
Statistics for Biology and Health

Daniel Zelterman

Applied
Multivariate
Statistics with R

Statistics for Biology and Health

Series Editors

Mitchell Gail
Jonathan M. Samet
Anastasios Tsiatis
Wing Wong

More information about this series at http://www.springer.com/series/2848

http://www.springer.com/series/2848

Daniel Zelterman

Applied Multivariate
Statistics with R

123

Daniel Zelterman
School of Public Health
Yale University
New Haven, CT, USA

ISSN 1431-8776 ISSN 2197-5671 (electronic)
Statistics for Biology and Health
ISBN 978-3-319-14092-6 ISBN 978-3-319-14093-3 (eBook)
DOI 10.1007/978-3-319-14093-3

Library of Congress Control Number: 2015942244

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com

Barry H Margolin
1943–2009

Teacher, mentor, and friend

Permissions

R is Copyright c©2014 The R Foundation for Statistical Computing. R Core
Team (2014). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing Vienna, Austria. URL: http://www.
R-project.org/.

We are grateful for the use of data sets, used with permission as follows:

Public domain data in Table 1.4 was obtained from the U.S. Cancer
Statistics Working Group. United States Cancer Statistics: 1999–2007 Inci-
dence and Mortality Web-based Report. Atlanta: U.S. Department of Health
and Human Services, Centers for Disease Control and Prevention and Na-
tional Cancer Institute; 2010. Available online at www.cdc.gov/uscs.

The data of Table 1.5 is used with permission of S&P Dow Jones.

The data of Table 1.6 was collected from www.fatsecret.com and used
with permission. The idea for this table was suggested by the article originally
appearing in The Daily Beast, available online at

http://www.thedailybeast.com/galleries/2010/06/17/

40-unhealthiest-burgers.html.

The data in Table 7.1 is used with permission of S&P Dow Jones Indices.

The data in Table 7.4 was gathered from www.fatsectret.com and used
with permission. The idea for this table was suggested by the article originally
appearing in The Daily Beast, available online at

http://www.thedailybeast.com/galleries/2010/10/18/

halloween-candy.html.

The data in Table 7.5 was obtained from https://health.data.ny.gov/.

The data in Table 8.2 is used with permission of Dr. Deepak Nayaran,
Yale University School of Medicine.

The data in Table 8.3 was reported by the National Vital Statistics Sys-
tem (NVSS):
http://www.cdc.gov/nchs/deaths.htm.

The data in Table 9.3 was generated as part of the Medicare Current Ben-
eficiary Survey: http://www.cms.gov/mcbs/ and available on the cdc.gov

website.

http://www.R-project.org/
http://www.R-project.org/

viii

The data in Table 9.4 was collected by the United States Department
of Labor, Mine Safety and Health Administration. This data is available
online at

http://www.msha.gov/stats/centurystats/coalstats.asp.

The data of Table 9.6 is used with permission of Street Authority and
David Sterman.

The data in Table 11.1 is adapted from Statistics Canada (2009) “Health
Care Professionals and Official-Language Minorities in Canada 2001 and
2006,” Catalog no. 91-550-X, Text Table 1.1, appearing on page 13.

The data source in Table 11.5 is copyright 2010, Morningstar, Inc., Morn-
ingstar Bond Market Commentary September, 2010. All Rights Reserved.
Used with permission.

The data in Table 11.6 is cited from US Department of Health and Human
Services, Administration on Aging. The data is available online at

http://www.aoa.gov/AoARoot/Aging_Statistics/index.aspx.

The website http://www.gastonsanchez.com provided some of the code
appearing in Output 11.1.

Global climate data appearing in Table 12.2 is used with permission:
Climate Charts & Graphs, courtesy of Kelly O’Day.

Tables 13.1 and 13.6 are reprinted from Stigler (1994) and used with
permission of the Institute of Mathematical Statistics.

In Addition

Several data sets referenced and used as examples were obtained from the UCI
Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine,
CA: University of California, School of Information and Computer Science
(Bache and Lichman 2013).

Grant Support

The author acknowledges support from grants from the National Institute
of Mental Health, National Cancer Institute, and the National Institute of
Environmental Health Sciences. The content is solely the responsibility of the
author and does not necessarily represent the official views of the National
Institutes of Health.

http://www.gastonsanchez.com

Preface

M ULTIVARIATE STATISTICS is a mature field with many different
methods. Many of these are mathematical. Fortunately, these meth-

ods have been programmed so you should be able to run these on your com-
puter without much difficulty.

This book is targeted to a graduate-level practitioner who may need to
use these methods but does not necessarily know about the mathematical
derivations. For example, we use the sample average of the multivariate
distribution to estimate the population mean but do not need to prove op-
timal properties of such an estimator when sampled from a normal parent
population. Readers may want to analyze their data, motivated by discipline-
specific questions. They will discover ways to get at some important results
without a degree in statistics. Similarly, those well trained in statistics will
likely be familiar with many of the univariate topics covered here, but now
can learn about new methods.

The reader should have taken at least one course in statistics previously
and have some familiarity with such topics at t-test, degrees of freedom (df),
p-values, statistical significance, and the chi-squared test of independence in
a 2× 2 table. He or she should also know the basic rules of probability such
as independence and conditional probability. The reader should have some
basic computing skills including data editing. It is not necessary to have
experience with R or with programming languages although these are good
skills to develop.

We will assume that the reader has a rudimentary acquaintance of the
univariate normal distribution. We begin a discussion of multivariate models
with an introduction of the bivariate normal distribution in Chap. 6. These
are used to make the leap from the scalar notation to the use of vectors
and matrices used in Chap. 7 on the multivariate normal distribution. A
brief review of linear algebra appears in Chap. 4, including the correspond-
ing computations in R. Other multivariate distributions include models for
extremes, described in Sect. 13.3.

We frequently include the necessary software to run the programs in
R because we need to be able to perform these methods with real data. In
some cases we need to manipulate the data in order to get it to fit into the
proper format. Readers may want to produce some of the graphical displays

ix

Preface x

given in Chap. 3 for their own data. For these readers, the full programs to
produce the figures are listed in that chapter.

The field of statistics has developed many useful methods for analyzing
data, and many of these methods are already programmed for you and readily
available in R. What’s more, R is free, widely available, open source, flexible,
and the current fashion in statistical computing. Authors of new statistical
methods are regularly contributing to the many libraries in R so many new
results are included as well.

As befitting the Springer series in Life Sciences, Medicine & Health, a
large portion of the examples given here are health related or biologically
oriented. There are also a large number of examples from other disciplines.
There are several reasons for this, including the abundance of good exam-
ples that are available. Examples from other disciplines do a good job of
illustrating the method without a great deal of background knowledge of the
data.

For example, Chap. 9 on multivariable linear regression methods begins
with an example of data for different car models. Because the measurements
on the cars are readily understood by the reader with little or no additional
explanation, we can concentrate on the statistical methods rather than spend-
ing time on the example details. In contrast, the second example, presented
in Sect. 9.3, is about a large health survey and requires a longer introduction
for the reader to appreciate the data. But at that point in Chap. 9, we are
already familiar with the statistical tools and can address issues raised by
the survey data.

New Haven, CT, USA Daniel Zelterman

Acknowledgments

Special thanks are due to Michael Kane and Forrest Crawford, who together
taught me enough R to fill a book, and Rob Muirhead, who taught multi-
variate statistics out of TW Anderson’s text. Long talks with Alan Izenman
provided large doses of encouragement. Steve Schwager first suggested writ-
ing this book and gave me the initial table of contents. Ben Kedem read and
provided useful comments on Chap. 12. Chang Yu provided many comments
on the technical material. Thanks to Beth Nichols whose careful reading and
red pencil provided many editorial improvements on the manuscript. Thanks
also to many teachers, students, and colleagues who taught me much. Many
thanks to caring and supportive friends and family who encouraged and put
up with me during the whole process.

Preface xi

The APL computer language and TW Anderson’s book (Anderson 2003)1

on multivariate statistics provided me with the foundation for writing this
book as a graduate student in the 1970s. I watched Frank Anscombe2 working
on his book (Anscombe 1981) and was both inspired and awed by the amount
of effort involved.

1Theodore Wilbur Anderson (1918–). American mathematician and statistician.
2Francis John Anscombe (1918–2001). British statistician. Founded the Statistics

Department at Yale.

Contents

Preface ix

1 Introduction 1
1.1 Goals of Multivariate Statistical Techniques 1
1.2 Data Reduction or Structural Simplification 3
1.3 Grouping and Classifying Observations 5
1.4 Examination of Dependence Among Variables 9
1.5 Describing Relationships Between Groups of Variables 10
1.6 Hypothesis Formulation and Testing 10
1.7 Multivariate Graphics and Distributions 12
1.8 Why R? . 13
1.9 Additional Readings . 14

2 Elements of R 17
2.1 Getting Started in R . 18

2.1.1 R as a Calculator . 18
2.1.2 Vectors in R . 19
2.1.3 Printing in R . 23

2.2 Simulation and Simple Statistics 24
2.3 Handling Data Sets . 27
2.4 Basic Data Manipulation and Statistics 32
2.5 Programming and Writing Functions in R 37
2.6 A Larger Simulation . 40
2.7 Advanced Numerical Operations 46
2.8 Housekeeping . 47
2.9 Exercises . 49

3 Graphical Displays 55
3.1 Graphics in R . 55
3.2 Displays for Univariate Data 58
3.3 Displays for Bivariate Data 63

3.3.1 Plot Options, Colors, and Characters 66
3.3.2 More Graphics for Bivariate Data 67

xiii

CONTENTS xiv

3.4 Displays for Three-Dimensional Data 71
3.5 Displays for Higher Dimensional Data 75

3.5.1 Pairs, Bagplot, and Coplot 75
3.5.2 Glyphs: Stars and Faces 78
3.5.3 Parallel Coordinates 82

3.6 Additional Reading . 84
3.7 Exercises . 85

4 Basic Linear Algebra 89
4.1 Apples and Oranges . 89
4.2 Vectors . 91
4.3 Basic Matrix Arithmetic . 94
4.4 Matrix Operations in R . 96
4.5 Advanced Matrix Operations 102

4.5.1 Determinants . 102
4.5.2 Matrix Inversion . 104
4.5.3 Eigenvalues and Eigenvectors 106
4.5.4 Diagonalizable Matrices 108
4.5.5 Generalized Inverses 109
4.5.6 Matrix Square Root 111

4.6 Exercises . 113

5 The Univariate Normal Distribution 117
5.1 The Normal Density and Distribution Functions 117
5.2 Relationship to Other Distributions 122
5.3 Transformations to Normality 122
5.4 Tests for Normality . 126
5.5 Inference on Univariate Normal Means 131
5.6 Inference on Variances . 137
5.7 Maximum Likelihood Estimation, Part I 139
5.8 Exercises . 147

6 Bivariate Normal Distribution 151
6.1 The Bivariate Normal Density Function 152
6.2 Properties of the Bivariate Normal Distribution 156
6.3 Inference on Bivariate Normal Parameters 158
6.4 Tests for Bivariate Normality 163
6.5 Maximum Likelihood Estimation, Part II 163
6.6 Exercises . 170

7 Multivariate Normal Distribution 173
7.1 Multivariate Normal Density and Its Properties 174
7.2 Inference on Multivariate Normal Means 176
7.3 Example: Home Price Index 178
7.4 Maximum Likelihood, Part III: Models for Means 182

CONTENTS xv

7.5 Inference on Multivariate Normal Variances 187
7.6 Fitting Patterned Covariance Matrices 189
7.7 Tests for Multivariate Normality 194
7.8 Exercises . 202

8 Factor Methods 207
8.1 Principal Components Analysis 208
8.2 Example 1: Investment Allocations 210
8.3 Example 2: Kuiper Belt Objects 214
8.4 Example 3: Health Outcomes in US Hospitals 217
8.5 Factor Analysis . 218
8.6 Exercises . 223

9 Multivariable Linear Regression 231
9.1 Univariate Regression . 232
9.2 Multivariable Regression in R 238
9.3 A Large Health Survey . 243
9.4 Exercises . 250

10 Discrimination and Classification 257
10.1 An Introductory Example . 257
10.2 Multinomial Logistic Regression 261
10.3 Linear Discriminant Analysis 265
10.4 Support Vector Machine . 273
10.5 Regression Trees . 278
10.6 Exercises . 283

11 Clustering 287
11.1 Hierarchical Clustering . 287
11.2 K-Means Clustering . 295
11.3 Diagnostics, Validation, and Other Methods 301
11.4 Exercises . 308

12 Time Series Models 315
12.1 Introductory Examples and Simple Analyses 315
12.2 Autoregressive Models . 322
12.3 Spectral Decomposition . 333
12.4 Exercises . 336

13 Other Useful Methods 339
13.1 Ranking from Paired Comparisons 339
13.2 Canonical Correlations . 342
13.3 Methods for Extreme Order Statistics 348
13.4 Big Data and Wide Data . 354
13.5 Exercises . 356

CONTENTS xvi

Appendix: Libraries Used 361

Selected Solutions and Hints 363

References 375

About the author 381

Index 383

Chapter 1

Introduction

WE ARE SURROUNDED by data. How is multivariate data analysis
different from more familiar univariate methods? This chapter provides

a summary of most of the major topics covered in this book. We also want
to provide advocacy for the multivariate methods developed.

This chapter introduces some useful data sets and uses them to motivate
the topics and basic principles and ideas of multivariate analysis. Why do
we need multivariate methods? What are the shortcomings of the marginal
approach, that is, looking at variable measurements one at a time? In many
scientific investigations, there are several variables of interest. Can they be
examined one at a time? What can be lost by performing such univariate
analysis?

1.1 Goals of Multivariate Statistical

Techniques

Let us summarize the types of problems to be addressed in this book and
briefly describe some of the methods to be introduced in subsequent chapters.
As an example, consider the data given in Table 1.1. This table lists each of
the 50 US states (plus DC) and several indications of the costs associated with
living there. For each state, this table shows the population, average gross
income, cost of living index relative to the US as a whole, median monthly
apartment rentals, and then median housing price. Because the cost of living
index is calculated on estimates of prices including housing costs, we quickly
see that there may be a strong relationship between measures in this table.

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 1

1

1: INTRODUCTION 2

Table 1.1: Costs of living in each of the 50 states

Median Median Cost of 2009 Average
apartment home value living population gross income

State rent in $ in $1000 index in 1000s in $1000

AK 949 237.8 133.2 698.47 68.60
AL 631 121.5 93.3 4708.71 36.11
AR 606 105.7 90.4 2889.45 34.03

...
...

...
...

...
...

WV 528 95.9 95.0 1819.78 33.88
WY 636 188.2 99.6 544.27 64.88

Source: US Census, 2007 and 2009 data

As an example of a multivariate statistical analysis, let us create a 95%
joint (simultaneous) confidence interval of both the mean rent and housing
prices.1 In Fig. 1.1 we present both the marginal confidence intervals and the
joint, bivariate confidence ellipsoid that is described more fully in Sect. 6.3.

The marginal confidence intervals treat each variable individually, and
the resulting 95% confidence interval for the two means is pictured as a rect-
angle. The bivariate confidence ellipsoid takes into account the correlation
between rents and housing prices resulting in an elongated elliptical shape
oriented to reflect the positive correlation between these two prices.

The elliptical area and the rectangle overlap. There are also areas in-
cluded in one figure but not the other. More importantly, notice the area of
the ellipse is smaller than that of the rectangle. This difference in area illus-
trates the benefit of using multivariate methods over the marginal approach.
If we were using univariate methods and obtaining confidence intervals for
each variable individually, then the resulting confidence region is larger than
the region that takes the bivariate relationship of rents and housing costs
into account. This figure provides a graphical illustration of the benefits of
using multivariate methods over the use of a series of univariate analyses.

1The thoughtful reader might argue this exercise does not make sense because there
are only 50 states and this census represents the values of the complete population. In
other words, there is no uncertainty associated with this data because there is no larger
population of states for us to sample from.

1: INTRODUCTION 3

720 740 760 780 800 820 840 860

18
0

20
0

22
0

24
0

Apartment

H
ou

se

Figure 1.1: Joint 95% confidence ellipsoid for housing prices and monthly
apartment rents. The box is formed from the marginal 95% confidence in-
tervals. The sample averages are indicated in the center

1.2 Data Reduction or Structural

Simplification

Which variables should be recorded when constructing a multivariate data
set? We certainly want to include everything that might eventually turn out
to be relevant, useful, and/or important. Much of these decisions require
knowledge of the specific subject matter and cannot be adequately covered
in a book on statistics. There is a trade-off between the fear of leaving out
some information that later proves to be critical. Similarly, it may be next
to impossible to go back to record data that was not recoded earlier.

Hopefully the subject matter experts have collected the most useful sets
of measurements (with or without the aid of a statistician). The first task
for the data analyst is to sort through it and determine those variables that
are worthy of our attention. Similarly, much of the data collected may be
redundant. A goal of data analysis is to sift through the data an identify what
should be kept for further examination and what can safely be discarded.

Let us consider the data in Table 1.2 on the outcome of a standardized
test of students taken in different countries (or economies) in 2009. The Pro-
gram for International Student Assessment (PISA) is a triennial survey of

1: INTRODUCTION 4

T
a
b
le

1
.2
:
R
ea
d
in
g
a
n
d
o
th
er

a
ca
d
em

ic
sc
o
re
s
fr
o
m

O
E
C
D

n
a
ti
o
n
s

R
ea
d
in
g
su
b
sc
a
le
s

O
v
er
a
ll

A
cc
es
s

In
te
g
ra
te

R
efl

ec
t

N
a
ti
o
n

re
a
d
in
g

re
tr
ie
v
e

in
te
rp
re
t

ev
a
l.

C
o
n
ti
n
u
o
u
s

N
o
n
co
n
ti
n
.

M
a
th

S
ci
en

ce
C
h
in
a
:

S
h
a
n
g
h
a
i

5
5
6

5
4
9

5
5
8

5
5
7

5
6
4

5
3
9

6
0
0

5
7
5

K
o
re
a

5
3
9

5
4
2

5
4
1

5
4
2

5
3
8

5
4
2

5
4
6

5
3
8

F
in
la
n
d

5
3
6

5
3
2

5
3
8

5
3
6

5
3
5

5
3
5

5
4
1

5
5
4

H
o
n
g
K
o
n
g

5
3
3

5
3
0

5
3
0

5
4
0

5
3
8

5
2
2

5
5
5

5
4
9

. . .
. . .

. . .
. . .

. . .

P
er
u

3
7
0

3
6
4

3
7
1

3
6
8

3
7
4

3
5
6

3
6
5

3
6
9

A
ze
rb
a
ij
a
n

3
6
2

3
6
1

3
7
3

3
3
5

3
6
2

3
5
1

4
3
1

3
7
3

K
y
rg
y
zs
ta
n

3
1
4

2
9
9

3
2
7

3
0
0

3
1
9

2
9
3

3
3
1

3
3
0

S
o
u
rc
e
:
O
E
C
D

P
IS
A

2
0
0
9
d
a
ta
b
a
se

1: INTRODUCTION 5

academic achievements of 15-year-old students in each of 70 different coun-
tries.2 The US is #17 on this list behind homogeneous populations of Fin-
land, Korea, Hong Kong.

The overall reading score is broken down into five different subscales
measuring specific skills. Mathematics and science are listed separately. How
much is gained by providing the different subscales for reading? Is it possible
to remove or combine some of these with little loss of detail?

More specifically, Fig. 1.2 is a matrix scatterplot of the eight different
academic scores from Table 1.2. The matrix scatterplot plots every pair of
measurements against each other twice, with the axes reversed above and
below the diagonal.

The immediate impression we get from this figure is how highly correlated
all of the measurements are with each other. There are a few outliers and
some pairs of measurements are more tightly correlated, of course, but it
is clear that any one academic measurement in the data could stand as a
good representation for most of the others. There is a large amount of data
simplification that can be performed for this data without significant loss of
information.

1.3 Grouping and Classifying

Observations

In 2006, Pluto was demoted from the family of planets in our solar system
and it is now classified as just one of many objects orbiting the sun. Part of
the argument for Pluto’s reassignment consists of the large number of smaller
and larger additional objects orbiting the sun at about the same distance.
One group of these is referred to as the Kuiper Belt3 extending from the
orbit of Neptune at about 30AU out to about 55AU. (One astronomical unit
(AU) is the distance to the earth from the sun.) The Kuiper Belt contains
more than a thousand known objects, and there are estimates of many tens
of thousands more yet to be discovered. Data on several of the largest of
these appears in Table 1.3.

Albedo refers to the percentage of light that is reflected rather than ab-
sorbed. Snow, for example, appears very bright and has a high albedo. The
absolute magnitude is a measure of apparent brightness, corrected for the
distance of the object, measured on a logarithmic scale. Higher absolute
magnitude refers to dimmer objects. The semimajor axis is the orbit’s great-
est distance from the sun, measured in AU. Many of the values in this table
are, at best, rough estimates for these distant, poorly understood objects.

2This survey is funded by The Organisation for Economic Co-operation and Develop-
ment (OECD).

3Named for Dutch astronomer Gerard Peter Kuiper (rhymes with viper) 1905–1973.

1: INTRODUCTION 6

Read

Access

Integrate

Reflect

Continuous

Non.con

Math

Science

Figure 1.2: Matrix scatterplot of reading and academic scores of 15-year-old
students in 2009 in OECT nations

Is Pluto a real standout object among the items in this list, or does it
appear similar in character to the others? Does Pluto deserve to regain its
former planet status or is it just one member of a larger club? In Sect. 8.1 we
look at this data and see if there is a way to simplify it. Can this multivariate
data be summarized in a way that retains much of the useful information?
Where does Pluto fall in this larger schema of things?

A comparison of the cancer rates in each of 50 states is another example
to illustrate grouping. The data in Table 1.4 lists overall 2007 cancer rates for
each of the 50 US states as well as for several of the most common cancers.
These rates are reported as cases per 100,000 persons. Each state has a
slightly different distribution of ages within its populations so these rates are
age adjusted, as well.

1: INTRODUCTION 7

T
a
b
le

1
.3
:
S
ev
er
a
l
K
u
ip
er

B
el
t
o
b
je
ct
s

D
es
ig
n
a
ti
o
n

A
b
so
lu
te

A
lb
ed

o
E
q
u
a
to
ri
a
l

S
em

im
a
jo
r

Y
ea
r
o
f

P
er
m
a
n
en
t
P
ro
v
is
io
n
a
l

m
a
g
n
it
u
d
e

(%
)

d
ia
m
et
er

(k
m
)
a
x
is
(A

U
)
d
is
co
v
er
y

P
lu
to

−1
.0
0

6
0
.0

2
3
2
0
.0

3
9
.4

1
9
3
0

M
a
k
em

a
k
e
2
0
0
5
F
Y
9

−0
.3
0

8
0
.0

1
5
0
0
.0

4
5
.7

2
0
0
5

H
a
u
m
ea

2
0
0
3
E
L
6
1

0
.1
0

8
4
.0

1
1
5
0
.0

4
3
.3

2
0
0
5

C
h
a
ro
n

S
/
1
9
7
8
P

1
1
.0
0

4
0
.0

1
2
0
5
.0

3
9
.4

1
9
7
8

O
rc
u
s

2
0
0
4
D
W

2
.3
0

1
9
.7

9
4
6
.3

3
9
.4

2
0
0
4

Q
u
a
o
a
r

2
0
0
2
L
M
6
0

2
.6
0

1
9
.9

8
4
4
.0

4
3
.5

2
0
0
2

Ix
io
n

2
0
0
1
K
X
7
6

3
.2
0

1
2
.0

6
5
0
.0

3
9
.6

2
0
0
1

5
5
6
3
6

2
0
0
2
T
X
3
0
0

3
.3
0

1
0
.0

8
0
0
.0

4
3
.1

2
0
0
2

5
5
5
6
5

2
0
0
2
A
W

1
9
7

3
.3
0

1
1
.7

7
3
4
.6

4
7
.4

2
0
0
2

5
5
6
3
7

2
0
0
2
U
X
2
5

3
.6
0

1
1
.5

6
8
1
.2

4
2
.5

2
0
0
2

V
a
ru
n
a

2
0
0
0
W

R
1
0
6

3
.7
0

1
6
.0

5
0
0
.0

4
3
.0

2
0
0
0

2
0
0
2
M
S
4

3
.8
0

8
.4

7
2
6
.2

4
1
.8

2
0
0
2

2
0
0
3
A
Z
8
4

3
.9
0

1
2
.3

6
8
5
.8

3
9
.6

2
0
0
3

S
o
u
rc
e
:
W

ik
ip
ed
ia

1: INTRODUCTION 8

Table 1.4: Age-adjusted cancer rates per 100,000 persons, combined for sexes
and all races

All Mel- Female Pan- Leu- Cer- Pro-
State cancers Lung Colon anoma breast creas kemia Ovary vix state Liver
CT 584.1 54.4 52.4 27.9 133.9 16.2 13.7 12.1 6.5 172.8 9.8
ME 598.9 70.4 53.6 24.6 128.9 13.1 20.7 11.8 7.5 165.7 6.2
MA 571.0 62.6 50.7 26.0 131.7 13.3 16.0 11.8 5.3 166.9 10.9

.

OR 508.8 59.1 46.1 28.7 129.6 12.2 13.5 12.7 7.9 145.2 8.5
WA 525.3 56.6 45.9 27.5 124.0 13.0 17.1 12.5 5.9 155.1 10.1

US 535.3 65.2 52.7 23.5 120.4 13.2 15.0 12.2 7.9 156.9 9.9
Source: US Centers for Disease Control

Is a high rate of one cancer associated with an increase in other cancers?
If so, which cancer rates tend to move together in lock step? Which appear
to be unrelated to others? Lung cancers, for example, are frequently associ-
ated with environmental causes and colon cancers sometimes have a dietary
origin. We might want to know how different cancer types cluster into similar
patterns.

We can also ask about states clustering. Which states are comparable in
their various rates? Do neighboring states have similar rates? Do the south-
ern states group together with comparable cancer rates? How do Southern
states differ from the Western states?

Perhaps the best summary is just group all of the data together. As an
example, the “All cancers” rate is a sum of all cancer types, including the
many diseases not listed here. Is this rate a reasonable summary of the rates
for each state? Do the states that cluster together also have comparable rates
of their “all cancers”? Instead of a simple sum of all individual rates, would
it be better to construct a weighted average, where some cancers receive more
emphasis than others? Should rarer cancers (liver and cervix, for examples)
be given more or less weight than more common cancers?

Methods to answer these questions are described in Chaps. 10 and 11.
Discrimination and classification are used to identify characteristics of groups
of individuals, when group membership is known. Clustering assumes that
there are groups of individuals but their group membership is not known.

1: INTRODUCTION 9

1.4 Examination of Dependence

Among Variables

Table 1.5 lists a survey of the recommended investment allocations from ma-
jor financial management firms as of early 2011. The numbers represent
percent allocations for their “model portfolios” but they would usually make
specific recommendations for individual circumstances. Stocks and bonds
are broken into three categories: US, non-US industrialized countries, and
developing nations. Alternative investments include leases, oil and gas part-
nerships, real estate property, precious metals, and similar investments. Cash
includes short-term investments such as money market, bank deposits, and
certificates of deposit.

At the time this table was created, the US was pulling out of a deep
recession. It was generally felt that US stocks and bonds were the appropriate
investments at the time, so these two columns represent the largest entries
in the table. Interest rates on cash equivalents were very low so only small
allocations appear in that column.

The numbers add up to 100% for each advisory firm. We should expect
a small overall negative mutual correlation of all of the percentages within
each row because of this restriction on these percentages. (The totals may
be off by a small amount due to rounding.)

Each of the investment firms hears the same economic news and reads
each other’s published recommendations, so we should expect a small cor-
relation between the different rows of this data. As befits the conservative
nature of this business, no firm wants to be known for a consistently deviant
recommendation, so there probably is an attenuation of extreme opinions
present as well. Within each firm’s recommendations, there are certain per-
centages allocated to traditional stocks and bonds. Each of these is further
broken down by firms that specialize in domestic and foreign companies.

Another example of the data we might encounter appears in the nutri-
tional data in Table 1.6. This a collection of some of the highest calorie ham-
burgers served in chain restaurants collected on the website fatsecret.com.
Nutrition is an intrinsically multivariate concept. We cannot talk about
calories alone when discussing nutrition but also need to include data on how
much of the caloric value is derived from fat. Amounts of sodium (salt) and
protein are not part of calorie count and provide different qualities to the
total nutritional content.

The nutritional content was obtained from the individual restaurant’s
websites. Each burger lists its calories and calories from fat, fat, saturated
fat, sodium, carbohydrates, and protein content. The nutritional content of
each menu item is not a single measurement but expressed as these seven
separate components. The seven values are related to each other and must
be taken as a whole. This is the fundamental concept of multivariate data:
each individual item is characterized by a set of several related measurements
on each.

1: INTRODUCTION 10

The seven nutritional values are mutually correlated. Saturated fat and
carbohydrates are related to the calories. Sodium is different from the other
six. Perhaps we want to create a “health index” that is constructed as a
weighted average of the components of each burger, thereby reducing the
seven-dimensional data into a single number for each. This is the aim of some
multivariate methods such as factor analysis, described in Chap. 8. Another
goal might be to creatively display all nutritional components simultaneously
such as in Fig. 3.15 or 3.20.

1.5 Describing Relationships Between

Groups of Variables

Let us go back to the data given in Table 1.1. How can we describe the dif-
ferences in costs associated with living in each of the states? There are three
measures of costs (rents, home prices, and cost of living index), and these
three are mutually correlated. Each of these measures of costs might sepa-
rately be explained by populations and incomes. Perhaps more people living
there, with higher incomes, would drive up the prices relative to sparsely
populated states with lower average incomes.

The three measures of costs are themselves related but the use of three
separate regressions would lose these relationships. How much of the cost of
living index can be explained by population and income, for example, and
after correcting for these, how much of these differences across states can
be attributed to housing costs? Chapter 9 covers the topic of multivariable
regression and in Exercise 9.1 we will examine this example in detail.

1.6 Hypothesis Formulation

and Testing

Interesting data sets are generated by a wide range of disciplines as new
discoveries increasingly rely on statistical methods. Massive amounts of data
are collected in genetics and astronomy, for example, where hypotheses are
generated from within the discipline as well as on the basis of statistical
analyses of the data.

Let us illustrate some data from astrostatistics, a relatively new field
bringing together astronomy and statistics. In Fig. 1.3 we plot the visual
magnitude of 3858 galaxies in a portion of the sky. Locations in the sky are
addressed in polar coordinates much as we identify places on the earth: right
ascension is similar to longitude and declination is similar to latitude.

1: INTRODUCTION 11

Table 1.5: Recommended investment allocations (in %) by financial manage-
ment firms at the beginning of 2011

Stocks Bonds Alter-

Manager US Non-US Dev. US Non-US Dev. native Cash

Alliance Bernstein 45 3 17 35 0 0 0 0
Atlantic Trust 28 6 9 30 3 0 24 0
Bank of America 53 9 3 28 1 1 0 5
BNY Mellon 26 9 10 30 0 0 25 0
Bessemer 19 9 3 20 4 5 34 6
Brown Advisory 29 13 12 19 3 0 20 4
Citi Private Bank 18 27 3 18 16 1 17 0
Constellation 20 10 10 25 5 0 30 0
Deutsche Bank 29 14 6 29 2 4 17 2
Fidelity 40 14 4 35 2 0 6 0
Fiduciary Trust 40 10 13 31 0 0 5 2
Fifth Third Bank 28 9 7 36 0 0 15 5
GenSpring 13 8 5 18 8 0 45 5
Glenmede 35 12 5 18 2 3 23 2
Harris Private Bank 54 10 4 18 0 0 15 0
Highmount Capital 25 5 10 40 5 0 15 0
Janney Montgomery 47 4 4 26 4 5 10 0
JPMorgan 20 9 5 22 3 0 38 3
Legg Mason 55 3 7 17 0 0 15 3
Northern Trust 24 8 5 31 0 0 32 0
PNC Asset Mgmt 40 8 2 30 0 0 20 0
Charles Schwab 29 20 5 29 1 0 11 5
SunTrust 26 6 3 25 7 0 30 3
UBS 32 10 7 27 6 0 17 2
US Bank 43 16 7 21 3 0 10 0
Wells Fargo 27 13 5 21 4 2 28 0
Wilmington Trust 27 11 4 31 1 0 27 0
Averages 32.3 10.2 6.5 26.3 3.0 0.8 19.6 1.7
Used with permission S&P, Dow Jones

1: INTRODUCTION 12

Table 1.6: Some of the highest calorie hamburgers served in chain restaurants

Rest- Calories Fat Sat. Sodium Carbs. Protein
aurant Name of burger From fat Total (g) fat (g) (mg) (g) (g)

Chili’s Bacon Burger 612 1050 68 21 1750 53 55
Chili’s Big Mouth Bites 1197 2120 133 38 4200 139 65
Chili’s Southern Bacon 963 1610 107 36 4150 81 53

...
...

...
...

...
...

...
...

...

Sonic Cheese w/ Mayo 573 999 64 24 1591 62 46
Sonic Dbl Cheeseburger 730 1160 81 33 1580 44 63

Source: www.fatsecret.com. Used with permission

Magnitude is visual brightness measured on an inverted log scale: larger
numbers are dimmer. Every increase in one unit is about 2.5 times dimmer.
A magnitude of 6 is about the limit of the human eye; this is extended to
about 10 with binoculars. Magnitude 27 is the approximate limit of the
largest earth-bound telescopes, and the Hubble Space Telescope can detect
to magnitude 32. In Fig. 1.3, the brighter (and generally closer) galaxies are
in red and dimmer ones are in blue.

The brighter galaxies in red appear to be distributed uniformly across
this field, but the dimmer ones in blue seem to cluster in the upper left of
this figure. It is well known in astronomy that galaxies are not uniformly
distributed across the universe, but, rather, clustered much like the surface
of bubbles, on curved walls, centered around vast, seemingly empty spaces.

Of course, this figure can only plot the objects that are known at the
time the data was collected. Dimmer, as yet undetected galaxies are missing.
There are many more objects that would be plotted in blue in this figure at
a future date as our technology improves.

1.7 Multivariate Graphics

and Distributions

R offers strong graphical methods. These are illustrated in Chap. 3. You
may want to thumb through this chapter before reading any further. Most
of these examples require some knowledge of R in order to format the data
appropriately. If you have no familiarity with R, then you can learn about its
basic functions in Chap. 2.

1: INTRODUCTION 13

195 200 205 210 215

−
38

−
36

−
34

−
32

−
30

−
28

Right ascension

D
ec

lin
at

io
n

Figure 1.3: Visual magnitudes of 3858 galaxies in a portion of the sky.
Brighter objects are plotted in red

1.8 Why R?

Finally, a word about the choice of R for the present book. There are a number
of high-quality software packages available to the data analyst today. As with
any type of tool, some are better suited for the task at hand than others.
Understanding the strengths and limitations will help determine which is
appropriate for your needs. It is better to decide this early, rather than
investing a lot of time on a major project, only to be disappointed later.

Let us begin with a side-by-side comparison of SAS4 and R, two popular
languages regularly in use by the statistical community today. The most
glaring differences between these packages are the capability to handle huge
databases and the capability to provide a certification for the validity of
the results. SAS is the standard package for many applications such as in
pharmaceuticals and financials because it can handle massive data sets and
provide third-party certification. In contrast, R is more suited for quick and
nimble analyses of smaller data sets. There is no independent review of
R and errors can continue, uncorrected, for years.

SAS is also more suitable for sharing programs and data, as in a business
setting. SAS encourages the development of large programs through the use

4SAS is copyright c© SAS Institute, Cary, NC.

1: INTRODUCTION 14

of its powerful macro5 language. The macro writes code that is expanded be-
fore the interpreter actually reads the code that is converted into instructions.
In contrast, R has limited macro capabilities.

R was chosen as the software tool for the present book because of its ex-
tensive libraries to perform the relevant analyses and more flexible graphics
capability. The author also teaches, regularly uses, and has written books
using SAS. R is widely available as a free download from the Internet.6 Follow
the instructions: It should not be too difficult to download R and install it on
your computer. R is open source, meaning that in many cases, you can exam-
ine the source code and see exactly what action is being performed. Further,
if you don’t like the way it performs a task, then you can rewrite the code to
have it do what you want it to do. Of course, this is a dangerous capability if
you are just a novice, but it does point out a more useful property: Anybody
can contribute to it. As a result there are hundreds of user-written packages
available to you. These include specialized programs for different analyses,
both statistical and discipline specific, as well as collections of data. Table 1.7
summarizes the differences between SAS and R.

The learning curve for R is not terribly steep. Most users are up and
running quickly, performing many useful actions. R provides a nice graphical
interface that encourages visual displays of information as well as mathemat-
ical calculation. Once you get comfortable with R, you will probably want to
learn more.

It is highly recommended that all users of R work in Rstudio, an interface
that provides both assistance for novices as well as productivity tools for
experienced users. The Rstudio opens four windows: one for editing code, a
window for the console to execute R code, one track to the variables that are
defined in the workspace, and the fourth to display graphical images.

1.9 Additional Readings

There are many excellent introductory books on the capabilities of R, multi-
variate statistics, and the intersection of these two subjects.

An excellent introduction to R is Krause and Olson (1997). This book
describes S and S-PLUS, the predecessors of R, and is light on statistical
methods. Everitt and Hothorn (2011) also has a limited number of statisti-
cal topics and is more about R computing than statistical inference. Kabacoff
(2011) describes R and statistical diagnostics but less statistical methodology.
Venables and Ripley (2010) has a mix of statistical theory and R. Johnson
and Wichern (2007) is more theoretical and does not incorporate software.
Izenman (2008) is also theoretical, addresses current issues of mining large
databases, references many relevant data sets, but does not emphasize com-
puting. Anderson (2003) has the most theory of the books listed here.

5Briefly, a macro is a program that writes a program.
6http://cran.r-project.org/.

1: INTRODUCTION 15

T
a
b
le

1
.7
:
A

si
d
e-
b
y
-s
id
e
co
m
p
a
ri
so
n
o
f
S
A
S
a
n
d
R

S
A
S

R
G
o
o
d
fo
r
ex
a
m
in
in
g
h
u
g
e
d
a
ta

se
ts

N
o
t
su
it
a
b
le

fo
r
m
a
ss
iv
e
d
a
ta

se
ts

G
o
o
d
fo
r
sh
a
re
d
p
ro
je
ct
s

B
et
te
r
fo
r
in
d
iv
id
u
a
l
w
o
rk

L
im

it
ed

g
ra
p
h
ic
a
l
p
re
se
n
ta
ti
o
n

S
tr
o
n
g
a
n
d
fl
ex
ib
le

g
ra
p
h
ic
s

D
iffi

cu
lt

fo
r
cu

st
o
m

a
n
a
ly
se
s

E
n
co
u
ra
g
es

cu
st
o
m
iz
ed

a
n
a
ly
si
s

F
ew

in
d
ep

en
d
en
tl
y
w
ri
tt
en

m
o
d
u
le
s

L
a
rg
e
3
-r
d
p
a
rt
y
so
ft
w
a
re

li
b
ra
ry

“
B
la
ck

b
ox

”
co
d
e
is

h
id
d
en

O
ft
en

o
p
en

so
u
rc
e

It
er
a
ti
v
e
M
a
tr
ix

L
a
n
g
u
a
g
e
(I
M
L
)

F
a
ci
li
ta
te
s
m
a
tr
ix

o
p
er
a
ti
o
n
s

P
ow

er
fu
l
m
a
cr
o
fa
ci
li
ty

L
im

it
ed

m
a
cr
o
ca
p
a
b
il
it
ie
s

D
iffi

cu
lt

to
w
ri
te

n
ew

fu
n
ct
io
n
s

E
a
sy

to
w
ri
te

n
ew

fu
n
ct
io
n
s

P
o
in
t
a
n
d
cl
ic
k
a
n
a
ly
se
s

N
o
h
a
n
d
-h
o
ld
in
g

C
er
ti
fi
ed

a
n
d
v
er
ifi
ed

N
o
p
ro
m
is
es

m
a
d
e

E
a
sy

to
p
ro
d
u
ce

ta
b
le
s
w
it
h
la
b
el
s

M
o
re

d
iffi

cu
lt
to

p
ro
d
u
ce

ta
b
le
s

E
x
p
en

si
v
e
fo
r
n
o
n
-a
ca
d
em

ic
s

F
re
e

F
ew

er
in
d
ep

en
d
en
tl
y
w
ri
tt
en

re
fe
re
n
ce
s

M
a
n
y
in
d
ep

en
d
en
t
re
fe
re
n
ce

b
o
o
k
s

Chapter 2

Elements of R

T HE SOFTWARE PACKAGE “R” has become very popular over the
past decade for good reason. It has open source, meaning you can ex-

amine exactly what steps the program is performing. Compare this to the
“black box” approach adopted by so many other software packages that hope
you will just push the Enter button and accept the results that appear. An-
other feature of open software is that if you identify a problem, you can fix it,
or, at least, publicize the error until it gets fixed. Finally, once you become
proficient at R you can contribute to it. One of the great features of R is the
availability of packages of programs written by R users for other R users. Best
of all, R is free for the asking and easy to install on your computer.

On the downside, there is no certifying authority verifying that the an-
swers that R gives you are actually correct. Errors are only judged in the court
of popular opinion and may remain uncorrected for years. Caveat emptor.

Because R is so widely used, there are a number of good introductory
books about its capabilities. While we can’t go over everything that can be
done in R here, we can cover enough material to get started with the comput-
ing needed to perform the statistical analyses described in this book. Despite
its many strengths, R does lack the capability to produce a nicely formatted
output for a report. If your goal is to produce a formatted document then
you will need to learn how to copy the output from R into a word processing
program. That is how this book was produced.

At the time of this writing, the R source can be found at

http://cran.r-project.org/.

Simply follow the instructions on downloading the most recent package from
any of the many mirror sites. There are versions of R for Mac, Linux, and
Windows, so there should be a version for almost everybody.

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 2

17

2: ELEMENTS OF R 18

2.1 Getting Started in R

R is interactive. You type something, and the computer types something in
response. Try out the examples illustrated here, as they have been designed
to ease your introduction to R.

2.1.1 R as a Calculator

Let’s give R a try. Click on the R icon. It will open a window, and print some
introductory text. Finally, you will see a line with a greater sign: > meaning
that you can now type something.

A typical session might go like this:

> 3 + 4

[1] 7

> 2 * 6

[1] 12

> 2 ^ 4

[1] 16

>

Information you enter appears on the lines that begin with >. For many
operations, R produces lines that begin with a number in braces, (e.g., [1]).
The numbers in braces will help find locations when there is a lot of output.
This brief example shows that R can be used as a calculator, but of course,
it is much more than that.

We can assign a value to a name using the paired symbols <-.

> radius <- 3

> radius

[1] 3

> circum <- 2 * pi * radius

> circum

[1] 18.84956

2: ELEMENTS OF R 19

In this brief dialog we assign the value 3 to the variable called radius.
Typing the name displays its value. We can then combine arithmetic with this
named variable. We assign the result of a mathematical computation to yet
another variable called circum but don’t see the result unless we specifically
ask for it.

The name pi has the value of π = 3.14159 . . . and it would be a good
idea not to change this. Another good idea is to use variable names that have
meaning to us rather than a name such as x that conveys little information
concerning its use. If you lose track of the variables used and their names,
the ls() or objects() commands will provide a list of everything in the
workspace.

You quit R with the q() command. You will be prompted if you want
to save the workspace. It is a good idea to always check the YES button to
save your results for a later session. If you end the R session in this manner,
the variables radius and circum are still available after you close R, turn off
your computer, and then restart it at a later time.

A variable, once created, is always available until you specifically ask for
it to be deleted. To explicitly remove a variable, we use the rm() command
as in

> radius

[1] 3

> rm(radius)

> radius

Error: object ’radius’ not found

As you work in R, your workspace will soon become cluttered with a
large number of intermediate results and data from various projects. You
should make generous use of the rm function in order to keep your workspace
free of litter. There is also a way to break up your R activities into different
workspaces. These are described in Sect. 2.8.

2.1.2 Vectors in R

Vectors are a natural feature of R and can be constructed using the c (con-
catenate) function:

> evens <- c(2, 4, 6, 8, 10)

> evens

[1] 2 4 6 8 10

2: ELEMENTS OF R 20

and then multiply the vector by a scalar:

> 2 * evens

[1] 4 8 12 16 20

The rep(,) function takes two arguments and is used to make multiple
copies of the first argument. The first argument may be either a vector or
a scalar. The each = option makes copies of individual elements of the list.
Here are examples of its use:

> c(1, rep(2, 3), 4)

[1] 1 2 2 2 4

> rep(c(1, 2), 4)

[1] 1 2 1 2 1 2 1 2

> rep(c(3, 5), each = 4)

[1] 3 3 3 3 5 5 5 5

The colon (:) operator produces an increasing or decreasing sequence of
integers as in these two examples:

> 3 : 10

[1] 3 4 5 6 7 8 9 10

> 12 : 5

[1] 12 11 10 9 8 7 6 5

These can be combined in arithmetical expressions giving

> 4 : 8 / 4

[1] 1.00 1.25 1.50 1.75 2.00

so that we are not restricted to working only with integer sequences.
In this last example, we see that the sequence operation is given prece-

dence over the division. That is, the sequence operator in 4:8 / 4 is evaluated
first, then the division. You should use parentheses to force the order if you
are uncertain about which operation takes precedence.

We can combine arithmetic operations, sequences, and concatenation
as in

> evens

[1] 2 4 6 8 10

> (evens <- c(evens, 2 * (6 : 10)))

[1] 2 4 6 8 10 12 14 16 18 20

2: ELEMENTS OF R 21

Here we see an example where the name evens appears on both sides
of the <- operation. It is better to think of the <- operation as replacing
an existing value rather than assigning a value. In the last line here, we see
that an assignment contained in parenthesis will also print the resulting value
for us.

Another good habit is to leave a space before and after the <- symbols.
This will avoid any ambiguity (e.g., if you meant to write x < -3 instead of x
<- 3). This habit also makes your R code easier to read. It is generally a good
idea to leave spaces before and after any operation symbols. We also leave a
space after the coma in lists, as in c(1, 2, 3). A larger set of operators is
given in Table 2.1.

It is possible to address individual elements in a vector using square
brackets []. As examples, we have

> evens

[1] 2 4 6 8 10 12 14 16 18 20

> evens[4 : 7]

[1] 8 10 12 14

> evens[c(1, 5, 6)]

[1] 2 10 12

A negative subscript omits that element. If we want to omit the third
element of a vector, for example, we can write

> evens

[1] 2 4 6 8 10 12 14 16 18 20

> evens[-3]

[1] 2 4 8 10 12 14 16 18 20

When subscripts are out of range or invalid, R is defined in an unintuitive
manner. See Exercise 2.12 for some examples of these.

The length() function tells us the length of a vector:

> evens

[1] 2 4 6 8 10 12 14 16 18 20

> length(evens)

[1] 10

Suppose we wanted a subset of only those vector elements with values
larger than 9. To accomplish this, we combine logical (true/false) values with
a subscript as in the following:

2: ELEMENTS OF R 22

Table 2.1: A list of logical operators in R

== Equal to ! Not, negate
&& And, element-wise & And, pairwise
|| Or, element-wise | Or, pairwise
> Greater than < Less than
>= Greater than or equal to <= Less than or equal to

> evens > 9

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

> evens[evens > 9]

[1] 10 12 14 16 18 20

The evens > 9 script yields a list of logical TRUE and FALSE values in-
dicating whether or not the corresponding vector element is greater than 9.
If we use this list of logical values in the subscript brackets, then only values
associated with TRUE are selected. A list of logical operators in R is given in
Table 2.1. Finally, we can assign TRUE and FALSE as values to variables and
abbreviate these as T and F.

Sometimes we want to find a member in a list of items. The %in% operator
returns a logical value indicating whether or not an item is in the list. Here
are examples:

> 3 %in% (1 : 5)

[1] TRUE

> 8 %in% (1 : 5)

[1] FALSE

The match() function allows us to find the location of specific elements
in a vector. The match() function takes two arguments and finds the index
of occurrences of the first argument in the second. So

> match(3 : 4, 2 : 12)

[1] 2 3

shows that the numbers 3 and 4 are located at positions 2 and 3 of the
sequence 2 : 12. The match function is used in the production of Fig. 3.10,
for example, in order to identify the index of unusual data points.

The which() function is similar to match() except that it works on logical
values. So, for example,

> which((2 : 5) > 3)

[1] 3 4

2: ELEMENTS OF R 23

2.1.3 Printing in R

The last functions we will describe in this introduction control the output of
results. The simplest way to see the value is to type the variable name. We
also display the value of a variable using the print command. The digits =

option in print() can be used to format the data by controlling the number
of significant digits to be printed. Here is an example:

> x <- 1 / (6 : 7)

> print(x)

[1] 0.1666667 0.1428571

> print(x, digits = 2)

[1] 0.17 0.14

If you try to mix text and numbers in print, the whole result is converted
into text strings but the result may look awkward. It is better to use the
cat() function which concatenates the output:

> print(c("x is", x))

[1] "x is" "0.166666666666667" "0.142857142857143"

> cat(c("x is", x))

x is 0.166666666666667 0.142857142857143

Similar results can be obtained using the noquote() command or the
quote = FALSE option in print(). Notice that cat() produces output with-
out the leading subscript [1].

The format() command can be used with cat() to combine text and
numbers printed to a specified number of significant digits:

> cat(c("x is", format(x, digits = 3)))

x is 0.167 0.143

To end this section, let us point out the extensive help available to the
user of R. The help is most useful if you have a reasonably good idea of the
procedure you want to perform and want to learn more.

2: ELEMENTS OF R 24

If you have a general idea about what you want, the help button in the
console window will open a set of R manuals. Many of these have search
options that allow you to look for functions that perform the task you want.
A search for variance, for example, returns a large number of operations
that contain this keyword in their help file including the var() function. If
you want to know more about the var() function, typing help(var) will
open a web page with a complete reference on that function. The web page
will contain complete details about this function, examples of its use in R,
along with names of several closely related functions, and some references
on the relevant subjects. This web page also describes how missing values
are treated, how a weighted variance estimate could be obtained, links to
functions that calculate tests and confidence intervals for variances, as well
as nonparametric procedures for these methods. Keep in mind that R is user
supported, so not every help entry will be this extensive, complete, useful, or
even correct. Sometimes the R function may have been written as part of a
published book, and the help entry will be minimal in an attempt to boost
sales for those who want to learn more.

2.2 Simulation and Simple Statistics

R allows us to generate random data. Statistical scientists will frequently use
this important capability to test theories and to learn about properties of
procedures when the behavior of the data is known.

The rnorm() function generates observations from a standard normal
distribution with mean zero and unit variance:

> rnorm(3)

[1] 0.3645054 1.1591904 1.7222996

> rnorm(4)

[1] 0.4007988 -0.6369772 0.8908059 0.2781956

Notice how the values are different every time this function is called. Your
values will also be different from these when you try it. Let us illustrate
this feature in a brief example of a simulation. We frequently perform a
computer simulation to answer difficult questions that might not otherwise
be answerable. The following question has a simple solution, and knowledge
of the exact answer allows us to confirm the simulation method is working
correctly.

Question: Suppose X is a standard normal variate. What is the prob-
ability that X2 is between 0.5 and 1.2?

2: ELEMENTS OF R 25

Table 2.2: Some continuous distributions and related functions available in R

Distribution Density Cumulative Quantile Generate random
function distribution function variables

Normal dnorm pnorm qnorm rnorm

Uniform dunif punif qunif runif

Student’s t dt pt qt rt

Central and
noncentral
chi-squared dchisq pchisq qchisq rchisq

Gamma dgamma pgamma qgamma rgamma

Multivariate
normal dmvnorm pmvnorm rmvnorm

Multivariate
Student’s t dmvt pmvt qmvt rmvt

Exponential dexp pexp qexp rexp

Cauchy dcauchy pcauchy qcauchy rcauchy

Wishart dwish rwish

These are found in the MASS, MCMCpack, and mvtnorm libraries

To simulate a solution to this question in R, we can write

> nsim <- 500

> x <- rnorm(nsim)

> x <- x ^ 2

> sum(.5 < x & x < 1.2) / nsim

[1] 0.192

In the first line of this set of code, we define the number of replicates so
that it will be easier to change if we want to perform this simulation again
later with a different sample size. In the next two lines of this sequence of
R commands, we use rnorm to generate 500 standard normal values and then
square these. The expression (x > 0.5 & x < 1.2) returns a set of 500
TRUE and FALSE values depending on whether these conditions are met for
each of the components of x. We can sum over these logical values (TRUE is
1 and FALSE is 0) to see how many of the 500 values meet our criteria. Keep
in mind that your result will be slightly different every time you repeat this
simulation. The exact answer is 0.206 so this simulation is not too far off the
mark. A random sample much larger than 500 would likely produce a closer

2: ELEMENTS OF R 26

estimate to the true value, of course. See Exercise 2.4 for more information.
In Sect. 2.5 we perform a larger simulation to describe the behavior of the
correlation coefficient.

There are many continuous statistical distributions already programmed
in R. A brief list of these is given in Table 2.2. The general pattern for the
names of these functions is that density functions begin with a d, cumulative
distributions with a p, the quantile function begins with a q, and the random
number generator with an r.

As an example of several simple statistical functions that might be use-
ful in data analysis, we generate ten uniform variates, sort these, find their
minimum, maximum, mean, standard deviation, and variance:

> x <- runif(10)

> x

[1] 0.5330116 0.2722369 0.5743971 0.3922796 0.2738410

0.1701639

[7] 0.8477313 0.5537144 0.1998406 0.7271472

> sort(x)

[1] 0.1701639 0.1998406 0.2722369 0.2738410 0.3922796

0.5330116

[7] 0.5537144 0.5743971 0.7271472 0.8477313

> min(x)

[1] 0.1701639

> max(x)

[1] 0.8477313

> mean(x)

[1] 0.4544364

> sd(x)

[1] 0.2296803

> var(x)

[1] 0.05275305

In each of these operations we see that the arguments for the R functions
are vectors of arbitrary length. Such vector-valued arguments for functions
are convenient for us. The mean function returns a scalar-valued average of
the vector values, but the sort function returns a sorted vector of the same
length. Notice that the original values are not replaced by their sorted values
unless we assign these, as in x <- sort(x).

Another useful R function is hist(), a function that opens a graphi-
cal window and produces a histogram. As an example, hist(rnorm(75))
produces Fig. 2.1.

2: ELEMENTS OF R 27

Histogram of rnorm(75)

rnorm(75)

F
re

qu
en

cy

−2 −1 0 1 2

0
5

10
15

Figure 2.1: Histogram of randomly distributed normal variates

This figure will be a little different from yours, of course, and will also
differ every time you run it. When the graphical window opens, you can click
on the Windows tab in the R screen and then use the Tile Vertically option
to produce a pair of side-by-side windows: one for typing R commands and
another for viewing the resulting graphics. We will discuss other graphical
methods in the following chapter.

Now that we have covered some examples of basic arithmetic, simple
statistics, and random number generation in R, let us move on to import-
ing and manipulating data from external files. In Chap. 3 we describe the
hist() command again, along with many other graphical presentations of
multivariate data.

2.3 Handling Data Sets

This section covers two topics: bringing your data into R from files and then
constructing data.frames. You don’t want to type in a large data set using
only the c() command. We need an easy way to get your data into R. Once it
is in R, the data.frame is a convenient way to structure it in a useful format
with handy labels identifying the columns and/or rows. If you are familiar
with other data processing languages such as SAS then you will already be
comfortable with this data format.

2: ELEMENTS OF R 28

The easiest way to get your data into R is to prepare a file whose contents
follow a pattern such as this:

Apartment House

AK 949 237.8

AL 631 121.5

AR 606 105.7

AZ 866 229.2

. . .

WI 704 173.3

WV 528 95.9

WY 636 188.2

This file, housing.txt, appears on this book’s website. It contains the aver-
age apartment rents and house prices in each of the 50 states.

Such a table is relatively easy to create if your data is already arranged
as rows and columns in a spreadsheet program. Beginning with the data in
Table 1.1, for example, we can select the columns we want, copy these to a
separate worksheet, then save it as a file or perhaps copy and paste the result
into a word processing language to clean it up further.

The headings and labels clarify the meanings of the numerical values in
the various rows and columns. In this example, the rows have labels for
each of the states, and the columns for apartment rents and housing prices
are clearly marked. These labels are a very helpful feature when you put
R aside for a few days and forget what the columns of data values represent.
Similarly, try to avoid headings with names like x that convey no meaning.

The read.table() function is very useful for reading such formatted
data into R. This function can be used to read data sets along with row and
column labels. As an example, we can read the data from the housing.txt

file using

>housing <- read.table("housing.txt", header = TRUE,

row.names = 1)

>housing

Apartment House

AK 949 237.8

AL 631 121.5

AR 606 105.7

AZ 866 229.2

. . .

2: ELEMENTS OF R 29

WA 874 308.1

WI 704 173.3

WV 528 95.9

WY 636 188.2

The result of the read.table() is assigned to a variable called housing

and printed here. The name of the external file (in the appropriate work-
ing directory) is listed in quotes. This directory may be different on your
computer. Working directories are discussed in Sect. 2.8.

The header option in read.table indicates that column headings are
present. The row.names= value indicates which column contains the labels
for each row. In this case, the abbreviations for the state names appear in
the first column of the data.

In this example, the read.table function builds what is called a data
frame in R. Individual columns of data can be referenced from the data frame
using either of two methods illustrated here:

> housing$Apartment

[1] 949 631 606 866 1135 848 970 1011 917 947 787 1298 607

[14] 690 811 670 654 578 698 991 1074 702 706 734 657 638

[27] 631 694 534 626 914 1068 668 1011 953 667 614 780 726

[40] 850 675 569 660 768 784 934 797 874 704 528 636

> housing[1]

Apartment

AK 949

AL 631

AR 606

AZ 866

. . .

WI 704

WV 528

WY 636

In the first method, housing$Apartment refers to the column of apart-
ment rents which are given as a vector of values without labels. In the second
method, housing[1] is listed as the rent values along with their correspond-
ing state labels.

We can also exploit the property that R also treats the data.frame as
a matrix, with two subscripts separated by commas. The first subscript
addresses rows, as in this example:

> housing[1 : 4,]

2: ELEMENTS OF R 30

Apartment House

AK 949 237.8

AL 631 121.5

AR 606 105.7

AZ 866 229.2

listing the first four rows.
The second subscript addresses columns, as in

housing[,1]

[1] 949 631 606 866 1135 848 970 1011 917 947 787 1298 607 690 811

[16] 670 654 578 698 991 1074 702 706 734 657 638 631 694 534 626

[31] 914 1068 668 1011 953 667 614 780 726 850 675 569 660 768 784

[46] 934 797 874 704 528 636

We can use this property to subset the data as in this example

housing[housing$Apartment > 1000 ,]

Apartment House

CA 1135 467.0

DC 1011 474.1

HI 1298 560.2

MD 1074 341.2

NJ 1068 364.1

NV 1011 271.5

in which we select only those observations whose average monthly apartment
rents exceed $1000.

We can also create subsets of subsets as in

> housing[housing$Apartment > 1000,] [-3,]

Apartment House

CA 1135 467.0

DC 1011 474.1

MD 1074 341.2

NJ 1068 364.1

NV 1011 271.5

using a −3 in a second set of subscripts to omit the third item (HI) from the
list.

R recognizes the labels as such so it is valid to take log of these values as
either

> log(housing[1])

2: ELEMENTS OF R 31

Apartment

AK 6.855409

AL 6.447306

AR 6.406880

. . .

or else as

> log(housing$Apartment)

[1] 6.855409 6.447306 6.406880 6.763885 7.034388 6.742881 6.877296 6.918695

. . .

with no confusion about accidentally trying to take the logarithm of character
values. Notice how R includes row labels in the first example, but not the
second.

If you get tired of writing housing$Apartment and just want to refer to
the data by the column names, the attach() command allows R to under-
stand that you are always referring to data frame of interest:

> attach(housing)

> Apartment

[1] 949 631 606 866 1135 848 970 1011 917 947 787 1298 607 690

[15] 811 670 654 578 698 991 1074 702 706 734 657 638 631 694

[29] 534 626 914 1068 668 1011 953 667 614 780 726 850 675 569

[43] 660 768 784 934 797 874 704 528 636

The cbind() command works to add columns to data frames the way
the c() command works to append to vectors. So the example

> lh <- cbind(housing, log(housing[1]))

> lh[1 : 5,]

Apartment House Apartment

AK 949 237.8 6.855409

AL 631 121.5 6.447306

AR 606 105.7 6.406880

AZ 866 229.2 6.763885

CA 1135 467.0 7.034388

appends log of apartment rents as another column onto the housing data
frame.

We can fix the column heading using colnames() command. This com-
mand can either be used to print the column names, as in

> colnames(lh)

[1] "Apartment" "House" "Apartment"

2: ELEMENTS OF R 32

or else be used to assign a value, as in this example

> colnames (lh) [3] <- "Log Apt"

> lh[1 : 5,]

Apartment House Log Apt

AK 949 237.8 6.855409

AL 631 121.5 6.447306

AR 606 105.7 6.406880

AZ 866 229.2 6.763885

CA 1135 467.0 7.034388

There is a similar command called rbind() that adds rows to a data.frame
and row.names() can be used to both query and manipulate the row names
of a data frame.

There are several other R commands to read more diverse types of data
in different formats. The scan function is very general and can be used to
read numerical values from external files. The values read using scan() will
appear as a single vector in R. You will need to format these appropriately
into rows and columns using matrix() function and possibly use t() to
transpose the matrix. The data.frame() command creates a data frame
from a matrix and subsequently allows you to add row and column titles.

For reading different types of files, the foreign library contains R pro-
grams that allow you to read files from other data analysis programs such as
SAS, S, Minitab, dBase, and Stata, to name a few. Programs such as Excel
can export files where columns are separated by tab characters. In this case
you might have to use instructions such as

housing <- read.table("housing.txt", sep="\t", header=TRUE, row.names=1)

to indicate that the separators (sep=) between columns are tab characters.
You can also use read.table to read from the clipboard. The familiar

copy and paste operation involves highlighting a block of numbers or text
in Excel or a word processing language. The copy operation is performed
using a Ctrl-C command, which copies the highlighted material into a file
called the clipboard. This material can be retrieved in R with the command

mydata <- read.table(file = "clipboard")

as though the clipboard were an actual file. This approach for reading data
into R is best suited for small amounts of data.

2.4 Basic Data Manipulation

and Statistics
R will sort your data. We sort a vector or a column in a data.frame using
the sort() command:

2: ELEMENTS OF R 33

> sort(housing$Apartment)

[1] 528 534 569 578 606 607 614 626 631 631 636 638 654 657

[15] 660 667 668 670 675 690 694 698 702 704 706 726 734 768

[29] 780 784 787 797 811 848 850 866 874 914 917 934 947 949

[43] 953 970 991 1011 1011 1068 1074 1135 1298

R can also rank the values:

> order(housing$Apartment)

[1] 50 29 42 18 3 13 37 30 2 27 51 26 17 25 43 36 33 16 41 14 28 19 22

[24] 49 23 39 24 44 38 45 11 47 15 6 40 4 48 31 9 46 10 1 35 7 20 8

[47] 34 32 21 5 12

In a data.frame we can sort on one column of data values and apply
this ordering to all of the rows. Then

> housing [order(housing$Apartment),]

Apartment House

WV 528 95.9

ND 534 112.5

SD 569 126.2

KY 578 118.4

. . .

NJ 1068 364.1

MD 1074 341.2

CA 1135 467.0

HI 1298 560.2

rearranges all of the rows so that the values in Apartment column are in-
creasing.

For values decreasing in this column, we can sort on the negative values:

> housing [order(-housing$Apartment),]

Apartment House

HI 1298 560.2

CA 1135 467.0

. . .

ND 534 112.5

WV 528 95.9

and this provides the ordering from largest to smallest.
To calculate simple statistics on a data.frame, we can write

> colMeans(housing)

2: ELEMENTS OF R 34

Apartment House

781.1765 212.3255

and this provides sample averages and column names for each of the columns.
The variance/covariance matrix is obtained

> var(housing)

Apartment House

Apartment 29391.83 16349.12

House 16349.12 10668.70

and the correlation matrix is

> cor(housing)

Apartment House

Apartment 1.000000 0.923263

House 0.923263 1.000000

Functions such as the mean and standard deviation are best applied to
the columns of the data.frame using the sapply function. Examples of
these are

> sapply(housing, mean)

Apartment House

781.1765 212.3255

> sapply(housing, sd)

Apartment House

171.4405 103.2894

R provides the capacity to merge data from two different data.frames.
When working with large data sets, we frequently find that the data is spread
across more than one physical file. A merge is a process that combines the
files into one, by matching individual rows on the values in a specified column.

Let us illustrate the merge capabilities in R with a simple example. Sup-
pose we have a data.frame with names and ages:

> first <- data.frame(

+ name = c("Charles", "Bill", "Amy", "Fred"),

+ age = c(15, 25, NA, 22))

> first

name age

1 Charles 15

2 Bill 25

3 Amy NA

4 Fred 22

2: ELEMENTS OF R 35

(Notice how R produces a + prompt because the unbalanced parenthesis
expect a resolution in a subsequent line rather than another R command.)

Suppose a second data.frame containing names and heights:

> second <- data.frame(

+ handle = c("Charles", "George", "Amy", "Bill"),

+ height = c(61, 65, 60, 67))

> second

handle height

1 Charles 61

2 George 65

3 Amy 60

4 Bill 67

There are a number of problems that immediately appear. Specifically,
there are names in one data.frame that are absent from the other, and, fur-
ther, the names that do occur in both data.frames appear in different orders.
Nevertheless, we want to produce a single file containing names, ages, and
heights. Even so, there is some ambiguity as to how this should be accom-
plished, in light of the missing data.

In one version of the merge command, we can combine the two data.frames

> m1 <- merge(first, second,by.x = "name", by.y = "handle")

> m1

name age height

1 Amy NA 60

2 Bill 25 67

3 Charles 15 61

and recover only those names that appear in both data.frames.
The merge command in this example creates a new data.frame with the

combined attributes (age and height) from the two separate data.frames. The
by.x= and by.y= options specify the columns containing the data values we
wish to merge on.

We can also combine all names, regardless of whether these appear in
only one or both lists:

> m2 <- merge(first, second, by.x = "name", by.y = "handle", all=TRUE)

> m2

name age height

1 Amy NA 60

2 Bill 25 67

3 Charles 15 61

4 Fred 22 NA

5 George NA 65

2: ELEMENTS OF R 36

using the all=TRUE option.
In this last example, notice how the merge function fills in the missing

values with NAs when the corresponding values are absent in the one of the
merged data.frames.

It is possible to clean your data and remove any records with missing
values. This is especially useful for those procedures in R which will not
perform analyses on missing (NA) values. These records need to be deleted
for the procedure to work properly.

The easiest way to delete incomplete rows of data is through the complete.
cases function. The complete.cases function identifies rows in a data.frame
with no missing values. So, in the case of the merged data.frame m2, we have

> complete.cases(m2)

[1] FALSE TRUE TRUE FALSE FALSE

showing that only lines 2 and 3 have no missing data values.
We can then build a data.frame with no missing data using

> m2[complete.cases(m2),]

name age height

2 Bill 25 67

3 Charles 15 61

After performing a merge, there may be several duplicated records. These
can be identified using the duplicated function, which works on vectors as
well as on data.frames.

As an example of its use,

> list <- c(1, 2, 5, 4, 2, 4, 5, 3)

> duplicated(list)

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE

> list[!duplicated(list)]

[1] 1 2 5 4 3

the duplicated items in this list are removed. Table 2.1 shows the exclamation
symbol (!) negates a logical operation.

2: ELEMENTS OF R 37

2.5 Programming and Writing

Functions in R

A powerful feature of R is the capability to program your own functions,
adding new and useful functionality within your work. We regularly use a
number of R library functions, such as the square root (sqrt()). It is useful
to write your own functions if you have some you use frequently of if you
need to create long sequences of R commands. You can break these up into
short procedures that can be written and tested separately. This is especially
useful when you want to tackle a large task. Break the task into component
units that can be sequentially built upon smaller segments.

To write a function in R, assign a variable the name function, followed by
the arguments and then the definition. As an example, consider the function

> addA <- function(x) x + A

that returns the sum of the argument (x) and the variable A.
To test it out we have

> A <- 4

> addA(5)

[1] 9

> A <- 6

> addA(2)

[1] 8

Typing the name of the function, without an argument, will print the
definition:

> addA

function(x) x + A

If the function definition takes more than one line, put it in curved brack-
ets {}. A function can return more than one value if these are put into a
vector. Results are returned when they are at the end of the function defini-
tion, as though we were printing the values in the interactive mode. We can
also use the return statement.

As an example of a function that spans several lines and returns more
than one value, we have

> addTwo <- function(x)

+ {

+ first <- x + A

+ second <- 2 * x

2: ELEMENTS OF R 38

+ c(first, second)

+ }

> A <- 5

> addTwo(6)

[1] 11 12

> first

Error: object ’first’ not found

As we work with functions, the scope limits where data values can be
accessed. In the two examples given, notice that the value of A is “known”
inside the definition of the function. In the second example, we are unable to
access the values first and second because these are considered local and
only exist inside the definition of the function.

Here’s another example of writing a larger function in R. Suppose we want
to look at the statistical properties of spacings. Spacings are the differences
between adjacent ordered data values. We might use a large number of
small adjacent spacings as statistical evidence of an area of high density of
observations, for example.

As a numerical example of spacings, suppose we start with the data values
{8, 14, 3, 16 }. Then the sorted data values are

3 8 14 16

and the corresponding set of spacings are

5 6 2 .

Notice that the spacings themselves are not sorted, and there is one fewer
spacing than data value.

Here is a function in R to calculate spacings of any vector:

spacing <- function(x)

Calculate spacings in vector x

{

n <- length(x)

if(n <= 1)return(NA) # undefined if x is empty or

scalar

sortx <- sort(x) # sorted values of x

sortx[-1]-sortx[-n] # return spacings

}

2: ELEMENTS OF R 39

A value of NA is returned if we ask for the spacings of a scalar, whose
length is 1. The NA symbol is a special value in R. It stands for “not available”
and is useful to indicate a missing value. “Not a number” or NaN may be
the result of an invalid computation resulting in an ambiguous or erroneous
value such as division by zero. See Exercise 2.10 for more on these special
codes for invalid numerical values.

We exit the function in the middle of the function’s definition and return
some value at that point using the return() statement. In the present ex-
ample, the return() statement is used to return NA to indicate that invalid
data was entered and an error has occurred. As a good programming habit,
anticipate any errors that a user might make and catch these before they
cause unpredictable results. We can also write spacing in a much simpler
fashion (see Exercise 2.11), but the present form illustrates useful features of
functions in R.

In this function to calculate spacings, notice how we document or explain
to the human reader what is going on. Anything written on a line in R fol-
lowing a pound sign (#) is treated as a comment by R and ignored. Such
comments are extremely useful when you look at your program after a time
and do not want to forget what the role of the program code. If you share
your program with others, then documentation is even more essential.

Don’t try to write more than a few lines of R code directly in the console.
It is much better to use the text editor in Rstudio. You could also use your
favorite word processor and then copy and paste the code into the R window.

Let us generate some data and run the spacing program. For example,

> z <- sample(25,5)

> z

[1] 3 18 12 22 15

> spacing(z)

[1] 9 3 3 4

The sample(25,5) function generates five random integers between 1
and 25. Then the spacing program returns the four spacings of the five data
values that sample(25,5) sent to it, as required.

When writing your own program, you should check all of the various
branches and paths it might take to ensure these are all working properly. In
our spacing program, we should also verify that

> spacing(5)

[1] NA

to see that the error processing works correctly as well.
In the next section, we use these function writing techniques to perform

a larger simulation study than the one presented in Sect. 2.2.

2: ELEMENTS OF R 40

2.6 A Larger Simulation

A small simulation was introduced in Sect. 2.2. Let us next consider a more
complicated example of a simulation in R. Suppose we want a program that
will help address the following:

Question: How can we describe the distribution of the correlation coef-
ficient calculated from normally distributed samples?

We will need to generate several sets of (possibly correlated) paired nor-
mal random values and find the sample correlation of each set. In this way, we
will have a random sample of correlation coefficients produced under specified
conditions. Then we can draw a histogram of these correlations and calcu-
late summary statistics, as well. This is the essence of a simulation study:
Produce randomly distributed quantities (such as normals) whose behavior is
well understood in order to study functions of these (such as the correlations)
whose distributions are less well known to us.

We will also look at the correlation coefficient under the model of sampled
independent normals as well as under a model in which the samples of the
underlying paired normals are correlated. There are approximations to the
behavior of the correlation coefficient (see Sect. 6.3), but in this simulation
study, we do not want to use any approximations.

This process is an example of a simulation experiment. Statistical scien-
tists frequently perform experiments on the computer in order to test theories
about the behaviors of random processes.

To begin, we will generate correlated, normal random variables with the
program rmmvnorm in the mvtnorm library. For example,

> library(mvtnorm)

> rmvnorm(5, mean = c(0, 0), sigma = matrix(c(1,.8, .8, 1), 2, 2))

[,1] [,2]

[1,] 1.03550508 0.06044561

[2,] 0.53386104 1.03063539

[3,] -0.06674766 -0.41792785

[4,] -0.59569721 -0.54805093

[5,] 0.96581969 0.61702999

This example generates five pairs of bivariate, random normals as a 5×2
matrix. The mean= option specifies the means of these pairs. The correlation
measures association independently of location, so we can assume that the
population means are both zero.

The variance matrix is specified using sigma=. In the present example,
the 2× 2 matrix

> matrix(c(1,-.8, -.8, 1), 2, 2)

[,1] [,2]

[1,] 1.0 -0.8

[2,] -0.8 1.0

2: ELEMENTS OF R 41

−2 0 2 4

−
3

−
2

−
1

0
1

2
3

4

x1

x2

Figure 2.2: Simulated bivariate normals

specifies unit marginal variances for each of the two components and a cor-
relation (and covariance) of −0.8. (We will discuss the covariance matrix
again, in Chap. 7.)

Using the rmvnorm program, we can provide a visual check that every-
thing is working correctly. The code

plot(rmvnorm(2000, mean = c(0,0),

sigma = matrix(c(1, -.8, -.8, 1), 2,2)),

xlab="x1", ylab="x2", pch = 16, col = "red")

generates 2000 pairs of random bivariate normals and produces Fig. 2.2 giving
us good visual evidence that rmvnormworks as described. Many of the options
in the plot function are described in Chap. 3.

Now that we are able to generate bivariate, correlated normally dis-
tributed random values, we need to calculate the correlation of these pairs.
The cor() function produces a matrix of correlation coefficients when its
argument is a matrix, as is the case with the output of rmvnorm. In the case
of paired data, the output of cor is a 2× 2 matrix:

> z <- rmvnorm(5, mean=c(0,0), sigma = matrix(c(1,.8, .8, 1), 2,2,))

> z

[,1] [,2]

[1,] 0.5400575 -0.1341743

[2,] -0.5003746 -0.3225571

[3,] 0.0657274 0.4185394

[4,] -1.7284671 -2.0219641

[5,] 0.3055753 0.6599834

2: ELEMENTS OF R 42

> cor(z)

[,1] [,2]

[1,] 1.000000 0.903586

[2,] 0.903586 1.000000

We can address the specific matrix element

> cor(z) [1,2]

[1] 0.903586

in order to select the (scalar) value we want.
Now that we have the tools to generate bivariate, correlated random

normals and obtain their correlation, what parameters do we want to vary in
our experiment? First, we need to decide how many correlation coefficients
we want to generate. In the end, we will probably want to draw a histogram
of their values in order to describe their distribution, so it makes sense to let
this number vary in our program.

Let us denote the number of random correlation coefficients to be gener-
ated in our program by ncor. Each of these correlations will be based on a
number of normally distributed pairs. Let us call the number of these pairs
nnor in our program. In both of these parameters, let us use variables in-
stead of fixed values. These variables will allow us greater flexibility. In both
parameters, we choose names for the variables that convey meaning to their
purpose.

Finally, we need a way to model the widest possible range of independence
and dependence. We will examine a variety of correlated populations, so let
us call this parameter rho.

The program called simcor to simulate the correlation is given in Out-
put 2.1. Let us review several features of this program before we actually
run it. A good feature of any program is to anticipate errors before these
occur. Specifically, notice how the program checks the validity of the argu-
ments ncor, nnor, and rho and will return NAs if these are not in the correct
range. (Recall similar error checking in the program to calculate spacings,
considered earlier in the previous section.)

We would not get an error message from R if ncor was a negative number,
but it would be awkward for us to interpret the result. (See Exercise 2.6 for
a discussion of this.) It is not clear how a negative value of nnor would be
defined. The correlation coefficient needs at least two pairs of observed values
in order to be defined. For this reason, we checked against these possibilities
early in the program before R caught them, leading to unexpected results.
To complete the error checking, notice how the program also checks that the
values of rho are in the valid range between −1 and +1.

The second feature of the simcor program is the use of the if() state-
ment along with the corresponding else. The if() statement breaks up the

2: ELEMENTS OF R 43

Output 2.1: R function to generate random correlation coefficients

simcor <- function(ncor, nnor, rho)

Simulate ncor random correlation coefficients based on nnor

pairs of bivariate normals with population correlation rho.

{

Check validity of arguments:

if(ncor < 1 || nnor < 2 || rho < -1 || rho > 1)return(NA)

library(mvtnorm) # access library

vm <- matrix(c(1, rho, rho, 1),

2, 2) # variance matrix

simcor <- NULL # start a list of values

for (i in 1 : ncor) # For every simulated correlation:

{

norv <- rmvnorm(nnor, # generate normal pairs

mean = c(0,0), sigma = vm)

sc <- cor(norv)[1, 2] # correlation of these pairs

simcor <- c(simcor, sc) # add to list of values

}

simcor # Done

}

order of instructions depending on whether or not the logical condition in
the parenthesis is met. The statement following the else is executed if the
logical condition evaluates to FALSE. See Table 2.1 for a list of comparisons
that result in logical TRUE or FALSE conditions.

If the logical condition in the if() is met, the next statement is executed.
If the condition is not met, the program flows to the statement following the
else. If we want several statements to be executed when the condition is
met, then we can place those statements inside curly brackets.

The third feature of this program is called a loop. The loop is a pow-
erful feature in programming that gets the computer to repeat a series of
instructions any number of times. All of the commands inside the code

for (i in 1:ncor) # loop on the number of correlations

{

... # code lines to be repeated

}

will be repeated ncor times.
Inside this loop, the value of i will successively take on the values 1, 2,

. . . , ncor. Within each repeat of this loop, the program generates nnor pairs
of correlated normal values and then finds their correlation, denoted by sc.

