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Preface

The idea for this book came to me while I was teaching courses during the summer at
The Methodology Center at Penn State (Director: Linda Collins). Teaching classes
on person-centered methods which do not belong to the standard curriculum at
German or American universities was very inspiring to me. The interaction with
the students helped me to understand how to explain the content of this class so that
it is easy to understand and showed to me how much the students liked this different
look at statistics.

This book will take an easy-to-understand look at the statistical approach called
the person-centered method. Instead of analyzing means, variances and covariances
of scale scores as in the common variable-centered approach, the person-centered
approach analyzes persons or objects grouped according to their characteristic
patterns or configurations in contingency tables. The main focus of the book will
be on Configural Frequency Analysis (CFA; Lienert and Krauth 1975) which is a
statistical method that looks for over- and under-frequented cells or patterns. Over-
frequented means that the observations in this cell or configuration are observed
more often than expected, under-frequented means that this cell or configuration
is observed less often than expected. In CFA a pattern or configuration that
contains more observed cases than expected is called a type; similarly, a pattern
or configuration that is less observed than expected are called an antitype. CFA is
similar to log-linear modeling. In log-linear modeling the goal is to come up with a
fitting model including all important variables. Instead of fitting a model, CFA looks
at the significant residuals of a log-linear model.

CFA was invented by Gustav A. Lienert, an Austrian physician and professor
of psychology, who died in 2001. I was lucky to have met Gustav A. Lienert, who
was a very inspiring and enthusiastic person. I am thankful for his cheerfulness and
his support. I was introduced to ‘Herrn Lienert’ by Alexander von Eye (Psychology
Professor at Michigan State and University of Vienna). I am very thankful to Alex
who has introduced me to the field of categorical data analysis.

A number of ideas presented here (especially those in Chap. 6) were proposed by
Erwin Lautsch. They were all published in a series of Special Issues on CFA (guest
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editor together with Alexander von Eye) in the German Journal called Psychology
Science (formerly known as the Psychologische Beiträge). Thank you Erwin for
sharing your ideas!

One important asset to this book was the development of the R-package confreq
(derived from configural frequency analysis). The open source software R is
available at no cost and is developing in a fast and progressive manner. An
R-package was also important because there was no readily available software
for configural frequency analysis (with exception of a somewhat outdated DOS
software written in FORTRAN). Confreq was written by Jörg-Hendrik Heine (LMU
Munich). I met Jörg at our annual statistical meetings in Rothenberge (Northern
Germany) organized by Christian Tarnai and Jost Reinecke. Jörg worked diligently
on this package for more than 2 years including several setbacks. Many thanks
to you Jörg! I am also thankful to Rainer Alexandrowicz (who I also met in
Rothenberge) who worked on Stirlings’s formula for using the binomial test as part
of confreq.

My thanks go out to Amanda Applegate and Heather Foran for proof reading my
English. In addition, Heather also addressed to me all the relevant sections which
were difficult to understand and not well explained. Her methodological perspective
was extremely essential for my writing! Thanks also to Hannah Bracken at Springer
for her support in leading my book endeavor.

Finally, I offer my deepest thanks to my wife Susanne and my son Quincy.
Thanks for giving me so much comfort and for energizing my life.

Erlangen, Germany Mark Stemmler
Spring 2014
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Chapter 1
Introducing Person-Centered Methods

Abstract This chapter explains the term person-centered methods and how
Configural Frequency Analysis (CFA) works. Instead of analyzing means,
variances and covariances of scale scores as in the common variable-centered
approach, the person-centered approach analyzes persons or objects grouped
according to their characteristic configurations in contingency tables. CFA is a
statistical method that looks for over- and under-frequented cells or patterns.
Over-frequented means, that the observations in this cell or configuration are
observed more often than expected, under-frequented means that this configurations
is observed less often than expected. In CFA a pattern or configuration that contains
more observed cases than expected is called a type; similarly, configurations that
are less observed than expected are called an antitype. In addition, Meehl’s paradox
(Meehl, J Consult Psychol 14:165–171, 1950) is explained. Meehl’s paradox
postulates that it is possible to have a bivariate relationship with a zero association
or correlation but also a higher order association or correlation. Meehl argued for
investigating higher order interactions (beyond bivariate interactions), which can be
detected with CFA.

1.1 What Is Configural Frequency Analysis (CFA) Good for?

This chapter takes an easy-to-understand look at the statistical approach called the
person-centered method. Instead of analyzing means, variances and covariances
of scale scores as in the common variable-centered approach, the person-centered
approach analyzes persons or objects grouped according to their characteristic
patterns or configurations in contingency tables (see Bergman & Magnusson, 1997;
Bergman, von Eye, & Magnusson, 2006; Reinecke & Tarnai, 2008; Stemmler & von
Eye, 2012). The observed patterns are arranged in tables, ordered by their indices.
A certain position in such a table, denoted by a pattern or configuration, is called
a cell (Victor, 1989). Such tables are called contingency tables. The main focus of
the book will be on Configural Frequency Analysis (CFA; Lautsch & von Weber,

M. Stemmler, Person-Centered Methods, SpringerBriefs in Statistics,
DOI 10.1007/978-3-319-05536-7__1,
© Springer International Publishing Switzerland 2014
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2 1 Introducing Person-Centered Methods

1995; von Eye, 2002; von Eye & Gutiérrez-Penã, 2004) which is a statistical method
that looks for over- and under-frequented cells or patterns. Over-frequented means,
that the observations in this cell or configuration are observed more often than
expected, under-frequented means that this configurations is observed less often
than expected. In CFA a pattern or configuration that contains more observed cases
than expected is called a type; similarly, configurations that are less observed than
expected are called an antitype. CFA was invented by Gustav A. Lienert, an Austrian
physician and professor of psychology, who died in 2001 (Lienert & Krauth, 1975;
Stemmler, Lautsch, & Martinke, 2008). CFA is similar to log-linear modeling.
In log-linear modeling the goal is to come up with a fitting model including all
important variables. Instead of fitting a model, CFA looks at the significant residuals
of a log-linear model.

What is a typical research question that can be answered by CFA? Take an
example from hydrobiology (Melcher, Lautsch, & Schmutzler, 2012). Let’s say one
is interested in fish habitats or specially spawning habitats of fish because a sufficient
fish stock is important for the ecological system of a river. In logistic regressions
you compare places with many fish with places with little fish. Based on logistic
regression or loglinear modeling researchers know different important features of
the river such as flow velocity, type of structure and substrate of the river bed, and
the vegetation of the riverbanks, but they don’t know the optimal combination of the
features resulting in a typical (i.e., over-frequented) fish habitat.1 With CFA one can
identify significant cells, patterns or configurations. CFA gives answers at the level
of individual cells (configurations) instead of the level of variables.

Take, for example, another research question from the field of pediatrics. In a
small sample of premature newborns with additional neurological or other health
problems (e.g., seizures, need to intubate) one is interested in the healthy (i.e.,
typical) cognitive development of the children by the age of 5. CFA is able to look at
those newborns by searching for characteristic patterns or configurations that allow
a normal cognitive development.2

There are three commonly used sampling models in the analyses of cross-
classified data: (1) poisson, (2) multinomial, and (3) product-multinomial. Here,
the different sampling models will not be elaborated, for further information the
reader may consult Fienberg (1987). The good news is, that the three sampling
schemes lead to the same estimated expected cell values and the same goodness-
of-fit-statistics. Usually CFA assumes a multinomial sampling instead of a normal
sampling distribution. That is, we usually deal with a fixed obtained sample size
N and cross-tabulate each member of the sample according to its values for
the underlying variables. This multinomial sampling model can be applied when
most of the statistical assumptions for the use of multiple regression or analysis
of variance are violated. These assumptions encompass frequent issues, such

1By the way, many European fish like a shaded habitat with a fine and coarse substrate depending
on high flow velocity.
2Girls with intubation but no seizures have the best chances for normal cognitive development.
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as small sample size, heteroscedasticity, extreme observations or non-normality.
Such violations of important statistical assumptions threaten the statistical validity
(Shadish, Cook, & Campbell, 2002), opening up the possibility that the associations
found do not hold in reality.

However, multinomial statistics do not belong to the standard curriculum of grad-
uate studies in the humanities or social sciences, leaving the student or researcher
with few resources. This book will help to fill this gap by providing an easy to
read, hands-on textbook which can be used in any non-introductory undergraduate
or graduate statistics course. The textbook requires only knowledge of hypothesis
testing or inference statistics but no advanced knowledge of multivariate statistics.

CFA is a very useful statistical tool for the analysis of multiway contingency
tables, and CFA can be applied for anything that goes beyond the analysis of more
than two categorical variables. The analysis of multidimensional cross-tables has
many implications, such as

• Instead of using scale scores one looks at cell frequencies: i.e., one looks for
persons or units with characteristic patterns or configurations;

• CFA has few requirements with regard to sample size;
• The underlying sampling distribution is the multinomial distribution, instead of

the normal distribution;
• Instead of a linear combination

y = b0 +b1X1 +b2X2 + e (1.1)

we are dealing with a multiplicative relationship, which can be transformed into
an additive relationship through the logarithm of the equation:

lnei j = λ0 +λiAi +λ jB j. (1.2)

• CFA belongs to the non-parametric methods.

1.2 Basics of CFA

The basic procedure of CFA is comparable to analyzing a cross-table with the chi-
square statistic. The cross-table consists of r rows and c columns. Observed values
are compared with expected values. The global chi-square value for a contingency
table with two variables is calculated as follows:

χ2 =
r

∑
i=1

c

∑
j=1

(oij − eij)
2

eij
with df = (r−1)(c−1) (1.3)

where r represents the rows and c represents the columns. Each observed frequency
oi j has two subscripts, i for the row frequencies i = (1,2, . . ., I) and j for the column
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Table 1.1 Data example for
a two-by-two cross-table

Pro Con Sum

Males 100 50 150
Females 60 190 250

160 240 400

frequencies j = (1,2, . . .,J). For the denotation of a total row or column, the index-
point notation is applied. o1. therefore denotes the observed frequencies of row 1
(o2. denotes the observed frequencies of row 2). o.1 denotes the observed frequencies
of column 1 (o.2 denotes the observed frequencies of column 2). The total N is o.. =
∑I

i=1 oi. = ∑J
j=1 o. j. The global chi-square tests the following null and alternative

hypotheses: H0: There is no significant association between the variables involved
or the two variables are independent of each other and H1: There is a significant
association between the variables involved or the two variables are not independent
of each other.

The expected values or frequencies (ei j) are defined according to the null
hypothesis or a base model (e.g., the assumption of independence). The assumption
of independence is the null hypothesis of a first order CFA. Example (see Table 1.1):

ei j = n pi j (1.4)

pi j = pi.p. j e.g., p11 = p1.p.1 (1.5)

ei j = expected frequencies (first subscript = row; second subscript = column)
pi j = cell proportion; pi. = row proportion; p. j = column proportion

The corresponding formal (statistical) hypotheses for two variables can be stated
as follows:

H0 : πi j = πi.π. j

H1 : πi j �= πi.π. j

pi. =
oi.

n
(1.6)

p. j =
o. j
n

(1.7)

ei j =
n×oi.×o. j

nn
=

=
oi.o. j

n
(1.8)

oi j = observed frequencies (first subscript = row; second subscript = column)
n = sample size
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ei j =
row f requencies × column f requencies

n
(1.9)

e11 =
150×160

400
= 60

e12 =
150×240

400
= 90

e21 =
250×160

400
= 100

e22 =
250×240

400
= 150

χ2 =
k

∑
i=1

[
(100−60)2

60
+

(50−90)2

90
+

(60−100)2

100
+

(190−150)2

150

]

χ2
emp = 71.11; d f = 1

χ2
crit = 6.635, p < 0.01

Expected frequencies and the null hypothesis for a three dimensional cross-table
are:

ei jk =
oi.. o. j. o..k

n2 (1.10)

H0 : πi jk = πi..π. j.π..k

Expected frequencies and the null hypothesis for a four dimensional cross-table are:

ei jkl =
oi... o. j.. o..k. o...l

n3

H0 : πi jkl = πi...π. j..π..k.π...l

We differentiate between the overall or global chi-square value and the local
chi-square value. A significant global chi-square value is the prerequisite for a
significant local chi-square. The local chi-square has one degree of freedom is
calculated by:

χ2
ij =

(oij − eij)
2

eij
with df = 1 (1.11)
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Table 1.2 CFA example for a two-by-two cross-table

f(o) f(e) χ2 p-Value Types/antitypes

Male Pro 100 60 26.67 0.000 Type
Male Con 50 90 17.77 0.000 Antitype
Female Pro 60 100 16.00 0.000 Antitype
Female Con 190 150 10.67 0.000 Type

If the global chi-square is significant, one may look for significant local chi-
square values. Significant local chi-square values represent types or antitypes.
Wickens (1989) preferred the term outlandish cells. Types represent significantly
over-frequented cells ( f(o) > f(e)) and antitypes represent significantly under-
frequented cells ( f(o) < f(e)). For the calculations of local or cell-wise chi-squares
and the analysis of types and antitypes see Table 1.2.

One can use a pocket calculator to obtain the local chi-square for each cell (Note:
each local chi-square is indicated by two subscripts: first subscript= row; second
subscript= column). The corresponding local chi-square for configuration o12 in
Table 1.1 would be

χ2
12 =

(50−90)2

90
= 17.77 with df = 1.

By inserting the numbers into Eq. 1.3 you can see that the global chi-square value
is 71.111, which is highly significant with d f = 1. Computer software for CFA will
be introduced later (see Chap. 2). There is the danger of an alpha inflation, because
we are performing multiple tests. Therefore, we need a two-tailed Bonferroni alpha
adjustment while we are looking for over- and under-frequented cells (cf. von Eye,
1990), that is α∗ = 0.025/4 = 0.00625. Even with p = 0.00625 two types and
two antitypes could be identified. One type indicates that there are more males
answering ‘pro’ to the asked question than expected under the null hypothesis,
and the other type indicates that there are more women answering ‘con’ to the
asked question than expected under the null hypothesis. To put it differently: Men
typically say ‘pro’ to the asked question and women typically say ‘con’ to the asked
question. The antitypes are explained in the same vein. One antitype suggests that
there are less men than expected under the null hypothesis who answer ‘con’ to the
question, and the other antitype suggests that there are less women than expected
under the null hypothesis who answer ‘pro’ to the question. It is uncommon for men
to answer ‘con’ to this question, and uncommon for women to answer ‘pro’. Gustav
A. Lienert originally wanted to use his CFA only for exploratory purposes, but with
the Bonferroni adjustment, hypothesis testing is allowed (Lehmacher, 2000).

Let us look at another (real) data example. It is from Gustav A. Lienert, the
Austrian inventor of CFA, his nickname was Gustl. The data presented below are
from the famous LSD (i.e., acid) studies done with psychology students of him
(Krauth & Lienert, 1973), when he was a professor at the University of Marburg
in Germany. Throughout his life Lienert was interested in the psychological effects
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Table 1.3 Gustav A. Lienert’s famous acid data

C = Narrowed consciousness

1 = yes 2 = no

T = Thought disturbances

Yes No Yes No

A = Affective disturbances Yes 20 4 3 15
No 1 12 10 0

21 16 13 15 N = 65

Table 1.4 Technical representation of a cross-table with three-variables

Item A

1 2

Item B Item B

1 2 1 2

Item C 1 o111 o112 o11. o121 o122 o12.

2 o211 o212 o21. o221 o222 o22.

o11. o12. o21. o22. N = o...

of pharmaceutical drugs on the human brain. Gustav A. Lienert was a character
and he somehow managed to get a sample of acid from a pharmaceutical company.
In the 1950s acid was still legal in Germany, and Lienert used it for experiments
in his lab. In those times, LSD was an attractive substance for psychologists or
medical doctors because it was hypothesized that LSD was mimicking pathological
phenomena like psychosis. Today, this hypothesis is widely rejected. Lienert’s LSD
data expand the above two by two cross-table to three variables. The variables are
as follows: C = Narrowed Consciousness; T = Thought Disturbances, and A =
Affective Disturbances. Each symptom is rated as 1 = yes or 2 =no, resulting in
eight cells.

Let’s have a look at the data (see Table 1.3):
A technical representation of a table with three variable is as follows (see

Table 1.4): What are the degrees of freedom for any multiway contingency table?
The formula is

d f = T −
d

∑
i=1

(vd −1)−1 (1.12)

with T representing the number of cells or configurations, with d = 1. . .D repre-
senting the number of variables (dimensions), and vd the number of categories of a
variable. Here, we have T = 8 cells, d = 3 variables and vd = 2 categories, that is,
d f = 8− (2−1)− (2−1)− (2−1)−1 = 4. The corresponding global chi-square
for a three dimensional table calculated as
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Table 1.5 Expected and observed frequencies and the corresponding
local chi-square for Lienert’s LSD data

Configuration oi jk ei jk Local chi-square p

1 1 1 20 12.506 4.491 0.034
1 1 2 1 6.848 4.994 0.025
1 2 1 4 11.402 4.805 0.028
1 2 2 12 6.244 5.306 0.021
2 1 1 3 9.464 4.415 0.035
2 1 2 10 5.182 4.478 0.034
2 2 1 15 8.629 4.705 0.030
2 2 2 0 4.725 4.725 0.029

χ2 =
r

∑
i=1

c

∑
j=1

s

∑
k=1

(oi jk − ei jk)
2

ei jk
(1.13)

where r represents the rows, c represents the columns and s represents the third
dimension, i.e., stratum. Each observed frequency oi jk has three subscripts. The
index-point notation o1.. denotes the observed frequencies of row 1 and so on.
The total N is o... = ∑I

i=1 = ∑J
j=1 o. j. = ∑K

k=1 o..k. The corresponding expected
frequencies are obtained with Eq. 1.10. The assessment for the local chi-square
has not changed apart from one additional index (see Eq. 1.11).

