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Preface

The present volume is the second in a two-volume set dealing with
modelling and numerical simulations in electrochemistry. Emphasis
is placed on the aspect of nanoelectrochemical issues.

It seems appropriate at this juncture to mention the now-
growing body of opinion in some circles that George Box was
right when he stated, three decades ago, that “All models are wrong,
but some are useful”. Actually, when the statement itself was made
it would have been more appropriate to say that “All models are
inaccurate but most are useful nonetheless”. At present, however,
the statement, as it was made, is far more appropriate and closer
to the facts than ever before. Currently, we are in the midst of the
age of massively abundant data. Today’s philosophy seems to be
that we do not need to know why one piece of information is better
than another except through the statistics of incoming and outgoing
links between information and this is good enough. It is why, both in
principle and in practice, one can translate between two languages,
without knowledge of either. While none of this can be ignored, and
it may even be true that “All models are wrong and increasingly
you can succeed without them” the traditional approach of scientific
modelling is still the order of the day. That approach may be stated
as hypothesize — measure — model — test. It is in this light that the
present volume should be viewed.

Again, as in the case of the previous volume, it is worth noting
that the demarcation lines between disciplines are no longer as clear
as they used to be in the past. This positive state of affairs may be
looked upon as one of the hallmarks of twenty-first-century science,
enabling desired cross-fertilization between related and even not so
related fields. This volume and the previous one are examples of this
trend.

The reader is presented with ten chapters written by 21 experts
in the fields of modelling in electrochemistry and its many subfields.
The first chapter deals with the subject of modelling in electrochem-
istry in general. The second and third chapters take up issues deal-
ing with optics as related to applications in nanoelectrochemistry.
The fourth, fifth and sixth chapters refer to surface electrochemistry.
The last of these introduces the subject of Monte Carlo simulations



vi Preface

and thus establishes the connection to the mathematically related
topics of the next two chapters, which deal with the mathematics
of corrosion and density functional theory, respectively. The final
two chapters discuss acoustic microscopy and current distribution in
electrochemical cells.

As in the previous volume, the chapters are independent in that
they may be read in any order that suits the reader. Omitting a given
chapter simply because the reader is familiar with the subject matter
and reading others should be of benefit no less.

Thanks are due to the 21 authors who made the volume possible.

Mordechay Schlesinger
University of Windsor
Windsor, ON, Canada
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Numerical Modeling of Certain
Electrochemical Processes

Nader G. Zamani

Department of Mechanical Engineering, University of Windsor, Windsor, ON,
Canada

Summary. This expository chapter deals with the basic mathemat-
ical models which arise in some electrochemical processes pertain-
ing to the galvanic corrosion phenomena. The elementary model
discussed is sufficient as a preliminary tool in designing cathodic
protection systems and their reverse effect, namely, electroplating.
After the model is introduced, different numerical approaches for
obtaining an approximate solution are discussed. The mathemati-
cal content is deliberately kept at the elementary level for it to be
accessible to general readers. The discussion is limited to galvanic
aqueous corrosion and therefore atmospheric factors are ignored.

I. ELEMENTARY ASPECTS OF ELECTROCHEMICAL
REACTION

The basic principle behind corrosion can be explained in terms of the
reaction between a hypothetical metal M placed in an ionic solution
as shown in Fig. 1. The chemical reaction due to the electron ex-
change can be represented by the following formula

M. Schlesinger (ed.), Modelling and Numerical Simulations II,
Modern Aspects of Electrochemistry 44, DOI 10.1007/978-0-387-49586-6_1,
© Springer Science+Business Media LLC 2009
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M+I’|

electrolyte

Non-conducting vessel

Figure 1. Degradation of base metal.

M — M"" 4 ne. (1)

Here 7 is the number of electrons lost and M"™ is the positive
metal ion produced. Furthermore, e~ refers to a single electron. This
process leads to an electric current in the ionic solution. The net
result is the degradation of the metal M.

One can utilize this process for two different purposes. The first
application is protecting a metal from corrosion, whereas the sec-
ond is to employ the reverse effect for plating the degrading metal
on another metal. The former application is referred to as cathodic
protection and the latter is known as electroplating.

Figure 2 shows two bars made of zinc and copper immersed in
an electrolyte (seawater). Needless to say, after some time, the zinc
bar shows signs of corrosion. In this situation an electrical poten-
tial difference is established between the two metals which can be
measured and is in agreement with the table of galvanic series in
seawater.! Here, the zinc and copper bars acts as an anode and a
cathode, respectively. The simple experiment demonstrates the basic
idea behind the concept of cathodic protection. The zinc bar (anode)
is being sacrificed to protect the copper bar (cathode). This method
of cathodic protection is known as the sacrificial anodic method.

The sacrificial anodic protection method has been known
since ancient times, dating back to 100 BC when Pilny the Roman
employed it to prevent the corrosion of bronze and iron. In 1823, Sir
Humphry Davy was commissioned by the Royal Navy to investigate
the corrosion of copper used in the hulls of wooden battleships.?
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electrolyte

Non-conducting vessel

Figure 2. Zinc and copper in galvanic series.

II. A SIMPLE MATHEMATICAL MODEL

The mathematical model developed in this section is based on the
conservation of charge. Consider a cube element of the electrolyte
as shown in Fig. 3. The sides of the cube have dimensions Ax, Ay,
and Az, respectively. In the absence of charge generation (within the
cube), the inflow and outflow of charges must be equal. Therefore,
given the charge density vector i = (iy, iy, i-), one can write

. ., Oix . ., 0iy
ixAAy — iy + 8—xAx AAdy +iy,AAd, — i) + gAy A4,
9i
Y AdL — (z‘z + %Az) Ad, = 0. ?)
z
Simplifying the expression leads to

iy iy i,
— | —AxAyAz )| — [ ———AyAxAz | —| ——=AzAxAy | = 0.
ax ay 0z
A3)

Finally, dividing through by Ax Ay Az leaves us with the charge
continuity:
diy  0iy i, .
— 4+ —+-—==d =0. 4
ox "oy T VO @
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y I,+(31,/ dz)dz

Iv+(6IY/ oy)dy

LT > | +(31,/ Ox)dx

Figure 3. Control volume used for charge conservation.

However, the charge density vector is proportional to the gradi-
ent of the electrical potential . Therefore,

S Iy oY Iy
(ix. iy iz) = —0 (E’E’a_z)' (5)

In (5), the constant o is the conductivity of the electrolyte and
has units of per ohm meter or amperes per volt meter.

Substituting the components of (ix, iy, iz) in (5) and dividing
through by o, one obtains the celebrated Laplace equation:

2 2 2
2y Ry 0y ©
0x2 9y? 0z2

Equation (6) may be written in terms of the electrochemical
potential ¢, which is related to the electrical potential ¥ according
to ¥ = ¢ — ¢. For more details, see the Appendix.

This substitution leads to the same type of partial differential
equation described by (7):
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2 2 2
Y9 00 9 _, @
ox2z  9y?  9z2
From this point on we will deal only with the electrochemical
potential ¢ and refer to it simply as the “potential.”
In the event that sources responsible for charge generation are
present, (7) is modified accordingly and takes the following form.
This is commonly referred to as the Poisson equation:

2 2 2
2—? 8_(? + B_f +8§5=0. ®)
X ay 0z

In this equation, S represents the strength of the source (or
sink). Implicit in the above derivation is the assumption that the
steady-state condition prevails and therefore no time variation is
considered.

Equations (7) and (8) arise in many areas of science and engi-
neering, such as fluid dynamics, heat transfer, elasticity, and electro-
statics. The significance and simplicity of the Laplace equation has
led to a great deal of mathematical research into its solution.

The domain in which the solution to (7) is being sought is either
finite or infinite. For example, if the electrolyte is in a bounded con-
tainer, the solution domain is finite. On the other hand, if one is
investigating the cathodic protection of a ship in the open sea, the
solution domain is infinite. The most common method for obtaining
the solution to the potential function ¢ is the concept of separation of
variables.? In this method, the function ¢ is assumed to be decoupled
as shown below:

¢x,y,2) = X(x)Y () Z(2). ©)

The functions X(x), Y(y), and Z(z) are to be found once
additional information is provided. There are other analytical
methods such as the conformal mapping technique that can be
employed. The main difficulty with such analytical approaches is
associated with irregular domains. Solutions can be found in sim-
ple domains such as circular, rectangular, and elliptical regions in
two dimensions. With some additional effort, problems in simple
three-dimensional domains can also be arrived at. In view of these
facts, a numerical solution becomes necessary. These issues will
be discussed in later sections.



6 N.G. Zamani

1. Boundary Conditions

In electrochemical modeling, there are a variety of boundary condi-
tions that can be specified.* If the value of the potential function is
known at a point, the condition takes the form below, where ¢constant
is a constant:

@(x,¥,2) = Pconstant- (10)

The above condition is commonly referred to as the Dirichlet
boundary condition. The known potential value is usually selected
from the electromotive force series table.

The situation where the current is specified at a given point
is known as the Neumann boundary condition. Mathematically
speaking it is represented by

d¢
—0— = ;. 11
n le (11)
At well-painted surfaces (also called “insulated surfaces™) the
current normal to the surface is zero. Therefore, i = 0 and (11)
reduces to 5
—0 % =0. (12)
on
At the exposed surfaces, the current in the normal direction is
no longer a fixed value but depends on the local potential value. This
type of boundary condition is the mixed or Robin type. Symbolically,
the mixed boundary condition is displayed below:

o . :
—o o = 10g(d — ¢o) = iog(n). (13)
The term n = ¢ — ¢o is known as the overpotential, where
¢y is the electrode equilibrium potential. The function g (1) has the
expression described in (14) and with this choice of the function,

(13) is called the “Butler—Volmer equation.”>
F (1-)F
gy = 87 _ (), (14)

In this equation, R is the universal gas constant, 7 is the abso-
lute temperature of the electrode, F is the Faraday constant, and y
is a symmetry parameter ((4) is a consequence of the Tafel equation
stating that n = a + blog (7)). In the event that the Butler—Volmer
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equation does not adequately model the physics of the problem, the
experimental curve for the function g has to be used. This curve is
known as the polarization curve. Figures 4 and 5 display a typical
polarization curve for plain carbon steel in seawater. Figure 4 repre-
sents the scenario where the metal acts as the anode, whereas Fig. 5
corresponds to case where it acts as a cathode. Note that the potential
is measured with respect to the silver—silver chloride electrode.

1000
voltage °r M_,_..'—'-!ar'- ul
S [l i+t
s auill o
—1000 [~

110° 001 01 1 10 100 1.10°
current

Figure 4. Anodic branch (millivolts vs. milliamperes).

1000

voltage

—-1000 [~ r#e"\

110° 001 01 | 10 100 1-10°
current

Figure 5. Cathodic branch (millivolts vs. milliamperes).
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Finally, in an impressed current system (used in cathodic pro-
tection systems), the magnitude of the current density is specified.

d
_(7_¢ = Iconstant- (15)

on

The boundary conditions associated with electrochemical pro-
cesses are collectively associated with the subject of electrode
kinetics.>~

ITII. APPLICATION IN CATHODIC PROTECTION

In the discussion to follow, we have ignored any physical variables
(such as the conductivity o) and replaced the expression for the
polarization curve with the mathematical function f (¢).

Cathodic protection is a method for protecting metals against
corrosion. There are two techniques to achieve this objective. The
first approach is to use a sacrificial anode (a less noble metal) and
consume it to protect another metal. This technique has been uti-
lized for centuries in marine structures. As pointed out earlier, the
galvanic coupling between the two metals results in a current den-
sity flowing in the electrolyte as shown in Fig. 6a. In the second
approach, known as an impressed current system, the current den-
sity is artificially created using an inert electrode. This is depicted in
Fig. 6b. Mathematically speaking, the inert electrode can be viewed
as a current source where the value of i is assumed to be a known
constant at a point. In either case, the intent is to ensure that the

a Sacrificial anode b Impressed current
e — e~ e N N e N
current
current [\T /\
: a
Cathode Anode Cathode
Noble metal Less noble metal Noble metal

Figure 6. Cathodic protection methods.
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% _,
dn
e e

Fo, P P o nosources
9% =0 ox2  oyr oz present L] 0
an ah
30 b
E;l- = calhcde(d’} E‘r_‘ ™ anude[¢)
T
Cathode Anode

Figure 7. A bounded sacrificial anode cathodic protection system.

potential on the noble metal is lowered below a threshold poten-
tial. Sometimes this threshold value is referred to as the protection
potential.

The schematic in Fig. 7 depicts a bounded sacrificial cathodic
protection system (bounded by the container). In this figure, it is
assumed that the container is nonconducting and therefore the cur-
rent density is zero on the container boundary. The governing partial
differential equation and the associated boundary conditions are dis-
played in the figure.

The domain under consideration (electrolytic domain) may also
be infinite. This is clearly the case in marine applications. A fictitious
two-dimensional version of this situation is displayed in Fig. 8. Here,
the structure to be protected is the well-painted ship hull but with
bare areas (cathode) being present. The hull is to be protected with
anodic sections. The governing partial differential equation and the
associated boundary conditions are depicted in the schematic. In the
case of an infinite electrolyte, two auxiliary constraints are included.
The behavior of the far-field potential ¢ is given by (16):

() = O(1/r%) + deo. (16)

Here, ¢« is the unknown potential at infinity.
The second constraint is based on the statement that the inflow
of current equals the outflow of current; therefore,

ﬂidS: 0. (17)
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Sea water with no sources present
2 2 2
2, 9% b _,
ax2 oy az? b

Anode

Fictitious ship

Cathode
Well painted hull

9

on #@ ds=0
an

®(r) = —:!'2— + ¢, Farfield
r

= fcath nde[d’]

Figure 8. An infinite sacrificial anode cathodic protection system.

In terms of the potential function, (17) can be rewritten as

ﬂa—d)dS =0. (18)
on

The variable 7 in this expression represents the outward unit
normal to the ship hull.

1. Iteration Process

Owing to the nonlinear boundary conditions, the governing bound-
ary value problem has to be solved iteratively. Although the equa-
tion is solved numerically (the details will be discussed in a later
section), we disregard this issue and assume that the solution to the
linearized problem is somehow obtained. The most general format
for the boundary value problem associated with a cathodic protec-
tion system is described below.

V2¢ =0 in§ (within electrolyte), (19)
¢ =c1 onl7 (known potential), (20)
d

%9 = ¢y onl} (aninert electrode), (21)

on
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Guess the potential distribution

and current densities on different
surfaces

11

>

Y
Solve the linear boundary value problem

A 4

Use the polarization data to find the
new potentials and/or current densities
at electrode surfaces

Replace the old potentials and
Current densities with the new
NO

Calculated values

Are the
new and old values
Close?

Figure 9. Successive iteration flowchart.

a—¢ = f(¢) on I3 (polarization behavior) . (22)
n

For well-painted surfaces, (21) applies where ¢, is zero. The

boundary of §2 consists of the union of the boundaries in (20)—(22),
o=1I1+1>+TI3.

The flowchart in Fig.9 adopted from* describes the iteration
process through the calculations.

IV. ANALYTICAL SOLUTION TO TWO BENCHMARK
PROBLEMS

It was pointed out earlier that the analytical solutions of corrosion
cell problems are rather complicated (if not impossible). To demon-
strate this claim, two relatively simple geometries are presented
below.
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1. Corrosion Cell 1

The cell is assumed to have two-dimensional characteristics as dis-
played in Fig. 10. The three sides of the boundary are assumed to be
well painted and therefore the current densities in the normal direc-
tion are zero. On the bottom segment of the cell, the anode and cath-
ode are placed side by side. The dimensions of the cell are described
by the parameters a, b, and ¢ as shown in the figure. The polariza-
tion curves are linear to further simplify the solution. These polar-
ization curves are depicted in Fig. 11, where

Ly=L.=L=1

The variables L, and L. define the slopes of the linearized an-
odic and cathodic polarization curves as defined by (23) and (24)
below.

