lline Cline = 1 pF

nH Cadence Ismail [14] Lumped π21

(psec) psec Err psec Err psec Err

0.0 148 86.3 -41.6 97.8 -33.8 130.1 -12

1.0 147 86.4 -41.2 93.3 -36.5 129.6 -11.7

2.0 153 87.0 -43 86.5 -43.4 131.5 -14

3.0 145 88.7 -38.7 81.1 -44 134.2 -7.3

4.0 132 91.1 -30.9 76.6 -41.9 122.5 -7.1

5.0 118 94 -20.2 96.8 -17.8 117.1 -0.7

Maximum -43 -45.64 -14

Average 36.23 38.69 8.91

Table 4.4. Reduction in area and power dissipation when considering line inductance
for different dielectric and line materials

Dielectric Resistivity Target Delay Wn (µm) Reduction Reduction
Material (psec) RC RLC in power in area

SiO2 Aluminum 100 19 16.5 5% 13%

Copper 100 17.8 15.2 6% 15%

Low-K Aluminum 60 23 19 9% 17%

Copper 60 21 15 17% 29%

at the driver end of the line as shown in Fig. 4.23. Tapering reduces the
total line resistance, increasing the inductive behavior of the line. In the
following subsections, the efficiency of tapering an RLC interconnect is
discussed. In subsection 4.4.1, the optimum wire shape that produces
the minimum signal propagation delay of an RLC line is characterized.
Different constraints on interconnect tapering are discussed in subsec-
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tion 4.4.2. In section 4.4.3, a comparison between tapered RC and RLC
lines is presented.

G
ND

G
ND

RLC
Interconnect

Figure 4.23. Coplanar tapered RLC interconnect

3.4.1 Optimum Wire Shape for Minimum Propagation De-
lay. The signal propagation delay of a distributed RLC interconnect
is described in [7, 14]. Two time constants characterize the signal speed
and shape of long interconnects, the resistive-capacitive (RC) time con-
stant and the inductive-capacitive (LC) time constant (or the time of
flight through the line tf =

√
LintCint, where Cint and Lint are the line

capacitance and inductance, respectively). For highly resistive (less in-
ductive) lines, an RC delay model is adequate to characterize the signal
delay. The optimum tapering factor for these lines is an exponential
tapering factor [16]. If the inductive behavior of a line dominates the
resistive behavior, the time-of-flight can dictate the time for the signal
to propagate through the line. The optimum shape that minimizes the
propagation delay of a line is the shape function that minimizes the
time-of-flight.

The line inductance and capacitance per unit length, respectively, can
be expressed in terms of the line width by the simple relations,

Lint(W ) =
L0

W (x)
, (3.14)

Cint(W ) = C0W (x) + Cf , (3.15)

where L0 is the line inductance per square, Cf is the fringing capacitance
per unit length, and C0 is the line capacitance per unit area. W (x) is
the line width as a function of x, the distance from the load as shown in
Fig. 4.24.

The time-of-flight of the signal is

tf =

√∫ l

0

L0

W (x)

∫ x

0
(C0W (y) + Cf )dydx, (3.16)

where l is the line length. If functions F and u(x) are defined as
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Figure 4.24. RLC line tapered by a general width tapering function W (x)

F ≡ L0

W (x)

∫ x

0
(C0W (y) + Cf )dy,

u(x) ≡
∫ x

0
W (y)dy,

respectively, and Euler’s differential equation is used to minimize (3.16),
as similarly described in [16], the optimum u(x) should satisfy the dif-
ferential equation,

u′(x) =
2L0C0

c
u(x) +

2CfL0l

c
. (3.17)

Thus,

W (x) = W0 e
2L0C0

c
x, (3.18)

where c = 2Cf L0l
W0

. W0 is obtained by substituting (3.18) into (3.16)
and differentiating (3.16) with respect to W0. Setting the result to zero
produces a nonlinear equation which can be solved numerically.

As shown in (3.18), the optimum tapering function of the width of
an LC line is an exponential function. For either an RC or LC line,
the general form of the optimum shaping function that minimizes the
propagation delay is an exponential function. The RC and LC models
are the two limiting cases of a general RLC interconnect. The optimum
tapering function of an RLC line must satisfy the general exponential
form W (x) = qepx, where q is the line width at the load end, as shown
in Fig. 4.24, and p is the tapering factor. The optimum value of q and p
for an RLC line reduces to the value given in [16] if the line inductance
is negligible (an RC line) and to the value given in (3.18) if the line
resistance is negligible (an LC line). The optimum value of q and p for
an RLC line is between these two limits.

As described in [25], for an RLC line, the signal propagation delay
is minimum when the line is matched with the driver. The matching
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condition, from [25], is

Rtr = |Zline(q, p)| . (3.19)

Zline(q, p) is the lossy characteristic impedance of the line, given in
(3.12), as a function of q and p. tr is the signal transition time at the
near end of the line which is determined from the reduced order model
described in [25].

As there is one equation, (3.19), and two unknowns, q and p, there
are two degrees of freedom to design an optimum RLC line tapered for
minimum delay. For a width q, there is an optimum tapering factor popt

which satisfies (3.19) and at which the propagation delay is minimum.
Other design constraints, such as the minimum and maximum line width
and power dissipation, are discussed in subsection 4.4.2 to determine a
power efficient solution.

3.4.2 Constraints on Optimum Tapering for RLC Lines.
Tapering an interconnect assigns a small width for the line at the far
end. The line width increases at the near end as shown in Fig. 4.24.
As discussed in section 2, the width increases exponentially to obtain
the minimum propagation delay. By choosing q and solving (3.19) as
a nonlinear equation in one unknown, the optimum tapering factor popt

can be determined. There are two practical limits for choosing q,
1 q ≥ Wmin, where Wmin is the minimum wire width of a target

technology.

2 q ≤ Wmaxe−pl, where Wmax is the maximum wire width of a target
technology.

These two constraints should be satisfied when designing a tapered
line. q cannot be lower than the minimum wire width allowed by the
technology. Alternatively, increasing q may result in a width at the
near end (the largest width of the line) which may be greater than the
maximum available wire width.

Another important design constraint is power dissipation. Wire sizing
affects the two primary transient power components, the dynamic power
dissipated in charging and discharging the line capacitance and the short-
circuit power dissipated within the load gate. The short-circuit power
is minimum when the line is matched with the driver [17, 21], which is
also the optimum solution for minimum delay.

The dynamic power is directly proportional to the line capacitance.
To decrease the line capacitance, the line width should be as narrow as
possible, as the line capacitance increases superlinearly with the width
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[29]. In order to satisfy both high speed and low power design objectives,
q should be chosen equal to Wmin. The optimum value for the tapering
factor popt is obtained by solving (3.19) for q = Wmin. Optimum wire
tapering is compared in subsection 4.4.3 with uniform wire sizing for
both RC and RLC lines.

3.4.3 Tapering versus Uniform Wire Sizing in RC and RLC
Lines. Interconnect tapering is more efficient in RLC lines than
in RC lines. Two effects reduce the signal propagation delay of an
exponentially tapered RLC line. The first effect is the shape of the line
structure which minimizes both the RC and LC time constants.

The second effect is an increase in the inductive behavior of the line.
Tapering an interconnect line decreases the line resistance, reducing the
attenuation along the line. This effect increases the inductive behavior
of the line. The inductive behavior of the line can be characterized by
ζ = Rline

2

√
Cline
Lline

, the damping factor of a line [6]. As described in [6],
when ζ < 1.0, the inductive behavior of a line cannot be ignored. As
shown in Fig. 4.25, the damping factor decreases as the line tapering
factor increases, making the line behave more inductively. For ζ >
1.0 (the dotted lines), the damping factor does not exhibit inductive
behavior since the line is underdamped. The inductive effect of a line
with ζ > 1.0 is negligible.
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Figure 4.25. Interconnect damping factor as a function of tapering factor for different
line parameters
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The line inductance shields part of the line capacitance and decreases
the equivalent output resistance of the gate that drives the line. The
signal propagation delay decreases as the inductive behavior of the line
becomes more pronounced [25]. This effect makes line tapering more
attractive in long RLC lines.

Another criterion to optimize the interconnect width for minimum
propagation delay is uniform wire sizing. A minimum width coplanar
interconnect line is illustrated in Fig. 4.26 for two sizing criteria.
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Figure 4.26. Coplanar interconnect a) minimum width b) uniform sizing c) expo-
nential tapering

Exponential wire tapering outperforms uniform wire sizing as dis-
cussed in subsection 4.4.2. As with wire tapering, uniform wire sizing
decreases the line resistance, making the inductive behavior more pro-
nounced; however, the superlinear increase in the line capacitance limits
the effect of the line inductance on reducing the signal propagation de-
lay. Wire tapering, however, produces a smaller delay than the delay
achieved from uniform wire sizing. Optimum wire tapering produces a
greater delay reduction in RLC lines than in RC lines as the inductive
behavior of the line further decreases the delay. The line inductance
makes tapering more efficient than uniform wire sizing in RLC lines.

For an RLC line, tapering not only reduces the propagation delay,
but also decreases the total power dissipation as compared to uniform
wire sizing. An increase in the inductive behavior of the line reduces the
signal transition time at the load, reducing the short-circuit current and,
consequently, the total transient power dissipation [17, 20]. Simulation
results are presented here to illustrate the efficiency of exponential wire
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tapering on both the propagation delay and power dissipation of RLC
lines.

Different circuits have been investigated. The minimum delay is de-
termined for both uniform wire sizing and exponential line tapering. As
shown in Fig. 4.27, wire tapering outperforms uniform wire sizing for
all circuits. For an RLC line, a greater reduction in the minimum delay
is achieved as compared to an RC line.
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Figure 4.27. Reduction in propagation delay. UWS is Uniform Wire Sizing and TWS
is Tapered Wire Sizing

In addition to a smaller propagation delay, the total transient power
dissipation is less. A tapered line with q equal to the minimum width
reduces the total line capacitance, decreasing the dynamic power (as
compared to uniform wire sizing). Furthermore, the reduction in short-
circuit power, due to the line inductance, increases the savings in total
power dissipation. The relative reduction in power dissipation for an
RC and RLC line is compared in Fig. 4.28.

A reduction in power dissipation of 16% and in propagation delay of
15% for an RLC line as compared to 11% and 7% for an RC line is
achieved when optimum tapering is applied rather than uniform wire
sizing.

4. Future Issues in Interconnect Design
With the increase in clock frequencies, different mechanisms affect

the signal characteristics in long interconnects. These mechanisms alter
the impedance characteristics of the interconnect. At high frequencies,
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Figure 4.28. Reduction in total power dissipation

the current distribution along the interconnect cross section changes.
The change in the current distribution affects the flow of current due
to related phenomena such as skin and proximity effects. These effects
cause a change in the line resistance and inductance. Advanced design
methodologies are currently under development to consider the change
in the line impedance parameters when the frequency exceeds the limit
at which current interconnect models become inaccurate.

In this chapter, some of the most widely used criteria to drive long
interconnects are considered. There are other criteria which use differ-
ent techniques to enhance circuit speed. Current sensing and boosters
[30, 31] are two promising techniques. Despite the limitations of these
techniques, these approaches can be useful in certain applications. The
line inductance should be considered if these techniques are applied in
circuits that operate at high frequencies.

The leakage power in active elements which drive interconnect is often
neglected. Leakage power is expected to become a significant portion of
the total power dissipation in an integrated circuit. In future technology
generations, leakage power should be considered in order to develop more
efficient, high performance, low power design techniques.

From the discussion presented in subsection 4.4, tapering is an ef-
ficient technique to reduce signal delay. This technique could be ex-
panded by tapering the line in three dimensions. Tapering the inter-
connect height can improve the performance of the circuit. However,
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implementing three-dimensional tapering would greatly complicate the
manufacturing process.

5. Conclusions
Interconnect design has become more important as operating frequen-

cies have increased since the interconnect affects the two primary design
criteria, speed and power. Furthermore, line inductance cannot be ne-
glected in next generation high speed circuits. Including line inductance
in the design process can enhance both the delay and power as well as
improve the accuracy of the overall design process. The line inductance
introduces new circuit tradeoffs and design methodologies.

A tradeoff exists between dynamic and short-circuit power in induc-
tive interconnect. This tradeoff is not significant in resistive lines as the
signal characteristics are less sensitive to the line dimensions. The short-
circuit power of an overdriven interconnect line decreases with line width,
while the dynamic power increases. When the line exceeds the matched
condition, not only the dynamic power but also the short-circuit power
increases with increasing line width. The matched condition between the
driver and the load has an important effect on the line impedance char-
acteristics. If the line is overdriven, the short-circuit power decreases
with increasing line width. When the line exceeds the matched condi-
tion, the short-circuit power increases with increasing line width (and
signal transition time). To achieve lower transient power dissipation,
the minimum line width should be used if the line is underdriven. For a
long inductive interconnect line, an optimum interconnect width exists
that minimizes the total transient power dissipation.

Repeater insertion outperforms wire sizing in RC lines. However, for
RLC lines, the minimum signal propagation delay always decreases with
increasing wire width if an optimum repeater system is used. In RLC
lines, wire sizing outperforms repeater insertion as the minimum signal
propagation delay with no repeaters is less than the minimum signal
propagation delay using any number of repeaters. The minimum signal
propagation delay always decreases with wider lines until the number
of repeaters equals zero. In RLC lines, there is no optimum intercon-
nect width for minimum signal propagation delay. The total transient
power dissipation of a repeater system driving an RLC line is minimum
at small line widths. Below the width for minimum power, both the
signal delay and the power dissipation increase. Widening a line beyond
the width for minimum power reduces the number of repeaters and the
minimum signal propagation delay while increasing the total transient
power dissipation. A tradeoff between the transient power dissipation
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and the signal propagation delay, therefore, exists in sizing the inter-
connect width. Optimizing the interconnect for minimum power delay
product produces a much smaller increase in both the power and de-
lay as compared to separately optimizing for either the power or delay.
As interconnects becomes longer, the difference between the optimum
width for minimum power and the optimum width for minimum delay
increases, further enhancing the effectiveness of the proposed criterion.

On-chip inductance shields part of the interconnect capacitance. The
effective capacitance of an RLC load decreases with increasing line in-
ductance, reducing the gate delay of a driver. Furthermore, the line
inductance reduces the equivalent output resistance of a driver, reduc-
ing the total propagation delay. A parameter ZT , the ratio of the output
driver resistance and the magnitude of the lossy characteristic impedance
of the line, is introduced to characterize the signal propagation delay of
a CMOS inverter driving an RLC interconnect. The minimum propa-
gation delay is achieved when ZT = 1 where the driver is matched with
the lossy characteristic impedance of the line. A smaller buffer can be
used to drive an interconnect line if the line inductance is considered,
more accurately achieving the target delay than if the line inductance is
ignored.

The optimum wire shape that produces the minimum signal propa-
gation delay in a distributed RLC line is shown to be an exponential
function. An exponentially tapered interconnect minimizes the time of
flight of an LC line. The general form for the optimum shaping function
of an RLC line is qepx. The optimum wire width at the load end q and
the optimum tapering factor p which achieve the minimum delay and low
power are determined for the driver and load characteristics. Optimum
wire tapering as compared to uniform wire sizing is more efficient in
RLC lines than in RC lines. The line inductance makes tapering more
attractive in RLC lines since tapering produces a greater reduction in
delay as compared to uniform wire sizing. With a minimum wire width
at the far end and an optimum tapering factor, both the propagation
delay and the power dissipation are reduced. The line inductance in-
creases the savings in power in an optimally tapered line as compared
to uniform wire sizing.

On-chip inductance must be included in the design process in high
frequency circuits. By including on-chip inductance, the efficiency of
different circuit design techniques such as wire sizing, repeater insertion,
line tapering, and driver sizing can be greatly enhanced.
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Chapter 5

CLOCK DISTRIBUTION FOR HIGH
PERFORMANCE DESIGNS

Stefan Rusu
Intel Corporation, Santa Clara, CA

1. INTRODUCTION

The clock is a periodic synchronization signal used as a time reference
for data transfers in synchronous digital systems. Since the clock plays a
central role in the operation of a synchronous system, significant effort is
invested in the design, optimization and verification of high performance
clock distribution schemes. Since the clock edges determine the state updates
in a synchronous system, higher clock frequencies are generally (but not
always) associated with a higher system performance. As Figure 6-1 shows,
clock frequency for desktop microprocessors has increased significantly over
time, with the latest microprocessors running at above 3GHz in 0.13 � m
technology. This increase is driven by the process technology scaling,
aggressive circuit design techniques and deeper pipelines. The clock
distribution is particularly affected by process scaling that increases the
resistance of long interconnect lines. This trend is aggravated by the increase
in die size. Indeed, even as transistor geometries shrink, high-performance
digital systems have an increasing number of execution units and larger
caches. The clock needs to be distributed to all the circuits on the die, so the
clock lines are getting longer and require more buffering levels.

125



126

10

100

1000

10000

1987 1989 1991 1993 1995 1997 1999 2001 2003

F
re

q
u

en
cy

 [
M

H
z]

386

486 Pentium®

Pentium Pro®

Pentium® II

Pentium® III

Pentium® 4

Figure 5-1. Processor Frequency Trend

This chapter is organized as follows: Section 2 defines the main
characteristics of a clock distribution network and how they have evolved
over time. Section 3 reviews several clock distribution schemes, with
specific examples from high-performance microprocessor designs. Section 4
presents several deskew circuits, while Section 5 describes jitter reduction
circuit techniques. Since power is a limiting factor in most digital designs
today, we review several low-power clock distribution ideas in Section 6.
Finally, Section 7 discusses several future directions in clock distribution,
including distributed VCOs and PLLs, as well as rotary and standing wave
clock distribution.

2. CLOCK PARAMETERS AND TRENDS

Figure 6-2 shows the main parameters of a clock distribution network.
The clock skew is the spatial variation of the clock signal as distributed
through the chip. We distinguish between global (chip-level) and local
(block level) skew. A proper clock distribution design typically attempts to
reduce the clock skew to zero across the entire chip. However, as we will
show in Section 4, intentional skew insertion is sometimes used to relieve
timing critical paths, which allows a chip to run at a higher frequency.



Clock Distribution for High Performance Designs 127

Ref
Clk

End
Clk

tskew

tjitter

thigh tlow

Figure 5-2. Characteristic parameters for a clock system

Figure 6-3 shows the clock skew as a function of the cycle time. The points
in the chart represent the skew vs. operating frequency for various large
processors, as reported in ISSCC or JSSC papers by major industry players.
As expected, the skew decreases as the frequencies are increased.

Figure 5-3. Clock skew trends

A better way to measure the clock skew is to look at it as a percentage of
the cycle time, as shown in Figure 6-4. Notice that the skew has been
averaging about 5% of the cycle time, although a wide variability exists
between different designs. As the frequencies cross the 1GHz border, it
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becomes more difficult to hold on to this 5% limit. Going forward, we
expect the clock skews to continue to increase as a percentage of the cycle
time, even with the extensive use of deskew circuits, which will be described
in Section 4.

Figure 5-4. Clock skew as percentage of the cycle time

The main sources of clock skew are shown in Figure 6-5 [1]. Notice that
more than half of the skew is caused by device mismatches. The difference
in the local supply levels for the intermediate clock buffers accounts for
about a quarter of the skew.

Figure 5-5. Clock skew sources [1]

The load mismatch is due to imbalances in the clock distribution trees and
can be corrected by investing additional design effort. However, most of this
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extra effort is manual, so typically design teams accept the residual skew that
remains after balancing out the clock trees using automatic tools. Another
approach is to use a clock grid that shorts all the clock end-points. As we
will see in Section 3, clock grids have lower skews but consume
significantly more power. Finally, the temperature mismatch has a small
impact on the clock skew. This is good news for the clock designers, since
large temperature gradients exist in modern high performance designs.

The clock jitter is the temporal variation of the clock signal with respect to a
reference edge. We differentiate between long-term jitter (that accumulates
over a long period of time) and cycle-to-cycle jitter, which is measured
between adjacent clock cycles. Long-term jitter accumulates as a phase error
relative to the reference clock and degrades setup and hold timings for the
entire circuit. The cycle-to-cycle short-term jitter is seen by the logic circuits
as a frequency shift, similar to the clock skew.

Figure 5-6. Clock jitter trend

Figure 6-6 shows the clock jitter trend as a function of the processor
frequency as reported in major processor papers at ISSCC or JSSC. Notice
that this graph has fewer data points, since not all papers report on the clock
jitter results.

The main sources of clock jitter are the power supply noise coupling into
the voltage-controlled oscillator (long term jitter) and the supply noise
modulation of the clock network buffer delay (short term cycle-to-cycle or
multi-cycle jitter). Jitter reduction techniques will be discussed in Section 5.

The clock duty cycle is the ratio of the clock high and low times. Ideally
we would like the duty cycle to be 50/50, although small intentional
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deviations may enable higher operating frequencies in phase-based designs.
The most common way for achieving a 50/50 duty cycle is to synthesize a
double clock frequency and divide it by two before the distribution tree.

3. CLOCK DISTRIBUTION NETWORKS

Figure 6-7 shows several clock distribution options. The most common
distribution network is the tree, where buffers are inserted along the clock
distribution path forming a tree structure. All paths from the root of the tree
to all the branches have an identical number of buffers, although their sizes
may be adjusted to match the different loads. The number of buffer stages
between the tree root and the clocked registers depends on the total
capacitive loading, metal resistance and allowed skew. To further reduce
skew, we can short the outputs of the intermediate buffers, creating a mesh
clock tree structure.

Tree Mesh

H-Tree X-Tree

Figure 5-7. Common clock distribution structures

Another approach to ensure zero clock skew uses hierarchical H or X-tree
structures. In this approach, the clock is driven from the center of an H
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structure to its four corners. Each corner drives another, smaller H structure.
This distribution process is repeated through progressively smaller,
hierarchical H structures. The end-points of the smallest H shape drive the
clocked registers. Due to the symmetry of the H or X-trees, the path from the
clock source to each end-point has the same delay. As the interconnect
resistance increases with the technology scaling, adequate intermediate
buffers are required along the H-tree distribution.

Figure 5-8. Tapered H-tree

A tapered H-tree, shown in Figure 6-8, matches the clock line impedance
to minimize reflections at branching points. The width of the clock trunk
decreases as the signal propagates through the tree. The impedance of the
line exiting each branch point is designed to be twice the impedance of the
line feeding the branch point. Notice that perfectly symmetrical H-trees are
difficult to implement in actual designs due to floorplan constraints. Actual
clock trees require careful extraction and characterization to achieve a
balanced design.

Figure 6-9 shows the clock distribution of the Pentium® 4 Processor [2].
The clock is distributed using a triple spine approach to cover the large die.
Each spine contains a binary distribution tree, with each of the 47 leaf nodes
providing an independent domain clock. Local clock drivers are used to
buffer the clock load as well as produce the proper frequency and clock type
for each particular block. The drivers are connected to the appropriate
domain clocks through delay-matched taps. The maximum RC delay from
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the output of the local drivers to the input of a latch is restricted to less than
38ps to minimize the local clock skew.

PLL

Figure 5-9. Clock distribution for the Pentium® 4 Processor [2]

Figure 6-10 shows the evolution of the clock distribution network for the
Alpha microprocessor [3] through three generations of the design.

21064 (a) 21164 (b) 21264 (c)

Figure 5-10. Evolution of the clock distribution network for the Alpha processors [3]

The 21064 had a two-phase single-wire clocking scheme. The driver was
located in the center of the die as shown in Figure 6-10 (a). The final clock
load was 3.5nF, and it required a final driver with a gate length of 35 cm. To
handle the large transient currents in the power grid when the clock driver
switched, on-chip decoupling structures were placed around the clock driver.
Roughly 10% of the chip area was allocated to decoupling capacitance.
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Figure 6-10 (b) illustrates the clock distribution on the 21164. The main
clock driver was split into two banks and was placed midway between the
center of the die and the edges. The pre-driver was located in the center of
the die to distribute the clock to the two main drivers. The clock skew was
reduced by a factor of 2 using this approach. In addition, by distributing the
main clock driver over a larger area, the localized heating seen on the 21064
was reduced.

In the 21264, the power consumption became a major concern in
designing the clocking system. To reduce it, a single wire global clock
(GCLK) was routed over the entire chip as a global timing reference. The
GCLK drivers were distributed around the four quadrants as shown in Figure
6-10 (c), to reduce clock grid delay and distribute clock power. The GCLK
drives a hierarchy of thousands of buffered and conditioned local clocks
used across the chip. There are several advantages to this clocking scheme.
First, conditioning the local clocks saves power. Second, circuit designers
can take advantage of multiple clocks to add local skew that benefits timing
critical paths. Finally, using local buffering significantly lowers the GCLK
load, which reduces GCLK skew to less than 75ps.

Figure 5-11. Power4 microprocessor clock distribution [4]

The Power4 microprocessor clock distribution is shown in Figure 6-11
[4]. Considering the complexity of this 174M-transistor dual-processor chip,
the clock distribution is relatively simple. A single chip-wide clock domain
is used, with no active or programmable skew-reduction circuitry. A single
PLL is used near the center of the chip to minimize the global clock
distribution delay. The clock is distributed by 64 tuned trees driving a single



134

full-chip clock grid at 1024 points. The grid smoothes out clock skew caused
by across-chip process variations, but it does consume more power than a
balanced tree structure. Experimental measurements using pico-probes at 19
locations across the die showed a maximum skew of 25ps. Optical probing
on 9 of the 64 sector buffers confirmed less than 18ps skew at the leading
edge of the photon pulses.

Figure 5-12. Clock distribution for the Itanium® Processor [5]

The clock distribution of the Itanium® Processor is shown in Figure 6-12
[5]. The clock topology is partitioned into three segments. The global
distribution consists of the clock synthesis using an on-die phase-locked loop
(PLL) and the distribution of the core clock and the reference clock from the
PLL clock generator to the deskew buffers (DSK). The regional distribution
includes the clock distribution from the DSKs to the 30 regional clock grids.
Finally, the local distribution consists of the local clock buffers (LCBs)
taking the input from the regional clock grid and the local interconnect to
support the clocked elements. The clock deskew function will be discussed
in detail in Section 4. The regional clock grid is implemented using metal 4
horizontal and metal 5 in the vertical direction. As with the global clock
network, the regional clock grid contains full lateral shielding to ensure low
capacitance coupling and good inductive return paths. The regional clock
grid utilizes up to 3.5% of the available metal 5 and up to 4.1% of the
available metal 4 routing over a region.

The last topic in this section is the inductive effect in clock distribution
networks and the need to carefully model these effects when designing high-
frequency clock trees.
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Figure 5-13. Inductive effects on clock distribution grids [6]

Low resistance copper interconnects together with fast clock edge rates
result in inductive wire impedance comparable to the pure resistive
impedance. As a result, high frequency clock grids are modeled as two-
dimensional distributed RLC transmission line structures, as shown in [6].
Detailed 3D field simulations are used to extract accurate per unit length
RLC clock grid values in the presence of finite coplanar current return paths.
Transmission line effects, like signal reflections near the clock drivers as
well as overshoot and undershoot at the far end of the grid, are clearly
observed in Figure 6-13. Distributed wire inductance increases the delay
between the early clock (near the driver) and the late clock (at the end of the
grid). Clock loads near the driver are inductively shielded from remote loads
during the clock transition and observe a faster clock. On the other hand,
remote loads receive the clock later due to additional signal phase imposed
by wire inductance. Optimal clock driver sizing requires that the equivalent
output impedance be smaller than the grid characteristic impedance to
guarantee a high amplitude incident wave, and yet that the clock rise and fall
times at the drivers are sufficiently slow to ensure that voltage overshoot and
undershoot are not excessive at the far ends.
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4. DESKEW CIRCUITS

The first active deskew circuit was reported by Geannopoulos, et al. in
[1]. The circuit equalizes the skew between two clock distribution spines, as
shown in Figure 6-14. The phase detection (PD) circuit determines the phase
relationship between the two clocks. The deskew controller adjusts one of
the delay lines to minimize the skew between the two spines.

Delay Line

Delay SR

Right
Spine

Left
Spine

CL

Core

PD

FB Clk

X Clk

Clk_Gen

Deskew Ctl

Delay Line

Delay SR

Figure 5-14. Block diagram of a two-spine clock deskewing circuit [1]

A more refined scheme was introduced in [5], where the entire chip area
was split in 30 skew zones, as shown in Figure 6-15. Each zone has an
independent deskew circuit that adjusts the regional clock delay to match it
with the reference clock. This adjustment is repeated until a minimum phase
error is achieved. Therefore, any load mismatches and within-die variations
in the core clock distribution are automatically compensated. Since all the
clock regions use the same reference clock, the residual skew of the
reference clock, the uncertainty of the phase detector and the mismatches of
the feedback clocks determine the overall skew across these regions.
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Figure 5-15. Itanium® Processor clock deskew scheme [5]

The deskew operation is executed in parallel for the 30 clock regions
during the initial microprocessor reset. The global deskew controller
monitors the progress and signals the deskew completion. Once this occurs,
the DSK delay register settings are fixed until the next power up sequence.
This mode compensates for the process variations and most of the voltage
and temperature variations. An alternative operating mode is to allow the
deskew operation to continue during normal microprocessor operation. This
mode compensates for the dynamic effects such as temperature variations
and supply voltage drift over time, but has the additional risk of creating new
timing critical paths.
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Figure 5-16. Deskew buffer schematic [5]

Adjustments to the core clock delay are accomplished through the
variable delay circuit shown in Figure 6-16. This is a digitally controlled
analog delay line using a 20-bit delay control register, a two-stage variable
delay circuit and a push-pull style output buffer. The delay control register
forms a 20-steps linear delay coding that provides a good balance between
the delay step-size resolution and the total buffer delay range. Delay
adjustment can be accomplished by shifting a “1” from one end of the
register to decrease its delay or by shifting a “0” from the opposite end to
increase its delay. In addition to the input derived from the local deskew
controller, the delay control register also accepts input from the test access
port (TAP) interface. This feature permits a manual adjustment of the
deskew buffer delay through the TAP interface, which can be used for post-
silicon timing optimization. The variable delay circuit is constructed of
CMOS inverters and two arrays of passive loads. The delay across the
inverters varies in accordance to the setting stored in the delay control
register. Advantages of this design over a starving inverter approach are
linear delay steps and more symmetric layout. The push-pull style output
stage consists of twelve parallel drivers that can be enabled individually via
mask options to match the extracted loading of each region. This allows one
standard design to accommodate a wide range of regional clock loads. The
measured delay range of the deskew buffer is 170ps with a step size of 8.5ps.
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Figure 5-17. Logical diagram of the skew optimization circuit in the Pentium® 4 Processor

Figure 6-17 presents the schematic of the deskew circuit implemented in
the Pentium® 4 Processor [2]. The main components of the skew
optimization circuit are 47 adjustable delay domain buffers and a phase-
detector network of 46 phase detectors. The delay adjustment control for the
domain buffers and the output of the phase detectors are accessible from the
test access port (TAP).

Figure 5-18. Phase detector network in the Pentium® 4 Processor
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One domain buffer at the center of the die is chosen as the primary
reference. The remaining buffers are categorized as secondary, tertiary, and
final buffers. Figure 6-18 shows the phase-detector network, which coupled
with the TAP, aligns the domain buffers to the primary reference. To limit
the phase detector accumulation errors, the domain buffers go through at
most three levels of phase detection. First, phase detectors adjust the delay of
the secondary references to the primary reference. The phase detector
outputs a high or low based on the leading or lagging inputs. The output is
read out into a scan chain controlled by the TAP. Based on the outcome, the
clock domain buffers are adjusted. This is repeated until all the secondary
reference clocks are deskewed. Then, after the secondary reference delays
have been adjusted, a second set of phase detectors adjust the delay of
tertiary references. Similarly, the final stage buffers are adjusted to the
tertiary references. With this scheme, the skew is adjusted to within an error
of about 8 ps, limited mainly by the resolution of the adjustable delay
elements.

Table 5-1. Summary of clock deskew techniques
Author Source Zones Skew Before Skew After Step Size
Geannopoulos ISSCC 1998 2 60ps 15ps 12ps
Rusu ISSCC 2000 30 110ps 28ps 8ps
Kurd ISSCC 2001 47 64ps 16ps 8ps
Stinson ISSCC 2003 23 60ps 7ps 7ps

Table 6-1 summarizes all published clock deskew designs. Notice that all
designs manage to reduce the clock skew to less than a quarter of the value
measured without the deskew mechanism. As the process technology
shrinks, the step size is reduced, without requiring any additional control
bits.

5. JITTER REDUCTION TECHNIQUES

The most common jitter reduction technique is filtering the supply
voltage for the clock buffering stages. Figure 6-19 shows a simple low-pass
RC filter designed to reduce the core supply noise for the clock buffers [2].
The resistance is implemented using PMOS devices. The optimal design has
an IR drop of 70mV with a RC constant of 2.5ns, while minimizing the
layout area required by the capacitor. The actual component values for the
RC filter were adjusted for the different clock buffer types to a fixed IR drop
and RC time constant. The filter circuit model simulations with typical
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supply noise waveforms show up to 5X noise amplitude reduction on the
filtered supply.

Figure 5-19. Low jitter, RC-filtered power supply for clock drivers [2]

Another technique is to use an active voltage regulator as described in [6]
and shown in Figure 6-20. The core voltage of 1.5V is used as a reference
after passing it through a low-pass filter (LPF). The I/O voltage of 2.5V is
used to generate a clean, local supply for the delay-lock loop (DLL) circuits.
The regulator attenuates supply noise frequencies in excess of 1MHz by
more than 15dB, while lower supply noise frequencies are easily tracked by
the DLLs themselves.

DLL

LPF +
-

2.5V1.5V

Figure 5-20. Active clock supply regulator [6]
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6. LOW POWER CLOCK DISTRIBUTION

In modern VLSI devices, the clock distribution network and the clocked
sequential elements (latches and flip-flops) are the largest components of the
total power dissipation, accounting for 20% to 45% of the total power. The
flip-flops and the last branches of the clock distribution network that drive
them consume 90% of the total clock power. The reason for this large power
consumption of the clock system is that the transition probability of the
clock is 100% while that of the ordinary logic is about one-tenth to one-third
in average. It is therefore desirable to minimize the power consumed by the
clock distribution and sequential elements.

To accomplish this, we start from the dynamic power equation P = CfV2,
where C is the total switched capacitance, f is the operating frequency and V
is the supply voltage. Lowering the clock frequency contradicts the basic
trend outlined in Section 1 of pursuing higher operating frequencies through
design and process technology scaling. This is only feasible on a part-time
basis, like lowering the clock frequency during idle periods of time in mobile
computing devices. On a practical basis, lower active power is best achieved
by reducing the voltage and switched capacitance of the design. Since the
voltage is squared in the power equation, it has a larger impact. Kojima et al.
[7] proposed a half-swing flip-flop (HSFF) design, where the voltage swing
of the clock is reduced to half the operating voltage. The HSFF requires four
clock signals as shown in Figure 6-21. Two clock phases with a swing
between Vdd and Vdd/2 drive the PMOS devices, while the other two phases
with a swing between Gnd and Vdd/2 drive the NMOS transistors. A
theoretical analysis of this scheme shows that the clocking power is reduced
by 75% compared to the full clock swing distribution.
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Figure 5-21. Flip-flop design using half-swing clock [7]

Experimental savings of 67% were demonstrated on a 0.5 � m CMOS test
chip with only 0.5ns degradation in speed. However, this scheme requires
additional area for the special clock drivers and suffers from skew problems
between the four clock phases.

(a) (b)

Figure 5-22. Reduced clock swing flip-flop [8]
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Kawaguchi et al. [8] proposed a reduced clock swing flip-flop (RCSFF)
that needs only one clock signal that swings between Gnd and Vck, where
Vck is lower than Vdd, as shown in Figure 6-22 (a). To control the leakage of
the pullup P-transistors driven by this low swing clock, a well-biasing
technique is used to increase the threshold voltage of these devices. Several
reduced swing clock drivers can be used, as shown in Figure 6-22 (b). Type
A drivers use the same Vdd supply as the rest of the core, while Type B use
an external Vclock supply. While this scheme can achieve up to 63% clock
power reduction, it requires additional layout area for the well biasing
scheme.

Figure 5-23. NAND-type Keeper Flip Flop [9]

A NAND-type Keeper Flip-Flop (NDKFF) proposed by Tokumasu et al.
[9] is shown in Figure 6-23. Notice that all transistors driven by the clock
signal are NMOS devices, which enables the NDKFF to operate with a
reduced clock swing without concern over PMOS pullup leakage. The
NAND-type keeper eliminates unnecessary transitions at the internal node
X, further reducing the power consumption.
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Figure 5-24. Clock-on-demand flip-flop [10]

Hamada [10] proposes a clock-on-demand flip-flop shown in Figure 6-
24. In this design, the internal clock CKI is activated only when the input
data D will change the output Q. This amounts to the finest granularity
(single bit level) of clock gating. The clock-on-demand flip-flop generates a
self-aligned pulsed clock internally, that enables the latch circuit to operate
like an edge-triggered flip-flop. For a data transition probability of 0.95, the
clock-on-demand flip-flop dissipates the same power as a conventional flip-
flop. Since in practical applications the data transition probability is between
0.1 and 0.3 on average, the clock-on-demand flip-flop has a power
advantage over the conventional design. However, the clock-on-demand
flip-flop has a longer setup time and is prone to hold time violations like all
other pulsed-latch designs.
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Figure 5-25. Dual edge flip-flop circuit [11]

Another approach to reduce the clock power is to use dual-edge triggered
storage elements that can achieve the same throughput as single-edge
clocked flip-flops at half the clock frequency and half the clock-related
power consumption. Nedovic et al. [11] proposed the design shown in
Figure 6-25. The first stage consists of two symmetric pulse-generating
latches that create data conditioned clock pulses on each edge of the clock.
The second stage is a 2-input NAND gate, effectively used as a multiplexer.
Simulation results in 0.11 � m technology show an energy-delay product and
delay comparable to the best single-edge designs. The clock load of this
design is similar to the clock load of single-edge flip-flops used in high-
performance processor designs, allowing a power savings of about 50%. The
main drawback of dual-edge clocking is that it requires tight control of the
clock duty cycle and uncertainties of both clock edges.

7. FUTURE DIRECTIONS IN CLOCK
DISTRIBUTION

Mizuno et al., [12] proposed using distributed voltage-controlled
oscillators (VCO) to generate local clocks as shown in Figure 6-26. Metal
lines of equal length l short the outputs of the VCOs to minimize the skew
between the multiple oscillators. The voltage Vc is the frequency control
signal for the VCOs that is distributed across the chip instead of the global
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clock signal. Careful shielding and filtering are required to insure the noise
immunity for this analog voltage level.

Figure 5-26. Clock distribution using synchronous distributed oscillators [12]

A two-dimensional matrix configuration distributes the VCOs over the
entire chip area, as shown in Figure 6-27. Using this scheme, each VCO is
placed close to the local clock distribution network. A test chip fabricated in
0.25 � m CMOS technology achieved a mean skew of 17ps.

Figure 5-27. Matrix configuration of synchronous distributed oscillators [12]
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Gutnik et al., [13] propose distributing phase-locked loops (PLLs) at
multiple points across the chip, as shown in Figure 6-28. Each locally
generated clock is distributed only to a small section of the chip (tile). Phase
detectors at the boundaries between tiles produce error signals that are
summed by an amplifier in each tile and used to adjust the frequency of the
node oscillator. Since this technique requires many nodes (16 in the example
shown in Figure 6-28), the total area and power consumption of all PLLs is
higher than the single PLL conventional approach. The voltage-controlled
oscillator uses an NMOS-loaded ring oscillator to minimize the power
supply noise. A 4x4 test chip in a standard 0.35 � m CMOS technology
demonstrated a long-term jitter between neighboring tiles of less than 30ps
and cycle-to-cycle jitter of less than 10ps.

Figure 5-28. Distributed phase locked loops [13]
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(a) (b)

Figure 5-29. Rotary clock distribution architecture [14]

Wood, et al., [14] propose a rotary clock distribution architecture to
achieve a low skew and jitter, gigahertz rate clock distribution. Figure 6-29
(a) illustrates the theory behind the rotary clock architecture, using a simple,
open loop of differential conductors connected to a battery through an ideal
switch. When the switch is closed, a voltage wave starts to move counter-
clockwise around the loop. Once the wave is started, it can be maintained
through a logical inversion by crossing over the wires instead of the battery
supply. To overcome losses, anti-parallel inverter pairs are used. The energy
is recirculated in the closed electromagnetic path, providing a significant
power savings, since losses are due only to I2R dissipation in the wires and
not CfV2 dissipation as in the conventional clock distribution. Figure 6-29 (b)
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shows the layout of a rotary clock with 25 interconnected rings. Each ring
consists of a differential line driven by anti-parallel inverters distributed
around the ring. The clock wave frequency depends on the electrical length
of the ring and the inductance and capacitance of the lines. A prototype
circuit was built in a 0.25 � m 2.5V CMOS process and has a 12000 � m long
ring with 60 � m conductors on a 120 � m pitch. Simulations predicted a clock
frequency of 925MHz, while measured waveforms clocked at 965MHz.
Jitter was measured to be 5.5ps rms.

Figure 5-30. LC vs. standing wave oscillator [15]

O’Mahony [15] describes a 10GHz standing-wave clock distribution
system that achieves sub-picosecond skew and jitter using on-chip
interconnects and distributed buffers to create a network of coupled
oscillators. Standing waves have the same phase at all points, as opposed to
the rotary clock scheme discussed earlier that generates traveling waves. A
standing-wave oscillator is similar to a differential LC oscillator (both shown
in Figure 6-30) where the gain and tank are distributed. The NMOS cross-
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coupled pairs provide enough gain to compensate for wire losses. The
PMOS diode-connected loads set the common mode voltage and allow
injection of an external clock reference.

Figure 5-31. 10GHz standing wave clock distribution test chip [15]

Figure 6-31 shows a prototype standing wave oscillator clock network
implemented in a 0.18 � m, 1.8V CMOS process with six AlCu metal layers.
The differential � /2 lines are 3mm long, 14 � m wide and are 4 � m apart in
metal six. The clock jitter added by the clock grid is below 0.5ps. The
measured skew is 0.6ps (0.6%) when the grid is tuned to 10GHz with a
single control voltage for all varactors and 3.2ps when half of the grid is de-
tuned by 1%. The worst-case skew between any two adjacent points is 1.4ps
for the de-tuned grid.
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1. Introduction

The Network-on-Chip paradigm targets future Systems-on-Chip built of a
large number of reusable, independent Intellectual-Property-blocks (IPs). A
typical approach is to align these IPs as tiles in a regular manner, each asso-
ciated with a wrapper providing access to the on-chip network. The network
itself is a regular structure composed of switches/routers and the interconnect-
ing links.

The objective of implementing a Network-on-Chip is to decouple computa-
tion from communication by offering a uniform, reliable, and versatile commu-
nication platform for all the inter-IP communication required by a typical SoC
application. Thus, the need for custom wiring to build an application-specific
communication infrastructure is overcome. Furthermore, placement and rout-
ing are simplified for the whole NoC because both the IPs and the network
components are encapsulated from one another except for a defined network
interface providing network access in terms of services usable by the IP for all
communication it requires with its surroundings.

To fully exploit the advantages this approach offers, the network must pro-
vide defined, reliable communication services to the resources attached to it.
This problem is far from trivial since the network links will most likely not be
error-free in future deep submicron technology generations.
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While much work is done to develop robust transmission schemes, it is
expected that especially crosstalk will seriously affect interconnect reliabil-
ity. When the physical layer of an on-chip network fails despite all preventive
measures taken, the effect should be controlled. This is what the error-tolerant
interconnect schemes provide: They increase the network reliability and hide
imperfections from the applications which use the communication services of-
fered.

Reliable network services are of great importance since applications have
demands on communication that must be fulfilled to achieve correct appli-
cation behaviour. In a classical approach, the communication infrastructure
of a SoC is a combination of shared buses and custom designed interconnect
to meet specific requirements. However, when all communication should be
transported over a common medium, the on-chip network, it must be taken
into account that the demands are different for different applications and may
include bandwidth guarantees, integrity requirements or deadlines for comple-
tion of a specific task in real-time applications.

Typically, an application running on a SoC is comprised of multiple pro-
cesses associated to different NoC-resources. Naturally, the characteristics
of data transport within one application are not uniform since different traf-
fic types such as control messages, audio signals and video streams have to
coexist. Even seemingly regular data streams become irregular during process-
ing. For instance video streams are usually encoded such that only the delta
between frames are transmitted, which makes the communicated data volume
higly dependent on the video content.

Closing the gap between the hardware platform’s possibilities and the ap-
plications’ requirements is the demanding task of error-tolerant interconnect
schemes. Their aim is to provide a network with defined properties to the
application. In the ideal case, what the applications see is an error-free com-
munication medium fulfilling all their communication needs.

Furthermore, this idea hides the physical implementation details of a spe-
cific technology. By providing defined services, the border between platform
design (technology, layout, error-tolerant interconnect scheme) and application
design (using communication at defined QoS-levels) is clear.

Which measures are taken to implement an error-tolerant interconnect scheme
depends on the specific applications’ requirements and the constraints imposed
by the selected platform/architecture. Therefore, we give a general overview
before focusing on one specific example.

2. Architectural Considerations

One main objective of networks on chip is the idea that they are formed by a
regular structure. This helps to overcome the problems associated with custom
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and global interconnects: Designing and verifying specialized custom inter-
connects takes considerable amounts of time, global interconnects traversing
the whole chip will be inefficient from an energy viewpoint and very suscep-
tible to crosstalk-related errors. By building a regular interconnection archi-
tecture that is defined by the platform, the electrical parameters of the inter-
connects can be tightly controlled. For instance, in a regular mesh all links
have the same length. Obviously, much effort can be put into fine-tuning the
electrical parameters of these links (in order to optimize reliability, energy con-
sumption etc.) and an efficient implementation will be very rewarding. This
example shows that the NoC-approach enables designers to fully take advan-
tage of a given technology to implement the low-level details of transmission
in a place- and energy-efficient manner. At the same time, the technological
details influencing interconnect design are hidden from the application.

In the past, various NoC-architectures have been proposed, among them tori,
hypercubes, meshes and trees. In defining the architecture, many characteris-
tics are decided that have an impact on the possibilities to realize fault-tolerant
(i.e., reliable) communication.

2.1 Architecture-imposed Constraints

Among the most important parameters for data protection schemes are (a)
the width of the links between resources and switches, (b) if parallel or serial
transmission is employed on these links, and (c) how much delay, area and
power overhead can be tolerated in the switches.

Considering for instance a � � � mesh it is obvious that an area-efficient
switch design will be very rewarding: Since a total of � � � switches form the
NoC, even small savings can have a significant effect on the overall area over-
head introduced by the on-chip network. This clearly motivates carefully bal-
anced design decisions when implementing network components, especially
those dealing with error-tolerance for they can be arbitrarily complex.

2.2 Errors in DSM

Compared to today’s circuits, the number of transient errors is expected to
increase significantly in future technology generations [1]. The reliability of
long interconnects, especially buses, will suffer from crosstalk faults. At the
same time, technology scaling gives rise to new error sources. Among them
is radiation which has previously only been a concern with memories, but will
affect logic and low capacitance/low power buses as well. Generally speaking,
the amount of transient faults increases with the decrease of feature size.

Crosstalk. The main source of errors on buses will be crosstalk, which is
strongly influenced by the coupling capacitance between wires and can lead to
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increased delay or cause voltage glitches on wires [2]. Furthermore, crosstalk
can inherently cause multi-bit and bidirectional errors [3] (i.e., disturbing mul-
tiple wires, causing both

� � �
and

� � �
errors).

Crosstalk depends not only on the physical and electrical parameters but
also on the dynamic switching behaviour. Thus, the system has either to be de-
signed for the worst case or significant information about the transmitted data
has to be known at design time. One example is an algorithm for wire place-
ment in address buses [4]: A lot of information about the switching activity
(data patterns) on the bus is needed to achieve good results. For data buses
carrying random data, however, this approach is not useful.

Many other approaches aim at reducing the bus crosstalk energy by mini-
mizing the number of simultaneous transitions on adjacent bit-lines. A good
summary of approaches to reduce the number of transitions can be found in
[5] which describes a dictionary-based encoding scheme for data buses. The
authors investigated various data flows and found correlation between adjacent
bus lines. At the expense of additional hardware (so that encoding/decoding
can take place within one cycle), a dictionary-based compression method can
be used to transfer less data, thereby causing less signal transitions.

Another possibility to reduce crosstalk energy is to use time redundancy. It
was shown in [6] that it is very energy efficient to detect errors and retransmit
erroneous data. By comparing various codes, the authors found that more pow-
erful codes imply higher power consumption due to more complex encoders
and decoders. The best energy efficiency has been achieved using a detection
scheme with retransmit.

The work presented in [7] is targeted towards encoding the bus in a way that
minimizes crosstalk. The authors present a special encoding, which is shown
to reduce the crosstalk delay variations by a factor of two. The main drawback
is that an area overhead of more than 60% is required, and an important finding
is that encoding for low crosstalk and low energy may not be compatible since
worst-case crosstalk patterns can occur among the patterns that have very low
energy consumption.

Electro-Magnetic Interference. Electro-magnetic interference clearly is a
mechanism that can induce transient errors. And on-chip interconnections are
very likely to be the victims of such influence because of their relatively long
wires. Errors due to electro-magnetic interference can thus be expected on the
buses between the switches of the Network-on-Chip.

With higher integration of more complex building blocks on one chip, elec-
trical noise from the environment will no longer be the only error source. Espe-
cially mixed-signal ICs will also be susceptible to distortions generated on-chip
by HF components or by the large number of devices switching simultaneously
at high clock frequencies.
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Radiation. Transient faults caused by alpha particles (emitted by the pack-
age) or cosmic radiation have first appeared in semiconductor memories, which
are typically the most highly integrated devices fully exploiting a given tech-
nology’s capabilities. Error correcting codes have been successfully applied
to these memories in order to minimize the effect of both transient errors and
permanent errors introduced during the manufacturing process (resulting in an
improved yield).

Due to decreased node capacitances, logic [8] and low capacitance/low power
buses [9] are likely be affected by radiation-induced errors as well.

Process Variations. At decreasing feature size, unavoidable process vari-
ations may lead to a greater variance of circuit parameters. While transistors
are the devices whose parameters are easily changed by process variations, the
effect on the high number of interconnects on an always-increasing number of
layers has also to be taken into account. Even a small change in the cross-
coupling capacitances may lead to additional delays on several or all lines of a
bus, thereby increasing the delay variation.

Other Error Sources. Given the high costs of microchip production
(masks, manufacturing, testing etc.) that increase with each technology gen-
eration, it may become necessary to relax the current, inherent requirement of
100% correctness for devices and interconnects on purpose. According to the
International Technology Roadmap for Semiconductors, this paradigm shift
might be forced during the time-frame the NoC-architecture is developed for,
since it may be the only means to reduce production, verification and test costs
per chip by increasing the yield significantly [1].

Fault-tolerance will then not only be implemented to cope with runtime er-
rors but also to mask out a certain amount of permanent errors introduced dur-
ing manufacturing. This could lead to a characterization of acceptable errors,
which will not render the chip unusable but can be tolerated by the imple-
mented error-control scheme.

Furthermore, it is expected that the number of soft errors only occurring un-
der specific conditions of voltage, timing and temperature will increase. Since
these types of errors are difficult or impossible to test for, they will lead to an
higher overall rate of transient errors during circuit operation.

While interconnect reliability has been tackled successfully on the physical
layer in the past, this will not necessarily be possible in future deep submicron
NoC-applications. Measures like shielding (adding a ground wire between
two signal wires) might be too expensive in a highly integrated network en-
vironment built of massively parallel buses. Furthermore, Worm et. al. raise
the question whether maintaining all design margins for on-chip buses to cope
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with worst-case manufacturing variations will be too expensive in terms of area
consumption. [10]

Taking all these arguments into consideration, it becomes clear that guaran-
teeing completely reliable links between the NoC-switches by manufacturing
– while desirable – will perhaps not be the most efficient solution when both
technical and economical arguments are taken into account. When the physical
layer of an on-chip network is not able to hide all errors that occur from the
upper protocol layers, it is important to understand what the error sources are
and which error characteristics are expected in order to design suitable error-
tolerance schemes.

3. Application Demand and Quality of Service

An implementation objective of the on-chip network is the principle of com-
munication between resources. This communication is not as tightly coupled
as it could be if custom interconnect (along with a custom protocol) was used.
This leads to a new way of looking at SoC design with a strong emphasis on
communication. After all, a future NoC-application will rather resemble a dis-
tributed system than a traditional SoC.

When an application is mapped onto a NoC-platform, it is split into multiple
blocks which need to communicate. Likewise, when multiple applications are
running on one NoC, they must be able to interact. While this is not new and
requirements for specific communication have formerly been implemented by
buses or custom designed connections, the NoC-approach aims at transferring
all inter-block communication over a chip-wide uniform network infrastruc-
ture.

This in turn means that the network must be so versatile that it can handle
(adapt to) a large number of communication streams of which each one can
have its own characteristics. These characteristics will certainly not be uni-
form. Therefore, a closer look at parameters for traffic description is appropri-
ate. Since communication aspects will play a major role in future NoC-based
SoC design, applications will have to explicitly describe their communication
streams.

Especially in a large-scale NoC that handles a significant number of con-
current communication streams, the traffic will not be uniform. Supporting
different types of traffic can be rewarding and efficient in terms of resource
usage and overall transmission times. An example for this are the advantages
of combining guaranteed-throughput and best-effort traffic shown in [11] for
the Æthereal network.

An overview of parameters that will be helpful in describing on-chip com-
munication streams is listed in Table 6.1.
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Table 6.1. Quality-of-Service Parameters to describe communication streams

A set of parameters like these enables applications to describe their com-
munication connections in a form that is advantageous for the NoC. Based
on these parameters, the network determines whether and how a connection
request can be served.

4. Error-Tolerance Schemes

Combining the contradicting requirements presented in the previous sec-
tions leads to a trade-off in terms of error-tolerance: Which error characteris-
tics have to be coped with? Which QoS guarantees have to be realized? This
gap must be closed by an error-tolerant interconnect scheme.

Obviously, a NoC can be customized and optimized to be a platform for a
class of applications. On the one hand is the implementation of error-tolerance
schemes guided by constraints specific for an application-class (e.g., real-time
applications). On the other hand impose architecture- and technology-depen-
dent constraints limits on the design freedom.

Error-tolerance can only be achieved by adding some form of redundancy
so that errors can be compensated. As the following list suggests, there are
many approaches possible, each with its unique advantages and shortcomings.

1 information redundancy (additional information is transported)

(a) additional information on one link (e.g., a checksum)

(b) identical information sent over multiple links (broadcast to increase
the probability that this information will reach its intended recipi-
ent)

2 time redundancy (e.g., repeated transmission or retransmission on re-
quest)

3 space redundancy (multiple components working in parallel, the output
is typically determined by a majority vote)

The important questions that have to be answered when deciding on an
error-tolerance scheme are not only which of the above approaches to achieve
redundancy is chosen but also where the error-tolerance scheme is implemented.
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In a NoC, error-tolerance can be implemented at various levels. One option
is to implement error-control measures on the switch-to-switch links, another
option is to define a protocol between connection end-points to cope with pack-
ets which were lost or garbled on their way through the network. Regardless
of the type of redundancy chosen, implementing switch-to-switch error control
usually has the advantage that errors cannot accumulate when the data is trans-
ported over multiple hops but are noted as soon as they appear. On the other
hand is the design simplified when only end-to-end error-tolerance measures
are used.

Typically, a good solution will be comprised of both switch-to-switch and
end-to-end error-tolerance schemes, fine-tuned to complement one another.

When making design decisions, it is important to keep in mind that a typical
NoC is comprised of a large number of identical network components, namely
switches and network interfaces. This leads to energy and area constraints
which influence both how much computational complexity can be included in
network components and where which amount of buffers can be used. For
instance has the number of buffers or pipeline-stages in switches a direct influ-
ence on the latency of a communication stream.

When designing a NoC, many parameters can be controlled directly, for sure
an advantage in comparison to traditional network concepts. Additionally, in
comparison to larger-scale networks new parameters become critical and must
be considered during network design in order to achieve a well-balanced trade-
off. The most obvious one is energy consumption, a major concern in SoC
design.

This motivates a look at error-tolerance schemes from an energy-efficiency
viewpoint. In contrast to traditional networks is the energy consumed by en-
coding/decoding logic in the same order of magnitude as the energy needed for
transmitting data. While low-power transmission schemes are susceptible to
transmission errors, they will nevertheless prevail future NoC-designs because
communication energy minimization will be the only means to meet global en-
ergy consumption limits. The result of [6] where the energy-efficiency of trans-
mission schemes was examined indicates that a combination of error-detection
and retransmission (if necessary) can be very efficient. Approaches incorpo-
rating more complex codes to protect the transmitted data needed too much
energy for their encoders and decoders in comparison to the retransmissions
they could avoid.

In order to be able to retransmit erroneous packets, buffering has to be im-
plemented into the on-chip network. Additionally, communication between
network components becomes necessary so that retransmissions can be re-
quested. Typically, positive or negative acknowledgements along with some
sort of sequence number are employed.
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The most simple retransmission scheme expects an acknowledgement for
each sent packet. This can either be a positive acknowledgement if the packet
was successfully received or a negative acknowledgement indicating a trans-
mission error. Optimizations of this basic protocol incorporate sequence num-
bers to acknowledge a whole group of packets or selectively request retrans-
mission of erroneous packets. These actions aim at reducing the number of
acknowledgement packets that have to be sent and result in both a lower net-
work load and higher throughput. Problems with this kind of protocols usually
arise when acknowledgement packets are scrambled or lost. Therefore, timers
are implemented and the resulting protocols can become very complex due to
the large number of possible states.

An approach different to costly error- and flow-control are broadcast-based
transmission schemes. For instance, [12] proposes a so-called "gossip pro-
tocol" which transmits data from sender to receiver over multiple routes in
a broadcast fashion. Since every node broadcasts received packets, the data
will eventually reach its intended destination. However, the additional net-
work load this scheme causes in comparison to unicast transmission is hardly
compensated by its conceptual simplicity.

As this short overview illustrates, there are as many potential sources of
faults and errors threatening future systems on chip as there are strategies and
techniques to protect data from corruption and loss. In the remaining sections
of this chapter we become more concrete and focused and discuss a two level
error protection scheme for a particular NoC architecture, the Nostrum. Even
more specifically we focus mostly on the data protection from errors occurring
on the wires between the switches of the communication network.

5. Error-Tolerant Interconnects in the Nostrum NoC

5.1 The Nostrum Architecture

The Nostrum NoC architecture [13] is based on a regular � � � mesh of
(network) switches and resources. Every resource is connected to one switch
and the switch can be connected to up to four neighbors. The network is based
on packet switching with packets of a fixed size determined by the width of
the connection between adjacent switches. This is a massively parallel bus
structure that allows for bidirectional transmission of two network packets each
transfer cycle.

In the current implementation, a packet is 128 bit wide and comprised of
both a header and application payload. The Nostrum NoC transports a whole
network packet over the wide links between the network switches each cycle.
Every switch can send and receive up to five packets at the same time. Since
the switches use deflective routing [14, 15] and neither pipelining nor buffering
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takes place in the switches, no retransmission of scrambled packets between
adjacent switches is possible.

This buffer-less design style is motivated by area and power consumption.
Introducing buffers into switches would mean to introduce buffers to every
input or output connection. Since each switch has five unidirectional inputs and
five outputs, each 128 bit wide, the area overhead introduced by the network
components would drastically increase. Without buffers, however, tight speed-
constraints are introduced: The switch must be designed in a way that allows
for fast analysis of the packets. All packets have to be analyzed before the
switching decision can be made.

5.2 Connection Types

Nostrum offers best effort (BE) and guaranteed latency (GL) communica-
tion services. BE communication is based on individual packets that are com-
municated and routed independently. Hence, each of these packets contains a
relatively long header with the full address information. Since BE packets can
deviate from the shortest path between source and destination when traffic load
is high [14, 15], no maximum delay can be guaranteed. However, packets that
have been longer in the network increase their priority and thus their chance
to reach the destination. In contrast, GL communication is based on a virtual
circuit that is a direct stable connection between a source and a destination. A
virtual circuit has to be opened and closed. A virtual circuit is opened by re-
serving particular time slots in every switch from source to destination. These
time slots cannot be used by other packets. Consequently, packets traversing
an open virtual circuit cannot be disturbed by other BE or GL packets, thus
they experience a deterministic latency from source to destination. The GL
packets have a much shorter header without address information, because the
switches know where GL packets are to be sent.

The discussion below about error protection is valid for both BE and GL
packets. Thus the different reliability services are available for both kinds of
traffics. The only difference is that GL packets have a much shorter header
and therefore allow for a simplified protection scheme in some of the services
described below. For the sake of simplicity we therefore discuss only BE traffic
in the following sections.

5.3 Quality of Service for Data Integrity

As discussed above, implementing an on-chip network to handle all inter-IP
traffic benefits from offering different QoS-characteristics to its applications.

End-to-End Services. Nostrum offers a two level data protection scheme:
end-to-end and link layer data protection. The end-to-end service denotes a
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technique implemented in the network interfaces between the resources and
the communication network. We distinguish two modes: the send-and-forget
(SaF) service and the acknowledge-and-retransmit (AaR) service. We only
sketch a possible end-to-end protection mechanism very briefly here and con-
centrate then on the link layer data protection in the following sections.

In SaF mode no additional action at the network interface is taken, based
either on the assumption that the underlying communication is lossless and
fully reliable, or because the application can tolerate loss and data corruption
at the level provided by the lower layers.

AaR mode defines a window of size � � � � � � � �
. The receiver, i.e.

the network interface at the receiver side, sends an acknowledgement packet to
the sender for each � received packets. The acknowledgement packet has one
bit for each of the � packets indicating if that packet should be retransmitted
by the sender. There are three possible reasons why the receiver requests a
retransmission of a packet. (a) The packet has been flagged “corrupted” by
the link level data protection mechanism (see below). (b) An end-to-end error
detection code, again implemented in the network interface, has detected a
corrupted packet. (c) A packet has not arrived after a maximum elapsed time.
This maximum time can be determined easily for guaranteed latency packets
but has to be set heuristically for best effort traffic.

The sender in an AaR communication buffers � � packets. After having
sent � packets it expects the corresponding acknowledgement packet while
keeping sending packets. If � � packets have been sent and the first � packets
have not been acknowledged, the sender stops and waits for the acknowledge-
ment packet. When it arrives, the sender retransmits requested packets and
removes the positively acknowledged packets from its buffer. Then the normal
transmission of packets can be resumed.

As mentioned this is only a sketch of a possible data protection mechanism.
For a complete AaR protocol all time-out periods and the end-to-end data en-
coding have to be decided. Also, the actions have to be defined for the case
when data corruption and loss increase beyond an acceptable level and jeopar-
dize for example maximum latency guarantees.

In the following we elaborate in more detail the lower level protection mech-
anism and define four reliability levels for the link layer. It should be noted
that all four levels can be combined arbitrarily with both the SaF and the AaR
mechanisms leading to eight distinct data protection classes. All of them can
be applied to both best effort and guaranteed latency services. Thus, an ap-
plication can choose from a variety of communication services with different
performance and reliability properties.

Link Level Services. For the Nostrum link layer we focus on protecting
data from errors occuring on the wires between the switches and not in the
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switches themself. This is motivated by the fact that the area of the switch
to switch interconnect is significantly larger than the area of the switch. In
Nostrum the resources form a two dimensional mesh. Making the assumption
that the resources have a footprint of � � � � � � � and the switches have a
footprint of

� � � � � � � � � � � � � � � � � � , the wires between two switches
will occupy an area of � � � � � � � � � � � 	 � � 
 � � � , i.e. 20 times the area
of the switches. Under the simplifying assumption that the the number of
faults is proportional to the area, we expect many more faults to affect the
inter-switch wires than the switch logic. Also, we hope to capture the faults
in the switches with the end-to-end data protection scheme. However, these
assumptions need yet to be substantiated with realistic fault models of future
technology generations and quantitative experiments.

In Nostrum, link level error protection is achieved by bus encoding. We
propose four QoS-classes describing the characteristics of the switch-to-switch
transport of a packet. The characteristics of these service classes range from
offering maximum bandwidth at the expense of error tolerance to reduced ap-
plication bandwidth allowing for more redundancy so that tighter integrity or
latency bounds can be met: While the transport of multimedia data may require
maximum bandwidth, data integrity is the main concern for transfers from and
to memories.

