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Preface

Financial markets can be found in nearly all countries throughout the world. As a
result of the integration of a country’s local financial system with international
financial markets, people’s daily lives in such countries, as well as the countries
themselves, have become more exposed to cross-border risks, such as financial and
economic risks. The financial crisis triggered by the US subprime loan crisis in
2007 eventually led to a global economic crisis that affected simultaneously not
only emerging countries but also developed countries all over the world. In order to
determine the mechanism of the crisis, a market overview is indispensable, espe-
cially when the market is influential on business and economy.

One means to express the overall perspective of a market is to construct an index
as a proxy measure. However, unlike an established market, in which the index is
officially defined and announced, for a newly developed financial instrument
experiencing its rapid market growth, it is not easy to construct an appropriate index
due to the lack of information. Moreover, in order to fully reflect the price
movements of a financial asset, the index should reflect their distributions.
However, these distributions are often heavy-tailed and possibly skewed, and
identifying them directly is not easy.

This book develops through the use of nonstationary non-Gaussian multivariate
time series analysis a new practical method for constructing an index of prices of a
financial asset for which the distributions are skewed and heavy-tailed. In order to
facilitate the identification of non-Gaussian distributions, we propose to transform
the price observations by the Box-Cox transformation. Then, the long-term trend
of the distributions of the optimal Box-Cox transformed observations is estimated
by fitting a trend model in which observation noises have a time-varying variance.
The parameter of the optimal transformation is determined by the AIC. By applying
state-space modeling, the estimation is performed and missing observations are
automatically interpolated. Finally, the index is defined by taking the inverse
Box-Cox transformation of the optimal long-term trend. The new index becomes
impartial, regardless of the price distribution, and is referred to as a distribution-free
index.
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Economic and financial time series often exhibit a gradually changing long-term
fluctuation, i.e., a trend, which may sometimes form a pattern due to an event
specific to the attribute of the time series such as fundamental and economic factors.
On the other hand, the short-term cyclical fluctuations around the trend can be
sensitively influenced by short-term cyclical fluctuations of any other economic and
financial time series, regardless of their specific characteristics. In fact, contagious
phenomena of short-term fluctuations of financial markets have often been observed
worldwide due to the globalization of the financial system. In order to detect such
causations, this book proposes the application of the generalized power contribu-
tion, which extends the original Akaike’s power contribution by decomposing a
variance covariance matrix of noises. The frequency-wise effect of multidimen-
sional noise sources on the fluctuation of each variable with feedback loops is thus
revealed.

In order to investigate the effectiveness of a distribution-free index, this book
applies the construction method of a distribution-free index to financial and eco-
nomic time series data and analyzes the causations using power contributions. For
example, applying this method to the sovereign credit default swap markets, in
which the spread distributions are often heavy-tailed and the number of observa-
tions varies over time due to immaturity, the worldwide spillover effects of the
European debt crisis are detected. Another example shows the clear polarization
between advanced and emerging regions by constructing the GDP growth
distribution-free indices.

These applications confirm that applying our indexation method to markets with
insufficient information, such as fast-growing or immature markets, can be effec-
tive. Therefore, wider applicable area of our method can be expected.

Although this book has been made to be as self-contained as possible, the reader
may benefit from some of the referenced literature.

This book is intended for anyone who is interested in the practical use of
statistical methods in solving real-world problems. We hope that our method will
prove useful in analyzing practical problems in finance and economics.

Tokyo, Japan Yoko Tanokura
August 2015 Genshiro Kitagawa
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Chapter 1
Introduction

Abstract This book presents a new practical method for constructing an index of
prices of a financial asset for the case in which the distributions are skewed and
heavy-tailed, using nonstationary non-Gaussian multivariate time series analysis. In
order to facilitate the identification of the distribution, the observations are trans-
formed by the Box-Cox transformation. A new distribution-free index is defined by
taking the inverse Box-Cox transformation of the optimal long-term trend, which is
estimated by fitting a trend model with time-varying observation noises. In order to
detect causations between financial markets which are mostly entangled and may
cause inextricable difficulties, such as financial crises, this book proposes the appli-
cation of the generalized power contribution, which reveals the frequency-wise effect
of multidimensional noise sources on the power of fluctuation of each variable in
a multivariate feedback system. Applications to financial and economic time series
data are used to investigate the effectiveness of the new index by power contribution
analysis, and confirm that applying our indexation method to markets with insuffi-
cient information, such as fast-growing or immature markets, can be effective.

Keywords Heavy-tailed ·Box-Cox transformation ·Trendmodelwith time-varying
observation noises · Power contribution · Distribution-free index
1.1 Indexation of Financial Markets

Financial markets can be found in nearly all countries throughout the world. Some
of these markets are extremely small in terms of market size and have only a few
participants, whereas others, such as the New York Stock Exchange and the foreign
exchange markets, trade significant assets. Financial news is reported globally, and
the direct or indirect influences of financial markets on people’s daily lives, as well
as on countries, are considered daily.

One means for expressing the overall perspective of a market is to use an index as
a proxymeasure. For an establishedmarket, such as a listed stockmarket, the index is
officially defined and announced.Various types ofmethods can be used to compute an
index, depending on its purpose. On the other hand, for a newly developed financial
instrument forming its market rapidly, it is not easy to construct an appropriate index
due to a lack of information. For example, the number of price observations varies

© The Author(s) 2015
Y. Tanokura and G. Kitagawa, Indexation and Causation of Financial Markets,
SpringerBriefs in Statistics, DOI 10.1007/978-4-431-55276-5_1
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2 1 Introduction

over time and may even become zero at certain times. However, a market overview
is indispensable for financial products that may influence business and economy.

A good example of such a market is the credit default swap (CDS) market. The
attention to credit risk, which measures the exposure to loss resulting from failure
of a corporation or government to fulfill its debt obligations, has become noticeable
since recent financial crises such as the global financial crisis triggered by the US
subprime loan crisis in 2007 and the European debt crisis revealed in 2009. The CDS
is an over-the-counter derivative contract first introduced in 1997, that is designed
to isolate the credit risk of an underlying asset without selling the asset itself. In
particular, the sovereign CDS (SCDS) spread for dealing with sovereign risk on a
government bond can be regarded as the market evaluation of the credit risk of that
country. Even though the SCDS market is not mature, the market trend for SCDS
has become significantly influential on the global economy.

Although the assumption that the distributions of prices or returns of financial
assets are Gaussian has been commonly used in theoretical finance, some studies in
the 1960s failed to validate this assumption and found heavier tails than would be
present in aGaussian distribution (Mandelbrot 1963; Fama1965). The tails consisting
of extreme values of prices or returns that are caused by sharply soaring or plunging
asset prices, are more likely to occur than expected by a Gaussian distribution. In
particular, distributions of stock returns have been discussed in many studies such
as Paraez (1972), Madan and Seneta (1990), and Linden (2001). However, an exact
identification of such distributions remains an open question.

The distribution of CDS spreads is often significantly heavy-tailed and has numer-
ous missing observations at certain times, especially for early trade dates. Although
identifying a heavy-tailed distribution directly is not easy, in order to fully incorporate
the overall pricemovements of themarket, the index should reflect their distributions.

In order to address the above problems, this book proposes a new practical
method for constructing an index of prices of a financial asset for which the distrib-
utions are skewed and heavy-tailed, using nonstationary non-Gaussian multivariate
time series analysis. First, in order to facilitate the identification of such a distribu-
tion, we transform the price observations by the Box-Cox transformation (Box and
Cox 1964). This transformation has been applied in various areas of finance and
expresses most major transformations, such as the inverse transformation, the recip-
rocal square root transformation, the logarithmic transformation, the square root,
and no transformation, according to the value of the parameter. Second, we esti-
mate the long-term trend of the distributions of the optimal Box-Cox transformed
prices by fitting a trend model with time-varying observation noises. The parame-
ter of the optimal Box-Cox transformation is determined by minimizing the AIC
(Akaike 1998; Konishi and Kitagawa 2008) with respect to the original price data.
By applying a state-space representation and the Kalman filter/fixed interval smooth-
ing algorithm, the estimation is performed and missing observations are automati-
cally interpolated (Kitagawa 2010). Finally, the index is defined by taking the inverse
Box-Cox transformation of the optimal long-term trend. Then, the index becomes
impartial regardless of price distribution, which is referred to as a distribution-free
index.



1.1 Indexation of Financial Markets 3

Fig. 1.1 Five SCDS regional distribution-free indices. Source Bloomberg LP

Tanokura et al. (2012) proposed a method based on trend estimation with Cauchy
observation noises that are dependent on the number of observations. This book
presents further improvement to the trend model with Gaussian observation noises
with the time-varying variance proposed in Kitagawa (1987). To our knowledge,
there have been few studies on estimating heavy-tailed distributions using a variable
transformation and the AIC.

In this book, various examples of distribution-free indices are analyzed. For exam-
ple, by applying the indexationmethod toSCDSspreads by region, theSCDS regional
distribution-free indices are constructed. Figure1.1 shows a sharp increase of the
Developed Europe (DE) index (blue line), representing the sovereign risk of the
developed Europe, as compared to those of the other regional indices, since the
revelation of the Greece debt crisis in the fall of 2009. The spillover effects of the
European debt crisis are observed.We analyze these SCDS regional distribution-free
indices in Chap.4.

1.2 Causation of Financial Markets

Due to the globalization of the financial system, contagious phenomena of price fluc-
tuations of financial markets have often been observed worldwide. Financial markets
are mostly diversified and entangled, which may cause inextricable difficulties. In
fact, the global economy has remained more or less sluggish since the global eco-
nomic crisis driven by the bankruptcy of Lehman Brothers in 2008. In order to cope
with difficulties in controlling spillovers and policy planning, it is necessary to clar-
ify the mechanisms behind contagious phenomena. In particular, since the prices of

http://dx.doi.org/10.1007/978-4-431-55276-5_4


4 1 Introduction

financial assets fluctuate with both serial correlations and time series correlations,
identifying the dynamic structure, i.e., measuring the degree and direction of influ-
ence between markets, is significant.

Economic and financial time series often exhibit a gradually changing long-term
fluctuation, which is referred to as a trend. A trend may sometimes form a pattern
due to an event specific to the attribute of the time series such as fundamental and
economic factors. On the other hand, the short-term cyclical fluctuations around the
trend can sensitively be influenced by short-term cyclical fluctuations of any other
economic and financial time series, regardless of their specific characteristics. Such
a short-term cyclical fluctuation may lead to a future change in the trend direction.
In this book, we treat causations which arise from short-term cyclical fluctuations.

As a causation measure for this purpose, we focus on the concept of relative
power contribution through multivariate autoregressive (AR) modeling, which was
proposed by Akaike (1968) for analyzing a multivariate feedback system. This mea-
sure is referred to as Akaike’s power contribution.

The presence of feedback in a multivariate dynamic system, namely, the influence
of an input variable on an output variable with a time lag, can be expressed directly
by the time-domain approach. On the other hand, by the frequency domain approach,
periodic variations of repetitive and regular movements, which are often observed
in financial and economic time series, can be expressed in the form of trigonomet-
ric functions, however, there are practically difficulties in capturing feedback loops.
Akaike’s power contribution expresses frequency-wise causations including feed-
back through the multivariate AR modeling framework.

Akaike’s power contribution has been applied to various real-world problems
(Akaike and Nakagawa 1988; Akaike and Kitagawa 1999; Ohtsu et al. 1981, 2015).
However, because of the independence assumption between the noises of variables,
Akaike’s power contribution is not applicable to time series in economics and finance
because significant correlations between the noises of variables are often observed.
In order to address this problem, the generalized power contribution was proposed
by decomposing a variance covariance matrix of the noises of variables (Tanokura
andKitagawa 2004). Thismodeling reveals the frequency-wise effect ofmultidimen-
sional noise sources on the power of the fluctuation of each variable in a multivariate
feedback system. In other words, it becomes possible to simultaneously measure
the degree of influence between various combinations of the noises of variables.
Therefore, multidirectional causations between variables can be evaluated. The
applicable area is significantly widened (Tanokura 2006). Moreover, since we ensure
the stability of Akaike’s original power contribution in the generalized power con-
tribution, the concept of power contribution is strengthened and improved.

Other related studies on detecting noise sources can be found in various areas
such as neuroscience and econometrics. In particular, based on a well-known causal-
ity concept defined by Granger (1969), frequency-wise measures of causality for
two stationary time series proposed in Geweke (1982) and Hosoya (1991) were
extended to those measures for three series in Geweke (1984) and Hosoya (2001),
respectively. Although their interests are similar to ours, their approaches are funda-
mentally different from Akaike’s (as noted in Hosoya 1991).
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Fig. 1.2 Power
contributions (%) and the
log-transformed power
spectrum (white line) for the
Emerging Asia (EA) index,
which is the SCDS
distribution-free index of the
emerging Asia. The SCDS
regional distribution-free
indices contributing to the
fluctuations of the EA index
are the Developed Europe
(DE), Developed Pacific
(DP), Eastern Europe and
Middle East/Africa (EM),
and Latin America (LA)
indices. Source Bloomberg
LP

To our knowledge, there have been no practical studies on the analysis of measur-
ingmultidirectional influences frommultidimensional noise sources simultaneously,
based on the direct decomposition of a variance covariance matrix of the noises of
variables in order to quantitatively evaluate the degree of influences.

This book conducts a power contribution analysis for short-term cyclical fluctua-
tions of financial and economic time series data, including distribution-free indices
that we constructed, and investigates the effectiveness of the method for constructing
a distribution-free index.

Figure1.2 shows the power contributions (%) and the power spectrum (white
line) for the Emerging Asia (EA) index, which is the SCDS distribution-free index
of the emerging Asia. The peak of the contribution from the Developed Europe (DE)
index (blue area) representing the sovereign risk of the developed Europe, around the
frequency of 0.1 (approximately 10-day cycle of fluctuation), sharply penetrates the
contribution from the EA index itself (light pink area). This implies a significantly
rooted spillover effect from the European debt crisis on the emerging Asia. The
analysis is presented in Chap.4.

1.3 Nonstationarity of Financial Time Series

Atime series is a record of a randomlyfluctuating phenomenon.Data used in financial
markets and economics, such as stock prices, foreign exchange rates, and economic
growth rates, are often collected in the form of a series of observations recorded at
a conventionally equally spaced time interval, such as daily, monthly, and quarterly
intervals.

http://dx.doi.org/10.1007/978-4-431-55276-5_4
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The primary purpose of time series analysis is generally to capture both time series
correlations and serial correlations across several time series. Since such fluctuating
phenomena in the real world often entail uncertainties, the time series is expressed by
a stochastic model. Therefore, the observed phenomenon is regarded as a realization
of the model.

In order to measure the dependency of a time series, we define the following
statistics. We denote a univariate time series as yn, n = 1, . . . , N . The mean value
function of the time series is defined as

μn = E(yn), (1.1)

where E(y) denotes the expectation with respect to the distribution of y.
The auto-covariance of the time lag k between the time series yn and yn−k is

defined as

Cn,n−k = Cov(yn, yn−k) = E{(yn − μn)(yn−k − μn−k)}. (1.2)

Note that the variance of the time series, V ar(yn), is obtained when k = 0.
When a phenomenon is regarded as a realization of a stochasticmodel with a time-

invariant structure, i.e., when a time series yn satisfies the following conditions:

E(yn) = E(yn−k), (1.3)

V ar(yn) = V ar(yn−k), (1.4)

Cov(yn, ym) = Cov(yn−k, ym−k), n �= m (1.5)

for an arbitrary integer k, we refer to the time series as weakly stationary. In this
book, a stationary time series refers to a weakly stationary time series, which is often
useful in applications to real-world phenomena.

For a stationary time series, the mean value function becomes a constant, i.e.,

μ = E(yn), (1.6)

which is referred to as the mean of the time series yn . Then, the auto-covariance of
the lag k becomes

Cn,n−k = Cov(yn, yn−k) = E{(yn − μ)(yn−k − μ)}, (1.7)

which is expressed as a function of k and is referred to as the auto-covariance
function.

The fluctuation of a time series often correlates to that of another time series. The
statistics for such a multivariate time series are defined as follows.
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We denote yn = (yn(1), . . . , yn(l))t , n = 1, . . . , N , as an l-dimensional time
series, where xt is the transposed form of a vector x . The mean of the i th time series
yn(i) is defined as

μ(i) = E{yn(i)}, i = 1, . . . , l. (1.8)

The cross-covariance of the time lag k between the time series yn(i) and another
time series yn−k( j) is defined as

Ck(i, j) = Cov(yn(i), yn−k( j)) = E[{yn(i) − μ(i)}{yn−k( j) − μ( j)}t ]. (1.9)

Then, a matrix Ck = (Ck(i, j)) is referred to as the cross-covariance matrix of the
lag k (Box and Jenkins 1970; Akaike and Nakagawa 1988). When Ck is regarded
as a function of k, Ck is referred to as a cross-covariance function of the lag k. The
diagonal element Ck(i, i) is the auto-covariance function of the i th time series yn(i).

The estimations of (1.1) and (1.2) for a univariate time series, and those of (1.8)
and (1.9) for an l-dimensional time series are, respectively, given by

μ̂ = 1

N

N∑

n=1

yn, (1.10)

Ĉn,n−k = 1

N

N∑

n=k+1

(yn − μ̂)(yn−k − μ̂), (1.11)

μ̂(i) = 1

N

N∑

n=1

yn(i), (1.12)

Ĉk(i, j) = 1

N

N∑

n=k+1

(yn(i) − μ̂(i))(yn−k( j) − μ̂( j)). (1.13)

Economic and financial time series are often observed to be nonstationary. A
time series has a trend, namely, a mean value function that slowly moves upward or
downward, a time series has short-term cyclical fluctuations, namely, time-varying
fluctuations around the mean value, and a time series has both a trend and short-term
cyclical fluctuations. For example, Fig. 1.3 shows a Japanese equity index, the Nikkei
225 provided by the Nikkei, of which the long-term fluctuation moved upward and
downward. In this book, we focus on such financial phenomena. In Sect. 2.1, we
provide several methods for modeling nonstationary time series.

http://dx.doi.org/10.1007/978-4-431-55276-5_2
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Fig. 1.3 Transition of the Nikkei 225. Source the Nikkei

1.4 State-Space Modeling

The estimations of the time series models provided in this book are obtained through
state-space modeling, which provides a unified method for solving various practical
problems. Moreover, state-space modeling is appropriate for analyzing immature
financial markets with insufficient information, because missing observations can
be interpolated. Here, we provide the definition of the standard state-space model
treated in this book.

Suppose that an l-dimensional time series yn is expressed as the following state-
space model:

xn = Fxn−1 + Gvn : system model, (1.14)

yn = H xn + wn : observation model, (1.15)

where the k-dimensional vector xn is referred to as a state vector, and F , G, and
H are k × k, k × m, and l × k matrices, respectively. An m-dimensional sys-
tem noise vn in (1.14) is a white noise that follows a Gaussian distribution with
the m-dimensional mean vector 0 and an m × m variance covariance matrix Q. An
l-dimensional observation noisewn in (1.15) is a white noise that follows a Gaussian
distribution with the l-dimensional mean vector 0 and an l × l variance covariance
matrix R. In this book, for convenience, vn and wn are assumed to be independent.

In state-space modeling, the system evolution over time is determined by the state
vector in the system model (1.14), and the observation is expressed as the transition
of the state vector following the observation model (1.15). The estimation of the state
vector is equivalent to identifying its conditional distribution, which is assumed to
be Gaussian. Therefore, the conditional means and conditional variance covariance
matrices of the state vector can recursively be obtained using the Kalman filter.

The concept of state-space originally comes from engineering. The state is unob-
servable but can be estimated based on the past behavior of the system. Further details
can be found in Kitagawa and Gersch (1996).
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Time series models can generally be expressed through state-space modeling.
For example, consider fitting an autoregressive (AR) model of order m to a given
univariate time series yn:

yn =
m∑

i=1

ai yn−i + vn, (1.16)

where ai is an AR coefficient, and vn is the Gaussian white noise with mean 0 and
variance σ 2. If we define the state vector as xn = (yn, yn−1, . . . , yn−m+1)

t , then, by
setting an m × m matrix F and an m-dimensional vector G as follows:

F =

⎡

⎢⎢⎢⎣

a1 a2 · · · am

1
. . .

1 0

⎤

⎥⎥⎥⎦ , G =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ , (1.17)

the system model (1.14) is obtained. Moreover, by setting an m-dimensional vector
H as H = [1, 0, . . . , 0], the observation model (1.15) is attained. Note that, in the
case of an AR model, the observation noise becomes zero. In other words, this is a
special case in the sense that the state vector is exactly determined by the observations
until the time n.