% _,
(0,b) on (c,b)
2 2
% =0 ﬂ+ H =0 % =0
on ax2  0y? on
Anode \ Cathode
(0,0) (a,0) (c,0)

Figure 10. Corrosion cell 1.

L.=1 dd/dn

Figure 11. Linear polarization curves.
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The analytical expressions for the polarization boundary condi-
tions are given by (23) and (24):

R0} ¢—1

- = 0<x<a,y=0, 23
on L, =*Xz=4y (23)
fol0] ¢

— =—a<x<cy=0. 24
on Lca_x_cy 24

The analytical solution of the problem®? can be obtained using
the method of separation of variables and is represented by (25):

sin sin (nTa) cos cos (nmx) cosh [nm (b — y)]
n [cosh cosh (nth) + nwL sinh (n7th)]
(25)

2 o0
"“’“”ZHE;

Keep in mind that the solution (25) is based on the assumption
L, = L. = L = 1. Once again, the variables L, and L. define the
slopes of the linearized anodic and cathodic polarization curves as
defined by (23) and (24).

2. Corrosion Cell 2

The geometry in this problem is slightly more complicated than that
for the previous cell. The bottom segment considered to be the cath-
ode is a cosine curve, whereas the top edge is the anode (at a constant
potential). The cell is depicted in Fig. 12. The shape of the cathode
is described by (26):

y(x) =0.15[1 — cos (mx)] . (26)

The polarization boundary condition is once again assumed to
be linear:
d¢

5 = M9 + o). 27)
n

Assuming that the components of the outward unit normal are
described by (ny, ny),

hi(x) = —7n, tan (7x) , (28)
hy(x) = —mn,, cos (e_ny - e(y_zH)> ) (29)
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(0,H) (1,H)

% / (1,0.3)
X

(0,0)

Figure 12. Corrosion cell 2.

The other boundary condition are as follows:

¢(x,H)y=00<x <ly=H, (30)
9
9 _00<y<Hx=0, 31)
on
9
9 0<y<Hx=1. (32)
on

This problem was solved in'® analytically with a closed-form
solution given by (33):

¢ (x,y) = cos (7x) (e_ny — en(y_zH)> . (33)

V. APPLICATION IN ELECTRODEPOSITION

The process of electrodeposition is the reverse of the corrosion phe-
nomenon. The intent in electrodeposition is to deliberately con-
sume that material which is supplied by the anode to plate it on
the cathode.'%!13 A major difference between the two applications is
that the domain occupied by the electrolyte is constantly changing
as the plating process proceeds. Such problems are classified as
the moving-boundary problems. Therefore, the nonlinearities are
twofold. Both the nonlinear polarization boundary condition and the
changing domain contribute to this effect.
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The governing partial differential equation is still the Laplace
equation:
o %9 %9
ax2  9y?  9z2
In electrodeposition, it is reasonable to assume that the anode
maintains a constant potential; therefore, the boundary condition on
the anodic surface is quite simple:

0. (34)

$(x,,2) = Panode = constant. (35)

On the well-painted surfaces (insulated surfaces), the current
density vanishes:
9 0

n
On the cathodic surfaces, the Butler—Volmer equation prevails.
The associated boundary condition is

d —acnF nF
_g£ =iy [exp( O;C;l ¢> — exp (OKIA;; ¢>>:| . (37)

The parameters in (37) are as follows: g is the exchange current
density, 7 is the number of electrons involved in cathodic reaction,
F is the Faraday constant, 7" is the absolute temperature, R is the
universal gas constant, aa is the anodic kinetic parameter, and ac is
the cathodic kinetic parameter

The instantaneous growth of the cathode (in terms of the out-
ward normal growth function %(¢)) is given next:

dh _ M acnF oaankF
a = (o) [or (5570) o0 (50| 0w

The additional parameters introduced in (38) are as follows: ¢ is
time, A (¢) is the outward normal growth of the cathode, M is the
molecular weight, and p is the density of the electrolyte.

(36)

Nondimensionalizing the variables according to the scheme sug-
gested in'! leads to considerable simplification of the initial-
boundary-values problem. The final nondimensional form is
provided by (39)—(43):

ey ¢ 0%
—— 4+ — + — = 0 (in the electrode) , 39
0x2 + 9y2 + 922 ( ) (39)
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¢ = ¢a (on the anode) , (40)

ad

a_¢ = ¢ (e7*? —e?)  (on the cathode) (41)
n

a¢ .

o= 0 (on insulated surfaces) , (42)
n

dH

o= ¢ (e7¥? —e*?)  (cathode growth) . (43)
T

The mathematical description of the initial-boundary-value
problem above is complete, once the initial condition has been
specified. It is assumed that the initial height is zero; therefore,

H=0att=0. (44)

To predict the cathode shape, the initial-boundary-value prob-
lem described by (39)—(44) has to be integrated in time.

Clearly, obtaining an analytical solution is extremely difficult in
three dimensional and even two-dimensional geometries. In the next
section, a simple one-dimensional problem is treated in detail.

VI. ANALYTICAL SOLUTION TO A ONE-DIMENSIONAL
ELECTRODEPOSITION PROBLEM

To demonstrate the difficulties associated with solving initial-
boundary-value problems arising in electrodeposition, a fictitious
one-dimensional problem is treated next. The fictitious electrolyte is
initially present between x = 0 and x = L as shown in Fig. 13. The
point x = 0 corresponds to the location of the anode and the point
x = L corresponds to the initial position of the cathode. Note that

d%d d
) -0 L )
=0, dx dx
Anode @ ® Cathode
electrolyte
l( >|

L initial length of electrolyte

Figure 13. One-dimensional geometry of the electrodeposition problem.
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because of the plating process, the cathode grows and the distance
between the electrodes (i.e., the length of the electrode) is reduced.
If this distance is denoted by s(¢), and A (¢) represents the outwards
normal growth of the cathode, the following relationship is true:

s(t) =L — h(t). (45)

The partial differential equation reduces to an ordinary differen-
tial equation describing the variation of the potential function ¢ (x)
within the electrolyte:

d’¢
Frole 0. (46)
The boundary conditions are

¢(0,¢) = ¢pa (on the anodes) 47)
d
ad) =¢ (e_“Cd’(h")n - e“A¢(h")) (on the cathode) (48)
dh d
i ¢ (e*““”(h’t) - e“A¢(h”)> = aqﬁ (cathode growth rate), (49)
ds  ds
— =L — [/ —dr (rate of electrolyte length change) , (50)
dt o dt
s (0) = L (initial electrolyte length) (51)

Note that (51) is equivalent to the following condition:

ds  dn dg

= ) 52
dt dr dx (52)

The general solution to (47) is of the form
¢(x, 1) = Ci1(t)x + Ca(t). (53)

Imposing the boundary conditions at the cathode and anode
allows one to calculate the constants of integration:

Ci(t) = ¢ <e—ac[cl<r)s(t>+¢A] _ el <z>s<t>+¢A]> . (54)

Ca(t) = ¢a. (55)
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In view of the fact that Cy (¢) = — (ds/dt), (54) can be rewrit-
ten as

ds ds ds
Pl - {expexp [ac <sa — ¢>A)] — exp [—aA (sa — ¢)A)“ .
(56)

The expression on the right-hand side of (56) can be linearized
by taking the first term of the Taylor series expansion in terms of
s(ds/dt) — ¢a. Performing the linearization and some algebra, one
arrives at an explicit expression involving ds /d¢:

ds roa
—=— 57
dr I +rs (57)
Here, the parameter 7 is given by » = ¢ (aa + o).
The exact solution for (57) can easily be obtained:
1 2 1
s(t) = — [—1 S (1 +2rd+2r ¢At)fz]. (58)
r
Since s(0) = L the constant 4 is calculated from
ria
A=L+ EL . (59)
Combining the results, we have
ds —Pa
Cilt)y=——= > (60)
dt (14214 +2r2¢p0) 2
rx
px,)=¢a|1- E (61)
(14274 + 2r2¢p1) 2
S a1 1 (©)
s—=¢gall—- .
dr (14 214 + 2r2¢a0)

Once again, the above approximations are based on the critical
assumption that the entity s(ds/d¢) — ¢4 is small. For example, if
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we expect (ds/df) — ¢pa < e, it is straightforward to show that it
translates to the following constraints:

I
y
1622 — ¢ (1 4 2rd + t282r4> 2 - g0 <0, (63)

Naturally, analytical solutions to two-dimensional and three-
dimensional problems become intractable.

VII. GENERAL FRAMEWORK OF NUMERICAL
APPROXIMATION

Essentially, there are three numerical techniques for solving elliptic
partial differential equations.!*'® In the case of cathodic protec-
tion and electrodeposition, the governing partial differential equa-
tion is very simple, namely, the Laplace equation. These techniques
are classified as follows:

(a) Finite-difference method (FDM)
(b) Finite-element method (FEM)
(¢) Boundary-element method (BEM)

The general description of these methods is provided in the
present section. More detailed information on the finite differences
and boundary elements will be provided in later sections of the
article. It will become clear that in electrochemistry applications
(of interest to us), the BEM could be the most efficient numerical
technique.

1. Finite-Difference Method

The domain under consideration (the electrolyte) is covered with a
grid. For the sake of simplicity, we use a two-dimensional Cartesian
grid. The discrete version of the Laplace equation at each grid point
is represented by (64):

Giv1,j +Gi-1,j + i j+1 + i j—1 —4¢i; =0. (64)

The subscripts (i, j) refer to the location (xi, yj) where dis-
cretization takes place. Furthermore ¢; ; is the approximation to
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c"i—1,j ‘bi,j ¢i+1.j

e
1]
&
.-

Index j

I P

Index i

Figure 14. The finite-difference grid.

the unknown potential ¢ (xi, y j). These are symbolically depicted in
Fig. 14. Sufficient numbers of equations are written at the grid points
and once the boundary conditions have been taken into account, a
system of algebraic equations is obtained. This system can be solved
using direct or iterative methods available in numerical linear al-
gebra. In the case of nonrectangular geometries, the procedure is
more complicated. However, in principle, it is possible to map such
regions to a rectangular one using techniques such as grid genera-
tion. In such situations, although the domain is simplified consid-
erably, the governing partial differential equation takes a different
form owing to the coordinate change.

2. Finite-Element Method

In the FEM, the variational formulation (or weak formulation) of
the boundary value problem is employed. As a concrete example,
suppose the strong form of the boundary value problem is described
by (65)-(67):
A’p=0 ing, (65)
¢ = prescribed value on /7, (66)

0
a—¢ = prescribed value on I. (67)
n
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It can be shown (although it is neither trivial, nor intuitive) that
the solution to the above boundary value problem, among all func-
tions satisfying (66), also minimizes the functional J(¢) described

by (68): | )
J(¢) = = / / (V)?ds2 — f 99 4s. (68)
2 k7] D on

An alternative description is to state that among all functions,
satisfying (66), the exact solution of the boundary value problem
satisfies the following condition:

f f VoVydR = a—¢wds. (69)
Q D on

The function v is arbitrary but vanishes on 1.

The electrolyte is discretized with different types of elements
available in the FEM. A typical element shown in Fig. 15 is a three-
noded triangular type which is a linear approximation to ¢ (x, y)
within its interior. The global system of equations is obtained by the
assembly process of contributions from individual elements. Upon
applying the boundary conditions, one can solve the resulting sys-
tem of algebraic equations using the direct or iterative methods.
Owing to the nature of the FEM, complicated geometries can eas-
ily be handled. The only drawback (as in the FDM) is the fact that
the electrolyte needs to be discretized. Keep in mind that in cathodic
protection and electrodeposition, the value of the potential on the
bounding surfaces is of primary interest.

electrolyte

Figure 15. A three-noded triangular element
in the finite-element method.
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3. Boundary-Element Method

The basic principle behind the BEM is to convert the partial differ-
ential equation into an integral equation using the classical methods
of applied mathematics. This technique requires the Green function
associated with the differential operator (in this case, the Laplace
operator). After the appropriate manipulations, (70) is obtained:

2 2
3G (p, p/ 3 (p' ,
c(P)b(p) = f¢@’>%ds+ f %G@, p)ds. (70)
0 0

Since for the sake of simplicity we have limited our domain
(electrolyte) to two-dimensional geometries, the integrals in (70) are
in fact line integrals. In the three-dimensional case these become sur-
face integrals. Furthermore, the variable of integration is p’, while
p is held fixed.

The coefficient c¢(p) in (70) depends on the location of p =
(x, y) where the potential ¢(x, y) is being evaluated. This value is
given below:

1 if p is in the interior of 2
c(p) = {0.5 if pis on the smooth part of 92 (71)
0 if p is in the exterior of £2

In the BEM, the boundary is divided into panels (patches or
elements on the boundary) as depicted in Fig. 16. On these panels,

electrolyte

Figure 16. The boundary is discretized with panels (boundary
elements).
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the integral equation (70) is discretized. The result is a system of al-
gebraic equations which can be solved once the boundary conditions
have been taken into account. A major advantage of the BEM is that
the body of electrolyte need not be discretized. On the other hand, the
resulting system of equations is fully populated. This is in contrast
to the FDM and the FEM, where the matrices are sparse. The BEM
has been widely used in aerodynamics applications. In that field, the
method is also known as the panel method (or the source distribution
technique!”).

VIII. IMPLEMENTATION OF THE FINITE-DIFFERENCE
METHOD IN CATHODIC PROTECTION

The discussion in this section is limited to a two-dimensional rectan-
gular domain. The system under consideration is a rectangular con-
tainer filled with an electrolyte.’ The container’s vertical walls are
insulators. The electrolyte’s surface is open to air. The bottom of the
container consists of two metals in contact with each other exactly as
in the geometry shown in Fig. 25 in the Appendix. Metal 1 on the left
(cathode) has a higher equilibrium electromotive force and is thus
more noble than metal 2 on the right (anode).The system boundary
is a rectangle; there are insulators on three sides (left, right, top),
and metals on one side (bottom). The FDM has been used for the
calculation of the potential ¢ in the interior and on the boundary.
The steps in the FDM are:

Choosing a lattice
Discretization

Writing the mesh equations
Solving the mesh of equations

L=

1. Choosing a Lattice

A rectangular lattice is a family of vertical and horizontal lines in the
xy plane. The point of intersection of lines is often called a “node.”
Each rectangle formed by two adjacent vertical lines and two hori-
zontal lines in the lattice is called a “mesh.” Each side of the mesh
is called a “link.” A rectangular lattice is said to be uniform if all of
the horizontal links are equal to a constant b. If a = b, then we have
a square lattice; however, the condition a = b is not essential and
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Figure 17. The corrosion cell and its finite difference
method lattice.

it will not be required here. Finally, a rectangular lattice is said to
be centered if the origin (x, y) = (0, 0) is one of the lattice points.
In a centered uniform rectangular lattice, the lattice points are the
points for which x = ma form = 0,£1,42,... and y = nb for
n = 0,+£1, £2,.... Henceforth the term “lattice” will be used to
mean a centered uniform rectangular lattice as shown in Fig. 17.

2. Discretization

Once a lattice has been chosen, it must be decided how to
approximate the various derivatives of ¢ by difference quotients.
In the discussion that follows, reference will be made to the diagram
shown in Fig. 18. The lattice points have been given the abbrevia-
tions E (east), S (south), W (west), N (north), and C (center). The
values of the function at these points are denoted by ¢g, ¢s, dw,
oN, and ¢c respectively. Thus, for example, if C = (ma, nb), then
¢c = ¢ (ma, nb), on = ¢ (ma, (n + 1) b), etc.

The FDM is affected by replacing the derivatives of ¢ at a lattice
point such as C with their approximations as follows:

32_¢> ~ ¢E — 2¢c + Pw
ax? a? ’

32_45 N —2¢c + ¢s
dy? b? '

(72)

(73)
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Figure 18. Nodes used in approxi-
mating partial derivatives.