Let’s have a look at the observed and expected frequencies and as well at the
local chi-square with its related p-values of the LSD data (see Table 1.5).

The global chi-square chi2 = 37.92 is highly significant. However, due to the
Bonferroni adjustment α∗ = 0.025/8 = 0.003125 no types or antitypes could
be detected. Thus, the results can only be interpreted in an exploratory way.
The hypothesized typical LSD-syndrome with narrowed consciousness, affective
disturbances and thought disturbances was detected 20 times with the corresponding
expected values of e111 = 12.506, which is more often than expected. Overall,
the data show that there is great inter-individual variation with regard to the drug
response (not to mention its detrimental health effects on regular users).

The above section explained the essence of CFA, which is the search for over-
and under-frequented cells (i.e., types or antitypes). First, a global chi-square
is calculated because significant global chi-squares are the prerequisite for the
detection of types and antitypes. Then, the local chi-square is obtained on each cell
level. For significance testing the Bonferroni adjustment is recommended, otherwise
the results may only be interpreted in an exploratory fashion. The calculation of a
CFA for a multiway contingency table is tedious, therefore easy-to-use software
packages are introduced in Chap. 2. In addition, other test statistics next to the chi-
square are presented. The next section presents the need to look for higher order
associations.
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1.3 Meehl’s Paradox

Meehl’s paradox (1950) postulates that it is possible to have a bivariate relationship
with a zero association or correlation but nevertheless a higher order association
or correlation. Let’s have a look at the following example. We ask two questions
related to alcohol abuse in a sample of heavy drinkers (e.g., young male college
students); each item may be answered with either 1 = yes or 2 = no. Item 1: “Have
you ever experienced a black out?” and Item 2: “Have you ever developed a higher
tolerance for alcohol?” Based on findings from the alcohol abuse literature, one may
conclude that a person who says yes to both questions is at serious risk for becoming
an alcoholic. This person belongs to the group of alcoholics (A). A person who says
no to both questions is probably a dissimulating alcoholic, and still belongs to the
group of alcoholics (A). And a person who says yes to one question has developed
some risk for becoming an alcoholic but is still a non-alcoholic. Let’s think of a
sample of N = 200 who would give you the following frequencies; see Table 1.6:

Let’s transform this table into a CFA Table; see Table 1.7:
Each two-by-two table results in a zero chi-square of no association (see

Tables 1.8–1.10).

Table 1.6 Frequencies for an example of Meehl’s paradox

Item 1 Item 2 Alcoholics (A) Non-alcoholics (NA)

1 = yes 1 = yes 50 0
1 = yes 2 = no 0 50
2 = no 1 = yes 0 50
2 = no 2 = no 50 0

Table 1.7 CFA Table for an example of Meehl’s paradox

Configurations Subject status f(o) f(e)
1 = yes 1 = yes A 50 25
1 = yes 1 = yes NA 0 25
1 = yes 2 = no A 0 25
1 = yes 2 = no NA 50 25
2 = no 1 = yes A 0 25
2 = no 1 = yes NA 50 25
2 = no 2 = no A 50 25
2 = no 2 = no NA 0 25

Table 1.8 Crosstabs for Item 1 by Item 2

Item 2

Yes No

Item 1 Yes 50 50 100
No 50 50 100

100 100 N = 200
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Table 1.9 Crosstabs for Item 1 by Subject Status

Subject status

A NA

Item 1 Yes 50 50 100
No 50 50 100

100 100 N = 200

Table 1.10 Crosstabs for Item 2 by Subject Status

Subject status

A NA

Item 2 Yes 50 50 100
No 50 50 100

100 100 N = 200

Table 1.11 CFA Table for an example of Meehl’s paradox

Configurations Subject status f(o) f(e) χ2 p-Value Types/antitypes

1 = yes 1 = yes A 50 25 25 0.000 Type
1 = yes 1 = yes NA 0 25 25 0.000 Antitype
1 = yes 2 = no A 0 25 25 0.000 Antitype
1 = yes 2 = no NA 50 25 25 0.000 Type
2 = no 1 = yes A 0 25 25 0.000 Antitype
2 = no 1 = yes NA 50 25 25 0.000 Type
2 = no 2 = no A 50 25 25 0.000 Type
2 = no 2 = no NA 0 25 25 0.000 Antitype

The corresponding Phi coefficient is zero.

Φ =
(ad −bc)√

(a+b)(c+d)(a+ c)(b+d)
(1.14)

=
(50×50−50×50)√

(50+50)(50+50)(50+50)(50+50)

=
0

100

= 0

If one had looked only at the bivariate correlation or association, one may
conclude that the relationship between the variables is zero. However, the data has
a clear structure. Persons who affirm or negate both items belong to the group
of Alcoholics. Persons who either affirm or negate one item belong to the group
of Non-Alcoholics. The multivariate association can be only identified within a
multinomial approach which is applied by CFA. Let’s have a look at the results
of the CFA to see whether CFA goes beyond bivariate associations (see Table 1.11):
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CFA reveals local associations between the two items and group membership (cf.
von Eye, 1990). Therefore, group membership can be inferred based on the response
for the two items. In addition, CFA shows that each configuration is reflected either
by a type or an antitype which represents a unique configuration or pattern of states
of the three variables. All cases are represented by types, and the frequencies for
antitypes are zero throughout. That is, CFA can differentiate perfectly between the
group of alcoholics and non-alcoholics.
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Chapter 2
CFA Software

Abstract This chapter describes the CFA software that is freely available for use.
One is a freeware written by Alexander von Eye (Michigan State University).
The other is a R-package called confreq written by Jörg-Hendrik Heine (LMU
Munich). The use of both software packages is described and demonstrated with
data examples. Throughout the book both packages built the bases for demonstrating
the use of Configural Frequency Analysis (CFA).

2.1 The Freeware by Alexander von Eye

Alexander von Eye (Michigan State University) has written a CFA program which
is available as a freeware and which can be downloaded from his website (http://
www.msu.edu/~voneye) (von Eye, 2002). This program, which from now on I will
be calling von Eye program runs on the DOS level and is therefore is only suitable
for Windows PCs. It was so far tested ‘under the 32-bit Windows operating system
XP Professional, Vista Business and Windows 7 Professional’ (p. 248; von Eye,
Mair, & Mun, 2010).

The program starts by double-clicking on the file cfa.exe. The von Eye program
is controlled by typing numbers into the program. After it starts, the program asks
whether the data will be entered via a file <= 1 > or interactive <= 2 >. We will
type the observed frequencies interactively (i.e., “2”) from Table 1.1. Next, the von
Eye program will ask the number of variables < max = 10 >. We type “2”. Now the
program wants the number of categories per variable. The program then calculates
the number of cells “4”.

Next the program asks for the observed frequency for configuration ‘11’. What
does that mean? The typing of configurations into the computer is guided by simple
rules, which are important but easy to learn. Each configuration has two or more
indexes (e.g., oi jk). The configurations are numbered starting with 1. Let’s say
we have three variables. The first variable has two categories, the second has three
and the third has two categories. The resulting table will be a 2 by 3 by 2 contingency

M. Stemmler, Person-Centered Methods, SpringerBriefs in Statistics,
DOI 10.1007/978-3-319-05536-7__2,
© Springer International Publishing Switzerland 2014
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Configural Frequency Analysis
---------- --------- --------

author of program: Alexander von Eye, 2000

Marginal Frequencies
--------------------
Variable Frequencies
-------- -----------

1      150.   280.

2      190.   240.

sample size N =      430

Pearsons chi2 test was used
Bonferroni-adjusted alpha =  .0125000
a CFA of order   1  was performed

Table of results
----- -- -------

Configuration    fo       fe   statistic       p
------------- ---- -------- --------- -------

11        100.   66.279     17.156   .00003443    Type
12        50.   83.721     13.582   .00022836    Antitype
21         90.  123.721      9.191   .00243227    Antitype
22        190.  156.279      7.276   .00698783    Type

chi2 for CFA model =   47.2053
df =     1      p =  .00000000

LR-chi2 for CFA model =    47.6779
df =     1      p =  .00000000

Fig. 2.1 Printout of CFA program for data in Table 1 by Alexander von Eye

table with 12 cells. The first configuration will be ‘111’. The last variable indexed
with k is the first to switch. That is, ‘112’. After all categories of the third variable
have been altered, the second variable is altered next: ‘121’, then ‘122’, ‘131’, ‘132’.
Finally, after six configurations, the first variable is altered; that is, ‘211’, ‘212’,
‘221’, ‘222’, ‘231’, and ‘232’.

We feed in the observed frequencies for each configuration or cell. The total
sample size is N= 430. Typing < yes = 1 > will save the data. Then we run a first
order CFA <= 1 > with the significance test based on the Pearson’s Chi-Square
<= 4 > at the 5 % level. Finally we save the file, and for now, we don’t want to
print the design matrix. Let’s look at the print out of the von Eye program (see
Fig. 2.1).
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By comparing the results of the printout of the von Eye program in Fig. 2.1, one
can see that we obtained the same results as with our pocket calculator.

2.2 CFA R-Package

R is an open source software which is suitable for Linux, MacOS X, and Windows.
R (R Development Core Team, 2004, 2011) is a program for data analysis, data
manipulation and graphical display. The philosophy of R is quite different from
other mainstream statistical packages such as SPSS or SAS. For statistical analysis,
R requires a syntax which works step by step, while storing intermediate results into
objects. In R, the objects can be modified for personal use and plotted easily. R is
becoming more and more popular in the field of methodology, partially because
R is also easy to connect with LaTeX (see Lamport, 1994). The software can be
downloaded for free from the website of The Comprehensive R Archive Network
(CRAN)
http://cran.r-project.org
Further information or help on R is available at the following website
http://www.r-project.org
at the link Documentation. Downloading an extra editor is recommended. WinEdt is
a suitable editor for Windows (http://www.winedt.com). Another frequently used
editor is Tinn-R (http://sourceforge.net/projects/tinn-r/). My personal recommen-
dation is to use R-Studio (http://www.rstudio.com/). R-Studio is easy to use and
very suitable for beginners. It works with four windows. In one windows you
may load packages directly from the CRAN server. By simply checking the box
of the respective package, they will be installed immediately. There is an extra
window for your R script, your workspace, and the output is listed in the window
console. If you work only with R, one needs to specify a CRAN server in order to
download the software and further packages through the menu item Documentation,
Packages. Choose a server in your area. In order to run CFA, please download
the package confreq from CRAN or via R-Studio. The name is derived from
configural frequency analysis (CFA). This R-package was written by Jörg-Hendrik
Heine (University of Munich (LMU)). The reference manual for confreq can be
downloaded from CRAN website (http://cran.r-project.org/web/packages/cfa/index.
html).1

1By the way, I do not recommend the use of the other available R-package called CFA. This
package includes mistakes, and which will not be further developed by their authors (personal
communication with Stefan Funke). For instance, the corresponding z-values are not correctly
analyzed (see the book by von Eye, Mair, and Mun (2010) on p. 268 and compare the obtained
values with Table 10.6 on p. 185).

http://cran.r-project.org
http://www.r-project.org
http://www.winedt.com
http://sourceforge.net/projects/tinn-r/
http://www.rstudio.com/
http://cran.r-project.org/web/packages/cfa/index.html
http://cran.r-project.org/web/packages/cfa/index.html
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Let’s have a look at the corresponding R code of the R-package confreq.

> # line starting with the hash key are
> # considered comments no commands!
> # it is recommended to save your R-script
> # and to document it with many comments;
> # this helps when re-using the R-script
> rm(list=ls())
> # clears the workspace in R Studio
> # enter the patterned frequency of
> # Table 1 as a matrix
> # first two columns are the patterns,
> # the third column lists the frequencies
> x1<-c(1,1,100)
> x2<-c(1,2,50)
> x3<-c(2,1,90)
> x4<-c(2,2,190)
> # the four vectors are combined to a matrix
> table1<-rbind(x1,x2,x3,x4)
> table1
> library(confreq)
> # library(confreq) loads the R-package ‘confreq’
> # brings the data matrix into a
> # pattern matrix which can be analyzed
> table1_new <- dat2fre(fre2dat(table1))
> table1_new
> #finally the CFA command for the main effects model
> CFA(table1_new,form="~ A + B")

The R syntax works line by line (cf. Alexandrowicz, 2013). Command lines
start with “>” and comments are introduced with the hash key. As mentioned
before, R works with objects. The configurations are determined by the matrix
called “table1” based on the data of Table 1.1. In a 2 by 2 table we are having
two main effects, one for each variable (i.e., main effect A and B). Next to
typing in configurations and frequencies as a row which will be composed to
a matrix, confreq also reads in EXCEL files, which makes the program even
more flexible. The indexed configuration can be easily typed into EXCEL, but
it is important to use the file type ‘.CSV’. In Europe, one has to use the file
type ‘.CVS2’ which indicates that the separator between digits is a semicolon,
instead of a comma, which is used in North America. To give a short example
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Table 2.1 R-Syntax for the data of Table 1

Pattern Observed Expected loc.chi.square loc.df loc.chi.square.p

1 1 100 66.28 17.16 1.00 0.00
1 2 50 83.72 13.58 1.00 0.00
2 1 90 123.72 9.19 1.00 0.00
2 2 190 156.28 7.28 1.00 0.01

> # reading in data from EXCEL into confreq
> contingency_table<-read.csv(file=paste(pfad,"/" +
,"table.csv",sep=""),header = FALSE)
> # in Europe one have to use ‘read.csv2’
> # but the rest is identical

The command for running a Configural Frequency Analysis is “CFA”. The sub-
command “form” specifies the main effects and/or interactions. Here, only the main
effects A and B were specified. Table 2.1 is a slightly condensed version of the
actual table in order to make it comparable to the values obtained through the von
Eye program.

CFA uses a number of statistics to test the significance of configurations. So far,
only the Pearson chi-square was introduced. However, the von Eye program and the
CFA R package provide the information on many different test statistics, which will
be presented in the next Chap. 3.

Summary: There are two software packages available for CFA: the freeware
provided by Alexander von Eye and the R-package confreq. The freeware by von
Eye was written in FORTRAN 90 and is only suitable for Windows. The R package
also runs on Linux and MAC OS X. The R package is an open source software which
is improved and extended constantly. R is also becoming more and more popular in
university methods classes.
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Chapter 3
Significance Testing in CFA

Abstract This chapter explains six different significance tests which are available
in the von Eye program and/or in the R-package confreq in the search of types
and antitypes. Among them are the binomial and the chi-square test including their
normal approximations. The formulas for each test are provided. Advantages and
disadvantage of each test are explained.

3.1 The Binomial Test

In von Eye’s CFA program this test can be activated under the program section of the
following significance tests are available. Its pertinent number is “1.” In R-package
confreq the binomial test is default. In R, each statistic is listed twofold in the
printout. First, the value of the statistic is provided and then the p-value is listed.
The binomial test can have one of two possible outcomes: (1) a certain configuration
will be observed or (2) a certain configuration will not be observed. The underlying
idea is that the occurrence of either outcome is based on a Bernoulli process of
independent trials (think of flipping a coin). The binomial test estimates a point
probability of observing a configuration o under a certain expected frequency e:

B(o) =

(
n
o

)
poq(n−0) (3.1)

with n= sample size and o= observed frequencies.

p =
e
n

and q = 1− p.

with e= expected frequencies.
Given Meehl’s example:

p =
25

200
= 0.125 and q = 1−0.125 = 0.875
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the point probability for a certain configuration is

B(oyesyesA) =

(
200
50

)
0.12550 0.875150 =

= 0.0085

To test for types H1 : o> e the joint probability for o together with o′ representing
all more extreme observed frequencies for o′ > o is compared with a certain
significance level (e.g., let’s say α = 5%). If o > e and o′ is more extreme than o,
then the corresponding binomial formula for B1(o) is

B1(o) =
l

∑
i=a

(
n
i

)
piq(n−i) (3.2)

where a = o and l = n.
To test for antitypes H1 : o < e and if o′ < o and o′ is more extreme than o, then

the corresponding binomial formula for B1(o) is

B1(o) =
l

∑
i=a

(
n
i

)
piq(n−i)

where a = 0 and l = o.

3.2 Approximation of the Binomial Test
Using Stirling’s Formula

In von Eye’s CFA-program this test can be activated with the number “2”. The
binomial test according to Stirling is basically a reformulation of the binomial
formula:

B1(o) =

(
n
o

)
poq(n−o) =

=
n!

(n−o)!o!
poq(n−o).

With n= sample size and o= observed frequencies. The expected frequencies
can be calculated through e = n× p and the proportion p for obtaining a certain
configuration is p = e

n . By using the formulas for e and p one obtains Stirling’s
formula:

B̂′(o) =
(

n
2πo(n−o)

) 1
2
(

np
o

)o( nq
n−o

)(n−o)

. (3.3)
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In comparison to the traditional binomial testing, Stirling’s approximation

• Has generally slightly less power than the exact binomial test;
• Is closest to the exact binomial test, if the difference between the observed and

expected frequencies is small.

The binomial test according to Stirling is also available in the R-package confreq,
however, the formula is not appropriate for zero observed frequencies, because it
is not possible to divide by zero. The output in confreq in this case is “INF” for
infinity!