Maximum Bandwidth. Since the amount of wires available for routing
the inter-switch buses is limited, the redundancy introduced by coding will
directly influence the application payload that can be transported in a packet.
Consequently, maximum bandwidth is available to the application when no
encoding is applied.

Guaranteed Integrity. To ensure data integrity as far as possible, error
detection methods can be used. Data correction is not attempted since it might
result in miscorrection. Instead, if erroneous data is detected, a flag can be set
or the whole packet can be dropped. Due to the lack of packet buffering in
Nostrum’s switches, however, no immediate retransmission can be performed.
Thus, the main property of this mode is that if the data arrives and no error has
been detected, it can be assumed to be correct.

Minimum Latency. To achieve minimum latency, packets must always be
forwarded. Only error correction is performed, the underlying assumption is
that all errors can be corrected by the code used. This mode is well suited for
applications that can tolerate rare errors (due to miscorrection) but depend on
receiving data at a constant rate.

It is worthwhile noting that this mode cannot decrease the latency which
mainly depends on the routing process in the Nostrum NoC. Minimum Latency
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tries to ensure that a packet arrives at its destination without additional delay
introduced by error-tolerance measures.

High Reliability. By using codes capable of correcting errors and detecting
uncorrectable errors at the same time, the characteristics of the two previously
described modes can be combined at the expense of lower bandwidth: Since
more redundancy is necessary, less application payload can be transported per
packet.

5.4 Error-Control Coding on the Switch-to-Switch Links

We assume a NoC architecture that requires very low area overhead and
high performance from the switches. Thus, for error-control between adjacent
switches we consider only codes that can process 100-200 bit wide buses in a
single clock cycle and that can be implemented in a few gates of hardware for
each bit.

In fact, we focus on parity-based, linear block codes, for the necessary en-
coders/decoders can be implemented by combinatorial logic, namely EXOR-
trees. This helps to meet the tight speed constraints discussed above, because
neither time-consuming multi-cycle decoding operations are necessary nor re-
quires the implementation the parallelization of a multi-cycle algorithm, which
is usually costly in terms of area (e.g., due to loop unrolling etc.).

A code protecting data on the switch-to-switch buses must allow for fast
decoding because decoding (at least of the packet header) has to be completed
before the switch can make a routing decision. Additionally, area constraints
motivate a switch design with as few gates as possible.

Since the requirement of fast decoding can be fulfilled by combinatorial
logic circuits of low logic depth, parity-based codes (e.g., Hamming or Hsiao
codes [16]) are considered. These can be employed at various coding schemes:
A single-error correcting (SEC) code can correct all single errors. All other
errors lead to miscorrection. A double-error detecting (DED) code, on the
other hand, detects all single and double errors. In fact, a DED code detects
even more errors: If there are � � valid codewords of length � , � � � � � error
patterns are detected (i.e. all patterns that do not represent a valid codeword).
An interesting property is that every SEC code can alternatively be used as
a DED code. The properties of these two operating modes are combined in
SEC-DED codes which require one more bit of redundancy to encode the same
amount of information. Due to that, the error detection capability of SEC-DED
codes is always slightly less than that of a comparable DED code. Using codes
with the ability to detect/correct more than two random errors usually makes
decoding slower because arithmetic decoding becomes necessary [16].

Later, it will be shown how these codes can be employed to implement
different protection levels corresponding to multiple QoS requirements.
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5.5 Fault Model

From the discussion of faults which will effect future DSM circuits it stands
to reason that the errors imposed by these faults will appear clustered both
in time and in space. While faults may easily affect multiple adjacent wires,
or cause errors in subsequent time steps (e.g., due to delay variations), the
probability that they influence wires further away or for a longer period of
time will be significantly less.

For the simulation results reported later on, we assumed a combination of
three statistically independent error sources, each of the errors was assigned a
probability of occurrence of

� � � �
per wire and time-step. The first two error

sources generate simple error patterns that account for errors due to multiple
random effects. One source causes errors limited to just one wire, the second
one almost always affects two (and very seldom three) adjacent wires. While
these two models are quite simple, the third one was extracted from a more
detailed experiment and hence attempts to be a little more realistic.

Knowing that the inter-wire capacitance � � between adjacent wires of a bus
has a significant influence on the total capacitance which has to be charged
during a bus transition, it can be derived that the signal delay depends strongly
on the bus transition pattern. Considering three adjacent wires, transition pat-
terns can be classified in 1C � � � 4C sequences depending on how much they
slow down the transition of the middle signal [7].

Table 6.2. Classification of crosstalk sequences

Out of a large number of random data patterns, we identified all 4C se-
quences (i.e., the ones causing maximum signal delay) and marked the middle
wire as fault location.

The error patterns extracted from this simulation were formulated accord-
ing to a fault model notation which describes error duration and number of
affected adjacent wires [17, 18]. For instance, at most 7 adjacent wires were
affected at the same time. These error patterns served as third error source in
subsequent simulations. More details on this along with a formal fault model
notation can be found in [17, 18]. Obviously, these simulations have to be
re-evaluated when more realistic information about fault scenarios in future
technology becomes available. While this will change the numbers and thus
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can have an impact on design decisions, the general observations discussed
below will remain valid.

5.6 Tuning Error-Tolerance by Interleaving

As discussed above, linear block codes were chosen for their simple imple-
mentation in switches. During the encoding, a certain amount of redundancy
is added to the information bits in form of parity bits. Due to this redundancy,
the decoder is able to detect errors and/or to recover the sent information even
if the codeword has a limited number of erroneous bits.

Since an encoding that can tolerate only a very low number of errors might
not provide the necessary robustness, one possibility is to divide the network
packet into several smaller blocks encoded separately. The so-called parallel
coding increases the redundancy, but enhances the overall error detection and
correction capabilities and reduces the length of the critical path in the decoder.
This approach also enables using different codes for different parts (blocks) of
the packet.

Also knowing that errors are likely to appear locally clustered motivates the
idea of using interleaving: If the data is split into multiple blocks encoded
separately, the � bits of a data block can be assigned to � adjacent wires of
a bus or they can be interleaved, so that they will be assigned to the wires� � � � � � � � � � � � � � � � � � � � 	 
 � . The distance � between two wires that
belong to the same block is called interleaving degree. Based on this definition,
assigning a block of � bits to adjacent wires is interleaving with degree 1.

To compare the capabilities of different coding schemes, we use the prob-
ability of uncorrected and undetected errors in a packet, � � 
 
 � � � and � � 
 
 � � �
respectively. It can be seen from Figure 6.1 that in the presence of multi-bit
errors, interleaving can lead to the reduction of those probabilities by several
orders of magnitude. At small interleaving degrees, multi-wire faults causing
errors on adjacent bit-lines may easily affect multiple bits of one block. If this
block is protected by a SEC-DED code, more than one erroneous bit will not
be correctable and more than two erroneous bits may cause error detection to
fail. With increasing interleaving degree, the probability that a fault affects
multiple wires of one block decreases. Instead, multiple blocks will have an
erroneous bit each. This can be tolerated if each block is protected by an ap-
propriate code. In the fault scenario used, faults can affect up to 7 adjacent
wires. This is why in Figure 6.1, � � 
 
 � � � and � � 
 
 � � � constantly decrease
with increasing interleaving degree. For interleaving degrees greater than 7,
no further improvement can be achieved for the fault hypothesis used.

Encoding multiple small blocks of data can considerably increase the amount
of parity signals, i.e. the redundancy. It has, however, several advantages:
First, the decoder logic will have a low logic depth. Second, the smaller the
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Figure 6.1. Reduction of error probabilities by interleaving

block-size, the higher interleaving degrees are possible. When locally clus-
tered errors are assumed, this usually leads to a significant decrease in the
probability of errors that cannot be corrected or detected.

For Nostrum, fast and simple decoder logic was a main requirement. Thus,
this method to increase the bus reliability was examined. Given a different set
of constraints, a completely different approach might have been chosen. Since
the proposed method has the potential of adding a large amount of redundancy
to the data transported, the appropriate encoding scheme has to be selected
carefully.

5.7 Design Flow

In a packet-switched network, each packet typically carries header and pay-
load. Thus, routing is done on a per-packet basis and each header has to be
inspected. The importance of the header’s correctness for the network’s func-
tionality is obvious. Therefore, the network has to take care of transporting
the header information in a way that is as error-tolerant as possible while each
application can select a protection level for the data it sends over the network
(i.e., the payload part of the packet). Applications cannot, however, influence
the header protection scheme.

Arguing that the header is most important naturally leads to the following
design flow proposal for selecting protection schemes:

1 Select a header encoding scheme that fulfills a minimum reliability con-
straint to ensure correct network operation.

2 Determine possible payload encoding schemes and their characteristics.
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3 Select appropriate payload encoding schemes to meet the QoS-require-
ments set by the application class the NoC is designed for.

For the Nostrum architecture which is based on a fixed number of wires
connecting adjacent switches, the encoding scheme selected for the header di-
rectly influences the possibilities to choose from for payload encoding since
transmitting the encoded header needs a certain amount of the fixed number of
available wires. This implies at the same time that not necessarily all combi-
nations of header and payload error tolerance requirements can be fulfilled.

5.8 Implementation Example

This example is intended to show how the proposed design flow and encod-
ing scheme can be used in the implementation of a NoC capable of carrying
traffic of multiple QoS-classes.

We assume here a 128 bit wide bus between adjacent switches, and 16 bit
of header information. The figures given are based on estimation results which
were determined using the fault scenario discussed above.

Header Protection. Since the header protection should correct as many
errors as possible while at the same time leaving as little errors as possible
undetected, the obvious choice is a SEC-DED code.

The packet header (16 bits) can be encoded as one block. In this case, 22
wires are required and the code is referred to as

� � � � � � � � �
SEC-DED code.

The notation � � � � � 	 �
is used to denote an encoding scheme in which � blocks

are independently encoded by a code which transmits 	 information bits within
codewords of � bits.

Alternatively, better error resilience can be achieved if the 16 bit wide header
is encoded as 2 blocks of 8 bits each ( � � � � 
 � � �

SEC-DED code) or as 4 blocks
(

� � � � � � �
SEC-DED code).

Table 6.3. Comparison of header protection with different SEC-DED codes

Table 6.3 shows the amount of wires required for these different encoding
schemes along with information about the maximum interleaving degree, ex-
pected decoder logic depth and the probabilities of uncorrected and undetected
errors ( 
 � � � � � � and 
 � � � � � � ) when maximum interleaving degree is used to
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allocate bus lines. As a comparison the first line shows the error probability
without a protecting code.

A constraint of one undetected error in the header of transported packets per
year in a NoC with 100 buses and an operation frequency of 1GHz translates
to � � � � � � � � � � 	 
 	 � � 	 � 
 � �

. Based on the information from Table 6.3 and
complementing experiments, the � � � 	 � � � �

SEC-DED code was chosen as
header encoding scheme for this example. It is a reasonable trade-off between
the remaining error probability and the decoder speed (critical path). Since this
code requires 26 wires, 102 of the 128 wires remain to transmit the payload.

Payload Protection. Regarding the four Quality-of-Service classes dis-
cussed previously, the Maximum Bandwidth mode is inherent in every imple-
mentation since it does not use any payload encoding. In the current example,
this mode’s bandwidth is 102 bits/packet and the probability of an erroneous
transfer is

� � � � � 	 � 
 �
.

Both the Guaranteed Integrity and Minimum Latency modes can be imple-
mented with one code, using the property that every SEC code can also work
as DED code: The same codewords are used for transmission. Hence, the
encoder is identical and the DED code just uses the first part of the decoder
block (which detects erroneous transmissions) but not the second one which
performs correction and thereby alters the received data if necessary. Thus,
these two services offer the same bandwidth to the application, but different
protection characteristics. It is very advantageous that implementing these two
QoS-classes at approximately the cost required for implementing just one of
them is possible.

In general, the selection of an appropriate coding scheme is guided by re-
liability and bandwidth constraints. Tunable parameters are the number of
parallel encoded blocks and the interleaving degree. The trade-off for imple-
menting Guaranteed Integrity and Minimum Latency on 102 wires is shown in
Table 6.4. Depending on the code used, the application bandwidth and resilient

Table 6.4. Error probabilities for different operation modes of SEC (or DED) codes using 102
physical wires

error probability vary. Out of these coding schemes, the appropriate one can be
chosen at design-time to serve as bus encoding for Guaranteed Integrity and
Minimum Latency.
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The fourth mode, the High Reliability mode is based on a SEC-DED code.
Hence, it will require different encoder/decoder logic in parallel to that used
for the two previous modes. Note that SEC-DED codes offer one information
bit less per block compared to SEC codes occupying the same amount of wires.

For the 128 bit bus of our example, we have finally selected the coding
schemes from Table 6.5 to implement the four QoS levels. The selection of

Table 6.5. Selected coding schemes for payload encoding

services and coding schemes a NoC supports is a design-time decision which
depends on the intended application and environment, whereas each packet can
be encoded with one of these codes during run-time. Since subsequent packets
can be encoded differently, the information about the payload encoding scheme
is transmitted as part of the header information.

Implementation. Figure 6.2 gives an example of how the input stage
of a switch could work: the received packet is split into header and payload.
After the decoding of the header information, the coding scheme of the payload
is known and the appropriate decoder output can be selected. The decoded
destination address is used to make the switching decision which finally leads
to the selection of the output port the data is forwarded to.

It is important to note that it is not necessary to decode the data and to
encode it again in a second block. The decoders can rather work in a way that
their output is not the decoded and – if necessary – corrected information, but
the associated codeword instead. This means that their input is the received
data and their output a valid codeword which can be directly passed to the next
bus.

6. Conclusion

We have presented various important aspects in implementing error-tolerant
interconnect schemes which are crucial to a NoC since they encapsulate the
low-level and implementation details of the NoC-platform. Thereby, they
are helpful in offering services with defined characteristics. These services
– which form the interface between platform and application – were discussed
in detail using the Nostrum NoC as example. It provides a total of eight QoS-
classes by combining both link-level and end-to-end error-tolerance. The ser-
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Figure 6.2. Applying error correction to incoming packets in a switch

vices offered by Nostrum were discussed in great detail showing that link-level
(i.e., switch-to-switch) error-tolerance within the network in combination with
end-to-end error-tolerance allows for efficient adaptive protection schemes.

Since error-tolerance profits from being implemented as low in the protocol
stack as possible, we focused on switch-to-switch error protection, presenting
a bus encoding scheme that allows for fast and simple decoding while support-
ing multiple QoS-characteristics. As described in the introductory sections, the
development of this error-tolerance scheme was guided by specific constraints
and it should be kept in mind that other constraints (especially if pipelining or
packet retransmission was possible) could have lead to a different implemen-
tation approach.
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Abstract We know that coding can reduce power consumption in buses. We
would like to know how much power reduction is possible. This chapter
presents: energy models of deep sub-micron buses, the coupling between
energy and transmitted information, the ultimate limits of achievable
power reduction using coding, a global theoretical framework of power
reduction coding.

Keywords: activity, architecture, bus, coding, deep sub micron, digital circuits, sub
micron, energy, entropy, estimation, low power, modeling, power reduc-
tion, process, transition, transition activity, transition activity matrix,
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Introduction
Data processing and data transmission through a channel is always

associated with power consumption. Power reduction coding is the em-
ployment of coding in the reduction of the processing or transmission
power consumption that does not alter the total behavior of the proces-
sor or the communication device otherwise. The idea is demonstrated
in Figure 7.1. Power reduction coding has at least two forms and a
long history. One is data compression, which has been studied for more
than half a century. Consider the transmission of a 1Mbit file through
a channel, e.g. a piece of wire in the chip or a wireless link, at the
cost of 1nJ per bit. The total energy required to transmit the file1 is
1mJ . If the file is compressed to 100Kbits before transmitted then the
cost of transmission is 0.1mJ . In addition to that we have to consider
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Figure 7.1. Coding for Power Reduction

the amount of energy needed to compress the file before transmitting it,
and to decompress it at the receiver side. Let these energy amounts be
0.1mJ and 0.1mJ respectively. Therefore, in this hypothetical example
we can reduce the total required energy for the transmission of the file
from 1mJ to 0.3mJ . In a real system, we also need to consider the time
it takes to compress and decompress the file (latency and delay), the size
of the encoder and decoder, the reliability of the expanded system, and
maybe a few other characteristics.

In the case of data compression coding for power reduction, the size
of the data decreases. Although it is counterintuitive, power/energy
consumption can be reduced by increasing the size of the data as well. To
see this, let’s consider the following example2. Suppose we have a serial,
binary channel consuming energy E for every 1 transmitted and zero
energy for every 0 transmitted. Suppose we want to transmit a sequence
of 8 bits b0, b1, . . . , b7. If we do this in brute force the cost will be (Number
of 1’s)×E. Alternatively we may encode b0, b1, . . . , b7 into 28 = 256
physically-transmitted bits f0, f1, . . . , f255 so that: all bits f0, f1, . . . , f255

are zero except the one in the position i = b0 + b12 + . . . + b727.
In this case the cost is E, which, in average, is much less than (Num-

ber of 1’s)×E. You may agree that this simple scheme can reduce power
dramatically; but, you may also wonder about the huge “redundancy”
in bit transmissions that is required, i.e. sending 256, instead of 8 bits,
through the serial link; this reduces the bit rate to 1/32. Indeed, al-
though this is an extreme example, power reduction may not be free of
reduction in the speed of transmission, in many cases.
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Now consider another example. Suppose the channel we discussed
before was formed out of a single wire carrying a stream of bits. Suppose
now that instead of one wire, we place 256 of them in parallel. In this
case we can encode the data, b0, b1, . . . , b7, spatially, i.e. use a parallel
transmission of bits through the 256 wires and send a 1 through wire
number i = b0 + b12 + . . . + b727, and zeros through all other wires.
By doing so we can transmit 8 bits within one clock cycle3 instead of 8
clock cycles that would be needed if we had only one wire available. In
addition, we achieve significant energy reduction as before4. How do we
pay for the joint bit rate increase and power reduction? We pay in chip
area, i.e. number of wires.

The conclusion of the previous examples is that there are three major
quantities: Power, Speed and Area5. Coding trades off one for the others.

This chapter presents the fundamental relation between Power, Speed
and Area in the case of modern Deep Sub-Micron technology (DSM)
buses. To this end, energy models of DSM buses and their corresponding
statistical energy measures are discussed.

It is not possible to cover all the developments in bus coding for power
reduction within one chapter. Research on this topic dates back to the
early 80′s, possibly even earlier depending upon one’s view of the subject.
We could consider the works in [1]-[5] as the first efforts in the field.
There, the bus lines were modeled as decoupled, grounded capacitances;
and, energy was consumed every time there was a bit change. This bus
model was reasonable for older (large scale) technologies (see Section
7.1). A significant amount of work followed using the same bus model
[6]-[21]6 including theoretical results in [22] and more recently in [23].

Power reduction coding in the deep sub-micron (DSM) era was initi-
ated in [24] where a DSM bus energy model was introduced to support
coding schemes appropriate for DSM technologies. Changing the bus
energy model was unavoidable. The strong interline coupling due to
nearness and relatively higher aspect ratio of the lines could not be ig-
nored. The DSM bus energy model is available in detail in [25]-[26].
Power reduction coding techniques using the new energy measures fol-
lowed immediately in [27], [28], [29] and later in [30]-[35].

The derivation of the fundamental relation between Power, Speed and
Area was done in [36] and [26]. The class of Finite State Machine (FSM)
coding schemes has been analyzed in detail in [37] where closed form
expressions of the power savings are available.

It is important to mention that work in power reduction coding has
been supported by work on the modeling and characterization of buses
[38]-[50] as well as general power modeling and CAD tools [51]-[56].



180

1. Bus Energy Model
A tool to estimate the energy consumption in the bus is the first

thing we need in order to study the efficiency of coding schemes for
power/energy reduction. Simulation is the obvious tool but not a useful
one when a large number of energy estimates is needed. For example,
in a 16-line bus there are 216 × 216 = 232 possible pairs of consecutive
vectors; although it is almost impossible to make 232 simulation runs, it
is relatively easy to estimate all these energies using a simple analytical
model. Moreover, an analytical model can be the guideline for the design
of power reduction schemes [37].

Before we proceed with the discussion of the general DSM bus energy
model, we consider first the simple case of the 1-line bus shown in Figure
7.2. For simplicity let’s assume that the line can be considered as a

CL

Driver ReceiverBus Line

Figure 7.2. One-line bus

lumped circuit node, i.e. no distributed phenomena take place, with a
total parasitic capacitance to ground (environment) equal to CL.

Let’s examine what happens during the clock cycle [0, T ], where, T
is the clock period of the bus. Suppose that at t = 0, the voltage, V ,
on the line, is zero, V (0) = 0, and that during the cycle [0, T ], the line
voltage changes to Vdd. The current i(t) charging CL flows from the
power source, Vdd, to the line through the (final) CMOS inverter of the
driver. Therefore, the instant power drawn from Vdd to charge CL is
Vdd i(t). Note that i(t) = CL

dV (t)
dt . The total energy drawn from Vdd

during the cycle7 is

EV dd =
∫ T

0
Vdd CL

dV (t)
dt

dt (7.1)

which implies EVdd = Vdd CL (V (T ) − V (0)). In most digital systems we
can assume that the time period, T , is sufficiently long for V (T ) to reach
its final value, here, Vdd. Therefore, during the transition we consider,
from V (0) = 0 to V (T ) = Vdd, it is EVdd = V 2

dd CL.
It is emphasized that EVdd is the energy drawn from the power source

required to change the voltage of the capacitor, CL, from 0 to Vdd during
clock cycle [0, T ]. Note that there is zero energy stored in the capacitor
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CL at t = 0, while at the end of the period, t = T , energy 1
2CLV 2

dd is
stored in it. Energy balance implies that the energy consumed (trans-
formed to heat) during the transition is E = 1

2CLV 2
dd.

Now consider the case where the voltage of the line changes from Vdd

to 0 during the cycle [0, T ]. During this transition, there is no current
flowing from the power source to the line. Instead, there is current flow
from the line to ground, discharging the capacitor CL. This means that
no energy is drawn from the power source, i.e. EVdd = 0, while the
energy consumption (energy transformed to heat) is equal to the energy
initially stored in the capacitor, so E = 1

2V 2
ddCL.

Finally, if the voltage of the line, V , remains unchanged during the
clock cycle, then there is no current flow and both the energy drawn
from the power source, EVdd , and, the energy consumed, E, are zero.
The results of the discussion are summarized in the following tables.

Table 7.1a. Energy drawn from the
power source during the transitions of
the 1-line bus

� 0 Vdd

0 0 V 2
dd CL

Vdd 0 0

Table 7.1b. Energy consumed (trans-
formed to heat) during the transitions
of the 1-line bus

� 0 Vdd

0 0 1
2
V 2

dd CL

Vdd
1
2
V 2

dd CL 0

Let’s name the initial voltage of the line V i and the final voltage V f ,
V i, V f ∈ {0, Vdd}. The two energy functions presented in Table 7.1a and
Table 7.1b can be expressed algebraically as

EV dd(V i, V f ) = V f CL (V f − V i) (7.2)

and

E(V i, V f ) =
1
2

(V f − V i)CL (V f − V i) (7.3)

respectively. The capacitive term, CL, was placed in the middle of the
expressions (7.2) and (7.3) on purpose. The reason will become obvious,
shortly.

Energy expressions (7.2) and (7.3) are the starting point of rigorous
bus energy modeling and coding-scheme performance evaluation. In
Section 7.2, it is shown how they lead to transition activity, a well known
statistical power measure.

Now let’s generalize the energy results we have found. Consider a bus
with n lines that are electrically decoupled and can be treated as lumped
circuit nodes. The bus is shown in Figure 7.3 and is a juxtaposition of
replicas of the 1-line bus shown in Figure 7.2.
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Figure 7.3. Simple bus with n decoupled and lumped lines

Again, we examine the energy behavior of the bus during the clock cycle
[0, T ]. Let V i

r and V f
r be the initial and final voltages of the rth line

respectively, r = 0, 1, . . . , n. It is V i
r , V f

r ∈ {0, Vdd}. The (total) energy
drawn from the power source and the (total) energy consumed are the
sums of these of the individual lines; so,

EV dd(V i, V f ) =
n∑

r=1

V f
r CL (V f

r − V i
r ) (7.4)

and

E(V i, V f ) =
n∑

r=1

1
2

(V f
r − V i

r )CL (V f
r − V i

r ) (7.5)

Expressions (7.4) and (7.5) can be written more compactly if we de-
fine, the initial voltage vector, V i = (V i

1 , V i
2 , · · · , V i

n)T , the final voltage

vector, V f = (V f
1 , V f

2 , · · · , V f
n )

T
, and the n × n diagonal matrix A,

A =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦ · CL (7.6)

Then we have

EV dd(V i, V f ) = (V f )T A (V f − V i) (7.7)

and

E(V i, V f ) =
1
2

(V f − V i)T A (V f − V i) (7.8)
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Matrix A is the admittance matrix of the total-capacitance network of
the bus; i.e. the admittance matrix of the set of n nodes connected to
ground through n capacitors of size CL. This is a trivial extension of
the admittance CL in expression (7.3).

In the above analysis, we have ignored two other causes of energy
consumption. One is the parasitic capacitances of the drivers of the
lines and the parasitic capacitances of the registers at the other end
of the bus. Although, in most cases, these are small compared to CL,
they can also be considered as part of CL; and, the energy expressions
remain valid. Another source of energy consumption is the short circuit
current of the drivers of the lines. The energy loss due to short circuit
currents is usually very small compared to the energy consumed by the
bus. Estimates of the short-circuit current can be found, e.g., in [55].

1.1 DSM Bus Circuit and Energy Models
In DSM technologies, the lines have: smaller width, larger aspect ratio

(height/width); and, in most cases, they are placed closer to each other
as compared to older, larger-scale technologies. Moreover, the chip area
has increased and so has the ratio of the expected bus length over the
cross sectional area of the lines. All of these give rise to more parasitic
elements than the simple grounded capacitor making a distributed model
of the bus lines with capacitive and inductive inter-line coupling more
appropriate than the basic one we considered before. The circuit model
of Figure 7.4 has been used extensively for delay and signal integrity
evaluation [47–50] as a (simple) electrical equivalent to modern DSM
technology buses. The lines are distributed8, laid in parallel along the
x axis, and have physical length L. They have serial resistance, ri(x),
i = 1, 2, . . . , n. The capacitance density between the ith line and ground
is ci,i(x), and that between lines i and j is ci,j(x). Moreover, µi,i(x) is the
density of the self inductance of the ith line and µi,j(x) is the density of
the mutual inductance between lines i and j. The densities may depend
upon x. Lumped parasitics, if they exist, can be considered as limiting
cases of distributed ones. Details of the electrical characterization of the
bus lines and their modeling can be found in [38]-[45].

As before, we examine the bus during the clock cycle [0, T ]. Let V i
r

and V f
r be the voltages along line r at the beginning and at the end of the

cycle respectively, r = 1, 2, . . . , n. Again we make the realistic assump-
tion that T is sufficient for the voltages along the lines to settle to their
final values. The vector of the initial voltages is V i = (V i

1 , V i
2 , · · · , V i

n)T ;

and, the vector of the final voltages is V f = (V f
1 , V f

2 , · · · , V f
n )

T
.
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Figure 7.4. DSM distributed model of the bus lines (coupled transmission lines)
[from Ref. [25] @ 2002 IEEE]

The energy drawn from the power source, Vdd, during the clock cycle is

EV dd(V i, V f ) = (V f )T A (V f − V i) (7.9)

A detailed derivation of the formula can be found in [25] or [26]. Matrix
A = [A]ni,j=1 is given by

[A]i,j =
{ ∑n

k=1 Ci,k if i = j
−Ci,j if i �= j

, (7.10)

where Ci,j , i �= j is the total capacitance between the ith and jth bus
lines; and, Ci,i is the total capacitance between the ith bus line and
ground 9. The energy consumed during the clock cycle is

E(V i, V f ) =
1
2

(V f − V i)T A (V f − V i) (7.11)

The details of the derivation are available in [25] and [26]. Again, ma-
trix A is given by (7.10). The similarity between (7.2), (7.7) and (7.9)
becomes clear after observing that A is the admittance matrix of the
total-capacitance part of the network in Figure 7.4. For example, if
n = 4, the total-capacitance part of the network in Figure 7.4 is shown
in Figure 7.5.

Finally, note the similarity between the expressions of the consumed
energy, (7.3), (7.8) and (7.10).
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(1) (2) (3)

C1 1, C2 2,

C1 2,

C1 3,

C3 3,

C2 3, (4)

C4 4,

C2 3,

C2 4,

C1 4,

Figure 7.5. Equivalent total-capacitance network for n = 4 [from Ref. [25] @ 2002
IEEE]

Example 1 Let’s calculate the energy consumed on a four-line bus dur-
ing the transition from initial voltages V i = Vdd · (0, 1, 0, 1) to final volt-
ages V f = Vdd · (1, 0, 0, 0). Suppose the bus has total parasitic capaci-
tances like those of the network in Figure 7.5. We have

E = 1
2

(V f − V i)T A (V f − V i)

=
V 2

dd
2

(1,−1, 0,−1)

⎡
⎢⎢⎣

∑4
k=1 C1,k −C1,2 −C1,3 −C1,4

−C2,1

∑4
k=1 C2,k −C2,3 −C2,4

−C3,1 −C3,2

∑4
k=1 C3,k −C3,4

−C4,1 −C4,2 −C4,3

∑4
k=1 C4,k

⎤
⎥⎥⎦

⎛
⎜⎜⎝

1
−1
0
−1

⎞
⎟⎟⎠

Example 2 In a bus with a structure as in Figure 7.4, the capacitive
coupling between non-consecutive lines is usually very weak relatively
to that between consecutive lines. An approximate model of the total-
capacitance network is shown in Figure 7.6.

1 2 3

CL CL

CI

CL

CI

CL

n
CI CI

Figure 7.6. Equivalent total-capacitance network ignoring coupling between non ad-
jacent lines [from Ref. [26] @ 2002 WSPC]

The exact value of the boundary capacitances depends on what is placed
next to the bus and whether the bus is laterally shielded or not. Here,
we assume that the boundary capacitances are equal to CI . In this case,
the admittance matrix, A, is simplified to (7.12) with λ = CI/CL.
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 + 2λ −λ 0 · · · 0 0
−λ 1 + 2λ −λ · · · 0 0
0 −λ 1 + 2λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 + 2λ −λ
0 0 0 · · · −λ 1 + 2λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
· CL (7.12)

In modern bus designs, wire arrangements, like that of Figure 7.7, are
used to reduce coupling between the lines (mostly inductive coupling).
The lines carrying data are grouped into blocks of one, two, three, or
more (usually less than eight) that are separated by dummy lines con-
nected to ground or Vdd. The energy formulas (7.9) and (7.11) are valid

higher metal layer

lower metal layer

l1 l2 l3

Vdd
l4 l5 l6

Figure 7.7. Bus-lines fabric [from Ref. [26] @ 2002 WSPC]

in this case, as well. To apply them, we only need to fix the voltages
of the dummy lines in the vectors V i and V f to 0 or Vdd appropriately.
This is illustrated in the following example.

Example 3 In the case of a bus with a capacitive structure, as in Fig-
ure 7.7, (and with negligible capacitive coupling between non-consecutive
lines) the admittance matrix, A, is given by (7.12). The energies are
given by (7.9) and (7.11). The initial and final voltage vectors are

V i = ( 0 , V i
1 , V i

2 , V i
3 , Vdd , V i

4 , V i
5 , V i

6 , 0 , . . .)T

and

V f = ( 0 , V f
1 , V f

2 , V f
3 , Vdd , V f

4 , V f
5 , V f

6 , 0 , . . .)T

respectively.
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2. Statistical Energy Estimation
Now, we couple the energy measures we derived in the previous section

with the statistics of the signals in the bus. We consider first the simple
case of the 1-line bus of Figure 7.2. It is convenient to denote the (final)
voltage of the line at the end of the kth cycle as V (k). In other words,
during the kth cycle, the voltage of the line changes from V (k − 1) to
V (k). Also, we denote the consumed energy during the kth cycle as
E(k). Then, expression (7.3) gives E(k) = 1

2 (V (k) − V (k − 1))2 CL. If,
in addition, we write V (k) = Vdd l(k), where l(k) ∈ {0, 1} is the binary
value of the signal at the end of the cycle, then10

E(k) =
1
2

(l(k) − l(k − 1))2 V 2
dd CL (7.13)

The bits l(1), l(2), . . . , l(k), . . . of the sequence transmitted though the
line are random variables taking the values 0 or 1. They may or may
not be statistically dependent. Since E(k) depends on random bits, it is
a random variable itself. It terms of power consumption, we would like
to estimate the expected value E(k) of E(k) where the overbar means
expectation with respect to all associated random variables. We have

E(k) =
1
2

(l(k) − l(k − 1))2 V 2
dd CL

=
1
2

(
l2(k) + l2(k − 1) − 2l(k)l(k − 1)

)
V 2

dd CL (7.14)

In many practical situations, the random bit sequence is stationary, at
least in the wide sense. Assuming this, let R(r) = l(k + r) l(k) be its au-
tocorrelation function11. Then (7.14) gives E = (R(0) − R(1)) V 2

dd CL.
Note that R(0) = l(k)2 = l(k). The quantity,

T a = R(0) − R(1) (7.15)

is called the transition activity of the line12. Finally, if f is the clock
frequency of the bus, the expected energy consumed per cycle and expected
power consumption can be written, using expression (7.13) and definition
(7.15), respectively as

E = T a V 2
dd CL , P = T a f V 2

dd CL (7.16)

Remark: It is important to mention that formulas (7.16) and the notion
of transition activity as an energy/power measure in general, cannot be
used13 when the line is capacitively coupled to other active lines or nodes
of the circuit. Where, by “active”, we mean that the line carries a signal,
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i.e. it is not fixed to ground or Vdd. Some authors have attempted to
treat such cases by replacing the value of CL by another “effective”
capacitance. This can easily lead to inaccurate results. The way to deal
with coupled active lines is to use the transition activity matrix that is
discussed later.

If a bus has more than one lines and they are electrically decoupled (to
each other), then, expressions (7.16) can be used for each of the lines.
The total energy/power of the bus is the sum of the energy/power of the
lines. This approach has been used extensively in the past.

Finally, the transition activity can be expressed in another interest-
ing way if we note that for every k, (l(k) − l(k − 1))2 is equal to the
probability of observing a transition during the kth clock cycle, i.e.,

(l(k) − l(k − 1))2 = Pr(l(k − 1) = 0 and l(k) = 1)
+ Pr(l(k − 1) = 1 and l(k) = 0). (7.17)

If we make the assumption that the random sequence is stationary and
Markov with the stationary distribution, (1/2, 1/2), a very strong as-
sumption compared to wide sense stationarity, we assumed before14, then
we have

Pr(l(k − 1) = 0 and l(k) = 1) = Pr(l(k − 1) = 1 and l(k) = 0),

and Pr(l(k − 1) = 0 and l(k) = 1) is independent of k. These two
conditions, along with (7.17), validate the alternative expression, (7.18),
for the transition activity.

T a = Pr(l(k − 1) = 0 and l(k) = 1). (7.18)

Now, we extend the definition of transition activity to a statistical
measure that is applicable to buses with coupled lines. Consider a bus
with n lines as in Figure 7.4. Let lr(k) be the binary value of the rth line
at the end of the kth cycle, r = 1, 2, . . . , n. We define the the sequence
of vectors

L(k) = (l1(k), l2(k), · · · , ln(k))T , k = 1, 2, . . .

which are random because their entries are random variables. Also, let
V (k) = (V1(k), V2(k), . . . , Vn(k))T be the vector of the voltages of the
lines at the end of the kth cycle. As before we have V (k) = Vdd L(k).
Moreover, the energy consumed during the kth cycle is given by expres-
sion (7.11), i.e.

E(k) =
1
2

(V (k) − V (k − 1))T A (V (k) − V (k − 1)),
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where A is given by (7.10). If we assume that the bit sequences lr(1),
lr(2), . . ., lr(k) . . ., r = 1, 2, . . . , n are jointly stationary in the wide
sense, then we can define the autocorrelation matrix, R(r), of the vector
sequence L(1), L(2), L(3), . . . :

R(r) = [Ri,j(r)]ni,j=1 = L(k + r) · LT (k) (7.19)

and for i, j = 1, 2 . . . , n

Ri,j(r) = li(k + r) lj(k). (7.20)

It can be shown [25] that the expected energy consumed, in a bus with
coupled lines, during a clock cycle is

E = V 2
dd · trace (A · T a) (7.21)

where T a =
[
T a

i,j

]n
i,j=1

is called the transition activity matrix of the bus

[25], [26] and is defined as

T a = R(0) − 1
2
(
R(1) + RT (1)

)
(7.22)

The function trace is such that trace (X) =
∑n

j=1 xj,j for every n × n
matrix X. Note that the transition matrix is a generalization of the
transition activity and that expression (7.21) is a generalization of the
left expression in (7.16). The elements of the transition matrix are:

T a
i,j = li(k) · lj(k) − 1

2

(
li(k) · lj(k − 1) + li(k − 1) · lj(k)

)
Example 4 Neglecting the coupling between non-adjacent lines in the
bus, we get a total-capacitance network like that of Figure 7.6 and an
admittance matrix, A, given by expression (7.12). In this case, because
of the symmetry of A, formula (7.21) of the expected energy becomes

E =

{
(1 + 2λ)

n∑
i=1

T a
i,i − 2λ

n−1∑
i=1

T a
i,i+1

}
· V 2

dd · CL

Example 5 Let’s assume the scenario of the previous example. If the
transmitted bits are independent and uniformly distributed in {0, 1} then

li(k) · lj(k + r) =
{

1/2 if i = j and r = 0
1/4 otherwise

and the transition activity matrix is T a = 1
4 I, where I is the identity

matrix. In this case the expected energy is

E =
n(1 + 2λ)

4
· V 2

dd · CL (7.23)
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Example 6 In recent work, fixed permutation of the data bits was pro-
posed as an approach to reduce the expected power consumption [32].
Instead of transmitting the sequence of vectors, L(k) = (l1(k), l2(k), · · · ,
ln(k))T , k = 1, 2, . . . we can transmit the sequence of vectors with per-
muted entries

Lπ(k) = (lπ(1)(k), lπ(2)(k), · · · , lπ(n)(k))T , k = 1, 2, . . .

where π is a permutation of the indices 1, 2, . . . , n. The goal in this
approach is to minimize opposite and maximize concurrent transitions
in adjacent lines by choosing the appropriate permutation. A heuristic
approach was presented in [32]. Using the formulation introduced in the
previous sections, the problem can be written formally as follows. Let
Π be the n × n permutation matrix corresponding to π, then Lπ(k) =
Π ·L(k). If T a is the transition activity matrix of the original bus, then
the transition activity matrix of the bus with the permuted data bits is

T a
π = Π · T a · ΠT .

Using (7.21), the expected energy consumption is given by the expression:

Eπ = V 2
dd · trace

(
A · Π · T a · ΠT

)
(7.24)

It is desirable to minimize expression (7.24) with respect to the per-
mutation matrix Π. An analytic lower bound of the minimum energy,
minπ Eπ, can be derived if we allow Π to be a doubly-stochastic matrix.

3. The Limit of Power Reduction using Coding
We know that coding can be used to reduce power consumption. We

would also like to know how much power reduction is possible. The ques-
tion can be posed differently: what is the minimum amount of energy
we have to spend per bit of information sent through the bus?

Here we are looking for the theoretical limit of what is achievable
and not for particular implementations. Knowing what the limit is, we
can evaluate the possible benefits of using coding for power reduction.
Moreover, we can avoid seeking coding schemes that result in impossible
power reduction!

Since the topic involves some notions from information and commu-
nication theory, we should note that there is a slight incompatibility
between the communication/information theory terminology and digital
architecture terminology. From a communications perspective, addresses
and data are both data, i.e. information. Similarly, address buses are
in some sense, data buses because they carry address vectors, which are



Power Reduction Coding for Buses 191

one form of “data”. The essential difference between address sequences
and data sequences is in their statistical properties.

Consider a bus with n lines. For r = 1, 2, . . . , n let lr(k) be the
binary value of the rth line at the end of the kth cycle. Also, let
L(k) = (l1(k), l2(k), · · · , ln(k))T , k = 1, 2, . . . be the bit vector and
V (k) = (V1(k), V2(k), . . . , Vn(k))T be the voltage vector of the lines at
the end of the kth cycle. For every k, it is V (k) = Vdd L(k). We know
that the energy consumed during the kth cycle is given by expression
(7.11), i.e. E(k) = 1

2 (V (k) − V (k − 1))T A (V (k) − V (k − 1)), where A
is given by (7.10).

We have the necessary energy measures. We also need to introduce a
measure of the amount of information, that is transmitted through the
bus every cycle. Note first that, although, the n bits transmitted during
the kth cycle are random, they may not be independent of each other.

Example 7 Consider the trivial case where the n-bit vector (0, 0, . . . , 0)
is transmitted with probability 1/4 and the n-bit vector (1, 1, . . . , 1) is
transmitted with probability 3/4. If we know what the first bit of the
vector is, we automatically know the values of the other bits as well.
Therefore, in this example, the amount of pure information that is car-
ried by each vector is definitely not n bits, but rather one bit or less.

The redundancy observed in the vector sequence of the example above
can be removed using coding. For this reason, we must use a measure
of information that is insensitive to redundancy. The best candidate is
the entropy, H, of random variables. If X is a binary random variable,
then its entropy is defined as

H(X) = −
∑

v=0,1

Pr (X = v) · log2

(
Pr (X = v)

)
(7.25)

The definition is generalized directly to the case that X is a random
vector, X = (x1, x2, . . . , xn).

H(X) = −
∑

v1,v2,...,vn=0,1
V =(v1,v2,...,vn)

Pr (X = V ) · log2

(
Pr (X = V )

)
(7.26)

For simplicity we write H(X) = −
∑

X Pr(X) · log2(Pr(X)). In Example
7 above, the entropy of the random vector X, where X = (0, 0, . . . , 0)
with probability 1/4 and X = (1, 1, . . . , 1) with probability 3/4, is
H(X) = −1/4 · log2(1/4) − 3/4 · log2(3/4) ∼= 0.81 bits.

Until now, we have ignored the possible temporal dependance between
vectors transmitted through the bus. For example, it is very common
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that the probability distribution of vector L(k) depends upon the value
of the previous vector, L(k − 1).

Example 8 Sequences of address vectors are highly predictable. In most
cycles k, L(k) = L(k − 1) + 1 15. We can approximately model the
sequence L(1), L(2), L(3) . . . as a (first order) Markov chain [58]. Then,
for x, y = 0, 1, . . . , 2n − 1

Pr(L(k) = y|L(k − 1) = x) = px,y

with px,x+1 very close to 1. In some cases, we can simplify the model of
the process even further by assuming that, for some small δ, px,x+1 =
1 − (2n − 1)δ and px,y = δ if y �= x + 1.

In Example 8, we expect that the amount of information transmitted
during the kth cycle is not as large as H(L(k)) because L(k) depends
strongly on the previously transmitted vector16, L(k − 1), and, there-
fore, it is not “as random as it looks when considered alone”. To deal
with this temporary redundancy we use the long-term-average infor-
mation rate measure: the entropy rate H(L) of the random process
L : L(1), L(2), L(3), . . .. The entropy rate is insensitive to temporary,
as well as, spatial redundancy. It is defined as [60]

H(L) = lim
k→∞

H (L(1), L(2), . . . , L(k))
k

(7.27)

where H (L(1), L(2), . . . , L(k)) is the entropy of the partial sequence
L(1),L(2),. . ., L(k), i.e.

H (L(1), . . . , L(k)) =

−
∑

L(1),...,L(k)

Pr (L(1), . . . , L(k)) · log2 (Pr (L(1), . . . , L(k))) (7.28)

In the sense of the Shannon-McMillan-Breiman theorem [60], H(L) equals
the expected number of bits needed to express the information content of
vector L(k) when the previous vectors L(1), L(2), . . . , L(k − 1) are given
and k → ∞17. So, it is possible to encode a long segment L(1), L(2), . . .,
L(K), containing n×K physical bits, into only n×H(L) bits, i.e. H(L)
bits/cycle, on average.

Example 9 For the Markov address process of Example 8, we have

H (L(1), L(2), . . . , L(k)) = H(L(1)) + H(L(2)|L(1)) + . . .

+ H(L(k)|L(k − 1))
= H(L(1)) + (k − 1)H(L(2)|L(1))
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where H(·|·) is the conditional entropy function [60]. Let’s assume that,
L(k) is uniformly distributed18 in 0, 1, . . . , 2n − 1. Then,

H (L(2)|L(1)) = − 1
2n

∑
x,y

px,y · log2 (px,y)

= −(2n − 1)δ · log2(δ) − (1 − (2n − 1)δ) · log2(1 − (2n − 1)δ)

So, the entropy rate of the address process is given by

H(L) = −(2n − 1)δlog2(δ) − (1 − (2n − 1)δ)log2(1 − (2n − 1)δ) (7.29)

Now we use the energy formula derived in Section 7.1.1 to study the
relationship between energy consumption and information transmission
in buses, particularly in DSM buses. The complete energy-information
theory, that applies to more general problems, is available in [36], [46]
and [26]. The problem is treated using information theoretic tools and
a general mathematical framework is established in [36]. In [26], a more
application oriented presentation is given. The special case of a 1-line
bus has been studied in [22] as well.

Finally, data and address sequences are random sequences. Their
statistics and information rates can be approximately estimated or mea-
sured. See for example [56].

Example 10 Consider a bus with the capacitive structure of Figure 7.6,
n = 8, λ = 5, Vdd = 1V and CL = 100fF . The transition energy is
given by equation (7.11), where the admittance matrix, A, is given by
expression (7.10). Suppose the bus carries a sequence of address vectors
that can be modeled as a Markov process, like that of Example 8, with
δ = 1/210. From expression (7.29), we get that the process L carries
H(L) = 2.8 bits per cycle (or per transmission, or per bus transition)
on average. In addition, the expected energy cost per cycle is

E =
∑
X,Y

V 2
dd

2
(Y − X)T A (Y − X) · Pr(L(k − 1) = X, L(k) = Y )

where X, Y take all n−bit vector values. Evaluating the above expression
(Pr(X, Y ) = δ/28 if Y �= X + 1, Pr(X, X + 1) = [1 − (28 − 1)δ]/28 and
Pr(X) = 1/28), we get E = 1.37pJ . Therefore,

E

H(L)
=

1.37pJ

2.8 bits
= 0.49

pJ

bit
.

On average, 0.49pJ must be dissipated per bit of information that is
transmitted through the bus.
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Following Example 10, if L : L(1), L(2), L(3) . . . is a sequence of n-bit
random vectors transmitted through the bus, we define the expected en-
ergy per information bit of L, Eb(L), as the ratio of the expected energy
consumption per cycle, E(L), over the expected number of information
bits transmitted per cycle, H(L) 19:

Eb(L) =
E(L)
H(L)

. (7.30)

We write E(L) to indicate that the energy per cycle is associated with
the transition of sequence L through the given bus. Using (7.11), we
have that E(L) = E(Vdd L(k − 1), Vdd L(k)).

There is a misconception in the literature about the “efficiency” of
coding schemes. Saying only that a particular coding scheme can save
20% in power does not mean much. More parameters of the system must
be given, e.g.: the number of additional lines and the structure of the
expanded bus, if the original bus has been expanded to accommodate
coding; the rate, H(L), at which information is transmitted through
the bus, if the bus has not changed20. The point is illustrated by the
following examples that make clear the dependance between the expected
energy and entropy rate, as well as, the difference between the expected
energy, and, the expected energy per information bit.

Example 11 Consider a 1-line bus carrying a sequence of bits, b(1),
b(2), b(3), . . .. Furthermore, suppose that, for some (large) number m
and for every r = 1, 2, 3, . . ., exactly one of the bits b(r2m), b(r2m +
1), . . . , b(r2m+(2m−1)) is 1. By choosing the position of “1” among the
2m possible ones, it is clear that we can encode m information bits (data)
into 2m bits that are physically transmitted. In this case, the entropy
rate, H(b), of the sequence b, is m/2m bits (per cycle). The expected
energy per cycle is E ∼= 1

2m ·C ·V 2
dd, approximately, since there are about

two transitions (0 → 1 and 1 → 0) in every 2m bits. Letting m become
large, E becomes arbitrarily small! and the energy per information bit,
E/H(b) = 1

m · C · V 2
dd, becomes arbitrarily small as well! Unfortunately,

the entropy rate H(b) tends to zero, too.

Example 12 Let’s alter the encoding in the previous example. Let’s
assume that, for every r, m, we allow exactly one k ∈ {0, 1, . . . , 2m − 1}
such that b(r2m+k) = b(r2m+k+1). All other consecutive (physical) bits
have complementary binary values. Again, we can encode m information
bits into 2m physical bits. Letting m become large, we have that E →
1
2CV 2

dd, H(b) → 0 and E/H(b) → ∞.
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The size of the bus, that is “the bandwidth of the communication
channel”, is an important parameter that must be mentioned explic-
itly. The following example shows that the information rate cannot be
considered independently of the size of the bus.

Example 13 Let’s consider the one-hot encoding scheme [59] where m
bits are encoded into 2m bus lines simply by having exactly one line
carrying a 1 and the rest of them carrying zeros. The energy loss per
cycle is bounded above by a constant e, i.e. E < e. Letting m become
large we have that the energy per bit, which is less than e/m, can become
arbitrarily small. At the same time, the information rate, which is equal
to m, becomes arbitrarily large. It appears to be a win-win situation
but unfortunately, it is not. We need to consider the size of the bus
(2m lines) which grows exponentially with m. Therefore, the energy
per information bit must be considered with respect to the
information rate and the size of the bus.

The above example motivates one more definition. Let L be a se-
quence of n − bit random vectors L(k), k = 1, 2, . . ., that is transmitted
through a bus with n lines. The utilization α, 0 ≤ α ≤ 1, of the bus by
the random sequence is:

α =
H(L)

n
. (7.31)

The utilization, α, is the percentage of the “bandwidth” of the bus that
is occupied by the transmission of the information contained in sequence
L. In Example 13, the utilization approaches zero as the parameter m
tends to infinity.

It is desirable to transmit information at the lowest energy cost pos-
sible. This poses an important question: What is the minimum energy,
E∗

b (a), required to transmit a bit of information through the bus when
a · n information bits are transmitted per cycle on average? Written in
mathematical terms:

E∗
b (a) = min

L : H(L)/n=a
Eb(L) (7.32)

The following theorem provides the answer [36],[26]. To apply the result
of the theorem, the knowledge of the energy cost, E(x, y), of the transi-
tion from any vector x to any other vector y, is required. To this end,
expression (7.11) may be used. The result of the theorem is not limited
to buses or a particular energy function.
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Theorem 1 When the bus is utilized by a factor α, 0 ≤ α ≤ 1, the
minimum energy per information bit is given by21

E∗
b (α) = ln(2) ·

(
γ − 1

∂
∂γ ln (ln (µ(γ)))

)−1

(7.33)

where γ is the positive solution of the equation:

α = − 1
n ln(2)

γ2 ∂

∂γ

(
ln (µ(γ))

γ

)
(7.34)

and µ(γ) is the maximal eigenvalue of the matrix

W (γ) =
[
e−γ E(x,y)

]2n−1

x,y=0
(7.35)

Although the above expressions for α and E∗
b are useful for analytical

use, the alternative ones below are more appropriate for numerical cal-
culations.

α =
1

n ln(2)

⎛⎝ln(µ(γ)) +
γ

µ(γ)

∑
i,j

gi gj

‖g‖2 e−γE(i,j) E(i, j)

⎞⎠ (7.36)

E∗
b (α) =

ln(2)
γ

− ln(µ(γ))
αnγ

(7.37)

Where g = (g0, g1, . . . , g2n−1)T is an (the) eigenvector of W (γ) corre-
sponding to the maximal eigenvalue, µ. The proof of the theorem is
very lengthy and technical and can be found in [36] and [26]. A set
of MATLAB routines related to the theorem is available in [57]. The
following example illustrates the use of the theorem.

Example 14 Suppose we want to transmit a sequence, L, of 2-bit vec-
tors through a bus. For the bus, we have two options: 1) use a 2-line bus
whose equivalent total-capacitance network is shown in Figure 7.6 with
Vdd = 1, CL = 1, and λ = 5; 2) use a similar 3-line bus with Vdd = 1,
CL = 1, λ = 5 and coding22. For the random vectors of the sequence,
L, we assume that they are independent and uniformly distributed in
{0, 1}2, i.e. all of the bits are temporally and spatially independent, and
take the values 0 and 1 with probability 1/2. In option (1) the admittance
matrix, A2, is given by (7.12),

A2 =
[

11 −5
−5 11

]
· 1 =

[
11 −5
−5 11

]
(7.38)
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All quantities are chosen dimensionless for simplicity. The expected en-
ergy per cycle is derived using (7.11).

E =
1
2

∑
X,Y ∈{0,1}2

(Y − X)T A2 (Y − X) · Pr(X, Y )

=
1
2

∑
xi, yj = 0, 1

(
y1 − x1

y2 − x2

)T [ 11 −5
−5 11

] (
y1 − x1

y2 − x2

)
· 1
16

= 5.5

Since there is no statistical dependence between the bits of the sequence
L, H(L) = 2 (bits/cycle), and, therefore, for option (1), the energy per
(information) bit is E/H(L) = 2.75. For the same reason, the utilization
of the bus is α2 = H(L)/2 = 1.

Now consider option (2). In this case, the utilization is α3 = H(L)/3 =
2/3; because, the information rate is the same as before, while, the size of
the bus has been increased. What we would like to know is the maximum
possible energy reduction we can achieve by using this larger-than-needed
bus along with coding. The answer is given by expression (7.37) above.
First, we need to find the positive solution γ of (7.36) for α = α3. This
can be done using the MATLAB routines available in [57]. Also, it can
be shown [36] that α is a strictly decreasing function of γ, for γ > 0;
and so, (7.36) (and (7.34)) has a unique positive solution. Moreover,
the solution is easy to find. It turns out that γ = 0.3201, µ = 1.7549,
and from (7.37) we have:

E∗
b (α) =

ln(2)
γ

− ln(µ)
αnγ

= 1.2866. (7.39)

Therefore, in theory we can reduce the power consumption using coding
by

100
(

2.75 − 1.2866
2.75

)
% = 53.2% (7.40)

The result is impressive but may not be easy to approach in practice.
The theory tells us nothing about the complexity of the encoder/decoder
that achieve the optimum.

Example 15 Consider the setup of Example 14; but, this time, we use
a 4-line bus and coding to transmit the 2-bit vector sequence. In this
case, the utilization of the bus is α4 = 2/4 = 0.5, and the theoretically
minimum achievable limit of the energy per information bit is:

E∗
b (α) =

ln(2)
γ

− ln(µ)
αnγ

= 1.0748. (7.41)
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Therefore, the maximum achievable power reduction is

100
(

2.75 − 1.0748
2.75

)
% = 61%. (7.42)

By increasing the number of additional lines further, we can achieve
any power reduction23.

Example 16 Consider, again, a bus with the capacitive structure of
Figure 7.6. The energy function of the bus is given by expression (7.11)
with the admittance matrix, A, given by (7.12). In Figure 7.8 we see
the normalized minimum energy per information bit, E∗

b (α)/E∗
b (1), as

a function of the bus utilization, α. The three graphs correspond to the
following cases: n = 2, 4 and 8, with λ = 5. Energy increases rapidly
around α = 0 and α = 1, is zero at α = 0 and maximal at α = 1. This
confirms Example 15; that is, the energy per information bit can become
arbitrarily low for sufficiently small rate. Note that this would not be
true if the energy expression (7.11) included leakage or other terms that
would contribute to energy consumption even when there is no transition
in the bus. If leakage is present, then there is an optimal utilization.
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4. Conclusions
Three topics have been discussed in this chapter: Energy models

appropriate for Deep Sub-Micron buses; the corresponding Statistical
Energy models and the extension of transition activity to the Transi-
tion Activity Matrix that can be used in buses with interline coupling;
the fundamental relationship between the minimum possible power con-
sumption, the utilization of the bus (speed), and the number of bus lines
(area). These theoretical tools can be used to analyze practical coding
schemes, estimate their energy savings and compare them with that of
the optimal coding scheme for a given bit rate and bus size.
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Notes
1. Throughout the chapter we consider noiseless systems.

2. Pulse position modulation

3. Suppose each transmission takes a clock cycle.

4. In the examples, we assumed that the energy required for the encoding and decoding
is insignificant compared to the transmission energy we save.

5. The area is determined by the number of wires and their geometries

6. The author put significant effort to complete the list. He apologizes if he missed
reporting some significant work.

7. Drawn from Vdd, not consumed by the circuit.

8. We treat them a coupled transmission lines

9. The parasitic capacitance at the output of the inverter driving the ith line, say Cd
i , and

the parasitic capacitance at the input of the register at the other end of the bus, say Cr
i , can be

integrated into Ci,i. Then, according to the model in Figure 7.4, we have Ci,j =
∫ L
0 ci,j(x) dx,

if i �= j, and Ci,i =
∫ L
0 ci,i(x) dx + Cd

i + Cr
i .

10.Throughout the chapter, when binary values are involved in numerical calculations,
they are treated as the real numbers 0, 1, i.e. 0 − 1 = −1 etc.

11. It is stationary, in the wide sense; so, l(k + r) l(k) is independent of k.

12.The name is misleading since T a is associated with the sequence {l(k)} rather than
the line itself. Some authors define it as 2(R(0) − R(1)). Symbol “a” is used some times to
denote the transition activity. In this chapter we reserve “a” for another quantity.

13. except in some very special cases

14.Some researchers consider this given without providing any supporting explanation.

15.For notational purposes, the numbers 0, 1, . . . , 2n − 1 are identified with their binary
expansions. This is done throughout the paper.

16. In general we should consider the dependance of L(k) on L(k − 1), L(k − 2), ...

17.When, for example, L(k) is stationary and ergodic.

18.Actually, for 0 < δ < 1, the uniform distribution is the steady state distribution of the
process.
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19.To avoid technicalities, we assume that the random sequence L is stationary. The
definitions and results can be directly expanded to more general cases.

20. In many circumstances, especially in address buses, a significant amount of power can
be saved by exploiting the strong temporal correlation of the address vectors. Since the
information rate is very low compared to the size of the bus (see Example 9) an efficient
coding scheme could reduce power dramatically.

21. Although expression (7.33) holds for the case of energy function, (7.11), for general
cost functions there is one exception: if there are some c, θx, x = 0, 1, . . . , 2n − 1 such that
E(x, y) = c + θx − θy , for every x, y, then, E∗

b (α) = c/(α n).

22.No matter what the statistics of the data are, the additional line introduces commu-
nication bandwidth redundancy.

23.Note that the energy model we used does not account for leakage. The statement is
true only when leakage is not present. If leakage is present, then there is an optimal number
of lines. The extension of the model to include leakage is trivial
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Chapter 8

BUS STRUCTURES IN NETWORK-ON-CHIPS

Vesa Lahtinen, Erno Salminen, Kimmo Kuusilinna and Timo D. Hämäläinen
Institute of Digital and Computer Systems, Tampere University of Technology

1. INTRODUCTION

Buses have been the preferred interconnection in most of the processor-
based systems in the past thirty years. They have also been the basic building
blocks of almost all implemented system-on-chips (SoC). Buses offer a
simple and efficient way to transfer data between the components of a
system. Their simple signaling and structure facilitate both manual and
automatic generation of bus-based architectures. Moreover, the simple
programming model of bus-based systems has been favored by the
application designers and has led to the development of advanced
programming tools.

A single bus is a good choice for many systems when the number of
connected components is small. However, in the future SoCs, the complexity
of a single component is not likely to significantly increase because only
relatively simple components can be scaled with technology [1, 2].
Therefore, the number of components in a SoC is increasing. On the other
hand, there has been only a modest increase in the ability of physical wires
to transfer signals, although the performance of logic gates has been rapidly
improving. The delay of a fixed length wire is even estimated to increase
with decreasing feature sizes [1, 3]. Based on this analysis, it seems that a
simple bus is no longer a preferable solution for SoC interconnection
requirements. Sometimes network-on-chips (NoC), such as the one depicted
in Figure 8-1, are proposed to solve this problem. In this Chapter, a SoC
architecture that is based on more complex structures than a single bus or
fully connected point-to-point links is defined as a network-on-chip.
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Figure 8-1. An example NoC structure based on a mesh topology

The homogeneous architectures, such as the mesh of Figure 8-1, are one
alternative NoC architecture. They have been used to run fine-grained
parallel scientific algorithms at very high speeds. However, the logical limits
of parallelism inherent in most practical applications result in redundancies
and inefficiencies that cannot always be tolerated in on-chip systems because
of increased area and power consumption. In addition, the structures utilized
in scientific computing are usually optimized for fine-grain granularity
computation. Sometimes NoC architectures are benchmarked with a fairly
simple fine-grained algorithm with good results although the distribution of
computation for such a large system may not be meaningful. The NoC
scheme implies that the components are part of a fairly large coarse-grain
granularity system where the components are smaller systems of their own.

A computer local area network (LAN) is another possible analogy for the
design of NoCs. Although the on-chip architectures have a lot in common
with these systems, they also have considerable differences. The relatively
complex network architectures and protocols of LANs as well as their large
network buffer memories are designed to make the systems reliable with
particular emphasis on connectivity and performance requirements. In
contrast, large buffers and arbitrary connectivity are not tolerable in SoCs
that prefer limited complexity and real-time operation.

This Chapter advocates a NoC approach that utilizes a hierarchy of bus
structures and augments this strategy with more specialized interconnection
topologies on case to case basis. In this type of architecture, the local
interconnections are buses making use of their described good properties. On
the other hand, the global interconnections use a more complex network
structure containing buffering elements resembling the router units of Figure
8-1. This type of a heterogeneous architecture can be modified according to
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the requirements of the application. The following Sections illustrate that
buses and NoCs do not exclude each other and how the single bus
architecture can be modified and extended to fit the NoC scheme.

2. SOME BASIC PROPERTIES OF SHARED
INTERCONNECTIONS

Buses [4] are shared interconnection paths between the components of an
electronic system. They are defined by their electrical signaling, the required
interface logic, and the utilized transaction protocols. The basic properties of
bus interconnections have remained almost unchanged during their
evolvement from computer backplanes to on-chip interconnections.

2.1 Structure

Interconnections can be classified as static or dynamic. Dynamic
interconnections use switching elements whereas their static counterparts,
for example buses, have a fixed path between the sender and the receiver. By
definition, a bus uses shared interconnection lines as opposed to dedicated
point-to-point signals used in other static interconnection types.
Traditionally, buses have been implemented with three-state buffers which
drive bidirectional signal lines as illustrated in Figure 8-2 a). Three-state
buffers are a good approach for backplane buses but their high power
consumption and the difficulty of debugging make them less suitable for
SoCs. The basic alternatives for three-state buses are multiplexer-based
buses and AND-OR structures depicted in Figure 8-2 b) and Figure 8-2 c),
respectively. They both use unidirectional signal lines.

The components connected to a bus are called agents. An agent that can
initiate and control a transfer is called a master or an initiator. Agents that
respond to transfer requests initiated by masters are called slaves or targets.
An agent can also be a master and a slave at the same time. An agent can
contain, for example, a processor, its local bus, memory units, and an
interface wrapper to connect to the global bus architecture.
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Figure 8-2. a) Three-state, b) multiplexer-based, and c) AND-OR bus implementations

2.2 Transfers

On the basis of supported transfer types, buses can be either synchronous
or asynchronous. Synchronous transfers are based on a global clock signal
while the asynchronous transfers are self-timing. Transfers in a bus normally
require some sort of handshaking between the sender and the receiver. A
generic, two-phase synchronous read operation consists of a read request
(master) and a data response phase (slave). In a synchronous bus, the
handshaking does not need to be as extensive but the problem is that the
slowest agent defines the clock frequency of the whole system. Furthermore,
distributing a global clock signal in a large SoC can be problematic.