The so-called five-point approximation of the Laplacian opera-
tor at C is

%¢E_2¢C+¢W+¢N_2¢’C+¢S

a? b2

Ag

(74)

The first partial derivatives (at C) will be approximated by their
centered difference quotients:

9 %~ dw (75)
0x 2a

90 _ N — s

T (76)

Centered difference quotients are more accurate than one-sided
difference quotients.

3. Mesh Equations

The letter C will be used as before to denote a typical lattice point
and the letters £, N, W, and S will be used to denote the four
neighboring nodes as shown in Fig. 18. We now write the five-point
approximation of the Laplace equation at each node C in the interior
or on the boundary of the system:

P —2¢c +dE | ON —2¢c +Ps
a? + b2 N

0 (77)
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From the above equation, the potential at C is calculated in
terms of ¢, PN, ¢dw, and ¢s:

1
(P + dw) + ——— (oN + ¢s) . (78)

5
¢C=2(1+5) 2(1+9)

In the (78), the variable § is defined by § = (b/a)?. Upon defin-
ing two other variables §; = /2 (1 +8) and §, = 1/2 (1 + §), one
can further reduce (78):

¢c =81 (¢ + dw) + 82 (PN + ¢s) . (79)

The constants §, 81, and 8, have been defined for convenience;
they satisfy 81 + 82 = 1/2. Furthermore, ifa = b, then § = 1/2 and
81 = 8 = 1/4, so (79) simplifies to

:¢E+¢N+¢w+¢s

$c y)

(80)

In general, @ and b need not be equal; therefore, (79) has been
used throughout.

4. Solving the Mesh Equations

After having written the Laplace equation in the discretized form at
every node C in the system, we arrive at the set of mesh equations.
The next step is to solve these equations and find the values of ¢ at
every system node. The solutions to the mesh equations will only be
approximately equal to the exact value of; this is because the mesh
equations themselves are only approximations to field equation.

The mesh equations may be solved either directly or iteratively,
and within each of these two categories there are several possibil-
ities. The method discussed here is iterative. By an “iteration” we
mean a “lattice iteration,” to be described presently. Iterations have
simple structure and low storage requirements; moreover, the itera-
tions are all identical in structure (stationary), and they are in general
nonlinear. The iterative method begins by initializing the values of
¢ at all nodes in the system to reasonable but otherwise arbitrary
values. An arbitrary pair of nodes is then chosen in the system as
the first node and the last node. The first lattice iteration begins as
follows.
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We start marching through the lattice in fixed and simple man-
ner, beginning at the first node, visiting each and every node in the
system once. With use of the Laplacian formula (79), at each step
(i.e., at each node) a new value of ¢ at that node is calculated in
terms of ¢ at the four neighboring nodes. Once this has been done,
we move to the next node and update its potential by the same proce-
dure. The first lattice iteration is completed as soon as the procedure
has been carried out for the last node. Second, third, and higher lat-
tice iterations are not only possible, but usually quite necessary.

In the process of marching through the lattice, nodes C for
which some of the four neighboring nodes, N, E, S, and W are out-
side the system will be encounted; these nodes outside the system
are called the “fictitious nodes.” Without any boundary conditions,
fictitious nodes would lead to an undetermined set of equations. It is,
however, possible to eliminate the fictitious nodes with the help of
the boundary conditions, thereby reducing the number of unknowns
to the number of equations available.

For each node C in the system, the elimination of its neighbor-
ing fictitious nodes (if it has any) changes the basic mesh equation
at C. The change depends on the location of C. For the system in
Fig. 17, there are 11 cases; these cases can now be examined with
reference to Fig. 19, which shows how the different cases have been
enumerated. The polarization functions of the cathode (metal 1) and
the anode (metal 2) are denoted by f and g, respectively.

Case 1 (the interior)

This is the simplest case. Node C is in the interior of the system,
its four neighboring nodes all belong to the system, and there are
no fictitious nodes in the neighborhood of C. The value of ¢c is
calculated in terms of ¢g, ¢N, dw, and ¢s according to the equation
below:

¢c =61 (Pg + dw) + 82 (PN + ¢s) . (81)

Case 2 (the top, excluding the corners)

For this case, node C can be anywhere at the interface between

the electrolyte and the air, except the corners. The only fictitious

node is N. To eliminate ¢y, the boundary condition for insulators is

used with the unit inward normal vector 7 = (0, —1). From (82) it

follows that ¢n = ¢bs.
0:3_¢__3_¢__¢N—¢s

= = 82
on ay 2b (82)
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N N N
c Case 3 IC case 2 case 4 C
w g E w s E w s E
N N N
elC jcase 5 C, casel case 6 C
w|sE Wls E w g E
cathode ‘L anode
N N N N N
c IC ]C ]C C
w g E w s E wsE wsE w g E
case 9 case 7 case 11 case 8 case 10

Figure 19. Fictitious nodes for different nodes on the boundary (lattice not shown).

In view of (82), the mesh equation takes the following form:
¢c = 61 (¢E + dw) + 282¢s. (83)

Case 3 (the top-left corner)

Here, there are two fictitious nodes, N and W. To eliminate ¢x,
the insulator boundary condition with 7 = (0, —1) gives ¢n = ¢s,
just as in the previous case. To eliminate ¢w, again the insulator
boundary condition with # = (1, 0) gives

0=20 _09 _dp—dw

= = 84
on ox 2a (84)

Therefore, ¢pw = ¢ and the overall mesh equation is described
below:

¢c = 28198 + 282¢s. (85)

Case 4 (the top-right corner)
Here, the fictitious nodes are N and E. To eliminate ¢n and ¢,
the insulator boundary can be applied twice with # = (0, —1) and
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n = (=1, 0), respectively. The results are ¢n = ¢s and ¢ = Pw.
Therefore,
¢c = 281dw + 282¢s. (86)

Case 5 (the left wall, excluding the corners)

Here, node C can be anywhere on the left wall except at the very
bottom or the very top. To eliminate the fictitious node W, once again
the insulator boundary condition is used with 7 = (1, 0). It follows
that ¢pw = ¢, from which we get

bc = 2810 + 82 (PN + ¢s) - (87)

Case 6 (the right wall, excluding the corners)

Here, node C is anywhere on the right wall except at the end-
points. To eliminate the fictitious node E, the insulator boundary
condition with # = (—1, 0) can be used to obtain ¢g = ¢w, and
then

¢c = 2810w + 8 (PN + Ps) . (88)

Case 7 (cathode, excluding its endpoints)

For this case, C may be anywhere on the cathode, except at its
endpoints. The only fictitious node is S. To eliminate ¢g, the metal
boundary condition o (d¢/dn) = f(¢) with n = (0, 1) should be
used. The approximation is described by (89):

¢ 3_¢=U¢>N—¢s

o— =0
on ay 2b

= f(¢0). (89)

It follows that ¢s = ¢ — (2b/0) f (¢pc), which when substi-
tuted into the basic mesh equation gives

2b6,
éc + Tf (¢c) = 81 (PE + Pow) + 2820N. (90)

Case 8 (anode, excluding its endpoints)

The conditions in this case are similar to those in case 7; the only
difference is that here, the anode’s polarization function g”’should be
used instead of the cathode’s. The result is

2b6,
¢c + - ¢ (¢c) = 81 (PE + ow) + 2529N. o1
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Case 9 (cathode, its left endpoint)

The fictitious points are S and W. To eliminate ¢w, the insulator
boundary condition with # = (1, 0) is used to get pw = ¢g. To
eliminate ¢s, the metal boundary condition with 7 = (0, 1) is used
to get s = dn— (2b/0) f(¢c). Substituting ¢w and ¢s in the basic
equation gives

2bs
dc + —= [(pc) = 2198 + 2apw. (92)

Case 10 (anode, its right endpoint)

The fictitious points are S and E. The elimination of ¢ and ¢g
leads to ¢s = ¢w and ¢s = ¢Nn — (2b/0)g(¢pc). Therefore, the
resulting mesh equation is

2b6,
¢c + - ¢ (¢c) = 2819w + 282¢N (93)

Case 11 (the cathode—anode junction)

This case is similar to cases 7 and 8. The difference is that
instead of the polarization functions for g alone, the polarization
function f + g should be used. This is because at the junction,
each electrode is sending its own current vertically upward into the
solution (the actual direction is negative for the cathode), so the total
current density from the junction into the solution is the algebraic
sum of the contributions from both. The result is

2bs
dc + —= L/ (@0) + 800N = 81 (P + dw) +2020n.  (94)

Equations (81)—(89) give the potential ¢c explicitly in terms of
the potentials at the nonfictitious neighboring nodes of C. Equations
(90)—(94) also give the potential ¢c; however, to find ¢¢c from these
latter equations it is necessary to use a numerical technique since the
polarization functions f and g can be nonlinear.

Cases 1-11 have been incorporated without any change into a
Fortran code named COR_CELL.> The code is simple but system-
dependent; shape and boundary conditions both affect each line of
the central part of the program. Modifications will be necessary at
various places in the code before it can be used for other geometries
or boundary conditions. The user who introduces the changes must
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have some familiarities with the FDM. The user must also know how
the FDM is adapted to the features of the system in question. The
purpose of investigating cases 1—11 for the corrosion cell problem
was to demonstrate how geometric and boundary conditions can be
dealt with, and to make it easier for the reader to understand the
organization of the code.

Keep in mind that several iteration cycles may be required to
arrive at a converged solution.

IX. IMPLEMENTATION OF THE BOUNDARY-ELEMENT
METHOD IN CATHODIC PROTECTION

Once again, as in Sect. VIII, the discussion is limited to a bounded
two-dimensional domain. However, the domain is no longer re-
stricted to a rectangular one and is assumed to be arbitrary in
shape.!® The boundary of the domain §2 denoted by 952 consists
of I'n, I'c, and IT; therefore, 02 = I'AUI'cUIT. These segments
represent the anodic, cathodic, and insulated boundaries. The field
equation is the Laplace equation:

2 2
Py, 0 _

=0. 95
ax2  9y? ©3)

The boundary conditions are given by (96)—(100) below.

99 (Q) = fal@(0)] Q € I'n (anode), (96)
ong
I9(Q) _ fclep(O)] O e Ic (cathode) , 7
ong
9¢(Q) =0 Q € I7 (insulation) . (98)
ong

Here fa[¢(Q)] and fc[¢p(Q)] represent the anodic and
cathodic polarization curves. Furthermore, 7o is the unit outward
normal to the boundary at the point Q under consideration, as
displayed in Fig. 20.
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T

Figure 20. The domain under con-
sideration and different segments.

Additional possible boundary conditions are shown below.
These conditions are applicable depending on the problem at hand:

0

$ =ga Q € I'n (impressed current condition) , (99)
ng

¢(Q) = pa QO € I'p (nonpolarizable anode) . (100)

The classical methods of applied mathematics (Green’s theorem
specifically), allow us to calculate the potential at an arbitrary point
P in the interior of 92 according to the following equation:

d 1 1
21 (P) = —75 [¢(Q)a— (—) - (ln —) q(Q)}dFQ-
082 nQ rPQ I”PQ
(101)

If the point P belongs to the boundary of £2, the counterpart of
the equation is revised according to (101):

3 (1 1
np(P) = — (PV)% [¢(Q)87 <*> - <ln 7) q(Q)}dFQ-
082 ng \rpeQ rpQ
(102)

In these equations, rpp stands for the distance between the
points P and Q, and (PV) represents the integration in terms of the
Cauchy principal value. Furthermore, ¢ (Q) is the flux at point O on
the boundary.

In cathodic protection modeling, (102) is the relevant form.
Once the unknowns ¢ (Q) and g (Q) on the boundary have been eval-
uated, the potential at an arbitrary interior point can be calculated
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with the aide of (101). This, however, is rarely needed as the surface
potential and fluxes are of primary interest.

Several properties of the integral equation (102) will be used
and are listed below:

(a) The condition of solvability of the interior potential prob-
lem is

‘(f q(Q)dl'g = 0.
52

(b) Ifthe potential ¢ (Q) is specified (i.e., the Dirichlet boundary
condition), the flux ¢(Q) on I' can be uniquely determined
from (102) and it automatically satisfies condition (a).

(c) Ifthe flux ¢(Q) on I' and satisfies condition (a), the potential
¢ (Q) is not unique, but any two solutions differ by a constant.

(d) Finally, if condition (a) is violated, no solution for the poten-
tial ¢ (Q) can be obtained.

It is worth mentioning that the term In (1/rpp) in the above
integral equations is the Green function for the two-dimensional
Laplacian operator. For the case of the Laplacian operator in three
dimensions, the Green function is different and is expressed by
1/rpo. In either case, the Green function is singular when the points
P and Q coincide. Therefore, the BEM involves calculating singular
integrals.

X. NUMERICAL IMPLEMENTATION
OF THE BOUNDARY-ELEMENT METHOD

The BEM is based on covering the boundary of the domain under
consideration with elements (or panels) where the degrees of free-
dom are the potential and flux. The degrees of freedom associated
with the jth panel (element) are ¢; and g ;.

The discrete version of the integral equation (102) at the mid-
side point of each element is described by (103):

N N .
ZFI Hyj¢p; = ZFI Gyq; i=1,2,....,N.  (103)

In (103), N is the total number of elements and i refers to the
field point at which the integral equation has been discretized.'® The
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expressions for H;; and G;; for a two-dimensional domain are given
below:

rPQ

82
O (1p L ifi = j
n+s{,~ ong (1n )dFQIfl j

Hy =1, (104)
f’i(lnL)dr ifi #
Sy ang rpQ o >
Szj 1
Gij = f In —dFQ (105)
N rPQ

The integrals H;; and Gj; can be evaluated using a local coor-
dinate system. The expanded form of (103) is displayed by (106):

Hyy -+ Hin 91 Gi1 - GIN q1
R (= RN cop- (106
Hyy -+ HaN oN Gni - GNN gN

The matrix H happens to be singular whereas matrix G is
invertible. Although it is not the case in corrosion problems, if the
boundary conditions are linear, upon applying the known boundary
conditions (i.e., known potentials and fluxes), one can solve the lin-
ear system of equations for the unknown degrees of freedom.

1. Iteration Procedures

Recall that the boundary of the domain under consideration was the
union of I'p, I'c, and I, which represented the anodic, cathodic,
and insulated surfaces. Assuming that f5 and fc denote the anodic
and cathodic polarization curves, the symbolic expressions for the
boundary conditions are described by (107)—(109):

ga = fa(@a), (107)
gc = fc(o). (108)
q1 =0. (109)

Substituting these equations in the expanded form (106),
where the degrees of freedom have been grouped together, leads
to following system of nonlinear transcendental equations:
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Hyy Hyiz His ¢c G11 G2 Gi13 Jfe(éc)
Hyy Hy Hpz oa ¢ = | G21 G2 G23 Salda)
H31 H3 Hi3 1 G31 G32 G33 0
(110)

In this system, the unknowns are Oc, QOa, and ¢, representing
the groups of degrees of freedom on the three surfaces. A useful
rearrangement of the system (110) is displayed below:

Hyy Hiz —G3 oc G111 G2 —Hiz Je(éc)
Hy Hy —Gp3 oA ¢ = | Ga1 G —Hx3 Ja(dn)
H31 H31 —G33 0 G31 G3 —Hs33 1

A further rearrangement of (111) is obtained through multiply-
ing by the inverse of the matrix of the right-hand side, which is sym-
bolically written below:

A Aip Az ¢c Je(co)
A Ay A oA ¢ =1 falda) ¢ - (112)
A31 A31 A33 0 é1

Since the unknown vector ¢y is decoupled from the first two
equations, we can concentrate on the reduced system (113):

All AIZ ¢C — fC(¢C) (113)
A An | | ¢4 Sa(oa) |-
In the remaining portion of this section, three different methods
are discussed for iteration purposes.'’