3.3 Chi-Square Test

In von Eye’s CFA-program this test can be activated with number “3.” In R, this test
is the default test, and doesn’t need to be activated. The local chi-square statistic is
calculated as follows

χ2 =
(o− e)2

e
with df = 1 (3.4)

where o= observed frequencies and e= expected frequencies. The chi-square
statistic is based on the assumption that e > 5.

3.4 Chi-Square Approximation to the z-Test

In von Eye’s CFA-program this test can be activated under the program section of
the following significance tests are available and its pertinent number is “4.”. In the
CFA R package this test is also a default test. In the output it is listed under “z.Chi”
The chi-square approximation to the z-statistic is calculated as follows:

z2
( α2 )

= χ2
(α) (3.5)

z2
( α2 )

=
(o− e)2

e
=

z2
( α2 )

=
(o−np)2

np

z =
(o− e)√

np
.

Note that based on Monte Carlo studies (cf. von Eye, 1990), the use of this test
statistic is recommended by Alexander von Eye.
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3.5 Binomial Approximation to the z-Test

In the von Eye program this test can be activated with the number “5”.
If e = n× p ≥ 10, the binomial approximation is sufficiently accurate. In this

case the z-statistic is calculated as follows:

z =
(o−np)√

npq
. (3.6)

If 5 ≤ n × p ≤ 10, the binomial approximation needs to apply a so-called
continuity correction. The continuity-corrected z-statistic is calculated as follows:

z =
(o−np−0.5)√

npq
. (3.7)

In the R-package confreq the continuity correction is activated through the
command “ccor=TRUE” (ccor=FALSE is default), here is an example:

>CFA(patternfreq,form="~ A + B", ccor=TRUE)

3.6 Lehmacher’s Asymptotic Test

This test is not available in confreq. In the von Eye program this test can be activated
with the number “6”. The Lehmacher’s approximation to the z-statistic is calculated
as follows:

zL =
(o−np)

σ
(3.8)

zL =
(o− e)

σ
,

where σ2 is the exact variance of a hypergeometrical distribution under the
assumption that the marginals are fixed. The exact variance is calculated as

σ2 = np(1− p− (n− p)(p− p̃)). (3.9)

p is estimated from the marginal under the notion of independence of all variables
(here d = 4 variables (dimensions)):

p = ni...×n. j..× . . .×n...k/nd . (3.10)
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The probability p̃ is estimated by

p̃ = (ni...−1)(n. j..−1) . . .(n...k −1)/nd . (3.11)

Lehmacher’s test statistic always leads to the largest values (i.e., it is a progressive
test). It is true that |χ2| < |z| < |zL|. This test statistic is not available in the
R-package.

3.7 Küchenhoff’s Continuity Correction of Lehmacher’s
Asymptotic Test

This test is not available in confreq. In the von Eye program this test can
be used with number “7.” In order to avoid overly-liberal test results while
using Lehmacher’s asymptotic test, Küchenhoff suggested using Lehmacher’s test
together with the Yates’ continuity correction . Here

o′ =

{
o−0.5 if o > e

o+0.5 if o ≤ e
(3.12)

with each local or cell-wise significant test we are conducting multiple test.
Therefore, we are facing the danger of alpha inflation. This test statistic is also not
available in the R-package.

In order to protect our results from false inferences, both software package have
implemented, as a default, a Bonferroni correction (see Chap. 1).

Summary: Although the z-statistic can be recommended in most cases, there is no
test that is preferable over all tests. The tests differ in terms of statistical power and
the accuracy of the approximation of the sampling distribution. The only exact test
is the binomial test. The χ2-test should not be used because it detects more types
and fewer antitypes (cf. von Eye, 2002).
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Chapter 4
CFA and Log-Linear Modeling

Abstract This chapter describes the relationship between log-linear modeling and
CFA. Log-linear modeling and CFA may be used as complimentary statistical
tools. Log-linear modeling looks for models with an appropriate goodness-of-
fit; they can be used to investigate the patterns of association or the structure of
dependency among the variables. CFA needs a non-fitting model in order to detect
types and/or antitypes. In CFA and log-linear models, the expected frequencies
are calculated according to the underlying null model which is specified in the
design matrix using the General Linear Model approach (GLM). Following log-
linear modeling hierarchical log-linear modeling is presented. Hi-log models are
the best way to determine the structure of dependency among the variables or to
find out which interactions are significant. Hi-log modeling is a special form of
log-linear modeling. The main effects and interactions are structured hierarchically
such that if there are significant higher order interactions in the model, all lower
order interactions and main effects must be included. In addition to describing the
traditional first-order CFA, a zero-order CFA called Configural Cluster Analysis
(CCA) is explained. Finally, the statistic Q describing the pregnancy or precision of
a cell is introduced. Small data examples are presented and analyzed with the von
Eye program as well as with the R-package confreq.

4.1 Log-Linear Modeling: Looking at the Underlying
Dependencies

This section describes the relationship between log-linear modeling and CFA. Log-
linear modeling is a common statistical tool for the analysis of contingency tables
(cf. Langeheine, 1980; von Eye, 1990, 2002). Log-linear models can be used to
investigate the patterns of association or the structure of dependency among the
variables. They parametrize cell frequencies, or to put it differently, the logarithms
of cell frequencies, in terms of main effects and interactions. In CFA and log-linear

M. Stemmler, Person-Centered Methods, SpringerBriefs in Statistics,
DOI 10.1007/978-3-319-05536-7__4,
© Springer International Publishing Switzerland 2014
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Table 4.1 Observed frequencies for children’s intelligence status by seizure status

Intelligence

Above average Below average

Seizures Present 6 8 14
Absent 37 5 44

43 13 N = 56

modeling, the expected frequencies are calculated by using the General Linear
Model (GLM Kutner, Neter, Nachtsheim, & Li, 2004) approach. The GLM is

Y = Xβ + e. (4.1)

The expected frequencies are estimated as

Ŷ = Xβ = Y − e. (4.2)

Ŷ is a one column vector including the expected frequencies. The number of cells
or configurations determine the number of rows of Ŷ . X is the design matrix
containing the effect-coded main effect and interaction terms plus the constant. The
design matrix X has as many rows as there are cells or configurations, and m+ 1
columns. m is the number of weights; the first weight is always the constant, coded
with ones. β comprises the weights of the independent variables and is a one-row
vector with as many columns as cells. Let’s look at the following example. The
data were taken from a study at the Erlangen-Nuremberg University Hospital for
Children. Newborns with (1) or without seizures (2) were tested with an intelligence
test while they attended kindergarten. Children’s intelligence was divided into
(1) “average or above” and (2) “below average”. The following cross-table was
developed (see Table 4.1). The aim is to describe the underlying structure (e.g., main
effects, interactions) in order to reproduce the observed data. Let’s start with a model
which assumes independence for the underlying variables (i.e., between variables
A and B). A model without any interactions is called a main effects model. For
independence the following statement must hold:

o11

o.1
=

o12

o.2
(4.3)

In other words, the proportion of frequencies of variable A1 in variable B1 is the
same as the proportion of frequencies of variable A1 in variable B2. Variable A1 is
distributed equally across variable B. The same holds for variable B across variable
A. In the same vein one can state that:

o11

o.1
=

o1.

o..
(4.4)
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Table 4.2 Expected frequencies for children’s intelligence status by seizure status

Intelligence

Above average Below average

Seizures Present 10.8 3.3 14
Absent 32.3 9.8 44

43 13 N = 56

By reformulating equation 4.4 one obtains

o11 =
o1.×o.1

o..
. (4.5)

Equation 4.5 describes how the observed frequencies should be distributed under
the assumption of independence. Basically it is an estimation and a statement for
expected frequencies.

ei j =
o1.×o.1

o..
(4.6)

Therefore the expected frequencies for Table 4.2 are as follows: The expected
frequencies have two characteristics

• The marginal values for the expected frequencies of variable A and B are equal
to the marginal values of the observed frequencies, and

• Therefore the total sample size is reproduced and it holds ∑I
i=1∑

J
j=1 ei j = o.. = N

Note: If one compares the above observed with the expected values, one may detect
large differences between the observed and expected frequencies. Therefore, our
underlying main effects model may not hold. What does the corresponding design
matrix for the above data look like? The main effects and interaction terms are effect
coded; that is, we use coefficients ci for each category of a variable, which have to
sum to zero.

∑ci = 0 (4.7)

Let’s assume we have two categories or levels for variable A. Then we have to chose
different coefficients for each category, (e.g., 1 and −1). Note that the sum of the
coefficients need to be zero. The next variable B also has two levels, but needs to
be differently coded than variable A (e.g., −1 and 1). The design matrix X for
Table 4.1 is as follows:

X =

⎛
⎜⎜⎝

1 1 1
1 1 −1
1 −1 1
1 −1 −1

⎞
⎟⎟⎠ (4.8)
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The assumption that the observed frequencies are reproduced from the marginal
values means that variables A and B have a certain effect on ei j. The most
interesting thing to note is how big these effects are. This can be expressed through
a multiplicative model

ei j = γ0 × γiAi × γ jB j × γi jAiB j (4.9)

which can be transformed into an additive relationship via the natural logarithm

lnei j = λ0 +λiAi +λ jB j +λi jAiB j. (4.10)

ln = the natural logarithm for base e (i.e., e = Euler’s number = 2.71828. . . ).
Equation 4.10 represents the log-linear model, which estimates the ei j as a linear
combination consisting of a constant, two main effects and an interaction effect. The
λ s are parameters, which explain the effects of the variables or variable interactions
on the expected frequencies. They cannot be observed from the data but may be
estimated. First, the data needs to be read in SPSS. For this purpose we use a SPSS
Syntax which reads in frequency data (see Box with Crosstabs Syntax).

Data List free
/seizures intelligence freq.
weight by freq.

begin data.
1 1 6
1 2 8
2 1 37
2 2 5
end data.

Value Lables
seizures 1 ’present’ 2 ’absent’

/intelligence 1 ’above average’
2 ’below average’.

Because the logarithm of zero is not defined, the default SPSS (SPSS IBM Inc.,
2010) Delta Option adds 0.5 to each cell, in case there are cells with no frequencies
(here the Delta Option is set to 0.01). The following SPSS Syntax was used (see
Box with Loglinear Syntax).

LOGLINEAR seizures(1,2) intelligence(1,2)

/CRIT ERIA = DELTA(0.01)

/PRINT = DEFAULT

/DESIGN = seizures intelligence.
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In the following the above main effects model and their respective λ parameters can
be obtained with SPSS (see Fig. 4.1). Next to each variable name the minimum and
maximum values are listed in parentheses. The parameters are estimated such that
their sum equals zero; that is λ2A2 =−λ1A1 and λ2B2 =−λ1B1. The parameters for
variables A and B are significant (see their respective z-values). A significant main
effect reveals that the marginal values are not equally distributed, which is obviously
the case for both variables (see Table 4.1). The parameter for the interaction term
A by B is not listed because it was set to zero. By having a look at the model fit,
one can determine, if the observed data or their underlying relationships can be
reproduced only through the main effects. There are two statistics available: (1) the
Pearson Chi-square and (2) the Likelihood Ratio Chi-square (LR).

χ2 =
I

∑
i=1

J

∑
j=1

(oi j − ei j)
2

ei j
(4.11)

and

LR = 2
I

∑
i=1

J

∑
j=1

oi j ln
oi j

ei j
(4.12)

A model fits if the respective value of χ2 or LR is larger than α = 5%. Here, both fit
statistics indicate a non-fit (LR = 10.90413, df = 1, p < 0.05; χ2 = 12.05486, df = 1,
p < 0.05; see Fig. 4.1).

Let’s have a look at the corresponding R code of the R-package confreq.

rm(list=ls())
# clears the workspace in R Studio
# enter the patterned frequency as a matrix
# first two columns are the patterns,
# the third column lists the frequencies
x1<-c(1,1,6)
x2<-c(1,2,8)
x3<-c(2,1,37)
x4<-c(2,2,5)
# the four vectors are combined to a matrix
mat1<-rbind(x1,x2,x3,x4)
mat1
library(confreq)
# loads the R-package ’confreq’
# brings the data matrix into a
# pattern matrix which can be analyzed
mat1_new <- dat2fre(fre2dat(mat1))
mat1_new
#finally the CFA command for the main effects model
CFA(mat1_new,form="~ A + B")
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Fig. 4.1 Estimated parameters for a main effect model
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The (somewhat simplified) printout of the R script looks as follows:

$local.test
pattern observed expected

1 1 1 6 10.75
2 1 2 8 3.25
3 2 1 37 32.25
4 2 2 5 9.75

z.Chi p.z.Chi
1 -1.4487364 0.073705603
2 2.6348259 0.004209022
3 0.8364284 0.201456982
4 -1.5212175 0.064102638

$bonferroni.alpha
[1] 0.0125

$global.test
$global.test$chi.square
[1] 12.05486

$global.test$df
df
1

$global.test$chi.square.p
[1] 0.0005165753

$global.test$alpha
[1] 0.05

The R script results in the same global chi-square value: χ2 = 12.05486, df = 1,
p < 0.0005165753. The output gives also the Bonferroni adjusted alpha of p =
0.0125. The alpha level may be adjusted, for instance to a two-sided test, through

>CFA(patternfreq,alpha=0.025,form="~ A + B")

For all programs, the two fit statistics bear the same result. There is one type with the
configuration (1,2) which stands for seizures=yes and intelligence=below average.
One can conclude that in this study it was typical for newborns with seizures to
be below average in intelligence at kindergarten age. The standardized residuals
in the printout of the SPSS log-linear model (abbreviated as Std. Resid.; see
Fig. 4.1) are identical to the option “4” in the CFA program by von Eye called chi-
square approximation to the z-statistic (see Fig. 4.2) and to the z.Chi-statistic of the
R-package confreq. In addition, the von Eye program prints off the design matrix
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Configural Frequency Analysis
---------- --------- --------

author of program: Alexander von Eye, 2000

Marginal Frequencies
--------------------
Variable Frequencies
-------- -----------

1       14.    42.

2       43.    13.

sample size N =       56

the normal z-test was used
Bonferroni-adjusted alpha =  .0062500
a CFA of order   1  was performed

Table of results
----- -- -------

Configuration    fo       fe   statistic       p
------------- ---- -------- --------- -------

11          6.   10.750     -1.449   .07370565
12          8.    3.250      2.635   .00420906    Type
21         37.   32.250       .836   .20145692
22          5.    9.750     -1.521   .06410267

chi2 for CFA model =   12.0549
df =     1      p =  .00051658

LR-chi2 for CFA model =    10.9041
df =     1      p =  .00095950

Fig. 4.2 CFA results of the main effect log-linear model

used which is equal to the one listed above (see Eq. 4.23). However, the constant is
not printed because it is redundant. The von Eye program ends with an invigorating
CARPE DIEM which is Latin and means SEIZE THE DAY (von Eye, Mair, and
Mun, 2010).

In order to examine the importance of the interaction term, a saturated model is
calculated. A saturated model reproduces the observed values perfectly. Although
it is somewhat tautological, it is of great value. All parameters are estimated. Let’s
look at the design matrix of the saturated model:

X =

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎠ (4.13)
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Fig. 4.3 Estimated parameters for a log-linear saturated model
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Table 4.3 Results of the
saturated model using the
R-package confreq

Pattern Observed Expected z.Chi p.z.Chi

1 1 6 6.00 0.00 0.50
1 2 8 8.00 −0.00 0.50
2 1 37 37.00 −0.00 0.50
2 2 5 5.00 0.00 0.50

The interaction term is the result of the multiplication of the two main effects (see
the number of columns is equal to the Lambdas in Eq. 4.10). The printout gives
parameter estimates for each main effect and the interaction term (see Box with
Loglinear Syntax).

LOGLINEAR seizures(1,2) intelligence(1,2)

/CRITERIA = DELTA(0.01)

/PRINT = DEFAULT

/DESIGN = seizures intelligence

intelligence BY seizures.

One has to bear in mind that these are multiple test procedures; therefore a Bon-
ferroni alpha adjustment is necessary (cf. von Eye, 1990), that is α∗ = 0.025/3 =
0.00833 and the corresponding z-value is |2.40|. By looking at the z-standardized
lambda parameters, one can see that both main effects are not significant (for
seizures (λA =−1.87392) and for intelligence (λB = 2.37973)). But the interaction
term seizures by intelligence is highly significant (λAxB = −3.17809; see Fig. 4.3).
In our case, a model that reproduces the observed frequencies satisfactorily needs
to include the interaction term; no better or more parsimonious model is available.
In addition one can see that the observed values are perfectly reproduced which is
constitutive for the saturated model. Both fit statistics indicated a perfect fit with
p= 1.0. The respective degree of freedom of the model is zero.

The null model may also be obtained through the R-package confreq by
indicating the interaction in addition to the main effects in the CFA command:

CFA(patternfreq_neu,form="~ A + B + A:B")

Let us have a look at the obtained results (Table 4.3):
CFA can now be used as a complimentary statistical method. The prerequisite

for CFA is a non-fitting log-linear model, because types and antitypes represent
significant deviations from expected frequencies. The main effects model and the
saturated model can be calculated using SPSS as well as the new R-package
confreq.
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4.2 Hierarchical Log-Linear Modeling

Let us look at examples with three or more variables. The data is taken from Krauth
and Lienert (1973). There are two groups of depressed subjects (‘−’ = recovered
from minor depression due to treatment; ‘+’ = still suffering from depression while
under treatment). Both groups were tested with a temperament scale that consists
of three subscales: I = Introversion versus Extraversion (high scores represent
Introversion; low scores Extraversion), R = Rigidity (high scores represent rigidity;
low scores represent non-rigidity), and V = Vitality (high scores represent high
vitality; low scores represent low vitality). ‘+’ represents high scores (above the
median), and ‘−’ represents low scores (below the median).