Generally, the representation of state-space modeling is not uniquely determined.
Moreover, the representation of the state vector is also not uniquely determined. For
example, the state vector is defined as xn = (yn, ỹn+1|n−1, . . . , ỹn+m−1|n−1)

t , where
ỹn+i |n−1 = ∑m

j=i+1 a j yn+i− j , i = 1, . . . , m−1. This expression describes the state-
space related to the observations until time n − 1 of the one-step-ahead predictor of
yn+i , i.e., yn+i |n−i+1 = ∑m

j=1 a j yn+i− j . Then, by setting matrix F and vectors G and
H as follows:

F =

⎡

⎢⎢⎢⎢⎣

a1 1

a2
. . .

... 1
am 0

⎤

⎥⎥⎥⎥⎦
, G =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ , H = [1, 0, . . . , 0], (1.18)

another state-state model is obtained. Details are provided in Kitagawa (2010).
The time series models treated in this book, such as the trend component model

and the seasonal component model, are expressed as a state-space model in the form
of (1.18). The details are presented in Chap.2.

http://dx.doi.org/10.1007/978-4-431-55276-5_2
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1.5 Organization of the Book and Related Web Information

This book consists of two parts. Chapters2 and 3 present theoretical background for
our method, and Chap.4 presents an application of our method.

Chapter 2 proposes a method for constructing a distribution-free index. First, we
briefly review nonstationary time series modeling, which is closely related to our
indexation method. Then, a distribution-free index is defined by taking the inverse
Box-Cox transformation of the optimal long-term trend, which is estimated by fitting
a trend model with time-varying observation noises to the Box-Cox transformed
observations.

In Chap.3, as a tool for detecting causations between financial markets, we review
the generalized power contribution, which reveals the frequency-wise effect of mul-
tidimensional noise sources on the power of the fluctuation of each variable in a
multivariate feedback system.

Applications of our method for constructing a distribution-free index to financial
and economic time series data highlighting the recent sequential financial crises are
presented in Chap.4. The causations are investigated through power contribution
analysis. In addition, the usability of a distribution-free index is examined. These
applications verify the effectiveness of a distribution-free index and confirm that
applying our indexation method to markets with insufficient information, such as
fast-growing or immature markets, can be effective. Therefore, wider applicable
area of our method can be expected.

For more information on this research, visit our website: Statistical
Financial Risk Monitor (StatFiRM) on http://home.mims.meiji.ac.jp/~tanokura/
statfirmHomeJ.html. The web site was set up to disclose information related to the
method for constructing a distribution-free index and its applications. In particular,
the SCDS regional distribution-free indices are periodically updated to show the
current trends of regional sovereign risks in terms of the SCDS market.

In addition, the seasonal adjustment model (Gersch and Kitagawa 1983;
Kitagawa and Gersch 1984) reviewed in Sect. 2.1.3, is also freely available as web-
based time series analysis software, Web DECOMP, at http://ssnt.ism.ac.jp/inets/
inets_eng.html, which was developed by the Institute of Statistical Mathematics. In
this book,Web DECOMP is used to extract a detrended cyclical component of a time
series in order to detect causations between short-term fluctuations of financial and
economic time series by power contribution analysis.
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Chapter 2
Method for Constructing a Distribution-Free
Index

Abstract Nonstationary financial time series often observed in the real world,
include a time series with a slowly shifting mean value function, a time series with
time-varying variations around the mean value, and a time series with both a mov-
ing mean value and changing waveforms around the mean value. First, we briefly
review nonstationary time series modeling, such as trend estimation, time-varying
variance modeling, seasonal adjustment modeling, and non-Gaussian distribution
modeling, which is closely related to our method for constructing a distribution-free
index. Since the distribution of prices of a financial market is often non-Gaussian, we
propose to transform the price observations by the Box–Cox transformation. Then,
a distribution-free index is defined by taking the inverse Box–Cox transformation
of the optimal long-term trend, which is estimated by fitting a trend model with
time-varying observation noises to the Box–Cox transformed observations. The new
index becomes impartial, regardless of the price distributions.

Keywords Trend model · Nonstationary non-Gaussian time series · Time-varying
variance · Distribution-free index · Box-Cox transformation

2.1 Nonstationary Time Series Modeling

2.1.1 Trend Estimation

Economic and financial time series often exhibit a slowly increasing or decreasing
shift of the mean values over certain periods. We refer to a relatively long-term
shift of the mean value as a trend. A trend may sometimes form a pattern due to an
event specific to the attribute of the time series. These trends are important because
economic and financial events influence all of our lives to a certain degree. Therefore,
modeling a trend appropriately is important.

In order to capture the trend of a financial time series, for example, by calculating
moving averages as in Fig. 2.1, which shows the 3-month moving averages of the
Dow Jones Industrial Average, we practically attempt to draw a line or a curve as
the trend. However, the delay of the point in time at which a trend changes cannot

© The Author(s) 2015
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SpringerBriefs in Statistics, DOI 10.1007/978-4-431-55276-5_2
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Fig. 2.1 Dow Jones
Industrial Average (black
line) and its 3-month moving
averages (gray line). Source
S&P Dow Jones Indices LLC

be ignored. This delay becomes longer as the period of taking moving averages
becomes longer. In this book, we regard a trend as locally connected polynomials
with stochastic fluctuations defined on short-term periods, which express gradual
changes.

Next, consider a univariate observed time series, yn, n = 1, . . . , N , which is
expressed as

yn = tn + wn, (2.1)

where tn is referred to as the trend component, and wn is a white noise following
a Gaussian distribution with mean 0 and variance σ 2 (Kitagawa 2010). Then, yn

follows a Gaussian distribution with mean tn and variance σ 2.
The trend component can be expressed in various forms (Kitagawa and Gersch

1984, 1996; Kitagawa 2010). Here, we define the trend component model as

�k tn = vn, (2.2)

where k is the trend order, and vn is a Gaussian white noise with mean 0 and variance
τ 2. � is defined as the time difference operator satisfying

�tn = tn − tn−1. (2.3)

We collectively refer to the pair of models (2.1) and (2.2) as the trend model. As
the variance τ 2 of the noise vn becomes smaller, the trend component model realizes
smoother andmore sensitive tendencies to the actual long-termfluctuations, as shown
in Fig. 2.2.

When k = 1, (2.2) becomes a random walk model

tn − tn−1 = vn,

and the trend becomes locally constant. When k = 2, (2.2) becomes

tn = 2tn−1 − tn−2 + vn,
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Fig. 2.2 Dow Jones Industrial Averages (black) and their estimated trends (gray). Left-hand panel
τ 2 = 0.34, right-hand panel τ 2 = 0.15. Source S&P Dow Jones Indices LLC

and the trend is locally linear. Moreover, when k = 3, (2.2) is

tn = 3tn−1 − 3tn−2 + tn−3 + vn,

where the trend is locally quadratic. In the general case of k, by using the lag operator
B defined by B tn = tn−1, the time difference operator of the kth order can be
expressed as a binary expansion

�k = (1 − B)k =
k∑

i=0

kCi (−B)i . (2.4)

Denoting the binomial coefficients ci = (−1)i+1
kCi , the trend component model is

written as

tn =
k∑

i=1

ci tn−i + vn, (2.5)

which is formally an ARmodel. However, the trend component model is nonstation-
ary because the roots of the characteristic equation lie on the unit circle.

The trend model given by (2.1) and (2.5) can be expressed by the following state-
space model:

xn = Fxn−1 + Gvn (2.6)

yn = H xn + wn, (2.7)

where xn is a k-dimensional state vector, F is a k × k matrix, and G and H are
k-dimensional vectors defined by

xn =

⎡

⎢⎢⎢⎣

tn
tn−1
...

tn−k+1

⎤

⎥⎥⎥⎦ , F =

⎡

⎢⎢⎢⎣

c1 c2 · · · ck

1 0 · · · 0
. . .

. . .
...

1 0

⎤

⎥⎥⎥⎦ , G =

⎡

⎢⎢⎢⎣

1
0
...

1

⎤

⎥⎥⎥⎦ , (2.8)

H = [ 1, 0, . . . , 0 ].
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The variances τ 2 and σ 2 of the noises are estimated by the maximum likelihood
method, and the smoothed estimates of the state vector are calculated by the Kalman
filter/fixed interval smoothing algorithm (Kitagawa 2010). The trend order k of the
trend component model can be determined by the AIC (Akaike 1998; Konishi and
Kitagawa 2008). Note that, in practice, the trend order k is usually selected as either
1 or 2.

When k = 1, the binomial coefficient in (2.5) is c1 = 1, and the state-space model
is obtained as

xn = tn, F = G = H = 1. (2.9)

When k = 2, c1 = 2 and c2 = −1 in (2.5), and the state-spacemodel is obtained as

xn =
[

tn
tn−1

]
, F =

[
2 −1
1 0

]
, G =

[
1
0

]
, H = [

1, 0
]
. (2.10)

Moreover, the state-space model can also be obtained as

xn =
[

tn
−tn−1

]
, F =

[
2 1

−1 0

]
, G =

[
1
0

]
, H = [

1, 0
]
. (2.11)

We will use this representation (2.11) in the subsequent sections.
More details on the trend estimation can be found in Kitagawa and Gersch (1984,

1996) and Kitagawa (2010).

2.1.2 Time-Varying Variance Modeling

Nonstationary time series with time-varying fluctuations around the mean value can
often be found in financial markets. In other words, the variance and the autocovari-
ance function of such a time series change over time. In fact, as we sometimes hear
the soar of the stock market volatility, such nonstationary phenomena always make
us realize the existence of increased risk. Note that the estimation of a time-varying
variance is equivalent to that of a stochastic volatility in financial time series analysis
(Kitagawa 1987, 2010).

Estimating a time-varying variance directly is not easy.Weestimate a time-varying
variance using an approximated Gaussian distribution (Davis and Jones 1968) in the
following manner. The advantage of this method is that the estimation of a time-
varying variance can be realized by the simple estimation of the trend of a transformed
time series.

Consider that a univariate time series, yn, n = 1, . . . , N , is the realization of
a white noise that follows a Gaussian distribution with mean 0 and time-varying
variance σ 2

n . We define the squared time series as follows:

sn = y2n , n = 1, . . . , N . (2.12)
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Then, sn follows a χ2 (Chi-squared) distribution with one degree of freedom. There-
fore, the probability density function of sn is given by

f (s) = 1√
2πσ 2

s− 1
2 exp

(
− s

2σ 2

)
. (2.13)

Next, by the logarithmic transformation, we transform sn to obtain

zn = log (sn) . (2.14)

Then, since the inverse transformation of the logarithm is given by sn = ezn , the
probability density function of zn is given by

g(z) =
∣∣∣∣
dez

dz

∣∣∣∣ f (ez) = 1√
2πσ 2

exp

{
1

2

(
z − ez

σ 2

)}
. (2.15)

Since this g(z) can be written as

g(z) = 1√
2π

exp

[
1

2
{(z − log σ 2) − exp(z − log σ 2)}

]
, (2.16)

zn can be expressed as
zn = log σ 2

n + wn. (2.17)

The noise wn in (2.17) follows a double exponential distribution, the probability
density function of which is expressed as

h(w) = 1√
2π

exp

[
1

2
{w − exp(w)}

]
. (2.18)

The mean and the variance of this distribution are given by −(γ + log 2) =
−(0.57722 + 0.69315) = −1.27036 (γ : Euler constant) and π2/2, respectively.

Therefore, by approximating the double exponential distribution as a Gaussian
distribution with mean −(γ + log 2) and variance π2/2, the estimation of the loga-
rithm of the variance σ 2

n of the original time series yn can be reduced to that of the
following trend model:

�k tn = vn (2.19)

zn = tn + wn, (2.20)

where k is the trend order, and the system noise vn follows a Gaussian distribution
with mean 0 and variance τ 2.

By applying state-space modeling as described in the previous section, the trend
component tn is estimated by the Kalman filter/fixed interval smoothing algorithm
(Kitagawa 2010). Since the smoothed estimates of log σ 2

n are obtained by
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Fig. 2.3 Double exponential (D-Exp) distributions (blue) and their Gaussian approximations (red).
Left-hand panel one degree of freedom, Right-hand panel two degrees of freedom

tn + γ + log 2, n = 1, . . . , N , (2.21)

exp(tn + γ + log 2) is the estimate of the time-varying variance.
However, as shown in the left panel of Fig. 2.3, the double exponential distri-

bution derived from the χ2 distribution with one degree of freedom (blue line) is
highly skewed and the variance is large, and so the approximation by the Gaussian
distribution (red line) is not so good.

Therefore, in order to mitigate this problem in the actual estimation of the time-
varying variance, we usually define the following time series:

sm = 1

2

(
y22m−1 + y22m

)
, m = 1, . . . , N/2. (2.22)

Then, sm follows a χ2 distribution with two degrees of freedom, i.e., an exponential
distribution. Using a similar argument to that above, the density function of the
logarithm of (half of) the χ2 distribution with two degrees of freedom is given by

g(z) = 1

σ 2
exp

(
z − ez

σ 2

)
= exp

{
(z − log σ 2) − exp(z − log σ 2)

}
. (2.23)

In this case, the noise wm , replacing n with m in (2.17), follows a double exponential
distribution in which the probability density function is expressed as

h(w) = exp{w − exp(w)}. (2.24)

The mean and the variance are given by −γ = −0.57722 (γ : Euler constant) and
π2/6, respectively, as shown in the right panel of Fig. 2.3.

In this method of time-varying variance estimation, the number of the observa-
tions is halved. On the other hand, the noise distribution h(w) in (2.24) is closer to a
Gaussian distribution than that in the original (2.18), and the variance of the obser-
vation noise becomes a third of that of the original approximation. Therefore, if the
variance does not change abruptly over time and the assumption that σ 2

2m−1 = σ 2
2m is
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Fig. 2.4 Japanese consumer price index for spinach. Source Statistics Bureau of Japan

reasonable, the accuracy of the estimation of log σ 2
n can be expected to increase by

approximately 50%, i.e., the variance becomes 2× 1/3 = 2/3. Several examples of
the estimation of a time-varying variance are presented in Chap.4.

Note that direct estimation can be performed by applying a non-Gaussian fil-
ter/smoothing algorithm without the assumption of σ 2

2m−1 = σ 2
2m (Kitagawa 2010).

2.1.3 Seasonal Adjustment Modeling

Some economic time series that are closely related to financial markets tend to reflect
seasonal factors, i.e., exhibit a similar pattern of fluctuations around the same season
every year. Familiar examples of such time series are the prices of vegetables, wages,
and unemployment rates. Figure2.4 shows the Japanese consumer price index for
spinach. A clear seasonal pattern with a yearly peak in September exists. These time
series may influence not only financial markets but also economies.

This section briefly introduces a seasonal adjustment model proposed by Gersch
and Kitagawa (1983), and Kitagawa and Gersch (1984, 1996).

When a component sn of a time series cyclically fluctuates on a yearly basis, this
component can be expressed as

sn ≈ sn−p, (2.25)

where p is the period length of the component. For example, in the case of monthly
data, set p = 12. Then, sn is referred to as a seasonal component or seasonality,
which has a more or less regular fluctuation with a period of 1year. Note that this
seasonal component can be applied to other regular patterns, such as the weekly
pattern in daily data (p = 7) or the daily pattern in hourly data (p = 24).

For an observed univariate time series yn with a regular seasonal pattern of fluc-
tuations, a seasonal adjustment model is expressed as

yn = tn + sn + pn + wn. (2.26)

In other words, the observation comprises the following four components.

http://dx.doi.org/10.1007/978-4-431-55276-5_4
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A trend component tn is estimated by the trend component model with the
trend order k

�k tn = vn1, vn1 ∼ N (0, τ 2
1 ), (2.27)

which was presented in the previous section.
A seasonal component sn , which slowly forms seasonal fluctuations, is expressed

by the following seasonal component model with a period length p:

p−1∑

i=0

sn−i = vn2, vn2 ∼ N
(
0, τ 2

2

)
. (2.28)

The details of this model will be explained later.
A stationary component pn is estimatedby the following stationaryARcomponent

model of order m:

pn =
m∑

i=1

ai pn−i + vn3, vn3 ∼ N (0, τ 2
3 ), (2.29)

which expresses relatively shorter cyclical fluctuations than the gradual long-term
trend component (2.27). Finally, the distribution of the observation noisewn in (2.26)
is given by

wn ∼ N (0, σ 2). (2.30)

Economic time series with seasonality often accompany a trend expressing gradu-
ally shifting mean value functions, such as the consumer price index. For such series,
the observation model is naturally considered as a form of decomposition: a trend
component plus a seasonal component. In order to obtain a smoother trend, we intro-
duce a seasonal adjustment model to which a stationary AR component expressing
shorter cyclical fluctuations than a trend is added.

Let us now explain the seasonal component model (2.28). Using the lag operator
B introduced in Sect. 2.1.1, we obtain

B psn = sn−p. (2.31)

Therefore, (2.25) approximately satisfies

(1 − B p)sn ≈ 0. (2.32)

Similar to the trend component model presented in Sect. 2.1.1, a seasonal component
with period p, can approximately be defined as

(
1 − B p

)
sn = vn2, (2.33)

where vn2 is awhite noise following aGaussian distributionwithmean0 andunknown
variance τ 2

2 .
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However, in practice, this seasonal component model (2.33) may not work well
within the framework of the seasonal adjustment model (2.26) due to the existence
of the factor (1 − B), which is common to both the trend and seasonal component
models. Since, as compared with the lag operator expression (2.4) of the trend model
in Sect. 2.1.1, the following expansion

1 − B p = (1 − B)(1 + B + · · · + B p−1), (2.34)

is obtained for the seasonal component model (2.33).
Next, any arbitrary constant en = c satisfies the difference equation

(1 − B)en = 0. (2.35)

Therefore, if we define other components t ′
n and s ′

n as

t ′
n = tn + en

s ′
n = sn − en,

then these components satisfy (2.27), (2.33), and

yn = t ′
n + s ′

n + pn + wn. (2.36)

Therefore, apart from the stationary AR component pn , we have two methods by
which to decompose the time series yn into tn and sn with the same noises vn1, vn2,
andwn , and there is nothing to choose between them. Using the common factor in the
component models of tn and sn within the seasonal adjustment modeling framework,
the uniqueness of decomposition is lost.

From the expansion (2.34), as the sufficient condition for 1− B p = 0 is 1+ B +
· · · + B p−1 = 0, when

∑p−1
i=0 Bi sn ≈ 0 is satisfied,

sn ≈ sn−p

is also satisfied. Therefore, in order to avoid the above problem of the nonuniqueness
of the decomposition, define the following seasonal component model:

p−1∑

i=0

Bi sn = vn2, vn2 ∼ N
(
0, τ 2

2

)
. (2.37)

Therefore, (2.28) is obtained.
Equivalently, since the seasonal component model (2.37) can be written as

sn = −
p−1∑

i=1

Bi sn + vn2, (2.38)

this model can formally be regarded as a special case of an AR model.
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As in the case of the trend model, the state-space model is obtained as

xn =

⎡

⎢⎢⎢⎣

sn

sn−1
...

sn−p+2

⎤

⎥⎥⎥⎦, F =

⎡

⎢⎢⎢⎣

−1 −1 · · · −1
1

. . .

1

⎤

⎥⎥⎥⎦, G =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ ,

H = [ 1, 0, . . . , 0 ]. (2.39)

The details and an extension to a higher seasonal order model can be found in
Kitagawa (2010).

Considering the models mentioned above, we now return to the seasonal adjust-
ment model (2.26). Each component model can be expressed in state-space model
form. Therefore, in the same manner as for each component model, the state-space
model used for the seasonal adjustment model (2.26) consisting of (2.27)–(2.29) is
obtained in the following composite form:

xn =
⎡

⎣
x1n

x2n

x3n

⎤

⎦, F =
⎡

⎣
F1

F2

F3

⎤

⎦ , G =
⎡

⎣
G1 0 0
0 G2 0
0 0 G3

⎤

⎦ ,

H = [ H1 H2 H3 ], Q =
⎡

⎣
τ 2
1 0 0
0 τ 2

2 0
0 0 τ 2

3

⎤

⎦ . (2.40)

Here, Fi , Gi , and Hi correspond to the matrices in the state-space representation for
each component model. Similarly, Q is composed of the set of the variances of the
system noises.

The above-mentioned seasonal adjustment model is freely available as web-based
time series analysis software,WebDECOMP, at http://ssnt.ism.ac.jp/inets/inets_eng.
html, which was developed by the Institute of Statistical Mathematics. In Chap.4,
DECOMP is used to extract a detrended cyclical component of a time series in order
to detect causations between short-term fluctuations of financial and economic time
series by power contribution analysis.

As an example of applying the seasonal adjustment model provided byDECOMP,
Fig. 2.5 shows a decomposition of the Japanese consumer price index for spinach
illustrated in Fig. 2.4, into the trend, seasonal, stationary AR, and noise components.
The highly visible seasonality is detected.