The first method to be discussed is the Jacobi iteration. This is
achieved according to the following scheme:

¢n+1

AT [=4eh + fo (08)]. (114)

DN = Ay [~ 420 + fa (9)]- (115)

Here n and n + 1 represent the nth and (n + 1)th iterations,
respectively. The iteration procedure proceeds as follows:

(a) Make a guess of ¢ and ¢} .
(b) Calculate fc (¢>é) and fa (q)]j) from the cathodic and anodic
polarization curves.
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(c) Find ¢2*" and ¢}t from (114) and (115).
(d) Repeat steps (a)— (c) until convergence is achieved.

The more sophisticated version of the above procedure is the
Gauss—Siedel method. This method is based on the following itera-
tion procedure:

oet = Ay [—4ngh + fc (07)]. (116)
P! = 43 [ angt + nlen)]. @

The main difference from the Jacobi iteration is that as soon
as a new value is found, it is used immediately. The steps for this
algorithm are described below:

(a) Make a guess of ¢ and ¢} .

(b) Calculate fc (¢>é) and fa (q)[’g) from the cathodic and anodic
polarization curves.

(¢) Find ¢"+1 and ¢"+1 from (116) and (117).

(d) Repeat steps (a)— (c) until convergence is achieved.

The third technique discussed is the Newton—Raphson method.
To describe the procedure, we define the two auxiliary functions

Fi(¢c, oa) and 5 (¢c, da):
Fi(¢c. da) | _ ) fe@o) | | 4 42 | | éc (118)
F(oc, dn) [ | falda) A An | | da |’

We now write the system (118) explicitly as

Fi(¢c, oa) = fc(¢) — A11¢c — A12¢pa =0, (119)
Fy(¢c, da) = fa(pa) — A2ipc — Anpa = 0. (120)

The Jacobian matrix J associated with the above system is
given by

28(F1,F2)=[fé(¢c)—A11 —Ap } (a21)
d(¢c, Pa) —Aar [y (@A) - ’

where f{ (¢c) = dfc/dpc and [} ($a) = dfa/dga.
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Therefore, the Newton—Raphson method takes the following

form:
éc éc —1 | F1 (¢, ¢a)
= —-J . 122
{¢A ntl ¢a |, F>(¢c. 9a) |, (122)
The iteration proceeds as follows:
(a) Make a guess of ¢ and ¢y .
(b) Calculate Fy (¢, ¢i) and Fs (¢, d4).
(c) Calculate f (¢f) and £ (¢4) from the cathodic and anodic
polarization curves.
(d) Calculate the Jacobian matrix.
(e) Repeat steps (a)—(e) until convergence is obtained.
(f) Calculate ¢ from the last row of (112), i.e., ¢ = A31¢c +
A3¢A.

XI. CONCLUDING REMARKS

In this expository article, the basic mathematical model of some sim-
ple electrochemical processes was discussed. The model is based on
the concept of conservation of charge within the electrolyte. The
boundary conditions, on the other hand, are problem-specific. The
subject of electrode kinetics is central to the proper specification of
the boundary conditions. In their most general form, the conditions
are nonlinear, leading to a nonlinear boundary value problem. This
is closely tied to the nonlinear polarization curves. The analytical
solution of the mathematical model is formidable and for moderately
simple two-dimensional regions is impossible to obtain. The only
feasible approach is numerical simulation. The use of high-speed
digital computers is an essential tool in solving such problems.

The most common techniques for numerical simulation are the
FDM, the BEM, and the FEM. Each of these techniques has its
advantages and limitations. In this article, finite differences and
boundary elements were briefly discussed. The application of the
FEM in electrochemistry has been reviewed by Schlesinger re-
cently.2? Since the objective of the present article was not to present
a comparative study of the available techniques, no specific exam-
ples were considered. However, on the basis of the available liter-
ature, at least in the context of cathodic protection simulation, the
BEM may be the most efficient numerical approach.
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APPENDIX. ELECTRODE KINETICS IN CATHODIC
PROTECTION

This section reviews parts of electrochemistry relevant to corrosion
and cathodic protection. For a more complete account, one must con-
sult books on physical chemistry or corrosion.>~’

Currents

Under favorable conditions, at every point on the surface of a
metal immersed in an electrolyte, oxidation (anodic) and reduc-
tion (cathodic) reactions occur simultaneously. The anodic reaction
results in a current density flowing out of the metal and into the
electrolyte. The cathodic reaction at the same point is the density
current flowing from the electrolyte into the metal. The former is
called the “anodic current density” (denoted by ianogic ) and the latter
is called the “cathodic current density” (denoted by icathodic ). The
net current density out of the metal and into the electrolyte is then

Inet = Ianodic — cathodic- (123)

At any point on the wet metal surface iznogic and icathodic are
directly proportional to, or can be defined as, the oxidation and re-
duction rates. Equilibrium at a point is defined as a condition in
which the oxidation and reduction rates at that point are equal, or
when ianodic €quals icathodic, OF When inet = 0.

As a vector quantity, the electrical current density has a direc-
tion as well as magnitude. At each point on the wet metal surface, the
components of the current density normal to the surface and pointing
to the electrolyte will be taken to be ipet.

This property will be used later to write the boundary
conditions.

Potentials

The electrolyte and metal begin to interact chemically once they
are in contact. As mentioned above, this interaction is in the form
of oxidation (positive metal ions migrating from the metal into the
electrolyte) and reduction (positive metal ions returning from the
electrolyte to the metal and becoming metal atoms). At any given
point on the wet surface of the metal surface, an electric field
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and hence an electrical potential difference is developed across an
infinitesimally thin layer at the metal—electrolyte interface. We will
refer to this electric field as the interface field and to the accompa-
nying electric potential difference as the interface field or the elec-
tromotive force. The direction and magnitude of the interface field
(the polarity and size of the interface potential) depend on several
factors, including the electrolyte ionic concentration. In corrosion
problems, it is often the case that the metal becomes slightly nega-
tive with respect to the neighboring points in the electrolyte.

Potential Measurements

By a system is meant here a structure comprising one or more types
of metal and electrolyte which are in contact with one another in an
arbitrary but fixed manner. Thus, a system may be a container with
one or more electrodes and electrolytes, or a much larger structure,
such as a ship. In addition to the currents and potentials along the
metal surface, there is current and potential distribution throughout
the entire system. The potential and current density at every point of
the system are denoted by ¢ and i respectively. Their units are volts
and amperes per square meter.

There is usually interest in knowing the electrical potential at
different points in the system, particularly at points near or adja-
cent to the metals or the electrodes involved. However, it is impos-
sible to measure the true electrical potential difference between a
metal and the solution which is in contact with it. This is because a
second metallic electrode is required, and a second electrode intro-
duces its own interface potential into the readings, even when those
readings are taken by an ideal voltmeter which draws no currents.
So, there is no method of measuring either the actual electromo-
tive force of an electrode or the true electrical potential at any point
inside the solution. But, by arbitrarily assigning a potential to one
electrode, one can measure or otherwise determine the potentials
elsewhere in the system with respect to this standard. Applications
vary from indoor laboratory work to underwater measurements at
offshore petroleum establishments. A few of the reference electrodes
in common usage are the hydrogen electrode, the saturated calomel
electrode (SCE), the silver—silver chloride electrode, and the glass
electrode.

The potential, current, and their signs (positive or negative) can
be the source of much error and disagreement; therefore, we must
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adhere to a rigid set of conventions if hopeless confusion about the
sign and interpretation, especially of ¢, is to be avoided. To begin
with, a distinction must be made between what we call here electro-
chemical potential and the electrical potential difference in its orig-
inal sense as defined in physics. The former has proven useful and
convenient in the field of electrochemistry and its applications, such
as corrosion engineering. To measure ¢, one connects the positive
terminal of an (ideal) voltmeter to the trunk or body of the metals
in the system; the negative terminal of the voltmeter goes to a probe
(or sensor) such as the SCE; the probe is placed at the point at which
¢ is to be measured. To measure ¢ elsewhere in the system, we sim-
ply move the probe to the new spot. The positive terminal of the
voltmeter remains fixed at some point on the metallic bulk of the
electrodes. Using this procedure, the measurements taken at points
sufficiently close to the surface of a metal are the electromotive force
of the metal at those points. Equally important, such measurements
are consistent with the conventions of the International Union of
Pure and Applied Chemistry which imply that the baser a metal,
the lower its electromotive force.

If we let  denote the actual electrical potential difference
between a point in the system and the electrical ground, which is
usually a metallic bulk, then ¢ and i are related though

v =c—. (124)

The constant ¢ in (124) depends on the type of the sensor used
for measuring ¢ (SCE, etc.). It may be added here that metals,
owing to their high conductivity, allow little or no potential vari-
ation throughout their interiors (or bulk). It is for this reason that
the metallic bulk is frequently a natural and convenient choice for a
point of reference or a point of zero electrical potential (also called
the “electrical ground”).

Equation (124) does establish a relation between ¢ and ¥, at
least for geometries where an electrical ground is easily identifiable.
However, (124) may not be used to find ¢ from the knowledge of ¢
obtained from measurements. This is because c is not known. Also
note that while both ¢ and ¢ depend on the type of measuring probe,
their difference, ¥, does not. This is to be expected since the true
electrical potential difference 1 should not depend on our choice of
the probe.



Numerical Modeling of Certain Electrochemical Processes 41

Polarization Equations

At each point on a metal surface which is in contact with the elec-
trolyte, ianodic and icathodic are given in terms of the electrochemical
potential @ according to the Tafel-Butler—Volmer polarization equa-
tions below:

Lanodic = 10 €XP <¢ — ¢0> , (125)
o
feathodic = 10 XD <¢ - ﬁ‘”) . (126)

The net current density is then

Inet = Io [exp (@) — exp <¢:—ﬁ%>] . (127)

The current densities ianodic and icathodic are not independent of
each other as they satisfy (128):

.o .B _ .atp
Lanodiccathodic = L0 : (128)

The parameters ig, ¢g, @, and 8 depend on factors such as the
temperature, electrolyte ion concentration, and the type of reference
electrode used for potential measurements. During a single experi-
ment, however, these entities are assumed to be constant.

The constant ¢ is the equilibrium potential or the reversible
potential of the electrode; its sign and magnitude depend on
the reference electrode. The difference n = ¢ — ¢ is called the
“overpotential” or the “overvoltage” and it represents the deviation
of ¢ from the equilibrium potential ¢g. Thus, n = ¢ — ¢9 may
take on both positive and negative values at different points on the
surface of an electrode.

The positive constant i is called the “exchange current density.”
Equations (125) and (126) imply that i is the current flowing across
a unit area of the electrode in each direction (metal to solution and
solution to metal) at the reversible potential (where n = ¢ —¢pg = 0).

The positive constants « and 8 are given by « = RT/y F and
= RT/ (1 — y) F.Here R is the gas constant, 7 is the absolute tem-
perature, and F is the Faraday constant. The dimensionless constant
y is in the interval (0, 1); it is called the “symmetry factor,” though
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that name is sometimes also used for o and 8. The constants « and
B are not independent of each other as they satisfy (129):

1+1—F (129)
« B RT’

In this paragraph we will consider some of the properties of the
relation between ¢ and ipe. Equation (127) motivates the definition
of a polarization function f as follows:

@i |:exp <¢_¢°> —exp (d’_d"))] (130)

o

Then ipet = f (¢) and

1 (@) =io [lexp <¢ _d)") + L exp <¢ _¢°>} . (131
o o B B

.. 1 — 1 _
S (@) =io [07 exp <¢ a¢°> — gz P (d’_;o)] (132)

According to (131), inet is a strictly increasing function of ¢.
The slope f (¢) of the graph of ipe; versus ¢ is a minimum at the
inflection point ¢ given by

2af o
é1 ¢0+a+,81n(,3)' (133)

Note that ¢ = ¢ iff « = B, i.e., iff y = 1/2. Finally, the
graph of f is concave up for ¢ > ¢, and concave down for ¢ < ¢;.
Moreover, inet > 0 for ¢ > ¢, inet = 0 for ¢ = ¢, and iper < 0 for
¢ < ¢o.

A linearized polarization function is sometimes used as an
approximation to the nonlinear function f. The particular lineariza-
tion function here is

1 1
Siinear (@) = io (— + —) (¢ — o). (134)
a B

This linearization is expected to give good results for small val-
ues of | — ¢ol.
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POLARIZATION CURVES

The graphs of f and fiijnear are shown in Fig. 21 for the cases o < 8,
a > B, and @ = B. The graph of f resembles that of a hyperbolic
sine function. It is exactly a hyperbolic sine function iff « = g for
(127) and (130) simplify to

inet = f(¢) = 2igsinh (%) . (135)

Practitioners in the field seem to prefer other variations of these
graphs. A first variation (not shown) is where we sketch 7pet OF inet/ i
versus the overpotential n = ¢ — ¢¢. Sketching versus 7 is equiv-
alent to a horizontal shift of the graph in Fig.21 to the origin, and
sketching ipnet/io instead of inee sSimply amounts to a vertical scaling
of the same graph.

A second variation is where ¢ is treated as a function of ipt.
This variation is readily available since the polarization function is
invertible, irrespective of the relation between o and . The resul-
tant graphs are mirror images of those in Fig. 21 with respect to the
bisector of the first quadrant. This is displayed in Fig. 22.

a<B a>B a=B

Figure 22. The graph of ¢ versus ipet.
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It is clear from the graph in Fig.22 and (125) and (126) that
for ¢ > ¢, we have ianodic > [0 > Icathodic- In other words, for
¢ > ¢, the anodic reaction dominates the cathodic reaction and
inet 18 positive, that is, a net current is flowing out of the given point
on the electrode. The part of the graph corresponding to ¢ > ¢
(inet > 0) will be referred to as the oxidation branch. In Fig. 21,
the oxidation branch is the part of the graph above the ¢-axis. In
Fig. 22, the oxidation branch is to the right of the ¢-axis. Similarly,
the inequalities icathodic > 10 > fanodic hold for ¢ < ¢g. In this
case the cathodic reaction dominates the anodic reaction and iy 18
negative, that is, a net current is flowing into the given point on the
electrode. The part of the graph for which ¢ < ¢g (inet < 0) is called
the “reduction branch.” In Fig. 21, the reduction branch is to the left
of the ¢p—axis.

A third variation occurs when in Fig. 22 the reduction branch
is sketched with ¢ versus —ipet. In Fig. 22, this is equivalent to a
180° rotation of the reduction branch about the ¢-axis (or drawing
the mirror image of the reduction branch with respect to the ¢-axis)
while keeping the oxidation branch fixed. This variation is shown in
Fig. 23.

The graphs in Figs.21-23 are all different representations of
the same equation, namely, (127), which is a relationship between
inet and ¢. There is another type of graph which differs from the
previous ones. The idea is to sketch not the relation between iyt and
¢, but the relation between iynogic/ o and n = ¢ — ¢o, and also the
relation between icythodic/Z0 and overvoltage n = ¢ — ¢o both on
the same coordinate system. Therefore, the new graphs are obtained
from (125) and (126) instead of (127). The result is shown in Fig. 24.
This figure also includes the graph where a semilogarithmic scale is
used. The outcome is two straight lines with slopes o and —p.

oxidation

b /"‘/

oxidation
7 oxidation

bo

reduction

linet linet| ™ el

reduction

a<B a>B a=f

Figure 23. Drawing oxidation and reduction branches on the same side.
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Figure 24. Overvoltage versus anodic and cathodic currents.

A Corrosion Cell

Polarization curves can sometimes be helpful in providing insight
into a specific problem. As an example, consider what may be the
most basic corrosion system, namely, a cell consisting of two small
(microscopic) pieces or grains of metal in contact with each other
and with an electrolyte. The small size of the cell allows us to assume
that the potential variation on the surface of each metal is zero, i.c.,
the potential ¢ on the surface of each piece is constant.