Asynchronous transfers do not need a global clock signal. Instead, each
phase of the transmission process takes only as long as is required, which
makes it easier for devices with different response times to interact. An
additional benefit is that signal propagation delays do not affect the correct
operation of asynchronous systems. However, because of the prolonged
handshaking, asynchronous transfers are usually more complex than their
synchronous counterparts. The asynchronous transfers frequently use a four-
phase handshaking scheme. The four phases of a generic read operation are:
read request (master), acknowledge (slave), data response (slave), and end of
transfer process (master).
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Traditionally, a transfer between two agents reserves the bus for the
duration of the transfer. If, for example, a processor reads from a memory it
first sends a read request, stalls its own processing, and waits for the memory
to respond. The memory is usually slow when compared to the processor and
the shared medium is reserved during the whole process. In a split transfer,
the processor first sends a read request, after which it frees the bus for other
transfers. When the memory is ready, it uses a normal write operation to
respond. The processor does not get data any faster but the advantage is that
the shared medium is available for other agents in the middle of the
transmission (e.g. memory read) process.

In a single bus, only one agent can transmit data at a time. On the other
hand, all connected agents can read the transferred data making broadcast a
simple operation. Buses can have separated data and address lines, but they
can also be multiplexed onto the same lines. In a multiplexed bus, typically
the master first sends the address and then the data. One way to speed up the
operation with separate bus signals for data and address is to put the address
of the next transfer to the address lines before the previous transfer has
ended. This technique is called transfer pipelining and it is particularly good
with block or burst transfers in which a single address cycle is followed by
multiple data cycles.

2.3 Arbitration

Arbitration is the mechanism for resolving the bus owner if more than
one agents request the ownership at the same time. Arbitration can be
centralized in which case request and grant signals are needed between every
agent and the arbiter unit. In a distributed version, all the information needed
for the arbitration process is stored in each bus agent and can be updated by
monitoring the bus signals. In addition to an arbiter, a decoder is required.
The decoder does not need to be a separate unit, it can be integrated as a part
of a slave. The task of the decoder is to direct the correct slave to respond to
a transaction. In the centralized scheme of Figure 8-2 b), the multiplexer on
the left is controlled by the arbiter and the multiplexer on the right by the
decoder.

The most popular arbitration algorithms are based on priority or utilize
the round-robin method. In priority-based systems, the requesting agent with
the highest priority gets the bus ownership. This process can, therefore, lead
to starvation meaning that lower priority agents are not necessarily able to
access the bus. Priority arbitration can be pre-emptive, that is, a lower
priority transfer is interrupted when a higher priority agent requests the
communication channel. Non pre-emptive transfers are allowed to complete
before starting new transfers. Pre-emption can also occur when the
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maximum allowed transfer length has been exceeded decreasing the risk of
starvation. In round-robin systems, the bus owner is changed in a circular
manner providing fair arbitration because every agent eventually gets the bus
ownership. Each agent passes the ownership to the next agent in line when it
no longer has data to send or it has held the bus for the maximum allowed
time. One interesting approach to arbitration is to utilize static methods
where bus owners are decided before the system runtime. An example of
these methods is TDMA (time division multiple access) in which timeframes
are divided into time slots that are assigned to bus agents.

3. OVERVIEW OF BUS-BASED SOC
INTERCONNECTIONS

In this Section, we study the basic properties of the following nine on-
chip buses: AMBA [5], CoreConnect [6], CoreFrame [7], HIBI [8, 9],
Marble [10], PI-bus [11], SiliconBackplane [12], STBus [13], and Wishbone
[14]. Some of their properties are summarized in Tables 8-1, 8-2, and 8-3. A
number of other SoC buses exist also but not enough details of their
properties are publicly available to allow a fair summarization. This analysis
is partially based on [15].

The advanced microcontroller bus architecture (AMBA) by Advanced
RISC machines Limited is one of the most frequently used on-chip buses.
Reasons for this popularity include its easily available specification and its
close connection to the popular ARM RISC processors. AMBA is a typical
multiplexer-based bus and it utilizes a central arbiter and decoder
architecture. It has three versions for different transmission needs, namely
the advanced high-performance (AHB), advanced system (ASB), and the
advanced peripheral (APB) buses. AHB is a system backbone bus whereas
ASB is a system bus that does not have all the features of AHB. APB is
targeted for low-power and low-complexity peripheral devices and can be
used together with the other two AMBA bus types.

CoreConnect is another widely used on-chip bus developed by IBM
Corporation. It is an open standard with publicly available specifications and
it is used, for example, in conjunction with the PowerPC processors.
CoreConnect specification contains two buses for different purposes, namely
the processor local bus (PLB) and the on-chip peripheral bus (OCP). In
addition, it has a separate device control register (DCR) bus and an arbiter
unit supporting address pipelining and bridges between PLB and OCP.

CoreFrame, by Palmchip Corporation, is also a two-level on-chip bus
architecture. It consists of PalmBus which is used for connections between
processors and peripherals and MBus for high-speed memory and peripheral
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accesses. The two buses are actually independent parallel buses allowing
concurrent activity and increasing the throughput of the system. CoreFrame
uses point-to-point signals and multiplexing to avoid three-state buffering. It
does not use shared signal lines, instead the communication is carried out
through shared variables in memory.

Heterogeneous IP block interconnection (HIBI) is a versatile
interconnection scheme from Tampere University of Technology. It is
primarily targeted towards continuous-media systems having large regular
data transfers for which it utilizes static arbitration methods. In HIBI-based
systems, the arbitration is distributed to the connected agents. In addition,
HIBI supports the basic high-performance features of on-chip buses. At the
moment the HIBI development is focused on complex bus and network
structures in addition to multi-priority transmissions.

Developed at the University of Manchester, Marble (Manchester
asynchronous bus for low energy) is an original on-chip bus design lacking a
global clock signal. The bus supports split transfers, test structures, and
bridges, and demonstrates that the requirements of a SoC bus can be met by
a fully asynchronous design style. For arbitration, Marble uses a centralized,
tree-based structure that can be modified to adjust the latency and bandwidth
allocated to each agent of the system.

The PI-bus is an open standard published by the Open microprocessor
systems initiative (OMI). VHDL codes for master, slave, master/slave, and
bus control units are freely distributed. Also, synthesis scripts for different
ASIC and FPGA technologies and system examples are available. The bus
control is a centralized unit taking care of master arbitration and slave
selection (decoding). It also logs all the error messages coming from the
slave units. The PI-bus is a synchronous bus utilizing non-multiplexed
address and data signals and it supports multiple masters. In addition,
bridges have been used in systems based on the PI-bus [16].

The µNetworks designed by Sonics Incorporated contains a set of
architectures and tools for SoC design. The defined architectures are the
SiliconBackplane for on-chip and MultiChip for off-chip interconnections.
SiliconBackplane has a two-level arbitration scheme based on TDMA and
round-robin. Furthermore, dynamic reconfiguration of a set of system
parameters is supported in SiliconBackplane. The system parameters are
implemented in the agents as registers that are visible to the application
software.

The Split transaction bus (STBus), used in the scalable Daytona DSP
architecture, has many interesting properties that will be discussed later. It
was jointly designed by Lucent technologies and Massachusetts Institute of
Technology. The STBus was designed to minimize average latencies in
systems where large amounts of data are transferred. This is achieved
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through a memory control unit that supports multiple outstanding
transactions and the use of large cache memories. A programmable round-
robin scheme is used for arbitration.

Wishbone, by Silicore Corporation, is another on-chip bus standard with
many typical features included in its specification. Wishbone supports the
basic transfer types and many of the possible bus implementation techniques,
including multiplexer and three-state-based structures. The Wishbone
interconnection can also implement other topologies than a bus such as a
crossbar. The arbitration mechanism of Wishbone can be chosen by the
system designer. The Wishbone VHDL source codes are freely distributed.
The specification also includes a list of rules with which the Wishbone
compatible components and systems have to comply, for example
documentation and naming conventions rules.

Table 8-1 tabulates the basic structural properties of the aforementioned
buses, whereas Tables 8-2 and 8-3 tabulate the transfer and arbitration
properties, respectively. The notation is ‘x’ for supported features and ‘n/a’
if the feature is not supported or the information was not available or clearly
stated in the specification. In addition, the tables include the Lotterybus [17]
specification that mainly defines a partly random arbitration scheme, the
Virtual component interface (VCI) [18], and the Open core protocol (OCP)
[19] interface standards that are discussed in Section 4. The VCI and the
OCP only define an interface to an interconnection but not the
implementation. Sometimes the determination between supported vs.
unsupported features is very difficult and a specific functionality can be
achieved by using the interconnection a little differently.

There are many structural properties that are typical to almost all the SoC
buses. Hierarchical structures are supported by many of the buses, and the
rest of the specifications did not make a clear statement about the issue. The
signal line implementations include both uni- and bidirectional versions, as
well as combinations of these two. Most of the presented SoC buses utilize
shared signal lines. Only one of the buses uses asynchronous techniques, the
rest are fully synchronous. Multiple clock domains and test structures are
also supported by several of the bus specifications.
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Table 8-1. On-chip bus structures
Interconnection 1. Hierar. 2. Sig. 3. Sha. 4. Sync. 5. Mul. 6. Test
AMBA AHB x (APB) U S S x x
CoreConnect PLB x (OCP) U * S x x
CoreFrame MBus x (PalmBus) U P S x n/a
HIBI x B/U S S x n/a
Marble x B S A x x
PI-bus x B S S x n/a
SiliconBackplane n/a U ** S x x
STBus n/a n/a S S n/a n/a
Wishbone n/a B/U S S n/a n/a
Lotterybus x n/a S S n/a n/a
OCP n/a U P S x x
VCI n/a U P S x n/a
1. Hierarchical structures
2. Unidirectional (‘U’) or bidirectional (‘B’) links
3. Shared (‘S’) or point-to-point signals (‘P’)

Exceptions: * In CoreConnect, data lines are shared, control lines form a ring
** In SiliconBackplane, data lines are shared, control flags are point-to-point

4. Synchronous (‘S’) or asynchronous (‘A’) transfers
5. Support for multiple clock domains
6. Test structures

Almost all the presented SoC buses use low-level handshaking based on
dedicated handshaking signals. The typical SoC transfer types include split
transactions and pipelined transfers. Although broadcast is almost a trivial
application of the basic physical bus properties, its use is not explicitly stated
in most of the specifications. This does not necessarily mean that the feature
is impossible to implement with these schemes.

Table 8-2. On-chip bus transfers
Interconnection 1. Handsh. 2. Split tra. 3. Pipelined 4. Broadcast
AMBA AHB x x x n/a
CoreConnect PLB x x x n/a
CoreFrame MBus n/a n/a n/a n/a
HIBI * x n/a x
Marble x x x x
PI-bus x n/a n/a n/a
SiliconBackplane x n/a x x
STBus x x x n/a
Wishbone x n/a n/a n/a
Lotterybus n/a n/a n/a n/a
OCP x x x x
VCI x x x n/a
1. Dedicated bus control signals used for handshaking

Exceptions: * Depends on the HIBI version
2. Split transfers
3. Pipelined transfers
4. Broadcast support



216

The arbitration mechanism is a major differentiator between the bus
interconnections. The bus specifications included one- and two-level
techniques based on priorities, round-robin techniques, and TDMA.
Application specific arbitration means that the protocol for requesting the
bus ownership is specified, but the algorithm for granting it is left
unspecified. The arbitration process was pipelined in most of the buses for
performance reasons. Most of the SoC buses use centralized arbitration but
some opted for distributed versions. Dynamic reconfiguration of at least
some of the arbitration (e.g. priorities and TDMA parameters) and system
parameters (e.g. address ranges and interrupt sensitivity information) was
specified for five of the bus specifications.

Table 8-3. On-chip bus arbitration and reconfiguration
Interconnection 1. Scheme 2. Pipelined 3. Cent./Dist. 4. Reconf.
AMBA AHB as x C n/a
CoreConnect PLB 1 x C x
CoreFrame MBus as x C x
HIBI 2 x D x
Marble 1 x C n/a
PI-bus as x C n/a
SiliconBackplane 2 x D x
STBus 1 x C n/a
Wishbone as n/a C n/a
Lotterybus 1 x C x
OCP as n/a C/D n/a
VCI as n/a C/D n/a
1. Application specific (‘as’), one-level (‘1’) or two-level (‘2’) arbitration scheme
2. Arbitration done during previous transfer (pipelined arbitration)
3. Centralized arbitration (‘C’) or distributed arbitration (‘D’)
4. Dynamic reconfiguration

4. ENHANCING BUS PERFORMANCE TO FIT
INTO SOC AND NOC SCHEMES

Many publications speculate that when the complexity of systems
reaches a certain limit, buses are no longer a viable option [2, 20, 21]. In the
following Subsections, some of the perceived and published bus limitations
are listed together with some solution proposals.

4.1 Application space

By definition, buses are static networks since they do not have dynamic
switching elements in them. This can lead to the conclusion that buses
cannot adapt to fit multiple applications. Although the structure cannot be
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modified, there are several interconnection related parameters that can be
tuned during system operation. This increases the performance of the
interconnection and makes it more flexible.

In HIBI [8, 9], system parameters are initialized during system synthesis
but they can also be modified at runtime with dynamic reconfiguration.
Reconfiguration uses specific write commands that modify the configuration
memories located in each interconnection wrapper and bridge of a system.
The parameters include arbitration parameters (priorities, TDMA
parameters, and longest allowable bus reservation times), power mode, and
address ranges of the agents. This way, the latency and the allocated
bandwidth of the components can be modified at runtime, following the
variable communication requirements placed on the connected components.

Single bus architectures can also be extended to hierarchical and multiple
buses; in effect forming a network-on-chip. Hierarchical buses have multiple
bus segments that are connected to each other through bridges. Multiple bus
systems, on the other hand, have several separate buses between
components. These two methods help extending a bus system to handle
multiple applications at the same time. A single bus, a hierarchical bus, and a
multiple bus architecture are depicted in Figure 8-3. The fourth basic
structure is the split-bus shown in Figure 8-3 d). In a split-bus architecture,
the bus is divided into segments with three-state buffers. It can be utilized to
achieve multiple simultaneous transfers, but has additional advantageous
properties that are discussed in subsequent Subsections.
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Figure 8-3. a) Single bus, b) hierarchical bus, c) multiple bus, and d) split-bus structures
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4.2 Concurrent transfers

One limitation of buses is that since they use a shared transmission
medium, they only allow the execution of one transfer at a time. This
limitation applies also to the typical hierarchical structures where a
transmission from one bus segment to another reserves both buses. This lack
of parallel transfers makes also the scaling of bus-based systems difficult,
because each added agent decreases the bandwidth available to the other
agents. It should be noted that the parallelism found in many practical
applications is quite limited making even a single bus sufficient for these
applications. However, the number of parallel transfers in a bus-based
system can be increased by utilizing multiple bus structures as depicted in
Figure 8-3 c) where three parallel transfers are possible. In practice, the
amount of agent I/O and interconnection area limit the use of this technique.

One solution to the problem is the hierarchical structure used in HIBI [8,
9]. In this scheme, the bus segments are separated by bridges that have
buffer memory. The bridges can be seen as agents that have to arbitrate for a
bus segment since they are implemented with two modified wrappers as
depicted in Figure 8-4. A circuit-switched approach reserves all the segments
between the source and the destination. Because the HIBI interconnection
has bridging or routing components with buffer memory, a hierarchical HIBI
bus could also be defined as a packet-switched network. It is possible to
have parallel transfers in every segment simultaneously. An example of a
HIBI hierarchical structure is illustrated in Figure 8-4.
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Figure 8-4. A hierarchical HIBI structure with four clock domains and three bus segments
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4.3 Signaling

The speed of electromagnetic waves has a finite upper limit. The size of
the chip designs scale up very rapidly, as does the clock frequency, and
therefore, it will not be possible to time the signal transfers of a future NoC
within a single clock cycle solely based on a global clock. It has been
estimated that the propagation delay from edge to edge of 50 nm technology
chips will be between six to ten clock cycles [3]. There are at least four ways
to tackle this problem: using asynchronous techniques [10], multiple clock
domains [8, 9], latency insensitive protocols [22], and split-bus techniques
[23]. The long interconnection wires of buses also cause other problems,
such as significant power consumption and increased noise sensitivity. One
method proposed for addressing the power problem is the bus-invert scheme
[24]. In addition, buses that transmit data serially are sometimes used to help
the signal routing and minimize the bus signal line area. Problems with
interconnect signaling are discussed further in Chapters 2 and 4 and the
difficulties of clock distribution in Chapter 5 of this book.

An example of an asynchronous transfer technique is the Marble bus
[10]. It uses a four-phase handshaking scheme similar to the one presented in
Section 2.2. instead of a global clock and still provides all the required
functions of a high-performance on-chip bus. All this can be achieved with
reduced power consumption because of the asynchronous transfers lacking
the clock distribution needed in its synchronous counterparts. Different
subsystems can also run at different rates, completely independent of each
other. This feature also helps the utilization of modular design techniques.
Although Marble uses fully asynchronous techniques, another option would
be to use globally asynchronous, locally synchronous designs (GALS),
where transmissions within components are synchronous and the data traffic
between components asynchronous.

Locally synchronous operations are a basic practical requirement for
efficiently designing correct functionality in large digital systems. The
difficulty in providing a global clock can be overcome with the use of
multiple clock domains. For example, in the HIBI bus, the clock domains are
isolated from each other by bridges or single wrappers that have FIFO
buffers inside them. The wrappers take care of the handshaking between the
bus segments operating on different clock frequencies. An example HIBI
structure is depicted in Figure 8-4. A noteworthy issue is that all the agents
of a bus segment are not required to use the same internal clock frequency.
This is achieved by letting the wrapper unit of the agent operate at the same
frequency as the rest of the bus segment but using another clock frequency
for the rest of the components in the agent. By exploiting FIFO buffers and
handshaking, the attached IP block can operate at any suitable frequency.
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The latency insensitive design lets the system components use a single
clock, that is, to apply the globally synchronous model. The global signals
that cannot travel the whole distance in one clock cycle are pipelined to be
on flight several clock cycles. One example are the methods proposed in
[22], where single components, or pearls, are encapsulated in shells that
contain buffers and control logic for making the transfers latency insensitive.
Next, the physical layout is designed after which pipeline elements (relay
stations) are inserted to the lines having a latency of over one clock cycle.
This method has been developed for point-to-point connections but could
also be applied to many bus schemes.

The split-bus technique [23] depicted in Figure 8-3 d) can also be used
for reducing the problems with long bus lines. If the delay and energy
consumption of the dual three-state buffer structure is smaller than the part
of the bus that is being disconnected, then split-bus architecture is preferable.
With split-bus technique, the parasitic loads and therefore energy
consumption and noise problems can be decreased considerably. For
example [23] reports energy savings of 16 to 50% with the split-bus
technique by using heuristic techniques to optimize the bus splitting. Split-
bus technique is particularly suitable for asynchronous buses which can also
utilize the shorter propagation times. Synchronous buses, on the other hand,
usually set the clock frequency according to the worst case propagation time.

The power consumption of long interconnection wires can be lowered by
different signal encoding techniques because the activity of the bus signals
considerably affects the power consumption. One proposed technique for
bus encoding is the bus-invert scheme presented in [24]. In this scheme, the
Hamming distance between the data previously on the bus and the data being
transmitted is first calculated. If the Hamming distance shows that more than
half of the data has changed, the inverse of the data is sent. The receiver
knows the encoding of the data from a dedicated invert bit. If the Hamming
distance of the data shows that less than half of the data has changed, the
data is sent as it is. This simple technique has been used to achieve a 25%
average power consumption reduction in bus interconnections [24]. Some
power reduction coding methods are presented in this book’s Chapter 7.

4.4 Reliable signals

Long, parallel lines needed in buses increase the rate of faulty behavior.
This is particularly due to crosstalk and dynamic delay which is caused by
the changing capacitance seen by a gate. The fact that long wires need to be
narrow (for high wiring densities) and thick (for lower resistance) only
makes these problems worse by increasing the coupling capacitance [1].
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One solution is to use bus guardians as in [25]. In this method, dedicated
modules constantly monitor the bus looking for errors. The bus guardians
also provide error correction mechanisms. Long lines are frequently also
broken into smaller ones by utilizing hierarchy or repeaters. In hierarchical
systems, bridges split buses into segments. In this process, the grouping of
the components forms the basis after which layout level techniques can be
used to optimize the transmission line lengths. In single bus solutions, one
has the option of utilizing repeaters and other low-level optimization
techniques as presented, for example, in [26].

4.5 Efficient arbitration

Centrally arbitrating a bus with multiple agents can be a very time
consuming task. This is also one of the features of buses that make them
hard to scale, because the more agents there are, the longer the arbitration
tends to take. The agents of a bus can also have completely diverging
bandwidth requirements, and therefore the arbitration scheme can be very
complex to implement.

In the STBus [13], this problem has been solved with data and address
buses that are arbitrated separately. Each transmission has to first request an
access to the transmission medium on the address bus. Upon being granted
an access to the bus, the agent gets a transaction ID and can begin the actual
transaction on the data bus. In this scheme, the data bus is used for data
transmissions and at the same time the next transfer is already being
arbitrated on the address bus. During the arbitration process, the agents can
also negotiate different transmission parameters, such as the maximum
length of the forthcoming transfer. This scheme works best in systems
having long transfers.

Some arbitration algorithms, like priority, round-robin, and TDMA, can
also be implemented in a distributed manner. Distributed arbitration does not
require the existence of a high-level, centralized, and possibly very complex,
arbiter. In addition, distributed arbitration lacks the point-to-point signals
which improves scalability. A distributed TDMA and round-robin/priority-
based arbitration is implemented for example in [12] and [8, 9]. The times
during which the agents are guaranteed a bus access and the mechanism for
acquiring the bus during other time periods is coded into a dedicated
memory block located in the agents.

4.6 Quality of service

Many modern SoC applications would benefit from an interconnection
that could give some guarantees for the transmissions. A frequently used
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term is quality of service (QoS), which implies that different agents need
different guarantees for data transmissions. Here, two examples are shown.
One demonstrates the applicability of TDMA for guaranteeing bandwidth
and the other for providing smaller latency.

Real-time requirements demand that a system will respond to certain
events during a specified time interval. In many systems, the occurrences of
these events can be predicted in advance with some accuracy.
SiliconBackplane [12] uses TDMA as an arbitration method to guarantee
real-time requirements. In this method, time is divided into a repeating time
frame that is again divided into time slots that are allocated to each agent
according to their bandwidth needs. This way, all agents are guaranteed the
use of the interconnection medium when they need it. The unallocated time
slots and the time slots that are not used (at run-time) by their owner are
arbitrated with a second-level arbitration scheme that is based on the round-
robin scheme. The second tier method can be utilized by components
requiring unpredictable, irregular, or low-priority transfers.

Almost all on-chip buses incorporate a type of a priority scheme.
Usually, this concerns only the transmission order of the agents. An
individual agent might have data transmissions that demand higher priority.
The HIBI bus [8, 9] has two different priorities for two types of transfers:
data transfers and messages. All the interconnection components (wrappers
and bridges) have two sets of FIFO buffers, one for each type. The idea is
that the higher priority messages can bypass the data transfers by using their
own dedicated buffers. This concept can be extended by adding more
priority specifiers and FIFO buffers to implement multiple virtual channels
with different priority.

4.7 Standardization

Many system buses exist for SoCs and the processors inside the SoCs
incorporate their own local buses. It is usually possible to fit them together,
but having too many interfaces and adapters usually leads to problems. From
this point of view, it would be better if all buses would comply to a single
interface standard. Two proposed standards are the VCI [18] and the OCP
[19]. VCI defines a protocol which can be used by components in
communicating with each other regardless of the physical bus
implementation. OCP is a superset of the VCI specification. It has the same
data flow aspects as VCI, but includes additional control and test signaling.

Another way of dealing with these complexities is to generate the
interconnection architecture automatically. One example is the component-
based design automation approach presented in [27]. It is meant to be used
with multiprocessor SoC platforms. In this approach, the architecture is first
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specified in an abstract way, after which the system is analyzed to determine
a suitable hardware/software partition. Following this, the interconnection
components are generated automatically with the help of hardware and
software wrapper generators that utilize pre-defined library components.

5. EXAMPLES OF UTILIZING BUS STRUCTURES
IN SOCS AND NOCS

The previous Sections described a number of ways in which a bus system
can be extended to a relatively large NoC. The communication and
connectivity requirements of NoCs are usually quite versatile; typically there
are only a few components that require large bandwidths and not all of the
components need to communicate with each other. The hierarchical bus
architecture is a good fit for this type of communication profile. The
following Subsections present bus-based design examples emphasizing their
innovative design solutions. The first example is a quite traditional single
bus, but the following systems start to have more complex network features
such as hierarchical structures and buffering bridges.

5.1 Amulet3i

The Amulet3i telecommunication controller SoC [10, 28], depicted in
Figure 8-5, incorporates an Amulet3 core and a Marble bus. It was presented
by the University of Manchester, Cogency technology Inc., and ASIC
alliance corporation in 1999. The Amulet3 core is capable of executing the
code of ARM v4T instruction set architecture. In addition, the system has
RAM and ROM memory, DMA controller, off-chip interface, analog-to-
digital converter, instruction and data bridges, synchronous peripheral
bridge, and control and test registers. Furthermore, the bus control unit takes
care of bus arbitration and decoding.

Amulet3i was first used in a wireless communications device (DRACO)
that has relatively large synchronous parts to which Amulet3i has access
through the synchronous peripheral bridge. The DRACO chip was
implemented with 0.35 � m technology and its area was about 7.0 x 3.5 mm2.
About half of this area was taken by the Amulet3i system, the rest of the area
was consumed by the telecommunications peripherals. Simulations showed
that the utilized Marble bus could transmit data at a speed relative to an
operating frequency of 85 MHz giving the Amulet3i the processing power of
about 120 MIPS (million instructions per second) with average power
consumption of 215 mW [28].
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One of the major advantages of Amulet3i design is the absence of a
global clock signal. In addition, the handshaking scheme of Marble helps in
building systems using a number of different IP blocks operating at different
speeds. Although Amulet3i is completely asynchronous, possible
synchronous components can be accessed through the synchronous
peripheral bridge.

Marble bus

Amulet3
core

Instruction
bridge

Data
bridgeRAM

Bus
control

Control/test
registers

Synchronous
peripheral bridge ROM ADC DMA

Off-chip
interface

Figure 8-5. Amulet3i

5.2 MoVa

MoVa [29] is an MPEG-4 video codec designed at the ETRI design
center. It is based on Hyundai ARM7TDMI processor cell, memory
elements and soft cores (synthesizable VHDL) connected together with
AMBA ASB and APB buses as depicted in Figure 8-6. The video coding IP
blocks include motion estimation, discrete cosine transform, variable length
decoding, and reconstruction functions. In addition, the design has buffers
for storing bus data. The utilized buses were somewhat modified versions of
the ones described in the AMBA specification. The whole design was based
on pre-designed components, so the implementation was done using a
standard ASIC flow (HDL description and synthesis) and C/assembler
coding. A key factor in the design was the scheduling that was used to
perform hardware and software operations concurrently.

MoVa was implemented with a 0.35 � m CMOS technology. It contains
220k equivalent gates (NAND2), 412 Kbits of static RAM memory, and the
ARM7 core. The area of the chip is estimated to be 110.25 mm2. All in all, it
contains 1.7 million gates and has a power consumption of 0.5 W at the
operating voltage of 3.3 V. The performance of MoVa is 30 frames/s for
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QCIF and 15 frames/s for CIF pictures at the operating frequency of 27 MHz
and, therefore, it meets the requirements of the MPEG-4 SP@L2 standard.

A standardized interconnection enables the use of pre-designed IP blocks.
In this case there were six video codec IP clocks that had been previously
designed and verified. The use of IP blocks having a simple standardized bus
interface considerably shortened the design time.
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Figure 8-6. The MoVa MPEG-4 codec

5.3 Viper

The Philips Nexperia PNX8500, also called Viper [16], is an example of
a SoC targeted for set-top boxes and digital television systems. It is one of
the first Philips Nexperia-DVP (digital video platform) SoC solutions that
are optimized for concurrent processing of audio, video, graphics, and
communication data and is depicted in Figure 8-7. Viper contains a MIPS
and a TriMedia processor. The MIPS 3940 is a typical 32-bit RISC processor
that was chosen because of its high performance, ability to run popular
embedded operating systems, and efficient peripheral control. The TriMedia
32, on the other hand, is a high performance, multimedia enhanced VLIW
(very long instruction word) DSP processor optimized for audio and video
processing. In addition to these two processors, Viper has a large amount of
very complex hardware accelerators. The internal data transfers of the SoC
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are done through four bus segments. Three of these segments are PI-buses.
In addition, the chip has also a very high speed 64-bit memory bus (DVP) to
access off-chip SDRAM memory. Five bridges connect the bus segments
together. Some functional units are connected to two bus segments.
However, all units do not share a common bus. Therefore, the structure is a
hybrid of hierarchical and multiple bus architectures.

The general peripherals of Viper include a USB controller, three UART
interfaces, two I2C interfaces, a synchronous serial interface, and a general-
purpose I/O module. An enhanced IEEE 1394 link layer controller and an
expansion bus interface are provided for high-speed data transmissions.
There are also other interface IP blocks connected to the MIPS PI-bus. All
the other audio, video, and graphics IP blocks are connected to the TM32 PI-
bus. They contain, for example, three MPEG system processors, two image
composition processors, an MPEG-2 video decoder, and two video input
processors. All in all, there are more than thirty IP blocks in the Viper chip.

For Viper implementation, a 0.18 � m CMOS technology was used. The
whole chip had about 35 million transistors (8 million gates). The total
memory implemented on the chip was 750 Kbits. The chip had 82 clock
domains, for example the MIPS processor, TM32 processor, and the
SDRAM operated on 200 MHz, 150 MHz, and 143 MHz clock frequencies,
respectively. With an operating voltage of 1.8 V, the average power
consumption of the chip was 4.5 W.

The Viper chip utilizes a versatile, hierarchical structure which has
enabled the interconnection of a large amount of IP blocks. A hierarchical
structure is a good fit to heterogeneous systems having different blocks with
different demands from the architecture. In this case, the existing legacy IP
blocks dictated the used interconnection but made also the design of the
system much faster. Multiple clock domains were utilized to enable the
connection of components operating at different frequencies. The Viper
chips are further described in Chapter 15 of this book.
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5.4 HIBI architecture

Three of the previous bus systems, Marble, AMBA, and PI-bus,
supported hierarchical structures. However, the practical architectures based
on circuit-switched bridges have limitations. To achieve a heterogeneous
architecture, bridges or routers with buffer memory are required. These
components receive data from one segment, possibly storing it before
accessing the next communication channel, and then transmitting the data
onwards. Therefore, they do not reserve the whole communication link from
the transmitter to the receiver for the whole duration of the transfer.

HIBI interconnection is designed based on the principle that the
application should dictate the architecture of the system. This approach is
different from the topologies acquired from scientific multiprocessor
systems and fixed bus architectures where an application is mapped to an
existing architecture. The idea with heterogeneous systems is to allow a
number of possible topologies in a hierarchical manner enabling the
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construction of systems with topologies optimized for a given application. In
Figure 8-8, a heterogeneous HIBI-based architecture is presented which
includes a single bus segment, a multiple bus structure, a tree structure, some
point-to-point signals, and a buffering bridge between two segments.

The heterogeneous architecture of Figure 8-8 is a trade-off between a
circuit-switched and a packet-switched network. The transmitted data is
stored only in the bridges and not in every element of the network. In
addition, parallelism can be utilized only where it is required and therefore
the complexity of the system does not become unnecessary high.
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Figure 8-8. A heterogeneous HIBI architecture

6. CONCLUSIONS

It seems obvious that there is no general interconnection that perfectly
fits every arbitrary application. Particularly, the proposed homogeneous
network topologies and fixed bus architectures have many limitations.
Because application is rarely an exact fit to the architecture, the ratio of
average throughput to maximum available throughput in these systems is
relatively small. A heterogeneous architecture, which makes a further
distinction between local and global communication, addresses some of
these problems. Locally, in segments having only a few agents, the
communication can be accomplished via a bus. On the other hand, the global
communication topology between these segments should be based on
application specific bus and network structures.
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Chapter 9

FROM BUSES TO NETWORKS

David Sigüenza-Tortosa and Jari Nurmi

Abstract This chapter tries to make the case for the adoption of packet-switching
networks as the main type of interconnect for future System-on-Chip.
A set of requirements for Network-on-Chip is presented. A brief de-
scription of the Proteo Network-on-Chip being developed at Tampere
University of Technology is included.

Keywords: Network-on-Chip, bus, circuit-switching, packet-switching, Proteo.

1. Introduction
The topic of Network-on-Chip (NoC) is being actively researched

around the world by many groups and individuals. There exists the
conviction that NoC will be one of the cornerstones of future highly-
integrated System-on-Chip (SoC) devices, along with block-based design
methodologies and hardware-software co-design.

The goal of this chapter is to give an understanding of the princi-
ples of networked communication from the perspective of NoC design.
Since there are many publications dealing with networks and protocols
in general, we will focus on summarizing the most important concepts
and discussing the required qualities for a practical NoC architecture.

1.1 Physical and Technological Issues
As seen in Part I of this book, when electronic designs are scaled

down to Deep Sub-Micron (DSM) regime, several non-ideal effects that
were considered quantitatively small in past technologies appear now as
serious obstacles for straightforward downscaling. Other problems arise
because old techniques and materials are pushed to the limit, e.g. the
power dissipation capabilities of packaging [1].
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In this environment, long interconnects must be thought of as inher-
ently noisy and slow. Part of the solution to the interconnection prob-
lems is the adoption of the Globally-Asynchronous Locally-Synchronous
(GALS) paradigm, in which the system is partitioned into different sub-
systems that use unrelated clocks and communicate asynchronously. Re-
moving the global clock brings several advantages: suppression of clock
skew and synchronization problems and getting rid of one of the most
important power consuming elements – the clock distribution network.
Since most available Intellectual Property blocks (IPs) are currently de-
signed as synchronous blocks, they will require wrappers to interface the
asynchronous environment. Figure 9.1 represents a generic functional
IP and its wrapper, following in part the work of [2].

Figure 9.1. Network node general architecture.

NoC conceives the interconnection infrastructure as a pre-made el-
ement in the design process, with some degree of independence from
the specific functionality of the system. This independence allows op-
timization of the interconnect to keep disturbances under control, and
enforces modularity [3]. There have been studies about separated design
of the computation and the communication parts of a system [4]. More
information is available in Part III of this book.
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Another major concern is the increasing costs of testing an IC. It is
being argued that current design goals of performance and small size
may not be economical in the near future and a stronger emphasis in
manufacturability is needed [5]. The introduction of fault tolerance and
test infrastructures in a standardized and possibly automated way is
very appealing in this context, as a means to enhance production yield.
The introduction of IP-based methodologies enables the development of
these aspects as part of the services offered by the network. Using pre-
made computational blocks and a pre-designed NoC in a new design will
not be the optimum choice from the point of view of performance, but it
may be the most economical, saving most of the work of implementing
system-level mechanisms.

1.2 IP-Based and Platform-Based Design
The success of DSM technology depends on the availability of new

design methodologies and tools. One key concept would be the reuse of
previously designed blocks from in-house repositories or purchased from
an external source. IP blocks are delivered in different formats, most
of which allow customization[6]. One author suggests that future SoCs
could contain a number in the order of hundreds of IP blocks, with an
individual size between 50K and 100K gates [7].

With the availability of pre-made blocks, the design effort should shift
to the interaction problem. Interconnection and system verification are
the main issues. Relaying on a pre-designed network with known charac-
teristics, can help in the process. Obviously, such an interconnect must
be extremely flexible for it to be of moderately wide application and
must use a predefined standard interface for its integration.

The Virtual Socket Interface Alliance (VSIA)[8] is an organization
whose goal is to promote IP block reuse and integration solutions [9].
One of their first efforts has been the definition of a standard interface
for IP blocks. The goal of this interface recommendation is to ease the
interconnection of IP blocks from different suppliers, using a basic set
of signals, protocols and communication semantics. Although VSIA’s
interface is not very common in commercial products, it is a good, neu-
tral selection in design cases where choosing a proprietary solution is
not desirable. The Open Core Protocol International Partnership [10] is
another association that has defined an interface standard. The Open
Core Protocol (OCP) specification is in fact a superset of the VSIA
recommendation, with some useful features added.

Open standards like VSIA and OCP introduce some concepts that
may be of great use for the on-chip interconnect designer, like split
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transactions, assignment of identifiers to individual packets and thread-
ing. Tasks that are usually left for the network hardware are: packet
buffering and reordering, error detection and correction, and flow con-
trol. All these imply the use of hardware resources, like storage buffers,
control logic, etc.

2. Characteristics of on-Chip Interconnects
First, let us fix some of the terminology used in this chapter. We will

consider an on-chip interconnect as an entity consisting of a medium,
which provides one or multiple channels, and nodes which interface to
those channels. More specifically, we will call network node or simply
node to a component exclusively dedicated to communication duties.
A system component that does not interface the interconnect medium
directly but through a network node is called a host.

Obviously, the most inmediate advantage of using a pre-defined inter-
connection scheme is that we save the effort of designing a new one. If the
on-chip interconnect is delivered as a set IP-blocks, the job is reduced to
verify the instantiation. This is one of the roles of on-chip interconnects.
Also, their introduction has to allow the economical interconnection of
a number of devices, which may possibly be quite high. This may imply
the inclusion of standard test, debug and/or fault-tolerance mechanisms.
Another important role is to structure communication inside the chip to
obtain a certain degree of control on the interconnection performance.
Finally, an on-chip interconnect must carry out the communication tasks
in a efficient way, power- and resource-wise.

In order to fulfill the above goals, the requirements for a reusable on-
chip interconnect can be summarized as follows (classified in five groups):

Performance Requirements. A tentative expression of generic
performance goals (somewhat obvious choices) could be:

Latency must be low, both in the sense of time to access the net-
work and in delay of end-to-end communication. A latency of less
than 1µs may be acceptable.

Bandwidth (capacity) must be high. A peak bandwidth in the
order of a few gigabytes per second may be good for most appli-
cations.

Power consumption must be low. At least, the network should not
increase the power demands of the system excessively.

It must be performance-wise scalable, i.e. efficient for a range of
performance levels. This requirement could have been placed also



From Buses To Networks 235

under the next heading, but we wanted to stress the idea that
the network should be a reasonable choice for both high- and low-
performance designs.

Architecture Requirements. They include all the topology and
protocol requirements. If the interconnect must be reusable, it must be:

Compatible with the GALS paradigm, in the sense that it is pos-
sible to implement it using asynchronous links for global commu-
nications.

Architecturally scalable, i.e. independent of the number of nodes
present in the system.

General purpose, preferably not confined in a specific domain of
application, and supporting different types of transactions.

Programmable, i.e. dynamically adaptable to varying traffic pat-
terns, in case the system software is updated or the system topol-
ogy is changed during operation, due to the activity of a power-
saving or fault tolerance mechanism.

Quality-of-Service (QoS) Requirements. In order to design a
reliable network, the following conditions should be met:

The delivered performance is always within some predetermined
boundaries. This is a basic feature needed for early performance
estimation, real time system design and other time related issues.
Working with asynchronous hardware makes this requirement non-
trivial.

The interconnect must be resistant to noise, because it is expected
to work in a very noisy environment. In order to decrease sensi-
tivity to noise, redundancy can be introduced at several levels in
the protocol stack, involving duplicated hardware, retransmissions,
etc.

It must be fault tolerant, that is, offering a gracefully degrading
service in the presence of faults that may appear in the system
after production (transient or static).

Technology and Methodology Requirements. The intercon-
nect must meet the following requirements to be suitable to future design
environments:
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It should be possible to estimate the performance of the network
at an early time during the design cycle or tune the network com-
ponents to a specific performance level.

Use of as few resources as possible.

Compatible with an IP-based design flow – this suggest that the
interconnect itself should be an IP-block.

Manufacturability requirements. This group of requirements
may render the interconnect design totally useless if not met:

The interconnect must be highly testable, providing an error cov-
erage of over 95% .

It must be fault tolerant, which in this context means that it must
include enough redundancy to provide static fault recovery after
production or at least the possibility of using the interconnect in
a downgraded form in the presence of faults.

Fulfilling all the above requirements is not trivial. They are interre-
lated and careful consideration of trade-offs and left-outs is required.

3. Buses
A straightforward means for interconnecting a set of nodes is to tend

a wire between each pair of components. This is not economical nor
feasible in most situations. It is not efficient because the nodes will not
communicate with each other all the time, and thus the medium be-
comes seriously underutilized. We must reduce the number of wires and
rationalize the sharing of the medium without degrading performance
excessively. Arbitration mechanisms and guarantees that each block is
able to connect to other blocks must be provided. The Open Systems
Interconnection (OSI) reference model[11] shows how to structure the
communication tasks.

The bus is the simplest and also the most extensively used intercon-
nection scheme. It is based on the sharing of one single channel. The
advantages of the bus are clear:

It is a very cheap structure and everybody understands how it
works.

Bus protocols have easy semantics. The resources dedicated to
communication tasks within the boundaries of the computational
blocks connected to a bus are few.
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Priorities can be asssigned to some components and reduce latency
to a minimum for the highest priority ones (at the expense of the
other components, of course).

The communication model the bus favours is the memory-mapping
of components, where all components in the system share a com-
mon address space and answer to a range of addresses, as opposed
to the message passing model. Most IP-blocks today are memory-
mapped and standard interfaces are defined following this model.
This means that nowadays any on-chip interconnect must provide
support for this model if it is intended to be used together with
readily available components.

The bus has very important disadvantages too:

It is not scalable. As nodes are added, performance degrades due to
capacitances and parasitics. There is a practical limit for the num-
ber of components in a system using a bus as its communication
scheme, and this limit is not high.

It is not very testable. In a bus there are many possible states for
the interfaces between nodes and medium and a full test of the
structure is almost impossible for a high number of components
and high coverage.

There could be an important degradation of access time due to
contention and arbitration. The low priority components may suf-
fer severe delays. The whole of the bus must be designed for the
worst case which may lead to inefficiencies.

Another problem is its lack of modularity. This causes the poor
fault tolerance performance of buses.

Salminen[12] has published a review of bus interconnects that are
used in SoC designs. Buses are useful in systems with up to a dozen or
so nodes. By checking against the list of requirements in the previous
section, we realize that the bus is expected to fail to meet the scalability
and testability constraints of future environments. Hierarchical buses
may be able to patch up the scalability limit, but, in general, they are in
disadvantage when compared to switched networks. Still, buses will be
used as local interconnects in SoCs implementing hierarchical networks,
in which components are grouped in clusters.

4. Circuit/Packet-Switching Networks
To solve the scalability and testability problems of buses, interaction

between nodes in the system must be limited. The method is to intro-
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duce point-to-point connections instead of shared channels. In practice,
the medium is divided in segments called links. The information flows
from node to node passing through one or several of these links. Each
time an information unit crosses from one link to the next, it is said that
it has performed a hop. The network architecture defines how the differ-
ent links are interconnected and a means of guiding or routing the data
through the network from source to destination. If the routing decisions
are taken only once at the beginning of the transaction, and all data in
that transaction is forced to follow the thus establlished path or circuit,
we talk about a circuit-switching network. If each data unit or packet is
routed independently, we talk about a packet-switching network. Each
type of network provides a more dynamic interconnection scheme than
the bus. In this section we will introduce their main characteristics and
their value in the NoC context.

4.1 Circuit-Switching
In figure 9.2 a basic example of the operation of a circuit-switching

network is shown. In this kind of network, a dedicated circuit must be
established before the transmission of data begins. Then, data flows from
source to destination using the selected path. When the transaction is
complete, the circuit is released for another use, possibly involving other
nodes. Normally several circuits can be established simultaneously, as
long as they use different links. Note that in figure 9.2, node B can
not communicate with node C until node A frees the circuit, because
switch b is busy. In this case, it is said that the connection B-C is being
blocked. Node B can, however, establish a circuit to node D and carry
out a transaction in parallel with the transaction A-C. The use of the
network resources is decoupled. This was not the case in a bus.

The accumulated bandwidth of the circuit-switching network is high,
although the actual usage may be quite low, due to the exclussiveness
of the circuits. Any idle period is wasted bandwidth since, until the
circuit is terminated, no other nodes apart from the ones that set up
the connection can use it. Also, the time spent setting up and liberating
the circuit penalizes performance. But once the transmission starts, the
paremeters of the connection are very stable. This is a very interesting
characteristic. In consequence, circuit-switching is a good candidate for
infrequent but big transactions, or constant streaming of data between
two components.

An important problem is the poor fault tolerance of this kind of con-
nection. A faulty link affects all connections that use it and may inter-
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Figure 9.2. Operation of a circuit-switching network.

rupt completely communication between some of the components in the
system.

4.2 Packet-Switching
In a packet-switching network there are no dedicated circuits: each

link may participate in many different transmissions running simultane-
ously. Data sent over the network is organized in finite size units called
packets. A packet includes a header section containing routing informa-
tion and a payload section. The nodes laying between the source node
and the destination node determine how to route the packets by examin-
ing the headers. This implies that a percentage of the total transmitted
information is dedicated to protocol operation and should be considered
an overhead. On the other hand, there is no time penalty for creating
any circuit. As a consequence, a packet-switched network seems better
suited for communication in which transactions occur sparsely in time.

In figure 9.3 we have represented the basic operation of a packet-
switched network. It shows that packets transmitted between two given
nodes do not have to use always the same links. The possibility to
use alternate routing is useful in congestion avoidance, by selecting in-
telligently a different path each time a potential blocking situation is
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detected. Another application is fault tolerance: faulty links or nodes
can be disconnected without affecting connectivity by providing a sub-
stitute for the eliminated path. On the other hand, this redundancy
makes the routing decisions more complex and introduces the possibil-
ity that packets arive to their destinations in a different order than they
were originally sent. A re-ordering mechanism has to be implemented
in this case.

Figure 9.3. Operation of a packet-switching network.

As a consequence of the packetization of the data, blocking of con-
nections is less likely to occur. For example, in figure 9.3, node B can
already start a transaction at the same time node A is sending packet
2, before A has finished its transaction.

A packet-switching network can be designed in a very modular way,
and this is the foundation of its most important characteristics. Its main
disadvantage is its high complexity. Automated tools are esential in its
design and deployment. Nodes in a packet-switching network require an
important amount of hardware resources. Careful tuning and optimiza-
tion of this type of network is mandatory.
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4.3 Comparison
The bus is very economic and simple, and is suitable for most appli-

cations, but it has some insurmontable flaws: it is not scalable and it
does not meet the demands of manufacturability for the future.

Circuit-switching and packet-switching networks require more reso-
urces, but software tools can help optimizing the implementation. A
packet-switching network has the very important advantages of being
both more flexible and scalable than a circuit-switching network, and
although for a specific application it would be possible to find a better
candidate, it has a general purpose character. With the availability of
adequate software tools, packet-switching would be the better option for
the design of a generic NoC.

5. Proteo
Several researchers have already proposed packet switching networks

in [13] and [3]. In [14], one author presents a NoC architecture in which
guaranteeing QoS requirements is the essential drive. A brief description
of some NoC experiments can be found in [15]. An overview of other
proposed NoCs can be found in [16].

At Tampere University of Technology (TUT), we are developing a
NoC architecture that we call Proteo, the name of an ancient Greek god
who could change his form at will. He also had the gift of prophecy,
although he was not very inclined to give oracles to mortals. . .With this
name we want to express the idea of flexibility: based on a small library
of predefined, parameterized components, we are able to implement a
range of different topologies, protocols and configurations.

The problem is to design an interconnection mechanism for a rela-
tively wide range of systems built from heterogeneus blocks, providing
an adequate level of performance for a given application. The solution
will consist of a network of some type, a set of protocols and a standard
interface for accessing, along with the implementation of software tools
for the automation of the integration process. In our project, the focus
is on researching new protocols, architectures and the implementation of
synthesizable blocks, and initiate the development of a set of prototype
software tools.

The network will be built from parameterized IP blocks, providing a
very flexible structure. Nodes will be customized by sizing their inter-
nal buffers, enabling/disabling protocol features, etc. One of our most
important goals is to design a highly scalable network, both in terms of
number of nodes and in performance. We do not want to focus (initially)



242

on any specific application and our desire is to create a general purpose
NoC generator.

We have defined a basic architecture and implemented the library
blocks and obtained some initial synthesis figures. We are currently
exploring an automation environment. A presentation of our project can
be found in [17] and [18], and an overview of the simulation environment
in [19]. A comprehensive description was published in [20].

5.1 Proteo Overview
Our vision is that SoCs will be built from heterogeneous clusters of

blocks. In this scenario, at least a large part of total communication
involve only neighbouring nodes. These clusters carry out related func-
tions and are in fact subsystems composed of a handful of blocks. A bus
is an adequate communication scheme for intra-cluster activities. Only
certain blocks inside each cluster would need to communicate with blocks
in other clusters. Inter-cluster communication is handled by dedicated
hubs which implement high level functionality which is not needed for
intra-cluster buses, like packet reordering and assignement of individual
packet identifiers. For inter-cluster connectivity, a full-fledged network
is implemented using packet-switching in a ring, mesh or tree topology.
In figure 9.4 an example topology is represented. This is the kind of
system we are using as a template in our development.

5.2 Proteo Hardware Elements
The basic hardware elements in our network are:

Hosts Every host corresponds to a functional IP or a multicomponent
subsystem that will be connected to the network using a dedicated
node as a wrapper. Any host compliant with the core VSIA-AVCI
recommendation is supported at this moment.

Nodes The nodes regulate the interaction of the different packet flows
in the network and interface the synchronous and asynchronous
domains.

Links The links are the elements that actually move the information
from node to node in the network in a clock-independent manner.

For development purposes, we have been only considering the VSIA
standards, as a representative of a valid proposal for IP blocks’ inter-
face standardization. Currently we are moving to the OCP standard,
because it is more practical. Depending on the type of interface, we will
connect the IP blocks using different topologies. The reason is that, in
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Figure 9.4. Example topology.

the basic version of the interface recommendations, there is not enough
explicit information available at the interface to support a complex pro-
tocol stack. In order to keep network nodes as simple as possible, it is
better to group similar blocks in clusters, and leave the network protocol
operations to specialized hubs.

5.2.1 Nodes. The architecture of a typical node is inspired in
Scalable Coherent Interface (SCI) standard[21], which is a standard in-
terface developed for multiprocessor systems. SCI implements a rich set
of mechanisms covering most of the needs of high performance systems.
Our node architecture extends the basic SCI architecture to allow a con-
figurable number of dimensions (figure 9.5). We have chosen a highly
modular structure that makes easy its configuration and tuning. This
node architecture has the advantage of being scalable because complex
functionality like routing and flow control is confined to specific blocks.

The Output-, Input- and Bypass-FIFOs, plus the link mux and link
demux blocks, form what we call a port-module block. The node architec-
ture is built using one port-module and an interface block. This interface
block translates the functional IP’s (host) interface signals, packetizes
the bursts coming from the host, and supply the output buffers with
the correct packet format. Conversely, it translates the format of the
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Figure 9.5. Extended node architecture with three I/O links.

packets placed in the input buffers to the correct interface signals. All
components are implemented as independent IP blocks. For the moment
we have only implemented a VCI-compliant interface block, but other
modules are also possible.

The link-mux block inside the port-module takes care of the flow-
control. The tasks of a flow-control algorithm in the context of NoC
are:

Ensuring the host is allowed to use its share of bandwidth.

In case there is the possibility of taking up unused bandwidth,
restraining the host from using too much of it, because it could
starve other nodes.

Divide the available bandwidth among nodes, according to the
designer’s intentions.

Minimize buffer size.

Currently we are using a variation of the Persistence With Break (PWB)
algorithm mentioned in [22].
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In order to provide support for multidimensional networks (figure 9.5)
we connect together several port-module blocks, together with a node-
router and a node-mux. The node-router block contains a configurable
routing table used to decide to which port-module to send each packet
presented by the interface block. The node-mux block selects the next
packet from the ones offered by the pool of port-modules, based on some
local priority scheme. Currently it uses a round-robin policy. Multidi-
mensional nodes grow bigger and slower, but in general lower dimen-
sional networks seem to work more efficiently than high-dimensional
networks[23], so we expect to find more applications for the smaller
nodes. The configuration parameters include number of port-modules
for each network node, FIFO geometry, supported protocols and packet
formats.

The architecture just presented limits the number of possible topolo-
gies. For example, tree networks are not directly implementable using
this kind of nodes. We are developing a couple of new types of nodes
that allow the use of new topologies. These new types are not attached
to any host and their functionality is equivalent to a 2-to-1 multiplexer
or a 1-to-2 demultiplexer.

In reference to figure 9.1, the description above only covers the blocks
labelled as “network synchronous hardware” and “network interface”.
We will not describe in this article the asynchronous block. It might be
beneficial to reduce the amount of synchronous logic in the node design,
up to the point in which only the network interface is synchronous.
Advantages include: easier inter-clock domain communication, better
noise inmunity and low power. Some research is being done in this
direction.

Hub nodes are built basically in the same way, providing the adequate
interface block for the kind of subnet it serves.

5.2.2 Links. In our terminology, a link block includes also
the asynchronous transmitter and receiver shown in figure 9.1. Links
interface the synchronous and the asynchronous parts of the network,
using a special technique based on clock-stopping, similar to the one
described in [2], to avoid metastability.

A link contain a group of signals that transmit the packet bits in
parallel. There are additional signals for the asynchronous handshake
and sideband signaling. Sideband signaling is used to mark the start
and end of a Proteo packet.

Links provide a high level interface for the design tools, so they are
effectively treated as modular elements and independently tuned.
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5.3 Proteo Architecture
5.3.1 Topology. Currently, the topology being explored is
a hierarchical network built from a system-wide bidirectional ring and
several subnets with bus, ring or star topology (figure 9.4). The use of
regular topologies allows easy routing and direct replication of blocks
throughout the system.

5.3.2 Protocol. In the ring, transactions are split and out-
of-order responses are allowed. The AVCI-like interface presented by
the blocks attached to the ring provides more information about the
transaction than the bus interfaces do. The nodes can be made quite
simple and still form complex networks, because their functionality is
restricted to the lower levels of the protocol stack.

Inside the Proteo network, the packets are forwarded in virtual cut-
through fashion. In one router the start of the packet is routed forward
immediately, before the whole packet has arrived, if the output link
is free. If the output is not available, packets are stored in the FIFO
buffers. The amount of buffering is one generic design parameter.

If the communication needs are characterized correctly, we can en-
able/disable protocol features at each node. Just a basic packet format
has to be defined and kept throughout the network.

5.3.3 Packet format. Packets create a communication over-
head. Therefore Proteo packets are kept as simple as possible. A packet
consist of two areas: the header and the payload. The header fields are
needed to deliver data from the source node to the target node. The
payload section carries the data and the rest of the address as generated
by the initiator host. Other VCI signals, like Byte Enable (BE), can be
included in the payload section to allow the reconstruction of the origi-
nal interface signals at the target host interface, although they are not
relevant in the network context. The structure of the packet and the
length of each field are configurable at design time.

6. Conclusion
Although buses will play a very important role in any electronic sys-

tem as far in time as we can foresee, it is unavoidable the adoption of
Networks-on-Chip in a non-distant future. In this chapter we have tried
to summarize the basic relevant concepts in networking and identify the
possible requirements of future NoCs. We tried also to present a rea-
soned argument for the adoption of packet-switching networks in future
designs.
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NoC are not quite the same as previous multiprocessor interconnec-
tion schemes or common local area networks. It presents some new
characteristics, like its vast possibilities for customization, and several
very important methodology questions. Also, the kind of systems we will
have to deal with will be different: they will present different contraints
and a much more diverse range of applications.

We have presented our own NoC proposal, called Proteo. Still not
fully developed, it is an exercise on network design that allows us to try
our concepts and ideas in a realistic set up.
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[17] I. Saastamoinen, D. Sigüenza-Tortosa, and J. Nurmi. Interconnect
ip node for future system-on-chip designs. In Proceedings of DELTA
2002, Christchurch, New Zealand, January 2002.
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Chapter 10

ARBITRATION AND ROUTING SCHEMES FOR
ON-CHIP PACKET NETWORKS

Heikki Kariniemi and Jari Nurmi
Institute of Digital and Computer Systems, Tampere University of Technology, Finland

1. INTRODUCTION

The operation of arbitration and routing algorithms has a significant
effect on the performance of the packet switched networks. Switch arbiters,
which are responsible for scheduling the internal resources of the switches
for packet transfers from input ports to output ports, determine the
throughput of the switch nodes. Their operation can be modeled with a
bipartite graph matching problem where each maximum matching
corresponds to a valid schedule with maximum number of simultaneous
transfers. Arbitration algorithms can be classified to maximum size matching
(MSM) and maximum weight matching algorithms (MWM). The MWM
algorithms, which are able to take into consideration the filling of the input
buffers, are usually able to produce higher throughputs than the MSM
algorithms. In spite of this, most of the present arbiters implement the MSM
algorithm or its approximation, because the MWM algorithms do not
basically have fast and simple hardware implementations. For this reason,
the beginning of this chapter, which concerns arbitration schemes, focuses
mostly on the MSM algorithms. However, recent research results show such
a progression that it can be expected that practical implementations for the
MWM algorithms and their approximation may also soon become usable.

Routing algorithms are responsible for controlling the routing of the
packets to their desired destinations. The network topology, which can be
either regular or irregular, affects the complexity of routing and restricts the
set of usable algorithms. Generally speaking, routing in the networks with
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irregular topologies is more complex and requires extra resources for the
processing and storing of the routing information, which is due to arbitrary
connections between switches and processing nodes. In computer networks
with regular topology the connections between the switches and computers
follow some particular rules, which can be utilized by the routing algorithms.

There are multiple redundant routing paths between the source and
destination nodes in typical computer and on-chip networks, which makes it
possible to route traffic flexibly past congested switches. Adaptive routing
algorithms are able to utilize redundant routing resources and adapt their
routing decisions to the prevailing traffic conditions and balance the traffic
load over the whole network in such a way that the possibility of congestions
decreases, which also improves the performance of the network. Unlike
adaptive algorithms, non-adaptive routing algorithms route packets
deterministically along the specified routing paths from the sources to the
destinations. Switches are not able to prevent congestion when, for example,
two or more packets simultaneously request the same output port or the
requested output port is already reserved, even if free ports would be
available. Non-adaptive routing algorithms produce typically worse
performance than adaptive, although load balancing could be used for
generating routing paths randomly so as to distribute the traffic load over the
whole network. The performance of the non-adaptive routing can also be
improved by a smart allocation of network resources. A new approach,
which aims at allocating link capacities to virtual circuits (or routing paths)
in such a way that the network throughput would be maximized, is called
oblivious routing.

Most of the solutions presented in this chapter have originally been
designed for computer networks. They will also be used in future on-chip
network implementations which will resemble current computer and
telecommunications networks [1, 2]. Because also many of the System-on-
Chip (SoC) circuits are used in computing intensive applications, the focus is
on such solutions which have been destined for high-performance computing
systems. This chapter is organized as follows. Section 2 discusses a switch
architecture, which has become usual in telecommunication switches and is
suitable for on-chip packet switched networks also. The objective of this
section is to introduce the operation of the switches before presenting the
arbitration and routing schemes. In Section 3 different arbitration schemes
are presented. In the beginning of this section arbitration is examined from
graph theoretic point of view in order to explain the scheduling problem. In
Section 4 different routing schemes are presented. In the beginning of this
section general features of routing algorithms are described. This section has
been divided into two parts where routing in the networks with irregular and
regular topologies are concerned separately. In Section 5 the arbitration and
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routing in extended generalized fat trees (XGFT) is concerned. This is used
as a simple case study to show how the routing can affect the throughput of
the network and how the arbitration could be implemented. The last section
summarizes the contents of each of the sections briefly.

2. GENERIC SWITCH MODEL FOR ON-CHIP
PACKET SWITCHED NETWORKS

Crossbar switches with different buffering architectures are commonly
used as basic building blocks in different switch architectures in packet
switched networks [3, 4, 5]. There are at least two good reasons for that.
Firstly: crossbar switches have simple architecture and operation. Secondly:
they have excellent performance. One of their disadvantages is that their size
is proportional to the number of ports and grows fast as the port count is
increased. Therefore, larger switches with high port count are usually
constructed from smaller crossbar switches and their architectures resemble
small communication networks. For example, multistage interconnection
networks (MIN), which are also used as switches, consist of multiple levels
of crossbar switches. Because in typical on-chip networks switches have
relatively small number of ports, the crossbar switches can be considered the
most probable choice for the switch architecture in most of the cases. In
addition, crossbar switches with different buffering architectures will also be
used in many future on-chip networks [6, 7, 8]. For this reason, in the
following sections it is assumed that the switch nodes are crossbar switches.

2.1 Buffering schemes for crossbar switches

Different buffering schemes have been developed for crossbar switches.
Most commonly used are output-buffered, crosspoint-buffered, and input-
buffered switch fabrics. Output buffered switches have ideal performance
with 100% throughput, but it presumes that the operation rate is speeded up
in proportion to the number of the input ports. For instance, if N input ports
would simultaneously have packets destined for the same output port, the
transmission rate should be speeded up by N so that all of the N packets
could be transferred without stalling the transfer to any of the input ports
from the other network nodes. Crosspoint-buffered switches can achieve as
high performance as the output-buffered switches without speeding up their
operation rate, but the size of the crossbar grows quickly as the number of
ports increases.

Input buffered crossbar switches are smaller than crosspoint-buffered
switches, but a head-of-line (HOL) blocking decreases considerably their
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performance. This is illustrated in the left side of Figure 10.1 where empty
white circles denote requested but not granted transfers, and black circles
requested and granted transfers. Although input buffers contain packets for
all of the output ports, only two requests have been granted, because the first
packets in multiple buffers require the same output ports. The right side of
Figure 10.1 illustrates the same situation when the queuing discipline has
been changed from the first in – first out (FIFO) to another which allows the
packets to be transferred out of the buffers in an arbitrary order which is
different from the order of their arrivals. This can be implemented by
replacing FIFO buffers with virtual output-queuing (VOQ) buffers or
dynamically-allocated multi-queue (DAMQ) buffers [9]. The right side of
Figure 10.1 illustrates how packets can be picked up form the VOQs or
DAMQs in a suitable order so as to avoid HOL blocking and how more
transfers can be performed simultaneously through the crossbar, which
improves the performance.

1 1

2

1 4

1 2

3

3

2

FIFO arbitration VOQ arbitration

Figure 10.1. Example arbitrations with FIFO and VOQ buffering.

2.2 Switching strategy

The switching strategy determines how the channels and buffer resources
are allocated to packets as they are transferred forward in the network and as
the switch becomes temporarily congested. Cut-through routing tries to
forward packets immediately after their headers have been received and the
output ports can be determined. The cut-through routing strategy can be
further classified to virtual cut-through routing [10] and wormhole routing
[11] depending on how the packets are forwarded. Both the virtual cut-
through and the wormhole switches determine the output port number
according to the information stored into the packet headers and forward the
packets immediately after their headers have been received, if the
appropriate output port is free. If the appropriate output port is not free,
wormhole switches keep the input port and the corresponding
communication channel reserved until the desired output port becomes free.
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Therefore, wormhole switches usually do not need to have buffer space for
storing the whole packet and the transfer must be stopped. Unlike wormhole
switches, virtual-cut through switches store the whole packets in the case
that they can not be forwarded immediately after they have arrived. The
virtual cut-through routing provides usually the best throughput, but the
wormhole switches have the advantages of a small buffer space requirement
and small switching latency.

Wormhole routing can be used with virtual channel flow control [11],
which was originally designed for avoiding deadlocks in k-ary n-cubes and
which resembles VOQ buffering. In this buffering scheme each virtual
channel has its own buffer, but unlike the VOQs, the number of buffers per
input port can also be smaller than the number of output ports. However, it
has been shown that the higher the number of input buffers per input port is
the higher is the network throughput [12]. In typical packet switched
networks the maximum packet size is limited, unless the packet size is fixed.
Therefore, when variable packet size is used, the input buffers could be
dimensioned, for instance, in such a way that a couple of packets of
maximum size fit into them.

3. ARBITRATION SCHEMES

Q(1,1)

Q(1,K)

Q(N,1)

Q(N,K)

N×K CROSSPOINT
ARRAY

J(1)

J(K)I(N)

I(1)

ARBITER

Req(1)

Req(N)

Grant(1)

Grant(N)

Ctrl(N×K)

Figure 10.2. An input-buffered crossbar switch architecture with virtual output queues (VOQ)
and centralized arbiter.