2.1.4 Non-Gaussian Distribution Modeling

In the Gaussian state-space modeling presented in the previous sections, the grad-
ual changes of fluctuation structures of nonstationary time series are well captured.
However, in financial time series, time-varying fluctuation structures, occasionally

http://ssnt.ism.ac.jp/inets/inets_eng.html
http://ssnt.ism.ac.jp/inets/inets_eng.html
http://dx.doi.org/10.1007/978-4-431-55276-5_4
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Fig. 2.5 Decomposition of the Japanese consumer price index for spinach (gray line) into the
trend (top), seasonal (second from top), AR (second from bottom), and noise (bottom) components.
Source Statistics Bureau of Japan

including both gradual and sudden changes, can often be observed. The recent out-
standing example of a sudden change can be the occurrence of the Lehman Brothers’
bankruptcy in 2008. Actually, the possibility of a sudden drastic change has recently
expanded and recognizing indicators of such change are crucial.

As an extension of Gaussian state-space modeling, a non-Gaussian state-space
model is naturally considered, by assuming a non-Gaussian distribution of the sys-
tem noise, a non-Gaussian distribution of the observation noise, or non-Gaussian
distributions of both. For example, when a heavy-tailed distribution, such as the
Cauchy distribution (red line) shown in Fig. 2.6, is assumed for the system noise, a
time series including gradual changes with high probabilities and sudden changes
with low probabilities, can be modeled. Furthermore, note that the estimation of a
time-varying variance in Sect. 2.1.2 can be directly performed using the noise distri-
bution (2.18) without using the Gaussian approximation.

In order to extend the standard state-space model (1.14) and (1.15) mentioned in
the introductory chapter, we recall again that

http://dx.doi.org/10.1007/978-4-431-55276-5_1
http://dx.doi.org/10.1007/978-4-431-55276-5_1
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Fig. 2.6 Gaussian (blue) and
Cauchy (red) distributions
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xn = Fxn−1 + Gvn (2.41)

yn = H xn + wn, (2.42)

where xn is the state vector at time n. Here, the density functions q(v) and r(w) of
the system noise vn and the observation noise wn are not necessarily Gaussian. Then,
the state distribution generally becomes non-Gaussian.

In Gaussian state-space modeling, since the state distribution is Gaussian, the
conditional means and the conditional variance covariance matrices are obtained
recursively by the Kalman filter. However, in non-Gaussian state-space modeling, as
the conditional distribution of the state cannot be specified only by the conditional
mean and the conditional variance covariancematrix, computing the state distribution
is necessary.

In order to address this problem, various algorithms, such as the extended Kalman
filter (Anderson andMoore 2012), and the non-Gaussian filter/smoothing algorithm
which numerically approximates non-Gaussian distributions by using a step function
or a piecewise linear function (Kitagawa 1987), have been proposed. The develop-
ment of various non-Gaussian approximating algorithms is reported in Kitagawa and
Gersch (1996).

Denoting the set of observations by time t as Yt ≡ {y1, . . . , yt }, in general for the
non-Gaussian state-space model (2.41) and (2.42), the conditional distribution of the
state p(xn|Yt ) is obtained by the following recursive formula:

p(xn|Yn−1) =
∫

p(xn|xn−1)p(xn−1|Yn−1)dxn−1

p(xn|Yn) = p(yn|xn)p(xn|Yn−1)

p(yn|Yn−1)
, (2.43)

where p(yn|Yn−1) = ∫
p(yn|xn)p(xn|Yn−1)dxn .

Using this non-Gaussian filter/smoothing algorithm, it is possible to estimate a
time-varying variance of a time series without approximating the double exponen-
tial distribution by a Gaussian distribution, i.e., by directly using the time-varying
variance model
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tn = tn−1 + vn

xn = tn + wn, (2.44)

where the trend order is one, and the noise distribution is expressed as h(wn) =
(2π)1/2 exp{(wn −exp(wn))/2} in Sect. 2.1.2. Moreover, note that in this method, the
system noise vn is not restricted to be Gaussian. By using a heavy-tailed distribution
for the system noise, sudden changes in variance can be detected (Kitagawa 1987,
2010).

This non-Gaussian filter/smoothing algorithm can also be applied to a nonlinear
state-space model

xn = f (xn−1, vn)

yn = h(xn, wn). (2.45)

In this nonlinear modeling framework, the time-varying variance model can be
expressed as

sn = sn−1 + vn

yn = esn wn. (2.46)

Therefore, using this method, we can estimate the time-varying variance, even with-
out defining the squared time series, as in Sect. 2.1.2 (Kitagawa 2010).

For the more general case, Kitagawa (1996) proposed a significantly practical
simulation-based estimation method, i.e., the sequential Monte Carlo filter, for a
nonlinear non-Gaussian state-space representation further extending to nonlinearities
of the state and (or) the observationmodels. This filter approximates a distribution by
several (for example, 10,000 or more) particles that can be regarded as independent
realizations from the distribution (Gordon et al. 1993; Kitagawa 1996, 2010; Doucet
et al. 2001).

Next, we briefly outline the sequential Monte Carlo filter. For the set of observa-
tions by time t , Yt , we will evaluate the conditional distribution of the state p(xn|Yt ),
which is referred to as a predictor when n > t , as a filter when n = t , and as a
smoother when n < t .

The initial state x0 is assumed to follow the density p0(x), and, for the above three
cases, each distribution is expressed using m particles, as follows:

{p(1)
n , . . . , p(m)

n } ∼ p(xn|Yn−1) for the predictor,

{ f (1)
n , . . . , f (m)

n } ∼ p(xn|Yn) for the filter,

{s(1)
n|t , . . . , s(m)

n|t } ∼ p(xn|Yt ) for the smoother.

When m particles {p(1)
n , . . . , p(m)

n } from the predictor p(xn|Yn−1) are given, the
distribution is approximated by the empirical distributions determined by the m
particles. In other words, the distribution is approximated by the probability mass
function
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Pr
(
xn = p( j)

n |Yn−1
) = 1

m
, j = 1, . . . , m.

Then, a set of realizations expressing the one step ahead predictor p(xn|Yn−1) and
the filter p(xn|Yn) can be obtained recursively in the following manner:

1. Generate a random number f ( j)
0 ∼ p0(x) for j = 1, . . . , m.

2. Repeat the following steps for n = 1, . . . , t .

a. Generate random numbers v( j)
n ∼ q(v) for j = 1, . . . , m, to obtain indepen-

dent realizations of the system noise vn in (2.41) following the distribution
with density function q(v).

b. Compute p( j)
n = F f ( j)

n−1 + Gv( j)
n for j = 1, . . . , m.

c. Compute α
( j)
n = r(yn − H p( j)

n ) for j = 1, . . . , m, where r(w) is the density
function of the observation noise wn in (2.42).

d. Generate f ( j)
n for j = 1, . . . , m, by resampling p(1)

n , . . . , p(m)
n with weights

proportional to α(1)
n , . . . , α(m)

n .

For a parameter set θ of the state-space model such as the variances of the noises,
the likelihood of the model is given by

L(θ) = p(y1, · · · , yt |θ) =
t∏

n=1

p(yn|Yn−1),

where p (y1|Y0) = p0(y1). For applying the sequential Monte Carlo filter, we use
the approximation

p (yn|Yn−1) =
∫

p(yn|xn)p(xn|Yn−1)dxn

∼= 1

m

m∑

j=1

p
(
yn|p( j)

n

) = 1

m

m∑

j=1

α( j)
n .

Themaximum likelihood estimate can be obtained bymaximizing the log-likelihood:

log L(θ) =
t∑

n=1

log p(yn|Yn−1) ∼=
t∑

n=1

log

⎛

⎝
m∑

j=1

α( j)
n

⎞

⎠ − t logm.

The sequentialMonte Carlo filter is described in detail in Kitagawa (2010), Kitagawa
and Gersch (1996), and Doucet et al. (2001).

The application of the sequential Monte Carlo filter is shown in Chap.4.

http://dx.doi.org/10.1007/978-4-431-55276-5_4
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2.2 Transformation of Non-Gaussian Distributed
Prices of a Financial Market

Financial markets are discussed daily in the news throughout the world. The move-
ment of some markets can influence business and economy, and such markets may
replace each other over time. Since we usually observe financial market indices such
as the S&P 500, one means by which to express the overall perspective of a market
is to use the index as a proxy measure. Unlike an established market, in which the
index is officially defined and announced, for a newly developed financial instrument
forming its market with rapid growth, it is not easy to construct an appropriate index
due to a lack of information, such as missing observations at certain times.Moreover,
in order to fully reflect the price movements of a financial asset, the index should
reflect the price distributions.

Although the assumption that the distributions of prices or returns of financial
assets are Gaussian has been commonly used in theoretical finance, some studies in
the 1960s failed to validate this assumption and found heavier tails than would be
present in aGaussian distribution (Mandelbrot 1963; Fama1965). The tails consisting
of extreme values of prices or returns that are caused by sharply soaring or plunging
asset prices are more likely to occur than expected by a Gaussian distribution. In
particular, distributions of stock returns have been discussed in many studies such
as Paraez (1972), Madan and Seneta (1990), and Linden (2001). However, an exact
identification of such distributions remains an open question.

The distribution of Credit Default Swap (CDS) spreads is often significantly
heavy-tailed. For example, Fig. 2.7 shows histograms of the Japanese corporate CDS
spreads referencing 327 companies. From back to front, the distributions are heavily
skewed to the right. An analysis of this market is provided in Chap.4.
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Fig. 2.7 Japanese corporate CDS spread histograms. Source Bloomberg LP

http://dx.doi.org/10.1007/978-4-431-55276-5_4


28 2 Method for Constructing a Distribution-Free Index

In order to facilitate the identification of such a distribution, Tanokura et al. (2012)
proposed transforming the observations in the following manner:

Let pi (n), i = 1, . . . , j (n), denote the prices of issues of a financial market
with a non-Gaussian price distribution at time n, n = 1, . . . , N . The number of
observations j (n) varies over time and can be zero at certain times, and pi (n) is
positive. In order to transform a skewed non-Gaussian distribution of the prices to
an approximately Gaussian distribution, we consider the Box–Cox transformation
(Box and Cox 1964):

qi,λ(n) = h(pi (n)) =
{
λ−1{pi (n)λ − 1} λ �= 0

log pi (n) λ = 0.
(2.47)

This transformation has been applied in various areas of finance and includes most
major transformations, as well as no transformation, as follows: Ignoring a constant
term, the Box–Cox transformation becomes the inverse transformation for λ = −1,
the reciprocal square root transformation for λ = −0.5, the logarithm for λ = 0, the
square root for λ = 0.5, and no transformation for λ = 1.

Now, for eachλ, since there are j (n) observations at time n, consider the following
average time series of the Box–Cox transformed prices qi,λ(n):

yλ(n) = 1

j (n)

j (n)∑

i=1

qi,λ(n), n = 1, . . . , N , (2.48)

which is often observed to be nonstationary. Then, we fit the following trend model:
to yλ(n):

�k tλ(n) = vλ(n), vλ(n) ∼ N (0, τ 2
λ ) (2.49)

yλ(n) = tλ(n) + wλ(n), wλ(n) ∼ D(0, σ 2
λ ), (2.50)

where k is the trend order, and �tλ(n) = tλ(n) − tλ(n − 1). Here, D(0, σ 2
λ ) denotes

a general distribution with location parameter 0 and unknown scale parameter σλ.
This is an extensionof the trendmodelwith theGaussian observation noises shown

in Sect. 2.1.1 to the trend model with general observation noises. In other words, the
case of a non-Gaussian observation noise distribution can also be considered.

In order to consider a rapidly growing or immature financial market with a signif-
icantly changing number of observations over time, it might be reasonable to assume
that σ 2

λ in (2.50) is inversely proportional to the number of observations. In other
words, we replace (2.50) in the above trend model with the following expression:

yλ(n) = tλ(n) + wλ(n), wλ(n) ∼ D(0, σ 2
λ /j (n)). (2.51)

Tanokura et al. (2012) considered the trendmodel with Cauchy observation noises
in (2.51), which is generally useful for modeling the large deviation of noises that are
often observed in financialmarkets. For convenience, we refer to this trend estimation
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model based on Cauchy observation noises as the Cauchy trend estimation model,
whereas themodel basedonGaussian observation noises is referred to as theGaussian
trend estimation model.

In this book, as a further improvement, we also treat the case of Gaussian obser-
vation noises with a time-varying variance. In this case, we replace the observation
model (2.51) with the following model:

yλ(n) = tλ(n) + wλ(n), wλ(n) ∼ N (0, σ 2
λ (n)/j (n)). (2.52)

Note that σ 2
λ (n) varies over time n and is estimated by the time-varying variance

model reviewed in Sect. 2.1.2. We refer to this trend estimation model based on
Gaussian observation noises with a time-varying variance (GTV) as the GTV trend
estimation model.

Each extended trend model (2.49) with (2.51) or (2.52) can be expressed as a
state-space model as follows:

xλ(n) = Fxλ(n − 1) + Gvλ(n) (2.53)

yλ(n) = H xλ(n) + wλ(n). (2.54)

For example, for the trend order k = 1, the state vector is defined as xλ(n) = tλ(n),
and the matrices are defined as F = G = H = 1. For k = 2, xλ(n), F , G, and H
are respectively defined as

xλ(n) =
[

tλ(n)

tλ(n − 1)

]
, F =

[
2 −1
1 0

]
, G =

[
1
0

]
, H = [

1, 0
]
.

Given a parameter λ of the Box–Cox transformation, the estimation of the state
vector is performed in the following manner. When we assume that the observation
noise distribution is Gaussian, i.e., either the Gaussian trend estimation model (2.51)
or the GTV trend estimation model (2.52), the conditional means and conditional
variance covariancematrices for the state can be calculated recursively by theKalman
filter. On the other hand, when the observation noise distribution is assumed to be
non-Gaussian, e.g., a Cauchy distribution in (2.51), the state vector is estimated by
a non-Gaussian filter or the sequential Monte Carlo filter presented in Sect. 2.1.4.
In both cases, the parameters such as the variances of noises are estimated by the
maximum likelihood method, and the missing observations, namely, observations
that are not available for at certain points in time, can be interpolated by a smoothing
algorithm (Anderson andMoore 2012; Kitagawa and Gersch 1996; Kitagawa 2010).
The trend order k is selected using the AIC (Akaike 1998; Konishi and Kitagawa
2008). In addition, although the type of the observation noise distribution is entirely
dependent on the observations, it can also be determined using the AIC.
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One application in Chap.4 compares Gaussian, Cauchy, and GTV observation
noises using the data that was originally used in Tanokura et al. (2012).

This book proposes a trend model with Gaussian observation noises with a time-
varying variance (GTV trend estimation model).

2.3 Construction of a Distribution-Free Index

The estimation method for the trend component tλ(n) in the trend model was pre-
sented in the previous section. Now, we have to search for an optimal λ in order to
construct a distribution-free index for a financial market with non-Gaussian price
distributions. Distribution-free means being impartial, regardless of the observation
distributions.

For each λ, as mentioned in the previous section, assume that the average time
series yλ(n), n = 1, . . . , N , in (2.48), of the Box–Cox transformed prices qi,λ(n) of
the original prices pi (n), i = 1, . . . , j (n), in (2.47), is modeled by the trend model
(2.49) and (2.52).

Then, the one-step-ahead predictive density function of yλ(n) is given by

p(yλ(n)|Yλ,n−1) =
{

j (n)

2πσ 2
λ (n)

} 1
2

exp

[
− j (n){yλ(n) − tλ(n)}2

2σ 2
λ (n)

]
, (2.55)

where Yλ,n−1 = {yλ(1), . . . , yλ(n − 1)}. The log-likelihood and the AIC of the trend
model for yλ(n) are respectively obtained as

�λ =
N∑

n=1

log p(yλ(n)|Yλ,n−1) (2.56)

AICλ = −2�λ + 2(number of parameters)

= −2�λ + 2(k + 2). (2.57)

The optimal parameter λ should be determined with respect to the original prices.
Therefore, the average time series yλ(n) is transformed back to zλ(n) by the following
inverse Box–Cox transformation:

zλ(n) = h−1
λ (yλ(n)) =

{{1 + λ yλ(n)}1/λ λ �= 0

exp yλ(n) λ = 0.
(2.58)

Using the density function (2.55) of the trend model for yλ(n), the density function
of the corresponding model for zλ(n) is given by

p(zλ(n)|Zλ,n−1) =
∣∣∣∣
dhλ

dz

∣∣∣∣ p(yλ(n)|Yλ,n−1), (2.59)

http://dx.doi.org/10.1007/978-4-431-55276-5_4
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where Zλ,n−1 = {zλ(1), . . . , zλ(n − 1)}, and dhλ/dz is the Jacobian of the Box–Cox
transformation (2.47), which is obtained as dhλ/dz = zλ(n). Then, the log-likelihood
of the model evaluated on zλ(n), n = 1, . . . , N , is obtained as

�0λ =
N∑

n=1

log p(yλ(n)|Yλ,n−1) +
N∑

n=1

log

∣∣∣∣
dhλ

dz

∣∣∣∣ . (2.60)

Moreover, AICλ is modified to AIC0
λ, which is the AIC value of the corresponding

model for zλ(n), and is evaluated as

AIC0
λ = AICλ − 2

N∑

n=1

log

∣∣∣∣
dhλ

dz

∣∣∣∣
z=zλ(n)

(2.61)

(Kitagawa 2010).
Therefore, the optimal λ can be determined by minimizing AIC0

λ values, and the
optimal trend component tλ(n), n = 1, . . . , N , in (2.52) is obtained.

Finally, returning to theoriginal observations, the distribution-free index i(n), n =
1, . . . , N , is defined as the inverse Box–Cox transformed values of the optimal trend
component tλ(n), as follows:

i(n) =
{{1 + λ tλ(n)}1/λ λ �= 0

exp tλ(n) λ = 0.
(2.62)

Let us observe the effect of using the Box–Cox transformation (2.47). Figure2.8
shows the histograms of the Box–Cox transformed observations of the Japanese cor-
porate CDS spreads illustrated in Fig. 2.7, where the optimalλ is given by−0.5. From
back to front, the distribution at each point in time becomes closely symmetric and
approximately Gaussian. When the mean is subtracted from the distribution at each
point in time, the Box–Cox transformed distributions become easily understandable,
as shown in Fig. 2.9. From back to front, the distribution at each point in time can
approximately be regarded as Gaussian, even though the dispersion around the center
largely varies over time. That is why the time-varying variance model is applied.

Note that the method for constructing a distribution-free index can be applied to
general observations, such as the rate of return and the economic growth rate, which
can be negative, although the Box–Cox transformation (2.47) is defined for observa-
tions taking positive values. Since the purpose of using the Box–Cox transformation
is to search for an appropriate transformation close to a Gaussian distribution, the
Box–Cox transformation can be applied to transformed observations in a positive
domain by an appropriate distribution invariant function, say, a parallel transfor-
mation. In this way, we construct a distribution-free index for real GDP growth in
Chap.4.

In addition, since various transformations can be obtained by changing the para-
meter λ of the Box–Cox transformation, it is possible to examine the observation

http://dx.doi.org/10.1007/978-4-431-55276-5_4
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81.0

40.5

0.0

Fig. 2.8 Histograms of the Box–Cox transformed Japanese corporate CDS spreads, where
λ = −0.5

59.0

29.5

59.0

29.5

0.0

Fig. 2.9 Histograms of the mean subtracted at each point in time from the Box–Cox transformed
Japanese corporate CDS spreads

distribution to be analyzed, namely, to determine how far the distribution is from a
Gaussian distribution by AIC0

λ values in (2.61). Moreover, this method can also be
used to estimate the trend of a single time series.

We briefly describe a computation procedure for constructing a distribution-free
index based on the trendmodel with Gaussian observation noises with a time-varying
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variance (GTV trend estimation model). The estimates of variances of τ 2
λ and σ 2

λ are
obtained by the maximum likelihood method.

First, a trend order k is fixed.

1. Given a parameter λ ∈ {λ1, . . . , λm} of the Box–Cox transformation.

a. Transform the observations by the Box–Cox transformation (2.47).
b. Estimate the parameters of the fitted trend model to the Box–Cox trans-

formed observations by the Kalman filter.
c. Compute the residual of the trend component.
d. Estimate the time-varying variance by fitting the time-varying variance

model in Sect. 2.1.2 to the residuals.
e. Estimate the trend model with Gaussian observation noises with the above

time-varying variance and compute AIC0
λ in (2.61).