There are two possibilities for the galvanic contact between the
electrodes:

Case 1. The point of contact between electrodes is at the surface of
the electrodes.

Case 2. The point of contact between the electrodes is in the interior
of the electrodes.

The geometry displayed in Fig.25a corresponds to case 1. In
this configuration the point of contact between the two metals also
polarizes to a potential ¢. Since this point is common to both metals
and each metal surface is at a constant potential, it follows that both
metal surfaces are at the same potential, namely, ¢. Implicit in this
statement is that there is no jump in potential in the direction along
the surface of the electrodes, an assumption that is correct and can
be justified on physical grounds, but it has not been done here.

The current density on the surface of metal 1 is constant and
it is given by i1 = f.(¢), where f is the polarization function of
metal 1. Similarly, the current density on the surface of metal 2 is
constant and it is given by i, = f,(¢), where f, is the polarization
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a Casel b Case 2
ELECTROLYTE ELECTROLYTE
Insulator
Metal 1 Metal 2 Metal 1 T Metal 2

Figure 25. Two cases of a simple corrosion cell.

function of metal 2. On the other hand, /| and i, satisfy i + i = 0.
Therefore,

i2 = —feo(d) = fa(@). (136)
Consequently, the following expression is correct:
¢=(f)" )= f " (2). (137)

To find (¢, i») graphically using (136), we intersect the graphs
of fy and — f.. To find (i3, ¢) graphically using (137), we intersect
the graphs offa_1 and (— fo) 1.

The governing equations are (see (134) for linear curves)

O — P =rcil = —reia, (138)
¢ — ¢Pa = rals. (139)

Linear polarization has been assumed for both electrodes.

In (138) and (139), ¢ and ¢, are the equilibrium potentials of
metals 1 and 2, where it has been assumed that ¢ > ¢,. Note that
ip >0 > i and ¢ > ¢ > ¢,. Therefore, metal 1 has been operat-
ing on the cathodic (reduction) branch of its polarization curve and
metal 2 has been operating on the anodic (oxidation) branch.

In a corrosion cell of the type under consideration, the metal
with higher reversible potential is called the “cathode,” while the
one with the lower reversible potential is called the “anode.” The
steady-state potential is somewhere between the two reversible (or
equilibrium) potentials. A net current flows out of the anode and
into the cathode. Thus, the anodic piece is attacked by the electrolyte
and the cathodic piece is protected. The rate of attack is directly
proportional to the current density /5. The constants —r. and r, in
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Figure 26. Steady-state potential and current density for case 1.

(138) and (139) are the slopes of the lines in Fig.26b. For linear
polarization, exact solutions are easily obtainable and are given by

Ia re
= + , 140
b= gt Ly, (140)
. . ¢ — ¢a
= —i] = ——. 141
2 : re+7, (141)

Equations (139) and (140) confirm our earlier observations. As
a convex combination, ¢ is always between ¢, and ¢,, and ¢, > ¢,
implies i > 0 > ij.

From the inequalities ¢, < ¢ < ¢, and the statement following
(134) about the accuracy of the linear model, it can be seen that if the
difference ¢. — ¢, is too large, then the original exponential curves
must be used to obtain reasonably accurate results. The steady-state
potential and current density for the small corrosion cell in Fig. 25a
using nonlinear polarization functions are shown in Fig. 27.

As Fig. 27 indicates, the error due to linearization can be consid-
erably greater for the current density than it can be for the potential.
Linearization error for the current density can be consequential since
the rate of corrosion depends on the current density. If the current
density obtained from the linear model is substantially lower than
its true value, then the actual corrosion rate will be severely over-
estimated and this will lead to overly optimistic guesses about, for
example, the lifetime of a metallic machine part. Therefore, it seems
advisable to work with the exponential model, especially when the
difference ¢ — ¢, is large. Since solving nonlinear equations may
be impossible or difficult to carry out manually, one might con-
sider the following approach based on Figs. 26 and 27. First, find the
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Figure 27. Nonlinear polarization functions and their linearizations
(case 1).

steady-state potential from the linearized model, i.e., (140). Second,
substitute the potential thus obtained in the original (nonlinear) po-
larization functions for each of the metals. And third, choose the
greater answer as an estimate of the steady-state current density.

We end the above discussion with a comment about the effect
of the conductivity of the electrolyte. It was assumed at the begin-
ning of this section that the potential over the entire surface of each
electrode is constant. Strictly speaking, that assumption is valid only
when the electrolyte conductivity is infinite, or its resistivity is zero.
In reality, of course, no electrolyte has zero resistivity. The results
obtained in (140) and (141) and Figs.26 and 27, however, are im-
portant and valuable because they provide worst-case (hence, safe)
approximations to practical corrosion situations.

We now turn to case 2 in Fig. 25b. Here too we shall assume the
dimensions of the cell are so small that each piece of metal has a
constant potential over its entire surface. Call them ¢ and ¢»,. Since
the two surfaces do not meet at a point on the electrolyte boundary,
we may not assume ¢ = ¢;. This is in contrast with case 1, and it
is necessary to take into account the conductivity or the resistivity of
the electrolyte as shown in Fig. 28.

If (i1, ¢1) and (iz, ¢2) are the steady-state current density and
potential pairs for metals 1 and 2 ,respectively, they must satisfy

i1= fe(@1),i2 = faldn),i1 +ir=0,¢1 — pr =riz, (142)
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ELECTROLYTE
Insulator
Metal 1 1 Metal 2

Figure 28. Electrolyte conductivity taken
into consideration for case 2.

where 7 is directly proportional to the resistivity of the electrolyte.
Eliminating i{ from (142), we find

b= —fo(d) = fa(g) = 2! :¢2. (143)

Equation (143) represents a system of three equations in the three
unknowns ¢1, ¢2, ir.

Unlike case 1, it is difficult to graphically solve for ¢, ¢o, is
using a two-dimensional graph, even if f. and f;, are linearized. We
then proceed to solve (143) analytically for the linear case. The re-
sult is

Te r+r,

= + , 144
¢1 r~|—i’a~|—l’c¢a r+ra+rc¢c ( )
v +re 7a
= + , 145
¢2 r~|—i’a~|—l’c¢a r+ra+rc¢c ( )
r+ry+re

As convex combinations, both ¢; and ¢, are between ¢ and ¢,.
A simple test shows that ¢ < ¢1; therefore ¢, < ¢ < @1 < ¢
and 0 < iy < imax, Where imgx is the current density corresponding
tor = 0. For » = 0, it follows that ¢; = ¢,. For r = oo, we get
¢1 = ¢¢, 2 = ¢4, and ip = 0 = iy. These results are shown in
Fig. 29.

Figure 29 is the counterpart of Fig. 26b for case 1. An equivalent
of Fig. 26a is not drawn here. Equations (144)—(146) are the coun-
terparts of (140) and (141). Even though cases 1 and 2 deal with
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A Ai=(d ¢, )/ (R(R+1))
Where R=r,

S/op e - rc

5= 1y

Figure 29. Steady-state potential and current for case 2.

different geometries, the effect of electrolyte resistivity is apparent
from a comparison between (139) and (142) and a comparison be-
tween Figs. 26b and 29. Note that if the electrolyte is not a very good
conductor, i.e., 7 > 0, then the corrosion current density will be less
than rpax.

As a precautionary measure it is common to assume that the
corrosion rate is maximum, that is, the cell current density equals
’max €ven when » > 0.

What was said earlier for case 1 about the effect of lineariza-
tion holds true here as well. It should be noted though that attack on
metal 2 is a maximum for the geometry in Fig. 25a. Therefore, con-
servative answers for the potential and current density for the present
case may be obtained from the results for case 1. For more accurate
answers, we can use (144) and (145) to find the potentials and then
substitute them in nonlinear (exponential) polarization functions to
find the current density.
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I. NEAR-FIELD TRANSDUCERS FOR HEAT-ASSISTED
MAGNETIC RECORDING

One application of near-field transducers (NFT) is in heat-assisted
magnetic recording (HAMR). HAMR is similar to conventional
magneto-optical (MO) recording in that the data are stored in mag-
netic bits on a disk by heating the area of the bit with a laser beam
in the presence of an external field to set the magnetic orientation
of the bit as it cools. The optical head in conventional MO record-
ing is mounted on an actuator and optical feedback signals are used
to maintain a constant spacing between the head and the recording
medium, which is generally on the order of tens or hundreds of
nanometers. Also, for conventional MO recording the applied mag-
netic field is very small (approximately 0.02 T), typically generated
by a large fixed external magnet, and the laser energy rather than the
magnetic field is modulated with the input data stream. On the other
hand, for HAMR the integrated optical-magnetic head is mounted

M. Schlesinger (ed.), Modelling and Numerical Simulations II,
Modern Aspects of Electrochemistry 44, DOI 10.1007/978-0-387-49586-6_2,
© Springer Science+Business Media LLC 2009
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on a slider, which flies over the surface of the recording medium at
10 nm or less. The applied field for HAMR is highly localized, very
large in magnitude (up to 1 T or more), and generated by a miniature
recording pole positioned within tens of nanometers of the optical
spot. For HAMR the magnetic field from the pole is modulated with
the input data stream, while the laser energy on the medium can
remain constant.

Conventional magnetic recording technology records magnetic
bits with down-track and cross-track dimensions less than 100 nm.
Areal recording densities of up to 400 Gb/in.> have been demon-
strated. Unfortunately, it is difficult with conventional recording
technology to achieve substantially larger densities. As the storage
density increases, the area of each bit decreases, but to maintain the
same level of signal-to-noise ratio, the number of magnetic grains
within each bit must not decrease. Therefore, greater areal densi-
ties require smaller magnetic grains. The magnetic grain diameter
is presently on the order of 10nm. As the volume of a magnetic
grain is reduced, it reaches a point where the magnetic orientation of
the grain becomes thermally unstable. Essentially, the average ther-
mal energy within the grain, which is proportional to kg 7', becomes
comparable to the magnetic anisotropy energy, KV, where kg is
Boltzmann’s constant, 7 is the absolute temperature, K, is the mag-
netic anisotropy constant of the grain, and ¥ is the volume of the
grain. This has been termed the “superparamagnetic limit” of mag-
netic storage density. Although it is possible to increase the stability
of the recording medium by increasing the magnetic anisotropy of
the recording material, eventually the applied magnetic recording
field from the recording head is insufficient to switch the magnetic
state of the medium. It requires new technologies to achieve areal
densities beyond this point. In HAMR the magnetic anisotropy of
the medium is momentarily reduced to enable recording by raising
its temperature. The recorded bit is then quickly cooled back to its
high-anisotropy state at ambient temperature to stabilize it. In this
manner, extremely high magnetic anisotropy materials such as FePt
can be recorded in a HAMR system, thereby potentially enabling
areal storage densities in the range of 1-40 Tb/in.?.!-2

At these storage densities, the recorded domains are only tens
of nanometers in length and width. Hence, the optical spot used to
heat the recording medium in HAMR must be an order of magni-
tude smaller than the optical wavelength of low-cost and high-power
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semiconductor lasers, which is in the range of 650-830 nm. A con-
ventional lens can only focus light to a spot size defined by the
diffraction of light from the clear aperture of the lens. The diffraction
limit for the focused optical spot is given by

0.5x

d= nsing’ M
where d is the full-width spot diameter at the half maximum point
(FWHM), A is the wavelength, n is the refractive index of the
medium in which the light is focused, and 6 is the half angle of
the cone of focused light. In other words, conventional optics are
able to focus light to a spot size of approximately a half wavelength.
For example, the new Blu-ray technology operates at a wavelength
of 405 nm and a numerical aperture (equivalent to 7 sinf) of 0.85,
which corresponds to a focused optical spot size of approximately
240 nm. Although this is a very small optical spot, it is still much
too large for use with HAMR. In a sense, HAMR replaces the dif-
ficulty of surpassing the superparamagnetic limit with the difficulty
of focusing light below the diffraction limit.

A solid immersion lens3(SIL) is a somewhat unconventional
focusing optic that is able to bring light to a focus inside a trans-
parent high-index material, resulting in a spot size that is n times
smaller in diameter than that for light brought to a focus in air by
a lens with the same numerical aperture, where n is the refractive
index of the SIL. Such an optic may be an essential part of a HAMR
disc drive. However, this spot size is still at least twice as large as
that required for a 1-Tb/in.? HAMR areal storage density. Therefore,
a HAMR disc drive requires a new approach for concentrating light
energy into a spot smaller than the diffraction limit. Such devices are
possible by making use of the “near field,” that is, by concentrating
energy that consists of both propagating and nonpropagating com-
ponents. Because the nonpropagating components are evanescent —
they decay exponentially with the distance from their source — the
NFT can only generate a sub-diffraction-limited spot within a dis-
tance that is much smaller than a wavelength. Fortunately, even in a
conventional disc drive, the recording head flies within 20 nm of the
recording surface, well within the near field of a HAMR transducer.

NFTs are becoming popular in various areas of spectroscopy
(e.g., surface-enhanced Raman spectroscopy with a lithographically
defined surface of gold or silver nanoparticles of various shapes).
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NFTs may also become useful for extremely high-density optical
lithography* and optical imaging.> However, the requirements for
the NFT in HAMR are substantially greater than those for NFTs
in spectroscopy, lithography, or near-field imaging. In all cases, the
NFT must concentrate optical energy into a spot much smaller than
the diffraction limit, or in the time-reversed sense, scatter or transmit
light from an optical region much smaller than the diffraction limit.
For HAMR, however, the efficiency of the NFT is also of primary
importance. A NFT which confines the light energy to a 20-nm spot
but which only conducts one part in 103 of the incident laser power
into this spot is not useful for HAMR even though it might work
for spectroscopy. To make use of low-cost, commercial semiconduc-
tor lasers for HAMR disc drives, the NFT coupling efficiency must
be approximately 5%. Although this may seem like a very small effi-
ciency, it should be remembered that the efficiency of light transmis-
sion through a near-field tapered optical fiber with a 50-nm aperture
is only approximately 0.001%.% Thus, the HAMR NFT must have a
power coupling efficiency into the recording medium that is orders of
magnitude greater than the transmission efficiency of tapered optical
fibers.

This immediately raises the question whether it is correct to
make a comparison between the transmission efficiency of a NFT
and its power coupling efficiency into a recording medium. Trans-
mission efficiency is a far-field property, while coupling efficiency
is a near-field property. Is it possible that a very tiny aperture with
a far-field transmittance of 107> could nevertheless in the near field
couple optical power efficiently into a recording medium? Are the
far-field and near-field properties of NFTs related and, if so, in what
way? Of course the far-field transmittance of a NFT is only defined
in the absence of a recording medium. When a recording medium
is placed within the near field of a transducer, does that significantly
affect the optical properties of the NFT itself? What is the best way
to judge the merit of a NFT?

In the literature for NFTs a variety of approaches have been
reported for judging the merit or efficiency of NFTs. One popular
efficiency measure is the value of the enhancement of the electric
field in the vicinity of the NFT relative to that of an incident plane
wave. Another figure of merit (FOM) is the amount of power that is
transmitted through a NFT aperture relative to the incident power on
the NFT integrated over the surface of the NFT aperture. This FOM
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assumes that the transmitted power (a far-field quantity) is directly
related to the near-field coupling efficiency of the transducer. It is
not simple to apply this FOM to NFT antennas. A sensible FOM for
HAMR is the power coupling efficiency, i.e., the ratio of the power
dissipated within the optical hot spot of the recording medium to the
total power in the incident beam. This FOM is generally somewhat
more difficult to compute than the other FOMs because it requires
an incident focused light beam with a well-defined power rather than
a simple incident plane wave.