All arbitration algorithms solve generally the same problem when
scheduling the transfers of the packets from the input ports to the output
ports of the switch. The scheduling task is similar independently of the
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switch architecture, although here it is assumed that the switch is an input-
buffered crossbar switch with VOQs depicted in Figure 10.2. This switch has
N input ports and K output ports. Each of the input ports i (1

�
j

�
N) has K

buffers for virtual output queues Q(i,j) which store the packets until the
destination output port j (1

�
j

�
K) becomes free for the transfer. Input ports

can request multiple transfers simultaneously and an arbiter is able to
schedule several transfers at the same time during one arbitration cycle. For
instance, the arbiter should be able to schedule a maximum of K transfers at
the same time, if all of the input ports would have at least one packet in each
of their VOQs and output ports would be requested correspondingly.

3.1 Modeling arbitration with a bipartite graph
matching problem

The scheduling problem can be modeled with a bipartite graph matching
problem. A bipartite graph is an undirected weighted graph G(V,E) where V
is a union of two distinct sets of vertices I and J, and E is a set of edges
which connect the vertices. Any pair of two vertices of graph G can be
connected to each other with an edge belonging to set E only if they belong
to different sets. In addition, each of the vertices can be connected to
multiple other vertices. This is illustrated in Figure 10.3A.

1

Graph, G Matching, M

3

2 2 2 2

1 1 1

3 3 3

K KNN

4 4 4 4

Input
Ports, I

Input
Ports, I

Output
Ports, J

Output
Ports, J

wN,M

w1,2 w2,1

wN,M

w1,4 w3,1

(A) (B)

Figure 10.3. Graph G (A) and matching M (B) on it.

When modeling the scheduling problem vertices of set I correspond to
the input ports and vertices of set J correspond to the output ports in such a
way that there is one vertex for each of the ports in the sets. In Figure 10.3A
edges between vertices correspond to requests that input ports send to the
arbiter. For example, input port two has two packets one of which should be
transferred to output port 1 and the other to output port 3. Matching M on G
is any subset of E where none of the two edges in M have a common vertex.
Figure 10.3B illustrates one possible matching M on graph G. Matching
Mmax with the highest possible number of edges is called the maximum
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matching. When solving the bipartite matching problem the objective is to
find the maximum matching. This is what the arbiters are doing when they
are trying to schedule as many simultaneous transfers as possible from the
input ports to the output ports. It is also possible to associate other weight
values wi,j than one with the edges so as to model, for instance, the
occupancy of the buffers.

In the case that the weights associated with the edges are equal to one the
maximum matching Mmax is the matching with highest number of edges. If
the weights are larger than one, the maximum matching Mmax is the matching
with the highest total sum of the weights. These matchings are called
maximum size matching (MSM) and maximum weight matching (MWM)
respectively. Below is a list of general properties which are desired for
arbiters which will be used in high-speed switches [13].

1. Provides a high throughput. Arbiters should be able to find such
schedules that the throughput of the switch will be maximized, which
requires finding good matchings. In addition, the algorithm should be
stable, i.e. the expected occupancy of the input buffers (VOQs) should be
finite.

2. Offers a starvation free service. Arbiters should serve all of the input
buffers (VOQs) fairly so that these would not become starved, i.e. the
buffers do not remain unserved indefinitely.

3. Achieves a high operation speed. Arbiters should find the matchings as
fast as possible so that they would not become a bottleneck for the
system performance. This usually requires a simple and small hardware
implementation.

The above list could also be supplemented with a requirement of a
support for traffic classification to different service classes by prioritization,
but it is not currently a commonly supported feature. Because the number of
different choices is quite high, in the following subsections only some of the
most commonly known MSM and MWM arbiters are reviewed. However,
they give a view to the present state of the development of the arbiters.

3.2 Maximum size matching arbiters

The best time complexity of iterative algorithms that compute maximum
size matchings (MSM) for bipartite graphs is O(N5/2). These algorithms have
not simple hardware implementations and they require too much time for
computing the matchings, which is a problem. In addition, they do not
produce necessarily such matchings which ensure starvation free service and
stability. For this reason, typical hardware implementations of MSM-arbiters
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perform heuristic parallel algorithms which are able to compute only
suboptimal matchings by approximating the behavior of an exact MSM-
algorithm with smaller time complexity. These algorithms meet at least
partially the requirements presented in the previous subsection. For instance,
heuristic algorithms like iterative round-robin with SLIP (iSLIP) [13, 14]
and iterative dual round-robin matching (iDRRM) [5, 15] only approximate
MSM-algorithms. They are able to provide 100% throughput under
uniformly distributed traffic, but under non-uniformly distributed load their
performance is worse. Both of the aforementioned arbiters consist of
multiple concurrently operating round-robin arbiters. Although they have
practical small and fast implementations they require multiple operation
cycles for computing the matching, which increases the delay. This problem
is solved in pipeline-based maximal size matching (PMM) [16] arbiters
where multiple subschedulers, which can be either iSLIP or iDRRM arbiters,
operate in parallel.

Symmetric crossbar arbiters [9, 17] are another approach for solving the
maximum matching problem. These arbiters consist of an array of arbitration
cells. There is one arbitration cell for each of the cross-points in the array.
These cells are competing for the transfers. Unlike iterative arbiters, the
symmetric crossbar arbiters need only one operation cycle for computing the
matching, which results from the increased parallelism.

3.2.1 Iterative arbiters

The operation of the iSLIP arbiter consists of three steps which can be
iterated repeatedly in the following way. In this arbitration scheme both
input and output ports have their own arbiters that communicate with each
other so as to solve the maximal size matching.

1. Request. Each unmatched input port sends a request to every output for
which it has a packet in one of its buffers.

2. Grant. If an unmatched output arbiter j (1
�

j
�

K) receives multiple
requests, it chooses the one that appears next in a fixed cyclic order
(round-robin) starting from the highest priority element. The output
arbiter j (1

�
j

�
K) notifies each input arbiter whether or not its request was

granted. The grant pointer gj to the highest priority element is
incremented (modulo N) to one location beyond the granted input port if,
and only if, the grant is accepted in the next step (3).

3. Accept. If an input arbiter i (1
�

i
�

N) receives a grant, it accepts the one
that is next in a fixed cyclic order (round-robin) starting from the highest
priority element. The accept pointer ai to the highest priority element is
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incremented (modulo K) to one location beyond the accepted output port.
The accept pointers ai are updated only in the first iteration.

In this scheme the grant and accept pointers are updated only if the grants
are accepted and a match becomes completed. In this way the most recently
matched pair of input and output ports gets the lowest priority, which
ensures starvation free service of all of the ports. Furthermore, all of the
ports are serviced fairly, because the pointers are updated one after another
in a cyclic order like round-robin does. In this presentation the arbitration is
implemented with multiple distinct arbiters placed at input and output ports.
Therefore, iSLIP can also be constructed out of multiple small functional
blocks instead of one large block so as to reduce the operation delays and to
achieve as high operation speed as possible.

The operation of the iDRRM [5, 15] arbiter differs slightly from that of
the iSLIP arbiter, but its operation consists of only request and grant steps.
Unlike with iSLIP, with iDRRM input ports send their requests only to the
output port which they have given the highest priority, not to all of the
output ports for which they have packets in their VOQs. Both iDRRM and
iSLIP can do multiple repeated iterations so as to find a better matching. The
iDRRM arbiter serves input ports fairly, because the output arbiters select
the requests to be granted in a cyclic order one after another like round-
robin, and because the input arbiters do not update their request pointers
before their requests become granted. This ensures starvation free service of
all of the input ports.

In the previously presented arbitration schemes multiple iterations may
be required for completing the arbitration process and each of the iterations
takes more than one operation cycle. This may limit the system performance
when the number of ports grows high unless the arbitration time can be
reduced. One method of avoiding this problem is to perform several
arbitrations concurrently so as to allow more time to be used for single
arbitrations, which requires the usage of multiple arbiters. In pipelined-based
maximal size matching (PMM)[16] arbiters this is implemented with
multiple subschedulers. The subschedulers operate in parallel in a pipelined
manner and it takes 3 operation cycles for each of them to complete the
matching. In this way more computing time can be given for the scheduling
of the transfers while the number of complete schedules per arbitration cycle
can be increased. The exact implementation of the PPM arbiter depends on
the subschedulers which can be either iSILP or iDRRM arbiters.



262

3.2.2 Symmetric crossbar arbiters

Symmetric crossbar arbiters like wave front arbiters (WFA) and wrapped
wave front arbiters (WWFA) [9] have originally been designed to be used
with dynamically-allocated multi-queue (DAMQ) input buffers. The
DAMQs store a separate queue for all of the output ports like VOQs except
that the queues share the same input buffer at each of the input ports. The
left side of Figure 10.4 depicts an arbitration cell array which forms a core of
wave front arbiters. There is one row of arbitration cells for each of the input
ports and one column for each of the output ports in the cell array. Figure
10.4B depicts an arbitration cell. It has inputs for request (R) and grant (G)
signals. The input N-signal indicates whether there are granted cells above in
the same column, i.e. whether the output port has already been scheduled,
and the input W-signal indicates whether there are granted cells to the left in
the same row, i.e. whether the input port has already been scheduled.
Outputs S and E, which are connected to inputs N and W of the next cells on
the same columns and rows respectively, forward this information from a
cell to another. Each of the arbitration cells has also signals which are used
for determining which cells have the highest priority and form the “wave
front”. In Figure 10.4A arbitration cells along the “wave front” diagonals 1
and 5 can be given the highest priority at the same time, because they belong
to different columns and rows. For this same reason, arbitration cells along
diagonals 2 and 6 can be connected as well as diagonals 3 and 7. The result
is a wrapped wave front arbiter (WWFA) where all of the cells of the
“wrapped wave fronts” are always on different rows and columns.
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Figure 10.4.The operation and structure of the wrapped wave front arbiter (WWFA) (A) [9]
(© [1993] IEEE) and an arbitration cell (B).

Figure 10.4A illustrates also how the WWFA-arbiter operates.
Arbitration cells along diagonals 1 and 5 on thick dashed diagonal lines have
the highest priority and they belong to the “wrapped wave front” which is
moved diagonally over the arbitration cell array from the top left corner
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towards the bottom right corner during successive arbitration cycles.
Arbitration cells with dark backgrounds show which output ports the input
ports request. Ellipses within the cells show which of the requests have been
granted while the values beside the arrows show the values of corresponding
S-signals and E-signals (or N-signals and W-signals). As can be seen all of
the input signals of the granted cells must have logical value one unless they
have the top priority.

Both the WFA and the WWFA arbiters have the drawback that they are
not able to provide starvation free schedules for all of the input queues. The
starvation can be prevented if the input queues (VOQs) with the highest
priority are allowed to maintain their priority until their requests become
granted. This requires, however, modifications. Another drawback is that the
WFA and WWFA arbiters have cyclic signal paths through combinational
logic blocks, which is difficult to synthesize and test. This problem is solved
in a diagonal propagation arbiter (DPA) [17]. In the DPA the arbitration cell
array of the WWFA is extended by replicating the cells that belong to the
same “wrapped wave fronts” during different arbitration cycles. The result is
a (2×N-1)×N-array of cells. Arbitration cells have been connected directly
together without feedback loops in such a way that the top most row of every
block of N consecutive cell rows corresponds to one “wrapped wave front”
of the WWFA with the highest priority. The area of active arbitration cells is
determined with a window of N rows, which is moved over the cell array.
This implements the round-robin rotation scheme and ensures the fairness of
the service.

3.3 Maximum weight matching arbiters

Various scheduling algorithms can be designed by assigning different
values to the weights of the edges of graph G. For example, weights can be
queue lengths or maximum waiting times of packets. The time complexity of
the best iterative algorithms which compute exact maximum weight
matchings (MWM) is O(N3log(N)). Pure MWM arbiters like longest queue
first (LQF) and oldest cell first (OCF) have impractically complex hardware
implementations and high time complexities. For this reason, heuristic
algorithms like iterative longest queue first (iLQF) and oldest cell first
(iOCF) [13], which compute only approximations of the maximum weight
matchings, have been developed. Another heuristic MWM algorithm is
iterative longest port service (iLPF) [18] which actually finds at first a set of
maximum size matchings from which it chooses the matching with the
largest total weight. In this way it is able to take advantage of the high speed
of the MSM algorithms while it is also able to produce a more optimal
scheduling like the MWM algorithms. In modified longest queue first
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serviced (mLQF) [19] arbiters sums of the queue length and the maximum
waiting time are used as the weights. It assigns value zero to weights before
the next arbitration cycle each time after the request of the VOQ has become
granted.

3.4 Summary of arbitration schemes

In typical broadband networks switches have either a small number of
high-speed ports or a high number of slower ports and the total input packet
rates are high. In broadband networks a fixed small packet size is also
usually used, which further increases the packet rate and sets harder
requirements for the operation speed and performance of the arbiters. In a
typical on-chip networks switches have smaller number of ports. In addition,
the input packet rate may also be smaller because of the usage of larger
variable sized packets. Therefore, it can be assumed that MSM arbiters
presented earlier are suitable for the switches of the on-chip networks
without any special changes. Generally speaking, MWM arbiters are able to
produce higher throughput, but they are not useful, if wormhole routing
strategy is used, because wormhole switches have usually small input buffers
which have space for only at most few packets. In addition, MSM arbiters
can also be easily supplemented to support traffic prioritization by allowing
only requests with highest priority to take part in arbitration.

4. ROUTING SCHEMES

Routing is a process which is performed in each switch node of the
network for every packet that arrives at them. It determines the paths along
which the packets traverse the network from their source to their destination.
The operation of the routing is specified by a routing algorithm which can be
either adaptive or non-adaptive. Adaptive routing algorithms are able to
route packets past congested switch nodes. Therefore, they typically produce
better throughput than non-adaptive algorithms which are not able to do so.
Furthermore, they can provide more fault tolerant and reliable routing,
because they are usually able to change the routing paths if connections
between switches are broken. Non-adaptive routing algorithms route packets
always deterministically to the destination according to the routing
information, and switches are not able to change the routing path although
the next switch along it would be congested. A simple example of a non-
adaptive routing algorithm is a source routing algorithm. It attaches the
routing information directly to the packet headers in the form of output port
numbers of the successive switches that are along packet’s routing path. For
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this reason, the switches do not need to do any complex and time consuming
computations, which is an advantage. Another advantage of the source
routing is that the load balancing can be partially implemented in it, because
packet sources can give randomly generated routing paths for successive
packets, which spreads the traffic over the whole network, reduces the
probability of the congestions, and improves the performance of the
network.

Routing algorithms that will be used in on-chip networks should
generally satisfy requirements of the following list [20].

1. Routing algorithms must route packets correctly. This includes also
that algorithms should provide deadlock-free routing so that it would be
impossible that multiple packets are waiting in a cycle for each other to
be routed forward, although they will never be routed forward. The
routing algorithms should also be livelock-free, which ensures that all of
the packets will always finally arrive at their destinations.

2. Routing algorithms should consist of simple computations. Simple
computations have usually small and fast hardware implementation
unlike complex computations which require more time and hardware
resources.

3. Routing algorithms should be adaptive. Adaptive routing algorithms
are able to route packets along alternative routing paths to the
destinations and avoid using congested network nodes. They are also able
to distribute and balance the traffic load in the network. In addition, they
usually operate correctly also in such conditions where the network is
partially out of action.

4. Routing algorithms should primarily choose the shortest routing
paths for the packets and use only secondarily the other paths. The
routing delays are smallest along the shortest routing paths, if they are
not congested. This property would also eliminate the possibility of the
livelock.

5. Routing algorithms should service fairly all network users. This
eliminates the problem of an indefinite postponement which occurs when
the packets are waiting for an event (routing) which can happen but never
does.

Network topology, which can be either regular or irregular, has a
significant effect on the implementation of the routing algorithms. In the
networks with regular topology connections between network nodes follow
certain rules, which can be taken advantage of. Because of the regularity of
the connections, the routing algorithms are simpler and they have smaller
and faster hardware implementations. In the networks with irregular
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topology the connections does not follow any special rules and the routing is
usually based on the usage of routing tables which must be configured
before the system is completely ready for operation. Because on-chip
networks can have topologies of both of the types, this section concerns
routing in the networks with both irregular and regular topologies separately.

4.1 Routing in networks with irregular topologies

Computer networks with irregular topology consist of arbitrarily
connected switches and computers as Figure 10.5 depicts. The advantage of
the irregular topology is that the network can be expanded with new
computers or switches in a flexible manner. In addition, if the system size
will be fixed and communication patterns are known, the system architecture
can be optimized in order to minimize communication latencies and to
maximize the network throughput as well as the system performance. As
Figure 10.5 illustrates the network topology and the number of computers
and switches can be chosen flexibly. Furthermore, it would be possible to
use switches of different sizes in different parts of the system, and the
number of transmission links between nodes and channels within the links
could also vary.

Examples of computer networks with irregular topologies are Autonet
[21] and Myrinet [22]. Autonet is a self-configuring network, which uses a
distributed Up*/Down* routing algorithm. Each switch has a processor for
running an algorithm which determines the topology of the network as a
spanning tree and the position of the switch within it. In the spanning tree
hosts are at the leaves at level zero and switch nodes at higher levels of the
tree. After the spanning tree has been determined each switch node is able to
compute and load its forwarding table according to the structure of the
spanning tree. At each switch the input port number and the destination
addresses of the packets are used for addressing the forwarding table which
contains the output port numbers. Because it is not possible to adapt routing
decisions to the varying traffic conditions in the network, this form of the
Up*/Down* routing is non-adaptive. Routing in Myrinet is also based on a
similar usage of spanning trees as in Autonet, but instead of distributed
routing Myrinet uses source routing where packet headers contain routing
information for steering the routing of the packets through the switches. The
hosts perform address-to-route transformation for each packet before
transmission to the network. The performance of the Up*/Down* routing
algorithms depends on the way the spanning tree and routing tables are
computed [23]. They are not able to balance traffic load on the network
either as fully adaptive algorithms like, for instance, Adaptive Trail Routing
[24], which is a disadvantage.
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Figure 10.5. A part of a network of workstations with four hosts (H) and six switches (S).

Online oblivious routing algorithms [25, 26, 27, 28] can be used for
routing virtual circuits optimally on the networks minimizing the probability
of congestion. Oblivious routing algorithms specify routing paths between
every communicating pair of source and destination nodes in such a way that
the load of each transmission link is maximized and the probability of
congestion is minimized. This routing scheme is basically non-adaptive and
it could be used in all networks independently of the topology. Usable
polynomial time algorithms for solving the online oblivious routing problem
have also been developed.

4.2 Routing in networks with regular topologies

Communication networks with regular topologies like different trees,
multistage interconnection networks (MIN), n-dimensional meshes, and k-
ary n-cubes are the most common in multiprocessor systems [20]. One of the
basic non-adaptive routing algorithms used in meshes and k-ary n-cubes is
called dimension order routing (DOR). In this non-adaptive routing
algorithm, each packet is routed along one dimension at a time until it
arrives at a node the local coordinate of which is equal to that of the
destination processor node. After this the packet is routed to the next
dimension. E-cube is a similar basic routing algorithm used in k-ary n-cubes.
In 2-ary n-cubes the coordinates of the destination node can be represented
as a binary number which is stored as a destination address into the header of
the packet to be transmitted. At each node the e-cube computes the position
of the next coordinate or address bit of the local node which differs from that
of the destination node, and the packet is forwarded to the direction of the
corresponding coordinate.

Adaptive deadlock free routing algorithms can be designed
systematically for meshes and k-ary n-cubes. One of the methods is based on
restricting the number of turns along the routing paths [29]. Figure 10.6
illustrates sets of turns of tree different turn model routing algorithms. Figure
10.6A shows all of the eight possible turns and the simple cycles these turns
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can form. In Figure 10.6B two turns are eliminated from both of the cycles,
which corresponds to the deterministic DOR in 2-dimensional meshes.
Dashed arrow lines denote the eliminated turns. Only one turn is allowed,
which makes this non-adaptive algorithm deadlock-free. In Figure 10.6C
only turns to the west have been eliminated from both of the cycles.
Therefore, if it is necessary to route packets to the west, it should be done at
first, because no turns to the west can be used later. After that the packet can
be routed adaptively to the north, east, and south. In Figure 10.6D the two
turns have been eliminated in such a way that the packet is not allowed to be
turned to the other direction after it has been once turned to the north. This
corresponds to the north-last routing algorithm.

(A) (B) (C) (D)

Figure 10.6. Allowed turns of the minimal turn model routing in two dimensions. (A) all of
the eight possible turns. (B) four turns allowed in 2-dimensional dimension order routing. (C)

six turns allowed in west-first routing. (D) six turns allowed in north-last routing.

The operation of the west-first routing algorithm in a two dimensional
mesh is depicted in Figure 10.7. Arrows show the routing directions and
walls illustrate unavailable channels which can be either reserved or faulty.
The route in the bottom right corner will be blocked until the wall breaks,
because the west-first routing algorithm is not able to do turns to west after it
has once turned to some other direction. Let � x and � y denote the number of
hops between the source and destination nodes along x and y dimensions.
Then the number of shortest paths usable for fully adaptive routing
algorithms from the source node to the destination node is equal to
( � x+ � y)!/( � x! � y!). For west-first algorithm there are also
( � x+ � y)!/( � x! � y!) shortest paths available when the x-coordinate of the
destination node is greater than or equal to that of the source node, otherwise
only 1. Therefore, it is only a partially adaptive routing algorithm like all the
other turn model routing algorithms also are. It is also a non-minimal
algorithm, because it does not necessarily route packets along the shortest
paths only. Two other non-minimal adaptive routing algorithms are static
dimension reversal routing and dynamic dimension reversal routing
algorithms [30] which provide the same number of routing paths to both of
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the directions between the source and destination processor nodes. Fully
adaptive routing algorithms have also been developed for meshes and k-ary
n-cubes [31, 32].

X

Y

Figure 10.7. The operation of the west-first routing in a 2-dimensional 8×8 mesh [29]
(© [1992] IEEE).

Oblivious routing algorithms are also used in networks with regular
topologies. The operation of the simplest oblivious routing algorithms
consists of only two steps [33]. In the first step they send the packets to a
randomly chosen node in the network. In the second step they route them to
their correct destinations. Simple oblivious routing algorithms like IVAL
and 2TURN produce clearly better average-case and worst-case throughputs
than DOR in 2-dimensional torus networks [34]. In the first step of IVAL
packets are routed to a randomly chosen intermediate node using DOR. The
second step uses also DOR, but reverses the order of dimension traversal.
The 2TURN algorithm does not have a closed form description like IVAL. It
has only a closed form description of the possible routing paths which can be
any such paths, which contain at most two turns except “u-turns” within the
same dimension. The paths of 2TURN are a superset of those of IVAL.
Because of this, 2TURN has better performance.

Multistage interconnection networks like butterfly networks have regular
topologies which consist of multiple stages of switch nodes. Bi-directional
multistage network (BMIN) is made by connecting two butterflies back to
back and by folding one of the halves on the other half. The switch nodes
must also be modified respectively in such a way that they are able to route
the packets at each stage over bi-directional links instead of unidirectional
links. This is illustrated in Figure 10.8 where transmission links between
switches are bi-directional.
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Figure 10.8. Turnaround routing in a butterfly BMIN.

Typically minimal (shortest-path) routing algorithms like Turnaround
[35] are used in BMINs. Assume that the source address S and the
destination address D are k-ary numbers sn-1…s1s0 and dn-1…d1d0

respectively. In addition, define that function FirstDifference(S, D) returns
the first position t (0

�
t

�
n-1) starting from the left, where digits dt and st are

not equal. The Turnaround algorithm operates in a switch at stage j in the
following way. In this description the left and right ports of the switches are
denoted with letters L and R respectively.

1. t = FirstDifference(S, D).
2. If j = t, then turnaround the packet and send it forward through port L(dj).
3. If j < t and the packet comes from an input port L(m) (0

�
m

�
k-1), then

send the packet forward through any available output port R(i) , for 0
�

i
�

k-1.
4. If j < t and the packet comes from an input port R(m) (0

�
m

�
k-1), then

send the packet forward through the output port L(dj).

It can be proved that the Turnaround algorithm routes packets always
along one of the shortest paths from the source to the destination node.
Figure 10.8 illustrates one of four possible routing paths drawn with dashed
arrow lines from source (s2s1s0)2 = 0102 to destination (d2d1d0)2 = 1002 in
Butterfly BMIN. The route from the source node to the turning switch at
stage 2 has been chosen randomly whereas the routing path from that same
switch to the destination node is determined by the destination address.

4.3 Summary of routing schemes

Both adaptive and non-adaptive routing algorithms can be used in
networks with both regular and irregular topologies. For the moment most of
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the on-chip networks have regular topologies, which is probably because of
the more complex and expensive routing algorithms required by the irregular
topologies. In addition, the flexibility of the configuration of the irregular
topologies can not be effectively utilized in System-on-Chip (SoC) circuits.
Because adaptive algorithms do not necessarily require more complex
computations especially in the networks which have a regular topology, can
they be preferred to non-adaptive algorithms like, for example, source
routing. However, non-adaptive routing like source routing can be used for
forcing the packets to traverse the network through particular switches and
links, which can be utilized in fault diagnosis and for routing virtual circuits.
For this reason, the non-adaptive source routing could be used in the
networks side by side with adaptive routing algorithms. Furthermore, source

5. CASE STUDY: ARBITRATION AND ROUTING IN
EXTENDED GENERALIZED FAT TREE ON-
CHIP NETWORKS

The previous sections presented arbitration and routing schemes and
concerned their usage in on-chip networks. This section presents a simple
case study to show how these schemes are applied in extended generalized
fat tree (XGFT) [36] interconnection networks which are also BMINs. The
following subsections illustrate how the switch nodes and their arbiters
operate. They also show how the operation of the routing algorithm can
affect the performance and scalability of the network. According to results of
simulations performed with various XGFT configurations the performance
of the XGFTs can be improved substantially by using a new Turn Back
When Possible (TBWP) [37, 38] routing algorithm instead of usually used
shortest-path routing algorithms like Turnaround algorithm [35]. In addition,
it can be estimated that the improved performance is achievable with only a
negligible increase of costs. These results were achieved with such XGFTs
where packets were routed upwards and downwards with separate networks
which were connected to each other with one link within each switch node.
These two networks are called up-routing network and down-routing
network, respectively.

5.1 Network topology

Fat trees [39] have several advantageous properties such as scalability,
reliability, a regular and simple topology, and a good performance. In
addition, fat trees can be proved to be area-universal interconnection
networks, which means that they can simulate any other interconnection
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network with the same silicon area with only a logarithmic slowdown.
Usually only a polynomial slowdown is achieved, when networks are
simulated with other networks. Fat tree networks are usually implemented
with switches of a constant size. The usage of switches of constant size
limits the possible number of processor leaf nodes, which is a problem. For
instance, if 2×4-switches (2 parents, 4 children) would be used, the number
of processor leaf nodes could be only some integer equal to 4h where h is the
height of the fat tree. This problem has been solved in XGFTs [36] by
allowing switches of different sizes to be used in different levels of the
XGFT. For example, the number of processor leaf nodes could be 32 or 48 if
2×2-switches or 2×3-switches would be used at the first level of the XGFT
depicted in Figure 10.9A. This same property can also be used for changing
the number of routing resources of the network in a flexible manner. For
example, the number of redundant routing paths is higher in the XGFT
illustrated in Figure 10.9B, because the 2×4-switches of the two topmost
levels have been replaced with 4×4-switches.

(A) (B)

Figure 10.9 The XGFT with connected top most roots and the operation of the Turnaround
and TBWP routing algorithms [38] (A) and the XGFT with inserted additional root switches

[38] (B) (© [2003] IEEE).

In typical fat tree implementations the top most roots have been
connected only with their child nodes through their down-routing ports and
the up-routing ports have been left unused [7, 8]. XGFTs illustrated in
Figure 10.9 have also been modified by connecting their topmost switches to
each other with new additional links which have been drawn with dashed
lines in Figure 10.9B. This modification increases the number of connections
between the up-routing and down-routing networks and improves the
throughput of the XGFT, which will be shown by simulation results later in
this same chapter.
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5.2 Switching and arbitration in XGFT

There are two separate networks for routing packets upwards and
downwards in the modified XGFT [38]. This has been arranged by dividing
network nodes into two distinct switches, one for switching packets in the
up-routing network and the other in the down-routing network. In each
network node unidirectional channels connect the two networks with each
other [38]. These channels are called turn back channels. They are used for
switching packets from the up-routing network to the down-routing network,
if the switch node is a root of the sub XGFT the leaves of which the
destination and source nodes are. The architecture of the switch nodes
implemented with two smaller switches instead of one large switch provides
several advantages including more flexible placement and routing of the
switch logic. Furthermore, the switch halves can be different, which allows
simpler and more optimal implementations.

In the simulated system wormhole routing strategy and input-output
buffered crossbar switch architecture were used in both of the switch halves
of the switch nodes. The operation of the simulated arbiter was not exactly
similar to that of any of the arbiters presented in subsection 3.2. However, it
was able to schedule multiple transfers during a single arbitration cycle and
serve requests of different input ports fairly, which are the most important
requirements. Transfers were scheduled slightly differently in different
switch halves. In the up-routing switches the requests of the input ports were
serviced in a cyclic order. The input port with the highest priority was
allowed to maintain its priority until its request became granted. Before the
next arbitration cycle the highest priority was given in a cyclic order to the
next input port the request of which was not granted yet. In the up-routing
switches the next output port was also selected in a cyclic order from the set
of free ports. As the packet was to be turned back towards the leaves, the
input ports requested all of the output ports including the port connected to
the turn back channel. Otherwise, they request only the output ports which
were connected to the parent switches. In the down-routing switches the
input ports were serviced like in the up-routing switches, but the destination
addresses of the packets determine unambiguously which output ports are
requested. This kind of arbitration scheme corresponds approximately that of
earlier presented MSM arbiters. In the simulated system the operation of the
switches was pipelined in such a way that it was possible to continue the
transfer of the packets unbrokenly during the arbitration. Therefore, the
transfer of the packets could be continued unbrokenly through the switch if
the requested output ports were free.
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5.3 Operation of TBWP routing algorithm

The Turn Back When Possible (TBWP) routing algorithm was originally
developed to improve the performance of modified fat tree networks where
the top most switches are connected to each other with additional links [37].
It has been proved that the TBWP is also able to route packets correctly in
XGFTs modified in a similar way [38]. The TBWP operates clearly
differently from Turnaround routing [35] algorithm which routes packets
always along one of the shortest paths to the destination. Minimal (shortest-
path) routing algorithms like Turnaround are most commonly used in
computer systems where fat trees [40, 41] (TMC CM-5, Meiko CS-2) or bi-
directional multistage interconnection networks (BMIN) [42] (IBM RS/6000
SP) are used for communication. These algorithms route packets back
towards the leaf nodes immediately after they have arrived at such a switch
node which is a common ancestor of both the source and destination nodes.
Unlike the Turnaround, the TBWP algorithm is able to search for free
routing paths through upper switch levels, if the turn back channels have
already been reserved. In the topmost switch level the TBWP routes packets
from one root to another over the inserted additional transmission links.

In the following description of the TBWP routing algorithm [38] it is
assumed that there are only two unidirectional channels within each
bidirectional transmission link. The configuration of the XGFT is defined
here with vectors M = (m0, m1, m2, …, mh) and W = (w1, w2, …, wh) which
hold the number of ports to child (mi) and parent nodes (wi) of the switches
in level i (1

�
i

�
h) of the XGFT. The first element m0 of vector M, which is

always equal to one, has been inserted so that the second part of the TBWP
algorithm would operate correctly also in the first level of the XGFT. In the
description, destination (D) and source (S) nodes are addressed with a pair of
numbers (0, D) and (0, S), where 0

�
D, S

�
m0m1m2…mh–1, when

parameter h is the height of the fat tree and product m0m1m2…mh is the total
number of processor nodes. Number zero denotes the level of the leave
nodes. Switch nodes are addressed with a pair of numbers (L, X), where 1

�

L
�

h and 0
�

X
�

w1w2…wL-1mL+1…mh-1, when L denotes the level and
product w1w2…wL-1mL+1…mh is the total number of the switch nodes in level
L. In the following description the up-routing switches perform the first part
of the description and the down-routing switches perform the second part.
DIV and MOD operations produce integer quotient and remainder of the
division of two positive integers.

TBWP routing algorithm:
– Part 1 (Up-routing): If the packet comes to the node (L, X) from one of

the children and if S DIV m1m2…m L = D DIV m1m2…m L, then route the
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packet to the turn back channel, else route it to one of the parent nodes.
If the turn back channel is already reserved, then route the packet to one
of the parent nodes.

– Part 2 (Down-routing): If the packet comes to the node (L, X) from one
of the parents or from the turn back channel, then route it to a child node
through output port C[(D DIV m0m1m2…m L-1) MOD mL].

In the case that transmission links would contain several asynchronous
channels there would be a group of ports instead of only one port for routing
packets to some particular switch from the switches. This would not make
the implementation of the TBWP much more complex, because the first part
would choose and request output port groups as was described earlier instead
of output ports while the second part of the TBWP would compute the
address of the port group from which the free port would be chosen.
However, because of the higher number of ports the switch arbiters would be
larger, which would be a disadvantage.

The difference between the operation of the Turnaround and the TBWP
algorithms is illustrated in Figure 10.9A. Solid thick arrow lines show how
the Turnaround would route packets from leaf node 17 to node 31. Dashed
thick arrow lines show additional routing paths that the TBWP algorithm
could use for routing the packets. Unlike the Turnaround algorithm, the
TBWP is able to switch packets to one of the parents also in the case that the
Turn Back channel is already reserved. For this reason, the TBWP is able to
use higher number of alternative routing paths than the Turnaround routing
as Figure 10.9A illustrates. As a consequence, the possibility of congestion
is smaller and the throughput is higher. It is also able to use additional links
between the up-routing and down-routing networks. It would also have been
possible to connect switch halves of the same top most root switches of the
XGFT instead of different root switches in order to achieve similar results.

5.4 Performance

In the simulated system transmission links were bi-directional and 32 bits
wide. There were two unidirectional asynchronous channels within each of
the links and one asynchronous turn back channel in each of the switch
nodes. The switch nodes were input-output buffered crossbar switches with
input and output buffers of eight words. The transfer was performed
asynchronously over the channels in such a way that the receiving side was
able to stop the transmission, when the input buffer became full and the
words were not able to be forwarded. The transmitting side had to wait until
the stopped transmission was allowed to be continued. During simulations
traffic sources, i.e. the computing leaf nodes, could be in three different
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states which were transmitting, waiting, and being idle. The simulation time
was divided into time slots the length of which was equal to the time it takes
to transfer one word of data over asynchronous channels. It was also equal to
the length of one operation cycle (or a clock cycle) of the switch nodes. The
operation of the switches was pipelined and the switching latency of five
time slots was used in the simulations.

Simulations were done with 32 bits wide packets, which consist of a
header of three words, a payload field of a variable number of words, and a
tail of one word [38]. The first word of packets contains 16 bits wide source
and destination addresses. The next two words contain fields for a packet
length, a priority number, a sequence number, and other relevant information
needed for controlling the transfer of packets. In the XGFTs the sequence
number is necessary for ordering the packets, because usually the packets are
routed upwards along randomly chosen paths and they may arrive at the
destination node in disorder. A packet tail carries a frame check sequence
field which is used for detecting bit errors that may occur during the transfer.

Simulations were performed using randomly generated traffic which was
produced in the following way. During each time slot a uniformly distributed
pseudo random number prn was generated from real number interval [0.0,
1.0]. This pseudo random number prn was compared to a quotient � /plen,
where parameter � was a load factor and parameter plen was the length of a
single packet or a burst of packets to be transmitted in words. The
transmission was performed, if the generated random number prn was
smaller than or equal to the quotient � /plen. If the transmission was still
unfinished, the total number of packets tlen to be transmitted was
accumulated by one or by the length of the burst of packets, and the
transmission was continued without any suspensions. Every time a packet
was sent to the network the value of tlen was decreased by one. In the
simulated system traffic sources generated new traffic only during the time
slots they were transmitting or idle, i.e. during the time which was available
for transmitting. During simulations the utilization of the available time
corresponded quite accurately the value of parameter � and each source
loaded the network equally according to � ’s value. As � ’s value was
increased the actual throughput also increased as well as the waiting time
until the network became saturated. Near the saturation point the increase in

� had only a negligible effect on the actual throughput and only the waiting
time increased, although the proportion of the transmission time to the
available time further increased according to � ’s value and was almost equal
to it. Uniformly distributed pseudo random numbers were also used for
addressing the destinations. As a consequence of this the packets were
distributed uniformly over all of the leaf processing nodes.
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Figure 10.10. Throughputs produced by the Turnaround and the TBWP with different
systems sizes (A, B), and when large packets and burst of small packets are used with the

TBWP (C, D). The simulated system is illustrated in Figure 10.9A.

The first two simulations were performed in order to compare the
performance of the Turnaround (TA) and the TBWP routing algorithms with
two different system sizes. In the simulated systems the topmost switches
were connected like Figure 10.9A illustrates, the packet size was 32 words,
and systems were constructed with constant sized 2×4-switches. These
simulations were accomplished with 64 and 256 processing nodes. The
simulation results are presented in Figures 10.10A and 10.10B where the
throughputs (THROUGHPUT) are given in percentages and they show the
proportion of the average number of time slots the various processor leaf
nodes have been able to use for transmission to the total number of time
slots. The average latencies (AVE. LAT.) show the average number of time
slots between the time instants of the transmission and reception of the first
word of the packets. These results show that TBWP produces approximately
two-fold maximum throughput per computing node compared with the
Turnaround and that the maximum throughput halves as the system size is
quadrupled.

The next two simulations were performed with the system illustrated in
Figure 10.9A in order to study the effect of the packet size on the
throughput. As Figure 10.10C shows with packets of 32 words (ONE
PACKET) network became saturated at the point of 16.4% and with bursts
of 4 packets of 8 words (BURST) at the point of 17.2%. However, the
effective throughputs were 14.9% and 10.8% respectively, when only the
transferred payload data was taken into account excluding the headers of
three words and tails. Simulations with packets of 64 words and bursts of 8
packets of 8 words were also accomplished in order to investigate the effect
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of the change of the packet size on the throughput. Results in Figure 10.10D
are quite similar to those in Figure 10.10C. The average throughputs
saturated at the points of 15.9% and 16.7% while the effective average
throughputs were 15.2% and 10.4% in a respective order. Because the usage
of a large packet size seems to results in higher effective throughput, the
next simulations were performed using only one packet size of 32 words.

Figure 10.11. The performances of different network configurations [38] (© [2003] IEEE).

Figure 10.11 illustrates results of simulations performed with different
network configurations. For the purpose of comparison, results of two earlier
simulation were transferred from Figure 10.10A to Figure 10.11 where they
are denoted with TA(10.9A) and TBWP(10.9A). In addition, simulations
were also performed with a configuration illustrated in Figure 10.10B where
two topmost switch layers consist of 4×4-switches. The results of this
simulation is denoted with TBWP(10.9B) in Figure 10.12. The maximum
throughputs of different configurations were 8.1%, 16.4%, and 27.8% in a
respective order. These results show that the throughput of the second
configuration (TBWP(10.9A)) is approximately 102% higher than that of the
first configuration (TA(10.9A)) where Turnaround was simulated with
unconnected topmost root switches. Because this improvement can be
achieved simply by connecting the roots and by changing the routing
algorithm to the TBWP, it can be assumed that the circuit area does not
increase in the same proportion. The throughput of the third configuration
(TBWP(10.9B)) is approximately 70% higher than that of the second
configuration, which is also a significant improvement taking into
consideration that the circuit area does not increase in the same proportion.
Comparing the throughputs of the first (TA(10.9A)) and the third
configuration (TBWP(10.9B)) the improvement is 243%. These results
show how the operation of the routing algorithm can affect the performance
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and the cost of the system. It can be assumed that the systems size grows
proportionally much less than the performance as the system is modified.

Packet traffic, which consists of packets of only one size, is quite
artificial. However, measurements with e.g. real local area networks (LAN)
show that their traffic consists of packets of only a relatively small number
of different sizes [43]. In such networks where the minimum and maximum
packet sizes are limited the first packets are always of the maximum possible
size and only the last packet is shorter, when large amount of data is
transferred over the network. Because the packet size will also be limited in
the on-chip networks, the presented simulation results are usable in
evaluating the throughputs of the different network configurations and in
comparing the different routing algorithms. Moreover, these simulations
were not primarily performed in order to compute accurate estimates of the
performance, but for the purposes of comparison of different alternatives.
The total length of each of the simulations was little longer than 500×103

time slots. For example, with a throughput of 27.8% this corresponds to a
transmission time of approximately 139×103 time slots per traffic source on
average. In this special case a total of 278×103 packets of 32 words were
transmitted during the simulation when there were 64 traffic sources in the
system. In addition, the presented results are averages of results of three
different simulations.

6. SUMMARY

In this chapter various arbitration and routing schemes have been
reviewed. The arbitration was concerned from both theoretic and practical
point of view. The arbitration was at first modeled as a maximum matching
problem before the different arbitration algorithms were presented. Because
current maximum weight matching algorithms have still quite complex and
slow hardware implementations, the focus was on maximal size matching
algorithms like iSLIP, iDRRM, and WWFA which have smaller and simpler
hardware implementations.

Different routing schemes were reviewed after arbitration schemes.
Because the operation of the routing algorithms varies along with the
network topology, multiple different topologies were also presented briefly.
Basically, the routing algorithms are either adaptive or non-adaptive
depending on whether they are able to take into consideration the prevailing
traffic conditions in the networks when making decisions of the routing
paths. Non-adaptive deterministic routing is usually simpler to implement
than adaptive routing which requires distributed decision-making processes
at the switch nodes along the routing paths. However, adaptive routing
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produces typically better performance and for networks with regular
topology it has realizable implementations which are not necessarily much
more complex than those of non-adaptive routing algorithms.

In the case study the earlier presented arbitration and routing schemes
were applied to practice in the modified extended generalized fat tree
(XGFT) interconnection network. A new adaptive TBWP routing algorithm
was introduced and its performance was compared to the performance of
adaptive Turnaround routing algorithm. Presented simulation results show
that the TBWP routing algorithm can utilize more efficiently all of the
available free resources of the network than the Turnaround routing
algorithm with slightly increased circuit area, which demonstrates how the
operation of the routing algorithm affects the system performance and costs.
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SELF-TIMED APPROACH FOR NOISE
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1. Introduction
In this chapter, we present how self-timed circuit design can be used

for reduction of crosstalk and switching noise in high performance NoC
circuits. In this approach, time-interleaving is used to reduce the effect of
interconnect signal coupling and high current peaks. Time-interleaving
is implemented by dividing the system into partitions which are de-
synchronized internally and with respect to each other. The focus is on
interconnects within and between components. Impact of asynchronous
signaling techniques, such as dual-rail and 1-of-4 encoding, on overall
noise levels and signal timing is studied in several contexts.

As technology scales down into the deep submicron regime and the size
of chips grows larger noise immunity will be one of the most important
design metrics in system design. It is more difficult to manage different
types of noise, such as power supply, crosstalk, and leakage noise, because
of the continuous reduction of supply and threshold voltages. If noise is
not handled properly it will introduce additional signal transition delays
and might even cause false switching leading to unreliable operation of
the circuit [1]. This chapter will focus on minimizing power supply noise
and crosstalk which both have increasingly important impact as the size
of the chips gets larger with a higher circuit density.

Power supply noise or unwanted fluctuation of the supply voltage
within a digital ULSI chip mainly originates from simultaneous clock-
induced switching of CMOS circuits which causes high peak current
draws from the power source. The total power supply noise is the sum
of two major components: the resistive voltage drop IR and the induc-
tive switching noise L∆I/∆t [2, 3]. Here I is current, R and L are the
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effective power supply wire resistance and inductance, respectively, and
∆I is the total current change during the rise or fall time ∆t of the con-
currently transitioning signals. Hence, dealing with high current peaks,
rather than average current, is a key issue to decrease switching noise
and an important factor for power distribution network design. Typi-
cally, large on-chip decoupling capacitors are needed to provide a stable
power supply for every system module on a chip [4, 5]. The area required
by these capacitors naturally increases with the size and complexity of
the system. In order to decrease the need for decoupling capacitance,
current peaks must be lowered. This can be accomplished by decreasing
the number of simultaneous switching events in the system. Such an ap-
proach, based on de-synchronization of the system, is presented in this
chapter.

Crosstalk noise caused by capacitive and inductive coupling between
on-chip signal wires is another fundamental problem in modern high-
speed system-on-chip design [1]. Capacitive coupling is currently domi-
nant, but inductive coupling becomes more and more significant as signal
frequencies and on-chip wire lengths increase. Crosstalk has two major
detrimental effects [5]. First, if the magnitude and duration of the cou-
pled noise is sufficient, a signal may temporarily assume an erroneous
logic value which in turn may lead to a logical failure. Secondly, crosstalk
also affects timing. The delay of a wire not only depends on the prop-
erties of the wire itself but also on how the wires that are capacitively
or inductively coupled to it are switching. If a wire and another wire
coupled to it switch simultaneously in opposite directions, crosstalk in-
creases the delay of the wires because twice as much charge must be
transferred across the coupling capacitance. On the other hand, if the
coupled wires switch in the same direction, the delay is reduced.

Crosstalk can be kept within appropriate limits by sufficient wire spac-
ing and shielding. These requirements can be significantly eased, result-
ing in a more compact bus implementation, by controlling transmission
of signals in such a way that crosstalk is minimized. The noise reduction
methodology described in this study combines time-interleaving tech-
niques with appropriate asynchronous data encoding schemes to achieve
this goal in on-chip bus design.

In this chapter, the self-timed approach for noise reduction is illus-
trated using two case studies. One employs time-interleaving and asyn-
chronous signaling techniques to reduce noise in high performance bus
segments. The other exploits the advantages of the de-synchronization
and time-interleaving methods applied for the path metric unit of the
Viterbi decoder. For the case studies we have used 0.13, 0.18 and 0.35 µm
CMOS technologies.
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2. Self-Timed Techniques for Noise Reduction
In many designs noise is caused to a large extent by the synchronous

operation of the circuit. As chips grow larger and the energy consump-
tion increases, the part of the noise induced by the synchronous op-
eration will increase. The clock dictated operation forces a great deal
of gates and flip-flops in the chip to change their states nearly at the
same moment. As a consequence, the current profile of the circuit is
dominated by the clock induced high peaks, which are the main source
for power supply noise. Utilizing asynchronous techniques these peaks
can be folded to a longer period of time by adjusting the timing of the
circuit. Furthermore, in a synchronous design a large number of capac-
itively and inductively coupled interconnects along the chip also switch
simultaneously. Crosstalk between the interconnect wires can be reduced
by employing self-timed protocols and encoding methods.

2.1 Self-timed design
An asynchronous circuit is a self-timed device, whose operation is not

tied to a global clock signal [6], as is the case in the conventional syn-
chronous design approach. Instead, the execution and synchronization
of the system is controlled locally, which allows truly modular design and
easy re-usage of existing components. Because there is no global clock
to sequence the events in the system, the operation relies on strictly con-
trolling the order of transitions on control wires. These control wires can
be used to create handshake communication channels which are utilized
to manage the state transitions and data transfers in the system. Hence,
the problems of distributing the clock signal and consequences of clock
dictated operation can be avoided.

2.2 Asynchronous signaling protocols
In contrast to synchronous signaling protocols, asynchronous proto-

cols do not rely on any external timing sources, such as clock signals.
Instead, a transaction between parties involved in a certain communi-
cation relies on events in a set of asynchronously driven control signals.
Almost all protocols are based on requests and acknowledgements be-
tween the initiator and the responder of a transaction. A request is used
to initiate a transaction while the acknowledge is used to signal the com-
pletion of a transaction or indicate when the next one may begin. These
control signals include all of the necessary timing information for a re-
liable data transmission and ordering the events in a self-timed system.
There are several possibilities how state changes are encoded to the con-
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trol wires and how many transitions are used. However, asynchronous
signaling schemes usually require explicit alternation between events on
request and acknowledge signals. In the following paragraphs we discuss
two of the most commonly used asynchronous protocols, 4-phase and
2-phase protocols.

4-phase protocol [7], illustrated in Figure 11.1a, is also sometimes
referred to as level-signaling protocol. It is a return to zero protocol,
as the signaling levels at the end of each communication cycle will be
the same as in the beginning. It requires four transitions on handshake
lines, two on both request and acknowledge wires. A 4-phase transaction
between two parties is initiated when the sender sets the request high.
The receiver responds by setting the acknowledge high which will be
answered eventually by the sender taking the request low. Finally the
receiver sets the acknowledge low indicating that a new cycle may begin.
Notice that the time between distinct events can be arbitrarily long,
making it attractive for communication between system modules with
different operating speeds.

(b)(a)

DataData

One cycle Next cycle One cycle Next cycle

Request

Acknowledge

Request

Acknowledge

Figure 11.1. Self-timed signaling, (a) 4-phase protocol (b) 2-phase protocol.

In the 2-phase protocol [8], illustrated in Figure 11.1b, all transitions,
either rising or falling, have the same meaning. In contrast to the 4-
phase protocol it is a non-return to zero protocol, as the signal levels
at the end of each communication cycle are the opposite as they were
in the beginning. Hence, the absolute state of control wires is not im-
portant, only the events, i.e., transitions either to a low or a high state
are important. For that reason the 2-phase protocol is also called tran-
sition signaling. As suggested by its name the 2-phase protocol requires
two transitions on handshake lines, one on both the request and ac-
knowledge wire per communication cycle. A transaction between two
parties is initiated when the sender produces an event on the request
wire, sets the line to a high or a low state. The receiver completes the
transaction simply by producing an event in the acknowledge wire. The
2-phase signaling is an especially attractive choice for a communication
protocol over long on-chip wires, with high parasitic properties causing
a considerable delay, due to the minimal number of signal transitions.
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2.3 Data encoding with self-timed protocols
A common choice for self-timed data encoding is the bundled data

encoding [8], which can be used either with the 4-phase or the 2-phase
protocol. Some texts use the term single-rail for this encoding. The
bundled data uses one wire for each bit, thus transmitting n-bit data
from the sender to the receiver requires n+2 wires, n wires for data and
one wire for both request and acknowledge. The bundled data approach
assumes that the propagation delays of control signals are larger than or
equal to the propagation delay of data signals. Hence, the control signals
have to be bundled with data, routed so that they experience the same
parasitic properties and physical wire length as data bits. Furthermore,
the control signals could be slightly delayed so that a large enough safety
margin is achieved. If these constraints are not met, the receiver could
start its operation with incorrect data, or even worse, if it reads the input
at the moment when data is changing the data lines in the receiver could
enter into a metastable state.

There are three different data validity schemes that can be used with
the bundled 4-phase protocol; early, broad, and late [9]. In the first,
probably the most commonly used, the sender issues valid data before
setting request high and can remove data at will after receiving a rising
acknowledge signal. In the broad scheme data is valid during the whole
cycle, from request high to acknowledge low. In the late scheme data
is valid in the down going part of the handshake, from request low to
acknowledge low.

An alternative to the bundled data method is dual-rail encoding which
uses separate requests for each data bit [10]. Each data bit is encoded
onto 2 wires in such a way that data itself acts as a request. Therefore,
transmitting n-bit data requires 2n + 1 wires, 2n for data and one for
acknowledge. An often used 4-phase dual-rail encoding has four states:
’00’ for idle, ’10’ for valid zero, ’01’ for valid one and ’11’ is a not used
illegal state. Transmission of a bit requires a transition from the idle
state to either the valid 0 or valid 1 state. After the sender has received
the acknowledge, it must initialize data back to the idle state. In the
2-phase dual-rail encoding there are no idle and illegal states. The trans-
mitted value is encoded into events so that only one of the two wires is
allowed to make a transition during a cycle. A transition on one of the
two wires indicates the sending of a zero while a transition on the other
indicates sending of a one. After the receiver has acknowledged the data,
a new transfer cycle may start immediately by a transition in either of
the two wires. Notice that in this case the value of the code word is
not important, only the mutually exclusive events matter. The dual-rail
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encoding is insensitive to the wire delays and hence there is no need
for any timing assumptions like in the bundled data signaling. This is
advantageous when one is using automated routing particularly for long
on-chip interconnects.

So far we have assumed that we have a push channel where the sender
is the active party that initiates the transaction. However, it is also
possible to have a pull channel so that the receiver is the active party,
requesting data from the sender.

In addition to the above commonly used encoding methods there are
plenty of other techniques [11]. A particularly interesting one is the 1-of-
4 delay insensitive data encoding scheme [12]. It bears a resemblance to
the dual-rail encoding and it can use both transition and level signaling
protocols, even though the decoding of the transition signaling is quite
a lot of more complex. In addition to that, the number of required wires
is the same. In the 1-of-4 data encoding the information of the two-bit
symbol is transmitted by using four wires. A two-bit code symbol, ’00’,
’01’, ’10’, or ’11’, is transmitted by changing the signal level on just one
of the four wires. 1-of-4 encoding as well as all the other 1-of-N encoding
methods are delay insensitive [11].

3. Method for Power Supply Noise Reduction
The purpose of the method is to decrease the number of simultaneous

switching events so that the current peaks will be lower, and conse-
quently to decrease power supply noise and electromagnetic interference
(EMI) [13]. The method is based on the idea of dividing the system into
partitions which are de-synchronized internally and with respect to each
other. By doing so, simultaneous clock related events are distributed
over a larger time frame while keeping functionality and correctness of
the design intact. The technique is based on re-tuning the timing of the
system by facilitating self-timed design so that the current draw during a
time interval will be below a certain level set by a designer. The method
for switching noise reduction can be applied separately at three different
levels; chip, sub-system, and component levels as shown in Figure 11.2.

3
45

21
pI

t
1

3

4

5

2

Figure 11.2. System partitioning for decreasing concurrent events
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At the chip level the method is applied to adjust the timing between
system modules, such as processing elements, IP-blocks, customized
blocks, and memories. At the second level, sub-system level, the effort
is concentrated on the relative timing of modules inside a sub-system,
such as arithmetic units, caches, and combinational logic blocks. At the
lowest level the method is used to tune the internal timing of the com-
ponents in the sub-systems. This includes for example manipulating the
timing of the flip-flops in a large FIFO queue, sequencing the activation
of interconnect drivers, and controlling the internal calculation process
in an arithmetic unit.

It is not allways necessary to utilize the method at all above men-
tioned levels, one could only focus on one or two levels. Hence, by only
concentrating on the two lowest levels, or only on the third level, a local
hot spot in the power supply network can be fixed without inserting local
decoupling capacitors or re-designing a system component. On the other
hand, by exploiting the first level of the method the problems caused by
a high system level peak current draw can be solved without need for
increasing the number of power supply pins on the chip or enlarging the
size of the chip-level power supply network decoupling capacitors.

Even though the goal is the same at all levels of the method, reduction
of simultaneous switching activity, the means to achieve this objective
somewhat differ from each other. One reason for that is the difference
between the wire delays, skew, which has to taken into account when op-
erating at the chip level with long distances whilst it can be disregarded
when operating at the register level with negligible wire delays. Further-
more, the effect of data dependencies on the ordering of operations is
rather different in each level.

3.1 De-synchronization at different levels
Level 1 At the first level, chip level, the system built around a shared
communication medium is de-synchronized so that distinct system mod-
ules receive the clock edge at different times. This can be achieved for
instance by adding appropriate delays to the clock lines or by using a
separate clock source for each module. Consequently, the clock induced
current draw of the system will spread over a longer time period and
the current profile will become flatter. This kind of clocking leads to
a globally asynchronous locally synchronous (GALS) [14] system where
the system is divided into several clock domains. Self-timed handshake
signaling provides a reliable way of implementing inter-module commu-
nication in such a system. This architecture enables flexible use of stop-
pable clocks providing automatic power down of idle system modules.
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Furthermore, the clock skew-related timing problems are restricted only
to relatively small locally synchronous islands. The inter-module com-
munication in such a system is out of the scope of this chapter, but can
be found in [15–17]. Notice that it is not necessary to de-synchronize all
modules, there can be modules operating and interacting synchronously
while the others follow the GALS based approach.

Level 2 The second level of the method concentrates on adjusting the
relative timing of components inside a sub-system. The method at this
level does not require re-design of the entire sub-system or components,
it is necessary only to add a self-timed controller, re-route existing clock
lines, and in some cases add register levels. Five different phases of the
method at this level can be identified, as follows:

(1) Sources of the highest current peaks need to be identified. This
can be done by investigating switching activity of the circuits and locat-
ing power consuming parts of the sub-system such as arithmetic units,
long synchronous pipelines with a large bit width, interconnect drivers,
etc. A more reliable way is to use some place and route tool with a sup-
port of graphical representation of voltage drops in different locations of
the chip. As before, it is not necessary to apply the method to all com-
ponents in a sub-system. There is no point to put any design effort to
de-synchronize components with a low current draw, unless the number
of those components is considerable. Instead, in many cases it is enough
to focus only on a few energy consuming ones.

(2) In this phase the timing requirements and data dependencies of
the components in the sub-system need to be analyzed. In addition to
that, one has to take into account also the timing requirements of the
external interface of the sub-system. For each component the worst-case
duration of its operation is recorded, including the setup and hold times
of its external interface. In a synchronous system the clock period has
to be chosen according to the slowest path in the design. Therefore,
the clock period of a sub-system with several components is selected ac-
cording to the slowest component, or if the clock is shared with other
parts of a chip, it has to be chosen in accordance with the slowest chip
part. Hence, the activation of components which have delays shorter
than the clock cycle can be easily time-interleaved. In the best case,
there are components whose operation time is short enough, i.e. the
sum of operation times is less than a clock cycle, so that they can be
executed completely in a sequential fashion. However, one has to take
into account input data dependencies between distinct components be-
fore arranging sequential operations. This is for example if a component
with a operation time less than a half clock cycle is activated by the ris-
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ing clock edge in the synchronous design and its output data is assumed
to be available for some other component at the falling clock edge.

(3) The clock lines of the components that are selected for the de-
synchronization are replaced with asynchronous communication links
connected to the self-timed controller of the sub-system, illustrated in
Figure 11.3. These links are used to control the operation of the com-
ponents so that the number of simultaneous events in the sub-system
is decreased. A synchronous component considers a pulse arriving from
the link as a clock signal, it has the same frequency and duration as the
original clock. The only difference is that distinct components receive
the pulse at different times. Hence, from the component point of view it
makes no difference if the control signal is a clock or a self-timed pulse
as long as the duration of the pulse is sufficient. In the case that a more
complex protocol is applied to the communication link, a circuit that
responds to the self-timed controller has to be added to the component.
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Figure 11.3. Concept of de-synchronization applied to a sub-system.

(4) A self-timed controller is inserted into the sub-system. Even
though its operation is based on asynchronous logic, it uses the clock
signal as a reference point to sequence the operation of the sub-system.
This is necessary since the external timing of the sub-system needs to
be kept intact. The controller distributes time-interleaved pulses to the
components that are selected for de-synchronization. There are two de-
sign approaches how the time-interleaved pulses can be generated. The
first implementation employs delay lines to produce pulses whose rising
edges are spread over a certain time window. In this approach the im-
plementation will be fast, especially suitable for high-frequency systems.
However, producing long delays between pulses is impractical, due to the
need for implementing extremely long delay lines. The other possibility
is to employ an asynchronous protocol between the controller and com-
ponents. In this approach, the operation of the sub-system can be easily
kept under control with handshake signals. It is possible to sequence
the activation of distinct components so that some components are ac-
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tivated after the others have completed their operation, provided that
the timing margin of the system allows. However, this approach is not
well-suited for a high-frequency system or a design where all components
have a tight timing margin.

(5) The last phase of the method in the second level is optional.
As explained above, each component selected for the de-synchronization
process has an independent self-timed driven clock signal. Hence, it is
easy to stop the clock just for one or more components of the sub-system
without affecting to the clock signals of the other components. This
requires only minor changes to the self-timed control unit. Notice that
this provides a flexible way to stop clocks of distinct components in a
distributed manner, allowing a finer granularity than conventional clock
stopping of larger modules. Even though the stopping of the clock of
some components occasionally does not decrease the worst-case current
peaks, it will decrease average energy consumption over a longer period
of time.

Level 3 The third level of the method deals with the internal tim-
ing of a component. Opposite to the first two levels, this level focuses
directly on the ultimate destination the clock signal, flip-flops. The
time-interleaving in this level is carried out without inserting any asyn-
chronous logic to the design. Instead, delays are added to the selected
clock lines inside the component to make sure that distinct sets of flip-
flops will not switch simultaneously. As before, a timing analysis has
to be performed before inserting delays to find out the possible amount
of time for interleaving. Attractive targets for this are for example bus
or interconnect drivers, large register banks and all parallel operating
circuits. In the case that there are input data dependencies or the data
originates from two or more already time interleaved sources, a register
level can be inserted in front of a combinational logic block. With this
arrangement possible redundant switching of combinational logic caused
by different data arrival times can be avoided.

Discussion The height of current peaks can be adjusted by changing
the granularity during partitioning the system at distinct levels into
smaller blocks. With a coarse grain granularity the system is partitioned
at each level only in a few time interleaved blocks and the size of the
self-timed control will be small. When a smoother current profile is
required the system needs to be partitioned into several blocks. On the
other hand, with a finer granularity the timing analysis and verification
of correct operation will be more complex and the size of the self-timed
control increases.
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4. Crosstalk
Crosstalk has become a major source of noise in high-speed integrated

circuits because of the non-proportional scaling of vertical and horizon-
tal dimensions of interconnects and decreasing wire pitch. The effects
of crosstalk noise depend on the properties of interconnects and the sig-
nals propagating on them. In the following sections their influence and
methods to model and reduce crosstalk are addressed.

4.1 Influence of Design Parameters
An IC designer cannot directly set the electrical properties of inter-

connects, but he or she can affect wire width, length and separation
distances that contribute to the electrical properties. In the following
the influence of the physical dimensions of two coupled wires on crosstalk
noise is demonstrated. A change in a single physical dimension always af-
fects several electrical properties. For instance, an increase in the width
of a wire affects its resistance, inductance and capacitance.

The effect of rise times and wire length on crosstalk noise is illustrated
in Figure 11.4. The wires used in the simulation are 0.30 µm wide and
0.40 µm thick, and separated at 0.30 µm from each other. The length
of the wires was varied between 0.2 mm and 8 mm, and signal rise
time between 20 ps and 1000 ps. Crosstalk noise increases as rise times
become shorter since the induced current and voltage are dependent on
the speed of the transition on the switching line. Noise increases also
with wire length because the two wires run in parallel to each other,
causing the total coupling between them to increase with length.

Figure 11.4. Crosstalk noise on a quiet wire at different wire lengths and rise times.
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It can be observed that when the rise time is above 700 ps the increase
in noise is nearly linear with wire length. However, when the rise time
is below 200 ps the noise increases much more rapidly with wire length.
The rate of increase slows down as the length of the wires increases. This
is caused by the inductance of the wires whose effects become significant
at high speeds. The importance of inductance diminishes as the length
of the wires increases due to resistance that increases with wire length.

Crosstalk noise can be reduced by limiting the amount of coupling,
which is accomplished by increasing the distance between adjacent wires.
Crosstalk noise induced onto a quiet wire at different separation dis-
tances and lengths is depicted in Figure 11.5. The width and thickness
of the wires are 0.3 µm and 0.4 µm, respectively. The rise time of the
aggressor is 250 ps.

Figure 11.5. Crosstalk noise on a quiet wire at different wire lengths and distances.

It should be noticed that the wire distance axis has been reversed
to improve the readability of the figure. It can be seen that increasing
the distance between wires helps to reduce crosstalk noise. The rate of
reduction is greatest initially and it diminishes as the distance between
the wires grows. It can also be seen that crosstalk noise increases almost
linearly with wire length up to about four millimeters. After that the
increase in noise is much smaller. The same behavior was also seen in
Figure 11.4 for different rise times.
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4.2 Influence of Switching Patterns
The amount of crosstalk noise induced on a wire is affected by the

activity of neighboring wires. Coupled wires switching in the same di-
rection reduce the propagation delay, while switching in the opposite
direction increases the propagation delay. The amount of crosstalk noise
in an 8-bit planar bus for different switching patterns is shown in Ta-
ble 11.1. The wires are numbered from left to right and noise is measured
on the fourth wire to obtain the maximum noise. The wires are 3 mm
long and their width and height are 0.6 µm and 1.2 µm, respectively,
and the rise time is 100 ps.

The maximum amount of noise induced onto the quiet wire is 37
percent of the operating voltage. This situation arises when all wires
except the fourth one are switching. If the two closest wires on both
sides of the fourth wire are switching, the noise is reduced only slightly
to 35 percent. However, if only the third and fifth wire are switching the
noise is reduced to 28 percent of the operating voltage. The third and
fifth wire that are the nearest ones are the main source of noise, but the
second and sixth wire still have a noticeable effect on noise. It can also
be seen from Table 11.1 that a wire switching in opposite direction can
effectively cancel the noise caused by other wires. In the sixth switching
pattern crosstalk noise is canceled altogether.