2. Determine the optimal λ by minimizing AIC0
λ.

3. Obtain the optimal trend model with the Gaussian observation noises with the
time-varying variance.

4. The distribution-free index is obtained by the inverse Box–Cox transformation
of the optimal trend component (2.62).

If necessary, the trend order k can be changed, and the above procedure can be
repeated. As a reference, the standard trend estimation in Kitagawa (2010) can be
helpful.
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Chapter 3
Power Contribution Analysis
of a Multivariate Feedback System

Abstract The globalization of financial and economic systems has brought attention
to the significant ramifications of price fluctuations in both domestic and international
financial markets, which may cause inextricable difficulties such as the global eco-
nomic crisis triggered by the bankruptcy of Lehman Brothers in 2008. In order to
detect such causations, we propose the application of the generalized power con-
tribution, which extends the original Akaike’s power contribution by decomposing
a variance covariance matrix of the noises. This application reveals the frequency-
wise effect of multi-dimensional noise sources on the power of the fluctuation of
each variable in a multivariate feedback system. Therefore, multi-directional causa-
tions between variables can simultaneously be evaluated. The causations detected by
power contribution analysis verify the effectiveness of a distribution-free index and
provide valuable information flows.

Keywords Power contribution · Decomposition of a variance and covariance
matrix · Information flow · Feedback system · Correlated noise

3.1 Akaike’s Power Contribution and Its Generalization

A multivariate dynamic system with a feedback structure in which the comprising
variables influence each other simultaneously or after short intervals, can often be
found in the real world, such as ship motions and commodity price fluctuations. In
our lives, we are interested in global financial market information such as the closing
and current values of stock indices and foreign exchange rates, which are broad-
cast regularly, because this information may reflect current local financial markets.
Generally, it is not easy to capture causations between variables in such a system.

The presence of feedback loops, namely, the influence of an input variable on
an output variable with a time lag, can be expressed directly by the time domain
approach. On the other hand, periodic variations of repetitive and regularmovements,
which are often observed in financial and economic time series, can be expressed in
the form of trigonometric functions by the frequency domain approach. However,
there are practically difficulties in capturing feedback loops by the frequency domain
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36 3 Power Contribution Analysis of a Multivariate Feedback System

approach, which requires being uncorrelated with the noises of the input variable in
spectral analysis.

For analyzing a multivariate dynamic system with feedback, Akaike (1968) intro-
duced a time domain approach to the frequency domain framework by defining
the concept of relative power contribution through multivariate autoregressive (AR)
modeling. Here, we briefly introduceAkaike’s power contribution and its generalized
version in order to detect causations between economic and financial time series.

Assume that an l-dimensional stationary time series yn = (yn(1), yn(2), . . . ,
yn(l))t , n = 1, . . . , N , is expressed as the following multivariate AR model with
order m:

yn =
m∑

j=1

A j yn− j + vn, (3.1)

where A j is an l × l AR coefficient matrix, where its (r, s)-component is written as
a j (r, s). An l-dimensional white noise vn satisfies the following conditions:

E(vn) = [0, . . . , 0]t , E(vnvt
n) = W,

E(vnvt
h) = O (n �= h), E(vn yt

h) = O (n > h).

Here, O is the l × l zero matrix, and W = (σrs) is a symmetric positive definite
matrix (i.e., σrs = σsr ) that is referred to as the variance covariance matrix of the
noises.

The Fourier transform of the cross-covariance function Ck(r, s) presented in the
introductory chapter, is given by

Prs( f ) =
∞∑

k=−∞
Ck(r, s)e−2π ik f

=
∞∑

k=−∞
Ck(r, s) cos 2πk f − i

∞∑

k=−∞
Ck(r, s) sin 2πk f, (3.2)

which is referred to as the cross-spectral density function, or simply the cross spec-
trum. Here, f is a frequency satisfying −1/2 ≤ f ≤ 1/2, and i is the imaginary
unit.

We define the cross spectrum matrix as the following l × l matrix:

P( f ) =
⎡

⎢⎣
P11( f ) · · · P1l( f )

...
. . .

...

Pl1( f ) · · · Pll( f )

⎤

⎥⎦ .

The diagonal element Prr ( f ) is referred to as the power spectral density function, or
simply the power spectrum.
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Then, the following relations between the cross spectrum matrix and the cross-
covariance matrix hold:

P( f ) =
∞∑

k=∞
Cke−2π ik f ,

Ck =
∫ 1/2

−1/2
P( f )e2π ik f d f.

The details can be found in Kitagawa (2010).
The cross spectrum matrix P( f ) can be obtained as

P( f ) = A( f )−1W
(

A( f )−1
)∗

, (3.3)

where A( f ) is the l × l complex matrix with its (r, s)-component Ars( f ), and A∗
denotes the complex conjugate of a matrix A. Here, Ars( f ) is defined as the Fourier
transform of the coefficients a j (r, s) in the multivariate AR model (3.1):

Ars( f ) =
m∑

j=0

a j (r, s)e−2π i j f , (3.4)

where a0(r, r) = −1, and a0(r, s) = 0 for r �= s (Whittle 1963; Akaike and Nak-
agawa 1988). For simplicity, denoting A( f )−1 as B( f ) = (brs( f )), (3.3) is given
by

P( f ) = B( f ) W B( f )∗. (3.5)

In the original definition in Akaike (1968), the components of the noise vn are
assumed to be mutually uncorrelated: σrs = 0, r �= s. Then, the variance covariance
matrix of the noises is expressed as

W = diag{σ11, ..., σll}. (3.6)

Therefore, from (3.5) the power spectrum of the r th component yn(r) of the time
series yn at a frequency f can be simply expressed as

Prr ( f ) =
l∑

s=1

brs( f )σssbrs( f )∗ ≡
l∑

s=1

|brs( f )|2 σss . (3.7)

That is, the power spectrum of yn(r) at a frequency f is composed of l noise influ-
ences, and the degree of influence from the sth noise component vn(s) on the fluctu-
ation of yn(r) is evaluated by |brs( f )|2 σss for s = 1, . . . , l.



38 3 Power Contribution Analysis of a Multivariate Feedback System

Therefore, Akaike’s power contribution is defined as

rrs( f ) = |brs( f )|2 σss

Prr ( f )
, (3.8)

which expresses the proportion of the fluctuation of yn(r) caused by the sth noise
component vn(s) at a frequency f .

In practice, the variance covariance matrix of the noises is rarely diagonal. There-
fore, Akaike suggested carefully examining the estimated noise correlations and
seeking a possible practical solution in checking whether these correlations could be
ignored. Akaike’s power contribution has been applied to various real-world prob-
lems (Akaike and Nakagawa 1988; Akaike and Kitagawa 1999; Ohtsu et al. 1981,
2015). However, in the analysis of economic and financial time series with significant
correlations between noises, Akaike’s power contribution is not applicable, or at least
may yield significant bias as a result of ignoring the presence of such correlations.

In order to address this problem, a generalized power contribution based on mod-
eling correlations of general order, i.e., correlations between two variables, three
variables, . . ., all variables of a multivariate time series, was proposed in Tanokura
and Kitagawa (2004).

We next consider decomposing an l × l variance covariance matrix W = (σrs)

into a sum of matrices with rank one in the following manner.

W = ql I0I
t
0 +

l∑

j1=1

ql−1, j1 I j1 I
t
j1 +

l∑

j1=2

j1−1∑

j2=1

ql−2, j1 j2 I j1 j2 I
t
j1 j2 + · · ·

+
l∑

j1=l−1

j1−1∑

j2=l−2

· · ·
jl−2−1∑

jl−1=1

ql−(l−1), j1... jl−1 I j1... jl−1 I
t
j1... jl−1

, (3.9)

where I0 is the l-dimensional unit vector, and I j1... jk is an l-dimensional vector, where
the j1th to the jk th components are 0 and the remaining components are 1 for k =
1, . . . , l − 1. Note that each term on the right-hand side of (3.9) expresses a range of
variables consisting of correlations in descending order.

This decomposition is not unique in general, but can be uniquely determinedwhen
we specify each matrix with rank one according to descending order of correlation,
i.e., from the first term to the last term in (3.9).

We assume that the common influence of all the variables is derived from the
smallest correlation coefficient. When ql of the first term of (3.9) is taken as an
off-diagonal component with the smallest absolute value, say, σl1, the second term∑l

j1=1 ql−1, j1 I j1 I
t
j1
of (3.9) has only two possible values that are non-zero. Similarly,

the third term
∑l

j1=2

∑ j1−1
j2=1 ql−2, j1 j2 I j1 j2 I

t
j1 j2

of (3.9) has three possible non-zero
values, and so on, where the lth term of (3.9) has l possible non-zero values.
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Finally, the variance covariance matrix is expressed as a sum of at most l(l +1)/2
terms:

W = ql,1 IH1(0)I
t
H1(0) +

2∑

j=1

ql−2+ j, j IHj (1)I
t
Hj (1) + · · ·

+
l∑

j=1

ql−l+ j, j IHj (l−1)I
t
Hj (l−1)

=
l−2∑

k=0

k+1∑

j=1

ql−(k+1)+ j, j IHj (k)I
t
Hj (k) +

l∑

j=1

q j j IHj (l−1)I
t
Hj (l−1), (3.10)

where IHj (k) = [i jk(1), . . . , i jk(l)] is an l-dimensional vector, ofwhich k components
are 0 and (l−k) components are either 1 or−1, depending on the signs of correlations
for k = 0, . . . , l − 1; j = 1, . . . , k + 1. Here, Hj (k), the suffix of IHj (k), is a subset
Hj (k) = {h j,1, . . . , h j,k} of H = {1, . . . , l} and indicates the components of 0 of
IHj (k). Note that the last term of (3.10) can be expressed as diag {q11, . . . , qll}.

Then, by (3.5), the cross spectrum matrix can be decomposed as

P( f ) =
l−2∑

k=0

k+1∑

j=1

ql−(k+1)+ j, j B( f ) IHj (k)I
t
Hj (k) B( f )∗

+B( f )diag{q11, . . . , qll}B( f )∗. (3.11)

Therefore, the power spectrum of its r th component is expressed as

Prr ( f ) =
l−2∑

k=0

k+1∑

j=1

ql−(k+1)+ j, j

l∑

h=1,h �=r

l∑

n=1,n �=r

cr jk(h)cr jk(n)∗

+
l∑

j=1

q j j |br j ( f )|2, (3.12)

where cr jk(h) = i jk(h) brh( f ).
This expression implies that the power spectrum Prr ( f ) can generally be decom-

posed into two terms. The first term expresses the l(l − 1)/2 common influences
from l noise components, i.e., the influences resulting from correlations between
l noise components. The second term expresses the l influences from single noise
components, i.e., the influences resulting from the diagonal matrix of the noises.
The first term is referred to as correlated noise, and the second term is referred to as
independent noise.

Note that (3.12) is the general form of (3.7), i.e., (3.12) becomes (3.7) when qrs =
0 for r �= s. In other words, according to the original Akaike’s power contribution
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(3.8), Prr ( f ) is decomposed into l terms corresponding to the second term of (3.12)
under the assumption of the independence of the noises.

Finally, the generalized power contribution is defined as

r̃r jk( f ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ql−(k+1)+ j, j
∑l

h=1,h �=r

∑l
n=1,n �=r cr jk(h) cr jk(n)∗

Prr ( f )
(k = 0, . . . , l − 2; j = 1, . . . , k + 1)

ql−(k+1)+ j, j |br j ( f )|2
Prr ( f )

(k = l − 1; j = 1, . . . , l).

(3.13)

Note that the power contribution is usually expressed as a ratio to the power
spectrum.

This modeling reveals the frequency-wise effect of multi-dimensional noise
sources on the power of the fluctuation of each variable in a multivariate feedback
system. In other words, it becomes possible to simultaneously measure the degree
of influence between various combinations of the noises of variables. Therefore,
multi-directional causations between variables can be evaluated. The applicable area
is significantly widened (Tanokura 2006). Moreover, since we ensure the stability
of Akaike’s original power contribution in the generalized power contribution in
Sect. 3.3, the concept of power contribution is strengthened and improved.

Other related studies on detecting noise sources can be found in various areas
such as neuroscience and econometrics. In particular, based on a well-known causal-
ity concept defined by Granger (1969), frequency-wise measures of causality for two
stationary time series proposed in Geweke (1982) and Hosoya (1991), were extended
to those measures for three series in Geweke (1984) and Hosoya (2001), respec-
tively. Although their interests are similar to ours, their approaches are fundamentally
different from Akaike’s (as noted in Hosoya 1991).

3.2 Algorithm for Decomposing a Variance Covariance
Matrix

Rather than directly decomposing an l-dimensional variance covariance matrix of
the noises W = (σi j ), we decompose the following correlation matrix:

R = (ρi j ), ρi j = σi j√
σi iσ j j

, (3.14)

where ρi j = ρ j i and |ρi j | < 1, i �= j . Finally, by the transformation

W = T RT (3.15)

where T = diag{√σ11, . . . ,
√

σll}, the decomposition of the original variance covari-
ance matrix can be obtained.
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This algorithm is based on the procedure of subtracting a specified matrix from
the correlation matrix R to make its off-diagonal component zero, and this procedure
is repeated until the remaining matrix becomes diagonal. Therefore, the number of
repetitions is at most l(l − 1)/2.

We denote a specified matrix by qIIt with rank one, where q takes the absolute
value of an off-diagonal component of the correlation matrix R, which is referred
to herein as the target. On the other hand, I = [e1, e2, . . . , el ]t is an l-dimensional
vector, the component ei of which takes a value of either 1, −1, or 0, depending on
the sign of the target. The algorithm is as follows.

1. The off-diagonal component with the smallest absolute value, say, ρi j is deter-
mined as the target. Then, we take q = |ρi j |.

2. The i th component of I, is taken to be ei = 1, and the sign of the j th component e j

is set equal to that of the target ρi j . The other components of I, ek, k �= i; k �= j
are assumed to be 0.

3. In order tomake the absolute values of the other off-diagonal components as small
as possible after the subtraction, when three off-diagonal components ρki , ρi j , and
ρ jk for k �= i; k �= j satisfy the condition:

ρkiρi jρ jk > 0, (3.16)

we set ek = e j if ρ jk > 0 and ek = −e j if ρ jk < 0.
For the case in which the target ρi j > 0, the sign of ρ jk is the same as that of ρki

and e j = 1. If ρ jk > 0, we set ek = e j = 1. Then, the component of the matrix
IIt corresponding to ρ jk becomes e j ek = 1, and the component of the matrix
corresponding to ρki becomes ekei = 1. Therefore, both components approach 0
after the subtraction. If ρ jk < 0, we set ek = −e j = −1. The component of the
matrix IIt corresponding to ρ jk becomes e j ek = −1, and the component of the
matrix corresponding to ρki becomes ekei = −1. Therefore, both components
approach 0 after the subtraction. The same result is obtained for the case in which
ρi j < 0.

4. If the other off-diagonal component ρhk, h = 2, . . . , l, k = 1, . . . , h − 1; h,

k �= i; h, k �= j is equal to 0 and neither eh nor ek is 0, then eh or ek is set to be
0, as follows. According to which of the subtracted diagonal components, either
ρi i or ρ j j , is larger, we calculate the following two values: the difference between
ρi i and the sum of the other components on the same column (2ρi i − ∑l

m=1 ρmi )
and the difference between ρ j j and the sum of the other components on the same
column (2ρ j j − ∑l

m=1 ρmj ). If the latter is smaller, we set ek = 0, otherwise
eh = 0.

5. If the absolute value of the other off-diagonal component ρhk becomes larger after
the subtraction, we set eh = 0. Then, the l-dimensional vector I is determined,
and R − qIIt is calculated.

6. If the absolute values of all the other off-diagonal components increase after the
calculation R − qIIt , return to step 1 to change the target. In other words, the
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component with the second smallest absolute value for the target is adopted and
steps 2 through 5 are repeated.

7. By repeating steps 1 through 5 at most l(l − 1)/2 times, the resulting matrix
becomes diagonal, and the decomposition of the correlation matrix R is obtained.
By transforming the decomposition of R by (3.15), the decomposition of the
variance covariance matrix W is finally attained. Then, the generalized power
contribution is calculated by (3.13).

In order to clarify the decomposing procedure and the generalized effect of
Akaike’s power contribution, we next present a simple numerical example. Assume
that the three-dimensional variance covariance matrix of the noises is given as

W =
⎡

⎣
9.0 4.2 0.9
4.2 4.0 1.0
0.9 1.0 1.0

⎤

⎦ . (3.17)

Then the correlation matrix is calculated as

R =
⎡

⎣
1 0.7 0.3
0.7 1 0.5
0.3 0.5 1

⎤

⎦ . (3.18)

The target is the (3,1)-component, 0.3, which has the smallest absolute value among
the correlation coefficients, and we take the vector I1 to be [1, 1, 1]t . Calculating
R1 = R − 0.3 I1 It

1,

R1 =
⎡

⎣
0.7 0.4 0
0.4 0.7 0.2
0 0.2 0.7

⎤

⎦ , (3.19)

is obtained, and the (3,1)-component becomes 0. From (3.19), the next target is
the (3,2)-component, 0.2. Taking the vector I2 = [0, 1, 1]t , we calculate R2 =
R1 − 0.2 I2 It

2. Then,

R2 =
⎡

⎣
0.7 0.4 0
0.4 0.5 0
0 0 0.5

⎤

⎦ (3.20)

is obtained. Similarly, taking the vector I3 = [1, 1, 0]t ,

R3 =
⎡

⎣
0.3 0 0
0 0.1 0
0 0 0.5

⎤

⎦ (3.21)
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is attained. As a result, we obtain the following decomposition of the correlation
matrix R:

R = 0.3 I1 I
t
1 + 0.2 I2 I

t
2 + 0.4 I3 I

t
3 + R3. (3.22)

Therefore, the original variance covariance matrix is decomposed as follows:

W = 0.3 T I1 I
t
1 T + 0.2 T I2 I

t
2 T + 0.4 T I3 I

t
3 T + T R3 T

= 0.3

⎡

⎣
9 6 3
6 4 2
3 2 1

⎤

⎦ + 0.2

⎡

⎣
0 0 0
0 4 2
0 2 1

⎤

⎦ + 0.4

⎡

⎣
9 6 0
6 4 0
0 0 0

⎤

⎦

+
⎡

⎣
2.7 0 0
0 0.4 0
0 0 0.5

⎤

⎦ , (3.23)

where T = diag{3, 2, 1}. This leads to the calculation of the generalized power
contribution.

In (3.23), the first term corresponds to the influence from the correlated noise
common to all three variables, and the second term corresponds to influences from
the correlated noise between the second and third variables. Moreover, the third term
corresponds to the influence from the correlated noise between the first and second
variables, and the final term corresponds to the influence from the three independent
noises. Note that the variable combination of each correlated noise depends on the
variance covariance matrix. In this example, there is no influence from correlated
noise between the first and third variables.

Since Akaike’s power contribution is calculated by the following diagonal matrix,
which ignores all of the off-diagonal components of the variance covariance matrix
(3.17): ⎡

⎣
9 0 0
0 4 0
0 0 1

⎤

⎦ , (3.24)

the first three terms corresponding to the influences from the correlated noises in
(3.23) are a new addition to Akaike’s power contribution.

3.3 Example of Power Contribution Analysis

This section provides an example of power contribution analysis for an artificial
trivariate AR process of order two, which is generated by the following 3 × 3 AR
coefficient matrices satisfying the condition of stationarity for a multivariate AR
process (e.g., Hamilton 1994):
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A1 =
⎡

⎣
1.50 −0.10 −0.39
0.31 0.90 −0.13
0.17 0.21 −1.20

⎤

⎦ and A2 =
⎡

⎣
−0.80 0.14 0.16
−0.23 −0.80 0.10
−0.11 0.10 −0.60

⎤

⎦ ,

and three-dimensional normal random numbers with mean vector 0 and variance
covariance matrix W that are generated using Cholesky decomposition. By changing
the components of W as follows:

W0 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , W1 =
⎡

⎣
1 −0.1 0.1
0.1 1 −0.1
0.1 −0.1 1

⎤

⎦ , and W2 =
⎡

⎣
1 −0.6 0.3

−0.6 1 −0.1
0.3 −0.1 1

⎤

⎦ ,

we can compare three stationary trivariate AR processes. Since W0, W1, and W2 can
be decomposed as the form (3.10), the generalized power contribution for each case
is calculated.

Figure3.1 shows the power spectrum of each variable for the three cases. The
front, middle, and rear groups shows three power spectra for W0, W1, and W2 of
Variables 1, 2, and 3, respectively. For each variable, the peak of the power spectrum
is sharper in the case of W2, where the correlation coefficients are higher than those
of W0 and W1. For the most part, the shapes of the power spectra for each variable
remain unchanged.