2: ELEMENTS OF R 44

These randomly generated correlation coefficients are accumulated in a vector
with the same name as that of the function, simcor. These are returned at
the completion of the function. It is not necessary to use the same name as
the function for the returned values, but it can make it easier to remember.

The loop then repeats the process ncor times generating one random
correlation coefficient with each repeat of the loop. We sometimes refer to
each repeat as an iteration. Another habit that good programmers have is
to indent successive levels of brackets {}, making it easier to see the scope of
the loop and where it begins and ends. Those with programming experience
will already be familiar with the looping construct and the if and else

conditional branching.
Let’s try our new program. First verify the checks and error processing

for invalid values of ncor, nnor, and rho, respectively,

> simcor(ncor = -1, nnor = 10, rho = 0)

[1] NA

> simcor(nco = 10, nnor = -1, rho = 0)

[1] NA

> simcor(ncor = 5, nnor = 15, rho = 1.8)

[1] NA

> simcor(ncor = 6, nnor = 12, rho = -1.2)

[1] NA

so the error checking appears to be working correctly.
Next, let’s try the program using legitimate parameter values

> simcor(ncor = 5, nnor = 15, rho = -.8)

[1] -0.7392940 -0.7368622 -0.8276200 -0.7509294 -0.8466513

using R to generate a set of ncor=5 simulated correlation coefficients, each
from nnor pairs of normal variates. It is not necessary to identify the argu-
ments (ncor, nnor, rho) by name, but including these names when invok-
ing the function makes it easier to remember the roles of the three parameters,
as opposed to having to recall their order in the list.

Now we can try the program at full strength with a large number of
replicates

> sim <- simcor(ncor = 2500, nnor = 15, rho = .8)

> mean(sim)

> hist(sim, main = " ", col = "red")

[1] 0.7866204

generating 2500 correlations, finding their mean, and producing the his-
togram given in Fig. 2.3.

2: ELEMENTS OF R 45

Simulated correlation

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

Figure 2.3: Histogram of 2500 simulated correlation coefficients

The average of these values is reasonably close to the population value of
0.8. This provides some additional confirmation that the program is doing
what we expected it to do.

The histogram of these 2500 values produced by simcor appears in
Fig. 2.3. This histogram shows that the distribution of the sample corre-
lation coefficient is skewed with a longer tail to the left, as we would expect.
The mean of these values is also reasonably close to where we expected it to
be. Now that we have the program to simulate correlation coefficients, we
can use it for other purposes such as estimating statistical significance levels
and approximating power for estimating the sample sizes of experiments. See
Exercise 2.6 for an example of these uses.

Let us review the process to write the simulation program simcor and
run it. We began with a clearly stated goal: To examine the behavior of
the correlation coefficient. Then we identified the tools to generate bivariate
normals and their correlations: mvnorm, matrix, cor. Next, we determined
what variables we wanted to vary in the program: ncor, nnor, rho.

In programming as well as simulation experiments, we need to go over
similar steps: Define the task, then decide which factors are fixed and which
will vary. This planning will save you trouble later if you need to make
revisions.

Be generous in placing comments inside your program. Experienced pro-
grammers will tell you that there should be about one line of comments for
every line of code. Such comments will help you if you put this project aside
for a while and later come back to it. Sharing code with a colleague makes
this documentation even more indispensable. Finally, avoid using abstract
variable names such as x that convey no information about their role.

2: ELEMENTS OF R 46

2.7 Advanced Numerical Operations

R allows for the numerical maximization and minimization of specified func-
tions. Beginning in Sect. 5.7, we see that this process is an important tool
in estimating model parameters. Sometimes we can use calculus (and brute,
mathematical force) to find the maximum. But it is often easier to let the
nlm (non linear minimization) program in R do this heavy lifting for us. This
program requires that we write the objective function and provide reasonably
good starting values for the estimate of the location of the minimum. In func-
tions of many parameters, the choice of starting values can often represent a
large challenge, so be prepared to spend time on this.

The nlm() program will minimize a specified function of several variables.
We need to program the objective function to be minimized and provide a
rough idea of where the search for a minimum should begin. The output from
nlm will include a list of the parameter values that minimize the function and
numerical estimates of the first and second derivatives at the place the func-
tion is minimized. The first and second derivatives are called the gradient and
Hessian, respectively. These derivatives are also estimated, numerically, by
examining the change of the value of the objective function near the optimal
parameter values. These estimates also help nlm in locating the minimum.
Close to the true minimum, the objective function should behave approxi-
mately as a quadratic function, and R can numerically solve this equation
for the next best place to look for a better estimate of the location of the
minimum.

Unfortunately, nlm can get confused along the way. It can “wander off”
and look for the minimum very far from where the minimum is located. In
addition, it can give errors by looking in illegal or undefined places. This
occurs when some parameter values are only defined for positive values, as a
normal variance, for example. These problems will be illustrated in Sect. 5.7
and are often avoided by using good starting values. See Exercise 2.9 as an
example.

We can also numerically evaluate integrals in R. This topic is often re-
ferred to as numerical quadrature. The integrate function will numerically
approximate a one-dimensional integral, with possibly infinite endpoints. Of
course, if you are evaluating a function such as a cumulative distribution,
then it is much better to use the specific function in R designed for that pur-
pose, if available. There are routines in R that approximate multi-dimensional
integrals as well, such as adaptIntegrate in the cubature library.

Finally, a wide variety of other mathematical computations can be ob-
tained in R related to matrix and linear algebra. These include determinants,
solutions to linear equations, and eigenvectors, just to name a few. These are
discussed in Chap. 4.

2: ELEMENTS OF R 47

2.8 Housekeeping

In this section we illustrate several additional R features worth knowing.
Working directories allow you to better organize your workspace. Workspaces
help organize your R work into separate folders for different projects. There
is also a way to “take out the garbage” when it is time to clean up unused
data within each project after these have outlived their usefulness. Finally,
we show how to install new packages that allow you to take advantage of the
many optional libraries of programs that are available.

After working with R for a while, your workspace can start to look like
a very cluttered desk, containing many data sets from a variety of different
projects. When you use the ls() or objects() commands to list all of the
things in your workspace, you will see a huge number of variables (and maybe
some programs) from a variety of different projects. The best way to organize
your desk is to create a new working directory for each project.

Use getwd() to find the name of the current working directory and
setwd() to change it. Don’t forget to include the two parentheses on the
getwd() command with no additional arguments. Typing getwd() on your
computer might give

> getwd()

[1]"C:/Users/My Name/Desktop/"

This working directory probably points to some high-level place on your
computer. It would be much better to have a separate working directory that
is specific to each project. In this case we could change the working directory
by typing something like

> setwd("C:/Users/My Name/Desktop/Projects/multivariate/data")

that is particular to your computer.
Changing the working directory will also be useful for reading data sets

into R because a shorter address can be used. Specifically, commands such as
read.table() and scan() will look for files in the current working directory.
After we quit R, there will be an icon for the R program written into the
working directory. Later, you can click on this icon from the directory and
not have to change it again with a setwd() command. This process can be
repeated, resulting in an R icon in each of the directories of each of your
different projects. Each icon will open the R in that directory. Finally, notice
the address of the directory is delimited with a forward-leaning slash (/) and
not the more commonly used backslash used in directory addresses.

As a final note on organizing your workspace, consider generous use of
the rm() command to remove unused variables. A cluttered workspace will
make it difficult to find important things at some future date, often with
names that may have been forgotten.

2: ELEMENTS OF R 48

A great feature of R is the huge amount of software written by other
users. A list of the libraries used in this book is given in the Appendix. To
take advantage of the many libraries available, you will need to install these
packages on your computer. First you will need to learn the name of the
specific package you want to install. (More on this below.)

Let’s say that you want to install the TeachingDemos package which
contains introductory tutorials in R. The R command to install packages is

install.packages("TeachingDemos")

This command will be followed by a prompt for you to select a mirror
site1 from which the packages are to be downloaded to your computer. After
choosing a mirror site, you will be prompted for the name of the package.
After a few seconds, you will receive a message when the package finishes
loading. This command only needs to be done once for all of your working
directories. The command installed.packages() provides a complete list
of all packages installed, including many that came as part of your original
download of R to your computer.

To access the package in each working directory, interchangeably use
either the library or require command, as in

library(TeachingDemos)

or else as

require(TeachingDemos)

without the quote marks. Either of these is needed every time you begin a
session in R to access the installed package.

After installing and loading the package, you can then type
help(TeachingDemos) to learn more about the package and its contents.

How can you learn about the various packages and their contents? One
approach is through R itself. The R help file frequently describes features
available in packages that may not already be installed on your computer.
You will see help file entries with a notation of the form

faces{TeachingDemos}

indicating the name of the function and the package containing it.

1There is some debate on how to choose a mirror site. There is a cloud
option that picks a site for you. Picking a site geographically close to you
will reduce web traffic. Conversely, a very distant site may offer faster service
because most people on that side of the earth are asleep.

2: ELEMENTS OF R 49

A second way to learn about packages for R is on the web through your
favorite search engine. There are a huge number of packages available, and the
authors of these will frequently create websites publicizing their capabilities.
There are packages written for specialized statistical methods as well as areas
of application such as genetics, chemistry, psychology, and economics. Some
packages complement a book, in which case the help may be minimal to
encourage you to buy the book to learn more.

This completes an introduction to the important elements of R. Addi-
tional features will be introduced in subsequent chapters as needed. As with
piano playing, the best way to learn R is not just by reading the book but by
sitting at the keyboard, trying the exercises, and engaging in some creative
experimentation.

2.9 Exercises

2.1 The seq command in R is similar to the colon : operator but allows
for non-integer sequences. It takes three arguments: the starting value,
final value, and (optionally) the incremental value. Here are two exam-
ples of its use:

> seq(5, 9)

[1] 5 6 7 8 9

> seq(9.1, 8.3, -.1)

[1] 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3

Use the seq and c functions to create a single vector of values from zero
to one by 0.1 and then from 1 to 10 by 1. Be careful that the value 1 is
not included twice.

2.2 Write a program in R that is a function of a positive integer j and
produces a vector of the form

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . . , 1, 2, . . . , j.

2.3 The mean absolute deviation of a set of values x1, x2, . . . , xn is the
average absolute difference between the observations and their mean.
Mathematically,

mean absolute deviation(x) = n−1
n∑

i=1

| xi − x |

where x is the sample average of the xs. It is sometimes used instead
of the standard deviation as a robust measure of variability of the data
values. Robust methods are insensitive to outliers that may be present
in the data.

2: ELEMENTS OF R 50

(a)Write a function in R that computes the mean absolute deviation
of a vector of values. You may find the mean() and abs() functions
useful in writing this program.

(b) Discuss the pros and cons of using the median, as opposed to
the mean x in this definition. Similarly, consider the median absolute
deviation about the median value as a measure of variability in a sample.

(c) One way we describe robust properties of a statistical estimator
is to introduce seemingly outlandish outliers into the data to see how
these affect the final result. Perform a small experiment comparing the
change in the standard deviation with that of the mean absolute devi-
ation for a sample of observations with increasingly distorted outliers.
Which statistic is more robust?

2.4 If X behaves as a standard normal, then X2 behaves as chi-squared
with 1 df. The cumulative chi-squared distribution can be found in
R using the function pchisq(y,d) where y is the ordinate and d is the
degrees of freedom. Use this function to find the probability of a 1 df
chi-squared variate taking values between 0.5 and 1.2.

2.5 Look at the academic score data in Table 1.2. The various scores that
went into this table have been standardized across countries to adjust
for cultural differences.

(a) Are the standard deviations of the different scores compara-
ble? Consider using the bartlett.test() test for equality of vari-
ances. Other tests of equality of variances available in R are var.test(),
flinger.test(), ansari.test(), and mood.test(). Use the help()

file to read about these tests.

(b) Examine the correlation matrix of this data using the cor func-
tion. Describe what you see. See also Exercise 8.7.

2.6 Explore properties of the simcor program to simulate statistical signif-
icance of the correlation coefficient.

(a) What would happen if we allowed the ncor parameter to be
negative? Remove the error check for this condition and explain how
the new program behaves for ncor< 0.

(b) Generate a large sample (m) of correlation coefficients from
pairs of normal variates for a specified sample size and zero correlation.
Estimate the 95% confidence interval that would cover these, for a fixed
size of the (normal) sample n. Do this by sorting the many simulated
correlations and finding their 2.5 and 97.5 percentiles.

(c) Propose a more efficient method for estimating the 95% confi-
dence interval of the correlation coefficient using the symmetry of the
distribution.

2: ELEMENTS OF R 51

(d) One of the most important questions asked of statisticians con-
cerns the sample size (n) necessary to conduct a research project. Write
a program with iterations and a convergence criteria to achieve a small
95% confidence interval of the correlation coefficient. How fast does the
size of this interval shrink as a function of the sample size n? Draw a
graph of this relationship.

(e) Suppose the data is sampled from a population with a correla-
tion coefficient of ρ. Use the simcor program to estimate the value of
ρ needed so that 80% of the sampled correlations are not included in
the interval you found in part b. This sample size (n) will have 80%
power to detect this value of ρ at statistical significance 0.05.

2.7 How useful is the histogram to detect normally distributed data?

(a) Use runif(50) to generate a set of 50 random values, dis-
tributed uniformly between zero and one. Draw the histogram of these
using hist(). Do these look normally distributed?

(b) Generate 50 random values, each the sum of 3 uniforms and plot
the histogram. Do these look normally distributed? Suppose we looked
at the histogram of the sum of 20 uniforms. How many uniform ran-
dom values do we need to add together to produce a “normal-looking”
histogram?

(c) As a comparison, look at a histogram of 50 normal random val-
ues generated using rnorm(). How normal does this histogram appear?

2.8 Consider the function

f(x) =
1

2 + sin(5πx)

for values of 0 ≤ x ≤ 1.

(a) Plot the function f in R. (See Sect. 3.1 for an example of how
to do this.)

(b) Find the area under this curve using numerical quadrature with
integrate().

(c) Identify maximums and minimums of this function in R using
nlm(). Show how the results depend on the starting values.

2.9 Use nlm to find the minimum of the function:

f(x, y, z) = 100−
5∑

i=1

exp{−5(x− i)2}/i+ exp{−5(y− i)2}/i+exp{−5(z− i)2}/i

The true minimum of f occurs at x = y = z = 1 but there are several
other local minimums. Show that by varying the starting values for
nlm, we can converge on any of these other local minimums.

2: ELEMENTS OF R 52

Table 2.3: Nonnumeric, symbolic values in R

Symbol Description R test

NULL No value is.null()

NA Not available, is.na()

missing
NaN Not a number is.nan()

Inf +Infinity is.infinite()

-inf −Infinity is.infinite()

2.10 As you work in R, you will notice a variety of symbolic values in addition
to numerical values. A list of these and tests for their values is given in
Table 2.3.

(a) What happens when we use Inf in arithmetical statements?
For example,

> x <- Inf

> is.infinite(x)

[1] TRUE

will assign and test an infinite value. How does R define -x? What is
the result when we multiply x by −1 or by zero? Can we test -Inf < 0?

(b) How does R work with NULL in arithmetic? How does NULL

differ from NaN? For example, suppose we assign

x <- c(1, 2, NULL, 4)

What is the length of x? What is the sum of x?

Similarly, suppose we assign

y <- c(1, 2, NaN, 4) ?

What is the length and sum of y?

(c) Give examples of arithmetic operations that yield NaN and Inf.
How are these results different? Which are accompanied with an error
message?

(d) Build a table of the resulting symbols when two of these symbols
are used in arithmetic operations. For examples, what does the sum of
NA and NaN yield? What is the product of zero and NULL?

2: ELEMENTS OF R 53

2.11 (a) Can we access the values of sortx outside the spacing function
given in Sect. 2.5? Explain.

(b) Write a one line function in R to calculate the spacings of
any set of numbers using the diff() function. The diff(x) function
calculates the difference of adjacent observations in a vector x.

2.12 What does R do when we try to access subscripts that are out of range?
Suppose we start with

> x <- 1:3

(a) A negative subscript such as x[-2] will omit the second element
of the vector. What does x[-5] yield in this example?

(b) What does x[0] give us? Can you explain this outcome?

(c) Suppose we try to assign a value to an invalid element of the
vector, such as in x[7] <- 9. What does this produce?

(d) Is an empty subscript x[] different from x with no subscript at
all? As an example, how is x[] <- 3 different from x <- 3?

Chapter 3

Graphical Displays

You can observe a lot by just watching.
Yogi Berra

T HERE ARE MANY GRAPHICAL METHODS that can be demon-
strated with little or no explanation. You are likely familiar with his-

tograms and scatterplots. Many options in R have improved on these in
interesting and useful ways. The ability to produce statistical graphics is a
clear strength of R. Graphics commands can produce files of a variety of file
formats. All of the figures in this book were produced in this manner, for
example. We begin with a discussion of the basics. Later sections of this
chapter demonstrate a variety of more complex procedures available to us.

3.1 Graphics in R

The plot function is a general purpose routine with many options. The basic
form is plot(x,y) which produces a scatterplot of the values in x and y. The
plot function sets the frame and limits of the axes for you. There are many
options including printing titles along the axes and changing colors. These
will be illustrated in this chapter.

Let us illustrate the use of the plot function in drawing the densities of
the chi-squared distribution. A very basic figure can be drawn using

x <- (0 : 120) / 10

plot (x, dchisq(x, 4), type = "l")

lines(x, dchisq(x, 5))

lines(x, dchisq(x, 6))

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 3

55

3: GRAPHICAL DISPLAYS 56

0 2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

x

dc
hi

sq
(x

, 4
)

Figure 3.1: Basic chi-squared density plots

lines(x, dchisq(x, 7))

lines(x, dchisq(x, 8))

which produces Fig. 3.1 in a graphics window.
The R code begins by creating 121 evenly spaced values for x of 0, 0.1,

0.2, . . . , 12. The dchisq(x,4) evaluates the chi-squared density function with
4 df at each value of x. The plot statement opens the graphics window and
sets the limits of the horizontal and vertical axes. The type="l" option
specifies that lines will be used to connect adjacent points. Omitting this
option would produce a series of disconnected dots. The labels of the plot
axes are copied from those of the plot statement. We will show how to
replace these with more useful labels in the next example. (As a helpful hint
introduced in Sect. 2.5, whenever we have several lines of code to enter into
R, it is best to write these out in a word processor first and then copy them
into the R command window.)

The lines command is like the plot except that it produces lines between
observations and plots these on top of the existing plot. These do not adjust
for values that run outside the bounds set earlier by the plot command. It
is best to plan ahead and use the plot command first with the widest and
tallest of values that your figure is going to contain. It is possible to specify
these limits manually, as we will see in the following section.

We can spruce up this figure and make it more presentable for publi-
cation. Figure 3.2 adds labels and prints a useful y-axis. This figure was
produced using the code

pdf(file = "chisquared2.pdf")

x <- (0 : 120) / 10

plot(x, dchisq(x, 4), type = "l",

3: GRAPHICAL DISPLAYS 57

0 2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

x

C
hi

−
sq

ua
re

d
de

ns
ity

4 df

5 df

6 df

7 df

8 df

Figure 3.2: Chi-squared density functions for 4–8df

ylab = "Chi-squared density")

lines(x, dchisq(x, 5))

lines(x, dchisq(x, 6))

lines(x, dchisq(x, 7))

lines(x, dchisq(x, 8))

text(c(3, 4.2, 5.2, 6.2, 8), c(.18, .153, .137, .123, .11),

labels = c("4 df", "5 df", "6 df", "7 df", "8 df"))

dev.off()

The placement of the labels inside the figure is done using the text

statement. This statement lists the desired x-coordinates followed by those
for the y-coordinates. The exact positioning is not tricky but usually takes
a little trial and error in order to position these correctly.

The pdf(file= ...) statement is optional and is used to direct graphic
images to external PDF files. These can later be incorporated in other doc-
uments. Unless addressed otherwise in the pdf() statement, these files will
appear in the current working directory. Working directories are described
in Sect. 2.8. The images will not appear on the screen while the output is
directed elsewhere, so you should make sure that the figure is correct before
saving it to an external file. The dev.off() closes the graphics file at com-
pletion of the image.

Other examples appear in the following sections of this chapter. We
demonstrate additional options including how to add text and manipulate
other graphical parameters such as colors, plotted characters, and size.

3: GRAPHICAL DISPLAYS 58

3.2 Displays for Univariate Data

We are all familiar with histograms. These are the simple display for one-
dimensional data. The basic command in R is hist(x) to obtain a histogram
of the values in x. Let us introduce some other methods as well.

Consider data on the CD4 counts in HIV+ patients enrolled in a clinical
trial. The beneficial CD4 cells are a critical part of our immune system, and
lower counts are an indication of disease progression. These cells are attacked
and destroyed by the HIV virus. The cd4 data set in the boot library presents
the baseline counts of CD4 cells of patients at the time of enrollment in the
clinical trial and again after 1 year of treatment. The CD4 values are given
in 100s. The critical value of 200 (or lower) is an AIDS-defining event.

A useful univariate display for small amounts of data is the stem and leaf
plot. The stem and leaf plot is a useful improvement over the usual histogram
because the data values are used as plotting characters, rather than the same
character for every observation as used in the histogram.

As an example, the baseline CD4 counts are obtained

> require(boot)

Loading required package: boot

> cd4

baseline oneyear

1 2.12 2.47

2 4.35 4.61

. . .

19 2.66 4.37

20 3.00 2.40

The corresponding stem and leaf plot is

> stem(cd4$baseline)

The decimal point is at the |

1 | 9

2 | 15567

3 | 000444468

4 | 0123

5 | 1

The stem and leaf displays the actual data values, and we can recover the
original data from the histogram. The vertical line | serves as the decimal
point so we can read the data values directly from this plot as 1.9, 2.1, 2.5,
2.5, and so on. The originators of this display method saw the vertical line as
the stem of a plant and the numbers to the right as leaves, hence the name.

3: GRAPHICAL DISPLAYS 59

Output 3.1: Back-to-back stem and leaf plots

> library(aplpack)

> stem.leaf.backback (cd4$baseline,

cd4$oneyear)

1 | 2: represents 1.2, leaf unit:

cd4$baseline 0.1 cd4$oneyear

| 1* |

1 8| 1. |

3 41| 2* |44 2

7 9655| 2. |58 4

(6) 333300| 3* |022 7

7 75| 3. |89 9

5 3110| 4* |0233 (4)

| 4. |678 7

1 1| 5* |2 4

| 5. |59 3

| 6* |3 1

| 6. |

| 7* |

n: 20 20

There is also a back-to-back stem and leaf display in the aplpack library
that allows us to compare two sets of data values. An example appears in
Output 3.1. The frequency of the median category is identified in parenthesis.
In this display, we can see that the population of 1-year CD4 values are larger
and more variable than the baseline values.

The stem and leaf uses the actual data values to display the data. This
may not be a useful method if the data set is very large. At the other extreme
from the stem and leaf plot is the boxplot which reduces the histogram to a
few summary statistics and then plots these.

The boxplots of the CD4 counts are given in Fig. 3.3. The dark cen-
tral horizontal line is the location of the median, and the box identifies the
quartiles. (The quartiles are located 25% in from both ends of the observed
values.) The whiskers extend out from the central box. Sometimes extreme
outliers are also identified by the boxplot. The pair of boxplots in Fig. 3.3 is
easier to compare than the raw data values also given in this figure. Unlike a

3: GRAPHICAL DISPLAYS 60

Baseline

C
D

4
va

lu
es

1 year Baseline 1 year

Figure 3.3: Univariate scatterplots and boxplots of CD4 counts

stem and leaf plot of the raw data, the boxplot does not become overwhelming
when the sample size is large.

The R code that draws Fig. 3.3 is

library(boot)

data(cd4)

n <- length(cd4$baseline) # sample size

pdf(file = "boxplot.pdf")

op <- par(mfrow = c(1, 4), cex.lab = 1.5) # four plots, large labels

plot(rep(.5, n), cd4$baseline, axes = FALSE, xlab = "Baseline",

xlim = c(0, 1), ylim = range(cd4), col = "red",

ylab = "CD4 values", cex.lab = 1.5, cex = 2)

plot(rep(.5, n), cd4$oneyear, axes = FALSE, xlab = "1 year",

xlim = c(0, 1), ylim = range(cd4), col = "red",

yaxt = "n", ylab = "", cex.lab = 1.5, cex = 2)

text(c(0, 1), c(0, 0),

c(boxplot(cd4$baseline, xlab = "Baseline", col = "red",

ylim = range(cd4),axes = FALSE),

boxplot(cd4$oneyear, xlab = "1 year", col = "red",

ylim = range(cd4), axes = FALSE)))

par(op)

dev.off()

The par() statement specifies that there will be four figures, side-by-
side, in the graphics window and increases the font size of the labels in the
margins. The par(op) statement resets this back to one figure in the win-
dow. Parameters with cex = and cex.lab = specify character expansions

3: GRAPHICAL DISPLAYS 61

At baseline

F
re

qu
en

cy

2 3 4 5

0
1

2
3

4
5

At 1 year

F
re

qu
en

cy

2 3 4 5 6

0
1

2
3

4

Figure 3.4: Histograms of CD4 counts, values in 100s

to increase font sizes. There are more sophisticated versions on the boxplot
called violin plots. These are described in Exercise 3.4.

Let us return to the histogram as the display tool. The R code

library(boot) # the data is in this library

op <- par(mfrow = c(1, 2)) # side by side plots on one

page

hist(cd4$baseline, main = "", xlab = "At baseline")

hist(cd4$oneyear, main = "", xlab = "At 1 year")

par(op) # reset graphical parameters

produces the side-by-side histograms in Fig. 3.4.
The hist() statements produce the separate histograms with titles along

the x-axes. A direct comparison of these two graphs in Fig. 3.4 is difficult.
We cannot easily tell, for example, if the 1-year CD4 values are generally
larger or smaller than those at baseline. It is not clear which of these two
sets of values has a wider range. This figure would be adequate if we were
only interested in number of values below the 200 threshold after 1 year.

3: GRAPHICAL DISPLAYS 62

2.0 2.5 3.0 3.5 4.0 4.5 5.0

3
4

5
6

Baseline

A
t 1

 y
ea

r

Figure 3.5: Basic scatterplot of CD4 counts

We need to look at these two groups in a manner that allows a quick
comparison. The plot(x,y) command plots a scatterplot of x–y values. We
can plot the baseline and 1-year values and then we can see a correlation
between the two values of each subject.

That is, the R command

plot(cd4$baseline, cd4$oneyear, xlab = "Baseline", ylab =

"At 1 year")

produces the plot that appears in Fig. 3.5.
This figure demonstrates that baseline and 1-year values are positively

correlated within individuals but still does not allow a direct before-and-after
comparison.

In order to compare the values, we need other graphical methods. These
appear in Fig. 3.6. The membership variable group is discrete and a plot of
this along the x-axis results in two vertical stripes in the left-most plot in
Fig. 3.6.

It is sometimes better to add a small amount of random noise to scatter
these values just enough to see the underlying distribution. These jittered
values are plotted in the center of the three plots. A number of observations
will often occlude others in a plot such as this, even with a modest sample
size. The jitter(group) command takes the group values and adds a small
amount of random noise.

3: GRAPHICAL DISPLAYS 63

Output 3.2: R code to produce Fig. 3.6

library(boot) # contains the cd4 dataset

n <- length(cd4$baseline) # sample size

join <- c(cd4$baseline,cd4$oneyear) # concatenate all CD4 values

group <- rep(c(0, 1), each = n) # assign group membership

par(mfrow = c(1, 3)) # three side by side plots on one page

plot(group, join, # 1st plot with simple X axis

ylab = "CD4 counts", xlab = "", axes = FALSE,

ylim = c(0, max(join)), xlim = c(-.25,1.25))

text(c(0,1), c(1,1), labels = c("Baseline", "1 year"))

plot(jitter(group), join, # 2nd plot with jittered X-axis

ylab = "", xlab = "", axes = FALSE,

ylim = c(0, max(join)), xlim = c(-.25, 1.25))

text(c(0,1), c(1,1), labels = c("Baseline", "1 year"))

plot(group, join, # 3rd plot: spaghetti

ylab = "", xlab = "", axes = FALSE,

ylim = c(0, max(join)), xlim = c(-.25, 1.25))

text(c(0,1), c(1,1), labels = c("Baseline", "1 year"))

for (i in 1:n) # draw individual connecting lines

lines(c(0,1), c(cd4$baseline[i], cd4$oneyear[i]))

The program that produces Fig. 3.6 is given in Output 3.2. In Fig. 3.6
we can see that the 1-year values are more variable than the baseline values.
This comparison is easier to make with the jittered grouping values.

The spaghetti plot links every individual’s paired values. From the
spaghetti plot we can see if subjects with high baseline values are associ-
ated with high 1-year values. A few individual’s values decrease, but clearly
there is an overall trend of increasing values among the scattered lines.

3.3 Displays for Bivariate Data

Let’s have a look at the well-known scatterplot. Consider the data given in
Table 1.1 for the values of apartment rents and house prices for each state.
The values are contained in a data.frame called housing in R so we have

3: GRAPHICAL DISPLAYS 64

C
D

4
co

un
ts

Baseline 1 year Baseline 1 year Baseline 1 year

Figure 3.6: CD4 counts by group, with jittering, and as spaghetti

> housing

Apartment House

AK 949 237.8

AL 631 121.5

AR 606 105.7

. . .

WI 704 173.3

WV 528 95.9

WY 636 188.2

A simple command

> plot(housing)

produces the scatterplot in a familiar format, given in Fig. 3.7.
The figure contains labels for the two axes because they are defined as

column names in the data.frame. This figure conveys the basic information:
The prices of houses are correlated with apartment rents and the values are
skewed towards the high ends of both. Let’s try to improve upon this basic
figure.

3: GRAPHICAL DISPLAYS 65

600 800 1000 1200

10
0

20
0

30
0

40
0

50
0

Apartment

H
ou

se

Figure 3.7: Basic scatterplot of housing data

Any serious discussion of statistical graphics would be amiss if it failed to
mention the series of books by E Tufte. Tufte (2001) recommends eliminating
the chart junk or non-essential graphical items in order to draw our attention
to the patterns in the data.

Specifically, in Fig. 3.7, the box containing the figure is purely decorative.
Further, the numbers and tick marks along the two axes convey only a small
amount of information about the range of values.

Tufte (2001) would urge us to maximize the data to ink ratio. The point
of drawing a scatterplot is to examine the bivariate relationship between
the variables of interest, in this case housing prices and apartment rents.
A greater amount of “ink” should be dedicated to presenting the data instead
of framing the picture with decorative axes. This brings us to the plot in
Fig. 3.8 with no numbers in the axes, bold symbols emphasizing the data,
and “rug fringes” displaying the two marginal distributions.

Figure 3.8 was produced using

require(graphics) # library for rug program

attach(housing)

boundA <- range(Apartment) * c(.95, 1) # find bounds for plot area

boundH <- range(House) * c(.8, 1)

plot(housing, xlim = boundA, ylim = boundH,# Plot data with bounds

axes = FALSE, # Omit the usual axes

cex = 1.5, pch = 16, # Plot large solid circles

col = "red") # Select color of points

rug(Apartment, side = 1) # Add rug fringes

rug(House, side = 2)

3: GRAPHICAL DISPLAYS 66

Apartment

H
ou

se

Figure 3.8: Plot with minimal chart junk and a high data to ink ratio

where rug adds “fringes” corresponding to a univariate scatterplot of the
marginal distributions. Tufte (2001) refers to the style of Fig. 3.8 as a dot-
dashplot. One problem with the graph in Fig. 3.8 is that our eyes can get
distracted and wander away from the figure because it lacks a bounding box
to frame the figure and focus our attention.

3.3.1 Plot Options, Colors, and Characters

Let us describe some of the many options available when using the plot

function in R.
The bounds of the original plot() statement, used to produce Fig. 3.8,

are modified to move the rug fringes a little away from the bivariate data
points. This is done using the xlim= and ylim= options. This last example
illustrates the use of the cex= option to magnify or shrink the size of the
plotted characters. The axes=FALSE suppresses the usual axes and their
numerical values.

The plot statement in this last example uses the pch= option to choose
the plotting character. The most commonly used pch= options are

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Colors may also be used using the col= option. The colors can be ad-
dressed by name or by number. Eight colors can be addressed by number:

3: GRAPHICAL DISPLAYS 67

1 2 3 4 5 6 7 8

A complete spectrum of colors is also available. See the help file on
rainbow and palette. The rainbow(n)[i] function divides the visible spec-
trum into n shades and [i] picks the ith of these.

As an example of the rainbow function, the R code

plot(c(0,1), c(0,1), type="n", xlab=" ", ylab=" ", axes=FALSE)

n <- 125

for (i in 1:n)

{

lines(rep(i/(n+1), 2), c(0,1), lwd=4,

col=rainbow(n)[i])

}

produces Fig. 3.9.
The sizes of plotted objects can be changed. The cex=2 option, for

example, will double the size of plotted characters. Similarly, cex=.5 will
shrink characters by half. The cex.lab= option is used to change the size of
the font used on the axes.

3.3.2 More Graphics for Bivariate Data

In contrast to Fig. 3.8, let us consider a scatterplot with a lot of processing
and detail attached. The bivariate boxplot is described by Goldberg and
Iglewicz (1992) and programmed by Everitt and Hothorn (2011).

Figure 3.9: An example of the rainbow() function

The scatterplot of the housing data in Fig. 3.10 illustrates the bivariate
boxplot using the program bvbox in the MVA library. Instead of the central box
containing 50% of the univariate data as in a univariate boxplot of Fig. 3.3,

3: GRAPHICAL DISPLAYS 68

400 600 800 1000 1200

0
10

0
20

0
30

0
40

0
50

0

Apartment

H
ou

se
DC

HI

CA

Figure 3.10: Bivariate boxplot of housing data

the bivariate boxplot includes a pair of estimated ellipses, the inner one con-
taining approximately 50% of the data and the outer one containing about
95%. For ease of interpretation, we have added text to the figure allowing
us to identify the three outliers: California, Hawaii, and Washington, DC.

The R code that produces Fig. 3.10 is

library(MVA) # library for bvbox

extreme <- c("DC", "HI", "CA") # Three extreme states

exst <- match(extreme, rownames(housing)) # identify index in data

bvbox(housing, xlab = "Apartment", ylab = "House",

pch = 19, cex = 1.25, col = "red")

text(housing$Apartment[exst], housing$House[exst],

labels = extreme, cex = .8, # label names, small font

pos = c(2,2,3)) # position labels: L,L, top

See Exercise 3.6 on modifying the graphical options in the bvplot routine.
The match() statement is discussed in Sect. 2.1.2 and is used to iden-

tify the subscript (index or observation number) associated with each of the
named three extreme states. In this example, match() is used to identify the
index of each of the three names of extreme values among the rownames of
the data.frame.

3: GRAPHICAL DISPLAYS 69

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

600 800 1000 1200

10
0

20
0

30
0

40
0

50
0

Apartment

H
ou

se

Figure 3.11: Convex hull of the housing data

The two lines inside the ellipses of Fig. 3.10 are estimates of the regression
line. The darker line is the usual least squares line using all of the observa-
tions. The lighter line is a more robust estimate that reduces the influence of
any extreme outlying data values. See Chap. 9 for a full discussion of linear
regression. See also Exercise 13.1 for an examination of the most extreme
values in this data and whether these can be considered as outliers.

Let us end this section on two-dimensional plots with a discussion of the
convex hull. The convex hull is a lot like wrapping an irregularly shaped
object with the smallest amount of gift paper: The most extreme points in
any direction will define the ultimate shape of the package. Mathematically,
the convex hull is the smallest convex polygon containing all of the data. In
R, the chull function returns the indices of the data points that are most
extreme in each direction:

> chull(housing)

[1] 34 10 44 26 50 29 8 12

We can redraw the housing data from Fig. 3.7 and identify those points
that are on the convex hull. The program

3: GRAPHICAL DISPLAYS 70

ch <- chull(housing) # find the indices of the convex hull

ch <- c(ch,ch[1]) # loop back to the beginning

plot(housing, pch = 19, col = 2,

cex = 1.25) # plot the original data

lines(housing$Apartment[ch], housing$House[ch],

type = "l", col = 3, lwd = 2) # bold, green lines

draws Fig. 3.11.
The lines command adds lines to the figure with the type="l" option.

The lines that are drawn also need to return back to the beginning, so the
list of indices ch from the convex hull program chull must repeat the first
observation at the end of this list in order to complete the polygon. In this
example, the lwd= option in lines controls the width of the lines.

The convex hull in Fig. 3.11 identifies the extremes in the data. Some
might argue that not all of these observations should be considered outliers.
If there are outliers, the convex hull will pick some of these out. If there are
several outliers, as identified in Fig. 3.10, then they might hide behind the
largest of these. California is an outlier but is dwarfed by the larger outlier of
Hawaii. Such a problem is calledmasking, where one extreme outlier obscures
others in the data.

Suppose we omitted the observations on the convex hull and looked at
what remains. This would remove the most extreme values to reveal those
less extreme. We might then draw the convex hull of those remaining obser-
vations. It is also useful to repeat this process several times. The net effect is
much like peeling an onion, successively removing the outermost layers, one
at a time. This repeated process will give a better idea about the underlying
shape of the data.

The program lines

library(aplpack)

nlev <- 5 # Number of levels

colors <- heat.colors(9)[3:(nlev+2)]

plothulls(housing, n.hull = nlev, col.hull = colors,

xlab = "Apartment", ylab = "House",

lty.hull = 1:nlev, density = NA, col = 0, main = " ")

points(housing, pch = 16, cex = 1, col = "blue")

draw and then peel away five successive convex hulls to produce Fig. 3.12.
Each successive layer is plotted in a different color by plothulls.

The best way to look at Fig. 3.12 is as a five-layer wedding cake. Layers
on the inside are stacked higher and on top of those further out. The smaller
and higher cake layers represent areas with a greater density of observations.
The baker might be accused of being sloppy, but notice the convex hull has no
bias about what these data layers should look like. Compare Fig. 3.12 with
Fig. 3.10. In Fig. 3.10 we see layers that are perfect and parallel ellipses, re-
gardless of what the data might suggest. The convex hull peeling in Fig. 3.12
is the nonparametric approach that makes no assumptions about the form of

3: GRAPHICAL DISPLAYS 71

600 800 1000 1200

10
0

20
0

30
0

40
0

50
0

Apartment

H
ou

se

Figure 3.12: Five peeling convex hulls and color fill for the housing data

the underlying data. We can see that these nested convex hulls are almost
ellipses, so the best summary of this data may lie somewhere in between
Figs. 3.10 and 3.12. See also Exercise 3.7 on drawing convex hulls of data.

3.4 Displays for Three-Dimensional

Data

Table 3.1 lists January maximum temperature data in each of many US cities.
Along with the city, we also have latitude (degrees north), longitude (degrees
east), and altitude in feet above sea level.

The size of the circle or bubble represents values of the third variable.
In this example, we plot US cities on the XY-axis as a conventional map
in terms of their latitude and longitude. The size of the bubble represents
altitude. Cities at the corners of Fig. 3.13 have been identified by state to
help orient the reader.

The bubble sizes show that cities on the east and west coasts are all at sea
level. Midwest cities are situated at slightly higher altitudes. The highest
altitude cities are in the Rocky Mountains in the west. The program that
produces this figure is given in Output 3.3.

Longitude is measured as distance from Greenwich, England, and needs
to be reversed in order to have this map display east and west in their familiar

3: GRAPHICAL DISPLAYS 72

Table 3.1: Maximum January temperature (T, in degrees Fahrenheit), lati-
tude, longitude, and altitude in feet above sea level, for some of the largest
US cities

T Lat Long Alt Name T Lat Long Alt Name

61 30 88 5 Mobile, AL 59 32 86 160 Montgomery, AL
30 58 134 50 Juneau, AK 64 33 112 1090 Phoenix, AZ
51 34 92 286 Little Rock, AR 65 34 118 340 Los Angeles, CA
55 37 122 65 San Francisco 42 39 104 5280 Denver, CO
37 41 72 40 New Haven, CT 41 39 75 135 Wilmington, DE
44 38 77 25 Washington, DC 67 30 81 20 Jacksonville, FL
74 24 81 5 Key West, FL 76 25 80 10 Miami, FL
52 33 84 1050 Atlanta, GA 79 21 157 21 Honolulu, HI
36 43 116 2704 Boise, ID 33 41 87 595 Chicago, IL
37 39 86 710 Indianapolis, IN 29 41 93 805 Des Moines, IA
27 42 90 620 Dubuque, IA 42 37 97 1290 Wichita, KS
44 38 85 450 Louisville, KY 64 29 90 5 New Orleans, LA
32 43 70 25 Portland, ME 44 39 76 20 Baltimore, MD
37 42 71 21 Boston, MA 33 42 83 585 Detroit, MI
23 46 84 650 Sault Ste Marie 22 44 93 815 Minneapolis, MN
40 38 90 455 St Louis, MO 29 46 112 4155 Helena, MT
32 41 95 1040 Omaha, NE 32 43 71 290 Concord, NH
43 39 74 10 Atlantic City, NJ 46 35 106 4945 Albuquerque, NM
31 42 73 20 Albany, NY 40 40 73 55 New York, NY
51 35 80 720 Charlotte, NC 52 35 78 365 Raleigh, NC
20 46 100 1674 Bismark, ND 41 39 84 550 Cincinnati, OH
35 41 81 660 Cleveland, OH 46 35 97 1195 Oklahoma City
44 45 122 77 Portland, OR 39 40 76 365 Harrisburg, PA

40 39 75 100 Philadelphia, PA 61 32 79 9 Charleston, SC
34 44 103 3230 Rapid City, SD 49 36 86 450 Nashville, TN
50 35 101 3685 Amarillo, TX 61 29 94 5 Galveston, TX
37 40 111 4390 Salt Lake City 25 44 73 110 Burlington, VT
50 36 76 10 Norfolk, VA 44 47 122 10 Seattle, WA
31 47 117 1890 Spokane, WA 26 43 89 860 Madison, WI
28 43 87 635 Milwaukee, WI 37 41 104 6100 Cheyenne, WY
81 18 66 35 San Juan, PR

Source: Mosteller and Tukey (1977; pp. 73–74), with corrections

right/left orientation. Puerto Rico and the three states Alaska, Hawaii, and
Massachusetts are identified to help the reader.

The with() and text() commands are used to add symbols and labels to
this plot. The symbols command sets the size of the circles proportional to
the altitude. Options in the symbols command include inches= to scale the
sizes of the circles, fg= to set the color, and lwd= to create thick or thin lines.

Another useful display for three dimensions is based on kriging. Kriging
is named after Daniel Krige1 who was examining the grades of gold taken
from several small exploratory mine shafts. He developed kriging, a smooth
mathematical function that summarizes the underlying concentration of gold.

1Daniel Gerhardus Krige, (1919–2013). South African mining engineer.

3: GRAPHICAL DISPLAYS 73

Output 3.3: Program to create the bubbleplot in Fig. 3.13

JanTemp <- read.table(file="JanTemp.txt", header=TRUE)

require(MASS)

attach(JanTemp)

longe <- 180 - long # Reverse East and West

plot(longe,lat, pch = 16, cex = .7, # Plot dots at cities

xlab="Longitude, east", ylab = "Latitude", col = "red")

with(JanTemp,symbols(longe,lat,circles = alt, # Altitude sized circles

inches = .3, add = TRUE, lwd = 3, fg = "green"))

landmarks <- c("AK", "HI", "MA", "PR") # Four landmark states

lmi <- match(landmarks, state) # identify landmark’s indexes in data

text(longe[lmi],lat[lmi],labels = landmarks, # Identify landmarks

pos=c(1,1,4,3), col = "blue")

20 40 60 80 100

20
30

40
50

Longitude, east

La
tit

ud
e

AK

HI

MA

PR

Figure 3.13: Bubble plot of altitudes of US cities

He used this method for interpolating between the data values observed in
the mines. We can perform the same process to model the altitude data
examined in Fig. 3.13.

Figure 3.14 should look familiar to us as a weather map. Small local
deviations are smoothed out, and a simplified version of reality is presented.
The map clearly identifies sea-level cites on the coasts and the high-altitude

3: GRAPHICAL DISPLAYS 74

60 70 80 90 100 110

20
30

40
50

60

Longitude, east

La
tit

ud
e

 0

 0

 1000

 1000

 2000

 4000

 4000

Miami

Seattle

SanFrancisco
Denver
Cheyenne

Figure 3.14: Kriging plot of altitudes of US cities

cities in the Rocky Mountains. In this case, the altitude values have been
approximated and smoothed. The program that generates this figure appears
in Output 3.4.

The surf.ls(4,...) program approximates the altitude values as a 4th
degree polynomial in both latitude and longitude. You can try other values:
lower polynomial degrees are smoother but may be unrealistic, while large
values result in plots that are not very smooth. The actual fitting uses least
squares regression to estimate the altitude values. Least squares and other
regression methods are described in Chap. 9.

The eqscplot() program creates a plotting area in which the x and
y axes are presented on the same scale. You may have noticed that the
scatterplot US map in Fig. 3.13 (plotted using the plot function) appears
narrow and tall. The use of eqscplot function in this present program sets
up and labels the axes, but does no actual plotting because of the type="n"

option. The remainder of this program plots all of the cities, except the
extremes: Juneau, San Juan, and Honolulu. Finally, the program identifies
specified individual cities with printed labels using the text statement.

3: GRAPHICAL DISPLAYS 75

Output 3.4: Program to produce the krig plot in Fig. 3.14

library(MASS)

library(spatial)

attach(JanTemp)

longe <- 180 - long # Longitude, east

alt.kr <- surf.ls(4, longe, lat, alt) # Kriging surface

altsur <- trmat(alt.kr, 55, 110,

28, 50, 50) # Set limits of plot, excluding outliers

eqscplot(altsur, xlab = "Longitude, east", cex.lab = 1.5,

ylab = "Latitude",type = "n") # plot in equal scale coordinates

contour(altsur, levels = c(0, 1000, 2000, 4000),

add = TRUE, col = "blue") # specify contour colors and levels

points(longe, lat, pch = 16, col = "red") # add original cities

ex <- c("Miami", "Seattle", "SanFrancisco",

"Denver", "Cheyenne") # List of special cities

exi <- match(ex, name) # index for these cities

text(longe[exi], lat[exi], labels = ex, # label special cities

pos = c(4, 3, 4, 4, 4), cex = 1)

3.5 Displays for Higher Dimensional

Data

How can we generalize the display of multivariate data with several dimen-
sions? This area is ripe for creative development. Here are a few helpful
methods available in R.

3.5.1 Pairs, Bagplot, and Coplot

One straightforward approach is to consider these two at a time and draw all
possible bivariate scatterplots. Then we can do it all again, this time, with
the axes reversed. An example appears in Fig. 3.15.

The pairs() command in R produces a matrix of scatterplots. As an
example, the matrix scatterplot of the burger data in Table 1.6 is presented
in Fig. 3.15. The names of the variables (calories, fat, sodium, carbohydrates)
runs down the diagonal. Every possible pair of these variables is plotted twice
with the axes reversed above and below the diagonal.

In this figure we see that carbohydrates and sodium each exhibit a few
extreme outliers. Fat and calories from fat are linearly related, but one
value seems to be calculated incorrectly. Calories are closely related to fat.
Carbohydrates and sodium appear unrelated. This figure was produced using

pairs(burger, pch = 16, col = "red")

3: GRAPHICAL DISPLAYS 76

We can improve on this basic pairs() plot and use some additional
options, adding color, different plotting characters, and a smoothed regression
line called loess. The loess line is a compromise between smoothness and small
deviations away from the observed data.

The program that produces Fig. 3.16 is given by

pairs(burger, lwd = 3, pch = 16, cex = 1.25, col = "red",

gap = 0, xaxt = "n", yaxt = "n",

panel = panel.smooth, col.smooth = "blue")

The loess lines help us see nonlinear relationships between carbohydrates
and each of the other variables in the upper half of this figure. A number
of other options produces a cleaner presentation: gap=0 removes the spacing
between the panels, xaxt = "n", yaxt = "n" removes the numbers in the
axes, and contrasting colors separate the data from the fitted model.

The bagplot.pairs routine combines several features we have covered: the
bivariate boxplot, the convex hull, and the pairs scatterplot. The bagplot
contains a scatterplot of bivariate data. The outer polygon of each bagplot is
a convex hull, excluding extreme outliers. The inner polygon (the “bag”) of
the bagplot contains the central 50% of the data. Data points between the
two convex hulls are connected with lines to the central, bivariate median.
Figure 3.17 was produced using

library(aplpack)

bagplot.pairs(burger[, 4 : 7], gap = 0, col.baghull = "green")

The pairwise approach to examining multivariate data reduces the prob-
lem back to two dimensions and looks at it as a series of pairs of scatterplots.
This simplification overlooks the multivariate character of the data. After
all, if there are complex relationships, we need a way to display these simul-
taneously.

One improvement on the pairwise scatterplot matrix is to look at a se-
ries of scatterplots, each representing a view of a slice of a third variable.
Chambers (1992) calls this a conditioning plot or coplot. In the hamburger
data, for example, Fig. 3.15 shows calories and sodium do not have a strong
relationship. There is also an outlier with very high values of both sodium
and calories. Suppose we want to examine the relationship between calories
and sodium across different values of the variable measuring fat content.

The coplot function in the R code

library(graphics)

coplot(Cal ~ Sodium | Fat, data=burger,

rows=1, pch=16, cex=1.75, col="red",

bar.bg = c(num = "blue", fac = gray(0.95)))

produces Fig. 3.18.

3: GRAPHICAL DISPLAYS 77

CalFat

1000 1800 20 35 50 40 80 120

60
0

10
00

10
00

18
00

Cal

Fat

60
10

0

20
35

50

SatFat

Sodium

15
00

35
00

40
80

12
0

Carbs

600 1000 60 100 1500 3500 50 70 90
50

70
90

Protein

Figure 3.15: Basic matrix scatterplot of hamburger data

The program code Cal ~ Sodium | Fat specifies that calories and sodium
will be plotted against each other for stratified values of fat. In particular,
the top of Fig. 3.18 shows how the coplot program cuts the range of fat values
into a series of six overlapping intervals. For each of these intervals of the
fat variable, there is a scatterplot of calories plotted against sodium at the
bottom half of this figure.

As we look at the scatterplots on the bottom half, from left to right,
we see a changing relationship between calories and sodium. For the lowest
values of fat, both calories and sodium are small. Larger values of fat are
associated with larger values of both calories and sodium. The large outlier
between sodium and calories only appears within the highest range of fat. At
no value of fat does there appear to be a strong relationship between calories
and sodium.

3: GRAPHICAL DISPLAYS 78

CalFat

Cal

Fat

SatFat

Sodium

Carbs

Protein

Figure 3.16: Scatterplot of hamburger data with loess smoothing and cleaner
presentation

3.5.2 Glyphs: Stars and Faces

The star plot summarizes each data item as a circle with different sized
wedges. An example for the hamburger data appears in Fig. 3.19. Every
star is an individual (row) and every wedge on the star represents a different
variable (column) in the data. The radius of each wedge in the star indicates
the size of the scaled values for that individual, relative to all other mea-
surements for that variable. These variables are listed in different colors and
directions. The key for this is given in the lower right corner of the figure.
The radius of each wedge is scaled and can be used to compare the relative
magnitude of each variable values across all individuals.

To aid in organization, all burgers have been ordered by their calorie val-
ues, in reading order, largest at top, to smallest. We can sort in decreasing

3: GRAPHICAL DISPLAYS 79

SatFat

1500 2500 3500 50 60 70 80 90

20
30

40
50

15
00

25
00

35
00

Sodium

Carbs

40
60

80
10

0
14

0
20 30 40 50

50
60

70
80

90

40 60 80 100 140

Protein

Figure 3.17: Bagplot pairs of hamburger data

order by sorting on the negative values, in the code given below. The num-
bers in the figure refer to the listing order of row.names in the data.frame.
Figure 3.19 was produced using the R commands

library(graphics) # for the stars program

palette(rainbow(7)) # set colors

burs <- burger[order(-burger$Cal),]# order by Cal, decreasing

stars(burs, len=1, cex=0.5, key.loc=c(12.5, 2),

labels=row.names(burs), draw.segments=TRUE)

which labels each object and provides a useful guide to the directions of the
stars in the lower right corner. The help for this command help(stars)

explains a large number of options available for this graphical display.
In Fig. 3.19, we can see that the burgers in the top two row are simulta-

neously extreme in most dimensions. The first few burgers are different from

3: GRAPHICAL DISPLAYS 80

1500 3000

10
00

12
00

14
00

16
00

18
00

20
00

1500 3000

1500 3000

1500 3000

1500 3000

1500 3000

Sodium

C
al

60 80 100 120

Given : Fat

Figure 3.18: Burger coplot of calories and sodium, stratified by fat

the others and extreme in most of the seven dimensions. Outside of the top
two rows, the stars for the burgers are not very different from each other and
only a few are extreme in more than one dimension.

Stars are an example of a glyph. A glyph is a general class of graphics
in which the shape of the plotted character is indicative of the multivariate
characteristics of the observation. In addition to stars, a simple glyph appears
in Fig. 3.13 in which the size of the plotted circle is related to the altitude of
the respective city.

Let us examine the most extreme example of a glyph. Chernoff (1973)
used cartoon faces as a glyph to demonstrate multivariate information. Each
variable can represent some aspect of the face: head size and color, degree of
smile or frown, amount and shape of hair, the spacing and size of eyes, and
so on.

3: GRAPHICAL DISPLAYS 81

2 6 3 7 5 17

8 4 12 14 22 25

26 11 20 23 32 37

30 16 21 36 39 15

24 19 10 13 33 1

31 9 29 18 38 35

27 34 28

CalFat

Cal
Fat

SatFat

Sodium
Carbs

Protein

Figure 3.19: Star plot of burgers, ordered by calories, with key

An example of Chernoff’s faces appears in Fig. 3.20 for the nine highest
calorie burgers in Table 1.6. The first three or so of these faces are oversized
and outlandish, corresponding to the extreme, high data values. We can see
a gradual trend of lower values in the last row of faces in this figure. These
correspond to smaller head size, less hair, smaller eyes, and mouths. The faces
for the omitted burgers are similar to those of the last row in this figure. The
faces program that draws these is available in the aplpack package.

3: GRAPHICAL DISPLAYS 82

2 6 3

7 5 17

8 4 12

Figure 3.20: Chernoff faces display for the nine highest caloric hamburgers

3.5.3 Parallel Coordinates

Consider multivariate data categorized into a small number of groups. We
have several graphical methods that can describe group membership as well
as distinguishing characteristics for each group. This is the data examined
by RA Fisher2 that motivated the initial study of discriminant analysis. (See
Sect. 10.3.) In this well-known example of multivariate data, three species of
iris flowers are measured in terms of their

• petal length

• petal width

• sepal length

• sepal width

The data is available in the MASS library in R. The parallel coordinate
display (sometimes called the parallel axes display) plots the separate coordi-
nate axes parallel to each other, rather than as at right angles to each other,
as we often think of in terms of axes.

2Ronald Aylmer Fisher (1890–1962). British geneticist and statistician.

3: GRAPHICAL DISPLAYS 83

PetalL PetalW SepalL SepalW

Figure 3.21: Parallel coordinate plot for the iris data

To product this display, begin by rescaling each of these separate mea-
surements so they are all on the same scale, usually between 0 and 1. The
multidimensional values for each item are connected with lines so we can
follow these across the different dimensions. In this example, we can also
plot each of these series of lines in a different color for each of the iris species.
The plot in Fig. 3.21 displays this data, with each species in a different color.
Every jagged line traces the four values for one flower across each of the four
dimensions.

The R program that produces this figure is

library(MASS)

ir <- rbind(iris3[, , 1], iris3[, , 2], iris3[, , 3])

parcoord(log(ir)[, c(3, 4, 1, 2)], # Order the axes

col = c(rep("red", 50), rep("green", 50), rep("blue", 50)))

In R, the data is listed as a three-dimensional data frame, where the third
subscript indicates each of the three separate species. The rbind statement
creates a data.frame called ir where the three species are listed one after
the other as rows.

The parcoord program draws the parallel axes plot given in Fig. 3.21.
The data values are scaled on each of the four axes after taking logs of all
data. The ordering of the four axes in this plot is specified. You can try other
orderings to obtain a more pleasing result. In this case we chose the ordering
here so that the three species separate well in the plot. The different colors
for each of the species are specified using the col= option.

3: GRAPHICAL DISPLAYS 84

Specifically, the three colors, col= values and species, in this figure are
as follows:

Color Species
Red Setosa
Green Versicolor
Blue Virginica

We can see that the Setosa (in red) has lowest values of petal length
and width. Setosa generally also has relatively large values of sepal width.
Virginica (in blue) and Versicolor (in green) have an ordering with larger
values of Virginica in most cases across all four of the measured variables.

3.6 Additional Reading

The field of statistical graphics is open for new developments. There is so
much more left to do. The good news is that the field is so accessible because
it does not require an extensive mastery of mathematical and computational
expertise before one can make an innovative and lasting contribution. Per-
haps the biggest disappointment is that in the twenty-first century we are
still limited to two-dimensional paper in a printed book as did publishers
since Guttenberg,3 over 500 years ago. Some software packages allow us to
slowly rotate a three-dimensional object. This may allow our spatial percep-
tion to find patterns, and is usually aided by the inclusion of factor methods,
described in Chap. 8.

Innovation in the field of statistical graphics has come at a steady pace
with several notable pioneers. Tukey4 was ahead of his time. When we look
at Tukey (1977) we take many of his ideas for granted because they are now a
part of our everyday language. At a time when working at a computer meant
waiting for a 110 baud teletype machine to clunk and chug along, Tukey
developed a boxplot, the innovative histogram that could be printed in only
three lines. He coauthored Chambers et al. (1983) and inspired Cleveland
(1993).

The books by Tufte are artistic and passionate contributions to the field.
You don’t have to have a rigorous background in mathematical statistics
to appreciate what is being conveyed. Perhaps a rigorous background in
statistics trains us to think in certain rigid ways and this can be a distraction.

Wilkinson (1999) describes a new language that codifies and unifies the
whole of statistical graphics. This is a new direction that takes us away from
specific examples into a discussion of what is possible, sometimes combining

3Johannes Gutenberg (1398–1468). German, invented movable type. This led to the
wide availability of books, which in turn was instrumental in the Renaissance and the
scientific advances that followed.

4John Wilder Tukey (1915–2000). American statistician and mathematician.

3: GRAPHICAL DISPLAYS 85

two or more methods of display. An applied version of this in R has been
the development of the ggplot2 function. An introduction to ggplot2, and
graphics in R more generally, is Chang (2013).

The lattice plot builds on the earlier trellis plot. The lattice package
is a large suite of useful graphics available in R and more fully described in
Sarkar (2008). One example is the violin plot, as part of Exercise 3.4.

Ideally, we should explore data in an interactive environment allowing us
to use sliders alongside plots to visualize the effects of different amounts of
smoothing. For three-dimensional data, there is no substitute for rotations in
a dynamic setting. Some of these tools are available in the aplpack library
but cannot be adequately appreciated until they are experienced first hand.

3.7 Exercises

3.1 Describe the pie chart. What type of data is this best suited for? What
are its limitations?

3.2 How does the sample correlation change when we remove successive
layers of convex hulls from our two-dimensional data? Add cor(x,y)

inside the loop of the program that generates the convex hull peeling in
Fig. 3.22. What do you think is the reasons for this change?

3.3 Look at the relationship between fat and sodium content for each of the
40 burgers in Fig. 3.15. Sodium values seem to rise quickly for higher
levels of fat. Does this look like a linear relationship?

(a) Plot fat and sodium using a bivariate boxplot and also as a single
convex hull. Do these methods assist or mislead us?

(b) In this same data set, calories and fat seem to exhibit an hour-
glass shape with greater variability at both the high and low ends.
Examine the bivariate boxplot and convex hull of this pair of variables.
Are these methods useful in this situation?

3.4 In the lattice package there is a data set called singer which gives
the heights of singers in the New York Choral Society, a serious amateur
vocal group. Heights are given separately by each of the different voice
parts, high to low (soprano, alto, tenor, bass). Each of these is further
divided into tiers (1 and 2) for higher and lower voices within each part.

(a) In R, explore graphical methods such as jittering and boxplots to
show the characteristics and distributions of heights by voice group. The
general trend is that taller people have deeper singing voices, but also
comment on the shape of the distributions within each vocal group. The
documentation for singer provides other useful displays of this data.

3: GRAPHICAL DISPLAYS 86

600 800 1000 1200

10
0

20
0

30
0

40
0

50
0

Apartment

H
ou

se

Figure 3.22: Five peeling convex hulls of the housing data

(b) The violin plot is an improvement over the boxplot. Read about
violin plots in the help file under the name panel.violin and examine
this data. Explain the various features of these graphical displays and
use them to describe additional features of this data.

3.5 (a) Consider a set of randomly generated faces:

faces(matrix(rnorm(192),16,12),main="Random Faces")

What is the tendency for us to identify patterns and similar-looking
individuals in such a sample? Is this a good feature or a shortcoming of
the method?

(b) Similarly, generate randomly distributed data and plot this using
pairs() with panel.smooth. Again, what is the tendency for us to see
patterns when there is no reason for these to exist?

3.6 The bvbox in the MVA library produces the bivariate boxplot appearing
in Fig. 3.10. Modify this code to create a new program with more options
for the graphical output. Copy the program code into a text editor and
add options to change the colors, line types, and line widths of the ellipses
and the regression lines. See Fig. 6.1 for an example of how the output
might look.

3.7 Write a program in R that draws and peels away successive convex hulls
in bivariate data. As an example, five convex hulls of the housing data

3: GRAPHICAL DISPLAYS 87

are displayed in Fig. 3.22. Hint: recall that a negative subscript in a list
removes that item.

3.8 The anorexia data set in the MASS library lists the pre- and posttreat-
ment weights of 72 young women with anorexia. There were three differ-
ent treatments: control or no treatment, behavioral coaching, and family
intervention. Find a suitable way to display this data using colors to
identify the three different interventions.

Chapter 4

Basic Linear Algebra

MANY OPERATIONS performed on multivariate data are facilitated
using vector and matrix notation. In this chapter we introduce the basic

operations and properties of these and then show how to perform them in R.

4.1 Apples and Oranges

A single numerical value is called a scalar, as in the price of an apple. With
multivariate data we like to talk about several different values at the same
time. We can combine these as a 2-tuple (apple, banana), a 3-tuple (apple,
banana, orange), and so on up to the more general n-tuple. This collection
of information would be referred to as the vector of fruit prices. The order
of the items in the list matters, of course.

Mathematically, a vector is expressed as a vertical list:

fruit price =

⎛

⎝
Apple price
Banana price
Orange price

⎞

⎠

Sometimes it is convenient to express this as a horizontal, rather than a
vertical, list. To do this we have the transpose operation giving

fruit price′ = (Apple price, Banana price, Orange price),

where the prime (′) exponent indicates the transpose.
Notice how we also use a bold font to indicate a vector, to distinguish

it from a scalar which appears in a normal font.

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 4

89

4: LINEAR ALGEBRA 90

Vectors are added component-wise. So, for example, if each fruit has its
own tax

fruit tax =

⎛

⎝
Apple tax
Banana tax
Orange tax

⎞

⎠

then

fruit price+ fruit tax =

⎛

⎝
Apple price + Apple tax

Banana price + Banana tax
Orange price + Orange tax

⎞

⎠ .

Suppose we have a shopping list with the quantities of each fruit:

fruit quantity =

⎛

⎝
of Apples
of Bananas
of Oranges

⎞

⎠ .

The scalar-valued inner product of two vectors is defined by

fruit quantity′ fruit price = # of Apples×Apple price

+ # of Bananas× Banana price

+ # of Oranges×Orange price

which we would interpret as our total price of the fruit.
Notice that the inner product is a linear operator in the sense that

fruit quantity′(fruit price+ fruit tax) = fruit quantity′ fruit price

+ fruit quantity′ fruit tax

so that the price we pay for our groceries, including the taxes, can be calcu-
lated in either manner.

We can combine all this information about fruit in a matrix:

FRUIT =

⎛

⎝
Apple price Apple tax Apple quantity
Banana price Banana tax Banana quantity
Orange price Orange tax Orange quantity

⎞

⎠ .

where we interpret the columns as prices, taxes, and quantities, respectively,
and the rows correspond to the different fruit.

The notation for a matrix always appears in a CAPITAL BOLD font.

4: LINEAR ALGEBRA 91

The transpose of the FRUIT matrix reverses the roles of columns and
rows so

FRUIT′ =

⎛

⎝
Apple price Banana price Orange price
Apple tax Banana tax Orange tax

Apple quantity Banana quantity Orange quantity

⎞

⎠ .

Again we use the prime (′) to perform a transpose.
When it comes to multivariate data, it is very handy to talk about the

data arranged in columns and rows such as in this example. Data arranged in
tables such as in the examples of Chap. 1 will list observed items as rows and
attributes or variables measured on each as columns. In matrix notation, we
can easily describe arithmetic operations performed in parallel, on the whole
data set in a more compact manner.

4.2 Vectors

Let’s begin with the basic arithmetic operations for vectors and (in the
following section) matrices. In Sect. 4.5 we move on to more advanced matrix
properties.

A scalar is a single numerical value and a vector is a n-tuple or collection
of numerical values listed in a prescribed order.

We use bold, lower case letters to denote vectors. The notation for a
vector x is

x =

⎛

⎜⎜⎜⎝

x1

x2

...
xn

⎞

⎟⎟⎟⎠

and the transpose is x′ = (x1, x2, . . . , xn). Two vectors are equal if they have
an equal number of components and are equal in each of these components.

A vector x can be multiplied by a scalar constant c

cx =

⎛

⎜⎜⎜⎝

cx1

cx2

...
cxn

⎞

⎟⎟⎟⎠ .

4: LINEAR ALGEBRA 92

The sum of two vectors x and y′ = (y1, y2, . . . , yn) is

x+ y = y + x =

⎛

⎜⎜⎜⎝

x1 + y1
x2 + y2

...
xn + yn

⎞

⎟⎟⎟⎠ .

As with scalar arithmetic, vector addition is commutative so

x+ y = y + x .

Vector addition is only defined when the vectors have the same length.
The zero vector 0′ = (0, 0, . . . , 0) with all zero components is the additive
identity. That is,

x+ 0 = 0+ x = x .

The number of components in the zero vector is usually not specified, but is
assumed, so that the arithmetic operation is defined whenever it appears.

Vector subtraction is similarly defined:

x− y =

⎛

⎜⎜⎜⎝

x1 − y1
x2 − y2

...
xn − yn

⎞

⎟⎟⎟⎠

and x− 0 = x.
The scalar-valued inner product is defined by

x′y =

n∑

i=1

xiyi . (4.1)

Again, this operation is only defined for vectors of the same length.
The inner product is symmetric in its arguments so that

x′y = y′x

and is a linear operator so that

x′(y + z) = x′y + x′z . (4.2)

4: LINEAR ALGEBRA 93

As an example of the operations defined up to this point, suppose

x =

⎛

⎝
1
5
2

⎞

⎠ and y =

⎛

⎝
3

−1
6

⎞

⎠ .

Then we have

x′ = (1, 5, 2),

3x =

⎛

⎝
3
15
6

⎞

⎠ ,

x+ y =

⎛

⎝
4
4
8

⎞

⎠ ,

and

x′y = (1 × 3) + (5×−1) + (2 × 6) = 10.

Two vectors with an inner product equal to zero are said to be orthogonal.
The zero vector 0 is orthogonal to all other vectors.

A pair of vectors x1 and x2 are said to be linearly dependent if there
exists a scalar c such that x1 = cx2.

More generally, a set of vectors x1,x2, . . . ,xn are linearly dependent if
there exist scalars c1, c2, . . . , cn , not all zero, such that

c1x1 + c2x2 + · · ·+ cnxn = 0 (4.3)

The implication of linear dependence is that at least one vector can be
expressed as a linear combination of the others. Conversely, vectors are
said to be mutually independent if (4.3) does not hold. That is, if vectors
x1,x2, . . . ,xn are mutually independent and if (4.3) holds then we must
have c1 = c2 = · · · = cn = 0. Mutually orthogonal vectors are linearly
independent, but linearly independent vectors need not be orthogonal. See
Exercise 4.5.

The Euclidean1 length (or more simply, the length) of a vector is the
square root of the inner product with itself:

||x|| = (x′x)1/2 =
√
x2
1 + x2

2 + · · ·+ x2
n . (4.4)

1Euclid, mathematician in ancient Greece, lived around 300 BCE.

4: LINEAR ALGEBRA 94

In a two-dimensional plane, the Euclidean length is how we interpret
distance. As an example, if we travel to a point that is one unit east and two
units north away from where we began, then the distance (as the crow flies)
is

√
5, just as we would determine using the result of Pythagoras.

4.3 Basic Matrix Arithmetic

A matrix generalizes a vector to an array of values. We use bold CAPITAL
letters to denote matrices. An n × m matrix X having n rows and m
columns has elements indexed by two subscripts:

X =

⎛

⎜⎜⎜⎝

x11 x12 . . . x1m

x21 x22 . . . x2m

...
...

. . .
...

xn1 xn2 . . . xnm

⎞

⎟⎟⎟⎠ .

The transpose X ′ of a matrix X takes its values and turns it on
its upper-left and lower-right diagonal. The transpose of an n×m matrix has
dimensions m × n. The transpose has the effect of reversing the subscripts
so that

X ′ =

⎛

⎜⎜⎜⎝

x11 x21 . . . xn1

x12 x22 . . . xn2

...
...

. . .
...

x1m x2m . . . xnm

⎞

⎟⎟⎟⎠ .

A matrix is said to be symmetric if it is equal to its transpose, i.e.,
X ′ = X. Only square matrices can be symmetric.

A matrix X can be multiplied by a scalar c:

cX =

⎛

⎜⎜⎜⎝

cx11 cx12 . . . cx1m

cx21 cx22 . . . cx2m

...
...

. . .
...

cxn1 cxn2 . . . cxnm

⎞

⎟⎟⎟⎠

and two matrices with the same dimensions can be added:

X + Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

x11 + y11 x12 + y12 . . . x1m + y1m
x21 + y21 x22 + y22 . . . x2m + y2m

...
...

. . .
...

xn1 + yn1 xn2 + yn2 . . . xnm + ynm

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

4: LINEAR ALGEBRA 95

We can also define matrix multiplication. As with the inner product
for vectors, the dimensions must be correct for matrix multiplication to be
defined. If X is n×m and Y is m× p then

Z = X Y
(n×p) (n×m) (m×p)

is defined.
Notice that the “middle” dimensions of X and Y need to be equal.

That is, we can multiply the matrices X and Y if the number of columns
of X is equal to the number of rows in Y . The elements of the resulting
matrix product Z has dimensions n× p. The (ij)th element of Z is equal
to the inner product of the ith row of X and the jth column of Y .

As an example of these matrix operations suppose

X =

⎛

⎜⎜⎝

5 −1 3
2 4 1
3 1 2

−2 5 2

⎞

⎟⎟⎠

and

Y =

⎛

⎝
2 3
4 1
3 5

⎞

⎠ .

Then

3X =

⎛

⎜⎜⎝

15 −3 9
6 12 3
9 3 6

−6 15 6

⎞

⎟⎟⎠ ,

Y ′ =
(

2 4 3
3 1 5

)
,

and

XY =

⎛

⎜⎝
(5 × 2)+(−1 × 4) + (3 × 3) (5 × 3)+(−1 × 1) + (3 × 5)

(2 × 2)+(4 × 4) + (1 × 3) (2 × 3)+(4 × 1) + (1 × 5)

(3 × 2)+(1 × 4) + (2 × 3) (3 × 3)+(1 × 1) + (2 × 5)

(−2 × 2)+(5 × 4) + (2 × 3) (−2 × 3)+(5 × 1) + (2 × 5)

⎞

⎟⎠

=

⎛

⎜⎝
15 29

23 15

16 20

22 9

⎞

⎟⎠ .

4: LINEAR ALGEBRA 96

In this example, we see that matrix multiplication is not commutative. That
is, XY is not necessarily equal to Y X nor is Y X necessarily defined. See
also Exercise 4.4.

A square diagonal matrix has zero entries off the main diagonal:

Diag(a1, a2, . . . , an) =

⎛

⎜⎜⎜⎝

a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

⎞

⎟⎟⎟⎠ .

The identity matrix I ,

I =

⎛

⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞

⎟⎟⎟⎠ ,

is a square, symmetric matrix with 1s running down the diagonal and all
other entries equal to zero.

The identity matrix has the property that it has no effect when multiplied
by another matrix:

IX = X

just as multiplying by 1 in scalar arithmetic.
The dimensions of the identity matrix I are usually inferred from con-

text. In this last equation, the dimensions of I have to be the same as the
first dimension of X in order for this matrix multiplication to be defined.
To make this point in a different way, if we assume that the (n×m) matrix
X is not square then we can also write somewhat ambiguously

I X = X I = X
(n×n) (n×m) (n×m) (m×m) (n×m) ,

where the two appearances of I represent different sized matrices within the
same mathematical expression. For this reason, we will sometimes include
the dimensions of matrices in equations when this removes the confusion.

4.4 Matrix Operations in R

The basic mathematical operations for vectors and matrices described in
Sects. 4.2 and 4.3 can easily be implemented in R. The advanced matrix func-
tions covered in Sect. 4.5 will be introduced using R to facilitate the discussion.
The advanced operations involving determinants, inverses, and eigenvalues,

4: LINEAR ALGEBRA 97

for examples, are best described in terms of their computational procedures.
The use of these procedures will be more fully appreciated in subsequent
chapters.

We add two vectors x + y using the same notation in R: namely x+y.
The inner product2 of a vector with its self x′x is computed by omitting the
second argument: crossprod(x). All of these operations are only defined
when x and y have the same length. The following dialog illustrates these
operations:

> x <- seq(2,8,2)

> x

[1] 2 4 6 8

> y <- 4:1

> y

[1] 4 3 2 1

> x+y

[1] 6 7 8 9

> crossprod(x,y)

[,1]

[1,] 40

> crossprod(x)

[,1]

[1,] 120

Notice that the crossprod function returns a 1× 1 matrix, not a scalar.
The * operation for vectors performs a component-wise product of vectors:

> x * y

[1] 8 12 12 8

and not the vector cross product.

2There should be no confusion here with a totally different operation familiar to
physicists and engineers called the vector cross product that is only valid for vectors in three
dimensions. Of two vectors x′y is defined in (4.1) and computed using crossprod(x,y).

4: LINEAR ALGEBRA 98

The outer product xx′ is an n× n matrix. This is computed using the
%o% operator as in x %o% x. The vector outer product operation is illustrated
in the following dialog:

> x

[1] 2 4 6 8

> x %o% x

[,1] [,2] [,3] [,4]

[1,] 4 8 12 16

[2,] 8 16 24 32

[3,] 12 24 36 48

[4,] 16 32 48 64

Notice how R prints the matrix values, bordered by a useful index nota-
tion. The heading for each row and column reminds us of the subscripts we
would use to address that row or column. So, for example, we have

> (x %o% x)[, 3]

[1] 12 24 36 48

> (x %o% x)[2,]

[1] 8 16 24 32

showing how we access the third column and second row of the matrix outer
product, respectively. Both of these are treated as vectors.

We can easily build special types of matrices using diag to form a diag-
onal matrix and matrix to build a matrix with specified values.

So, for examples,

> diag(1, 4, 4)

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

is a 4× 4 identity matrix and

> matrix(1, 4, 4)

4: LINEAR ALGEBRA 99

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 1 1 1 1

[3,] 1 1 1 1

[4,] 1 1 1 1

is a 4× 4 matrix of all 1s.
We can also construct a 4× 4 matrix with the counts 1, . . . , 16:

> matrix(1 : 16, 4, 4)

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

running down columns.
If we wanted the counts to run across the rows, we can transpose this

matrix with the t function

> t(matrix(1 : 16, 4, 4))

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

[4,] 13 14 15 16

The diag function can be used to both build diagonal matrices and ex-
tract the diagonal elements of an existing matrix:

> diag(t(matrix(1 : 16, 4, 4)))

[1] 1 6 11 16

We can add two matrices with A + B and multiply element-by-element
A * B. These operations are valid only when A and B have the same
dimensions:

> A

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 2 4 6 8

[3,] 3 6 9 12

> B

4: LINEAR ALGEBRA 100

[,1] [,2] [,3] [,4]

[1,] 2 4 6 8

[2,] 4 8 12 16

[3,] 6 12 18 24

> A + B

[,1] [,2] [,3] [,4]

[1,] 3 6 9 12

[2,] 6 12 18 24

[3,] 9 18 27 36

> A * B

[,1] [,2] [,3] [,4]

[1,] 2 8 18 32

[2,] 8 32 72 128

[3,] 18 72 162 288

The multiplication of two matrices is accomplished by writing A %*% B.
This operation is illustrated as follows:

> A

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 2 4 6 8

[3,] 3 6 9 12

> t(B)

[,1] [,2] [,3]

[1,] 2 4 6

[2,] 4 8 12

[3,] 6 12 18

[4,] 8 16 24

> A %*% t(B)

[,1] [,2] [,3]

[1,] 60 120 180

[2,] 120 240 360

[3,] 180 360 540

4: LINEAR ALGEBRA 101

Recall that the product of a 3× 4 matrix and a 4× 3 matrix is a 3× 3
matrix.

We can also solve linear equations in R. Consider the system of linear
equations

a11x1 + a12x2 + · · ·+ a1,nxn = b1

a21x1 + a22x2 + · · ·+ a2,nxn = b2

...
...

...
...

an1x1 + an2x2 + · · ·+ an,nxn = bn

These equations can be written in the more compact, matrix notation

Ax = b

for known matrix A = {aij} and vector b = {bi}. We want to solve these
equations for vector x = {xi} satisfying relationships. The solution in R is
obtained by solve(A,b).

As a numerical example, suppose b = {9, 7, 5, 3} and A is a 4 × 4
matrix of random values that were generated uniformly between 0 and 1.