Table 11.1. Crosstalk noise on the fourth wire as a percentage of Vdd in an 8-bit
bus for different switching patterns.

Wire number 1 2 3 4 5 6 7 8 Crosstalk noise

Pattern 1 ↑ ↑ ↑ - ↑ ↑ ↑ ↑ 37 %
Pattern 2 ↑ ↑ - - - ↑ ↑ ↑ 9 %
Pattern 3 ↑ - - - - - ↑ ↑ 2 %
Pattern 4 - - ↑ - ↑ - - - 28 %
Pattern 5 - ↑ ↑ - ↑ ↑ - - 35 %
Pattern 6 ↑ ↑ ↑ - ↓ ↓ ↓ ↓ 0 %

The influence of switching patterns on propagation delay is presented
in Table 11.2. The delay of the fourth wire is given since it is affected
most by coupling to the other wires in the bus. The delay of the wire
varies between 30 ps and 136 ps. The shortest propagation delay is
obtained when all wires are switching in the same direction and the
longest delay when the wires coupled to the fourth wire are switching in
the opposite direction. In case the fourth wire is the only one switching,
the delay is 67 ps. The same delay is obtained when the wires on one
side are switching in the opposite direction and on the other side in the
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Table 11.2. Propagation delay of the fourth wire in an 8-bit bus for different switching
patterns.

Wire number 1 2 3 4 5 6 7 8 Propagation delay

Pattern 1 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 30 ps
Pattern 2 ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ 136 ps
Pattern 3 - - - ↑ - - - - 67 ps
Pattern 4 ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ 67 ps
Pattern 5 - - ↑ ↑ ↑ - - - 38 ps
Pattern 6 - - ↓ ↑ ↓ - - - 131 ps
Pattern 7 - ↑ ↑ ↑ ↑ ↑ - - 32 ps
Pattern 8 - ↓ ↓ ↑ ↓ ↓ - - 136 ps

same direction, since both sides cancel each other’s effects. Patterns 5–8
demonstrate the influence of adjacent wires on propagation delay. Wires
three and five constitute the majority of delay variation.

4.3 Crosstalk Modeling and Reduction
Noise analysis and avoidance is nowadays a critical factor in the design

of integrated circuits. Design tools need to take into account the effect
of crosstalk and perform interconnect optimizations at various design
stages. The amount of crosstalk noise can be estimated with crosstalk
models. These models need to be both accurate and efficient in order
to be used to model today’s complex integrated circuits. Simulation
techniques such as SPICE and model order reduction [18] can be used,
but they are in several cases too time-consuming [19]. Over the last
decade, several fast crosstalk models have been proposed. Analytical
models with closed-form formulas are very efficient, but they often lack
in accuracy and versatility. Analytical formulas have been derived for
lumped interconnects using Laplace transform in [20, 21], while telegra-
pher equations for distributed interconnects have been used in [22].

There are several ways to reduce the adverse effects of crosstalk in
integrated circuits. One method is to reduce the amount of coupling.
This can be achieved by increasing the spacing between wires, avoiding
long parallel runs of wires and by routing wires on adjacent layers in
perpendicular directions. Other methods are to shield sensitive signals
using ground and Vdd shield wires, and making signal rise times as long
as possible.

In long wires, buffers can be used to reduce delay and the effects
of crosstalk noise. Coding can be used to reduce delay in buses by
eliminating transitions that cause a large delay [23]. It is also possible
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to reduce delay in buses by avoiding simultaneous transitions by skewing
signal transition timing of adjacent wires [24]. Uneven signal timings are
an inherent part of asynchronous signaling. In the following case studies
the influence of signal timing and coding on noise is discussed.

5. Case Studies
The methods and techniques to reduce on-chip noise, introduced in

the previous sections, are applied to two different case studies. In the
first case study both crosstalk and switching noise on a high performance
bus will be studied. The bus in question is a pipelined bus architecture
which is segmented into independent parallel operating sections. The
second case study concentrates on switching noise reduction for a Viterbi
decoder. The effort is focused on the path metric unit, which is the core
of the computation in the Viterbi decoder and dominates the power
consumption.

5.1 Case study 1: Minimizing noise in a high
performance on-chip bus

In this case study both crosstalk and switching noise characteristics
are analyzed on an advanced pipelined bus structure [17, 25] targeted
for GALS based system-on-chip design. The bus architecture is a dis-
tributed organization based on self-timed communication. Unlike in the
case of a conventional shared bus, Figure 11.6.a, the pipelined bus can
be simultaneously accessed by all the attached processing elements. The
physical wires that implement the bus are divided into N -1 segments,
where N is the number of modules connected to the bus. The seg-
ments are isolated from each other by N transfer stages, one attached to
each module. The arbitration and control are evenly distributed among
the transfer stages which contain internal FIFO queues for pipelining
the data flow. A bus segment between adjacent stages consists of two
separate unidirectional point-to-point interconnects which transfer data
asynchronously between the stages in opposite directions. These two
links of a segment can operate in parallel, and due to pipelining, all seg-
ments of the system bus can transfer data concurrently. The pipelined
bus architecture is illustrated in Figure 11.6.b.

In the following paragraphs crosstalk and switching noise in a segment
of the pipelined bus are investigated. Different signaling methods are
compared in order to minimize noise, and their effect on the performance
is analyzed. The pipelined bus was implemented by using a 0.13 µm
technology with 1.2 V supply voltage. The wires in the bus segment in
question are placed 0.6 µm apart from each other and they have length
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Figure 11.6. Shared (a) and pipelined (b) bus architectures

of 2 mm, width of 0.6 µm and thickness of 0.32 µm. The size of the
transmitted messages is 32-bit in all the cases. The rise and fall times
of each signal are 150 ps.

5.1.1 Noise characteristics of the bus segment.
In the first phase noise characteristics on a bus segment are analyzed
when employing the bundled data convention with the two-phase signal-
ing protocol. This protocol was chosen in order to minimize the signaling
events, and thereby the delay, in the rather long interconnect with con-
siderable parasitic properties. However, in this case the signal protocol
could be as well synchronous from the noise analysis point of view. This
is due to the fact that all wires may switch at the same time and no en-
coding techniques are used. This signaling method serves as a reference
point of the noise comparison towards the other methods.

The worst-case voltage coupling between adjacent wires, crosstalk,
in such a bus is shown in Figure 11.7, where three transfer cycles are
considered. It occurs when all the wires in the bus except one in the
middle switch simultaneously from zero to one while the intended value
for the wire in the middle is zero. The maximum crosstalk voltage that
is coupled to that wire is 144 mV or 12 % of the supply voltage. One
might think 12 % is not a significant amount of noise but it could easily
be vital when added to the other noise sources such as switching noise,
electromagnetic interference, receiver and transmitter offset and so on.
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Figure 11.7. Crosstalk voltage on a bus segment.

The current draw of the bus drivers is shown in Figure 11.8 by curve a,
the upper one. As it can be seen, the current profile is clearly dominated
by the clock induced current peaks.

5.1.2 Asynchronously time-interleaved transmission.
In this approach data bits are sent in a time-interleaved fashion. A mes-
sage is divided into bit groups which are transmitted at slightly different
times with respect to each other. Hence, the power hungry bus drivers
will not switch exactly at the same moment of time, instead only a set of
drivers will switch simultaneously. This considerably reduces the peak
current draw and therefore the switching noise. Each of these groups
is formed so that a group does not contain adjacent bits. For example
if a 32-bit message is divided into four groups, the first group contains
bits 0, 4, 8, 12, 16, 20, 24, 28. This reduces crosstalk since neighboring
bus wires do not switch exactly at the same moment. In addition to
attenuated crosstalk characteristics, such a bit division subsequently re-
duces the switching noise, since the bus drivers involved in transmitting
a certain group of bits are not located next to each other. Therefore
the concurrent current draw of the drivers is spread into a larger area,
reducing the local peak current. The number of wires in the bus are
kept same as before, n-bit messages require n wires for data and two
wires for the handshake signals. Obviously this method sacrifices a part
of the performance to the increased noise margin. However, by keeping
the delays between bit groups relatively small, considerable reduction of
noise can be achieved with a minor performance loss.

The current profile caused by the bus segment drivers with time-
interleaving is shown in Figure 11.8 by curve b. The messages were
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divided into four 8-bit groups which were transmitted in interleaved
fashion. The time interval between groups was 80 ps, obtained by using
an average size driver. As can be seen, the peak value is considerably
lower when compared to the synchronous case. Furthermore, the profile
is significantly smoother while the peaks are reduced by 43 %.

Figure 11.8. Current profiles of a bus segment a) synchronous, b) time-interleaved.

In addition to the above analysis, the effect of different interleav-
ing times on crosstalk and current peaks were studied. Furthermore,
partitioning the data transmission into two and three groups was also
considered. The crosstalk and peak current values with the three dif-
ferent partitioning techniques are shown in Figure 11.9, where crosstalk
values are illustrated as solid lines and peak current values are presented
as dashed lines. The analysis was performed with different interleaving
times up to 200 ps. This was chosen to be the upper bound of the analy-
sis since the meaning was not to sacrifice the performance entirely. The
effect of data partitioning into two, three and four groups is illustrated
with curves noted with letters a, b and c, respectively. Observe that,
with 200 ps time interleaving and partitioning data into two or three
groups the reduction in both values can be thought saturated.

As can be expected, the amount of noise decreases when the time
between bit groups increases, and the rate of reduction is faster when
more groups are used. To make the comparison fair between different
bit partitionings one has to take into account the total increase in the
transfer time. For example, reduction in noise that can be achieved by
using 80 ps intervals with division into four groups, has to be compared
against 120 ps time-interleaving when using three groups since both are
causing a 240 ps increase to the total transfer time. The lowest noise
characteristics can be obtained when the data transfer is partitioned into
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Figure 11.9. Crosstalk and peak current as a function of time-interleaving

four 8-bit groups, shown by curve c. Applying this partitioning scheme
with 100 ps intervals the transfer time is increased by 300 ps but at the
same time the crosstalk is reduced by 50 %, from 12 % to 6 %, and the
peak current has decreased by 49 %. Similar behavior but with a smaller
decrease in noise characteristics can be seen when the data is divided
into three or two groups. However, the decrease in crosstalk is rather
small when the data transfer is divided into two groups.

5.1.3 Dual-rail and 1-of-4 data encoding.
The effect of the noise was analyzed with two encoding schemes, four-
phase dual-rail and 1-of-4 data encoding. For the dual-rail encoding
the current peaks are not reduced since similar amount of switching
occurs as in the 32-bit synchronous bus. In the synchronous bus all
the four closest wires have an effect on the victim line in contrast to
the dual-rail implementation where three out of four have an impact to
the victim line. This is due to the dual-rail encoding as explained in
section 11.2.3. Hence, the crosstalk is reduced only by 10 % compared
to the synchronous case, to 11 % or 130 mV of the supply voltage.
However the crosstalk should not be as detrimental to performance with
the four-phase dual-rail as it is with the two-phase one, since the adjacent
wires switch at the same direction. Furthermore, the four-phase dual-
rail has an automatic error detecting mechanism as a default, due to the
illegal state ’11’. For instance if the codeword should be ’10’, but due to
crosstalk the last bit assumes temporarily an erroneous logic value ’1’.
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This will lead to illegal state and the transmission system can be build
so that it observes it.

The current profiles of the synchronous and 1-of-4 encoded bus are
shown in Figure 11.10. The current peaks in the latter one are sig-
nificantly lower compared to the synchronous bus, while the effect on
crosstalk is rather small. The peak current is decreased by 50 %, while
the crosstalk is 120 mV or 10.4 % of the supply voltage. Similarly as
with the dual-rail encoding, the crosstalk should not be as detrimental
to the performance for a 1-of-4 encoded interconnect as it is for syn-
chronous implementation, since any crosstalk that does occur will be
between wires switching at same direction. Furthermore, the likelihood
that two adjacent wires will switch simultaneously is quite small with 1-
of-4 encoding [12]. The 1-of-4 encoded bus is attractive in the low-power
perspective, since it transmits two bits of information producing a tran-
sition only on one wire compared to the synchronous one where each
bit requires transition on a corresponding wire. The average current of
the 32-bit bus is 7.5 mA for the synchronous one and 3.5 mA for the
1-of-4 encoding interconnect, the reduction being 53 %. This supports
the low-power behavior of the 1-of-4 encoding.

In addition to the above mentioned advantages, it is also possible to
employ the time-interleaving with both the dual-rail and 1-of-4 encoding
techniques. This way the noise coefficients can be even more decreased
as illustrated in the Figure 11.9.

Figure 11.10. Current profiles of a bus segment a) synchronous, b) 1-of-4 encoding.
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5.2 Case study 2: On-chip switching noise
reduction for Viterbi decoder

A Viterbi decoder is used to decode convolutionally encoded data
[26]. This kind of encoding is widely used in a large portion of digital
transmission and digital recording systems, including mobile phones and
digital TV broadcast. Convolutional codes are one of the major families
of error correcting codes. Error correcting codes are commonly used in
the transmission of digital data due to their ability to reduce the error
probability [27]. These codes operate by adding redundancy into a signal
in a way that some errors that might occur during transmission can be
eliminated in the decoder. The path metric unit (PMU) is the core
of the computation in the Viterbi decoder and therefore it dominates
the overall power consumption. For instance, with a random input bit
sequence the power dissipation of the PMU can be as high as 90 %
of the overall power consumption [28]. This motivates to concentrate
design efforts on the PMU in order to smoothen the current profile of
the circuit.

5.2.1 Implementation strategies.
The synchronous decoder is implemented using hard-decision decoding
[29]. It uses one bit quantization on the received bits and Hamming
distance [27, 26] to update the path metrics. The architecture of the
decoder is illustrated in Figure 11.11 a. The branch metric unit calcu-
lates the branch metrics according to the Hamming distance method.
These metrics are sent to the path metric unit, which consists of eight
add-compare-select (ACS) processing elements and a control unit [29].
Each of those processing elements contains two ACS cells which all have
similar functionality with three different basic operations: addition, com-
parison and selection. One ACS cell contains two adders, a comparator,
a path metric out unit, and a selector. The path metric out unit is used
to store the results of the comparison at the current counting cycle and
to transfer data. The selector chooses the smallest path metric value and
counts the corresponding state. The interconnects between processors
are used to transmit every clock cycle the previous path metric values
which are needed to calculate the new ones. At every rising clock edge
each of those processing elements calculates new path metric values and
decision values. The survivor memory unit is used to store the decision
values, which are the results of the ACS counting. The trace back opera-
tion reads these values backwards and outputs the original bit sequence.
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Figure 11.11. a) The structure of synchronous Viterbi decoder b) self-timed PMU

The Viterbi decoder was de-synchronized following the methodology
given in Section 3. The external interface and the original timing re-
strictions of the self-timed PMU are equal to the synchronous one. Fur-
thermore, the number of processing elements and the inter-processor
connections were the same as those in the synchronous implementation.
The structure of the self-timed PMU is shown in Figure 11.11 b. The
synchronous decoder operates with a 25 MHz clock which sets the limit
for the duration of one counting cycle in the self-timed structure. The
counting cycle is the time period that it takes to decode and output one
decoded bit. The number of required counting cycles depends on the
number of states used. One decoded bit requires 10 cycles for a 64 state
decoder and 38 cycles for a 512 state decoder.

The self-timed PMU can be divided into two parts: synchronous and
asynchronous. The synchronous part consists of PMU control and deci-
sion control modules. The PMU control unit acts as an interface between
synchronous and asynchronous domains. It controls the handshake logic
that activates the calculation and communicates with other parts of the
decoder. The decision control unit is used to collect the decision values
that arrive asynchronously. The reading operation of the decision val-
ues is clocked because it sends the decision values to the synchronous
survivor memory unit.

The asynchronous part consists of the eight ACS processing elements
and a timing control. Timing control is used to interleave the operation
of the ACS processing elements via self-timed communication channels.
Each of those elements are divided to four separate stages. The stages
are controlled in a self-timed manner so that their operations are time
interleaved. The counting cycle starts by activating two adders, the first
two stages, at a slightly different time. After the completion of both
additions the comparator and the next processing element are activated.
Hence, comparison, third stage, and additions in the next processing
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element are executed in parallel. Last stage, the selection and transfer
of the new path metric value, is activated immediately after comparison.
Meanwhile, stages at the different processing elements are activated in a
domino like fashion. After all ACS processing elements have completed
their tasks the timing control is acknowledged and a new counting cycle
can be started.

The interprocessor communication was implemented with three dif-
ferent methods. The purpose was to find a method that reduces most
the peak current values caused by driving the interconnects between the
processing elements. The asynchronous interface between the processing
elements was implemented according to the guidelines given in Section
3. The first case is asynchronous interconnect which is implemented uti-
lizing the four-phase handshake protocol. In the second one the data
transmission is divided into four 4-bit groups which are transmitted in
the time-interleaved fashion. The third one is implemented using four-
phase dual-rail encoding.

5.2.2 Current profile.
The motivation for reducing the peak current values is illustrated in
Figure 11.12. During the active phase of the processing elements in the
synchronous design the clock related current peaks are as high as 1.2 A.
Furthermore the idle time between the calculation causes peak current
values around 1 A. Hence in synchronous systems many flip-flops switch
without having an actual input to process because they are connected
to the clock.

Figure 11.12. Current profile of the synchronous 512 state PMU

The average capacitive loads of the interconnects are from 100 fF to
240 fF in the 0.35 µm technology. The corresponding average resistive
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loads are from 5 Ω to 10 Ω. Above are the minimum and the maximum
values obtained from analysis performed after place and route which
are a function of the interconnect length. Therefore the values used
to model the interconnects in the current profile analysis are spread
between the above values. The 64 state PMU was analyzed with a
0.35 µm technology using three different inter-processor communication
methods between the processing elements as explained earlier. Each bit
of the 16-bit wide interconnects was modeled separately with its actual
capacitive and resistive load.

A corresponding analysis was performed with a 0.18 µm technology.
The average capacitive and resistive loads of the interconnects were from
37 fF to 72 fF and from 39 Ω to 75 Ω respectively. The separate intercon-
nect analysis was performed to illustrate the effect of technology scaling.
The effect of the technology scaling was a decrease in capacitance values
and an increase in resistance values when compared to the 0.35 µm tech-
nology, as can be expected. The summary of the simulation results for
both technologies are shown in Table 11.3. These results were measured
as peak to peak values.

The current profile of the 64 state PMU with 0.35 µm technology is
shown in Figure 11.13. During the active phase of the processing ele-
ments, the current peaks are around 550 mA which is only half of those
in the corresponding 512 state implementation. Similarly with the 512
states PMU the decrease is minor during the idle period of the process-
ing elements. With the self-timed implementation using asynchronous
interconnects the current peaks are reduced by 75 % during the active
phase. If applied to the 512 state implementation the peak values during
counting should decrease from 1.2 A to 300 mA.

Figure 11.13. Current profile of the synchronous 64 state PMU



Self-Timed Approach for Noise Reduction in NoC 309

The peak current values are reduced most when the self-timed PMU
is implemented with the time-interleaved interconnect method. This
current profile is shown in Figure 11.14. The reduction is 87 % during
the counting cycle. One of the advantages of the self-timed method
can be seen during the idle period between the counting cycles. This is
illustrated in Figure 11.14 as significantly lowered current peak values,
the reduction is 97 %. The above values result from the partitioning of
data transfer and the natural support of the power down during the idle
period in the self-timed implementation.

Figure 11.14. Current profile of the asynchronous 64 state PMU with 4-bit intercon-
nects

The results of the current profile analysis for the 0.35 µm and the
0.18 µm technologies are collected in Table 11.3. Separate peak current
values are presented for interconnects with utilizing the loads from the
64 state and 512 state implementations. It shows that all asynchronous
implementations provide lower current peaks than the corresponding
synchronous ones.

Table 11.3. Peak current values with different technologies.

0.35µm 0.18µm

Design PMU(64) Int.co.(64) Int.co.(512) Int.co.(64) Int.co(512)

Sync. 550 mA 36 mA 39 mA 15 mA 16.5 mA

Async. 140 mA 4.5 mA 6.2 mA 1.9 mA 3.2 mA

Interleaved 70 mA 3.2 mA 3.2 mA 1.3 mA 1.3 mA

Dual-Rail 80 mA 8.4 mA 9.3 mA 4.7 mA 4.8 mA
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The optimal interconnect implementation is the asynchronous time-
interleaved data transfer where the message is partitioned into four 4-
bit groups. The current peaks are reduced by 92 % regardless of the
number of states used. In this implementation the interconnects were
relatively short. Therefore the effect of the interconnects on the current
profile was rather small. All of the three design methods reduce the
current peaks considerably compared to the synchronous one. The self-
timed PMU implemented with the time-interleaved interconnects gives
the most optimal result regardless of the technology. The above results
show that a large amount of the switching noise can be reduced by using
self-timed design method.

5.2.3 Area.
The area comparisons between the synchronous and asynchronous imple-
mentations were made according to the results gained from the synthe-
sis. The differences in areas between the two different design approaches
with 0.35 µm technology are shown in Table 11.4. In order to make
the area comparison between implementations straigthforward, relative
areas are used where synchronous 64 state PMU serves as a reference
point. In the asynchronous 64 state implementation the area is 21 %
larger than the area of the corresponding synchronous system. As the
size of the decoder increases the area penalty decreases, with 512 state
implementation the difference in total area is 2 %. A similar comparison

Table 11.4. Relative areas with different technologies.

0.35µm 0.18µm

Number of states Comb. Seq. Total Comb. Seq. Total

Sync. 64 1 1 1 1 1 1

Async. 64 1.13 1.42 1.28 1.14 1.22 1.18

Sync. 512 4.07 5.63 4.85 3.67 5.37 4.55

Async. 512 4.48 5.38 4.93 4.38 4.70 4.55

made with the 0.18 µm technology is shown in Table 11.4. The rela-
tive area decreases in every design compared to the corresponding areas
from 0.35 µm technology. The asynchronous 64 state implementation is
16 % larger than the corresponding synchronous one. Similarly as with
the 0.35 µm technology, the area penalties decrease when the size of the
decoder increases. In fact the total area of the asynchronous 512 state
implementation is the same as it is in the synchronous one.

The absence of clock circuitry in the asynchronous implementations
saves area that can be used for sequential logic. However, the amount of
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combinatorial logic increases due to the self-timed control circuitry. In
the 0.35 µm and 0.18 µm technologies the asynchronous implementations
of the 512 state case have about the same total area as the corresponding
synchronous ones. When the size of the decoder increases the amount of
sequential area increases significantly. This leads to the situation where
the area needed for the clock circuitry compensates the area needed for
the self-timed control circuitry.

6. Conclusion
A self-timed approach for minimizing crosstalk and switching noise

was presented in this chapter. It was based on self-timed circuit design
techniques, system partitioning and time-interleaved communication. In
this approach, time-interleaving was used to reduce the effect of inter-
connect signal coupling, current peaks and the probability of erroneous
states. Time-interleaving was implemented by dividing the system into
partitions which were de-synchronized internally and with respect to the
other within the same partition. The technique was based on re-tuning
the timing using self-timed design. The impact of asynchronous signal-
ing techniques on overall noise levels and signal timing was studied in
several contexts. The method was illustrated using two case studies.
The first case study employed time-interleaving to reduce noise in high
performance on-chip bus segments. The second one exploited the ad-
vantages of the de-synchronization method applied to the path metric
unit of the Viterbi decoder.

Case study 1: Time-interleaving and asynchronous encoding schemes
were applied to 32-bit bus segments. Time-interleaved bit groups guar-
antee that all the interconnect drivers do not switch simultaneously. This
reduces both crosstalk and switching noise considerably. According to
simulations, the peak current was decreased by 43 % and the crosstalk
was reduced by 37 % compared to the synchronous segment, when the
bus transactions were divided into four bit groups with only 70 ps time-
interleaving. In addition to the above, a particularly interesting case
was the 1-of-4 delay insensitive data encoding scheme. It is attractive
in the low-power design perspective — the average current was reduced
by 53 % compared to the synchronous bus.

Case study 2: The eight synchronous processing elements of the path
metric unit were de-synchronized so that their internal operation was
time-interleaved. Furthermore, three different self-timed inter-processor
communication schemes were studied in order to decrease current peaks
caused by interconnect drivers between the processing elements. The
impact of the self-timed approach was significant, since the reduction
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of current peaks was 87 % compared to the synchronous version. This
came with an area penalty of 21 %. However, the area penalty decreases
as the size of the decoder increases.

Reducing noise has an immediate impact, boosting both reliability
and performance. The study considered in this chapter revealed the
possibility to decrease the crosstalk and the power supply noise by uti-
lizing the self-timed design approach.
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1. Introduction
Nowadays we are used with terms like system-on-chip (SOC) or plat-

form-based design. One of the characteristics of such designs is the
dramatically increased amount of interconnect, communication issues
starting to have a more and more important impact on all others. In a
somehow “classical” style, usual design process starts with a description
of functionality, as specified by concurrent processes, communicating
via a variety of mechanisms, such as procedure calls, message passing,
shared variables, etc. The most effort in design is consumed in specify-
ing behavior and, towards the end of the process, the elements are to
be placed together and hopefully provide the intended global behavior.
Lately, communication related analysis started to move to earlier stages
of the design and even drive the further process decisions, hence the ap-
parition of the communication-based design (CBD) concept [1], in the
context of platform-based design. Basically, the system design is split
along functional and communication characteristics.

Certain goals of CBD may be pointed as (i) protocol identification,
(ii) level(s) of abstraction, (iii) combination between different models
of computation and architectures, (iv) development of procedures to
move from one level of abstraction to another one, usually trying to
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obtain a correct derivation that would ensure the compliance of the
implementation with the initial specification.

One way to approach such aspects of design is to work within, or
close to a formal environment, where design steps can be either veri-
fied (after the decision) or controlled (during the transformation). The
Action Systems formalism is one possible framework that may help us
reach the mentioned goals. It provides a mathematical, rigorous frame-
work for defining constraints for design specifications, reasoning about
concurrency and communication issues, logical properties of system de-
scriptions, and proving correctness of taken design steps.

The Action Systems framework has been applied in the design of asyn-
chronous [2] and synchronous [3] systems. Therefore, it offers a powerful
unifying basis for hardware design generally. It offers the possibility to
work in a stepwise manner with systems that contain both synchronous
and asynchronous components, leading to correctly derived descriptions
and implementations. This is a feature not usually found in other formal
approaches. They mainly address either synchronous or asynchronous
design aspects, or, in the case when they also cover both design styles,
they provide distinct rules for each of them.
Chapter overview. We start by presenting basic notions of the Ac-
tion Systems formalism. In Section 12.3, we discuss techniques on how to
formally model communication channels using Action Systems, starting
from the assumption that the target system is viewed as a composition
of master and slave modules, communicating on possibly multiple chan-
nels, using possible multiple protocols. Asynchronous and synchronous
communication schemes are presented. In the following section, we anal-
yse the procedures used to bring an abstract model of communication
closer to implementation levels. This is continued with a specification
example in Section 12.5. Final remarks on the present work are discussed
in Section 12.6.

2. Action Systems
The Action Systems formalism initially proposed by Back and Kurki-

Suonio [4] and extended in other studies [5, 6] is a framework for spec-
ification and correctness-preserving development of reactive systems.
Based on an extended version of the guarded command language of
Dijkstra [7], Action Systems is a state-based formalism. It has the Re-
finement Calculus [8] as the mathematical basis for disciplined stepwise
derivation.
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2.1 Actions
An action A is defined by

A ::= abort (abortion, non-termination)
| skip (empty statement)
| x := x′.R (non-deterministic assignment)
| x := e ((multiple) assignment)
| A1 [] . . . [] Am (non-deterministic choice)
| A1; . . . ; Am (sequential composition)
| A1 ∗ . . . ∗ Am (simultaneous composition)
| A1// . . . //Am (prioritized composition)
| P → B (guarded action)

where Aj , j = 1, . . . , m, and B are actions, P and R predicates (boolean
conditions), x a variable or a list of variables and e an expression or a
list of expressions.

Semantics of actions. An action A is considered atomic, that is,
only its input-output behavior is of interest. This indicates that only
the initial and final state of an action can be observed. Atomic actions
may be represented by simple assignments or by more complex action
compositions, such as the atomic sequence.

The total correctness of an action A with respect to a precondition P
and a postcondition Q is denoted P A Q and defined by

P A Q =̂ P ⇒ wp(A, Q)

where wp(A, Q) stands for the weakest precondition [7] of an action A
to establish the postcondition Q.

We define for example:

wp(x := x′.R, Q) =̂ ∀x′.R ⇒ Q[x′/x]

wp(x := e, Q) =̂ Q[e/x]

wp(A1 [] . . . [] Am, Q) =̂ wp(A1, Q) ∧ . . . ∧ wp(Am, Q),

where the notation Q[e/x] represents the replacement of x by e in the
predicate Q. The guard gA of an action A is defined by gA =̂ ¬wp(A,
false). Considering a guarded action A =̂ P → B we have that gA =
P ∧ gB. An action A is said to be enabled in some state, if its guard
is true in that state. Otherwise A is disabled. Observe that any action
A can be written in the form true → A, and thus each action can be
considered a guarded action, even though a non-trivial guard does not
exist. If gA is invariantly true, the action is always enabled.

Non-atomic actions. Atomic action compositions do not always
allow efficient modeling of complex system behavior. For example, when
describing a communication sequence between systems, an atomic se-
quential composition cannot be used as communication events take place
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in turns in separate atomic actions. In other words, the execution of a
sequence is temporarily stopped in some system state, and resumed later
in some other state. This kind of behavior is reflected by non-atomic
action compositions, which allow the observation of intermediate states.
In such a construct, the component actions may be atomic constructs of
their own, but the composition in itself is not. A non-atomic composition
is referred to as a non-atomic action.

We use four different non-atomic constructors: ; (sequential compo-
sition, each action is executed once in the specified order), ‖ (parallel
composition, each action is executed once in any order), ⊕ (exclusive
composition, selection of one component action disables the others until
the selected one has been completed) and ∇ (synchronous composition,
actions are executed simultaneously in two successive phases: read phase
and write phase). All of these operators are defined in terms of the non-
deterministic choice [] and a set of auxiliary local variables, program
counters. As an example, the non-atomic sequential composition of two
actions A1 and A2 can be defined by

A1 ; A2 =̂ ((p = 0 → A1 [] p = 1 → A2); p := p + 1 mod 2)

where the program counter p is assumed to have the initial value of 0.

Quantified composition. Any of the above atomic and non-
atomic composition operators, denoted below as ‘•’, can be quantified.
The notation is defined for a parametrized action A(i) as follows

[ • 1 ≤ i ≤ n : A(i) ] =̂ A(1) • . . . • A(n)

Note that, in general, the parameter i does not have to run through a
range of values. The set of values may be defined explicitly, for example:
i ∈ {5, 2, 6, 9}. The leftmost value is considered first, the rightmost value
last.

2.2 Hierarchical Action Systems
An action system A is an iterative composition of actions executing

on a set of local and global variables. A simplified hierarchical Action
Systems model has the following form

sys A (interface list) [parameter list] ::
|[ var local variable list

expressions expression list
subsys subsystem instance list
actions action list
init initialization of variables
exec

do action composition od
SysOp subsystem composition

]|
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The interface list defines the global variables through which A com-
municates with other systems. The parameter list defines the generic
parameters used within the system, such as the range of certain vari-
ables or the dimensions of some arrays. The var clause defines the local
variables, visible only within A. The expressions clause defines local
shorthand notations for some expressions used within A, for example
in the guards of the actions. The items declared here are evaluated
every time they are met during the execution of the system. The sub-
sys clause defines, in the case of a hierarchical Action Systems model,
unique instance names for the subsystem components specified in detail
elsewhere, describing how the formal interface and parameter lists of the
subsystems are replaced with actual variables and parameters within the
system A. The actions clause describes the atomic actions present in
the system. A unique name is given for each action. An action can
also be, partly or completely, composed of other actions defined in the
actions clause. In the init clause, all the local and interface variables
are initialized.

An underscore ‘ ’ signals that the current line is continued on the next
line.

The exec clause contains both a do-od loop and a composition of sub-
system instances defined in the subsys clause, or either of them. The
loop encloses a composition of actions defined in the actions clause.
This construct is realized using the atomic action composition operators
[] and //, and the non-atomic operators ; , ‖, ⊕, and ∇. The sys-
tem composition operators SysOp ∈ {‖,∇, //} are used both within the
subsystem composition and between the do-od loop and the subsystem
composition. The semantics of composing action systems is discussed
separately in Section 12.2.3 below.

Behavior. An action system A operates as follows. After the initial-
ization of the variables in the init clause, enabled actions in the do-od
loop and in the subsystem instances are selected for execution one by
one. Selection between simultaneously enabled actions is nondetermin-
istic. Parallel behavior is modeled by simultaneously enabled actions
which can be interleaved, i.e., executed in any order. This is the case, if
the actions in question do not write onto same variables, and can neither
disable nor enable each other. When all actions both in the do-od loop
and in the subsystem instances become disabled, the computation stops
temporarily until a system communicating with A enables one of the
actions again via the interface variables. If the interface list is empty,
i.e., A is a closed system, the computation terminates when there are
no more enabled actions left.
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Invariants. A predicate P is an invariant over an action A, if
P ⇒ wp(A, P ). At the system level, P is an invariant of an action system
A if it is established by the initialization, i.e. true ⇒ wp(Init, P ), and
it is an invariant of each of the component actions of A.

2.3 Composing Action Systems
Consider two action systems A1 and A2 which do not include any

subsystems. The parallel composition of such systems, denoted A1 ‖
A2, is defined to be an action system whose do-od loop has the form
do A1 [] A2 od, where A1 and A2 represent the actions of the constituent
systems A1 and A2, respectively. This system merges the interface vari-
ables of the components A1 and A2 keeping the local identifiers distinct.
The components interact or communicate via their shared interface vari-
ables.

Assume now that A1 and A2 are instantiated as unique subsystem
instances I1 and I2 within some enclosing system B, so that the exec
clause of B has the form do B od ‖ I1 ‖ I2.

Then all local identifiers (i.e. constants, variables, action names etc.)
within the components A1 and A2, denoted here collectively by li1 and
li2, respectively, are considered local identifiers of B and are implicitly
renamed to I1. li1 and I2. li2 to ensure that they are distinct within the
enclosing system B. Hence, the above exec clause of B is considered to
be equivalent to do B [] I1. A1 [] I2. A2 od.

This systematic naming scheme can be easily extended to cover sys-
tems with multiple hierarchy levels. For example, if a system C is com-
posed of a loop do C od in parallel with an instance I of the system B,
we can flatten the hierarchy into the equivalent form:

do C [] I. B [] I. I1. A1 [] I. I2. A2 od

In addition to the parallel composition A1 ‖ A2 discussed above,
we also use the prioritized composition A1//A2 [6] and the synchronous
composition A1 ∇ A2 [3], where the loops of the composed systems have
the forms do A1//A2 od and do A1 ∇ A2 od, respectively. Since both
the prioritized operator // and the synchronous operator ∇ between
actions are defined in terms of the choice operator [] , a prioritized or
a synchronous composition of action systems can always be viewed as a
special kind of parallel composition.

From a flat, non-hierarchical description, such as the above one, per-
forming the reverse operation, we can decompose the original system
loop into dedicated, coherent parts. We can then extract these parts as
separate subsystems for further reuse.
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2.4 Refinement of Action Systems
Action systems are intended to be developed in a stepwise manner

within the refinement calculus framework. The system transformations
performed at each step taking us from a high, abstract level towards a
more concrete one are guaranteed to be correct. In this section, we revise
briefly the basic concepts of the refinement calculus. Comprehensive
studies on the refinement calculus can be found elsewhere [8].

Refinement of actions. In weakest precondition terms, an action
A is said to be (correctly) refined by an action C, denoted A ≤ C, if

∀Q.(wp(A, Q) ⇒ wp(C, Q))

holds. This is equivalent to the condition

∀P, Q.((PAQ) ⇒ (PCQ)),

which means that the concrete action C preserves every total correctness
property of the abstract action A.

Data refinement. Data refinement [9, 8] is the technique we use for
transforming an abstract specification into a more concrete one. Assume
that A is an action on the program variables a and u, and C is an action
on the variables c and u, respectively. Let R(a, c) be a boolean relation
between the variables a and c. Then the abstract action A is data refined
by the concrete action C using the abstraction relation R(a, c), denoted
A ≤R C, if

∀Q.(R ∧ wp(A, Q) ⇒ wp(C, ∃a.R ∧ Q))

holds. Note that Q is a predicate on the variables a, u, and (∃a.R∧Q) is a
predicate on the program variables c and u. The data refinement A ≤R C
replaces the variable a with the variable c preserving the variables u.

Refinement of action systems. When refining systems, we base
our reasoning on the evaluation of observable behaviors, traces. A con-
crete action system C trace refines another system A, denoted A � C if
we can prove certain relations on the traces of the two systems. Details
about this technique are preseneted in [5].

3. Modeling Communication Channels
In this section, we present techniques on how to formally model com-

munication channels using Action Systems, starting from the assumption
that the target system is viewed as a composition of master and slave
modules. They communicate on possibly multiple channels. A channel
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can be either a point-to-point link or a resource shared by several master
and slave modules. Both asynchronous and synchronous communication
is considered. A classification of communication ports and channels is
presented based on the direction of data flow and the type of the mod-
ule producing the data transferred through the channel in question. We
also show how to create new communication channels using refinement
techniques.

3.1 Asynchronous Communication
Asynchronous interfacing provides a viable approach to construct

modern complex systems-on-chip, composed of several subsystem units,
in a modular and reliable manner. In asynchronous communication,
a data transfer event between two system components consists of two
phases: request and acknowledge. Depending on the application, the
duration of each phase may be either arbitrary or up-bounded. Asyn-
chronously communicating modules form an asynchronous system archi-
tecture in which a component module, taken separately, can internally
be implemented as either an asynchronous (self-timed) or a synchronous
(clocked) circuit block, or a piece of software running in a standard or
an application-specific processor core.

Communication channels. Asynchronous interaction between
Action Systems models of subsystems is arranged via communication
channels each composed of a set of interface variables of the involved
modules. Note that some of the interface variables may not directly
belong to any communication channel but are used as auxiliary status
or control signals between modules. In our formal design framework, a
communication channel c〈 d 〉 or a channel c in short, is defined to be
a tuple (c, d), where c is a communication variable and d is the list of
those data variables whose values are transferred from a system module
to another by communicating via c. When referring to a single party of
communication, we talk about communication ports rather than chan-
nels. If the list d is empty, c is called a control channel . Otherwise we
have a data channel c〈 d 〉. Notice, however, that here d does not neces-
sarily represent actual computational data only but it can represent any
kind of control information as well, for example a memory address, an
operation code, or an error message.

Generally, a communication variable c is of the enumerated type
comm,n defined by

type comm,n : (req0, . . . , reqm−1, ack0, . . . , ackn−1)

where req0, . . . , reqm−1 and ack0, . . . , ackn−1 are request and acknowl-
edge states (values), respectively. A variable c : comm,n is initialized to
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one of its acknowledge states ackj . If m = 1 or n = 1, the default value
is just req or ack, respectively. Hence, the simplest and the most usual
type com1,1 is equivalent to (req, ack) by default. We denote com1,1

simply by com.
Renaming of the values of the type comm,n is denoted by comm,n(value

list). For example, the expression com2,1(count, load, done) indicates
that the default values req0, req1, and ack of com2,1 are replaced with
count, load, and done, respectively. Furthermore, when instantiating
subsystems, a formal interface variable cf of the type comm,n gets the
corresponding values specified for an actual interface variable ca. In some
cases, only a part of the values of ca is assigned to cf . For instance, con-
sider a library component C(cf : com; . . .) which is to be included in
a system. Assuming that the actual variable ca is of the type comm,n,
where m, n > 1, the subsys-clause of the system is provided with an
instantiation of the form Instance Name : C (ca(reqi, ackj), . . .), where
the notation ca(reqi, acki) means that the default values req and ack of
cf are replaced with the actual values reqi and ackj of ca in the compo-
nent instance Instance Name.

Point-to-point. A point-to-point communication channel connects
two action systems, one of which acts as the master and the other as
the slave in a given data transfer event. The master side of a channel
is called an active communication port, and the slave side is referred to
as a passive communication port. A communication cycle on a channel
c〈 d 〉 consists of two phases. When the active party, the master, initiates
the cycle by setting c to a request state reqi, the cycle is said to be in
the request phase. Correspondingly, when the passive party, the slave,
responds by setting c to an acknowledge state ackj , the communication
cycle on c is said to be in the acknowledge phase. The data d can be
transferred either in the request phase from the master to the slave (push
channel), in the acknowledge phase from the slave to the master (pull
channel), or in both phases bidirectionally (biput channel) [10]. It is
also possible that the roles of the communicating parties are switched at
certain moments, so that the current master becomes the slave and the
current slave becomes the master of the channel c〈 d 〉. Such switching
is controlled by another system module which has to ensure that the
parties are never simultaneously in the master mode.

As a generic example of a point-to-point link, consider the below mas-
ter module M1 and the slave module S1 which are instantiated, i.e.
composed in parallel, as the subsystem instances Master and Slave in
the system P to p also given below. They communicate via the biput
channel c〈 d 〉, where c is of the type com2,1 and d is a data variable of
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any type symbolized by the generic type data. Master (M1) initiates
a communication cycle in the action M1 by assigning a value to d and
setting c to one of its request values req0 and req1. Slave (S1) then re-
sponds by executing an appropriate action S1 or S2 in which the value of
d is copied to a local buffer variable buf0 or buf1, a new value is assigned
to d, and the communication variable c is set to the acknowledge state
ack. Master detects the acknowledgement and stores the value of d to
the local buffer buf in its M2 action, sequentially composed with the
action M1. After this, a new communication cycle may begin.

sys M1 (c : com2,1; d : data) ::
|[ var buf : data

actions
M1 : d := d′. (d′ ∈ data);

c := c′. (c′ ∈ {req0, req1})
M2 : c = ack → buf := d

init c := ack
exec do M1 ; M2 od

]|

sys S1 (c : com2,1; d : data) ::
|[ var buf0, buf1 : data

actions
S1 : c = req0 → buf0 := d;

d := d′. (d′ ∈ data); c := ack
S2 : c = req1 → buf1 := d;

d := d′. (d′ ∈ data); c := ack
init c := ack
exec do S1 [] S2 od

]|

sys P to p () ::
|[ var c : com2,1; d : data

subsys
Master : M1 (c, d)
Slave : S1 (c, d)

init c := ack
exec Master ‖ Slave

]|

Point-to-multipoint. In the case of a point-to-multipoint channel a
single master is connected to several slaves so that one slave is accessed at
a time. Such operation can be generally modeled using a communication
variable c of the type comN,1, where N is the number of the involved
slaves. In other words, c has a distinct request value reqi for each slave
and a common acknowledge value ack shared by the slaves. Note that
a master accessing N slaves simultaneously is modeled by N separate
point-to-point channels, not by a single point-to-multipoint channel.

As an example, consider the below system P to mp which contains
an instance Master of the module M1, already defined above, and two
instances Slave(0) and Slave(1) of the module S2 given below. Simi-
larly as in the point-to-point case, the subsystems communicate via the
biput channel c〈 d 〉, where c is of the type com2,1. However, now the
channel can be viewed as a combination of two mutually exclusive sub-
channels one of which connects Master and Slave(0), the other Master
and Slave(1), correspondingly. This means in practice that Slave(i),
i ∈ {0, 1}, uses the values reqi and ack of c, as specified in the subsys
clause of the system P to mp. Master initiates a communication cycle
with either Slave(0) or Slave(1) by setting c to req0 or req1, respectively.
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sys S2 (c : com; d : data) ::
|[ var buf : data

actions
S : c = req → buf := d;

d := d′. (d′ ∈ data); c := ack
init c := ack
exec do S od

]|

sys P to mp () ::
|[ var c : com2,1; d : data

subsys
Master : M1 (c, d)
Slave(i) : S2 (c(reqi, ack), d)

init c := ack
exec Master ‖ Slave(0) ‖ Slave(1)

]|

Bus. A bus is a shared communication resource with several masters
competing for the access to the slaves connected to the bus. At any given
time only one master can use the bus. Hence, arbitration is needed to
decide which master is to be allowed to access the shared communication
resource. Due to this control, it is convenient to model a whole bus as
a separate Action Systems module which takes care of the arbitration
procedure and data transfer between masters and slaves.

The below module Bus is a generic model of a simple bus supporting
NM (> 0) masters, which have the form of the module M2 specified
below, and NS (> 0) slaves which are assumed to be instances of the
abstract slave module S2 defined above in the point-to-multipoint case.
The new master model M2 includes, in contrast to the earlier M1, an
interface variable (a) used as an address to select one of the NS slaves.
Notice that the slave count NS is a generic parameter of M2, and both
NS and the master count NM are generic parameters of the bus model
Bus. The system Bus sys, also given below, is an example bus system
configuration with NM , NS = 2, composed of the instances Master(0)
and Master(1) of M2, the instances Slave(0) and Slave(1) of S2, and the
instance Bus of the component Bus.

sys Bus (m[NM ] : com; a[NM ] : 0..NS − 1; dm[NM ] : data;
s : comNS,1; ds : data) [NM , NS : natural] ::

|[ actions
Req(i) : m[i] = req → ds := dm[i]; s := reqa[i]
Ack(i) : s = ack → dm[i] := ds; m[i] := ack

init m, s := ack
exec do [ ⊕ 0 ≤ i ≤ NM − 1 : (Req(i) ; Ack(i)) ] od

]|

sys M2 (c : com; a : 0..NS − 1; d : data)
[NS : natural] ::

|[ var buf : data
actions

M1 : d := d′. (d′ ∈ data);
a := a′. (0 ≤ a′ ≤ NS − 1);
c := req

M2 : c = ack → buf := d
init c := ack
exec do M1 ; M2 od

]|

sys Bus sys () ::
|[ var m[2] : com; s : com2,1; a[2] : 0..1;

dm[2], ds : data
subsys

Master(i) : M2 (m[i], a[i], dm[i]) [2]
Bus : Bus (m, a, dm, s, ds) [2, 2]
Slave(i) : S2 (s(reqi, ack), ds)

init m, s := ack
exec Master(0) ‖ Master(1) ‖ Bus

‖ Slave(0) ‖ Slave(1)
]|

The module Bus communicates with the attached masters via NM

point-to-point channels m[i]〈 a[i], dm[i] 〉, i ∈ {0, . . . , NM − 1}, where
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m[i] is a communication variable of the type com, a[i] ∈ {0, . . . , NS − 1}
is a slave address provided by the master i, and dm[i] represents data
transferred between the master i and Bus. In fact, m[i] is a biput channel
with respect to dm[i], as in the request phase (action Req(i)) data moves
from the master to Bus, and in the acknowledge phase (action Ack(i))
from Bus to the master.

Communication between Bus and the attached NS slaves takes place
via a biput-type point-to-multipoint channel s〈 ds 〉, where the commu-
nication variable s is of the type comNS ,1, and ds represents data trans-
ferred between Bus and a slave in both directions. We assume in this
model that ds, and thereby also dm[i] at the master side, not only rep-
resents actual computational data but also various control information,
such as a memory address, a function/mode selector, or a slave response
message, exchanged between a master and a slave during a bus transac-
tion. Bus arbitrates between the requesting bus masters and forwards
the request of the granted master i to the slave a[i] by setting the commu-
nication variable s to reqa[i] in the action Req(i). Note that arbitration
is here explicitly modeled by the exclusive action composition operator
‘⊕’ in the do-od loop of the module Bus. The idea is that only one of
the NM communication sequences modeled by the action compositions
Req(i) ; Ack(i), where i ∈ {0, . . . , NM −1}, can be enabled at any given
time.

The presented abstract bus model does not contain any priority con-
trol. This means that selection between requesting masters is completely
arbitrary, independently of how long each master has waited for access
to the bus. One way to solve this problem is to use a fairness assumption
by which we can conclude that each requesting master will be eventu-
ally served. The other approach would be to increase determinism by
implementing an appropriate priority scheme which would give a higher
priority to certain masters, for example to those ones that have been
waiting longer. A simple priority scheme can be added to the above Bus
module by introducing a local priority array pr[NM ] of the type natural,
with all elements initialized to 0, and then modifying the action Req(i)
to

(m[i] = req) ∧ (∀j . (0 ≤ j ≤ NM − 1) ∧ (j �= i) . pr[j] ≤ pr[i]) →
pr := pr′ . (∀j . 0 ≤ j ≤ NM − 1 . P1 ∧ P2 ∧ P3);

ds := dm[i]; s := reqa[i]

where

P1 =̂ j = i ⇒ pr′[j] = 0

P2 =̂ (j �= i) ∧ (m[j] = req) ⇒ pr′[j] = pr[j] + 1

P3 =̂ (j �= i) ∧ (m[j] �= req) ⇒ pr′[j] = pr[j]
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Now the action Req(i) can be enabled, i.e., is able to actually participate
in arbitration, only if there are no higher priority requests m[j] = req
(j �= i) present such that pr[j] is larger than pr[i]. The priority array is
updated every time the action Req(i) (for any i) is executed, according to
the predicates P1, P2, and P3 defined above. In other words, pr[i] is ini-
tialized back to 0 (P1), the elements pr[j] corresponding to the pending
requests that lost arbitration are incremented by one to increase priority
of the requests in question (P2), and the elements pr[j] corresponding
to the inactive requests are not changed (P3). This control mechanism
ensures, without any fairness assumptions, that every requesting master
will get the access to the bus, and that the longer the master has been
waiting for its turn the better chance it has to be selected.

Network. A conventional bus structure serves as a platform for
rapid construction of complex systems-on-chip. However, it introduces
a performance bottleneck, as parallel communication between system
modules is not possible. To enable flexible design of high-performance
systems, a more parallel, network-like communication platform is needed.
In such a platform model, each system module or processing element has
a unique address, and all modules can simultaneously access the com-
munication medium.

An abstract template model Pe of a processing element is given below.
It has, as a generic parameter, an identification number id ∈ {0, . . . , N−
1}, where N is the total number of processing elements in the system.

sys Pe (co : com; ao : 0..N − 1; dout : data;
ci : com; ai : 0..N − 1; din : data) [N : natural; id : 0..N − 1] ::

|[ var dbuf : data; abuf : 0..N − 1
actions

Snd : co = ack → dout := dout′. (dout′ ∈ data);
ao := ao′. (0 ≤ ao′ ≤ N − 1) ∧ (ao′ �= id); co := req

Rec : ci = req → dbuf, abuf := din, ai; ci := ack
init co, ci := ack
exec do Snd [] Rec od

]|

The module is composed of two actions Snd (“send”) and Rec (“re-
ceive”) which can be enabled simultaneously. Pe acts as a master when
sending data to the network by executing the action Snd, and as a slave
when receiving data from the network by executing the action Rec. It
has the point-to-point output port co〈 ao, dout 〉, managed by Snd, where
co is a communication variable of the type com, ao is a destination ad-
dress between 0 and N − 1, and dout represents data of any type to be
sent to the destination element through the network. In the case of the
point-to-point input port ci〈 ai, din 〉, managed by Rec, ci is again a vari-
able of the type com, and ai is a source address, i.e., the identification
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number of the processing element that has sent the incoming data din.
The two communication ports, output and input, can work in parallel
enabling fast data exchange through the interface.

The communication platform itself, the network, can be modeled as
the below generic Action Systems module N et supporting N processing
elements which are assumed to be instances of the above template model
Pe. An example configuration with N = 4 is given below as the system
N et sys which is composed of the instance Network of the module N et,
and the four instances Host (i), i ∈ {0, . . . , 3}, of the module Pe.

In general, the module N et has N point-to-point host ports, one for
each attached host processing element i, i ∈ {0, . . . , N − 1}. Each host
port is composed of the input port pi[i]〈 pia[i], pid[i] 〉 and the output
port po[i]〈 poa[i], pod[i] 〉. The former is connected to the output port
co〈 ao, dout 〉 and the latter to the input port ci〈 ai, din 〉 of the corre-
sponding host element Pe. Hence, pi[i] and po[i] are communication
variables of the type com, pia[i] is the destination address of data pid[i],
and poa[i] is the source address of data pod[i].

sys Net (pi[N ] : com; pia[N ] : 0..N − 1; pid[N ] : data;
po[N ] : com; poa[N ] : 0..N − 1; pod[N ] : data) [N : natural] ::

|[ var tr[N, N ] : com; db[N, N ] : data
actions

Snd(i) : (pi[i] = req) ∧ (tr[i, pia[i]] = ack) → db[i, pia[i]] := pid[i];
tr[i, pia[i]], pi[i] := req, ack

Rec(i, j) : (tr[j, i] = req) ∧ (po[i] = ack) → pod[i], poa[i] := db[j, i], j;
po[i], tr[j, i] := req, ack

init pi, po, tr := ack
exec do [ [] 0 ≤ i ≤ N − 1 : ( Snd(i) [] [ [] (0 ≤ j ≤ N − 1) ∧ (j �= i) : Rec(i, j)] ) ] od

]|

sys Net sys () ::
|[ var co[4], ci[4] : com; ao[4], ai[4] : 0..3; com2,1; dout[4], din[4] : data

subsys
Host(i) : Pe (co[i], ao[i], dout[i], ci[i], ai[i], din[i]) [4, i]
Network : Net (co, ao, dout, ci, ai, din) [4]

init co, ci := ack
exec Network ‖ Host(0) ‖ Host(1) ‖ Host(2) ‖ Host(3)

]|

N et contains two parametrized actions in its actions clause: Snd(i)
and Rec(i, j). As specified in the do-od loop of the module, each host
port i is managed by the action Snd(i), which is responsible of the in-
put port pi[i], and N − 1 actions Rec(i, j) with j ∈ {0, . . . , N − 1} \ {i},
which take care of the output port po[i]. Here the parameter j refers
to all possible source ports sending data to the destination port i. The
actions Snd(i) and Rec(i, j) can be simultaneously enabled, so that data
is received from and sent to the host element i in parallel through pi[i]
and po[i]. Furthermore, all actions Snd(i), for i ∈ {0, . . . , N − 1}, can
execute in parallel, and thereby several, even all of the actions Rec(i, j)



Formal Communication Modeling and Refinement 329

for a given i can become enabled at the same time. The execution order
of such simultaneously enabled Rec(i, j) actions is completely arbitrary,
modeled by the nondeterministic choice, unless a priority scheme is im-
plemented in a similar manner as in the bus model presented earlier.

Data transfer from a host port i to the destination port pia[i] is mod-
eled by the internal point-to-point communication channel tr[i, pia[i]]
〈 db[i, pia[i]] 〉, where tr[i, pia[i]] is of the type com, and db[i, pia[i]] is
a copy of the data variable pid[i], assigned by the action Snd(i). The
request sent by the master action Snd(i) via tr[i, pia[i]] is detected by
the corresponding slave action Rec(pia[i], i). This copies the value of the
intermediate data variable db[i, pia[i]] and the source port identification
number i to pod[pia[i]] and poa[pia[i]], respectively, and sends then a
request to the destination module pia[i] through po[pia[i]], and an ac-
knowledgement to the action Snd(i) through tr[i, pia[i]]. Observe that
as there is a distinct channel tr[i, pia[i]]〈 db[i, pia[i]] 〉 for each possible
destination pia[i], the port i can communicate with all destination ports
in parallel, even though the communication cycles in question are acti-
vated by Snd(i) one at a time according to the sequence of addresses
pia[i] provided by the host processing element i via the input port pi[i].

3.2 Synchronous Communication
The main characteristic of synchronous devices is the employment of a

common signal, the clock, which continuously switches between the high
and the low values. All updates are performed in some kind of relation
with this signal: either on the rising/falling edge or on the high or low
level of the clock signal. Intrinsically, there is a time tag associated with
the clock activity, thus a period denoting the time between two similar
consecutive transitions. We start by giving a short description of the
synchronous design framework within the Action Systems formalism.

Synchronous Action Systems. Synchronous Action Systems [3] is
a timeless approach towards the representation of synchronous hardware
devices. Briefly, let us consider two initial always enabled assignments,
A =̂ wA := w′.QA, B =̂ wB := w′.QB. Their synchronous individual
representation is reached if we split them into read and write parts –
RA, RB, with the help of intermediate variables, uA, uB:

RA,B =̂ uA,B := v′
A,B .QA,B [uA,B/wA,B ], WA,B =̂ wA,B := uA,B

Adding another variable that models the clock signal, the boolean p,
we have the synchronous versions:

SA,B = ¬p → RA,B ; p := true [] p → WA,B ; p := false
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Now we can further synchronously compose SA and SB by simultane-
ously executing their read and write parts:

SA∇SB = ¬p → RA 	 RB ; p := true [] p → WA 	 WB ; p := false

Notice in the above the behavior of SA∇SB: the inputs are read and
an intermediate result is produced, after which the real update is per-
formed on the output variables. The two phases, read and write are
run in turns, based on the value of the boolean variable p, modeling the
clock. However, at the highest level, the synchronous operator is used to
hide the details of the above composition: if certain actions A and B are
(or can be transformed into) always enabled assignments, it is enough
to write A ∇ B and we do not have to expose the underlying read /
write phases and the clock modeling variable p. The composition of two
synchronous action systems is done in a similar manner to the paral-
lel composition (Section 12.2.3), that is, the actions of the composing
systems are merged into a single synchronous composition.

If in the asynchronous approach our focus is on the input state, which
determines the way a certain variable is updated, in synchronous design
we will focus on deciding which variables are simultaneously updated.
Following this, we define the manner in which they are updated, remem-
bering that the resulting actions must be always enabled. In order to
ensure this requirement, it is sufficient to specify the output considering
all the possible input situations.

Figure 12.1. Single data processing, single clock period.

Communication model. All the characteristics of communication
presented in previous sections stand valid for a synchronous model, too.
However, in the following, we analyze just a very simple communication
scheme involving a master, an arbiter and a slave (Fig. 12.2), all shar-
ing the same clock signal. We only model the actions that update the
communication variables. Thus, between master and arbiter we have a
channel of the type MastChan : com2,2(req, end, gr, idle). Between the
master and the slave, communication is performed along a channel of
the type SlChan : com2,2(req, end, ack, idle). We assume that the oper-
ation performed by the slave on the input data is executed in one clock

s = idle

c = idle

s = end

c = end

s = ack

skip

s = req

skipc = gr

clk

c = req
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cycle. Then, a communication cycle is represented in Fig. 12.1, where
skip stands for “no operation”, or the preservation of the previous value
(for instance: c := c′.(c′ = c)).

sys Arbiter(c : MastChan) ::
|[ actions

C : c := c′.(c = req ⇒ c′ = gr)
∧ (c = end ⇒ c′ = idle)
∧ (c /∈ {idle, req} ⇒ c′ = c))

init c := idle
exec do C od

]|

sys Master(c : MastChan; s : SlChan) ::
|[ actions

C : c := c′.(c = idle ⇒ c′ = req)
∧ ((c = gr) ∧ (s = ack) ⇒ c′ = end)
∧ (c /∈ {idle, gr} ⇒ c′ = c))

S : s := s′.((c = gr ∧ s = idle ⇒ s′ = req)
∧ (c = gr ∧ s = ack ⇒ s′ = end)
∧ (c �= gr ⇒ s′ = s))

init c, s := idle
exec do C ∇ S od

]|

sys Slave(s : SlChan) ::
|[ actions

S : s := s′.((s = req ⇒ s′ = ack)
∧ (s = end ⇒ s′ = idle)
∧ (s /∈ {req, end} ⇒ s′ = s))

init s := idle
exec do S od

]|

Figure 12.2. Elements of a bus-based action system.

sys Bus Sys() ::
|[ var c : MastChan; s : SlChan

actions
Master.C : c := c′.(c = idle ⇒ c′ = req) ∧ ((c = gr) ∧ (s = ack) ⇒ c′ = end)

∧ (c /∈ {idle, gr} ⇒ c′ = c))
Master.S : s := s′.((c = gr ∧ s = idle ⇒ s′ = req) ∧ (c = gr ∧ s = ack ⇒ s′ = end)

∧ (c �= gr ⇒ s′ = s))
Slave.S : s := s′.((s = req ⇒ s′ = ack) ∧ (s = end ⇒ s′ = idle)

∧ (s /∈ {req, end} ⇒ s′ = s))
Arbiter.C : c := c′.(c = req ⇒ c′ = gr) ∧ (c = end ⇒ c′ = idle)

∧ (c /∈ {idle, req} ⇒ c′ = c))
init c, s := idle
exec do Master.C ∇ Master.S ∇ Slave.S ∇ Arbiter.C od

]|

Figure 12.3. The system Bus Sys.

The synchronous composition of the three systems in Fig. 12.2 re-
sults in the system Bus Sys =̂ Master∇Slave∇Arbiter. The flattened
description of Bus Sys is given in Fig. 12.3.

Within the context of the Bus Sys system, we can rewrite:

Master.S ∇ Slave.S ≤ Bus.S, Master.C ∇ Arbiter.C ≤ Bus.C,

where the new actions and the corresponding new system are:
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sys Bus Sys1() ::
|[ var c : MastChan; s : SlChan

actions
Bus.C : c := c′.(c = idle ⇒ c′ = req) ∧ (c = gr ∧ s = ack ⇒ c′ = end)

∧ (c = req ⇒ c′ = gr) ∧ (c = end ⇒ c′ = idle)
Bus.S : s := s′.((c = gr ∧ s = idle ⇒ s′ = req) ∧ (c = gr ∧ s = ack ⇒ s′ = end)

∧ (s = req ⇒ s′ = ack) ∧ (s = end ⇒ s′ = idle) ∧ (s /∈ {req, end} ⇒ s′ = s))
init c, s := idle
exec do Bus.C ∇ Bus.S od

]|

Expansion to multiple masters. Naturally, a bus-based system
does not include a single master and a single slave. By performing a data
refinement step together with the introduction of a new local variable
for the system Bus Sys, we can obtain a new representation that models
the existence of several (NM ) masters in the system.

The data refinement step is performed on the communication variable
c, which is expanded to a vector, c[1..NM ] : MastChan. The connec-
tion between the original c and the vector c[1..NM ] is expressed by the
abstraction relation:
R =̂ (c = idle ≡ ∀j ∈ {1, . . . , NM}.c[j] = idle) ∧ (c = req ≡ ∃j ∈ {1, . . . , NM}.c[j] = req)

∧ (c = gr ≡ ∃j ∈ {1, . . . , NM}.c[j] = gr ∧ ∀k ∈ {1, . . . , NM}\{j}.c[k] �= gr)

∧ (c = end ≡ ∃j ∈ {1, . . . , NM}.c[j] = end ∧ ∀k ∈ {1, . . . , NM}\{j}.c[k] �= end)

In the same step, as described in [3], we also introduce a new variable,
GrM , that keeps track of the current master owning the bus. It is
assigned every time the arbiter will grant a new master, and it is set to
0 after the current master ended its allowed transactions and releases the
control of the bus. This means that there is no master granted control
over the bus.

Using R and carefully placing references to GrM we can write
Bus.C ≤R [ [] 0 ≤ i ≤ NM − 1 : GrM = 0 ∨ GrM = i → Bus.C(i) ∇ Bus.G(i)],

Bus.S ≤R Bus1.S,

Bus Sys1 � Bus Sys2,

where
sys Bus Sys2()[NM : natural] ::
|[ var c[1..NM ] : MastChan; s : SlChan; GrM : 0..NM

actions
Bus.C(i) : c[i] := c′.(c[i] = idle ⇒ c′ = req) ∧ (c[i] = gr ∧ s = ack ⇒ c′ = end)

∧ (c[i] = req ⇒ c′ = gr) ∧ (c[i] = end ⇒ c′ = idle)
Bus.G(i) : GrM := g.((c[i] = gr ⇒ g = i) ∧ (c[i] = end ⇒ g = 0)

∧ (c[i] /∈ {gr, end} ⇒ g = GrM))
Bus1.S : s := s′.((c[GrM ] = gr ∧ s = idle ⇒ s′ = req)

∧ (c[GrM ] = gr ∧ s = ack ⇒ s′ = end)
∧ (s = req ⇒ s′ = ack) ∧ (s = end ⇒ s′ = idle) ∧ (s /∈ {req, end} ⇒ s′ = s))

init c, s := idle
exec

do [ [] 0 ≤ i ≤ NM − 1 : GrM = 0 ∨ GrM = i → Bus.C(i) ∇ Bus.G(i)] ∇ Bus1.S od
]|
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The communication scheme corresponding to the system Bus Sys2 is
illustrated in Fig. 12.4.