With an appropriate FOM, it is possible to study, optimize, and
compare different NFT designs in detail theoretically.” The NFTs
can generally be categorized as either antennas or apertures, al-
though there are some NFT designs that incorporate aspects of both.
Several mechanisms can be identified in these different designs that
enhance the coupling efficiency of light into the recording medium.
For example, in most cases the NFT is chosen to support surface
plasmons that resonate in the incident optical field and thereby
greatly enhance the optical field amplitude in the near field of the
transducer. Often these NFT designs incorporate sharp tips to fur-
ther increase the field amplitude via the lightning rod effect. A small
gap between two regions of the NFT can be used to enhance field am-
plitudes via the dual-dipole effect. Other mechanisms are designed
for more efficiently funneling energy from the incident beam into
the active region of the NFT.

The outline of this chapter is as follows. In Sect. II we discuss
the modeling techniques employed in this study. In Sect. III the dif-
ference between the near field and the far field is considered and it is
argued that any FOM based on far-field quantities is not appropriate
for HAMR. Various FOMs are considered in Sect. IV as they relate
to HAMR. Several mechanisms that may be employed by NFTs for
enhancement of the coupling efficiency are discussed in Sect. V. In
Sect. VI these mechanisms are studied for a variety of transducer de-
signs and a FOM is used to compare them. Because both antennas
and apertures may be useful for HAMR, we discuss the relationship
between these different transducer approaches in Sect. VII. The re-
lationship between the far field and the near field, especially in so
far as far-field measurements may be used to characterize NFTs, is
discussed further in Sect. VIII. Finally, the means for efficiently illu-
minating the NFT is an important topic which we address in Sect. [X
in a discussion on photonic nanojets.
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II. MODELING TECHNIQUES

Analytical solutions for the electromagnetic fields can be obtained
for only a small set of physical objects which generally exhibit
some form of symmetry. A solution to the problem of the scatter-
ing of plane waves by spherical or ellipsoidal objects was found by
Mie.® Many useful insights can be obtained from this semianalyti-
cal theory and we make use of it in this chapter to discuss the local
field enhancement due to the surface plasmon resonance of metal-
lic spheres. However, in general it is not possible to study the wide
variety of NFT designs analytically. We have found that the scat-
tered field finite difference time domain (FDTD) technique’ is well
suited to our transducer studies. In this technique, the incident elec-
tric field is defined analytically throughout the computation space,
but the scattered field is computed numerically in the time domain at
specific points throughout the computational space on a Yee cell lat-
tice as shown in Fig. 1. As can be seen from this figure, the individ-
ual electric and magnetic field components are specified at different
points within each cell.

V4
| Hy(i,jK)
Hy(w TEZ(IvJ!k)
I Ey(i.i.K)
Ex(iJak)/)' _____ —_p —};
A gt

X

Figure 1. The finite difference time domain (FDTD)
computation space is composed of Yee cells which
define the locations of the electric and magnetic
field components on the cell edges and cell faces,
respectively.
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The Yee cells must be chosen sufficiently small that the nu-
merical approximation is accurate. In practice, for modeling surface
plasmon phenomena at optical wavelengths for highly conducting
metals, we have found that a cell size of (2.5nm)? is generally rea-
sonable. The cell size and the computational resources in turn limit
the size of the computation space. At the boundaries of the space,
appropriate boundary conditions must be implemented so that scat-
tered fields do not get reflected back into the computation space. For
the simulations in this chapter, we used either reradiating boundary
conditions or perfectly matched layers.!® The size of the Yee cell
also determines the maximum size of the time step which can be
used to avoid numerical instability. The Courant time!? is an up-
per limit on the step size, but in practice it is found that somewhat
smaller time steps are required for stability. Smaller Yee cells re-
quire shorter time steps. For plane wave scattering problems, it is
generally necessary to run the simulation for five or more complete
periods of the wave to reach nearly steady state conditions. At inte-
gral values of the time step the scattered electric field at each Yee
cell is updated from the incident electric field, the scattered electric
field, and the scattered magnetic field. At half-integral time steps
the scattered magnetic field is updated from the scattered electric
field. In the scattered field FDTD technique, as opposed to the total
field FDTD technique, the update equations are significantly more
complex for materials that include optical losses. We model metals
as Debye materials in the FDTD calculation with a separate set of
Debye parameters for each wavelength.

ITII. NEAR FIELD COMPARED WITH FAR FIELD

It is not unusual to find articles on NFTs that begin with the classic
result of Bethe!! for the far-field transmission efficiency of a circular
aperture. Bethe was able to solve analytically for the light transmit-
ted through a circular aperture in an infinitesimally thin perfectly
conducting sheet. He discovered that when the aperture diameter is
small compared with the wavelength of the incident light wave, the
transmission efficiency is given by

642\ [d\*
EE e
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Figure 2. Example of solid immersion lens illuminated beyond its cut-
off angle to illustrate the difference between far-field and near-field
properties.

where T is the ratio of the power per unit area transmitted through
the aperture to the power per unit area incident upon the aperture
and d is the diameter of the aperture. Obviously, the fourth-power
dependence on the ratio of the diameter to the wavelength causes the
transmitted power to fall drastically with aperture diameter. This dis-
couraging result convinced many people that it was impossible to ef-
ficiently conduct optical energy into volumes much smaller than A>.

However, it is not difficult to demonstrate that far-field measure-
ments are not necessarily a measure of near-field efficiency. Perhaps
the simplest example is to consider a SIL that is illuminated only for
angles greater than sin~!(1/n), where n is the index of refraction
of the SIL, as shown in Fig.2. In this case no light is transmitted
into the far field — it is all internally reflected at the bottom inter-
face of the SIL. This optical transducer would fare very poorly with
any FOM that is based on a far-field property. However, if any ob-
ject such as a recording medium is placed adjacent to this surface,
the light energy in a highly concentrated spot at the focus of the SIL
will be coupled into the medium. The near-field coupling efficiency
is not zero and in fact may be quite respectable. This simple exam-
ple, therefore, demonstrates that there is not necessarily a one-to-one
correspondence between far-field transmittance and near-field cou-
pling efficiency.

IV. FIGURES OF MERIT

How does one know if a particular NFT is promising for use in
a specific application? To optimize a particular NFT design or to
make comparisons between different NFTs, it is important to have a
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FOM. A variety of FOMs have been used in the literature to judge
the performance of NFTs. Examples include far-field transmittance,
peak field intensity in the neighboring medium, percent dissipated
power in the medium, and temperature rise in the medium. We shall
consider each of these in turn and discuss their advantages and
limitations.

1. Far-Field Transmittance

For a NFT that is an aperture, the simplest theoretical and ex-
perimental procedure for evaluating NFT efficiency is to calculate
or measure the far-field transmittance. The total power transmitted
through the aperture must be normalized in some manner. The in-
cident beam in a theoretical calculation is frequently a plane wave;
however, the incident power in a plane wave is infinite. Because only
a finite amount of power is transmitted through an aperture, the trans-
mittance of the aperture as a ratio of transmitted power to incident
power is exactly zero for a plane wave; therefore, the transmittance
of an aperture for a plane wave is not a useful FOM. However, there
is a finite amount of power in a plane wave in the cross-sectional area
of the aperture. A popular FOM is the ratio of the transmitted power
from a plane wave incident upon the NFT (or the absorbed power of
the medium next to the NFT) to the power/area of the plane wave
multiplied by the cross-sectional area of the aperture. For periodic
arrays of NFTs, the FOM is the ratio of the transmitted power to the
power/area of the plane wave multiplied by the area of a unit cell.
The power/area for a plane wave is

S = |§—§| (W/m2> , 3)

where Eq is the amplitude of the incident plane wave in volts per
meter and 7 is the impedance of the medium of propagation in ohms.

For free space,
n= KL ~3770. (4)
2

Unfortunately, as discussed in the previous section, it is easily
demonstrated that the far-field transmittance is not necessarily re-
lated to the near-field coupling efficiency for a NFT meant to be
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used for HAMR. Although this FOM may be appropriate for NFTs
designed for some applications, it is not appropriate for designing
or comparing HAMR transducers and will not be used in this study.

2. Peak Field or Field Intensity

Another common FOM in studies of NFTs is the ratio of the peak
electric field amplitude in the vicinity of the NFT to the electric
field amplitude of an incident plane wave. This is a particularly
appropriate FOM for designing NFTs for surface-enhanced Raman
scattering. The Raman signal from various organic compounds is
experimentally found to be enhanced by many orders of magni-
tude!>!3 when the organic molecules are attached to rough sil-
ver surfaces or to gold or silver nanoparticles of different shapes.
Because the Raman effect is a two-photon process, the intensity of
the scattered light is proportional to the fourth power of the elec-
tric field in the vicinity of the molecule. Indeed, the amplification
of the Raman spectrum is so large that individual molecules can be
detected.'* !5 By optimization of the NFT design for the greatest
field enhancement, arrays of NFTs on a substrate can be optimized
for surface-enhanced Raman scattering. On the other hand, the local
field enhancement of the NFT when it is suspended in free space or
some other dielectric medium is not a particularly appropriate FOM
for HAMR. This is because the field enhancement from a NFT in
free space can be significantly different from the field enhancement
in the presence of any metallic or lossy medium. This will be demon-
strated in the studies of triangle and bow-tie antennas discussed in
Sect. V.

The |E|? field intensity in a lossy medium is directly propor-
tional to the dissipated power. In particular,

1
Paiss = 7Re(0) [EI?, (5)
where o is the complex optical conductivity of the lossy material.

The optical conductivity is directly related to the complex optical
dielectric constant of the lossy material,

o — 1278 (i - 1) Qm)~!, (6)
A £0
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where c is the speed of light and & is the permittivity of free space,
8.854 x 10712 Therefore, the peak field intensity within the medium
normalized by the incident field intensity is closely related to the to-
tal power dissipation within the medium and can be a useful FOM
for HAMR studies of transducers. It will be used for the studies dis-
cussed in Sect. V. There are two disadvantages of this FOM, however.
First of all, the spatial distribution of the field intensity in the record-
ing medium can differ greatly for different NFTs. The total power
dissipated in the medium is proportional to the |E|* field intensity
integrated over the volume of the medium, not just the peak |E|?
at some point within the medium. A second issue with this FOM
is more subtle. The peak field intensity in the incident beam is a
function of the wavelength and polarization of the incident focused
beam. If two NFTs couple light into a medium with the same peak
|E|> FOM, but at two different wavelengths, then the NFT which
operates at the shorter wavelength will be more efficient at coupling
power into the medium. At the shorter wavelength, the focusing op-
tics will generate a smaller spot with dimensions proportional to A2.
Therefore, for the same peak field amplitude of the incident beam,
there is more optical power in the vicinity of the transducer at the
shorter wavelength to be coupled into the medium. An alternative
way of looking at this is that for a given optical power in the incident
beam, the field intensity at the focus of the beam is proportional to
1/12. Therefore, shorter-wavelength operation of a NFT is an advan-
tage. This factor is not explicitly taken into account in a FOM based
solely on |E|2.

3. Percent Dissipated Power in the Recording Medium

Although every FOM has certain advantages and disadvantages,
one of the best optical FOMs for HAMR is based on the total
optical power dissipated within a certain region of the recording
medium. Once a calculation has been performed for the electric field
around the NFT and within the medium, it is straightforward to ap-
ply (5) to determine the dissipated power within any region of the
computational space. This FOM does account for the wavelength
dependence of the focused spot. For high-density HAMR storage,
the bit cell will be smaller than 50 nm. Therefore, the NFTs consid-
ered in Sect. V will be evaluated on the basis of the percentage of the
power in the incident beam that is dissipated within a circular area
of 50 nm in diameter in the recording medium.
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4. Temperature Rise in the Recording Medium

Finally, if the thermal properties of the recording medium are known,
then thermal models may be applied to convert the dissipated power
within the medium into a corresponding temperature profile. The
FWHM size of the thermal spot and its peak temperature for a given
input optical power to the transducer are directly related to the capa-
bility of the NFT for HAMR. Because this FOM depends on the spe-
cific thermal properties of the multilayer film stack in the recording
medium, and these properties are often not known with precision,
this FOM is of limited usefulness.

V. MECHANISMS FOR ENHANCEMENT
OF THE FIGURE OF MERIT

As mentioned in Sect. I, there are several different mechanisms that
operate in a well-designed NFT for enhancing the FOM. For the pur-
poses of this article either the peak |E|? intensity in the medium or
the dissipated power in the medium will be chosen as the FOM for
studying these enhancement mechanisms for HAMR. Depending on
the specific NFT design, the order of importance of these mecha-
nisms may vary, but in general the best NFTs will combine most or
all of these mechanisms. The ones we will consider in this section
are localized surface plasmon resonance (LSPR), the lightning rod
effect, and the dual-dipole effect.

1. Localized Surface Plasmon Resonance

Small metallic particles are well known to exhibit LSPRs.!® Sur-
face plasmons are collective excitations of surface charge which
under suitable conditions can be excited by an external optical
field. Localized surface plasmons (LSPs) are oscillations of surface
charge on a finite structure with fields that decay exponentially from
the surface of the structure in both directions normal to the surface.
The structure may be composed of a metal surrounded by a dielec-
tric, or it may be composed of a dielectric surrounded by a metal.
Examples include metallic nanoparticles and nanobubbles embed-
ded in metals. Nanoholes in metal films also support LSPRs even
though a hole is not entirely surrounded by the metal film. The
surface plasmon resonance wavelength is determined by the size,
shape, and material of the structure and the surrounding medium.
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Figure 3. The extinction coefficient and the peak |E 12 field intensity
at the surface of a 60-nm gold sphere for an incident plane wave of
unit amplitude are computed from Mie theory using the refractive
indices from references.!%20

At resonance, the nanoparticles absorb the incident optical energy
much more efficiently and generate enhanced electric fields at their
surfaces from the oscillating surface charge. The enhanced absorp-
tion from LSPR of silver and gold nanoparticles embedded in glass
has been used since medieval times to make stained glass windows
with yellow and red colors.!” In Fig. 3 the extinction coefficient for
a 60-nm gold sphere is shown calculated from Mie theory® '® and
graphed along with the electric field intensity at the surface of the
particle. The LSPR is observed at approximately 550 nm by the peak
in both the extinction coefficient and the field intensity at the surface.
It should be noted that the peak |E|? field intensity at the surface of
the sphere is more than 70 times larger than the field intensity of the
incident plane wave. A plot of the field intensity in the neighborhood
of the sphere is shown in Fig. 4.

The resonance wavelength of LSPs is determined in part by the
refractive index of the surrounding medium. This is illustrated in
Fig. 5 by plotting the peak field intensity for the 60-nm gold sphere
versus wavelength for several different surrounding dielectrics. As
the index of the dielectric increases, the resonance shifts towards
longer wavelengths.
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Figure 4. Contour plot of the field intensity in the xy plane of a
60-nm gold sphere embedded in a dielectric of index 1.5 when
excited by a plane wave of unit amplitude which is polarized
along the x axis at a wavelength of 550 nm. The points in the
plane are computed with an increment of 1 nm.
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Figure 5. Effect of the surrounding dielectric index on the surface
plasmon resonance wavelength of a 60-nm gold sphere. Increasing
the dielectric index shifts the resonance to longer wavelengths and
enhances the peak field intensity.
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Although a nanosphere is an excellent structure for illustrating
the surface plasmon resonance enhancement of electric fields, it is
not a particularly well designed NFT for HAMR. A better NFT for
HAMR is the triangle antenna. This structure, which can also be con-
sidered to be a nanoparticle, exhibits a LSPR. A plane wave incident
upon the triangle antenna and polarized along its length can drive
surface currents back and forth along the antenna. For appropriate
antenna dimensions, the antenna becomes a resonant structure of os-
cillating surface currents which is a LSPR. As previously stated, it is
not possible to compute the resonance fields analytically or semiana-
lytically for most NFT structures, which have much lower symmetry
than spherical nanoparticles. Therefore, in this article such calcu-
lations were carried out with the scattered field FDTD numerical
approach.® 102! In the FDTD calculation a plane wave of unit am-
plitude is incident onto the triangle antenna propagating in the —z
direction. A plot of the peak |E|? at the tip of a triangle antenna ver-
sus wavelength is shown in Fig. 6. The LSPR occurs at a wavelength
of 775 nm. At this wavelength the peak field intensity, as computed
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Figure 6. Peak field intensity at the tip of a gold triangle antenna
embedded in free space versus wavelength for excitation by an inci-
dent plane wave of unit amplitude polarized along the length of the
antenna. The antenna has an apex angle of 45°, a length of 200 nm,
and a thickness of 80 nm.
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Figure 7. Local field intensity for a gold triangle antenna with a
length of 200 nm, radius of curvature at the apex of 20 nm, apex
angle of 45°, and thickness of 80 nm. The incident plane wave of
unit amplitude is polarized along the x axis. The FDTD cell size is
2.5 nm).3

by FDTD with a cell size of (2.5nm),’ is enhanced by over a fac-
tor of 120! The field intensity at this wavelength is plotted in the xy
plane through the center of the antenna in Fig. 7, showing that the
peak field intensity occurs at the edge of the apex of the antenna
as would be expected from the lightning rod effect (to be discussed
in the next section). A plot of the field intensity along the x axis
through the center of the apex in Fig. 8§ demonstrates the characteris-
tic exponential decay of the field strength on either side of the edge
of the antenna.