If more than three variables are investigated in a log-linear model (e.g., using
the data from Table 4.4), the best way to determine the structure of dependency
among the variables or to find out which interactions are significant is by using
the hierarchical log-linear approach (hi-log models). Hi-log modeling is a form of
log-linear modeling. The main effects and interactions are structured hierarchically
such that if there are significant higher order interactions in the model, all lower
order interactions and main effects must be included. Non-hierarchical log-linear
modeling or nonstandard log-linear modeling is also possible but is not discussed
here (see Rindskopf (1990) for an explanation). The hi-log SPSS-syntax can be
found in the next syntax box.

HILOGLINEAR D(1,2) I(1,2)R(1,2)V (1,2)

/METHOD = BACKWARD

/CRITERIA = DELTA(0.01)

/PRINT = DEFAULT,ESTIM

/DESIGN.

Below, excerpts from the SPSS printout (Effect k order and higher) for the
hi-log models are presented. In SPSS, k order effects can be explained as fol-
lows: First order effects (k= 1) are main effects, second order effects (k= 2) are

Table 4.4 Data taken from Krauth and Lienert (1973, p. 73)

D+ D+ D− D−
I+ I− I+ I−

V V V V

+ − + − + −4 + −4

R + 15 30 R + 23 22 R + 25 22 R + 14 8
− 9 32 − 14 16 − 46 27 − 47 12
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normal interactions between two variables, and third and higher order effects
are interactions between three and more variables. The SPSS printout is very
informative, because it looks at the kth order effects either separately or in sets.
The goodness-of-fit of the hi-log-linear models for all the effects are listed. A
significant chi-square or LR statistic indicates a bad fit, saying that the underlying
model does not hold. The upper table of the printout displays the goodness-of-fit
when the first order effects and higher are zero (i.e., k= 1 order effects and higher;
all the main effects and interactions involved are zero). Of course this model does
not fit (LR = 87.201 p = 0.000, and χ2 = 91.569 p = 0.000). How does the goodness-
of-fit looks like if the second order effects and higher (i.e., k= 2 order effects and
higher) are zero. Again, this result also leads to a bad fit (LR= 68.895 p= 0.000,
and χ2 = 67.272 p= 0.000).

However, if third order and higher effects are zero the model fits (LR= 8.477
p= 0.132, and χ2 = 8.390 p= 0.136), indicating that the higher order interactions
are not significant. The model adequately representing the dependencies in the
presented data involves only significant main effects and first order interactions.
Figure 4.4 lists all effects and their level of significance. A model with all main
effects and first order interactions seems to suit the data well (see Fig. 4.5). However,
one k= 3 interaction is significant: depression by rigidity by vitality (p= 0.04), but
it is the only significant 3-way interaction. Among the k= 2 interactions a total of
four reach the level of significance. They are depression by introversion (p= 0.02),
depression by vitality (p= 0.00), depression by rigidity (p= 0.00), and introversion
by vitality (p= 0.00).

Closely related to the concept of a hierarchical order of the main effects and all
interactions in hi-log models is the so called Lancaster decomposition (Lancaster,
1951). Lancaster found out, that the global chi-square of a first order CFA is
composed additively of all possible interactions. Let’s look at our example with
four the variables D, I, R, and V. The related global chi-square of a first order
CFA is denoted as χ2(DIRV), in contrast, let’s denote the four-way interaction as
χ2
(DIRV). The Lancaster decomposition or partitioning of the global chi-square looks

as follows

χ2(DIRV) = χ2
(DIRV) + χ2

(DIR) + χ2
(DIV) + χ2

(IRV) + χ2
(DRV)

+ χ2
(DI) + χ2

(DR) + χ2
(DV ) + χ2

(IR) + χ2
(IV ) + χ2

(RV ) (4.14)

As can be seen from the upper part of Fig. 4.5 (see index a) a global chi-square
means that all k = 2 and higher effects are zero, this result in a χ2 = 68.895
with d f = 11. Each component takes one degree of freedom. To add the two-way
interactions, one needs to identify the values of all k = 2 order effects are zero
(see index b in the upper part of the figure). This results in a χ2 = 60.418 with
d f = 6, and in order to assess the value of all three-way interaction, one looks at k
= 3 order effects are zero (see index b in the upper part of the figure), this results
in a χ2 = 8.477 with d f = 4. The remaining difference is the value of the chi-
square of the four-way interaction which in our example is almost zero and therefore
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Sig.Z-Value
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Error
Estimate

1
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,001−3,278,059−,195

,000−4,849,059−,288
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depression*introversion*vitality
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depression*rigidity
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,044−,189

,273,040

,049−,184

,088−,145

−,078−,311

−,172−,405

,143−,090

,346,113

−,023−,256

,166−,067

,239,006

,079−,154

,044−,189

,116−,117

Effect Parameter

Parameter Estimates

Fig. 4.4 Parameter estimates in a hierarchical log-linear model

non-significant (this interaction has also one degree of freedom). That means, that
value of the four-way interaction is obtained by substracting all interaction effects
from the global chi-square:

χ2
(DIRV) = χ2(DIRV)− χ2

(DIR)− χ2
(DIV)− χ2

(IRV)− χ2
(DRV)

− χ2
(DI)− χ2

(DR)− χ2
(DV )− χ2

(IR)− χ2
(IV )− χ2

(RV ) (4.15)

and χ2
(DIRV) = 68.895−60.418−8.477 = 0.
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Degrees of
freedom Sig.Chi-Square

Likelihood-Quotient

1

2

3

4

1

2

3

4

Effects of k order and
highera

k order effects
b

,995,0001

,0768,4774

,00060,4186

,00118,3114

,995,0001

,1328,4775

,00068,89511

,00087,20615

KK

Effects of k order and higher

a. Tests whether the effects of k order and higher are zero.

b.Tests whether the effects of k order are zero

Sig.Chi-Square
Number of
Iterations

Pearson

1

2

3

4

1

2

3

4

Effects of k order and 
highera

k order effectsb

0,995,000

0,0788,390

0,00058,882

0,00024,297

4,995,000

4,1368,390

2,00067,272

0,00091,569

KK

Effects of k order and higher

a. Tests whether the effects of k order and higher are zero.

b.Tests whether the effects of k order are zero

Fig. 4.5 K order effects and their goodness-of-fit in a hierarchical log-linear model
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4.3 Zero-Order CFA or Configural Cluster Analysis (CCA)

One could also postulate the null hypothesis, that the cells are equally distributed.
This is the assumption or underlying hypothesis of the zero order CFA or
Configural Cluster Analysis (CCA), where ei j =

N
T and T represents the number

of cells. The underlying model includes no main effects or interactions; that is, each
cell has the same expected frequency. A CCA might also be run using the SPSS
program.

COMPUTE X = 1.

LOGLINEAR seizures(1,2) intelligence(1,2)with X

/CRITERIA = DELTA(0.01)

/PRINT = DEFAULT

/DESIGN = X .

The trick is to create a variable X which consists only of one value (i.e., X = 1),
and which will be used as a covariate (see SPSS-Syntax: “with X”). The SPSS
printout for a log-linear model based on the expected frequencies according to a
zero-order CFA looks as follows (see Fig. 4.6). One can clearly see that the expected
frequencies are the same for each configuration. Pearson’s chi-square and the LR
statistics are highly significant, indicating that the model does not fit.

The von Eye program also offers the possibility of running a zero-order CFA.
After typing the cell frequencies into the program, the program produces the output
given in Fig. 4.7.

Here are the current options for CFA models :

zero Order CFA = 0

First Order CFA = 1

For any higher order model : indicate order

Two− sample CFA = 20

(4.16)

The printout of the von Eye program while using the chi-square approximation to the
z-statistic suggests two significant cells under the assumption of equal distribution
across all cells: a type for “above average” intelligence together with “absent”
seizures, and an antitype for “absent” seizures, while having “below average”
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* * * * * * * * * * * * * * * * * * * * * * *  L O G   L I N E A R   A N A L Y S I S  * * * * * * * * * * * * * * * * * * * * * * *
DATA   Information

          4 unweighted cases accepted.
          0 cases rejected because of out-of-range factor values.
          0 cases rejected because of missing data.
         56 weighted cases will be used in the analysis.

FACTOR Information

   Factor  Level  Label
   seizures    2
   intelligence    2

DESIGN Information

   1 Design/Model will be processed.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

* * * * * * * * * * * * * * * * * * * * * * *  L O G   L I N E A R   A N A L Y S I S  * * * * * * * * * * * * * * * * * * * * * * *

 Correspondence Between Effects and Columns of Design/Model 1

  Starting  Ending
   Column   Column   Effect Name

      1        1     X

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 *** ML converged at iteration 2.
     Maximum difference between successive iterations =   ,00000.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

  Observed, Expected Frequencies and Residuals

       Factor          Code              OBS. count & PCT.   EXP. count & PCT.      Residual   Std. Resid.   Adj. Resid.

  seizures        yes
   intellig        average                    6,00 (10,71)       14,00 (25,00)       -8,0000       -2,1381       -2,4689
   intellig        below av                   8,00 (14,29)       14,00 (25,00)       -6,0000       -1,6036       -1,8516

  seizures        no
   intellig        average                   37,00 (66,07)       14,00 (25,00)       23,0000        6,1470        7,0980
   intellig        below av                   5,00 ( 8,93)       14,00 (25,00)       -9,0000       -2,4054       -2,7775

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 Goodness-of-Fit test statistics

    Likelihood Ratio Chi Square =    42,50006    DF = 3  P =3E-009
             Pearson Chi Square =    50,71429    DF = 3  P =6E-011

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 Estimates for Parameters

 X

  Parameter         Coeff.        Std. Err.         Z-Value     Lower 95 CI     Upper 95 CI

        1       ,0000000000          .               .               .               .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fig. 4.6 A Log-linear model based on the expected frequencies of a zero-order CFA

intelligence. The values for the Pearson chi-square and the Likelihood Ratio test
(LR) are identical for the SPSS package and the von Eye program.

It is also possible to run a zero-order CFA with R-package confreq. The design
matrix simply needs to be adjusted. Let’s look at the CCA R-syntax:

CFA(patternfreq_neu,form="null")
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Configural Frequency Analysis
---------- --------- --------

author of program: Alexander von Eye, 2000

Marginal Frequencies
--------------------
Variable Frequencies
-------- -----------

1       14.    42.

2       43.    13.

sample size N =       56

the normal z-test was used
Bonferroni-adjusted alpha =  .0125000
a CFA of order   0  was performed

Table of results
----- -- -------

Configuration    fo       fe   statistic       p
------------- ---- -------- --------- -------

11          6.   14.000     -2.138   .01625466
12          8.   14.000     -1.604   .05440471
21         37.   14.000      6.147   .00000000    Type
22          5.   14.000     -2.405   .00807846    Antitype

chi2 for CFA model =   50.7143
df =     3      p =  .00000000

LR-chi2 for CFA model =    42.5001
df =     3      p =  .00000000

Fig. 4.7 Zero-order CFA or configural cluster analysis (CCA) using the von Eye program

The results for confreq are identical to the von Eye program in terms of types and
antitypes while comparing the statistics of the normal approximation of the chi-
square values:
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$local.test
pattern observed expected loc.chi.sq loc.df
1 1 6 14 4.571429 1
1 2 8 14 2.571429 1
2 1 37 14 37.785714 1
2 2 5 14 5.785714 1
loc.chi.square.p z.Chi p.z.Chi
3.250944e-02 -2.138090 1.625472e-02
1.088094e-01 -1.603567 5.440472e-02
7.895786e-10 6.147009 3.947893e-10
1.615693e-02 -2.405351 8.078466e-03

$bonferroni.alpha
[1] 0.0125

$global.test
$global.test$chi.square
[1] 50.71429

$global.test$df
df
3

$global.test$chi.square.p
[1] 5.628098e-11

$global.test$alpha
[1] 0.05

Both programs reveal the same results in terms of test statistics, global chi-square,
and degrees of freedom. In the confreq printout very small numbers are listed with
“e” plus a number e.g., “3.250944e−02” which stands for 3.2509441/100 which is
equal to the number of decimal points: 0.03250944.

Coming back to our main effects model or first order CFA, the type with the
configuration (1,2), (i.e., seizures=yes and intelligence=below average) should be
investigated in more detail. Gustav A. Lienert, the inventor of CFA, was always
looking for a coefficient which can be interpreted similar to the determination
coefficient R2 in multiple regression. This is the statistic Q, which is a coefficient
of precision or a coefficient of the pregnancy of a type (Betzin & Bollmann-Sdorra,
2003; Krauth, 2008). There are two coefficients of precision available, (1) one for
2× ei, j −oi, j ≥ 0 and, (2) one for oi, j > 2× ei, j.
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Table 4.5 Adjustment for
Qmax taken from Betzin and
Bollmann-Sdorra (2003)

T Qad j T Qad j T Qad j

1 − 6 0.782 15 0.910
2 0.414 7 0.811 20 0.932
3 0.587 8 0.834 50 0.972
4 0.682 9 0.852 75 0.982
5 0.741 10 0.866 100 0.986

In case (1) the formula looks as follows

Q1 =
|oi j − ei j|

ei j
. (4.17)

Q varies between 0 and 1. Zero corresponds to the absence of precision and one to
perfect precision. In case (2) the formula looks as follows

Q2 =
|oi j − ei j|

Max
{

ei j,N − ei j
} (4.18)

where N is the sample size. The second coefficient does not vary between 0 and
1. It needs an adjustment depending on the number of variables (T) involved
Qmax =

Q2
Qad j

. This adjustment was calculated by Betzin and Bollmann-Sdorra (2003)

(Table 4.5).
In our case o1,2 = 8 and e1,2 = 3.75, therefore 8 > 2×3.75 = 7.50 and Q2 needs

to be calculated, which is

Q2 =
|8−3.75|

Max{3.75,56−3.75} = 0.09.

and

Qmax =
Q2

Qad j
=

0.09
0.414

= 0.22.

That is, we have a medium-size coefficient of precision.
Let’s look at the crosstabs procedure in SPSS. The above data are imputed into

the normal crosstabs procedure, using the following SPSS Syntax (see Box with
Crosstabs Syntax).
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Fig. 4.8 Standardized residuals using SPSS crosstabs

Crosstabs

/TABLES = seizures BY intelligence

/FORMAT = AVALUE TABLES

/STATISTICS = CHISQ

/CELLS = COUNT EXPECTED ASRESID

/COUNTASIS.

.

The printout (see Fig. 4.8) displays corrected standardized residuals (csr), which
can also be used in the search of types or antitypes. They are calculated according
to the Fuchs-Kenett Test (cf. Fuchs & Kenett, 1980; Lautsch & Thöle, 2003;
Haberman, 1977; Stemmler, 1994). The underlying equation is

csri j =
(oi j − ei j)√

ei j ×
(

1− oi.
n

)
×
(

1− o. j
n

) (4.19)

where n = sample size; ei j are the expected frequencies; oi j are the observed
frequencies; oi. are the sum of frequencies for row i (row marginals); o. j are the
column marginals of column j. The csri j needs to be compared to a Bonferroni
adjusted alpha (i.e., α∗ = 0.025/4 = 0.00625) and the corresponding z-value is
|2.50|. The crosstabs procedure in SPSS also provides residuals which are similar to
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the Adjusted Residuals (abbreviated as Adj. Resid. in the SPSS printout) calculated
by the loglinear procedure in SPSS (see Fig. 4.1). Having a non-fitting log-linear
model results in significant types or antitypes which might be detected with a CFA
program or in SPSS using a log-linear model or a crosstab.

What is the relationship between CFA and log-linear modeling?

• Log-linear modeling is a statistical tool which is engaged in model fitting; CFA
is engaged in residual analysis.

• Both statistical tools use the same procedures for estimating expected frequen-
cies.

• CFA is interested in the interpretation of individual cells.
• CFA attempts to reject the local null hypothesis that is, the fit between observed

and expected frequencies on the cell level.
• CFA and log-linear models should be applied in a complimentary way.
• CFA can validate the found global structure of dependence on the local level.

4.4 The Limits of CFA or Different Base Models,
Different Types

The calculation of the expected frequencies depends on the chosen base model.
There are in fact at least four different possible models for such a base model or
the respective null hypothesis. The first model is the model of independence or a
main effects model, which we used above for our first-order CFA. The expected
frequencies can be calculated with the help of a hierarchical log-linear model.
This model makes an important assumption; it assumes, that each case in the table
was drawn from the same population. The second approach, the Victor-approach
to CFA, was introduced by Victor (1989) and Kieser and Victor (1991, 1999).
Their underlying null hypothesis is based on the assumption, that the CFA types
or antitypes were drawn from a different population. The third approach is the
functional approach to CFA by von Eye and Mair (2007). The fourth approach was
introduced by Gutiérrez-Penã and von Eye (2000; 2012), von Eye and Gutiérrez-
Penã (2004) it calculates the expected frequencies according to the Bayes Theorem
(this approach will not be explained in more details; the interested reader may refer
to the listed citations).

Victor and his colleague Kieser (Kieser & Victor 1991, 1999; Victor, 1989) were
the first statisticians who draw our attention to the limits of CFA. They used a very
simple data example (see Table 4.6; Victor, p. 72) to introduce the idea of the so-
called Victor-cells. Eyeballing Table 4.6 suggests that configuration < 1,1 > is an
extreme cell, and therefore a type. However, running a main effects model or first-
order CFA results in none of that(!), neither types nor antitypes (see Table 4.7).