Figure3.2 shows the generalized power contributions for each variance covariance
matrix in the form of a graph matrix. The three graphs on the top row are for variance
covariance matrix W0, and the generalized power contributions of Variables 1, 2, and
3 are shown from left to right. Similarly, the graphs of the middle and bottom rows
are for variance covariance matrices W1 and W2, respectively. Figure3.2 indicates
that there are three primary types of noise influence. First, there are influences from

Fig. 3.1 Power spectra of Variable 1 ( front), Variable 2 (middle), and Variable 3 (rear) for the
variance covariance matrices W0, W1, and W2.
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Fig. 3.2 Generalized power contributions of Variable 1, Variable 2, and Variable 3 for W0 (top),
W1 (middle), and W2 (bottom)

the three independent noises (1, 2, and 3), corresponding to Variables 1, 2, and 3,
respectively. The second type of noise influence is the influence of two correlated
noises, e.g., the simultaneous influence of Variables 1 and 2 (1+2 in the figure). The
third type of noise influence is the simultaneous influence of Variables 1, 2, and 3
(1+2+3 in the figure). Since W0 is diagonal and has no correlations among variables,
each graph on the top row shows the influences from only the three independent
noises for the variable concerned. Note that, based on (3.12), since the number of
correlated noises is three, there may be one correlated noise that does not show up.
In the three graphs of the middle row for the case of W1, the three correlated noises
are 1 + 2, 2 + 3, and 1 + 3. In the three graphs of the bottom row for the case of
W2, the three correlated noises are 1 + 2, 1 + 3, and 1 + 2 + 3. The revelation of a
combination of variables of correlated noise depends on the values of the variance
covariance matrix.

Moreover, in the case of high correlations, i.e., the case of W2, the correlated noise
influences can be misinterpreted as independent noise influences, as compared with
the case of no correlations, W0.
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Fig. 3.3 Akaike’s power contribution of Variable 1, Variable 2, and Variable 3 for W0 (blue line),
W1 (red line), and W2 (green line)

In Fig. 3.3, Akaike’s power contribution of each variable for the case of W0 is
shown along with the independent noise influences on the generalized power con-
tributions for the cases of W1 and W2. In each panel, the blue, red, and green lines
represent Akaike’s power contributions for W0 and the independent noise influences
in the generalized power contributions for W1 and W2, respectively. The changes
between Akaike’s power contributions and influences of independent noises on the
generalized power contribution are significantly small. This implies the stability of
Akaike’s power contribution.

In addition, we applied the generalized power contribution to different trivariate
AR processes that were generated by different AR coefficient matrices and three-
dimensional normal random numbers with mean 0 and different variance covariance
matrices W . The same results were obtained.

In the next chapter, which demonstrates the application of our indexation and
causation method, the various relationships between financial and economic time
series are observed.
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Chapter 4
Application to Financial and Economic Time
Series Data

Abstract A method for constructing a distribution-free index is applied to finan-
cial and economic time series data and causations are analyzed based on power
contributions. Highlighting the current sequential financial crises, the applications
focus primarily on credit default swap (CDS) markets, which often have heavy-tailed
spread distributions. The first application detects that the European debt crisis has
already spilled over worldwide in terms of sovereign CDS (SCDS) markets. The sec-
ond application measures the impact of the US subprime crisis on Japanese domestic
markets. Finally, in order to examine the usability of a distribution-free index, the
clear polarization between advanced and emerging regions by GDP growth regional
distribution-free indices, and the importance of examining sovereign risks in estimat-
ing the economic growth, are observed. Moreover, the Japanese SCDS distribution-
free index can be regarded as an underlying SCDS spread level reflecting a domestic
credit strength. These applications verify the effectiveness of a distribution-free index
and confirm that applying our method to markets with insufficient information, such
as fast-growing or immature markets, can be effective.

Keywords Credit default swap · Sovereign risk · Crisis spillovers · GDP growth ·
Distribution-free index · Power contribution

4.1 Detecting Crisis Spillovers in Terms of Sovereign
CDS Distribution-Free Indices

The sequential financial crises initially triggered by the US subprime loan crisis
drastically influenced financial markets worldwide. Since then, in particular, atten-
tion to credit risk, which measures the exposure to loss resulting from failure of a
corporation or government to fulfill their debt obligations, has come to the forefront.
A credit default swap (CDS), the most widely used instrument among credit deriv-
atives, is an over-the-counter contract designed to isolate the credit risk profile of
an underlying asset without selling the asset itself. The buyer of a CDS periodically
pays a premium quoted as an annual rate, usually in basis points (bps), to the seller
for credit protection of a debt, and the seller will make a payment on the occurrence
of a credit event of the reference entity. Due to this innovative advantage, the market

© The Author(s) 2015
Y. Tanokura and G. Kitagawa, Indexation and Causation of Financial Markets,
SpringerBriefs in Statistics, DOI 10.1007/978-4-431-55276-5_4
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scale has rapidly expanded and a CDS can be regarded as a proxy for the credit risk
of the issuer (Cossin et al. 2002).

Recently, a sovereign CDS (SCDS) dealing with credit risk on a government
has been highlighted because of concerns about the European debt crisis starting
with the Greece deficit crisis in the fall of 2009. Although the spread fluctuation of
SCDS markets has become influential on the global economy, due to their shallow
histories, fully exploiting the insufficient amount of information that is available for
these markets has become essential.

This section attempts to detect the influences of the European debt crisis on the
SCDS markets. First, we construct SCDS regional distribution-free indices focused
on their spread distributions by applying the method for constructing a distribution-
free index presented in Chap. 2. Second, we conduct the power contribution analysis
(Akaike 1968; Tanokura and Kitagawa 2004), as described in Chap. 3, as a tool
for detecting the multidimensional sources of fluctuations between SCDS regional
distribution-free indices in terms of frequency domain properties. Then, the causal
relations between regions for the periods of the post-subprime crisis, the post-Lehman
shock, the post-Greece deficit crisis, and the crisis contagious phase are investigated.

Significant changes in SCDS spread fluctuations between regions are detected,
revealing that the European debt crisis has already spilled over worldwide. Such
prolonged phenomena would have a serious influence on the real economy.

4.1.1 SCDS Regional Distribution-Free Index Construction

We focus on US dollar-denominated SCDS spreads of the 5-year contract, which is
regarded as the standard and the most liquid contract in the market.

Figure 4.1 shows the time series of SCDS spread histograms, provided by
Bloomberg LP. Each histogram consists of the middle composite SCDS spreads
of at most 66 referencing countries in the sense that both bid and offer spreads exist
during the period. From upper rear to lower front, the period is from January 21,
2004 to June 11, 2012 including the occurrences of the US subprime crisis and the
European debt crisis.

As shown in Fig. 4.1, the SCDS spread distributions are skewed and heavy-tailed.
For the purpose of constructing an index to represent the overall SCDS market behav-
ior, simply taking an average spread at each point in time seems to be inappropriate
because this causes bias and unevenly reflects the extreme spreads of the tails. More-
over, as shown in Fig. 4.2, the number of observations shows an increasing trend and
then a gradual downturn.

Next, we apply the method for constructing a distribution-free index presented in
Chap. 2 to SCDS spreads. Since SCDS spreads are often highly correlated over time
with those within the same region, we construct a regional distribution-free index
assuming that an SCDS spread follows the distribution specific to its region. We clas-
sify the 66 SCDS issues into eight regions, as shown in Table 4.1. The classification
is based on the regional classifications by MSCI and Markit.

http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_3
http://dx.doi.org/10.1007/978-4-431-55276-5_2
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Fig. 4.2 Number of SCDS spreads from January 21, 2004 to June 11, 2012

We determine the optimal λ for the Box-Cox transformation (2.47) in Chap. 2 (Box
and Cox 1964). Note that the Box-Cox transformations are applicable as CDS spreads
are generally positive. For each region, we calculate AIC0

λ in (2.61) in Chap. 2, for
λ = −1,−0.9, . . . , 0.9, 1, which is the AIC (Akaike 1998; Konishi and Kitagawa
2008) for the original SCDS spreads. From Table 4.2 showing the AIC0

λ for major λs
for eight regions, the minimum value of AIC0

λ for each region is obtained at either
λ = 0, λ = −0.5, or λ = −1. Note that AIC0

λ for the original spreads (λ = 1)
is the worst for all regions. Here, from the minimum value of the total AIC0

λ on
the rightmost column, λ = −0.5 is selected for all eight regions, which yields a
reciprocal root square transformation when the constant term is ignored.

Then, we estimate the optimal trend for each region. For example, the estimated
trend for Southern Europe, which includes Greece and Spain, is shown in Fig. 4.3.
From top to bottom, the estimated trend with ±σ ; the residual term, which is the
difference between the average of the Box-Cox transformed SCDS spreads and the
smoothed value at each point of time; the estimated time-varying variance; and

http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_2
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Table 4.1 List of SCDS issues of eight regions, with the number of countries in parentheses

Region Country

Northern Europe (6) Denmark, Finland, Ireland, Norway, Sweden,
UK

Western Europe (6) Austria, Belgium, France, Germany,
Netherlands, Switzerland

Southern Europe (6) Cyprus, Greece, Italy, Malta, Portugal, Spain

Eastern Europe (16) Bulgaria, Croatia, Czech Republic, Estonia,
Hungary, Kazakhstan, Latvia, Lithuania,
Poland, Romania, Russia, Serbia, Slovakia,
Slovenia, Turkey, Ukraine

Middle East/Africa (11) Abu Dhabi, Bahrain, Dubai, Egypt, Iraq, Israel,
Lebanon, Qatar, Saudi Arabia, South Africa,
Tunisia

Developed Pacific (4) Australia, Hong Kong, Japan, New Zealand

Emerging Asia (8) China, Indonesia, Korea, Malaysia, Pakistan,
Philippines, Thailand, Vietnam

Latin America (9) Argentina, Brazil, Chile, Colombia, Ecuador,
Mexico, Panama, Peru, Venezuela

Table 4.2 AIC0
λ for major λs for eight regions

λ North.
Europe

West.
Europe

South.
Europe

East.
Europe

Mid. East/
Africa

Developed
Pacific

Emerging
Asia

Latin
America

Total

1 14,401 11,053 17,069 17,826 20,316 12,196 16,085 21,633 130,579

0.5 10,374 9,164 14,281 16,122 19,484 11,122 15,207 19,519 115,273

0 7,618 8,287 13,236 15,539 18,891 10,841 14,528 17,902 106,841

−0.5 7,135 8,758 12,721 15,579 18,802 11,086 14,377 17,200 105,839

−1 7,085 9,623 14,204 16,378 19,715 11,652 13,965 16,494 109,115

the number of observations are shown. The number of observations often varies over
time and vanishes for certain trading days. Although a relatively large residual term
can occasionally be found when a sudden rise and fall of the observations occurs,
the trend is estimated well as a whole. Note that the peak rise of the time-varying
variance occurs at the time of the US subprime crisis exteriorization in mid-2007.
Similar results are obtained for the other regions. As another example, the estimated
results for Latin America are presented in Fig. 4.4. The frequent variations in the
number of observations including missing observations, cause the sharp peaks of the
residual terms. A steady increase in the time-varying variance in mid-2007 is also
observed in this region. Thus, the impact of the US subprime crisis on the region
cannot be ignored.

For each region, the SCDS regional distribution-free index is obtained by the
inverse Box-Cox transformation of the optimal trend (2.62) in Chap. 2. As an exam-
ple, Fig. 4.5 illustrates the relationship between the SCDS distribution-free index
of Southern Europe (SE index) and the original SCDS spread distributions. For

http://dx.doi.org/10.1007/978-4-431-55276-5_2
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Fig. 4.3 Visualization of the characteristics of the optimal trend for Southern Europe. From top
to bottom, the estimated trend, the residual term, the time-varying variance, and the number of
observations are shown

simplicity, the data based on the month-end are shown. Since the significantly sharp
rises of all items have continued since the Lehman shock in the fall of 2008, as
shown in the top panel, we divide the period as shown in the bottom panels. The
upper tails become increasingly distorted after the US subprime crisis came to light
in mid-2007, after the Lehman shock in the fall of 2008, and after the Greece deficit
crisis revealed in late 2009. The SE index (blue line) is mostly located at more or
less the 50 percentile (red dotted line) of the distributions. Moreover, as shown in the
lower left panel of Fig. 4.6, for the case of Latin America, the trend is appropriately
estimated when there are no observations. Similar results are obtained for the other
regions. On the whole, each SCDS regional distribution-free index is positioned at a
well-balanced place among individual SCDS spreads within the region.

Figure 4.7 shows the eight SCDS regional distribution-free indices. Four SCDS
regional distribution-free indices in Europe and the SCDS distribution-free indices
of four other regions are shown in the top and bottom panels, respectively. In the
top panel, the continuous upward trend of the SE index from the end of 2009, i.e.,
the occurrence of the Greece debt crisis, is noteworthy. Based on this figure, these
SCDS regional distribution-free indices are generally well balanced and reflect the
market views on the regional sovereign risks.
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Fig. 4.4 Visualization of the characteristics of the optimal trend for Latin America. From top
to bottom, the estimated trend, the residual term, the time-varying variance, and the number of
observations are shown
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Fig. 4.5 SCDS distribution-free index of Southern Europe (SE index) with the SCDS spread
distributions for the entire period (top) and detailed periods of interest (bottom)
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Fig. 4.6 SCDS distribution-free index of Latin America (LA index) with the SCDS spread distri-
butions for the entire period (top) and detailed periods of interest (bottom)

0

100

200

300

400

500

600

700

800

900

Western Europe (WE) Index

0

100

200

300

400

500

600

700

800

900

1/
21

/0
4

4/
14

/0
4

7/
7/

04

9/
29

/0
4

12
/2

2/
04

3/
17

/0
5

6/
9/

05

9/
1/

05

11
/2

4/
05

2/
20

/0
6

5/
15

/0
6

8/
7/

06

10
/3

0/
06

1/
24

/0
7

4/
18

/0
7

7/
11

/0
7

10
/3

/0
7

12
/2

7/
07

3/
21

/0
8

6/
13

/0
8

9/
5/

08

11
/2

8/
08

2/
24

/0
9

5/
19

/0
9

8/
11

/0
9

11
/3

/0
9

1/
28

/1
0

4/
22

/1
0

7/
15

/1
0

10
/7

/1
0

12
/3

0/
10

3/
24

/1
1

6/
16

/1
1

9/
8/

11

12
/1

/1
1

2/
23

/1
2

5/
17

/1
2

Latin America (LA) Index

Emerging Asia (EA) Index

Middle East/Africa (MA) Index

Developed Pacific (DP) 
Index

Other four regions

Northern Europe (NE) Index

Eastern Europe (EE) Index

Southern Europe (SE) Index
Four European regions

Fig. 4.7 Eight SCDS regional distribution-free indices



56 4 Application to Financial and Economic …

The European debt crisis has impacted most of the developed countries in Europe.
Therefore, we construct a composite index for the developed Europe, the DE index,
from the NE index, the WE index, and the SE index in a regional-weighted form,
which is the sum of the index value multiplied by the regional weight proportional
to the numbers of countries included, as follows:

DE index = (NE index × 33.3 %) + (WE index × 33.3 %) + (SE index × 33.3 %).

Similarly, we construct a composite index for Eastern Europe & Middle East/Africa,
the EM index, from the EE index and the MA index, as follows:

EM index = (EE index × 59.3 %) + (MA index × 40.7 %).

Finally, we obtain five SCDS regional distribution-free indices: the Developed
Europe (DE), Eastern Europe & Middle East/Africa (EM), Developed Pacific (DP),
Emerging Asia (EA), and Latin America (LA) indices, as shown in Fig. 4.8. In the
earlier period, the levels of the SCDS regional distribution-free index were split
into three groups: the highest level includes the LA index (red line), the middle level
includes the EM (yellow line) and EA (pink line) indices, and the lowest level includes
the DP (green line) and DE (blue line) indices. Later, the EM and EA indices caught
up with the highest LA index. In other words, these indices are polarized between
the developed regions (the DE and DP indices) and the emerging regions (the EM,
EA, and LA indices). In particular, both the LA and EM indices remained high until
the end of 2010. On the other hand, the DE index (blue) gradually increased and
departed from the level that includes the DP index since the fall of 2009, i.e., the
disclosure of Greece deficit crisis. This implies that the DE index can be regarded as
an indicator of the European debt crisis.

Since then, the DE index exhibited a consistent upward trend and reached the level
of the LA and EM indices at the end of 2010. Eventually, the DE index climbed up
to the top level around mid-2011. The parallel shifts of all distribution-free indices
afterwards imply the spillovers from the European debt crisis.

4.1.2 Role of the SCDS Distribution-Free Index

There are existing SCDS indices provided by Markit, such as the iTraxx SovX West-
ern Europe, for the purpose of hedging or taking credit risk on sovereign debt. They
are generally equally weighted of selected names in their regions based on trading
activities and are rolled every six months with membership changes. Therefore, the
index may be biased due to the heavy-tailed spread distributions. In other words,
the information on some issues can be unfairly diluted or weighted. Moreover, the
data length of one series of an index is not sufficient for analyzing the relation-
ship with other financial market indices, such as an equity index or a bond index.
Fung et al. (2008) constructed an index in the same manner as the Dow Jones CDX
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Fig. 4.8 Five SCDS regional distribution-free indices

index (the US corporate CDS index provided by Markit) was constructed, and they
connected the index to the existing series in order to cover the period examined.

On the other hand, in the distribution-free index construction method presented
in Chap. 2, all existing information in the financial market can be fully exploited by
considering the distributions, and the problem on the missing observations can be
solved.

Figure 4.9 compares the SCDS regional distribution-free indices with the Markit
iTraxx SovX indices, provided by Bloomberg LP, by region. In response to the
data length of the Markit indices, the period of all three panels is set to be from
September 1, 2009 to June 11, 2012. In the top panel, three series (Series 2, 6, and
7) of the iTraxx SovX Western Europe, the composite DE index based on three
SCDS regional distribution-free indices, and the three SCDS regional distribution-
free indices (the NE, WE, and SE indices), are shown. The DE index (red line)
exhibits smooth fluctuations and appropriately complies with the three series of
the iTraxx SovX Western Europe (green lines). Moreover, the breakdown of the
sub-regional sovereign risk can be observed in the fluctuations of the SCDS regional
distribution-free indices, i.e., the NE, WE, and SE indices (dashed lines). The middle
panel compares two series (Series 3 and 7) of the iTraxx SovX CEEMA with the
composite EM index and two SCDS regional distribution-free indices (the EE and
MA indices). Note that a few sudden drops to zero of Series 3 of the iTraxx SovX
CEEMA indicate missing observations. The members of Series 3 appear to have
relatively high sovereign risks, and the EM index fluctuates between two series of
the iTraxx SovX CEEMA in a balanced manner. In the bottom panel, two series
(Series 4 and 6) of the iTraxx SovX Asia Pacific are compared with the composite
AP index and two SCDS regional distribution-free indices (the DP and EA indices).
Note that the composite AP index is defined as the number of weighted countries

http://dx.doi.org/10.1007/978-4-431-55276-5_2
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iTraxx SovX Western Europe

Series 7 Series 3 (1/20/10 - )
EE index MA index
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iTraxx SovX Asia Pacific
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NE index                 WE index               SE index
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Fig. 4.9 Comparison of the SCDS regional distribution-free indices with the Markit iTraxx SovX
indices for developed Europe (top), Eastern Europe & Middle East/Africa (middle), and Asia Pacific
(bottom). Source Bloomberg LP

of the DP and EA indices, in the same manner as the DE index. Similarly, we find
that the AP index exhibits well-balanced fluctuations between the two series of the
iTraxx SovX Asia Pacific.

In order to examine the SCDS markets, the information detected from the SCDS
regional distribution-free indices may be useful to complement the information
detected from existing Markit iTraxx SovX indices.



4.1 Detecting Crisis Spillovers in Terms of Sovereign CDS Distribution-Free Indices 59

4.1.3 Causation Between SCDS Regional Distribution-Free
Indices

Using five SCDS regional distribution-free indices, as shown in Fig. 4.8, the spillover
effects of the financial crises are investigated by the power contribution analysis
(Akaike 1968; Tanokura and Kitagawa 2004), as discussed in Chap. 3.

Assume that a causation arises from short-term fluctuations. In particular, in finan-
cial markets, the trend of an asset price is regarded as the gradually changing long-
term fluctuations caused by characteristics specific to the asset, such as fundamental
and economic factors, and short-term cyclical fluctuations around the trend can sen-
sitively be influenced by short-term cyclical fluctuations of any other asset prices,
regardless of the specific characteristics. For example, the tendency of the sovereign
risk of Germany has recently increased to be in line with that of Greece, even though
their economic conditions are different. Moreover, such a short-term cyclical fluctu-
ation often occurs as a short-term price adjustment. Therefore, a short-term cyclical
fluctuation can be a risk factor with uncertainty and may lead to a future change in
the long-term trend direction. Capturing short-term fluctuations of financial markets
is important in risk management.

For each SCDS regional distribution-free index, we focus on the short-term cycli-
cal fluctuations around its trend. In order to extract the trend component from an
index, we use the freely available web-based time series analysis software, Web
DECOMP (http://ssnt.ism.ac.jp/inets/inets_eng.html) based on the seasonal adjust-
ment model (Gersch and Kitagawa 1983; Kitagawa and Gersch 1984), reviewed
in Chap. 2. In practice, although the rate of return and the spread change based on
two consecutive prices are often used to analyze short-term fluctuations, they depend
significantly on the previous price. On the other hand, the advantage of using the sea-
sonal adjustment model is that the detrended cyclical component can be objectively
estimated and is not dependent on the features of the asset.