> (b <- c(9, 7 5, 3)
[1] 9 7 5 3

> (A <- matrix(runif(16),c(4,4)))

[,1] [,2] [,3] [,4]

[1,] 0.6692485 0.5644291 0.4361838 0.7869338

[2,] 0.9458449 0.4710188 0.8120588 0.5741354

[3,] 0.3366968 0.1971159 0.3774943 0.3954844

[4,] 0.1841985 0.9128133 0.3773530 0.2363638

> solve(A,b)

[1] -1.9162283 -0.5453288 2.7192532 11.9503542

Algebraically, we can write x = A−1b where A−1 is the inverse of A.
The inverse A−1 can be obtained in R using solve(A):

> solve(A)
[,1] [,2] [,3] [,4]

[1,] 1.4205610 2.15995584 -5.478218 -0.8099599

[2,] 0.5768595 0.04273936 -1.881024 1.1229594

[3,] -2.8628620 0.01850019 5.301603 0.6158308

[4,] 1.2357195 -1.87784541 3.069534 -0.4579570

The matrix inverse operation is explained in Sect. 4.5.2.
In the next section, we look at more advanced matrix operations. These

are best introduced along with the corresponding R code.

4: LINEAR ALGEBRA 102

4.5 Advanced Matrix Operations

The methods described in this section make the leap to beyond what a human
could reasonably accomplish with pencil and paper alone. These concepts are
important and are needed for subsequent chapters. To ease the discussion, we
include the R code that accomplishes these tasks in order to show the reader
that these methods can be implemented with a minimum amount of effort for
any specific set of numerical values. The reader wishing to learn more about
these advanced properties of matrices is referred to the classic textbook by
Lang (2010).3 Golub and Van Loan (1983) is another excellent reference for
learning more about the computational aspects of matrix operations

4.5.1 Determinants

The trace of a square matrix is the sum of its diagonal elements. The deter-
minant is another numerical value associated with a square matrix.

As an example, consider the 2× 2 matrix

A =

(
a b
c d

)
.

The trace of A is a+ d and the determinant is

Det(A) = ad− bc . (4.5)

For another example, the trace of the 3× 3 matrix

B =

⎛

⎝
a b c
d e f
g h i

⎞

⎠

is a+ e+ i and the determinant is

Det(B) = a(ei− fh) + b(fg − id) + c(dh− eg) . (4.6)

As we can see from these two examples, the determinant is a polynomial
in the matrix elements. These expressions quickly grow in complexity with
the size of the matrix so, in general, it is best to find determinants numerically
in R as in this example:

> (x <- matrix(rnorm(25), 5, 5))

3Serge Lang (1927–2005) French-born, American mathematician.

4: LINEAR ALGEBRA 103

[,1] [,2] [,3] [,4] [,5]

[1,] 0.8773400 -0.5657782 1.7634118 1.8728550 0.9928573

[2,] 0.1017325 -0.3619644 0.8324341 1.4387591 0.2699057

[3,] 0.8026365 -0.6943805 -0.8926545 1.2955549 1.7452754

[4,] 0.9237657 1.2665737 -0.3078966 -0.2517838 1.0968427

[5,] 1.8795828 -0.5785956 -0.3837322 1.2007208 0.7950999

> det(x)

[1] -7.170792

In this example, we use R to generate a 5×5 matrix (denoted as x) whose
elements are sampled from a standard normal distribution. The det(x)

function returns the determinant of this matrix.
Some special cases of determinants are worth mentioning. The deter-

minant of a diagonal matrix is the product of its diagonal entries. So we
have

Det(Diag(x1, x2, . . . , xn)) = Det

⎛

⎜⎜⎜⎝

x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xn

⎞

⎟⎟⎟⎠ = x1x2 · · ·xn .

Similarly, the determinant of the identity matrix I is equal to 1 regardless
of its size.

The determinant of a matrix is equal to the determinant of its transpose
so that

Det(A) = Det(A′) .

The determinant of a scalar c multiple of an n× n matrix A satisfies

Det(cA) = cn Det(A) .

The determinant of a product of square matrices is the product of the
individual determinants:

Det(AB) = Det(A)Det(B) .

The rank of a matrix is the maximum number of linearly independent
rows and columns when these are considered as vectors. A square matrix
whose rank is equal to the number of rows (or columns) is said to be of
full rank or nonsingular. A square matrix that is less than full rank has a
determinant of zero and is said to be singular.

4: LINEAR ALGEBRA 104

4.5.2 Matrix Inversion

The inverse of a square matrix A (when it exists) is denoted by A−1 and
has the property that the product

A−1 A = AA−1 = I

is equal to the identity matrix.
Let us draw comparisons between inverses of matrices and the parallel in

scalar operations. The inverse of a matrix is analogous to what the reciprocal
is to a scalar. The scalar 1 is its own reciprocal, just as the identity matrix
I is its own inverse. Corresponding to the scalar value zero, which does
not have a reciprocal, a matrix with a zero determinant does not have an
inverse. Conversely, any square matrix with a nonzero determinant will have
an inverse.

In the 2× 2 matrix

A =

(
a b
c d

)

the inverse is given by

A−1 =
1

ad− bc

(
d −b

−c a

)
(4.7)

provided the determinant ad− bc is nonzero.
The inverse of the 3× 3 matrix

B =

⎛

⎝
a b c
d e f
g h i

⎞

⎠

is given by

B−1 =
1

Det(B)

⎛

⎝
A B C
D E F
G H I

⎞

⎠ ,

where Det(B) is the determinant given in (4.6) and

A = ei− fh B = ch− bi C = bf − ce
D = fg − di E = ai− cg F = cd− af
G = dh− eg H = bg − ah I = ae− bd

This inverse exists only when the determinant is nonzero.

4: LINEAR ALGEBRA 105

As with a matrix determinant, we see that the mathematical complexity
of finding the inverse increases greatly with the size of the matrix. Fortu-
nately for us, matrix inverses can be calculated numerically in R with little
effort on our part. The following example illustrates this, continuing with the
same matrix x generated earlier in this section to illustrate the determinant.

Here is the x matrix again:

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 0.8773400 -0.5657782 1.7634118 1.8728550 0.9928573

[2,] 0.1017325 -0.3619644 0.8324341 1.4387591 0.2699057

[3,] 0.8026365 -0.6943805 -0.8926545 1.2955549 1.7452754

[4,] 0.9237657 1.2665737 -0.3078966 -0.2517838 1.0968427

[5,] 1.8795828 -0.5785956 -0.3837322 1.2007208 0.7950999

We use the solve() function to find the inverse:

> solve(x)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.1588468 -0.3984637 -0.33113613 0.04831542 0.59711329

[2,] -0.5552320 1.1185653 -0.28424175 0.69540112 -0.02176659

[3,] 0.6985182 -0.5875821 -0.19048830 -0.04702547 -0.18979125

[4,] -0.6586654 1.4906931 -0.04002048 0.18067946 0.15505461

[5,] 0.5522533 -0.7788176 0.54445190 0.09628027 -0.49543987

Just to check, we can multiply the matrix x by its inverse:

> x %*% solve(x)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.000000e+00 -6.661338e-16 1.110223e-16 4.163336e-17 -1.110223e-16

[2,] 1.665335e-16 1.000000e+00 5.551115e-17 2.775558e-17 0.000000e+00

[3,] 0.000000e+00 -2.220446e-16 1.000000e+00 1.387779e-16 -1.110223e-16

[4,] 1.110223e-16 -2.220446e-16 0.000000e+00 1.000000e+00 -1.110223e-16

[5,] -5.551115e-17 1.110223e-16 1.110223e-16 -1.387779e-17 1.000000e+00

The resulting product is very nearly an identity matrix: There are 1s run-
ning down the diagonal and the off-diagonal entries are either zero or quanti-
ties within rounding error of zero (about ±10−16). This is another reminder
that performing numerical computations will usually result in very small
numerical errors that (hopefully) do not greatly distort the final answers.
The study of numerical algorithms and the corresponding rounding errors is
examined in the mathematical field of numerical analysis.

A useful relationship between matrix determinants and inverses is

Det
(
A−1

)
= 1/Det(A) .

4: LINEAR ALGEBRA 106

The inverse of a matrix is not always needed when it is part of a more
complex mathematical expression. As an example of avoiding the use of the
matrix inverse, suppose we want to compute the quadratic form b′A−1b
in R. (We will need to calculate similar expressions when we evaluate the
multivariate normal density function, given in (7.2).) We can obtain this in
R as

b %*% solve(A,b)

without having to separately find the inverse matrix A−1.
There are closely related matrix operations that include inverses when

these exist, and other similar properties when they don’t. These generalized
inverses of matrices are described in Sect. 4.5.5.

4.5.3 Eigenvalues and Eigenvectors

Let us introduce another advanced topic in matrix algebra. Every square
matrix has an associated set of eigenvalues and eigenvectors. If A is a
square matrix, then consider the linear equation

Ax = λx (4.8)

for some eigenvector x and a scalar eigenvalue λ.
Intuitively, (4.8) says that the effect of multiplying the vector x by A

is the same as multiplying it by a scalar. Multiplication of a vector by a
scalar results in changing its length by either stretching (λ > 1), shrinking
(0 < λ < 1), or reversing direction by changing its signs (λ < 0). A vector x
satisfying (4.8) is called an eigenvector of A and the value λ corresponding
to x is called the eigenvalue. If one solution exists to (4.8) then there are
an infinite number of these solutions. If (x, λ) is a solution to (4.8), then,
for example, (2x, λ/2) is also a solution. See Exercise 4.10 for more details.
One useful way to avoid this ambiguity in R is to find a set of eigenvectors
x that are all of unit length and are mutually orthogonal. Vector length is
defined in (4.4).

The identity matrix I leaves vectors unchanged

Ix = x

so the eigenvalues λs of the identity matrix are all equal to 1, and every
vector x is an eigenvector of the identity matrix.

Here are some useful properties of eigenvalues in relation to other topics
already discussed. The eigenvalues λ1, λ2, . . . , λn of an n×n matrix A are
related to the trace

Trace(A) = λ1 + λ2 + · · ·+ λn (4.9)

4: LINEAR ALGEBRA 107

and the determinant

Det(A) = λ1 λ2 · · ·λn . (4.10)

The characteristic polynomial

p(λ) = Det(A− λI) (4.11)

is a polynomial in λ and the roots of the equation p(λ) = 0 determine the
eigenvalues. In practice, R uses a different algorithm to find eigenvalues.

An n × n matrix will have n eigenvalues. Just as a polynomial may
have multiple roots, some of the eigenvalues may be repeated, corresponding
to multiple roots4 of p(λ) = 0. A polynomial may have complex roots, and
the eigenvalues may be complex numbers. Complex numbers are expressible
as α + βi where i2 = −1. Complex roots will appear as complex conju-
gates. That is, if α+ βi is a complex root of a polynomial with real-valued
coefficients, then α− βi will also be a root of this polynomial.

Eigenvalues and eigenvectors can be obtained in R using

evs <- eigen (A)

for a symmetric matrix A. Then evs$val is the vector of eigenvalues and
evs$vec are the corresponding eigenvectors.

For very large matrices we might only require the eigenvalues. In which
case, to save computing time, use

eigen(A, only.values =TRUE)$values

and only the eigenvalues are computed.
In R we can calculate the eigenvalues of the 5 × 5 matrix x examined

previously,

> eigen(x)$values

[1] 3.502643+0.0000i -1.124313+1.140676i -1.124313-1.140676i

[4] -1.589936+0.0000i 0.501957+0.0000i

In this numerical example we see that two of the five eigenvalues are
complex conjugates. We also have

> prod(eigen(x)$values)

[1] -7.170792+0i

> det(x)

[1] -7.170792

4A quadratic equation, for example, always has two roots and we say that x2 = 0
has a root at x = 0 of multiplicity two.

4: LINEAR ALGEBRA 108

illustrating the equality of the determinant and the product of the eigenvalues
as stated in (4.10).

A square matrix A is said to be positive definite if for every nonzero
vector x we have

x′Ax > 0

and nonnegative definite if x′Ax ≥ 0.
See Exercise 4.11 for some properties of positive definite matrices and

how to identify these. A useful property of positive definite matrices is that
all of their eigenvalues are real and nonnegative.

4.5.4 Diagonalizable Matrices

A square matrix A is said to be diagonalizable if it is expressible as

A = XDX−1 (4.12)

for a diagonal matrix D.
The numerical identification of the components of a diagonalizable matrix

is very simple in R using the eigen function. The diagonal matrix D in (4.12)
is the diagonal matrix of the eigenvalues of A. The eigenvectors provided
by eigen are expressed as a matrix whose columns are mutually orthogonal
vectors. That is, the X in (4.12) is the matrix of eigenvectors.

Let us verify all of these statements in R. We begin by constructing a
positive definite matrix called apa:

> (a <- matrix(rnorm(15), 5, 3)) # 5x3 matrix with random entries

[,1] [,2] [,3]

[1,] 0.4968134 -0.97565489 -0.6246059

[2,] 1.4922367 -0.10939041 -1.3471900

[3,] 1.5666928 1.82600963 -0.5806661

[4,] 1.3176006 -0.22123894 -1.2764140

[5,] -0.6809085 -0.07426517 -1.8700602

> (apa <- t(a) %*% a) # pos definite a’a matrix

[,1] [,2] [,3]

[1,] 8.210201 -4.913078 -2.044630

[2,] -4.913078 3.886116 1.608089

[3,] -2.044630 1.608089 0.733343

We find the eigenvalues and eigenvectors:

> (ax <- eigen(apa)) # eigenvalues and eigenvector as a matrix

4: LINEAR ALGEBRA 109

$values

[1] 12.01145060 0.76052212 0.05768692

$vectors

[,1] [,2] [,3]

[1,] 0.8137227 -0.5811763 -0.009462608

[2,] -0.5363584 -0.7444990 -0.397543559

[3,] -0.2239980 -0.3285656 0.917534510

We can check that the matrix of eigenvectors is orthogonal:

> ax$vectors %*% t(ax$vectors)

[,1] [,2] [,3]

[1,] 1.000000e+00 -1.439820e-16 -1.908196e-17

[2,] -1.439820e-16 1.000000e+00 -1.665335e-16

[3,] -1.908196e-17 -1.665335e-16 1.000000e+00

which is very close to being an identity matrix, except for rounding errors in
entries off the main diagonal.

Finally, we can verify the diagonalization process of (4.12)

> ax$vectors %*% diag(ax$values) %*% t(ax$vectors)

[,1] [,2] [,3]

[1,] 8.210201 -4.913078 -2.044630

[2,] -4.913078 3.886116 1.608089

[3,] -2.044630 1.608089 0.733343

returning the original matrix apa given above.
Properties of diagonalizable matrices are examined in Exercise 4.13.

4.5.5 Generalized Inverses

We may want to talk about matrices that are not invertable. The general-
ized inverse (or sometimes referred to as the Moore–Penrose inverse) corre-
sponds to the matrix inverse when it exists and has a similar property when
it doesn’t. The generalized inverse A− of A has the property that

AA−A = A . (4.13)

The generalized inverse is not unique. We show how to construct one in
Exercise 4.12.

In R we can obtain a generalized inverse using the function ginv in the
MASS library. Here is an example of its use. We begin by including the MASS
package:

4: LINEAR ALGEBRA 110

> library(MASS)

Attaching package: ’MASS’

> (z <- matrix(rnorm(15), 3, 5))

[,1] [,2] [,3] [,4] [,5]

[1,] -1.019293 -1.1105161 -0.8835698 -1.56692865 0.3841926

[2,] -1.706265 0.5660277 -1.8179978 0.29282216 0.6521679

[3,] 0.556425 -0.5469372 -0.9581269 0.02266884 0.7840144

> (q <- t(z) %*% z)

[,1] [,2] [,3] [,4] [,5]

[1,] 4.2599060 -0.1381812 3.4694761 1.1101408 -1.0681307

[2,] -0.1381812 1.8527737 0.4762167 1.8934466 -0.4863137

[3,] 3.4694761 0.4762167 5.0038186 0.8304212 -2.2762859

[4,] 1.1101408 1.8934466 0.8304212 2.5415241 -0.3932605

[5,] -1.0681307 -0.4863137 -2.2762859 -0.3932605 1.1876054

The matrix Z is a 3× 5 matrix of standard normal variates and

Q = Z ′Z (4.14)

is a 5× 5 symmetric, positive nonnegative definite matrix.

The eigenvalues of Q should all be real and positive:

> eigen(q)$values

[1] 9.269311e+00 3.794984e+00 1.781333e+00 -1.290715e-16 -3.613510e-16

These eigenvalues are all real but the two smallest are within rounding
error of zero because the 5 × 5 matrix Q is of rank 3. See Exercise 4.8 for
more details.

The generalized inverse of Q is

> ginv(q)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.7573935 0.58990933 0.35307232 -0.18596570 -1.3996771

[2,] 0.5899093 0.33810377 0.06772675 -0.16774283 -0.5864543

[3,] 0.3530723 0.06772675 0.30962523 -0.09430042 -0.1568524

[4,] -0.1859657 -0.16774283 -0.09430042 0.13993652 0.2003483

[5,] -1.3996771 -0.58645427 -0.15685241 0.20034835 1.2424363

and we can check that this solution satisfies (4.13) using

> q %*% ginv(q) %*% q -q

[,1] [,2] [,3] [,4] [,5]

[1,] -2.220446e-16 -2.220446e-16 -1.942890e-16 4.440892e-16 2.498002e-16

[2,] 2.220446e-16 2.220446e-16 -1.526557e-16 2.220446e-16 -1.665335e-16

[3,] -1.387779e-16 -5.551115e-17 -8.881784e-16 4.440892e-16 -1.110223e-16

[4,] 2.220446e-16 -6.661338e-16 2.220446e-16 4.440892e-16 4.024558e-16

[5,] 1.110223e-16 -5.551115e-17 2.220446e-16 8.326673e-17 0.000000e+00

because this difference between

Q′Q(Q′Q)−Q′Q

and Q is within rounding error (about 10−16) of zero in all 25 elements of
this 5× 5 matrix.

4: LINEAR ALGEBRA 111

4.5.6 Matrix Square Root

To end this section on advanced matrix operations, we note that there is also
a matrix square root. By analogy to the scalar operation with the same name,
for a square matrix Z, is there a square matrix X with the property that
X2 = Z? The answer is not every matrix Z will have a square root, and
when there is a square root, it may not be unique. When the square root
exists, we write X = Z1/2 using a familiar notation. See Exercise 4.14 to
show that the square root may not be unique.

The matrix square root of a diagonal matrix with nonnegative entries
{d1, d2, . . . dn} is just the diagonal matrix with the square roots of the entries.
That is, if

D = Diag(d1, d2, . . . , dn)

then

D1/2 = Diag(d
1/2
1 , d

1/2
2 , . . . , d1/2n). (4.15)

Just as there is no (real-valued) square root of a negative number, the
square root only exists for nonnegative definite matrices. A nonnegative
definite matrix will have no negative eigenvalues, so this provides an easy
check for us in R.

An easy way to find the square root of a matrix is to express it as in
the diagonalizable form given in (4.12) and use Exercise 4.12. The following
R program includes a check for a nonnegative definite matrix:

msqrt <- function(a) # matrix square root of positive definite matrix

{

a.eig <- eigen(a)

if (min(a.eig$values) < 0) # check for positive definite

warning("Matrix not positive definite")

a.eig$vectors %*% diag(sqrt(a.eig$values)) %*% t(a.eig$vectors)

}

Let us provide a numerical example of this program and its use.

> (x <- matrix(rnorm(35), 7, 5)) # 7x5 matrix of normals

[,1] [,2] [,3] [,4] [,5]

[1,] 0.3798194 0.2114649 1.2076177 1.0124777 -1.49971761

[2,] 1.5125906 -0.9378462 0.4264717 1.3007917 -0.20352177

[3,] -0.2841299 -1.1639801 -2.0819616 -1.8749218 -0.52516122

[4,] -1.2978443 -1.0741596 1.7710925 -1.8331337 -0.54667111

[5,] 0.3154816 -0.7757654 2.4617252 -1.5434827 -0.63295035

[6,] -1.0363971 1.0355279 0.9133007 -0.6332664 0.41377237

[7,] -0.1596910 -0.9360372 1.5617765 -0.8657940 0.08946316

is a 7× 5 of standard normals.

4: LINEAR ALGEBRA 112

From this, we create a 5× 5 symmetric, positive definite matrix:

> (z <- t(x) %*% x) # pos definite, symmetric 5x5 matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 5.3964714 -0.7819263 -1.022616 5.5716021 -0.6615621

[2,] -0.7819263 5.9832371 -2.049524 4.4976418 1.9079767

[3,] -1.0226159 -2.0495241 18.444907 -3.2958671 -2.8132511

[4,] 5.5716021 4.4976418 -3.295867 13.1258459 0.8410505

[5,] -0.6615621 1.9079767 -2.813251 0.8410505 3.4450550

We can see the symmetry and check that the matrix is positive definite:

> eigen(z)$values # check positive definite

[1] 22.2951500 14.0726580 7.0743534 2.2363879 0.7169668

because all of the eigenvalues are positive.

We can find the matrix square root Z1/2 using the msqrt program given
above:

> (sqrtz <- msqrt(z)) # find matrix square root

[,1] [,2] [,3] [,4] [,5]

[1,] 1.9849903 -0.4102019 -0.1244228 1.11419094 -0.17640021

[2,] -0.4102019 2.1943311 -0.2449349 0.87546138 0.41648139

[3,] -0.1244228 -0.2449349 4.2449391 -0.38357917 -0.45032400

[4,] 1.1141909 0.8754614 -0.3835792 3.31074757 0.09904232

[5,] -0.1764002 0.4164814 -0.4503240 0.09904232 1.74008050

Finally, we can check the difference between (Z1/2)2 and Z :

> sqrtz %*% sqrtz - z # check properties of matrix sqrt

[,1] [,2] [,3] [,4] [,5]

[1,] -2.664535e-15 1.443290e-15 -1.332268e-15 -1.154632e-14 2.109424e-15

[2,] 1.665335e-15 -8.881784e-15 -1.332268e-15 -1.776357e-15 -1.776357e-15

[3,] -1.110223e-15 -8.881784e-16 -3.552714e-14 5.329071e-15 7.549517e-15

[4,] -1.065814e-14 -1.776357e-15 3.552714e-15 -3.907985e-14 1.998401e-15

[5,] 1.998401e-15 -1.332268e-15 7.549517e-15 1.776357e-15 -4.884981e-15

This difference is within rounding error of a matrix of all zeroes, confirm-
ing the properties of the matrix square root in R.

4: LINEAR ALGEBRA 113

4.6 Exercises

4.1 Let x′ = (2, 1,−5) and y′ = (2, 1, 1).

(a) Find x+ y.

(b) Show that x and y are orthogonal.

(c) Find a nonzero vector z that is orthogonal to both x and y.

(d) Show that any vector that is orthogonal to both x and y must
be a scalar multiple of z.

4.2 For vectors x, y, and z with the same dimensions and scalar c verify
that

(a) x′y = y′x

(b) ||cx|| = |c| ||x|| where |c| is the absolute value of c

(c) ||x|| = 0 if and only if x is the zero vector

(d) Verify (4.2)

4.3 Let X denote an n × n square matrix and y is an n-tuple vector of
all 1s. Interpret y′X and Xy.

4.4 Suppose X, Y , and Z are matrices with the appropriate dimensions
so that multiplication is defined.

(a) Prove that (XY)Z = X(Y Z).

(b) Prove that (XY)′ = Y ′X ′. Also (XY Z)′ = Z ′Y ′X ′.

(c) Suppose that X and Y are square matrices with the same
dimensions. Show that XY is not necessarily equal to Y X.

4.5 (a) Find a pair of vectors that are linearly independent but not
orthogonal.

(b) Suppose the vectors x1,x2, . . . ,xk are mutually orthogonal.
Show that they are also linearly independent. Hint: If they are linearly
dependent and orthogonal then they must all have zero length.

4.6 Consider the matrix

A =

(
2 1
1 1

)
.

(a) Find the trace, determinant, and inverse of this matrix.

(b) Multiply this matrix by its inverse and verify that your solution
is correct.

(c) Use (4.9) and (4.10) to find the eigenvalues for this matrix.

4: LINEAR ALGEBRA 114

4.7 Let X = {xij} denote a matrix with n rows and p columns.

(a) Show that X ′X is a symmetric matrix.

(b) Verify that the ith diagonal element of X ′X is

n∑

k=1

x2
ki

and the (i, j) off-diagonal elements of X ′X are

n∑

k=1

xki xkj

for i �= j = 1, 2, . . . , p.

(c) Suppose A = {aij} is a p× p symmetric matrix. Then verify
that B = XAX ′ is symmetric with diagonal elements

bjj =
n∑

k=1

ajj x
2
kj

and off-diagonal elements

bij = bji =

n∑

k=1

aij xki xkj .

4.8 Show that the rank of an n × m matrix cannot be larger than the
smaller of n and m. As a consequence, show that the 5× 5 matrix Q
constructed in (4.14) cannot have rank greater than 3.

4.9 A linear space S is a set of vectors with the properties that

(i) The zero vector 0 is an element of S
(ii) if x and y are in S then x+ y is also in S.

(a) Show that for any vector x, the set

S(x) = {cx for every scalar c}

of every scalar multiple of x is a linear space. We say that S(x) is the
space spanned by the vector x.

4: LINEAR ALGEBRA 115

(b) More generally, consider the set of every linear combination of
the vectors x1,x2, . . . ,xn :

S(x1,x2, . . . ,xn) = {c1x1 + c2x2 + · · ·+ cnxn for all scalars ci} .

Show that this is a linear space. Such a set is called the linear space
spanned by the vectors x1,x2, . . . ,xn or more simply, the span of x1,x2,
. . . ,xn .

4.10 Show that the set of all solutions in x of (4.8) form a linear space.
Specifically show that

(a) The zero vector x = (0, 0, . . . , 0) satisfies (4.8).

(b) If the eigenvectors x1 and x2 are both solutions to (4.8) with
respect to an eigenvalue λ then the sum x1 + x2 of these eigenvectors
will also solve (4.8).

4.11 Let Z denote an arbitrary n×m matrix.

(a) Show that Z ′Z is symmetric.

(b) Show that Z ′Z is nonnegative definite. Hint: If y = Zx then
y′y = x′Z ′Zx .

(c) Show that every eigenvalue of Z ′Z must be nonnegative. Hint:
If λ is an eigenvalue with eigenvector x then Z ′Zx = λx . If we
multiply on the left by x′ then we also have

x′Z ′Zx = λx′x .

4.12 Let Z denote an arbitrary n×m matrix. The previous exercise showed
that eigenvalues of Z ′Z are all real and nonnegative. Let us denote
these by

λ1 ≥ λ2 ≥ · · · ≥ λr ≥ λr+1 = λr+2 = · · · = λm = 0

with corresponding eigenvectors x1,x2, . . . ,xm . Refer to (4.13) and
show that the matrix

r∑

i=1

(1/λi)xix
′
i

is a generalized inverse of Z ′Z.

4.13 Suppose the matrix A is expressible as in (4.12). Find A10.

4: LINEAR ALGEBRA 116

4.14 In this exercise we explore properties of the matrix square root.

(a) Verify (4.15).

(b) Consider the 2× 2 identity matrix

I =

(
1 0
0 1

)
.

Show that the matrix square root of I is not unique.

Specifically, consider any numbers r and s, at least one of which is
nonzero. Then define

t =
√
r2 + s2

and define

J = 1/t

(±s ±r
±r ∓s

)
.

Show that J2 = I.

Chapter 5

The Univariate Normal
Distribution

T HE NORMAL DISTRIBUTION is central to much of statistics. In
this chapter and the two following, we develop the normal model from

the univariate, bivariate, and then, finally, the more general distribution with
an arbitrary number of dimensions.

Historically, the normal distribution was developed as an approximation
to the binomial distribution by de Moivre1 in 1738 but the more common
attribution is to Gauss2 in 1809. As a result, the normal distribution is
often referred to as the Gaussian distribution or frequently as the bell curve
because of the familiar shape of its density function.

5.1 The Normal Density

and Distribution Functions

The density function of the standard normal distribution is

φ(x) = (2π)−1/2 exp(−x2/2) . (5.1)

The distribution is called the standard normal because a random variable
X sampled from this distribution will have zero mean and unit variance. This
function is available in R as dnorm().

1Abraham de Moivre (1667–1754). French mathematician and proba-
bilist.

2Carl Friedrich Gauss (1777–1855). German mathematician and physi-
cist.

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 5

117

5: UNIVARIATE NORMAL DISTRIBUTION 118

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en

si
ty

μ = − 2 μ = 0 μ = 2

Figure 5.1: The normal distribution density function (5.2) for specified mean
values, all with a standard deviation σ = 1

Of course we are not restricted to the use of standard normal variates.
If X is a standard (zero mean, unit standard deviation) normal then the
linear transformation

Z = μ+ σX

is also normally distributed with mean μ and variance σ2.
This more general and useful form of the distribution of Z = μ + σX

defined for σ > 0 has density function

φ(z | μ, σ) = σ−1(2π)−1/2 exp{−(z − μ)2/2σ2} . (5.2)

In Fig. 5.1 we see that the familiar bell curve is shifted left and right by
varying the value of the mean μ. When the value of the standard deviation
σ is varied, Fig. 5.2 demonstrates that the curve can also have a sharp peak
(when σ is small) or be broad and flat (when σ is large).

The cumulative distribution or area under the normal curve is much more
important than the bell curve itself. That is, we usually want to describe
the probability of an interval under the bell curve, but almost never need
the value of the bell curve itself.

Specifically, let

Φ(x) =

∫ x

−∞
φ(t) dt (5.3)

denote the cumulative probability up to the value x.
The tail areas are symmetric so that

Φ(−x) = 1− Φ(x)

for every value of x.

5: UNIVARIATE NORMAL DISTRIBUTION 119

−5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

x

D
en

si
ty

σ = 0.5

σ = 1

σ = 2
σ = 4

Figure 5.2: The normal distribution density function (5.2) with mean 0 and
different values of the standard deviation as given

This integral, for the standard normal (μ = 0 and σ = 1), is evaluated
by pnorm() in R. The shape of Φ may be unfamiliar to many readers, so we
present some examples in Fig. 5.3. In each of the curves of Φ in Fig. 5.3 we
see all these begin close to zero on the left and increase monotonically up to
one on the right. The curves shift left to right as the mean increases. Smaller
standard deviations cause the curve to rise more quickly. The shape of the
normal density in Figs. 5.1 and 5.2 should be familiar to the reader, but the
shape in Fig. 5.3 is rarely displayed.

In R we can generate random samples from a standard normal distribution
using the rnorm() function. This function was also illustrated in Sects. 2.5
and 4.5. The argument to rnorm() specifies how many random values are
generated:

> rnorm(4)

[1] 1.1624076 -1.9219944 0.4634357 -2.5063903

> rnorm(5)

[1] -2.5397705 0.5856622 -1.3165089 3.3851341 1.5616724

Notice the random values generated are different with every invocation
of rnorm. Your values will differ from these as well.

We calculate values of the standard normal density function φ given
in (5.1) using dnorm() which may take a vector argument. Similarly, the
cumulative normal Φ in (5.3) with μ = 0 and σ = 1 is found using pnorm().

We can illustrate these functions in R by plotting the values using

5: UNIVARIATE NORMAL DISTRIBUTION 120

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

C
um

ul
at

iv
e

no
rm

al
 fu

nc
tio

n(
x)

μ = 0
σ = 1

μ = 1
σ = 1

μ = 0
σ = 0.5

Figure 5.3: The cumulative normal distribution function (5.3) for means μ
and standard deviations σ as given

> x <- (-50:50)/12

> plot(x, dnorm(x), type = "l")

to plot the standard normal density function in Fig. 5.1 and then

> plot(x, pnorm(x), type = "l")

to illustrate the cumulative distribution function with mean zero and stan-
dard deviation one, as in Fig. 5.3.

There is also the function qnorm() that calculates the quantile function
from the normal distribution. The quantile is the inverse of Φ. That is, for
any probability p (0 < p < 1), the normal quantile x = x(p) is the value
solving the equation

Φ(x) = p. (5.4)

You may be familiar with the use of this function for finding the critical
value of a statistical test. Specifically, a standard normal distribution has
95% of its area between the familiar values −1.96 and +1.96. We can obtain
these values in R using the qnorm function:

> qnorm(.05/2)

[1] -1.959964

> qnorm(1 - .05/2)

[1] 1.959964

5: UNIVARIATE NORMAL DISTRIBUTION 121

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

p

N
or

m
al

 q
ua

nt
ile

(p
)

Figure 5.4: The quantile function Φ −1(p) of the standard normal distri-
bution

We use the argument of 0.05/2 because we want half of the 0.05 prob-
ability in each of the two tails of the normal curve. A plot of the qnorm()

function is given in Fig. 5.4. As p approaches either 0 or 1, then this curve
tends to −∞ or +∞, respectively.

To illustrate another use of this function in R, we generate a set of prob-
abilities that are uniformly distributed between (but not including) 0 and 1
and then find the corresponding normal quantiles:

> x <- runif(6)

> x

[1] 0.6828715 0.4100933 0.5086939 0.7548347 0.8098490

[6] 0.7866481

> qnorm(x)

[1] 0.47574359 -0.22730502 0.02179419 0.68978305

[5] 0.87733996 0.79484489

In Exercise 5.2 you are asked to identify the distribution of the random
values generated in this fashion.

5: UNIVARIATE NORMAL DISTRIBUTION 122

5.2 Relationship to Other

Distributions

Let us point out some simple relationships between the normal distribution
and other important statistical distributions. The normal distribution is
frequently used as an approximation to many other distributions and the
behaviors of test statistics. A popular example is the normal approximation
to the binomial distribution with a large sample size. Other examples appear
in Exercises 2.4 and 5.4.

There is a close relationship between the normal and the chi-squared
distribution. If x has a standard normal distribution then x2 behaves as
a chi-squared with 1 df. More generally, if x1, x2, . . . , xk, each behave as
independent, standard normals, then x2

1 + · · · + x2
k behaves as chi-squared

with k df. The ratio x1/x2 of two independent standard normals behaves as
Student’s t with 1 df, also known as the Cauchy distribution.3 See Sect. 5.5
for a discussion of Student’s t-distribution.

Sums and differences of correlated, normally distributed variates also
behave as normal. We will explore this property in the following two chapters
when we talk about multivariate normal distributions.

5.3 Transformations to Normality

If you are reading this section, then it is likely that you are already suspicious
that your data is not exactly normally distributed. In this section we will
provide statistical tests to see if your data is “close enough” to being normal
and some things you can do about it if it isn’t. Of course, there are times
when it is not worth testing for normality or even pretending the data is
normally distributed because the non-normal shape is obvious. In this case,
other techniques are available to us such as robust, nonparametric methods
that do not rely on the assumption of normally distributed data. As an
example, if the data values are binary valued, then the normal distribution
is not appropriate and no amount of transformation will make this data look
normal.

As a case study for this section, let us examine the median apartment
rents for each of the 50 US states and DC given in Table 1.1.

The best way to start is to draw a histogram. In R we draw a histogram
using the hist(x). This command is discussed in Sect. 3.1. The histogram of
the rent values appears in the upper left corner of Fig. 5.5. The data values
have a longer right tail than the left (right skewed), and we are going to show
how to repair that. There is also some evidence of a gap in the middle of the
distribution, perhaps indicating that the data is sampled from two different

3Augustin-Louis Cauchy 1789–1857. French mathematician.

5: UNIVARIATE NORMAL DISTRIBUTION 123

Original values

600 800 1000 1200

0
2

4
6

8
10

Square root

25 30 35

0
2

4
6

8
12

Logarithm

6.4 6.6 6.8 7.0 7.2

0
2

4
6

−1/2 Exponent

−0.040 −0.035 −0.030

0
2

4
6

−Reciprocal

−0.0018 −0.0014 −0.0010

0
2

4
6

8
10

−1.5 Exponent

−8e−05 −6e−05 −4e−05 −2e−05

0
2

4
6

8

Figure 5.5: Histograms of the median apartment rents in Table 1.1. The data
has been transformed using the power transformation (5.5)

populations. This bimodal feature is much harder to fix than the asymmetry,
which we will discuss next.

It is possible and often useful to transform skewed data values in order to
make them more symmetric. Clearly a linear transformation will not change
the basic shape of the histogram. A nonlinear transformation is needed. The
power transformations attributed to Box and Cox (1964) can be summa-
rized as

Power(x) =

⎧
⎨

⎩

−xλ for λ < 0
log(x) for λ = 0
xλ for λ > 0

(5.5)

for positive-valued data (x) and any specified value of λ. This function is
called bct and is available in the TeachingDemos library.

The further λ is from 1, the greater the effect of the transformation.

5: UNIVARIATE NORMAL DISTRIBUTION 124

Values of λ < 1 in this transformation will have the effect of pulling in a
long right tail and spreading out values in a short left tail. This is what is
needed for the rent data and we will explore these next. A negative sign
is needed in the power transformation for values of λ < 0 because reciprocals
of large numbers are small numbers and we need to preserve the order of the
data, not reverse it. Values of λ > 1 in (5.5) will tend to push out the right
tail of the distribution and this is the opposite of what is needed to make the
distribution of the rent data more symmetric.

Histograms of transformed median rent values are given in Fig. 5.5. These
include values of λ = 1, 1/2, 0, −1/2, −1, and −1.5. Choosing the appro-
priate value of λ calls for more of a sense of aesthetics than mathematical
rigor. In Fig. 5.5 we see that the square root (λ = 1/2) and log (λ = 0)
transformations result in more symmetric improvements over the original
data but are not strong enough. The reciprocal (λ = −1) and λ = −1.5
appear to overdo the transformation and begin to introduce a longer left tail.
The reciprocal square root (λ = −1/2) seems to be a nice compromise, pro-
ducing a more symmetric distribution, although there is not much we can
do about the bimodal character of the data. Ideally, a separate statistical
analysis could be applied to help identify characteristics and membership in
two or more different populations. These methods are described in Chaps. 10
and 11.

Next we examine methods to check for normality. A simple graphical
method for checking normality is the quantile–quantile plot or QQ plot. This
plot compares the quantiles of the observed values with those of the theo-
retical distribution, hence the name QQ. The QQ plot displays the sorted,
observed values against the values that we would expect to observe had they
been sampled from a theoretical normal distribution. If the observed data
was sampled from a normal distribution, then we would expect these values
to form a nearly straight line.

What are the expected values from an ordered normal sample? To find
these, begin by recalling the cumulative normal distribution function Φ given
in (5.3). Consider then, a sorted sample x1 ≤ x2 ≤ · · · ≤ xn from a standard
normal distribution with mean μ = 0 and standard deviation σ = 1 .

We would expect that these ordered, standardized values to obey

Φ(x1) = 1/(n+ 1), Φ(x2) = 2/(n+ 1), · · · ,Φ(xn) = n/(n+ 1) . (5.6)

In other words, the theoretical, expected sample values should be spread
out evenly with all n observations having equal cumulative probabilities
between each. See Exercise 5.2 for more details.

We can take the set of equations in (5.6) and invert Φ using the normal
quantile function to obtain the expected normal quantiles. These values are
close approximations to where the ordered values should be expected to occur

5: UNIVARIATE NORMAL DISTRIBUTION 125

−2 −1 0 1 2

60
0

80
0

10
00

12
00

QQ plot of rents

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−2 −1 0 1 2

−
0.

04
0

−
0.

03
5

−
0.

03
0

Transformed values

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 5.6: QQ plot of the original apartment rent values on left and power
transformed with λ = −1/2 on the right

in the sample. Specifically, the expected quantiles for the QQ plot are

x̂1 = Φ−1(1/(n+ 1)), x̂2 = Φ−1(2/(n+ 1)), . . . x̂n = Φ−1(n/(n+ 1)) .
(5.7)

The quantile function Φ−1() is plotted in Fig. 5.4 and can be calculated
using the qnorm() function in R.

The QQ plot consists of a scatterplot of the paired values (x̂i, xi). Ideally,
this should appear as a straight line if the xi were a “perfect” sample with all
observations appearing exactly where we would expect them to be. In the QQ
plot we should expect to see the greatest deviations from the straight line at
its ends, partly because the sampled values at the extremes will have greater
variability than those observations nearer to the center of the distribution.

An example of a QQ plot for the rent data appears in Fig. 5.6. The plot
on the left is for the raw data. The graph on the right is of the transformed
data raised to the power λ = −1/2. This was the power we decided was best
in the histogram plots of Fig. 5.5.

In R we draw a QQ plot for data in y with the code

qqplot(y)

qqline(y)

The qqplot() command produces the data plot, and the qqlines()

command adds the diagonal line as a useful visual reference. The line is drawn
between the first and third quartiles of the observed data. The quartiles
divide the observed data into four equal sized groups so that 1/4 of the data
values are below the first quartile and 1/4 are above the third quartile. The
qqplot() statement accepts the options pch=, cex=, and col= to control
the plot character, its size, and its color.

5: UNIVARIATE NORMAL DISTRIBUTION 126

The QQ plot of the original rent values on the left half of Fig. 5.6 shows
that the lower (left) tail is short relative to where the normal distribution
would expect it. The sample in the first quartile is higher than the line
anticipates, and the lower tail is not as spread out as it should be if the data
more closely followed a normal distribution. The upper (right) tail looks
about correct for the original data values.

The QQ plot for the λ = −1/2 transformed data on the right half
of Fig. 5.6 follows the line more closely but both the upper and lower tails
of this transformed distribution are slightly shorter than what the normal
distribution would anticipate. The center of this plot shows a small bump
that is indicative of the bimodal gap in the middle of the distribution. The
center of the transformed values appear to hug the diagonal line more closely,
but the upper tail does not have as good a fit as does the original data. The
extremes of the sample will generally be more variable, so we should not
expect the tails to follow the normal model as closely as the observations in
the center.

To conclude this section, the power transformation gives us a continuous
range of tools to reshape our data. The choice of λ is more art than science.
In the next section we will try to quantify the degree of non-normality by
applying different statistical tests to the data.

5.4 Tests for Normality

There are many ways in which the data can appear non-normal. Similarly,
there are a wide range of tests of normality that can be applied. Each of
these looks for a different deviation from the normal model. Using the words
of hypothesis testing, the null hypothesis is that the data has been sampled
from a normal population, but there are many possible deviations from this
model to consider as alternative hypotheses. Similarly, we need to know
what attributes of the normal distribution are being examined in each test.
The R libraries fBasics and nortest provide a number of useful tests of
normality. In this section, we will review a few of these.

Begin with a random sample x = (x1, . . . , xn) with sample mean x.
The simplest and most intuitive test available examines the observed and
expected histograms. Suppose we cut up the real line into a small number of
nonoverlapping intervals. Then we count the number of observations that fall
into each of these categories, just as we would when constructing a histogram.
The theoretical normal distribution also provides the number of counts that
should be expected in each of these intervals. Finally, the observed and
expected counts can be combined in a Pearson4 chi-squared statistic.

4Karl Pearson (1857–1936). British historian, lawyer, and mathemati-
cian.

5: UNIVARIATE NORMAL DISTRIBUTION 127

If obsi and expi are the observed and expected counts in the i-th
interval then

∑

i

(obsi − expi)
2/expi

is the Pearson chi-squared statistic.
The pchiTest test in the fBasics library does the calculations for this

test, including the p-value obtained from the corresponding chi-squared ref-
erence distribution. (This test is also available as pearson.test in the
nortest library.) The default number of categories chosen by this method
is the largest integer in 2n4/5 so that the number of interval categories5 in-
creases almost in proportion to the sample size. There are options in the test
that allow you to vary the number of categories.

The cut points of the intervals are chosen so each interval has the same
expected number of counts. See Exercise 5.8 for an example of how this is
done.

Here is an example of the use of the Pearson test. Consider the original
apartment rents that we examined in Sect. 5.3 as a candidate for transforma-
tion:

> library(fBasics)

> pchiTest(housing$Apartment,

+ description="Original apartment values")

Title:

Pearson Chi-Square Normality Test

Test Results:

PARAMETER:

Number of Classes: 10

STATISTIC:

P: 12.7255

P VALUE:

Adjusted: 0.07909

Not adjusted: 0.1754

Description:

Original apartment values

In this case, ten interval categories are examined and R uses different
methods for calculating the reference p-values. The adjusted p-values (ad-
justed for small sample sizes) provides a small amount of evidence to reject

5There is mathematical theory to suggest that n4/5 is about the cor-
rect number of categories needed when drawing a histogram. See Tapia and
Thompson (1978; p. 53) for details on this.

5: UNIVARIATE NORMAL DISTRIBUTION 128

the null hypothesis of an underlying normal population. Ideally, the next
step would be to examine the frequencies in each of the ten categories to see
where the lack of fit occurs. See Exercises 5.8 and 5.9 for more detail on this
test of the normal distribution for the transformed apartment rent data.

Let us examine a different test of the normal distribution based on higher
moments of the sampled data. The Jarque–Bera test examines the third and
fourth moments of the sampled data. The skewness of the sample is defined
by the third moment about the sample mean:

γ̂3 = skewness = n−1
∑

(xi − x)3 /var(x)3/2 .

Skewness measures asymmetry of the sampling distribution. The skew-
ness should have a value near zero for normally distributed data. Values far
from zero indicate that the data was sampled from an asymmetric distri-
bution. Positive skewness means that the right, upper tail of the data is
longer than the left tail.

The kurtosis

γ̂4 = kurtosis = n−1
∑

(xi − x)4 /var(x)2 − 3

is the fourth moment of the data, centered about its mean.
There is a “3” in the definition of kurtosis because in the normal distri-

bution, the fourth central moment is 3σ4. Positive or negative values of the
kurtosis indicate the tails of the sampling distribution are longer (heavier) or
shorter (lighter), respectively, than a normal distribution. A large positive
kurtosis may also indicate the presence of outliers in the data. Similarly, a
negative kurtosis may be the result of the truncation of extremes in the data.
Skewness and kurtosis may be computed in R on data using functions of the
same name in the fBasics library.

The Jarque–Bera statistic

JB = n/6
(
skewness2 − kurtosis2/4

)

provides a test of the normal distribution by combining both the skewness
and kurtosis for a data sample (Jarque and Bera 1987).

This statistic behaves as chi-squared with 2 df under the null hypothesis
of normally distributed data. Statistically large values of JB are indicative of
a poor fit for the normal distribution. In R, the jbTest() function calculates
the value of the JB statistic and provides the corresponding p-value of the
reference chi-squared statistic. This function is part of the fBasics library.

As an example of the use of this test, let us look at the apartment
rents. The following examines the original, untransformed values and gives
the R output:

> library(fBasics)

5: UNIVARIATE NORMAL DISTRIBUTION 129

> jbTest(housing$Apartment,

+ title="Original apartment rents")

Title:

Original apartment rents

Test Results:

PARAMETER:

Sample Size: 51

STATISTIC:

LM: 5.499

ALM: 6.3

P VALUE:

LM p-value: 0.043

ALM p-value: 0.053

Asymptotic: 0.064

The jbTest() calculates both a finite sample (LM) and asymptotic
(ALM) version of the JB statistic as well as their corresponding p-values.
In this example, the three p-values are close in value to indicate a consensus
of methods and small enough for us to question the adequacy of the fit of the
normal distribution.

Let us run this test again on the transformed apartment rents using the
transformation we found in Sect. 5.3. The R code and output, in part are as
follows:

> jbTest(-housing$Apartment^(-1/2),

+ title="Transformed apartment rents")

. . .

P VALUE:

LM p-value: 0.29

ALM p-value: 0.331

Asymptotic: 0.429

The three p-values given here provide good evidence of data sampled
from a normal population. This is quantitative evidence of the benefit of
transforming these data values. See also Exercise 5.9.

The Kolmogorov–Smirnov test6,7 is a nonparametric examination of the
cumulative distribution function. This test compares the maximum differ-
ence between the cumulative distribution function of the data with that of

6Andrey Nikolaevich Kolmogorov (1903–1987). Soviet mathematician
and probabilist.

7Nikolai Vasil’evich Smirnov (1900–). Soviet probabilist.

5: UNIVARIATE NORMAL DISTRIBUTION 130

the theoretical normal distribution. Intuitively, this statistic measures how
far the cumulative, ordered data values are from where we would expect them
to appear. This is similar to the visual inspection we apply when we perform
the QQ plot as in Fig. 5.6 except that it only measures the largest vertical
difference between the ordered data and the fitted straight line.

In R, this test expects the data values to be standardized with respect to
the mean and standard deviation. Here is an example, again examining the
apartment rents:

> z <- housing$Apartment

> z <- (z -mean(z)) / sd(z)

> ksnormTest(z)

Title:

One-sample Kolmogorov-Smirnov test

Test Results:

STATISTIC:

D: 0.1597

P VALUE:

Alternative Two-Sided: 0.1484

Alternative Less: 0.5633

Alternative Greater: 0.07421

The test method provides three p-values for alternative hypotheses that
the largest difference of the two distribution functions are either one or two
sided. Unless we have strong a priori concerns, the two-sided alternative
hypothesis is the preferred approach. In this example, none of these three
p-values indicates a large deviation from the normal distribution.

The Shapiro–Wilk test statistic is

W =
(∑

aix(i)

)2
/

std dev(x) ,

where ai are constants that depend only on the sample size (Shapiro and
Wilk 1965).8,9

The x(i) are the ordered data values x(1) ≤ x(2) ≤ · · · ≤ x(n). As with
the Kolmogorov–Smirnov test, this statistic also measures how far the ordered
data values are from where we would expect them to appear. Informally, the
Shapiro–Wilk test examines how far the observed data deviates from the QQ
plot, and the Kolmogorov–Smirnov test examined the maximum difference
in the QQ plot, measured on a vertical scale.

8Samuel Sanford Shapiro (1930–). American statistician and engineer.
9Martin Bradbury Wilk (1922–2013). Canadian statistician and former

Chief Statistician of Canada.

5: UNIVARIATE NORMAL DISTRIBUTION 131

The shapiro.test() in R provides a formal p-value for the W statistic.
Here is an example of its use:

> shapiro.test(housing$Apartment)

Shapiro-Wilk normality test

data: housing$Apartment

W = 0.9346, p-value = 0.007472

> shapiro.test(-housing$Apartment^(-1/2))

Shapiro-Wilk normality test

data: -housing$Apartment^(-1/2)

W = 0.9737, p-value = 0.3136

The first of these two tests shows a large discrepancy between the orig-
inal apartment rent data and a normal distribution. The second use of the
shapiro.test demonstrates how much better the transformed values follow
the normal distribution.

As we have shown in the past two sections, there are tests for normality
and transformations to make our data look more normal. We point out that
this exercise in transforming and testing is not the final goal. Usually our
interest is in inference made on the data using some statistical method that
depends on a normal distribution for its validity. The motivation for testing
normality, then, is that our inference requires it, not that normality is an end
unto itself.

But if this is indeed the case, then we should not be asking if our data is
normally distributed. The real question is whether our data is close enough
to the normal distribution in order to obtain valid statistical inference. In-
stead, we need to question the sensitivity of the statistical method to the
assumptions of normality. Simulation methods in R are ideal for addressing
such issues. Simulation methods are discussed in Sects. 2.2 and 2.6.

5.5 Inference on Univariate Normal

Means

In this section we want to describe statistical inference on the population
parameter μ. Given a random sample x1, x2, . . . , xn from a univariate nor-
mal distribution with mean μ and variance σ2, the sample average x,

x = n−1
∑

i

xi ,

is used to estimate μ.

5: UNIVARIATE NORMAL DISTRIBUTION 132

The standard error of x is σ/
√
n. This standard error would be ideal,

except σ is rarely known in practice and needs to be estimated. The usual
point estimate for σ2 is

s2 = (n− 1)−1
∑

(xi − x)2 . (5.8)

In Sect. 5.6 we will describe inference on σ2.
For a long while, researchers would substitute the value s for the un-

known σ and treat x /(s/
√
n) as normally distributed. Gosset10 pointed

out the appropriate distribution while working at the Guinness Brewery in
Dublin. His work was considered a trade secret so he published it in 1908
under the pen name “Student,” leading to the present name of “Student’s
t-distribution.”

The distribution of x /(s/
√
n) is that of Student’s t with n − 1 df if

the underlying observed values x1, x2, . . . , xn are sampled from a standard
normal distribution. Figure 5.7 plots Student’s t-distribution for 1, 2, 5, and
10df and compares these to a standard normal distribution. The lower df
distributions have much longer tails than the normal, and above 10 df, these
distributions are indistinguishable from the normal. The normal distribution
corresponds to the t-distribution with infinitely many df.

We can now discuss inference on the mean μ of a normal population.
There are three important forms of statistical inference that we can draw: a
confidence interval of μ, a hypothesis test whether μ is equal to a specified
value, and equality of means sampled from two different populations. A good
way to illustrate these is to have R generate a random sample of normally
distributed data for us.

In R we can generate standard normal variates and find their sample
average, estimated variance, and standard deviation as in the dialog:

> sample <- rnorm(6)

> sample

[1] -1.0763316 0.1058763 -2.3284413 1.1132752 0.4492566 -1.1717192

> mean(sample)

[1] -0.4846807

> var(sample)

[1] 1.599197

> sd(sample)

[1] 1.264594

10William Sealy Gosset (1876–1937). British mathematician

5: UNIVARIATE NORMAL DISTRIBUTION 133

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

t value

D
en

si
ty

normal
5df

2 df

1df

Figure 5.7: Density of normal and Student’s t with 1, 2, 5, and 10 df

The one sample t.test program for this sampled data

> t.test(sample)

One Sample t-test

data: sample

t = -0.9388, df = 5, p-value = 0.3909

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-1.811790 0.842429

sample estimates:

mean of x

-0.4846807

calculates a 95% confidence interval for the normal population mean μ and
tests the hypothesis whether μ is equal to zero. In this present sample,
there is no evidence against this hypothesis. Your values will be different
every time you run this example.

To test other hypotheses about μ you can specify a known value for the
null hypothesis, as in this example

> t.test(sample, mu=2)

One Sample t-test

5: UNIVARIATE NORMAL DISTRIBUTION 134

data: sample

t = -4.8128, df = 5, p-value = 0.004829

alternative hypothesis: true mean is not equal to 2

95 percent confidence interval:

-1.811790 0.842429

sample estimates:

mean of x

-0.4846807

in which the small p-value 0.0048 shows that there is little evidence that μ
is equal to 2.

The third important form of inference concerns the comparison of means
from two different populations. So, for example,

> sample2 <- rnorm(5) + 1.5

[1] -0.5277086 2.5294779 3.0055344 2.9060771 3.2043778

generates a sample with a population mean of 1.5.
The corresponding two-sample t-test of equality of population means

> t.test(sample, sample2)

Welch Two Sample t-test

data: sample and sample2

t = -3.1238, df = 7.735, p-value = 0.01476

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-4.7194790 -0.6969859

sample estimates:

mean of x mean of y

-0.4846807 2.2235518

produces a relatively small p-value (0.014) providing evidence that the two
population means are not equal. The 95% confidence interval is that of the
difference of the two population means. The Welch11 t-test is a modifica-
tion of the usual t-test that accommodates unequal population variances by
introducing fractional df.

Let us use the t.test function to simulate the behavior of the univariate
confidence interval. Specifically, Output 5.1 generates 50 different normal
random samples of size 25 and finds a (univariate) 95% confidence interval
of the mean of each sample. In Fig. 5.8 we plot each of the confidence intervals
and provide a histogram of their lengths.

In each of the 50 samples, the observed mean and standard deviations will
vary, producing intervals of different lengths and centered at different places.

11Bernard Lewis Welch (1911–1989). English statistician.

5: UNIVARIATE NORMAL DISTRIBUTION 135

The location of the true population mean is indicated with a dotted line, but
of course, this value would not be known to us in practice. The confidence
intervals include the true value in 98% of these fifty samples, which is close
to the claimed coverage rate of 95%. Figure 5.8 also includes a histogram of
the lengths of these intervals.

The use of Fig. 5.8 helps us interpret confidence intervals, in general. This
is an awkward concept to explain and can only be interpreted in the context
of many repeated samples from the same population. The data is random,
and so are the endpoints of the confidence interval. We will never know
the true population mean, but with repeated sampling from the population,
these random intervals are constructed in such a way that they should cover
the true value 95% of the time. Unfortunately, we usually observe only
one sample from the population so the single observed confidence interval
will either cover the true value or not. We cannot correctly talk about a
probability associated with this single interval. The confidence interval is
only associated with repeated sampling from the population.

Let us complete this section with a real-data example. Sullivan (2008)
gives the data in Table 5.1 of the mathematics scores of a group of men and
women. These were students in an elementary algebra course, enrolled at a
community college over two semesters.

Let us begin by looking at the separate histograms, given in Fig. 5.9. Even
though we see in this figure that the male students have a wider range, the
women students have a larger standard deviation of values: 19.0 for women
and 16.5 for men. One explanation for this discrepancy is that more women
students had values at the extremes of their range but few males scored near
their endpoints.

Another good first step is to check for normality using the QQ plot de-
scribed in Sect. 5.4. The QQ plots in Fig. 5.10 confirm the deviations from
normality that are apparent in Fig. 5.9. Specifically, the female observations
have shorter tails than would be expected under a theoretical normal sam-
ple. This does not look too deviant to question the assumption of normally
distributed data. The values of the male students look closer to that of a
normal sample. No outliers are apparent in either male or female data.

These tests do not indicate problems with the normal distribution as-
sumptions, so we can proceed and test the hypothesis of equality of popula-
tion means:

> t.test(score[sex == female], score[sex == male])

Welch Two Sample t-test

data: score[sex == female] and score[sex == male]

t = 1.0226, df = 70.327, p-value = 0.31

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.845393 11.939686

sample estimates:

5: UNIVARIATE NORMAL DISTRIBUTION 136

Output 5.1: Program to produce Fig. 5.8 of simulated univariate confidence
intervals for a normal mean

reps <- 50 # number of intervals to generate

sim.mean <- 2 # true population mean

cover <- 0 # count of coverage of true value

ints <- NULL # start a list of intervals

for (i in 1 : reps) # generate the confidence intervals

{

int <- t.test(rnorm(25, mean = sim.mean, sd = 5))$conf.int[1 : 2]

ints <- rbind(ints, int)

if(int[1] <= sim.mean &&

int[2] >= sim.mean) cover <- cover + 1

}

ints # print these intervals

cover <- cover / reps

cover # percent coverage of true values

pdf(file = "simCI.pdf") # capture graphics in file

op <- par(mfrow = c(1, 2))# side-by side plots

plot(0,0, xlim = c(min(ints[, 1]) - .5, max(ints[, 2]) + .5),

ylim = c(0, reps), type = "n", ylab = "Simulation number",

xlab = "Confidence interval") # create an empty frame

for (i in 1 : reps) # plot the intervals

{

lines(ints[i,], c(i, i), col = rainbow(6)[4], lwd = 3.5)

points(ints[i,], c(i, i), col = "red", pch = 16, cex = .5)

}

lines(rep(sim.mean, 2), c(-5, reps + 5), lty = 3, col = "blue")

lengths <- ints[, 2] - ints[, 1]

hist(lengths, xlab = "Lengths of intervals",

main = " ", breaks = 10, col = rainbow(7)[5])

dev.off() # return to R graphics window

par(op) # reset plotting option

mean of x mean of y

71.69231 67.64516

The female students have a larger average score than the males. The
p-value of 0.31 gives us no evidence that the population means are different
from each other.

We next examine statistical inference on the normal variance parameter.

5: UNIVARIATE NORMAL DISTRIBUTION 137

−2 0 2 4 6

0
10

20
30

40
50

Confidence interval

S
im

ul
at

io
n

nu
m

be
r

Lengths of intervals

F
re

qu
en

cy

3.0 3.5 4.0 4.5 5.0 5.5

0
2

4
6

8
10

Figure 5.8: Simulated confidence intervals of a normal mean. The program
in Output 5.1 produces this figure

5.6 Inference on Variances

As in Sect. 5.5, let us begin by assuming that we have a random sample
x1, x2, . . . , xn from a normal distribution with mean μ and variance σ2.
The variance is estimated by s2 given in (5.8) and this is calculated using
the var() function in R.

Let us illustrate how we can construct a 95% confidence interval for
the population variance σ2. In a random sample from a normal population,
the sample variance s2 behaves as σ2χ2/(n− 1) where χ2 is a chi-squared
random variable with n− 1 df.

Let us illustrate this with a sample of size n = 10 from a normal distri-
bution with mean μ = 0 and variance σ2 = 6:

> (sample <- sqrt(6) * rnorm(10))

[1] 5.8661171 0.3683464 0.8060940 0.1836058 -1.6013981 2.2258245

[7] 0.6948691 -0.2916154 -4.9956032 -1.8808992

and find the sample variance:

> var(sample)

[1] 7.957982

5: UNIVARIATE NORMAL DISTRIBUTION 138

Female

20 40 60 80 100

Male

Exam score

20 40 60 80 100

Figure 5.9: Histograms of math scores

Consider a 95% confidence for a 9 df chi-squared random variable with
equal probability 0.025 in each of the two tails of the distribution. In R we
compute this as

> (chis95 <- c(qchisq(.975, 9), qchisq(.025, 9)))

[1] 19.022768 2.700389

so that the 95% confidence interval for σ2 from our sample is then

> 9 * var(sample) / chis95

[1] 3.765059 26.522781

We can also construct a one-sided confidence interval for σ2 with all of
the uncertainty at one end:

> (chis05 <- qchisq(.95, 9))

[1] 16.91898

5: UNIVARIATE NORMAL DISTRIBUTION 139

−2 −1 0 1 2

30
40

50
60

70
80

90
10

0

Female

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−2 −1 0 1 2

30
40

50
60

70
80

90

Male

Theoretical Quantiles

Figure 5.10: QQ plots of math scores

so that the one-sided 95% confidence interval for σ2 is all values greater
than

> 9 * var(sample) / chis05

[1] 4.233225

so that all of the uncertainty is expressed at the lower estimate for σ2.
Exercise 2.5 describes several tests available in R for testing the equality

of variances in different populations. These include the bartlett.test()

test. Other tests of equality of variances available in R are var.test(),
flinger.test(), ansari.test(), and mood.test(). Use the help() file
to read about these tests.

5.7 Maximum Likelihood Estimation,

Part I

In this section we want to introduce a very general process of parameter
estimation and show how we can do this in R. We start with a simple example:

5: UNIVARIATE NORMAL DISTRIBUTION 140

Table 5.1: Mathematics examination scores, by gender

Women Men

94 90 96 73 71 75 52 77 57 79 65 68 65 55
86 93 86 50 30 46 36 72 66 29 69 85 82 43
82 55 75 47 80 92 56 60 64 82 91 51 60 76
43 77 63 76 67 99 93 43 82 87 32 71 77 77
75 90 92 88 76 61 77 79 97 56
49 67 81 89 88 42 51
58 98 46 96 90 46 50
67 83 85

Source: Sullivan (2008)

estimating the mean and standard deviation from a normal sample. The
reason for this apparent backward motion is to become familiar with a new
method when the answer is already well known to us. Then we can use the
new method and advance to more difficult problems where the solution is not
obvious.

Let’s begin by generating a random sample from the normal distribution
with a specified mean and standard deviation:

> z <- rnorm(25, mean = 5, sd = 10)

> z[1 : 5]

[1] 3.861693 9.953657 14.686397 17.601439 -8.863527

> mean(z)

[1] 3.949079

> sd(z)

[1] 10.33858

This example generates 25 random values from a normal population with
mean 5 and standard deviation 10 using the rnorm function. This function is
previously described in Sect. 5.1, but notice how we are now using the mean=
and sd= options. The mean() and sd() functions return the average and
standard deviation of the sample. These are not the population values, of
course, but are within sampling error of the true values. (It would take an
extremely large sample to obtain the population parameters.)

Now suppose we didn’t know how to estimate the mean and standard
deviation and R did not include these functions to make it so easy for us. To
estimate these parameters we will need to introduce two important principles:

5: UNIVARIATE NORMAL DISTRIBUTION 141

(1) the likelihood of the data and (2) an estimate the parameters using those
values that maximize this likelihood function.

The likelihood of a normal observation is the density function φ(z | μ, σ)
given in (5.2). The likelihood function is evaluated using the dnorm() func-
tion in R. Different likelihood functions will be used for different statistical
distributions and models, but we will stay with this example for now.

The observations zi are independent in this example so the joint likeli-
hood is the product of the individual likelihood functions:

φ(z | μ, σ) =
∏

i

φ(zi | μ, σ) . (5.9)

The principle ofmaximum likelihood directs us to find the values of μ and
σ that maximize this quantity. On one level this may seem counterintuitive
because Figs. 5.1 and 5.2 seem to suggest that the parameters μ and σ are
fixed and only z varies in φ. We now need to think about the likelihood
function differently and consider the observed data z as fixed. That is, we
are fixing the data values in φ and letting the parameters vary.

Intuitively, the likelihood tells us how likely the observed data was to
be observed. Maximum likelihood estimates are those parameter values that
make the observed data as likely to occur as possible. In words, the observa-
tions are all that we have in order to estimate parameters. Maximizing the
likelihood is a method to make the observed data look as good as possible.
Such parameter estimates are called maximum likelihood estimates and are
frequently abbreviated mle’s.

Next we need to find values of μ and σ that maximize φ(z | μ, σ).
Notice that the data in z remains the same, while the parameters μ and
σ are meant to vary. We can evaluate the likelihood for z at any given
parameter values using the dnorm() function in R. This is best performed as
a function. (We discuss writing functions in R in Sect. 2.5.)

The function

lik <- function(parm) prod(dnorm(z, mean = parm[1], sd = parm[2]))

of a single, vector-valued argument evaluates the normal likelihood given
in (5.9). The data in z is external and is understood by the function.

The vector argument to the lik function is a 2-tuple consisting of the
mean and the standard deviation. We can evaluate it at the known, true
parameter values

> lik(c(5,10))

[1] 2.468186e-41

and see that the value of the likelihood near its maximum is an extremely
small number.

5: UNIVARIATE NORMAL DISTRIBUTION 142

The reason that the likelihood is so small (about 2× 10−41) is that each
term φ(zi) in (5.9) is smaller than 1, and some of these terms can be quite
small. Multiplying these together results in a very small number. A problem
with working with the likelihood, then, is that in sufficiently large sample
sizes, the likelihood can be an extremely small number and R might round
this number down to zero.

A useful way to avoid such extreme numbers is to take the logarithm of
the likelihood function. The resulting log-likelihood

Λ(μ, σ) = log{φ(z | μ, σ)} = log

{
∏

i

φ(zi | μ, σ)
}

=
∑

i

log{φ(zi | μ, σ)}
(5.10)

is much easier to work with because it consists of sums of terms, rather than
a product of terms. (Throughout this book, we always take logarithms to the
base e= 2.718 . . .)

The corresponding log-likelihood in (5.10) is calculated by the R function

llik <- function(parm) sum(dnorm(z, mean = parm[1],

sd = parm[2], log = TRUE))

using the log = TRUE option in dnorm.
We then evaluate this function

llik(c(5, 10))

[1] -93.5025

and obtain a more useful number. The log-likelihood is a negative number
because it represents the log of a fraction.

Is it acceptable to use the log of a function that we are maximizing
rather than the original function itself? Taking logs is a reasonable approach
because the maximum of the function will also occur at the same place that
its logarithm is maximized. There are several reasons for using the logarithm
as we will see. In statistical practice, when we talk about the likelihood
function, we almost always mean the log of the likelihood so that we often
forget to use the word log in writing and speaking. See Exercise 5.3 for more
on this example.

Next, let’s have a look at this log-likelihood function. Figure 5.11 illus-
trates the log-likelihood function Λ(μ, σ) in (5.10). This figure is plotted
using the code given in Output 5.2. This code uses the persp() function
which plots three-dimensional objects with options for different perspectives
and shading.

The perspective plot of the log-likelihood Λ(μ, σ) is given in Fig. 5.11.
This figure shows us that the log-likelihood Λ is a function of the parameters

5: UNIVARIATE NORMAL DISTRIBUTION 143

Output 5.2: Code to produce Fig. 5.11

trange <- seq(from = 0, to = 10, length = 25) # range of theta

srange <- seq(from = 6, to = 14, length = 25) # range of sigma

drawll <- function(th,sig) # the log-likelihood

{

sum(dnorm(z, mean = th, sd = sig, log = TRUE))

}

evaluate the log-likelihood at every pair of parameter values

zvals <- matrix(0, length(trange), length(srange))

for (i in 1 : length(trange))

{ for (j in 1 : length(srange))

{ zvals[i, j] <- drawll(trange[i], srange[j])

} }

persp(x = trange, y = srange, z = zvals, cex.lab = 1.2,

zlim=c(min(zvals), max(zvals) + .5),

xlab = "mean", ylab = "std deviation",

zlab = "Log likelihood", col = rainbow(6)[3],

axes = TRUE, box = TRUE, theta = -30, shade = .3)

mean

std deviation

Log likelihood

Figure 5.11: The log-likelihood function (5.10)

θ and σ . There is a clear single maximum in these two parameters, and then
the log-likelihood falls off as we move away from its maximum. In Exercise 5.3
we find the exact mathematical expressions for the location of this maximum.

How do we use R to find the estimates of the mean and standard deviation
parameters that maximize the log-likelihood? The nlm program is a very
handy program and we will make repeated use of it. Given a function of
several variables and a reasonable set of starting values for the parameters,

5: UNIVARIATE NORMAL DISTRIBUTION 144

nlm will numerically locate the maximum as well as approximate the first
and second derivatives at this minimum. (The nlm function was introduced
in Sect. 2.7.)

The nlm program was written to find the minimum, but we are interested
in finding a maximum. We work around this by defining the negative log-
likelihood:

nll <- function(par) # negative, normal log-likelihood

-sum(dnorm(z, mean = par[1], sd = par[2], log = TRUE))

which will be minimized.
As with the llik function, this function calculates the negative log-

likelihood function. It is defined by a vector of arguments representing the
two parameters to be estimated. The first, parm[1] is the mean, and the
standard deviation is parm[2].

The nlm program is invoked with the name of the function followed by a
set of reasonable starting values:

nlm(nll, c(10, 15)) # call nlm with neg log-lik and initial values

The output from this program contains the minimum of the negative log-
likelihood, estimates of where this occurs, estimated gradient, the number of
iterations it took, and finally, an error message:

$minimum

[1] 90.06128

$estimate

[1] 7.127638 8.877439

$gradient

[1] 1.870154e-06 5.884479e-06

$code

[1] 1

$iterations

[1] 11

Warning messages:

1: In dnorm(x, mean, sd, log) : NaNs produced

Let’s explain this output in reverse order, beginning with the error mes-
sage. The nlm program looks for a function minimum and tries many different
parameter values in order to get there. The program does not know that the
standard deviation must be a positive number and may have tried something
invalid in its search. This produced several error messages along the way.

5: UNIVARIATE NORMAL DISTRIBUTION 145

The $gradient is a numerical estimate of the first derivatives in each
of the two directions of μ and σ. These values are both very close to zero.
This is a good indication that the extreme of the function has been achieved.
Intuitively, we are at the top of the mountain when the landscape is flat in
every direction.

The $estimate is the set of parameter values that maximize the log-
likelihood (and minimize the negative log-likelihood). The first of this pair
is exactly the same as the sample mean (7.127638) except possibly differing
in the last digit.

The sample standard deviation (9.060493) and the maximum likelihood
estimate of σ (8.877439) are noticeably different, however. The difference is
explained in Exercise 5.3. Briefly, the usual estimate of the sample variance
s2 given in (5.8) divides the summation by n−1 but the maximum likelihood
estimate of σ2 divides by n. That is, the maximum likelihood estimator of
σ2 is

maximum likelihood estimator(σ2) = n−1
∑

(zi − z)2 (5.11)

and not the more familiar n− 1 denominator given by s2 in (5.8). In other
words, these two estimates of σ should differ by a factor of {n/(n− 1)}1/2.

In Sect. 2.7, we showed how to capture the output from nlm. This ability
allows us to use portions of the output in subsequent steps of R. For example,
we may want to use the values of the parameter estimates in later steps.

In such simple examples as the estimation of the mean and standard
deviation, the mathematics and computer output confirm each other. We
will continue the discussion of maximum likelihood estimation in Sect. 6.5.
Let’s end this section with a numerical method that will bring us to more
complicated examples where the mathematics can become burdensome and
the answer may not be known in advance.

In this next example, suppose we have data from a normal distribution
and want to estimate the ratio of the mean to the standard deviation. That
is, the (positive-valued) normal mean is denoted by μ > 0 and the standard
deviation obeys the relationship

σ = αμ

for some parameter α > 0 that we also need to estimate. This example might
arise in a setting where larger values of the mean are associated with mea-
surements that are less precise, such as where the relative error (α) remains
the same.

In this example we need to estimate the parameters α and μ. It is
not obvious what the analytic form of the maximum likelihood estimates are
without resorting to calculus. The point of this exercise, then, is to tackle
a problem that would otherwise be difficult for us to solve without the help
of R.

5: UNIVARIATE NORMAL DISTRIBUTION 146

The negative, log-likelihood function for this model

prop <- function(par) # negative log-likelihood

-sum(dnorm(z, mean = par[1],

sd = par[1] * par[2], log = TRUE))

is a function of two parameters: par[1] is the mean μ and par[2] is the
parameter α.

We can then generate some random data values for this problem and use
nlm to fit the model:

(z <- rnorm(50, mean = 10, sd = 20)) # generate some data

nlm(prop, c(5,5)) # maximize with starting values

In this example, we generate 50 normal variates with known mean (μ =
10) and standard deviation (σ = 20) so the true ratio α is equal to 2. The
nlm function minimizes the negative log-likelihood, based on initial starting
values of 5 for μ and 5 for α. Usually, our starting values for nlm are just
good guesses in the neighborhood of the answer. You might try other starting
values to see how well nlm works, and perhaps, whether it works at all. See
Exercise 5.6 for more details.

A portion of the output from nlm includes the following:

$minimum

[1] 218.96

$estimate

[1] 9.090690 2.123380

$gradient

[1] -1.067062e-05 -4.542913e-05

The estimates are then μ̂ = 9.09 and α̂ = 2.12. Both of these esti-
mates are reasonably close to the population values of 10 and 2, respectively.
The two gradient values are close to zero indicating good convergence to an
extreme minimum of the negative log-likelihood.

There are also error messages, omitted here, indicating attempts by nlm

to fit the log-likelihood function where it is not defined, specifically where a
trial value of the standard deviation σ = αμ might be a negative number.
Sometimes nlm gets caught in these invalid regions and never seems to get out.
One way to avoid this situation is for us to start with reasonable initial values
in the search for maximum likelihood estimates. Again, see Exercise 5.6 for
guidance.

In conclusion, in this section we showed how we can write programs in
R that allow us to fit mathematical models that are unlike those we might see
in a textbook. This is an important skill for the data analyst because it opens
a much wider range of models to consider as we explore data. In Sect. 6.5

5: UNIVARIATE NORMAL DISTRIBUTION 147

we examine other properties of maximum likelihood estimation in R including
hypothesis testing of parameter values and approximating the standard errors
of the estimated parameters. In Sect. 7.4, we use maximum likelihood to fit
different models and compare these in terms of a formal test of hypothesis.
This test of hypothesis allows us to compare different models of the covariance
matrix in a multivariate normal distribution.

5.8 Exercises

5.1 Consider some data such as the apartment rent values or the CD4
counts. Transform these values to more normal-looking distributions
using the Box–Cox transformation (5.5) for different values of λ. Find
the value of λ that provides the best fit according to the Jarque–Bera
test, the Kolmogorov–Smirnov test, or the Shapiro–Wilk test. Are these
different λs close in value? Explain why this may (or not) be the case.

5.2 (a) If u is distributed as uniform between 0 and 1, what is the
distribution of the normal quantile x satisfying the equation Φ(x) = u?

(b) In an ordered sample u1 ≤ u2 ≤ · · · ≤ un of n observations
sampled from a uniform distribution on (0,1), intuitively, where would
we expect these values to appear? Use this result to motivate the use
of (5.6).

5.3 (a) Use the functional form of φ given in (5.2) and find a mathe-
matical expression for the likelihood function (5.9).

(b) Find a mathematical expression for the log of the likelihood.

(c) Show that the maximum likelihood estimate of σ2 of the normal
log-likelihood is achieved in (5.11). Notice how this expression for the
estimate of σ2 differs from the usual estimate s2 of the sample variance
given in (5.8). The estimator s2 has the property of being unbiased.
Argue that with large samples, it should not matter which of these two
estimators we use.

5.4 The Poisson12 distribution is defined on nonnegative integers. In the
Poisson distribution, the mean is equal to its variance. If X has a
Poisson distribution with mean λ > 0 then

Pr[X = j] = e−λλj/j! (5.12)

for j = 0, 1,

12Siméon Denis Poisson (1781–1840). French mathematician and physi-
cist.

5: UNIVARIATE NORMAL DISTRIBUTION 148

(a) Use rpois(25, lambda=10) to generate a sample of 25 obser-
vations from a Poisson distribution with mean 10.

Examine the QQ plot and test this data for normality. Repeat this
exercise using larger and/or smaller Poisson means. Comment on what
you see. Confirm that when the mean λ is large, then the Poisson
distribution is very similar to the normal.

(b) Program the Poisson likelihood (5.12). Use nlm to obtain the
maximum likelihood estimate of the single parameter λ for a sample of
Poisson observations.

(c) What is the functional form of the one-parameter normal distri-
bution when the mean and the variance are equal?

(d) Program the likelihood of the one parameter normal distri-
bution that you found in part c. Use nlm to obtain the maximum
likelihood estimate of the single parameter from the sample of Poisson
observations you used in part b. How does this estimate compare with
the estimate you obtained in part b?

(e) Use calculus to show the sample mean is the maximum like-
lihood estimator of λ in a Poisson sample. Does this agree with the
estimate you obtained in part b?

(f) Use calculus to find a closed-form expression for the maximum
likelihood estimator of the one parameter normal distribution in part c.
Does this agree with the estimate obtained in part d?

5.5 (a) Show that the standard normal density function φ(x) is sym-
metric about x = 0. That is, show φ(x) = φ(−x).

(b) Show that φ(x | μ, σ) is maximized in x at x = μ. That is,
the normal mean is also the mode.

(c) What does the cumulative normal distribution function Φ(x |
μ, σ) look like when σ becomes very large? What does this say about
the distribution of samples from this population?

(d) What does Φ look like when σ is very small? Similarly, what
does this suggest about samples from this distribution?

5.6 Try other starting values for the nlm program in Sect. 5.7 that fits a
standard deviation proportional to the mean. What range of values
provide reasonable answers with a relatively small number of iterations?
Does your finding depend on the size of the normal sample z? What
happens if you start with invalid parameter values, such as negative
estimates of the standard deviation?

5: UNIVARIATE NORMAL DISTRIBUTION 149

5.7 Consider the housing data examined in Sect. 2.3. Suppose the average
apartment cost is expressible as a linear function of housing costs. That
is,

Apartment rent = α+ β Housing cost + error

for parameters (α, β) where the errors are normally distributed with
mean zero and variance σ2.