Obviously, the base model of independence was not sensitive enough to detect
the type in configuration ‘11’. The problem is that the assumption of independence is
assumed for the whole contingency table. In order to actually detect the obvious type
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Table 4.6 Three by three
contingency table with one
Victor-cell

∑
10 1 1 12
1 1 1 3
1 1 1 3

∑ 12 3 3 n = 18

Table 4.7 Results of a first-order CFA based on the data of the contingency table
with one Victor-cell

Pattern Observed Expected chi.square chi.square.p z.Chi p.z.Chi

1 1 10 8.00 0.50 0.48 0.71 0.24
1 2 1 2.00 0.50 0.48 −0.71 0.24
1 3 1 2.00 0.50 0.48 −0.71 0.24
2 1 1 2.00 0.50 0.48 −0.71 0.24
2 2 1 0.50 0.50 0.48 0.71 0.24
2 3 1 0.50 0.50 0.48 0.71 0.24
3 1 1 2.00 0.50 0.48 −0.71 0.24
3 2 1 0.50 0.50 0.48 0.71 0.24
3 3 1 0.50 0.50 0.48 0.71 0.24

Table 4.8 Contingency table
with new expected
frequencies according to
Victor

∑
1 5.5 5.5 12
5.5 0.3 0.3 6.1
5.5 0.3 0.3 6.1

∑ 12 6.1 6.1 n = 18

statistically, Victor (1989) suggested one treat the extreme cell with pattern ‘11’ as a
structural zero. Structural zeros are usually cells which cannot be observed (e.g., a
pattern of heavy rain together with a beautiful blue sky). The idea is to calculate new
expected frequencies using the Deming-Stephan-Algorithm (Haberman, 1977).
This is an iterative procedure using the following steps:

• Step 1: Set all extreme cells to zero ni j = 0;
• Step 2: Recalculate the new total sample size N.. and the new marginal sums of

the contingency table;
• Step 3: Recalculate for all suspicious extreme cells the new expected frequencies;
• Step 4: Repeat steps 2 and 3 until the new total sample size N.. does not change

anymore.

The new expected frequencies according to Victor (1989) are also presented
formulas to calculate the new expected frequencies x̂i j directly. Here the formulas
for a two-dimensional table are displayed. However, Victor presented formulas for
three- and four-dimensional tables (Victor, 1983):

x̂11 = ñ1.ñ.1/(ñ− ñ1.− ñ.1)with (4.20)
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Table 4.9 Three by three contingency table with two extreme outliers

∑
1 10 10 22

10 10 10 30
10 10 370 390

∑ 21 30 390 n = 441

ñ1. = n1.−n11,

ñ.1 = n.1 −n11 and,

ñ = n−n11

x̂11 =
(12−10)(12−10)

(18−10)− (12−10)− (12−10)
= 1

As a next step the new expected frequencies will be used to detect a Victor-type:

χ2=
(n11 − x̂11)

2

x̂11
with df = 1 (4.21)

Using the data from Tables 4.6 and 4.8 result in a

χ2=
(10−1)2

1
= 81

which is highly significant! Dunkl and von Eye (1990) suggest that one should use
the variance of the new expected frequencies for the denominator:

χ2=
(nij − x̂ij)

2

Var(x̂ij)
with df = 1 and (4.22)

Var(x̂ij) =
x̂ij +0.5

x̂ij −0.5
x̂ij

After confirming the existence of a Victor-type, one has to test whether the rest of the
table is independent. Inserting the data from Tables 4.6 and 4.8 result in a χ2 = 3.68
which is not significant. If the rest of the table is independent, this is called quasi-
independence in the presence of one type. The procedure is as follows: One first
searches for a Victor-type, then the remaining cells are tested for the hypothesis of
quasi-independence. If this leads to the rejection of quasi-independence, it can be
assumed that another Victor-type exists. Again, after identifying the second Victor-
type, the remaining table is tested. If the remaining table is quasi-independent, the
procedure ends (cf. von Eye & Stemmler, 1992).
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Another interesting data example was introduced by Kieser (Kieser and Victor,
1999, p. 969; see Table 4.9): Again, from eyeballing Table 4.9 one would assume
two existing types, one in pattern ‘11’ and the other in ‘33’. However, running a
first-order CFA results in a surprising result: Cell ‘11’ is the only cell that fulfills the
condition of independence, all other cells are declared to represent types. In this case
the use of a different base model, for instance, the Victor-approach, is recommended.

The other useful approach is the functional CFA (von Eye & Mair, 2007). This
approach extends the design matrix in order to blank out extreme cells, while setting
them to a structural zero. Let’s take the data from Table 4.6 and blank out the cell
‘11’ with the following design matrix

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1
1 0 1 0 0
1 0 −1 −1 0
1 1 0 1 0
1 1 1 0 0
1 1 −1 −1 0
1 −1 0 1 0
1 −1 1 0 0
1 −1 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.23)

The first four columns represent the ordinary main-effects model with the constant
and the main-effects effect-coded. The fifth column blanks out cell ‘11’. The
remaining log-linear model should now result in a fit with no significant residuals
being left. The elimination of cells can be based simply on searching for the largest
residual. The overall goal is to extend the design matrix until the model fits. While
first-order CFA is a one-step procedure, the Victor-approach and the functional
CFA are multiple-steps procedures which of course need an Alpha adjustment.
Unfortunately, the R-package confreq is not yet able to build the above design
matrix. However, the R-package CFA does (see von Eye, Mair and Mun, 2010).

Summary: Log-linear modeling and CFA may be used as complimentary statisti-
cal tools. Log-linear modeling looks for models with an appropriate goodness-of-fit;
that is, the corresponding chi-square and LR-values result in p-values lesser than a
previously chosen level of significance (α is usually 0.05). An inspection of the
residuals reveals deviations from an assumed base model. the residuals indicate
whether they were caused by chance, artefacts or other errors in the data. The
residuals also indicated whether the model itself needs be modified. CFA needs a
non-fitting model (p > 0.05) in order to detect types and/or antitypes. The expected
frequencies are calculated according to the underlying null model which is specified
in the design matrix using the General Linear Model approach (GLM). CFA and log-
linear modeling are based on the same algorithms, however, they pursuit different
goals, CFA is “cell-oriented” and log-linear modeling is “dependency-structure
oriented” (Victor, 1989).
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One may specify a main effects model which corresponds to the first-order
CFA or a base model which corresponds to a zero-order CFA or configural cluster
analysis (CCA). A saturated model may be used to investigate all available k order
effects. Here also a hierarchical log-linear model can be run in SPSS, were all k
order effects and all single effects are tested for significance. Once an appropriate
null model has detected significant cells or configurations, the pregnancy of the
significant cells can be investigated with the test statistic Q. The Fuchs-Kenett-test
is another possible significance test in CFA.

Sometimes, one may find a contingency table with extreme cells. In this situation,
the first-order CFA model might not be appropriate. As an alternative, the outlier
cells can be treated as structural zeros, using the Victor-approach or the functional
CFA.
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Chapter 5
Longitudinal CFA

Abstract This chapter explains how to use CFA with longitudinal data. Different
ways of rearranging the information with the longitudinal data are introduced. First,
the analysis of first differences is demonstrated by simply looking at increases or
decreases between two time points. Secondly, CFA and visual shape patterning are
explained. Here the shape of the curve are used as categories or patterns. Further-
more, a test of marginal homogeneity is provided which tests the null hypothesis of
the homogeneity of marginals in a square contingency table. Moreover, a special
type, the discrimination type is described. This type differentiates significantly
between two independent samples.

5.1 CFA of First Differences

This section explains how to use CFA in longitudinal data. One approach is the
use of first differences (von Eye, 2002). For the method of differences consider a
series of measures y0,y1, . . . ,yn. The first difference between two measures is termed
Δy0 = y1 − y0. In order to use first differences properly two conditions must be
fulfilled (cf. von Eye, 2002). (1) The data points used for creating differences must
be equidistant. (2) The scores that are subtracted from each other are at the interval
level.

Let’s examine the following data taken from Lienert (1978). N= 72 female
students were asked to rate their M=Mood, their C=Power of Concentration, and
S= Staying Power on a rating scale ranging from 0 to 100, before (y0) and after
(y1) their menstruation. We create first differences such that increments are labeled
‘+’ and decrements are labeled ‘−’ (in cases where the difference is zero, those
differences are equally or randomly distributed to either ‘+’ or ‘−’). Of course, the
choice of coding three options would also be possible. With two options the number
of cells in a multidimensional table is smaller. We are now able to ask two kinds of
questions. First, we might want to know whether all female students change in their
own manner with regard to Mood, Power of Concentration, and Staying Power due
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DOI 10.1007/978-3-319-05536-7__5,
© Springer International Publishing Switzerland 2014

51



52 5 Longitudinal CFA

Table 5.1 CFA of first differences as a zero-order CFA and first order CFA

Zero-order CFA First order CFA

M C S f(o) f(e) z-statistic f(e) z-statistic

+ + + 1 9 −2.667 2.199 −0.809
+ + − 4 9 −1.667 3.079 0.525
+ − + 3 9 −2.000 6.134 −1.265
+ − − 12 9 1.00 8.588 1.164
− + + 8 9 −0.333 5.718 0.955
− + − 6 9 −1.000 8.005 −0.709
− − + 18 9 3.000 15.949 0.514
− − − 20 9 3.667 22.329 −0.493

Σ 72 72 χ2[0] = 38.44 72 χ2[1] = 5.81

to their menstruation, or to put it differently, if there is no systematic change. This
is a question of the zero-order CFA or Configural Cluster Analysis (CCA). Second,
we might want to know whether there is a systematic or typical female change in
all three investigated characteristics. In the following table (see Table 5.1) we used
both CFA versions, zero-order CFA and first order CFA.

For CCA the degrees of freedom are d f = T −1, with T representing the number
of cells or configurations, and for first order CFA d f = T −∑d

i=1(vd −1)−1 with d
representing the number of variables, and v the number of categories of a variable.
Here we have v = 3 categories with d = 3 variables, that is, d f = 27 − (3 − 1)−
(3−1)− (3−1)−1 = 20. Let’s look at the results of the CCA first. The Bonferroni
adjusted alpha is α∗ = α/8 = 0.003125 which results in a critical z-value of −2.73.
Therefore two types, that is ‘−−−’ and ‘−−+’ evolved, indicating that not all
female students changed in the same manner. The overall χ2 − value = 38.44 is
significant for d f = 7. The question, whether there is a typical stereotypical female
change (e.g., down-swing in mood, loss of concentration and staying power) needs
to be denied; the global χ2−value= 5.81 was not significant for d f = 20. However,
menarcheal changes still seem to be a sort of a female confinement, because
the majority of 56 women experienced decrements in at least two categories, in
comparison to only 16 women, who reported increments in two aspects.

5.2 CFA and Visual Shape Patterns

Krauth (1973) suggested a categorical approach for the analysis of longitudinal
data which do not meet the assumptions for parametrical testing. This involves
the analysis of the classification of response curves, where the response curves
are categories representing change patterns based on first differences. Using the
patterns ‘+’, ‘−’, and ‘=’ various representations of the data are possible. Stemmler
(1998) suggested visual shape patterns as categories to classify the data. A visual
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Table 5.2 Visual shape patterns for four measurement points

Pattern: T+
+++ +=+ ==+ ++= +== =++ =+=

Pattern: T−
−−− =−= =−− −−= ==− −=− −==

Pattern: U+
−−+ −+= −=+ −++ =−+

Pattern: U−
+−= +−− +=− =+− +−−

Pattern: S±
+−+ −+−
Pattern: H
===

shape pattern assigns upper case letters and a sign to represent the complete shape
of a curve. With M measurement points one can differentiate M − 1 curves, such
as linear T-shaped, quadratic U-shaped, and cubic S-shaped curves plus H which
represents a horizontal line. Table 5.2 lists all possible visual shape patterns for
M = 4 measurement points, including ties (i.e., ‘=’).

For instance, linear-shaped curves, denoted T+, represent monotonical increase
in scores based on the pattern ‘+++’ encompassing slight increase or even ties
(e.g., ‘= +’); the opposite would be T− ‘−−−’ including, for example, ‘==−’(see
Fig. 5.1). U-shaped curves denoted as U+ (shaped like a regular U) encompass five
patterns: ‘=−+’, ‘−++’, ‘−=+’, ‘−++’, and ‘−−+’. The same applies to U−
(inverted U-shaped curve or N-shaped curve): ‘=+−’, ‘+−−’, ‘+−=’, ‘+=−’,
and ‘+−+’, and S− representing the patterns ‘−+−’. H stands for ‘===’ which
is a horizontal line.

The data in Stemmler (1998) was taken from a study in which N = 54 goldfish
were trained to avoid light electroshocks in an aquarium by crossing a light beam or
barrier. The dependent variable was the number of avoiding reactions performed by
the fish, with higher numbers representing better training or learning. At the end of
the training sessions the goldfish received injections of puromycine hydrochloride,
a substance which interferes with the ability to learn and to memorize. Four days
after the injection the actual testing phase began. For the training and for the testing
condition a visual shape patterning was performed. The question was whether there
is a stability of the Visual Shape types over time or whether the intervention resulted
in a change of the frequency of the detected visual shapes or types. That is, is there
a stability of the detected types over time? Table 5.3 shows the frequencies of the
visual shapes before and after the medical intervention. The numbers in the main
diagonal are listed in parenthesis, because they are not included in the analyses
which are looking for change, and the main diagonal represents stability.

This table is analyzed with the help of Lehmacher’s test of marginal homogene-
ity (Lehmacher, 1980; see also Müller, Netter, & von Eye, 1997). This test searches
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Fig. 5.1 Examples of visual shape patterns based on first differences with four measurement
points

for equal probabilities (i.e., pi. = p.i) and therefore equal pairs of marginals (i.e.,
fi. =) in a square symmetric contingency table. The null hypothesis is

H0 : pi. = p.i for all i = 1(1)r (5.1)

with i representing the columns and rows in a square contingency table. The
alternative hypothesis states that at least one pair of marginals is unequal.

H1 : pi. �= p.i (5.2)
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Table 5.3 Squared contingency table with frequencies of visual shape patterning

Testing condition

Training
condition T+ T− U+ U− S+ S− H Σ . . .

T+ (0) 7 3 4 2 0 3 19
T− 1 (1) 0 1 0 0 0 2
U+ 1 3 (1) 1 0 3 0 8
U− 0 1 2 (0) 0 0 1 4
S+ 0 2 1 0 (0) 2 1 6
S− 0 4 0 1 0 (0) 1 6
H 1 4 0 1 0 1 (0) 7
Σ 3 21 6 8 2 6 6 52

Significantly different pairs of marginals may be interpreted as discrimination
types types that differentiate significantly between two (originally) independent
samples (cf., Krauth, 1993; Lautsch & von Weber, 1995; von Eye, 1990, 2002). If,
for example, ‘T−’ is a discriminating type and there are more goldfish that follow
this pattern in the testing phase than in the training phase, one can conclude, that
the injected drug led to a significant monotonical decrease in avoidant reactions
(i.e., memory loss) in a number of goldfish. Lehmacher’s test is basically a test
for asymmetrical change. If we reject the null hypothesis, we know that there was
change; if we keep the null hypothesis, there still may be change, but this change is
symmetrical in either direction.

Lehmacher’s sign test is applied to the data – excluding the data from the main
diagonal – with Ai = fi.− fii for the rows and Bi = f.i − fii for the columns. Under
the null hypothesis the expected frequencies Ai are equal to Bi. For the asymptotic
test, the chi-square value is

φ 2 =
(Ai −Bi)

2

(Ai +Bi)
with 1 df (5.3)

and with i = 1(1)r, if no specific alternative hypothesis was formulated. If, for
instance, i = 1 for T+

χ2 =
(A1 −B1)

2

(A1 +B1)
=

(19−3)2

(19+3)
= 11.63

the resulting chi-square value is χ2 = 11.63 with df = 1. For each of r Lehmacher’s
tests a two-tailed hypothesis is tested, because each of the column marginals may be
either smaller or larger than the row marginals. Of course the Bonferroni adjustment
needs to be applied to each test. Selecting the alpha level as 0.025, with r = 7
simultaneous tests the two-tailed Bonferroni adjusted α∗ = 0.025/7= 0.0035 which
corresponds to a chi-square value of χ2 = 8.53 (see Table 5.4). For small expected
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Table 5.4 Chi-square values based on Lehmacher’s test of marginal homogeneity and the
binomial values for each pair of marginals of the visual shape pattern

i Training condition Testing condition χ2 Binomial test

1 T+ 19 3 11.63∗ 0.001∗

2 T− 2 21 15.70∗ <0.001∗

3 U+ 8 6 0.14 0.395
4 U− 4 8 1.33 0.194
5 S+ 6 2 2.00 0.145
6 S− 6 6 0.00 1.000
7 H 7 6 0.08 0.500
∗p<0.0035

frequencies it is necessary to obtain an exact test using the binomial test. Because
we have only two possible outcomes p = q = 0.5, the binomial formula (3.1) for the
joint probability looks much simpler

Bi =
1
2

n x

∑
0

(
n
x

)
(5.4)

with n = Ai +Bi and x is the minimum of (Ai,Bi). The corresponding values of the
exact binomial test are also listed in Table 5.4.
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Chapter 6
Other Person-Centered Methods Serving
as Complimentary Tools to CFA

Abstract This chapter explains the use of other person-centered methods as com-
plimentary tools to CFA. Among them are CHAID-model (Chi-Square Automatic
Interaction Detection) as a model for contrasting groups, latent class analysis (LCA)
which is comparable to a factor analysis using categorical variables and (multiple)
correspondence analysis (CA) which is a technique for dimensional reduction and
perceptual mapping. Using small data examples, the essence of each statistical
method is explained and its close relationship to CFA is demonstrated. CFA may
always be used as a complimentary tool offering additional insight into the data.