Figure 12.4. Single data processing, single clock period.

Observe that we can extract the new arbiter from the above system
Bus Sys2. We obtain:

sys Arbiter1(c[1..NM ] : MastChan; GrM : 0..NM )[NM : natural] ::
|[ actions

Bus.C(i) : c[i] := c′.(c[i] = idle ⇒ c′ = req) ∧ (c[i] = gr ∧ s = ack ⇒ c′ = end)
∧ (c[i] = req ⇒ c′ = gr) ∧ (c[i] = end ⇒ c′ = idle)

Bus.G(i) : GrM := g.((c[i] = gr ⇒ g = i) ∧ (c[i] = end ⇒ g = 0)
∧ (c[i] /∈ {gr, end} ⇒ g = GrM))

init c := idle
exec do [ [] 0 ≤ i ≤ NM − 1 : Bus.C(i) ∇ Bus.G(i)] od

]|

4. Refinement of Communication Channels
As a correctness-preserving step towards an implementable system

model, each abstract communication channel is refined into a more con-
crete form. This means that the communication variables of the type
comm,n and the other channel variables are turned into a collection of
concrete boolean variables or signals by the means of data refinement
(Section 12.2.4). In order to carry out such a transformation, an ap-
propriate application-specific abstraction relation R has to be specified
for each channel. It defines how the abstract channel variables are re-
placed with the concrete ones in the resulting system. As an exam-
ple, implementation of a communication variable c : comm,n requires at
most m request signals req0, . . . , reqm−1 : bool and n acknowledge sig-
nals ack0, . . . , ackn−1 : bool which are related to the values of the original
variable c by an abstraction relation of the form

R =̂

m−1∧
i=0

Rri ∧
n−1∧
j=0

Raj

with

Rri =̂ (c = reqi) ≡ Fri(req0, . . . , reqm−1, ack0, . . . , ackn−1)

Raj =̂ (c = ackj) ≡ Faj(req0, . . . , reqm−1, ack0, . . . , ackn−1)

clk

c[i] = req

GrM = i

c[i] = gr

GrM = i

skip

s = req

skip

s = ack

GrM = i

c[i] = end

s = end

GrM = 0

c[i] = idle

s = idle

skip

skip

skip
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where Fri and Faj are application-specific functions on the boolean
handshake variables of the refined channel. For instance, if c is of the
simple type com, we could have:

Rr =̂ (c = req) ≡ (req ∧ ¬ack) , Ra =̂ (c = ack) ≡ (¬req ∨ ack)

indicating that the request value of c corresponds to the unique state
with req high and ack low, while the acknowledge value corresponds to
the three other possible value combinations of the handshake variables
req and ack.

In general, a channel transformation is a non-trivial system-level oper-
ation which involves all modules attached to the channel in question and
includes adding new actions to these modules. It can be proven correct
using a condition of the form R ∧ I , where R is the defined abstraction
relation, and I represents other invariace properties and constraints,
specified for the system, which are to be preserved by the refinement
step.

5. Example: Specification of a System Bus
In this section, we consider a more concrete on-chip bus specifica-

tion and its refinement. The bus is inspired by AMBA AHB [11], an
existing open bus standard targeted for SoC design. However, not all
features of the AMBA AHB are included in the presented specifica-
tion. While the AMBA bus is synchronous, the bus presented here
is asynchronous, based on self-timed signaling and aimed for globally-
asynchronous locally-synchronous design, where bus masters and slaves
are locally clocked entities. Because of the level of abstraction and the
asynchronous structure, some of the original AMBA bus signals are not
explicitly modeled. On the other hand, asynchronous communication
requires some new signals not present in the synchronous AMBA AHB.

The description we show below is not the starting point in design-
ing such a system. If we begin from an initial specification similar to
the abstract bus representation given in Section 12.3.1, by incremental
refinement steps we introduce the AMBA-like control variables and pro-
tocol. These steps are not shown; instead we describe how by applying
a data-refinement procedure we reach an even more concrete level of
representation, where one channel is implemented with boolean signals.

5.1 Specification
The Action Systems model of the target bus is given below as the

module Bus supporting NM masters and NS slaves. It is composed of
two subsystems: Arbiter and Switch, also specified below, which are
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instantiated as the component instances Arb and Sw within Bus. The
Arbiter module takes care of deciding which requesting master may
access the bus in a given moment. The Switch module, in turn, deals
with passing signals sent by the granted master to the addressed slave,
and vice versa. At the master side, Bus has the ports m[i]〈Lck 〉, i ∈
{0, . . . , NM − 1}, through which the NM masters request access and
signal the completion of a bus transaction or a data burst, and the port
sm〈 a, adm, dm, Wm, Rspm 〉, shared by all the masters, through which
the granted master sends and receives data and control information to
and from the selected slave. Correspondingly, at the slave side, Bus
has the port s〈 ads, ds, Ws, Rsps, Mst 〉 through which the selected slave
receives and sends data and control information from and to the granted
master. In addition, the slaves share the auxiliary interface variable Splt
of Bus, via which the slaves can enable those bus requests at the ports
m[i], sent by the masters, that have been temporarily blocked (masked).

sys Bus (m[NM ] : mchanT ; Lck : bool; sm : com; a : 0..NS − 1; adm : natural;
dm : int; Wm : bool; Rspm : respT ; s : comNS,1; ads : natural;
ds : int; Ws : bool; Rsps : respT ; Mst : 0..NM − 1; Splt[NM ] : bool)

[NM , NS , NG : natural; G[NG] : set of 0..NM − 1] ::
|[ subsys Arb : Arbiter (m, Lck, Rsps, Mst, Split) [NM , NS , NG, G[NG]]

Sw : Switch (sm, a, adm, dm, Wm, Rspm, s, ads, ds, Ws, Rsps) [NS ]
init m := idle; sm, s := ack; Splt := false
exec Arb ‖ Sw

]|

sys Arbiter (m[NM ] : mchanT ; Lck : bool; Rsps : respT ;
Mst : 0..NM − 1; Splt[NM ] : bool)

[NM , NG : natural; G[NG] : set of 0..NM − 1] ::
|[ var mask[NM ], disable[NM ], reserve : bool

expressions Enable(i, j) : (∀k . (k ∈ G[j]) ∧ (k �= i) .¬disable[k])
actions
Grant(i, j) :

(m[i] ∈ {rq, rql}) ∧ (¬mask[i] ∨ Splt[i]) ∧ Enable(i, j) ∧ ¬reserve →
Lck, Mst, mask[i] := (m[i] = rql), i, false;
reserve, disable[i] := true, false; m[i] := gr

ChkResp(i) : m[i] ∈ {done, end} → (Split(i) [] Retry(i) [] OkErr(i)); reserve := false
Split(i) : Rsps = split → mask[i] := true; Req(i)
Retry(i) : Rsps = retry → disable[i] := true; Req(i)
OkErr(i) : Rsps ∈ {okay, error} →

(m[i] = done → (disable[i] := true; Req(i)) [] m[i] = end → m[i] := idle)
Req(i) : ¬Lck → m[i] := rq [] Lck → m[i] := rql

init mask, disable, reserve, Splt := false; m := idle
exec
do [ // 0 ≤ j ≤ NG − 1 : [ [] i ∈ G[j] : (Grant(i, j) [] ChkResp(i))]] od

]|

sys Switch (sm : com; a : 0..NS − 1; adm, ads : natural; dm, ds : int;
Wm, Ws : bool; Rspm, Rsps : respT ; s : comNS,1; ) [NS : natural] ::

|[ actions
ReqW : sm = req ∧ Wm → ds, ads, Ws := dm, adm, Wm; s := reqa

AckW : s = ack → Rspm := Rsps; sm := ack
ReqR : sm = req ∧ ¬Wm → ads, Ws := adm, Wm; s := reqa

AckR : s = ack → dm, Rspm := ds, Rsps; sm := ack
init sm, s := ack
exec do (ReqW ; AckW ) [] (ReqR ; AckR) od

]|



336

The mentioned interface variables are defined as follows:
• m[NM ] : mchanT . The communication variables between the mas-

ters and Arbiter. The type mchanT is defined by type mchanT :
com4,2(rq, rql, done, end, gr, idle), where the meaning of the 6 values is
the following. rq: bus request, set initially by the master and restored by
Arbiter after receiving the done value assigned by the master; rql: re-
quest for a locked transfer in which data is transferred between a master
and a slave as a continuous burst, set initially by the master and restored
by Arbiter after receiving the done value assigned by the master; done:
bus transaction completed, set by the granted master; end: data burst
completed, set by the granted master; gr: bus grant, set by Arbiter as
the response to the rq or rql request; idle: communication initialized,
initial state and set by Arbiter as the response to the end value.

• sm : com; s : comNS ,1. The communication variables between the
masters and Switch (sm), and between Switch and the slaves (s). The
value req of sm is set by the granted master and the value ack by the
Switch as the response to the acknowledgement on s. The value reqa of
s, where a is the address of the selected slave, is set by Switch as the
response to the request on sm, and the value ack of s is assigned by the
selected slave.

• Lck : bool. The transfer mode indicator which is true only if the
granted master requested a locked transfer, set by Arbiter.

• Mst : 0..NM −1. The identification number of the master currently
accessing the bus, set by Arbiter and read by the slaves.

• Wm : bool. The transfer direction indicator which is true in the case
of a write operation (from a master to a slave) and false in the case of a
read operation (from a slave to a master), set by the granted master.

• a : 0..NS − 1. The slave address, set by the granted master.
• adm, ads : natural. The address for accessing a memory location

in the address space of the selected slave. adm is set by the granted
master, ads is a copy of adm assigned by Switch.

• dm, ds : int. Data to be transferred during a bus transaction. In a
write operation, dm is assigned by the granted master and ds by Switch
(dm is copied to ds). In a read operation, ds is set by the selected slave
and dm by Switch (ds is copied to dm).

• Rsps, Rspm : respT . The slave response variables. Rsps is set
by the selected slave, and Switch copies Rsps to Rspm which is read
by the granted master. The type respT is defined by type respT :
(okay, error, retry, split), where the meaning of the 4 values is the fol-
lowing. okay: bus transaction completed successfully, operation proceeds
normally; error: bus transaction failed, data is skipped and the granted
master decides whether to ignore the failure or to abort the current
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transfer burst; retry: slave busy – retry requested, data is skipped and
the transaction is asked to be tried again as soon as possible. split:
slave busy – split transfer requested, data is skipped and the transaction
cannot be resumed before the slave has explicitly allowed the involved
master to proceed.

• Splt[NM ] : bool. Split transfer control array assigned by the slaves
and read by Arbiter. In the case of a split response from a slave, the
request of the involved master i is masked within Arbiter. By setting
Splt[i] to true, the slave overrides the mask in question allowing the
master i to participate in arbitration again.

Arbiter. The subsystem Arbiter has two main actions for each
master i in its do-od loop: Grant(i, j), where j is the number of the
priority group the master i belongs to, and ChkResp(i) which is com-
posed of a set of subactions also specified in the actions clause. Arbiter
supports NG priority groups given as generic parameters G[j] where
j ∈ {0, . . . , NG − 1}. Each group is a set of master identification num-
bers i ∈ {0, . . . , NM − 1}. The masters mentioned in the set G[0] have
the highest priority, while the masters mentioned in the set G[NG − 1]
form the lowest priority group. We assume here that NG ≥ 1. The prior-
ity control is explicitly modeled in Arbiter by the quantified prioritized
composition // in the do-od loop. The idea is that the action Grant(i, j)
can be enabled only if there are no higher priority requests ppresent, i.e.,
if none of the actions Grant(i′, j′), where j′ < j, is enabled. The inner
quantified construct is a nondeterministic choice between the composi-
tions Grant(i, j) [] ChkResp(i) for the masters i belonging to the same
priority group G[j], modeling arbitration between the requests sent by
these masters.

The action Grant(i, j) is responsible of granting the bus to the request-
ing master i from the priority group G[j] by assigning the value gr to the
communication variable m[i]. When executed, it also sets the interface
variables Lck and Mst to the appropriate states and the local boolean
control variable reserve to true disabling temporarily all NM Grant ac-
tions. The action ChkResp(i), in turn, is executed when the granted
master i has completed a bus transaction and set m[i] to either done or
end. The value end (“burst completed”) is actually possible only when
the slave response Rsps is either okay or error. Then ChkResp(i) sets
m[i] to the initial value idle. Otherwise, i.e, if m[i] = done (“transaction
completed”), ChkResp(i) acts according to the value of the slave response
signal Rsps, sets m[i] back to the previous request state rq or rql, and ini-
tializes the variable reserve back to false allowing the appropriate Grant
actions to compete for bus access again. If Rsps = split, the request of
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the granted master i is masked by setting the local array element mask[i]
to true. This disables the action Grant(i, j) until the involved slave sets
Splt[i] to true, thus overriding the mask. If Rsps ∈ {retry, okay, error},
the Grant actions of the other masters belonging to the same priority
group G[j] as the master i are disabled by setting the local array element
disable[i] to true (the expression Enable(i′, j) becomes false for i′ �= i).
Hence, the action Grant(i, j) is guaranteed to be re-selected for execu-
tion, if there are no higher priority requests present. Both mask[i] and
disable[i] are initialized to false on the next execution of Grant(i, j).

The Arbiter module and the attached masters satisfy the following
essential invariant I which states that only one of the communication
variables m[i], i ∈ {0, . . . NM − 1}, can have the value gr, done, or end
in any given moment, i.e., only one master can be accessing the bus at
a time:

I =̂ (∀i, j. (0 ≤ i, j < NM ) ∧ (j �= i).m[i] ∈ {gr, done, end} ⇒ m[j] ∈ {rq, rql, idle})

Switch. The subsystem Switch has a quite simple structure.
In the case of a write operation (Wm = true), the action sequence
ReqW ; AckW takes care of transferring data and control informa-
tion from the granted master to the selected slave a, and the slave re-
sponse message back to the master. In the case of a read operation
(Wm = false), the action sequence ReqR ; AckR transfers control in-
formation from the granted master to the selected slave, and data along
with the slave response message from the slave back to the master.

5.2 Channel Refinement
As a refinement example, consider the communication variables m[i]

of the subsystem Arbiter. Since all these NM variables of the type
mchanT are refined similarly, we can here focus on only one of them
and denote it simply by m. The variable m has 6 possible values: rq,
rql, done, end, gr, and idle, each corresponding to a certain phase of a
communication cycle on m. In order to develop the Arbiter specification
into a more concrete form, closer to the circuit level, we implement m
using 4 separate boolean handshake variables or signals, namely rq, rql,
done, and gr. They are related to the original communication variable m
by the following abstraction relations, needed for proving the correctness
of the transformation:

R1 =̂ (m = rq) ≡ (rq ∧ ¬rql ∧ ¬gr)

R2 =̂ (m = rql) ≡ (¬rq ∧ rql ∧ ¬gr)

R3 =̂ (m = done) ≡ ((rq �= rql) ∧ done ∧ gr)

R4 =̂ (m = end) ≡ (¬rq ∧ ¬rql ∧ ¬done ∧ gr)

R5 =̂ (m = gr) ≡ ((rq �= rql) ∧ ¬done ∧ gr)

R6 =̂ (m = idle) ≡ (¬rq ∧ ¬rql ∧ ¬done ∧ ¬gr)
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Hence, the refined communication channel between a master and Arbiter
is considered idle, when all of its handshake variables are false (R6). The
channel is put to a request state when the master initially sets either rq
or rql to true, or when Arbiter sets the grant signal gr to false while
the master is keeping the request rq or rql high (R1, R2). Arbiter puts
the channel to the grant state by setting the signal gr to true as the
response to the enabled request signal rq or rql when the signal done is
low (R5). The done state indicates that the master has set the signal
done to true while keeping the request rq or rql enabled, and the grant
signal gr is still high (R3). The end state is entered, when the master
finally initializes the asserted request signal rq or rql back to false while
the grant signal gr is high (R4). As the response, Arbiter puts the
channel to the initial idle state by setting gr to false (R6). The signaling
protocol on the refined channel is depicted in Figure 12.5.

Figure 12.5. Signaling protocol.

The transformation changes the action Grant(i, j) of Arbiter into

((rq[i] ∨ rql[i]) ∧ ¬done[i]) ∧ (¬mask[i] ∨ Splt[i]) ∧ Enable(i, j) ∧ ¬reserve →
Lck, Mst, mask[i] := rql[i], i, false;
reserve, disable[i] := true, false; gr[i] := true

and the action ChkResp(i) into

(done[i] ∨ (¬rq[i] ∧ ¬rql[i])) ∧ gr[i] → (Split′(i) [] Retry′(i) [] OkErr′(i)); reserve := false,

where the primed subactions differ from the original ones in the included
action Req(i) which is replaced in the refined actions with the simple
assignment gr[i] := false. The subaction OkErr(i) is changed even more,
so that the refined action OkErr’(i) is given as

Rsps ∈ {okay, error} → (done[i] → disable[i], gr[i] := true, false [] ¬done[i] → gr[i] := false)

6. Conclusions
In this chapter we applied Action Systems formalism to the specifica-

tion and refinement of communication channels between digital system
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components, within the larger concept of platform-based design. Issues
such as abstraction level – reflected in the representation of the commu-
nication channels, and asynchronous as well as synchronous communi-
cation schemes were addressed. The refinement techniques were used to
correctly transform the initial abstract specification into a more concrete
form, closer to implementation level.

While the communication platform was analyzed in more detail, the
actual computation units were only viewed as communication partners.
Hence, their individual internal behavior can be analyzed and specified
later, as a separate refinement process that preserves the external be-
havior established earlier.
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1. Introduction
The primary goal of system-level modelling is to formulate a model

within which a broad class of designs can be developed and explored.
Ultimately, this allows designers to efficiently implement instances of
systems within a single modelling style as supported by common design
tools and methodologies. Figure 1 illustrates a possible System-on-Chip
(SoC) design methodology, where the application, represented as a set
of communicating tasks, is mapped onto a heterogeneous multiprocessor
platform. Such a hardware platform can be developed either as part of
the design process (core-based design), or configured from an existing
reconfigurable platform (platform-based design). Both design scenarios
allow for the implementation of parts of an application as dedicated
processors (ASICs). On the other hand, as an increasing portion of
applications is implemented in software which, in turn, is growing larger
and more complex, dedicated (real-time) operating systems will have to
be introduced as an interface layer between the application software and
the hardware platform [4].

Therefore, the application has to be partitioned into sets of tasks
which can then be mapped onto software or hardware, or a combination
of both, while optimizing a number of non-functional design metrics,
such as, performance, power consumption, resource utilization, reusabil-
ity, and flexibility. This process of system-level design is known as the
hardware/software codesign [20]. The codesign process depends not only
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Figure 13.1. System-level SoC design methodology

on the type and the number of processors on a platform but on the topol-
ogy and protocol of the inter-processor network as well [14].

It is important to realize that a Network-on-Chip (NoC) is a subset
of a SoC. The architectural choices provide the set of the processing
elements (PE’s) required to service the tasks. The granularity (coarse
or fine) and the placement (for example global vs. distributed memory)
of the PE’s in a SoC considerably impact its NoC design and the services
demanded off it. On the other hand, the choice of a NoC solution may
impact the selection and/or placement of the PE’s. The general idea is
to make the many available PE’s to work together to achieve the desired
result.

At the system-level, the details of the PE’s and the NoC need to be
abstracted in a way that allows for an accurate modelling of the global
performance of the system, including the interrelationships among the
diverse processors, software processes and physical interfaces and inter-
connections. To support the designer of single-chip based embedded
systems, which includes multi-processor platforms running dedicated
RTOS’s as well as the effects of on-chip interconnect network, a mod-
elling/simulation framework is required to support the analysis of:

Network performance under different traffic and load conditions.

Consequences of different mappings of tasks to processors (software
or hardware).

Effects of RTOS selection, including scheduling, synchronization
and resource allocation policies.

An on-chip network model can provide provisions for run-time in-
spection and observation of the communication. Using this approach,
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implementations of the most promising network alternatives can be pro-
totyped and characterized in terms of performance and overhead. Tak-
ing communication into account during hardware/software mapping is
essential in order to obtain optimized solutions as emphasized in [14].
Also [13] and [21], show the importance of evaluating the communication
media and how the choice of communication clearly impacts the overall
architecture of a SoC.

In this chapter, we present a modelling framework which supports
design space exploration at the system-level for mapping an application
onto the architecture platform while giving a central role to the effects
of the NoC. The rest of the chapter is organized as follows: In Section 2,
we discuss various issues related to NoC modelling such as the require-
ments for modelling general network structures, the interface between
the processing elements and the network, and the possible usages of a
NoC model. Section 3 gives an overview of our abstract SoC model with
emphasis on modelling the NoC, while Section 4 gives a detailed descrip-
tion of the implementation of the NoC model. In Section 5, we present a
simple example to illustrate the capabilities of our NoC model. Finally,
Section 6 gives a summary and concluding remarks.

2. Issues in NoC Modelling
Architecturally, an on-chip network is defined by its topology and

the protocol running on it. The topology concerns the geometry of the
communication links while the protocol dictates how these links are uti-
lized. Many combinations of topology and protocol exist for an efficient
communication of one or more predominant traffic patterns. For ex-
ample, in [15], packet-switched NoC concepts have been applied to a
2-D mesh network topology whereas in [11], such concepts have been
applied to a butterfly fat tree topology. While there are several mature
methodologies for modelling and evaluating the PE architectures, there
is relatively little research done to port the on-chip communication to
the system-level. In [24], however, attempts have been made to fill this
gap by proposing a NoC modelling methodology based upon ideas bor-
rowed from the object-oriented design domain and implementing those
ideas in Ptolemy II.

The performance of a network is closely connected to its architec-
ture. Network performance is measured in quantitative terms, such as
latency, bandwidth, power consumption, and area usage, as well as, in
qualitative terms, such as network configurability (static or dynamic),
quality of service (QoS), etc. Predictability of performance is neces-
sary for NoC designers to take early decisions based on the NoC per-
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formance before actual implementation. Numerous studies have been
done for deadlock-, livelock- and congestion-avoidance, error-correction,
connection setup/tear-down, etc. to provide a certain predictable net-
work behavior [7]. Even lower-level engineering techniques like low-swing
drivers, signal encoding, etc., have been proposed to overcome network
communication uncertainties [3, 5, 12]. Many of these network aspects
are custom-tuned to fit the requirements of the application running on
top of it.

Throughout this chapter, we use latency as the primary metric to
ascertain the performance of a NoC. Network latency is defined as the
time taken to move data from the source PE to the destination PE. It
includes the message processing overhead, link delay, and the data pro-
cessing delay at the intermediate nodes. Network latency is a function of
the network topology (which determines the number of nodes and links
comprising a network) and the communication protocol (which deter-
mines the processing requirements for routing and flow control). If two
communicating tasks are allocated to two different processing elements,
data will have to be transferred over a communication medium and the
message transfer time will depend on the message size and the state of
the network.

The state of an on-chip network at any instant is given by the num-
ber of actively transmitting PE’s and the messages within its nodes and
links. The state of a network dictates which resources of the network
are currently in use and which ones can be available for future use.
This provides a measure of the network services available to the sys-
tem, which would affect its performance. We define network services as
the system-level characterization of the network resource allocation and
scheduling activities. For a given topology-protocol combination, the
effect of changes in network services changes the resources available for
a given communication event, thus, affecting its latency.

2.1 Network Aspects
Since most of the future embedded applications are likely to be real-

time applications running on multiprocessor SoC’s, the fundamental
properties required of future NoC’s to provide these services are: multi-
hop, concurrency, and sharing. Although different on-chip networks
manifest different subsets of the above-mentioned properties, a network
should contain all of them in order to be a successful NoC.

Multi-hop implies segmented communication in which communi-
cation events (majority of messages) pass through intermediate
nodes while traversing from the source to the destination.
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Concurrency implies multiple simultaneous communications. It
represents the ability of the network to successfully carry out more
than one communication at the same time.

Sharing implies quasi-simultaneous resource usage. It, inherently,
allows many communication events to occupy some or all of the
resources in an interleaved fashion.

Though defined separately, these properties are closely related to each
other through the underlying topology and protocol implementations.
If no direct path exists between two communicating PE’s, then multi-
hop is required. In multi-hop networks, links are connected via nodes.
This, inherently, introduces sub-divisioning (segmentation) of the net-
work. Many communication events can, thus, occur in different seg-
ments of the network allowing concurrency. Concurrency, in essence,
allows co-existence of different communication events. Sharing requires
that links be connected to multiple source and destination pairs at the
same time. Sharing, essentially, allows the creation of multiple commu-
nication events in the network. Sharing can be either spatial (resource
sharing) or temporal (time sharing).

Example 1: Consider three sample communication network topologies
(see Figure 13.2): (a) fully-interconnected or point-to-point, (b) bus, and
(c) mesh. When modelling a fully-interconnected network, illustrated
in Figure 13.2(a), at the system level, the inter-task communication
can be assumed to be negligible. This type of network has no multi-
hop or sharing capability but it does allow concurrency. The reuse and
scalability potential of such a network is limited. In the case of a bus
network, as illustrated in Figure 13.2(b), the inter-task communication
cannot be neglected. Therefore, the task graph of an application can be
extended by the insertion of message tasks (τm’s) which represent the
transfer of data between tasks. Such a network is shared but does not
allow multi-hop or concurrency. Since only one message transfer can
take place at a time, the bus quickly becomes a critical resource.

As the number of processors is increased, a careful selection of task
and communication scheduling policies is required when mapping tasks
onto processors and deciding upon the system implementation either in
software or in hardware. The fully-interconnected and the bus-based net-
work models can provide the best-case and the worst-case performance
limits, respectively, while carrying out an initial estimate of the com-
munication requirements of an application. However, a network-on-chip
solution requires more sophisticated modelling and design techniques in
order to handle muti-hop communication where the message transfer
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Figure 13.2. Communication modelling.

time may depend upon the traffic and the actual routing path through
the network. In Figure 13.2(c), communication in a bi-directional mesh
is shown. It has all the requisite network properties listed above and,
therefore, it allows successful inter-task communication. �

2.2 Network Boundary Issues
For modelling purposes, it is important to define a precise bound-

ary between the functionality of the NoC and the PE’s. For example,
in Figure 13.2(b), if a PE is responsible for performing communication
tasks as well, then there is an overlap between the tasks running on the
PE’s and the NoC. Similarly, in Figure 13.2(c), it is possible to design
the nodes (R1, R2, and R3) to buffer messages before transmission. On
the other hand, referring back to Figure 13.2(b), if a provision exists for
the PE’s to ”dump” their messages for communication to some tempo-
rary location without actually performing the communication tasks, it
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effectively decouples computation from communication. This temporary
location is called a network interface (NI).

The OSI [1] layered communication model is a convenient way to han-
dle the complexity inherent in the inter-task communication. The net-
work layer interfaces with the medium-access control layer and provides
network access and message transmission services to the transport layer.
When requested to send a message by a local task, the source transport
layer places the message in the output buffer. From there, each outgo-
ing message is delivered to the network under the control of the source
network layer. The input and output buffers are jointly maintained by
the transport layer and the network layer protocols. The transport layer
interfaces with the tasks and provides them with the message transport
services. After the message has traversed the network, the destination
network layer places the message in the input buffer and notifies the
destination transport layer. The destination transport layer then moves
the message to the address space of the destination task and notifies the
task of the arrival of the message.

The activities of sending a message can be represented by a chain of
tasks. The source and the destination tasks are the predecessor and the
successor of this chain of tasks, respectively. At the beginning and the
end of the chain of tasks are the source and the destination transport
protocol processing tasks. In between them, each task that accesses the
network or transmits the message becomes ready for execution after its
immediate predecessor completes, possibly with some delay introduced
by the execution synchronization protocol used. In short, for modelling
purposes, the various options for implementing these layers determine
the NoC boundary [2]. In our model, these options boil down to two
types of transitions in the task model:

Overlapped model: In this model, a PE not only initiates commu-
nication but also contributes to set it up. Thus, the computation
capability of a PE is utilized to carry out the communication pro-
cessing functions like message encapsulation, header creation, en-
coding, etc. In the OSI context, the PE implements all the layers
upto the physical layer to handle communication. As a result, an
inter-task overlap occurs between the task generating a communi-
cation request on a PE and the communication task complying to
such a request.

Triggered model: In this model, a PE only triggers a communica-
tion event but the communication is actually handled by the NI.
This frees up the computation capability of the PE for other tasks
scheduled on it. An NI takes data from a PE, encapsulates it, and
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ensures its successful transmission through the NoC. In the OSI
context, the PE implements all the layers upto the transport layer,
while the NI implements the rest of the layers below it, including
the transport layer, to handle communication. As a result, there
is no overlap of PE tasks demanding communication services with
the communication task performing communication.

TRANSPORT LAYER

NETWORK ACCESS LAYERS

τ3,1τ2,1τ1,1
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R2 R3
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Figure 13.3. Network Interface.

From the above discussion, it is obvious that the choice of a NI can
have global consequences on system-level scheduling (especially for large
message sizes). When deciding the network boundary, it is important
to break down the inter-task communication process into a sub-process
that initiates communication and a sub-process that performs commu-
nication. Figure 13.3 illustrates this concept. For the overlapped model,
the NI will be part of PE while for the triggered model, the NI is a
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separate entity as shown in the figure. The PE and the NoC models
shown in this figure will be discussed later in the Section 4 of this chap-
ter. The implementation of these sub-processes, within the perimeter
of either a PE silicon or the NoC silicon, only impacts power and area
considerations but not task scheduling. An NI introduces an additional
complexity of resource management to the scheduling problem. Its im-
plementation can range from just a set of wires, in a simple case, to a
dedicated network processing capability with memory in a more complex
case.

2.3 NoC Usage
Application design for embedded systems is a special challenge be-

cause embedded systems do not simply perform computations; they also
interact with their environment. Thus the embedded systems must in-
terface with and react to real processes. To achieve this goal, system
designers must juggle real-time constraints, concurrency, and hetero-
geneity. The future SoC designers are faced with two major design
challenges:

Platform Design: Finding good solution templates for the architec-
ture platform under the constraints and characteristics set by the
semiconductor technology on one side, and the application domain
in question on the other side.

Platform-based Design: Given a platform architecture, how should
it be configured (or instantiated) and how should the application,
in terms of a description of multiple, concurrent processes, be
mapped onto the platform while optimizing a number of design
metrics, such as, performance, power consumption, memory uti-
lization, and size, reusability, and flexibility.

Platform-based design is an efficient way to design complex system-on-
chip products. It follows a meet-in-the-middle approach, starting with a
functional system specification and a predesigned SoC platform. Perfor-
mance estimation models can help analyze different mappings between
the functional modules of the application and the platform components.
During these iterations, designers can try different platform customiza-
tions and functional optimizations.

Example 2: As the number of components in architecture platforms in-
creases, the type of on-chip interconnection and communication schemes
for processing elements, memories, and peripherals becomes important.
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Figure 13.4 illustrates a simple example explaining how NoC mod-
elling can facilitate design-space exploration. In this example, we con-
sider a system that can use three sample network topologies (1-D torus,
1-D mesh, and bus), each interconnecting three processing elements
{PEa, PEb, PEc} executing five tasks {τ1, τ2, τ3, τ4, τ5}. The initial
mappings are: {τ1, τ2} �→ PEa, {τ3} �→ PEb, {τ4, τ5} �→ PEc (where,
�→ means ’maps to’), and having dependencies: {τ1, τ4} ≺ τ3, τ2 ≺ τ5

(where, ≺ means ’precedes’). Each task dependency is manifested by
the insertion of a communication task between the inter-dependent task
pairs. Thus τ1 ≺ τmx ≺ τ3, τ4 ≺ τmy ≺ τ3, and τ2 ≺ τmz ≺ τ5 (where
τmx, τmy, and τmz represent message tasks).

For simplicity, all the tasks have been assigned the same period (T =
100), execution time (BCET1 = WCET2 = 15), and deadline (d = 100).
The time is measured in absolute time units. The tasks are mapped in
such a way that none of them misses its deadline. For the purpose of
this example, the overlapped NoC model is used and the system perfor-
mance criterion is defined to be the time when all the tasks finish their
execution, i.e., the earlier all the tasks finish their execution, the better
is the system performance. The results of this example are analyzed
below. �

2.3.1 Timing-Aware Scheduling. In the first row of Fig-
ure 13.4, Timing-Aware Scheduling scheme is depicted. In this scheme,
the tasks executing on a system using the bus or the torus topologies
finish in 80 time units whereas if the same system is using the mesh
topology, the tasks take 65 time units to finish. The link contention is
resolved randomly. As a bus comprises a single link, so the NoC resource
allocator/arbiter does not have much freedom in its allocation. There-
fore, the communication tasks are scheduled sequentially. On the other
hand, the torus and the mesh networks have multiple ways to allocate
their resources and schedule message tasks. The full potential of the
torus network to handle concurrent communication is not exposed very
well in this example but for the mesh network, it can be seen that its
performance is better than the other two networks by over 10 time units.

From the point of view of link usage, the torus and the mesh networks
only use two out of three links and three out of four links respectively.
So a possible network optimization can occur for these networks. On
the other hand, if the tasks, τ1 and τ4, are scheduled concurrently on a

1BCET is the Best-Case Execution Time
2WCET is the Worst-Case Execution Time
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torus network, there is a contention on link L1. So the network has to
be optimized accordingly to meet the timing requirements.

2.3.2 QoS-Aware Scheduling. In the second row of Fig-
ure 13.4, QoS-Aware Scheduling scheme is shown. In this scheme, the
traffic originating from PEa is assigned a higher priority and, therefore,
it is allocated the contentious link whenever a link contention arises. In
the case of a mesh network, there is no link contention, so it has no
effect on system performance. However, in the case of a torus network,
such a message scheduling scheme results in a performance gain of 5
time units. For a complex network with lots of nodes and links, such
a performance gain can be significant (both for the torus and the mesh
topologies). The bus architecture, on the other hand, would result in a
communication bottleneck.

2.3.3 Task Allocation-Aware Scheduling. In the third row
of Figure 13.4, we illustrate the effects of altering the allocation of tasks
to the processing elements while selecting different networks. The new
task allocation is: {τ2, τ3} �→ PEa, {τ4, τ5} �→ PEb, and {τ1} �→ PEc (the
task dependencies are kept the same). Compared to the bus, the system
performance advantage is significant with the segmented (the torus and
the mesh) networks. The reasons for the poor system performance with
the bus are the same as described above. From the point of view of
link utilization3, it is now higher with the torus and the mesh networks.
Most of the links, though not all, are now used simultaneously without
any contention.

2.4 Discussion
As mentioned earlier, the timing-, QoS-, and allocation-aware schedul-

ing analysis of Figure 13.4 is based entirely on the finish-deadline of the
task mapped to the allocated resource, where the resource is either a PE
or a network resource, such as a node or a link. Additional quantifica-
tions such as memory, area and power are also possible to incorporate
into the model. For example, if the power consumed per communicated-
bit is assumed equal, then the comparison of the power profile of the
allocation-aware 1-D mesh with the timing-aware bus will show a power
spike within the time duration of 20 to 40 time units for the 1-D mesh
network while exhibiting a stable power profile for the bus. Even within

3Link Utilization is defined as the aggregation of the number of links occupied in one unit of
time.
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the 1-D torus network, the communication power profile down the col-
umn (in Figure 13.4) shows an aggregation which may be disadvanta-
geous although link utilization has improved.

The main aim of this example exercise is to show how various options
for performing design trade offs like resource types, resource allocation,
task/message scheduling, etc. can be explored via the proposed NoC
framework.

3. Framework for NoC Modelling
For the purpose of abstracting a system-level model, an embedded,

real-time application can be represented as a collection of multiple, con-
current execution threads that are modelled as a set of dependent tasks
under certain precedence and resource constraints which have to be ex-
ecuted on a number of programmable processors under the control of
one or more RTOS(s). A system-level model can, thus, comprise three
types of basic components: tasks, RTOS services, and communication
network, where the communication network is meant to provide com-
munication services between the other system components.

The RTOS services can be further decomposed into independent mod-
ules that represent different basic RTOS services like task scheduling, re-
source allocation, and execution synchronization, where a scheduler mod-
els a real-time scheduling algorithm; a synchronizer models the depen-
dencies among the tasks and, hence, both the intra- and inter-processor
communications; and an allocator models the mechanism of resource
sharing among the tasks. A modeling framework provides the mech-
anism by which the various components comprising a model interact
[16]. It is a set of constraints on the components and their composition
semantics and, therefore, it defines a model of computation which gov-
erns the interaction of components [8]. Using a modeling framework, a
system-level model can be composed from the basic components in such
a way that the nature of services provided by any of the components
can be altered in a simple and straightforward manner independent of
the other components. In our discussion of the system-level modelling
framework so far, we have not incorporated the effects of a NoC but we
are going to consider that aspect now.

In order to communicate, the tasks executing on different process-
ing elements generate messages and submit them to the communication
network for transmission. The real-time, inter-processing element traffic
consists of messages that are continuously generated by their sources and
delivered to their respective destinations. Such traffic includes periodic
and sporadic messages that require some degree of guarantee for on-time
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delivery. In addition, there are also aperiodic messages. Aperiodic mes-
sages have soft timing constraints and expect the system to deliver them
on a best-effort basis.

Periodic Messages are generated and consumed by periodic tasks, and
their characteristics are similar to the characteristics of their respective
source tasks. Therefore, the transmission of a periodic message can
be represented by a periodic message task. By a similar argument, the
transmission of an aperiodic message can be represented by an aperiodic
task. Although an aperiodic message task, like an aperiodic task, does
not have a relative deadline, it is still desirable to keep the average
delay suffered by aperiodic message tasks to be as small as possible.
Sporadic message tasks have widely varying lengths and/or inter-arrival
times. In general, sporadic messages represent burst communication and
a sporadic message can be characterized in the same way as a sporadic
task [17].

For the purpose of efficient transmission through the communication
network, messages are fragmented into smaller-sized segments. The unit
of data transmission at the network level is called a packet. Therefore,
a message can be considered as a set of packets, where the packet size
is bounded. Packet transmission is non-preemtive. Thus, a communica-
tion network can be modelled as a communication processor on which
message transmission tasks are scheduled nonpreemptively on a fixed-
priority basis. In this way, the effect of the inter-processing element
communication is modelled automatically by the response times of the
message transmission tasks on the network [17].

Modelling an on-chip communication network as a communication
processor can reflect the demands on the network services. As a com-
munication event within a network is modeled as a message task (τm)
executing on the communication processor, therefore, when one PE in-
tends to communicate with another PE, a τm is fired on the commu-
nication processor. Each τm represents communication between a set
of two fixed, predetermined PE’s only. Since a NoC supports concur-
rent communication, τm’s need to be synchronized, allocated resources
and scheduled accordingly. This reflects the property of the underly-
ing NoC implementation, where the NoC Allocator reflects the topology
and the NoC Scheduler reflects the protocol. Additional flow-control
aspects, such as deadlock-avoidance, session-maintenance, acknowledge-
based completion, etc. can also be implemented. Though the handling of
those aspects either by the NoC Allocator or the NoC Scheduler depends
upon the specific NoC architecture.

A resource database which is unique to each NoC implementation,
contains information about all its resources. In a segmented network,
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these resources are laid-out as two-dimensional interconnects and com-
prise nodes (routers) and links. The algorithm for NoC allocation and
scheduling map an τm onto the available network resources. The main
focus of our discussion here is the networks which allow parallel commu-
nication, such as the segmented networks.

3.1 NoC Allocator
In a system-level NoC model, the role of the NoC Allocator is to

translate the path requirements of the τm in terms of the resource re-
quirements such as link bandwidth, storage buffers, etc. It has to mini-
mize conflicts over the network resources. The links and the nodes in the
communication path can be set aside dynamically (i.e., for the requested
time-slot) in the resource database. If the resource reservation process is
successful, the τm has to be queued for scheduling. When an τm releases
a resource after usage, the resource is free to be assigned to another
τm. However, if there is a contention over a resource, then resource
arbitration has to occur. The NoC allocation patterns for two sample
networks are shown in Table 13.1. The resource arbitration can be based
on the underlying network implementation and will be discussed further
shortly.

Table 13.1. A sample reservation for two sample networks ([18] c©2003 IEEE).

Message Path

a b c

L3

L2L1

R1 R2 R3

a b cR1 R2 R3

L4 L3

L2L1

Task 1-D Torus 1-D Mesh

Resource Scheduling Needs Resource Scheduling Needs

Allocation Small Large Allocation Small or Large

Message Size Message Size Message Size

τmx a→b L1 Immediate Preemptive L1 Immediate

τmy c→b L3, R1, L1 Immediate Immediate L3 Immediate

3.2 NoC Scheduler
Message Scheduling constitutes a basic function of any distributed

real-time system. The scheduling of real-time messages aims to allocate
the medium shared between several nodes in such a way that the time
constraints of the messages are respected. As outlined above, not all of
the messages generated in a distributed real-time application are critical
from the point of view of time. Thus, according to the time constraints
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associated with the messages, the following message scheduling strategies
can be applied:

Guaranteed Strategy: According to this strategy, a message is al-
ways guaranteed to be delivered within its deadline requirements.
This strategy is generally reserved for messages with critical timing
constraints.

Stochastic Strategy: In stochastic message scheduling strategy, the
time constraints of messages are met in a best-effort fashion at a
pre-computed probability. This strategy is used for messages with
soft timing constraints.

In a distributed real-time system, the above strategies can cohabit, to
be able to meet various communication requirements, according to the
constraints and the nature of the communicating tasks.

As messages have similar constraints as tasks (mainly deadlines), the
scheduling of real-time messages uses techniques similar to those used in
the scheduling of tasks but with a difference. Whereas, tasks, in general,
can accept preemption without corrupting the consistency of the end
result, the transmission of a message does not admit preemption. If the
transmission of a message starts, all the bits of the message must be
transmitted, otherwise, the transmission fails [6].

The NoC Scheduler has to execute the τm according to the particular
network service requirements. It has to minimize resource occupancy
while making sure that the τm’s are delivered within the specified timing
bounds. In a network, resource occupation is dictated by the message
size. The concept is better illustrated using the example in Table 13.1,
where scheduling needs for the same two sample networks are shown. For
a mesh there is no conflict. The τm’s get the required resources scheduled
”immediately”. But in the case of the torus, it may experience resource
allocation conflict for link L1. Here, in the event of a small message
size, where τmx is finished before τmy asks for L1, there is no scheduling
problem. The resources can be ”immediately” assigned to the τm’s. But
in the case of a large message size were τmx is still running when τmy

asks for the link L1, resource contention occurs. Thus the resource L1

is required to be scheduled ”preemptively”. Preemptively, here, implies
the degree of contention resolution.

Example 3: Let us consider the resource conflict from the network-
designer’s and the system-designer’s view point. At the network-level,
where the resource conflict may be seen as a network problem, the net-
work designer may over-design link L1 by providing excess bandwidth or
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introduce processing overhead, such as TDM-based message interleaving.
These techniques would restore fair servicing for both τm’s, reducing the
degree of contention. However, at the system-level, it may be possible
to reschedule the communication event between the PE’s (either τmx or
τmy). This opens the possibility of alternate path allocations for the τm’s
or simply stall one of the traffics until the other has finished. System
designers may even realize that ”large messages” (to the extent where
L1 is contentious) never occur within the given system. This could save
potential scheduling/computation overhead in terms of hardware real-
estate, power, etc. at router, R1, and on link, L1, as was envisioned by
the network designer. Thus, when seen from the system-level, a trade-
off between the NoC resource allocation and the NoC scheduling would
not only complement better self utilization, but might give other useful
insights for design improvements. �

In the following section, we present an implementation of the NoC
model in SystemC [10, 22]. This implementation can be viewed as
an extension of the implementation an abstract RTOS model described
above.

4. NoC Model Implementation
The above-mentioned ideas about forming an abstract system-level

NoC model can be validated by implementation in a system-level mod-
elling language such as SystemC. We will briefly describe here the Sys-
temC implementation of the NoC model described above. Further details
regarding the implementation can be found in [9, 18, 19].

For the purpose of implementation, tasks are considered to be an ab-
stract representation of the application and, therefore, have been charac-
terized through a set of parameters, such as the worst- and the best-case
execution times, context-switching overhead, deadline, period (if it is a
periodic task), offset, resource requirements, and precedence relations.
A task is modeled as a finite state machine (FSM) that sends the mes-
sages: ready and finished, to the scheduler which, in turn, sends one
of the three commands to a task: run, preempt, and resume. In between
the schedulers and the tasks, we have the synchronizer and the allocator
acting as ”logical command filters”. By this scheme, each component
can handle its relevant data independently of the other. For example,
a task can determine when it is ready to run and when it has finished.
The scheduler behaves in a reactive manner; scheduling tasks according
to the indications received from them. Thus, as many tasks and sched-
ulers can be added as desired. The same is the case with the synchronizer
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and the allocator models. They can hold the information regarding their
services, i.e., which tasks depend on each other or, for the case of the
allocator, what resources are needed by a given task.

The NoC model has exactly the same structure as the abstract RTOS
model [9] but with some modifications. The message routing scheme
implemented in the NoC model is that of fixed routing but the framework
has provisions for implementing other routing schemes. The effects of the
network interface or the task overlap due to message processing in the
PE, as discussed in Section 2, have not been implemented for simplicity
but the model can be extended to incorporate any of those effects.

4.1 Message Task
The message task (τm) has the same finite state machine (FSM) struc-

ture as the task model in the abstract RTOS model with some modifica-
tions to take out preemption and introduce resource requirements. The
τm implementation accepts a number of arguments for its characteriza-
tion.

Message Task ID: enables the synchronizer and the NoC Scheduler
to identify the τm sending the message.

NoC Scheduler ID: is meant for the τm’s to recognize their sched-
uler for exchanging various control messages.

Best Case Transmission Time (BCTT): is the lower bound on the
transmission latency of a τm through the NoC.

Worst Case Transmission Time (WCTT): is the upper bound on
the transmission latency of a τm through the NoC.

Offset: is the setup time for a τm.

Resource ID: is the ID tag for a resource (link, router, etc.) re-
quired by a τm.

Critical Section Length (CSL): the time duration for holding a
resource.

The implementation of an τm can be viewed as an FSM that manages
various counters after sending indications to the NoC Scheduler and the
NoC Allocator and upon receiving commands from the NoC Scheduler.

4.2 NoC Allocator
The NoC Allocator manages its resource database upon receiving

request and release indications from the τm’s. The resources are
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Figure 13.5. The system-level usage of the NoC model with the RTOS model ([18]
c©2003 IEEE).

allocated to the τm’s dynamically and they are released by the τm’s
immediately after usage. This makes resource management very flexible
allowing sharing and concurrency. In this implementation, the resources
are served by the NoC Allocator on a ’first-come-first’ basis but other
allocation policies can be implemented as well. Whenever a requested
resource is available, the NoC Allocator sends a grant indication to the
NoC Scheduler and whenever a requested resource is occupied, there is
a resource contention and the NoC Allocator sends a refuse indication
to the NoC Scheduler for appropriate action.
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4.3 NoC Scheduler
The NoC Scheduler receives the ready and finished indications from

the τm’s through the Synchronizer and the grant and refuse indica-
tions from the NoC Allocator. It then issues the run and buffer com-
mands to the τm’s. Whenever a task running on a PE, is finished and
needs to communicate with a task running on another PE, it sends a
finished indication to the synchronizer which maintains a task depen-
dency database and passes the ready indication for the corresponding
τm to the NoC Scheduler which issues the run command to that τm.

Whenever there is a resource contention, the NoC Allocator issues a
refuse indication to the NoC Scheduler which then either terminates
the execution of the requesting τm (equivalent to a message dropping) or
blocks the τm from execution (equivalent to message buffering) till the
requested resource becomes available again which is indicated by the
grant indication sent by the NoC Allocator to the NoC Scheduler. The
message dropping or buffering decision is taken by the NoC Scheduler
according to its underlying network implementation.

5. Simulation Results
The results of our SystemC implementation of the NoC model from

Figure 13.5 are presented in Figure 13.7 and Figure 13.8. The sample
SoC-NoC setup is as shown in Figure 13.6. Here, the application is
assumed to be decomposed into four tasks. Three PE’s are selected to
execute these tasks. The task mapping is: {τ1} �→ PEa, {τ4} �→ PEb,
and {τ2, τ3} �→ PEc. τ2 has a higher priority than τ3, so it can preempt
τ3 on PEc. In this example, we look at a simple case where all the tasks
are modeled identically with a period of 25 time units (except for the
τ2 with a period of 24 time units due to the priority-assignment scheme
in the Rate-Monotonic Scheduling), execution time (both BCET and
WCET) of 10 time units, and finish deadline of 22 time units.

The communications between the tasks are modelled as τm’s (as de-
scribed in Section 4) which run on a torus network processor using store-
and-forward routing protocol (with infinite buffer at the source and the
destination nodes). The message task paths and dependencies are: τmx,
from PEa to PEc using L1, R2 and L2, and τmz, from PEc to PEb using
L3, R1 and L1. Thus, the link L1 experiences possible contention. In
our test SoC-NoC setup, these resources are tagged by an ID which is
given in brackets (in Figure 13.6). We present two cases of interest.

In Figure 13.7(a), modelling of two concurrent communications is
shown. As mentioned earlier, there is a link contention between τmx

and τmz for L1. It is resolved by scheduling L1 at different times among
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Figure 13.6. System simulation model ([18] c©2003 IEEE).
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Figure 13.7. Simulation results for communication events (from 0 to 190 time units).
State enumeration: 0=inactive, 1=ready, 2=running, 3=preempted ([18] c©2003
IEEE).

the τm’s within the time-slot of 10 to 20 time units (and subsequent time
slots). L1 is used from 11 to 14 time units in τmx and from 17 to 20
time units in τmz. Figure 13.8 shows the log file of resource occupancy
(Resource# 1, that is, the link L1). The accompanying plots on the
right provide a graphical representation (Note that 1 time unit is lost
in network setup during simulation). Thus, our model clearly supports
concurrent communication as observed in segmented networks.
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Figure 13.8. NoC allocation and scheduling for the first communication cycle along
with the simulation log ([18] c©2003 IEEE).

Figure 13.7(b) shows the interplay of process modelling and intercon-
nect activity. Consider the signal near the time period of 95 time units.
Here, it is clear that τ3 starts accepting the communication message and
is then preempted by τ2 on PEc because of its higher priority. Once
τ2 is finished, τ3 resumes and completes in time before deadline. Now
consider the next execution of τ3. Both τ2 and τ3 are in contention.
The τ3 does not even start instead, τ2 starts on the PEc. τ3 here is not
able to accept the message communicated to it by τ1. This brings us to
an interesting role of the NoC. In this simulation, we have enabled the
routers to be able to buffer messages. Thus τmx finishes freeing up its
resources although τ2 has yet to begin. The τ3, when finished, is, thus,
able to initiate τmz, which is when τ2 resumes.

Consider the case where the same torus network processor is running
the wormhole routing (plots not provided). Then, in the preemption
case, the τmx stalls, holding the link L1. As τ2 has already preempted τ3

on PEc, when it is complete, it would preempt τmz. But this would not
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be possible as the L1 required here is busy in τmx, thus stalling τmz. This
causes deadlock in the system. As seen earlier, we can resolve it either
by introducing buffering in the routers or we have the freedom to choose
an alternate network implementation or scheduling strategy. Thus, this
example clearly demonstrates the global performance evaluation for co-
design when both SoC and NoC are jointly modelled.

6. Summary
In this chapter, we have presented an abstract modelling framework

based on SystemC which supports the modelling of multiprocessor-based
RTOS’s and their interconnection through a NoC. The aim is to provide
the system designers of single-chip, real-time embedded systems with a
simple modelling and simulation framework in which he/she can experi-
ment with different task mappings, RTOS policies and NoC architectures
in order to study the consequences of local decisions on the global system
behavior and performance.

Our system model is based on a modular decomposition of the RTOS
and NoC services, where information is shared through a sequence of
events. This simple approach allows the behavior of each of the services
(i.e., synchronization, allocation and scheduling) to be implemented in-
dependent of the others, and hence, allowing different model configura-
tions with different services. A potential limitation of this approach is
that information between the services is shared through a one-directional
event flow. We have, however, successfully implemented the priority in-
heritance protocol, in which scheduling and resource allocation have to
be tightly coupled [23]. Our system model assumes that tasks are allo-
cated during compilation, i.e. we do not consider task migration where
tasks are moved between the PEs during execution.

From a NoC point of view, the main limitation is that our frame-
work supports only a single NoC instance. Hierarchical NoC’s may be
handled by appropriate implementations of the three services provided
by the NoC. Any behavior that fulfills the event-based decomposition
of services, can be implemented in our system model, i.e., it is possi-
ble to handle advanced routing protocols such as adaptive routing and
virtual channels. In order to handle multiple NoC instances and hence,
NoC’s composed of different NoC types, we will have to introduce net-
work bridges that share the same pool of message tasks. This however,
should be rather straight forward as a network bridge can be viewed as
a PE with very limited services; buffering and protocol conversion.

We have demonstrated the potential of our model by simulating and
analyzing a small multiprocessor system connected through different
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NoC architectures, showing multi-hop, concurrency and sharing. We
have shown how the simulation model can be used for design space ex-
ploration.
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Chapter 14

SOCKET-BASED DESIGN USING DECOUPLED
INTERCONNECTS

Drew Wingard
Sonics, Inc., Mountain View, CA, USA
wingard@sonicsinc.com

Abstract: Advances in deep sub-micron semiconductor process technologies offer the
SoC designer the promise of more functionality than can be realized using
existing tightly coupled architectures and EDA tools. As the ability to integrate
IP cores increases linearly, the complexity of interconnecting these cores also
increases, often geometrically. The overhead in design, integration, and
verification of inter-core communications quickly becomes greater than the
design savings in using pre-verified functional cores. The solution requires a
matching of interconnect implementations to computational blocks. Socket-
based design is a design methodology that can greatly reduce the time and
effort expended on design and verification of complex SoCs. We will discuss
the challenges of tightly coupled design, explain why decoupled interconnect
design is essential, define socket-based design; explore the OCP socket
specification and give examples of both processor-centric and I/O-centric SoC
design using OCP-based sockets and decoupled interconnect cores.

Key words: socket-based design, IP reuse, smart interconnect IP, OCP socket standards,
SoC design methodology, interconnect cores

1. INTRODUCTION

Today SoC (System-on-Chip) devices of greater than 100 million-gate
complexity can be developed using 90-nanometer semiconductor process
technologies. But existing design architectures, EDA tools and IP core-based
design techniques limit the design potential of SoCs to much lower
complexity levels, particularly for manageable design teams and timelines.
Designing multifunction, system-level SoCs at this complexity level requires

367
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new design approaches and a radical shift in thinking. The chip design and
EDA industry has historically focused on the development of functional
blocks rather than the development of interconnects. But today, a shift must
occur as interconnects become the gating factor in developing successful
SoC devices. Interconnect architectures must now match the sophistication
of functional core architectures if the industry is to realize the potential of
deep submicron silicon process technology, a point noted by Mead and
Conway in 1980 [1].

Historically, electronic system design has focused on functional design.
When systems consisted of processor, memory and I/O devices on printed
circuit boards, the interconnect was the passive connection between active
chip-level functional blocks. Abstractions such as buses and control signals
were used to group chip-to-chip communications into logical clusters. With
improved process technology, integration of these devices became feasible
and design methodology maintained the passive interconnect model from
board-level design. At the level of one or two processing cores surrounded
by a handful of I/O blocks and a single memory controller, design tools and
designers are capable of managing the complexity of the total system on
chip. However, as the integration of many heterogeneous processing units
with tens to hundreds of I/O blocks becomes possible, the task of managing
the entire design and the complexity of the interconnect schemes are
overwhelming the design team and their traditional EDA tools. The focus of
much of the industry remains only on the functional aspect of design. As this
chapter will explain, the interconnect side of design must now evolve from
passive and tightly coupled to active and decoupled in order to support the
integration of large numbers of functional cores in a SoC device.

2. EVOLUTION OF DESIGN ABSTRACTIONS

Traditional approaches to managing system design complexity rely upon
the creation of abstractions. Abstractions serve to both minimize the number
of elements that are managed directly and to simplify the interactions
between the elements. The refinement of electronic system design
approaches that has led to SoC design has made significant use of design
abstractions, particularly with respect to functional design. As shown in
Figure 1, the level of functional abstraction has progressed from gate to
block to core, and will be migrating to tile-based abstractions.
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Figure 14-1. Evolving levels of design abstraction

Gates present the simplest functionality and have the least limitations in
how wires are used to connect them. Tiles present the highest functionality
and leverage a high-level network protocol to efficiently structure and
optimize inter-core communications.

In between, blocks are designed using HDL rather than gates and have
boundaries based on function and convenience that enable the placement of
multiple, identical copies throughout a design, simplifying design and
verification. Buses are used to group wires with similar functions together
and provide some abstraction of communication through vectors of signals
and simple protocols. Most interfaces between blocks have been evolved in
ad-hoc fashion rather than having been designed for optimum system
integration. Since the functional blocks are the key design element,
communication between them appears free. At this level, integration is
tightly coupled by definition and block functionality drives the design.

At the next level of abstraction, we would expect a reasonably sized
functional core to solve a significant portion of the design problem
transparently from the rest of the system. With multiple design teams
developing cores and integrating them together, the design methodology
must support independent and concurrent design. This abstraction must
therefore embrace both intelligent functional partitioning and
communications abstraction. Embedding communications logic into these
functional cores defeats this purpose. The communications logic should be
accumulated into a separate interconnect core. This active interconnect core
manages the communication between the functional cores to meet the system
level requirements. The result is that each functional core is decoupled from
the system-level communications responsibilities.

The tile and network abstraction is above that of functional and
interconnect cores. Tiles are defined [3] as complete functional subsystems
that can be connected using on-chip networks. Such a tile will execute a set
of functions with little or no dependence upon the rest of the device. These
self-sufficient operating characteristics may typically be implemented in an
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embedded processor in the tile. A tile normally manages its own I/O locally.
It communicates with other tiles via messages composed of data structures
rather than through transactions composed of data words. Since tiles
normally contain sufficient local memory for latency-critical traffic, on-chip
networks offer and attractive interconnect for routing tile-to-tile messages.
Tiles are either application specific, such as a GSM modem or a GPS
receiver, or generic, such as a host processor for application software or a
reconfigurable computing fabric. An example of a generic tile without a
processor would be a shared memory subsystem that provides storage
services to other tiles.

Elements at each level of abstraction are composed of elements from the
lower abstraction. For instance, an interconnect core is composed of blocks
and buses. The result of each abstraction is reduction in complexity by
minimizing the number of objects, and their interdependencies.

2.1 Functional Cores and Buses – Mismatched
Abstractions

Today, it is typical for the SoC architect to begin by defining the system-
level functionality, partitioning the design according to known guidelines
that define roughly what can be implemented in a single-chip design (area,
power consumption, timing characteristics), and then passing the design on
to the functional core designer, the interconnect specialist, and the physical
layer designers to implement the final silicon device. Ideally, this approach
should enable the rapid development of complex ICs using pre-verified
functional cores and tiles. As the number of pre-verified cores increases over
time, the process of developing systems should become simpler and faster by
reusing these proven functional cores. Ideally, this should lead to “SoC
design by feature combination.” [2]

The reality is that as more functional cores are added to a design, the
system completion time increases dramatically. The flaw lies in the
increasing complexity of the inter-block interconnections and the lack of
system-level modeling and design tools. It has been estimated that 30 to 70
percent of the design effort of a complex SoC design is now in designing and
verifying the interconnect [4].

A useful way of understanding how this occurs is to examine the
underlying abstractions used to implement an SoC and how they are
mismatched in a typical design.

The reason to move to a higher level of abstraction is to isolate the
designer from underlying implementation complexity so each abstracted
element can be used independently. Thus a designer integrating functional
cores should be isolated from the intricacies of blocks and buses. However,
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today’s SoC designers typically attempt to integrate functional cores using
passive buses. This requires the core designer to embed awareness of low
level communications schemes within the functional core. Such an approach
forces all functional cores to be “bus aware.” Embedding communications
logic into the functional core results in a fragile design element that is not
independent of the intricacies of other cores or the system-level
communications scheme. The embedded low level bus functionality forces
the functional core to interact at its level, essentially turning the core into a
highly complex, but still low level block element. This complexity is evident
to the SoC integrator, who must then work at too low a level. The functional
core abstraction has failed.

Because of this mismatch, there are numerous problems that occur at the
core integration stage as shown in Figure 2. At each stage of integration and
verification, designers discover system-level interactions that cause
reengineering of the functional cores. At first integration, signaling and
protocol mismatches are frequently detected due to poor specification of
inter-core communications. When revalidating a core’s functionality in the
context of the integrated SoC, functional defects are discovered as
transaction ordering and timing is discovered to be different that what was
anticipated. The logic synthesis and timing analysis processes often uncover
unexpected timing arcs that cross functional core boundaries. Later the
placement and routing process, where the actual wire lengths between the
functional cores are first discovered, uncovers further timing challenges.
Finally, if the schedule permits, system-level performance verification,
which attempts to verify that the intended application will perform properly
on the SoC, is likely to uncover new problems. Each time these functional
cores are re-engineered, their verification test benches, synthesis scripts, and
test plans must be updated to match the revised core definition.

To achieve the benefits of concurrent SoC design, functional cores must
become decoupled from each other. This will avoid the necessity of
redesigning functional cores as the system-level communications are refined
into the interconnect core.

Because of the problems of long design and verification cycles, the
current SoC design approaches are no longer able to fully take advantage of
the available on-chip gates. Some observers point to a current lack of front-
end system-level design tools and the inability of existing front-end design
tools to account for back-end physical layer realities at the beginning of the
design as the cause of a growing design productivity gap [5]. This gap is
defined as the difference between available on-chip gates and the actual
gates used. Better tools may improve, but not solve this problem.
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Figure 14-2. Comparison between tightly coupled and concurrent socket-based SoC design

2.2 Leveraging Functional Core and Interconnect Core
Abstractions

The problems of long development times and the inability to realize on-
chip gate potential can be resolved by eliminating the mismatch of functional
cores with buses.

The most obvious solution is decoupling the computational tasks of the
functional cores from inter-core communication tasks. The thesis of this
chapter is that the practical approach to decoupling is to isolate the
functional cores using a standard interface socket and to optimize inter-core
communications using an active interconnect core. By applying these
decoupled design techniques, a concurrent design methodology can be
achieved using existing design tools and styles.

A concurrent design methodology can be implemented in the following
manner. First, the design team can begin to separate the functional core from
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the intricacies of the inter-core communications task by adopting a standard
functional core interface socket. Second, by shifting from a “passive wire”
model of inter-core communications to an “active interconnect core,” the
designer can develop new interconnect cores that are independent of core
functionality and that can be independently optimized for both local and
system-wide communications. This decoupled approach will speed the
development of complex SoCs, yield more highly optimized functional and
interconnect cores, and greatly increase the potential for core reusability.
This approach enables the benefits of NoC (Network On Chip) based
platforms using the “design by feature combination” technique put forth by
Jantsch and Tenhunen in 2003 [2].

A potential candidate for a standard functional core interface is the OCP
(Open Core Protocol) interconnect specification. This flexible, scalable and
well-defined socket is processor-agnostic and capable of supporting a wide
range of interconnect schemes. Most importantly, it is enjoying growing and
widespread support throughout the industry [6].

The shift in modeling from the passive wire to the active interconnect
core has already begun as designers are realizing that interconnect cores can
be the architectural underpinnings of modern multifunction and reusable
SoC designs [7]. A decoupled interconnect-based architecture can deliver
scalable latency and bandwidth where needed while enabling separate
optimization of its component functional and interconnect cores. The rest of
this chapter outlines the challenges of traditional tightly coupled design,
describes the requirements for a standard socket, defines the goals of a
decoupled interconnect core, uses the OCP socket standard as illustration of
how functional cores can efficiently communicate, and presents two
decoupled interconnect options as solutions to application specific
requirements found in complex SoCs.

3. LIMITS OF TIGHTLY COUPLED DESIGN

At first glance, tightly-coupled design, where IP blocks or functional
cores are tightly coupled to each other, would seem to be the most efficient
solution to most design problems. One would expect the smallest silicon area
and the highest performance when active IP cores are connected to their
associated subsystems with the simplest of passive connections (wires) and
no additional overhead. Certainly, this system-level interconnection scheme
will offer maximum flexibility, as there are no limits on how the
interconnection between subsystems takes place.