(a) Does this seem to be a reasonable model for the data? Refer to
Fig. 3.7, for example, to make your case. Interpret this model in terms
of real estate values in different states.

(b) Write a function in R to calculate the negative log-likelihood
in terms of the three parameters (α, β, σ) for this model. Use nlm to
obtain the maximum likelihood estimates of these parameters.

5.8 Find the cutoff points of the categories of the phiTest of normality.
Specifically, begin with a data set and estimate the mean μ̂ and stan-
dard deviation σ̂. The cut points defined in (5.7) for a standard normal
distribution determine the limits of k categories with equal probabili-
ties.

5.9 (a) Examine the transformed apartment rents with λ = −0.5 to
see if this provides a better normal fit for this data.

(b) Find the value of λ that provides the best transformation ac-
cording to the Pearson test. Does this transformation yield a more
normal looking QQ plot than the one in Fig. 5.6?

(c) Similarly, find the power transformation value of λ that yields
the best fit according to the Jarque–Bera test. Compare this value of
λ to the value you obtained in part b.

5.10 Write a program in R that fits a model for normally distributed data in
which the variance σ2 is proportional to the squared mean μ2. That
is, σ2 = αμ2 for some α > 0 that needs to be estimated. To avoid any
problems that nlm() might run into, put a check in your program so
that α is a positive number. One way around this possible error is to
express α as eθ for an arbitrary value of θ.

5.11 The hills data set in the MASS library contains the record times of foot
races held in the Scottish hills. Obtain the data in R as a data.frame

using

> library(MASS)

> hills

5: UNIVARIATE NORMAL DISTRIBUTION 150

dist climb time

Greenmantle 2.5 650 16.083

Carnethy 6.0 2500 48.350

. . .

Cockleroi 4.5 850 28.100

Moffat Chase 20.0 5000 159.833

For each of 35 hills, the data set provides the length of the race, the
gain in altitude, and the time of the winning runner in 1984.

(a) Use R to find means and standard deviations of the distances,
altitudes, and times. Are these useful summaries of this data? Do these
measurements capture the multivariate character of the observations?

(b) Why might you expect the distribution of race times, altitudes,
and distances to be skewed?

(c) Plot the data in R and verify that this is indeed the case. See if
transformations of the data provide more symmetric distributions. Use
the pairs() display or other graphical methods described in Chap. 3 to
help you make your point.

(d) There was debate about whether the time value for Knock Hill
should be 18.65 or 78.65. Which of these values do you think is the
correct one? What statistical evidence can you provide?

Chapter 6

Bivariate Normal
Distribution

THE BIVARIATE NORMAL DISTRIBUTION helps us make the im-
portant leap from the univariate normal to the more general multivariate

normal distribution. To accomplish this, we need to make the transition from
the scalar univariate notation of the previous chapter to the matrix notation
of the following chapter.

Let us begin with an exploration of the swiss data given in the datasets
library of R. This data is a collection of six demographic variables from 47
French-speaking cantons (provinces) of Switzerland in 1888. At that time,
Switzerland was undergoing a demographic transition from a time of high
fertility rates to the lower rates more commonly associated with developed
nations. The help(swiss) for this data in R contains more details on the
other variables in this data set as well as links for additional data for other
parts of Switzerland. This data set will be examined again in Exercise 11.2.

Consider the paired observations made on young men drafted into the
army. Figure 6.1 contains a scatterplot of the 47 provinces, plotting percent-
age of men who claimed agriculture as their principal occupation and the
percentage of men with academic examination scores at the highest level.
Every canton is represented by one observation in this figure. (The options
for the graphical output in the bivariate boxplot routine bvbox are discussed
in Exercise 3.6.)

One way to think about these observations is as a cloud scattered in the
figure. At the center of the cloud observations are more densely gathered,
resulting in a thicker fog. At the edges of the scatter plot, observations are
more widely dispersed and less frequent. The concept of density of obser-
vations will be continued in this chapter and is more formally expressed in

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 6

151

6: BIVARIATE NORMAL DISTRIBUTION 152

0 20 40 60 80

5
10

15
20

25
30

35

% agriculture

%
 w

ith
 h

ig
h

ex
am

0 20 40 60 80 100

% agriculture

0 20 40 60 80

% agriculture

Figure 6.1: Scatterplot of percentage agriculture and high examination scores
in 47 Swiss cantons. Data represented as raw scatterplot, bivariate boxplot,
and as a five-layer peeling convex hull

the bivariate normal density function given in (6.1), below. Figures 3.10
and 3.22 also use graphical methods to estimate the density of similar sets of
observations.

There are several features worth noting in Fig. 6.1. Chief among these is
the high degree of association we see: Cantons with lower levels of agriculture
are more likely to have higher examination scores. In regression methods
(Chap. 9) we try to explain the means of one set of variables from the values
of others. In this example we cannot say one of these measurements directly
causes the other. The examination scores and agriculture work appear to
be negatively associated with each other. Both are probably the result of
additional factors.

While there are attributes we can say about either agriculture or exam-
ination scores individually, the chief objective of multivariate analysis is to
describe the association between these two measurements. In this chapter
we will use this data to motivate the bivariate normal distribution and show
how we model the association between the paired observations of agriculture
and examination scores.

6.1 The Bivariate Normal Density

Function

Suppose X and Y have normal distributions with respective means (μX , μY)
and standard deviations (σX , σY). Both of the standard deviations are pos-
itive valued. In addition to these four parameters there is a correlation coef-
ficient ρ of X and Y defined for −1 < ρ < 1.

6: BIVARIATE NORMAL DISTRIBUTION 153

The joint density function is given for all (x, y) by

φ(x, y) =
1

2πσXσY

√
1 − ρ2

× exp

[
− 1

2(1 − ρ2)

{
(x − μX)2

σ2
X

+
(y − μY)2

σ2
Y

− 2ρ(x − μX)(y − μY)

σX σY

}]
(6.1)

This expression may be intimidating at first glance but a considerable
simplification is possible. Notice that every appearance of x is expressed as
(x − μX)/σX which is the representation of a standard normal with mean
zero and variance one. A similar expression holds for every appearance of y.

We can then write (6.1) in the much simpler form

K exp
{− (

x2 + y2 − 2ρxy
)/

2(1− ρ2)
}
, (6.2)

where x and y represent marginal standard normal random variates.
When ρ = 0, both (6.1) and (6.2) can be expressed as the product of

two normal density functions. A product of densities signifies independence
so ρ = 0 is a special case. See Exercise 6.8 for details. In Exercise 6.3 we
see that uncorrelated normals are not necessarily independent. Uncorrelated
bivariate normals must be independent.

A study of independence is antithetical to the purpose of multivariate
data. We collect data on both x and y in which their relationship is one of
the prime motivations of the study.

The value of K = K(ρ, σX , σY) is chosen in (6.2) so that the two-
dimensional integral of this expression is equal to 1. In multivariate analysis,
the word marginal refers to the variables taken individually. All values of
ρ between −1 and +1 are possible. The limits are usually of little interest
because ρ = −1 or +1 corresponds to settings where X and Y are exactly
linear functions of each other.

Specifically, if ρ = 1 then Y is expressible as the linear combination

Y = ρ(X − μX)σY /σX + μY

with a positive slope σY /σX . If ρ = −1, then this slope is negative.
If there is a perfect linear relationship between X and Y , then the

bivariate data is expressible as a one-dimensional problem. As an example,
knowing the temperature in Celsius does not tell us any more than knowing
the value in Fahrenheit. The estimation of the slopes and intercepts of linear
relationships and related linear regressions is discussed in Chap. 9.

In summary then, values of correlations near −1, 0, or +1 are all special
cases to be treated differently. Most of our interest lies in situations where
ρ is either between −1 and 0 or else between 0 and +1.

6: BIVARIATE NORMAL DISTRIBUTION 154

The marginal distribution is that obtained by integrating out the other
variable(s). The marginal distributions of X and Y are also normal with
the same respective means and variances as given in the bivariate distri-
bution (6.1). A simple approach to analyzing and modeling bivariate normal
data, then, would be to consider each variable separately. This defeats the
purpose of multivariate analysis in which we want to describe the relationship
between X and Y .

In discussion of the bivariate normal distribution, another parameter that
is frequently discussed in describing the relationship between X and Y is
the covariance. The covariance is defined as the expected value of

(X − μx) (Y − μy).

In terms of the parameters of the bivariate normal distribution, the co-
variance is equal to

Cov(X,Y) = ρ σXσY . (6.3)

The covariance is represented by the symbol σ2
XY . In Sect. 6.3 we discuss

estimating the covariance.
It is often convenient to express the variances and covariance in a sym-

metric matrix, denoted by Σ. The variances appear on the diagonal and the
off-diagonal is the covariance:

Σ =

(
σ2
X σ2

XY

σ2
XY σ2

Y

)
=

(
σ2
X ρ σXσY

ρ σXσY σ2
Y

)
. (6.4)

There is also a matrix representation of (6.1). Let us define μ = (μ1, μ2)
to be the vector of means and use (6.4) to denote the matrix of variances and
covariance. We can verify

Det(Σ) = σ2
Xσ2

Y (1− ρ2)

from (4.5) and find Σ−1 using (4.7).
The density function of the bivariate normal distribution (6.1) can be

written as

φ(x | μ,Σ) = (2π)−1/2Det(Σ)−1/2 exp
{−1/2(x− μ)′Σ−1(x− μ)

}
(6.5)

for x = {x, y}, using matrix notation.
What does the bivariate normal density function look like? Figure 6.1

suggests ellipses stacked on top of each other. The appearance is similar
to an oval wedding cake, as seen in Fig. 6.2. These images are all drawn
with σX = σY . If the marginal standard deviations were not equal, then

6: BIVARIATE NORMAL DISTRIBUTION 155

ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

Figure 6.2: Contours of a bivariate normal density function with specified
correlations

Figure 6.3: A bivariate normal density function with correlation 0.8, drawn
using image and persp, both in the graphics package

these figures would be stretched vertically (for larger values σY) or stretched
horizontally (for larger σX).

The contours of constant density of φ(x, y) are ellipses. These are cir-
cular for a correlation of zero, indicating that the shape is the same any
way we rotate the figure. The ellipses will tilt either towards the right or
the left depending on whether the correlation is positive or negative. It is
clear that the correlation in the Swiss data plotted in Fig. 6.1 corresponds to
a negative correlation. Correlations close to either −1 or +1 result in thin
ellipses corresponding to the almost perfect linear relationship between the
two variables.

See Exercise 6.2 for details on how to draw the contour plots of Fig. 6.2.
Two other graphical methods for depicting the bivariate normal density func-
tion are given in Fig. 6.3 using a heat image and a perspective plot.

In R there are a variety of computing options. The fMultivar library,
for example, offers a variety of functions, specific to the bivariate normal
distribution. In particular, the dnorm2d function in fMultivar calculates
the bivariate normal density (6.1).

6: BIVARIATE NORMAL DISTRIBUTION 156

6.2 Properties of the Bivariate

Normal Distribution

There are important features of the bivariate normal distribution that will
be described here: marginal and conditional distributions of the bivariate
normal are also normally distributed, as are linear combinations. These fea-
tures also hold in the more general multivariate normal distribution studied
in the following chapter. The marginal distributions refer to X or Y con-
sidered alone. Conditional distributions refer to X at a given value of Y or
vice versa.

The marginal distributions of the bivariate normal distribution are also
normally distributed. This is generally a useful property because it suggests
that each variable in a multivariate data set can be examined individually. Of
course, such an approach loses the multivariate character of the observations.

Another useful property of (6.1) is that the conditional distributions are
also normally distributed. Specifically, for any given value or range of X, the
corresponding values of Y are also normally distributed. In practical terms
of data analysis, this suggests that we can examine the Y values as normals,
separately for different ranges of X .

As an example, Fig. 6.4 divides the agriculture rates into quartiles. (Each
quartile contains one quarter of the observations.) Within each quartile, we
plot the corresponding set of examination scores giving a series of four box-
plots. The model of the bivariate normal distribution suggests that each of
these four separate boxplots should depict a different normal distribution.
This is a popular approach for examining bivariate data.

We should expect, for example, some ordering among the means across
the data slices. We can exploit this property and use all of the observations
to measure this trend, rather than look at the data though a number of small
slices. In Chap. 9 we discuss linear regression which estimates the slope and
intercept of this trend.

When we sample from the bivariate normal density function (6.1), the
conditional distribution of Y for any given value of X = x is also normally
distributed with mean

μY + ρ(x− μX)σY/σX (6.6)

and variance

(1− ρ2)σ2
Y . (6.7)

6: BIVARIATE NORMAL DISTRIBUTION 157

Agriculture

E
xa

m
in

at
io

n
sc

or
es

Agriculture quartiles

Figure 6.4: Scatterplot of Swiss agriculture and examination scores. Boxplots
are given for each quartile of the agriculture values

We can make several points on the basis of these last two equations.
In (6.6), we see that the conditional mean of Y is a linear function of a
known value of X . This property is explored in Chap. 9 on linear regres-
sion. Notice the conditional variance of Y in (6.7) is always smaller than the
marginal variance, σ2

Y. This reduction in the variance demonstrated the ben-
efit achieved by knowing the value of X . Further, the conditional variance
in (6.7) is the same for every value of X . One assumption of linear regression
is the constant variance, conditional on X , yet independent of the value of X .

Another important feature of the bivariate normal distribution is every
linear combination of X and Y is also normally distributed. For any values
of α and β, the random variable αX + βY also has a (univariate) normal
distribution. This is a useful property and will be more fully exploited in
Chap. 8 when we seek to reduce the dimensionality of a multivariate problem
by combining several variables together in this linear fashion.

We can use this property to transform a correlated bivariate normal pair
and into two independent normals. Specifically, suppose (X,Y) are a pair
of random variables sampled from the density function (6.1) with some cor-
relation ρ, not necessarily equal to zero.

Define

Z1 = X
/√

2σX + Y
/√

2σY (6.8)

and

Z2 = X
/√

2σX − Y
/√

2σY . (6.9)

Marginally, both Z1 and Z2 are distributed as standard normals. The
joint distribution of (Z1, Z2) is also a bivariate normal with ρ = 0.

6: BIVARIATE NORMAL DISTRIBUTION 158

Uncorrelated bivariate normal random variates are also independent. This
construction of Z1 and Z2 illustrates that we can begin with correlated
normal variates and create a linear combination of these that is uncorrelated.

On the basis of a simple linear transformation of the data, we can create
a pair of independent observations, remove the correlation, and eliminate
the need to describe the multivariate character of the paired observations.
The problem with this approach is that Z1 and Z2 may not have simple
interpretations. They represent linear combinations of measurements that
are conceptually different from each other. This lack of simple interpretation
results from two different combinations of the original measurements. In the
Swiss data example, Z1 and Z2 represent sums and differences of agriculture
rates X and examination scores Y. It is not intuitive how to interpret sums
and differences of these two measurements in the present example. However,
in Chaps. 8 and 10, this feature will be exploited to identify groups of variables
that can be combined in order to reduce the dimensionality of the data.

In summary, the marginal and conditional distributions of the bivariate
normal are also normally distributed. Linear combinations of normals are
also normally distributed. These properties are also true of the more general
multivariate normal distribution described in Chap. 7.

6.3 Inference on Bivariate Normal

Parameters

We estimate the mean and standard deviation parameters of the bivariate
normal distribution in the familiar manner used in the univariate distribution.
So we have

μ̂X = x = n−1
n∑

i=1

xi

and

σ̂2
X = s2X = (n− 1)−1

n∑

i=1

(xi − x)2

with similar expressions for μ̂Y and σ̂2
Y.

The sample covariance σXY is estimated by

σ̂XY = (n− 1)−1
n∑

i=1

(xi − x)(yi − y) .

6: BIVARIATE NORMAL DISTRIBUTION 159

The correlation ρ is estimated by the Pearson correlation coefficient

ρ̂ =

n∑

i=1

(xi − x) (yi − y)

/√∑
(xi − x)2

∑
(yi − y)2 . (6.10)

In R, we calculate these statistics using the functions mean, var, cov, and
cor, respectively.

It is often convenient to express the collected estimators of variances and
covariance in a symmetric matrix, denoted by S. The variances appear on
the diagonal, and the off-diagonal is the covariance:

S =

(
s2X ρ̂ sX sY

ρ̂ sX sY s2Y

)
.

This matrix is used to estimate the population variance matrix Σ that was
introduced in (6.4).

Let’s review with an example of the Swiss data. To find the means of the
data in each column of this data.frame, we write

> colMeans(swiss[, 2 : 3])

Agriculture Examination

50.65957 16.48936

Note that the data.frame variable labels are attached to the estimates.
Standard deviations of data.frame data are obtained using

sapply(., sd) as in this example:

> sapply(swiss[, 2 : 3], sd)

Agriculture Examination

22.711218 7.977883

to estimate these univariate values.
The estimator S of variances and covariances

> var(swiss[, 2 : 3])

Agriculture Examination

Agriculture 515.7994 -124.39283

Examination -124.3928 63.64662

is a symmetric matrix. The covariance, on the off-diagonal, is a negative
number.

6: BIVARIATE NORMAL DISTRIBUTION 160

A separate estimate of the correlation coefficient ρ can be obtained using
the cor function:

> cor(swiss[, 2 : 3])

Agriculture Examination

Agriculture 1.0000000 -0.6865422

Examination -0.6865422 1.0000000

which is also expressed as a symmetric 2× 2 matrix.
The correlation of a variable with itself is always equal to 1, so the correla-

tion matrix will always have 1s running down the diagonal. The off-diagonal
value −0.687 confirms the negative correlation that is apparent in Fig. 6.1.

The cor.test function in R produces confidence intervals and tests the
null hypothesis that the population correlation coefficient is zero:

> cor.test(swiss[, 2], swiss[, 3])

Pearson’s product-moment correlation

data: swiss[, 2] and swiss[, 3]

t = -6.3341, df = 45, p-value = 9.952e-08

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.8133545 -0.4974484

sample estimates:

cor

-0.6865422

The t-test in this output refers to the Pearson product–moment correla-
tion transformation

t = ρ̂
√
(n− 2)/(1− ρ̂2).

This statistic should behave approximately as a t-statistic with (n − 2) df
under the null hypothesis that X and Y are independent and uncorrelated.

The Fisher Z-transformation of the correlation is

Z = 1/2log{(1 + ρ̂)/(1− ρ̂)} .

With large sample sizes, Z should behave approximately as normal with
mean zero and standard error 1/

√
n− 3 under the null hypothesis that X

and Y are uncorrelated. The functions CIr, CIz, r2z, and z2r in the
psychometric library perform these transformations and create confidence
intervals of the correlation coefficient.

6: BIVARIATE NORMAL DISTRIBUTION 161

0 20 40 60 80

5
10

15
20

25
30

35

Agriculture

E
xa

m
in

at
io

n

Figure 6.5: Joint 95 and 99% confidence ellipsoids for bivariate means of
Swiss agriculture rates and education scores

There are nonparametric estimators of ρ, as well. See Exercise 6.1 for two
nonparametric estimators that are useful when the data contains suspected
outliers or may not have been sampled from a bivariate normal parent pop-
ulation.

Marginal confidence intervals for the mean parameter were described in
Sect. 5.5. The joint confidence interval of the bivariate normal mean vector
μ = (μX, μY) is expressed as an ellipse.

The joint confidence contours are values of μ such that

(x− μ)′S−1(x− μ) = χ2
2/n (6.11)

where χ2 is the upper 1− α quantile of a chi-squared variate with 2 df.
An example of this appears in Fig. 6.5. This figure was drawn in R using

the program code for the confidence ellipse of the bivariate means given in
Output 6.1. The bivCI function returns m evenly spaced coordinates of the
confidence ellipse of μ centered at the bivariate means. The ellipse is defined
by (6.11) and much smaller than the range of the data. See Exercise 6.9 for
more on this.

The bivCI function is defined and returns m points on a 1−α confidence
ellipse. The code in this output plots the data. We next use lines to draw
the 99 and 95% confidence ellipses. The last lines statement puts the “+”
sign in the center of the figure.

6: BIVARIATE NORMAL DISTRIBUTION 162

Output 6.1: R code to draw Fig. 6.5

bivCI <- function(s, xbar, n, alpha, m)

returns m (x,y) coordinates of 1-alpha joint confidence ellipse of mean

{

x <- sin(2 * pi * (0 : (m - 1)) / (m - 1)) # m points on a unit circle

y <- cos(2 * pi * (0 : (m - 1)) / (m - 1))

cv <- qchisq(1 - alpha, 2) # chi-squared critical value

cv <- cv / n # value of quadratic form

for (i in 1 : m)

{

pair <- c(x[i], y[i]) # ith (x,y) pair

q <- pair %*% solve(s,pair) # quadratic form

x[i] <- x[i] * sqrt(cv / q) + xbar[1]

y[i] <- y[i] * sqrt(cv / q) + xbar[2]

}

cbind(x, y)

}

plot(biv, col = "red", pch = 16, cex.lab = 1.5)

lines(bivCI(s = var(biv), xbar = colMeans(biv), n = dim(biv)[1],

alpha = .01, m = 1000),

type = "l", col = "blue")

lines(bivCI(s = var(biv), xbar = colMeans(biv), n = dim(biv)[1],

alpha = .05, m = 1000),

type = "l", col = "green", lwd = 1)

Add ‘‘+’’ sign

lines(colMeans(biv)[1], colMeans(biv)[2], pch = 3, cex = .8,

type = "p", lwd = 1)

6: BIVARIATE NORMAL DISTRIBUTION 163

Table 6.1: US age-adjusted cancer rates for males in 50 states and DC for
2007 and 2008

State 2007 2008
Rate Rate

AL 584.5 591.0
AK 526.0 528.3

. . .

WI 545.8 514.9
WY 508.9 520.0

Source: CDC

6.4 Tests for Bivariate Normality

The test of bivariate, and more generally multivariate normality, has received
considerable attention. Because there are so many ways in which the multi-
variate normal can fail, we can find a variety of tests for each of these. We
begin by pointing out that verifying marginal normality for each of the two
variables does not assure that their joint distribution is bivariate normal. See
Exercise 6.3 for an example of this behavior.

Rather than discussing tests specifically for the bivariate normal distri-
bution, we will defer the discussion until Sect. 7.7 where we discuss tests for
the more general, multivariate normal distribution. Among the most fre-
quently used tests in R are mvnormtest in the mvShapiroTest library which
performs a multivariate Shapiro–Wilk test and mvnorm.etest in the energy

library which performs the energy test.

6.5 Maximum Likelihood Estimation,

Part II

In this section, we will use likelihood function to both estimate parameter
values and estimate standard errors of these estimates. We first introduced
the concept of maximum likelihood estimation in Sect. 5.7 and demonstrated
how it can be used to estimate parameters in models you develop. These
models may constrain the parameters of the model, for example. The models
can take a form that is unique to your application. This section shows how
maximum likelihood estimation also provides estimates of the standard errors
of the parameter estimates.

Refer back to Fig. 5.11. The peak of the likelihood function indicates
the location of the maximum likelihood estimates. We are only interested

6: BIVARIATE NORMAL DISTRIBUTION 164

in the top so the derivative should be zero (or nearly so) in every direction.
The $gradient estimate of nlm is very close to zero indicating how flat the
log-likelihood is at its maximum.

The second derivative tells us how curved the log-likelihood is at its max-
imum. Informally, if the top of the peak is sharp, then there is little uncer-
tainty about where the maximum is located. Conversely, if the top of the
peak is broad and flat then the estimate is less reliable.

The nlm procedure gives us an estimate of this curvature in the direction
of each parameter. The matrix of second derivatives is called the Hessian.
The inverse of the Hessian matrix is a useful approximation to the variances
and covariances of the estimated parameters. We will illustrate how to obtain
these estimates in this section.

Another useful feature of maximum likelihood estimates is that these esti-
mates are usually distributed as normal under a wide range of conditions. We
can combine this feature with the approximate standard deviations and con-
struct confidence intervals for parameters, as well as their point estimators.
Again, this feature will be illustrated in R with an example in the present
section.

Let us begin with a data example and then use nlm to fit a variety of
different bivariate normal models to it. Table 6.1 lists the 2007 and 2008 US
male all-cancer age-adjusted rates for each of the 50 states plus DC. Age-
adjusted rates take into account the differing demographics of each state. A
state with an older population, for example, should not be recording a higher
rate of cancer than a younger state simply because of the age differences.

It is always a good idea to print a few of the data values and some
summary statistics to verify that these are correct. Output 6.2 includes
these for the cancer rate data.

Figure 6.6 plots the bivariate data. Three outliers are identified: Arizona
(AZ) has very low rates in both years; DC and Nevada are extreme in this
bivariate plot, but are not extreme in either of the 2 years. Multivariate
outliers can appear but not be excessive in any of their marginal components.
Other than these three points, there is nothing to indicate a lack of fit to the
bivariate normal distribution. Figure 6.6 also contains a 45◦ line illustrating
that most of the 2007 rates were higher than those in 2008. The correlation
(0.889) of the data values is very high across the 2 years.

Let us fit a bivariate normal distribution to this data. We need an objec-
tive function for nlm that evaluates the function we need to maximize. There
are five parameters to estimate: two means, two variances, and a correlation.
A five-parameter objective function that finds the negative log-likelihood for
the cancer data appears in Output 6.3. The five parameters in the code
are the two means (par[1], par[2]), the two variances (par[3], par[4]),
and the correlation (par[5]).

Just before the program ends and returns the value of the negative log-
likelihood, the program prints out the value of the parameters, and the value

6: BIVARIATE NORMAL DISTRIBUTION 165

Output 6.2: Read cancer data and produce some summary statistics

> cancer <- read.table(file = "Cancer2007_8.dat",

+ header = TRUE, row.names = 1)

> cancer[1 : 3,] # look at the first few

Rate2007 Rate2008

AL 584.5 591.0

AK 526.0 528.3

AZ 459.2 414.3

> cancer[49 : 51,] # look at the last few

Rate2007 Rate2008

WV 602.1 566.5

WI 545.8 514.9

WY 508.9 520.0

> colMeans(cancer) # some summary statistics

Rate2007 Rate2008

565.6039 548.7373

> sapply(cancer, sd)

Rate2007 Rate2008

42.95529 41.29989

> var(cancer)

Rate2007 Rate2008

Rate2007 1845.157 1594.973

Rate2008 1594.973 1705.681

> cor(cancer)

Rate2007 Rate2008

Rate2007 1.0000000 0.8990581

Rate2008 0.8990581 1.0000000

6: BIVARIATE NORMAL DISTRIBUTION 166

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l
l

l

l

l

ll l

l

l
l

l

l

l

l

l

l
l

l

l

l
l

500 550 600

45
0

50
0

55
0

60
0

2007 Rate

20
08

 R
at

e

AZ

DC

NV

regression line

equal rates line

Figure 6.6: US male cancer rates in 2007 and 2008

the program is returning. This is a useful habit to get into. In its search for
a minimum of the objective function, we will be able to watch the progress
of nlm.

Some of the output from the model fitting appears in Output 6.4. The
call to nlm includes the hessian=TRUE option producing an estimate of the
Hessian matrix.

Most of the output consists of trial parameter values and the resulting
negative log-likelihood. These preceded the output given here and most have
been omitted except for the last two lines. The next items in the output,
in order, are the value of the negative log-likelihood at its minimum, the
parameter estimates, the estimated gradient, the estimated Hessian, some
information about the computing effort listed under $iterations, and finally
an indication of errors.

The estimated means (first two parameters) are the same as those in
Output 6.2. The estimated variances are slightly smaller because these esti-
mates have an n in the denominator, rather than the familiar n− 1 that we
commonly use. The estimated correlation coefficient is about the same as in
Output 6.2.

Much of this output (including the error message) was covered in Sect. 5.7.
The gradients are all close to zero indicating an extreme of the function has
been found. The warnings arise because nlm does not know about the ranges
of parameter values, specifically that the variances must be positive and the
correlation must be between −1 and 1. (Similar warnings were described in
Sect. 5.7.) Let us come back to this in a moment, but first, let’s show how
estimated standard errors can be obtained from the Hessian.

6: BIVARIATE NORMAL DISTRIBUTION 167

Output 6.3: Objective function for bivariate normal likelihood

library(mvtnorm) # library with dmvnorm

biv5 <- function(par) # five parameter log-likelihood function

{

cov <- par[5]* sqrt(par[3] * par[4])

biv5 <- sum(

-dmvnorm(cancer, mean=c(par[1], par[2]),

sigma = matrix(c(par[3], cov, cov, par[4]), 2,2),

log = TRUE))

print(c(par, biv5))

biv5

}

Begin by capturing the output from nlm:

nlm.out <- nlm(biv5, c(45, 45, 1600, 1600, .8), hessian = TRUE)

Verify the output contains the estimated parameter values:

> nlm.out$estimate # parameter estimates

[1] 565.6097533 548.7412240 1702.6278244 1664.8481304 0.8955175

of μ1, μ2, σ
2
1 , σ

2
2 , and ρ , respectively.

This output also captures the Hessian matrix:

> nlm.out$hessian # estimated Hessian matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 1.512443e-01 -1.369701e-01 -2.870247e-06 1.632584e-07 0.04117360

[2,] -1.369701e-01 1.546765e-01 2.345524e-07 -2.677687e-06 0.03584994

[3,] -2.870247e-06 2.345524e-07 3.015783e-05 -1.888685e-05 -0.08762491

[4,] 1.632584e-07 -2.677687e-06 -1.888685e-05 2.615282e-05 -0.04899606

[5,] 4.117360e-02 3.584994e-02 -8.762491e-02 -4.899606e-02 2361.51979607

Invert the Hessian matrix,

> solve(nlm.out$hessian) # invert the Hessian matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 33.3874221505 29.5656957245 1.793796e+00 2.400703e+00 -0.0009145817

[2,] 29.5656957245 32.6465638380 1.606956e+00 2.638535e+00 -0.0008967177

[3,] 1.7937963901 1.6069562639 1.015044e+05 8.360972e+04 5.5010045726

[4,] 2.4007031017 2.6385350535 8.360972e+04 1.086530e+05 5.3565794553

[5,] -0.0009145817 -0.0008967177 5.501005e+00 5.356579e+00 0.0007387387

to obtain an estimate of the variance matrix of the estimated parameters.

6: BIVARIATE NORMAL DISTRIBUTION 168

Output 6.4: A portion of the output from fitting a bivariate normal distri-
bution

nlm(biv5, c(45, 45, 1600, 1600, .8), hessian = TRUE)

. . .

[1] 565.6097533 548.7412240 1702.6278244 1665.0146152 0.8956175 483.2521017

[1] 565.6097533 548.7412240 1702.6278244 1664.8481304 0.8957175 483.2518112

$minimum

[1] 483.2518

$estimate

[1] 565.6097533 548.7412240 1702.6278244 1664.8481304 0.8955175

$gradient

[1] 3.811412e-04 -1.424093e-04 -2.471923e-03 1.959478e-03 3.899459e-05

$hessian

[,1] [,2] [,3] [,4] [,5]

[1,] 1.512443e-01 -1.369701e-01 -2.870247e-06 1.632584e-07 0.04117360

[2,] -1.369701e-01 1.546765e-01 2.345524e-07 -2.677687e-06 0.03584994

[3,] -2.870247e-06 2.345524e-07 3.015783e-05 -1.888685e-05 -0.08762491

[4,] 1.632584e-07 -2.677687e-06 -1.888685e-05 2.615282e-05 -0.04899606

[5,] 4.117360e-02 3.584994e-02 -8.762491e-02 -4.899606e-02 2361.51979607

$code

[1] 2

$iterations

[1] 58

There were 38 warnings (use warnings() to see them)

6: BIVARIATE NORMAL DISTRIBUTION 169

The diagonal elements of the inverse

> diag(solve(nlm.out$hessian)) # diagonal elements

[1] 3.338742e+01 3.264656e+01 1.015044e+05 1.086530e+05 7.387387e-04

are of most interest to us because these are the estimated variances.
Finally, the square root of these entries

> sqrt(diag(solve(nlm.out$hessian))) # estimated se’s

[1] 5.77818502 5.71371716 318.59759219 329.62551825 0.02717975

are the estimated standard errors for the five estimated parameters. The
parameter estimates are approximately normally distributed with these stan-
dard errors so we can easily construct confidence intervals as we show in the
following summary.

Let us conclude this section by constructing a summary data.frame of
all the results obtained:

se <- sqrt(diag(solve(nlm.out$hessian)))

q <- qnorm(.975) # normal 95% interval quantile

upper <- nlm.out$estimate + q * se # upper 95% CI intervals

lower <- nlm.out$estimate - q * se # lower 95% CI intervals

summary <- data.frame(

cbind(nlm.out$estimate, se, lower, upper),

row.names=c("mean1", "mean2", "var1", "var2", "rho"))

colnames(summary)[1] <- "estimate"

print(summary, digits = 3)

The resulting summary table is

estimate se lower upper

mean1 565.610 5.7782 554.285 576.935

mean2 548.741 5.7137 537.543 559.940

var1 1702.628 318.5976 1078.188 2327.068

var2 1664.848 329.6255 1018.794 2310.902

rho 0.896 0.0272 0.842 0.949

The data frame of these summary statistics is a good way to present
results in an organized table. In Exercises 6.4 and 6.5, the reader is asked to
fit other bivariate normal models to this data.

6: BIVARIATE NORMAL DISTRIBUTION 170

6.6 Exercises

6.1 See the help file on cor.test to learn about the Spearman’s ρ and
Kendall’s τ . These are nonparametric estimators of the correlation co-
efficient. Nonparametric methods are used when there are outliers or the
data may not follow the distribution assumed for the traditional method.

(a) Pick a data set and compute all three estimates of the correlation
coefficient.

(b) Add some extreme outliers to the data set and compare the three
estimates with those of the original data. Which methods appear to be
most robust or insensitive to these introduced outliers?

6.2 Draw plots as given in Figs. 6.2 and 6.3.

(a) Contour plots can be produced by creating a square matrix of
values of the bivariate normal density function. The bivariate normal is
evaluated using dmvnorm in the mvtnorm library. More and more closely
spaced points used in this matrix will result in smoother contours in your
plot. Use this matrix in the contour program in the graphics library.
See the help file for a list of the options available for contour plotting.

(b) Obtain images similar to those in Fig. 6.3 using image and persp.

6.3 There are bivariate distributions whose margins are normal but the joint
distribution is not bivariate normal. Consider the function that generates
n bivariate pairs

checker <- function(n) # generates n pairs of marginal normals

that are not bivariate normal

{

checker <- NULL # start a list

for (i in 1:n)

{

x <- rnorm(2) # pair of independent normals

if(x[1]>0) x[2] <- abs(x[2])

else x[2] <- -abs(x[2])

checker <- rbind(checker, x)

}

checker

}

(a) Use the checker program to generate a large number of bivariate
pairs. Plot the individual columns of this data.frame and test these
using any of the methods described in Sect. 5.4 to see if the separate
columns of data are marginally normally distributed.

(b) Plot the bivariate pairs to demonstrate the data does not follow
a bivariate normal distribution.

6: BIVARIATE NORMAL DISTRIBUTION 171

X

Y

Figure 6.7: Uncorrelated marginal normals that are neither independent nor
distributed as bivariate normal

(c) The bivariate pairs generated in part (a) are positively corre-
lated. Write a program in R that generates uncorrelated pairs that are
marginally distributed as normal but do not follow a bivariate normal
distribution. Here is one possible solution: Begin with uncorrelated
pairs (X,Y) of bivariate normals and transform these to produce the
scatterplot given in Fig. 6.7. The transformation is similar to the folding
operation we used in the checker program. The red circle is added to
help visualize that the transformation is different for observations close
to and far from the origin.

(d) Use simulation methods to estimate the diameter of the red
circle that results in an uncorrelated bivariate distribution.

6.4 Fit an exchangeable bivariate normal model to the data in Table 6.1. A
pair of random variables (X,Y) is said to be exchangeable if the ordered
pair (X,Y) has the same distribution as does (Y,X). This model has
three parameters: the same mean for both year’s cancer rates the same
variance for both years and a correlation ρ. Use the Hessian to estimate
the standard deviations of the parameter estimates.

6.5 Fit the bivariate normal distribution to the data of Table 6.1 in such
a way to remove the chance of nlm trying to use an invalid parameter
value. Specifically, write an objective function in R with five arguments:
two mean parameters, the two variances measured on a log scale, and

6: BIVARIATE NORMAL DISTRIBUTION 172

the correlation re-parameterized as

ρ = θ/
√
1 + θ2

for all values of θ.

6.6 Verify the equivalence of the bivariate normal density function given
in (6.1) and the matrix version in (6.5).

6.7 Redraw Fig. 6.4 using the coplot, illustrated in Fig. 3.18. Does this plot
help show the conditional segments are also normally distributed? What
can you say about the variances inside each slice relative to the variance
of the whole sample?

6.8 When ρ = 0, show (6.1) and (6.2) can both be written as the product
of two standard normal density functions φ given in (5.2).

6.9 Why are the ellipses so small in Fig. 6.5? Redraw this figure producing
95 and 99% confidence ellipses for the population. Hint: These are
obtained by omitting the “/n” in (6.11).

Chapter 7

Multivariate Normal
Distribution

I
N THIS CHAPTER, we generalize the bivariate normal distribution
from the previous chapter to an arbitrary number of dimensions. We also

make use of the matrix notation. The mathematics is generally more dense
and relies on the linear algebra notation covered in Chap. 4. In Sect. 4.5 we
pointed out there is a limit on what computations we can reasonably perform
by hand. For this reason, we illustrate these various operations with the help
of R.

The multivariate normal distribution is defined for a vector x′ = (x1,
x2, . . . , xp) of p random variates. Recall from Sect. 4.1 that the prime (′)
notation refers to the transpose of a vector or matrix. The number of dimen-
sions p is a positive integer but otherwise is not restricted in this chapter.
This results in a level of abstraction not found in the previous two chapters in
which p = 1 and 2, respectively. The reader who has studied the material in
those chapters and the linear algebra of Chap. 4 should be comfortable with
the development here.

The mean of x is a p-tuple vector of values denoted μ′ = (μ1, . . . , μp)
and the variance of x is a p × p symmetric matrix Σ. We will introduce
the density function of x. In this chapter we show how to draw statistical
inference on μ and Σ from a data sample.

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 7

173

7: MULTIVARIATE NORMAL DISTRIBUTION 174

7.1 Multivariate Normal Density

and Its Properties

A useful concept when studying the multivariate normal distribution is the
quadratic form:

x′Ax (7.1)

for p-tuple vector x and a square, p× p matrix

A =

⎛

⎜⎜⎜⎝

a11 a12 . . . a1p
a21 a22 . . . a2p
...

. . .

ap1 ap2 . . . app

⎞

⎟⎟⎟⎠ .

Notice although (7.1) involves vectors and a matrix, the result is a scalar.
If p = 1 then (7.1) is

x′Ax = a11x
2 .

When p = 2 then the quadratic form (7.1) can be written as

x′Ax = x2
1a11 + (a12 + a21)x1x2 + a22x

2
2 .

More generally,

x′Ax =

p∑

i=1

aiix
2
i +

∑

i

∑

j

aijxixj .

In this chapter we will also be interested in the special case where the
matrix A is symmetric. Recall from Sect. 4.3 that the matrix A is symmetric
if it is equal to its transpose: A′ = A. Similarly, we can say that the matrix
A with entries {aij} is symmetric if aij = aji for all valid indices i and j.

In the case where A is a square, symmetric matrix, then we have

x′Ax =

p∑

i=1

aiix
2
i + 2

∑

i<j

aijxixj .

The multivariate normal density function of x can be expressed as a
quadratic form x′Σ−1x for a square, symmetric, nonnegative definite matrix
Σ of variances and covariances. Exercise 4.11 shows a square, symmetric

7: MULTIVARIATE NORMAL DISTRIBUTION 175

matrix is positive definite if and only if every eigenvalue is positive. Similarly,
a square, symmetric matrix Σ is nonnegative definite if and only if every
eigenvalue is nonnegative.

We can now introduce the multivariate normal distribution. The param-
eters of the multivariate normal distribution are the mean vector μ and the
variance matrix Σ. The mean vector μ is a p-tuple and Σ is a p × p,
symmetric, non-negative definite matrix of variances and covariances.

The multivariate normal density function is

f(x | μ,Σ) = (2π)−1/2Det(Σ)−1/2 exp
{−1/2(x− μ)′Σ−1(x− μ)

}
. (7.2)

When x is a scalar, this expression reduces to the usual univariate den-
sity function given in (5.2). Notice the quadratic form in the exponential
function. The formula (7.2) may seem rather daunting at first glance. We
will not have much need to refer to it because it is available as a programmed
feature in R. This function is called dvtnorm() and is found in the mvtnorm

library.
The vector x − μ behaves as multivariate normal with mean vector

μ = 0 and variance Σ. A property of the multivariate normal variate x
is that every linear combination of x also has a multivariate normal distri-
bution. Specifically, if A is an arbitrary q×p matrix, then Ax is a q-tuple
that behaves as a multivariate normal with mean Aμ and q × q variance
matrix AΣA′.

The marginal and conditional distributions of the multivariate normal
also behave as multivariate normal. Specifically, let us partition the multi-
variate normal vector x into a pair of subvectors and write

x =

(
x1

x2

)
.

The corresponding vector of means has a similar representation:

μ =

(
μ1

μ2

)

and the variance matrix can be partitioned as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

The marginal distribution of x1 (ignoring x2) behaves as multivariate
normal with mean μ1 and variance matrix Σ11. The conditional distribution
of x1 given the value of x2 also behaves as multivariate normal with mean

μ1 −Σ12Σ
−1
22 (x2 − μ2) (7.3)

7: MULTIVARIATE NORMAL DISTRIBUTION 176

and variance

Var(x1 given x2) = Σ11 −Σ12Σ
−1
22 Σ21. (7.4)

These conditional means and variances generalize the bivariate values
given in (6.6) and (6.6), respectively. As in (6.6), the conditional variance
is independent of the value of x2 and is smaller than the unconditional
variance, Σ11. The conditional mean given in (7.3) is linear in x2. This
linear relationship is the motivation for the multivariable linear regression
models described in Chap. 9.

7.2 Inference on Multivariate Normal

Means

Suppose we have multivariate normal observations x1,x2, . . . ,xn where x′
i =

(xi1, . . . , xip). We estimate the multivariate mean vector

μ̂ = x = n−1
n∑

i=1

xi

as the component-wise sample averages.
The estimate of the variance matrix Σ is denoted by S and the calcu-

lation is analogous to the method used in Sect. 6.3. Specifically, the diagonal
elements of S are marginal variances, and the off-diagonal elements are the
corresponding covariances.

Usually S will be positive definite. If some components of the data xi

are linearly dependent or there are more observations n than components p,
then the matrix S will be singular and have a zero determinant. We calculate
μ̂ in R using colMeans(), and S is found using the var() function.

Joint multivariate confidence intervals for the mean vectors μ are con-
structed as ellipses, generalizing (6.11). Specifically, the 1 − α confidence
ellipse is the set of all values of μ for which

(μ̂− μ)′S−1(μ̂− μ) = χ2/n (7.5)

where χ2 is the upper 1− α percentile of the chi-squared distribution with
pdf.

There is a generalization of Student’s t-test for multivariate data. The
multivariate t-distribution is available as pmvt() function in R, but it is
better to describe the test procedure. Specifically, suppose we have two
p-dimensional multivariate normal samples denoted by x1,x2, . . . ,xn and
y1,y2, . . . ,ym with respective population means μX and μY . We estimate

7: MULTIVARIATE NORMAL DISTRIBUTION 177

the means as sample averages, so μ̂X = x and μ̂Y = y. The sample cov-
ariance S is estimated as the sample covariance from the pooled sample of
x− μ̂X and y − μ̂Y .

We want to test the null hypothesis that the population means μX

and μY are equal. One approach is to examine each individual component,
marginally, and then perform a correction for the multiplicity of the tests.
This approach has some loss of efficiency because of correlations between the
individual variables (components of the x’s and y’s).

Intuitively, the solution is to examine a statistic based on the differences
of means μ̂X − μ̂Y . Then use the analogy to (7.5) giving rise to the statistic

T 2 = (μ̂X − μ̂Y)
′S−1(μ̂X − μ̂Y) (7.6)

also known as the Hotelling1 T 2 statistic. Under the null hypothesis of
μX = μY the T 2 statistic behaves as a multiple of the F distribution.

Let us demonstrate the use of this generalization of the two sample t-test
in an example from a physiology study. The LASERI data in the ICSNP

library is a data frame with 32 measurements made on each of 223 healthy
Finnish subjects. The subjects were monitored while in a supine position and
then again with their heads elevated on a motorized table. We will concen-
trate on four measurements and their average differences: average heart rate
(HRT1T4); average cardiac output (COT1T4); average systemic vascular res-
istance index (SVRIT1T4); and average pulse wave velocity (PWVT1T4). Each
of these variables is expressed as a difference of the pre- and post-tilt val-
ues. Testing equality of means of pre- and post-values is the same as testing
whether each of the variables in the data has a zero population mean. More
detail on this study and the other variables in the data frame are available
in help(LASERI).

The four physiology measurements are plotted in Fig. 7.1 with the axes
indicating the zero values. In each of the displays, the zero values seem
to occur at or near the center of the data mass so it seems reasonable to
test the hypothesis that the pre- and post-tilt means are equal. The one-
sample Hotelling test for these differences is available in the ICSNP library
and gives us

> HotellingsT2(LASERI[, 25: 28])

Hotelling’s one sample T2-test

data: LASERI[, 25:28]

T.2 = 101.6741, df1 = 4, df2 = 219, p-value < 2.2e-16

alternative hypothesis: true location is not equal to c(0,0,0,0)

1Harold Hotelling (1885–1973). US mathematician, statistician, and
economist.

7: MULTIVARIATE NORMAL DISTRIBUTION 178

HRT1T4

COT1T4

SVRIT1T4

PWVT1T4

Figure 7.1: Differences in four physiological measures on 225 subjects in the
LASERI study. The zero axes are indicated

providing considerable evidence that the mean measurements are very differ-
ent in the supine and tilted positions. We conclude that tilting the subject
results in very different measures.

Exercises 7.1 and 7.2 ask the reader to perform similar tests on multivari-
ate normal means. In Chap. 9 on multivariable regression, we develop a wider
set of models for mean parameters of multivariate normally distributed data.
The remainder of this chapter discusses models of the multivariate normal
variance parameters and tests of adequacy of the multivariate normal distri-
bution as a model for sampled data.

We next introduce a larger example.

7.3 Example: Home Price Index

The Case–Schiller index is a measure of relative home prices in different US
cities. This index does not simply look at average prices but, rather, compares
the prices of the same homes when they were sold at an earlier date. The
index for every city is standardized at the value of 1.00 in the year 2000.
The index is updated monthly but only January values are examined here.
Table 7.1 shows these values in several major US cities for recent years.

The values for the cities are not entirely independent and are subject to
identical market forces such as changes in interest rates on mortgages. There

7: MULTIVARIATE NORMAL DISTRIBUTION 179

Table 7.1: The Case–Schiller home price index in January of recent years for
several US cities

Year
City 2000 2001 2002 2003 · · · 2009 2010 2011
Phoenix 1 1.0593 1.1161 1.1710 · · · 1.1713 1.1176 1.0154
Los Angeles 1 1.1088 1.2145 1.4427 · · · 1.6655 1.7297 1.6988
San Diego 1 1.1754 1.2879 1.5540 · · · 1.4826 1.5695 1.5703

...
...

...
...

...
...

...
...

Portland 1 1.0392 1.0813 1.1369 · · · 1.5380 1.4729 1.3580
Dallas 1 1.0649 1.1176 1.1389 · · · 1.1260 1.1730 1.1409
Seattle 1 1.0670 1.1179 1.1580 · · · 1.5438 1.4509 1.3541
Source: S&P Dow Jones Indices. Used with permission

was boom in housing prices in 2008 that affected all cities, but some were
more affected than others. External forces in the global economy affect all
cities, but in this examination we will treat the cities as independent and
only model the correlation across years within each city.

The data is index values and compares relative change to the baseline
value of 1.00 in the year 2000. Similarly, this does not allow a comparison
of one city’s prices with another but, rather, each city’s change from the
year 2000. Such changes are multiplicative: a value of 1.100 indicates a 10%
increase in prices since 2000 for example, so we will take logarithms of this
data in all subsequent examinations of this example. The spaghetti plot of
the data appears in Fig. 7.2, with the annual means in red and the values for
one extreme city identified.

The means and standard deviations for each year are plotted in Fig. 7.3.
The year 2000 data is included with a mean and standard deviation of zero.
The means (and to a smaller extent, the standard deviations) follow an inv-
erted “U” shape: increasing between 2000 and 2008 and then decreasing in
more recent years. In this section we want to develop models of the correlation
structure between years. In the following sections we will model Σ and μ
separately for the multivariate normal distribution.

The empirical correlation matrix of each year’s data with all others is

> print(cor(CS), digits = 2)

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

2001 1.00 0.80 0.75 0.64 0.53 0.41 0.35 0.33 0.25 0.40 0.45

2002 0.80 1.00 0.96 0.88 0.76 0.65 0.58 0.56 0.53 0.60 0.64

2003 0.75 0.96 1.00 0.97 0.87 0.76 0.70 0.68 0.62 0.68 0.71

2004 0.64 0.88 0.97 1.00 0.96 0.87 0.82 0.78 0.66 0.68 0.71

7: MULTIVARIATE NORMAL DISTRIBUTION 180

2000 2002 2004 2006 2008 2010

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Year

Lo
g

C
−

S
 In

de
x

Detroit

Figure 7.2: Spaghetti plot of home price data. Annual means are in red

2005 0.53 0.76 0.87 0.96 1.00 0.95 0.91 0.86 0.66 0.62 0.64

2006 0.41 0.65 0.76 0.87 0.95 1.00 0.99 0.93 0.69 0.63 0.62

2007 0.35 0.58 0.70 0.82 0.91 0.99 1.00 0.97 0.74 0.66 0.64

2008 0.33 0.56 0.68 0.78 0.86 0.93 0.97 1.00 0.87 0.79 0.77

2009 0.25 0.53 0.62 0.66 0.66 0.69 0.74 0.87 1.00 0.96 0.94

2010 0.40 0.60 0.68 0.68 0.62 0.63 0.66 0.79 0.96 1.00 0.99

2011 0.45 0.64 0.71 0.71 0.64 0.62 0.64 0.77 0.94 0.99 1.00

This mass of numbers is not particularly useful to us. One area of mul-
tivariate analysis is to model, fit, and interpret different patterns of the cov-
ariance matrix Σ. Models for this matrix are the subject of this section.

A more useful summary of this time series data is the autocorrelation.
The autocorrelation is the average correlation between all pairs of years that
differ by 1, 2 years, and so on. The differences are referred to as lags. More
details for time series models are given in Chap. 12.

These autocorrelations are plotted in Fig. 7.4. Adjacent years, with a
lag of one, have a very high correlation. Years with a lag of 2 years are
also highly correlated, but a little lower than the 1 year lag. This monotone
pattern continues, with lower correlations as the lag increases between years
being compared.

7: MULTIVARIATE NORMAL DISTRIBUTION 181

2000 2002 2004 2006 2008 2010

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Year

0
0.

2
0.

4
0.

6

means

sd''s

Figure 7.3: Means (left scale) and standard deviations (right scale) of home
price data

2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

Lag

A
ut

oc
or

re
la

tio
n

Figure 7.4: Autocorrelation of home price data

7: MULTIVARIATE NORMAL DISTRIBUTION 182

7.4 Maximum Likelihood, Part III:

Models for Means

We introduced maximum likelihood estimation in Sects. 5.7 and 6.5. This
technique allows us to fit a wider variety of models for which there may not
exist software. Specifically, in Sect. 5.7, we show how to write programs in R to
fit these, and in Sect. 6.5, we use the nlm program to approximate variances
of parameter estimates. In this section we will compare two different fitted
models.

Suppose we have two or more competing models for our data and would
like to choose the best of these. A simple procedure exists if the models follow
a specific relationship with each other. Specifically, two models are said to
be nested if one is a special case of the other.

As an example of nested models, let us consider the home price index
given in Table 7.1. We will fit models for the mean parameters for the different
years. The most general model is that of a different mean for each year. This
model has 11 parameters: one for each year, excluding the reference year
2000.

A model with means that are linear in year has two parameters (the slope
and intercept) and is included as a special case of a model with a different
mean parameter for every year. These models are nested. As another exam-
ple, the model with the same mean for every year is a special case of both
the linear model and the model with 11 different mean parameters.

A useful result from mathematical statistics concerns the value of the
log-likelihood for nested models and is attributed to Wilks.2 The approxi-
mation is that twice the difference of two log-likelihoods for nested models,
evaluated at their respective maximums, behaves as a chi-squared. The df is
the difference in the number of parameters of the nested models.

This likelihood ratio test allows us to formally compare two hypothesized
models and demonstrate whether the addition of more parameters is worth-
while. Of course, if neither model provides a good fit to the data, then a test
of the parameters does not test the adequacy of the models.

Let us work with the home price data given in Table 7.1. The multivariate
normal distribution modeling the vector of values for each city has both
mean and variance parameters. These will be examined separately: In this
section we will fit models to the mean parameters, and in Sect. 7.6 we will
examine models for the variance parameters. A more thorough examination
of models for means of multivariate normal data is discussed in Chap. 9 on
linear regression models.

Begin with a general program that evaluates the negative log-likelihood
of the home price data. It is best to write a separate function that evaluates
the model of the means.

2Samuel Stanley Wilks (1906–1964). American mathematician, worked
at Princeton University.

7: MULTIVARIATE NORMAL DISTRIBUTION 183

Output 7.1: A general program that evaluates the multivariate normal distri-
bution

mvnMean <- function(parms)

Log-likelihood function to fit means to a multivariate

normal distribution to CS data

meanModel is a function that determines the mean

Requires the mvtnorm library.

{

n <- dim(CS)[1] # sample size

p <- dim(CS)[2] # number of variables

mu <- meanModel(parms, p) # mean vector of length p

resid <-

CS - t(matrix(rep(mu, n), p, n)) # subtract the mean

vm <- var(resid) # the variance of the data

mvnMean <- sum(dmvnorm(resid, log = TRUE,

sigma = var(resid))) # multivariate normal density

print(c(parms, mvnMean)) # likelihood at this estimate

-mvnMean # return negative to minimize

}

This program appears in Output 7.1 and will be called by nlm to maxi-
mize the log-likelihood. The variance matrix (vm) is just the empirical vari-
ance of the data and is not modeled. Notice that just as this program ends,
it prints out the values of all parameters and the likelihood. This is a good
method for judging the progress being made by nlm.

This program evaluates the negative log-likelihood of the home price
data (CS) but does not specify a model for the means. The model for the
means is determined by another function called meanModel that is specified
separately. The function that determines the means can easily be changed to
accommodate different models, as we will show next.

The meanModel program is a function of two arguments: the parameters
(parms) passed to it from nlm and the number of multivariate means (p) that
are required.

Here is a simple example of such a function:

meanModel <- function(parms, p) rep(parms[1], p)

This function specifies a model with one mean for all years in the home-
price data. Specifically, there is only one mean parameter. This function
makes p copies of it and returns that vector of values.

7: MULTIVARIATE NORMAL DISTRIBUTION 184

Using this definition of the meanModel function, we fit a single-mean
model with the R code

oneMout <- nlm(mvnMean, 0, hessian = TRUE) # capture output

oneMout # print output

A portion of the output is as follows:

$minimum

[1] -273.1169

$estimate

[1] 0.05061963

$gradient

[1] 4.718004e-06

$hessian

[,1]

[1,] 32959.48

. . .

This output lists the minimum of the negative log-likelihood (−273.1),
the estimated value of the single fitted mean (0.0506), the gradient (which is
very close in value to zero), and the Hessian or curvature of the log-likelihood.

Finally, we compute the reciprocal, square root of the Hessian to obtain
an estimate of the standard error of the estimated mean:

print(sqrt(1 / oneMout$hessian), 3) # est’d std error

[,1]

[1,] 0.00551

We are not going to discuss the adequacy of this model except to fit
other models for the mean vector and then show how much better these are,
relative to increasing the log-likelihood. More detail on fitting regression
models, including diagnostics, is discussed in Chap. 9 on multivariate linear
regression.

As another example, we can use the function

meanModel <- function(parms, p) parms[1] + parms[2] * (1 : p)

to fit a model of the means that is linear in the year. The two parameters
are, respectively, the intercept (parms[1]) and the slope (parms[2]) on year.
In this model, the year is expressed less 2000. The effect of this recoding is
to change the interpretation of the intercept but not the slope.

7: MULTIVARIATE NORMAL DISTRIBUTION 185

Output 7.2: R dialog fitting a linear model to the home price data

> linMout <- nlm(mvnMean, c(0, 0), hessian = TRUE)

> linMout

$minimum

[1] -286.9895

$estimate

[1] 0.06584120 -0.01725947

$gradient

[1] -2.160050e-06 -1.364242e-06

$hessian

[,1] [,2]

[1,] 32959.49 29067.81

[2,] 29067.81 118780.37

$code

[1] 1

$iterations

[1] 4

> invhess <- solve(linMout$hessian) # invert hessian matrix

> sqrt(invhess[1, 1]) # est’d std error of intercept

[1] 0.00622018

> sqrt(invhess[2, 2]) # est’d std error of slope

[1] 0.003276581

When we run this new definition of the meanModel, it replaces the previ-
ous definition of the function. The assignment (<-) operation is best thought
of as replacing the definition rather than assigning a definition. Output 7.2
lists the R dialog fitting the linear model and providing parameter estimates.

The call to nlm uses the new definition of meanModel specifying the mean
as a linear function of the year. The initial, starting values for the slope
and intercept are both zero. The maximum of the log-likelihood function is
286.99.

7: MULTIVARIATE NORMAL DISTRIBUTION 186

Table 7.2: Log-likelihood tests of nested mean models for home price data

Model Log-likelihood Compared to Compared to
one mean previous model

Chi-squared df Chi-squared df

One mean 273.12
Linear 286.99 27.75 1 27.75 1
Quadratic 395.84 245.44 2 217.69 1
Separate 426.77 307.31 10 61.87 7

A three-parameter quadratic model of the mean can be fitted using

meanModel <- function(parms, p)

parms[1] + parms[2] * (1 : p) / 10 + parms[3] * ((1 : p) ^ 2) / 100

In this function, we recode the year as

(year− 2000)/10.

The reason for dividing by 10 is to multiply the corresponding param-
eter values by this amount. Many algorithms will perform better when all
parameter values are measured on the same scale, rather than a wide range
of values. The interpretation of the parameters needs to be adjusted back
when these are reported.

The function that fits a separate mean for every year returns a list of
parameter values:

meanModel <- function(parms, p) parms

where each of the parameters is the mean for one year.
Let us summarize the log-likelihood of these four nested mean models and

the corresponding chi-squared tests in Table 7.2. In this series of models, we
see strong evidence that each successive model provides a better fit leading
up to the model with a separate mean for each year. Our goal is to provide
a model with good explanatory value. The model with a different mean for
every year fails to provide any simplification. The quadratic model has fewer
parameters, and while statistically not as good as the 11 parameter model,
it still provides a good intuitive summary of what we see in Fig. 7.3. That
is, relative to the baseline year 2000, home prices increased to around 2008
levels and then declined.

7: MULTIVARIATE NORMAL DISTRIBUTION 187

7.5 Inference on Multivariate Normal

Variances

TheWishart3 distribution is the generalization of the (univariate) chi-squared
distribution to an estimated covariance matrix. In Sect. 5.6, we explained how
the univariate sample variance is distributed as a multiple of the chi-squared
distribution. The analogous multivariate sample variance matrix has a distri-
bution known as the Wishart distribution. R has functions that can calculate
the density of the Wishart distribution as well as generate random covari-
ance matrices from a Wishart distribution. Unfortunately, finding cumula-
tive distributions and tail areas from the distribution involves integrating the
distribution over a subset of all symmetric, positive definite matrices. For
one-dimensional data, the tail area is easily defined. In the case of random
matrices, the range of the distribution of all covariance matrices is much more
difficult to describe.

Rather than describing confidence intervals of the whole covariance ma-
trix, we can model the matrix with a small number of parameters. In this
section we will describe patterned covariance matrices that have useful in-
terpretations. In Sect. 7.6, we will fit these in R and test hypotheses about
them.

The spherical covariance matrix is so named because all contours of the
density function are circular. In order for this to be the case, we must have
all zero correlations. The spherical variance matrix is diagonal:

Var (X) = Diag (σ2
1 , σ

2
2 , . . . , σ

2
p) =

⎛

⎜⎜⎜⎝

σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

. . .

0 0 · · · σ2
p

⎞

⎟⎟⎟⎠

and the corresponding correlation matrix is a p× p identity matrix.
Spherical covariance is the simplest pattern. It is the model for mutual

independence of all p multivariate normal observations. Saying that all mul-
tivariate components of the distribution are mutually independent misses the
point of modeling such data, however. The model of mutual independence
tells us that nothing can be learned over p separate marginal analyses of
each component of the data.

A special kind of multivariate dependence includes the exchangeable
model. Exchangeable means that every multivariate component behaves the
same as the others. An example of this appears in Fig. 1.2 where any one
observation is representative of all others.

3John Wishart (1898–1956). Scottish mathematician and statistician.

7: MULTIVARIATE NORMAL DISTRIBUTION 188

The exchangeable dependence structure is also the same for every mem-
ber of the multivariate observation. The result is that the exchangeable
multivariate normal means and variances as well as every pairwise correlation
are the same.

The exchangeable variance matrix is

VarX =

⎛

⎜⎜⎜⎝

σ2 ρσ2 · · · ρσ2

ρσ2 σ2 · · · ρσ2

...
. . .

...
ρσ2 ρσ2 · · · σ2

⎞

⎟⎟⎟⎠ . (7.7)

The diagonal values are all equal to σ2 and all of the off-diagonals are equal
to ρσ2 for some | ρ |< 1.

The exchangeable correlation matrix is

CorrX =

⎛

⎜⎜⎜⎝

1 ρ · · · ρ
ρ 1 · · · ρ
...

. . .
...

ρ ρ · · · 1

⎞

⎟⎟⎟⎠ . (7.8)

In the exchangeable covariance matrix in (7.7) there are two parameters:
the variance σ2 which is the same for all components of X and the corre-
lations between any pairs of components, ρ. In most cases we have ρ > 0
so there is a mutual positive correlation, and (7.7) will be positive definite.
In very restrictive cases, we can also have ρ equal to a small negative value
even though mathematically (7.7) may no longer be positive definite. What’s
more, it is difficult to describe a situation where every component is nega-
tively correlated with every other. See Exercise 7.5 for an example of this
behavior.

We can also have an exchangeable correlation matrix with different vari-
ances. In this case the covariance matrix is

VarX =

⎛

⎜⎜⎜⎝

σ2
1 ρσ1σ2 · · · ρσ1σk

ρσ1σ2 σ2
2 · · · ρσ2σk

...
. . .

...
ρσ1σk ρσ2σk · · · σ2

k

⎞

⎟⎟⎟⎠ (7.9)

or equivalently,

Var (xi) = σ2
i

7: MULTIVARIATE NORMAL DISTRIBUTION 189

and

Cov (xi, xj) = ρσiσj for i �= j.

The variances can all be different. The correlations are the same between
all pairs and will also follow (7.8). We will fit the covariance matrix (7.9) to
the home price data in Sect. 7.6.

Another commonly encountered patterned covariance matrix appears in
observations that are measured in a temporal or serial manner such as the
house-pricing data. We will discuss such time series data in more detail in
Chap. 12, but for the present, we can intuitively understand observations that
are closer to each other should be more highly correlated than observations
that are farther apart. If the observations are measured in a uniform fashion
(such as every day or every year), then we can expect these correlations to
fall off in a prescribed fashion, as we see in Fig. 7.4.

The correlation matrix for autocorrelated observations is of the form

CorrX =

⎛

⎜⎜⎜⎜⎜⎝

1 ρ ρ2 · · · ρk−1

ρ 1 ρ · · · ρk−2

ρ2 ρ 1 · · · ρk−3

...
...

...
. . .

...
ρk−1 ρk−2 ρk−3 · · · 1

⎞

⎟⎟⎟⎟⎟⎠
. (7.10)

Specifically, adjacent years have correlation ρ. Years that are two apart
have correlation ρ2 and so on. This model is only useful when 0 < ρ < 1.
Notice that the exchangeable and autocorrelated correlation matrices have
the same number of parameters but these have different interpretations and
functional forms.

In the next section, we fit patterned variance matrices to the home price
data in Table 7.1.

7.6 Fitting Patterned Covariance

Matrices

As we see from the summary of fitted models in Table 7.2, the best fitting
model for the mean has a separate parameter for every year. We concluded
that although this model may be the best fitting one, it lacks a simple message
to summarize the data in a succinct manner. By analogy, in Sect. 7.5 we saw
that the full correlation matrix is more than we need and a simple patterned
matrix can go a long way towards providing a succinct summary of the data.

Mathematically, we can separate the variances and correlations of the
variance matrix Σ. Let σ denote the marginal standard deviations of the

7: MULTIVARIATE NORMAL DISTRIBUTION 190

multivariate normal x and let R denote the matrix of correlations. Then
we can write

Σ = Diag(σ)RDiag(σ). (7.11)

Equivalently, it is more convenient in R to compute this as

Σ = σσ′ ∗ R (7.12)

where ∗ represents element-by-element multiplication of two matrices.
Ideally, we can choose a functional form of R with a useful interpretation

such as any of the different matrices described in Sect. 7.5. Similarly, the
vector of variances σ would be most useful if they followed a prescribed
model rather than ranging freely.

We next fit some models using the home price data. Figure 7.5 plots the
detrended home price data. That is, the mean value for each year has been
removed leaving only the annual variability for us to model. Similarly, the
mean of all data values is zero for each year so we do not need to consider the
multivariate normal mean parameters. As we saw in Fig. 7.2, one unusual
city (Detroit) stands out in this figure and is identified. We will model the
variances of the data in Fig. 7.5 in this section. Figure 7.3 demonstrates
variances increase up until about 2008 before they decline.

The observations within each city are positively correlated across the
years. It is not clear what an appropriate model would be to model this
correlation. We can solve this by fitting and then comparing a variety of
models.

Next we need general code that allows us to fit a range of models. To
do this, break the problem into several small modules that can be tested
individually before going on to the next step.

Let us begin with code to build the correlation matrix R in (7.11). The
exchangeable correlation matrix (7.8) with specified size and ρ is created
using

exchange.mat <- function(size = 1, rho = 0) # build exchangeable matrix

matrix(rho, size, size) + (1 - rho) * diag(size)

Similarly, the autocorrelation matrix (7.10) can be built with

autocorr.mat <- function(size = 1, rho = 0) # autocorrelation matrix

rho ^ abs(row(diag(size)) - col(diag(size)))

using code attributed to Peter Dalgaard.

7: MULTIVARIATE NORMAL DISTRIBUTION 191

2000 2002 2004 2006 2008 2010

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Year

D
et

re
nd

ed
 C

−
S

 In
de

x

Detroit

Figure 7.5: Detrended plot of home prices

Next, we write a shell that computes (7.12) from separate programs
(mv.vars and mv.cors) that build the vector of variances σ and correla-
tion matrix R, respectively.

cov.model <- function(size, parms)

shell to fit patterned covariance matrix

mv.vars models variances, mv.cors models correlations

{

rho <- parms[1] # rho is first parameter

rho <- max(.0001, min(rho, .9999)) # must be between zero and one

sigma <- sqrt(mv.vars(size, parms[-1])) # model for marginal st dev’s

sigma %*% t(sigma) * mv.cors(size, rho) # covariance matrix

}

We should consider the iterated, trial parameter values that will be passed
to this program by nlm in its search for the maximum likelihood estimates
of our model. Let us adopt the arbitrary convention that the first of these
parameters will always denote the correlation ρ. The model for σ will
depend on the other parameters sent by nlm.

In building Σ from trial parameters, nlm does not know that ρ must take
values between zero and one, so this code enforces the restriction. A similar
problem was encountered in Sect. 5.7 when we introduced nlm for obtaining
maximum likelihood estimates. Similar adjustments will be made in subse-
quent code.

7: MULTIVARIATE NORMAL DISTRIBUTION 192

Output 7.3: Code to evaluate the multivariate normal likelihood for fitting
the variance matrix. This program is called by nlm

fit.cov <- function(parms) # Shell called by nlm

Compute the log-likelihood of detrended home price data (detr)

Check for positive definite covariance matrix

{

logl <- 0

size <- dim(detr)[2] # width of the detrended data

cov <- cov.model(size, parms) # the trial built covariance matrix

print(det(cov)) # check on trial covariance matrix

if(det(cov) <= 1.0e-30) # is the covariance positive definite?

{

cov <- cov + diag(size) # adjust the covariance...

logl <- -1000 # ... and penalize the likelihood

}

log multivariate normal density

logl <- logl + dmvnorm(detr, mean = rep(0, size),

sigma = cov, log = TRUE)

logl <- sum(logl) # log likelihood of detrended data

print(c(parms, logl)) # trace the progress of nlm

-logl # return negative log likelihood

}

The last big step is to compute the log-likelihood of the detrended data
(detr). The code in Output 7.3 is called by nlm, builds the covariance
matrix cov, and evaluates the multivariate normal log-likelihood logl for
the detrended home price data, detr.

The code for fit.cov given in Output 7.3 checks for a singular covariance
matrix by flagging situations where the determinant is less than 10−30. The
choice of this threshold is arbitrary and was made after watching the printed
values from this program. This assures that the matrix is positive definite.
If the determinant falls below this value, the program adds a large value to
the diagonal, making it more positive definite and also penalizing the log-
likelihood. The routine ends by printing the parameter values and the log-
likelihood so we can judge the progress made by nlm. This is a good practice
when attempting to maximize the likelihood using iterative programs such
as nlm.

The last step is to create a model for the vector of standard deviations, σ.
Figure 7.3 provides strong evidence these are not all the same. We need to
make sure that values of the parameters passed to us by nlm result in positive
values of σ. We can avoid problems by modeling log σ as a function of
parameters because all parameter values will be valid.

7: MULTIVARIATE NORMAL DISTRIBUTION 193

The model with a constant variance for all years

log σi = β0

is fitted using the code

mv.vars <- function(size, parms) rep(exp(parms[1]), size)

Similarly, we have the log-linear model

log σi = β0 + β1(year− 2000)

and it is fitted by the R code

mv.vars <- function(size, parms)

pmin(exp(parms[1] + parms[2] * (1 : size)), # log-linear vars

rep(10, size)) # check for overflow

that checks that the σi are not too large. The pmin() function performs
parallel minimums across each element of the vector arguments.

We also fit a quadratic term of the standard deviations on a log scale
in order to capture the rising and falling values apparent in Fig. 7.3. This
model is

log σi = β0 + β1(year− 2000) + β1(year− 2000)2

and fitted in R using

mv.vars <- function(size, parms)

pmin(exp(parms[1] + parms[2] * (1 : size)

+ parms[3] * (1 : size) ^2), # log-quadratic vars

rep(10, size)) # check for overflow

We can fit different patterns of covariance matrices by assigning these
functional values to mv.vars and mv.cors. There are two different correlation
models (exchangeable and autocorrelation) and three different models for the
marginal variances (constant, log-linear, and log-quadratic) for a total of six
possibilities.

As an example of fitting one of these six models, we can write

mv.vars <- function(size, parms)

pmin(exp(parms[1] + parms[2] * (1 : size)), # log-linear vars

rep(10, size)) # check for overflow

mv.cors <- function (size, rho) exchange.mat(size, rho) # exchangeable

nlm(fit.cov, c(0.7, -5, 0.2), hessian = TRUE) # fit the model

to fit a log-linear model of standard deviations with an exchangeable corre-
lation matrix.

7: MULTIVARIATE NORMAL DISTRIBUTION 194

Table 7.3: Fitted parameters, estimated standard errors, and log-likelihoods
for variance models of the home price data

Model Likeli-

for σ hood ρ̂ SE ρ̂ β̂0 SE β̂0 β̂1 SE β̂1 β̂2 SE β̂2

Exchangeable correlation
One σ 125.8 0.650 0.079 −3.21 0.22
Log-
linear 149.8 0.673 0.076 −4.74 0.31 0.229 0.034
Log-
Quadratic 180.2 0.707 0.071 −6.65 0.33 0.977 0.089 −0.060 0.007
Autocorrelation matrix

One σ 256.2 0.927 0.017 −3.39 0.23
Log-
linear 268.7 0.909 0.019 −4.87 0.33 0.197 0.040
Log-
Quadratic 292.1 0.939 0.016 −6.12 0.34 0.807 0.085 −0.050 0.007

The fitted values of all six models are summarized in Table 7.3. This table
includes the maximized log-likelihood, estimated parameter values, and the
corresponding estimated standard errors.

The exchangeable and autocorrelated correlation matrices are not nested
so the differences in their log-likelihood values cannot be used as a hypothesis
test using the likelihood ratio test. Even so, the likelihood values for the
autocorrelated models are much larger, giving good evidence these are better
summaries of the data. More formal tests of goodness-of-fit are described in
the following section.

Within each of the two types of correlations, the log-linear model has a
much larger log-likelihood than the model with a constant standard deviation,
and the quadratic model exhibits an even higher log-likelihood. All of these
comparisons can be made by differencing the log-likelihoods and treating
these as one-half of a chi-squared with 1 df.

7.7 Tests for Multivariate Normality

Section 5.4 presents many different tests for univariate normality. The variety
of these is motivated by all the different ways the sample can appear to
deviate from the normal distribution. Most of the tests for multivariate
normal described in this section are direct generalizations of those univariate
methods. Tests will provide a p-value, quantifying the statistical significance
of one deviation from the underlying assumption of normality. The test does
not end there, however. After rejecting such a hypothesis, we should also
explain how and where the normal model failed.

7: MULTIVARIATE NORMAL DISTRIBUTION 195

Visual examinations are among the best tools available. One familiar
method is to plot the data in a pairwise scatterplot using pairs(). Every
pairwise plot should appear to be sampled from a bivariate normal distri-
bution. This is not a universal test of multivariate normality, but it can
detect many serious deficiencies in the assumed model. Then again, there is
no universal test for all of the possible deviations from this model.

Let us next examine a generalization of the QQ plot. We first need to
summarize each multivariate observation as a univariate scalar. This is done
by describing each observation in terms of its distance from the multivariate
mean.

Define the measure

D2
i = (Yi − Y)′S−1(Yi − Y). (7.13)

The D2 statistic is a popular metric called the Mahalanobis distance.4

This is a convenient way to express the distance between an observation Yi

and the multivariate mean Y . A useful strategy is to plot the scalar D2
i

values against chi-squared quantiles. Each D2
i is a scalar-valued measure of

how far the observed value Yi is from the center of the fitted multivariate
normal distribution.

The components of Yi are correlated and have different variances. For
this reason, a simple Euclidean distance would not be appropriate. The S−1

sandwiched between the (Yi−Y) standardizes the different components. See
Exercise 7.6 for details. The formula for D2

i appears as the exponent of the
normal density function given in (7.2) except the mean and variance have
been replaced by their estimates. In other words, the likelihood (or value of
the density function) of an observation Yi is approximately proportional to
exp(−D2

i /2).
The individual D2

i are not independent because all of the observations
are used to estimate Y and S. However, as an approximation when there
are many more observations than variable columns, the D2

i should behave
as independent chi-squares with df equal to the number of data columns.

Let us illustrate the Mahalanobis distances for the candy nutrition values
listed in Table 7.4. After reading the data into a data.frame called candy,
the Mahalanobis distances are calculated in R using

mah <- mahalanobis(candy, colMeans(candy), var(candy))

where the second and third arguments are the estimated means and variances,
respectively.

There are p = 6 data columns (calories, fat, saturated fat, carbohydrates,
sugar, and sodium), so the ordered Mahalanobis distances from the overall

4Prasanta Chandra Mahalanobis (1893–1972). Indian scientist and statis-
tician.

7: MULTIVARIATE NORMAL DISTRIBUTION 196

2 4 6 8 10 12 14

2
4

6
8

10
12

14

6 df chi−squared quantile

M
ah

al
an

ob
is

 d
is

ta
nc

e
fr

om
 s

am
pl

e
m

ea
n

OhHenry
JuniorMint

Figure 7.6: QQ plot of Mahalanobis distances of candy nutrition values

six-dimensional mean are compared to a chi-squared with 6 df. This is only
an approximation because we are using estimates of the means and variances
as their true values. Nevertheless, even a cursory examination of Fig. 7.6
shows this distribution is reasonable. The two most extreme candy brands
are identified by name. In the present example, the identification of extreme
brands refers to those that are most different from the overall average of all
others.

All values in Fig. 7.6 appear to fall on the QQ line connecting the upper
and lower quartiles of the chi-squared distribution and those of the data.
From this plot, we see there is no evidence of a lack of fit, and the data
values appear to follow a multivariate normal distribution.

We can create a test of the adequacy of the fit in this figure by converting
the Mahalanobis distances from chi-squared values into normal quantiles. In
this case we have:

> shapiro.test(qnorm(pchisq(mah, 6)))

Shapiro-Wilk normality test

data: qnorm(pchisq(mah, 6))

W = 0.9893, p-value = 0.9711

7: MULTIVARIATE NORMAL DISTRIBUTION 197

Table 7.4: Nutritional values of popular candy brands

Name Calories Fat Satfat Carbs Sugar Sodium

100 Grand 190 8 5 30 22 90
3 Musketeers 240 7 5 42 36 90
5th Avenue 260 12 5 38 29 120
Almond Joy 220 13 8 26 20 50
Andes Mints 200 13 11 22 20 20
Baby Ruth 275 13 7 39 32 138
Butterfinger 270 11 6 43 29 135
Cadbury Dairy Milk 260 15 9 28 28 0
Charleston Chew 230 6 5 43 30 30
Dove Smooth Milk Choc. 220 13 8 24 22 25
Goobers 200 13 5 20 17 15
Heath Toffee 210 13 7 24 23 135
Hershey’s bar 210 13 8 26 24 35
Hershey’s Skor 200 12 7 25 24 130
Junior Mints 220 4 3 45 42 35
Kit Kat 207 10 7 26 20 22
M&M’s, peanut 250 13 5 30 25 25
M&M’s, plain 230 9 6 34 31 35
Milk Duds 230 8 5 38 27 135
Milky Way 240 9 7 37 31 75
Mounds 240 13 10 29 21 55
Mr Goodbar 250 16 7 25 22 50
Nestle Crunch 220 11 7 30 24 60
Oh Henry! 280 17 7 36 32 65
Payday 240 13 3 27 21 120
Raisinets 190 8 5 32 28 15
Reese’s Fast Break 260 12 5 35 30 190
Reese’s Nutrageous 260 16 5 28 22 100
Reese’s Peanut Butter cups 210 13 5 24 21 150
Reese’s Pieces 200 9 8 25 21 55
Reese’s Sticks 220 13 5 23 17 130
Rolo 220 10 7 33 29 80
Snickers 230 11 4 32 27 115
Symphony 223 13 8 24 23 42
Twix 250 12 7 33 24 100
Whatchamacalit 237 11 8 30 23 144
Whoppers 190 7 7 31 24 100
Zero Candy Bar 200 7 5 34 29 105
Values collected from www.fatsecret.com. Used with permission

The pchisq program converts the Mahalanobis distances (mah) into
p-values from the reference chi-squared distribution and then qnorm turns
this into normal quantiles that are needed for the Shapiro–Wilk test. The
p-value of the test confirms the good fit seen in Fig. 7.6.