Next, we focus the analysis on the following four periods: from July 2, 2007 to
September 12, 2008 (post-subprime crisis), from September 15, 2008 to October
30, 2009 (post-Lehman shock), from November 2, 2009 to August 31, 2011 (post-
Greece crisis), and September 1, 2011 to June 11, 2012 (crisis contagious phase).
For each period, we obtain the detrended cyclical component by extracting the trend
component from each SCDS regional distribution-free index by DECOMP. Then,
for each period, we fit a five-dimensional autoregressive (AR) model to the five
detrended regional distribution-free indices.

Table 4.3 shows the variances (diagonal) and correlation coefficients (off-diagonal)
of the noises for the periods of post-subprime (top left), post-Lehman (top right),
post-Greece (bottom left), and contagious phase (bottom right). In the top-left panel,
which shows the variances and correlation coefficients for the post-subprime period,
the significantly high correlation coefficient 0.91 between the developed regional
distribution-free indices, i.e., the DE and DP indices, was found. Then, the top-
right panel, which shows the variances and correlation coefficients for the post-
Lehman period, shows small changes of the correlations and larger variances for all

http://dx.doi.org/10.1007/978-4-431-55276-5_3
http://ssnt.ism.ac.jp/inets/inets_eng.html
http://dx.doi.org/10.1007/978-4-431-55276-5_2
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Fig. 4.10 Power spectrum on a logarithmic scale of five SCDS regional distribution-free indices
for the periods of post-subprime (leftmost), post-Lehman (second leftmost), post-Greece (second
rightmost), and contagious phase (rightmost)

regional distribution-free indices than the previous period. Moreover, as the corre-
lation coefficients of the emerging regional distribution-free indices, i.e., the EM,
EA, and LA indices, with the developed regional distribution-free indices, i.e., the
DE and DP indices, became negative, the emerging regional distribution-free indices
started diverging from the developed regional distribution-free indices. For the post-
Greece period in the bottom-left panel, this tendency strengthened as the correlations
between the developed regional distribution-free indices and, the EA and LA indices
became increasingly negative. Moreover, the positive correlation between the EA
and LA indices strengthened. Finally, in the bottom-right panel for the period of
contagious phase, the correlations between the developed regional distribution-free
indices and, the EA and LA indices became reversed, and the correlations for all
regional distribution-free indices became positive. This implies that the contagious
effect from the European debt crisis was eventually established.

Let us investigate the changes in the power spectra of five regional distribution-
free indices, as shown in Fig. 4.10. For the post-subprime period of the leftmost panel,
the power spectra were polarized in the form of the developed regions (DE and DP
indices) versus the emerging regions (LA, EA, and EM indices). Then, during the
post-Lehman period of the second leftmost panel, all power spectra became larger.
For the post-Greece period of the second rightmost panel, the slightly increasing
power spectrum of the DE index (blue line) became closer to that of the EA index
(pink line), whereas the power spectrum of the EM index (yellow line) decreased.
For the period of contagious phase in the rightmost panel, the power spectrum of the
DE index almost exceeded the power spectrum of the EA index.

Next, in order to detect the causation on the European debt crisis, we calculate the
generalized power contributions (%) (3.13) in Chap. 3, for each period. Figure 4.11
shows the graph matrix of the power contributions (%) of five regional distribution-
free indices with the power spectra. From top row to bottom row, the periods of
post-subprime, post-Lehman, post-Greece, and contagious phase are shown, and the

http://dx.doi.org/10.1007/978-4-431-55276-5_3
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Fig. 4.11 Power contributions (%) with the power spectrum on a logarithmic scale (white line) of
five SCDS regional distribution-free indices for the periods of post-subprime (top row), post-Lehman
(second row), post-Greece (third row), and contagious phase (bottom row). A+B: the simultaneous
contribution of the correlated noises of A and B, ALL-B: the simultaneous contribution of the
correlated noises of all five indices (ALL) excluding B

power contributions (%) for the Developed Europe (DE), Developed Pacific (DP),
Emerging Asia (EA), Latin America (LA), and Eastern Europe & Middle East/Africa
(EM) indices, are shown from left to right. In each graph, the proportion of each
contributor within the power spectrum (white line) is shown at each frequency. Since
the frequency refers to the number of cycles per day, the lower the frequency, the
longer the fluctuation period.

For example, the top-left graph shows the power contributions of indices influ-
encing the DE index for the post-subprime period. The blue area indicates the con-
tribution of the DE index itself and the green area indicates that of the DP index.
Therefore, the contributions of the developed regional distribution-free indices, i.e.,
the DP and DE indices occupied approximately 90 % of the total power of the
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fluctuations of the DE index, for all frequencies. On the other hand, the small light
green area represents the simultaneous contribution from all five indices (ALL) to
the DE index.

Then, based on the leftmost graph on the second row, the contribution of ALL to the
DE index increased for the post-Lehman period. In the post-Greece period (third row),
the correlated noise contributions, such as EM+EA+LA (combination of EM, EA,
and LA indices), ALL-EM (ALL but the EM index), and DE+DP, to not only the DE
index but also to all of the SCDS regional distribution-free indices excluding the EM
index increased significantly. This implies that the SCDS regional distribution-free
indices mostly become sensitive to each other during the post-Greece period. Then, in
the period of contagious phase (bottom row), the sharp increases in the contribution
from the DE index (blue area) around the frequency of 0.1 (approximately 10-day
cycle of fluctuation) can be found for all regions. Interestingly, the contributors of
the correlated noises became concentrated on only three contributors, i.e., ALL,
ALL-EM, and DE+EM+EA for all regions. Note that the contagious effects of the
European debt crisis became established during the period of contagious phase.

In order to summarize the results obtained by the power contribution analysis,
we focus on the frequency domain around the peak of the power spectrum for each
SCDS regional distribution-free index, which largely dominates the fluctuations of
the index. Figure 4.12 shows the top three contributors around the peak of the power
spectrum of each SCDS regional distribution-free index. The frequency domain con-
sidered for the post-subprime, post-Lehman, and post-Greece periods is from 0.06 to
0.065, which expresses an approximately 15-day cycle of fluctuation. On the other
hand, the frequency domain considered for the period of contagious phase, from
0.0975 to 0.105, expressing a 10-day cycle of fluctuation, is slightly higher than that
for the previous three periods.

In the post-subprime period on the top panel, the top contributor was the index
itself for all regional distribution-free indices, excluding the EA index. The contribu-
tion of the developed regional distribution-free indices, such as the DE (blue bar) and
DP (green bar) indices, are among the top three for all distribution-free indices. Then,
during the post-Lehman period, shown in the second panel from the top, the contri-
bution of the developed regional distribution-free indices significantly weakened for
emerging regional distribution-free indices. During the post-Greece period, shown
in the second panel from the bottom, the contributions of correlated noises, such
as ALL-EM (dark blue bar) and DE+EM (light purple bar), increased. All regional
distribution-free indices became sensitive to each other. Finally, during the conta-
gious phase, shown in the bottom panel, the top three contributors became the same
for all regional distribution-free indices: DE (blue), ALL (gray), and DE+EM+EA
(light green). In particular, the contribution of the DE index, i.e., the influence of the
European debt crisis, occupied more than 50 % of the power spectra of all regional
distribution-free indices. The European debt crisis has spread worldwide.

Note that, in this analysis, the scale of economy of each country in a region
is not considered as we focus on the crisis spillovers of a country with a small
economy on the other countries with larger economies in the region, such as the
European debt crisis. However, the SCDS regional distribution-free index can absorb
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Fig. 4.12 Top three contributors around the peak of the power spectrum of each SCDS regional
distribution-free index for the periods of post-subprime (top), post-Lehman (second from top),
post-Greece (second from bottom), and contagious phase (bottom)

the influence to some extent by its spread distribution-free effect. In addition, in
Sect. 4.3.1, we will construct the GDP growth regional distribution-free index and
analyze the relationship between the SCDS regional distribution-free index and the
GDP growth regional distribution-free index.

To represent a different aspect of regional sovereign risk, various ways of appli-
cation of the method for constructing a distribution-free index to SCDS markets, can
be considered. For example, the method can be applied to weighted SCDS spreads
based on an economic scale.

4.2 Measuring the Impact of the US Subprime Crisis
on Japanese Financial Markets

The US subprime crisis sparked the subsequent financial crises. In this section, we
investigate the spillover effect from the US subprime crisis on the Japanese financial
markets. The Japanese corporate CDS market is treated as a credit risk indicator
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representing Japanese corporations. Similar to the SCDS market in the previous
section, the spread distributions of the Japanese corporate CDS issues are skewed
and heavy-tailed, and the number of observations often fluctuates and even vanishes
at certain times because the market is fast-growing and immature. We construct
a distribution-free index for the Japanese corporate CDS by applying the method
presented in Chap. 2.

In the case of corporate CDS, for a practical reason, the co-movement of the CDS
spreads of the issues with the same credit rating can often be observed. Therefore,
we assume that a CDS spread follows the specific distribution of the rating of the
referencing company. Here, we categorize the CDS reference entities into four rating
classes and construct a CDS rating-based distribution-free index for each rating. It is
found that the higher the rating class, the higher the CDS rating-based distribution-
free indices. Then, a composite Japanese corporate CDS distribution-free index for
the entire market is constructed in a rating-weighted form. We regard this Japanese
corporate CDS distribution-free index as a proxy for the Japanese corporate credit
risk.

In order to examine the influence of the US subprime crisis on Japanese markets,
we investigate the causations between the Japanese corporate CDS distribution-free
index and other Japanese market indices, such as the Nomura-BPI overall index
(fixed income), TOPIX (equity), and JPYUSD (Japanese yen exchange rate against
US dollar) by the power contribution analysis (Akaike 1968; Tanokura and Kitagawa
2004), described in Chap. 3.

After the disclosure of the US subprime crisis, the Japanese domestic markets
became significantly influential with respect to each other, and the Japanese corpo-
rate CDS distribution-free index we constructed, provides an indicator of the Japanese
corporate credit risk, fully reflecting the fluctuations of the Japanese financial mar-
kets.

Note that this section presents a complementary analysis of the application in
Tanokura et al. (2012).

4.2.1 Japanese Corporate CDS Market and Rating Classes

We use the middle spreads of Japanese yen-denominated corporate CDS spreads of
the 5-year standard contract provided by Bloomberg LP, for the period from May 29,
2001 to January 29, 2010. There are at most 327 CDS issues referencing Japanese
corporations in the sense that at least one middle spread of a bid and an offer exists
during the period.

The spread distributions of Japanese corporate CDS are skewed and heavy-tailed.
Since the histograms are too skewed to show an overall view, Fig. 4.13 shows only
approximately the left-most 10 % of the total bins along the horizontal axis. Nev-
ertheless, the histograms are significantly skewed and heavy-tailed at each point in
time.

http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_3
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Frequency

Fig. 4.13 Histograms of Japanese corporate CDS spreads for approximately the left-most 10 % of
the total range. The SCDS spread in bps (from left to right), the time (from upper rear to lower
front), and the number of observations (vertical scale). Source Bloomberg LP, and Tanokura et al.
(2012)

For the practical reason that the CDS spreads where the referencing corporations
have the same credit rating often co-move, we assume that a CDS spread follows
a distribution specific to the rating to which the reference entity belongs. Rating
data provided by the major rating agencies in Japan, i.e., R&I, JCR, Moody’s, and
Standard & Poor’s, are used. Since the ratings across agencies in similar categories,
such as AAA and Aaa, can be regarded to be practically the same, we uniquely define
four rating classes, i.e., [AAA+AA], [A], [BBB], and [Lower than BBB], as shown
in Table 4.4. Moreover, by determining the rating prioritization of the agencies as
shown in the bottom row of Table 4.4, which is usually recognized in the Japanese
market, one available rating class including that of the parent company, is assigned
to each referencing corporation. Note that some CDS contracts may have certain
periods with no ratings and that the rating class of a referencing corporation varies
over time. For each rating class, the number of observations varies over time and
becomes zero on certain trading days, as shown in Fig. 4.14. The largest, second
largest, third largest, and smallest average proportions of the number of observations
are 46.5 % for class [A], 36.4 % for class [AAA+AA], 15.6 % for class [BBB], and
1.5 % for class [Lower than BBB] (which is less than 10 observations), respectively.

Major corporations are included in each rating class. Class [AAA+AA] includes
Toyota Motor Corp., NTT, and major utility companies such as Tokyo Electric Power
Co. A general construction company, the Obayashi Corp., is included in class [A].
All Nippon Airways Co. in the air transportation industry belongs to class [BBB].
However, Japan Airlines Intl. Corp. in the same industry was revised downward from
class [BBB] to class [Lower than BBB] on September 13, 2005. The other examples
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Table 4.4 Four rating classes based on major agency ratings and the rating prioritization

R & I JCR Moody’s Standard &
Poor’s

[AAA+AA] AAA AAA Aaa AAA

AA+, AA, AA− AA+, AA, AA− Aa1, Aa2, Aa3 AA+, AA, AA−
[A] A+, A, A− A+, A, A− A1, A2, A3 A+, A, A−
[BBB] BBB+, BBB,

BBB−
BBB+, BBB,
BBB−

Baa1, Baa2,
Baa3

BBB+, BBB,
BBB−

[Lower than BBB] BB+, BB, BB− BB+, BB, BB− Ba1, Ba2, Ba3 BB+, BB, BB−
B+, B, B− B+, B, B− B1, B2, B3 B+, B, B−
CCC+, CCC,
CCC−

CCC Caa1, Caa2,
Caa3

CCC+, CCC,
CCC−

CC, D CC, C, D Ca, C CC, R, SD, D

Rating prioritization 1 2 3 4
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Fig. 4.14 Breakdown of the number of spread observations by rating class (excluding the issues
when they are not rated)

that should be mentioned, are the corporations which were often revised. Softbank
Corp. in the information and communication industry was revised downward from
class [BBB] to class [Lower than BBB] on November 30, 2001 and then was revised
upward to class [BBB] on March 29, 2002. Another financial business company,
AIFUL Corp., which drew attention due to its debt problem, was revised downward
from class [A] to class [BBB] on January 30, 2009 and was again revised downward
to class [Lower than BBB] on December 24, 2009. Moreover, the International Swaps
and Derivatives Association (ISDA) announced the occurrence of a credit event at
AIFUL Corp. at the end of 2009.

4.2.2 Japanese CDS Rating-Based Distribution-Free Index
Construction

As mentioned in Chap. 2, Tanokura et al. (2012) applied a trend component model
with Gaussian or Cauchy observation noises, namely, the Gaussian or the Cauchy
trend estimation models (2.51) to Japanese corporate CDS spreads. As a further

http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_2


68 4 Application to Financial and Economic …

improvement of the trend estimation, this book proposes a trend component model
with Gaussian observation noises with a time-varying variance, namely, the GTV
trend estimation model (2.52). Let us compare the three types of trend estimation
model. Here, the trend order is set to one. For each type, we calculate AIC0

λ in (2.61)
by changing the parameter λ of the Box-Cox transformation (2.47) in Chap. 2 (Box
and Cox 1964), for each rating class. Table 4.5 shows AIC0

λ for major λs of three
types of trend estimation model for each rating class. Note that for each rating class,
AIC0

λ of the Cauchy trend estimation model is significantly smaller than that of the
Gaussian trend estimation model for all λ. This implies the importance of the tails
of the spread distributions of the Japanese corporate CDS.

For class [AAA+AA] in the leftmost panel of Table 4.5, AIC0
λ becomes better in

order of the Gauss, Cauchy, and GTV trend estimation models for all λ. On the other
hand, for class [BBB] in the middle panel, AIC0

λ becomes better in order of the Gauss,
GTV, and Cauchy trend estimation models for all λ. For classes [A] and [Lower than
BBB], the trend estimation model that obtains the minimum AIC0

λ varies over λ.
Generally, the AIC is a relative measure of goodness of fit, and not an absolute

measure, that expresses the discrepancy between the model describing a fluctuating
phenomenon in question and observations, which is a realization of the model. There-
fore, the reasonable model for the phenomenon to be analyzed should be carefully
determined.

In the rightmost panel of Table 4.5 showing the total of AIC0
λ for each λ, the

minimum of AIC0
λ is the Cauchy trend estimation model for λ = −0.5. This Box-

Cox transformation is a reciprocal root square when the constant terms are ignored.
Let us compare the estimations of the Cauchy and GTV trend estimation models

for λ = −0.5. As an example, Fig. 4.15 shows the estimated result of the Cauchy
trend estimation model (top) and that of the GTV trend estimation model (bottom) for
class [AAA+AA]. For both types of trend estimation model, although the frequent
oscillation of the spread fluctuations and the short-term fluctuation of the number
of observations yield diversified residual terms, the residual term of the GTV trend
estimation model becomes smaller than that of the Cauchy trend estimation model.
The estimation of the GTV trend estimation model is smoother than that of the
Cauchy trend estimation model for the relatively long absence of the observations at
the beginning of the analysis period.

Here, the optimal λ = −0.5 of the Cauchy trend estimation model for all rating
classes is determined and the trend estimation is performed by the sequential Monte
Carlo filter presented in Chap. 2 (Kitagawa 2010; Kitagawa and Gersch 1996; Doucet
et al. 2001).

Then, each CDS rating-based distribution-free index is obtained by the inverse
Box-Cox transformation of the optimal trend (2.62). For example, Fig. 4.16 shows the
CDS rating-based distribution-free index for class [AAA+AA] ([AAA+AA] index)
with the CDS spread distributions for the entire period (top) and detailed periods
of interest (bottom). The month-end data are shown for simplicity. The [AAA+AA]
index (blue line) is mostly located close to the 50 percentile (red dotted line), and
significantly heavy upside tails after the Lehman shock in the fall of 2008 reflect the

http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_2
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Cauchy observation noises

Gaussian observation noises with time-varying variance

Fig. 4.15 Visualized characteristics of the optimal trend for class [AAA+AA]. Top trend estimation
model with Cauchy observation noises (source Tanokura et al. 2012), bottom trend estimation model
with Gaussian observation noises with time-varying variance. The estimated trend, the residual
term, the time-varying variance, and the number of observations are shown in each panel from top
to bottom
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[AAA+AA]

Fig. 4.16 [AAA+AA] index (blue line) with the CDS spread distributions for the entire period
(top) and detailed periods of interest (bottom) for class [AAA+AA]

Fig. 4.17 Japanese corporate CDS distribution-free index defined as the aggregated four CDS
rating-based distribution-free indices with the rating weights

scale of the global financial crisis. As a whole, the CDS rating-based distribution-free
index for each rating class is positioned appropriately.

In order to provide an overview of the Japanese corporate credit risk based on the
four CDS rating-based distribution-free indices, we construct a composite index in a
rating-weighted form, namely, the Japanese corporate CDS distribution-free index,
which is defined as the aggregated value of the CDS rating-based distribution-free
index multiplied by the rating weight proportional to the number of entities included,
as shown in Fig. 4.17. Note that the rating weights are not based on the existence of
their spreads but based on the rating information on the reference entities of the CDS
issues, as the missing observations are interpolated.

Figure 4.18 shows the Japanese corporate CDS distribution-free index and the four
CDS rating-based distribution-free indices. Comparison of the levels of four CDS
rating-based distribution-free indices reveals that as the credit risk increases, the
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Fig. 4.18 Japanese corporate CDS distribution-free index (red line) and four CDS rating-based
distribution-free indices: overall view (top) and close-up view (bottom)

index increases. The CDS rating-based distribution-free indices are well balanced,
reflecting the market views on the credit risk of the CDS entities concerned. The
Japanese corporate CDS distribution-free index (red line) is generally located near
the [A] index (purple line) in a balanced manner. The upside tails of the distributions
have been distorted since the disclosure of the US subprime problem in mid-2007
until the cooling the global financial crisis in mid-2009 for all indices. However, the
stand-alone steep appreciation of the [Lower than BBB] index since then, reflects
the credit risk specific to this lowest rating class.

4.2.3 Causation Between Japanese Financial Markets

In order to investigate the effectiveness of the Japanese corporate CDS distribution-
free index based on four CDS rating-based distribution-free indices, we examine
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the influence of the US subprime crisis on the Japanese domestic markets by the
power contribution analysis (Akaike 1968; Tanokura and Kitagawa 2004), presented
in Chap. 3.

As the Japanese domestic market indices, the TOPIX (TPX) for the equity market,
the Nomura-BPI overall index (BPI) for the fixed income market, the JPYUSD:
Japanese yen exchange rate against US dollar (JPUS), and the Japanese corporate
CDS distribution-free index (CDS) are analyzed. TPX, BPI, and JPUS are provided
by Bloomberg LP.