The LSPR is also affected by the dimensions of the nanopar-
ticles. In Fig.9, the peak intensity is plotted for the triangle an-
tenna versus the length of the antenna. The moral of the story is
that if NFTs are designed properly, their dimensions, their opti-
cal properties and those of the surrounding materials will all be
chosen so as to maximize the field enhancement in the recording
medium by operating at the resonance of the LSP. Although the iso-
lated nanoparticles considered in this section give theoretical field
intensity enhancements of over 2 orders of magnitude, it should



Near-Field Optics for Heat-Assisted Magnetic Recording 69

RT1: |EJ® through apex

100 :
80 =
‘é‘ \
E
io] 60 i
£ i
= .
L 04|
o~ |
I 5
204+ | \
B2
| --‘---_--—_‘————
0 . T
20 0 20 40 60 80 100

X Axis (nm)

Figure 8. Field intensity computed along the x axis of the triangle
antenna in Fig. 6 showing the exponential decay characteristic of the
field from surface plasmons. The decay for negative x into the gold
antenna is of course much faster than the decay into the surrounding
dielectric.
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Figure 9. Field intensity at the apex of the triangle antenna as a func-
tion of the antenna length computed for plane wave excitation at a
wavelength of 775 nm.
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be remembered that these values are not very relevant to HAMR.
When the NFTs are in the presence of lossy metallic materials like
the recording medium, the field within the medium is shielded and
greatly reduced. Moreover, the power absorption of the medium
greatly reduces the Q of the resonance, leading to much smaller field
enhancements.

2. Lightning Rod Effect

The lightning rod effect refers to the well-known fact that sharp
metallic objects tend to generate very large localized fields.?>23
Electric field lines must terminate normally to the surface of a per-
fect conductor. This effect tends to concentrate the field lines at any
sharp points of highly conducting materials.?*This is a shape effect,
not a resonance effect, and therefore does not have any particu-
lar wavelength dependence. It may or may not be associated with
a LSPR. For example, as a spherical gold nanoparticle is pulled
into an ellipsoidal shape, the LSPR splits into resonances at two
different wavelengths. One of the resonances shifts towards shorter
wavelengths with increasing obliquity and one shifts towards longer
wavelengths. The longer-wavelength resonance corresponds to sur-
face charge oscillating along the long axis of the ellipsoid and it is
found that the fields at the tips of the ellipsoid at the resonance get
stronger as the end of the ellipsoid gets narrower and sharper.?> This
effect is shown in Fig. 10. The lightning rod effect can generate ex-
tremely large field enhancements.

The triangle antenna also provides an excellent illustration of
the lightning rod effect. In this case the FDTD technique is used to
compute the fields at the apex of the antenna as the radius of curva-
ture at the apex is varied. All calculations are carried out with a cell
size of (2.5nm).3 The results are graphed in Fig. 11. The peak field
at the apex for this particular antenna design and within the accuracy
of the FDTD calculation is somewhat smaller than the absolute peak
field as can be seen from Fig. 7. Clearly it is beneficial to design the
NFT with a sharp point(s) to both enhance the field intensity and
localize it within the recording medium.

A contour plot of the field intensity for the antenna with a 5-nm
radius of curvature is shown in Fig. 12 for comparison with the plot
for a 20-nm radius of curvature in Fig. 7.

The strong effect on field enhancement of the lightning rod ef-
fect leads directly to a remark which, although obvious, nevertheless
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Figure 10. Field enhancement at the tip of a prolate spheroid as a function
of its aspect ratio.
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Figure 11. Peak field intensity at the apex of a triangle antenna ver-
sus radius of curvature. The antenna is 200 nm long, 80 nm thick,
with a 45° apex angle. The incident plane wave has a wavelength of
775 nm.
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Figure 12. Local field intensity for a gold triangle antenna with a
length of 200 nm, radius of curvature at the apex of 5nm, apex
angle of 45°, and thickness of 80 nm. The incident plane wave of
unit amplitude is polarized along the x axis. The FDTD cell size is

(2.5nm).3

seems to be often neglected in the literature. In particular, the peak
field intensity is also necessarily a function of the cell size used in
the numerical simulation. It is well known that the electric field am-
plitude at the edge of a semi-infinite perfectly conducting straight
edge has a logarithmic divergence.?°If this were modeled numeri-
cally with a finer and finer mesh, the peak field amplitude would
be found to continuously increase. Therefore, when comparisons are
made between different NFTs using numerical calculations of peak
field amplitude, care should be taken to ensure that the same numer-
ical algorithm and same cell size are being employed in the compar-
ison. Otherwise the results are meaningless.

3. Dual-Dipole Resonance

A third technique for field enhancement is the dual-dipole effect. In
this case, two resonant particles are brought close enough together
to interact with each other. In the gap region between the two parti-
cles, the field can become much more intense than that from either
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DS1, DS1b: Dual 60 nm Gold Spheres with 10 nm Gap
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Figure 13. Peak field intensity in the 10-nm gap between two 60-nm—
diameter gold spheres for two different background dielectric indices.

particle separately. As a simple example, we first consider the case
of two 60-nm gold particles with an incident plane wave polarized
along the axis connecting them. The peak field intensity is plotted
versus wavelength for a 10-nm gap between the spheres in Fig. 13.
There is clearly a resonance wavelength at 650 nm for excitation of
the LSPs on the spheres. The field intensity distribution at this wave-
length is plotted in Fig. 14. The peak field intensity of approximately
1,200 is in the region between the two spheres. The peak field inten-
sity in the gap between the spheres is plotted versus gap distance in
Fig. 15. The intensity falls very rapidly with increasing gap distance.

VI. COMPARISON OF NEAR-FIELD TRANSDUCERS

In this section the results of the previous two sections are com-
bined to compare several NFT designs that have been suggested
for use in data storage. In particular, the triangle antenna and the
bow-tie antenna are compared with the circular aperture, the tapered
rectangular aperture, the bow-tie aperture, and the C aperture. All
NFTs are illuminated by a highly focused beam using a SIL with a
refractive index of 1.5 to obtain an optical spot size with dimensions
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Figure 14. Field intensity distribution at resonance for the dual gold
spheres showing the large field enhancement in the gap between the
spheres.
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Figure 15. Field intensity in the gap between dual gold spheres as a
function of gap distance for a background dielectric with index 1.5
at a wavelength of 650 nm, and a background dielectric with index
1.0 at a wavelength of 525 nm.



Near-Field Optics for Heat-Assisted Magnetic Recording 75

of 0.491 x 0.38A as calculated using the stationary-phase approxi-
mation in the Richards—Wolf theory.?’A simple recording medium
consisting of 10 nm of cobalt laminated to a 100-nm gold heat sink
is placed 7.5 nm below the NFT. The separation distance of the NFT
from the medium is determined by several considerations. At terabit
per square inch storage densities, the down-track distance between
magnetic transitions is only approximately 10-15nm. With such
small spacing between transitions, it is necessary for the magnetic
reader to fly extremely close to the surface of the medium. More-
over, the fields generated in the medium by the NFT are primarily
evanescent fields. If the medium is spaced too far from the NFT, the
amplitude of these fields is too small to couple power efficiently.

As previously demonstrated, an efficient NFT should make use
of a LSPR effect. This effect requires a metallic surface that is
highly conductive at optical frequencies. There are relatively few
metals that satisfy this criterion. Silver and aluminum can support
LSPs throughout the visible region. Gold and copper can sup-
port LSPs in the near infrared region and slightly into the red region
of the visible spectrum. These elements and their alloys are the only
reasonable choices for NFTs in device applications. However, pure
silver, copper, and aluminum all have problems with corrosion. This
leaves gold as the material of choice for the NFT and, therefore,
gold is used for all NFT comparisons in this section.

The FOM for making the NFT comparisons is the peak field in-
tensity within the recording medium. The FWHM of the spot size
within the top layer of the recording medium is required to be 50 nm
or less for a realistic HAMR storage device at terabits per square
inch densities. The minimum dimension allowed within the NFT
structure is 20 nm for all NFTs. This ensures that no NFT design
is given an “unfair” advantage in the comparison by making use of
the lightning rod effect to a greater extent than the other designs. The
cell size in the FDTD calculations is (2.5nm).> With these restric-
tions, it is possible to make reasonable comparisons of the NFTs.
However, it should be remembered that if the desired FWHM opti-
cal spot size within the transducer is specified, then a better FOM is
the dissipated power within this area.

1. Circular Aperture

The circular aperture in an opaque film is the simplest NFT. It has
traditionally been given a poor rating as a NFT based in large part on
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Figure 16. Circular-aperture near-field
transducer and recording medium.

the discouraging far-field transmittance of such apertures as found
both theoretically®and experimentally.® However, as has been previ-
ously discussed, the far-field transmittance of an aperture does not
necessarily correlate to its near-field power coupling efficiency. The
geometry of this NFT is shown in Fig. 16.

The peak field intensity in the medium exhibits a LSPR and
a maximum value at a wavelength of approximately 650nm re-
gardless of hole diameter as shown in Fig. 17. Unfortunately, there
are two problems with this NFT. The peak field intensity within
the medium is extremely small and the dissipated power within the
medium spreads over an area that is much larger than the hole, as
shown in Fig. 18. On the other hand, the dissipated power within a
50-nm-diameter cylinder in the medium is 0.14%, which is much
larger than the value of 107> that might be expected for the far-field
transmittance based on the theory of Bethe.® By filling the hole with
a high-index dielectric, one can reduce the optical spot size and in-
crease the field intensity in the medium.

2. Tapered Rectangular Aperture

The efficiency of the circular aperture can be improved significantly
by tapering the side walls. Moreover, because the circular aperture
produces an oblong dissipated power spot along the direction of
the incident polarization as shown in Fig. 18, it makes sense to widen
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Figure 17. Peak field intensity in the recording medium versus wavelength
for circular apertures of various diameters. The gold film is 40 nm thick.
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Figure 18. Field intensity within the recording medium for a circular aper-
ture in a gold film with a 40-nm diameter and a thickness of 50 nm.
(Reprinted from Ref. [7]. Copyright 2006 with permission from the In-
stitute of Pure and Applied Physics.)
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Figure 19. Tapered gold rectangular aperture. The aperture is filled
with the glass of the solid immersion lens with refractive index 1.5.
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Figure 20. Field intensity in the medium versus wavelength for the
tapered gold rectangular aperture.

the aperture in the orthogonal direction to obtain a more circular dis-
sipated power spot in the medium. This can be easily accomplished
with a tapered rectangular aperture as shown in Fig. 19. Further-
more, if the aperture is filled with a high-index material, like the
glass of the SIL, additional optical power can be concentrated within
the aperture.

The peak field intensity within the recording medium as a func-
tion of wavelength is shown in Fig. 20 for several different aperture
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Figure 21. Cross section of the field intensity in the medium for the
20nm x 40nm rectangular aperture in a 50-nm-thick gold film.

dimensions. The 20 nm x 40 nm rectangular aperture in the 50-nm-
thick gold film with a 45° slope to the side walls generates the largest
field intensity in the medium at a wavelength of approximately
650 nm. The field intensity within the medium is shown in Fig. 21.
The total power dissipated in the central 50 nm of the medium is
0.92%. Moreover, the optical spot within the medium is smaller than
the desired 50-nm FWHM. This is a substantial improvement over
the air-filled circular aperture with straight side walls.

3. Bow-Tie Aperture

An aperture in the shape of a bow tie, also called a “bow-tie slot an-
tenna” is shown in Fig. 22. This aperture is essentially a rectangular
aperture with a constriction in the center. When it is illuminated with
light polarized across the gap as shown in the figure, a LSPR is ex-
cited which oscillates surface charge into the two tips in the center.
The sharpened tips enhance the field strength in this region via the
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Figure 22. Bow-tie aperture.

lightning rod effect. Moreover, the two tips separated by a small gap
provide field enhancement via the dual-dipole effect. Therefore, all
three field-enhancement mechanisms are present in this NFT.

With so many dimensions to specify for this aperture, the opti-
mization process is lengthy. Variation of the length of the aperture
with wavelength indicates an optimum length of 300 nm or greater
although the LSPR wavelength is approximately 800 nm and only
weakly dependent on aperture length. Variation of the aperture width
gives a similar result for the optimum value and the optimum thick-
ness is approximately 80 nm. As the gap is made narrower, the field
intensity increases in the gap via the dual-dipole effect. There is
some variation in efficiency with apex angle, but values in the range
of 60°-90° are good.

The wavelength dependence of the peak field intensity in the
medium is plotted in Fig. 23 for an aperture with a length of 300 nm,
a width of 290 nm, a thickness of 80 nm, a gap of 20 nm, and an apex
angle of 90°. There is a narrow LSPR at 725 nm. The field intensity
in the medium at this wavelength is plotted in Fig. 24. The FWHM
optical spot size in the medium is somewhat larger than the desired
50nm. The percentage of power delivered to a 50-nm cylinder in
the medium is 1.7%. This NFT is not as successful at confining the
optical energy as some of the other designs.
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Figure 23. Peak field intensity in the medium versus wavelength for
a bow-tie aperture with dimensions given in the text.
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Figure 24. Field intensity from the bow-tie aperture in the medium at a
wavelength of 725 nm. (Reprinted from Ref. [7]. Copyright 2006 with per-
mission from the Institute of Pure and Applied Physics.)
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4. C Aperture or Ridge Waveguide

Next, the C aperture or ridge waveguide is considered. The C aper-
ture was originally proposed by Shi et al.?® but they originally con-
sidered apertures in perfectly conducting metal films in the absence
of a recording medium and for an incident plane wave. Although
these calculations indicated 3 orders of magnitude greater field in-
tensities from the C aperture than from a square aperture, these re-
sults are not directly relevant for HAMR. Many additional studies
have been made which include the effects of real metals and focused
incident beams.?*3*The C aperture is shown in Fig. 25.

The ridge waveguide is a well-known geometry for transporting
microwaves. Like the bow-tie aperture, the C-aperture length can be
less than the cutoff dimension for a rectangular aperture. For a rect-
angular aperture in which the incident field is polarized parallel to
the short dimension, the field amplitude tends to zero at the short
edges of the aperture and is maximum in the central region. The
ridge in the center of the C aperture squeezes the field and thereby
further enhances the field strength between the ridge and the oppo-
site side. This can also be considered a dual-dipole effect, where
the opposite side serves as an image surface to the ridge. For a C
aperture in a real metal there is also a LSPR. Finally, the ridge it-
self enhances the field via the lightning rod effect. Therefore, this
NFT also makes use of all the field-enhancement mechanisms. Prop-
agating surface plasmon polaritons can be excited between the bot-
tom of the SIL and the aperture. In principle these surface plasmons
may siphon energy away from the LSP within the aperture, thereby
reducing the coupling efficiency. However, with clever engineering
these surface plasmons can actually be made to contribute additional
energy to the LSP34

tongue width
l gap width

incident aperture I_I v
polarization width
T aperture ?
length

Figure 25. Dimensions of the C aperture.
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Figure 26. Peak field intensity in the medium versus wavelength for the
C aperture. The results are plotted for an aperture filled with air (n = 1)
and an aperture filled with glass (n = 1.5).