In Fig. 7.7, we present the candy values in a parallel coordinate plot,
identifying the two brands that were extreme in the Mahalanobis QQ plot

7: MULTIVARIATE NORMAL DISTRIBUTION 198

Cals Fat SatFat Carbs Sugar Sodium

OhHenry JuniorMints

Figure 7.7: Parallel coordinates plot of candy nutrition values identifying the
two extremes from Fig. 7.6

of Fig. 7.6. (Parallel coordinate plots were previously described in Sect. 3.5.)
Oh Henry! has the largest calories and fat content of all brands. Junior Mints
are highest in carbohydrates and sugar but also lowest in fat and very low in
saturated fat.

Other tests for the multivariate normal are based on multivariate general-
izations of skewness and kurtosis first described by Mardia (1970). By anal-
ogy to (7.13), define

Dij = (Yi − Y)′S−1(Yj − Y).

We can think of Dij as a Mahalanobis distance between observations Yi

and Yj .
The multivariate skewness is defined as

γ̂3 = N−2
∑

i�=j

D3
ij .

The statistic Nγ̂3/6 will behave approximately as chi-squared with
p(p+1)(p+2)/6 df when sampled from a multivariate normal distribution.

The multivariate kurtosis is defined as

γ̂4 = N−1
∑

i

D2
ii.

7: MULTIVARIATE NORMAL DISTRIBUTION 199

The statistic γ̂4 will behave approximately as normal with mean p(p+2)
and variance 8p(p+2)/N . The mardia test includes additional small sample
corrections to approximate the behavior of γ̂3 and γ̂4.

von Eye and Bogat (2004) recommend multivariate skewness γ̂3 as a
useful measure of goodness of fit for the multivariate normal. Schwager and
Margolin (1982) show that the multivariate kurtosis γ̂4 is a good way to test
whether multivariate outliers are present in the data. Both of these statistics
are programmed in R and are available using the mardia function in the psych
library. There are also versions in the semTools library.

If we return to the candy data, the R commands

> require(psych)

> mardia(candy)

return, in part,

n.obs = 38 num.vars = 6

b1p = 8.59 skew = 54.4 with probability = 0.54

small sample skew = 60.02 with probability = 0.33

b2p = 44.86 kurtosis = -0.99 with probability = 0.32

and also produce the QQ plot that appears in Fig. 7.6.
From the statistical significance levels given here, we see that there is no

evidence of extreme multivariate skewness or kurtosis in this data. Tests of
skewness and kurtosis generalize the Jarque–Bera test to multivariate data.
Another multivariate Jarque–Bera test is examined in Sect. 12.2 as a test of
normality of residuals in a multivariate regression model.

Another test of the multivariate normal distribution is a generalization
of the Shapiro–Wilk test for the QQ plot. The packages mvnormtest and
mvShapiroTest both include a multivariate Shapiro–Wilk test.

The code and output for the candy data of Table 7.4

> library(mvnormtest)

> mshapiro.test(t(candy))

Shapiro-Wilk normality test

data: Z

W = 0.8755, p-value = 0.0005544

indicates a poor fit to the multivariate normal distribution. The mshapiro

program expects the data to be organized as variables in rows and cases in
columns, so we must transpose the data matrix using the t function.

Let us see if we can identify the source of this problem by examining the
individual QQ plots for each of the variables in this data. Figure 7.8 lists
these and includes the individual p-values of the Shapiro–Wilk tests. Sugar

7: MULTIVARIATE NORMAL DISTRIBUTION 200

−2 −1 0 1 2

20
0

24
0

28
0

Cals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

p=0.18

−2 −1 0 1 2

4
6

8
12

16

Fat

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

p=0.055

−2 −1 0 1 2

4
6

8
10

SatFat

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

p=0.087

−2 −1 0 1 2
20

30
40

Carbs

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

p=0.12

−2 −1 0 1 2

20
30

40

Sugar

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

p=0.044

−2 −1 0 1 2

0
50

10
0

Sodium

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

p=0.091

Figure 7.8: Univariate QQ plots for the candy data

and fat values approach statistical significance but their joint effect should be
diminished when we take into account the multiplicity of these six hypoth-
esis tests. That is, there is no one standout variable demonstrating a lack
of fit. However, when taken collectively, the multivariate Shapiro–Wilk test
indicates an overall deficiency. This is often the case with multivariate anal-
yses of data: Overall outliers or lack of fit may not be apparent in marginal
analyses of the same data.

As a final method of testing for multivariate normality, let us describe
the energy test. The energy test is programmed in the library of the same
name. Additional mathematical details are described in Székely and Rizzo
(2005).

The energy test begins by standardizing the multivariate observations
Yi by their sample means and variance S. Specifically,

Zi = S−1/2
(
Yi − Y

)
(7.14)

7: MULTIVARIATE NORMAL DISTRIBUTION 201

transforms a multivariate normal sample Yi into a multivariate sample with
zero means and zero covariances.

Recall (see Exercise 4.14) that the matrix square root is not unique, so
there is no unique way to perform this transformation. Briefly, the Zi are
linear combinations of the multivariate data values for each observation and
can be interpreted as the square root of the Mahalanobis distances.

The energy test compares the Euclidean distances between the trans-
formed Zi and randomly sampled, uncorrelated multivariate normal random
variables. The energy test can be written as

Energy statistic = 2A−B − C .

Here, B is the average Euclidean distance between the transformed Zi

and C is the average distance between observations made on a simulated
multivariate random sample X i with zero means and identity covariance
matrix. The A term is the average distance between the X’s and the Z’s.
Intuitively, this statistic has a large value if the distance between the observed
and simulated values is greater than the distances within either the data
values or the simulated values.

The energy test, performed on the candy data:

> library(energy)

> mvnorm.etest(candy)

Energy test of multivariate normality: estimated parameters

data: x, sample size 38, dimension 6, replicates 999

E-statistic = 1.1793, p-value = 0.7638

In this case there were 999 replicated random samples Xi. The energy
test does not indicate a lack of fit to the multivariate normal distribution.
In Exercise 7.7, we show how to create and interpret energy residuals that
are related to this statistic. We also point out the MissMech package which
contains tests of the multivariate normal when there are missing values in
the data.

Let us end this section with the same message we gave in Sect. 5.4 on
testing for adequacy of the univariate normal distribution. There are many
ways in which data can fail to follow a normal distribution. Similarly, there
are many good tests available which may return contradictory results: some
indicate a good fit while others demonstrate a poor fit.

The real question in this scenario is why are we interested in testing for
the fit to the normal model? Most likely it is because we are performing
some other statistical procedure that requires normally distributed data. If
this is the case, we should be asking how robust the statistical procedure is
and how sensitive it is to deviations from the normal model.

7: MULTIVARIATE NORMAL DISTRIBUTION 202

7.8 Exercises

7.1 The data frame pulmonary in the ICSNP measures the difference in
pulmonary function in 12 workers after being exposed to cotton dust
for 6 h. There are three measurements: forced vital capacity, forced
expiratory volume, and closing capacity. Plot this data and test for fit
to the multivariate normal distribution. Use the Hotelling T 2 statistic
to test the hypothesis that the means are the same before and after
exposure to the dust.

7.2 The data frame bottle.df in the Hotelling library summarizes a
study of the chemical composition of six different Heineken beer bot-
tles. Each bottle was examined ten times, and the glass was assayed
for the composition of the elements manganese, barium, strontium,
zirconium, and titanium.

(a) Examine the data using plots to identify outliers. Identify any
remarkable outliers or abnormalities. Test the data for multivariate
normal distribution, both marginally and within each of the six bottles.

(b) Apply the Hotelling test to examine whether the multivariate
normal means are the same across the six bottles. Is there evidence
that the variance matrices are all the same?

7.3 Find the correlation matrix of the OECD PISA academic score data
in Table 1.2. Is this suggestive of an exchangeable correlation? Fit
this model for the correlation matrix. What is the estimated value
of the off-diagonal elements? What does this value tell you? Other
examinations of this data appear in Exercises 2.5 and 8.7.

7.4 Consider the home price data given in Table 7.1.

(a) All index values are relative to the value 1 for every city in the
year 2000. Does this motivate examining the logarithms of this data?

(b) Find the mean index value for each year, over all cities, to see
the national trend. Plot these values. Is there evidence of a real estate
“boom” or “bust?”

(c) Subtract this national, annual trend from each city’s values to
identify outliers. Test the adequacy of the multivariate normal model.

7.5 Describe a situation where multivariate data is collected and every
component is negatively correlated with every other. Can this happen
in practice?

7.6 Show how the S−1 in the sandwich of (7.13) corrects for the different
variances. Specifically, write a program in R that computes the Zi

defined at (7.14). Use R to show the variance of these transformed

7: MULTIVARIATE NORMAL DISTRIBUTION 203

Table 7.5: Percentages of obese students in upstate regions of New York
State, 2010–2012

Elementary schools Middle and high schools
Region Overweight Obese Overweight Obese

Central NY 16.8 18.6 17.5 20.7
Finger Lakes 16.0 17.0 16.7 19.5
Hudson Valley 15.2 16.1 16.9 16.6
Nassau-Suffolk 15.8 17.3 16.4 16.1
New York-Penn 16.3 17.5 16.4 20.8
NorthEastern NY 16.0 16.9 16.6 19.2
Western NY 15.2 17.1 17.1 19.8
Source: https://health.data.ny.gov/

values is an identity matrix. Hint: Use the program for calculating
the matrix square root given in Sect. 4.5.6.

7.7 Let us look into the details of the energy test and develop a set of
residuals for it. Let Zi be the normalized data values defined in (7.14)
and let Yj (j = 1, . . . , n) be a set of random multivariate normal
values with zero means and identity covariance matrix. Then define

Ai = Average ||Zi − Yj|| over all j

Bi = Average ||Zi −Zj || over all j �= i

C = Average ||Yi − Yj || over all i and j (i �= j)

where || · || is the Euclidean length defined in (4.4), and ||Z − Y || is
the Euclidean distance between the vectors Y and Z.

(a) Interpret the statistics A, B, and C in simple terms.

(b) Define the energy statistic residuals as

Energy residuali = 2Ai −Bi − C .

Write a program in R to calculate the energy residuals for a given set
of data.

(c) The energy residuals defined in this manner are functions of
random values Y and will not be the same every time you generate
them. Show for large sample sizes n, the energy statistics have high
correlation with the Mahalanobis distances on the data.

7: MULTIVARIATE NORMAL DISTRIBUTION 204

7.8 The data in Table 7.5 lists rates of student obesity in different regions
of New York State for 2010–2012, excluding New York City.

(a) Display this data in a manner that identifies trends and/or
outliers. Are the rates different in the two different grades?

(b) Test for multivariate normality. Does the Mahalanobis dis-
tance identify the same outliers that you found in part (a)?

(c) Fit a multivariate normal distribution to this data with dif-
ferent means and variances but an exchangeable correlation matrix.
What is your estimate of the mutual correlation between the four dif-
ferent rates? Interpret this finding.

7.9 Write a program in R to calculate the autocorrelation function of the
home price data plotted in Fig. 7.4.

7.10 There are robust estimators of the parameters of the multivariate nor-
mal distribution. Robust estimators are described in terms of their
breakdown. Breakdown is the percentage of observations that can wan-
der off to infinity without greatly affecting the estimator.

(a) Describe the breakdown properties of a sample mean versus
the sample median for a univariate sample.

(b) The cov.rob program in the MASS library performs robust
estimation of the multivariate normal mean and variance parameters
by identifying and using only those observations closest to the center
of the data as measured by their Mahalanobis distance. Use cov.rob

to estimate parameters of the numeric, demographic parameters in the
LASERI data. How different are the estimates we obtain from var?

(c) Try perturbing a fraction of the observations in LASERI by a
huge amount and see how this affects the estimates. What percent of
the observations can be changed before the estimates from cov.rob

break down? How well do conventional estimators work under these
circumstances? Also consider using the cov.trob program that esti-
mates parameters of a long-tailed multivariate t-distribution.

7.11 Table 7.6 lists the percentage of Americans with disabilities, by age,
according to the US Census. Fit a multivariate normal distribution to
this data with separate models for the means and variances. As with
rates in general, it may be useful to do all of the model fitting after
taking logs of the data.

(a) Some rates are much higher than others and some disabilities
increase faster with age. Fit separate models for the means of each
disability, assuming all rates are independent. Use nested models to
see if different slopes for each disability are better than one slope for
all.

7: MULTIVARIATE NORMAL DISTRIBUTION 205

Table 7.6: Percentage of Americans with disabilities, by age

Age
Disability 65–74 75–84 85+

Vision 16.5 18.2 24.9
Hearing 34.9 40.6 48.1
Cognitive 22.6 28.0 39.1
Ambulatory 63.6 65.2 72.8
Self-care 20.2 26.9 42.4
Independent living 34.0 47.2 68.7
Source: Wan and Larsen (2014)

(b) Describe a correlation structure for this data over age. Do
the rates across ages appear dependent? Does this dependence appear
exchangeable or autocorrelated?

7.12 In this exercise we consider two types of banded correlation matrices
in which correlations are all zero if they are beyond a certain distance
from the diagonal. Let us define elements {σij} of the matrix Σ
with subscripts i and j equal to 1, 2 . . . , p. The banded exchangeable
correlation matrix is of the form

σij =

⎧
⎨

⎩

1 for i = j
ρ for | i− j |≤ k ≤ p
0 for | i− j |> k

where correlations are zero between sequential observations if they are
separated by more than k observations.

Similarly, the banded autocorrelation matrix is of the form

σij =

⎧
⎨

⎩

1 for i = j
ρ|i−j| for | i− j |≤ k ≤ p
0 for | i− j |> k

(a) Write programs in R that build these two matrices for speci-
fied parameters ρ and k. Your code will be similar to that used for
exchange.mat and autocorr.mat in Sect. 7.6.

(b) Fit these correlation matrices to the home price data and
build a table similar to that of Table 7.3. Is there evidence that these
banded correlations fit better or worse than the correlations used in
that table?

(c) Examine the home price data and test the adequacy of the
multivariate normal distribution. Can you find other remarkable cities
in addition to Detroit?

Chapter 8

Factor Methods

THE PREVIOUS CHAPTER described inference on the multivariate
normal distribution. Sometimes this is more than we actually need. The

multivariate distribution is used as a basis of modeling means and covari-
ances. The covariances describe the multivariate relationship between pairs
of individual attributes. In this chapter we go further and describe methods
for identifying relationships between several variables concurrently. In the
following chapter we will use regression methods to model the means.

In this chapter we want to express a multivariate setting in a smaller
number of dimensions. Some measured variables will appear to act together
in near unison behavior, while others will seem to act independently. The
aim of this chapter is to develop methods to identify and characterize these
relationships.

As with other statistical methods, it remains our responsibility to inter-
pret the results the computer provides. It is not good enough for us to say
that the software identified several variables that appear to act in parallel.
We also need to explain this conclusion in terms of our knowledge of the
original data. This final step is often overlooked and is needed to complete
the data analysis.

Looking ahead to the following chapter, we will describe methods for
modeling the mean vector in a multivariate normal distribution. The differ-
ences between the observed values and what these models expect are called
residuals. The residuals of those models will be examined using the methods
described in the present chapter.

Consider the data in Table 1.5 of investment recommendations. Every
row sums to 100%, so we immediately see some reduction in dimension.
In the following section we will demonstrate a much greater reduction in
dimensionality with little loss of the variability of the original data.

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 8

207

8: FACTOR METHODS 208

8.1 Principal Components Analysis

It is reasonable to think of the multivariate normal as a football-shaped
ellipse containing most of the population. It would be useful to describe the
orientation of the football with its long axis. This long axis directs us to look
at the largest orientation, or, in statistical terms, the axis with the largest
variability. There are other directions for describing the orientation of our
football, as well, and these are at right angles to the longest axis.

Principal components analysis is the identification of linear combination
of variables that provides the maximum variability. The first principal com-
ponent has the greatest variability. The second component has the maximum
variability among all linear combinations that are orthogonal to the first. The
third principal component is orthogonal to both the first and second, and so
on for further components. In other words, principal components analysis
reduces a large number of multivariate variables into a relatively small num-
ber of linear combinations of these that can be used to account for much of
the variability in the data. Variables with the greatest variance will typically
dominate the analysis. So in practice, the principal components analysis is
often performed on the correlation matrix. (There are exceptions to this
general rule, as we will point out.) The correlation provides the appropriate
scaling so all variables can be compared on an equal footing. Similarly, in
much of the following description of principal components analysis, we can
interchangeably make use of the correlation and covariance matrices.

To perform a principal components analysis, we begin with a multivariate
random vector x = (x1, x2, . . . , xp) with mean μ and covariance Σ. For
the moment, it is not necessary to assume that x has a multivariate normal
distribution.

Consider p different linear combinations of x which we write out as

y1 = w′
1x = w11x1 + w12x2 + · · ·+ w1pxp

y2 = w′
2x = w21x1 + w22x2 + · · ·+ w2pxp

...
... (8.1)

yp = w′
px = wp1x1 + wp2x2 + · · ·+ wppxp

for suitable multipliers wij resulting in p new random variables denoted by
y1, y2, . . . , yp, referred to as the principal components of x.

The weights wij are also called loadings because they explain how much
each of the original observations xi contributes to each of the principal com-
ponents. The loadings wi in (8.1) are chosen so that the yi have the largest
possible variances and are mutually uncorrelated.

8: FACTOR METHODS 209

For each i = 1, . . . , , p the variances of yi can be expressed as

Var yi = w′
i Σwi . (8.2)

Note that these variances can be made arbitrarily large by multiplying
wi by a large scalar. To avoid this ambiguity, we restrict the loadings wi

to have unit length so that w′
iwi = 1.

The second criterion is to make the yi mutually uncorrelated, so we set

Cov (yi, yj) = w′
i Σwj = 0 (8.3)

for all i �= j both between 1 and p.
The goal, then, is to make the variances in (8.2) as large as possible and

have all of covariances in (8.3) equal to zero.
In order to achieve this end, we first notice that the objective functions

in (8.2) and (8.3) are concerned with the Σ matrix and not the means μ
of x. The means of x can then be assumed to be zero. In Chap. 9, we
will model the means μ and then use factor methods on the residuals of a
multivariate linear regression. These residuals all have zero means.

We usually don’t know Σ and will need to estimate it using the sample
variance matrix S. Nothing in this formulation requires us to assume that
x has a multivariate normal distribution.

The solution is to examine the pairs of eigenvalues (λi) and eigenvec-
tors (ei)

(λ1, e1), (λ2, e2), . . . , (λp, ep)

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 are the ordered eigenvalues of S. In
Sect. 4.5.3, we explain that the eigen() function in R calculates eigenvec-
tors ei that all have unit length and are mutually orthogonal.

If the weights wi in (8.1) are replaced by the respective eigenvectors ei
then the estimated variances of the principal components yi are maximized
with respect to the estimated covariance matrix S, and these yi are uncor-
related. The details of this assertion are verified in Exercise 8.1 but will not
be proved here.

The estimated variances satisfy

V̂ar yi = e′i S ei = λi . (8.4)

To show that the estimated (yi, yj) are uncorrelated, we begin by re-
calling the eigenvector equation (4.8) so that

S ej = λj ej

for every j = 1, 2, . . . , p.

8: FACTOR METHODS 210

If we multiply this equation on the left by ei and use (8.3) then we have

Ĉov (yi, yj) = e′i S ej = λje
′
i ej = 0

because the eigenvectors ei and ej are mutually orthogonal for i �= j.
What does all of this say? We began with p dimensional multivariate

observations x. At (8.1) we re-expressed these as a different set of p dimen-
sional observations y that are linear combinations of the original xs. In a
way, nothing has been lost or gained. These principal components y = {yi}
are mutually uncorrelated so this makes them easier to manage, but more
difficult to interpret.

The first of these, y1, has the largest variance, λ1. Second and subse-
quent components have smaller variances, so the first principal component
captures the largest amount of variability in the data. The second component
y2 describes the largest amount of variability left over from y1 because y1
and y2 are uncorrelated.

We can use (8.4) to say that the i−th principal component yi captures

ti = λi

/
p∑

j=1

λj (8.5)

fraction of the total variability.
If t1 in (8.5) is a substantially large fraction, then we have reduced a

p-dimensional problem down to one dimension with little loss of information
or variability. Similarly, if t1 and t2 were both large fractions, then we
would have a two-dimensional summary of the data with little variability
omitted. A scree plot examines the ordered values of λi. This figure allows
us to visualize how many principal components are needed to reasonably
summarize the data. This plot will be illustrated in the following example.

8.2 Example 1: Investment

Allocations

Now we can work out an example in R. Consider the investment recommen-
dation data appearing in Table 1.5. Every financial management firm has a
set of recommended percentages in each of eight different investment types.
These sum to 100%, so there is a lower dimensional data summary than what
is presented.

The program princomp computes eigenvalues and eigenvectors and
presents these in a suitable format. See Exercise 8.1 to verify these numerical
values are indeed the same. The command line and the output appear in

8: FACTOR METHODS 211

Output 8.1: Command and output for principal components analysis of the
financial recommendation data

> pc <- princomp(invest)

> summary(pc)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 14.976263 7.4764087 6.3540720 3.44766464 2.64881614

Proportion of Variance 0.646986 0.1612404 0.1164641 0.03428767 0.02023912

Cumulative Proportion 0.646986 0.8082264 0.9246905 0.95897819 0.97921731

Comp.6 Comp.7 Comp.8

Standard deviation 2.2348600 1.464974785 0.2528154516

Proportion of Variance 0.0144075 0.006190821 0.0001843721

Cumulative Proportion 0.9936248 0.999815628 1.0000000000

> pc$loadings

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

USst 0.706 0.521 -0.182 -0.154 0.188 -0.356

Fst 0.734 -0.249 0.476 0.196 -0.348

Dst -0.188 -0.135 0.840 0.286 0.163 -0.359

USb 0.114 -0.716 -0.413 -0.398 0.123 -0.352

Fb -0.109 0.315 0.136 -0.800 0.221 0.224 -0.364

Db -0.161 -0.257 -0.887 -0.340

Alt -0.686 0.410 -0.372 -0.166 0.149 0.208 -0.353

Cash -0.852 0.376 -0.356

Output 8.1. The summary statement describes the eigenvalues and the esti-
mated cumulative proportion of the total variance explained for each principal
component.

The R command

pc <- princomp(invest)

captures all the output from the principal components program.
The summary(pc) in the top half of Output 8.1 provides a simple expla-

nation of the contributions of each principal component. The standard devia-
tions are given by

√
λ1 ≥ √

λ2 ≥ · · · ≥ √
λ8 where the λ’s are the eigenvalues

of the covariance matrix. From this output we also see the first two princi-
pal components account for over 80% of the variability in the data. These
contributions are calculated in (8.5). Subsequent principal components con-
tribute much lower amounts. In other words, much of the variability within
the original data can be explained by only two derived values. It remains for
us to identify these and explain them in simple terms. To do this, we look
at the factor loadings.

8: FACTOR METHODS 212

V
ar

ia
nc

es

0
50

10
0

15
0

20
0

Comp.1 Comp.3 Comp.5 Comp.7

Figure 8.1: Screeplot for the investment recommendations

The pc$loadings shows the estimated eigenvector loadings wij in (8.1).
Notice that several of these are printed as blanks. Omitted values are not
zero but are close to zero in value and should be ignored. Similarly, only
the largest (absolute) loadings are important to us. The eigenvectors of the
covariance matrix provide additional details but these are often unnecessary.

In the case of the first principal component, the two largest loadings are
0.706 for US stocks (USst) and −0.686 for alternative investments (Alt). We
can ignore the other much smaller loadings for this component. These two
important loadings of the first principal component are then about equal for
US stocks and alternatives but opposite in magnitude. In other words, the
first principal component is roughly the difference between the recommended
allocations to these two investment choices. This principal component makes
up almost 65% of the variability in the original data.

If we again look at Output 8.1, we see that the loadings for the second
estimated principal component are almost entirely made up of the recom-
mendations for US bonds (USb). This component is orthogonal to the first
because it is made up of different information.

The screeplot for these data appears in Fig. 8.1. Specifically, this figure
plots the ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ8 of the sample covariance
matrix S. This figure was obtained using the command

screeplot(pc, col = "red", pch = 16,

type = "lines", cex = 2, lwd = 2, main = "")

It is clear from this figure that most of the variability is contained in
the first principal component. Together, the first two principal components
explain almost 81% of the variability in the original data and have a simple
interpretation. The remaining components represent smaller contributions
and can be ignored as background noise.

8: FACTOR METHODS 213

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Biplot for investment allocations

First principal component

S
ec

on
d

pr
in

ci
pa

l c
om

po
ne

nt

AB

AT

BoA

BNY

Bess

BA

CPB

Const

DB

Fide
FT

FTB

GS

Glen

HPB

HC

JMJPM

LM

NT

PNC

CS

ST

UBS

USBWF

WT

−60 −40 −20 0 20 40 60

−
60

−
40

−
20

0
20

40
60

USst

FstDst

USb

FbDb

Alt

Cash

Figure 8.2: Biplot of the first two principal components of the investment
recommendations, data appearing in Table 1.5

Another useful graphical method to help interpret the first two principal
components is called the biplot. Figure 8.2 plots the estimated loadings of the
first two principal components using arrows to indicate their direction. We
can create this figure using biplot(pc) in R. The actual details for producing
this figure are

pc <- princomp(invest)

biplot(pc, col = c(2, 3), cex = c(.75, 1.5),

xlim = c(-.45, .45),

xlab = "First principal component",

ylab = "Second principal component",

main = "Biplot for investment allocations")

where col= sets all colors and cex changes the fonts: smaller fonts for ob-
servations and larger for the principal components. The xlim option is used
here because some of the text labels run outside the plot limits.

8: FACTOR METHODS 214

The US stocks USst and alternative investments Alt in Fig. 8.2 point
in almost opposite directions along the x-axis. The allocation to US bonds
USb is nearly at right angles to both of these and parallel to the y-axis.
These three arrows illustrate our interpretation. The first component is the
difference between US stocks and alternatives, in nearly a straight, horizontal
line along the first component x-axis with very little change along the vertical,
second component y-axis. The second component is made up almost entirely
of US bonds and appears as an almost vertical line in this figure. The loadings
for the other types of investments (cash or foreign stocks and bonds) play
almost no role in the principal components analysis and their presence is lost
in a jumble in the figure’s center.

Finally, the biplot includes the names of the individual financial firms,
located at their positions along these two principal components. A few no-
table standouts are worth mentioning. On the far left is GenSpring (GS)
whose recommendations were very high in alternatives (45%), few US stocks
(13%), and an average number of US bonds (23%). On the far right is Bank
of America (BoA) whose recommendations were largely US stocks (53%), an
average number of bonds (28%), and no alternative investments. See Exer-
cise 8.1 for more information about this example.

8.3 Example 2: Kuiper Belt Objects
Let us now examine a second example of principal components analysis for
the Kuiper Belt objects given in Table 1.3. A brief summary of the computing
in R is as follows:

> KuiPC <- princomp(Kuiper)

> summary(KuiPC)

Importance of components:

Comp.1 Comp.2 Comp.3

Standard deviation 467.8570721 20.198455940 7.1584977540

Proportion of Variance 0.9978853 0.001859904 0.0002336135

Cumulative Proportion 0.9978853 0.999745186 0.9999788000

Comp.4 Comp.5

Standard deviation 2.139420e+00 2.705506e-01

Proportion of Variance 2.086634e-05 3.336962e-07

Cumulative Proportion 9.999997e-01 1.000000e+00

From this we see 99.8% of the variability is explained in the first principal
component. On the surface, this appears to be a remarkable reduction in the
dimensionality of the problem. The loadings

> KuiPC$loadings

8: FACTOR METHODS 215

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

mag 0.999

albedo 0.876 0.480

diameter -0.999

axis -0.995

Year 0.479 -0.872

indicate that this first principal component is simply the diameter of the
Kuiper object.

This finding can be explained by noting that the standard deviations of
the individual measurements

> sapply(Kuiper, sd)

mag albedo diameter axis Year

1.720651 27.379290 486.254960 2.595953 20.746331

are all very different. By far, the largest of these is the diameter.
A better approach, then, is to record all of these values on the same scale.

The principal components should be obtained from the correlation matrix in
most cases. The instruction in R is to use the cor=TRUE option as in this
dialog:

> KuiPCc <- princomp(Kuiper, cor = TRUE)

> summary(KuiPCc)

Importance of components:

Comp.1 Comp.2 Comp.3

Standard deviation 1.7868751 1.1360500 0.6719163

Proportion of Variance 0.6385845 0.2581219 0.0902943

Cumulative Proportion 0.6385845 0.8967065 0.9870008

Comp.4 Comp.5

Standard deviation 0.219666359 0.129394388

Proportion of Variance 0.009650662 0.003348582

Cumulative Proportion 0.996651418 1.000000000

The first two principal components account for almost 90% of the vari-
ability. The biplot for this appears in Fig. 8.3 and the corresponding loadings
are

> KuiPCc$loadings

8: FACTOR METHODS 216

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Biplot for Kuiper objects

First principal component

S
ec

on
d

pr
in

ci
pa

l c
om

po
ne

nt

Pluto

Makemake

Haumea

Charon
Orcus

Quaoar

Ixion

55636

55565

55637

Varuna

2002MS4

2003AZ84

−4 −2 0 2

−
4

−
2

0
2

mag

albedo

diameter

axis

Year

Figure 8.3: Biplot of the first two principal components of the Kuiper objects,
data appearing in Table 1.3

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

mag 0.538 -0.194 -0.188 -0.161 0.782

albedo -0.463 0.405 0.446 -0.493 0.425

diameter -0.546 -0.216 0.671 0.451

axis 0.109 0.785 -0.608

Year 0.432 0.424 0.591 0.529

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

SS loadings 1.0 1.0 1.0 1.0 1.0

Proportion Var 0.2 0.2 0.2 0.2 0.2

Cumulative Var 0.2 0.4 0.6 0.8 1.0

8: FACTOR METHODS 217

The first principal component of the Kuiper objects is approximately

Magnitude + Year of discovery−Albedo−Diameter

and the second component is almost entirely the axis.
We are working with the correlation matrix, not the covariance, so all

these measures have been divided by their standard deviations. The objects
on the right side of the biplot are brighter, more recently discovered, less
reflective, and smaller. Objects on top have tilted orbits. The opposite is
true for objects appearing on the right or bottom of Fig. 8.3.

Why did we need to scale the Kuiper objects and use the correlation in
order to obtain a reasonable principal components analysis while the invest-
ment recommendations provided an acceptable summary using the original
data? The answer is that the investment recommendations were already mea-
sured on the same scale as percentages of the total. The multivariate data for
the Kuiper objects were all different, and these were measured on different
scales. The general rule is to perform principal components analysis on the
scaled (correlation) matrix.

8.4 Example 3: Health Outcomes

in US Hospitals

As a final example of a principal components analysis, Table 8.1 lists out-
come data on US hospitals, as reported by Medicare. There are 16 variables
measured and after deleting those cases with missing data, there are 1906
hospitals. This huge dataset is also available online.1

There are too many variables and too many observations for the pairs()
plot to be useful. There are simply too many plotted data points, and the
computing is somewhat slow. This is a common difficulty in the analysis of
such large datasets.

Principal components analysis proves to be a useful approach for start-
ing the statistical examination of such data. The main benefit comes from
reducing the large dataset to a 16× 16 covariance matrix. Of course, much
can be lost in this reduction, but the benefit is that we can easily identify
some overall patterns without lengthy computing times.

The screeplot for these data appears in Fig. 8.4. This figure gives strong
evidence that there is one component that can be used to summarize this
large dataset. We examine the loadings of this first principal component
(rounded to two digits):

> round(phosp$loadings[, 1], digits = 2)

1See: https://data.medicare.gov/.

8: FACTOR METHODS 218

Table 8.1: Variables in Medicare data on US hospitals
Variable Measurement
name

SDeathN Number of surgical deaths
SDeathR Rate of surgical deaths
LungN Number of collapsed lungs
LungR Rate of collapsed lungs
ClotN Number of clots
ClotR Rate of clots
SplitN Number of split incisions
SplitR Rate of split incisions
CutsN Number of cuts
CutsR Rate of cuts
HADeathR Rate of heart attack deaths
HADeathN Number of heart attack deaths
HFDeathR Rate of heart failure deaths
HFDeathN number of heart failure deaths
PDeathR Rate of pneumonia deaths
PDeathN Number of pneumonia deaths

SDeathN SDeathR LungN LungR ClotN ClotR SplitN SplitR

0.34 0.00 0.38 0.02 0.36 0.07 0.35 -0.03

CutsN CutsR HADeathR HADeathN HFDeathR HFDeathN PDeathR PDeathN

0.38 0.00 -0.11 0.33 -0.07 0.34 -0.07 0.30

These loadings are chiefly composed of equal weighting of eight measures,
each with weights in the range of 0.3–0.38. These measures are: SDeathN,

LungN, ClotN, SplitN, CutsN, HADeathN, HFDeathN, and PDeathN. In
every case, these variables represent the number of adverse events recorded
and none of the measures of rates. This suggests that the rate values are
generally not useful in discriminating between the different hospitals. Instead,
the numbers of events are more representative of the size of the hospital than
anything else. The principal components analysis, then, suggests we also
need a variable indicating the size of the hospital, and this single measure
might be the best summary of the variability of the hospitals in this data.

8.5 Factor Analysis

Factor analysis is a method for identifying groups of variables (or factors)
whose actions appear to work in parallel. Within a single factor, several
measured variables within every individual are highly correlated, whether
positively or negatively. Other variables may seem to act independently of

8: FACTOR METHODS 219

l

l
l

l l l l l l l

Screeplot for US hospitals

V
ar

ia
nc

es

1
2

3
4

5
6

7

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

Figure 8.4: Screeplot for the US hospital data

all others. The aim of factor analysis is to identify and interpret these groups
of factors. We will also need to estimate the appropriate number of factors
needed to model the data.

Let us begin with an example from medicine. Hemangioma is the most
common of all childhood cancer diagnoses. It appears as a lump of blood ves-
sels on the skin. If left untreated it usually resolves within a few years. Some
parents opt for surgical removal. The data in Table 8.2 is from a registry of
surgically treated infants along with measurements on several genetic mark-
ers thought to be related to the disease. The age, measured in days, is the
infant’s age at the time of the surgery. The age, then, represents how long
the infant was exposed to the tumor. It was hypothesized that exposure to
the tumor might influence the magnitude of the expression of some of these
genes over time. A cursory examination of this data reveals several extreme
outliers.

The model for factor analysis is as follows. Suppose y is a p-dimensional
normal random vector with mean μ and covariance matrix Σ. The means
μ are removed from y so we only model the random components of the
observations. The idea is to see how well we can express the p-dimensional
random vector y − μ as linear combinations of a relatively smaller number
of m factors f and their respective loadings Λ plus a randomly distributed
error ε.

Mathematically we write

y − μ = Λ f + ε
(p×1) (p×m) (m×1) (p×1) . (8.6)

8: FACTOR METHODS 220

Table 8.2: Age, in days, and expression of genetic markers for infants who
were surgically treated for hemangioma

Age RB p16 DLK Nanog C-Myc EZH2 IGF-2

81 2.0 3.07 308975 94 6.49 2.76 11176
95 6.5 1.90 70988 382 1.00 7.09 5340
95 3.6 3.82 153061 237 0.00 5.57 6310

165 1.9 3.74 596992 88 0.00 2.47 7009
286 2.6 5.17 369601 282 12.23 1.63 7104
299 2.9 5.76 1119258 177 8.76 3.51 9342
380 1.9 2.40 214071 45 5.76 1.41 3726
418 7.1 3.38 69511 265 1.17 3.07 8039
420 6.4 3.37 81457 659 1.88 3.87 12583
547 6.4 4.05 64348 336 0.78 4.76 6505
590 1.8 5.15 164881 2012 35.65 9.45 32722
635 6.7 2.67 126016 3072 0.00 4.35 11763
752 1.8 3.28 567858 127 4.13 1.00 10283
760 7.3 0.92 43438 698 1.77 3.32 11518
1171 1.8 6.56 716260 392 12.92 2.90 13264
1277 1.3 0.05 94 15 0.36 3.83 30
1520 4.0 2.79 31125 454 0.62 2.33 1163
2138 0.5 0.00 2331 33 0.03 0.17 66
3626 4.2 4.24 560208 340 5.43 1.36 21174
Data courtesy of Dr. Deepak Nayaran

In linear regression (covered in Chap. 9) we know the values of the m
explanatory variables. In (8.6) the choice of explanatory variables is not
known to us and must be determined. The value of m is specified by us in
the program that fits this model.

Estimating the loadings Λ and factors f is not possible without some
additional assumptions. These assumptions are that both the unobservable
factors and errors have zero means. Further, these are all assumed to be
mutually and jointly uncorrelated.

Notice that neither (8.6) nor the subsequent derivation given below needs
to specify a multivariate normal distribution. Briefly, (8.6) suggests the cen-
tered data y−μ can be expressed as a product of lower dimensional factors
and loadings plus a small amount of random error ε.

Specifically we need to assume

Ef = 0 and Cov(f) = Eff ′ = I , (8.7)

8: FACTOR METHODS 221

Eε = 0 and Cov(ε) = E(εε′) = Ψ = Diag(Ψ1,Ψ2, . . . ,Ψp).
(8.8)

In addition, the factors f are uncorrelated with the errors ε:

Cov(f, ε) = 0 . (8.9)

Together, these assumptions are sufficient for us to fit the model (8.6).
These assumptions can also be used to describe an alternative form for

the factor analysis model. If we begin in (8.6), then we can write

(y − μ)(y − μ)′ = (Λf + ε)(Λf + ε)′

= Λf(Λf)′ + ε(Λf)′ +Λfε′ + εε′ .

Using the three assumptions (8.7)–(8.9) we can then express the covari-
ance matrix Σ of y as

Cov(y) = E(y − μ)(y − μ)′

= ΛE(ff ′)Λ′ + E(εf ′)Λ′ +ΛE(fε′) + E(εε′)

= ΛΛ′ +Ψ (8.10)

demonstrating the equivalence of two formulations of the factor analysis mod-
els in (8.6) and (8.10).

In R we perform a factor analysis using factanal(x,factors=m) where
x is the data arranged in the usual fashion as columns of variables and rows
for observations. The m parameter specifies how many factors we want R to
fit. Usually we try to fit a relatively small number of factors (three or four)
because of the difficulty of interpretation. There is also a formal statisti-
cal hypothesis test performed in factanal() testing whether m factors are
adequate or not.

A factor analysis of the hemangioma data appears in Output 8.2 using
three factors. The hypothesis test at the bottom of this table indicates that
the eight measures (age and seven genetic markers) can be summarized as a
three-dimensional measurement, plus a small amount of random error. We
examine the three-factor loadings to see that C.Myc, EZH2, IGF-2 collec-
tively appear to work together in the first factor. The second factor is almost
entirely the DLK marker. The third factor is almost represented by the RB

marker. Age plays almost no part, contrary to our original hypothesis about
the length of time the tumor burden is carried by the patient. Output 8.2
ends with a hypothesis test (p = 0.33) indicating that three factors are ade-
quate to explain this data.

8: FACTOR METHODS 222

Output 8.2: Factor analysis for the hemangioma data

> factanal(hemangioma, factors = 3)

Call:

factanal(x = hemangioma, factors = 3)

Uniquenesses:

Age RB p16 DLK Nanog C.Myc EZH2 IGF.2

0.962 0.035 0.292 0.005 0.616 0.005 0.491 0.254

Loadings:

Factor1 Factor2 Factor3

Age -0.171

RB -0.173 0.962

p16 0.382 0.745

DLK 0.971 -0.211

Nanog 0.475 0.391

C.Myc 0.931 0.280 -0.225

EZH2 0.614 -0.115 0.345

IGF.2 0.767 0.350 0.188

Factor1 Factor2 Factor3

SS loadings 2.226 1.750 1.365

Proportion Var 0.278 0.219 0.171

Cumulative Var 0.278 0.497 0.668

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 8.03 on 7 degrees of freedom.

The p-value is 0.33

8: FACTOR METHODS 223

A more thorough analysis of this data would require that we addition-
ally research the roles of these identified genetic markers and then try to
understand why they appear to be linked, as we identified in this statistical
analysis. Additional examination of this example is continued in Exercise 8.4.

For a second example of factor analysis, let us look at the hamburger
data given in Table 1.6. We first try runs of factanal with two and then
three factors. Output 8.3 contains excerpts of the output from R.

The loadings of Factors 1 and 2 are almost identical in both of these
factor analyses. Specifically, loadings for Factor 1 are chiefly CalFat, Fat,

and SatFat. The loadings for Factor 2 are almost entirely Carbs, in both
cases. The loadings for Factor 3 are all small and we interpret this to be
mostly noise.

If we only concentrate on the p-values in Output 8.3, then we might
conclude that two factors is just barely adequate in summarizing the data.
The p-value is 0.065 for two factors and 0.7 for three factors. We already
noted that the third factor does not have a reasonable interpretation beyond
a measure of noise in the data. The message in this example, then, is we
cannot rely entirely on p-values to identify the correct model, and we must
also work at interpreting the output carefully.

Factor analysis is a powerful tool. As with many statistical methods,
it also requires that we do our homework to interpret the results of the
computer output. Historically, it has been well known that this method
can yield misleading conclusions, and a small change in the data values can
bring about further chaos. Armstrong (1967) presents an educational and
elementary case of misuse of factor analysis.

8.6 Exercises

8.1 (a) In the biplot of Fig. 8.2, notice that Legg Mason (LM) and
Harris (HPB) appear at the top and Highmount (HC) appears at the
bottom. Why is that? What does the second principal component in
the vertical axis represent?

(b) Use R to find the eigenvalues and eigenvectors of the corre-
lation matrix of the investment recommendation data of Table 1.5.
Show that the eigenvectors represent the variances of the principal
components of the correlation matrix with the code

sqrt(eigen(cor(invest))$values)

and verify that these are same the values obtained from principal com-
ponents using the code

princomp(invest, cor = TRUE)

8: FACTOR METHODS 224

Output 8.3: Abbreviated output of a factor analysis for the hamburger data

> burger <- read.table(file = "burger.txt", header = T)

> factanal(burger[, -1], factors = 2) # Omit burger number

. . .

Loadings:

Factor1 Factor2

CalFat 0.964 0.230

Cal 0.755 0.606

Fat 0.950 0.303

SatFat 0.912 -0.121

Sodium 0.634 0.347

Carbs 0.997

Protein 0.717 -0.111

. . .

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 14.7 on 8 degrees of freedom.

The p-value is 0.0652

> factanal(burger[, -1], factors = 3) # Now try three factors

. . .

Loadings:

Factor1 Factor2 Factor3

CalFat 0.960 0.226 -0.126

Cal 0.752 0.611

Fat 0.949 0.301

SatFat 0.940 -0.131 0.308

Sodium 0.654 0.348 0.248

Carbs 0.980

Protein 0.724 -0.117

. . .

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 1.43 on 3 degrees of freedom.

The p-value is 0.699

8: FACTOR METHODS 225

8.2 The dataset Harmon23.cor in the datasets package is a correlation
matrix of eight physical measurements made on 305 girls between the
ages of 7 and 17.

(a) Perform a factor analysis of this data using the command

factanal(factors = m, covmat = Harman23.cor)

where m is the number of factors.

(b) Vary the number of factors to find an adequate fit of the model
and interpret the resulting factor loadings.

(c) Does the principal component analysis produce different con-
clusions when the correlation matrix (cor = TRUE) option is used?
Which analysis do you prefer?

8.3 Consider a principal components analysis on the dataset appearing in
Table 1.4. This table lists rates of individual cancer types (and overall
rates) for each of the 50 US states plus DC.

(a) Begin by examining the standard deviations of each cancer
type, including the overall rates.

(b) Perform a principal components analysis on this data and
look at the biplot. Interpret the loadings on the first two principal
components. Are these heavily weighted towards the largest standard
deviations found in part (a)?

(c) Repeat the principal components analysis on the scaled cor-
relation matrix of the cancer rate data. How do you interpret this
biplot?

(d) Which analysis do you find more useful: the scaled or unscaled
principal components analysis for this data?

8.4 How robust is the factor analysis procedure against outliers in the
data?

(a) Examine the marginal distributions of genetic markers in the
hemangioma data of Table 8.2. Which of these appear to be normally
distributed? Identify both large and small outliers. Are there transfor-
mations of the form (5.5) that make these distributions more normal
looking?

(b) Repeat the factor analysis along the lines of the method
described in Sect. 8.5. Are your conclusions the same or how do these
differ? Which conclusions do you prefer?

8: FACTOR METHODS 226

8.5 Examine the USJudgeRatings data in the datasets library. This
dataset contains the ratings of 43 US Superior Court judges by attor-
neys. Each of the judges is evaluated on each of 12 attributes such
as demeanor, preparation for trial, sound rulings, and the number of
contacts each attorney had with that judge. See the R help file for
more information on this dataset.

(a) Examine the pair-wise scatterplot for this data (with the
pairs command) to reveal that some variables are very highly cor-
related.

(b) Perform a principal components analysis for this data. The
first two components explain 94% of the variability. The second com-
ponent is almost entirely the number of contacts, and the first com-
ponent is essentially all other variables, all given the same weight.
Interpret this result.

8.6 Six different tests of intelligence and ability were administered to 112
people. The covariance matrix (but not the original data) of the test
results is given in ability.cov in the datasets library. The six tests
are called general, picture, blocks, maze, reading, vocabulary, and
reading. More information is given in the R help file.

(a) Perform a factor analysis on the covariance matrix with

factanal(factors = 2, covmat=ability.cov)

Use the loadings to identify those variables that group together within
the first two factors. Interpret these factors.

(b) Perform a principal components analysis using the covariance
matrix

> summary(pc <- princomp(ability.cor))

> pc$loadings

and identify the variables making the largest contributions to the first
two principal components. How do you interpret these principal com-
ponents?

(c) Do you think it is more appropriate to examine the covariance
or the correlation in a principal components analysis of this data?

(d) The cov2cor function efficiently converts covariances into cor-
relation matrices. That is

> ability.cor <- cov2cor(ability.cov$cov)

> princomp(ability.cor)

> princomp(ability.cor)$loadings

8: FACTOR METHODS 227

Table 8.3: Mechanistic causes of death and rates for 50 states

State All Cut Drown Fall Fire Firearm MotorVeh Poison Suffocate

AL 74.5 1.0 2.0 4.2 2.1 16.9 19.4 14.1 5.3
AK 87.1 NA 5.1 6.1 1.7 18.8 8.7 21.8 7.9
AZ 72.0 1.1 1.6 11.9 0.7 14.2 12.4 17.7 5.5

...
...

...
...

...
...

WI 57.8 0.7 1.3 14.4 0.8 8.1 9.9 12.3 5.1
WY 84.5 NA 1.3 9.5 NA 16.7 21.0 16.7 7.2

Source: National Vital Statistics System, http://www.cdc.gov/
nchs/deaths.htm

obtains the correlation and performs the principal components anal-
ysis. Examine the loadings and interpret the first two principal com-
ponents. Compare this data summary with parts (a) and (b) How do
these differ? How are they similar?

8.7 The academic score data appears in Table 1.2 and is examined in
Exercise 2.5.

(a) Perform a principal components analysis of this data. Notice
that the first principal component accounts for much of the variance.
What do the factor loadings suggest? Do the loadings differ if you use
the covariance matrix or the correlation matrix?

(b) Look at the correlation matrix of this data. What does the
correlation matrix say about this data? Is this consistent with conclu-
sion of the principal components analysis of part (a) and Exercise 2.5?

8.8 Table 8.3 lists the mechanistic (as opposed to natural) causes of death,
by state, for the years 1999–2010, as reported by the Centers for Dis-
ease Control. Rates are per 100,000 persons and include both acciden-
tal and intentional. There are a number of NAs listed where estimates
are unreliable due to small numbers. Consider replacing these with a
small number such as 0.2.

(a) Plot the data and identify any remarkable states. Explain
these. In which states do deaths following falls seem unusually
common?

(b) Perform a principal components analysis. Should the “All”
category be included in this? Show that states with high rates of
motor vehicle deaths also have high rates of mortality associated with
firearms. Poisoning is important also but seems to be independent of
these other two causes.

8: FACTOR METHODS 228

8.9 The tree dataset in the datasets library has three measurements on
each of 31 black cherry trees: girth (diameter, in inches, measured at
breast height); height in feet; and timber volume in cubic feet index-
trees.

(a) Draw a pairs plot to identify strong correlations and any
outliers.

(b) Perform a principal components analysis of this data. Use the
biplot to show how the first principal component captures the strong
correlation in part a. Again, identify any outliers in this data.

8.10 A psychological study was conducted at Northwestern University on
160 subjects. Each subject was assessed on a variety of standard
psychological measures. Then each subject was shown one of four
different movies (comedy, horror, nature, and documentary) and then
assessed again. The variable affect in the psych library contains this
data. Look at the help file to see details on the variables, published
references, and several summary displays of this data in R. Develop a
few displays of your own for this data and interpret your findings.

8.11 The Synthetic Aperture Personality Assessment (SAPA) Project is
a web-based psychological data collection.2 A subset of the data is
available in R as bfi in the psych library. This subset contains data
on three demographic variables and 25 personality items submitted by
2800 volunteers. As examples of these items, we have:

– I know how to comfort others.

– I waste my time.

– I make friends easily.

Each item is rated on a scale of 1–7, on whether the respondent feels
that he or she agrees with the statement a lot, disagrees a lot, or falls
somewhere in between. See the bfi help file for more details.

(a) Use the complete.cases() command to remove individuals in bfi

with any missing values.

(b) Use factor analysis to group together items of a similar nature. Try
to interpret the nature of items that cluster together. This is a useful
exercise in psychology. The chi-squared test of the adequacy of the
number of factors may not be appropriate with such a large sample
size.

2You can learn more and take the assessment at https://sapa-project.
org/.

8: FACTOR METHODS 229

Table 8.4: Statistics on oil consuming nations in 2011

Nation Daily consumption Population Annual per capita Production/
1000 bbl 1000m3 in millions bbl m3 consumption

United
States

18,835.5 2994.6 314 21.8 3.47 0.51

China 9790.0 1556.5 1345 2.7 0.43 0.41
Japan 4464.1 709.7 127 12.8 2.04 0.03
India 3292.2 523.4 1198 1.0 0.16 0.26
Russia 3145.1 500.0 140 8.1 1.29 3.35
Saudi
Arabia

2817.5 447.9 27 40.0 6.40 3.64

Brazil 2594.2 412.4 193 4.9 0.78 0.99
Germany 2400.1 381.6 82 10.7 1.70 0.06
Canada 2259.1 359.2 33 24.6 3.91 1.54
South
Korea

2230.2 354.6 48 16.8 2.67 0.02

Mexico 2132.7 339.1 109 7.1 1.13 1.39
France 1791.5 284.8 62 10.5 1.67 0.03
Iran 1694.4 269.4 74 8.3 1.32 2.54
United
Kingdom

1607.9 255.6 61 9.5 1.51 0.93

Italy 1453.6 231.1 60 8.9 1.41 0.10
Source: US Energy Information Administration

(c) Identify those questions that have a preponderance of extreme agree
and/or disagree responses. Similarly, identify suspected outliers such
as persons who appear to respond in an extreme fashion. That is,
persons who tend to strongly agree and or disagree with a majority of
the questions.

8.12 Table 8.4 summarizes oil consumption in the largest importing and
exporting nations for the year 2011. Consumption is expressed both
as a daily figure and per capita. These are expressed in barrels (bbl)
and cubic meters. The ratio of production to consumption is given as
well.

Perform a principal components analysis on this data and draw the
screeplot and biplot. How does the biplot group similar nations to-
gether?

8.13 The bodyfat data frame in the TH.data library lists 10 anthropomor-
phic measurements made on 71 healthy women. A key feature of this
data is the method of measuring their total body fat with great pre-
cision but also at great cost. Use principal components to summarize
this data. Show that the data can be well summarized using only two
principal components.

Chapter 9

Multivariable Linear
Regression

L INEAR REGRESSION is probably one of the most powerful and useful
tools available to the applied statistician. This method uses one or more

variables to explain the values of another. Statistics alone cannot prove a
cause and effect relationship, but we can show how changes in one set of
measurements are associated with changes of the average values in another.

Notice how this approach is different from that taken in principal com-
ponents analysis. In principal components, all variables are associated with
each other and the statistical analysis attempts to uncover groups of vari-
ables that vary together. In contrast, in linear regression, the data analyst
specifies which of the variables are to be considered explanatory and which
are the responses to these. This process requires a good understanding of
the data. Sometimes we have a cause and effect relationship where some
conditions are under our control. More often, we have jointly observed data
and we want to express the behavior of some variables for given conditions of
the others. A cause and effect relationship is difficult to demonstrate. The
interested reader is referred to Pearl (2009) for a detailed description of the
issues involved.

The methods in this chapter assume linear relationships between all the
dependent and independent variables. In Sect. 10.5, we consider regression
tree models for nonparametric settings where we can assume monotone, but
not necessarily linear, relationships between these variables.

Let us begin by considering the mtcars data set in the datasets package.
This data.frame contains 11 measurements on each of 32 model cars that
were available in 1973–1974. These 11 measurements are listed in Table 9.1.

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 9

231

9: LINEAR REGRESSION METHODS 232

Table 9.1: Measures on 32 cars in the mtcars data set

Design or
Name Definition empirical
mpg Miles/(US) gallon E
cyl Number of cylinders D
disp Displacement (cu.in.) D
hp Gross horsepower E
drat Rear axle ratio D
wt Weight (lb/1000) E
qsec 1/4 mile time E
vs cylinders form a “V” or are in a straight line D
am Transmission (0 = automatic, 1 = manual) D
gear Number of forward gears D
carb Number of carburetors D

Some characteristics could be considered design features that might not
be readily observed unless one were to open the hood, or perhaps dismantle
an assembly and count the teeth on the various gears. These design features
include the number of cylinders, displacement, rear axle ratio, “V” arrange-
ment of cylinders, number of forward gears, and the number of carburetors.

Other features in this list are empirical and readily experienced by a
driver. This list includes the miles per gallon, horsepower, weight, and
quarter mile time. The casual driver would not know the exact weight or
horsepower, of course, but in relative terms, these would be experienced in
comparison to other cars with markedly different values. In this example
we will classify the type of transmission (manual or automatic) as a design
feature, although it might be considered an empirical feature, as well.

In this chapter we will develop mathematical models that use the design
features to explain differences in the empirical features. The mean value
of each empirical feature is modeled as a linear function of all the design
features. The multivariable approach is to do this for all empirical features
and then examine whatever is left over from that modeling process, i.e., the
residuals. These multivariate residuals are used to determine if the empirical
features remain correlated after having taken into account the linear effects
of the design features.

9.1 Univariate Regression

The goal of linear regression is to attempt to explain the different values of
one variable in terms of others. This idea is not to predict but rather to make
a statement about the typical or mean value under specified conditions.

9: LINEAR REGRESSION METHODS 233

To begin, let’s build a linear regression to explain the miles per gallon
(mpg) values from the design features. The plan is not to predict mpg values
but rather attempt to reasonably explain the values we have already observed.
There is a danger of extrapolation: We cannot make any intelligent statement
about combinations or values that are beyond the range of our experience.
Within the range of observed data, we will be able to say something about
which design features are more closely associated with mpg values.

We denote by Yi a random variable with a distribution that depends on
a vector of known explanatory values xi. The functional form is

Yi = β′xi + ei (9.1)

where the independent, normally distributed errors ei have zero means and
constant variances σ2. The regression coefficients β are parameters that
need to be estimated from the observed data (yi,xi). In the present example,
yi is the observed, empirical feature (such as mpg) of the ith car, and xi is
the vector of values of all the design features of that car.

The linear model of one variable in terms of another is motivated by the
properties of the multivariate normal distribution with conditional mean and
variance given in (6.6) and (6.7), respectively. Specifically, the conditional
means of the Yi are linear in the explanatory variables, and the conditional
variances are independent of the values of the explanatory variables.

Least squares methods are used to obtain fitted parameter values β̂ that
estimate β. Also useful are fitted values

Ŷi = β̂
′
xi

that are the estimated mean values anticipated by model (9.1).

The estimated parameters β̂ are those values minimizing the sum of
squared residuals

∑
r2i where the residuals are the observed differences

between the observed and expected values

ri = yi − β̂
′
xi .

Similarly, the β̂ are often referred to as least square estimates. Least
squares estimates are also maximum normal likelihood estimates. Plots of
the residuals ri are instrumental in identifying lack of fit and deviations from
the assumed linear model (9.1) as we will illustrate in this chapter.

In R, we can fit a linear regression, and also capture the residuals, est-
imated regression coefficients β̂, and fitted values. These appear in Out-
put 9.1. This Output lists, in respective columns, the estimated regression
coefficients β̂ , their standard errors, t-test statistics, and p-values testing
the null hypothesis that the corresponding population coefficient (β) is zero.
The asterisks indicate the level of statistical significance.

9: LINEAR REGRESSION METHODS 234

Output 9.1: Output from the linear model fitting mpg values

> library(datasets)

> univ <- lm(formula = mpg ~ cyl + wt + am + carb, data = mtcars)

> fit <- univ$fitted.values

> resid <- univ$residuals

> summary(univ)

Call:

lm(formula = mpg ~ cyl + wt + am + carb, data = mtcars)

Residuals:

Min 1Q Median 3Q Max

-4.5451 -1.2184 -0.3739 1.4699 5.3528

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.8503 2.8694 12.843 5.17e-13 ***

cyl -1.1968 0.4368 -2.740 0.0108 *

wt -2.4785 0.9364 -2.647 0.0134 *

am 1.7801 1.5091 1.180 0.2485

carb -0.7480 0.3956 -1.891 0.0694 .

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.5 on 27 degrees of freedom

Multiple R-squared: 0.8502,Adjusted R-squared: 0.828

F-statistic: 38.3 on 4 and 27 DF, p-value: 9.255e-11

In this table of parameter estimates, we see the number of cylinders (cyl)
and weight (wt) provide a great amount of explanatory value in describing
mpg values. The number of carburetors (carb) has limited value, and the
transmission type (am: automatic or manual) makes a minimal contribution.
The estimated coefficients for cylinders and weight are negative because, int-
uitively, larger engines and heavier cars will get fewer miles per gallon.

The analysis of variance (ANOVA) expresses the total sum of squares:

∑
(yi − y)2 =

∑
(yi − ŷi)

2 +
∑

r2i . (9.2)

The total sum of squares of the observed yi about their average y is
the total amount of variability in the dependent variable. This amount can
be partitioned into the sum of squared values of the observed values about the
fitted values plus the sum of squared residuals. The sum of squared residuals
was minimized in order to estimate β̂. The sum of squared residuals is
referred to as the error sum of squares or the unexplained sum of squares.

9: LINEAR REGRESSION METHODS 235

The sum of squares about the fitted values ŷi is the amount of variability
attributed to knowing the explanatory variables xi. This is often called the
explained or model sum of squares. Ideally, we want the model sum of squares
to be large relative to the error sum of squares. This difference is usually
expressed as a ratio or, more specifically, the F-statistic given at the end of
Output 9.1.

How did we decide on this subset of all design features to use in explain-
ing the mpg values? It helps to have a good understanding of the nature
of the data. In this case, we all have a basic understanding of how a car
works. A little trial and error identified number of cylinders, weight, aut-
omatic/manual, and number of carburetors as useful. Useful explanatory
variables are generally identified by extremely small p-values. The table of
fitted coefficients in Output 9.1 prints *’s to guide our attention towards
those explanatory variables that are most highly statistically significant.

For every parameter (coefficient) in the regression model, R provides an
estimated value and a standard error of that estimate. The t value is the
ratio

t value = Estimate/Std.Error

The corresponding statistical significance of this t-statistic appears under
Pr[>|t|]. This tests the null hypothesis that the true, underlying population
parameter is actually zero. A small p-value for this test indicates that the
strong relationship between the variables could not have happened by chance
alone.

The regression model with fitted parameter values is

mpg = 36.85− 1.20 cyl− 2.48 wt+ 1.78 am− 0.75 carb+ error. (9.3)

In words, increasing the cylinders, weight, and number of carburetors
results in decreased estimates of the miles per gallon. The difference between
manual and automatic transmissions is less than 2mpg and not statistically
significant. For a range of values within those contained in this data, given
a set of values of cylinders, weight, transmission type, and number of car-
buretors, this last expression can be used to give a reasonable estimate of
the average miles per gallon of a car with those characteristics. Ultimately,
(9.3) is easily interpreted and agrees with our intuition about factors that
influence mpg.

Output 9.1 includes an estimate of 2.5 for the standard deviation of the
errors associated with the linear model. That is, the fitted model in (9.3)
estimates the mpg with a standard deviation of about 2.5. To appreciate the
value of the regression, let us compare this value to the standard deviation
of the marginal mpg values,

9: LINEAR REGRESSION METHODS 236

ll

l

l

l

l

l

l

l
l

l
l

l

lll

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

Fitted values

R
es

id
ua

ls

Toyota Corolla

Datsun 710
Volvo 142E

Figure 9.1: Fitted and residual values for the linear regression model (9.3) of
mpg data

> sd(mtcars$mpg)

[1] 6.026948

illustrating the much higher variability associated without the use of the
linear model.

We should always examine the residuals of the fitted model. The plot of
residuals and fitted values is given in Fig. 9.1. The marginal distributions are
displayed as rug fringes. A few unusual values are identified in this plot.

The rug fringe along the left marginal axis shows the residuals from
this fitted model appear normally distributed. There are no extreme poorly
fitting observations in the data. The three cars identified by name in the plot
are notable. All three have high miles per gallon, as expected by the fitted
model. Two models (Volvo 142E and Datsun—now Nissan 710) have much
lower mpg than expected. The Toyota Corolla has much higher gas mileage
than anticipated by the fitted model. The model assumptions seem to be
reasonable in this example. In such plots we look for evidence of outliers,
trends not accounted for by the model and nonconstant variability of the
residuals.

Let us end this section with a brief discussion of the options R offers us
in performing linear regression.

We use the formula = parameter to specify the linear model to be fitted.
The notation

mpg ~ cyl + wt

9: LINEAR REGRESSION METHODS 237

for example, is shorthand for the model

mpg = β0 + β1 cyl+ β2 wt

where the tilde (˜) takes the role of the equal sign in the formula.
To specify a model without an intercept β0, we would write

mpg ~ cyl + wt - 1

or equivalently

mpg ~ 0 + cyl + wt.

There are other options you can read about using help(formula) in R.
In addition to lm(), the glm and aov programs have a similar syntax.

The aov program will be demonstrated in the following section. GLM is the
abbreviation of generalized linear model and will be illustrated here.

To illustrate the use of glm(), we can write

> univ.glm <- glm(formula = mpg ~ cyl + wt + am + carb , data = mtcars)

> summary(univ.glm)

This produces similar output to that obtained using lm.
As with lm, the glm routine allows us to capture statistics about the fitted

parameter values that appear in the output. Corresponding to Output 9.1,
we can also write

> tt <- summary(univ.glm)

> print(tt$coefficients, digits=4)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.850 2.8694 12.843 5.172e-13

cyl -1.197 0.4368 -2.740 1.075e-02

wt -2.478 0.9364 -2.647 1.339e-02

am 1.780 1.5091 1.180 2.485e-01

carb -0.748 0.3956 -1.891 6.941e-02

In this code, the variable tt contains a data frame with the values pro-
duced in glm and printed by summary(univ). The variable tt$coefficients
contains the values produced by summary. We can then obtain separate val-
ues for the t-statistics and their p-values, for example, in addition to the
estimated regression coefficients.

9: LINEAR REGRESSION METHODS 238

9.2 Multivariable Regression in R

The popularity of linear regression cannot be understated. It stands to reason
that there are methods that generalize to more than one dependent variable.
Such multivariable regression methods build upon the univariate linear reg-
ression of the previous section and then follow up with the principal compo-
nents analysis described in Sect. 8.1. There are also multivariable analogies
to the ANOVA called the multivariable analysis of variance or MANOVA,
but this is not in common use today. See Hand and Taylor (1987) for more
on the multivariate analysis of variance.

Multivariable linear regression is performed in two steps. First, we per-
form separate, univariate linear regressions for each of the dependent vari-
ables y and capture the residuals for each of these regressions. Each separate
regression provides the estimated regression coefficients, regardless of how the
various dependent variables are correlated with each other.

The second step is to perform a principal components or factor analysis
on the residuals to see if there is additional information in the dependent
variables, after having corrected for the effects of the explanatory x variables.
We use graphical methods to check model assumptions and examine residuals
for outliers and lack of fit.

The best way to illustrate the multivariable linear regression is to work
through two examples in detail. In this section, we examine the character-
istics of cars in the mtcars data set that was also examined in the previous
section. In the following section, we will examine a much larger data set
taken from a health survey.

In the mtcars example, Table 9.1 identifies the variables that we classified
as design features and those that could be described as empirical features to
be experienced by the owner.

We build a multivariable linear regression by explaining each of the emp-
irical features (mpg, hp, wt, qsec) from the design features (cyl, disp,
am, drat, carb, vs, gear). Four separate linear regressions for these emp-
irical features were fitted using

univ.mpg <- aov(mpg ~ cyl + disp + am + carb , data = mtcars)

summary(univ.mpg)

univ.hp <- aov(hp ~ cyl + drat + am + gear + carb, data = mtcars)

summary(univ.hp)

univ.wt <- aov(wt ~ cyl + disp + drat + am + carb, data = mtcars)

summary(univ.wt)

univ.qsec <- aov(qsec ~ cyl + disp + drat + vs + am + gear, data = mtcars)

summary(univ.qsec)

producing four separate, marginal ANOVAs.

9: LINEAR REGRESSION METHODS 239

The fitted models are

mpg = 30.19− 0.657cyl − 0.0180disp + 3.599am − 1.19carb + error

hp = −100.+ 27.7cyl − 3.98drat + 3.16am + 13.4gear + 13.8carb + error

wt = 3.77− 0.231cyl + 0.006659disp − 0.263drat − 0.647am + 0.195carb + error

qsec = 26.3− 0.804cyl + 0.000770disp − 0.362drat + 1.05vs − 1.38am

−0.623gear + error

The choice of explanatory variables is not the same in each of these
regressions. These were chosen using a little trial and error to include only
those with both intuitive explanatory value and statistical significance. The
residuals from the four separate regressions can be captured and combined
into a single data.frame:

> car.res <- cbind(univ.mpg$residuals, univ.hp$residuals,

+ univ.wt$residuals, univ.qsec$residuals)

> colnames(car.res)<- c("mpg_res", "hp_res", "wt_res", "qsec_res")

> car.res <- data.frame(car.res)

> print(car.res, digits=2)

mpg_res hp_res wt_res qsec_res

Mazda RX4 -1.2058 -52.749 0.0626 0.1024

Mazda RX4 Wag -1.2058 -52.749 0.3176 0.6624

Datsun 710 -5.2311 26.952 0.2200 -0.3860

.

Maserati Bora 1.4107 46.675 -0.3407 0.2332

Volvo 142E -5.2054 30.181 0.4665 -0.3118

Four separate, marginal plots of fitted and residuals are given in Fig. 9.2.
A number of unusual and remarkable cars are identified by name. These are
typically either economy makes (Toyota, Duster, and Datsun) or else large,
luxury models (Maserati, Lotus, or Mercury).

A multivariate examination of these residuals begins with the matrix
scatterplot presented in the top panel of Fig. 9.3. This figure includes the loess
smoothing and does not identify any strong correlations between residuals
that were not explained by the linear models. (See text for Fig. 3.16 for
details on how we draw this figure in R.)

We can also perform a series of tests for the multivariate normal distri-
bution of the residuals. The bottom panel of Fig. 9.3 is a QQ plot of the
Mahalanobis distances from the centroid for the four-dimensional residuals.

9: LINEAR REGRESSION METHODS 240

The clear outlier (Mercury 230) is identified by name. The plot of univariate
residuals in Fig. 9.2 identified this car model as having an unusually large
quarter-mile time.

Formal statistical tests for the multivariate normal behavior of the resid-
uals reflect what is observed in the QQ plot. Specifically, the code

> library(mvnormtest)

> mshapiro.test(t(car.res))

Shapiro-Wilk normality test

data: Z

W = 0.8389, p-value = 0.0002403

yields a p-value of 0.0002 indicating a poor correspondence to the multivari-
ate normal distribution.

Fitted mpg

re
si

du
al

s

Toyota Corolla

Datsun 71
Volvo 142E

Fitted hp

re
si

du
al

s

Maserati BoraToyota Corona

Mazda RX4 Wag

Fitted wt

re
si

du
al

s

Lotus Europa
Duster 360

Fitted qsec

re
si

du
al

s

Merc 230

Ford Pantera L

Maserati Bora

Figure 9.2: Fitted and residual values from four marginal linear regressions
of car data

9: LINEAR REGRESSION METHODS 241

mpg_res

hp_res

wt_res

qsec_res

0 2 4 6 8 10

0
5

10
15

4 df Chi−squared quantile

M
ah

al
an

ob
is

 d
is

ta
nc

e
fr

om
 th

e
sa

m
pl

e
m

ea
n Merc 230

Figure 9.3: Scatter plot of residual values of car data with loess smooth (top
panel) and QQ plot of Mahalanobis Distances (bottom panel)

9: LINEAR REGRESSION METHODS 242

We can omit the single observation with the largest Mahalanobis statistic
in its residual:

> mah <- mahalanobis(car.res, colMeans(car.res), var(car.res))

> outi <- match(max(mah),mah) # index of outlier

> mshapiro.test(t(car.res[-outi,]))

Shapiro-Wilk normality test

data: Z

W = 0.9232, p-value = 0.02877

The fit to a multivariate normal distribution improves slightly, but is still
suspect.

The next step in this multivariable linear regression is to perform a prin-
cipal components analysis on these residuals. The object of this examination
is to see if there is any additional information remaining between the four
dependent variables (mpg, hp, wt, qsec) after accounting the linear effects
of the explanatory variables (cyl, disp, drat, vs, am, gear, carb).

The principal components analysis in R is

> print(prcomp(car.res, scale = TRUE), digits = 3)

Standard deviations:

[1] 1.312 1.061 0.885 0.607

Rotation:

PC1 PC2 PC3 PC4

mpg_res 0.160 -0.864 0.277 0.388

hp_res 0.426 0.400 0.798 0.146

wt_res -0.658 0.230 0.106 0.709

qsec_res -0.600 -0.199 0.524 -0.571

In the list of ordered standard deviations, we see all four principal com-
ponents are comparable in magnitude; the largest is just slightly twice the
size of the smallest. We interpret the loadings here to mean that the residuals
of hp, wt, and qsec are all highly correlated with each. The mpg residuals
are independent of these three.

The biplot for the first two principal components

biplot(prcomp(car.res, scale = TRUE), cex = c(.6, 1.2),

col = c(3, 4), cex.lab=1.5,

xlab = "First principal component",

ylab = "Second principal component")

is given in Fig. 9.4.
The loadings of the first principal component shows that the residuals

of weight and quarter second times are positively correlated with each other

9: LINEAR REGRESSION METHODS 243

−0.2 0.0 0.2 0.4

−
0.

2
0.

0
0.

2
0.

4

First principal component

S
ec

on
d

pr
in

ci
pa

l c
om

po
ne

nt

Mazda RX4Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout

Valiant

Duster 360

Merc 240D

Merc 230
Merc 280

Merc 280C

Merc 450SE

Merc 450SL

Merc 450SLC

Cadillac Fleetwood

Lincoln Continental

Chrysler Imperial

Fiat 128

Honda Civic

Toyota Corolla

Toyota Corona

Dodge Challenger
AMC Javelin

Camaro Z28

Pontiac Firebird

Fiat X1−9

Porsche 914−2

Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volvo 142E

−4 −2 0 2 4 6

−
4

−
2

0
2

4
6

mpg_res

hp_res

wt_res

qsec_res

Figure 9.4: Principal component biplot of the residuals from the car data

and negatively correlated with hp residuals. The second principal compo-
nent is composed almost entirely of the mpg residuals showing that these are
independent of the other three.

In summary, the four individual linear regressions appear to capture much
of the useful information about the four dependent variables. There are a
few remarkable outliers. What is left over are residuals for mpg which appear
independent of the other three sets of residuals.

9.3 A Large Health Survey

In this section, we examine a large data set and use it to further illustrate the
uses of multivariable linear regression. The Behavior Risk Factor Surveillance
System (BRFSS) is a large initiative sponsored by the Centers for Disease

9: LINEAR REGRESSION METHODS 244

Control (CDC) in Atlanta, Georgia. This is a telephone survey of individuals
living in the largest metropolitan areas concerning their health, health beh-
aviors, and individual risk factors. The survey is weighted towards reaching
individuals who might not be easily identified in a traditional, straightforward
sample. We will examine data from the survey taken in the year 2010. More
details on these questions, other health-related questions, and surveys from
other years are available on the SMART (Selected Metropolitan/Micropolitan
Area Risk Trends) website given in Table 9.2.

Table 9.2 lists a number of survey items selected from the total. The
items themselves form two separate types of measurements: behavioral and
health outcomes. As examples, a report of binge drinking is a behavioral
measure and a report of asthma is a health outcome. Some of these measures
are not clearly one or the other such as BMI and health coverage. We will
classify both of these measures as behavioral to simplify the discussion.

The object of the data analysis is to see if we can identify the behavioral
risk factor’s effects on the associated health outcomes. These associations
are aggregate for cities, not individuals, so we can only infer properties of
populations. For example, we cannot infer that the people who regularly
see a dentist are less likely to have missing teeth, but, rather, populations
with a large number of people seeing dentists are also populations with fewer
missing teeth.

As another example of the shortcomings of this cross-sectional data, we
are unable to tell if those individuals with asthma are more or less likely to
be binge drinkers. Instead, we can only say something about the rates of
asthma in cities with a high levels of binge drinking. One person is the binge
drinker, but a different person in the same city develops asthma. Finally, the
data examined here is only for 1 year (2010), so we are unable to determine
if binge drinking has any long-term health effects or if binge drinking is on
the rise.

The data set is too large for examining all possible pairs of scatter plots
using pairs(). Instead, Fig. 9.5 plots pairs() for only those variables con-
sidered as outcomes. There are several highly correlated pairs of outcomes,
including the perception of general health with each of having a heart attack,
diabetes, and loss of any permanent teeth.

Let us illustrate how multivariable linear regression methods can help
summarize the various patterns occurring in this data set. We begin by
performing separate linear regressions for each of the eight outcome variables
using all ten of the behavioral measures as explanatory variables.

The first examination asks which of these behaviors is associated with
each of the different health outcomes. The second analysis asks how each of
the health outcomes are related to each other after having corrected for all
of the behavioral measures.

The separate linear regression for each of the eight health outcomes reg-
ressing on all of ten explanatory variables results in an 11×8 matrix of regres-
sion coefficients (including the intercepts). A simple way to examine all of
these coefficients is to produce a heatmap, as in Fig. 9.6. The regression coef-

9: LINEAR REGRESSION METHODS 245

Table 9.2: The subset of the BRFSS data set summarizes the percentage of
respondents answering positively to these items in each of 192 US metropoli-
tan areas

Variable Outcome
name Description or behavior
Binge Regular binge drinking B

Asthma Reporting asthma O
HeartAt Ever had a heart attack O

Colonosc Adults 50+ who ever had a colonoscopy B
Diabetes Any diagnosis of diabetes O
PregDia Pregnancy-related diabetes O
PreDia Prediabetic or borderline diabetes O

Disability Limited activities due to disability O
Exercise Any exercise in the past month B
Coverage Any health care coverage B
GeneralH Self-reported general health of good or better O
FluShot Adults 65+ having a flu shot in the past year B
Dentist Visited a dentist in the past year B

Teeth Any permanent teeth extracted O
BMI BMI under 25 (not overweight) B
PSA Men 40+ with a PSA screen over the past year B

Smokers Current smokers B
PAP Women 18+ with a Pap test over the past 3 years B

Source: http://apps.nccd.cdc.gov/BRFSS-SMART/
Every variable is classified as either behavioral (B) or health outcome (O)

ficients with the greatest statistical significance are in white, and those less so
are in yellow, with red indicating no statistical significance. The heatmap()

program reorganizes the rows (behaviors) and columns (outcomes) in order to
visually group together regression coefficients with similar significance values.
Heatmaps are discussed again in Sect. 11.3.

The red/yellow color pattern only indicates statistical significance of the
estimated regression coefficient. These do not all correspond to good or bad
health patterns because the explanatory variables are not all indicative of
the same direction. Frequent binge drinking is (presumably) a bad health
behavior and visiting a dentist is a good behavior. So in these two examples,
a positive regression coefficients can have opposite interpretations. Similarly,
smoking is highly correlated with any reported disability, but it is not clear
from the heatmap whether this correlation is positive or negative. Further,
it is not obvious why these two variables should be highly correlated.

The eight separate regressions create eight vectors of residuals. These
different residuals represent the eight different health outcomes for each of
192 metropolitan areas after having corrected for each of the ten behavioral
measures.

9: LINEAR REGRESSION METHODS 246

Asthma

HeartAt

Diabetes

PregDaib

PreDia

Disability

GeneralH

Teeth

Figure 9.5: Matrix scatter plot and smooth fit of BRFSS health outcome
variables

The 8 × 8 correlation matrix of the residuals appears in Output 9.2.
Again, these are not the correlations between the various health outcomes
in Table 9.5, but, rather, the correlations of the eight health outcomes af-
ter having corrected for each of the ten behavioral measures. The largest
correlation is between the diabetes residuals and self-reported general health
residuals. We interpret this to mean that the relationship between diabetes
and general health at the population level is not accounted for by any of the
behavioral measures.