The analysis focuses on the following two periods: the pre-subprime period from
February 1, 2005 to June 29, 2007 (595 trading days) and the post-subprime period
from July 2, 2007 to January 29, 2010 (630 trading days). Similar to the previ-
ous section, in each period, the detrended cyclical component series from each
index are extracted by Web DECOMP based on the seasonal adjustment model
(Gersch and Kitagawa 1983; Kitagawa and Gersch 1984), reviewed in Chap. 2. As

Pre-subprime period Post-subprime period

Fig. 4.19 Detrended cyclical components of the TOPIX (TPX), the Nomura-BPI index (BPI), the
JPYUSD foreign exchange rate (JPUS), and the Japanese corporate CDS distribution-free index
(CDS) for the pre-subprime (left) and post-subprime (right) periods. Source Tanokura et al. (2012)

http://dx.doi.org/10.1007/978-4-431-55276-5_3
http://dx.doi.org/10.1007/978-4-431-55276-5_2
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Table 4.6 Variances (diagonal), covariances (upper off-diagonal), and correlation coefficients
(lower off-diagonal) of the noises for the pre-subprime (top) and post-subprime (bottom) periods

Pre-subprime TPX BPI JPUS CDS

TPX 213.2400 −1.8910 1.0095 0.0421

BPI −0.368 0.1241 −0.0273 −0.0028

JPUS 0.125 −0.139 0.3083 0.0006

CDS 0.021 −0.056 0.008 0.0194

Post-subprime TPX BPI JPUS CDS

TPX 367.6600 −3.9471 9.2850 −8.5279

BPI −0.480 0.1837 −0.1367 0.0916

JPUS 0.575 −0.379 0.7093 −0.2154

CDS −0.320 0.154 −0.184 1.9374

Source Tanokura et al. (2012)

shown in Fig. 4.19, all four detrended cyclical component series became volatile after
the crisis.

A multivariate AR model is separately fitted to the four detrended index series
for the pre- and post-subprime periods. As shown in Table 4.6, which shows the
variances (diagonal), covariances (upper off-diagonal), and correlations (lower off-
diagonal) of the noises for both periods, all variances, covariances, and correlations
became significantly larger in size and their tendencies strengthened after the occur-
rence of the crisis. In particular, the correlation coefficients of CDS with the other
three indices, which were extremely small for the pre-subprime period, increased
dramatically for the post-subprime period.

Figure 4.20 shows the power spectrum for each detrended index for the pre-
subprime (dashed line) and post-subprime (solid line) periods. Compared with the
case of the pre-subprime period, the power spectrum for the post-subprime period
significantly increased for each index, especially for CDS, and the peaks of the power
spectrum became sharpened and strengthened at the lower frequency domain.

By calculating the generalized power contributions (%) (3.13), the influential
components of the power spectrum for each index are investigated. As shown in the
graph matrix of Fig. 4.21, in each graph, each power spectrum is decomposed into
ten terms consisting of four independent noises and six correlated noises. Although
the index combinations of the correlated noise for the pre-subprime period are not
always consistent with those for the post-subprime period, the components of ALL
(orange area), ALL-CDS (light green area), and TPX+BPI (light pink area) are
common to both periods. For all indices, the contribution of each index, which
largely occupied the index itself for the pre-subprime period, decreased for the post-
subprime period. Moreover, the contribution of CDS to the other indices increased
for the post-subprime period, especially in the specific frequency domain around
0.05 (approximately 20-day cycle of fluctuation).

Recall (3.12) in Chap. 3, i.e., the power spectrum of the r th component yn(r) of
the l-dimensional stationary time series yn at frequency f was expressed as

http://dx.doi.org/10.1007/978-4-431-55276-5_3
http://dx.doi.org/10.1007/978-4-431-55276-5_3
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Fig. 4.20 Power spectrum of each detrended index for the pre-subprime (dashed line) and post-
subprime (solid line) periods. Source Tanokura et al. (2012)

TPX BPI JPUS CDS

Pre-subprime

TPX BPI JPUS CDS

Post-subprime

BPI

BPI

JPUS

Fig. 4.21 Power contributions (%) for the pre-subprime (top) and post-subprime (bottom) periods.
Source Tanokura et al. (2012)
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Prr ( f ) =
l−2∑

k=0

k+1∑

j=1

ql−(k+1)+ j, j

l∑

h=1,h �=r

l∑

n=1,n �=r

cr jk(h)cr jk(n)∗ +
l∑

j=1

q j j |br j ( f )|2.

The former term expresses l(l − 1)/2 correlated noises resulting from correlations
between l noise components and the latter term expresses l independent noises result-
ing from single noise components.

Here, let Pf (Ii , I j ) denote the noise influence of index Ii on index I j , and Ki

denote l(l −1)/2 combinations of indices consisting of a correlated noise, for exam-
ple, I1 + I2 and I2 + I3. Then, the power spectrum of an index Ir at frequency f is
rewritten as

Prr ( f ) =
l(l−1)/2∑

i=1

Pf (Ki , Ir ) +
l∑

j=1

Pf (I j , Ir ).

The expression of the former correlated noise and that of the latter independent noise
are replaced with Pf (Ki , Ir ), i = 1, . . . , l(l − 1)/2, and Pf (I j , Ir ), j = 1, . . . , l,
respectively. Therefore, the generalized power contribution of the correlated noise
and the independent noise to an index Ir are expressed as

C f (Ki , Ir ) =
l(l−1)/2∑

i=1

Pf (Ki , Ir )/Prr ( f ) and C f (I j , Ir ) =
l∑

j=1

Pf (I j , Ir )/Prr ( f ),

respectively.
In order to effectively summarize the results of the power contribution analysis,

we score the indices in terms of power contribution. In other words, we allocate the
amount of the power contribution to each contributing index. Since the power con-
tribution of the correlated noise is a many-to-one causation, we consider allocating
the amount of power contribution to each concerned contributing index evenly. For
example, in the case of power contribution C f (Ii + I j , Ir ), half of C f (Ii + I j , Ir )

is assigned to Ii as C f (Ii , Ir ) and half is assigned to I j as C f (I j , Ir ). On the other
hand, since the power contribution of the independent noise is a one-to-one causa-
tion, the power contribution C f (I j , Ir ) is simply assigned to the contributing index
I j as C f (I j , Ir ).

In this way, all power contributions are assigned to concerned contributing indices.
Then, the sum of the assigned contribution, C f (Ii , Ir ), expresses the contributing
score of index Ii to index Ir at frequency f . The total contribution C(Ii , Ir ) to an
index Ir is the aggregated contributing score over all frequencies. Finally, l × l total
contributions C(Ii , I j ), i, j = 1, . . . , l, are obtained.

Note that the two total contributions C(Ii , I j ) and C(I j , Ii ) between Ii and I j ,
which measure the degree of contributions from Ii to I j and the degree of contribu-
tions from I j to Ii , respectively, are not always the same.

Table 4.7 shows the total contributions (%) for the pre-subprime and post-
subprime periods, and the ratio of the total contribution for the post-subprime period
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to that for the pre-subprime period. For the pre-subprime period, C(CDS, TPX) =
10.6 % and C(TPX, CDS) = 3.1 %. For the post-subprime period, C(CDS, TPX)

increased to 17.5 % and C(TPX, CDS) increased to 14.8 %. Therefore, as shown in
the right panel, the contribution of CDS to TPX increased 1.7-fold, and the total
contribution of TPX to CDS increased 4.8-fold. Similarly, the total contribution of
CDS, to BPI and JPUS increased 1.5-fold and 2.4-fold, respectively, while the total
contributions of BPI and JPUS, to CDS increased 2.0-fold and 6.9-fold, respectively.
Since the total contributions to the other indices were relatively weak, CDS (Japanese
corporate CDS distribution-free index) can be considered as highly sensitive to the
fluctuations caused by the other domestic indices, even though the total contributions
from the other indices shown in the left and middle panel, were relatively small.

The total contribution of TPX to JPUS significantly increased 21.7-fold, whereas
the total contribution of JPUS to TPX was 3.8-fold. On the other hand, the total
contribution of BPI to all indices decreased, except for that to CDS which increased
from 3.7 to 7.3 %. Note that the fluctuation of BPI (fixed income), became less likely
to reflect fluctuations of TPX (equity), and JPUS (foreign exchange rate). Moreover,
the total contribution from an index to the index itself weakened by a factor of 0.7
for every index.

After the disclosure of the US subprime crisis, the Japanese domestic markets
became influential with respect to each other and the Japanese corporate CDS
distribution-free index we constructed, can be an indicator of Japanese corporate
credit risk, fully reflecting the fluctuations of the Japanese financial markets.

4.3 Other Applications: Usability of the Distribution-Free
Index

In order to examine the usability of a distribution-free index, in this section, we
provide two applications. First, we construct GDP growth regional distribution-free
indices using the real GDP growth data of 63 countries. The clear polarization in
the form of developed regions versus emerging regions in terms of GDP growth
regional distribution-free indices, is detected. Moreover, as the relation between the
GDP growth regional distribution-free index and the SCDS regional distribution-free
index constructed in Sect. 4.1, strengthened during the period of the global economic
crisis, estimating the economic growth after carefully examining sovereign risks
becomes indispensable in economic policy decision making. Second, we construct
the Japanese SCDS distribution-free index using SCDS curves referencing Japan,
consisting of the spreads of 11 kinds of maturites. The Japanese SCDS distribution-
free index can be regarded as an underlying SCDS spread level, reflecting a domestic
credit strength, and is usable for pricing.
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4.3.1 Constructing a GDP Growth Regional
Distribution-Free Index

The financial crisis triggered by the US subprime loan crisis in 2007 eventually led
to a global economic crisis that affected simultaneously not only emerging countries
but also developed countries all over the world. Due to the increasing globalization of
the world economy, countries have become more exposed to cross-border economic
risks. Moreover, observing a global trend of the world economy becomes significantly
important because an economic crisis of a country often spills over to economies
of other countries starting with neighbor countries to even distant countries. The
European debt crisis can be cited as an example.

As estimating the economic growth for a country plays an important role in eco-
nomic policy decision making and managing investment strategy, it is crucial to
determine the current state of the economy of the country. However, this is not easy
because there is usually some lag, e.g., a few months, between events and the official
announcement of economic figures. Therefore, it is necessary to make the fullest
possible use of available information on the economy. As such, we consider using a
statistical method effectively.

We focus on the quarterly year-on-year growth rate (%) data of the real GDP
of 63 countries, provided by CEIC, for the period from the first quarter of 1996
to the second quarter of 2012. As shown in Fig. 4.22, the number of observations
gradually increases because there were some countries with no available official data
for the early period of analysis. On the other hand, in June 2012, which is the end
of the analysis period, there were only 30 observations available at that time due to
the lag of the announcement. It is necessary to make the fullest possible use of the
observations.

Here, we classify the countries into eight regions and the United States, as shown
in Table 4.8, which is similar to the classification in Table 4.1 for comparison. The ∗
symbol indicates that a country belongs to advanced economies, whereas other coun-
tries belong to emerging and developing economies, according to the IMF country
classification. The region, e.g., Northern, Western, Southern Europe, or Developed

Fig. 4.22 Number of countries with available real GDP growth observations
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Table 4.8 Regional classification of 63 countries

Region (no. of countries) Country

Northern Europe (6) Denmark∗, Finland∗, Ireland∗, Norway∗,
Sweden∗, UK∗

Western Europe (6) Austria∗, Belgium∗, France∗, Germany∗,
Netherlands∗, Switzerland∗

Southern Europe (5) Greece∗, Italy∗, Malta∗, Portugal∗, Spain∗

Eastern Europe (16) Bulgaria, Croatia, Czech∗, Estonia∗, Hungary,
Kazakhstan, Latvia∗, Lithuania∗, Poland,
Romania, Russia, Serbia, Slovakia∗, Slovenia∗,
Turkey, Ukraine

Middle East/Africa (7) Bahrain, Egypt, Israel∗, Saudi Arabia, South
Africa, Tunisia

Developed Pacific (4) Australia∗, Hong Kong∗, Japan∗, New
Zealand∗

Emerging Asia (9) China, India, Indonesia, Korea∗, Malaysia,
Philippines, Singapore∗, Taiwan∗, Thailand

Latin America (9) Argentina, Brazil, Chile, Colombia, Ecuador,
Mexico, Panama, Peru, Venezuela

– USA∗

The ∗ symbol indicates an advanced economy, whereas other countries are emerging and developing
economies, according to the IMF country classification

Pacific, consists of countries in advanced economies, whereas countries in Latin
America belong to emerging and developing economies.

Figure 4.23 shows the time series of the GDP growth histograms. The histogram
at March 1996 is at the rear and that at June 2012 is at the front. The range of the GDP
growth covers from −25 to 37 % as a whole. We highlight the countries, or regions
to which most of the countries belong, conspicuously in the tails of the distributions
(yellow circle). The highlighted Emerging Asia in the lower tail of the distributions
around 1998 reflects the influence of the Asian financial crisis in 1997. Similarly, the
influence of the Latin American crisis triggered by the excessive debt of Argentina
in 2001 can be found in the highlighted Latin America in 2002. The sharply twisted
distribution in the first half of 2009 clearly reflects the magnitude of the impact of
the global economic crisis. The highlighted Eastern Europe in the lower tail in 2009
indicates that this region was economically devastated by the crisis. Moreover, the
existence of Greece in the lower tails around 2011 to 2012 is due to the debt crisis
of the country. Thus, the influences of the financial crises on the regional economy,
including the concerned country, cannot be ignored.

Let us consider the distributions of real GDP growth by region. In order to empha-
size the twisting of the distribution, Fig. 4.24 shows an overhead view of the his-
tograms of real GDP growth for Latin America in the top panel and that for Southern
Europe in the bottom panel. Both distributions exhibit a similar transition, whereas
the distribution for Southern Europe is tighter than that for Latin America as a whole.
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Fig. 4.23 Real GDP growth (%) histograms of 63 countries. The real GDP growth (from left to
right), the time (from upper rear to lower front), and the number of observations (vertical scale).
Conspicuous countries or regions in the tails of the distributions are highlighted (yellow circle).
Source CEIC

However, as shown in Table 4.8, the countries in Southern Europe are all advanced
economies and those in Latin America are all emerging and developing economies.

Recall that the method for constructing a distribution-free index presented in
Chap. 2 can be used for examining the observation distribution. Since the Box-Cox
transformation (2.47) (Box and Cox 1964) is applied to positive values of observation,
the real GDP growth data ranging from negative to positive are not directly applicable.
Therefore, we first transform the observations to be in a positive domain by the
following distribution invariant function.

Let gi (n), i = 1, . . . , j (n), denote the real GDP growth of a country i in a region
at time n, where j (n) denotes the number of country observations in the region at
time n and n = 1, . . . , N . We transform gi (n) to a positive domain by the following
parallel shift:

pi (n) = gi (n) + C, (4.1)

where C is an appropriate constant such that C > min
i

(gi (n)) for n = 1, . . . , N .

Then, the Box-Cox transformation can be applied to pi (n). Note that the GDP growth
regional distribution-free index is eventually defined by the inverse of the distribution
invariant function (4.1) of the inverse Box-Cox transformed values of the optimal
trend.

Next, we search for the optimal λ of the Box-Cox transformation for pi (n). From
Table 4.9, which shows AIC0

λ for major λs by region including all countries (All),

http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_2
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## ## ## ## ## ## ## ## ## ## ## ## ## ## -9 -7 -6 -5 -4 -2 -1 0 2 3 4 5 7 8 9 10 12 13 14 15 17 18 19 21 22 23 24 26 27 28 29 31 32 33 34 36 37
3/1/96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9/1/11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12/1/11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/1/12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6/1/12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 4.24 Overhead view of GDP growth histograms for Latin America (top) and Southern Europe
(bottom). The numbers in the cells indicate the number of countries
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Table 4.9 AIC0
λ for major λs by region

λ All North.
Europe

West.
Europe

South.
Europe

East.
Europe

Developed
Pacific

Emerging
Asia

Mid.
East/Africa

Latin
America

1 298 304 251 262 406 329 445 285 363

0.5 214 229 184 205 285 248 301 217 273

0 225 232 185 209 299 252 306 216 307

−0.5 262 241 197 214 325 258 322 219 413

−1 366 253 205 225 359 268 339 231 606

the minimum AIC0
λ are at λ = 0.5 for all regions, excluding Middle East/Africa.

However, AIC0
λ at λ = 0.5 for Middle East/Africa is the second minimum with a

small difference from the first minimum. Therefore, for all nine regions, we determine
the optimal λ = 0.5, which is a square transformation when the constant term is
ignored. Based on these results, the distribution of observations is similar for each
region. Therefore, we assume that the real GDP growth of a country follows the
distribution specific to the region and construct a GDP growth regional distribution-
free index.

Then, the optimal trend for each region is estimated. For example, the estimated
trend for Southern Europe is shown in Fig. 4.25. The figure shows, from top to bottom,
the estimated trend with ±σ , the residual term, the estimated time-varying variance,
and the number of observations. Although a relatively large residual term can be
found at March 2009 due to the turning point of the trend which can be caused by
the global economic crisis, the overall estimation is good. Moreover, it is natural to
observe the large swing of the time-varying variance during the period of the crisis.

By the inverse transformation of the distribution invariant function (4.1) of the
inverse Box-Cox transformed values of the optimal trend (2.62), we obtain the GDP
growth regional distribution-free index for each region. In Fig. 4.26, the relationship
between the GDP growth distribution-free index of Southern Europe (SE index:
blue line) and the original GDP growth distributions, are shown. The SE index is
generally close to the mean (black dotted line). However, the diversified changes of
the distribution are flexibly reflected, in particular, since December 2009 just after
the disclosure of the deficit problem in Greece. Similarly, other eight GDP growth
regional distribution-free indices including that for all countries (All index), are
constructed.

Figure 4.27 shows all GDP growth regional distribution-free indices. The verti-
cal lines across the two panels express, from left to right, the revelation of the US
subprime crisis, the Lehman shock, and the disclosure of the Greece debt crisis.
We categorize the Northern, Western and Southern Europe, and Developed Pacific
indices, plus the USA, as the developed regional distribution-free indices, and cat-
egorize the other Middle East/Africa, Eastern Europe, Emerging Asia, and Latin
America indices, as the emerging regional distribution-free indices. Note that the
USA uses the GDP growth observations.

http://dx.doi.org/10.1007/978-4-431-55276-5_2
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Fig. 4.25 Visualization of the characteristics of the optimal trend for Southern Europe. The esti-
mated trend, the residual term, the time-varying variance, and the number of observations are shown
from top to bottom

Fig. 4.26 GDP growth distribution-free index of Southern Europe (SE index) with the distribution
of GDP growth
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Fig. 4.27 Developed regional distribution-free indices for the Northern, Western and Southern
Europe, and Developed Pacific indices, plus the USA versus the All index (top), and emerging
regional distribution-free indices for the Middle East/Africa, Eastern Europe, Emerging Asia, and
Latin America indices versus the All index (bottom). The vertical lines express, from left to right,
the revelation of the US subprime crisis, the Lehman shock, and the disclosure of the Greece debt
crisis

The top panel compares the developed regional distribution-free indices with
the All index. The drop to the minimum level in 1998 of the Developed Pacific
index (orange line) reflected the influence of Hong Kong due to the Asian financial
crisis. Note that, since 2000, most developed regional distribution-free indices have
performed under the All index (black dashed line). In particular, the current lowest
downward performance of the Southern Europe index (blue line) can reflect the
seriousness of the prolonged Greece debt crisis. The All index, which can be regarded
as a global trend of the world economy, has reversed the upward trend from the
bottoming out, since June 2010, along with the SE index (blue line).

In the bottom panel of Fig. 4.27, the emerging regional distribution-free indices
and the All index are compared. The large magnitudes of the fluctuations of the emerg-
ing regional distribution-free indices are quite impressive. The emerging regional
distribution-free indices had revolved around the All index (black dashed line) until
2003, and then, they mostly performed better than the All index, except the Eastern
Europe index (yellow line) for the period of the global economic crisis from 2008 to
2009.
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Fig. 4.28 Time series of standard deviations of the developed and emerging regional distribution-
free indices

The clear polarization in the form of developed regional distribution-free indices
versus emerging regional distribution-free indices across the All index through the
analysis period, is noteworthy. Although this polarization was interrupted by the
global economic crisis from 2008 to 2009, it has currently recovered.

Figure 4.28 shows the time series of standard deviations of the developed and
emerging regional distribution-free indices. The sharply-widened variations for both
developed and emerging regional distribution-free indices were observed in 1998,
reflecting the Asian financial crisis. However, since then, the independent peak of
variation of emerging regional distribution-free indices (red line) occurred in Sep-
tember 1999, in March 2003, and in September 2009. Whereas, the variation of
developed regional distribution-free indices (blue line), which had been relatively
smaller than the variation of emerging regional distribution-free indices, exhibited a
gradual upward trend during the global economic crisis. The variation of developed
regional distribution-free indice largely exceeded the variation of emerging regional
distribution-free indices in December 2011, and in June 2012 almost reached the
level of its peak in 1998. This implies the significant influence of the prolonged
Greece debt crisis on developed regional economies.