6.1 Answer Tree and CFA

In this section we will be using CFA to take a more in-depth look at psychometric
scaling. For instance, instead of looking at factor loadings to determine which items
contribute the most to a latent factor, we look at groups of subjects with typical
answers on a scale. Let’s say we measure Life Satisfaction with several items. We
want to go beyond the traditional psychometric analyses and look at what aspects
of life satisfaction lead people to rate their life as highly satisfied or dissatisfied.
In a second step we might want to use latent class analysis (LCA) to explore the
dimensionality of scales. All statistical procedures presented here use CFA and other
complimentary tools to get further insight into the scale structure.

For our illustration we use the data from a German Socio-Economic Panel called
SOEP. The SOEP is an annual survey on the German infrastructure conducted by the
Deutsches Institut für Wirtschaftsforschung (DIW; German Institute for Economic
Research) in Berlin. In the selected data set, the overall Life Satisfaction of Germans
was measured from 2003 through 2006, each year on a scale ranging from 0 to 10,
with ‘10’ being the highest level of Life Satisfaction. We categorize the data to come
up with three categories: we have increases and decreases in Life Satisfaction. But
it is also possible to come up with a third category, stability (i.e., ‘=’). We code
changes of 0–2 scores from 1 year to another as ‘2’, representing stability. A ‘1’
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© Springer International Publishing Switzerland 2014

57



58 6 Other Person-Centered Methods Serving as Complimentary Tools to CFA

Fig. 6.1 Factor loadings of the items measuring life satisfaction

refers to a decrease of at least three scores (i.e., −3); a ‘3’ represents an increase of
at least three scores (i.e., +3). The underlying question is whether there are typical
or significant patterns of change or stability in terms of Life Satisfaction.

First, we run a factor analysis using the original SOEP raw data by including
another six items or indicators of life satisfaction which were measured in 2003 (the
variable names are listed in parentheses): (1) Satisfaction with Workplace (Work03),
(2) Satisfaction with Health Status (Health03), (3) Satisfaction with Household
Income (Income03), (4) Satisfaction with Housing Conditions (Apart03), (5) Sat-
isfaction with Leisure Activities (Leisure03), and (6) Satisfaction with Standard of
Living (Standard03). All items are loading on one factor, which explains 50.3 % of
the variance of all items (see SPSS printout in Fig. 6.1).

In order to run a first-order CFA, we select four items with the highest loadings:
Work03, Income03, Apart03, and Standard03, and we conduct a median-split
such that a ‘1’ represents low satisfaction and a ‘2’ high satisfaction. By looking
exclusively at types we detect a total of five. The configurations ‘1111’ and ‘2222’
represent, two complimentary types and those subjects who are unsatisfied with
all aspects of their life and those who, overall, are satisfied with all aspects. The
complimentary types ‘1222’ and ‘2111’ represent persons who are satisfied with
all aspects of their life except with Work or who are satisfied only with Work but
with nothing else. This result indicates that a person’s working condition is an
essential aspect of our judgement of Life Satisfaction. The fifth type represents
people who are generally satisfied with their life but unhappy with their housing
condition (configuration ‘2221’) (see Fig. 6.2 and Table 6.1).

The von Eye program and confreq reveal identical results. In the next step
we will be using the program SPSS to create a summary index of the four items
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Configural Frequency Analysis
---------- --------- --------

author of program: Alexander von Eye, 2000

Marginal Frequencies
--------------------
Variable Frequencies
-------- -----------

1     3354.  3721.

2     3688.  3387.

3     4226.  2849.

4     4625.  2450.

sample size N =     7075

the normal z-test was used
Bonferroni-adjusted alpha =  .0031250
a CFA of order 1  was performed

Table of results
----- -- -------

Configuration    fo       fe   statistic       p
------------- ---- -------- --------- -------

1111       1406.  682.678     27.684   .00000000    Type
1112        307.  361.635     -2.873   .00203309    Antitype
1121        167.  460.234    -13.669   .00000000    Antitype
1122        124.  243.800     -7.673   .00000000    Antitype
1211        299.  626.960    -13.098   .00000000    Antitype
1212        127.  332.120    -11.255   .00000000    Antitype
1221        356.  422.672     -3.243   .00059157    Antitype
1222        568.  223.902     22.996   .00000000    Type
2111       1200.  757.378     16.083   .00000000    Type
2112        230.  401.205     -8.547   .00000000    Antitype
2121        140.  510.594    -16.401   .00000000    Antitype
2122        114.  270.477     -9.514   .00000000    Antitype
2211        483.  695.563     -8.060   .00000000    Antitype
2212        174.  368.461    -10.131   .00000000    Antitype
2221        574.  468.921      4.853   .00000061    Type
2222        806.  248.401     35.379   .00000000    Type

chi2 for CFA model = 3991.9562
df =    11      p =  .00000000

LR-chi2 for CFA model =  3478.5211
df =    11      p =  .00000000

Fig. 6.2 First order CFA with life satisfaction items using the von Eye program
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Table 6.1 First order CFA with life satisfaction items using the R-package confreq

Pattern Observed Expected loc.chi.square loc.df loc.chi.square.p z.Chi p.z.Chi

1 1 1 1 1,406 682.68 766.39 1.00 0.00 27.68 0.00
1 1 1 2 307 361.63 8.25 1.00 0.00 −2.87 0.00
1 1 2 1 167 460.23 186.83 1.00 0.00 −13.67 0.00
1 1 2 2 124 243.80 58.87 1.00 0.00 −7.67 0.00
1 2 1 1 299 626.96 171.55 1.00 0.00 −13.10 0.00
1 2 1 2 127 332.12 126.68 1.00 0.00 −11.26 0.00
1 2 2 1 356 422.67 10.52 1.00 0.00 −3.24 0.00
1 2 2 2 568 223.90 528.82 1.00 0.00 23.00 0.00
2 1 1 1 1,200 757.38 258.67 1.00 0.00 16.08 0.00
2 1 1 2 230 401.21 73.06 1.00 0.00 −8.55 0.00
2 1 2 1 140 510.59 268.98 1.00 0.00 −16.40 0.00
2 1 2 2 114 270.48 90.53 1.00 0.00 −9.51 0.00
2 2 1 1 483 695.56 64.96 1.00 0.00 −8.06 0.00
2 2 1 2 174 368.46 102.63 1.00 0.00 −10.13 0.00
2 2 2 1 574 468.92 23.55 1.00 0.00 4.85 0.00
2 2 2 2 806 248.40 1,251.67 1.00 0.00 35.38 0.00

measuring different aspects of life satisfaction. Subsequently, we split this total
score into three equivalent categories using the 33rd and 66th percentiles. The
resulting categories are 1= low life satisfaction, 2=medium life satisfaction, and
3= high life satisfaction.

In case that we have many categorized variables and we define one variable
as a dependent variable, a technique known as CHAID may be applied by using
the SPSS module Answer Tree and the option Exhaustive CHAID. “. . . CHAID
partitions the data into mutually exclusive, exhaustive, subsets that best describe the
dependent variable” (Kass, 1980, p. 119). That means that we apply the CHAID-
model (CHAID stands for Chi-Square Automatic Interaction Detection) as a model
for contrasting groups (cf. Lautsch & Plichta, 2003; Lautsch & Thöle, 2005). The
use of this program results in a graphical illustration called a tree diagram. CHAID
is a stepwise procedure; first the program searches for the best predictor of the
dependent variable by partitioning the data. The chi-square statistic is used to pick
the best predictor, similar to how the F-value is used in stepwise regression to
decide which variable should be included or excluded (Kass, 1980). In our example
the dependent variable is the categorized total score of Life Satisfaction based
on the four items with the highest factor loadings (i.e., low, medium, and high).
The independent variables are the dichotomized items measuring different aspects
of Life Satisfaction. One advantage of this procedure is the ability to investigate
the effects of several independent variables on a dependent variable without any
restriction on the level of measurement. Basically, the procedure follows a step-
by-step hierarchical bivariate analysis. First, the best predictor is identified, which
reduces the largest amount of variance in the dependent variable. Then the next-best
variable is introduced.

Instead of using a categorical independent variable it is also possible to use
interval-level variables (cf. Haughton & Oulabi, 1997). Answer Tree also offers the
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option to optimize the level of measurement with each step as the variance of the
dependent variable is reduced (e.g., by categorizing interval level variables or by
reducing the number of categories of nominal or ordinal variables).1 See Fig. 6.3 for
the printout. The branches of each tree divide the dependent variable into separate
groups and thus can be considered nodes or configurations. These configurations
will be used to ‘predict’ the three categories of the total score. For these analyses
we use SPSS again and the following syntax (see Box with Compute and IF Syntax).

COMPUTE Node = 0.

if ((incomecat = 1)and(workcat = 1)and(housecat = 1))Node = 1.

if ((incomecat = 1)and(workcat = 1)and(housecat = 2))Node = 2.

if ((incomecat = 1)and(workcat = 2)and(housecat = 1))Node = 3.

if ((incomecat = 1)and(workcat = 2)and(housecat = 2))Node = 4.

if ((incomecat = 2)and(workcat = 1)and(housecat = 1))Node = 5.

if ((incomecat = 2)and(workcat = 1)and(housecat = 2))Node = 6.

if ((incomecat = 2)and(workcat = 2)and(standardcat = 1))Node = 7.

if ((incomecat = 2)and(workcat = 2)and(standardcat = 2))Node = 8.

FORMATS Node(F1.0).

VARIABLE LABELS Node ′innerstructure of life satisfaction′.

VALUE LABELS Node

1”not at all satisfied(Node = 1)”

2”satisfied with appartment(Node = 2)”

3”statisfied with work place(Node = 3)”

4”satisfied with work and appartment(Node = 4)”

5”satisfied with income(Node5)”

6”satisfied with income and appartment(Node = 6)”

7”satisfied with income and work(Node = 7)”

8”satisfied with income,work and standard of living(Node = 8).”

FREQUENCIES VARIABLES = Node.

.

1Useful options in SPSS: allow only 30 subjects in parent nodes and 10 in child nodes. Uncheck
the Bonferroni adjustment button.
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Fig. 6.3 Graphical illustration of the contrasting groups in AnswerTree. (Note. Here is a transla-
tion of the following German words: ‘Gesamt’ = total; ‘Chi-Quadrat’ = chi-square)
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-31,4-20,553,6

1568,0515,2578,2474,6

156802331335

inner structure of life satisfaction * categorized total score for life satisfaction 2003 crosstab

Fig. 6.4 Detecting the inner structure of life satisfaction using the corrected standardized residuals
(csr)

By simply doing a Crosstab analysis in SPSS with the nodes as the row variable and
the three categories of the Life Satisfaction as the three columns, we can identify
a number of types by using the Fuchs-Kenett-Test or the corrected standardized
residuals (see Eq. 4.19; see Fig. 6.4). We may interpret the findings as follows. First,
we start with a trivial result: Those who rated each life satisfaction item in the
lower median are considered overall low in their life satisfaction (Node 1). Being
satisfied with your housing condition may still lead to a low overall life satisfaction
or at the most to a medium life satisfaction (Node 2). Being content with your
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workplace results in at least medium life satisfaction (Node 3). Having two areas
of high satisfaction, like work and housing situation results in high life satisfaction
(Node 4). Being satisfied with income alone or income and one’s housing situation
lead to medium life satisfaction (Node 5 and Node 6). High life satisfaction occurs
if one is satisfied with income and work (Node 7). Thus, one’s satisfaction with their
work place is of higher value than one’s satisfaction with their housing condition.
Of course, if one is highly satisfied with the work place, income, and standard of
living, those subjects belong to the highest category for Life Satisfaction.

Summary: In case one has categorical data and one defines one variable as the
dependent variable, variables predicting this dependent variable can be detected by
using CHAID. The use of this program results in a graphical illustration called
a tree diagram. CHAID is a stepwise procedure; first the program searches for
the best predictor by partitioning the data. The chi-square statistic is used to pick
the best predictor. The branches of each tree can now considered as nodes or as
configurations which divide the dependent variable into separate groups. These
configurations will be used to ‘predict’ the categories of the dependent variable.
With the help of the Fuchs-Kenett statistic (i.e., CSR) types may be detected.
Therefore, CHAID and CFA can be considered useful complimentary statistical
tools.

6.2 Latent Class Analysis and CFA

Latent class analysis (LCA) is most often seen as an equivalent to factor analysis
(FA). While FA extracts latent continuous factors from a pool of continuous vari-
ables, LCA extracts latent categorical factors or classes from a pool of categorical
variables. Both statistical tools aim at data reduction. Although CFA and LCA
are very similar in their approach, they are rarely performed in combination (cf.
Lautsch & Plichta, 2003, 2005). From an applied point of view, they can in fact be
considered as complementary statistical tools for type exploration and confirmation.
CFA can be seen as a LCA on the manifest level, where all types are considered
latent classes. The term latent class is preferred over the term cluster in this situation.
For the analysis of typologies, LCA can be used as a probabilistic cluster analysis.
Therefore, LCA is introduced and described below. The benefit of comparing the
results of a LCA with the results of a CFA will be presented.

The most important aspect of LCA is local (stochastic) independence. This
means that the subjects of a sample are divided into groups or classes, such that
within a class the characteristics or variables of the subjects are independent (i.e.,
the chi-square value of the respective contingency table is zero). The LCA provides
the following parameter estimates: (1) the latent class probabilities, that is the
probability of belonging to a class, from which we can infer the class sizes, (2)
the conditional probability of being a member of a class given a response set on
variables called class membership probabilities, (3) the conditional probability of
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Y1 Y2 Y3

C

Fig. 6.5 Figural representation of a latent class

giving a response set on variables depending on the class membership (this is called
conditional response probabilities), and (4) the probabilities of obtaining a response
pattern i.e., responses on variables. The following picture shows a latent class
solution with the latent class C and three (manifest) indicator variables (Fig. 6.5).
The arrows from C to the variables can be seen as regressions coefficients, but they
are response probabilities depending on the particular class. The indicators variables
are binary or ordered categorical variables.

The following elaborations are taken from Vermunt and Magidson (2003). Let’s
call the latent class X and Yl one of the L observed variables, where 1 ≤ l ≤ L.
In addition, let C be the number of latent classes and Dl the number of levels
of Yl . LCAs are indexed by x,x = 1,2, . . .C, and a particular response of Yl by
yl ,yl = 1,2, . . . ,Dl . Y represents a vector and y is used to refer to a complete response
pattern.

The conditional response probabilities are used to interpret the structure of types
defined by the latent class. The above-mentioned probabilities are used to calculate
expected frequencies. A model-fit tests how well observed and expected frequencies
match each other. Therefore, LCA is a probabilistic model. The observed frequency
f (o)i jk of each cell are reproduced by the following formula:

f (o)y1,y2,y3 = N
C

∑
x=1

δx ρy1/x ρy2/x ρy3/x (6.1)

where N is the sample size, δ is the latent class probability and ρy1y2y3/x represents
the conditional probability of being a member of class Xi given a response 1 or 2 on
variable Y1,Y2, and Y3.

Let’s look at the following data example by Lazarsfeld and Henry (1968) where
N = 1,000 subjects need to solve questions or problems (i.e., A, B, and C). They
either ‘1’= solved or ‘2’= did not solve the problems (Table 6.2).

The basic idea of LCA is that the probability of obtaining the observed
configurations or the observed response patterns y, P(Y = y), is a weighted average
of the C conditional response probabilities P(Y= y—X= x); that is
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Table 6.2 Data example by Lazarsfeld and Henry (1968)

Y1 Y2 Y3 fo P(X = 1|Y = y) P(X = 2|Y = y)

1 1 1 220 0.982 0.018
1 1 2 160 0.900 0.100
1 2 1 60 0.400 0.600
1 2 2 160 0.100 0.900
2 1 1 60 0.900 0.100
2 1 2 60 0.400 0.600
2 2 1 60 0.100 0.900
2 2 2 220 0.018 0.982

Table 6.3 Results of LCA based on the Lazarsfeld and Henry data

X= 1 (Master) X= 2 (Non-Master)

P(X = x) 0.50 0.50
P(Y1 = 1|X = x) 0.80 0.40
P(Y2 = 1|X = x) 0.90 0.10
P(Y3 = 1|X = x) 0.60 0.20

P(Y = y) =
C

∑
x=1

P(X = x)P(Y = y|X = x). (6.2)

P(X = x) denotes the proportions of persons belonging to class x. The idea of
local stochastic independence is manifested in the following formula:

P(Y = y|X = x) =
L

∏
l=1

P(Yl = yl |X = x). (6.3)

The conditional response probabilities can be used to name the classes, similar
to how we use factor loadings to interpret the factors. Combining the two equations
6.2 and 6.3 we obtain the following model for P(Y = y):

P(Y = y) =
C

∑
x=1

P(X = x)
L

∏
l=1

P(Yl = yl |X = x). (6.4)

MPLUS reveals the following results (Table 6.3). In MPLUS the conditional
response probabilities are listed in the data set called 2CLASS.DAT. The results
indicate that a two-class model fits the data perfectly (chi-square value is zero). The
classes are equal in size (i.e., 0.50). The conditional probability for answering each
of the three questions correctly (i.e., ‘1’) while belonging to Class 1 are ρy1 = 0.80,
ρy2 = 0.90, and ρy3 = 0.60. The complementary probability (adding up to one)
indicate the probability of answering the three questions correctly, while belonging
to Class 2. Obviously, Class 1 consists of knowledgable subjects (i.e., Masters),
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Configural Frequency Analysis
---------- --------- --------

author of program: Alexander von Eye, 2000

Marginal Frequencies
--------------------
Variable Frequencies
-------- -----------

1      600.   400.