This correlation is large (−0.493), but it is also true that diabetes is
reported by less than 9% of those surveyed. That is, the strong correlation
may only reflect a small portion of those affected in the population. Similarly,
there is also a large correlation (0.44) between the residuals of those reporting

9: LINEAR REGRESSION METHODS 247

P
re

gD
ai

b

P
re

D
ia

A
st

hm
a

D
is

ab
ili

ty

D
ia

be
te

s

H
ea

rt
A

t

G
en

er
al

H

Te
et

h

(Intercept)

Smokers

BMI

PSA

Coverage

Dentist

Exercise

FluShot

Binge

PAP

Colonosc

Figure 9.6: Heatmap of statistical significance for regression coefficients in
BRFSS data

a heart attack and those reporting loss of adult teeth. Heart attacks were
reported by only 4.3% of those surveyed. In both of these examples (diabetes
and heart attack), strong correlations only occur in small segments of the
population.

The largest correlation we can identify among the residuals is a large
negative and intuitive relationship between those of disability and perception
of general health, after having corrected for all of the explanatory behavioral
variables in the data set. The “any disability” question is reported by 21.3%
of those surveyed and is experienced by a larger portion of the population
than either diabetes or heart attack (Fig. 9.7).

A scatterplot of “any disability” and “reported general health” is given
in Fig. 9.8, both as raw data and as residuals after correcting for all of the
behavior variables. These separate plots will again reinforce the difference
between these different concepts. Noticeably, the residual plot is given on a
smaller scale than that of the original data. In both plots, Huntington, West
Virginia, exhibits a high level of individuals with a disability and low levels of

9: LINEAR REGRESSION METHODS 248

Output 9.2: Correlation matrix of BRFSS residuals

> cr <- cor(BRFSS.resid)

> print(cr, digits = 2)

Asthma HeartAt Diabetes PregDaib PreDia

Asthma 1.000 0.12 0.054 -0.028 -0.153

HeartAt 0.118 1.00 0.121 -0.110 0.173

Diabetes 0.054 0.12 1.000 0.042 0.168

PregDaib -0.028 -0.11 0.042 1.000 -0.121

PreDia -0.153 0.17 0.168 -0.121 1.000

Disability 0.254 0.28 0.147 0.020 0.088

GeneralH -0.056 -0.22 -0.493 0.061 -0.275

Teeth -0.033 0.44 0.280 -0.069 0.272

Disability GeneralH Teeth

Asthma 0.254 -0.056 -0.033

HeartAt 0.276 -0.220 0.445

Diabetes 0.147 -0.493 0.280

PregDaib 0.020 0.061 -0.069

PreDia 0.088 -0.275 0.272

Disability 1.000 -0.349 0.245

GeneralH -0.349 1.000 -0.352

Teeth 0.245 -0.352 1.000

individuals with self-reported good or excellent general health. On the basis
of the 2006 BRFSS survey, the CDC listed Huntington as one of the most
unhealthy cities in the US.

In contrast, Fayette, Arkansas, appears to have a high level of self-
reported health as a residual, after having corrected for health behaviors.
This city does not appear unusual in the original, raw data. Fayette is a uni-
versity town with an unusually large percentage of citizens with Master’s and
Ph.D. degrees. The Fayette metropolitan area includes Bentonville, home to
many well-paid executives at the Walmart corporate headquarters.

A pairwise scatterplot of the eight sets of residuals is given in Fig. 9.7.
There does not appear to be any obvious deviation from the assumption of
a multivariate normal distribution. (See Exercise 9.2 for more details.) A
principal components analysis of the residuals from these individual regres-
sions completes the multivariate analysis. A portion of that analysis appears
in Output 9.3.

From the standard deviations, we see that first few components contain
most of the variability. In this case, the residual for loss of Teeth has almost
all of the weight in the first component and seems to be independent of all

9: LINEAR REGRESSION METHODS 249

Asthma

HeartAt

Diabetes

PregDaib

PreDia

Disability

GeneralH

Teeth

Figure 9.7: Matrix scatterplot and smooth fit of BRFSS residuals

other residuals. Similarly, the second component is almost entirely composed
of the Disability residual. The third component is the GeneralH residual.

The biplot of this principal components analysis appears in Fig. 9.9. The
largest contributors to health residuals appear to be loss of permanent teeth
and the presence of a disability. These two outcomes, after having corrected
for all of the behavior variables, are orthogonal to each other and appear to
offer a large amount of explanatory value to the residuals from the multivari-
ate regressions.

In summary, the multivariate regression of the large health survey yields a
number of useful summary measures. Behavior variables such as having seen
a dentist recently is a good explanatory measure of health outcomes, and the
perception of one’s health is a single standout determinant of other health
outcomes across cities. Two cities appear as outliers at opposite ends of the

9: LINEAR REGRESSION METHODS 250

Output 9.3: Principal components analysis for BRFSS residuals

Standard deviations:

[1] 4.609 2.943 2.057 1.727 1.127 0.839 0.740

[8] 0.476

Rotation:

PC1 PC2 PC3 PC4

Asthma 0.0138 0.25499 0.17051 -0.9437

HeartAt 0.1009 0.02420 0.03981 -0.0453

Diabetes 0.1101 0.05205 -0.35152 -0.1134

PregDaib -0.0070 0.00653 0.00677 0.0142

PreDia 0.0530 -0.00957 -0.08155 0.0738

Disability 0.2926 0.85581 0.30301 0.2882

GeneralH -0.2549 -0.26160 0.84547 0.0591

Teeth 0.9078 -0.36152 0.18012 -0.0473

PC5 PC6 PC7 PC8

Asthma -0.0619 0.0341 -0.09833 -0.019658

HeartAt -0.0794 -0.9342 0.31974 -0.065046

Diabetes 0.9171 -0.0713 0.01803 0.046964

PregDaib 0.0610 0.0912 0.08302 -0.990321

PreDia -0.0282 -0.3118 -0.93550 -0.108811

Disability 0.0707 0.0409 -0.01358 0.016743

GeneralH 0.3727 -0.0595 -0.07430 0.017944

Teeth -0.0174 0.1010 0.00252 0.000187

health scale. Tooth loss and having any disability remain highly variable
even after taking into account the effects of the explanatory variables.

9.4 Exercises

9.1 Table 1.1 lists some cost of living statistics for each of the 50 states
plus DC. The three costs are apartment rents, costs of houses, and
the cost of living index. Perform a multivariable linear regression
to explain these three metrics in terms of the state populations and
average incomes. Are these explanatory variables useful for each of
the cost variables? Capture the residuals from the three separate
linear regressions and perform a principal components analysis. Is
there anything left over that the regressions fail to capture? Are there
outliers that should be noted?

9: LINEAR REGRESSION METHODS 251

15 20 25 30 35

75
80

85
90

Disabilty

G
en

er
al

 H
ea

lth

HuntingtonWV

−5 0 5 10

−
5

0
5

Disability residual

G
en

er
al

 h
ea

lth
 r

es
id

ua
l

HuntingtonWV

FayettevilleAR

Figure 9.8: Scatterplot of disability and general health, both as raw data and
as residuals corrected for all of the behavioral measures

−0.2 −0.1 0.0 0.1 0.2

−
0.

2
−

0.
1

0.
0

0.
1

First principal component

S
ec

on
d

pr
in

ci
pa

l c
om

po
ne

nt

Akron,OH

Albuquerque,NM

Allentown,PA

Amarillo,TX

Arcadia,FL

Asheville,NC

Atlanta,GA

AtlanticCity,NJ

Augusta,GA

AugustaME

AustinTX

BaltimoreMD
BangorME

BarreVT

BatonRougeLA

BethesdaMD

BillingsMT

BirminghamAL

BismarckND

BoiseCityID

BostonMA

BremertonWA

BridgeportCT

BuffaloNY

BurlingtonVT

CambridgeMA
CamdenNJ

CantonOH

CapeCoralFL

CasperWY

CedarRapidsIA

CharlestonWV

CharlestonSC

CharlotteNC

ChattanoogaTN

CheyenneWY

ChicagoIL

CincinnatiOH

ClevelandOH

CoeurdAleneID

ColoradoSpringsCO

ColumbiaSC

ColumbusOH

ConcordNH

DallasTX

DaytonOH
DelRioTX

DeltonaFL

DenverCO

DesMoinesIA

DetroitMI

DoverDE

DurhamNC

EdisonNJ

ElPasoTX

EugeneOR

EvansvilleIN

FargoND

FarmingtonNM

FayettevilleAR

FtCollinsCO FtWayneIN

FtWorthTX

GainesvilleFL

GrandIslandNE

GrandRapidsMI

GreensboroNC

GreenvilleSC

HagerstownMD

HartfordCT

HastingsNE

HelenaMT

HickoryNC

HiloHI

HiltonHeadSC

HomosassaFL

HonoluluHI

HoustonTX

HuntingtonWV

IdahoFallsID

IndianapolisIN

JacksonMS

JacksonvilleFL

KahuluiHI

KalispellMT
KansasCityMO

KapaaHI

KennewickWA

KeyWestFL

KingsportTN

KnoxvilleTN
LakeCityFL

LakelandFL

LaredoTX

LasCrucesNM

LasVegasNV

LebanonNH

LewistonID

LewistonME

LincolnNE

LittleRockAR

LosAngelesCA

LouisvilleKY

LubbockTX

ManchesterNH

McAllenTX

MemphisTNMiamiFL

MidlandTX

MilwaukeeWI

MinneapolisMN

MinotND

MobileAL

MyrtleBeachSC
NaplesFL

NashvilleTN

NassauNY

NewHavenCT
NewOrleansLA

NewYorkNY

NewarkNJNorfolkNE

NorthPlatteNE

NorthPortFL

OcalaFL

OceanCityNJ

OgdenUT

OkCityOK

OlympiaWA

OmahaNE

OrlandoFL

PalmBayFL

PanamaCityFL

PeabodyMA

PensacolaFL
PhiladelphiaPA

PhoenixAZ

PittsburghPA

PortSt.LucieFL

PortlandME

PortlandOR

ProvidenceRI

ProvoUT

RaleighNC

RapidCitySD

RenoNV

RichmondVA

RiversideCA

RochesterNY

RockinghamCoNH

RutlandVT

SacramentoCA

SaltLakeCityUT

SanAntonioTX

SanDiegoCA

SanFranciscoCA

SanJoseCA

SantaAnaCA

SantaFeNM

ScottsbluffNE

ScrantonPA

SeafordDE

SeattleWA

SebringFL

ShreveportLA

SiouxCityIA

SiouxFallsSD

SpokaneWA

SpringfieldMA

St.LouisMO

TacomaWA

TallahasseeFL

TampaFL

ToledoOH

TopekaKS

TrentonNJ

TucsonAZ

TulsaOK

TuscaloosaAL

TwinFallsID

TylerTX

VirginiaBeachVA

WarrenMI

WashingtonDC

WauchulaFL
WPalmBeachFL

WichitaFallsTX

WichitaKS

WilmingtonDE

WorcesterMA

YakimaWA

YoungstownOH

−60 −40 −20 0 20 40 60

−
80

−
60

−
40

−
20

0
20

40
Asthma

HeartAtDiabetesPregDaibPreDia

Disability

GeneralH
Teeth

Figure 9.9: Biplot for principal components analysis of BRFSS residuals

9: LINEAR REGRESSION METHODS 252

Table 9.3: Personal health care expenditures by Medicare patients, listed by
functional status for the years 1992–2007

Any Any
No physical IADL 1–2 3–6

Year All disability limitation limitation ADL’s ADL’s

1992 6550 2980 3468 5770 7373 17,058
1993 7063 3101 3841 6240 7949 18,782
1994 7730 3355 3783 6396 8349 22,994
...

...
...

...
...

...
...

2005 13,218 7577 8975 12,363 16,489 33,663
2006 14,448 8847 9520 14,353 17,759 34,751
2007 14,842 7664 10,009 15,641 17,725 38,809
Source: MCBS

9.2 Test the BRFSS residuals for multivariate normality using the tests
introduced in Sect. 7.7. Are the outliers highlighted in Fig. 9.8 large
enough to lead us to question multivariate normality using these tests?
Do the tests have markedly different outcomes if we delete the residuals
from these two cities?

9.3 The Medicare Current Beneficiary Survey (MCBS) is an ongoing, rep-
resentative, nation-wide survey of all persons who were Medicare rec-
ipients during any part of the current year. The data in Table 9.3
reports all health care goods and services that were purchased directly
by the Medicare recipient.Recipients were contacted by telephone to
assess their (self-reported) disability status. Physical disabilities were
classified as essential activities of daily living (ADL) such as bathing,
dressing, eating, and as instrumental ADL (IADL) such as preparing
meals, shopping, and answering the telephone. Another examination
of this data appears in Exercise 12.4.

(a) Fit separate linear regressions using the year as the explana-
tory variable. Choose your dependent variables (disability categories)
carefully because some of these include others. Do discontinuous
jumps occur in the annual expenditures? These may be attributed
to policy changes.

(b) Plot the residuals for each regression by year and comment
on any apparent lack of independence from one year to the next.

(c) Does a principal components analysis reveal any remarkable
years?

9: LINEAR REGRESSION METHODS 253

Table 9.4: Coal mining workers and fatalities by year

Years Miners Fatalities

1900 448,581 1489
1901 485,544 1574
1902 518,197 1724
...

...
...

2010 135,500 48
2011 143,437 21
2012 137,650 20
Source: MSHA

9.4 Table 9.4 lists the annual number of coal miners and the number of
deaths for the industry as reported by the US Department of Labor.
The deaths and number of workers have decreased dramatically during
the time period covered by this data. In Fig. 9.10, we see the death rate
is falling faster than the number of miners. Perform a multivariable
regression using year as the explanatory variable. Consider taking logs
of the two response variables. What additional information would you
like to see in order to draw useful conclusions from this data analysis?

9.5 Elston and Grizzle (1962) present the data in Table 9.5 on measure-
ments of Ramus (jaw) bones on 20 boys at four different ages. The
explanatory variable is age. We should expect correlations of the four
measurements within each boy.

(a) Fit a regression model using Age as the explanatory variable.
Examine residuals graphically and identify outliers. Does a principal
components analysis provide additional insights?

(b) Are the variances the same at every age?

9.6 Many investors in stocks are looking for dividends to be paid out
of future profits. Table 9.6 lists a number of the largest technology
companies and information of their financial status, as of September
2010. The outcome variables to explain are current and future divi-
dends. See what models you can develop from market capitalization,
net cash, and cash flow. You can also create new measures that are
nonlinear functions of other explanatory variables such as the ratio of
cash flow and market capitalization.

9.7 Stepwise regression automates the model-building process. The pro-
gram

9: LINEAR REGRESSION METHODS 254

1900 1920 1940 1960 1980 2000

2
4

6
8

10
12

14

Year

Lo
g

sc
al

e

Miners

Fatalities

Figure 9.10: US coal miners and fatalities, on a logarithmic scale

library(datasets)

library(MASS)

data(mtcars)

univ <- lm(mpg ~ cyl + disp + hp + drat + wt + qsec +

vs + am + gear + carb, data = mtcars)

backward <- stepAIC(univ)

summary(backward)

begins with a linear model containing all of the explanatory variables
and removes one at a time. This backward stepwise regression allows
every explanatory a chance to contribute to the model and uses AIC
to eliminate those that do not make a significant contribution.

The AIC is equal to twice the log-likelihood, less 2 times the number of
parameters. Unlike the likelihood, AIC charges a “penalty” for every
parameter in the model, forcing every parameter to make a contribu-
tion to the model. AIC was developed for times series models with
many parameters and is described in Sect. 12.2.

Does the final fitted model from this program coincide with our int-
uition? What are the advantage and disadvantages of having the com-
puter decide on the model for us?

9: LINEAR REGRESSION METHODS 255

Table 9.5: Measures of jaw bones on 20 boys at four different ages

Age in years
8 8.5 9 9.5

1 47.8 48.8 49.0 49.7
2 46.4 47.3 47.7 48.4
3 46.3 46.8 47.8 48.5
...

...
...

...
...

19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8

Mean 48.7 49.6 50.6 51.5

Source: Elston and Grizzle (1962)

Table 9.6: Characteristics of several high-tech companies as of September
2010. Dollar amounts are in $Million

2009 Cash Cash+cash Current Dividend
Market Net cash flow as flow as dividend at 60%

Company cap cash flow % of cap % of cap rate payout

Adobe $17,254 $1370 $1118 6.48% 14.42 0.0% 3.9%
Amazon 66,336 5070 3293 4.96 12.61 0.0 3.0
Apple 252,664 45,800 10,159 4.02 22.15 0.0 2.4
Cisco 125,246 23,700 10,173 8.12 27.05 0.0 4.9
Dell 24,153 8800 3906 16.17 52.61 0.0 9.7
eBay 31,361 6720 2908 9.27 30.70 0.0 5.6
Google 153,317 30,300 9316 6.08 25.84 0.0 3.6
Hewlett-
Packard 90,280 6400 13,379 14.82 21.91 0.8 8.9
Intel 105,625 22,100 11,170 10.58 31.50 3.4 6.3
Microsoft 219,195 38,450 24,073 10.98 28.52 2.1 6.6
Oracle 127,578 9914 8681 6.80 14.58 0.8 4.1
Qualcomm 67,370 2870 7172 10.65 14.91 1.8 6.4
Symantec 11,793 1040 1693 14.36 23.17 0.0 8.6
Texas
Instruments 30,560 3557 2643 8.65 20.29 1.9 5.2
Yahoo! 19,132 7230 1310 6.85 44.64 0.0 4.1
Source: StreetAuthority (www.StreetAuthority.com) and David
Sterman. Used with permission

9: LINEAR REGRESSION METHODS 256

9.8 The program

influence(univ)

produces a large number of diagnostics for the regression model. These
include $hat which is a measure of the influence each observation has
on its fitted value. The $coefficients estimates how much each esti-
mated regression coefficient is changed when that observation is omit-
ted and the model is refitted. Omitting each observation, in turn, is a
method called the jackknife. Similarly, $sigma estimated the change
in estimated standard deviation of the residuals changes when this
observation is jackknifed.

Plot some of these diagnostics for the mtcars data. Are influential
observations also those with unusually large residuals?

9.9 Examine glmrob in the robustbase library, to perform robust linear
regression. Does the robust fitted model in the mtcars data differ
from the least squares regression model we fitted here? A larger set of
data on more recent cars is available as car.test.frame in the mvpart
library.

Chapter 10

Discrimination
and Classification

I F WE HAVE multivariate observations from two or more identified
populations, how can we characterize them? Is there a combination of

measurements that can be used to clearly distinguish between these groups?
It is not good enough to simply say that the mean of one variable is sta-
tistically higher in one group in order to solve this problem because the
histograms of the groups may have considerable overlap making the discrim-
inatory process only a little better than guesswork. To think in multivariate
terms, we do not use only one variable at a time to distinguish between groups
of individuals, but, rather, we use a combination of explanatory variables.

The difference between discriminant analysis and principal components
analysis is that in discriminant analysis, we begin by knowing the group
membership. In discriminant analysis we try to identify linear combinations
of several variables that can be used to distinguish between the groups. In
principal components, by contrast, it is not clear if there are separate groups.
If principal components identify groups, then there is no confirmatory step
because we may not be aware of separate groups a priori. Similarly, in the
following chapter, we assume that there are groups within the data but do
not identify these in advance.

10.1 An Introductory Example

Let us begin by introducing an example and then carry it through this chap-
ter. Data on three varieties of wine cultivars is given in the data set wines
(Forina et al. 1988). The entire data set is also available online along with
additional information on the variables and a list of references to other,

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 10

257

10: DISCRIMINATION AND CLASSIFICATION 258

Table 10.1: List of variables measured on three cultivars of Italian wine
grapes

Variable
name Description

1 Class Which of three cultivars of wine grapes
2 Alcohol Alcohol content
3 Malic Malic acid: provides a sour taste
4 Ash Ash content
5 Alcal Alcalinity of ash
6 Mg Magnesium content
7 Phenol Total phenols: compounds found in drugs and plastics
8 Flav Flavanoids: compounds found widely in plants
9 Nonf Nonflavanoid phenols

10 Proan Proanthocyanins: tannins which affect color and aging
11 Color

12 Hue

13 Abs Ratio of light absorption at two different frequencies
14 Proline Proline, an amino acid

published analyses of this data. There are 178 different wines examined.
A list of the 14 variables in this data set are listed in Table 10.1.

We can read this data directly from the website using

wines <- read.table(

"http://archive.ics.uci.edu/ml/machine-learning-databases/

wine/wine.data",

sep = ",")

The pairs() matrix scatterplot is given in Fig. 10.1. The R code that
produces this figure is

colors <- c("green", "red" ,"blue")[wines[, 1]]

newwine <- cbind(# new dataframe with jittered Class

variable

jitter(as.integer(wines[, 1])),

wines[, -1])

names(newwine)[1] <- names(wines)[1] # old name to new

variable

pairs(newwine, pch = 16, cex = .3, gap = 0, col = colors,

xaxt = "n", yaxt = "n")

10: DISCRIMINATION AND CLASSIFICATION 259

Table 10.2: Group means for each variable in the wine data. In every row, the
statistical significance is smaller than 10−4 testing equality of group means

Means
Name Class=1 Class=2 Class=3

Alcohol 13.74 12.28 13.15
Malic 2.01 1.93 3.33
Ash 2.46 2.24 2.44
Alcal 17.04 20.24 21.42
Mg 106.34 94.55 99.31
Phenol 2.84 2.26 1.68
Flav 2.98 2.08 0.78
Nonf 0.29 0.36 0.45
Proan 1.90 1.63 1.15
Color 5.53 3.09 7.40
Hue 1.06 1.06 0.68
Abs 3.16 2.79 1.68
Proline 1115.71 519.51 629.90
Sample
sizes 59 71 48
codes Green Red Blue

The Class variable is jittered to make it easier to view. The pairs()

command uses options to remove the axes and spaces between individual
panels. These instructions create a new data frame called newwine in which
the integer values of Class variable have been jittered.

Discriminant analysis helps us identify distinguishing characteristics of
the different groups. One approach is to examine each of the individual mea-
surements separately in a univariate, marginal analysis. In the top row and
left column in Fig. 10.1, we can identify individual variables that demonstrate
how individual variables differ across the three groups of wines. We can quan-
tify these individual relationships in terms of a separate one-way analysis of
variance for each. Specifically, we can perform a hypothesis test that the
means of each of the variables are the same across the three groups. If we do
this, we find that the one-way analysis of variance demonstrates an extreme
level of statistical significance for every variable in the data set. The individ-
ual group means are given in Table 10.2 for each variable in the data set.

This marginal approach is intuitive for identifying group means, but it
fails to identify discriminatory characteristics for individuals. One individual
cultivar may have a high or low value for a specified measurement, but the
histograms of the three groups may exhibit considerable overlap, making as-
sessment of group membership difficult. This overlap is readily apparent in

10: DISCRIMINATION AND CLASSIFICATION 260

Figure 10.1: Matrix scatterplot for wine data. The colors correspond to the
three cultivars

the parallel coordinate plot given in Fig. 10.2. Not all variables are included
in this figure. The choice of axes in this figure was subjective and per-
formed with a little trial and error. Parallel coordinates were introduced in
Sect. 3.5.

The univariate approach fails to include correlations between the indi-
vidual measurements. There may be combinations of variables that provide
a much higher level of discriminatory precision between the three cultivars
than this univariate approach.

Figure 10.1 suggests another way of distinguishing the three cultivars.
A number of plotted pairs are useful in identifying and discriminating between
the three cultivars in Fig. 10.1. These include (Abs, Proline), (Alcohol,
Hue), and (Color, Flav) as examples. The object of discriminant analy-
sis is to identify distinguishing characteristics between the different groups.

10: DISCRIMINATION AND CLASSIFICATION 261

Nonf Color Hue Abs Proline Phenol Flav

Figure 10.2: Parallel coordinate plot for wine data. The colors correspond
to those in Fig. 10.1

Even though there are many small plots in the figure, the use of color helps
us identify those pairs of variables that have high value in discriminating
between the three cultivars.

The following two sections describe discriminatory methods based on
linear combinations of all variables in this data set. The support vector
approach, described in Sect. 10.4, identifies specific observations that help
define regions of high discriminatory value and do not necessarily seek linear
combinations to achieve these goals.

10.2 Multinomial Logistic Regression

The reader may already be familiar with the closely-related univariate dis-
criminant method called logistic regression in which we use regression meth-
ods to distinguish between two different groups. This classification criteria
is based on a probabilistic statement about the group membership of each
observation. Let us begin with a brief review of this method.

In linear logistic regression, we assume that group membership is ex-
pressible as a binary-valued response, y = 0 or 1, conditional on a vector of
explanatory variables x. The data on the i-th observation is then (yi,xi).
The model is expressed as a probability statement about the distribution of
a future observation y and any arbitrary value of x. This model gives us
a mathematical statement of the probability that y = 0 or 1 for any given
value of x.

10: DISCRIMINATION AND CLASSIFICATION 262

Specifically, the model of logistic regression is

log

(
Pr[y = 0 | x]

Pr[y = 1 | x]

)
= β′x (10.1)

or the log-odds that y = 0 versus y = 1 is a linear function of the explanatory
variables x. Logistic regression makes no assumption about the distribution
of the explanatory variables x.

We can solve (10.1) for Pr[Y = 1] in terms of x:

Pr[Y = 1 | β′x] = exp(β′x)
/{

1 + exp(β′x)
}
.

We can estimate the parameter vector β using maximum likelihood and
perform statistical inference on it, much as we did in the previous chapter.
Intercepts are typically included in these regression coefficients. We interpret
each β parameter as the log-odds change in Pr[Y = 1] for each unit change
in the corresponding explanatory variable x.

We next describe the generalization of this model when there are more
than two groups that we want to discriminate between. The most commonly
used approach selects one category as a reference or baseline and compares all
other categories to it. This approach performs a pairwise comparison between
each of the categories to the single baseline, reference category. This approach
has a useful interpretation when there is an obvious baseline standard, and
it makes sense that all categories should be compared to it. In the case of
the wine cultivar data, there is no obvious comparison group, and we will
arbitrarily set Class=2 as the reference.

The generalization of (10.1) to model the three categories for the wine
data is the pair of simultaneous equations

log

(
Pr[Class = 1 | x]

Pr[Class = 2 | x]

)
= β′

1x

log

(
Pr[Class = 3 | x]

Pr[Class = 2 | x]

)
= β′

3x .

In this pair of equations, probabilities Pr[Class = 1] and Pr[Class =
3] are separately compared to the reference category Pr[Class = 2] with
respective regression coefficients β1 and β2.

We next see how to estimate the regression coefficients β1 and β3 in R.
The program and output appear in Output 10.1. This code begins by defin-
ing the new variable rClass as type factor and then sets the reference
category.

These regression coefficients are the pairwise comparisons between
Class=1 and =3 with the reference category. The fitted coefficients
represent log-odds ratios of the change on classification probabilities when

10: DISCRIMINATION AND CLASSIFICATION 263

Output 10.1: Multinomial logistic regression for the wine data

> require(nnet)

> wines$Class <- as.factor(wines$Class) # create factor

categories

> wines$rClass <-

+ relevel(wines$Class, ref = 2) # set reference category

> winelogit <- multinom(rClass ~ Alcohol + Ash + Alcal + Abs +

Proline,

+ data = wines, maxit = 200)

weights: 21 (12 variable)

initial value 195.552987

iter 10 value 38.789908

... ...

iter 170 value 13.330023

final value 13.325689

converged

> print(ws <- summary(winelogit), digits = 4)

Call:

multinom(formula = rClass ~ Alcohol + Ash + Alcal + Abs + Proline,

data = wines, maxit = 200)

Coefficients:

(Intercept) Alcohol Ash Alcal Abs Proline

1 -124.00 6.213 22.849 -3.3478 10.354 0.029383

3 -46.46 2.927 6.192 0.3032 -7.483 0.005955

Std. Errors:

(Intercept) Alcohol Ash Alcal Abs Proline

1 0.1139 1.6304 0.1403 1.0161 0.2612 0.032351

3 0.3588 0.4539 2.8564 0.2566 1.8766 0.003968

Residual Deviance: 26.65138

AIC: 50.65138

> tratio <- ws$coefficients / ws$standard.errors

> # two tailed p values from the t with $edf = effective df

> print(2 * (1 - pt(abs(tratio), df = ws$edf)), digits = 4)

(Intercept) Alcohol Ash Alcal Abs Proline

1 0 2.482e-03 0.00000 0.006404 4.308e-14 0.3816

3 0 3.169e-05 0.05101 0.260270 1.802e-03 0.1592

10: DISCRIMINATION AND CLASSIFICATION 264

the independent variable changes by one unit. This is the same interpreta-
tion as with binary response logistic regression.

The models are specified by

rClass ~ Alcohol + Ash + Alcal + Abs + Proline

in the multinom routine, using notation similar that we used to specify linear
models in the previous chapter.

Following some trial and error, we found that this choice of covariates
provided a good fit. Output 10.1 ends by showing how to test the statistical
significance of these regression coefficients and computes two-tailed p-values
using a t-distribution with effective df determined by edf.

The fitted multinomial distribution for each observation is obtained as
follows:

ws$fitted.values

2 1 3

1 6.405531e-18 1.000000e+00 2.109756e-21

2 3.942623e-16 1.000000e+00 1.247350e-20

3 3.273230e-11 1.000000e+00 2.887328e-12

.

176 3.195637e-03 2.996409e-10 9.968044e-01

177 3.295305e-03 4.418253e-09 9.967047e-01

178 2.347762e-05 3.582232e-15 9.999765e-01

Every row of these fitted values sums to one (or within rounding error
of one). Each row is the estimated probability of class membership for this
wine.

Let us introduce some graphical diagnostics for this model. Figure 10.3
plots the fitted model and standardized residuals using wine$Class=2 as the
reference category. Fitted values only appear below the diagonal because
Pr[Y = 1] and Pr[Y = 3] must sum to less than one. A perfect fit would
have all of these values in each of the corners of the triangle: green (for
Class=1) in the lower right, red (Class=2, the reference category) at the
origin in the lower left, and blue (Class=3) at the upper left.

Let us define standardized residuals for this model:

(obs− p̂)
/√

p̂(1− p̂) . (10.2)

There are three residuals for each observation in the wine data. The
three p̂ values are obtained from ws$fitted.values, above. The obs is the
indicator of observed group membership for each category. In the wine data,
with three categories, an observation in Class=3 will have obs = (0, 0, 1).

The residuals are standardized to have zero means and unit variances. We
should not expect these to look normally distributed because obs is binary

10: DISCRIMINATION AND CLASSIFICATION 265

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fitted probability of y=1

F
itt

ed
 p

ro
ba

bi
lit

y
of

 y
=

3
Observation codes:
y=1 category
y=2 category (ref)
y=3 category

−0.1 0.0 0.1 0.2

−
3

−
2

−
1

0
1

2

Std residual for fitted probability of y=1

S
td

 r
es

id
ua

l f
or

 y
=

3

Figure 10.3: Fitted and standardized residuals in multivariate logistic model
wine data using Class=2 as the reference category. These plots use the same
color codes as in Figs. 10.1 and 10.2

valued so residual values equal to zero are not possible. Every observation
will yield one residual for every category so every cultivar will have three
residuals. Figure 10.3 shows the scatterplot of residuals for the Class=1 and
=3 categories. The residuals of observed values all fall into different orthants,
again because the obs values are either zero or one. Specifically, when one of
the three residuals is positive valued, then the other two must be negative.
There is one extreme residual with an absolute value of five and only a few
with values greater than three, so we conclude that the model contains few
outliers.

Let us conclude this section with a brief discussion of this generalization
of logistic regression to more than two categories. Multinomial logistic regres-
sion does not have a large collection of diagnostics unlike logistic regression
for binary-valued responses. We described a set of residuals in this section.

An advantage to the approach of comparing all categories to a reference
is that it supports the independence of irrelevant alternatives. Specifically,
if observations from a new category are added then the results remain un-
changed. Similarly, if observations from a non-reference category are deleted,
then, again, the results remain unchanged. Independence of irrelevant alter-
natives follows from the approach of performing a series of pairwise compar-
isons with a baseline category. See Exercise 10.9 for another approach to
generalizing logistic regression to multinomial data.

10.3 Linear Discriminant Analysis

Linear discrimination analysis allows us to identify a linear combination of
variables that can be used to clearly identify the group membership of all
individuals. Unlike logistic regression which makes no assumption about the

10: DISCRIMINATION AND CLASSIFICATION 266

Output 10.2: Code to produce Fig. 10.4

library(MASS)

ld <- lda(Class ~ ., data = wines)

loading <- as.matrix(wines[, 2 : 14]) %*% ld$scaling

plot(loading, col = c(6, 2, 4)[wines[, 1]],

pch = 16, cex = 1.25,

xlab = "First linear discriminator",

ylab = "Second linear discriminator")

for (i in 1 : 3) # add class number to

each centroid

{

centx <- mean(loading[wines[,1] == i,] [, 1])

centy <- mean(loading[wines[,1] == i,] [, 2])

text(centx, centy, i, cex = 2)

}

explanatory variables x, linear discriminant analysis assumes that the xs
have multivariate normal distributions with different means for each group
but the same covariance across all groups. These assumptions will be made
clear again below, when we develop the methodology for this approach.

In Fig. 10.4 we apply the linear discrimination analysis to the wine data
and plot the resulting groups in colors and identifying Class number. The
lda() function is the program we need. The code that performs the analysis
in R and produces Fig. 10.4 is given in Output 10.2.

The first and second discriminators are linear combinations of variables
that best discriminate between the three cultivars of wines. The linear
weights are listed as LD1 and LD2 in Output 10.3. The loadings are the
linear combinations of the explanatory variables, calculated in the code and
plotted in Fig. 10.4. This figure illustrates a clear distinction between the
three cultivars.

The fitted (posterior) estimated probabilities of group membership can be
obtained as predict(ld)$posterior. The plot of these appears in Fig. 10.5.
This plot is much better than the corresponding Fig. 10.3 for the multinomial
logistic regression.

The remainder of this section introduces some methodology and shows
how the mechanics of linear discrimination work. As we work out the theory,
we will refer to an idealized example of discriminating between a mixture of
two normal distributions depicted in Fig. 10.6. Then we will return to the
example of the three wine cultivars.

Suppose we have K different populations (for some K = 2, 3, . . .) and
each population is expressible as a p-dimensional normal population with re-

10: DISCRIMINATION AND CLASSIFICATION 267

−14 −12 −10 −8 −6 −4

10
12

14
16

18

First linear discriminator

S
ec

on
d

lin
ea

r
di

sc
rim

in
at

or 1

2

3

Figure 10.4: Linear discrimination for wine data using the same color codes
as in Figs. 10.1 and 10.2

.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fitted probability of y=1

F
itt

ed
 p

ro
ba

bi
lit

y
of

 y
=

3

Observation codes:

y=1 category

y=2 category (ref)

y=3 category

Figure 10.5: Fitted linear discrimination posterior probabilities for wine data
using the same color codes as in Figs. 10.1 and 10.2

.

10: DISCRIMINATION AND CLASSIFICATION 268

Output 10.3: Linear discriminant analysis lda for the wine data

Prior probabilities of groups:

1 2 3

0.3314607 0.3988764 0.2696629

Group means:

Alcohol Malic Ash Alcal Mg Phenol

Flav

1 13.74475 2.010678 2.455593 17.03729 106.3390 2.840169

2.9823729

2 12.27873 1.932676 2.244789 20.23803 94.5493 2.258873

2.0808451

3 13.15375 3.333750 2.437083 21.41667 99.3125 1.678750

0.7814583

Nonf Proan Color Hue Abs Proline

1 0.290000 1.899322 5.528305 1.0620339 3.157797 1115.7119

2 0.363662 1.630282 3.086620 1.0563380 2.785352 519.5070

3 0.447500 1.153542 7.396250 0.6827083 1.683542 629.8958

Coefficients of linear discriminants:

LD1 LD2

Alcohol -0.403274956 0.8718833272

Malic 0.165185223 0.3051811048

Ash -0.368792093 2.3459219420

Alcal 0.154783909 -0.1463931519

Mg -0.002162757 -0.0004611477

Phenol 0.617931702 -0.0324979420

Flav -1.661172871 -0.4916834144

Nonf -1.495756932 -1.6303752589

Proan 0.134093115 -0.3070371492

Color 0.355006846 0.2530559406

Hue -0.819785218 -1.5182643908

Abs -1.157612096 0.0512054337

Proline -0.002690475 0.0028540202

Proportion of trace:

LD1 LD2

0.6875 0.3125

10: DISCRIMINATION AND CLASSIFICATION 269

spective means μj (j = 1, . . . ,K) and all with the same covariance matrix Σ.
(It will be useful to review the functional form of the multivariate normal
distribution (7.2) at this point.) We also have mixing probabilities πj repre-
senting the probability that a randomly selected observation is sampled from
Population j.

The parameters πj are called prior probabilities because they represent
characteristics of the population that are known to us before any data is
observed. Of course, these can be estimated from the data, as is frequently
the case in practice. In Output 10.3, for example, these prior probabilities
are the observed sample proportions of the three wine cultivars. The means
μj and the covariance Σ common to all populations will be assumed to be
known, but, in practice, these will also be estimated from the data.

Given a p-dimensional observation x we can express the prior proba-
bilities

Pr[Population j] = πj

that a randomly selected observation is sampled from Population j.
The conditional density function of x given that it was sampled from

Population j is

f(x | Population j) = f(x | μj , Σ)

for a multivariate normal density function given in (7.2) with mean μj and
variance Σ.

As an example, Fig. 10.6 displays the density function of a mixture of two
bivariate normal distributions. Population 1 occurs with (prior) probability
π1 = 0.6 and Population 2 occurs with π2 = 0.4. By prior probability we
mean that, before having observed any data, we will guess that there is a 60%
chance that data will be sampled from Population 1. In these illustrations, the
two population means are μ′

1 = (−1,−1) and μ′
2 = (1, 1). Both populations

have the same variance matrix

Σ =

(
1 −0.4

−0.4 1.2

)
.

This example is illustrated in Fig. 10.6, both as a perspective and as con-
tour plots. The front/left normal (with π1 = 0.6) is a little taller than the
second population with π2 = 0.4. Both distributions exhibit slight elliptical
orientations from the upper left to lower right. Given a sampled observation
x = (x1, x2), we want the best way to distinguish which of the two distribu-
tions it was sampled from. We will come back to this example again as we
develop the mathematical background.

10: DISCRIMINATION AND CLASSIFICATION 270

Figure 10.6: A mixture of two bivariate normal density functions plotted
as contours and perspective. The red line is the boundary of the linear
discriminator, given at (10.6)

Getting back to the general setting, the joint density of observing x from
Population j is

f(x was sampled from Population j) = πj f(x | μj , Σ)

That is, we have to select the jth population and also observe x from it.
The marginal density for a value x sampled from an unspecified

population

f(x) =

K∑

j

πj f(x | μi, Σ)

is the sum over all possible population values of j = 1, . . . ,K .
The posterior probability density of sampling from Population k for a

given observation x is

f(Population k | x) = πk f(x | μk, Σ)

/
K∑

j

πj f(x | μj , Σ) . (10.3)

This is the basic formula needed to estimate the population that obser-
vation x was sampled from. The maximum a posteriori (MAP) estimator

k̂ directs us to choose the value of k that makes the probability in (10.3) as
large as possible. Intuitively this makes sense. We want to identify the most
likely population. The mode is one way to estimate this. The lda() routine
in R calculates the K different values of (10.3) for us. The remainder of the

10: DISCRIMINATION AND CLASSIFICATION 271

mathematical development provides the detail of the computation when the
data x is sampled from one of K different multivariate normal populations.

Notice the denominator of (10.3) is the same for every value of k so the
MAP estimator of k

k̂ = Value of k that maximizes πk f(x | μk, Σ).

is the value that maximizes the numerator of (10.3).
The value of k that maximizes πk f(x | μk, Σ) will also maximize the

logarithm of this quantity.
We next need to use the mathematical form of the multivariate nor-

mal density f . Recall from (7.2) that the p-dimensional multivariate normal
distribution with mean μk and variance Σ has density function

f(x) =
1

2πp/2Det(Σ)1/2
exp

{−1/2(x− μk)
′Σ−1(x− μk)

}
.

Then we can write

log {πkf(x | µk, Σ)} = log(πk)− log
{
(2π)p/2Det(Σ)1/2

}
− 1/2 (x − µk)

′Σ−1(x − µk).

The second term involving (2π)p/2 and Det(Σ) does not depend on either
k or the data x, so this term can be ignored and will be omitted from further
discussion.

We next want to find the value of k to maximize

log(πk)− 1/2 (x− μk)
′Σ−1(x− μk)

= log(πk)+x′Σ−1μk−1/2μ′
kΣ

−1μk − 1/2x′Σ−1x

after we expand the quadratic form in x.
The last term in x′Σ−1x does not depend on the choice of k and can

also be ignored.
Finally, the discriminant function, defined by

δk(x) = x′Σ−1μk − 1/2μ′
kΣ

−1μk + log(πk) ,

is the function we need to evaluate in order to choose the appropriate pop-
ulation that x was sampled from. Our MAP estimate of k is that value
which maximizes δk(x). We only have to evaluate these K functions δk(x)
and pick the largest.

Only the first term in δk(x) depends on the data x. This is a linear func-
tion of x, leading us to use the name, linear discrimination. In practice, the
parameters (μk, Σ) are replaced by their usual estimators. The lda() func-
tion in R calculates the δk(x) and evaluates the posterior probability (10.3)
for every observation in the data.

10: DISCRIMINATION AND CLASSIFICATION 272

Let us be specific and ask how the linear discrimination process distin-
guishes between two different populations denoted j and k. The boundary
of this process occurs for values of x for which

δj(x) = δk(x).

That is, the solutions to this equation is a set of hypothetical data values
x that would provide equal amounts of evidence for both of these different
populations.

The solutions of the equation δj(x) = δk(x) occur for values of x in
which

log(πk/πj)− 1/2 (μk + μj)
′Σ−1(μk − μj) + x′Σ−1(μk − μj) = 0 (10.4)

or more simply,

Constant + x′Σ−1(μk − μj) = 0 (10.5)

where the Constant depends on j and k but not on x.
If we return to the parameter values in the example of normal mixtures,

(10.4) becomes

0.40546+ (x1, x2)
′(−3.08,−2.69) = 0

or

x2 = 0.1506− 1.1428x1. (10.6)

This last equation is plotted as the red line in Fig. 10.6 and clearly provides
a good dividing line to discriminate between the two mixed populations.

We can generalize this example by examining the linear function of x
in (10.5). Specifically, the Fisher linear discriminant function between pop-
ulations j and k is

Ljk(x) = x′S−1(μ̂k − μ̂j) . (10.7)

Parameter values in (10.5) have been replaced by their usual estimates
in (10.7) and the constant term has been ignored. Specifically, population
means μk are replaced by the sampled within-group means. The covariance
matrix Σ is replaced by the sample covariance matrix S assuming that the
covariance is the same in all groups. The discriminator in (10.7) is a scalar-
valued, linear function of a vector of data values, x . More generally, when
discriminating between K groups, there will be (at most) K − 1 linear
discrimination functions. Two linear discriminant functions are plotted in
Fig. 10.4 for the three wine cultivars.

10: DISCRIMINATION AND CLASSIFICATION 273

AB

C

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

3

SVM classification plot

x1
x2

Figure 10.7: Examples of support vector methods: linear and kernel classifiers

We next describe a method that allows the computer to identify a more
general classification rule between groups of individuals. This rule does not
begin with any pre-specified functional form.

10.4 Support Vector Machine

The support vector machine (SVM) is a group of classification algorithms that
include a variety of parametric and nonparametric models. Parametric mod-
els include straight lines and similar regression methods. The nonparametric
methods contain a variety of kernel smoothing techniques. The programs
in R include features that estimate the classification probabilities using cross
validation as well as training samples in machine learning.

Two examples are presented in Fig. 10.7. The left panel illustrates a
linear SVM classifier. Line A does not completely classify the red and blue
groups of samples. Line B classifies correctly but has small margins for
misclassification. Line C, the product of a SVM, provides the largest possible
margins. These margins are given with dotted lines.

Clearly, those observations that are closest to the margins are most im-
portant to the determination of the classification regions. Such observations
are referred to as support vectors. The support vectors in this figure are plot-
ted with black circles. Observations that define and lie on the periphery of
the regions of different colored points are support vectors, as well. Support
vectors will be discussed again below.

The right panel of Fig. 10.7 is the result of a SVM with a kernel smoothing
classifier. Kernel smoothing is closely related to the loess fits in Fig. 3.16 and
in the kriging map of altitudes of US cities in Fig. 3.14. Unlike the linear

10: DISCRIMINATION AND CLASSIFICATION 274

classification regions assumed in the previous two sections of this chapter
and in the left panel of Fig. 10.7, kernel smoothing on the right panel of this
figure makes no assumption on the shape of the regions.

The kernel smooth produced by SVM classifies future observations with
confidence based on the intensity of the plotted color. The lighter-colored
regions have low confidence and white represents complete indifference, as
in the wavy region across the center. A functional form for the boundary
between these two regions is not specified, but the SVM program clearly
locates it.

Note that the upper corners of this figure are also plotted as white. If
any future observations were to fall in either of the extreme top corners, then
SVM would not automatically classify these as the blue type. There have
not been any known observations of that type appearing in either of these
regions, so there is no reason to classify new observations one way or the other
with any degree of certainty. The concept of classifying new observations is
described in the discussion of training samples and test samples below.

The data in the right panel of Fig. 10.7 was generated as 250 pairs of
correlated normal random variates. We omitted a small number of observa-
tions near a sine wave region running through the data. The groups above
and below this sine wave are plotted as circles and triangles, respectively.
Those observations are identified as support vectors. These are critical to
estimating the boundaries plotted in solid. The search for support vectors is
similar to observations located on the convex hull, except that the classifi-
cation regions are not necessarily convex. (An example of a plotted convex
hull appears in Fig. 3.11.) The SVM algorithm, then, includes a search for
classification regions as well as those observations that bound and determine
the regions.

The right panel of Fig. 10.7 was produced by the R code in Output 10.4.
In this code, we begin by generating 250 pairs of bivariate normals. The
sine-wave shaped classification region is called wavy. The code removes all
observations that are close to this region. A data.frame is created, and only
group membership is identified to the ksvm program. The first and second
index are reversed in the data.frame. By default, plotted SVM output puts
the axis for the second variable on the bottom and the axis for the first
variable on the left. This is contrary to the usual way this is done in R.

The index of the support vectors is obtained and the support vector in
the original data is available in R using

svi <- alphaindex(sv)[[1]]

all[svi,]

This code was used to identify and highlight the support vectors in the left
panel of Fig. 10.7.

The SVM works well for these two artificial examples. Before we apply
the SVM to the wine data, let us introduce a method of testing the accuracy
of a classification model called cross validation.

10: DISCRIMINATION AND CLASSIFICATION 275

Output 10.4: Create a nonlinear classification and identify the support vec-
tors in Fig.10.7

library(kernlab, mvtnorm) # for ksvm and

rmvnorm

x <- rmvnorm(n = 250, mean = c(0, 0),

sigma = matrix(c(1, .1, .1, 1), 2, 2))

wavy <- sin(pi * x[,1]) / 2 # wavy boundary

include <- (abs(wavy - x[,2]) > .25)# 2x width of

boundary

x <- x[include,] # include those

inside

wavy <- wavy[include] # the wavy

boundary

group <- 1 + (x[,2] > wavy) # above or below

boundary?

all <- data.frame(x = x[,c(2, 1)],

group = group) # build a data.frame

colnames(all) <- c("x2", "x1", "group")

sv <-ksvm(group ~., data = all, type = "C-svc")

plot(sv, data=all)

j

As with any classification method, we are deluding ourselves if, after
fitting the model to some data, we then claim how well the model appears
to predict all of the observations the data. The model was built around the
data so such a claim is hollow. A much stronger claim would be to see how
well the model correctly classifies some future observations that were not part
of the model building process. We rarely have access to additional data so
the idea of cross validation is to fit the model and then test it with different
parts of the existing data.

Cross validation, then, is a method for allowing us to fit and then test
on different portions of the data set. Specifically, an n-fold cross validation
randomly partitions a data set into n nearly equally sized sets. (Typically,
n is an integer in the range between 5 and 10.) One set, called the testing
data set, is omitted. Then the model is fitted using the remaining n−1 sets.
These are referred to as the training data set.

One training data set is fitted and then cross validation examines how
well the resulting model classifies the observations in the omitted, testing data
set. The cross-validation process then systematically replaces the omitted
data and removes a different set. This process is repeated, separately fitting
and testing n different models. Cross validation produces a more reliable
estimate of the fitting accuracy. We can also compare the n different fitted

10: DISCRIMINATION AND CLASSIFICATION 276

models to examine the consistency of the model building process.
The process of cross validation produces an estimate of the accuracy of

the model but also has a hidden benefit, referred to as machine learning. In
the process of producing an n-fold estimate of the classification error, the
SCV also had to fit n different models. Some of these models may have
better properties than the original model fitted from the entire data. In this
manner, the SVM appears to learn about better models.

Some useful R code for the wine example includes

> (svw <- ksvm(Class ~ . , data = wines,

+ type = "C-svc", cross = 5))

. . .

Cross validation error : 0.01127

illustrates how we obtain an estimate of the five-fold cross-validation error.
See Exercise 10.10 for more on the fold parameter when performing a cross
validation.

The alphaindex() command produces three separate lists of support
vectors: one for each of the three cultivars. There may be some duplication
when support vectors are on the boundary for more than one of the three
groups. We can combine these lists and remove duplicates as follows

> svi <- (c(alphaindex(svw)[[1]], alphaindex(svw)[[2]],

+ alphaindex(svw)[[3]])) # master list of

support vectors

> svi <- svi[!duplicated(svi)] # remove duplicates

using the duplicated() function in R.
We can use this code to identify and plot the support vectors in the wine

data. The original data has 178 observations on three cultivars. In Fig. 10.8,
only the support vectors are plotted, using the same colors as before. There
are 69 support vectors plotted in this figure, a considerable simplification over
the corresponding plot in Fig. 10.1. This approach would also be beneficial
with a much larger sample size and each panel would be overwhelmed with
data.

The SVM will also produce estimated multinomial prediction probabili-
ties of individual observations belonging to each of the different groups. In
the case of the wine cultivar data, we have

> svw <- ksvm(Class ~ . , data = wines, type = "C-svc",

prob.model = T)

> print(predict(svw, wines[,-1], type="probabilities"),

digits=2)

10: DISCRIMINATION AND CLASSIFICATION 277

Class

Alcohol

Malic

Ash

Alcal

Mg

Phenol

Flav

Nonf

Proan

Color

Hue

Abs

Proline

Figure 10.8: SVM classifier for the three wine cultivars. Only the support
vectors are shown

1 2 3

[1,] 0.99129 0.00280 0.0059

[2,] 0.98174 0.00977 0.0085

. . .

[177,] 0.00826 0.00470 0.9870

[178,] 0.00690 0.00451 0.9886

where each row sums to one and estimates the probability that this observa-
tion belongs to the three different cultivars.

From these estimated multinomial probabilities, we can plot the fitted
and residual values, with analogy to Fig. 10.3. Again, we use the second
category as reference and continue to use the same color codes for the three
classes in this example.

10: DISCRIMINATION AND CLASSIFICATION 278

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fitted probability of y=1

F
itt

ed
 p

ro
ba

bi
lit

y
of

 y
=

3
Observation codes:
y=1 category
y=2 category (ref)
y=3 category

−20 −10 0 10 20 30 40

−
0.

8
−

0.
4

0.
0

0.
4

Std residual for fitted probability of y=1

S
td

 r
es

id
ua

l f
or

 y
=

3

Figure 10.9: SVM fitted probabilities and residuals for the wine cultivars

The SVM fit in Fig. 10.9 is clearly accurate: The fitted probabilities for
the three cultivars place them squarely in the three corners of the triangle-
shaped figure, just as we would expect of a well-fitting model. There is no
overlapping of fitted categories as visible in Fig. 10.3 showing that SVM pro-
duces a much better fit. However, the residual plot is not useful and exhibits
a distorted horizontal scale, owing to the small probabilities involved.

There is much more that can be said about SVM including the many
options and different kernel smoothing functions available, but this is a good
place to stop and review.

What are the good and bad features of the different discrimination meth-
ods described so far in this chapter? Figure 10.9 illustrates an excellent dis-
crimination of the three wine cultivars. This figure illustrates a much better
fit to the data than the corresponding plot that multinomial logistic regres-
sion provides us in Fig. 10.3. Unfortunately, SVM produces estimates but no
model that can be expressed as a mathematical formula. Conversely, SVM is
extremely flexible and able to detect the wavy boundary in Fig. 10.7 without
any additional specification on our part.

Linear discrimination provides both a mathematical form and a useful
diagram in Fig. 10.4. The two axes of this figure are made of linear-weighted
composite measures that lack a simple explanation. Similarly, multinomial
logistic regression also expresses discrimination functions on the basis of linear
combinations of the data values.

We next describe a classification method that combines the regression
models of the previous chapter with a classification tree.

10.5 Regression Trees

We can also build classification rules based on hierarchical trees. These meth-
ods will work well for classifying groups based on a continuous outcome (see
Exercise 10.16), but we will concentrate on discrete group membership in

10: DISCRIMINATION AND CLASSIFICATION 279

this section. The methods of this section are also referred to as recursive
partitioning and as computer-aided regression trees (CART).

Let us look at a regression tree for the wine data. The regression tree
appearing in Fig. 10.10 was built using the R code:

winetree <- mvpart(Class ~ . , data = wines, method =

"class", size = 4)

The R program mvtree (in the library of the same name) was used to
draw this picture. At the tips of the leaves, this program draws a small
histogram of the three different categories of wines. The R program rtree

(also in a library of the same name) has a similar function.
The mvpart program has a syntax that is identical to that of the re-

gression program specifying the dependent variable (Class) and a list of the
explanatory variables to be considered in the model. The period in the no-
tation Class ~ . is shorthand for a list of all variables in the data frame.
The size variable specifies the number of leaves on the tree. The program
will choose a value for you if this number is not included. Diagnostics for
choosing the size of the tree will be discussed below.

The printed tree in Fig. 10.10 can be described in words. The first split on
Proline separates mode of the Class=1 wines. The second split on Flavonoids
removes a small number of the other two classes from this initial split. The
branch on Abs segregates the Class=2 and 3 wines. At the bottom of the
tree, there is a summary of several diagnostics that we will describe next in
a larger example.

Let us introduce another data set to explain CART in more detail. The
crabs data set in the MASS library lists five dimensions made on each of 200
crabs Leptograpsus variegatus, 50 each of the combinations of two sexes and
two color variants (blue or orange). The five measurements (in mm) and
symbols are frontal lobe size (FL), rear width (RW), carapace length (CL),
carapace width (CW), and body depth (BD). We will use the regression tree
approach to classify the four categories of sex and color on the basis of these
five measurements.

The program in Output 10.5 creates four group categories and appends
these to the original crab data, producing a new data frame called cp. The
groups of sex/color combinations are coded as 1–4 and also using character
symbols indicating color (B and O) and upper/lower case for M/F. This code
prints out one observation from each of the four groups before and after this
transformation. Printing out some data allows us to see if this is being done
correctly. This is a good programming habit to develop.

The regression tree for the crab data appears in Fig. 10.11. Sometimes,
the regression tree can grow to unmanageable complexity so the maximum
number of branches is specified by the size = option in the mvpart statement
in Output 10.5. Every branch ends with a set of the frequencies of the four
categories of crabs and plots a small histogram. The symbol of the modal

10: DISCRIMINATION AND CLASSIFICATION 280

Proline>=755

Flav>=2.165 Abs>=2.115

Proline< 755

Flav< 2.165 Abs< 2.115

1
57/2/0

3
0/2/6

2
2/61/2

3
0/6/40

Error : 0.131 CV Error : 0.252 SE : 0.0447
Missclass rates : Null = 0.601 : Model = 0.0787 : CV = 0.152

Figure 10.10: Regression tree of wines

category is also printed for us. The first split, for example, is made on large
values (≥13.95mm) of rear width RW and this branch segregates a majority
(35) of the orange female crabs from all others.

There are a number of useful diagnostics available to us that help guide
us to identify an optimal tree size and to estimate the predictive value of the
tree. As with many statistical models, there is a trade-off between complexity
and precision. A tree with more branches will fit the data better but suffers
from the additional burden of its complexity. Similarly, a tree that was built
from a data set will appear to classify those values well. Ideally, we would
like to make a statement about how a given tree predicts some new set of
additional data.

A useful way to approach the competing goals of prediction and complex-
ity is to consider cross validation, a topic introduced in Sect. 10.4. Specifi-
cally, a number of the observations are omitted and a new regression tree is
built based on the remaining observations. Then we measure how well the
resulting tree classifies the omitted values.

We can perform a cross validation simulation of the regression model
method by fitting a large tree with many splits and then computing statistics
on each of the smaller sized trees. In R we do this for the crab data as follows:

10: DISCRIMINATION AND CLASSIFICATION 281

Output 10.5: Program to create four groups of crabs and produce Fig. 10.11

> library(MASS)

> data(crabs)

> crabs[c(1, 51, 101, 151),] # look at some raw data

sp sex index FL RW CL CW BD

1 B M 1 8.1 6.7 16.1 19.0 7.0

51 B F 1 7.2 6.5 14.7 17.1 6.1

101 O M 1 9.1 6.9 16.7 18.6 7.4

151 O F 1 10.7 9.7 21.4 24.0 9.8

> group <- 1 + 2 * (crabs[,1] == "O") + (crabs[,2] == "F")

> groupch = c("B", "b", "O", "o")[group]

> cg <- cbind(crabs, group, groupch)

> cg[c(1, 51, 101, 151),] # look at the appended data

sp sex index FL RW CL CW BD group groupch

1 B M 1 8.1 6.7 16.1 19.0 7.0 1 B

51 B F 1 7.2 6.5 14.7 17.1 6.1 2 b

101 O M 1 9.1 6.9 16.7 18.6 7.4 3 O

151 O F 1 10.7 9.7 21.4 24.0 9.8 4 o

> library(mvpart) # draw the regression tree

> crabtree <- mvpart(groupch ~ FL + RW + CL + CW + BD, data = cg,

+ method = "class", size = 7)

crabtree <- mvpart(groupch ~ FL + RW + CL + CW + BD,

data = cg, method = "class", size = 20)

crabcp <- printcp(crabtree)

The printcp() program produces cross-validated errors on models up
to the size specified by the size parameter in mvpart(). This program also
calculates a complexity parameter (CP) that takes into account the size of the
tree in addition to its predictive value. These values are plotted in Fig. 10.12
for the crab data.

The cross-validation errors (left scale) and CP statistic (right scale) de-
crease with model size. The largest gains appear among the smallest models.
There is much slower improvement in models with more than five splits. This
figure was used to choose the model size in Fig. 10.11.

Finally, it is possible to completely automate the model building process.
For example, we can specify that the regression tree continues branching until
no additional splits result in a specified improvement in the CP statistic.

Some colorful language has also been developed among those who study
this methodology. Reducing the complexity of an existing tree is called,
appropriately enough, pruning and the many random trees resulting from
cross-validation studies are often referred to as a forest.

10: DISCRIMINATION AND CLASSIFICATION 282

RW< 13.95

BD< 11.95

CW>=35.4

FL< 17.3 RW>=11.85

RW>=13.95

BD>=11.95

CW< 35.4

FL>=17.3 RW< 11.85b
28/19/5/6

B
9/20/2/1

O
0/4/0/13

o
2/0/8/1

O
0/1/0/18

o
11/6/35/11

Error : 0.52 CV Error : 0.607 SE : 0.0469

Missclass rates : Null = 0.75 : Model = 0.39 : CV = 0.455

Figure 10.11: Regression tree classification of 200 crabs

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Number of splits

C
ro

ss
 v

al
id

at
ed

 e
rr

or
s

Std error

Rel error

CP

0
0.

1
0.

2

Figure 10.12: Diagnostics of crab regression tree

10: DISCRIMINATION AND CLASSIFICATION 283

10.6 Exercises

Exercises 10.5 through 10.8 refer to the analysis of large data sets. The data
is available in the kernlab library in R and also in the University of California
at Irvine Machine Learning Repository. This repository is located at

http://archive.ics.uci.edu/ml/index.html

and is an excellent resource for other data sets.

10.1 In times of stress, the body undergoes a process called vasoconstriction
in which blood vessels at the extremities are closed, forcing blood to
the central organs. Vasoconstriction can also occur after taking a deep
breath. The data set vaso in the robustbase library summarizes the
vasoconstriction (or not) of subjects’ fingers along with their breathing
volumes and rates.

(a) Plot the breath rates and volumes using different colors for
those with and without vasoconstriction. Perform any of the discrim-
ination methods and see how well these distinguish between the two
groups.

(b) Repeat your analysis of part (a) but first take logs of the
explanatory variables. Which analysis do you prefer?

10.2 The human leukocyte antigen system (HLA) is a group of genes on
chromosome 6 that are linked to the immune system. The data set
hla in the gap library contains HLA data on six markers for 177
schizophrenia patients and 94 matched healthy controls. How can we
use these six markers to distinguish between the patients and their
controls?

10.3 The data set skulls in the HSAUR2 library lists four-dimensional mea-
surements made on ancient Egyptian skulls from five different epochs,
hundreds of years apart. Differences are attributed to interbreeding
with different immigrant populations. Even though the epochs are
ordered in times, do you see a break in the ordering, equivalent to a
major change in the genetic mix?

10.4 The data set iris has four measurements on three different species of
150 irises. Figure 3.21 shows the parallel coordinate plot of this data.
Describe the factor loadings from a discriminant analysis and try to
reconcile these with what you see in this figure.

10.5 The musk data set in the kernlab is an example of a discrimination
problem on a large data set. In this data set there are 476 molecules:
207 are classified as a musk and the remaining 269 are not. The goal

10: DISCRIMINATION AND CLASSIFICATION 284

is to identify a classification of the musks from non-musks using any
combination of the 166 explanatory variables. These explanatory vari-
ables measure molecular distances in different directions. The original
data appears at

https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)

with additional information including a complete description of the ex-
planatory variables. The UCI website contains a list of other methods
that have been tried on this data.

10.6 The promotergene data set in the kernlab is another example of a
discrimination problem in a large data set. This data set contains
106 gene sequences, classified as being either promoters or not. The
explanatory variables are the lists of DNA base values preceding the
gene of interest. The base values take the values a, c, g, or t corre-
sponding to adenine, cytosine, guanine, or thymine, respectively. Use
the base values to find a rule for discriminating between promoters
and non-promoters. Additional information on this data can be found
on the UCI website.

10.7 The spam data set in the kernlab library was gathered in an attempt
to distinguish emails that are advertisements (spam) from non-spam.
There are 4601 email messages collected by Hewlett-Packard and of
these, 1813 are classified as spam and 2788 are non-spam. There are
57 explanatory variables that measure the frequency of various words
such as “free” or “credit.” Other explanatory variables count the
frequency of different punctuation symbols or the length of strings of
all capital letters. See the help file for a detailed explanation of the
variables in this data set. Can you find a good rule to distinguish
spam from non-spam?

10.8 The UCI data set at

https://archive.ics.uci.edu/ml/datasets/Post-Operative

+Patient

lists outcomes of 90 postoperative patients and several attributes such
as blood pressure, body core temperature, and oxygen saturation. The
object is to classify where patients should be sent from the postoper-
ative recovery area. There are three choices: intensive care, regular
hospital floor, and discharge. Use any of the methods discussed in this
chapter to build a suitable model that classifies patients.

10: DISCRIMINATION AND CLASSIFICATION 285

10.9 Another approach to generalizing logistic regression to multinomial
data has been developed by McFadden (1974). This method compares
each category to all others, combined. McFadden, an economist, was
concerned with modeling consumer choices, made to the exclusion of
all other options. This explanation motivates models of the form

log

(
Pr[y = i | x]

Pr[y �= i | x]

)
= β′

ix

for each choice i.

(a) Solve for Pr[y = i] and show that this model is over-para-
meterized. (What happens when you add the same vector to all βs?)
One solution to this problem is to restrict β1 = 0.

(b) Compare this restricted model to the approach taken in Sect.
10.2 where the reference category corresponds to y = 1. Are these
two approaches the same? How are they different?

(c) Does this approach support independence of irrelevant alter-
natives?

10.10 How large should n be in an n-fold cross validation? Try different
values of n to see how much these error estimates vary. Useful code
may include

(sv <- ksvm(group ~., data = mydata, type = "C-svc",

cross = 5))

cross(sv)

using the cross() function to capture the cross-validation error esti-
mate. Plot these estimates for different values of n and comment on
the effect of changing the sample size.

10.11 The GlaucomaM data frame in the TH.data library contains 62 mea-
surements on 196 eyes in two classes: normal and glaucomatous. The
subjects in the two groups were matched by age and sex to provide
balance. This represents a large number of measurements on each
eye. Use the methods described in this chapter to identify a much
smaller set of measurements that can be used to characterize the two
groups.

10.12 The data frame stagec in the rpart library summarizes observations
made on 146 men treated for Stage C prostate cancer. There are
eight measurements made on each patient including whether or not
the cancer has progressed. Use regression tree methods to indicate
important prognostic measures on whether the cancer will progress
from this data.

10: DISCRIMINATION AND CLASSIFICATION 286

10.13 Kyphosis is a severe curvature of the spine. The kyphosis data frame
in the rpart library presents history of 81 children who had corrective
spinal surgery and whether this resulted in kyphosis. The data frame
includes three additional variables indicating the extent of the surgery
and the child’s age in months.

(a) Use regression trees to identify risk factors for kyphosis.

(b) Similarly, use logistic regression to build a linear model of the
log-odds risk of kyphosis.

(c) Discuss these two different approaches to modeling kyphosis.
Which model is more intuitive? Which is easier to explain and use?

10.14 The data set mammoexp in the TH.data library describes a survey of
412 women’s attitudes to and experiences with mammography. Among
the data are the respondent’s perceived benefits of mammography and
whether a close female relative had been diagnosed with breast cancer.
A suitable response to these measurements is the variable ME that
measures the time since the woman had her last mammography. The
categorical responses to this variable are never, within a year, and over
a year ago. Use a regression tree approach to model the time since
last mammography. If you were a public health official in charge of
educating the public about the importance of periodic mammography
examinations, what is the most effective message that you can give?

10.15 A haplotype is a strand of genetic material on one chromosome that
is inherited as an intact gene from one parent. Lander et al. (2011)
collected and examined the lengths of haplotypes at 27 loci on 1915
beech trees (Fagus sylvatica) in France. The authors of this study
examined historical data to verify that these stands of trees existed at
least 200 years ago. The trees were growing in three geographically
separated areas, referred to as East, South, and West in the data. The
data is available for download at

http : //dx.doi.org/10.5061/dryad.q98202jk.

Use linear discriminant analysis to show that the East and South pop-
ulations can be clearly distinguished but the West population overlaps
both of these.

10.16 Regression trees are not limited to classifying individuals into discrete
groups. These methods will also estimate cut points in continuous
measurements and thereby create groups of data. Build a regression
tree to model the mpg values in the car data introduced in Table 9.1.
Show that the most important classification is the number of cylinders
and, to a smaller degree, the displacement.

Chapter 11

Clustering

C LUSTERING is a nonparametric method of arranging similar
observations together, often in a graphical display that can be used to

detect patterns of grouping and outliers. The approach is usually considered
nonparametric because there is no specified underlying distribution or model
that we need to assume. R offers great flexibility in graphical capability that
makes these methods possible. The largest difference between these methods
and those considered in the previous chapter is that in this chapter we do
not know group membership a priori, or whether in fact there are different
groups at all. Similarly, part of the methods discussed here include estimates
of the number of dissimilar groups present in the data.

11.1 Hierarchical Clustering

Consider the statistics on the number of health care workers in Canada given
in Table 11.1. This table lists the number and type of health care workers
per 100,000 population in each Canadian province or territory.

Figure 11.1 depicts a hierarchical cluster representation of this data. This
figure is interpreted as a tree or dendrogram. The root is at the top and
the observations are represented as leaves towards the bottom. The vertical
scale of the branches indicates how far individual observations and groups of
observations are from each other using a distance metric that we will discuss
later in this section.

This representation is different from a regression tree or CART, as in
Fig. 10.11. In regression trees there is a single variable of greatest interest.
In Fig. 10.11, for example, we model the species and/or sex of the crabs. In
contrast, in Fig. 11.1, the variables are of equal importance; our goal is to
identify provinces with similar characteristics overall.

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 11

287

11: CLUSTERING 288

Table 11.1: Numbers of Canadian health care workers per 100,000 residents
in 2006, listed by province or territory

Province or Social
territory Doctors Nurses Psychologists workers Other

Newfoundland
and Labrador 137 1149 45 179 1843

Prince Edward Island 97 1203 22 101 2153
Nova Scotia 153 1066 47 141 2268
New Brunswick 115 1121 53 172 2215
Quebec 142 825 95 150 2259
Ontario 127 825 45 166 1874
Manitoba 121 1061 36 197 2421
Saskatchewan 114 992 42 179 2354
Alberta 131 989 54 149 2096
British Columbia 134 584 45 134 1956
Yukon 331 1110 50 348 1722
Northwest territories 97 1047 61 207 1595
Nunavut 85 648 34 222 801
Canada, overall 132 881 58 157 2052
Source: Statistics Canada

Yukon is identified as very different from all others because of the huge
number of doctors (331) per unit population. (In 2001, this figure was only
70, so something has clearly changed during that 5-year period.) Manitoba
and Saskatchewan are similar in many ways and form the tightest cluster
between any pair. The maritime provinces (Newfoundland, Nova Scotia,
New Brunswick, and Prince Edward Island) also appear close together in
this figure.

The R code that produces Fig. 11.1 is as follows:

Cmed <- read.table(file = "Canmed.txt",

header = TRUE, row.names = 1)

Cmed <- Cmed[-14,] # omit "Canada total" row

d <- dist(scale(Cmed)) # distances between provinces

clust <- hclust(d) # build hierarchical cluster

plot(clust, xlab = "", sub = "", main = "", ylab = "",

yaxt = "n")

Another example of clustering appears in Fig. 11.2. The statistics on
the three species of iris flowers are summarized in terms of their Euclidean
distances from each other. This data also appears in Fig. 3.21 using another
clustering method.

11: CLUSTERING 289

Y
uk

on

Q
ue

N
W

T

P
E

I

M
an

S
as

k

N
ew

f

N
B

N
S

A
lb

N
un

a

O
nt B
C

Figure 11.1: Clustering dendrogram of Canadian provinces and territories of
data in Table 11.1

The branches of the dendrogram summarize the distances between each
flower’s observations. The leaves at the end of each branch are color coded
according to the three different species. The resulting dendrogram shows the
relative distances of the various clusters. These distances determine how far
back from the leaves we have to go to obtain the junction with a different
branch. Branches are joined with other branches, farther apart, until the
tree is joined at a single root. The method is called hierarchical because each
branch depends on all previous branches leading to it.

In Fig. 11.2 we see that the algorithm does a reasonable job of grouping
together the individual species into three separate regions of the tree. There
is some overlap of the species seen in this figure, of course. However, we made
no assumptions or specifications. The Euclidean distances between every pair
of irises were the only criteria used to construct the tree. Unlike CART, the
algorithm does not have the species information when constructing the tree.
At completion of the clustering, these values were used to draw the final
figure.

The program that creates this figure is as follows:

id <- dist(scale(iris[, 1 : 4])) # find euclidean distances

fit <- hclust(id) # build the tree

library(ape) # graphics for trees

plot(as.phylo(fit), type="phylogram", cex = .5, label.

offset = .1,

tip.col = c(rep("red", 50), rep("blue", 50), rep("green",

50)))

11: CLUSTERING 290

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23
24

25

26

27

2829

30

31

32

3334

35

36

37

38

39

4041

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74
75

76
7778

79

80

8182

83

84

85

86

87

88

89

90
91

92

93

94

95

96
97

98

99

100

101

102

103
104

105

106

107

108

109

110

111

112

113

114115

116

117

118
119

120

121

122

123

124

125

126

127

128

129

130
131

132

133

134
135

136

137

138

139

140

141

142

143

144
145

146

147

148

149

150

Figure 11.2: Clustering dendrogram of iris data

When we begin, the data columns are usually scaled to have the zero
means and unit variances. This is done so that no one variable dominates
the others simply by nature of having greater variability. See Exercise 11.1
for details.

The dist() program calculates the Euclidean distance between every
pair of observed flowers. That is, the whole data set was reduced to a set
of pairwise comparisons specifying the distance between observations. Eu-
clidean distances are the default, but there are other options, and these are
discussed at the end of this section. The clustering tree is built by R in hclust

from the matrix of distances. The ape library offers a number of options to
present these trees.

Let us consider a more detailed example and use it to illustrate some of
the many additional graphical options available to us. The data in Table 11.2
summarizes the records of all major league teams in 1986, attendance totals,
and average 1987 salaries. There are two leagues (American and National)
and two divisions (East and West). Teams are ranked within each of the
four combinations of leagues and divisions. The number of wins has a strong
negative correlation with the number of losses, but this correlation is not
perfect because not all teams played the same number of games.

The top four panels in Fig. 11.3 are produced using

11: CLUSTERING 291

Table 11.2: Baseball team records for 1986 and total attendance in 1000s

Attendance Average
Name League Division Rank Wins Losses At home Away salary
NYMets N E 1 108 54 2768 2178 $527
Phi N E 2 86 75 1933 1721 541
StL N E 3 79 82 2472 1696 445
...

...
...

...
...

...
...

...
...

Min A W 6 71 91 1255 1707 432
Sea A W 7 67 95 1029 1559 186

Source: http://lib.stat.cmu.edu/datasets/baseball.data
The 1987 average salary data is in $1000s

d <- dist(scale(baseball[,c(-1,-2)])) # scale numerical values

library(ape) # offers plotting options

fit <- hclust(d)

plot(fit, main = "Plain dendrogram", hang = -1, cex = .8,

xlab = "", ylab = "", sub = "", axes = FALSE)

plot(as.dendrogram(fit), type = "triangle",

main = "Triangle branches", cex = .8, axes = FALSE)

plot(as.phylo(fit), type = "unrooted", cex = .8,

main = "Unrooted tree")

plot(as.phylo(fit), type = "fan", cex = .8,

main = "Leaves spread in a circle")

The bottom panels of Fig. 11.3 were produced using the Rcode in Output
11.1. In the iris data, this method appears to confirm our understanding of
the data. Identical species of flowers have much in common. However, in the
case of the baseball data, it is not obvious why some teams appear to cluster.
For example, the two New York teams and Boston always appear in the same
tight cluster, but except for their geographic proximity, it is not clear why
these teams belong together. (This, despite the long-standing rivalry between
Red Sox and Yankees fans.) Clearly, R can demonstrate the clusters, but it
remains for us to interpret the resulting figure.

As a final example in this section, let us point out that some data sets
lend themselves to the tree-like structure and are stored in R as such. The
chiroptera data set in the ape library is a supertree, a composite tree con-
structed from many different sources, describing the complete phylogeny of
916 species of bats (Mammals of the order Chiroptera). This data is best
displayed as a tree, and two versions appear in Fig. 11.4. The R code that
produces this pair of figures is

library(ape)

data(chiroptera)

plot(chiroptera, type = "r", cex = .1)

11: CLUSTERING 292

N
Y

M
et

s
B

os
Ya

nk
ee

s
P

it
S

ea
M

on C
le M
il

A
tl

M
in

O
ak S
D

W
ht

S
ox LA

C
ub

s
B

al
H

ou C
al

Te
x

C
in S
F

K
C

S
tL To
r

P
hi

D
et

Plain dendrogram Triangle branches

N
Y

M
et

s
B

os
Ya

nk
ee

s
P

it
S

ea
M

on C
le M
il

A
tl

M
in

O
ak S
D

W
ht

S
ox LA

C
ub

s
B

al
H

ou C
al

Te
x

C
in S
F

K
C

S
tL To
r

P
hi

D
et

Unrooted tree

NYMets

Phi
StL

Mon

Cubs

Pit

HouCinSF

SD

LA

Atl

BosYankees

Det
Tor

CleMil

Bal

CalTexKC

OakWhtSox

MinSea

Leaves spread in a circle

NYMets

Phi

StL

M
on

Cubs

Pi
t

Ho
u

C
in

S
F

SD

LA

A
tl

Bos
Yan

kee
s

Det

Tor

C
le

M
il

Bal

C
al

Te
x K

C

Oak

WhtSox

M
in Se

a

Color by league

N
Y

M
et

s
B

os
Ya

nk
ee

s
P

it
S

ea
M

on C
le M
il

A
tl

M
in

O
ak S
D

W
ht

S
ox LA

C
ub

s
B

al
H

ou C
al

Te
x

C
in S
F

K
C

S
tL To
r

P
hi

D
et

Color by division

N
Y

M
et

s
B

os
Ya

nk
ee

s
P

it
S

ea
M

on C
le M
il

A
tl

M
in

O
ak S
D

W
ht

S
ox LA

C
ub

s
B

al
H

ou C
al

Te
x

C
in S
F

K
C

S
tL To
r

P
hi

D
et

Figure 11.3: Hierarchical clustering of baseball teams using a variety of dis-
plays

plot(chiroptera, type = "u", cex = .1)

Similar tree structures for birds are available as bird.orders and
bird.families, both in the ape library.

Let us end this section with a discussion of options for the distance bet-
ween two observations. In a data.frame, it usually makes sense to start
by scaling or normalizing the columns (different variables) to have the same
variances. Otherwise a column (variable) with a large variance will dominate
any reasonable distance, and a column with a small variance will tend to be
ignored. That is, we should usually employ the template

11: CLUSTERING 293

Figure 11.4: Two displays of the chiroptera data

d <- dist(scale(mydata))

when using dist.
The dist function will calculate the distance between every pair of ob-

servations (rows) in a data.frame. Consider, then, two observations (rows
in a data.frame) denoted by the vectors x′ = (x1, . . . , xn) and y′ =
(y1, . . . , yn). There are several useful options available, depending on how
we define distance.

The most popular distance is the Euclidean distance

Euclidean distance(x, y) =
√∑

(xi − yi)2

that is the default distance for the dist function.
The Euclidean length of a vector was introduced in (4.4). It corresponds

to the length of the shortest, straight line connecting x and y.
The maximum or supremum norm

Maximum norm(x, y) = max
i

| xi − yi |

is the largest component-wise difference.
The Manhattan norm,

Manhattan distance(x, y) =
∑

i

| xi − yi |

is calculated as though we had to walk along rectangular, city blocks.
The Minkowski norm1 is

Minkowski distance(x, y) =
{∑

| xi − yi |p
}1/p

1Hermann Minkowski (1864–1909). Mathematician and mathematical
physicist, lived in Germany.