Let us observe the relation between a regional economy and a regional sov-
ereign risk. As an indicator of regional sovereign risk, we use the SCDS regional
distribution-free index, provided on a quarterly base, which was constructed in
Sect. 4.1.

Figure 4.29 shows the GDP growth regional distribution-free (DF) index (red
line) and the SCDS regional distribution-free (DF) index (blue line) by region for
the period from March 2004 to June 2012.

Although the scale is different by region, for the pre-subprime period from March
2004 to June 2007, no obvious relations between the GDP growth DF index and
the SCDS DF index were observed for all regions. Then, during the post-subprime
period from September 2007 to September 2009, the bottoming out of the GDP
growth DF index occurred at the same quarter as the peak of the SCDS DF index for
Developed Pacific, whereas, for other seven regions, the bottoming out of the GDP
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Fig. 4.29 Comparison of the GDP growth distribution-free (DF) index (red) with the SCDS
distribution-free (DF) index (blue: RHS) for eight regions
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growth DF index occurred one or two quarters later than the peak of the SCDS DF
index. For the post-Greece period from December 2009 to June 2011, the relatively
stable transition of the SCDS DF index was found for emerging regions, such as
Eastern Europe, Emerging Asia, Middle East/Africa, and Latin America, whereas
the gradual increase of the SCDS DF index was observed for developed regions,
such as Northern and Western Europe, and Developed Pacific, reflecting the steep
increase of the SCDS DF index of Southern Europe. On the other hand, the V-shaped
regional recovery from the global economic crisis in terms of the GDP growth DF
index, turned downward for all regions. Lastly, in the period of crisis contagious
phase from September 2011 to June 2012, the fluctuation of the SCDS DF index for
emerging regions along with that for Southern Europe, implies the spillover effect
from the European debt crisis. On the other hand, the regional economy varied over
region. The gradual regional economic recovery in terms of the GDP growth DF index
was observed in Developed Pacific and Middle East/Africa, whereas the economic
downturn was found in Western, Southern, and Eastern Europe, and Latin America.

We calculate correlations between the GDP growth regional distribution-free
index and the SCDS regional distribution-free index by region for the periods of
pre-subprime (from March 2004 to June 2007), post-subprime (from September
2007 to September 2009), post-Greece (from December 2009 to June 2011), and
contagious phase (from September 2011 to June 2012), as shown in Table 4.10.

Here, we focus on the size of correlation. The region with the size of correlation
more than 0.5, which was Western Europe and Latin America for the pre-subprime
period, extended across all eight regions for the post-subprime period, which includes
the global economic crisis. This implies the serious influence of the crisis on the global
economy, which caused soaring sovereign risks. Then, for the post-Greece period, the
region with the size of correlation more than 0.5 was only Western Europe including
Germany, indicating that the concerns on the European credit uncertainty expanded
to this region despite its regional economic recovery. For the period of contagious
phase, the region with the size of correlation more than 0.5 was all regions excluding
Northern and Western Europe, implying that the influence of the European debt crisis
on the regional economies spilled over into even outside of Europe.

Note that the relation between the regional economy and the regional sovereign
risk significantly strengthened during the period of the global economic crisis from
2008 to 2009. At that time, since an improvement of the regulatory framework of the
financial system and a reconsideration of economic theory were actually required, the
economic circumstances have changed substantially since then. In economic policy
decision making of a country, it becomes indispensable to estimate the economic
growth after carefully examining sovereign risks. Further analysis is left for future
study.

Thus, the wider applicable area of the method for constructing a distribution-free
index can be expected.
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4.3.2 Constructing a Japanese SCDS Distribution-Free
Index Using SCDS Curves

Usually, CDS contracts with various maturities are traded, such as six months, three
years, five years, or ten years. Some contracts, like the standard 5-year contract, may
be liquid, whereas others may not. As mentioned in the previous section, an SCDS
spread can be regarded as a market evaluation of the country’s credit. Therefore,
the SCDS curve, which plots SCDS spreads referencing a country at a point in time
against maturities, provides a market view on the country’s future credit risk at that
time.

Figure 4.30 shows the daily time series of the SCDS curve referencing Japan, for
the period from June 23, 2006 to December 31, 2014. From upper left to lower right,
the maturity increases in length, and from upper right to lower left, the time becomes
nearer to the end of the period of analysis. We use the composite middle spreads,
provided by Markit, of US dollar-denominated SCDS contracts referencing Japan,
with 11 different maturities: 6 months, 1 year, 2 years, 3 years, 4 years, 5 years, 7
years, 10 years, 15 years, 20 years, and 30 years.

As shown in the most left end of the surface in Fig. 4.30, which shows the SCDS
curve at the end of December 2014, an SCDS curve usually has an upward slope as
the length of maturity increases. Because the SCDS spread tends to become higher
(riskier) for the longer maturity due to the higher uncertainty in order to protect
against a credit event that may occur in the country.

There are missing spread observations of some maturities in the beginning of the
period. A few sharp increases in the SCDS curve level are found. The first sharp
increase occurred upon the bankruptcy of Lehman Brothers in the fall of 2008. The

Fig. 4.30 Time series of Japanese SCDS curve. The maturity (from upper left to lower right), the
time (from upper right to lower left), and the spread (vertical scale), are shown. Source Markit
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Table 4.11 AIC0
λ for major λs

λ 1 0.5 0 −0.5 −1

AIC0
λ −29,529 −31,103 −31,143 −30,194 −25,835

conspicuously sharp increase starting from the beginning of 2010 gradually reached
a peak at the beginning of October 2011, which may reflect the European debt crisis.

Let us consider estimating an underlying SCDS spread level using an SCDS curve
at a point in time, assuming that an SCDS spread for each maturity is appropriately
distributed around this level in response to external uncertain influences. Then the
underlying SCDS spread level can be a basic spread for pricing, reflecting a domestic
credit strength specific to the country at that time.

By applying the method for constructing a distribution-free index presented in
Chap. 2, to the SCDS curves referencing Japan, consisting of the spreads of 11 dif-
ferent maturities, we construct the Japanese SCDS distribution-free index.

First, we calculate AIC0
λ in (2.61) by changing the parameter λ of the Box-Cox

transformation (2.47) (Box and Cox 1964) and search for the optimal λ. In Table 4.11
showing AIC0

λ for major λs, the minimum value of AIC0
λ is obtained at λ = 0. In order

to ensure validity of the optimal transformation, we also examine AIC0
λ for the SCDS

curves of other 73 countries, and the optimal λ = 0 is obtained for 32 % of countries.
Considering these results, we select the logarithmic transformation (λ = 0).

Next, the trend estimation using the optimal Box-Cox transformation is conducted.
Figure 4.31 shows, from top to bottom, the estimated trend with ±σ , the residual term,
which is the difference between the mean of the log-transformed SCDS spreads and
the estimated trend at each point in time, the estimated time-varying variance and the
number of observations. Although there are a few missing spreads in the SCDS curve
at some points in time, the optimal trend is smoothly estimated. The sharp peaks of
the time-varying variance are often found from 2008 to 2009 due to the turning
points of the trend, that may be caused by the global financial crisis. Generally, the
trend is well estimated. By the inverse Box-Cox transformation of the optimal trend
(2.62) in Chap. 2, the Japanese SCDS distribution-free index is obtained. Note that
the information on the length of maturity is not taken into account in the estimation.

In order to figure out if the Japanese SCDS distribution-free index can be consid-
ered as an underlying SCDS spread level, we investigate the relationships between
the Japanese SCDS distribution-free index and the SCDS spreads of 11 maturities, as
shown in Fig. 4.32. In the top panel, the Japanese SCDS distribution-free index and
the time series of the SCDS spreads with maturities of 6 months, 1 year, 2 years, 3
years, 4 years, 5 years, 7 years, 10 years, 15 years, 20 years, and 30 years are shown.
In the middle and bottom panels, the difference between the index and spreads with
maturities longer than or equal to 5 years, and the difference between the index and
spreads with maturities shorter than 5 years, are shown, respectively. Note that a few
sudden drops to zero in the top panel indicate missing spreads. For simplicity, the
data based on the month-end are shown.

http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_2
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Fig. 4.31 Visualization of the characteristics of the optimal trend for Japanese SCDS curves. The
estimated trend, the residual term, the time-varying variance, and the number of observations are
shown from top to bottom

For the period from June 2006 to the end of 2007, in the top panel, the Japanese
SCDS distribution-free index (red dotted line) had an approximately 5-year spread
(blue dotted line). In the middle panel, the spread differences between the Japanese
SCDS distribution-free index and contracts with maturities longer than or equal to
5 years, were approximately less than 10 bps, while in the bottom panel, the spread
differences between the index and contracts with maturities shorter than 5 years,
were symmetrically more than −10 bps. As there were no significantly influential
events on Japan before the global financial crisis, the underlying spread level can be
naturally considered equivalent to the standard 5-year spread, which is most liquid,
and the SCDS spreads for other maturities were priced in a balanced manner.

In 2008, as shown in the top panel, the Japanese SCDS distribution-free index
was gradually shifted to have approximately a 4-year spread, but lower than the
shift of a 5-year spread, reflecting the influence of the Lehman shock. Since then,
the Japanese SCDS distribution-free index has stayed a more or less 4-year spread.
Note that the standard 5-year contract has been priced riskier than the Japanese SCDS
distribution-free index, reflecting the spillover effect from the crisis into the sovereign
risk of Japan. Moreover, as shown in the middle panel, the spread differences between
the Japanese SCDS distribution-free index and contracts with maturities longer than



4.3 Other Applications: Usability of the Distribution-Free Index 93

0

20

40

60

80

100

120

140

160

180

200

SCDS spreads and the DF index 30-yr

20-yr

15-yr

10-yr

7-yr

5-yr

4-yr

3-yr

2-yr

1-yr

6-mo.

SCDS DF
i ndex

(0: Missing data)

-10

0

10

20

30

40

50

60

70

80

90
Differences between spreads and the DF index (5-year to 30-year)

5-yr

7-yr

10-yr

15-yr

20-yr

30-yr

bps

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20
Difference beween spreads and the DF index (6-month to 4-year)

6-mo.

1-yr

2-yr

3-yr

4-yr

bps

bps

Fig. 4.32 Relationships between the Japanese SCDS distribution-free index (SCDS DF index) and
the SCDS spreads for maturities of 6 months, 1 year, 2 years, 3 years, 4 years, 5 years, 7 years,
10 years, 15 years, 20 years, and 30 years (top), the difference between the index and spreads with
maturities longer than or equal to 5 years (middle), and the difference between the index and spreads
with maturities shorter than 5 years (bottom). Source Markit

or equal to 5 years, rapidly increased in 2008, and then almost reached the maximum
80 bps of the 30-year contract, in December 2012. Symmetrically, as shown in the
bottom panel, the spread differences between the index and contracts with maturities
shorter than 5 years, decreased to almost reach the minimum −70 bps of the 6-month
contract, at the end of 2011.

The variations of spread differences in both middle and bottom panels since 2008,
exhibits dynamic fluctuations responding to the external influences such as increasing
uncertainty to the crisis. Neither spread differences had returned to the level before
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Fig. 4.33 Purchasing Managers’ Index (PMI: solid line) with the real GDP growth (dashed line)
for Japan (top), the Japanese inflation rate (second from top), the Nikkei 225 (second from bottom),
and the Japanese SCDS distribution-free index (bottom). Source Markit Economics Limited, OECD
the Statistics Bureau of Japan, and the Nikkei

the US subprime crisis and the Japanese SCDS distribution-free index had never
exceeded the 5-year spread level.

Next, let us investigate the relationships between the Japanese SCDS distribution-
free index and the Japanese domestic indicators, representing the equity market and
the economy. We focus on the period of analysis from August 2007 to December
2014 through the crises following the US subprime crisis. As shown in Fig. 4.33, as
economic indicators, we use the seasonally adjusted Purchasing Managers’ Index for
the manufacturing sector of Japan (PMI) provided by Markit Economics Limited,
and the inflation rate provided by the Statistics Bureau of Japan, and the Nikkei 225
provided by the Nikkei, representing the equity market. Note that the data provide a
monthly base. As shown in the top panel, since the transition of PMI (solid line) is
similar to that of the quarterly real GDP growth (dashed line) provided by OECD,
we regard PMI as an economic indicator in this analysis.



4.3 Other Applications: Usability of the Distribution-Free Index 95

Table 4.12 Standard deviations (diagonal) and correlation coefficients (off-diagonal) of the noises
for PMI (Purchasing Managers’ Index), CPI (inflation rate), CDS (Japanese SCDS distribution-free
index), and EQ (Nikkei 225)

PMI CPI CDS EQ

PMI 0.94

CPI −0.33 0.16

CDS −0.23 0.08 0.001

EQ 0.24 −0.08 −0.06 205

Compared with the sharp V-shaped recovery of PMI (solid line), from the bottom
at January 2009 to the mid-2009 due to the global economic crisis, which is shown in
the top panel, both the recovery from the relatively steep decline of the Nikkei 225 in
the second from bottom panel, and the peak out of the Japanese SCDS distribution-
free index in the bottom panel, occurred in February 2009, i.e., one month later.
Whereas, as shown in the second from top panel, the inflation rate bottomed out in
October 2009. This may reflect that the shock of the crisis remained for approximately
one year. The gradual upward trend in the Japanese SCDS distribution-free index
since May 2009 was observed in the bottom panel. In other words, the underlying
sovereign risk has gradually strengthened.

In order to investigate causations by the power contribution analysis (Akaike
1968; Tanokura and Kitagawa 2004) presented in Chap. 3, for each index, we focus
on the short-term cyclical fluctuation around the trend. Using the software DECOMP
based on the seasonal adjustment model (Gersch and Kitagawa 1983; Kitagawa and
Gersch 1984) reviewed in Chap. 2, the detrended cyclical component is obtained by
extracting the long-term trend from each index, as shown in Fig. 4.34. Variously-
shaped fluctuations of detrended cyclical components are observed.

Table 4.12 shows the standard deviations (diagonal) and correlation coefficients
(off-diagonal) of the noises for PMI (Purchasing Managers’ Index), CPI (inflation
rate), CDS (Japanese SCDS distribution-free index), and EQ (Nikkei 225). The
almost nonexistent correlation between EQ and CDS, that between EQ and CPI,
and that between CDS and CPI are noteworthy. In particular, the almost nonex-
istent correlation between EQ and CDS contrasts the negative correlation between
TOPIX and the Japanese corporate CDS distribution-free index for the post-subprime
period, shown in Table 4.6 of Sect. 4.2. This may reflect the difference of produc-
tive characteristic between sovereign CDS referencing a country, and corporate CDS
referencing a corporation. The positive correlation between EQ and PMI, and the
negative correlation between CDS and PMI, are relatively strong. Interestingly, the
correlation between economic indices, CPI and PMI, is negative.

We calculate the power contributions (%) (3.13), presented in Chap. 3. As shown
in the graph matrix of Fig. 4.35, in each graph, each power spectrum on a logarithmic
scale (white line), is decomposed into ten terms consisting of four countributions of
independent noise, and six contributions of correlated noise.

There are a few outstanding common contributions of correlated noises such
as ALL (yellow area), ALL-EQ (orange area), and ALL-CDS (green area). The

http://dx.doi.org/10.1007/978-4-431-55276-5_3
http://dx.doi.org/10.1007/978-4-431-55276-5_2
http://dx.doi.org/10.1007/978-4-431-55276-5_3
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Fig. 4.34 Detrended cyclical components of PMI (Purchasing Managers’ Index), CPI (inflation
rate), CDS (Japanese SCDS distribution-free index), and EQ (Nikkei 225) for Japan

contribution of the correlated noise ALL was large for PMI and CPI, whereas
ALL-CDS contributed largely to PMI and CDS.

The contributions of independent noise, including the index itself, occupied
approximately 50– 80 % for all indices. The economic indices, PMI and CPI, are
largely due to EQ (red area) at some frequencies. In particular, CDS is largely affected
by the independent noises of other indices, and the contribution of all independent
noises reached 80 % of the power spectrum. In other word, the fluctuations of CDS
were likely to reflect the specific fluctuation of each index. In contrast, the contri-
bution of CDS is relatively small for the other indices. Considering the productive
characteristic of SCDS, dealing with soveregin risk on Japan, it is reasonable that
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Fig. 4.35 Power contributions (%) with the power spectrum on a logarithmic scale (white line) of
PMI, CPI (inflation rate), CDS (Japanese SCDS distribution-free index) and EQ (Nikkei 225) for
Japan

CDS (Japanese SCDS distribution-free index) is very sensitive to the fluctuations of
the other domestic indices, such as Japanese financial markets and economy, which
may cause a higher sovereign risk for the country. Therefore, the Japanese SCDS
distribution-free index can be recognized as the indicator reflecting uncertain fluc-
tuations in the equity market and the economy of the country.

Considering the peaks of the power spectra, we focus on the following two fre-
quency domains: the frequency domain from 0.11 to 0.15 (approximately 8-month
cycle of fluctuation), which includes the second peaks of EQ and CDS, and the peaks
of PMI and CPI, and the frequency domain from 0.205 to 0.2675 (approximately
4-month cycle of fluctuation), which includes peaks of all indices. Then, as intro-
duced in Sect. 4.2, we calculate the total contributions (%) of each index for both
frequency domains, as shown in Table 4.13.

The total contributions of CDS, to CDS itself and EQ, which was 39.3 and 8.8 %
for the frequency domain from 0.11 to 0.15, increased to 44.2 and 9.5 %, respectively,
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Table 4.13 Total contributions (%) for frequency domains from 0.11 to 0.15 (left) and from 0.205
to 0.2675 (right)

Frequency domain: 0.11–0.15 0.205–0.2675

(8-month cycle) (4-month cycle)

CDS EQ PMI CPI CDS EQ PMI CPI

CDS 39.3 8.8 11.6 8.4 44.2 9.5 10.2 11.1

EQ 20.3 55.1 19.9 18.0 38.9 72.7 13.2 15.9

PMI 12.1 22.4 48.5 12.1 9.3 9.9 62.1 12.2

CPI 28.3 13.7 20.0 61.5 7.6 7.9 14.5 60.8

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

for the frequency domain from 0.205 to 0.2675. Similarly, the total contributions of
EQ, to CDS and EQ increased, respectively. On the other hand, the total contributions
of PMI, to CDS itself and EQ, which was 12.1 and 22.4 % for the frequency domain
from 0.11 to 0.15, decreased to 9.3 and 9.9 %, respectively, for the frequency domain
from 0.205 to 0.2675. Similarly, the total contributions of CPI, to CDS and EQ
decreased, respectively. Note that the influences of the economic indices, PMI and
CPI, on EQ and CDS, strengthened for the longer cycle of fluctuation. In particular,
the total contribution of CPI increased for all indices.

The largest total contributor to CDS apart from CDS itself, was EQ for both fre-
quency domains, whereas the largest total contributor to EQ excluding EQ itself was
PMI for both frequency domains. As for the economic indices, the largest total con-
tributor to PMI apart from PMI itself, was CPI for both frequency domains, whereas
the largest total contributor to CPI excluding CPI itself was EQ for both frequency
domains. Moreover, the total contribution of EQ to the other indices excluding CDS
increased. The significant influence of EQ on all indices is found.

On the other hand, although the total contributions of CDS to the other indices
were weak for both frequency domains, CDS was largely influenced by the other
indices for the longer cycle of fluctuation. In other word, CDS is relatively sensitive
to the fluctuations of other domestic indices. Note that, regardless of the contribution
amount, the influence from the market-related indices, CDS and EQ, on the economic
indices, PMI and CPI, cannot be ignored.

Based on the above-mentioned investigations, we consider the Japanese SCDS
distribution-free index as an underlying SCDS spread level reflecting a domestic
credit strength specific to Japan. The usability of this index for pricing can be pro-
posed under the following assumptions:

1. The information on the length of maturity is factored into the SCDS spread of
each concerned maturity.

2. An SCDS spread for each maturity is quoted by adding (or deducting) an
extra spread corresponding to the length of maturity to (or from) the SCDS
distribution-free index. The extra spread can be evaluated based on external
influences such as other country’s sovereign risks, the investor’s forecast, or the
international views on financial markets and economies.
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The fluctuations of the extra spread, and the reversion of the slope of the SCDS
curve, which is occasionally observed when the referencing country is in a critical
situation for political or economical problems, should be investigated. We leave these
modeling for future studies.

In this section, we examined the usability of a distribution-free index in two appli-
cations: constructing a GDP growth regional distribution-free index and a Japanese
SCDS distribution-free index.

Finally, we believe that the applications presented in this chapter, verify the effec-
tiveness of a distribution-free index, and confirm that applying our method to data
with insufficient information, such as fast-growing or immature financial markets and
economic indicators of emerging economies, can be effective. The wider applicable
area of the method for constructing a distribution-free index can be expected.
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