But these advantages come with some important limitations even in the
simplest systems. The expertise gained in accomplishing a given
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interconnect task, e.g. interfacing one processor to a given bus structure, can
be best leveraged in future designs only through shared experience between
members of the design team. Put more generally, design team members must
work closely together in order to achieve optimum results.

The essential fact limiting tightly couple design is that communication is
no longer free – wires are no longer elastic, zero delay elements connecting
cores or blocks. The increasing relative wire delays at the distances
associated with connecting far-flung cores across the chip plays a major role
in the performance of the system. The implication of wire delays
approaching or passing cycle times is that the transformation of the
functional block diagram into the physical floor plan has profound
performance implications. Managing this transformation requires active
interconnect cores that isolate functional cores from inter-core
communication issues and enable accurate up-front modeling of
communications.

In addition to the difficulties in resolving low level issues such as signal
timing issues at inter-core boundaries, there are the challenges of managing a
large number of inter-dependencies as the design grows in size and scale.
Inter-dependencies are much harder to manage when design teams grow to
multiple groups in multiple locations, and changes are more difficult to
implement. Worse still, it becomes increasingly difficult to understand the
complete set of inter-dependency constraints. Whenever one core is inter-
dependent upon another, the dependency must be managed at the system
level. Design complexity using tightly-coupled design techniques
overwhelm the designer’s mental capacity to understand the total design
interactions.

As tightly coupled designs scale upward, it becomes increasingly difficult
to create levels of abstraction that promote understanding or enable reuse.
This leads to longer design times as poor models of the electrical, logical and
protocol behaviors lead to verification issues that require many design
iterations. At the SoC design level, there is no formalism, and thus no tools,
available to address all of the interactions among tightly coupled cores.
Design teams must deploy a better, more decoupled architecture.

As a result, in actual practice, tightly coupled design of systems
deploying large numbers of heterogeneous processors is often the least
efficient solution in terms of silicon efficiency, design time and cost,
flexibility and re-use of IP. Because of the complex interactions and inter-
dependencies of the electrical, logical and protocol components, design
iterations intended to result in successive design refinement, actually result
in successive system and core redesign.
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4. TIGHTLY COUPLED VS. DECOUPLED DESIGN

We have seen that tightly-coupled designs are vulnerable to significant
redesign due to electrical, logical, and protocol problems detected at each
phase of integration and implementation. With such an approach, the
redesign occurs inside the functional units, making IP core re-use highly
unlikely. This section provides a comparison between tightly-coupled and
decoupled design approaches.

Processor-centric on-chip bus protocols such as AMBA (ARM) [8] and
CoreConnect (IBM) [9] are modeled on architectures designed for traditional
printed circuit board-based systems. They feature predominately single
processor-to-memory and processor-to-input/output device transactions.
These blocking bus architectures do not support simultaneous,
heterogeneous data traffic among multiple processing elements such as those
found in modern SoCs. In particular, such architectures do not easily support
isochronous data flows often found in networking, multimedia and digital
consumer applications. In such applications it is common to find several
processing elements (primary system processor, DSP unit, MPEG
encoder/decoder, and multiple communication processors) accessing shared
memory and I/O resources throughout the chip.

When developing a SoC using bus-centric interconnects, the resulting
system is a mixture of processor subsystems linked together using computer
buses and a collection of point-to-point links dependent upon the
functionality of the on-chip elements as shown in Figure 3. The trouble with
such schemes is that they exhibit behaviors (power consumption, signal
delay and distortion, cross-talk and noise) that are extremely difficult to
predict or model before the final physical layout stage. Since interconnects
can be responsible for up to 90 percent of the global signal delay in a
submicron design [10], this means that meaningful timing verification
cannot begin until late in the design cycle.

Figure 14-3. Passive interconnect scheme using multiple buses and point-to-point links
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At the other end of the design spectrum, a socket-based design approach
using active interconnect cores isolates the functional core from the details
of the on-chip interconnect architecture as shown in Figure 4. This reduces
design time by freeing the core developer to focus on core-related issues
rather than system-level interconnect issues and by providing interconnect
characterization that can be used to accurately model the entire SoC long
before final physical layout begins. In addition, socket-based design results
in highly optimized functional cores and tiles that can be easily reused in
other systems with no additional redesign.

In the figure, the interconnect cores are represented as multi-drop
connections between functional cores. Internal interconnect core topology is
unspecified. The core sockets form the connection between the functional
and interconnect cores. Tiles are represented as encircled collections of
functional and interconnect cores.

Figure 14-4. Socket-based design concept using decoupled active interconnect cores

Decoupled design methodologies are further needed to respond to the
nature of today’s electronics business environment. As globalization of the
electronics industry has taken hold, there are greater requirements for
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dispersed design teams working independently. Functional core development
must proceed independently from specific device implementation, since the
device targets can change during design and the core may be needed for re-
use in future designs. Core designers must anticipate the integration and
design verification stages to avoid core redesign. Standard interconnect
techniques must be deployed that separate core computational functions
from inter-core communications and a standard core-to-system interface
must be supported.

4.1 Decoupled Interconnect Cores

Only decoupled interconnect cores are able to meet these design
constraints. One of the key characteristics of the decoupled interconnect core
model is that it enables the selection of independent clock frequencies, data
widths and transfer protocols to satisfy both functional core and system-level
requirements. To do this, it must be capable of managing total system
communications by supplying the required throughput at acceptable
latencies.

A decoupled interconnect core can provide an optimum local operating
environment for each functional core that meets the core’s performance
constraints. The functional core designer chooses the appropriate functional
and communication architectures for their core, including data path widths,
degree of transaction pipelining, and internal buffering. In addition, the
designer specifies required bandwidth and latency constraints that the core
imposes upon the system as a function of the core’s operating mode and/or
clock frequency.

While each functional core can now be optimized for its specific
functionality, the decoupled interconnect core can be similarly optimized to
improve system-level communications between all cores. The interconnect
core manages the inter-core communications, satisfying functional core
communications requirements while optimizing system performance, power,
and area to meet SoC requirements.

System level management includes establishing routing between
functional cores, providing an access control mechanism that meet QoS
standards in terms of latency and throughput, and generating, routing and
monitoring sideband signals. At the silicon floor planning and physical
implementation stage, the decoupled interconnect core must be able to span
the distances between functional processor core and I/O core placements and
to optimized the frequency/latency trade-offs to fit application requirements.
It should deliver robust system services such as error management,
security/protection, identification, power management and event
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management, while presenting a set of predictable physical design
characteristics that can be easily integrated into existing design tool flows.

In the design examples, we will illustrate two decoupled interconnect IP
models that address these topics for processor-intensive applications and for
I/O-intensive designs.

5. SOCKET-BASED DESIGN

Socket-based design is a method of using a pre-specified, standard
interface to provide electrical, logical and functional connections between
cores. Note that the socket need not care about the differences between
functional and interconnect cores. The socket is equally applicable for
connections between functional core to functional core, functional core to
interconnect core and interconnect core to interconnect core. The socket
defines the boundary of responsibility between the cores allowing them to be
independently designed and verified, with the assurance that they will
function correctly when connected.

A complete socket model should provide the designer with a range of
abstractions to support various electrical, logical and functional behaviors.
At the electrical level, the socket is implemented using wires. At the logical
level, the socket uses protocols. At the functional level, the socket delivers
transactions. Electrical measures include delay in seconds, capacitive
loading in Farads and activity rates in cycles per second. Logical measures
include delay in cycles of latency, and activity in peak bandwidth capacity.
Functional measures include latency constraints and throughput
requirements.

For a socket model to succeed it must have support for and within the
existing industry infrastructure. This means that bus functional models,
protocol checkers, performance analysis tools, formal property checkers, and
multiple language support (HDL, verification language, C++) should be
readily available.

To simplify implementation, a socket should be a point-to-point link
using only unidirectional, synchronous signaling. This interface model will
support the easiest design flow integration, a key consideration of any
proposed standard.

To be effective, socket-based design should support the needs of the
functional core. This means that communications protocols and timing
characteristics must be tuned to optimize for the natural behavior of the
functional core. The incorporation of a socket mechanism enables a natural
isolation of the functional core and relieves the core from unnatural
restrictions in electrical, logical, or functional behavior based on inter-core
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communications parameters. To enable this isolation, the socket itself must
be capable of supporting a wide range of signaling and transfer protocol
parameters and be configurable and extensible. Parameterized aspects could
include selecting an address width, a data width and the number of
interrupts, etc. Configurability could include the ability to enable or disable
specific protocol capabilities, tune pipelining, select handshaking/flow
control, support threading, select sideband signaling, add command
extensions and select burst options. Extensibility could include adding core-
specific functionality such as supporting security modes and adding parity or
ECC features to transactions.

Socket-based design techniques add value to the SoC design process by
allowing the designer to simplify communication issues to local point-to-
point transactions at core boundaries, using protocols natural to the core.
This approach simplifies the initial design of a core, eliminates artificial
performance loss due to bus-centric interface choices, and enables greater
independence of the design process. This greater independence facilitates
both independent creation and verification of cores as well as much higher
reuse of existing core designs. In addition, the socket enables the creation of
a wide variety of decoupled interconnect cores using advanced internal
protocols that must simply maintain the socket boundary.

6. THE OCP SOCKET

The OCP socket standard simplifies the interconnection of functional and
interconnect cores and promotes core reuse. It is an excellent example of an
open standard socket in use today. In brief, it is parameterized, configurable
and extensible and is well supported by design and verification tools.

Initial efforts to define a standard core interface socket were begun in the
mid-90s with the formation of the VSI Alliance (VSIA) [11]. VSIA’s
ambitious goal was to establish standards that enabled the integration of IP
blocks from multiple sources. VSIA defined the Virtual Component
Interface (VCI) as its IP core interface. While a valuable first step, this effort
did not result in a widely adopted standard.

The non-profit Open Core Protocol International Partnership (OCP-IP)
was formed in 2001 to support the first open and complete IP core socket for
plug-and-play SoC design. The Open Core Protocol socket is a complete
specification capable of supporting a wide range of core communication
requirements, bus structures and interconnect technologies.

The OCP socket is bus-independent and handles the three dominant
communication types between cores on an SoC – data, control and test. It is
supported by a complete set of design, validation, and implementation
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support tools as well as a SystemC transaction interface and technical
support documentation.

The OCP socket is a configurable interface that supports a basic set of
data flow signals and an extended set of sideband signals for control and
status information. A generic flag bus supports specialized inter-core
signaling and a test interface support scan, JTAG and clock controls to
simplify SoC debug and test.

The OCP socket can be configured to meet specific core and interconnect
requirements. One configuration of OCP can form a simple, low-
performance core interface. Another configuration can offer more complex,
higher-performance interfacing for advanced processors and memories. The
SoC architect can implement whatever system-level interconnect that meets
the needs of the SoC, while individual core designers can independently
deliver their functional core using OCP.

As defined by the Open Core Protocol Specification [12], an OCP socket
uses a master/slave framework with synchronous unidirectional signals
sampled by the rising edge of the OCP clock. The OCP socket is fully
synchronous with no multi-cycle timing paths and all signals (other than
clock and reset) are point-to-point. These constraints simplify timing
analysis and physical design.

OCP accomplishes data flow by explicitly separating transfers into a set
of phases. In the request phase, the Master provides the Slave with enough
information to sequence the transfer. For simple writes, the request phase
will accomplish the data transfer. In the response phase, the Slave provides
the Master with indication about transfer completion. For reads, the response
phase will include the data transfer. These phases may be pipelined with
respect to each other, so the Master may attempt to sequence multiple
requests before the Slave has responded. A rich set of handshaking and other
flow control signals allows each side to pace the transfers and the pipeline
depth.

The basic OCP signal set as shown in Figure 5 includes Master
command, address and write data signals (MCmd, MAddr, and MData),
Slave handshake, response, and read data signals (SCmdAccept, SResp, and
SData), the clock (Clk) signal and the reset (Reset_N) signal. This
configuration supports basic address-mapped data flow communication
between cores.

If the core needs more communication flexibility, additional OCP signals
can be configured for the socket. These include burst controls and sideband
flag signals, which are especially useful for supporting interrupts.

To support concurrency and out-of-order processing between
transactions, OCP supports the concept of independent threads sharing a
single socket. Transactions issuing on different threads have no ordering
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requirements, and so can be processed out of order. Within a single thread,
all OCP transactions must remain ordered. OCP threads are similar in many
ways to virtual channels [13], with slightly more restrictive end-to-end
mapping semantics.

Threads are added by configuring Master and Slave thread identifiers
(MThreadID and SThreadID) and optional thread busy (MThreadBusy and
SThreadBusy) signals for the socket. The thread busy signals allow the
receiving device to assert per-thread flow control, which allows cooperating
Masters and Slaves to implement truly non-blocking semantics across an
OCP socket. This approach prevents a stalled thread from impacting the
progress of other threads, eliminating deadlock scenarios while improving
OCP’s ability to support QoS guarantees.

Master
Clk

Reset

MCmd [3]

MAddr [M]

MData [N]

SCmdAccept

SResp [2]

SData [N]

Slave

Figure 14-5. Basic dataflow signals of the OCP socket

A core developer selects a configuration of OCP to match the
communications needs of the core, thereby creating a unique socket. For
example, a UART designer might choose an OCP socket featuring an 8-bit
data word (MData and SData), 3 address bits (MAddr), simple handshaking
(via SCmdAccept), and a single interrupt signal (SInterrupt).

In contrast, the designer of an SDRAM controller might choose an OCP
socket featuring 128-bit data, 28-bit address, deeply pipelined reads and
writes, and 8 independent threads to support effective utilization of the
multiple SDRAM banks. By implementing the full set of handshaking and
flow control options, the designer can guarantee that the threads will stay
independent, rather than blocking each other in either the request or response
pipelines.
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The Open Core Protocol was defined to be an excellent core interface
socket. SoCs designed using OCP-compliant functional and interconnect
cores realize the promise of socket-based design.

7. USING DECOUPLED ACTIVE
INTERCONNECTS

As noted earlier, the adoption of a standard functional core interface
standard such as the decoupled OCP socket is part of the concurrent SoC
development solution. The second part is the deployment of interconnect
architectures based on active interconnect cores.

The recognition of the need to decouple the computing tasks of the
functional core from the inter-core communication tasks of the system is the
basis of “communications-based design” [14]. A decoupled active
interconnect methodology can be the foundation for this approach.

Decoupling frees the active interconnect core to be independently
optimized for the targeted SoC, resulting in better overall results in much
less time. The resulting SoC designs are more scalable. The decoupled active
interconnect core supports increasing logical connectivity and increasing
total communications bandwidth by increasing the total amount of
communication resource, without requiring changes to any of the functional
cores.

From the perspective of the active interconnect core, the functional cores
appear to be simply communications sources and sinks. Each functional core
may have different communications characteristics and requirements, but all
may be described by appropriate annotation of the associated sockets. Such
annotation is frequently simple to provide based on the aggregate
characteristics of the algorithm implemented by the functional core, and can
therefore be accurately modeled in advance of the existence of a new
functional core. For instance, an MPEG2 video decoder could be modeled
based primarily on the expected and worst-case read and write rates
associated with compressed and decompressed MPEG macro-blocks and
frames of decompressed video. By examining the composite actual or
estimated characteristics of the various functional cores, the SoC architect
can readily determine the overall throughput, latency, and quality of service
(QoS) requirements for the active interconnect core. These performance
requirements, coupled with the power and area goals for the finished SoC,
drive the definition and implementation of the interconnect core.

Since the interconnect core is accomplishing most of the inter-core
communications in the SoC, the interconnect core is likely to span the die.
As has been mentioned previously, this means that the interconnect core is
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likely to have internal delays dominated by wiring, rather than active logic.
It is therefore essential that the SoC designer be able to predict the impact of
wire delays, derived from an actual or estimated SoC floor plan, on the
overall performance of the interconnect core. Such concerns are localized to
the decoupled interconnect core, since the functional cores are each isolated
into local regions where maximum wire delays are based on the physical
extent of the functional core, and are therefore both smaller and more
predictable than those inside the interconnect core. Long wire delay issues
are resolved in the interconnect core, not the functional core.

7.1 Examples of Decoupled Interconnect Cores

Sonics, Inc. has been developing and marketing decoupled interconnect
cores since 1997. Sonics has defined the term MicroNetwork as a
heterogeneous integrated network that unifies, decouples and manages all
communications between on-chip processors, memories, and I/O devices
[15]. Sonics has introduced two distinctly different MicroNetworks into the
marketplace. This chapter will use examples from these two MicroNetworks
to illuminate some key optimizations enabled by decoupled interconnect
architectures.

Sonics’ SiliconBackplane MicroNetwork was first described in 1998
[16]. SiliconBackplane is designed to service moderate to high bandwidth
requirements typical of SoCs that integrate three to ten processing-focused
cores together with a similar number of streaming I/O interfaces and a few
shared memory pools such as internal or external DRAM or SRAM. From a
performance perspective, SiliconBackplane is optimized to service aggregate
throughputs in the range of 300-4000 MBytes/sec.

Sonics3220 SMART Interconnect IP (S3220) was first described in 2002
[17]. S3220 is designed to service low to moderate bandwidth requirements
typical of SoC subsystems that integrate several dozen peripherals together
with links to a few control processors and DMA engines. From a
performance perspective, S3220 is optimized to service aggregate
throughputs in the range of 50-600 MBytes/sec.

Figure 6 shows a block diagram representing the use of two interconnect
cores in an representative multimedia application. The arrows represent
unique instances of the OCP socket. Arrows point from master to slave,
indicating the direction of request flow. Data flow is normally bidirectional
(i.e. read and write) across each socket.
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Figure 14-6. SiliconBackplane and S3220 interconnect cores in a digital set-top box

7.2 MicroNetwork Core Decoupling Capabilities

Both MicroNetworks extensively support the OCP socket for interfacing
to functional cores. In addition, OCP is used as the MicroNetwork-
MicroNetwork interface between separate instances of SiliconBackplane
and/or S3220, as shown in Figure 6. Each MicroNetwork supports a rich
subset of the total range of allowed OCP configurations [18].

Both MicroNetworks are composed of a set of agents that provide the
active decoupling logic that bridges the functional core OCP interface(s) to
the internal electrical, logical, and protocol environment of the
MicroNetwork. Each agent is responsible for creating a local environment in
which the attached functional core may operate as designed, isolating it from
the different environments present at the other functional cores. This
decoupling occurs at a number of layers. Figure 7 shows these layers, in
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increasing levels of abstraction. The following subsections describe the
agent decoupling capabilities in more detail.

Figure 14-7. Decoupling abstraction layers for active interconnect cores

7.2.1 Electrical Layer Decoupling

The agent provides significant control over the degree of decoupling at
the electrical layer. Functional cores may connect using an OCP clock
frequency that is identical to the MicroNetwork, or at any integer divisor of
the MicroNetwork clock. In addition, the OCP clock may be completely
asynchronous to the MicroNetwork clock; in such cases, the agent includes
the required synchronization logic to cross the clock boundaries. In all cases,
the core sees simple, synchronous timing arcs.

The agents also have very flexible timing. For instance, if the core’s
outputs arrive late in the interface clock cycle, the agent must sample the
signals into registers immediately. However, if the outputs arrive early in the
clock cycle, the agent logic associated with the signal may be accomplished
in the same cycle as crossing the interface. Thus, agents can cope with
different core timings in an optimum fashion, which reduces die area and
latency versus the conservative registered input and output approach [19].

The timing described at the electrical layer results from calculations
derived from the transistor sizing on outputs, modeled as drive strength, the
transistor sizing and internal cell routing associated with gate inputs,
modeled as input capacitance, and the wiring lengths associated with
connecting outputs to inputs, modeled as wiring capacitance and wiring
delay. Accurate early predictions of the wiring induced delays associated
with inter-core wiring are increasingly difficult to achieve as the level of
integration grows. The MicroNetwork approach to this problem is simple:
make these wires as short as possible. The MicroNetwork is specifically
engineered to provide predictable mechanisms for spanning distance. As
such, the agent should be placed adjacent to, or together with, the attached
functional core, resulting in minimum wire length and, therefore, predictable
interface timing and rapid timing convergence.
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7.2.2 Signaling Layer Decoupling

At the signaling and transfer protocol layers, the agent relies on the OCP
socket definition to supply the required interface configuration chosen by the
functional core. The core developer should choose a configuration of OCP
that closely matches the native characteristics of the core. The agent inherits
the chosen configuration and is instantiated containing appropriate logic to
handle the signaling and transfer protocol layers.

At the signaling level, the OCP supports several different data word sizes
and flexible handshake-based flow control. Bridging different word sizes
from the functional core into the MicroNetwork is automated by sequencing
(i.e. packing and unpacking) logic built into the agent. Compliant state
machine implementations of OCP may accept transfers unconditionally (i.e.
independent from the current request), which simplifies timing analysis, or
reactively (i.e. dependent on the current request), which offers the greatest
design flexibility. Since the OCP uses only unidirectional signaling (i.e. all
signals have precisely one driver), interface timing analysis is
straightforward.

7.2.3 Transfer Protocol Layer Decoupling

OCP also supports a great degree of flexibility at the transfer protocol
level. Compliant implementations offer choices over partial word transfers,
burst protocols, request-response decoupling, request pipelining, and
concurrency.

The agent implements appropriate request and data storage, plus
appropriate sequencing logic, to interface the core-specific OCP
configuration to the other agents in the MicroNetwork. Storage requirements
are minimal for most agents; only those with proportionally high throughput
requirements and significant mismatches between the core and
MicroNetwork bandwidth require non-minimum storage.

7.2.4 Identification Layer Decoupling

In traditional data networks, source and destination identifiers are
integrated in the packet headers, and are visible at many layers of the
protocol stack. In contrast, OCP follows the traditional computing model of
address-mapped reads and writes, so most identification is localized inside
the MicroNetwork.

OCP includes an address field that the initiating core uses to identify the
targeted core and intra-core resource. The MicroNetwork includes address-
matching logic to implement targeted core selection. This logic is very
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flexible, supporting positive and negative decoding, variable match width,
and optional re-programmability to implement soft address maps. In
addition, agents supporting initiating cores splice on source identifiers to
core requests, allowing the identifiers to be fully specified at the system
level, rather than forcing them to be compiled into the cores. The
MicroNetwork uses source identifiers to accomplish thread mapping,
selective connectivity, and response routing.

Only intra-core resource identification (i.e. partial address) is typically
passed to the target core. Exceptions include bus bridges, where full
addresses are typically required, and concurrent multi-bank memory
controllers, where source identifiers are useful for establishing transaction
priorities.

7.2.5 Performance Layer Decoupling

The agents work together in the MicroNetwork to implement
performance-layer decoupling. Each agent may be configured with FIFO-
like storage resources that are based on the performance required from the
attached core for the application(s) hosted by the SoC. In addition, the
MicroNetwork leverages its internal threading capabilities to time interleave
multiple requests and thereby minimize buffering, while providing hardware
guarantees of quality-of-service. This helps significantly in latency
decoupling by minimizing latency uncertainty.

The cost of performance-layer decoupling varies greatly from agent to
agent and application to application. The MicroNetwork-based design
approach simplifies the calculation of the required storage, automates its
creation, and allows simple re-tuning as refinement proceeds.

7.3 MicroNetwork Communication Optimization

The previous section has shown how the MicroNetwork is composed of a
set of agents that provide a wide range of decoupling services to the attached
functional cores. The same agents also implement the internal
communication protocols of the MicroNetwork to enable agent-agent
transactions.

The internal MicroNetwork protocols of SiliconBackplane and S3220
share several common characteristics. Given the dominance of wire delay
over gate delay in advanced process technologies – particularly at the
MicroNetwork level where the maximum distance between functional cores
is often bounded by only the physical dimensions of the SoC die – both
MicroNetworks leverage scalable internal pipelining so that the operating
frequency of the MicroNetwork may be optimized. For instance, the
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SiliconBackplane agents contain a number of optional internal pipelining
points and bypass points.

Both SiliconBackplane and S3220 MicroNetworks use shared paths to
transmit requests and responses. In this sense, they therefore implement a
bus topology. A bus topology is useful because it minimizes routing area
with respect to cross-bar and other switch topologies that offer parallel paths
between initiators and targets.

Threads are supported internally in a similar fashion to the OCP socket.
Threads allow the MicroNetwork to interleave requests and responses from
multiple initiators at the granularity of single data words.

Transactions are non-blocking. Individual transfers may never occupy the
shared inter-agent routing for more than a single pipelined cycle – regardless
of target contention, bandwidth discontinuities, etc. Requests and responses
attempt to transfer from a buffer in the sending agent to a buffer in the
receiving agent.

The combination of threading and non-blocking mechanisms ensures that
transactions between slow functional cores – regardless of their length or
latency – never block transactions between higher bandwidth functional
cores. In addition, access control (i.e. arbitration) is performed each cycle.
This is feasible because threading allows arbitrary choice of which agent
gets to send the next request and non-blocking guarantees that there will be a
new access control opportunity on every cycle. This results in much higher
transfer efficiencies than are normally associated with bus topologies [20]
and also offers much tighter guarantees of QoS. For instance, commercial
implementations of SiliconBackplane in telecom applications have achieved
sustained throughputs above 85% of the ideal (data width * clock frequency)
internal peak MicroNetwork bandwidth [21].

There are also several significant differences between the internal
protocols of SiliconBackplane and S3220. This supports their different
application focuses.

SiliconBackplane is optimized to support total internal bandwidths that
are higher than the peak bandwidths of any attached OCP socket. In many
applications, this allows SiliconBackplane to deliver cross-bar type
bandwidths at the routing cost of a bus, much as a time-domain switch
exploits temporal concurrency to deliver the same throughput as a space
switch (which exploits spatial concurrency). In a traditional computer bus, it
makes no sense to operate the bus at higher bandwidth than the highest-
performance attached blocks. Even if the computer bus could be decoupled
from the blocks, the routing savings associated with the bus would be lost in
gate area spent on burst FIFO’s to accomplish the decoupling. This is
because computer buses arbitrate (and therefore block) on burst boundaries,
so a slower block would need to store an entire burst into a FIFO at the
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sending end, then arbitrate for access to the bus, and then move the data in a
continuous burst into a FIFO at the receiver. The FIFO’s are required
because neither sender nor receiver can match the peak bus bandwidth.

SiliconBackplane uses very different internal protocols than a computer
bus. The threaded/non-blocking internal fabric allows burst transactions to
be interleaved with other traffic at a per-cycle basis. SiliconBackplane’s
access control scheme uses a combination of bandwidth pre-allocation via
TDMA with unallocated and unused TDMA slots being dynamically
allocated on a fair best-effort basis to waiting initiators as shown in Figure 8.
The SiliconBackplane TDMA scheme is non-uniform so that the bandwidth
guarantees may span a wide dynamic range, since the heterogeneous
processing cores of a multimedia SoC may have orders of magnitude
differences in throughput requirements. The designer implements this by the
choice of the number of slots in the time wheel, and the number of slots
allocated to each initiating agent. The TDMA scheme, when properly
configured, allows transfers associated with isochronous or quasi-
isochronous processing cores to be communicated across SiliconBackplane
at the natural production and/or consumption rates of the cores. Such cores
require very little buffering in the SiliconBackplane agents (merely enough
to pack/unpack enough data to fill a SiliconBackplane data word), regardless
of the transaction length/burst size. Thus, SiliconBackplanes protocols
enable a bus topology interconnect to effectively use higher, decoupled
internal bandwidth without requiring burst-deep FIFO’s at ingress and
egress.

Figure 14-8. SiliconBackplane access control mechanism
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Some SoCs (particularly in digital STB and HDTV applications) are
characterized by inter-core data flows that mostly terminate in shared off-
chip DRAM. In such cases, it is common that SiliconBackplane is
configured with peak internal bandwidth equal to the peak DRAM
bandwidth. With the overall SoC performance limited by the efficiency of
the path to DRAM, it is essential that SiliconBackplane be able to saturate
the DRAM channel. To accomplish this, SiliconBackplane is fully pipelined.
This means that a single initiator agent to target agent transaction can fully
occupy the interconnect, transferring a single SiliconBackplane (and thus
DRAM) data word per cycle. However, the more normal case is that the
DRAM subsystem is itself multi-threaded at the OCP socket. This allows
multiple processing cores to interleave their request streams to the DRAM
subsystem, enabling the DRAM controller to re-order DRAM commands so
as to maximize the efficiency of the DRAM usage while guaranteeing QoS
for real-time traffic. The benefits of such an approach have been described
elsewhere [22].

The internal protocols of S3220 are optimized to efficiently connect
peripherals spread around the pad ring of the SoC. Since the attached
functional cores are typically numerous and small, optimization of die area
per agent is crucial. S3220 implements pipelined internal protocols to ensure
scalability in operating frequency while spanning large distances. However,
full pipelining (as practiced in SiliconBackplane) can cost registers deep
enough to cover the pipeline delay to be integrated into each agent, which
would take too much area. Peripheral functional cores are rarely able to
sustain full throughput, and are even less likely to require full throughput at
the system level. Therefore, S3220 protocols are optimized to support a peak
issue rate between each initiating thread and its target of one transfer every
two cycles. This cuts the register area associated with covering the pipeline
delay in half. Note that the multi-threaded, non-blocking nature of S3220
allows it to sustain a data transfer every cycle, as long as there are multiple
initiating threads attempting to communicate with independent targets, as
shown in Figure 9.

The figure shows a request 0 propagating from the initiating OCP to the
targeted OCP, and the associated response 0 propagating from target to
initiator. The internal pipeline cannot issue request 1 until the third cycle (as
mentioned above), but the intervening grey cycles are available for
independent initiator/target transfers.
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Figure 14-9. S3220 data transfer pipeline

Since the MicroNetwork must span the distance between all of the
functional cores, they are constructed using logical structures that offer high
performance, physically predictable timing results. Traditional on-chip bus
topologies have migrated from distributed tri-state to centralized multiplexor
implementations in order to accommodate the needs of ASIC-style design
flows. However, the centralized multiplexor is essentially a “star” topology,
with each sender driving an input across the SoC to the multiplexor, which
generates both uncertain wiring delay (based upon the relative placement of
the block and the multiplexor) and high routing congestion around the
multiplexor – which is exactly what the designer intends to avoid by
choosing a bus topology in the first place!

In contrast, both SiliconBackplane and S3220 implement a distributed
multiplexor structured as a tree. As shown in Figure 10, each agent includes
a transceiver that implements OR-tree multiplexing on the path towards the
root of the tree, and a repeating buffer on the path back from the root. This
simple structure has some very attractive physical properties. If the
multiplexor tree is connected such that each agent connects directly to its
nearest neighbors, then the length of the intermediate wires in the tree is
closely related to the agent-agent spacing, which is in turn closely related to
functional core-functional core spacing. Since most functional cores are
fairly small, the inter-agent wires should be relatively short (1-2mm), and
therefore the delay of these wires are unlikely to require additional repeater
insertion. A properly-connected distributed multiplexor tree also minimizes
routing congestion, since each logical bus wire is represented by only two
physical wires at any point in the tree. Perhaps most important, the delay
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through such a structure is quite predictable as soon as the number of agents
and estimated SoC die size are known. This is because the timing behavior is
dependent primarily upon the total wire length between the root and leaves
of the tree and the depth of the tree. The tree depth is dependent on the
number of functional cores. The total wire length is often estimated based on
the MicroNetwork spanning the expected die. The evolving floor plan is then
used to determine the multiplexor tree ordering, ensuring rapid timing
convergence and low routing congestion.

Agent A1

Agent A4

ROOT

Agent A2

Agent A3 Agent A5 Agent A7

Agent A6

Figure 14-10. Internal MicroNetwork multiplexor tree

S3220 takes the physical layer optimization one step further. S3220 is
optimized for low area and very low active and idle power. The designer
may segment the S3220 logical bus into several physical branches, each of
which contains a distributed multiplexor tree. A pipeline register at the root
of the branches ensures that only the branch containing the agent servicing
the targeted functional core is activated on a transfer request. This
optimization avoids activating the other branches, which are likely to be long
and thus have high capacitances that will significantly increase power
dissipation.

7.4 Configuration and Generation of the MicroNetworks

To support the design of SoCs and MicroNetworks, Sonics has developed
Sonics Studio, a graphical and command line SoC development
environment. In developing a MicroNetwork instance, there are a large
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number of options from which the SoC architect can choose and the Sonics
Studio development environment provides a number of automation tools to
make this task easier [23]. Each OCP socket can be configured
independently and the MicroNetwork can be configured and tuned for a
large number of performance and system management characteristics. While
it is possible to create a system using just command line tools, it is more
efficient to use a graphical interface to perform some of these tasks, with
command line based tools and utilities available when needed.

The designer/architect can use the GUI to quickly create a working
prototype of the SoC concept as shown in Figure 11. Each interconnect core
is shown composed of a set of agents, which terminate one or more OCP
interfaces (depicted as arrows). The square blocks represent actual functional
cores, or models of cores, depending upon the design phase. The GUI
automatically connects objects with compatible interface bundles; the bundle
specifies the name and direction for each signal group for each type of
interface that connects to the bundle. For example, the OCP interface bundle
has different signal directions for Master versus Slave interfaces.

Figure 14-11. Sonics Studio GUI screen shot of behavioral digital STB design

To speed system design, Sonics Studio automatically configures
MicroNetwork agents to inherit OCP configuration parameters when
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attached to functional cores with OCP sockets. The GUI has configuration
panes for each MicroNetwork for capturing parameters such as data path
width and the characteristics of the arbitration system. For agent level
parameters, there are settings for buffer depths, clock frequency ratios
among others. These features streamline the MicroNetwork generation and
configuration task.

Sonics Studio supports models in C++ or Verilog/VHDL languages.
Behavioral models of both OCP masters and slaves are available for
describing estimated functional core behavior. These models are
configurable to meet the full OCP specification allowing them to be used to
accurately model any OCP-compliant functional core at the Bus Functional
Model level. Other tools include simulation monitors that capture trace data
into ASCII files, disassemblers, protocol checkers, and performance
measuring programs. These features facilitate the early data flow modeling
that enable rapid performance analysis and optimization.

A finished MicroNetwork may have several hundred configuration
settings. The source code for the MicroNetwork is compiled into the Sonics
Studio RTL generator with configuration parameters captured from the GUI.
The generator interprets the configuration parameters, computes context-
sensitive default parameters, performs value checks, and passes the final
parameters to a macro processor that configures the final RTL.

The generator also automatically produces HDL net lists to instantiate the
MicroNetwork and the functional cores and to connect their interface
bundles. This automation makes it possible to create SoC models quickly
and to generate new models as the SoC is refined.

Several of the MicroNetwork configuration options affect pipeline
optimizations to balance timing convergence versus latency. Timing models
are available for agents in a wide range of configurations so that predictive
timing is available as the design is optimized. An automated tool is used to
generate configurations with estimated boundary timing constraints, to run
the configured agent through logic synthesis and library mapping and to
parse the static timing report to capture the results. This timing information
is based on process technology, cell library and synthesis flow, so the timing
and area information can be prepared before the architecture is finalized.
This gives the architect accurate physical information to use in developing
the SoC architecture.

Sonics Studio also provides interfaces to other tools such as simulation,
design synthesis, floor planning, and timing analysis. By providing a central
development environment that enables fast generation of MicroNetworks,
rapid modifications of performance characteristics, integrated simulation,
synthesis and verification tools, Sonics Studio empowers the SoC architect
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with the tools needed to create complete SoCs using decoupled, active
interconnect cores with standard interface sockets.

8. SUMMARY

Effective development of complex SoCs that incorporate many
heterogeneous processing elements and tens to hundreds of I/O functions
requires a new decoupled active interconnect methodology. Without socket-
based decoupling and active interconnect cores, the process of design
integration and verification breaks down at the inter-core communications
level. Mismatching high-level functional core abstractions with low-level
bus-oriented abstractions is the cause of this breakdown. The solution is
decoupling the computational tasks of the functional cores from the
communications functions Inter-core and system-level communications
functions should be placed in interconnect cores. For developing a decoupled
interconnect-based system architecture, there are several potential standard
solutions available including the OCP socket specification as a standard
inter-core interface and the Sonics MicroNetwork family of interconnect
cores. Using development tools such as Sonics Studio enables the design of
complex SoCs based on sockets and interconnect cores, leading to the
realization of “design by functional combination” approach to complex SoC
design.
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1. Introduction
In this chapter we show that the organization of the communication and

memory infrastructures is critical in today’s complex systems-on-chip (SOCs).
We further show that resource management in the form of scheduling or arbi-
tration is common to them both. The increasing importance of these issues is
illustrated by following the evolution of an advanced set-top box and high-
definition digital TV application (ASTB) and its SOC implementations over
time.

In Section 2, we introduce the application domain (embedded systems for
high-volume consumer electronics), and the application (advanced set-top boxes
for high-definition digital and analog TV). The computation kernels and the
communication (data rates, latencies) needed for real-time audio and video are
demanding. Meeting real-time requirements, while minimizing resources for
cost-effectiveness is challenging for such large heterogeneous SOCs.

In Sections 4 to 6, we review two existing and one possible future SOC im-
plementation of the ASTB application, along the following axes, introduced
in detail in Section 3. We commence with the application itself, including
real-time requirements, the computation kernels, the kinds of traffic flowing
between them, and the logical memories used by them. The following axes
categorize its implementation; the mapping of computation (types and number
of IP blocks) and communication. Then we consider the interconnect organiza-
tion, communication abstraction (how IP blocks interact with the interconnect),

399



400

and the memory organization (how the logical memories are implemented).
Finally, we review arbitration: how traffic types are supported by the intercon-
nect, and how the system as a whole meets its real-time requirements.

The Viper SOC (Section 4) and its successor Viper2 (Section 5) share some
important characteristics (such as a dependence on a single external memory)
but have a different philosophy underlying their architecture. The former im-
plements the interconnect grouped by data-rate requirements (leading to low
and high-bandwidth interconnects), while the latter groups IP blocks by traffic
kind (control traffic, low-latency data traffic, and latency-tolerant data traffic).
A possible future implementation (Section 6) builds on Viper2’s traffic sep-
aration, and additionally integrates multiple on-chip memories and external
memories.

In Section 7, we review the evolution of the ASTB application and imple-
mentations, and observe some trends.

2. The ASTB Application
We focus on embedded systems for high-volume consumer electronics, in

particular, advanced high-quality set-top box and TV systems. The ASTB ap-
plication comprises audio decoding (e.g. AC3, MP3), video decoding (e.g.
MPEG2), video pixel processing (e.g. de-interlacing, noise reduction), and
graphics [1, 2]. These functions are combined to provide different products
(such as analog, digital, and hybrid TV), as well as different modes of op-
eration within a product. For example, digital TV decodes audio and video
before performing further video pixel processing, while analog TV uses noise
reduction instead of video decoding, and in hybrid TV both are present.
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Figure 15.1. Example hybrid (analog and digital) ASTB processing chain.
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Figure 15.1 depicts an example hybrid TV application. The audio pro-
cessing chains for analog and digital remain independent, while the corre-
sponding video-processing chains interact in a convergence to the screen, and
a VCR output. We refer to [3, 4] for more information about the particular
video functions, such as noise reduction (NR), picture rate up-conversion (mo-
tion estimation ME and motion compensation MC, de-interlacing DEINT, up-
conversion UPC, etc.), spatial scaling (horizontal scaling HS and vertical scal-
ing VS), sharpness improvement (e.g. peaking, luminance transition improve-
ment LTI), picture composition PCOMP (e.g. mixing and blending of multiple
pictures and graphics), and display adaptation DA (color conversion, skin tone
correction, blue stretch, green enhancement, etc.). An important characteristic
of many of these functions (such as NR, ME, MC) is their temporal process-
ing nature, i.e. they use previous, current, and (sometimes) next pictures to
generate their output picture. These pictures require significant storage and
subsequent retrieval. Table 15.1 lists some typical computation, communica-
tion, and memory requirements to implement these functions [5, 6].

Table 15.1. Characterization of ASTB applications. Video pixel processing combines many
video-improvement algorithms in a chain. We show typical numbers; however, they depend on
the number of (temporal) processing stages.

computation in out local memory
audio decoding 100 MOPS 32-640 kbps 5 Mbps 5 Mbps 50 kb

MPEG2 video decoding 4 GOPS 10 Mbps 120 MBps 240 MBps 8 MB
video pixel processing 100 GOPS 360 MBps 360 MBps 360 MBps 4 MB

The audio and video decoding functions conform to standards, such as AC3
and MPEG2. Many implementations complying with a standard are therefore
available for these functions [7, 8]. In contrast, video pixel processing func-
tions are often proprietary, and are the differentiating factor for products be-
cause they visibly improve the video picture quality [9, 10, 11].

ASTB SOCs have to support various input/output picture sizes, in particular
standard (SD) and high definition (HD). Some processing is specific to analog
or digital input (e.g. noise reduction is not used for digital input), specific to the
display type (e.g. CRT or matrix), and specific to the number of streams pro-
cessed simultaneously for one screen (e.g. with or without picture-in-picture
PIP). Some modes are static, i.e. fixed for a particular product and do not
change during its lifetime (e.g. CRT versus matrix). Other modes are dynamic
and may change frequently, either triggered by the user (e.g. PIP on/off) or by
the environment (e.g. broadcast change from video to film type, or SD to HD

for main window).
Audio and video processing have intrinsic real-time requirements: for ex-

ample, a video field must be displayed at regular intervals (e.g. 1/50th, 1/60th,
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or 1/100th of a second). Furthermore, audio and video must be synchronized
within strict limits (known as ”lip synchronization”). Only a limited amount
of processing, such as graphics, has less strict timing restrictions.

Application characteristics From the brief overview of the application
domain we extract the following characteristics.

First, computational requirements vary substantially (three orders of mag-
nitude, cf. the second column of Table 15.1), from low for audio processing
to very high for video pixel processing functions. This leads to a large num-
ber of heterogeneous computation elements. For example, Viper2 (Section 5)
contains 60 dedicated and weakly-programmable IP blocks, two application-
domain-specific VLIW media processors, and one general-purpose RISC pro-
cessor. (A note on terminology: we divide IP blocks in two categories: function-
specific cores, and programmable processors.)

Programmable processors offer the flexibility to implement emerging stan-
dards for audio and video, and differentiation of products (when integrating
SOCs in products). Low cost, power efficiency, and high computational perfor-
mance are achieved through the use of function-specific cores.

Video decoding and video pixel processing operate on large amounts of
data, necessitating large buffers for communication and temporal data. Multi-
tasking processors, especially high-performance VLIW processors, have large
amounts of program instructions (code), which also requires storage. For high
memory requirements, large external (off-chip) memories are more cost effec-
tive than on-chip memories.

The interconnection infrastructure plays a central role in the SOC architec-
ture for a number of reasons. The large amounts of (temporal) video data
have to be transported between many IP blocks, via memory or directly. This
requires a high-performance interconnect. To support the many static and dy-
namic modes of operation, data transportation mechanisms must be highly con-
figurable. Moreover, to configure the SOC for a mode of operation, a flexible
control interconnect must allow IP blocks to be accessed and programmed [12].

Finally, the combination of cores, processors, and interconnect must guaran-
tee the hard-real time requirements of the application. Resource management
(arbitration) of computation (e.g. real-time operating systems), communica-
tion (e.g. traffic classes with different performance), storage (by the external-
memory controller), and their combinations are essential.

3. System Analysis Overview
Before we discuss individual designs, we define the axes along which the

designs are presented. Although the axes are not independent (interconnect
and memory organizations are strongly related, for example), for every axis an
evolution can be identified for successive designs. For each design we discuss
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the application, its computational complexity, and the resulting traffic types.
These are reflected in the interconnect organization, the communication ab-
straction (i.e. how IP blocks interact with the interconnect), the memory orga-
nization, and finally how all these components are managed or arbitrated. We
have some general remarks on a few of these points in this section.

3.1 Traffic Types
Traffic types help us to discuss how communication is mapped to intercon-

nect implementations. The heterogeneity of the processing elements (cf. Sec-
tion 2), results in a variety of traffic types, based on data rate, latency, and jitter
characteristics, see Table 15.2. Based on these traffic types, the three designs
have different interconnect partitionings, as we shall see in Sections 4 to 6, and
summarized in Table 15.4.

Table 15.2. A classication of traffic types.

label data rate latency jitter example
LRLL low low low control traffic
HRLL high low low cache misses

low-jitter HRLT high tolerant low “hard-real-time” video
jitter-tolerant HRLT high tolerant tolerant “soft-real-time” video
jitter-tolerant MRLT medium tolerant tolerant audio & MPEG2 bitstreams

best effort tolerant tolerant tolerant graphics

Control traffic originates from control tasks that are usually mapped on one
or more processors, which must obtain status information from cores and pro-
gram them. It has a low data rate, but requires low latency (LRLL) to minimize
the system response time, e.g. when the application mode changes.

Multi-tasking processors, such as MIPS and especially high-performance
VLIW TriMedia processors, do not have sufficient local memory to contain all
instructions (code) and data of the multiple tasks. Instruction and data caches
are therefore used to automatically swap in and swap out the appropriate in-
structions and data. This leads to high (instantaneous) data rates, and requires
low latency (HRLL).

Dedicated video-processing cores usually operate on and generate stream-
ing (sequential) traffic with high data rates. They are composed in deep chains
without critical feedback loops, and their low-latency requirement can there-
fore be made less critical by using buffers to avoid underflow. The resulting
traffic has a high data rate but is latency tolerant (HRLT). Medium-data-rate
latency-tolerant traffic (MRLT) is generated, for example, by audio and MPEG2
processing cores.

Jitter (latency variation) can be handled similarly, and we use the distinc-
tion between low-jitter and jitter-tolerant HRLT traffic. IP blocks with the latter
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traffic, such as the memory-based video scaler, have an average data-rate re-
quirement but can be stopped when there is no data, and make up by processing
at a higher rate later, or by averaging out data bursts. By contrast, low-jitter
HRLT IP blocks do not tolerate variations in data rates, because they cannot
make up for any lost processing cycles. Examples are video-processing blocks
operating at actual video frequencies, where line and field blanking can not be
used as slack.

Some processing, like graphics, operate on best effort traffic, in the sense
that it gets by on whatever bandwidth and latency it is given.

3.2 Communication Abstraction
As SOCs increase in complexity, the need for IP re-use and associated stan-

dardized SOC design methods has resulted in the notion of a platform [13]. A
platform structures and standardizes SOC architectures, by regulating the kind
of IP blocks that can be used, how they are combined, and how the system
is programmed. Separating the computation (processors and cores) from com-
munication (the interconnect core) has many advantages [14, 15]. In particular,
we show how the use of the device-transaction-level communication standard
(DTL) [16], part of Philips’s Nexperia platform, has been key in allowing the
interconnect to evolve over time, while the IP blocks remained unchanged.
Communication abstraction has been promoted by the VSI alliance, the OCPIP

consortium, and ARM, whose respective VCI [17], OCP [18], AXI [19] protocols
are similar to DTL.

The use of communication abstractions, such as DTL, has several advan-
tages. The development of cores is simplified because DTL is tailored to the
requirements of IP blocks, rather than the interconnect. Moreover, IP blocks
become independent from the interconnect, and hence re-usable. The inter-
connect and IP blocks are glued together by means of (re-usable) adapters.
System-dependent customization is restricted to the adapters, instead being
implemented by the IP blocks or the interconnect. Examples include little/big
endianness conversions, interconnect-dependent sizing of latency-hiding com-
munication buffers. This enables re-use of both the IP blocks and the intercon-
nect.

3.3 Memory Organization
We distinguish several logical memories for data use. These are: algo-

rithmic memories (e.g. temporal field memories, field to frame conversion
memories, line memories of a scaler), state memories (e.g. local variables of a
hardware or software task), and decoupling memories. Decoupling memories
even out differences in data production and consumption rates of IP blocks, e.g.
due to field and line blanking, horizontal and vertical data access patterns of
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video scalers. In the following discussions we omit state memories because, in
the designs we discuss, they are always part of the IP block. A second type of
logical memories are used to store instructions of programmable processors.

Memories that pertain to the communication architecture include pipelining,
packetization, latency-hiding, and clock-domain-crossing memories. Pipelin-
ing memories are used to increase the operating frequency of interconnects.
Packetization memories are required to convert the data of IP blocks to the
format used by the interconnect (e.g. 64-bit words). Latency-hiding memo-
ries remove or hide latency and jitter introduced by communication networks,
memory controllers, RTOS task scheduling, and so on. For example, a 128-
byte buffer is used in Viper. A small amount of memory is used to safely cross
different clock domains.

All the kinds of logical memories are mapped to (implemented by) physical
memories, basically on-chip or off-chip memories. For each of the designs,
we show how the different logical memories are mapped to on- or off-chip
memories (but we do not further sub-divide in RAM, flash, register files, etc.).

3.4 Arbitration
The ASTB application can be analyzed in terms of its computation and com-

munication, but, additionally, it has real-time constraints for audio and video.
To meet real-time requirements computation, communication, and memory re-
sources must be arbitrated, or managed. For example, a simple first-come first-
serve bus arbiter cannot distinguish low-latency from latency-tolerant traffic,
and cannot offer differential data-rate services. Both are important in meeting
real-time requirements. Two key issues in each of the designs are the arbitra-
tion of critical resources (such as external-memory bandwidth), and managing
the interaction of various arbiters (e.g. those of external memory and on-chip
interconnect).

4. Viper
Viper [1] is a highly integrated multimedia SOC targeted at advanced set-top

box and digital TV (ASTB) applications. It provides progressive SD, and in-
terlaced SD and HD outputs. Viper’s main functions are video decoding (e.g.
MPEG2), audio decoding (e.g. AC3), and video pixel processing to improve
picture quality and to convert between image formats (e.g. de-interlacing).
It simultaneously supports two video streams (e.g. one high definition of
1920x1080 pixels interlaced at 60Hz, and one standard definition of 720x480
pixels interlaced at 60Hz) and three audio streams.
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4.1 Computation Mapping
Viper contains two processors (a MIPS-PR3940 and a TriMedia TM3218)

and 50 function-specific cores. The cores include video-processing modules
such as MPEG2 decoders (with high computation and communication require-
ments), audio/video input/output modules (e.g. MPEG2 transport-stream parser)
and general-purpose peripherals (e.g. UART interface, USB controller). As
noted in Section 2 their communication requirements and memory usage vary
significantly.
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Figure 15.2. Simplified block diagram of Viper.

4.2 Communication Mapping
Memories are required to a) store instructions and data for both proces-

sors, b) function as an algorithmic memory (in particular temporal data, and
for vertical scaling), and c) decouple IP blocks if their processing rates do not
match. On-chip memories cannot be used in many of these cases because they
would be too large. Hence it is advantageous to merge all data and instruc-
tion memories in one external memory. This results in high data rates for the
off-chip memory from streaming cores (HRLT), and from data and instruction
accesses of the programmable processors (HRLL). To hide the latency to the
background memory the MIPS and TriMedia processors all have data and in-
struction caches. In Viper, all IP blocks are masters, i.e. they autonomously
write to and read from the memory. In Figure 15.2 master and slave ports are
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labeled M and S, and all read (R) and write (W) ports are masters. This avoids
the need for a central DMA agent that has to be programmed by a processor,
which could be a bottleneck. Given the particular combination of many masters
and one slave, it makes sense to optimize the combination of external-memory
controller and interconnect, as we shall see in the next section.

The status and program registers of all cores can be accessed at locations
in a global memory map. This control traffic is generated by a few masters
(the programmable processors) requiring access to many slaves (the cores), in
contrast to the data traffic. Control traffic has low data rates, but requires low
latency, to reduce the system response time (e.g. when the application mode
changes).

4.3 Interconnect Organization
A single-hop broadcast interconnect, such as a shared bus (multi-master and

multi-slave) that connects all IP blocks (including external memory), is not a
feasible solution for a SOC like Viper. It cannot fulfill the bandwidth require-
ments of high-data-rate traffic, and certainly cannot offer the required low la-
tency for control (LRLL) and cache traffic (HRLL). In Viper the traffic is there-
fore partitioned over several different interconnects, with traffic separated on
the basis of data-rate requirements. There are two interconnects: one for low-
data-rate (LRLL, control traffic) to medium-data-rate traffic (MRLT, audio and
encoded MPEG2), and one for high-data-rate traffic, both low latency (HRLL,
cache misses) and latency tolerant (HRLT, video). Below, we first discuss each
interconnect in turn, and then how they interact.

The low to medium-bandwidth interconnect The idea underpin-
ning this interconnect is that low latency can be ensured for control traffic by
isolating it from high-data-rate traffic. Two 32-bit PI busses [20] are used: M-
PI (see Figure 15.2) for control traffic from the MIPS and DMA traffic from
streaming cores, and T-PI for control traffic of the TriMedia. MRLT DMA traf-
fic is added to the M-PI bus to increase its utilization. The two busses are
connected by a bridge (C-BRIDGE, with a master and slave port on both sides),
to allow both processors access to all cores for programming.

The high-bandwidth interconnect The high data-rate requirements
to access external memory cannot be fulfilled with a tri-state bus, such as the
PI bus. Even with large tri-state drivers, it would be too slow because of a high
capacitive load due to the large number of IP blocks. Observe, however, that all
high-data-rate traffic is destined to the off-chip memory, that is, many masters
communicate with a single slave. This leads to the design of a specialized
64-bit point-to-point memory-access interconnect (PPMA) that connects the IP

blocks directly to the memory controller, see Figure 15.2. The PPMA allows
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multiple active high-speed transactions because, essentially, it consists of a set
of independent direct (non-pipelined) wires from the IP blocks to the memory
controller. The MIPS and memory controller are re-used from earlier designs,
and have different interfaces. As a result, the MIPS is connected to the memory
controller using a PI bus (F-PI) running at processor speed (the M-PI bus runs
more slowly), via a gate (F-GATE, which has only a slave port at the MIPS side).
As discussed next section, this arrangement is not ideal because it increases the
MIPS’s latency when accessing the external memory.

The memory controller can efficiently schedule multiple outstanding trans-
actions, as all client requests are visible. However, in this interconnect design,
the very large number of long global (top-level) wires running from the many
IP blocks to the single memory controller significantly complicated clock-tree
balancing and global timing closure.

IP blocks are connected to the PPMA by means of adapters that packetize
(format) the data of the IP blocks to 128-byte data bursts. The packetization
memory that is required for this is merged with the latency-hiding memory.
The latter hides the access latency an IP block would see before it is served
by the memory controller. The use of adapters is essential to implement the
communication abstraction, further discussed in Section 4.4.

Combining the two interconnects To allow cores on the PI busses
access to the external memory, two additional gates (M-GATE and T-GATE) are
used. The F-PI and M-PI MIPS PI busses are connected by the MIPS bridge
(M-BRIDGE). The interconnects are summarized in Table 15.4.

In Section 4.6 we discuss the performance and arbitration issues of the cho-
sen interconnect scheme, in particular the role of the gates.

4.4 Communication Abstraction
In this design, there are two different interconnects: a point-to-point PPMA

of 64 bits wide, and tri-state PI busses of 32 bits wide. PI busses are used for the
control traffic and the MIPS PPMA interface because IP blocks were only avail-
able with tri-state PI-bus interfaces. Alternative bus implementations (multi-
plexed or wired-OR) were therefore not considered although tri-state busses
can cause testability and lay-out problems. The F-GATE is another penalty (in
terms of additional latency for the MIPS cache misses) because the memory
controller does not use the PI bus protocol. These observations motivate the
communication-abstraction concept introduced in Section 3.2, i.e. IP blocks
use an abstract point-to-point interface and protocol suitable for them, which
is converted to different interconnect protocols by means of adapters. In fact,
communication abstraction was already used to connect IP blocks to the PPMA

(except for those on the F-PI bus), and proved to be very successful in re-using
these IP blocks in Viper’s successors, even as interconnects evolved.
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4.5 Memory Organization
Most logical memories are mapped on the external memory, because they

are too large to be kept on chip. This includes algorithmic memories (such
as SD/HD fields for temporal processing), decoupling memories (e.g. SD/HD

fields), and the instruction memories for the processors. The only exception is
the line memories of the memory-based scaler, which are mapped to on-chip
local memory. Both processors use instruction and data caches to hide the
latency of accessing data and instructions in the external memory.

Latency-hiding memories, which hide the variations in data-access latency
(jitter) to the external memory, are kept on chip. This jitter is introduced by the
memory controller when it arbitrates between the urgent cache misses of the
processors (HRLL), the heavy data rates of streaming traffic (HRLT), and the re-
maining traffic (e.g. best-effort graphics). These latency-hiding memories are
implemented in the adapters (the boxes marked R and/or W in Figure 15.2).
They are merged with the packetization memories that are required to convert
the IP block’s data to the format used. The interconnect, memory controller,
and overall system requirements determine this format. None of the intercon-
nects (PI busses, PPMA) are pipelined. The bridges and gates contain only
memory to synchronize clock domains. They are therefore circuit-switched,
that is, they make an end-to-end connection between the master and the slave,
occupying all intervening interconnects. While this simplifies transaction han-
dling, it also causes a performance bottleneck, as we shall see below.

4.6 Arbitration
No arbitration takes place in the PPMA. Instead the memory controller con-

siders all outstanding requests from all IP blocks connected to it. The memory
controller optimizes the bandwidth to the external memory. The run-time-
programmable arbitration scheme uses time-division multiplexing, with two
priorities per slot. The higher priority guarantees a maximum latency to low-
jitter clients, and the lower priority allows other clients to use the bandwidth
left over.

Traffic with similar characteristics is coalesced before entering the PPMA,
conceptually adding a first level of round-robin arbitration. This includes both
the (multiple) read and write ports of a single core (e.g. VMPG in Figure 15.2),
and multiple cores (e.g. VIP1 and VIP2). This reduces the number of top-level
wires to the memory controller.

The arbitration of the PI busses proceeds independently, except when ad-
dressing a slave behind a bridge or gate. In this case, both busses are locked
until the slave has responded (non-pipelined circuit switching). This works
well for the inter-PI bus bridges (M- and C-BRIDGE) and F-GATE. However,
when accessing the PPMA through the M-GATE and T-GATE a transaction can
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be stalled for some time, depending on the traffic class of the master (e.g. best
effort). During this time the F-PI bus is locked. For example, a DMA access
of the USB module on the M-PI bus can in this way stall the MIPS for some
duration, if the MIPS tries to program a core at the same time. For this reason,
the latency of control traffic can vary considerably: from 10-20 cycles without
DMA interference, to 100+ cycles with interference.

Hence, the way in which traffic types are separated (by data rates rather
than latency) and mapped (on separate, yet interacting interconnects) causes
interacting arbitration schemes (of the PI busses and memory controller). This
complicates guaranteeing the real-time behavior required by the application,
and forces overdimensioning of parts of the system (in particular the PI bus
frequency). These observations suggest improvements for Viper’s successors.

5. Viper2
Viper2 is a successor of Viper, and targets mid to high-end analog, digi-

tal, and hybrid (both analog and digital) TV, including wide-XGA plasma and
LCD displays. Viper2 extends Viper by handling 100Hz interlaced and 60Hz
progressive displays. It upgrades the conversion of interlaced to progressive
output video from SD to HD. It also includes advanced video improvement al-
gorithms, such as motion-compensated Digital Natural Motion for SD pictures.

5.1 Computation Mapping
Viper2 contains three processors (one MIPS PR4450 and two TriMedia TM3260)

and 60 function-specific cores. The cores are similar to those of Viper, but have
higher computational and communication requirements due to HD output.

5.2 Communication Mapping
Viper2 has one external memory, like Viper. The second TriMedia adds

more HRLL cache-miss traffic, and the larger number of cores, with higher
data rates, load the external memory close to its maximum.

5.3 Interconnect Organization
Recall that in Viper, the interconnects are defined by data-rate requirements:

PPMA for high-data-rate traffic, and the PI busses for low to medium-data-rate
traffic. Their interaction via the gates leads to performance issues on the PI

busses (cf. Section 4.6). For Viper2, this problem would have been more
acute with the increased number of IP blocks. This is addressed by partition-
ing the interconnect on the basis of traffic types instead. Cache misses (HRLL),
streaming data (MRLT and HRLT), and control traffic (LRLL) are separated in
three interconnects, respectively. No bridges are required between these inter-
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Figure 15.3. Simplified block diagram of Viper2.

connects, and hence there is no interaction between their arbiters. This avoids
the traffic interactions of Viper. (Observant readers will notice the M-GATE

in Figure 15.3, which, however, is only used during booting and debug.) Be-
low, we describe each of the interconnects, and return to arbitration issues in
Section 5.6. The interconnects are summarized in Table 15.4.

The device control and status interconnect (DCS) The DCS in-
terconnect differs from Viper’s PI busses in several ways. First, the traffic to
be transported over the DCS interconnect is homogeneous (only low-data-rate
low-latency traffic), in contrast to the PI busses in Viper. Only single-word
transactions are allowed, to ensure low latency. Second, it is a synchronous or
asynchronous wired-OR bus, not a tri-state bus, to lower the length and num-
ber of wires, and so increase its frequency and improve its testability. Timing
closure is alleviated by structured post-lay-out netlist modification. Further, to
ensure low latency, the load on the DCS busses is kept to less than 0.5% (one
data word per cycle corresponds to 100%). Finally, to hide the significant dif-
ference in speed between the processors and the core being accessed, posted
writes and reads can be used. A posted read accesses a (possibly out-of-date)
copy of a core’s registers in the adapter of the core, which is in the fast DCS
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clock domain instead of the slower core’s clock domain. By the combined ef-
fects of these improvements the latency of the control interconnect of Viper2
is the same as in Viper, despite the increase in the number of IP blocks.

The bridge (C-BRIDGE in Figure 15.3) between the MIPS (M-DCS) and Tri-
Media (T-DCS) interconnects functions as before (i.e. both interconnects are
locked when addressing a core through the C-BRIDGE).

The high-bandwidth low-latency interconnect The three proces-
sors all require low-latency access to the external memory for their cache
misses. They are therefore connected directly to the memory controller, us-
ing non-pipelined wires. Viper’s F-PI bus and F-GATE to connect the MIPS to
the memory controller have been eliminated.

The pipelined memory-access interconnect (PMA) The pipelined
memory-access interconnect (PMA) is Viper2’s medium to high-bandwidth la-
tency-tolerant interconnect. In Viper, the 64-bit point-to-point PPMA has direct
wires between the memory controller and all IP blocks with high data rates (ex-
cept for the MIPS). In Viper2, this is no longer feasible because the Viper2’s
increased chip area results in longer wires, and the medium-data-rate cores on
the PI bus are moved to the PMA. Moreover, the number of medium to high-
data-rate IP blocks has increased, as well as their data-rate requirements (to
deal with HD instead of SD pictures).

The PMA therefore contains two innovations. Both hinge on the fact that
many masters communicate with a single slave, like in Viper. First, the out-
standing transactions from multiple cores are presented one at a time to the
memory controller, to reduce its complexity, and to decouple the PMA commu-
nication arbitration from the memory arbitration (breaking global arbitration
into local subarbitrations). The memory controller is now independent of the
number of cores, making it more re-usable. We return to the PMA arbitration
in Section 5.6.

Second, the point-to-point wires of PPMA of Viper have been replaced by a
pipelined multiplexed interconnect to reduce the length and amount of wires,
to ease lay-out and timing verification. A tree topology clearly fits well with
exposing a single transaction to the memory controller, as transactions of dif-
ferent cores converge towards the top. In Figure 15.3 the cores on the dark
shaded background connect to a PMA of 8 nodes (shown as hatched boxes),
using 28 ports, but it is clearly scalable to a larger number of masters. Note
that the tree topology is motivated by lay-out and timing closure, and that a
node in the tree is not necessarily a point of arbitration (further discussed in
Section 5.6).

The adapters glueing the cores and PMA together contain combined memo-
ries for clock-domain crossings, packetization (to convert data from the cores
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to 128-byte PMA bursts), and pipelining and latency-hiding memory (to over-
come the latency and jitter introduced by the memory controller and PMA).

5.4 Communication Abstraction
In Viper, re-use of legacy IP blocks required the F-PI bus with its associ-

ated side effects (cf. Section 4.4). This motivates the creation of IP blocks
that are independent of the interconnect, which was already applied to Viper’s
PPMA interconnect. Many of Viper’s IP blocks were re-used in Viper2 without
change, proving the value of the methodology. Even the adapters that con-
nected the IP blocks to the PPMA required only minor modifications for the
PMA (e.g resizing of the packetization and latency-hiding buffers).