2      500.   500.

3      400.   600.

sample size N =     1000

the normal z-test was used
Bonferroni-adjusted alpha =  .0062500
a CFA of order   1  was performed

Table of results
----- -- -------

Configuration    fo       fe   statistic       p
------------- ---- -------- --------- -------

111        220.  120.000      9.129   .00000000    Type
112        160.  180.000     -1.491   .06801859
121         60.  120.000     -5.477   .00000002    Antitype
122        160.  180.000     -1.491   .06801859
211         60.   80.000     -2.236   .01267362
212         60.  120.000     -5.477   .00000002    Antitype
221         60.   80.000     -2.236   .01267362
222        220.  120.000      9.129   .00000000    Type

chi2 for CFA model =  241.1111
df =     4      p =  .00000000

LR-chi2 for CFA model =   222.6193
df =     4      p =  .00000000

CARPE DIEM

Fig. 6.6 Results of CFA based on the Lazarsfeld and Henry data using the von Eye program

while Class 2 represents the opposite (i.e., Non-Masters). Let us enter the data into
a CFA (see Fig. 6.6 and Table 6.4). By looking exclusively at types one can easily
detect that the two class latent class structure is very well reproduced by the CFA.
Each type represents one category of a latent class.
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Table 6.4 Results of CFA based on the Lazarsfeld and Henry data using the R-package confreq

Pattern Observed Expected loc.chi.square loc.df loc.chi.square.p z.Chi p.z.Chi

1 1 1 220 120.00 83.33 1.00 0.00 9.13 0.00
1 1 2 160 180.00 2.22 1.00 0.14 −1.49 0.07
1 2 1 60 120.00 30.00 1.00 0.00 −5.48 0.00
1 2 2 160 180.00 2.22 1.00 0.14 −1.49 0.07
2 1 1 60 80.00 5.00 1.00 0.03 −2.24 0.01
2 1 2 60 120.00 30.00 1.00 0.00 −5.48 0.00
2 2 1 60 80.00 5.00 1.00 0.03 −2.24 0.01
2 2 2 220 120.00 83.33 1.00 0.00 9.13 0.00

Table 6.5 Latent class proportions and corresponding configuration
probabilities

Question Response ρy1,y2,y3/1 ρy1,y2,y3/2

1 1 0.80 0.40
2 0.20 0.60

2 1 0.90 0.10
2 0.10 0.90

3 1 0.60 0.20
2 0.40 0.80

Listing the latent class proportions and the corresponding configuration prob-
abilities stress the use of LCA in exploring and confirming types (Table 6.5). By
taking the highest (bold) conditional probabilities (i.e. the response probability
while belonging to a certain class) the two types, ‘111’ and ‘222’ can be perfectly
reproduced. High conditional probabilities go along with many observed frequen-
cies. Therefore, we look specifically at types, while comparing LCA with CFA.
Here, the two detected types represent the two ends of one latent continuum. Usually
CFA is more sensitive in finding types or latent classes than LCA. As in CFA the
latent classes found in LCA include higher order interactions.

6.3 Correspondence Analysis and CFA

Another statistical tool that investigates the relationship between persons or objects
in contingency tables is correspondence analysis (CA) (Borg & Groenen, 2005;
Hair, Black, Babin, Anderson, & Tatham, 2006; Hair, Black, Babin, & Anderson,
2010). CA examines the relationships between categories of nominal data in a cross-
tabulation based on their associations and CA presents the results in a graphical
description called a perceptual map. In a perceptual map, persons or objects are
plotted such that their proximity represent closeness or strong relationships (cf.
Lautsch & Thöle, 2003). Sometimes CA is also referred to as homogeneity analysis
(the respective program in SPSS is called HOMALS (HOMogeneity Analysis of
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Table 6.6 Cross-tabulation of the Lazarsfeld and Henry data (1968)

Y1

Solved Not solved

Y2 Y2

Solved Not solved Solved Not solved

Y3 Solved
oi jk 220 60 60 60
ei jk 120 120 80 80
d −100 60 20 20
signedχ2 83.33 −30.00 −5.0 −5.0

Y3 Not solved
oi jk 160 160 60 220
ei jk 180 180 120 120
d 20 20 60 −100
signedχ2 −2.20 −2.20 −30.00 83.33

N = 1,000

d difference between observed and expected frequency

Alternating Least Squares)). While CA and homogeneity analysis refer to the
bivariate analysis of categorical variables, multiple correspondence analysis (MCA)
stands for the multivariate analysis of nominal variables. Similar to factor analysis
(FA), CA also aims at reducing the dimensionality. The extracted dimensions can
be seen as latent factors or dimensions. The reported discrimination measures can
be seen as equivalent to factor loadings in a factor analysis (Greenacre, 1989;
Greenacre & Blasius, 1994). However, in contrast to CFA and LCA, MCA uses
only bivariate associations, no higher-order information.

CA uses the chi-square statistic (see Eq. 1.11) based on the cell frequencies as
a measure of similarity or association. The expected frequencies are calculated
assuming independence between the variables (see Eq. 1.9). We use the data
example from Lazarsfeld and Henry (1968) and we list the observed and expected
frequencies as well as the Chi-Square statistics and the difference between the
expected and observed frequencies in the table (see Table 6.6):

In CA, the chi-square values are the measures of proximity or association. The
absolute value of the chi-square denotes the degree of association, but all chi-square
values are positive and therefore, the direction of the similarity is removed. To
restore the directionality, we add a sign to this statistic, but the reversed sign(!) of
the difference scores between the expected and the observed frequencies. This has
been done already in Table 6.6. Now, the positive values stand for greater association
and the negative values for less association. In terms of CFA, one would say, that
we are exclusively searching for types. The types in CFA will eventually come out
as persons who are closely together in the perceptual map. The ‘signed chi-square
values’ are used to create a latent space based on orthogonal dimensions upon which
the categories of the variables involved can be placed to represent the strength of
association through the nearness of the persons. In Fig. 6.7 the two types of Masters
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Fig. 6.7 Perceptual map from correspondence analysis based on the Lazarsfeld and Henry data

and Non-Masters are well represented on the left and the right side of the perceptual
map. The respective SPSS-syntax for using more than two variables can be found in
the next syntax box.

HOMALS

/VARIABLES = Y 1(2)Y 2(2)Y 3(2)

/ANALYSIS = Y 1Y 2Y 3

/DIMENSION = 2

/PRINT FREQ EIGEN DISCRIM QUANT

/PLOT QUANT OBJECT NDIM(ALL,MAX)

/MAXITER = 100

/CONVERGENCE = .00001.

One of the disadvantages of CA is the indeterminacy of the number of dimensions.
In the case of two categorical variables involved, the number of maximum possible
dimensions is given through the smaller of the number of rows or columns minus
one. For example, with five columns and four rows, the maximum number of
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dimensions would be three, which is four minus one. In the multivariate case, the
maximum number of dimensions is

Dmax = p− s (6.5)

with p= number of categories and s= number of variables. However, usually a two
dimensional perceptual map is pursued. As with similar methods, like in factor
analysis, where we also have the problem of the indeterminacy of the number of
factors, the ‘researcher should balance interpretability versus parsimony of the data
representation’ (Hair et al., 2006, p. 673). A statistical measure that helps to decide
whether an additional dimension is helpful is inertia (I). The total inertia for two
categorical variables is calculated through

Itot =
1
n

I

∑
i=1

J

∑
j=1

(oi j − ei j)
2

ei j
=

χ2

n
. (6.6)

In the multivariate case, the maximum inertia is

Itot =
p
s
−1 (6.7)

In real life, the maximum inertia is rarely reached; a measure for the obtained inertia
is the sum of the eigenvalues. In our data example, the maximum inertia would
be 8/3− 1 = 1.667. The printout in SPSS offers up to three dimensions with the
following eigenvalues:

Idim : I1 = 0.518; I2 = 0.278; I3 = 0.205

The obtained inertia is the sum of eigenvalues:

Iobtained =
dim

∑
i=1

Ei = 0.518+0.278+0.205 = 1.00

The eigenvalues divided by the obtained inertia times 100 % indicate the amount
of variance explained by one dimension. Therefore, the three maximum possible
dimensions in our case would explain d1 = 51.8%, d2 = 27.8% and d3 = 20.5% of
the total variance.

Summary: CFA uses the information of categorial variables in multiway con-
tingency tables. There are related multivariate statistical tools like Answer Tree
(CHAID), Latent Class Analysis (LCA) and Correspondence Analysis (CA) that
are also based on categorical variables. All mentioned statistical tools are similar
because they apply the chi-square statistic to calculate associations or similarities.
CFA may be employed in combination with these statistical tools in terms of type
exploration and confirmation. CHAID investigates the underlying structure of the
identified types in terms of independent variables. In LCA, the obtained latent
factors or classes may be interpreted as types and in CA the types can be presented
in a graphical manor.



72 6 Other Person-Centered Methods Serving as Complimentary Tools to CFA

References

Borg, I., & Groenen, P. J. K. (2005). Modern multidimensional scaling – Theory and applications
(2nd ed.). New York: Springer.

Greenacre, M. J. (1989). Theory and applications of correspondence analysis (3rd printing).
London: Academic.

Greenacre, M. J., & Blasius, J. (1994). Correspondence analysis in the social sciences: Recent
developments and applications. London: Academic.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th
ed.). Upper Saddle River, NJ: Pearson Prentice Hall.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data
analysis (6th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.

Haughton, D., & Oulabi, S. (1997). Direct marketing modeling with CART and CHAID. Journal
of Direct Marketing, 11(4), 42–52.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data.
Applied Statistics, 29(2), 119–127.

Lautsch, E., & Plichta, M. (2003). Configural frequency analysis (CFA), multiple correspondence
analysis (MCA) and latent class analysis (LCA): An empirical comparison. Psychology Science,
45(2), 298–323.

Lautsch, E., & Plichta, M. M. (2005). Configural frequency analysis (CFA) and latent class analysis
(LCA): Are the outcomes complementary? Psychology Science, 45(3/4), 424–430.

Lautsch, E., & Thöle, U. (2003). Classification and explanation of life conceptions using the case
of the 14th shell youth study 2002. Psychology Science, 45(2), 263–279.

Lautsch, E., & Thöle, U. (2005). Identification and analysis of types of personality in a brief
measure of the Big-Five personality domains. Psychology Science, 47(3/4), 479–500.

Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston: Houghthon Mifflin.
Vermunt, J. K., & Magidson, J. (2003) Latent GOLD choice 3.0. User’s guide. Belmont, MA:

Statistical Innovations.



Chapter 7
CFA and Its Derivatives

Abstract This chapter introduces several derivatives of CFA that can be used for
different purposes. First, there is Prediction CFA (P-CFA). This version of CFA is
comparable to multiple regression. One variable is defines as the dependent variable
or criterion, which is usually measured with a certain time lag with regard to the
other independent variables or predictors. Second, there is Interaction Structure
Analysis (ISA). ISA uses an extended definition of interactions, which cannot
be analyzed with log-linear modeling. Instead of searching for singular types or
antitypes, one can search for biprediction types by looking for regional instead
of local contingency. Finally, two-sample CFA is introduced as a very useful
statistical tool similar to t-tests for independent samples. This derivative of CFA
searches for types which differentiate the two samples under investigation, so called
discrimination types.

7.1 Prediction-CFA

CFA searches for types and antitypes which represent significant deviations from the
null hypothesis. Normally, the null hypothesis is the assumption of independence
between the variables involved. That is, in terms of a log-linear model, the null
hypothesis represents the main effects model. However, if we change the null
hypothesis, we can test a number of different models. For example, in prediction
CFA (P-CFA; cf. Lösel & Stemmler, 2012; Stemmler & Lösel, 2012; Stemmler,
Lösel, Beelmann, & Jaursch, 2008; von Eye, 2002) predictors are assumed to be
independent from the criterion. Let’s say the variables A and B are the predictors
and variable C is the criterion. The respective log-linear model, which represents
the underlying null hypothesis, is a model which is saturated within each set of
predictors and criterions. It looks like the following:

lnei jk = λ0 +λiAi +λ jB j +λkCk +λi jABi j. (7.1)

M. Stemmler, Person-Centered Methods, SpringerBriefs in Statistics,
DOI 10.1007/978-3-319-05536-7__7,
© Springer International Publishing Switzerland 2014
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Table 7.1 Prediction CFA for the predictors Gender, Externalizing and Internalizing Problems in
kindergarten and intensive behavior problems in the classroom as the criterion

Cell index Prediction CFA

Ge Ex In Cb f (oi jk) f (ei jk) zi jkl

1 − − − 98 99.83 −0.183
1 − − + 21 19.17 0.418
1 − + − 29 31.04 −0.366
1 − + + 8 5.96 0.835
1 + − − 31 37.75 −1.098
1 + − + 14 7.25 2.507
1 + + − 12 16.78 −1.166
1 + + + 8 3.22 2.662
2 − − − 138 124.16 1.242
2 − − + 10 23.84 −2.834
2 − + − 39 35.23 0.634
2 − + + 3 6.77 −1.447
2 + − − 18 20.13 −0.475
2 + − + 6 3.87 1.085
2 + + − 10 10.07 −0.921
2 + + + 2 1.93 0.048

lnei jk is the natural logarithm of the expected frequencies, λ0 is the intercept, λi

is the parameter of variable A, λ j is the parameter of variable B, and λi jABi j

represents the interaction between the predictors. The lambda parameter can be
interpreted similarly to beta weights in a regression equation. If the base model does
not fit, there must be an interaction between the predictor and the criterion. Let’s
have a look at the following data from the Erlangen-Nuremberg Development and
Prevention Study (cf. Stemmler, Lösel, Beelmann, Jaursch, & Zenkert, 2005). The
predictors are Ge= gender (1= boys, 2= girls), Ex= externalizing behavior, and
In=internalizing behavior rated by kindergarten teachers (‘+’ is behavior problems
above the 75th percentile, ‘−’ behavior problems below the 75th percentile). The
criterion was Cb= classroom behavior (‘+’ = three and more behavior problems
mentioned in the school report cards, ‘−’ less than three behavior problems
mentioned). The following data evolved (Table 7.1) The prediction CFA may also
be obtained through the R-package Confreq by indicating the interaction in addition
to the main effects in the CFA command. Note that the set of predictors need to
saturated in the model (Table 7.2):

CFA(patternfreq_neu,form="~ A + B + C + D +
A:B + A:C + B:C + A:B:C")

Let us have a look at the obtained results: The base model for the prediction CFA
revealed no satisfactory fit (LR= 29.77, df= 7, p < 0.001). This indicates that there
were differences between the observed and estimated frequencies. Because we are
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Table 7.2 Results of a prediction CFA using the R-package confreq

Pattern Observed Expected chi.square chi.square.p z.Chi p.z.Chi

1 1 1 1 98 99.83 0.03 0.85 −0.18 0.43
1 1 1 2 21 19.17 0.18 0.68 0.42 0.34
1 1 2 1 29 31.04 0.13 0.71 −0.37 0.36
1 1 2 2 8 5.96 0.70 0.40 0.84 0.20 0
1 2 1 1 31 37.75 1.21 0.27 −1.10 0.14
1 2 1 2 14 7.25 6.29 0.01 2.51 0.01
1 2 2 1 12 16.78 1.36 0.24 −1.17 0.12
1 2 2 2 8 3.22 7.09 0.01 2.66 0.00
2 1 1 1 138 124.16 1.54 0.21 1.24 0.11
2 1 1 2 10 23.84 8.03 0.00 −2.83 0.00
2 1 2 1 39 35.23 0.40 0.53 0.63 0.26
2 1 2 2 3 6.77 2.10 0.15 −1.45 0.07
2 2 1 1 18 20.13 0.23 0.63 −0.48 0.32
2 2 1 2 6 3.87 1.18 0.28 1.09 0.14
2 2 2 1 10 10.07 0.00 0.98 −0.02 0.49
2 2 2 2 2 1.93 0.00 0.96 0.05 0.48

only interested in types we use the one-tailed Bonferroni adjustment α∗ = 0.05/8 =
0.0065 which corresponds to a z-value of |2.48|. We identify two types. The
configuration ‘1 + − +’ indicates that there were more boys than expected under
the null model who had serious classroom behavior problems. This configuration
made up 6.2 % of the boys’ sample. The second significant type ‘1 + + +’ shows
that there were more boys than expected who had serious behavior problems in the
first grade and who were high in both Externalizing and Internalizing Problems in
kindergarten. This type contained 3.6 % of the male group.

7.2 Interaction Structure Analysis (ISA)

Interaction Structure Analysis (ISA) (i.e., grouping variables into two groups) uses
an extended definition of interactions (cf. Stemmler, 2000). Traditionally, with
three variables, let’s say A, B, and C, only one interaction of the second order is
possible, that is A by B by C (i.e., ABC). The definition for interactions in ISA
goes back to Lancaster (1969) who argues that with T variables there is more than
just one T-order interaction possible. With three variables, there would also be three
second order interactions, (i.e. A.BC, B.AC, and C.AB). The decimal point divides
the variables into two groups: A.BC means that there is an interaction between
variable A and B and C lumped together. For further rules of interactions in ISA
we postulate (see von Eye, 1990; p. 83)

• “If there is no second order interaction and no first order interaction (defined as
associations), the three variables are totally independent.
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Table 7.3 Survival time of rats (‘−’ short, ‘=’ medium, and ‘+’ long) were investigated while
receiving two kinds of conditions

Condition two

Condition one A B C D

31 = 82 + 43 = 45 =

I 45 = 110 + 45 = 71 =

46 = 88 + 63 = 66 =

43 = 72 + 76 + 62 =

36 = 92 + 44 = 56 =

II 29 = 61 = 35 = 102 +

40 = 49 = 31 = 71 =

23 − 124 + 40 = 38 =

22 − 30 = 23 − 30 =

III 21 − 37 = 25 = 36 =

18 − 38 = 24 − 31 =

23 − 29 = 22 − 33 =

• If there are no first order interactions, there may be second order interactions
nevertheless.