11: CLUSTERING 294

for power p > 0 includes the Euclidean norm for p = 2, the Manhattan
for p = 1, and the maximum norm for large values of p. These norms
are available as options in the dist program, including the choice of the p
parameter in the Minkowski distance.

Finally, there is the Gower distance, available in the daisy program of
the cluster library. The Gower metric first standardizes each variable by its
range so that all data values fall between zero and one. The Gower distance
also generalizes to allow us to cluster interval-valued data.

Output 11.1: R program to produce the plots with colored leaves in Fig. 11.3

colLab <- function(n) # function on dendrograms

{ # to get colored labels

if (is.leaf(n)) # when we find a leaf...

{

a <- attributes(n) # capture its attributes

which team number is it?

teamn <- match(a$label, row.names(baseball))

color for league or division

leafcolor <- c("red", "blue") [teamtype[teamn]]

assign new attributes to leaf

attr(n, "nodePar") <- c(a$nodePar, lab.col = leafcolor)

}

return(n) # return the dendrogram

}

league <- baseball[, 1]

division <- baseball[, 2]

d <- dist(scale(baseball[,c(-1, -2)])# scale numerical values

library(ape) # offers plotting options

fit <- hclust(d)

teamtype <- league # leaf color by league

colfit = dendrapply(fit, colLab) # dendrapply to tree

plot(colfit, main = "Color by league",

cex = .8, axes = FALSE)

teamtype <- division # leaf color by division

colfit = dendrapply(fit, colLab)

plot(colfit, main = "Color by division",

cex = .8, axes = FALSE)

Sourced, in part from: http://www.gastonsanchez.com

http://www.gastonsanchez.com

11: CLUSTERING 295

Table 11.3: Characteristics of 11 Japanese smokers

Height Weight Age Cigarettes Years Pack
Age in cm in kg Nicotine Tar start per day smoking years

1 36 168 50 0.7 8 20 15 16 12
2 41 170 64 0.7 8 20 20 21 21
3 35 169 65 0.8 10 20 30 15 23
4 55 177 68 1.0 12 20 20 35 35
5 21 172 80 0.7 10 16 15 5 4
6 46 165 53 1.4 17 20 20 26 26
7 38 167 57 0.1 1 20 10 18 9
8 37 165 58 0.1 1 20 20 17 17
9 40 156 53 0.4 5 18 20 22 22

10 36 172 55 0.5 6 20 20 16 16
11 39 168 65 0.7 8 16 10 23 12
Source: Takahashi et al. (2013)

11.2 K-Means Clustering

The K-means clustering algorithm is based on the principle that there are
a specified number, K, multivariate normal populations present in the data
and these differ only in terms of their means. The cluster members and their
mean are estimated in such a way as to minimize the within-cluster variability.
The algorithm uses an analysis of variance (ANOVA) approach to estimate
the K different multivariate means as well as the group membership of each
observation. The ANOVA approach also suggests the clustering algorithm
proposed by Hartigan and Wong (1979). The algorithm determines the group
membership of each observation so that the program minimizes the sums of
squares within each group.

Let us begin with a small example. Table 11.3 gives the characteristics of
11 male Japanese cigarette smokers who participated in a larger study of the
health effects of smoking. The data in this table includes demographic vari-
ables (age, weight, height), characteristics of their cigarette brands (nicotine,
tar), and smoking history (age at start, cigarettes per day, and pack-years).

The K-means program is in the stats library. The program that fits
K = 4 clusters and produces Fig. 11.5 is as follows:

require(graphics, stats)

(cl <- kmeans(smokers, centers = 4))

plot(smokers[,c(3, 9)], xlab = "Weight in kg",

ylab = "Pack years", pch = 16, col = cl$clust, cex = 2.5)

text(smokers[,3], smokers[,9], labels = row.names(smokers),

pos = 2)

11: CLUSTERING 296

l
l

l

l

50 55 60 65 70 75 80

5
10

15
20

25
30

35

Weight in kg

P
ac

k
 y

ea
rs

1

2
3

4

5

6

7

8

9

10

11

Figure 11.5: K-means clustering of 11 Japanese smokers

Figure 11.5 plots the four different clusters by color by their pack-years
and weights. This figure identifies two unusual individuals: a low-smoking,
obese man (#5) in the lower, right-hand corner of this plot; and a heavy
smoker (#4) at the top of the figure. The remaining nine individuals are
either classified as five light smokers (red) or four heavy smokers (black).

Let us begin with the choice of axes in this plot. These were chosen
with a combination of interpretation and visual appeal. The visual appeal
works because the clusters separate nicely and do not overlap in this display.
The interpretation also aligns with our sense of the overall health effects of
smoking. Unfortunately, useful axis choices in this figure are found by trial
and error, so the user will have to do some experimenting in order to produce
an appealing display.

A graphical display can help us choose an appropriate value of K. The
ANOVA has an interpretation that we can use here and is introduced in (9.2).
The simple idea of the ANOVA is that the total sum of squares can be
decomposed as

Total sum of squares = Between cluster sum of squares

+Within cluster sum of squares

or, more simply, the total sum of squares is the sum of explained sum of
squares plus the unexplained sum of squares.

11: CLUSTERING 297

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of clusters

P
er

ce
nt

 v
ar

ia
bi

lit
y

ex
pl

ai
ne

d

0
25

50
75

10
0

W
ith

in
 c

lu
st

er
 s

um
 o

f s
qu

ar
es

Figure 11.6: Percentage of variability explained (blue) and within cluster sum
of squares (red) in K-means clustering of 11 Japanese smokers

The total sums of squares is the same for every choice of K. We can
examine the within-cluster variability which will decrease as K increases.
Another reasonable summary of how well we are doing is to examine the
percent of explained variability. That is,

Percent variability explained =
Between group sum of squares

Total sum of squares

and this will decrease as K is increased.
These two summary measures represent a trade-off and can be compared

to each other. Figure 11.6 plots these two summaries for different values
of K.

This figure confirms our intuition that the percentage of explained vari-
ability increases with the number of clusters, K. Similarly, the within-cluster
variability decreases with the number of clusters. At K = 1, the data is esti-
mated to have originated from one population and nothing is explained. At
the other extreme, if K is equal to the sample size, then 100% of the vari-
ability is explained by having each observation in its own cluster, but nothing
is learned. We look at Fig. 11.6 to see if we can identify a compromise. The
percent variability explained increases steeply up to K = 4 and then starts
to level off for larger values of K. This choice of K is somewhat arbitrary
and K = 3 might also have done a good job.

Let us compare K-means with hierarchical clustering. We begin by intro-
ducing the milk data set in the robustbase library. This data set consists of

11: CLUSTERING 298

Table 11.4: Variable names and their definitions in the milk data

dens Density
fat Fat content
prot Protein content
casein Casein content
Fdry Cheese dry substance measured in the factory
Ldry Cheese dry substance measured in the laboratory
drysub Milk dry substance
cheese Cheese product

eight measurements on each of 86 separate containers of milk. The variables
are labeled X1 through X8 in the original. Table 11.4 renames these and gives
their definitions.

In the first panel of Fig. 11.7, a clear outlier (observation #70) appears
in the hierarchical clustering method. In the second, middle panel, this ob-
servation has been removed and the hclust has been repeated, indicating
two distinct clusters of observations. These two clusters are largely deter-
mined by the values of casein, although other variables could provide similar
discrimination. In the middle panel, values of casein over 25.5 are in blue,
others in red.

The third panel in this figure plots the percent variability explained in
terms of the number of K-means clusters. This third panel illustrates a big
change for K = 2 and K = 3 but larger values of K yield only small
improvements.

Figure 11.8 is the pairs() plot of the K-means clusters for milk data
with values of K = 2 in the lower panels and K = 3 in the upper panels.
In this figure we see a strong linear relationship between each of the pairs of
variables prot, casein, Fdry, and Ldry. Both K-means clustering indicate
evidence that clusters appear along the lengths of these lines.

Figure 11.8 was produced using the R code in Output 11.2. In this code,
we begin by omitting the outlier, renaming the variables and identifying the
color schemes for 2 and 3 K-means. The panel.up function tells the pairs()
program how to process separate scatterplots. In this case, we use it to
provide separate, colored plots in the panels above and below the diagonal.
Specifically, the upper.panel= is an option on pairs that can be assigned
the value of this function. There are other analyses that can be done with
this data. See Exercise 11.6 for some suggestions.

The K-means clustering, then, is a simple and intuitive method for clus-
tering data and is dependent only on the user’s choice of K. To complete our
illustration of the method, let us try a small simulation to show the effect of
mis-specification of K.

11: CLUSTERING 299

Consider a simulation in which we generate 100 samples from each of
three different multivariate normal populations with different means and a
slight negative correlation. These samples are plotted at the top of Fig. 11.9
with different colors for each of the three populations. The plot of percent
variance explained seems to indicate that K = 3 clusters should be appro-
priate and little is to be gained using larger values.

11
74 77

15
13

12 14
70

17
16 19

49
39 80 18 21 2

5 26 34 56 67 5
7

61 69 51 76
5

22 54 53 79
9 65 1
0 68 7
5

71 73
52

60 66 2
7 59
42 44 2

8
29 36

41 1 2
31 37 3

8 46 83 72
63 64

55 58 30 81
45 32 48
33 35 23 24
6

43 7 8 4
7

84 86
3 78 8
5

20 62
4

82 40 50

original milk data
blue for casein > 25.5, others in red

omitted outlier

l

11

l

74

l

77

l

15

l

13

l

12

l

14

l

70

l

17

l

16

l

19

l

49

l

39

l

80

l

18

l

21

l

25

l

26

l

34

l

56

l

67

l

57

l

61

l

69

l

51

l

76

l

5

l

22

l

54

l

53

l

79

l

9

l

65

l

10

l

68

l

75

l

71

l

73

l

52

l

60

l

66

l

27

l

59

l

42

l

44

l

28

l

29

l

36

l

41

l

1

l

2

l

31

l

37

l

38

l

46

l

83

l

72

l

63

l

64

l

55

l

58

l

30

l

81

l

45

l

32

l

48

l

33

l

35

l

23

l

24

l

6

l

43

l

7

l

8

l

47

l

84

l

86

l

3

l

78

l

85

l

20

l

62

l

4

l

82

l

40

l

50

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
K means

%
 B

et
w

ee
n

S
S

Figure 11.7: Milk data as hierarchical cluster: original and with omitted
outlier. Color is determined by low (red) and high (blue) values of casein.
The third panel is percent variability explained in K-means

The next four graphs in Fig. 11.9 summarize the results of using different
values of K. The plot with K = 2 clearly misses one group by combining
the two dissimilar groups at the bottom. The K = 3 plot closely reproduces
the original figure, albeit with different colors. Plots with larger values of
K = 4 and 5 tend to pull apart clusters that may seem adequate to our eyes.
Exercise 11.4 asks the reader to further explore what can go wrong if the
specified value of K is not appropriate.

In summary, what can we say about the K-means clustering algorithm?
The approach is not limited to small data sets. The choice of K can be esti-
mated from graphics such as Fig. 11.6. The interpretation of the K clusters
is up to us. A useful plot such as Fig. 11.5 requires us to identify appropriate
choices for the axes and, again, requires that we are able to interpret the
resulting figure. In the following section we describe methods for assessing
the quality of the clusters identified by these algorithms.

11: CLUSTERING 300

dens

fat

prot

casein

Fdry

Ldry

drysub

cheese

Figure 11.8: K-means for milk data with K = 2 (below) and K = 3 (above)

11: CLUSTERING 301

known populations

1 2 3 4 5 6 7 8

0.
0

0.
4

0.
8

K clusters

%
 v

ar
 e

xp
la

in
ed

K= 2 K= 3

K= 4 K= 5

Figure 11.9: Simulation of K-means clustering

11.3 Diagnostics, Validation,

and Other Methods

Clustering algorithms provide a data diagnostic to help our exploration. Fig-
ure 11.6 has shown us that this illustration can be an aid in identifying the
number of clusters in a K-means procedure. It is reasonable to see a clus-
tering figure and then ask whether such a diagram could have occurred by
chance alone. Will a set of randomly generated data values naturally appear
to cluster into two or more groups? The clustering procedures are nonpara-
metric, so it is reasonable to retain this model-free approach in any study of
validation.

Two popular methods to assess the quality of a clustering procedure are
jittering and bootstrap resampling. Jittering adds a small amount of random
noise to the data and then repeats the clustering procedure. The bootstrap
randomly samples from the observed data before repeating the clustering
procedure. Both methods are repeated several times. The goal is to check
the stability of the outcomes. (Jittering also appears as a graphical tool in
Fig. 3.6.)

Clustering, most generally, breaks the sample into subsets of the total.
We will then need a way to compare the results of two different clustering
processes. There are three popular measures of agreement in clustering of

11: CLUSTERING 302

Output 11.2: R code to produce Fig. 11.8

library(robustbase) # library with the milk dataset

milk2 <- milk[-70,] # omit outlier

colnames(milk2) <- c("dens", "fat", "prot", "casein", "Fdry",

"Ldry", "drysub", "cheese") # supply new names

color schemes for K-means

colorlow <- rainbow(3)[kmeans(scale(milk2), centers=2)$cluster]

colorup <- rainbow(3)[kmeans(scale(milk2), centers=3)$cluster]

panel.up <- function(x, y, ...)

{ # function to produce scatterplot in pairs()

usr <- par("usr") # save par() values

on.exit(par(usr)) # set par() at end

par(usr = c(max(y), min(y), max(x), min(x))) # set bounds

points(y, x, col = colorup, pch = 16) # plot data points

}

pairs(milk2, pch = 16, gap = 0, xaxt = "n", yaxt = "n",

col = colorlow, upper.panel = panel.up)

sets. These are attributed to Jaccard, Dunn, and Rand.
Let us introduce a measure of similarity between two sets. Let S and

T be finite sized sets. The Jaccard Index2 is defined as

J(S, T) =
of elements in (S ∩ T)

of elements in (S ∪ T)
.

If S and T are both empty, then J = 0.
Clearly, 0 ≤ J ≤ 1 with larger values indicate a greater percentage of

agreement. The relevance here is to compare a set S identified by a clustering
algorithm based on the observed data with a set T obtained from simulated
data. The simulated measure J will then have a distribution. We will need
to look at a summary of the randomly generated values such as its histogram
or mean value. We don’t assign a statistical significance to the value of the
Jaccard index, but it is possible to do so. See Exercise 11.7 for details.

A commonly used measure of cluster quality is the Dunn Index (Dunn
1973). The Dunn Index is the ratio of the smallest distance between clusters
divided by the diameter of the largest cluster. Ideally, we want small clusters
that are located far apart, so larger values of the Dunn Index are better.
Of course, there are many possible definitions of distance, as we pointed out

2Paul Jaccard (1868–1944). Swiss professor of botany and plant physiol-
ogy.

11: CLUSTERING 303

in Sect. 11.1, so there are many variations on how the Dunn Index may be
defined. The general idea of this measure is similar to other metrics that are
frequently encountered in applied statistics. See Exercise 11.7 for details.

Another general measure of agreement is the Rand Index (Rand 1971).
Suppose we have two sets of sets X = {x1, . . . xn} and Y = {y1 . . . ,ym}
that both make up partitions of the sampled observations. Imagine taking all
possible observations, two at a time. The Rand Index counts the proportion
of times these observations occur in the same xi and same yj or else in
different xs and different ys. See Exercise 11.7 for more on this.

The R program prediction.strength() in the fpc library provides a
cross-validated measure of the quality of a cluster. This program randomly
divides the data into two equal sized number of observations, called A and B.
The set A is used to estimate the k clusters and then records the percent of
times that observations in B are clustered into the same clusters as in the
original, full data. The procedure is then reversed, fitting B and predict-
ing A. The simulation is repeated for different partitions of A and B and
then for different values of k. The prediction strength will generally decrease
with k, and the authors of this method recommend that we choose values
of k that result in a prediction strength over 0.8 or 0.9. An example of this
simulation appears in Fig. 11.10, below.

Now let us examine a larger and more complex data set involving genetic
markers measured using an Affymetrix DNA microarray. In this example,
three sets of mouse mesenchymal cells from each of two anatomic structures
(mesodermal and neural crest) were examined. Mesenchyme are cells that can
develop into a variety of different tissues including bone, cartilage, and parts
of circulatory and lymphatic systems. Many genetic markers were measured
in the original data, but only those 147 that exhibited a large difference
between the mesodermal and neural crest cells are included here.

A portion of this data is obtained and displayed

> library(clValid)

> data(mouse)

> print(mouse, digits = 4)

ID M1 M2 M3 NC1 NC2 NC3 FC

1 1448995_at 4.707 4.528 4.326 5.568 6.915 7.353 Growth/Differentiation

2 1436392_s_at 3.868 4.052 3.475 4.996 5.056 5.184 Transcription factor

3 1437434_a_at 2.875 3.380 3.240 3.877 4.460 4.851 Miscellaneous

.

145 1417129_a_at 6.694 6.019 7.037 5.770 5.149 4.541 Transcription factor

146 1425779_a_at 6.109 5.960 5.999 4.537 4.068 4.251 Transcription factor

147 1450723_at 5.948 5.753 6.001 5.027 4.187 3.111 Transcription factor

The six cells are listed as M1, M2, M3 for the mesodermal and NC1, NC2,

NC3 for the neural crest. The ID is the specific genetic address and FC refers

11: CLUSTERING 304

to the gene’s functional class. There are nine different functional classes of
genes in this data.

Notice that this data is presented transposed from our usual manner of
displaying data: observations as rows and variables as columns. In our ap-
plications of clustering so far in this chapter, the object has been to cluster
individuals. In this case the data is wide in the sense that there are many
more variables than observations. Similarly, the present object of the clus-
tering analysis in this data is to group similar genes together, rather than
different cell samples.

Figure 11.10 includes a plot of the percent variability explained by cluster
size and a dendrogram. The simulated prediction probability decreases with
larger number of clusters. The dendrogram plots the functional class of each
marker in a separate color but does not demonstrate a clear indication of
homogeneity of these clusters. Together, the two panels in Fig. 11.10 suggest
that there should be three cluster centers, maybe four at most.

The clusterboot program in the fpc library simulates cluster stability
by simulating K-means clustering using a variety of methods including jit-
tering or bootstrap methods. The mean Jaccard Index for K = 3 clusters
in the mouse data using jittering yields

short <- mouse[, 2 : 7] # remove text columns

cbj <- clusterboot(short, bootmethod = "jitter",

krange = 3, clustermethod = kmeansCBI)

cbj$jittermean

[1] 0.9960000 0.9957377 1.0000000

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Clusters

% variability
 explained

simulated
 prediction
 strength

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53
54

55

56

57
58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

9394
95

9697

98

99

100

101

102

103104

105

106

107

108

109

110

111

112

113

114

115

116

117
118

119

120

121

122

123

124

125

126
127

128

129
130

131132

133

134135
136

137

138

139

140

141

142

143

144

145

146
147

Figure 11.10: Clustering of genetic markers in mouse mesenchymal cells

11: CLUSTERING 305

The same simulation using a bootstrap gives

cbb <- clusterboot(short, bootmethod = "boot",

krange = 3, clustermethod = kmeansCBI)

cbb$bootmean

[1] 0.9170135 0.9179769 0.9026569

The authors of these programs suggest that average Jaccard Index values
above 0.75 indicate stable clusters. Clearly, these simulations indicate that
K = 3 clusters is a reasonable number.

A simulation with K = 4 on this data gives

> cbb$bootmean

[1] 0.5059524 0.8515681 0.6708926 0.4336492

> cbj$jittermean

[1] 0.8069331 0.9293281 0.8260002 0.8801505

These second sets of simulations yield somewhat ambiguous results. The
bootstrap simulation provides much lower mean Jaccard values for K = 4
than we saw for K = 3, above. The jittered simulation provides lower mean
values but these are considerable higher than those of the bootstrap and much
closer to the values for K = 4. From these simulations we may conclude that
K = 3 clusters is a reasonable conclusion, and there is weaker evidence that
K = 4 is appropriate.

The Dunn Index for K = 3 clusters is 0.087, but we have no context to
understand this value. We can perform a bootstrap simulation to examine
the distribution of the statistic. The R code to perform this simulation is
given in Output 11.3.

This simulation produces values presented in Fig. 11.11. The Dunn Index
for the observed data is highlighted and appears near the center of a right-
skewed distribution that may also have a bimodal distribution. It is also
possible to perform a bootstrap simulation to describe the behavior of the
Dunn Index assuming a model in which there are no clusters, with the data
sampled from a single population. See Exercise 11.10 for details on this
simulation.

A generalization of the single-linkage clustering is a simultaneous clus-
tering of both rows and columns of a data matrix, also known as a heatmap.
We used a heatmap in Fig. 9.6 to summarize the statistical significance of
a large number of regression coefficients. Figure 11.12 displays clusters of
mouse mesenchymal markers (by rows) and cells (by columns) in a way that
blocks of high and low data values are grouped together. The data values are
displayed by color, as hotter (larger) or colder (smaller) values. The blocks
of colors are clear in this figure because the data only includes markers that
exhibited large differences between the two cell types. The margins of this
figure include separate dendrograms. The colors along the left edge are the
same as those used in Fig. 11.10.

11: CLUSTERING 306

Output 11.3: R code to perform bootstrap for K-means clustering

short <- mouse[, 2 : 7] # remove text columns

d <- dist(short)

cl <- kmeans(short, centers = 3)

dunn <- # Dunn Index of original data

cluster.stats(d, cl$cluster)$dunn

n <- dim(short)[1]

for (i in 1 : 100) # number of bootstrap samples

{

booti <- as.integer(1 + n * runif(n)) # bootstrap indices

bd <- dist(short[booti,]) # distances of bootstrap sample

clb <- kmeans(bd, centers = 3) # cluster bootstrap sample

dunn <- c(dunn, # bootstrapped Dunn values

cluster.stats(bd, clb$cluster)$dunn)

}

0.05 0.10 0.15 0.20

Figure 11.11: Bootstrap simulation of Dunn Index in mouse data. The value
for the observed data is highlighted

This figure can be produced with the R code

library(ape)

library(clValid)

11: CLUSTERING 307

library(stats)

data(mouse)

iclass <- as.integer(mouse$FC) # integer categories

heatmap(as.matrix(mouse[, 2 : 7]),

RowSideColors = rainbow(max(iclass))[iclass])

This code begins by loading the three necessary libraries. The FC col-
umn of the mouse data contains the functional class as factor levels and the

N
C

1

N
C

3

N
C

2

M
2

M
1

M
3

8212332271443621754111846685342728710714411876801179145136138135134781127086101406648241032938232514213977928312412895106949314511313213114012513311510012274858114714314614112179130848875102111114129120902879
30653516215551203914
22596751386331695641341191379610497103109105991268912771731089811611015521261261937336062
4750364457496458

Figure 11.12: Heatmap for genetic markers in mouse mesenchymal cells

as.integer function recodes these as integer values. Columns 2 through 7
contain the numerical values of the gene expression data. The heatmap pro-
gram operates on a matrix of numerical values so the data.frame also needs
to be reformatted. The RowSideColors option adds colors corresponding to
functional class of the genetic markers. There are many more options and
enhancements available in the heatmap.2 program in the gplots library.

Let us end this section by pointing the reader towards a number of other
clustering methods that are available in R. The cluster package contains a
number of useful programs including pam() which performs K-means using

11: CLUSTERING 308

a variety of metrics that are more robust than the within-group sums of
squares. The agnes() program implements the popular unweighted pair
group method with arithmetic mean algorithm. The clara() algorithm (also
in cluster) uses a faster algorithm than pam() and is useful for large data
sets. The diana() algorithm begins with all observations in a single cluster
and successively peels away until each cluster contains only one item. The
fanny() routine estimates a probability that each observation belongs to
every cluster, rather than strictly assigning membership to only one cluster.

Neural networks assume that there are unobservable, intermediate mod-
els within the observed data. The self-organizing tree algorithm sota() in
the clValid library uses neural networks. The self-organizing maps program
som(), in the kohonen library, is useful for visualizing high-dimensional data
and plotting in two dimensions.

A variety of clustering metrics have also been proposed. Many of these
are discussed at length in the documentation for the clValid library in R.
Connectivity is a measure that examines the number of “nearest neighbors”
of each observation and counts how many of these occur in the same cluster
partition.

The usual jackknife deletes individual observations (or rows of a
data.frame) to assess variances or other properties of statistics measured
on the full data set. Various stability measures of clustering are discussed
in the clValid documentation that propose deleting variables (data.frame
columns) of the data. Among these measures are the average distance bet-
ween observations fitted in the same cluster with the full data and then with
a column of data omitted. Similarly, the average distance between means
measures the changes in cluster means when individual columns of data are
omitted.

It is also possible to include biological information about clusters. Infor-
mation about the functional class of the genetic markers in the mouse data, for
example, should be included in any clustering of these markers. Some markers
belong to more than one functional class. Measures of statistical clustering
that include such biological information include the biological stability index
and the biological homogeneity index, both available in the clValid library.

11.4 Exercises

11.1 How critical are the use of scaling and choice of distance metric in
hierarchical clustering?

(a) Try different distance metrics on the iris data. Do these do
better or worse than the plot in Fig. 11.2?

(b) Redraw Fig. 11.1 without using scale to transform the data
columns to the same variances. Has the scaled figure changed? Which
figure is easier to interpret: scaled or unscaled? Explain your rea-

11: CLUSTERING 309

Table 11.5: Government bond returns by issuer and duration

Issuer 1mo 3mo 6mo 8mo 1yr 3yr 5yr
USGovt 1.88 4.45 6.37 8.39 7.97 7.68 5.94
AustAsia −0.19 9.47 4.94 5.52 13.93 10.46 9.13
Canada 2.22 3.98 5.48 7.30 7.07 7.27 5.20
Eurozone 2.42 2.73 4.30 5.92 6.55 6.92 4.11
Japan 0.66 2.20 3.08 3.14 3.94 3.01 2.04
Switzerland 2.18 2.89 5.06 6.64 8.59 7.00 3.61
UK 4.70 6.12 10.35 10.69 8.69 9.01 5.99

Source: c©2010 Morningstar, Inc., Morningstar Bond Market
Commentary, September, 2010. All Rights Reserved.
Used with permission.

soning. Try different distance metrics. Do these yield very different
appearing dendrograms?

11.2 Look at the swiss data examined in Chap. 6 using clustering methods.
Is there evidence that some cantons were making the demographic
transition sooner than others?

11.3 Table 11.5 lists the annual returns to investors (as of Sept., 2010)
of government bonds, listed by duration and issuer. These returns
are influenced by the respective rates of inflation and strengths of
the various currencies as well as market perceptions for these rates
into the future. Perform a hierarchical cluster of these returns to
identify countries with similar financial situations. Comment on how
the dendrogram clusters countries in similar geographic regions, as
well.

11.4 Repeat the example summarized in Fig. 11.9. What happens when the
means of the sample populations are closer? What happens when the
sample means are much further apart?

11.5 The coleman data set in the robustbase library lists summary statis-
tics for 20 different schools in the northeast US. The six variables mea-
sured on each school include demographic information (such as percent
of white-collar fathers) and characteristics of each school (such as staff
salaries per pupil). Read the help file of coleman for the complete list
of demographics and references to other’s analyses of this data.

(a) A suggested analysis is a regression model explaining the vari-
able Y, the mean verbal score of all sixth graders.

(b) Perform a hierarchical cluster of this data using all explana-
tory variables. Is there evidence of different types of schools?

11: CLUSTERING 310

(c) Similarly, does a K-means clustering provide evidence of dif-
ferent types of schools?

(d) Which of these four types of statistical analyses seems most
appropriate for the data? Is there strong evidence that there are no
clusters? What might such data look like?

11.6 Try some other examinations of the milk data. First omit the sus-
pected outlier (observation #70) and scale the data.

(a) Perform the K-means clustering and plot the first two principal
components by color of cluster membership.

(b) Read about the pam() program in cluster library. The syn-
tax is similar to that of kmeans, but pam() is more robust against
outliers and has a useful display of the clusters. Describe the influence
that the outlier (observation #70) has on this algorithm when it is
reintroduced to the data.

11.7 (a) Show how we can assign statistical significance to the Jac-
card Index. Suppose we have a finite sized population containing n
items. One sampling method identifies m of these items, and a dif-
ferent, independent method identifies m′ items. Let X denote the
random variable counting the number of items that are common to
both samples. Identify the distribution of X .

(b) Suppose the set S is completely contained in the set T . What
are the largest and smallest possible values of J(S, T)? Comment on
the suitability of J as a measure of agreement.

(c) Suppose the set Σ contains 2n items and the partitions X =
{x1,x2} and Y = {y1,y2} are both composed of two sets of sets,
each containing n items. When n is large, what are the largest and
smallest values of Rand(X ,Y)?

(d) Suppose x1 and y1 of the previous question both contain
only one item, then what is range of Rand(X,Y)?

(e) Compare the Dunn Index with the F-ratio used to assess sta-
tistical significance in a one-way ANOVA.

11.8 Examine the lung data set in the pvclust library. This data has gene
expression on 916 genes for 72 human lung tissues, including 67 lung
tumors. See how much of the analysis of Sect. 11.3 you can repeat
on this much larger data set. How many clusters of genes do you
estimate? What evidence do you use to support this claim?

11.9 The Older Americans Act (OAA) is a federal program began in 1965
to provide social services and nutritional assistance to senior citizens.
Table 11.6 lists the percent composition of people served in each state.

11: CLUSTERING 311

Table 11.6: Composition of seniors served by the OAA, Title III in 2011

Percentage
Poverty and

State Poverty Minority minority Rural

AL 9 28 3 26
AK 39 34 21 80
AZ 26 42 16 48
...

...
...

...
...

WI 22 6 3 70
WY 18 3 1 73
US
Total 30 25 11 37
Source: US Department of Health & Human
Services, Administration on Aging

Examine this data using hierarchical clustering methods. Are there
unusual groups of states? Do geographically similar states cluster
together?

11.10 Simulate the Dunn Index in the mouse data under a model of no
clustering.

(a) Specifically, generate bootstrap samples by separately gener-
ating random columns of genetic marker values. Calculate the Dunn
Index on each sample, draw a histogram of these values, and com-
pare these to the index on the original value. Comment on this figure.
What evidence does the Dunn Index provide of the validity of K = 3
clusters in the original data?

(b) Can you give a possible explanation for the bimodal distri-
bution of the simulated Dunn Index appearing in Fig. 11.11?

11.11 The car90 data frame in the rpart library cites an article from 1990
Consumer Reports on 34 measurements on 111 different car models.
There are many NAs in this data, so you might want to use the
complete.cases command to eliminate those cars with incomplete
data.

(a) Use K-means clustering to identify groups of similar cars.
What is an appropriate value of K? What are the defining char-
acteristics of these car groups?

11: CLUSTERING 312

(b) Consider recursive partitioning methods to classify the relia-
bility measurement. Reliability is coded using the ordered categories:

much worse < worse < average < better < much better .

Use a regression tree approach to identify those variables associated
with the most and least reliable cars. Briefly, which types of cars
appear to have the most and least problems?

11.12 The data frame wpbc in the TH.data library contains 34 measurements
on the tumors of 198 women with breast cancer treated in a clinic in
Wisconsin.

(a) Examine this data using K-means and estimate how many
different tumor types there are in this data.

(b) The help file for this data frame contains a list of suggested
regressions that can be fitted to model different response variables.
Examine one of these models using a regression tree approach. How
well does the regression tree coincide with the K-means approach that
you found in part (a)?

11.13 Table 11.7 lists the largest oil companies and their production statistics
for 2006 and change from 2005.

(a) Use hierarchical clustering to show that Gazprom, the world’s
largest producer of natural gas, is very different from the other com-
panies in this table. Without Gazprom, the oil companies cluster into
three distinct groups.

(b) Apply K-means or other methods to demonstrate the cluster-
ing pattern of these companies. Figure 11.13 is an example.

11: CLUSTERING 313

Table 11.7: Reserves and production of global oil companies

Reserves Current years 2006 Oil and gas production
Company (MM boe) of production Amount % change
BP 17,368 10.4 3926 −1.9
ChevronTexaco 11,020 10.9 2667 6.1
ExxonMobil 21,518 11.3 4238 3.8
Royal Dutch shell 11,108 6.7 3474 −1.0
Hess 1243 7.9 358 7.0
BG group 2149 6.2 601 19.0
ConocoPhillips 6676 8.7 2359 29.7
ENI 6406 11.2 1770 5.8
Marathon 1262 7.1 377 9.0
Norsk-Hydro 1916 9.3 573 2.0
Petro-Canada 1301 8.4 345 −3.1
Repsol YPF 2600 5.2 1128 −3.0
Petrobras 11,458 14.2 2287 4.5
CNOOC 503 3.0 455 11.7
Gazprom 144,668 39.7 9965 6.0
LUKOIL 18,144 27.2 1838 4.5
PetroChina 16,260 15.6 2907 5.0

10 20 30 40

0
20

00
40

00
60

00
80

00
10

00
0

Years of reserves

20
06

 P
ro

du
ct

io
n

Gazprom

LUKOIL

Figure 11.13: Clustering of oil producing companies

Chapter 12

Time Series Models

T HE MODELS for data described so far have been concerned with
independent observations on multivariate values. The data examined

in this chapter is for settings where the successive observations are also cor-
related. This type of data appears frequently in environmental and economic
studies where a sequence of observations are taken over an evenly spaced time
period. Such time series take into account the serial correlations: Adjacent
observations are positively correlated, and observations farther apart in time
act more independently.

A full study of time series methods is beyond the scope of this book, but
a number of elementary procedures for this type of data are introduced and
computed in R. We will concentrate on two types of analysis. One of these,
autoregressive models , is useful when the correlation between observations is
related to the difference in time between their measurement. A different ex-
ample of these models is described in Sect. 7.5. This second method, spectral
decomposition, reexpresses the observed data in terms of cyclical patterns
that repeat periodically within the observed data. Let us begin by introduc-
ing some examples of the type of data that we are likely to encounter and
then go over a simple analysis that can be performed in R.

12.1 Introductory Examples

and Simple Analyses

Table 12.1 presents the annual combined US cancer rates (per 100,000 per-
sons) by race (black, white) and sex. This data was reported by the Surveil-
lance, Epidemiology, and End Results (SEER) Program of the National
Cancer Institute. The SEER program began in 1973 as part of the “War
on Cancer” initiated under then President Nixon. Currently, in addition

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 12

315

12: TIME SERIES MODELS 316

Table 12.1: Annual combined cancer rates in the US by sex and race 1975–
2007

All races Whites Blacks
Both Both Both

Year sexes Male Female sexes Male Female sexes Male Female
1975 400.39 466.78 365.84 402.12 468.58 369.56 426.23 525.13 356.46
1976 407.40 481.17 367.40 409.69 481.86 373.12 427.38 553.02 340.44
1977 407.74 486.49 363.71 409.26 487.08 367.86 442.62 577.65 352.01

...
...

...
...

...
...

...
...

...
...

2006 462.14 535.72 410.08 471.25 539.95 423.20 487.43 614.56 400.20
2007 461.08 536.61 407.18 468.47 539.49 418.31 482.04 609.17 394.46

Source: SEER

to national-level statistics, SEER collects detailed information on all cancer
cases, by diagnosis, in eight states, several metropolitan and rural areas, as
well as in selected Native American populations.

A portion of the data in Table 12.1 is plotted in Fig. 12.1 for the overall
population as well as separately for white and black females. The cancer rates
are somewhat higher at the end of this time period than at the beginning.
There was a sharp peak for males in 1991 followed by a quick reversal, but
this did not much affect the female populations. The generally increasing
rates covered in this data are partly explained by the facts of longer life
expectancy and advances in treating heart disease and stroke. People who
would have died from other causes in an earlier time are now living long
enough to develop cancer.

A simple examination of this data would be to fit a model of cancer rates
as a linear or possibly quadratic function of the year. The problem with
this approach is that the statistical significance of the regression coefficients
would be distorted because of the lack of independence of the observations
from one year to the next. A high rate in one year is more likely than not to
be followed by another high rate the following year.

There are some other questions we may want to address in this data.
Does the year-to-year correlation carry over 2 or more years later? That
is, do each year’s rates depend on the past few years? Perhaps there is a
random noise component, as we saw in regression models in Chap. 9. Do
these random errors in one year influence cancer rates several years later?
How do we express the correlation between two different series? Do these
also have temporal correlations? That is, does a high rate or model error in
one series influence the other series a year later? We will describe models to
answer these questions in Sect. 12.2.

12: TIME SERIES MODELS 317

1975 1980 1985 1990 1995 2000 2005

35
0

40
0

45
0

50
0

Year

C
an

ce
r

ra
te

Overall

White female

Black female

Figure 12.1: US cancer rates for selected populations, 1975–2007

Table 12.2: Monthly measures of the global environment
Sea ice Snow in

Year Month CO2 % extent in 106 km 106 km El Niño

1978 11 333.76 12.02 8.95 31.49 21.99
1978 12 334.83 14.12 10.85 43.65 23.30
1979 1 336.21 15.54 12.33 49.12 24.77
...

...
...

...
...

...
...

2009 11 385.99 10.26 7.98 34.44 22.11
2009 12 387.27 12.48 10.17 45.86 23.16
2010 1 388.45 13.78 11.59 48.27 24.82
Source: Climate Charts & Graphs. Courtesy of Kelly O’Day

Let us introduce another set of data to illustrate the methods of this
chapter. The data in Table 12.2 summarizes a set of global environmental
measures reported monthly from November 1978 through January 2010 for
the northern hemisphere. The CO2 values are atmospheric carbon dioxide,
measured in parts per million. Sea ice is reported as both percentage of
extent and in millions of square km. Sea ice usually peaks in March/April
and reaches its annual minimum in September or October. Snow cover is
also reported in millions of square km. El Niño is a measure of the Pacific
currents that bring rain and wind from the warm areas near the equator.
A small number of missing values have been linearly interpolated.

12: TIME SERIES MODELS 318

1980 1990 2000 2010

Year

CO2

Percent
 sea ice

Area of
 sea ice

Snow

El Nino

Figure 12.2: Plot of the five environmental time series appearing in Table 12.2

A plot of this data appears in Fig. 12.2. We see the annual, cyclical
patterns that vary with the seasons in the northern hemisphere. There are
trends, most clearly seen in CO2 levels, but possibly in some of the other
series, as well. The objective of the data analysis is to correct for the trends,
if present, adjust for the annual cycle, and then examine the joint residuals
in order to see if any additional information can be extracted from this data.
As with the cancer rate data, we are looking for correlations of observations
that are temporally closely spaced. This data will be modeled in Sect. 12.3.

Let us end this section with a third data set and an illustration of some
simple analyses that we can perform in R. This data on the monthly birth
rates in New York City can be read directly from the web, producing a
data.frame as follows:

> NYCbirth <-

+ scan("http://robjhyndman.com/tsdldata/data/nybirths.dat")

Read 168 items

> print(NYCbirth, digits = 3)

[1] 26.7 23.6 26.9 24.7 25.8 24.4 24.5 23.9 23.2 23.2 21.7

21.9 21.4 21.1

[15] 23.7 21.7 21.8 20.8 23.5 23.8 23.1 23.1 21.8 22.1 21.9

20.0 23.6 21.7

12: TIME SERIES MODELS 319

[29] 22.2 22.1 23.9 23.5 22.2 23.1 21.1 21.6 21.5 20.0 22.4

20.6 21.8 22.9

.

. . .

In R there is a special data structure called ts that acts as a data.frame

but is better suited for some time series analyses. The ts() function creates
a ts object, identifying the frequency period (months) and starting time. We
create a ts object, adding these time coordinates:

> NYCts <- ts(NYCbirth, frequency = 12, start = c

(1946, 1))

> print(NYCts, digits = 3)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Nov Dec

1946 26.7 23.6 26.9 24.7 25.8 24.4 24.5 23.9 23.2 23.2

21.7 21.9

1947 21.4 21.1 23.7 21.7 21.8 20.8 23.5 23.8 23.1 23.1

21.8 22.1

1948 21.9 20.0 23.6 21.7 22.2 22.1 23.9 23.5 22.2 23.1

21.1 21.6

.

A simple time series analysis decomposes the observed data into three
component parts:

observed data = trend + seasonal effect + residual.

The observed data and these three component parts are separately plot-
ted in the top panel of Fig. 12.3. This figure and the components can be
obtained using the decompose function:

NYCd <- decompose(NYCts)

plot(NYCd, xlab = "Year", col = "red")

The decompose function takes a ts object and produces a decomposed.ts
object with components: $x (original data), $seasonal (the periodic effect),
$trend (the trend component of the model), and $random (the residual).

In the upper panel of Fig. 12.3, we can see the trend for a declining birth
rate 1946–1948, followed by a sharp increase through 1956 and a leveling
off after that. The seasonal effect shows a repeated pattern for each year:
lowest in February (also the shortest month) and highest in July and August.
There are no extreme residuals or outliers for us to report in the random plot.

Another useful display is to superimpose the observed values and the
overall trend, as in the lower panel of Fig. 12.3. This figure was produced
using

12: TIME SERIES MODELS 320

Year

N
Y

C
 b

irt
h

ra
te

1946 1948 1950 1952 1954 1956 1958 1960

20
22

24
26

28
30

20
22

24
26

28
30

ob
se

rv
ed

22
23

24
25

26
27

tr
en

d

−
2.

0
−

1.
0

0.
0

1.
0

se
as

on
al

−
1.

5
−

0.
5

0.
5

1.
5

1946 1948 1950 1952 1954 1956 1958 1960

ra
nd

om

Year

Decomposition of additive time series

Figure 12.3: Observed New York City birth rates decomposed into trend,
cyclical (or seasonal) component, and residual in the top panel, and displayed
as superimposed observed and trend (bottom)

12: TIME SERIES MODELS 321

Year

1950 1955 1960

Original
 data

w = 3

w = 5

w = 10

w = 20

w = 30

Figure 12.4: Birth rates smoothed with different moving averages of window
widths w, as specified

plot(NYCd$x, xlab = "Year", ylab = "NYC birth rate",

col = "blue")

lines(NYCd$trend, col = "red", lwd = 3, type = "l")

A more sophisticated decomposition of a time series can be performed
using the stl() function in R. This program has more options available in-
cluding the loess smoothing of the seasonal trend. This smoothing usually
produces a better image of the seasonal trend. See Exercise 12.1 for an illus-
tration of its use.

We can control the amount of smoothing in a time series using the
filter() function which performs a moving average. A moving average,
as the name implies, is the series of all sequential averages of a number of
adjacent observations. The number of points in the moving average is called
the window or sometimes the window width.

As a mathematical example, a moving average m on a time series x =
(x1, . . . , xn) with window w = 5 is calculated as

mt = (xt+2 + xt+1 + xt + xt−1 + xt−2) /5 (12.1)

so that the five adjacent observations are averaged.

12: TIME SERIES MODELS 322

The moving average is illustrated for the birth rate data in Fig. 12.4 both
for the original data and a range of different window widths. Small values
of window w remove the short-term noise and emphasize the annual cycles.
Values of w greater than 12 will remove much of the annual cycle and leave
a smooth image of the overall trend.

In (12.1), we see the moving average mt is centered around xt and gives
equal weights to all five observations. Some moving averages give greater
weight to those observations closer to the center. Again, in (12.1) we see that
the first and last two mts are undefined for t = 1, 2, n− 1, and n. Similarly,
notice how the different moving averages in Fig. 12.4 become shorter at each
end. In some settings where forecasting future trends is the objective, we may
want to define moving averages only on the lagging or trailing observations.

In R, we calculate moving averages as

filter(x, filter = rep(1 / w, w))

The filter=rep(1 / w, w) parameter specifies that the weights in the
average are all equal. In some cases, we might want to give more weight to
those observation nearer the center of the window.

12.2 Autoregressive Models

We begin with an ordered collection of multivariate observations x(1),x(2),
. . . ,x(n) that were taken over a series of evenly spaced time intervals. These
observations are correlated both within the components of x(t) as well as
temporally correlated between x(t) and x(t−k). An important assumption
we make is that the series is stationary. This means that the marginal distri-
bution of x(t) does not change over time and is the same for every value
of t. We will explain this point again below and also test its validity.

The models we build will demonstrate the intuitive property that obser-
vations that are made closer in time are more highly correlated than obser-
vations made farther apart. Our interest is to identify trends in the mean of
this series of observations but also to describe regressions that model later
observations on earlier ones. As an example, can we forecast one year’s cancer
rates using the data from all previous years?

We can describe the temporal, univariate correlations between other ob-
servations in the same series

ρ̂k = corr{x(t), x(t− k)}

for t = 2, 3, . . . , n and k = 1, 2,
This is referred to as the autocorrelation of lag k because it measures the

correlation of the data with itself, offset by k observations. The x’s in this
definition are scalar valued. If the x’s were vector valued, then the ρ’s would
be correlation matrices.

12: TIME SERIES MODELS 323

The assumption that the data is stationary means that these correlations
are the same for every value of t. Ideally, sufficiently long lags would indicate
that observations far apart also behave independently. A plot of the autocor-
relation ρ̂k by the length of the lag k is called the correlogram, periodogram,
or a variogram. Useful lag values k are generally much smaller than the
sample size n and rarely larger than 15 or 20.

The acf function in R computes autocorrelations of a scalar-valued time
series and plots the correlogram as function of the lag for a range of lags.
Figures 12.5, 12.6, and 12.7 are examples of these. Figure 12.5 plots the
correlogram for a set of randomly distributed standard normal variates. This
figure can be obtained with

acf(rnorm(125))

in R.
The autocorrelation with a lag of k = 0 is equal to one, corresponding

to the correlation of the data with itself. In this example, higher lags have
negligible autocorrelations because the data is randomly generated.

Figure 12.6 is the estimated autocorrelation function for US total cancer
rates, combined over all populations. These correlations are all very high for
small lags indicating a high degree of autocorrelation between close years’
values. High lags have negative correlations reflecting a regression to the
mean for observations that are far apart.

There is also a cross-correlation function that allows us to measure the
lagged correlation of one series with another. That is, we can measure the
correlation

corr{x(t), y(t− k)}.

The lag, k, could be either positive or negative depending on which series we
can interpret as leading or lagging the other.

The cross correlation is calculated in R using the ccf(x= , y=) function.
An example of these appears in Fig. 12.7. In this figure we see the cross
correlation of cancer rates for white females lagged by the overall US rates.
This plot demonstrates that there is a high correlation between the two time
series.

Figures 12.5, 12.6, and 12.7 include bounds (as dotted lines) for 95%
confidence intervals of autocorrelations under the null hypothesis that obser-
vations are generated independently. The autocorrelation function for the
normal random observations are generally within these bounds and those of
the cancer rates are well outside their bounds.

12: TIME SERIES MODELS 324

0 5 10 15 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
ut

oc
or

re
la

tio
n

ACF for random normals

Figure 12.5: Autocorrelation function for random normally distributed data

The Ljung–Box test (Ljung and Box 1978) is a single test that several
autocorrelations are all zero. In a sample of n observations with estimated
autocorrelation ρ̂k of order k, the statistic

Q = n(n+ 2)

h∑

k=1

ρ̂2k
n− k

(12.2)

behaves approximately as chi-squared with h df.
In R we compute this test using

Box.test(x, lag = 1, type = "Ljung-Box")

where x is the time series data and the lag specifies h, the number of auto-
correlations to be tested. We won’t illustrate the use of this statistic at this
point: It is better suited to examine the autocorrelations of residuals from
regression models that we describe next.

Given a series {x(1), . . . ,x(n)} of temporally ordered multivariate ob-
servations, the autoregression model

x(t) = θ +Θ1x(t− 1) + · · ·+Θpx(t− p) + e(t) (12.3)

regresses each data point x(t) on the p previous observations plus multi-
variate normally distributed error e(t).

12: TIME SERIES MODELS 325

0 5 10 15

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
ut

oc
or

re
la

tio
n

ACF for Overall US Cancer Rates

Figure 12.6: Autocorrelation for US cancer rates for all populations

In this model the parameters to be estimated are θ, a vector-valued in-
tercept, and matrices Θ1, . . . ,Θp of regression coefficients. The lag, p, is
usually chosen as a small value because of the large number of estimated
parameters involved. Model (12.3) is similar to multivariate linear regres-
sion described in Chap. 9, except the autoregression model includes earlier
observations as the explanatory variables. Intuitively, this model forecasts
the next observation as a linear function of the previous p observations.

The multivariate autoregressive model can be fitted using the VAR (vector
autoregressive) routine. An example of this is

library(vars)

acan <- read.table(file = "AnnualCancer.txt", header = T)

ofc <- acan[, c("Overall", "Wfemale", "Bfemale")]

varofc <- VAR(ofc, p = 1, type = "both")

summary(varofc)

res <- residuals(varofc)

In this R code, we read the cancer data, then select the overall rate as
well as those for black and white females. The VAR function fits model (12.3)
with p = 1. There is a large amount of output from this program and a
portion is reproduced in Output 12.1. This includes the estimated regression
coefficients in (12.3), their standard errors, and tests of statistical significance.
The correlation matrix of the residuals is also included.

In Output 12.1 see that the white female series is highly correlated with
its own value from the previous year and also has a statistically significant

12: TIME SERIES MODELS 326

Output 12.1: A portion of the autoregression output for US cancer rates

Estimation results for equation Wfemale:

==

Wfemale = Overall.l1 + Wfemale.l1 + Bfemale.l1 + const + trend

Estimate Std. Error t value Pr(>|t|)

Overall.l1 -0.1081 0.1076 -1.004 0.3243

Wfemale.l1 0.8911 0.1635 5.450 9.12e-06 ***

Bfemale.l1 0.2898 0.1405 2.063 0.0489 *

const -12.6488 35.6494 -0.355 0.7255

trend -0.2743 0.2479 -1.107 0.2783

Residual standard error: 5.826 on 27 degrees of freedom

Multiple R-Squared: 0.9495, Adjusted R-squared: 0.942

F-statistic: 127 on 4 and 27 DF, p-value: < 2.2e-16

Estimation results for equation Bfemale:

==

Bfemale = Overall.l1 + Wfemale.l1 + Bfemale.l1 + const + trend

Estimate Std. Error t value Pr(>|t|)

Overall.l1 0.27915 0.16816 1.660 0.1085

Wfemale.l1 0.46300 0.25549 1.812 0.0811 .

Bfemale.l1 0.04281 0.21953 0.195 0.8468

const 57.65281 55.70207 1.035 0.3098

trend -0.04098 0.38728 -0.106 0.9165

Residual standard error: 9.103 on 27 degrees of freedom

Multiple R-Squared: 0.8583, Adjusted R-squared: 0.8373

F-statistic: 40.89 on 4 and 27 DF, p-value: 4.394e-11

Correlation matrix of residuals:

Overall Wfemale Bfemale

Overall 1.0000 0.6115 0.4475

Wfemale 0.6115 1.0000 0.4533

Bfemale 0.4475 0.4533 1.0000

12: TIME SERIES MODELS 327

−10 −5 0 5 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Lag

C
ro

ss
co

rr
el

at
io

n

White Female Rates Lagged by Overall Rates

Figure 12.7: Cross correlation of cancer rates in US White women lagged by
total US population

regression on black women’s cancer rates of the previous year. The fitted
regression model for black female cancer rates is statistically significant ac-
cording to the overall F-test, but no single regression coefficient is significant.
The estimated trends are not statistically significant for either of these two
populations. The negative values of the estimated trends indicate that no
overall trend remains after correcting for the regression coefficients.

The multivariate residuals from this regression are plotted in the upper
panel of Fig. 12.8. These values have been scaled because the three series
have different estimated variances. Scaling each column to zero mean and
unit variance is performed using the scale() function. The rug plot on the
right margin of this figure does not indicate any deviations from a marginal
normal distribution. A test of normality on the residuals can be performed
using

normality.test(varofc)

also in the vars library.
The normality.test computes the multivariate Jarque–Bera test on this

data (p = 0.80) and separately for the multivariate skewness (p = 0.45)
and kurtosis (p = 0.94). These p-values give us no empirical evidence of a
departure from multivariate normal residuals. The details of the Jarque–Bera
test are described in Sect. 5.4.

12: TIME SERIES MODELS 328

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ljung−Box test for serial correlation

Lag

P
−

va
lu

e

1975 1980 1985 1990 1995 2000 2005

−
2

−
1

0
1

2
3

Year

S
ca

le
d

R
es

id
ua

l

Overall

Wfemale

Bfemale

Figure 12.8: Residuals and p-values for the Ljung–Box test from autoregres-
sive model of US cancer rates in selected populations

12: TIME SERIES MODELS 329

The Ljung–Box test statistic given in (12.2) can be used to detect any
autocorrelation in the residuals of a fitted autoregression model, as well. Re-
jecting the null hypothesis of these residuals is indicative of autocorrelations
that are not accounted for by the autoregression model. This would suggest
that a larger number of parameters is needed in (12.3). The lower panel of
Fig. 12.8 plots the p-values of these tests for each of the three time series in
our model and these give no indication of any inadequacies in the model for
only one regression variable.

Another assumption we need to examine is that of stationarity of the
series. We assume that x(t) all have the same distribution, and this as-
sumption can fail in a wide range of ways. There are many possible tests of
these departures and several are available in R. See Exercise 12.7 for a list of
these.

A graphical display of the stationarity assumption appears in Fig. 12.9.
Instead of fitting a model with the whole data set, suppose we fit a series
of models on a moving window subset {x(t + 1), . . . ,x(t + w) } for window
width w > 0. As the starting value, t, of the window varies, we should not
expect to see much difference in the estimated model parameters if the series
is truly stationary.

We used a window width of w = 15 years in Fig. 12.9 and examined
the six estimated model variances, on a log scale, and the nine estimated
regression coefficients Θ, in the bottom panel. The fitted model is the same
as that in Output 12.1. The overall US cancer rate (in red on the bottom
panel) has a higher estimated variance in the middle years than at either end
of the data. A small number of estimated regressions have larger variability
at the beginning of the series but otherwise are fairly stable throughout. In
conclusion, we see no inadequacies in the autoregressive model for this data
with p = 1 and the stationarity assumption seems reasonable.

Next, let us introduce a more general model for temporally correlated
multivariate data. These models regress on both earlier observations as well
as on their model errors. Autoregressive models in (12.3) contain multivari-
ate normally distributed random errors e(1), e(2), . . . associated with each
observation. In autoregressive, integrated moving average (ARIMA) models,
these errors are cumulative, and there are additional moving average regres-
sion coefficients associated with these as well.

Symbolically, the ARIMA model of order (p, q) is

x(t) = θ +Θ1x(t− 1) +Θ2x(t− 2) + · · ·+Θkx(t− p)

+e(t) +Δ1e(t− 1) +Δ2e(t− 2) + · · ·+Δqe(t− q) . (12.4)

In the ARIMA model, each observed x(t) is regressed on each of the
previous p observed x(t− 1), . . . ,x(t− p) as well as on the errors e(t− 1),
. . . , e(t− q) associated with the q previous observations.

The parameters to be estimated in the ARIMA model are the vector-

12: TIME SERIES MODELS 330

1975 1980 1985 1990

2
3

4
5

Start of Window

Lo
g

V
ar

ia
nc

es
 a

nd
 C

ov
ar

ia
nc

es
Variances Covariances

l Overall l Overall_Wfemale

l Wfemale l Overall_Bfemale

l Bfemale l Wfemale_Bfemale

1975 1980 1985 1990

−
0.

5
0.

0
0.

5
1.

0
1.

5

Start of Window

E
st

im
at

ed
 R

eg
re

ss
io

n
C

oe
ffi

ci
en

ts

Θ
11

Θ
12

Θ
13

Θ
21

Θ
22

Θ
23

Θ
31

Θ
32

Θ
33

Figure 12.9: Moving window estimates of variances (log scale, at top) and
regression coefficients Θ1 (on bottom) in autoregressionmodel of Output 12.1

12: TIME SERIES MODELS 331

valued intercept θ, matrices of autoregressive slopes Θ1, . . . ,Θp, and ma-
trices of moving average slopes Δ1, . . . ,Δq. There are a very large number
of parameters to be estimated in (12.4). As a consequence, only very long
multivariate time series can be fitted. Below, we will illustrate the ARIMA
models using only the univariate overall US cancer rate because of the large
number of parameters associated with ARIMA models.

ARIMA models can be fitted using

arima(x, order = c(p, 0, q))

for univariate time series (x) and

VARMA(y, p = , q =)

for multivariate data (y). These functions are available in the TSA and MTS

libraries, respectively.
The missing option (0) in the order= allows us to change the order of

differencing, but it is best set to zero for most applications. When q is set
to zero, these programs fit autoregressive models. The arima and VARMA

programs have several other options including the ability to regress on other
explanatory variables and a choice of whether or not to include an intercept θ.

The details from three fitted ARIMA models are given in Output 12.2.
The output includes fitted regression parameters and measures of overall
fit, relative to the other models. The three successive models are nested
in the sense that each subsequent model adds additional parameters to the
previous model. We can see the estimated variance of e(t) (denoted by
sigma^2) declines with more complicated models indicating a lower degree
of uncertainty associated with each subsequent model. Similarly, the log-
likelihood increases, also indicating a better fit according to this criterion.

In addition, there is an AIC measure that is minimized for the middle of
these three models. We will explain this statistic next.

The object of model building is more than maximizing the log-likelihood.
This could be accomplished in a complicated model with many parameters,
not all of them useful. The AIC, then, charges a penalty to the model
log-likelihood for every parameter included. The AIC is the Akaike1 In-
formation Criterion, and is defined as

AIC = −2× Log−likelihood + 2× number of parameters.

In words, every parameter in the model must make a meaningful con-
tribution in order to be included. Maximizing the log-likelihood is one goal,
but minimizing the AIC results in simpler models.

1Hirotugu Akaike (1927–2009). Japanese statistician.

12: TIME SERIES MODELS 332

Output 12.2: Portions of three ARIMA models of overall cancer rates

> arima(acan[, "Overall"], order = c(1, 0, 0))

autoregressive (1)

Coefficients:

ar1 intercept

0.9709 440.0603

s.e. 0.0297 28.7600

sigma^2 estimated as 66.23: log likelihood = -117.44,

aic = 238.88

> arima(acan[, "Overall"], order = c(1, 0, 1)) # ARIMA

(1,1)

Coefficients:

ar1 ma1 intercept

0.9555 0.3687 441.9634

s.e. 0.0425 0.1480 27.3071

sigma^2 estimated as 56.2: log likelihood = -114.9,

aic = 235.79

> arima(acan[, "Overall"], order = c(2, 0, 2))

ARIMA(2,2)

Coefficients:

ar1 ar2 ma1 ma2 intercept

0.7065 0.2170 0.7001 0.3771 444.2845

s.e. 0.4227 0.4051 0.4108 0.3048 25.7473

sigma^2 estimated as 53.34: log likelihood = -114.17,

aic = 238.34

12: TIME SERIES MODELS 333

Specifically, the ARIMA(2,2) model in Output 12.2 has evidence of being
overfitted, or having too many parameters. There is only a modest improve-
ment in reduced sigma^2 and slight increase in the log-likelihood ratio be-
tween the ARIMA(1,1) and ARIMA(2,2) models. Recall from Sect. 7.4 that
twice the difference in the log-likelihood of two nested models should behave
as chi-squared when the underlying parameters are zero. In the present case,
the ARIMA(2,2) has two more parameters than the ARIMA(1,1) model. At
the same time, the AIC has increased indicating that the improvement in fit
is not enough to warrant the increase in parameters and model complexity.

The ARIMA(1,1) model for the year t of overall US cancer rates x(t) has
the smallest AIC of the three models in Output 12.2. The fitted parameters
of this model are

x(t) = 441.96 + 0.96 x(t− 1) + e(t) + 0.37 e(t− 1),

where the es are normally distributed with mean zero and their estimated
variances are 56.2.

There are a number of diagnostics available for the arima program. The
tsdiag program plots residuals, their periodogram, and tests of different lags
in the Ljung–Box test. Exercise 12.7 explores different significance tests of
the stationarity assumption. We next examine models that exploit cyclical
patterns in the time series.

12.3 Spectral Decomposition

In the previous section, we saw that we can build regression models where
the observed value in one time period is regressed or explained by observa-
tions made at earlier times. In the example of the US cancer rates, we saw
that reasonable models can be constructed using the previous year’s data.
Such models are useful when the observed data is relatively smooth but also
temporally correlated. The models we examine here are useful for data that
exhibits marked cyclical patterns such as those seen in the seasonal variations
of the climate data in Fig. 12.2 and, to a smaller degree, in the birth rate data
of Fig. 12.3. The approach taken in this section is to decompose the data into
its cyclical components of all possible frequencies. We will see that simple
models can be obtained by omitting many terms in the model. In this case,
we can delegate many of the high-frequency components to the residuals.

The background theory needed is the Fourier2 transform. Suppose we
have a set of numbers x = {x1, . . . , xn}. Then there is a unique representa-

2Joseph Fourier (1768–1830). French mathematician and physicist.

12: TIME SERIES MODELS 334

tion of x

xi =

n/2∑

k=1

ak sin(2πik/n) + bk cos(2πik/n) (12.5)

in terms of other numbers a = {ak} and b = {bk} for every i = 1, . . . , n.
The representation of x in terms of its frequency spectrum a and b is

called the Fourier transform. This is analogous to the way we can use a prism
to decompose white light into its component colors.

The representation in (12.5) is unique, in part because there are n num-
bers on both sides of Eq. (12.5). Further, given a and b, it is possible to
invert this relationship using the inverse Fourier transformation and obtain
the original x again. If n is an odd number then we set the last bk to zero
in (12.5).

There was a time when computing (12.5) took a lot of computing power.
This changed with the publication of the fast Fourier transformation by Coo-
ley and Tukey (1965), although earlier versions were known but not as well
utilized. In today’s applications, for example, a Fourier transformation can
greatly simplify the transmission of a video image, omitting some of the noise
or high-frequency spectrum, at the expense of losing some fine detail in the
picture.

Mathematical models with periodic sines and cosines are most useful
when the data x exhibits strong cyclical patterns. Intuitively, when one ak
and/or bk is large, then there is a large cyclical effect with period 2πk/n
in x. A useful display, as in Fig. 12.10, is to plot the magnitude of {ak, bk}
against k. The vertical axis in this figure plots values of

√
a2k + b2k.

The complete set of magnitudes of all frequencies (expressed in terms of
a and b) is referred to the spectral decomposition of the data. These are
computed and plotted in Fig. 12.10 using

spec.pgram(climate, detrend = TRUE)

for the climate data.
The spec.pgram program computes and plots the spectral decomposition

for each of the series. The detrend option removes linear trends such as
the one that is so apparent in the CO2 series. The program fits and plots
the periodogram in the left panel of Fig. 12.10. The obvious problem is the
large amount of noise in the raw periodogram making it difficult to see the
underlying pattern in the data.

A smoothed periodogram is a much more useful diagnostic. To smooth
the periodogram, we add the span option as in

spec.pgram(climate, detrend = TRUE, span = c(9, 9))

The arguments to the span option are a pair of odd integers, where larger
values result in greater smoothing and smaller values result in greater fidelity

12: TIME SERIES MODELS 335

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

S
pe

ct
ru

m
Raw periodogram of climate data

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

Smoothed periodogram

CO2
IcePct
IceArea
Snow
ElNino

Figure 12.10: Raw and smoothed periodograms of the climate data

to the original values. This is similar to determining the window width when
computing a moving average as seen in Fig. 12.4. The choice of parameter
values usually takes some trial and error to produce just the right balance of
smoothing and fidelity to the original data.

The vertical axis of the periodogram is called the spectrum and is a mea-
sure of the strength of each frequency within the series. In Fig. 12.10 the
spectrum is given on a log scale. The frequency on the horizontal axis tells
us how often the cyclical pattern occurs within the data. These patterns
are clearer in the smoothed periodogram. The frequencies with largest val-
ues occur at 1/12 = 0.0833 indicating the 12-month cyclical pattern in the
data. There are also smaller echoes of the twelve-month cycle occurring at
2/12=0.1667, 3/12=0.25, and so on. We notice how these spectral patterns
run parallel for each of the five climate time series.

Smoothing the periodogram cures other problems as well as those seen
in Fig. 12.10. The estimate of the spectral density is affected by the abrupt
truncation that occurs at the beginning and end of the time series. Collecting
more data on a longer series does not improve the situation because a longer
series means that there are more Fourier coefficients (a and b) to estimate.

We end this section with a simple, graphical diagnostic for examining
the presence of periodicity in the data. This can be accomplished using the
cumulative periodogram, computed using the cpgram() function in R. The
individual spectral values are divided by the total, so the cumulative sum
increases to one. Two examples are given in Fig. 12.11 for the New York City
birth rate data.

The cumulative periodogram includes dotted lines that provide a range
of values where the white noise should fall. The original birth rate data
jumps outside these bounds for low frequencies corresponding to the strong

12: TIME SERIES MODELS 336

0 1 2 3 4 5 6

frequency

AR(2) residuals

0 1 2 3 4 5 6

frequency

Original data

Figure 12.11: Cumulative periodogram of original NYC birth data and resid-
uals from an AR(2) model

annual effects. If we fit an AR(2) model to this data and plot the residuals,
then there is good evidence that there is no periodic effect remaining. These
figures were produced using the R code:

cpgram(NYCts, main = "Original data")

cpgram(ar(NYCts, order.max=2)$resid, main = "AR(2)

residuals")

In summary, time series data can be analyzed either using autoregressive
regression models or through their spectral decomposition. The choice of
these two different approaches depends on the summary you want to make.
Begin by understanding the process that gave rise to your data and then
draw a few plots to motivate your models.

12.4 Exercises

12.1 Reexamine the New York City birth rate data using stl.

(a) Is the loess smoothed seasonal trend more informative than the
trend plotted in Fig. 12.3? Or does the loess fit look like one of the
moving averages in Fig. 12.4?

(b) Is there evidence that the periodic component in this series is
not stationary? Does a multiplicative model offer a better fit?

12: TIME SERIES MODELS 337

(c) A longer series of all US births is available as birth in the astsa
library. Display the annual periodic component. Is there evidence of a
nonstationary property? Can you demonstrate this?

12.2 The prescrip data in the TSA library lists the average US monthly
prescription costs between August 1986 and March 1992. Decompose
the series into a trend and a cyclical pattern. Can you explain the
annual cycle in this data?

12.3 The blood data set in the astsa library is a time series of daily mea-
surements made on one person for 91 days. There are three variables
recorded: log(white blood count), log(platelet), and hematocrit. There
are many missing values, recorded as NA, and these increase in frequency
towards the end.

(a) Is there evidence of periodicity in any of the three series?

(b) Is there evidence of cross correlation between the series? Does
one measurement appear to lead another?

12.4 Exercise 9.3 uses linear regression methods to examine multiple time
series of personal health care expenditures by Medicare recipients. The
data appears in Table 9.3. Use autoregressive models to fit this data.
Which method (linear regression or autoregressive) provides a more
valid summary of this data? Which method is more consistent with the
properties of the sampled data?

12.5 The data set ambientNOxCH in the robustbase library is another envi-
ronmental time series, providing 366 daily measurements of air quality
in 13 different locations in Switzerland. These locations are very differ-
ent from each other: one is located along a highway, another in urban
areas, and one is on an isolated wooded mountain. There are a number
of missing values, and linear interpolation between adjacent non-missing
values should be a suitable solution to fill these.

(a) Apply some graphical techniques to this data. Which of these
series exhibit seasonal effects? There is only a little more than a year’s
worth of data, so we will have to assume that seasonal patterns repeat
every year. How many of these seasonal patterns appear due to a small
number of outlying observations?

(b) How do the cross correlations compare with those in Fig. 12.7?

12.6 The boardings data set in the TSA library is a bivariate time series
measuring use of public transportation (boardings of bus and light rail
services) and gasoline price in the metropolitan Denver, Colorado, re-
gion.

12: TIME SERIES MODELS 338

(a) Is there evidence for a seasonal, periodic effect in either of these
two series?

(b) Does the use of public transportation rise and fall with the price
of gasoline?

12.7 Several of the statistical tests of stationarity available in R include
the Phillips–Perron test (PP.test), the Kwiatkowski–Phillips–Schmidt–
Shin (KPSS) test (kpss.test), and the Augmented Dickey–Fuller test
(adf.test). Some of these embed the fitted model into a more general
model, and others examine the spectral decomposition of the data. Ap-
ply these to the boardings data of the previous exercise and interpret
your findings. Does the boardings data appear stationary? If not, how
does it fail this assumption?

Chapter 13

Other Useful Methods

THIS FINAL CHAPTER provides a collection of useful multivariate
methods that do not fit into any of the previous chapters. The Bradley–

Terry model gives a way to rank a set of objects that are subjected to pairwise
comparisons. Such examples include sports teams that play against each
other. Canonical correlations generalize the definition of correlation of a pair
of scalar-valued variates to two groups of several variables that are considered
jointly. The study of extremes allows us to examine several of the largest
values in a collection of data.

13.1 Ranking from Paired

Comparisons

We are familiar with rankings. Headlines proclaim the best city to live in or
the best university to attend. There is a lot of quantitative data behind such
rankings, but, of course, the results depend highly on the relative weights
we give to each measurement. Principal components may be helpful, but the
interpretation of the weights and loadings may not correspond to any useful
sense of ranking the observations.

We can easily rank one-dimensional data. For instance, there is a tallest
and a shortest person in the room. We can easily make pairwise comparisons
of the heights of any two persons, and the random variability of such a com-
parison is negligible. We are also familiar with pairwise comparisons between
sports teams. At the end of the season we can rank the teams on the basis of
their record of wins and losses. Taken to a light-hearted extreme, the website

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3 13

339

13: OTHER METHODS 340

Table 13.1: Cross citation rates among selected probability journals in
1987–1988

Cited Citing journal
journal AnnPr PrTh StochPr JAppPr ThPrApp AnnSt
AnnPr 468 255 33 46 72 74
PrTh 333 322 47 47 72 76
StochPr 208 155 93 76 40 41
JAppPr 121 31 37 283 26 35
ThPrApp 101 60 23 38 344 63
AnnSt 76 81 13 14 50 1009

Source: Stigler (1994). Used with permission

http://william.hoza.us/rank/ attempts to rank everything by means of
asking viewers to make pairwise comparisons between two seemingly unre-
lated things.1

As a specific example, consider the problem of associating a level of pres-
tige associated with academic journals. Academic faculties need to publish
their results and want to have these appear in the highest-impact journals.
At the same time, we need a way of performing a pairwise comparison. A so-
lution, presented by Stigler (1994), was to count the number of times articles
in one journal cite articles in the other journal. The premise is that a journal
that tends to be cited more often is also viewed as the source of the newest
and best ideas. There are flaws in this argument, of course, but perhaps we
can think of information flowing between the journals. It would be useful to
have a measure of the directions of these flows.

The data in Table 13.1 is part of Stigler’s article.2 The names of the
citing journals are listed as the columns and the names of the journals being
cited are the rows. As an example, in 1987–1988, the Annals of Probability
(AnnPr) was cited 74 times in the Annals of Statistics (AnnSt).

In our model of ranking, we will consider the event that journal i is
cited by journal j at a greater rate than journal j is cited by journal i.
As a shorthand, we will use the notation “i > j” to signify that journal i
has greater impact than journal j, consistent with our goal of ranking. See
Exercise 13.9 for details of this notation.

1A recent visit to this website asked to viewer to choose between the
better of “pig” or “castanet.”

2A smaller subset of Stigler’s data is also available in R as the citation

data in the BradleyTerry2 library. The interested reader can build compar-
isons between other journals and years using Journal Citation Reports.

13: OTHER METHODS 341

The pairwise comparisons do not allow for ties, so we make no provision
for the event “i = j” where the journals have equal rankings. Similarly, the
probability that i beats j is complementary to the probability that j beats
i and we have

Pr[i > j] = 1− Pr[i < j] .

A journal that cites itself provides no information in its ranking among
others. Let ni denote the number of citations in journal i to a journal other
than itself. A journal with many citations, for example, is more likely to have
many citations to other journals, and we need to adjust for this. Similarly,
the rate of i > j (versus i < j) should be in the ratio nj/ni if the citation
rates are equal.

Written in another way, we expect

logitPr[i > j] = log(nj/ni) (13.1)

if the citation rates were the same between the journals i and j.
Recall from (10.1) that the logit is shorthand for “log-odds” so (13.1)

models

logitPr[i > j] = log

{
Pr[i > j]

1− Pr[i > j]

}
= log

{
Pr[i > j]

Pr[i < j]

}
.

One way to think about (13.1) is to consider a randomly chosen citation
between journals i and j. We want to model the probability that this citation
represents a citation of journal i by journal j. The number of citations ni

made by journal i counts against it in this competition for ranking and
prestige.

Bradley and Terry (1952) proposed a method for modeling comparisons of
this type that can also be used for ranking purposes. Suppose the ith journal
has a prestige or influence score λi that we will estimate. The Bradley–Terry
model comparing journals i and j is

logitPr[i > j] = λi − λj + log(nj/ni), (13.2)

after taking into account the marginal number of citations as in model (13.1).
Larger values of λi correspond to greater strength in the pairwise com-

parisons of journal i with all other competitors. Given the estimated values
λ̂i, we can rank but also assign a relative strength to each journal.

Before we fit the Bradley–Terry model (13.2) in R, let us point out two
features of this model. First, notice how we can add a constant to all of the λs
and still obtain the same model. Such a model is said to be non-identifiable.
A non-identifiable model is one in which different parameter values give rise
to the same model.

13: OTHER METHODS 342

A simple solution to make model (13.2) identifiable is to arbitrarily set
λ1 equal to zero. Then all λs are interpreted as comparisons with this item.
The item associated with λ1 is then referred to as the reference category.
This choice of reference category can be changed in the R program that fits
the Bradley–Terry model, as described below.

A second feature of model (13.2) is the inclusion of the log(nj/ni) term.
We see that this term is included in the model, but there is no associated
parameter to estimate with it. Such a term in a model is called an offset. In
the present example, the offset adjusts for the different underlying number
of citations with no additional estimation necessary.

Output 13.1 shows how we can fit the Bradley–Terrymodel given in (13.2).
This code includes some of the output from R. The countsToBinomial routine
is a handy feature that converts a contingency table format as in Table 13.1
to a list of all pairwise comparisons. A portion of the output from this routine
is given to illustrate this feature. The values win1 and win2 list how many
times each pair of journals cites each other.

The BTm routine fits the model, and the output in Output 13.1 lists
the different estimated λs along with their standard errors and significance
levels. The first listed journal, Annals of Probability (AnnPr), is the reference
category and has an assigned λ = 0 for identifiability.

All of the estimated λs are negative indicating that the Annals of Proba-
bility has the highest citation rate. Each successive journal has a lower rates
of citation as we read down the list of estimated coefficients in Output 13.1.
The third and fourth journals have the word “Applied” in their titles and the
last, Annals of Statistics (AnnSt), is very mathematical but not primarily a
journal of research in probability. This conclusion agrees with the finding of
Stigler (1994) who reports that the citations of the newest ideas appears to
flow from the theoretical journals to the more applied journals and not as
much in the other direction.

Exercise 13.10 asks you to compare the citation rates of other statistics
journals. Exercise 13.11 shows how we can assign relative strength to different
sports teams.

13.2 Canonical Correlations

Correlations are defined between pairs of column vectors of data x and y.
How can we generalize this concept to the correlation between sets of several
columns X = {x1,x2, . . . ,xn} and Y = {y1,y2, . . . ,ym}? As an example,
consider the BRFSS health survey data introduced in Sect. 9.3. We want
to identify a relationship between several measures of behaviors with several
measures of health outcomes. Is there anything we can say about the group
of behaviors that have any relationship with the group of health outcomes?

13: OTHER METHODS 343

Output 13.1: Program and selected output fitting Bradley–Terry model to
journal data

> prcite <- read.table(file = "probcite.txt", header =

TRUE,

+ row.names = 1)

> prcite <- prcite[-7, -7] # remove Totals in margins

> # number of non-self

citations

> ns <- colSums(prcite) - diag(as.matrix(prcite))

> library(BradleyTerry2) # necessary package

> # convert contingency table to list and remove self

reference

> clist <- countsToBinomial(prcite)

> names(clist)[1 : 2] <- c("journal1", "journal2")

> clist

journal1 journal2 win1 win2

1 AnnPr PrTh 255 333

2 AnnPr StochPr 33 208

3 AnnPr JAppPr 46 121

.

14 JAppPr AnnSt 35 14

15 ThPrApp AnnSt 63 50

> ni <- ns[match(clist$journal1, names(ns))]

> nj <- ns[match(clist$journal2, names(ns))]

> os <- log(nj / ni) # offset

> clist <- cbind(clist, os)

>

> fitBTo<- BTm(cbind(win1, win2), journal1, journal2,

+ offset = os, data = clist)

> summary(fitBTo)

.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

..PrTh -0.01349 0.06878 -0.196 0.845

..StochPr -0.19659 0.10159 -1.935 0.053 .

..JAppPr -0.71494 0.10458 -6.836 8.13e-12 ***

..ThPrApp -0.71571 0.09739 -7.349 1.99e-13 ***

..AnnSt -0.87605 0.09925 -8.826 < 2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

13: OTHER METHODS 344

The idea of canonical correlations is attributed to Hotelling (1935). He
proposed methodology to find a pair of weights a and b such that the
correlation of the linear combinations a′X and b′Y is maximized.

The values of a′xi and b′yi are called canonical scores for the ith
individual. These scores serve to reduce this individual’s multivariate data
(xi,yi) to a pair of scalars that capture much of the information needed
to compute the correlation. The weights a and b are the same for every
individual and need to be estimated.

This approach is analogous to principal components in which a weighted
average of every individual’s complete data captures the maximum variabil-
ity. By further analogy to principal components, there are first, second, and
subsequent canonical scores

(a′
1xi, b

′
1yi), (a

′
2xi, b

′
2yi), . . .

that are highly correlated and also mutually orthogonal with the other canon-
ical scores.

How is this approach different from multivariate linear regression? Mul-
tivariate linear regression, described in Sect. 9.2, expresses the mean of each
column of Y as a separate linear combination of the columns in X resulting
in a set of separate regression coefficients. We then examine the set of mul-
tivariate residuals in a principal components analysis, looking for additional
explanatory value among the Y after having corrected for the X.

In canonical correlation, we seek linear combinations of columns in X
and Y resulting in separate, respective univariate measures that are highly
correlated with each other. The idea is to distill all of the linear information
in X and Y resulting in scalar-valued canonical scores that are highly
correlated.

As an example of how we use this method, consider the car data examined
in Sect. 9.2. Every car has 11 different attributes, each of which we described
as either being a design feature built into the car by the engineers at the
factory or else an empirical feature that was readily experienced by the driver.