The DTL (device-transaction-level) protocol [16] that is used has several
profiles, which are related to the traffic types. The MMIO (memory-mapped
IO) profile is chiefly used for control traffic (LRLL). The MMBD (memory-
mapped block data) and MMSD (memory-mapped streaming data) profiles are
used by IP blocks to communicate via shared on- or off-chip memory. MMBD

and MMSD are used predominantly for reading and writing, respectively. Cache
misses (HRLL) use MMBD, while streaming (audio MRLT and video HRLT)
cores use MMSD or MMBD.

The use of DTL ensures that IP blocks can transparently connect to any of the
interconnects (direct IP to IP communication, PMA, DCS interconnect), making
it easier to move IP blocks within a design, and to re-use them across designs,
with possibly different interconnects.

5.5 Memory Organization
All algorithmic memories (such as SD/HD fields for temporal processing),

the decoupling memories, and the instruction code for the processors are mapped
to external memory. There are two exceptions. The first, like in Viper, is the
line memories of the memory-based video scaler (MBS), which are mapped to
on-chip local memory of the MBS. Second, a small local memory is introduced
in one place to (significantly) reduce the bandwidth pressure on external mem-
ory. Although this introduces another slave, it statically connects only two IP

blocks, and hence is not part of the PMA.
All processors use instruction and data caches to hide latency.
The adapters contain latency-hiding memories for cores, to even out vari-

ations in data access latency to external memory. This variation is due to the
combined effects of the memory controller (like in Viper), and the PMA arbitra-
tion (new in Viper2). The adapters contain packetization memories to convert
IP-block data to a format suitable for efficient transport over the PMA. The
packetization memories and latency-hiding memories are merged for area effi-
ciency.
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There are no pipeline memories in the DCS. The PMA is a pipelined circuit-
switched interconnect. This means that every node in the tree contains some
pipeline stages, to decrease wire lengths, allow higher operating frequencies,
and ease timing closure. Circuit switching entails that a transaction that is
accepted occupies all nodes on the path from the IP block to the memory con-
troller. To eliminate run-in and run-out of the pipeline, and hence loss of band-
width, transactions are prefetched as close as possible to the top of the tree,
based on their scheduled order.

5.6 Arbitration
The two DCS interconnects are arbitrated independently, using a round-robin

scheme (Table 15.3). M-DCS and T-DCS have 6 and 4 masters, and 32 and 38
slaves, respectively. The bridge is circuit switched; it locks both interconnects
when addressing a slave at the other side of the bridge.

The memory controller has four inputs, one for each processor and one for
PMA. The PMA offers a sequentialized view on the cores, i.e. the multiple
active transactions of IP blocks are offered one at a time to the memory con-
troller. The memory controller arbitrates its inputs using a round robin to aim
for low latency. To guarantee a maximum latency, burst lengths are limited.

Table 15.3. Arbitration overview.

location traffic aim method
DCS LRLL low latency round robin

memory controller HRLL low latency round robin with cut off
PMA top low-jitter HRLT maximum latency time-division multiplexing
PMA top jitter-tolerant HRLT minimum bandwidth priorities
PMA top best effort best effort round robin
adapters (all) coalescing round robin

Recall from Section 3.1 that jitter-tolerant HRLT cores have an average data-
rate requirement but can be delayed when there is no data, whereas low-jitter
HRLT cores cannot be delayed. Best-effort cores can operate on whatever band-
width and jitter they are given.

The PMA uses the fact that many masters contend for a single slave, and ar-
bitrates low-jitter cores using time-division multiplexing (to guarantee a max-
imum latency), jitter-tolerant cores with priorities (to guarantee a minimum
bandwidth), and best-effort cores with a round robin. These arbitration mech-
anisms are applied (prioritized) in the order listed in Table 15.3. (The TDMA

slots are skipped when unused. Note that priorities alone do not guarantee a
minimum bandwidth, but their combination with system invariants does.) The
arbitration scheme is fully programmable at run time.
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The multi-stage arbitration scheme of PMA is motivated by performance
requirements, and maps only partially to the physical tree of PMA nodes, which
is driven by back-end issues. A node in the physical tree is not necessarily a
point of arbitration. In fact, only at the top of the PMA does arbitration take
place.

Like in Viper, traffic with similar characteristics is coalesced in the adapters
before they enter the PMA, conceptually adding a first level of round-robin
arbitration. This includes both the (multiple) read and write ports of a single
core (e.g. QVCP1 in Figure 15.3), and multiple cores (e.g. AIO1 to AIO3,
SPDIO, and GPIO).

6. An Example Future SOC
In this section we take a leap into the future, and describe a speculative

SOC, based on an extrapolation of Viper and Viper2. We present a design that
illustrates the trends that we foresee, but intermediate and hybrid solutions are
very likely between Viper2 and the future SOC sketched here.

Future applications will contain more advanced video-processing functions,
at higher picture resolutions. Examples are motion-compensated high-defini-
tion noise reduction and temporal up-conversion, as well as a move to MPEG4
and advanced graphics. We further expect higher and more dynamic data rates.

6.1 Computation Mapping
The number of processors increases to support emerging media-processing

applications, and (system-integrator-defined) differentiation of products. The
number of function-specific cores also increases, to efficiently implement stan-
dard or proprietary application kernels (e.g. PixelPlus and subpixel luminance-
transient improvement).

6.2 Communication Mapping
As the number of processors increases, the amount of data and instruction

cache misses (HRLL) grows. This is an undesirable trend, because low latency
is hard to guarantee for more than a few users of any shared resource, whether
it is an external memory or an interconnect. There are several (partial) solu-
tions. First, minimize the use of caches, e.g. reduce multi-tasking to decrease
code memory size and increase locality, or improve memory management such
as software prefetching in combination with scratch-pad memories. Second,
lower the dependency on low latency, e.g. by using hardware multi-threading,
or by increasing the emphasis on streaming instead of random-access traffic.
Third, use fewer shared resources, e.g. use multiple memories, and intercon-
nects that allow concurrent accesses such as switches and networks.
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Control traffic (LRLL) essentially suffers from the same low-latency prob-
lems. However, current solutions can be used in the near future because the
available head room can accommodate the increase in (low-data-rate) control
traffic.

MRLT and HRLT traffic increases because of the growth in the number of
function-specific cores, which tend to implement streaming computation. In-
creasing picture dimensions from standard to high definition, also boosts HRLT

traffic (e.g. sixfold for temporal up-conversion).
Thus, future interconnects must address the rise in communication needs,

but architectural opportunities to limit the increase in traffic types that are hard-
est to implement, low latency in particular, should also be exploited.

6.3 Interconnect Organization
We see several trends that affect communication.
First, the number of processors grows, resulting in more masters and LRLL

traffic for the control interconnect. Busses like DCS are single-hop broadcast
media, for which latency increases for two reasons. The arbiter frequency
slows down because global arbitration must take more masters into account,
and because the wires from IP blocks to the arbiter become longer. Moreover,
without concurrent transactions and with limited operating frequency, only a
subset of masters can have low latency.

Second, the increasing number of processors gives rise to more cache-miss
(HRLL) traffic, which cannot be supported by only one slave (the external mem-
ory). Again, with a single shared resource, not everyone can have low-latency
access. Hence multiple memories (slaves) are required. They are probably ex-
ternal because processor instructions are too large to fit on chip. Some kind of
switch must connect multiple masters (processors) to multiple slaves (memo-
ries).

Third, we have seen that the amount of HRLT traffic grows due to larger pic-
tures. Communicating only via a single external memory is no longer feasible,
for bandwidth reasons, and we foresee a combination of multiple off-chip and
on-chip memories. The former, while not ideal for energy dissipation and pin-
ning, is indispensable because HD (temporal) video data is too large to be kept
on chip. The latter reduce the bandwidth pressure on external memories, and
lower the latency and power to access data. In Viper2 a similar technique is
used once (cf. Section 5.5), but shared on-chip memories will gain in number
and importance. In both cases, we see a growing number of slaves, which the
PMA interconnect alone cannot address.

Finally, both Viper and Viper2 contain IP blocks (tunnels) to communicate
with off-chip components, either in a system-on-package or multi-chip setting.
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Similar examples are USB, PCI, and PCI EXPRESS. A further rise in the use of
these interfaces (and hence masters and slaves) is likely.

Networks on chip (NOC)

From the preceding discussion we conclude that any future interconnect
must deal with many masters and many slaves, with high data rates. Busses
cannot fulfill the bandwidth requirements. Switches [12] fare better because
they offer concurrent master-slave communications, but are not scalable to the
extent we require (50+ masters, and 50+ slaves). The PMA interconnect is
optimized for a single slave, and multiple instantiations would be necessary.
Multiple switches, or networks on chip (NOC) [21, 22, 23, 24] are scalable,
and can solve many of the issues listed here. A NOC consists of a collection
of routers (or switches) that transport data in packets. Adapters, now called
network interfaces, connect routers to IP blocks and packetize the transactions
of the IP blocks. The remainder of this section compares NOCs with the other
interconnects.

First, we observe that wires connecting IP blocks are underutilized (as little
as 10% [25]). Both PMA and NOCs reduce the number of wires that intercon-
nect IP blocks by sharing them. However, instantiating PMA multiple times
to address multiple slaves would increase the number of wires. Therefore,
NOCs are better scalable in the number of attached slaves, as illustrated in Fig-
ure 15.4.
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Figure 15.4. Interconnect evolution.

Second, a NOC is scalable in the sense that adding more routers results in
more bandwidth. A NOC copes well with many masters and slaves because
many transactions can take place concurrently. There are several reasons for
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this. First, a NOC has distributed arbitration, unlike a bus or switch. This re-
moves a major bottleneck, cf. Section 6.6. Second, in the appropriate topology
(such as a mesh or (partial) fat tree, e.g. Figure 15.5) there are many indepen-
dent paths that can be used simultaneously. Finally, packet switching is com-
monly used in NOCs, instead of circuit switching, employed in Viper2’s PMA.
As interconnects increase in size (number of routers), their diameter (distance
between master and slave) grows, and reserving wires end to end (from master
to slave) for the duration of the transaction becomes inefficient. The set-up
and tear-down phases of the circuit take longer, causing congestion (blocking
other transactions) [26]. (Fundamentally, multiple interconnects with circuit-
switching bridges, such as those in Viper and Viper2, suffer from the same
problem, discussed in Section 4.6.) Packet switching reduces these problems,
by allowing pipelined transactions (on a single path), possibly at the cost of
higher latency. NOCs can therefore offer tremendous bandwidth between many
masters and slaves [27].
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Figure 15.5. Simplified block diagram of future SOC.

Third, while NOCs scale in terms of bandwidth, this is not so clear cut for
latency. Packet switching has both positive and negative effects on the latency.
High operating frequency of (point-to-point) links and routers, and concurrent
transactions reduce the latency, while arbitration per router, and possible con-
gestion may increase it. In any case, placing IP blocks with latency-critical
communication close to one another in the NOC topology reduces the number
of router hops, and hence the latency (e.g. proc 1 and memory controller 1 in
Figure 15.5).

Finally, a major advantage of NOCs is their ability to offer differentiated
services [28]. This means that different traffic types can be implemented on a
single NOC, and that different traffic types can be multiplexed on a single net-
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work port. In Section 6.6 we discuss the strong relation between NOC services
and NOC arbitration.

6.4 Communication Abstraction
The re-use of Viper2 IP blocks in a NOC is straightforward due to the use

of DTL. The adapters from DTL required little modification to change from
Viper’s PPMA to Viper2’s PMA internal communication protocol. However,
moving from Viper2’s circuit-switching PMA to a NOC’s packet switching is
more elaborate (e.g. end-to-end flow control, transaction reordering, distributed
memory), but existing IP blocks are unaffected.

A NOC has the ability to offer different services to different connections,
on a single network port. For example, a multi-tasking processor can request
a connection to shared memory per task, with different properties per connec-
tion, such as bandwidth, latency, transaction ordering, and flow control. In fact,
this is essential when multiplexing several logical communications over USB

or PCI EXPRESS to off-chip components. It also eases the design of real-time
multimedia applications [24], like those discussed here. If we want to take
advantage of this capability, DTL must be extended to deal with connections
(optional for backward compatibility). This tendency can already be observed
in the appearance of thread and connection identifiers in OCP and AXI.

6.5 Memory Organization
In Section 6.3 we argued that multiple external memories will be likely in

future SOCs to cope with increasing HRLL cache traffic and HRLT traffic (for
algorithmic and decoupling memories).

We also foresee multiple on-chip memories for low power, to lower data
access latency, and to relieve pin and bandwidth pressures. Viper2’s processor
and cache memory model can be extended to a memory hierarchy, as is illus-
trated in Figure 15.5. Proc 2 has its own cache (not shown), but can overflow
to memory mem 2, which is relatively close (one hop), or memory mem 1,
further away (two hops, but still on chip), or one of the external memories
memory controller 1 or memory controller 2 (two hops, but passing through
a memory controller). In fact, all memories are accessible to any of the IP

blocks, but at non-uniform cost (although possibly within a uniform address
space, i.e. NUMA). Similarly, all IP blocks can be programmed by any of the
processors. A multi-master multi-slave NOC interconnect is therefore useful
for both data and control traffic, as suggested by Figure 15.4.

On-chip memories can function as caches or scratch pads (for data and
instructions). By keeping inter-IP-block communication on chip the latency
and jitter introduced by memory controllers is eliminated, reducing the size of
latency-hiding memories (cf. Section 5.5).
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Like for Viper2, the network interfaces contain latency-hiding memories
for streaming cores, to even out variations in data access latency. If the NOC

offers low-latency and/or low-jitter communication, these and on-chip latency-
hiding memories can be reduced. The network interfaces also use some mem-
ory to packetize the data to the format used by the NOC routers, and to cross
clock domains. NOCs have pipelined routers (even in circuit-switched vari-
ants), and sometimes pipelined links too, to increase the operating frequency
of the network. The ÆTHEREAL NOC from Philips, for example, provides a
combined guaranteed-bandwidth-and-latency service with a router pipeline of
three words deep [27].

6.6 Network Services and Arbitration
A major advantage of NOCs is their ability to offer differentiated services.

This means that different traffic types can be implemented on a single NOC by
means of a protocol stack [14], and different traffic types can be multiplexed
on a single network port. Different DTL profiles and traffic coalescing, like
that of Viper and Viper2, is then taken care of by the network (interface). In
particular, the ÆTHEREAL NOC [28] offers guaranteed bandwidth, and best-
effort connections, that are useful for the traffic types listed in Table 15.2.

However, sophisticated global arbitration such as PMA’s, is more expensive
when using the distributed arbitration of NOCs. Time-division multiplexing
is relatively cheap, but distributed priority- or rate-based arbitration is not ac-
ceptable, in terms of buffering cost of routers [27]. The PMA interconnect can
take advantage of its tree topology for its arbitration, but this is harder even in
regular NOC topologies such as fat trees and meshes. NOC services are there-
fore less expressive and flexible than PMA arbitration. Moreover, it is harder
for distributed arbitration to be of the same quality as global arbitration (cf.
contention and congestion). However, given the abundance of bandwidth [27],
this can be addressed by bandwidth overallocation, with best-effort traffic con-
suming unused capacity.

7. Conclusions
The advanced set-top box and hybrid TV (ASTB) application is demand-

ing in terms of computation (high-definition video pixel processing), memory
(temporal video data), and communication (high data rates) requirements. The
first results in heterogeneous computation elements (function-specific cores,
various processors). Instruction, algorithmic, and decoupling memories are all
large and mapped in off-chip memory. The communication infrastructure is
critical because it must connect many IP blocks with high data rates, in a flexi-
ble manner for product differentiation and run-time mode changes. Finally, the
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application centers on real-time audio and video, which means that the system
resources (memories, interconnect) must be carefully managed (arbitrated).

Viper’s interconnect is separated by data-rate requirements, resulting in a
low- to medium-bandwidth interconnect (for LRLL and MRLT) consisting of
two bridged PI busses, and a high-bandwidth interconnect (PPMA for HRLL

and HRLT) of dedicated wiring (Table 15.4). Utilization of both interconnects
is high, but the circuit-switched M-GATE between the interconnects causes in-
terference of arbiters for different traffic types, making real-time guarantees
more intricate.

Table 15.4. Mapping traffic types to interconnect structures.

LRLL MRLT HRLT HRLL

Viper PI PI PPMA PPMA

Viper2 DCS PMA PMA point to point
future DCS / NOC NOC NOC point to point / NOC

To avoid this, Viper2’s interconnect is separated by traffic kind, resulting
in three independent interconnects: two bridged DCS interconnects for LRLL

control traffic, dedicated wiring for HRLL cache-misses, and the PMA intercon-
nect for MRLT and HRLT audio and video. The PMA uses a sophisticated global
arbitration scheme (Table 15.3) that distinguishes low-jitter HRLT, high-jitter
HRLT traffic, and best-effort classes, for a high utilization.

Future systems will use multiple on- and off-chip memories, increasing the
number of masters and slaves, see Figure 15.4. This motivates a move to multi-
hop interconnects, such as networks on chip (NOC). NOCs are scalable in the
number of masters and slaves, in bandwidth, and to a lesser extent in latency.
NOCs can offer differentiated services and very high bandwidth, but their dis-
tributed arbitration favors scheduling simpler than that used in Viper2’s PMA.

The challenge for future SOCs for real-time applications is to define ad-
vanced memory organizations (e.g. a hierarchy of on- and off-chip memories),
and to offer different communication services (different traffic classes) with an
interconnect structure that is both scalable and cost efficient, e.g. a NOC.
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Jens Castagne. A large-area integrated multiprocessor system for video
applications. In IEEE Design and Test of Computers, pages 6–17, January
2002.

[9] G. de Haan. IC for motion-compensated de-interlacing, noise reduction,
and picture-rate upconversion. In IEEE Transactions on Consumer Elec-
tronics, volume 45, pages 617–624, August 1999.

[10] G. de Haan and J. Kettenis. System-on-silicon for high quality display
format conversion and video enhancement. In Proc of ISCE’02, pages
E1–E6, September 2002.

[11] M. Schu, D. Wendel, C. Tuschen, M. Hahn, and U. Langenkamp. System-
on-silicon solution for high quality consumer video processing–the next
generation. In IEEE Transactions on Consumer Electronics, volume 47,
pages 412–419, August 2001.

[12] Jeroen A.J. Leijten, Jef L. van Meerbergen, Adwin H. Timmer, and
Jochen A.G. Jess. Stream communication between real-time tasks in a
high-performance multiprocessor. In Proceedings of Design, Automation
and Test in Europe Conference, pages 125–131, 1998.

[13] K. Keutzer, S. Malik, A. Richard Newton, Jan M. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design: Orthogonalization of
concerns and platform-based design. IEEE Trans. on CAD of Integrated
Circuits and Systems, 19(12):1523–1543, 2000.

[14] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli. Addressing the system-on-a-chip intercon-



REFERENCES 423

nect woes through communication-based design. In Design Automation
Conference, pages 667–672, June 2001.

[15] Drew Wingard. Socket-based design using decoupled interconnects.
Chapter 15, this volume.

[16] Peter Klapproth. Architectural concept for IP-re-use. In VLSI ASP DAC,
December 2002.

[17] VSI Alliance. Virtual component interface standard, 2000.
[18] OCP International Partnership. Open core protocol specification, 2001.
[19] ARM. AMBA AXI Protocol Specification, June 2003.
[20] Open Microprocessor Initiative. OMI/PI-Bus specification, OMI 324: PI-

Bus Rev. 0.3d edition, 1994.
[21] Pierre Guerrier and Alain Greiner. A generic architecture for on-chip

packet-switched interconnections. In Proceedings of Design, Automation
and Test in Europe Conference, pages 250–256, 2000.

[22] Luca Benini and Giovanni De Micheli. Networks on chips: A new SoC
paradigm. IEEE Computer, 35(1):70–80, 2002.

[23] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage. Networks on
silicon: Combining best-effort and guaranteed services. In Proceedings
of Design, Automation and Test in Europe Conference, pages 423–425,
March 2002.

[24] Kees Goossens, John Dielissen, Jef van Meerbergen, Peter Poplavko, An-
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1. Introduction
As the non-recurring engineering costs of new technologies continue

to rise, the importance of mass production grows. Mask costs in the
million-dollar range are intolerable for low-volume products that are
not targeted for high-end applications. On the other hand, Field Pro-
grammable Gate Arrays (FPGAs) are free from such costs, but feature
a high unit cost. Beside this, interconnect delay and power consumption
penalties in FPGAs may get prohibitively high for some applications.
The gap to Application-Specific Integrated Circuits (ASICs) continues
to widen in this sense, because wires dominate the performance of FP-
GAs. Interconnect downscaling increases resistance and sensitivity to
electrical and mechanical stress, causing serious timing and reliability
problems. These challenges in interconnect processing technology have
incurred the fact that wire downscaling is not keeping up with the pace of
logic downscaling. At the same time, decreasing wire spacing inevitably
strengthens signal coupling effects between adjacent wires, which in-
creases the level of uncertainty in functional correctness. On top of all
that, there is considerable leakage current and hence leakage power due
to thin isolation layers. The leakage current and interconnect effects
together constitute the most important Deep SubMicron (DSM) effects
that have to be taken into account already at an early stage of a design
process of an ASIC. Obviously, something between ASICs and FPGAs is
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needed to simplify circuit design while keeping the cost and performance
penalties to a minimum. For a more detailed discussion, refer to part 1:
Physical and Electrical Issues.

The DSM effects and the growing scale of Network-on-Chip (NoC)
designs limit designer productivity by increasing the complexity of verifi-
cation. NoCs are Systems-on-Chip (SoCs) that are implemented around
an on-chip communication network rather than a bus. It is a well-
established fact that designer productivity has not grown together with
integration level and that there is little to gain by ever increasing the size
of design teams. Team sizes between 8 and 15 people have been argued
to be the most effective, while several such teams may be working on
different aspects or abstraction levels of a single design. The use of pre-
designed and verified intellectual property (IP) blocks is being adopted
to reduce the aforementioned problems. This increases designer produc-
tivity at the architectural level by pushing the required effort more to-
wards system integration. Among other things, system integrators have
to focus on interaction issues including communication requirements,
compatibility of interfaces, correct co-functionality as well as successful
technology migration. Thus a significant design effort is still needed. A
natural step forward is to capture this effort for design reuse.

Platform-based design enables better use of new technologies. Reuse
of an existing NoC platform effectively lowers system design and man-
ufacturing costs at the expense of a small efficiency overhead due to
a more general purpose nature of the underlying hardware (HW). The
problem of verification is essentially raised to the application level of
abstraction as it has been solved for the lower abstraction levels during
platform development. NoC platforms are composed of data acquisition
and signal formation elements like Analog to Digital Converters (ADCs)
and Digital to Analog Converters (DACs), memories, and processing
elements (PEs) such as Digital Signal Processor (DSP) and Reduced In-
struction Set Computer (RISC) cores. Equipped with a customized soft-
ware (SW) environment including a real-time operating system(s) and a
compiler(s), one design could effectively apply to a complete application
domain. In many cases, however, the interconnection network forms
the performance bottleneck of the system and therefore care should be
taken in its design. The platform architecture design and customization
processes should be automated with parameterizable IP libraries as the
basis of such automation. Of the current efforts to automate platform
design, the MESCAL (Modern Embedded Systems, Compilers, Archi-
tectures and Languages) project [2] is one of the most thorough.
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1.1 Aspects of Platform Design
Successful system design has always been based on separation of

concerns. This is also true for platform design, where the key issue
is to isolate communication and computation from each other. Being
the dominating bottleneck, the communication network varies the most
when tailored for the needs of the application domain at hand. For
communication-centric style of design, computational elements should
only be regarded as producers and consumers of communication traf-
fic, whereas the communication network should be made as transparent
as possible from the computation point of view. This means, among
other things, that the model of computation (MoC) chosen should by no
means constrain the implementation of the communication network. It
is preferable that the MoC does not imply any communication model at
all, even up to the highest protocol layers. For a more detailed discus-
sion, refer to part 3: Design Methodology and Tools.

Networks-on-Chip can be categorized into two main types, circuit and
packet switching networks. The packet switching networks are better
suited for NoC platform development. In this type of network, vary-
ing transaction latency and bandwidth (BW) are the main drawbacks,
but compared to the circuit switching networks they are far more flex-
ible and hence easier to abstract by means of protocols. Among other
things, higher protocol layers can be utilized to fix a constant latency
and bandwidth for desired parts of the network by utilizing virtual cir-
cuit switching. Performance is naturally hindered by protocol-related
overheads such as bandwidth loss due to packet headers and error cor-
rection codes. The inherent need to store packets in the network in-
creases implementation cost. Additional resources are also required for
the computational and control tasks like error detection and correction,
packet queuing, and routing. On the other hand, the performance of
actual circuit switching networks suffer from limitations like rerouting
overhead, difficulties in network partitioning, and more probable failure
due to lack of alternative paths.

Since even a single communication failure could paralyze the whole
system, selection of packet switching over circuit switching could be
characterized as an insurance to protect the investments in system de-
sign. As established earlier, communication failures will become more
frequent with the adoption of smaller technologies unless wire geometry
and layout are designed with care and the shielding of the whole chip and
individual wires is done appropriately, not to mention thorough manufac-
turing tests for connectivity. Static communication defects usually orig-
inate from manufacturing or incomplete verification whereas dynamic
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ones are most often caused by electrical shocks such as switching of an
adjacent wire and variation in power supply voltage levels. One useful
feature of packet switching networks is that they can be designed to
tolerate some amount of static and dynamic defects. This increases the
manufacturing process yield and thus amortizes implementation costs.
In addition, there’s less need for redesign and verification efforts because
first prototypes are more likely to be functional. For a more detailed dis-
cussion on advantages of packet switching networks, refer to chapter 9:
From Buses to Networks.

2. Approaching Platform Design
NoC platform design is an elaborate task calling for a more sophisti-

cated design flow compared to ASIC or processor design. In traditional
ASIC design, everything is done to satisfy the requirements of a single
application. The aim of processor design is efficient hardware resource
utilization, usually, setting the framework for application development.
Although processors and ASICs are among the building blocks for NoC
platforms, the point of view of hardware or a single application is in-
adequate as a starting point for platform design. Instead, engineers are
required to make tradeoffs between varying aspects of multiple systems.

A typical platform design flow, illustrated in figure 16.1, begins with
the exploration of the application domain requirements. The supported
applications are broken into tasks (SW and HW processes). Their char-
acteristics (execution time, resource utilization, power dissipation etc.)
are derived and mutual dependencies specified. Information about ap-
pearance of special functions and function sequencies calling for hard-
ware acceleration is also needed. In a system of multiple applications,
tasks may be shared. Thus, the supported systems need to be char-
acterized since a system might be different from the sum of individual
applications constituting the system.

Exploiting the characteristics of the targeted systems (including ap-
plications and tasks) statistical execution models are formed. On basis
of these models, the temporal processing power requirements are derived
to enable the selection of PEs. It is essential not to set too stringent
requirements for the design resulting in ASIC-like optimizations. In-
stead, careful cost per performance analysis should be carried out for
key parameters to enable tradeoffs that minimize the combined cost of
characteristics for large sets of tasks while the performance requirements
are met.

The target of mapping and scheduling tasks to the execution units
should be at minimization of the global communication traffic. Heavily
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Figure 16.1. NoC hardware platform design flow.

communicating tasks should be mapped to the same PE if possible. Af-
ter successful mapping and scheduling, inter-PE communication require-
ments can be derived. Two simple metrics, throughput and latency, are
used to characterize communication between modules. For a more pre-
cise characterization, also the communication pattern distribution over
time should be considered.

The highest priority issue in interconnection design is to keep the
paths with most stringent requirements (highest cost) as short as possi-
ble down to the layout level of abstraction to ensure low delays and/or
power consumption. This is achieved by exploiting hierarchy and com-
municational partitioning to groups of PEs running tightly coupled tasks.
The Globally Asynchronous Locally Synchronous (GALS) [10, 11] design
paradigm or a similar kind of functional division to clock islands helps
with this partitioning. Inside the partitions the relative placement of
PEs is optimized to keep the most congested interconnections short.
Short interconnections also reduce the number of required metal layers
and hence fabrication costs. With a Network-on-Chip (NoC) communi-
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cation model the number of links (connections from a network node to
another) may be decreased for further optimization as long as perfor-
mance goals are met. However, reducing connections might compromise
system functionality under noisy conditions, since alternative paths are
restricted.

Interconnection cost per performance optimization is about optimiz-
ing the system-level floor plan. Detailed information about each Intel-
lectual Property (IP) block’s physical characteristics on the target tech-
nology is needed. Accurate estimates of area, shape of the layout, and
locations of communication attachment points enable approximations
of interconnect length, required number of repeaters, and metal width.
The metal thickness in turn determines the layer used as well as affects
the electrical delay constant RC. With the approximations it is possi-
ble to estimate the achievable operating frequency at different parts of
the network, the minimum communication latencies, and the maximum
throughputs. These estimates enable refinement of the communication
network. Finally, the performance characteristics of the whole system
are approximated. If the design fails to meet the specification at any
point of the flow, previous stages are resumed for iteration.

By a quick look at the presented design flow, which is by no means
exhaustive, it is obvious that NoC platform design includes a variety of
non-trivial tasks that should be automated to some extent. The archi-
tectural design process itself is so overwhelming that it should not be
complicated further by component design activities. Instead, the design
team should be able to rely on well-documented and thoroughly verified
IP components throughout the project. Ideally, the metrics for all the
components should be known on the target technology. If a component
is implemented for the first time using the target technology, a perfor-
mance model for that technology should be derived on the basis of im-
plementation document on a different technology. These models enable
early stage performance estimation [1] for design automation purposes.
An idealized design flow goes from collecting and grouping the needed
data about target applications and IP-blocks to an abstract graphical
entry that is refined to the floor plan level of abstraction, simulated, and
synthesized [2].

2.1 Case Study in Platform Design and
Application

A simple case study in platform design and application is presented in
the subsequent sections of the chapter. The used methodology deviates
from the described one where design tasks have not been satisfactorily
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automated. In section 3, the study concentrates on forming a multimedia
processing platform by exploiting previously designed and verified soft
and hard IP components. Due to limitations in IP availability and lack
of design automation, proper application domain exploration has not
been performed. In section 4, the application part of the case study, the
formed platform is used as a sub-network that receives, decrypts, and
decodes a compressed video stream.

3. A NoC Platform for Networked Multimedia
Processing

The multimedia processing platform presented here is built on the
PROTEO on-chip communication backplane. This packet switching
network has been configured to provide the communication resources
and services required by the application domain. System components,
which are called network hosts, are connected to the PROTEO network
through network nodes. These nodes can be thought of as local pro-
tocol processors that perform data routing and buffering. The Virtual
Component Interface (VCI) standard [21] has been utilized for connec-
tions between the hosts and the nodes. PROTEO also supports the
Open Core Protocol (OCP) standard [12], which is a superset of the
VCI. An overview of the soft and hard IP components used in the pro-
cessing platform is given in table 16.1. A soft IP component is such
that it can be modified, parameterized, and synthesized to various tar-
get technologies [5]. Thus, it has to be delivered to the customer as a
synthesizable hardware description, not as a technology-specific netlist
like a hard IP component. Additional reuse-facilitating features of soft
IPs include good documentation, well-designed verification suites, and
synthesis scripts for the most popular tools.

Component Description IP type Interface type

PROTEO Packet switching network backplane Soft IP Any VCI
TACO Protocol processor platform Soft IP BVCI
COFFEE General purpose RISC/DSP Soft IP BVCI
Data cache Local, high-speed cache unit Hard IP COFFEE’s I/F
Inst. cache Local, high-speed memory unit Hard IP COFFEE’s I/F
RSA RSA encryption and decryption unit Soft IP BVCI
I/O buffer I/O buffer with FIFO access scheme Soft IP PVCI
Memory Memory unit with FIFO access Hard IP PVCI

Table 16.1. Components used in the networked multimedia processing platform.
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The TACO protocol processor platform. The TACO1 plat-
form is used to develop application-specific hardware architecture in-
stances for protocol processing. The TACO design methodology consists
of a Transport Triggered Architecture (TTA) based platform, a SystemC
framework for simulation, a Matlab model for performance estimation,
and a VHDL model for synthesis of modules. The models are integrated
to a graphical design tool that automates the model instantiation.

The RSA unit. This special-purpose VHDL component imple-
ments the RSA (Rivest Shamir Adleman) [14] algorithm for encryption
and decryption of messages. For this platform, the RSA unit is the most
expensive resource in terms of implementation cost and performance.

The COFFEE RISC/DSP embedded processor. The COF-
FEE processor is a customizable general purpose processing element
suitable for most applications in either a NoC environment or in a more
conventional embedded system. The processor can be configured for
diverse applications. Simple interfaces are provided for communication
and extension units as well as for local (cache) memories. A suitable
platform for an application can be selected by connecting different pe-
ripheral modules as needed.

I/O buffer unit. This network entity is a simple high-speed buffer
for storing and forwarding a dataflow. In the presence of discontinuities
in the flow, it protects the rest of the network by allowing continuous
operation provided that the discontinuity is short compared to the buffer
length.

3.1 A Flexible Packet Switching Network
Solution - The PROTEO NoC

PROTEO is a packet switching network model developed at the Tam-
pere University of Technology, Finland. Its features make it well suited
for platform design. These include point-to-point connections, stan-
dardized interfaces, parameterizable instantiation from a synthesizable
IP library, light behavioral simulation, variability of topologies and pro-
tocols, and so on. The concepts behind the development of PROTEO
were described in more detail in chapter 9: From Buses to Networks and
[15].

1Tools for Application-specific hardware/software CO-design, developed in the Turku Centre
for Computer Science (TUCS).
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3.2 TACO - A Protocol Processor Platform
The challenge with protocol processor design is to find an architec-

ture that is a good compromise between a general purpose processor
and a custom, protocol-specific processor (ASIC). Ideally, the architec-
ture should be programmable and optimized for a family of protocols and
tasks required in the processing of these protocols. The TACO protocol
processor [19, 20] design framework [18] addresses this design problem
by providing the tools and methods for helping the designer in spec-
ifying, simulating, evaluating and synthesizing programmable protocol
processors.

The TACO design flow starts from a high level description or spec-
ification of the target application. The application software constrains
the processor design work so that the processing requirements of the
application determine the hardware architecture of the protocol proces-
sor [8, 17]. This is different from most commercial protocol processors
available today as they are often multiprocessors with high-performance
general purpose processing cores as computing elements.

The TACO protocol processor architecture, as seen in figure 16.2, is
based on the TTA model [3, 16]. In TTA based processors, operations
are triggered by the programmed data transports. In contrast, tradi-
tional processor architectures are programmed by defining operations,
which implicitly specify the data transports. A TTA based processor is
composed of functional units (FUs) that communicate via an intercon-
nection network. This network of data buses is controlled by a special
purpose controller unit. The FUs are connected to the buses through
modules called sockets. It was observed in the TACO project that this
kind of modularity facilitates both component reuse and hardware design
automation.

The functional units of TACO processors have input and output reg-
isters. Operations in the FUs are executed every time data is moved
to a specific kind of input register, the trigger register. Each FU in a
TACO processor has one such register, and performs a specific protocol
processing task or operation.

TTAs are in essence single-instruction processors, as instructions only
specify data moves between functional units. Thus, the instruction word
of a TTA processor consists mostly of source and destination addresses of
sockets. These addresses are called socket identifiers (IDs). The socket
IDs are transported on ID buses from the interconnection network con-
troller. There are as many ID buses as there are data buses in the
interconnection network. Upon finding its socket ID on one of the ID
buses, a socket opens the connection between an FU and the correspond-
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Figure 16.2. A functional view of the TACO architecture.

ing data bus on the interconnection network. The maximum number of
instructions (i.e. data transports) that can be carried out in one clock
cycle is equivalent to the number of data buses in the interconnection
network.

The benefit of TTA-based platforms is their modularity and scalabil-
ity. Functional units can be added to the architecture or they can be
refined and changed as long as they provide the same interface to the
sockets connecting them to the interconnection network. The TACO
architecture (see figure 16.2) is therefore more of a template for protocol
processors, instantiated for a specific protocol or a family of protocols.
Module reuse has been a goal for TACO design projects.

3.3 IP for Hardware Encryption and Decryption
of 1024-bit RSA Codes

Out of the known message encryption methods, 1024-bit RSA code is
one of the most secure. Decryption of such code is based on the following
equation:

M = Ce(mod n) (16.1)

where all terms are 1024-bit wide, C represents the encrypted message,
e and n together form the key that is required for decryption, and M
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represents the decrypted, original message. Message encryption is done
using the same equation by merely switching the places of M and C.
From equation 16.1, it is obvious that RSA’s computational complexity
implies costly implementation. Thus in hardware the implementation
is either very slow or occupies a considerable silicon area and hence
dissipates a lot of power. In the described case study, a block designed
to provide high bandwidth was used.

The hardware decryption IP that we use in this platform instance [13],
is easily scalable and fast at the expense of high resource utilization. The
architecture of the block features 128 16-bit multipliers working in par-
allel, and a high number of buffer registers. While the architecture is
expensive, it provides easy scalability to the desired bandwidth. This
combined with the RSA’s high level of security, is why hardware en-
cryption and decryption of RSA codes should be considered when basic
security schemes are insufficient, for example in a Wireless Local Area
Network (WLAN) environment.

3.4 An Open-Source RISC/DSP Machine - The
COFFEE Processor

The COFFEE RISC/DSP processor [6] was designed to be a general-
purpose processing element, which can be customized to suit most appli-
cations in either a NoC environment or in a more conventional embedded
system. In practice this means that the COFFEE is not a fixed design,
but rather a family of designs. It provides software configurability at
run-time to facilitate system integration, while its balanced pipeline en-
sures good performance. Reusability and configurability were the main
directives for the COFFEE processor design.

The basic version of the COFFEE processor provides adequate re-
sources and processing power for many applications in itself, while it can
also be enhanced in several ways. These enhancements are facilitated
by the modular structure of the core, the well documented interfaces for
extension and communication, and a large set of previously designed and
verified extension modules. The resources common to all COFFEE cores
include a built-in interrupt controller, two timers, and simple memory
protection mechanisms. The system designer selects the combination of
core modules, memories, and I/O peripherals to result in the desired
performance tradeoffs. If none of the possible combinations of previ-
ously designed and verified modules yield satisfactory results, custom
modifications can be easily made.

A simplified block diagram of the core is depicted in Figure 16.3. As
can be observed, the core is a rather straightforward implementation
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of the Harvard architecture. However, unlike traditional RISCs, the
COFFEE core has built-in centrally controlled forwardings to make the
core efficient and flexible. Forwarding and hazard detection not only
simplify compiler construction but also ease software development.

All arithmetical and logical operations are executed in a single pipeline
stage, with the exception of the multiplication operation that extends
over three stages. The Arithmetic Logic Unit (ALU) allows variable
length bit fields to be extracted from a 32-bit word within one clock
cycle. This increases bitstream handling capacity of the core with only a
small area overhead. All data address calculations are performed using
the ALU. This removes the need for additional arithmetic blocks for
address calculations and thus saves chip area and power.

Figure 16.3. Block diagram of the COFFEE processor core.

Since the COFFEE processor is delivered as an RTL level VHDL
description, it can be ported to any current technology using industry-
standard development environments. Arithmetic operations are coded
at boolean level to prevent a synthesis tool from mapping operations to
fixed hard implementations, ensuring predictable results. The pipeline
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is balanced based on relative depths of the logic in each stage. This
should ensure equal results between different synthesis tools. Even di-
rect technology mapping without any optimizations should be enough
to produce acceptable results.

Because of its relatively simple interface, the COFFEE processor is
easy to instantiate. It can be equipped with cache memories and a num-
ber of peripheral devices. Peripherals are connected via either direct
register interface or any On-Chip Bus (OCB). A series of wrappers for
VCI are provided, which allow connections to other so called Virtual
Components (VC) [21]. The user is able to map the memory address
space freely, since there are no fixed addresses for peripherals or con-
figuration registers. Even the boot address can be defined externally.
Address verification is performed in order to detect possible address
calculation overflow and to verify data and instruction memory access
privileges.

to boost for example floating-point arithmetics or specific signal process-
ing tasks. The co-processor interface has direct access to the pipeline to
enable fast operation. The core supports up to twelve interrupt sources
with run-time configurable priorities. Additionally an external inter-
rupt controller is supported, so that the number of interrupt sources can
extend up to 256.

In its default configuration, the core has two separate register sets,
one for application software and the other for the operating system or
the privileged software. Besides separate register sets and restricted ac-
cess to one of them, the core also supports memory protection without
any external memory management unit. Access to both data and in-
struction memory can be controlled independently and the access limits
can be dynamically configured at run-time by the privileged software.
The operating system defines two limits for both memories and specifies
whether the application software can access the memories between the
limits or outside of them. The memory protection mechanism requires
only a small amount of logic, but enables the construction of a flexible
and secure Real Time Operating System (RTOS) for the system.

4. Case Study in Digital Video Reception
In this section, a case study in NoC design, optimization, and eval-

uation is described. The multimedia platform is configured for use as
a subnetwork that receives, decrypts, and decodes a compressed video
stream. The subnetwork interfaces to a system through an I/O buffer
for a (RF) receiver and a network bridge to the display control part.

The COFFEE core supports direct connection of up to four co-processors
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In everyday life, this network cluster could be used for applications like
confidential mobile videoconferencing. The video stream is assumed to
be received with a handheld device like a PocketPC over a WLAN link
that uses Internet Protocol version 6 (IPv6). RSA is used for message
decryption, and MPEG-2 (Moving Picture Experts Group) standard for
decompression to full frame video. MPEG-2 is described here because
it has the highest bit rate of the applicable video compression standards
and features light computational requirements. The other extreme of
possible decoding standards would be MPEG-4 AVC (also known as
H.264) that requires more than twice the computing power, but reduces
bit rate to approximately a third while preserving the image quality.

4.1 Description of the Case Study Application
The data stream being received is broadcasted from a network server

through a WLAN base station using the IPv6 protocol. It is assumed
that the video data has been previously encrypted using the RSA en-
cryption algorithm, and compressed using the MPEG-2 standard for
video compression. The video compression has been carried out using
parameters that best suit current PocketPC-type machines with WLAN
support, so that the video bit rate and the video screen size have been
set to values that enable reception and playback in a small hand-held
device. Key MPEG-2 parameters for this video stream are shown in ta-
ble 16.2. The received IPv6 data stream is verified and decrypted. After
decryption, the video is decompressed to full frame video, and output at
the target framerate.

Video BW Audio BW Picture Size Frame Rate Bits/Pixel
900 kbps CBR 64 kbps 320 x 240 pixels 25 fps 24-bit

(constant) (joint stereo) (true-color)

Table 16.2. Key MPEG-2 parameters for the case study.

Current WLANs operate at maximum speeds of less than 100 Mbps.
If 1500-octet IPv6 datagrams and a 100 Mbps peak transmission rate
are assumed, the target NoC must be able to receive and process more
than 8300 IPv6 datagrams per second. This requirement determines the
lower bound of processing speed for stream reception. For decryption,
the minimum processing speed is defined by the bit rate of the incoming
1 Mbps video stream. The bit rate for the final, uncompressed video
stream is 46 Mbps, which sets the lower limit for the video decompression
speed.
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4.2 Mapping the Application to the Platform
Composition of the studied network cluster is illustrated in Figure

16.4. While the chosen ring topology is simple, the PROTEO commu-
nication backplane does not limit the network composition at all. The
topology selection is based on the quite monotonic data flow in the ap-
plication domain that this system is designed to serve. That is, the
direction of data flow stays unchanged, and the required bandwidth is
virtually constant. Although the data flows in one direction only, bi-
directional communication is needed. The return path is required for
system control information and urgent service requests like synchroniza-
tion, forcing a buffer read and so on. Of course, the bit width of the
links in the return direction can be chosen to be considerably narrower
than in the direction of the data flow.

Figure 16.4. Block diagram of the case study platform cluster.

The TACO protocol processor receives IPv6 datagrams from an In-
put/Output (I/O) buffer unit through the PROTEO on-chip network.
Besides removing protocol-related control information from the data, the
protocol processor verifies datagram integrity and order. The average
amount of control information in IPv6 datagrams is 3-4 %. In this case,
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there are 44 header octets for each bundle of 1280 to 1500 datagram
octets. Finally, the TACO processor writes the encrypted video data
into a First-In-First-Out (FIFO) memory module through the PROTEO
on-chip network.

A special-purpose processing unit for RSA decryption reads the en-
crypted video data from the output memory buffer of TACO, decrypts
it, and writes it to another FIFO memory module.

The COFFEE RISC/DSP processor reads the decrypted MPEG-2
data stream from the output memory buffer of the RSA unit. The
COFFEE processor decompresses the MPEG-2 stream and writes the
decompressed data (that is, full frame video) into a PROTEO bridge
node. From there the data is transmitted to the display control subnet-
work, which is not described here in detail.

4.3 PROTEO Network Implementation
The cost of a PROTEO network implementation is mostly due to

the need of packet buffers in the network nodes. For this study, the
maximum size of payload per packet has been limited to four cells. This
limitation gives the framework for buffer implementation. Since the
current version of PROTEO uses registers as buffers, the area occupied
by the network is more than double of what could be achieved. Using
on-chip RAMs instead of registers is presently being studied to lower the
area requirement.

If the presented bidirectional ring topology (Figure 16.4) is imple-
mented with 8-bit links in both directions, it occupies 0.25 square mil-
limeters area. The implementation has a total of 3080 flip-flops of which
784 are pure data buffers. The portion of combinatorial logic in the
implementatation is less than one fourth of the required area. If the
same topology was implemented with 32-bit links in both directions the
needed area would be approximately 0.58 square millimeters. The 8-bit
and 32-bit network implementations were verified to operate at 200 MHz.
Thus, the network IP does not limit the system bandwidth, but allows
narrower links to be considered if the network cost is a primary issue.
For this case study, 8-bit links were used in the direction of dataflow as
well as in the opposite direction.

Such an off-the-shelf implementation of a general purpose communica-
tion topology facilitates solving both communication and computation
related issues in upper levels of abstraction, since the interconnection
architecture does not notably favour specific implementations. An ab-
stract MoC, for example, is easy to implement, since upper layer com-
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munication mechanisms can be chosen quite freely without significant
performance variation due to the interconnection architecture.

4.4 TACO IPv6 Client Implementation
The TACO processor serves as an input processing unit that receives

IPv6 datagrams, verifies their correctness and addressing, and extracts
the upper layer payload to be passed to the next processing unit through
the PROTEO network.

IPv6 [4] is the latest version of the Internet protocol introduced mainly
to overcome the address restrictions of IPv4. It features 128-bit ad-
dresses (compared with 32-bit addresses of IPv4), and an improved ad-
dressing hierarchy. Additionally, the structure of the IPv6 datagrams
has been simplified by introducing an extensible datagram format con-
sisting of a header and a number of optional extension headers.

For this case study we assume that the IPv6 client receives IPv6 data-
grams only. As presented in Figure 16.5 we also assume that a datagram
is composed of an IPv6 header, an upper layer header and upper layer
payload. The IPv6 header has a fixed size (40 octets) and is composed
of a number of fields, e.g. Version (6 for IPv6), Payload Length, Next
Header type (the type of upper-layer protocol), Hop Limit (time-to-live
of the datagram), and address fields for the source and destination of
the datagram.

For the upper layer protocol we use our proprietary transport proto-
col that provides mechanisms for error checking (checksum) and packet
re-ordering (sequence numbers). The upper layer message structure is
composed of three fields: the Sequence Number, Checksum and Payload
fields. The Sequence number allows the IPv6 Client to deliver the in-
coming data in the specified order, while the Checksum field ensures the
integrity of the datagram.

Upon receiving a datagram, the IPv6 client verifies that the Version
field is set to value 6 (IPv6), that the Next Header value indicates our
proprietary upper layer protocol type, and that the datagram length is
smaller than the maximum datagram size allowed on the connection. In
addition, the datagram length should be larger than 44 octets, ensuring

IPv6 Header 

(40 octets) 

Upper-Layer 

Header

(4 octets) 

Payload 

Figure 16.5. IPv6 Datagram structure
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that the datagram carries upper-layer payload. Incoming datagrams are
also checked for addressing to the client’s interface address and orig-
ination from the correct address. The IPv6 client also verifies for the
integrity of the received datagrams by computing the checksum and then
comparing it with the value in the Checksum field.

The TACO IPv6 client core used in this NoC case study is composed
of FUs originally created for an IPv6 router project [9, 20]. Figure 16.6
shows a functional view of the TACO IPv6 client processor instantiated
for the presented NoC platform. The functional units needed to consti-
tute an IPv6 client are also shown in the figure. In the general case, a
TACO processor can have more than one bus, as well as more than one of
each kind of FU. The IPv6 client, however, has only one of each required
FU type and only one internal data bus. Some of the FUs used in the
router project were not needed for the client application, because the
IPv6 router had considerably higher performance requirements. Thus,
the client operation can be carried out with less processing power, im-
plying a smaller amount of FUs and data transport buses. Obviously,
this also leads to a smaller area and lower power consumption. A de-
tailed description of the IPv6 router processor and the IPv6 functional
units is given in [20].
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To connect the TACO IPv6 client to the PROTEO on-chip network,
a Basic Virtual Component Interface (BVCI) [21] module was designed
and implemented. This module acts as a bridge between the TACO input
and output FUs and the PROTEO network node (see Figure 16.6). The
interface module design process was quite straight forward thanks to
the well defined protocol processor Input/Output (I/O) interface and
the solid BVCI specification.

SystemC simulations of the TACO IPv6 client and its application code
showed that the IPv6 client operation requires 1920 clock cycles per data-
gram. In a 100 Mbps network environment (with a peak transmission
rate of 8300 datagrams per second) this means that the minimum clock
speed for the TACO IPv6 client is 17 MHz. We proceeded to synthesize
the TACO IPv6 client using 0.18 µm CMOS technology and a standard
cell library with the target clock speed of 200 MHz. Targeting the syn-
thesis to this clock speed should make it possible for the IPv6 client to
operate at network speeds of up to 1 Gbps.

Physical estimations of the IPv6 client were carried out by apply-
ing the well known Rent’s rule [7] and by assigning a separate Rent’s
exponent to each block. Additionally, the relative amounts of combi-
natorial and sequential logic are evaluated based on the functionality
of each block. This is important when estimating the power consump-
tion of the block, since different values of the switching activity factor
have to be used for different types of logic. The values 0.25 and 0.5
have been assumed for combinatorial and sequential logic, respectively.
Further discussion on this method can be found in chapter 3: Global
Interconnect Analysis and [1].

The estimates suggested a logic area of 0.30 mm2 using 200 MHz clock
speed. This result reflects the core size without memories. The TACO
IPv6 client was synthesized using a standard cell library of 0.18 µm
CMOS technology with a target clock speed of 200 MHz. The synthesis
results and estimates for different module areas are shown in Table 16.3.
Synthesis resulted in a logic area of 0.23 mm2. When comparing this
to the estimated value, it can be stated that the accuracy of the area
estimates was Asynth = 0.76 Aestim. This accuracy is sufficient at the
system level, where slight pessimism in estimates is always preferable:
if the estimations would suggest a smaller area than what is obtainable
through synthesis, original design constraints might not be met. The
power consumption estimate reflects the situation of operating at 200
MHz (i.e. at about 1 Gbps network speed). The network speed for
the target application is considerably lower, which reduces the power
consumption respectively. Also, the estimate expects all functional units
to be active at all times, which is a worst-case scenario.
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Estimated Estimated Synthesized
average power area area

[mW] [µm2] [µm2]

Matcher 7.1 13 785 12 851
Shifter 11.0 21 313 19 302
Comparator 13.1 25 205 17 197
Masker 6.4 12 346 11 335
Checksum 13.2 25 413 15 595
Counter 12.1 23 354 11 782
Input FU 13.9 26 958 26 064
Output FU 12.6 24 362 17 002
dMMU 7.5 14 633 11 721
uMMU 4.1 7908 7342
Sockets (35) 19.8 37 231 31 720
Network Controller 14.6 28 346 12 660

Total (IPv6 client part) 135.4 270 854 194 571
BVCI Interface wrapper 15.6 30 342 33 991
Total (IPv6 client with BVCI wrapper) 151.0 301 196 228 562

Table 16.3. Estimated power consumption and area, and synthesized area for all
modules in the TACO IPv6 Client protocol processor.

4.5 Implementation of the RSA Decryption
Block

The RSA decryption block occupies approximately nine square mil-
limeters of silicon area on the 0.18 micron technology used and needs
about 650,000 clock cycles for the decryption of a 1024-bit message.
Using Wallace tree multipliers allows the non-pipelined circuit to oper-
ate at 200MHz giving a throughput of approximately 300kbits/s. With
a proper 4-stage pipelining scheme for the multipliers, the data rates
needed for smooth videoconferencing can be reached. If more bandwidth
is required, the circuitry can be duplicated as many times as needed.
The duplicates are easy to run in parallel because the decryption of each
1024-bit fraction of a sequence is independent from the decryption of
other fractions of the same sequence.

The selection of the amount of decryption blocks not only depends on
the required bandwidth but also on the power consumption goals. The
performance provided by a single unit is sufficient for this case study,
since the required operating clock frequency of 650MHz can be achieved
by means of pipelining. However, the selection of a single unit keeps
manufacturing costs down at the expense of power consumption. This
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happens because pipelining implies more registers to clock and internal
gates need to provide high current driving capability to achieve the oper-
ating speed. It would thus reduce the power consumption of the device if
there were multiple non-pipelined decryption blocks running in parallel
with lower clock frequency. Since the implementation of RSA decryption
is one of the key design points concerning battery life in mobile applica-
tions, the algorithm should not be implemented in software because of
the enormous power consumption due to the required memory accesses.

4.6 The COFFEE Processor Implementation for
MPEG-2

Performance analysis is often difficult to carry out based solely on
an application specification. In many cases, selecting the right CPU is
critical for the cost of a NoC, and therefore it is not ideal to select a CPU
based on rough estimates about needed performance. Unfortunately, to
get reliable figures for comparison, both the CPU (or an accurate model
of it) and the final software are needed. These are usually not available
when NoC hardware is designed. Performance should not be the only
criteria for selecting a CPU. The number and the type of integrated
peripheral devices have a major impact on cost, and therefore only the
necessary peripherals should be selected to reduce silicon area and power
consumption.

In the COFFEE processor core, the selections of the right type of
multiplier, the size of the register bank, and the width of the internal
buses affect performance and power consumption. Two multipliers are
provided in the current version of COFFEE. Table 16.4 summarises the
effect of different component choices. As can be seen from the table,
the 16-bit multiplier occupies less than 20% of the area needed for the
32-bit multiplier. Reducing the width of the internal buses means in
part giving up software compatibility. Software written for the 16-bit
version can run on the 32-bit version but not the other way around. The
core interface does not change between 16-bit and 32-bit versions with
the exception of the data address bus width. Both versions support 32-
bit and 16-bit instruction encoding, but the 16-bit version is only able
to execute a subset of the instructions available in the 32-bit version.
Selecting a register file with a single 32-register bank instead of two such
banks reduces area and power consumption considerably. In a single
register bank core, the difference compared to a two register bank core
is that user mode and privileged mode share the same register bank.
Finally, the required peripherals are attached to the core.
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Block/Module Area/mm2 Power/mW Delay/ns

Arithmetic Logic Unit 0.108 15 3.86
Core Control Unit 0.024 5 2.13
Interrupt Controller 0.122 5 3.54
32-bit Multiplier 0.234 60 4.82
16-bit Multiplier 0.044 10 1.32
Peripheral Control Block 0.138 30 1.62
Register File (2 Banks of 32 Registers) 0.713 100 1.80

Core with All of the Above Blocks 1.38 225 4.82
Core with 16-bit Multiplier 1.19 175 3.86
Core with Single Bank Register File 1.02 170 4.82
Core w/16-bit Mult. and Single Bank RF 0.83 120 3.86

Table 16.4. Physical characteristics obtained from synthesis for the COFFEE core
at 200 MHz.

Since the only task assigned to the COFFEE processor was the decod-
ing of an MPEG-2 bitsream, no operating system was used, and there-
fore an implementation with a single register bank was chosen. During
evaluation, both types of multipliers were shown to provide adequate
performance, even though the 16-bit multiplier requires a slightly higher
minimum clock frequency than the 32-bit multiplier. For the used ap-
plication software the required operating frequency was approximately
50MHz with the 32-bit multiplier. The set of selected peripherals was
minimal. One of the internal timers of the COFFEE processor core was
used to synchronize the frame transmission to the display controller, and
a memory mapped register bank was connected to the processor data
bus in order to interface the VCI wrapper. The VCI wrapper reserved
one of the interrupt lines to signal that requested data had been received
by the network node.

4.7 System-Level Performance
For most of the preceding discussion, a specific application was as-

sumed to be run on the studied hardware architecture. However, the
platform architecture was designed with a wider scope in mind, aiming
at satisfying the needs of a large set of applications. This network cluster
could thus serve designers of future systems as reusable platform IP. De-
sign of such very-high abstraction level IP requires a more sophisticated
engineering approach when compared to designing on lower abstraction
levels.

At first glance, the scope of this study seems quite limited due to
the rather high-end nature of the presented application. The flexibility
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of this platform IP becomes evident by considering the possibilities of
modifying and parameterizing the design. For example, in quite many
applications with less stringent security requirements, the RSA block
could be left out of the system to allow data rates of several gigabits per
second with an implementation technology similar to the one used in this
study. The direction of communication could also be easily changed if the
network cluster was to operate as a transmitter. Good documentation of
such reconfigurability is vital for reuse purposes and has to be provided
with the design.

The actual simplicity of this case study is due to the steady data flow
present in the application domain the platform is designed for. This im-
plies that communication traffic in the system is heavier in one direction
than the other since there is only system control information going in
the direction opposite that of the data flow. Because the amount of data
moving through the system stays virtually the same over time, there are
very few idle cycles expected for the processors. Hence, it is not bene-
ficial to perform multi-tasking or multi-threading, and there is little to
gain by usage of an operating system.

The results of the synthesis-based performance estimations are sum-
marized in table 16.5 for the various platform components and the plat-
form as a whole. The power consumption figures are rather speculative
worst-case estimates and the actual value depends on the data being
processed. The platform implementation was not refined to the floor
plan level, and without layout or accurate floor plan, the estimation of
power consumption in global wires is highly inaccurate. In table 16.5,
the power consumption figures for individual blocks include rough esti-
mates about their respective portions of global communication. Delays
are given as processing time measured from input to output. The over-
all delay is dominated by the RSA block, which requires approximately
1 ms at 650 MHz for processing a fraction of an encrypted message.
Since human threshold for perception of inconvenient delay in terms
of synchronization is about 10 ms, the RSA operating frequency could
be safely lowered down to approximately 100 MHz while multiple RSA
blocks are required to run in parallel to provide the required bandwidth.
This would lower the overall power consumption as discussed earlier in
section 4.5.

The PROTEO network implementation was verified to operate with
at least a 200 MHz host clock frequency. This frequency gives a network
bandwidth of 1.6 Gbps in one direction. The respective peak bandwidth
for payload is 1.28 Gbps. Higher speeds could be achievable, but were
not verified for this study. Lowering the network node operating speed
does not help much in power saving, because consumption is dominated
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Block/Module Area Power Delay Delay
type [mm2] [mW] [cycles] [µs]

TACO 0.20 135 160 0.8
COFFEE 1.02 170 50,000 250
Data Memory (64 kB) 0.82 500 32 0.16
Instruction Memory (128 kB) 1.62 300 32 0.16
RSA Unit 9.05 1,500 656,897 3,284
I/O Buffer (128 kB) 1.64 20 128 0.64
Stream Buffers (4 kB/4 kB) 0.10 30 128/128 0.64/0.64
PROTEO Network 0.25 70 160-256 0.8-1.28
I/F Wrappers 0.10 25 0 0

Total 14.8 2,750 700,000 3,500

Table 16.5. IP block characteristics at 200 MHz: silicon areas obtained through
synthesis, power consumption estimates, and delays for processing 1 kilobit of data.

by changes in the data content flowing through the network. Although
Cyclic Redundancy Check (CRC) code was used for error detection in
the on-chip network, communication faults were not modeled for the
presented case study.

The 200 MHz clock frequency was also verified for the TACO protocol
processor. With this frequency, the payload bandwidth is at 1.18 Gbps.
Like with the PROTEO network, considerably higher speeds might be
possible, but have not been verified for the case study. The realized
operating frequency allows the platform to be connected to a majority
of existing IPv6 networks. Thanks to the buffer memories utilized in the
network, no local memory modules were needed to accompany TACO in
addition to its own internal caches.

As expected, the RSA block proved to be the dominating bottleneck.
In most applications, the system data flow should mainly bypass the RSA
unit, and only the critically confidential part of the complete information
stream should require the RSA decryption service. A decryption speed
of 1 Mbps was reached using a single decryption block. Achieving this
required heavy modification of the original design to force operation at
the required 650MHz clock frequency. Lower decryption speeds are more
desirable for many applications due to the high power consumption of
the RSA module. If the whole video stream of the case study application
is RSA encrypted, the battery life of the receiving device will be affected.
For comparison purposes, if a standard cell phone battery was used for
powering the platform, it would last only about an hour based on the
given power consumption estimates.
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The used MPEG-2 application software was profiled for estimations
about the required operating speed of the COFFEE processor and min-
imum sizes of local memories connected to it. It turned out that a clock
frequency of 50 MHz would suffice for the 1 Mbps video stream. The core
was verified for operation at 200 MHz, as were the other main modules
of the platform, excluding the RSA. This clock frequency would thus
allow the MPEG-4 AVC/H.264 standard to be used up to the targeted
resolution with a notable headroom. It can also be concluded that with
a single COFFEE processor running MPEG-2, a video bandwidth of 4
Mbps could be achieved. For the bit rate of the DVD standard, three
processors and an efficient software for multiprocessor decoding would
be required. With multiple processors working on the same task, the
benefits of an RTOS become evident. RTOS for the COFFEE processor
is presently under development. The minimum standard size instruc-
tion and data memory modules to be used with the profiled application
software turned out to be 128 kB and 64 kB respectively.

Multiple applications from the domain must be considered when data
stream buffers of a platform are sized. The I/O buffer was designed to
provide one second of video stream buffering for the application. The
implemented buffer might be insufficient under unfavourable network
conditions as well as for some higher bit rate streaming applications that
could be run on the platform. The sizes of the network stream buffers
were selected more from the safer side. Data granularity for these buffers
is determined by the message size of RSA (1 kilobit). Measured by this
the selected 4 kB buffers have a depth of 32 data units allowing relatively
loose synchrony between the modules.

Stream Bandwidth

Raw IPv6 Data Stream (restricted by TACO) 1.18 Gbps
MPEG-2 Video Stream (restricted by COFFEE) 4 Mbps
RSA Encrypted Data Stream (restricted by the RSA unit) 1 Mbps

Table 16.6. Maximum bandwidths for different data streams in the case study plat-
form.

In this study, the performance requirement of the target application
was not met without modifying the RSA unit, whereas the other net-
work modules provided throughputs in excess of the target specification.
The maximum bandwidths of different data streams in the platform af-
ter modification are summarized in table 16.6. As the described plat-
form application is somewhat unusual, it demonstrates the importance
of considering a great variety of applications in a general case of plat-



450

form design. A good NoC platform should not need redesigning for the
majority of applications belonging to the same domain.

5. Conclusion
The described case study in NoC platform design provides a simple

yet useful example for developers of such systems. The utilization of pre-
viously made IP blocks can speed up system development and reduce
the size of the design team. The growing complexity of communication
design can be tackled by adopting reuse of a parameterizable general
purpose interconnection IP with standardized interfaces. System level
design efforts are not as specific purpose as they first appear. If the
system level hardware description is made as easily modifiable and pa-
rameterizable as the lower level designs, it has great reuse potential.

The design of very high abstraction level IP calls for a more general
purpose approach to the problem. This means that designers need to
think at least twice before making any application specific optimizations.
Instead, application domain specific optimizations should be considered
from several points of view. The basic engineering skill, that is making
tradeoffs, is thus far more complex to utilize efficiently at very high ab-
straction levels. It follows that design teams will become more and more
dependable on designers’ personal experience and intelligence, unless ef-
ficient EDA tools are developed to aid and speed up the process.

For awareness of the possibilities offered by an IP design, the entire
design space should be thoroughly explored and documented. A large
design space is characteristic for a good reusable IP. If the design space
of feasible implementations is small, there is probably something too
specific in the chosen architecture or abstraction level of the hardware
description. A restricted design space could also be a result of poor con-
figurability. The ability to control implementation through parameters
is very important for EDA tool development. One ambitious research
topic could be the development of an automatic design space explorer
for platform IPs.
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