• The existence of second order interactions follows from the existence of first
order interactions.” For instance, if with three variables A.B holds true, also does
A.BC.

With T variables rT = 1
2 (3

T + 1)− 2T interactions evolve; that is, with T= 3
variables r3 = 6, with T= 4 variables r4 = 25 interactions, and with T= 5 variables
r5 = 90. Therefore, with four and more variables ISA becomes time consuming.
One alternative is to group the variables by a rationale. For example, in Stemmler
(1994) N = 48 laboratory rats were given two treatments in a search for appropriate
antidotes. The first condition consisted of three different poisons (i.e., I, II, and III),
and the second condition consisted of four different antidotes (i.e., A, B. C,
and D). The dependent variable was survival time (see Table 7.3). Table 7.3 can
be transformed into Table 7.4 by grouping the data according to the survival times
(i.e., −, =, and +). Now the tripartite survival time functions as the response
variable in an ISA with c= 3 response classes. As Table 7.4 shows, poison I in
combination with antidote B leads to prolonged survival times (i.e., 021 = 4). This is
a treatment-response type according to a H1 which is a local alternative to the H0

of no treatment effects. We use the Fuchs-Kenett-Test to calculated the corrected
standardized residuals for e21 =

(4×8)
48 = 0.66

csr21 =
(4−0.66)√

0.66×
(

1− 4
48

)
×
(

1− 8
48

) = 4.704
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Table 7.4 Survival time of rats (‘−’ short, ‘=’ medium, and ‘+’ long) were investigated while
receiving two kinds of treatment

Row
Response classes marginals

f+ f= f−
A 0 4 0 4

I B 4∗(= a) 0 0(=b) 4(=A)
C 1 3 0 4
D 0 4 0 4
A 0 3 1 4

II B 2 2 0 4
C 0 4 0 4
D 1 3 4 4
A 0(=c) 0 4∗(= d) 4(=B)

III B 0 4 0 4
C 0 1 3 4
D 0 4 0 4

Column
marginals 8(=C) 32 8(=D) N= 48

Table 7.5 Collapsed fourfold table for Fisher’s exact test

Row
f+ Others marginals

I/B a = 4∗ b= 0 A= 4
Others c= 4 d= 40 B= 44
Columns
marginals C= 8 D= 40 N= 48

The calculated z-statistic far exceeds the two-tailed Bonferroni limit 0.025/36 =
3.279. Thus the treatment combination I/B is most effective with regard to the
survival prolongation. The asymptotic test by Fuchs and Kenett (1980) may not
be valid because of small expected frequencies (ei j < 5), and the Fisher’s exact test
(cf. Siegel & Castellan, 1988; von Eye, 2002) may be more appropriate. However,
the Table 7.4 needs to be transformed into a fourfold table as shown in Table 7.5.
The one-sided tail probability p for the treatment-response type I/B can be calculated
as follows

p(I/B) =
A!B!C!D!
N!a!b!c!d!

=
4!44!8!40!

48!4!0!4!40!
= 0.0003597 (7.2)

The two-sided probability p = 2× (0.00036) = 0.00072 is smaller than the Bonfer-
roni alpha adjustment 0.025/36 = 0.000694. Thus the I/B response type has also
been verified by Fisher’s exact test. Fisher’s test is exact; no assumptions need to be
made concerning an approximation of a test statistic to a sampling distribution. It is
cumbersome to calculate. Therefore, it is rarely an option in CFA programs.
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7.3 Biprediction-Type

In most cases, a singular type does not occur, but rather there are most often either
no types at all or two types combined with two antitypes. In such a case a favorable
treatment (T+) is usually compared with an unfavorable one (T−), if the response
variable is dichotomized at the sample median (to become either X+ or X−). In such
a case, the fourfold table is usually overfrequented in cells a and d (i.e., types)
and underfrequented in cells b and c (i.e., antitypes). The types of a and d and the
antitypes of b and c may be considered to define an interaction type in terms of
an ISA. The most common term, however, is biprediction type (Lienert & Netter,
1987; Stemmler, 1994).

Under the assumption that a treatment response table of r treatment combinations
and c response configurations implies a treatment-response fourfold table with
2 types and 2 antitypes, the global chi-square equation (see Eq. 1.3) may be
decomposed into an orthogonal fourfold component with d f = 1 and a residual
component with (r−1)(c−1)−1 degrees of freedom. An easy way to decompose
this formula was suggested by Kimball (1954); this decomposition was called
regional contingency by Havránek and Lienert (1984). In terms of a z-statistic,
Kimball’s interaction type between two treatment modalities and two response
classes can be calculated by

z =
A(Cd −Dc)−B(Cb−Da)√

ABCD(A+B)(C+D)
N

(7.3)

For Eq. 7.3 any r x c table needs to be collapsed to a 3x3 table Table 7.6 The
treatment-response type I/B f+ with the frequency a∗ and the III/A f− type with the
frequency d∗ have been called biprediction types because a∗ and d∗ are predicted
simultaneously. In the context of ISA the term interaction type is preferred. Let’s
apply Kimball’s decomposition test to Table 7.4

z =
4(8×4−8×0)−4(8×0−8×4)√

4×4×8×8(4+4)(8+8)
48

= 4.92

For the r = (3× 4) = 12 treatment combinations and c = 2 extreme response (i.e.,
f+ and f−) there are

Table 7.6 Application of Kimball’s chi-square decomposition

Row
f+ f− Others marginals

I/B a∗ b x A
III/A c d∗ x B
Other x x x x
Columns
marginals C D x N
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R =

(
12
2

)(
2
1

)
= 132

fourfold associations to be tested simultaneously. The 5% Bonferroni limit is
therefore z(0.05/132) = z(0.000379) = 3.37. Since z = 4.92 exceeds this limit we
can rely on the existence of the explored types.

7.4 Two-Sample CFA

In the following, the two-sample CFA (Stemmler & Bingham, 2004; Stemmler &
Hammond, 1997; von Eye, 2002) is illustrated. The two-sample CFA is comparable
to the t-test in parametric statistical analysis. However, methods exist for the
comparison of three or more groups. The underlying assumption representing
the null hypothesis is that the two samples were drawn from the same population.
The same expected frequencies for each group configuration applies, and deviations
from the frequency distribution should only be random. In other words, let’s say
A and B are variables characterizing the grouping variable C, then the contingency
tables of A and B together need to be homogenous across C. The underlying null
hypothesis is H0 : πABC = πABπC and H1 : πABC �= πABπC.

The following data example is taken from Lienert (1978, p. 978). A pretest-
posttest treatment design is used to assess improvement in school performance
(i.e., reading ability) in a sample of students (N = 36) suffering from dyslexia.
The students were randomized according to either a treatment group (NT = 19)
or a waiting-list control group (NC = 18). In addition, the teachers and the students
rated the students’ performance on reading ability occurring between the pre- and
post-test. Teachers rated whether the students’ ability has ‘−’ decreased, ‘0’ not
changed, or ‘+’ improved. Students rated whether they felt that their reading had
‘+’ improved or had ‘=’ not improved. Combining these self-assigned ratings
with the teacher-assigned ratings resulted in the following three by two by two
table (see Table 7.7). Let’s type the data into von Eye’s CFA program and use
the Two-sample CFA= 20-option as one of the mentioned CFA models. Instead
of using zeros it is better to type in a non-zero integer like 0.01, in order to get
the correct degrees of freedom. The program rounds the data mathematically, such
that if you type in 0.5, the actual integer listed will be 1.0. Two-sample CFA
does not differentiate between types and antitypes; instead discrimination types
(see page 55) comparable to the longitudinal CFA are listed. For the detection of
discrimination types in two-sample CFA, the original tables needs to be rewritten,
because each configuration is compared across the two groups (cf. von Eye, 2002;
see Table 7.8). Testing the patterns ‘+ =’ for teachers’ and students’ ratings, the
following table results (see Table 7.9). For the detection of types several statistical
tests are available. First, the exact Fisher’s test calculates the probability of a cell
frequency as follows (see Eq. 7.2)
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Table 7.7 Two-sample CFA: listing of self-ratings and teacher ratings
of dyslexic children

Teacher Student Group f(o) f(e)

+ + T 6 5.00
+ + C 4 5.00
+ = T 3 8.50
+ = C 14 8.50
0 + T 4 2.00
0 + C 0 2.00
0 = T 2 1.00
0 = C 0 1.00
− + T 0 0.00
− + C 0 0.00
− = T 3 1.50
− = C 0 1.50

Table 7.8 Two-by-two cross-classification for two-sample CFA testing

Configuration Groups Row

P1P2 A B Totals

ij a = Ni jA b = Ni jB A = Ni j

All others c = N..A −Ni jA d = N..B −Ni jB B = N −Ni j

combined
Columns total C = N..A D = N..B N

Table 7.9 Testing the configuration ‘+ =’ against all other patterns

Configuration Groups Row

Treatment group Control group Totals

+= a= 3 b= 14 A= 17
All others c= 15 d= 4 B= 19
combined
Columns total C= 18 D= 18 N= 36

p(a) =
A!B!C!D!
N!a!b!c!d!

=

p(a) =
17!19!18!18!
36!3!14!15!4!

= 0.000305

Using the data from Table 7.9 this test is significant even after using the Bonferroni
alpha adjustment 0.05/6 = 0.0083. Next comes the traditional χ2-test with d f = 1:

χ2 =
N(a×d −b× c)2

ABCD
= (7.4)
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Configural Frequency Analysis
---------- --------- --------

author of program: Alexander von Eye, 2000

Marginal Frequencies
--------------------
Variable Frequencies
-------- -----------

1      27.    6.    3.

2      14.   22.

3      18.   18.

sample size N =   37.
The chi2 test will be performed with continuity correction

Bonferroni-adjusted alpha =  .0083333

Table of results
----------------

Configuration   f     statistic        p       pi*   Type?
------------- ----- --------- ------- ------ -----

111        6.
112        4.       .161      .687945    .174

---------------------------------------------------------------------
121        3.
122       14.     10.706      .001068    .388  Discrimination Type

---------------------------------------------------------------------
211        4.
212        0.      2.365      .124087    .492

---------------------------------------------------------------------
221        2.
222        0.       .425      .514385 .479

---------------------------------------------------------------------
311        0.
312        0.      5.011      .025181    .008

---------------------------------------------------------------------
321        3.
322        0.      1.307      .252930    .488

---------------------------------------------------------------------

Fig. 7.1 Printout of CFA program for the twosample-CFA and the data in Table 7.7

χ2 =
36(3×4−14×15)2

17×19×18×18
= 13.486

The resulting chi-square value is also highly significant, because the correspond-
ing Bonferroni adjusted χ2-value is |5.76|. The traditional chi-square test works best
if the sample size is large. When the sample size is not large continuity correction is
recommended:
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χ2 =
N|a×d −b× c|−0.5×N2

ABCD
= (7.5)

χ2 =
36|3×4−14×15|−0.5×36)2

17×19×18×18
= 11.1455

Let’s have a look at the print-out of the CFA-program (see Fig. 7.1). The corre-
sponding chi-square value with the continuity correction is slightly different (11.145
versus 10.706), because von Eye’s program used N = 37, based on the inserted
non-zero integers which we used for all zero cells, instead of the original N = 36.
Otherwise the values would match perfectly.
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Glossary

Antitype Represents or indicates an under-frequented cell ( f(o) < f(e)).
Base Model Is the underlying model to calculate the expected frequencies; it

usually the independence model. Different base models result in different types
or antitypes.

Bonferroni Alpha Adjustment In case of multiple test procedures a Bonferroni
alpha adjustment is necessary. It divides the alpha level by the number of tests,
e.g., with a two-sided test of α = 0.05 and three tests, the new alpha level would
be α∗ = 0.025/3 = 0.00833.

Chi-Square Automatic Interaction Detection (CHAID) In case that we have
many categorized variables and we define one variable as a dependent. CHAID
partitions the data into mutually exclusive, exhaustive, subsets that best describes
the dependent variable. One applies a CHAID-model for contrasting groups. The
use of this program results in a graphical illustration called a tree diagram.

Coefficient of Precision Is a coefficient which can be interpreted similar to the
determination coefficient R2 in multiple regression. This is the statistic Q, which
is a coefficient of precision or a coefficient of the pregnancy of a type.

Configural Cluster Analysis (CCA) Is a zero-order CFA where the underlying
model includes no main effects or interactions; that is, each cell has the same
expected frequency.

Configural Frequency Analysis (CFA) Is a statistical method that looks for
over- and under-frequented cells or patterns in a contingency table. Over-
frequented means, that the observations in this cell or configuration are observed
more often than expected, under-frequented means that this configurations is
observed less often than expected.

Confreq An R-package using Configural Frequency Analysis and the log-linear
modeling approach for analyzing contingency tables.

Correspondence Analysis (CA) Is another statistical tool that investigates the
relationship between persons or objects in contingency tables. CA examines the
relationships between categories of nominal data in a cross-tabulation based on
their associations and CA presents the results in a graphical description called

M. Stemmler, Person-Centered Methods, SpringerBriefs in Statistics,
DOI 10.1007/978-3-319-05536-7, © Springer International Publishing Switzerland 2014
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a perceptual map. In a perceptual map, persons or objects are plotted such that
their proximity represent closeness or strong relationships. Sometimes CA is also
referred to as homogeneity analysis.

Design Matrix X a is design matrix containing the effect-coded main effect and
interaction terms plus the constant. The design matrix X has as many rows as
there are cells or configurations, and m+1 columns. m is the number of weights;
the first weight is always the constant, coded with ones.

Discrimination Type Is a type that differentiates significantly between two
(originally) independent samples.

Global Chi-square Is a statistic referring to the whole contingency table. It is the
sum of all cell-wise deviations between observed and expected frequencies using
the chi-square statistic.

Local Chi-square Is a statistic referring to one cell or configuration, where it rep-
resents the calculated deviation between the observed and expected frequencies
using the chi-square statistic.

Lancaster decomposition Lancaster (1969) found out, that the global chi-square
of a first order CFA is composed additively of all possible interactions.

Log-linear modeling Is a statistical tool to investigate the underlying structure
of dependency in a contingency table. The logarithm of the expected frequencies
can be expressed in a linear function of parameters. The parameters indicate the
impact of main effects and interactions on the data in the contingency table.

Latent Class Analysis; LCA Is most often seen as an equivalent to factor analy-
sis (FA). While FA extracts latent continuous factors from a pool of continuous
variables, LCA extracts latent categorical factors or classes from a pool of
categorical variables. Both statistical tools aim at data reduction.

Longitudinal CFA This version of CFA tests the stability or instability of
configurations over time. Configurations define observations of patterns of one
sample over time.

Meehl’s paradox A data example constructed by Meehl where there are no
bivariate associations or correlations but higher order associations which allow
the exact prediction of a group membership in a 2 by 2 by 2 contingency table.

Quasi-Independence Means, that after blanking out a certain cell, the remaining
contingency table has to be independent and therefore, the respective chi-square
must not be significant.

R Software R is an open source software which is suitable for Linux, MacOS
X, and Windows. R (R Development Core Team, 2011) is a program for data
analysis, data manipulation and graphical display.

Saturated Model Is a model that reproduces the observed values perfectly. It
includes all main and interaction effects.

Structural Zeros Are usually cells which cannot be observed (e.g., a pattern of
heavy rain together with a beautiful blue sky).

Test of Marginal Homogeneity This table searches for equal probabilities (i.e.,
pi. = p.i) and therefore equal pairs of marginals (i.e., fi. =) in a square symmetric
contingency table.

Type Represents or indicates an over-frequented cell ( f(o) > f(e)).
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antitype, 6
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base model, 4, 45
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biprediction type, 78
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CFA of First Differences, 51
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CHAID, 60
chi-square test, 21
coefficient of precision, 42
conditional response probabilities, 65
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Configural Frequency Analysis (CFA), 1
corrected standardized residuals (csr), 44
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D
degree of freedom, 5, 7, 36
Deming-Stephan-Algorithm, 46
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F
first differences, 51
Fisher’s exact test, 77
Fuchs-Kenett Test, 44
functional CFA, 45

G
General Linear Model (GLM), 26
global chi-square, 3, 36
goodness-of-fit, 36

H
hierarchical log-linear modeling, 35

I
index-point notation, 4
inertia, 71
Interaction Structure Analysis (ISA), 75

K
Kimball’s decomposition test, 78

L
Lancaster decomposition, 36
Latent Class Analysis (LCA), 64
local chi-square value, 5
log-linear models, 25
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M
main effects model, 26
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multinomial sampling, 2
multiple correspondence analysis (MCA), 69

O
outlandish cells, 6
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P
Prediction-CFA, 73

Q
quasi-independence, 47

R
R-Package confreq, 15
R-Studio, 15
regional contingency, 78

S
saturated model, 32
significance testing in CFA, 19

standardized residuals, 31
structural zero, 46

T
test of marginal homogeneity, 53
two-sample CFA, 79
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V
Victor-cells, 45
visual shape patterns, 52

Y
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