How can we combine all of the design features and show that these are
related to a combination of the driver features? Further, can we assess the
relative importance of each of the design features equally important in creat-
ing the driver experience? Equivalently, which driver experiences dominate
or summarize the others? Which cars appear on different ends of this scale?

The variables in the mtcars dataset that we consider as user features are
cylinders, displacement, rear axle ratio (drat), forward gears, “v” or straight
arrangement of the cylinders. Driver features are miles per gallon, horse-
power, weight, 1/4 mile time, and automatic or manual transmission.

The program to compute the canonical correlations and plot loading of
first coefficients is given in Output 13.2. The plot of first canonical correlation
loadings appears in Fig. 13.1. Two of the extremes are identified. Large
luxury cars appear in the lower left corner, and smaller economy cars are

13: OTHER METHODS 345

Output 13.2: Program to compute canonical correlations and plot the
loadings

require(datasets, CCA)

design <- mtcars[, c(2, 3, 5, 8, 10, 11)]# cyl, disp, carb, drat, gear,vs

driver <- mtcars[, c(1, 4, 6, 7, 9)] # mpg, hp, wt, qsec, am

cancor(design, driver)

cc(design, driver) # CCA package enhancement

ccs <- cc(design, driver)

descc1 <- ccs$scores$xscores[, 1]

drivcc1 <- ccs$scores$yscores[, 1]

sdr <- sort(drivcc1)

sdr <- sdr[c(1, length(sdr))] # first and last

ext <- match(sdr, drivcc1)

plot(descc1, drivcc1,

xlab = "Design canonical scores",

ylab = "Driver canonical scores")

text(descc1[ext], drivcc1[ext], labels = rownames(mtcars)[ext],

pos = c(4, 2), cex = .8)

in the upper right. Overall, there is a very high correlation between these
scores. These correspond exactly to the first canonical correlation, which we
can verify:

> cancor(design, driver)$cor

[1] 0.9850787 0.8471577 0.5796657 0.4137175 0.2548956

> cor(descc1, drivcc1)

[1] 0.9850787

The additional $cor values correspond to the second and subsequent canon-
ical correlations.

We see the canonical correlation scores in Fig. 13.1 correspond, roughly,
to the size and weight of the car, the compact Honda Civic in one corner and
the Chrysler Imperial in the other. There is some evidence that there are
groups of individual cars on this scale. There are four cars located near the
Imperial. The other three are Cadillac Fleetwood, Lincoln Continental, and
Maserati Bora.

In summary, the canonical correlations can be used similar to the way
we used principal components analysis to identify and distinguish between
groups of individuals. See Exercise 13.12 for more on this interpretation. In

13: OTHER METHODS 346

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Design canonical scores

D
riv

er
 c

an
on

ic
al

 s
co

re
s

Chrysler Imperial

Honda Civic

Figure 13.1: Loadings of canonical correlation analysis of car data

the following example, the canonical correlation does not separate individuals
well but identifies groups of variables that work together or against each other.

The BRFSS data is introduced and explained in Sect. 9.3. We examined
the health characteristics of these US cities in terms of behavioral measures
and the corresponding health outcomes. In the present analysis, we will use
canonical correlations to find linear combinations of behavior rates that have
a high correlation with a linear combination of health outcomes.

The plot of canonical correlations for behaviors and health outcomes is
given in Fig. 13.3. The most extreme cities identified in this plot are Provo,
Utah, and Arcadia, Florida. These cities are not the same extremes that were
identified using multivariate linear regression methods in Sect. 9.3. It is not
obvious how these cities are remarkably different. This figure is not entirely
useful in that regard. A better summary of this analysis is to examine the
weights given to each of the survey questions, as we show next.

The CCA library contains a number of useful enhancements to the basic
canonical correlation program offered in R. The plt.cc program provides a
graphical display of the variable weights that go into each of the first two
canonical correlations.

An example of the use of this program is

library(CCA)

out <- c(2, 3, 5, 6, 7, 8, 11, 14) # health outcome variables

beh <- c(1, 4, 9, 10, 12, 13, 15, 16, 17, 18) # behavioral measures

ccs <- cc(BRFSS[,out], BRFSS[,beh])

13: OTHER METHODS 347

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Dimension 1

D
im

en
si

on
 2

Asthma

HeartAt

Diabetes
PregDaib
PreDia

Disability

GeneralH
TeethBinge

Colonosc

Exercise

Coverage

FluShot
Dentist

BMI PSA

Smokers

PAP

Figure 13.2: Variable weights for the first two canonical correlations in the
BRFSS data

plt.cc(ccs, d1 = 1, d2 = 2, type = "v", var.label = TRUE)

and this code produces Fig. 13.2.
The weights for the first two canonical correlations are plotted in this

figure: red for health outcomes and blue for behavioral variables. Variables
listed within the inner target have low weight and are generally not use-
ful in performing the canonical correlation. Specifically, the binge drinking,
prostate test, flu shot, or PAP test are not useful in describing the canonical
score for behaviors. Similarly, pregnancy diabetes or a prediabetic condition
are not useful in summarizing health outcomes in a canonical correlation
analysis. Health outcomes and behavioral variables appearing in the outer
doughnut shape are more important to the canonical correlation summary of
this data.

Important behavior measures include visiting a dentist, body mass index,
exercise, health care coverage, and smoking. Important health outcomes are
general health perception, asthma, and negative weights on each of disability,
heart attack, and tooth loss. Notice also that asthma is an important health
outcome in the second canonical correlation but not the first. In words,
asthma is a separate or orthogonal outcome and is different from the others.

In summary, the canonical correlation analysis of multivariate data is
useful when all variables can be classified into two groups: driver and design
features for the car data, and the behavioral measures and health outcomes

13: OTHER METHODS 348

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Health outcome canonical scores

B
eh

av
io

ra
l c

an
on

ic
al

 s
co

re
s

ProvoUT

Arcadia,FL

Figure 13.3: Loadings of canonical correlation analysis of BRFSS survey data

for the BRFSS data, for example. The canonical correlation approach creates
a linear combination of variables in the separate groups having high correla-
tion with each other. In the car data, we see how canonical correlations can
help identify groups of individuals, as in a factor analysis or clustering. In the
BRFSS we see canonical correlation can be used to identify variables more
(and also less) important in reducing multivariate data into scalar-valued
linear combinations or variables.

13.3 Methods for Extreme Order

Statistics

Statisticians are prone to looking at measures of central tendency such as the
mean or the median. But it is often the extremes in the data grabbing the
attention of the public. We talk about the worst flood, instead of the typical
rainfall. Headlines shout about the largest clusters of cancer cases, not the
average morbidity rate. The extremes cause us to sit up and notice the best
and worst of things.

Nobody much cares about the average marathoner’s record, for example.
In a race, somebody has to be fastest, and we usually only care about the
winner. Are the first few finishers so much stronger than the rest of the pack
or are they all about the same in their abilities? In athletic endeavors, to
continue this example, we may point to one extraordinary individual achieve-

13: OTHER METHODS 349

Table 13.2: Largest financial advisors in first half of 2012
Number Value Market

Advisor of deals in $B share in %

Goldman Sachs 190 279 25
Morgan Stanley 170 249 22
JPMorgan Chase 138 221 20
Deutsche Bank 116 214 19
Barclays 146 195 18
Credit Suisse 117 184 17
Citigroup 100 152 14
Bank of America 95 140 13
Lazard 111 116 10
Nomura 89 105 9
Rothschild 116 89 8
BNP Paribas 35 75 7
UBS 82 68 6
RBC 91 53 5
M Klein 1 49 4
Source: NYTimes (July 3, 2012) and Thompson Reuters

ment but then ask whether this one person is much stronger than the second-
and third-place finishers. Some runners will finish faster, but do their abilities
outshine the others? Is it possible to identify a small number of outstanding
athletes whose performance is completely beyond the rest of the pack?

The study of extremes is also tantamount to asking where the tail of
the distribution begins. Sometimes we just want to know about the approx-
imate distribution of the single, largest value, but there are situations where
the joint, multivariate distribution of several of the largest values is also of
interest.

For another example, consider the 15 largest financial advisors, ranked
by the value of the deals they brokered in the first half of 2012. The data in
Table 13.2 includes the number of merger and acquisition deals brokered and
percentage of market share.

It is easy to identify the largest deal-makers, but are their numbers com-
pletely out of line relative to the other numbers in this table? After all, some
advisory firms have to be the largest. One could argue a firm with familiarity
in negotiating large transactions would be best suited for conducting more of
the same.

In this section we want to describe a model for the tail behavior of several
of the most extreme order statistics. Define x(1) ≥ x(2) ≥ · · · as the ordered
data values, in decreasing order. The usual notation for order statistics is
to put the subscripts in parentheses. We do this to distinguish the ordered
values from a random list of the data.

Let us introduce some theory for the behavior of extremes. The stan-

13: OTHER METHODS 350

dardized extreme values zi are defined as

zi =
(
x(i) − b

)/
a

for i = 1, 2, . . . , k.
These values are ordered z1 ≥ z2 ≥ · · · ≥ zk and standardized by the

location parameter b and scale parameter a > 0. We will show how to
estimate a and b, below.

The literature on extreme order statistics talks about the extreme tail
behavior of a distribution in terms of its domain of attraction. The domain of
attraction is shorthand for how fast the upper tail of the distribution tapers
off. Specifically, we will assume the population we are sampling from is in the
domain of attraction of the Type I or Gumbel3 distribution. This means that,
when properly normalized, z1 behaves as an observation from the Gumbel
distribution with cumulative distribution function

F (z) = exp(−e−z) .

This assumption holds for a variety of commonly encountered distribu-
tions including the normal, gamma, log-gamma, Weibull, and logistic, as well
as the Gumbel distribution itself, but not the uniform or Cauchy distribu-
tions.

Under the assumption of a Type I domain of attraction, the joint distri-
bution of z1, z2, . . . , zk has an approximate density function

f(z1, z2, . . . , zk) = exp
(
e−zk −

∑
zi

)
(13.3)

for z1 ≥ z2 ≥ · · · ≥ zk.
In order for (13.3) to hold, we will also assume the sample size n is

very large, but the number of observations in the tail k is modest. It is not
necessary to know the value of the full sample, n. In the data of Table 13.2,
for example, the full census of all financial advisors is likely to be very large,
but we only observe the largest of these. Below, we will also demonstrate a
method for estimating the values of k in the data where (13.3) appears to
be valid.

When (13.3) holds, the marginal distribution of zi has density function

fi(z) = exp
(−e−z − iz

)/
(i− 1)! .

Figure 13.4 plots the first five extreme value marginal densities. The
largest value z1 has a skewed distribution. Order statistics, with larger

3Emil Julius Gumbel (1891–1966). German mathematician and political
writer.

13: OTHER METHODS 351

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

z

de
ns

ity
 o

f i
−

th
 e

xt
re

m
e

i = 1

i = 2

i = 3

i = 4

i = 5

Figure 13.4: The density functions of the first five extremal value distribu-
tions

values of i, are nearer the center of the population. Those closer to the
center will have less skewed and more nearly normal distributions.

The mean of the marginal distribution z1 of the largest extremal distri-
bution is γ where

γ = 0.577216 . . .

is the Euler constant.4

The mean of zi for i = 2, 3, . . . is γ − Si where

Sk = 1 + 1/2 + · · ·+ 1/(k − 1) .

The variance of z1 is π2/6 and the variance of zi is

π2/6− 1− 1/22 − · · · − 1/(i− 1)2)

for i = 2, 3,
In words, the mean and variance of extreme order statistics become

smaller as we consider order statistics farther below the largest.
The distributions farther from the largest are also more symmetric and look

4Leonhard Euler (1707–1783). Swiss physicist and mathematician.

13: OTHER METHODS 352

more like a normal. We will use these expressions for the means and variances
of zi in the construction of Fig. 13.6, below.

The parameter values for scale a and location b are estimated as follows.
Define

xk = k−1(x(1) + · · ·+ x(k))

as the average of the k largest observations.
Then we estimate a as

âk = xk − x(k)

and

b̂k = â+ k(Sk−1 − γ) + x(k) .

The estimates of a and b depend on the choice of k so it is useful
to write these estimates as âk and b̂k.

The discussion so far shows how we can fit models of extremes and de-
scribe their approximate density function. We still need a way to determine
whether these models are appropriate for our data. A useful approach to
studying goodness of fit is to examine the spacings or differences between
adjacent ordered values. Spacings were introduced in Sect. 2.5.

Define the normalized spacings as

di = i
(
x(i) − x(i+1)

)

for i = 1, 2, . . . , k.
The theory of extremes (see Weissman 1978, or Zelterman 1993, for exam-

ples) is that these normalized spacings will all be approximately independent,
and all have the same exponential distribution. The farther out in the tail
we go, the farther apart the observations should be from each other. This
helps explain the “i” multiplier in the definition for di.

Several assumptions go into this claim, of course. We need statements
about the actual shape of the tail (domain of attraction) of the parent distri-
bution giving rise to x1, x2, . . . , xn. The conditions on the actual shape of
the tail are harder to describe in mathematical terms, but usually appear
in practice. Next we will show how to estimate the value of k where this
approximation works.

Where does the tail of the distribution begin, and what is an appropriate
value of k for the data? To answer this question, we will consider a test

13: OTHER METHODS 353

for independent, exponentially distributed observations based on the Gini5

statistic. Gail and Gastwirth (1978) describe the Gini statistic in this context.

The Gini statistic is

Gk =

k−1∑

i=1

i(k − i)
(
d(i) − d(i+1)

)
/

(k − 1)

k∑

i

di . (13.4)

This statistic behaves approximately as normal with mean 1/2 and vari-
ance 12(k − 1) when the spacings di are approximately distributed as ex-
ponential. Notice there is no need to estimate the mean parameter of these
exponential variates. The test of the exponential character of the spacings
of the original data is based on the spacings of those spacings. Let us show
how to use this statistic to estimate where the tail of the distribution of the
xs begins for the corporate asset data.

For each of the k = 2, 3, . . . , 15 financial advisors in this dataset, we cal-
culated the Gini statistic Gk and plotted the p-value for each in Fig. 13.5. In
this figure, we see the largest 10 values in this dataset jointly follow the model
of extreme values but the largest 12 (or more) of these start to fail the as-
sumptions. Even so, there is good evidence in Fig. 13.6 for using all of the
extreme data.

l

l

l

l

l

l
l

l

l

l

l
l l

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ranking of values

P
−

va
lu

e
fo

r
G

in
i t

es
t

Figure 13.5: p-Values of Gini statistic (13.4) for the deal values in Table 13.2

5Corrado Gini (1884–1965). Italian statistician, demographer, and social
theorist.

13: OTHER METHODS 354

0 100 200 300 400 500

2
4

6
8

10
12

14

Deal size in $Billion

O
rd

er
ed

 v
al

ue
s

Figure 13.6: Largest financial deals brokered in the first half of 2012 (in red)
and fitted extreme value distributions. The central 50% of each distribution
is in blue and 95% in black

The observed and fitted density functions are displayed in Fig. 13.6. The
observed values are given as large red dots in this figure, plotted against their
ordered values on the vertical axis. The thin black lines are central 95% of
the marginal (individual) distributions fi and the thick blue lines are the
central 50%. The ordered values x(i) appear to be where the extreme value
distributions would expect them to occur. In summary, the extreme values in
this dataset do not appear to be out of line. There are many other companies
not listed in this data, and the present sample is within the expectation of
the extreme value theory.

In Fig. 13.6 we used all of the data to estimate values of a and b. See
Exercise 13.4 for a discussion of the choice of k in estimating these param-
eters. Other exercises examine extremes in salaries, oil spills, and votes for
candidates in a primary election.

13.4 Big Data and Wide Data

As we come to the end of this book, we should ask: Where is all of this going
next? The short answer is we are headed towards larger and more massive
datasets than were considered in this volume. The advantage of the modest
sized datasets considered here is they are useful for illustrating the statistical
methods. However, the real application for the methods is to summarize the
large datasets being collected today.

13: OTHER METHODS 355

Computing power needs to keep up. We should look back at Table 1.7
comparing SAS and R. Perhaps we should have been discussing SAS all along,
in order to make use of its data handling capacity. If the data doesn’t fit into
the software package then of what use is it? There are versions of R being
developed to address this shortcoming, but they are arriving late to the party.

Many of the methods described in this book are easily scalable to
larger sizes of data. We pointed out histograms and boxplots are scalable
but scatterplots are not. Similarly, principal components analysis relies on
only data being reduced to a matrix of covariances. If this matrix is not
too large, then it doesn’t matter how many observations there were in the
original data. As another example, we can perform linear regressions because
these also only require the covariance matrices. Looking for outliers in these
models may be difficult.

Here is an example of the analysis big data has been successful. Google
Flu Trends follows Internet searches to detect an epidemic. If many people
are suddenly searching on the keyword fever, for example, then there must
be something going around. But Google’s search algorithm changes, so one
year is not comparable to the searches conducted at the same time in previ-
ous years. Even so, commercial gains can be made by exploiting the search
algorithm. Pharmaceutical manufacturers may abruptly increase their ad-
vertising budget to associate their product with treatment of the flu. Drug
companies already have years of experiences with sales of their products so
their Bayesian prior knowledge may be as good or better than the search
data can tell us.

Big is not necessarily better. We may need to combine large datasets
collected at different times, under different conditions. Suppose we had all
of the weather data or baseball statistics in one place: Would we be able
to make better predictions? Weather forecasting is useful to all of us, but
of what purpose would baseball predictions serve, outside of the specialized
groups of gamblers or coaches?

Wide data is another interesting development. Instead of a relatively
small amount of data collected on each of many patients, medical studies in
genetic markers and micro-arrays allow us to collect huge amounts of data on
a relatively small number of subjects. For each marker, we need to identify
the associated genetic pathway. These markers sometimes work in parallel
with others, or as a single road block, shutting down the whole process. This
suggests the measurements are associated with each other and a priori need
to be considered collectively.

The reader who has worked out many of the exercises here has benefited
by not being concerned with the huge data cleaning tasks preceding the
statistical analysis. The data cleaning and concern for missing values is much
more time consuming than setting up and running the computer program
summarizing these. What’s more, the proper planning for collecting the
appropriate data can be quite involved as well.

There is much work yet to be done.

13: OTHER METHODS 356

13.5 Exercises

13.1 In the housing data of Table 1.1, are the extreme housing prices and
apartment rents completely out of line with the remainder of the data?
Examine a plot, similar to Fig. 13.6, to make a case whether or not
the extremes in Fig. 3.10 could be called outliers.

13.2 The dataset planets in the HSAUR2 library lists properties of known
exoplanets. These are known planets which orbit stars other than our
sun. The first column is the estimated mass, in multiples of Jupiter.
Let us concentrate on the mass values, specifically the largest of these.
Is there evidence of size bias, meaning only some of the largest ex-
oplanets have been discovered? Or does our current knowledge look
more like a representative random sample of what is lurking in outer
space? What do we need to assume about the underlying distribution
of exoplanet masses? Do the largest of these follow the distributions
of extremes?

13.3 Table 13.3 lists the sizes of the largest oil spills, along with their dates
and locations. The estimated amounts of oil spilled are given in thou-
sands of tons, barrels, and US gallons. Many of these data values are
rough estimates. The units may not be precisely convertible from one
to another, but are close to being constant multiples of each other. If
a range is provided, the midpoint of the interval is given here.

(a) Use the extreme value methods of Sect. 13.3 to show the largest
of these was a far greater environmental disaster than expected, rela-
tive to the others on this list.

(b) If we exclude the single largest of all oil spills, use the Gini
statistic (13.4) to show several of the remaining largest spills are not
out of line with what we would expect to see. Estimate the number of
largest observations following the extremal value distribution.

13.4 In Sect. 13.3, how much do the estimates of ak and bk depend on the
value of k? Specifically, take the corporate asset data in Table 13.2
and calculate estimates of these two parameters for a range of values
of k providing reasonable p-values for the Gini statistic in Fig. 13.6.
Describe how these estimates change when the value of k varies. How
critical is the value of k when estimating these parameters?

13.5 The dataset schizophrenia in the HSAUR2 library lists the age at onset
of schizophrenia, separately for male and female patients. Show that,
overall, the age is skewed but there are no extreme outliers among the
oldest and youngest patients. The 15 most extreme observed values
in both tails are largely where we would expect them to appear. Hint:

13: OTHER METHODS 357

T
a
b
le

1
3
.3
:
L
a
rg
es
t
o
il
sp
il
ls

E
st
im

a
te
d
si
ze

o
f
sp
il
l
in

th
o
u
sa
n
d
s

N
a
m
e

L
o
ca
ti
o
n

Y
ea
r

T
o
n
s

B
a
rr
el
s

G
a
ll
o
n
s

K
u
w
a
it
i
o
il
fi
re
s

K
u
w
a
it

1
9
9
1

1
7
0
,5
0
0

1
,2
5
0
,0
0
0

5
2
,5
0
0
,0
0
0

K
u
w
a
it
i
o
il
la
k
es

K
u
w
a
it

1
9
9
1

5
1
1
4

3
7
,5
0
0

1
,5
7
5
,0
0
0

L
a
k
ev
ie
w

G
u
sh
er

C
a
li
fo
rn
ia

1
9
1
0
–
1
9
1
1

1
2
0
0

9
0
0
0

3
7
8
,0
0
0

G
u
lf
W
a
r
o
il
sp
il
l

P
er
si
a
n
G
u
lf

1
9
9
1

9
5
5

7
0
0
0

2
9
4
,0
0
0

D
ee
p
w
a
te
r
H
o
ri
zo
n

G
u
lf
o
f
M
ex
ic
o

2
0
1
0

5
7
3

4
5
0
0

1
7
6
,0
0
0

Ix
to
c
I

G
u
lf
o
f
M
ex
ic
o

1
9
7
9
–
1
9
8
0

4
6
7

3
4
2
5

1
4
3
,8
2
9

A
tl
a
n
ti
c
E
m
p
re
ss
/

T
ri
n
id
a
d
&

A
eg
ea
n
C
a
p
ta
in

T
o
b
a
g
o

1
9
7
9

2
8
7

2
1
0
5

8
8
,3
9
6

F
er
g
a
n
a
V
a
ll
ey

U
zb

ek
is
ta
n

1
9
9
2

2
8
5

2
0
9
0

8
7
,7
8
0

N
ow

ru
z
F
ie
ld

P
er
si
a
n
G
u
lf

1
9
8
3

2
6
0

1
9
0
7

8
0
,0
8
0

A
B
T

S
u
m
m
er

A
n
g
o
la

1
9
9
1

2
6
0

1
9
0
7

8
0
,0
8
0

C
a
st
il
lo

d
e
B
el
lv
er

S
o
u
th

A
fr
ic
a

1
9
8
3

2
5
2

1
8
4
8

7
7
,6
1
6

A
m
o
co

C
a
d
iz

F
ra
n
ce

1
9
7
8

2
2
3

1
6
3
5

6
8
,6
8
4

M
T

H
av
en

It
a
ly

1
9
9
1

1
4
4

1
0
5
6

4
4
,3
5
2

O
d
y
ss
ey

C
a
n
a
d
a

1
9
8
8

1
3
2

9
6
8

4
0
,6
5
6

S
ea

S
ta
r

Ir
a
n

1
9
7
2

1
1
5

8
4
3

3
5
,4
2
0

Ir
en

es
S
er
en

a
d
e

G
re
ec
e

1
9
8
0

1
0
0

7
3
3

3
0
,8
0
0

U
rq
u
io
la

S
p
a
in

1
9
7
6

1
0
0

7
3
3

3
0
,8
0
0

T
o
rr
ey

C
a
n
y
o
n

U
K

1
9
6
7

1
0
0

7
3
0

3
0
,6
6
0

G
re
en

p
o
in
t
sp
il
l

N
ew

Y
o
rk

C
it
y

1
9
4
0
s

7
6

5
5
5

2
3
,5
0
0

S
o
u
rc
e:

W
ik
ip
ed
ia

13: OTHER METHODS 358

Table 13.4: Highest paid CEOs of nonprofit organizations
Total revenue in $m

Organization Compensation Total Gov’t

American Cancer Society $1,045,887 429 9
American Heart Association 995,424 645 0
Boys & Girls Clubs
of American 988,591 107 41
March of Dimes 627,104 237 10
American Red Cross 455,690 3300 125
Big Brothers, Big Sisters 349,563 33 11
Mothers Against Drunk Driving 256,380 41 9
Source: NYTimes July 27, 2010, page A12

To examine the lower tail, we can reverse the tails by transforming the
data with a minus sign, as in 70− age.

13.6 Table 13.4 lists the highest compensation for the chief executive officer
(CEO) among all nonprofit groups. Is there evidence the highest paid
among these executives is over-compensated? What use can you make
of the additional data in this table on total revenue for the organiza-
tion?

13.7 Repeat the analysis of the data in Table 13.2 for the number of deals
and percent of market share. Do these extreme values seem out of line
or consistent with what we would expect of the several most extreme
observations?

13.8 The New York City mayoral primary was held on September 10, 2013.
With 55% of the precincts reporting, the results for the top candidates
in the Democratic Party are given in Table 13.5.

(a) Fit an extremal distribution to these values. Is there evidence
of a group of leaders who received votes far above those of the rest of
the “also rans”?

(b) The law requires a second, run-off election if no candidate
receives 40% of the vote. At this point in the vote tabulating, what
probability can you assign to the need for a runoff?

13.9 Consider the notation of ranking academic journals where “i > j”
means journal i is cited at a greater rate by journal j than journal
j is cited by journal i. We can also write i = j if journals i and j
cite each other at the same rate. Prove the following relationships, or
provide counterexamples:

13: OTHER METHODS 359

Table 13.5: Votes earned by the top candidates in a primary election

Candidate Votes

Bill de Blasio 130,008
Wm C. Thompson Jr. 85,506
Christine C. Quinn 51,059
John C. Liu 27,349
Anthony D. Weiner 17,356
Erick J. Salgado 8470
Randy Credico 6289
Sal F. Albanese 3444
Neil Grimaldi 2757
Source: NY Times

Table 13.6: Cross citation of statistics journals 1987–1989
Citing Cited journal
journal AnnSt Biocs Bioka ComSt JASA JRSSB JRSSC Tech Totals
AnnSt 1623 42 275 47 340 179 28 57 2591
Biocs 155 770 419 37 348 163 85 66 2043
Bioka 466 141 714 33 320 284 68 81 2107
ComSt 1025 273 730 425 813 276 94 418 4054
JASA 739 264 498 68 1072 325 104 117 3187
JRSSB 182 60 221 17 142 188 43 27 880
JRSSC 88 134 163 19 145 104 211 62 926
Tech 112 45 147 27 181 116 41 386 1055

Totals 4390 1729 3167 673 3361 1635 674 1214 16,843
Source: Stigler (1994). Used with permission

(a) If i > j and j > k then i > k.

(b) If i = j and j = k then i = k.

13.10 Table 13.6 summarizes cross citation of statistical journals for the years
1987–1989. Repeat the analysis from Sect. 13.1 for these journals and
see if you reach the same conclusion, namely, ideas appear to flow
from the theoretical journals to the applied ones. The four most theo-
retical journals are Annals of Statistics (AnnSt), Biometrika (Bioka),
Journal of the American Statistical Association (JASA), and Journal
of the Royal Statistical Society, Series B (JRSSB). The other four are
generally considered to be more applied.

13.11 The baseball dataset in the BradleyTerry2 library contains the
win/loss records of seven baseball teams who played each other several

13: OTHER METHODS 360

times throughout the 1987 season. Fit a Bradley–Terry model for the
paired comparisons in this data and provide a ranking of the teams.

(a) Is the offset necessary to account for the different number of
games played by each team?

(b) Do the fitted λs in the Bradley–Terry model coincide with
the win–loss records of these teams?

(c) The data includes an indication of which games were played
at home or away. How much of a home-field advantage is there?

13.12 Repeat the canonical correlation analysis of the car data.

(a) Interpret the loadings for the driver features.

(b) Perform a principal components analysis for the driver fea-
tures. Are the loadings comparable to those of the canonical correla-
tions in part a?

(c) Repeat this comparison for the design features.

Appendix: Libraries Used

First
Name page cited

ape 289
aplpack 59
astsa 337
boot 58
BradleyTerry2 340
CCA 346
cluster 294
clValid 303
cubature 46
datasets 151
energy 163
fBasics 127
fMultivar 155
foreign 32
fpc 303
gap 283
gplots 307
graphics 65
HSAUR2 283
Hotelling 202
ICSNP 177
kernlab 274
kohonen 308
MASS 149
MCMCpack 25
nortest 127
MVA 67
mvShapiroTest 163
mvtnorm 40
mvnormtest 199
mvtree 279
psych 199
psychometric 160
rpart 311
robustbase 256
stats 295
TeachingDemos 48
TH.data 229
TSA 337
vars 325

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3

361

Selected Solutions
and Hints

2.1 Some solutions are

c(0 : 10 / 10, 2 : 10)

c(seq(0, 1, .1), 2 : 10)

c(seq(0, 1, .1), seq(2, 10))

2.3 (a)

mad <- function(x)

{ mean(abs(x - mean(x))) }

2.4 The R code

> pchisq(1.2, 1) - pchisq(.5, 1)

[1] 0.2061784

provides the result.

2.5 All the test scores are very highly correlated with each other. This
suggests any one test score is representative of the whole data from
each country. See also Exercise 8.7.

2.10 (c) Here are examples of operations resulting in Inf and NaN. No-
tice R only produces an error message in the second of these examples
but not the third.

> 5 / 0

[1] Inf

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3

363

SELECTED SOLUTIONS AND HINTS 364

> sqrt(-3)

[1] NaN

Warning message:

In sqrt(-3) : NaNs produced

> 0/0

[1] NaN

2.11 A simple solution is

spacing(x) <- function(x) diff(sort(x))

Notice this code does not check for empty or a scalar x, situations
where spacings are undefined. A somewhat more cryptic definition
including the error checking is

spacing <- function(x) if(length(x) > 1) diff

(sort(x)) else NA

3.7 This R program draws and peels away five convex hulls.

x <- housing$Apartment # temporary copies of the data

y <- housing$House

plot(x, y, xlab = "Apartment", ylab = "House",

pch = 19, col = 2, cex = 1.25) # initial scatterplot

for (i in 1 : 5) # number of onion layers

{

ch <- chull(x, y) # indices of convex hull

chl <- c(ch, ch[1]) # loop back to the first point

lines(x[chl], y[chl], type = "l",

col = 3) # draw the layer

x <- x[-ch] # peel away the layer

y <- y[-ch]

} # ... and repeat

4.3 If y is a vector of all 1s, then y′X is a vector containing the column
sums in X and Xy (for y of a possibly different length) are the row
sums in X.

SELECTED SOLUTIONS AND HINTS 365

4.6 The matrix inverse is

(
1 −1

−1 2

)
.

The eigenvalues are (3±√
5)/2 or approximately 0.382 and 2.618.

5.2 Let U have a uniform distribution between 0 and 1. Then

Pr[U ≤ p] = p

for any number p, between zero and one. We also have

Pr[U ≤ Φ(z)] = Φ(z)

for any real number z and

Pr[Φ−1(U) ≤ z] = Φ(z) .

This shows the distribution of X = Φ−1(U) has a standard normal
distribution.

5.8 Denote the estimate of the mean by μ̂ and standard deviation by
σ̂. Use (5.7) to show the endpoints of the k categories with equal
expectations are

{−∞, μ̂+ σ̂Φ−1(1/k)}

{μ̂+ σ̂Φ−1(1/k), μ̂+ σ̂Φ−1(2/k)}
...

{μ̂+ σ̂Φ−1((k − 1)/(k), +∞} .

6.2 (a) Figure 6.2 was produced using the following R code:

corcon <- function(x, y, correl)

{

nx <- length(x)

ny <- length(y)

z <- matrix(rep(0, nx * ny), nx, ny)

for (i in 1 : nx)

{

for (j in 1 : ny)

{

z[i,j] <- dmvnorm(c(x[i], y[j]),

SELECTED SOLUTIONS AND HINTS 366

c(0, 0),

matrix(c(1, correl, correl, 1),

2, 2)

}

}

return(z)

}

library(mvtnorm)

del <- .05 # how fine the grid

lim <- 3.25 # std normals plotted on +/- lim

par(mfrow = c(2, 4), mar = c(5, 0, 5, 0)) # Four plots across

contour(corcon(seq(-lim, lim, del), seq(-lim, lim, del), -.5),

xlab = "Corr = -.5",

drawlabels = FALSE, axes = FALSE, frame = TRUE)

contour(corcon(seq(-lim, lim, del), seq(-lim, lim, del), 0),

xlab = "Corr = 0",

drawlabels = FALSE, axes = FALSE, frame = TRUE)

contour(corcon(seq(-lim, lim, del), seq(-lim, lim, del), .5),

xlab = "Corr = .5",

drawlabels = FALSE, axes = FALSE, frame = TRUE)

contour(corcon(seq(-lim, lim, del), seq(-lim, lim, del), .9),

xlab = "Corr = .9",

drawlabels = FALSE, axes = FALSE, frame =

TRUE)

(b) Again, using the corcon function, defined above, Fig. 6.3 was
drawn using

library(MASS,mvtnorm,graphics)

layout(t(matrix(c(1 : 2, rep(0, 2)), 2, 2)), widths = c(1, 1))

del < .025 # how fine the grid

lim <- 1.25 # std normals plotted on +/- lim image(corcon

(seq(-lim, lim, del), seq(-lim, lim, del), 0.8), axes = FALSE)

del <- .3 # how fine the grid

lim <- 2.7 # std normals plotted on +/- lim

persp(corcon(seq(-lim, lim, del), seq(-lim, lim,

del), 0.8),

axes = FALSE, xlab = "", ylab = "", box = FALSE,

col = "lightblue", shade = .05)

6.3 This program generates bivariate normals and transforms these to the
shape of Fig. 6.7:

quad <- function(n)

{

quad <- NULL

for (i in 1 : n)

{

SELECTED SOLUTIONS AND HINTS 367

x <- rnorm(1)

y <- rnorm(1)

dia <- sqrt(x ^ 2 + y ^ 2)

if(dia > rad) # outside the circle

{

if(x > 0) y <- abs(y)

else y <- -abs(y)

if(x < 0) y <- -abs(y)

else y <- abs(y)

}

if(dia < rad) # inside the circle

{

if(x > 0) y <- -abs(y)

else y <- abs(y)

if(x < 0) y <- abs(y)

else y <- -abs(y)

}

quad <- rbind(quad, c(x, y))

}

quad

}

Some trial and error suggests rad should be about 1.83.

6.5 Here is a useful reparameterization and objective function:

biv5r <- function(par) # all five parameter,

reparameterized

{

sig1 <- exp(par[3])

sig2 <- exp(par[4])

rho <- par[5] / sqrt(1 + par[5] ^ 2)

cov <- rho * sig1 * sig2

biv5 <- sum(

-dmvnorm(cancer, mean = c(par[1], par[2]),

sigma = matrix(c(sig1 ^ 2, cov, cov, sig2

^ 2), 2, 2),

log = TRUE))

print(c(par[1 : 2], sig1, sig2, rho, biv5))

biv5

}

The code

nlm(biv5r, c(45, 45, 7.25, 7.25, 2))

SELECTED SOLUTIONS AND HINTS 368

then estimates the five parameters without warnings.

The estimated value of par[5] is 2.053445, so the estimate of ρ is

> 2.053445 / sqrt(1 + 2.053445 ^ 2)

[1] 0.8990582

7.5 Consider an election where citizens cast ballots for one of p different
candidates. The data is the number of votes received by each can-
didate. Any vote for one candidate means fewer votes for all of the
others.

7.7 (a) This program calculates energy residuals:

msqrt <- function(a)

finds matrix square root of positive definite matrix

{

a.eig <- eigen(a) # eigenvalues and eigenvectors of x

if (min(a.eig$values) < 0) # check for positive definite

warning("Matrix not positive definite")

return(a.eig$vectors %*% diag(sqrt(a.eig$values)) %*% t(a.eig$vectors))

}

energy.resid <- function(dat, R=300)

{

n <- dim(dat)[1] # observations

p <- dim(dat)[2] # variables

std <- dat - t(matrix(colMeans(dat), p, n))

s <- var(dat)

std <- as.matrix(std) %*% solve(msqrt(s)) # standardized data

rand <- matrix(rnorm(p * R), R, p) # independent normal data

A <- rep(0, n)

B <- rep(0, n)

for (i in 1 : n)

{

a <- 0

b <- 0

for (j in 1 : R) a <- a + sqrt(sum((std[i,] - rand[j,]) ^ 2))

A[i] <- a / R # ave dist between data and random

for (j in 1:n) b <- b + sqrt(sum((std[i,] - std [j,]) ^ 2))

B[i] <- b / (n - 1) # ave dist between data

}

cc <- 0

for(i in 2 : R) for (j in 1 : (i - 1))

cc <- cc + sqrt(sum((rand[i,] - rand[j,]) ^ 2))

C <- 2 * cc /(R * (R - 1)) # ave dist between

random values

2 * A - B - C

}

SELECTED SOLUTIONS AND HINTS 369

7.9 This program computes the autocorrelation when columns of the data
represent sequential years:

autocov <- function(data)

Autocorrelation of annual columns in data

{

nyears <- dim(data)[2] - 1

autocov <- NULL

for (lag in 1 : nyears)

{

lagcor <- 0

for (year in 1 : (nyears - lag + 1))

lagcor <- lagcor + cor(data[, year], data[

, year + lag])

lagcor <- lagcor / (nyears - lag + 1)

autocov <- c(autocov, lagcor)

}

autocov

}

ac <- autocov(CS)

8.7 The academic scores are highly correlated with each other. Further,
these have been standardized. (See Exercise 2.5.) The loadings of the
principal components analysis are almost the same for each test score.
This suggests any one score is representative for the whole set of values
for each country.

8.12 The biplot for the correlation matrix of the oil consumption data given
in Table 8.4 appears here:

This figure separates low population, oil producing nations (Saudi Ara-
bia and Canada) from high population, oil consuming nations (India
and China).

9.1 The biplot of the three-dimensional residuals (given here) shows all
dependent variables (cost of living, apartment rents, and house prices)
remain highly correlated after correcting for the two explanatory vari-
ables (population and average state income). This first principal com-
ponent explains over 90% of the total variability. Standout outliers
include Hawaii (high rents and house prices) and Nevada (high rents
but moderate house prices), both states with low populations.

SELECTED SOLUTIONS AND HINTS 370

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Biplot for oil consumption data

First principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

US

China

Japan
India

Russia

SArabia

Brazil
Germany

Canada

SKorea

MexicoFrance
IranUKItaly

−4 −2 0 2

−
4

−
2

0
2

bbl.day
m3.day

pop
bbl.cap
m3.cap

prod.con

First principal component

S
ec

on
d

pr
in

ci
pa

l c
om

po
ne

nt

AK

AL

AR

AZ

CA

CO

CT

DC

DE

FL

GA

HI

IA

ID

IL

IN

KS

KY

LA

MAMD

ME

MI

MN

MO
MS

MT

NC

ND

NE
NH

NJ

NM

NV

NY

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VA

VT

WA

WI

WV

WY

rent

house

COL

9.4 The mining technology has changed over this time span, as has the
number of workers employed in mining and the amount of coal pro-
duced. We can’t use this data alone as evidence of safer working
conditions.

SELECTED SOLUTIONS AND HINTS 371

9.5 The R code

jaw <- read.table(file = "Ramus.txt", header = TRUE,

row.names = 1)

n <- dim(jaw)[1]

plot(x = NA, type = "n", xlim = c(8, 9.5),

ylim = c(min(jaw), max(jaw)),

xlab = "Age", ylab = "Ramus")

age <- c(8., 8.5, 9, 9.5)

longa <- NULL

longj <- NULL

for (i in 1:n)

{

longa <- c(longa, age)

ramus <- jaw[i,]

longj <- c(longj, as.double(ramus))

lines (age, ramus, col = "red")

}

lines(longa, longj, pch = 16, col = "blue",

type = "p", cex = .8)

model <- lm(longj ~ longa)

fit <- model$coefficients[1] + model$coefficients[2]

* age

lines (age, fit, type = "l", col = "green", lwd = 3)

jres <- jaw - fit # residuals

sapply(jres, sd)

age8 age8_5 age9 age9_5

2.805906 2.897436 2.808309 2.871713

produces the spaghetti plot of observed and fitted values:

8.0 8.5 9.0 9.5

46
48

50
52

54

Age

R
am

us

SELECTED SOLUTIONS AND HINTS 372

This plot provides good evidence the variances are constant across
ages.

10.16 The R code

require(mvpart,datasets,graphics)

univ <- mvpart(mpg ~ cyl + disp + am + carb , data = mtcars)

produces a regression tree with four leaves:

cyl>=5

cyl>=7

disp>=450

disp>=101.6

cyl< 5

cyl< 7

disp< 450

disp< 101.6

10.4
n=2

15.9
n=12

19.7
n=7

23.2
n=6

30.9
n=5

Error : 0.077 CV Error : 0.202 SE : 0.0498

11.6 (a) The code for clustering and principal components of the milk
data

library(robustbase) # library with the milk

dataset

milk2 <- milk[-70 ,] # omit outlier

colnames(milk2) <- c("dens", "fat", "prot", "casein",

"Fdry",

"Ldry", "drysub", "cheese")# supply new names

color schemes for

K-means

color3 <- rainbow(3)[kmeans(scale(milk2), centers

= 3)$cluster]

SELECTED SOLUTIONS AND HINTS 373

pcm <- princomp(milk2, scores = TRUE)# principal

components

plot(pcm$scores[,1], pcm$scores[, 2], col = color3,

pch = 16,

xlab = "First principal component", xaxt = "n",

yaxt = "n",

ylab = "Second principal component",

main = "K-means clusters plotted by principal

components")

produces the figure:

K−means clusters plotted by principal components

First principal component

S
ec

on
d

pr
in

ci
pa

l c
om

po
ne

nt

11.7 The distribution of X is hypergeometric with probability mass func-
tion

Pr[X = x] =

(
m

x

)(
N −m

m′ − x

)/(
N

m′

)

defined for

max(0, m+m′ −N) ≤ x ≤ min(m, m′).

SELECTED SOLUTIONS AND HINTS 374

11.9 In the hierarchical cluster

D
C H
I G

U
P

R
IN

M
S

S
C

N
C

LA V
A

G
A

C
A

F
L

T
X

A
K

T
N

A
R

M
O

S
D

K
Y

M
E

V
T

K
S W
I N
E

N
D

W
Y

M
N

N
H

W
V

A
L

M
D R
I

C
T

M
A

O
R P
A

N
J

D
E

N
Y

U
T

ID IA M
T

O
K

A
Z

N
M

IL
W

A
C

O
N

V
M

I
O

H
U

S
T

ot
al

Composition of OAA Title III

we see DC, Puerto Rico, Guam, and Hawaii cluster together, as do New
York, New Jersey, and Delaware. Indiana, Illinois, Alaska, Vermont,
and Utah each appear different from all other states.

11.10 (b) There are K = 3 clusters and the simulation probably alter-
nates between two different pairs of these identified as closest.

References

Anderson TW (2003). An Introduction to Multivariate Statistical Analysis.
Wiley. 3rd Edition. Referenced on pages 14 and xi.

Anscombe FJ (1981). Computing in Statistical Science Through APL. New
York: Springer-Verlag. Referenced on page xi.

Armstrong JS (1967). Derivation of theory by means of factor analysis or Tom
Swift and his electric factor analysis machine. The American Statistician
21 17–21. Referenced on page 223.

Bache K and Lichman M (2013). UCI Machine Learning Reposi-
tory. Irvine, CA: University of California, School of Information
and Computer Science. Referenced on page viii. Available online at:
http://archive.ics.uci.edu/ml

Box GEP and Cox DR (1964). An analysis of transformations (with discus-
sions) Journal of the Royal Statistical Society (B) 26: 211-52. Referenced
on pages 123 and 123.

Bradley RA and Terry ME (1952). Rank analysis of incomplete block designs
I: The method of paired comparisons. Biometrika, 39: 324–45. Referenced
on page 341.

Chambers JM (1992). Data for models. Chapter 3 of Statistical Models in S.
eds JM Chambers and TJ Hastie, Wadsworth & Brooks/Cole. Referenced
on page 76.

Chambers JM, Cleveland WS, Kleiner B, and Tukey JA (1983). Graphical
Methods for Data Analysis. Chapman and Hall, New York. Referenced on
page 84

Chang W (2013). R Graphics Cookbook O’Reilly Media, Se-
bastopol, CA. Available online at: http://books.google.com/

books?id=fxL4tu5bzAAC. Referenced on page 85.

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3

375

REFERENCES 376

Chernoff H (1973). The use of faces to represent points in K-dimensional
space graphically. Journal of the American Statistical Association 68:
361–8. doi:10.2307/2284077 Referenced on page 80.

Cooley JW, JW Tukey (1965). An algorithm for the machine calculation
of complex Fourier series. Math. Comput. 19: 297-301. doi:10.2307/
2003354. Referenced on page 334.

Dunn JC (1973). A fuzzy relative of the ISODATA Process and its use
in detecting compact well-separated clusters. Journal of Cybernetics 3:
32–57. Referenced on page 302. DOI:10.1080/01969727308546046.

Cleveland S (1993). Visualizing Data Hobart Press, Summit, New Jersey.
Referenced on page 84.

Elston RC and Grizzle JF (1962). Estimation of time response curves and
their confidence bands. Biometrics 18: 148–59. Referenced on page 253.

Everitt B and Hothorn T (2011) An Introduction to Applied Multivariate
Analysis with R. New York: Springer. Referenced on pages 14 and 67

Forina M, Leardi R, Armanino C and Lanteri S (1988). PARVUS: An extend-
able package of programs for data exploration, classification and correlation
Elsevier, Amsterdam, ISBN 0-444-43012-1. Referenced on page 257.

Gail MH and Gastwirth JL (1978). A scale-free goodness-of-fit test for the
exponential distribution based on the Gini statistic. Journal of the Royal
Statistical Society, Series B, 40: 350–357. Referenced on page 353.

Goldberg K and Iglewicz B (1992). Bivariate extensions of the boxplot. Tech-
nometrics 34:307–20. Referenced on page 67.

Golub GH and Van Loan CF (1983). Matrix Computations. Baltimore: The
Johns Hopkins University Press. Referenced on page 102.

Hand DJ and Taylor CC (1987). Multivariate Analysis of Variance and Re-
peated Measures. Chapman and Hall. Referenced on page 238.

Hartigan JA and Wong MA (1979). A k-means clustering algorithm. Applied
Statistics 28:100–8. Referenced on page 295.

Hotelling H (1935) The most predictable criterion. Journal of Educational
Psychology 26: 139–142. Referenced on page 344.

Izenman AJ (2008). Modern Multivariate Statistical Techniques. Regression,
Classification, and Manifold Learning. Springer. Referenced on page 14.

doi:10.2307/2284077
doi:10.2307/2003354
doi:10.2307/2003354
DOI:10.1080/01969727308546046

REFERENCES 377

Jarque CM and Bera AK (1987). A test for normality of observations and
regression residuals. International Statistical Review 55: 163–172. JSTOR
1403192. Referenced on page 128.

Johnson and Wichern (2007). Applied Multivariate Statistical Analysis 6th
Ed. Prentice Hall, Englewood Cliffs, NJ. Referenced on page 14

Kabacoff RI. (2011). R in Action. Data Analysis and Graphics with R. Second
edition. Manning Publications. Referenced on page 14.

Krause A and Olson M (1997). The Basics of S and S-PLUS New York:
Springer. Referenced on page 14.

Lander TA, Oddou-Muratorio S, Prouillet-Leplat H, Klein EK (2011) Re-
construction of a beech population bottleneck using archival demo-
graphic information and Bayesian analysis of genetic data. Molecular
Ecology 20: 5182–5196. Referenced on page 286. Data available at
http://dx.doi.org/10.1111/j.1365-294X.2011.05356.x

Lang S (2010). Linear Algebra New York: Springer. Referenced on page 102.

Ljung GM and Box GEP (1978). On a measure of lack of fit in time series
models. Biometrika 65: 297–303. Referenced on page 324.

Mardia KV (1970). Measures of multivariate skewness and kurtosis with ap-
plications. Biometrika 57: 519–30. Referenced on page 198.

McFadden D (1974). The measurement of urban travel demand. Journal of
Public Economics 3: 303–28. Referenced on page 285.

Mosteller F and Tukey JW (1977). Data Analysis and Regression: A Second
Course in Statistics Pearson. Referenced on page 72.

Pearl J (2009). Causality: Models, Reasoning and Inference Cambridge Uni-
versity Press. Referenced on page 231.

Rand WM (1971). Objective criteria for the evaluation of clustering meth-
ods. Journal of the American Statistical Association 66: 846–50. DOI:
10.1080/01621459.1971.10482356 Referenced on page 303.

Sarkar D (2008). Lattice: Multivariate Data Visualization with R. Springer.
http://lmdvr.r-forge.r-project.org/ Referenced on page 85.

Schwager, SJ and Margolin BH (1982). Detection of multivariate normal
outliers. Annals of Statistics 10: 943–954. Referenced on page 199.

http://dx.doi.org/10.1080/01621459.1971.10482356
http://lmdvr.r-forge.r-project.org/

REFERENCES 378

Shapiro SS, Wilk MB (1965). An analysis of variance test for normality (com-
plete samples). Biometrika 52 (3–4): 591–611. doi:10.1093/biomet/52.
3-4.591. JSTOR 2333709 MR205384. Referenced on pages 130 and 199.

Stigler SM (1994). Citation patterns in the journals of statistics and proba-
bility. Statistical Science 9: 94–108. Referenced on page 340.

Sullivan M (2008). Statistics: Informed Decisions Using Data, Third Edition.
Pearson. Referenced on page 135.

Székely GJ and Rizzo ML (2005). A new test for multivariate
normality. Journal of Multivariate Analysis 93: 58–80. doi:
10.1016/j.jmva.2003.12.002. Referenced on page 200.

Takahashi K, Yokota S, Tatsumi N, Fukami T, Yokoi T, and Nakajima M
(2013). Cigarette smoking substantially alters plasma microRNA profiles
in healthy subjects. Toxicology and Applied Pharmacology 272: 154–160.
doi:10.1016/j.taap.2013.05.018. Referenced on page 295.

Tapia RA and Thompson JR (1978). Nonparametric Probability Density
Estimation. Baltimore: Johns Hopkins University Press. Referenced on
page 127.

Tufte ER (2001). The Visual Display of Quantitative Information. Cheshire
Press. Referenced on pages 65 and 84.

Tukey JW (1977). Exploratory Data Analysis. Addison-Wesley. Referenced
on pages 84.

Venables WN and Ripley BD (2010). Modern Applied Statistics with S
(Statistics and Computing) New York: Springer. Referenced on page 14.

von Eye A, Bogat GA (2004). Testing the assumption of multivariate nor-
mality. Psychology Science 46: 243–258. Referenced on page 199.

Wan H, Larsen LJ (2014). U.S. Census Bureau, American Community Sur-
vey Reports, ACS-29, Older Americans With a Disability: 2008–2012,
U.S. Government Printing Office, Washington, DC, 2014. Referenced on
page 205.

Weissman I (1978). Estimation of parameters and large quantiles based on
the k largest observations. Journal of the American Statistical Association
73: 812–185. Referenced on page 352.

Wilkinson L (1999) The Grammar of Graphics. New York: Springer. Refer-
enced on page 84.

doi:10.1093/biomet/52.3-4.591
doi:10.1093/biomet/52.3-4.591
http://dx.doi.org/10.1016/j.jmva.2003.12.002

REFERENCES 379

Zelterman D (1993). A semiparametric bootstrap technique for simulating
extreme order statistics. Journal of the American Statistical Association
88: 477–485. Referenced on page 352.

About the Author

Daniel Zelterman, Ph.D., is Professor in the Department of Biostatistics at
Yale University. His research areas include computational statistics, models
for discrete valued data, and the design of clinical trials in cancer studies. In
his spare time he plays oboe and bassoon in amateur orchestral groups and
has backpacked hundreds of miles of the Appalachian Trail.

Other Books by the Author

Models for Discrete Data, Oxford University Press, 1999

Advanced Log-Linear Models Using SAS, SAS Institute, 2002

Discrete Distributions: Application in the Health Sciences, J. Wiley, 2004

Models for Discrete Data, Revised Edition, Oxford University Press, 2006

Applied Linear Models with SAS, Cambridge University Press, 2010

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3

381

Index

> prompt, 18
K-means, 300, 309
+ prompt, 35
#, 39
2-tuple, 89
3-tuple, 89

ability tests, 226
abs(), 50
academic scores, 5, 50, 202, 363, 369
acf(), 323
activities of daily living, 252
adaptIntegrate(), 46
aesthetics, 124
Affymetrics, 303
age adjusted rates, 6, 164
AIC, 254, 331
albedo, 5
alphaindex(), 276
analysis of variance, see also

ANOVA, 235
Anderson TW, xi, 375
anorexia, 87
ANOVA, 235, 238, 259, 295, 296
ansari.test(), 50, 139
Anscombe, FJ, xi, 375
answers to selected problems, 363
aov(), 237
ape library, 289, 290
APL, computer language, xi
aplpack library, 59, 81, 85
apples and oranges, 89
ARIMA model, 329
as.integer(), 259, 307

as.matrix(), 307
assignment <- in parenthesis, 21
astronomical unit, AU, 5
astronomy, 10
astrostatistics, 10
astsa library, 337
attach(), 31
autocorrelation, 180, 322, 324, 325
autocorrelation matrix, 190
autoregression, 322, 324
average distance, 308
axes=, 66, 67

back-to-back stem and leaf, 59
backward stepwise regression, 254
bagplot, 76, 79
banded correlation matrix, 205
bartlett.test(), 50, 139
baseball teams, 360
bats, 292
bct(), 123
beech trees, 286
beer bottles, 202
Behavior Risk Factor Surveillance

System, see BRFSS, 244
bell curve, see also: normal

distribution, 117, 118
big data, 217
binomial distribution, 117
biological homogeneity index, 308
biological stability index, 308
biplot, 213, 214, 216, 217, 223, 225,

229, 242, 243, 249, 251, 369
bird phylogeny, 292

© Springer International Publishing Switzerland 2015
D. Zelterman, Applied Multivariate Statistics with R, Statistics
for Biology and Health, DOI 10.1007/978-3-319-14093-3

383

INDEX 384

birth rate, 337
bivariate boxplot, 67, 68, 76, 85, 152
bivariate normal distribution, 151,

153, 195
black cherry trees, 228
body fat, 229
Bogat, GA, 199
bold font for vectors, 89
bootstrap, 301, 311
Box, GEP, 375
Box-Cox transformation, 123, 147
boxplot, 59, 86
Bradley-Terry model, 341, 360
BradleyTerry2 library, 340
breakdown, 204
breast cancer, 312
BRFSS, 238, 243, 342, 346
bubbleplot, 71
burger data, 12, 76, 82
bvbox(), 68

c(), 19, 31
Canadian health care workers, 288
cancer, 6, 164, 225, 316
candy, 195–201
canonical correlation, 342
canonical scores, 344
car.test.frame data, 256
cars, 231, 256, 286, 311
CART, 279, 287
Case-Schiller index, 178
cat(), 23
Cauchy distribution, 122, 350
causality, 231
cause and effect, 231
Caveat emptor, 17
cbind(), 31, 161, 169, 239, 259
CCA library, 346
ccf(), 323
CD4 counts, 58
CDC, see: Centers for Disease

Control, vii
census, 2
Centers for Disease Control, vii, 163,

227, 244, 245, 248

CEO compensation, 358
cex.lab=, 67
cex=, 61, 66–68, 70, 73, 76, 125, 161
characteristic polynomial, 107
chart junk, 65
Chernoff’s faces, 81, 82
chi-squared distribution, ix, 50, 56,

122, 182, 187
Chiroptera, 292
chull(), 69, 70
CIr(), 160
citations in academic journals, 340
cities, 72
CIz(), 160
clara(), 308
climate change data, 317
clipboard, 32
cluster library, 294, 310
clustering, 8, 287
clustering diagnostics, 301
cluttered desk, 47
clValid library, 303, 308
coal mining, 253, 254
col=, 66, 68, 70, 73, 76, 83, 84, 125,

161
colMeans(), 176
colnames(), 31
colors, see also col= and rainbow(),

66, 84
comments in programs, 39
commutative operation, 96
compensation of non-profit CEO’s,

358
complete.cases(), 36, 228, 311
complex conjugate, 107
complex numbers, 107
complexity parameter, 281
computer-aided regression trees, 279
conditional distribution, 156, 176
conditional probability, ix
conditional variance, 156
conditioning plot, 76
confidence interval, 2, 134
connectivity, 308
contour plot, 269

INDEX 385

convex hull, 69, 76, 79, 85, 274
Cooley JW, 334
coplot, 76, 80, 172
copy and paste, 32
cor(), 34, 41, 159
cor.test(), 160, 170
correlation, 42, 152, 159, 170, 342
correlation matrix, 34, 50
correlogram, 323–325
cotton workers, 202
cov(), 159
cov.rob(), 204
cov.trob(), 204
covariance, 154, 158, 159
covariance of ability tests, 226
Cox, DR, 375
CP, 281
cpgram(), 335
crabs, 279, 281
cross product in 3 dimensions, 97
cross validation, 275, 276, 280, 285
cross(), 285
cross-correlation, 323, 327
crossprod(), 97
crow, flying, 94
cubature library, 46
cumulative normal distribution, 118,

120
cumulative periodogram, 335, 336
curvature of the spine, 286
cut and paste, 32

Daily Beast, vii
daisy(), 294
Dalgaard, P, 190
data frame, 29
data to ink ratio, 65
data.frame, 64, 159, 239
data.frame(), 169
datasets library, 151, 231
dBase, 32
dchisq(), chi-squared density, 56
de Moivre, A, 117
declination, 10
decompose, 319

decomposed.ts object, 319
degrees of freedom, df, ix
deleting variables, 19
dendrogram, 287, 289, 290, 305
derivative, 145
determinant, 102, 106
Detroit housing prices, 180, 191, 205
dev.off(), 57
df, 132
df, fractional, 134
diag(), 98, 169
diagnostics for clustering, 301
diagonal matrix, 96, 103
diagonalizable matrix, 108
diana(), 308
diff(), 53, 364
disability, 252
discriminant function, 272
dist(), 290, 293
distance, 94
DNA microarray, 303
dnorm(), 119
documenting programs, 39
domain of attraction, 350
dot-dash-plot, 66
Dunn Index, 303, 310, 311
duplicated(), 36, 276

effective df, 264
Egyptian skulls, 283
eigen(), 209
eigenvalue, 106
eigenvector, 106, 115, 209
El Niño, 317
else, 43, 44
energy library, 163
energy statistic, 203
energy test, 163, 201
eqscplot(), 74
equality of variances, 50, 139
error checking, 42
estimated correlation, 159
estimated covariance distribution,

187
estimated mean, 159

INDEX 386

estimated variance, 159
Euclid, 93
Euclidean length, 94, 201, 203, 290,

293
Euler constant (0.5772 . . .), 351
Euler L, 351
Excel, 32
exchangeable correlation matrix, 190
exchangeable model, 171, 187
exoplanet, 356
explained sum of squares, 296
exponential distribution, 352, 353
extrapolation, 233
extremes, 198
Eye, vA, 199

F distribution, 177
F, see also FALSE, 22
F-ratio, 235
faces, 48, 81, 82, 86
factanal(), 221
factor analysis, 10, 84, 218
factor loadings, 219
factor variable type, 262
FALSE, 22, 25, 43
fanny(), 308
fast Fourier transform, 334
Fayette, AR, 248
fBasics library, 127, 128
fg=, 72
Fisher linear discriminant function,

272
Fisher RA, 82
Fisher Z-transformation, 160
Fisher’s iris data, see iris dataset,

82, 283
fMultivar library, 155
for(), 43
foreign library, 32
forests, 281
format(), 23
formula in liner models, 236
Fourier transformation, 334
fourth moment, see kurtosis, 128
fpc library, 303

fractional df, 134
frequency spectrum, 334
full rank matrix, 103
functions, 37

galaxies, 10
gamma distribution, 350
gap library, 283
garbage, 47
Gauss, CF, 117
Gaussian distribution, see also:

normal distribution, 117
gene expression, 310
generalized inverse, 109
generalized linear model, see also

glm, 237
getwd(), 47
ggplot2(), 85
Gini statistic, 353
glaucoma, 285
glm(), 237
glmrob(), 256
global environment data, 317
glyph, 80
gml(), 237
Golub, GH, 102
Gosset WS, 132
Gower metric, 294
gplots library, 307
gradient, 46, 145
graphical windows, 27
graphics, 27, 55
graphics library, 65
Gumbel distribution, 350
Gumbel, EJ, 350
Guttenberg, J, 84

hamburger data, 12, 76, 82, 223
haplotype, 286
hclust(), 290
header=, 29
health expenditures, 337
heatmap, 245, 305, 307
heavy tail, see also kurtosis, 128
Heineken beer bottles, 202

INDEX 387

help(), 23, 24, 48
hemangioma, 219
hematocrit, 337
Hessian, 46, 169, 171, 184
hierarchical clustering, 287
hill races, 149
hist(), 26, 51
histogram, 26, 58, 126, 135
HIV, 58
HLA, 283
home prices, 178
Hotelling T2 statistic, 177
Hotelling, H, 177, 344
HSAUR2 library, 283, 356, 358
Hubble Space Telescope, 12
Huntington, WV, 248
hypergeometric distribution, 373

IAD, 252
ICSNP library, 177
identifiable model, 342
identity matrix, 96, 103, 104, 106,

187
if(), 43, 44
image(), 155, 170
immune system, 283
inches=, 72
independence, ix, 153, 157
independence of irrelevant

alternatives, 265, 285
Inf, 52, 364
inner product, 90, 92
installed.packages(), 48
installing R, 17
installing packages, 48
integrate(), 46, 51
interactive program, 18
inverse Fourier transform, 334
inverse of a matrix, 104
iris dataset, 82, 83, 283, 288, 290
iteration, 44
Izenman, A, x

Jaccard Index, 302, 310
jackknife, 256, 308

January temperatures in U.S. cities,
72

Jarque-Bera test, 128, 147, 199, 327
jitter(), 62, 259
jittering, 301
joint likelihood function, 141
Journal Citation Reports, 340
journal citations, 340
judges dataset, 226
Jupiter, 356

Kedem, B, x
Kendall τ , 170
kernlab library, 274
kohonen library, 308
Kolmogorov-Smirnov test, 130, 147
Krause A, 14
Krige, DG, 72
kriging, 73, 74, 274
ksvm(), 274
Kuiper Belt, 5, 214
kurtosis, 128, 198
kyphosis, 286

lag, 180, 322
Lang, S, 102, 377
largest oil spills, 357
LASERI, 177, 178, 204
latitude, 10
lattice plot, 85
lda(), 266
LDA, see linear discriminant

analysis, 265
least squares, 69, 74, 233
length of a vector, 94
length(), 21
library(), 48
light tail, see also kurtosis, 128
likelihood, 141
likelihood ratio test, 182
line width, see also lwd=, 70
linear combination of multivariate

normal variates, 175
linear discrimination analysis, 265,

266, 272

INDEX 388

linear regression, 153, 156, 184
linear space, 114, 115
linearly dependent vectors, 93
lines(), 56, 67, 70, 161
Ljung–Box test, 329, 333
loading packages into R: see

installing packages, 48
loadings in principal components,

208
loadings, in factor analysis, 219
local variables, 38
loess, 76, 78, 86, 241, 274, 321, 336
log-gamma distribution, 350
log-likelihood, 142
logarithm, 30, 142
logistic regression, 262, 286
logit, 341
long tail, see also kurtosis, 128
longitude, 10
loop in programming, 43
ls(), 19, 47
lung cancer, 310
lwd=, 67, 70, 72, 76, 161

machine learning, 276
macro, 14
magnitude, in astronomy, 12
Mahalanobis distance, 195, 201, 203,

204, 240
mammography, 286
Manhattan norm, 293
MANOVA, 238
MAP, 270
mardia(), 199
Mardia, KV, 198
marginal analysis, 153
marginal distribution, 154, 156, 176
Margolin, BH, 199
masking, 70
MASS library, 82, 149
match(), 22, 68, 73
matrix, 94
matrix determinant, 102, 106
matrix generalized inverse, 109
matrix inverse, 104

matrix multiplication in R, 100
matrix of full rank, 103
matrix operation in R, 96
matrix outer product in R, 98
matrix rank, 103
matrix scatterplot, 76–79, 260
matrix square root, 111, 201
matrix trace, 106
matrix transpose, 91, 94
matrix(), 32, 98
matrix, positive definite, 108
matrix, singular, 103
maximum a posteriori (MAP)

estimator, 270
maximum likelihood estimates,

141
maximum likelihood estimation,

262
maximum norm, 293
mean, 118
mean absolute deviation, 49
mean(), 33, 50, 133, 159
Medicare, 252, 337
merge(), 35
microarray, 303, 310
miles per gallon, 232, 233, 286
milk data, 298, 300, 373
Minitab, 32
Minkowski norm, 293
missing data, 201, 337
MissMech package, 201
mle’s, 141
mode, 280
model sum of squares, 235
mood.test(), 50, 139
Moore-Penrose matrix inverse, 109
Mosteller F, 72, 377
moving average, 322, 329, 335, 336
moving window, 329, 330
multivariate kurtosis, 198, 199
multivariate normal distribution,

175, 269
multivariate outlier, 164, 198
multivariate skewness, 198, 199
multivariate t distribution, 204

INDEX 389

mutual independence, 93
MVA library, 67
mvnormtest library, 199
mvpart library, 256
mvShapiroTest library, 163
mvtree library, 279

n-tuple, 89, 91
NA, 36, 39, 52
names(), 259
NaN, 39, 42, 52, 364
national academic scores, 5, 50, 202,

363, 369
National Cancer Institute, 316
National Vital Statistics System,

227
nearest neighbor, 308
negative subscript, 21, 30
nested models, 182
neural network, 308
New York Choral Society, 85
New York City birth rates, 318
Nichols, E, x
nlm(), 46, 51, 143, 144, 183, 192
non-identifiable model, 342
non-profit CEO compensation, 358
nonparametric methods, 70, 122,

170
normal distribution, 117, 157, 350
normal distribution histogram, 51
normal distribution mean, 118
normal distribution quantile

function, 120, 124
normal distribution variance, 118
normal distribution, bivariate, 151
normalized spacings, 352
nortest library, 127
NULL, 52
numerical analysis, 105
numerical integration, 46
numerical operations, 46, 105

objects(), 19, 47
OECD PISA, 5, 50, 202, 363,

369

offset, 342
oil companies, 313
oil consumption, 229
oil spills, 357
Older Americans Act, 311
Olson M, 14
one-way ANOVA, 259
onion peeling, 70
oranges, 89
order statistics, 130, 349
organizational tips, 47
orthogonal vectors, 93, 108, 210
outer product in R, 98
outlier, 70, 76, 164

p value, ix
pairs(), 76–79, 150, 195, 217, 226,

244, 260, 300
palette, see also rainbow(), 67
pam(), 308
panel.smooth, 76, 86, 241
panel.violin, 86
panel=, 76
par(), 61
parallel coordinate plot, 82, 198,

260, 261
parcoord(), 82, 83, 198, 260
parenthesis and assignment, 21
patient outcomes, 284
pch=, 66, 68, 70, 73, 125
pchisq(), 50, 197
pdf(), 57
Pearl, J, 231, 377
Pearson chi-squared, 126
Pearson correlation coefficient, 159,

160
Pearson, K, 126
peeling an onion, 70
periodogram, 323, 335, 336
persp(), 142, 155, 170
perspective plot, 155, 269
pie chart, 85
PISA, 5
platelet count, 337
plot data, 55

INDEX 390

plot(), 55, 66, 67, 70, 73, 161
plot() characters: pch=, 66
plot() options, 66
Pluto, former planet, 5
pmin(), 193
pnorm(), 119
Poisson distribution, 147, 148
population, 2
pos=, 73
positive definite matrix, 108
post-operative patient outcomes,

284
posterior probability, 270
pound sign # , 39
power, 45, 51
power transformations, 123
prediction strength, 303
principal component loadings, 208
principal components, 238, 242,

373
print(), 23
printcp(), 281
prior probability, 269
probability, ix
probability journals, 340
programming, 37
promoter gene, 284
prostate cancer, 285
pruning, 281
psych library, 199, 228
psychometric library, 160
pt(), 264
public health education, 286
pulmonary function, 202
Pythagoras, 94

q(), 19
qnorm(), 197
QQ plot, 124, 130, 135, 196, 199,

200, 240
qqline(), 125
qqplot(), 125
quadratic form, 106, 174
quadrature, 46
quantile function for normal, 120

quartile, 59, 125, 156, 196
quitting R, 19

r2z(), 160
rainbow(), 67, 79
Rand Index, 303, 310
random forests, 281
random numbers, 24
rank of a matrix, 103
rbind(), 32, 83
read.table(), 28, 32
read.table() from Web, 258
reading scores, 5
reading tab characters, 32
reciprocal, 104
recursive partitioning, 279
reference category, 262, 342
regression, 69, 74, 152
regression tree, 287, 312
removing, deleting variables from R,

19
rep(), 20, 61
require(), 48
residual sum of squares, 235
residuals, 207, 233
return(), 37
right ascension, 10
Ripley BD, 14, 378
rm(), 47
rmvnorm(), 274
rnorm(), 24, 51, 133
robust methods, 49, 122, 204, 256,

310
robustbase library, 256, 283, 309
round(), 218
rounding error, 105, 264
row.names(), 28, 29, 32, 68, 169
rpart library, 311
Rstudio, 14, 39
rug fringe, 65, 236, 327

S and S-PLUS, computer languages,
14

S, computer language, 32
S, sample variance matrix, 159

INDEX 391

sample, 2
sample mean, 132
sample size estimation, 45
sample variance, 132
sample(), 39
SAPA (Synthetic Aperture

Personality Assessment),
228

sapply(), 34, 159, 215
Sarkar D, 377
SAS, 13, 27, 32, 355
scalar, 89, 91, 104, 364
scale(), 293, 327
scaling, 290
scan(), 32
scatterplot, 63, 76–79
schizophrenia, 283, 358
school demographic, 309
Schwager, SJ, x, 199
scope of variables, 38
Scottish hills, 149
scree plot, 210, 219, 229
sd(), 133
second derivative, 164
SEER, 316
semi-major axis, 5
semTools library, 199
senior citizens, 311
setwd(), 47
sex differences in mathematics

exams, 135
Shapiro SS, 130, 378
Shapiro-Wilk test, 147, 163, 199, 240
shapiro.test(), 197
short tail, see also kurtosis, 128
simulation, 24, 131
simulation of K-means, 309
sine wave, 274
singular matrix, 103
size bias, 356
skewness, 122, 128, 198
skulls, 283
SMART, 244
smoothed periodogram, 335

solution of linear equations,
101

solve(), 101, 105, 167, 169
som(), 308
sort(), 26, 32, 364
space spanned by a vector, 114
spacings, 38, 42, 352
spaghetti plot, 63, 64, 372
spam, 284
span option in spec.pgram, 335
Spearman ρ, 170
spectral decomposition, 333, 334
spectrum, 334
spherical covariance matrix, 187
spinal surgery, 286
sqrt(), 37
square root, 37
standard normal, 117
standardized extreme values, 350
star plot, 78
Stata, 32
stationarity, 329
stationarity tests, 333
stationary time series, 322, 337, 338
statistical graphics, 55
statistical significance, 45, 51
stats library, 295
stem and leaf plot, 58
stem(), 58
stepwise regression, 254
stl(), 321, 336
stopping R, 19
Student’s t distribution, 122, 132
subscript, negative, 30, 53
sum of squares, 235
sum of vectors, 92
sums of normally distributed

variables, 122
supertree, 292
support vector machine, 273
support vectors, 273, 274
supremum norm, 293
surf.ls, 74
SVM, 273

INDEX 392

Swiss cantons, 309
swiss dataset, 151, 152, 155,

157–161, 309
Switzerland, 151
symbol, 72
symmetric matrix, 94, 174

t distribution, 132
t test, ix
t(), transpose of a matrix in R, 32,

99
T, see also TRUE, 22
t.test(), 133
tab characters, 32
tail of the distribution, see also

kurtosis, 128, 349
take out the garbage, 47
TeachingDemos package, 48
test for normality, 135
text(), 57, 68, 72, 73
TH.data library, 229
third moment, see also skewness,

128
tilde ,̃ 237
tile vertically, 27
time series, 180, 189, 315
total sum of squares, 235
trace, 102, 106
transformed data, 150
transpose, 32, 89, 91, 99, 173
transpose of matrix, 91, 94, 174
transpose of vector, 173
trees, 228
trellis plot, 85
TRUE, 22, 25, 43
ts object, 319
ts() function, 319
TSA library, 337
Tufte ER, 65, 84, 378
Tukey JW, 72, 84, 334, 377
type=, 161

uncorrelated normal variates, 157
unequal variance t-test, 134
unexplained sum of squares, 296

uniform distribution, 350
US cities, 72
US judges dataset, 226

validation of clustering, 301
Van Loan, CF, 102
var(), 34, 133, 159, 176, 204
var.test(), 50, 139
variance, 118
variance matrix, 34, 187
variogram, 323
vars library, 325, 327
vasoconstriction, 283
vector, 89, 91
vector cross product in 3

dimensions, 97
vector elements, 21
vector inner product, 90, 92, 97
vector subtraction, 92
vector sum, 92
vector transpose, 91
vector valued arguments, 26
Venables WN, 14, 378
violin plot, 61, 86
visual magnitude, 10
vocalists, 85

Walmart, 248
weather map, 73
wedding cake, 70
Weibull distribution, 350
Welch t-test, 134
whiskers, 59
white blood count, 337
white light, 334
white noise, 335
Wilk MB, 130, 378
Wilks SS, 182
window width of moving average,

322
wine cultivars, 258–261
Wisconsin breast cancer study, 312
Wishart distribution, 187
with(), 72
within-cluster variability, 297

INDEX 393

working directory, see also getwd()
and setwd(), 29, 47, 57

workspace, 19

xlab=, 67, 68, 161
xlim=, 66

ylab=, 67, 68, 161
ylim=, 66
Yu, C, x

z2r(), 160
zero vector, 92, 93, 114

	Preface
	Acknowledgments

	Contents
	1 Introduction
	1.1 Goals of Multivariate Statistical Techniques
	1.2 Data Reduction or Structural Simplification
	1.3 Grouping and Classifying Observations
	1.4 Examination of Dependence Among Variables
	1.5 Describing Relationships Between Groups of Variables
	1.6 Hypothesis Formulation and Testing
	1.7 Multivariate Graphics and Distributions
	1.8 Why R?
	1.9 Additional Readings

	2 Elements of R
	2.1 Getting Started in R
	2.1.1 R as a Calculator
	2.1.2 Vectors in R
	2.1.3 Printing in R

	2.2 Simulation and Simple Statistics
	2.3 Handling Data Sets
	2.4 Basic Data Manipulation and Statistics
	2.5 Programming and Writing Functions in R
	2.6 A Larger Simulation
	2.7 Advanced Numerical Operations
	2.8 Housekeeping
	2.9 Exercises

	3 Graphical Displays
	3.1 Graphics in R
	3.2 Displays for Univariate Data
	3.3 Displays for Bivariate Data
	3.3.1 Plot Options, Colors, and Characters
	3.3.2 More Graphics for Bivariate Data

	3.4 Displays for Three-Dimensional Data
	3.5 Displays for Higher Dimensional Data
	3.5.1 Pairs, Bagplot, and Coplot
	3.5.2 Glyphs: Stars and Faces
	3.5.3 Parallel Coordinates

	3.6 Additional Reading
	3.7 Exercises

	4 Basic Linear Algebra
	4.1 Apples and Oranges
	4.2 Vectors
	4.3 Basic Matrix Arithmetic
	4.4 Matrix Operations in R
	4.5 Advanced Matrix Operations
	4.5.1 Determinants
	4.5.2 Matrix Inversion
	4.5.3 Eigenvalues and Eigenvectors
	4.5.4 Diagonalizable Matrices
	4.5.5 Generalized Inverses
	4.5.6 Matrix Square Root

	4.6 Exercises

	5 The Univariate Normal Distribution
	5.1 The Normal Density and Distribution Functions
	5.2 Relationship to Other Distributions
	5.3 Transformations to Normality
	5.4 Tests for Normality
	5.5 Inference on Univariate Normal Means
	5.6 Inference on Variances
	5.7 Maximum Likelihood Estimation, Part I
	5.8 Exercises

	6 Bivariate Normal Distribution
	6.1 The Bivariate Normal Density Function
	6.2 Properties of the Bivariate Normal Distribution
	6.3 Inference on Bivariate Normal Parameters
	6.4 Tests for Bivariate Normality
	6.5 Maximum Likelihood Estimation, Part II
	6.6 Exercises

	7 Multivariate Normal Distribution
	7.1 Multivariate Normal Density and Its Properties
	7.2 Inference on Multivariate Normal Means
	7.3 Example: Home Price Index
	7.4 Maximum Likelihood, Part III: Models for Means
	7.5 Inference on Multivariate Normal Variances
	7.6 Fitting Patterned Covariance Matrices
	7.7 Tests for Multivariate Normality
	7.8 Exercises

	8 Factor Methods
	8.1 Principal Components Analysis
	8.2 Example 1: Investment Allocations
	8.3 Example 2: Kuiper Belt Objects
	8.4 Example 3: Health Outcomes in US Hospitals
	8.5 Factor Analysis
	8.6 Exercises

	9 Multivariable Linear Regression
	9.1 Univariate Regression
	9.2 Multivariable Regression in R
	9.3 A Large Health Survey
	9.4 Exercises

	10 Discrimination and Classification
	10.1 An Introductory Example
	10.2 Multinomial Logistic Regression
	10.3 Linear Discriminant Analysis
	10.4 Support Vector Machine
	10.5 Regression Trees
	10.6 Exercises

	11 Clustering
	11.1 Hierarchical Clustering
	11.2 K-Means Clustering
	11.3 Diagnostics, Validation, and Other Methods
	11.4 Exercises

	12 Time Series Models
	12.1 Introductory Examples and Simple Analyses
	12.2 Autoregressive Models
	12.3 Spectral Decomposition
	12.4 Exercises

	13 Other Useful Methods
	13.1 Ranking from Paired Comparisons
	13.2 Canonical Correlations
	13.3 Methods for Extreme Order Statistics
	13.4 Big Data and Wide Data
	13.5 Exercises

	Appendix: Libraries Used
	Selected Solutions and Hints
	References
	About the author
	Index