There are again many dimensions to be optimized for this NFT.
A length of approximately 300 nm is found to be near optimum. The
LSPR occurs at approximately 700 nm and the width is optimized
at 55 nm for a ridge that is 20 nm wide and has a gap of 20 nm. The
optimum thickness is approximately 100 nm. The wavelength depen-
dence of the field intensity in the medium is shown in Fig. 26. As the
index of the material inside the aperture increases, the resonance is
found to shift towards longer wavelengths. A plot of field intensity
within the medium in Fig. 27 shows that the light is very well con-
fined. This NFT delivers 2.1% of the incident power into the central
50-nm region of the recording medium.

5. Triangle Antenna

Antennas have also been proposed as NFTs for HAMR. The sim-
plest antenna design may be the triangle, as shown in Fig. 28. The
lightning rod effect was demonstrated in Sect. IV.2 for a triangle an-
tenna in free space. This antenna also exhibits a LSPR. It does not
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Figure 27. Field intensity within the medium from the C aperture. (Reprinted
from Ref. [7]. Copyright 2006 with permission from the Institute of Pure and
Applied Physics.)

apex angle

length

— =

tip width

Figure 28. Dimensions for the triangle
antenna.

make use of the dual-dipole effect for field enhancement. When the
antenna is adjacent to a lossy metallic recording medium, however,
it behaves very differently. The LSPR wavelength is a very sensitive
function of antenna length. A length greater than 150 nm places the
resonance at wavelengths greater than 900 nm. A 100-nm antenna
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Figure 29. Wavelength dependence of field intensity and dissipated
power in the medium from a 100-nm-long triangle antenna with a 30°
apex angle.

has a resonance at a wavelength of approximately 800 nm. Confine-
ment of the optical spot is difficult to achieve, however, with large
apex angles, so an apex angle of 30° is chosen. The wavelength
dependence of the peak field intensity in the medium is shown in
Fig. 29 for a 100-nm-long antenna that is 50 nm thick. Although the
LSPR occurs at 750 nm, the field intensity within the medium is not
confined, as shown in Fig.30. By operating the antenna at shorter
wavelengths, one obtains better field confinement at the expense of
field intensity, as shown in Fig. 31. The dissipated power within the
medium at a wavelength of 650 nm is approximately 1.1%. However,
the field intensity in the medium tends to spread out away from the
tip of the antenna even at this wavelength.

It is interesting to compare these results with calculations of
the triangle antenna in free space. Plots of the extinction, scatter-
ing, and absorption cross sections for the 100-nm triangle antenna in
free space along with the peak field intensity at the apex are shown
in Fig.32. The resonance occurs at 675nm, significantly shifted
from the resonance wavelength in the presence of the medium. The
peak field intensity occurs at the apex of the antenna, and is clearly
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Figure 30. Field intensity in the medium from a 100-nm-long triangle
antenna with a 30° apex angle at a wavelength of 750 nm. (Reprinted
from Ref. [7]. Copyright 2006 with permission from the Institute of Pure

and Applied Physics.)
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Figure 31. Field intensity in medium from a 100-nm-long triangle antenna
with a 30° apex angle at a wavelength of 650 nm.
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substrate as a function of wavelength. The peak |E 2 field intensity versus
wavelength is also plotted.

Figure 33. “Beaked” triangle antenna.

not useful for predicting the distribution of dissipated power in the
medium. This clearly exhibits the unreliability of using peak field in-
tensity for an antenna or aperture in free space as a FOM for HAMR.

One way in which the problem of lack of confinement of the
coupled power to the medium can be solved is to cant the antenna
so that only the tip is close to the medium. Another approach is to
add a small “beak” at the end of the antenna as shown in Fig. 33.3
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BK4_725: 50 nm thick beaked triangle antenna
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Figure 34. Field intensity in the medium from a beaked triangle antenna at
725 nm. (Reprinted from Ref. [7]. Copyright 2006 with permission from the
Institute of Pure and Applied Physics.)

If a beak with a 20-nm width, length, and height is added to the
triangle antenna, then the resonance wavelength is slightly shifted
to 725 nm, but the field intensity within the medium at resonance is
much better confined, as shown in Fig. 34. The dissipated power in a
50-nm cylinder in the medium is 2.9%.

6. Bow-Tie Antenna

The bow-tie antenna was first proposed as a NFT by Grober et al.3¢
In the microwave frequency range, the bow tie is a well-known an-
tenna design. As shown in Fig. 35, the antenna is composed of two
triangular metallic plates with a narrow gap between them. This NFT
is the complement of the bow-tie aperture. All three NFT enhance-
ment mechanisms are clearly present in the design. Optimizing the
antenna design proceeds along lines similar to those for the triangle
antenna. An antenna that is 200 nm long, 50 nm thick, with a 20-nm
gap, 20-nm apex width, and 30° apex angle exhibits two LSP res-
onances at approximately 625 nm and 750 nm as shown in Fig. 36.
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Figure 36. Field intensity in the medium and dissipated power versus
wavelength for the bow-tie antenna.

As in the case of the triangle antenna, however, the long-wavelength
resonance with the highest field intensity corresponds to an uncon-
fined spot, as shown in Fig.37. The shorter-wavelength resonance,
on the other hand, does generate a small spot in the medium, as
shown in Fig. 38, and delivers 1.9% of the incident optical power
to the medium at a wavelength of 625 nm. Again, to obtain a con-
fined spot at the peak of the resonance curve, the bow-tie antenna
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Figure 37. Field intensity in the medium for a bow-tie antenna at a wavelength
of 750 nm.
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Figure 38. Field intensity in the medium for a bow-tie antenna at a wave-
length of 625 nm.
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BTG30B_750: 20° cant, 200 nm long
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Figure 39. Field intensity in the medium for a bow-tie antenna canted at 20°
at a wavelength of 750 nm.

can be canted so that only the high-field region between the tips is
in close proximity to the medium. A 20° cant of the two antenna
halves generates a much smaller spot at the resonance wavelength of
750 nm, as shown in Fig. 39. The canted bow tie delivers 2.1% of the
incident power into the central 50 nm of the medium.

VII. ANTENNA AND APERTURE RELATIONSHIP

In the earlier sections we considered different near-field structures.
These structures were one of three types: apertures, antennas, and
hybrid structures. The apertures have a finite dielectric opening in a
metal thin film. The resonant near field of interest is located within
and in the vicinity of the opening. Antennas are finite metallic struc-
tures located in an infinite dielectric region. The resonant near field
of antennas is located around the metallic structure. Then there are
hybrid structures such as a metal-coated, tapered optical fiber, which
on one hand do not have an aperture and on the other have metal
going to infinity. In such hybrid structures, the fact that the metal
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goes to infinity is not important. In fact, the resonant field of interest
is in a geometrically localized region around the metal — the region
around the tip in the case of the tapered fiber. If the metal is ter-
minated at a certain distance (a distance on the order of the decay
length of the associated surface plasmons), the field in the geometri-
cally localized region does not change. Thus, these hybrid structures
can be converted into an aperture or an antenna structure without
considerably altering the physics of the near field. Thus, we assume
that all the near-field structures of our interest are either of the aper-
ture or of the antenna type. The calculation of the cross sections goes
along different lines for the two types. Hence, this classification is
needed.

If we interchange the dielectric in the aperture opening and
the thin film metal, we get a complementary structure, which is an
antenna. Is there any relation between the resonance properties of
the two structures? If we assume that the aperture metal film is in-
finitesimally thick, and that the metal is a perfect electrical conduc-
tor (PEC), the aperture and the complementary antenna structure are
connected by a form of Babinet’s principle. Suppose that the aper-
ture is illuminated by an incident electric field ;. The interaction
with the aperture will set up a total electric field E1. Now, suppose
that the complementary antenna structure is illuminated by an inci-
dent magnetic field that is vectorially equal to the incident electric
field in the aperture case. Thus, the incident magnetic field in the
antenna case is E In this case, let H, be the total magnetic field.
The particular form of Babinet’s principle states that

E1+I§2=Ei. (7

Of course, in the case of a real metal film that is not infinitesimally
thick, the principle is not expected to be perfectly satisfied.

VIII. NEAR-FIELD AND FAR-FIELD RELATIONSHIP

It is difficult to design experiments to characterize the near field of
the structures. Any probe such as the scanning near field optical
microscope, which probes the near field directly, could end up al-
tering the structure of the near field. This could have an effect of
shifting the wavelength of the desired resonance. Experiments that
account for the light radiated in the far field can also be designed.
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But then, is the amount of far-field radiation a good measure of the
near-field enhancement? We discuss this connection in the following
section.

The source of radiation, in the classical electromagnetic theory,
is an accelerated charge. For time-harmonic fields, electrical current
serves as the source. There is a considerable amount of literature
on the radiation properties of apertures and antennas at radio and
microwave frequencies. At these frequencies, the penetration of the
fields into a metal is small. Thus, it is frequently quite acceptable to
model these structures by assuming the metals are PECs. At opti-
cal frequencies, a significant portion of the incident energy can be
dissipated in the metal. In addition, typical metals exhibit surface
plasmon resonances at optical frequencies. Associated with a sur-
face plasmon is an oscillating charge distribution on the surface of
the structure, localized within the skin depth of the metal.

In the absence of sources outside a closed surface, the tangential
electric and magnetic fields on the surface uniquely define the field
distribution outside the surface. In particular, the tangential fields
can be interpreted as electric and magnetic currents on the surface.
The equivalent currents replace the physical sources.’” The fields
generated by the physical and the hypothetical sources are the same
outside the surface. Inside the surface the field due to the hypothet-
ical sources is zero. This theorem is used to calculate the far-field
radiation pattern from the near-field FDTD simulation. We apply the
theorem in the special case of the region outside the surface being
a homogeneous dielectric medium. In FDTD simulations the infi-
nite domain is converted into a finite computational domain using
matching boundary conditions. This is true even in the case of strat-
ified media (e.g., thin film structures) that extend to infinity. Thus, in
the rest of the discussion, we assume that the domain of interest is
infinite.

Figure 40 shows a scatterer embedded in a hypothetical closed
surface. The surface currents are defined on the closed surface. The
equations that connect the surface currents to the tangential fields
and govern the radiation from the currents can be found in the pop-
ular FDTD texts.!?

The Poynting vector has units of power per unit area. When the
normal (outward) component of the Poynting vector is integrated
over a closed surface, it represents the electromagnetic power leav-
ing the surface. For monochromatic fields the Poynting vector oscil-
lates harmonically about a direct-current offset. The frequency of the
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Figure 40. Scattering geometry.

oscillation is twice that of the oscillating fields. The average value
of the Poynting vector over an oscillation period is the measure of
the net power flow across the surface in one direction. In lossless
regions, the divergence of the Poynting vector is zero. Thus, in ac-
cordance with the Gauss divergence theorem, if we choose a closed
surface in a lossless region, the surface integral of the energy flux is
zero. The arbitrariness in the choice of the surface in the equivalence
theorem does not change the net energy flux through the surface. Let
the time-harmonic electric and magnetic field (at frequency w) at a
point be given by

E = Eo exp (—iwt) 8)
and R -
H = H, exp (—iwt), 9

respectively. The vector quantities E, and H, contain the amplitude
and phase information, and are hence complex. The time-averaged
Poynting vector is given by

- 1 .
<§>=3Re (EO x H;). (10)

Here, Re and * stand for the real part and complex conjugation,
respectively. In the rest of the discussion we will only be interested in
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the time-averaged Poynting vector for monochromatic radiation. The
only aspect of (10) that we carry forward is the linear dependence of
the Poynting vector on the electric and magnetic fields. Hence, we
simplify the notation by dropping the angular brackets and the sub-
script o on the fields. We represent the bilinear form by

— (E, H). (11

Henceforth, Poynting vector refers to the time-averaged Poynting
vector.

The fields E and H can be decomposed into the incident field
(indicated with subscript i) and the scattered field (indicated with
subscript s). The incident field is the field that would have been
present if the scatterer were absent. This assumes that the optical
source excitation is the same. We have been vague in our definition
of the scatterer. To be specific, we choose a geometrical arrange-
ment as our starting point. This is the incident geometry, and the
field is the incident field. We then alter the geometry. The change
is small enough so that the optical source can still be assumed to
be unperturbed. In particular, the change that we make would ei-
ther be placing a microscopic particle (the antenna) in the geometry,
or punching a hole in a metal film (the aperture). The difference
between the field in the changed geometry and the field in the in-
cident geometry is defined as the scattered field. In the context of
the equivalence theorem, the change that we make is done inside the
hypothetical surface. No matter how the incident geometry is de-
fined, we assume that the region outside the hypothetical surface is
lossless and homogeneous. With this decomposition of the fields, the
Poynting vector is given by

S =S + S+ S, (12)
where . L
Si = (Ei, Hy), (13)
S = (Es, Hy), (14)
and . L. o
Sc = (Eia Hs) + (E57 Hi)- (15)

§i and S‘s are the Poynting vectors of the incident and the scat-
tered field, respectively. Se is an interference term. In a homoge-
neous dielectric, S Sl, and SS are divergenceless; hence, Sc is also
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divergenceless. The total energy flux from the volume inside the
hypothetical surface is the integral of the component of the Poynt-
ing vector along the outward normal, over the closed surface. Let us
represent this integral by / and the integral of the three terms on the
right-hand side by [, I, and /. Thus,

1:# S-dA, (16)
A

I=1+ I+ I (17)

and

Here, A4 represents integral over the closed surface. If the closed sur-
face is distorted such that the volume swept in distorting the surface
is in a homogeneous dielectric medium, then owing to the diver-
genceless property, the integrals /, [, I5, and I, remain invariant.

1. Radiation from Antennas

Let the incident geometry be the infinite free space and the incident
field be a plane wave. We use spherical polar coordinates such that
the polar and the azimuthal angles are denoted by 6 and ¢, respec-
tively. The polar angle is measured with respect to the +Z axis. The
azimuthal angle is measured with respect to the +.X axis in the XY
plane. The incident plane wave is propagating along the & = 0° di-
rection (4 Z direction), and the polarization of the incident beam is
along the (§ = 90°, ¢ = 0°) direction (+X direction). Since the
Poynting vector is divergenceless in this medium, /; = 0.

In the far field, the radiation field in a certain direction appears
locally like a plane wave propagating in that direction. The plane
wave in a particular direction can further be decomposed into two
mutually orthogonal polarizations. An analysis using Green’s func-
tion indicates that only the plane wave propagating in the same di-
rection as the incident wave and possessing the same polarization
can contribute to the term /..'8 Thus, /. is proportional to the ap-
propriately polarized scattered field radiation in the direction of the
incident beam. Energy conservation considerations indicate that /
is precisely the negative of the power being absorbed inside the
hypothetical surface, averaged over a field oscillation. We denote this

quantity by I,. In fact, Iy and I, divided by ‘Ei
tering and the absorption cross sections, respectively. Their sum, the

are called the scat-
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total or “extinction” cross section, is thus directly proportional to the
field strength of the scattering in the direction of the incident wave.
This is more commonly known as the “optical theorem.”!® A cross
section has physical dimensions of area, and can be normalized by
the physical cross section of the antenna to obtain a dimensionless
normalized cross section. If we consider all possible slices of the an-
tenna normal to the propagation direction, the physical cross section
of the antenna is the area of the slice with the largest cross section.

2. Radiation from Apertures

Consider a plane polarized wave incident normally on a metal film
of finite thickness. The incident energy is transmitted across the film,
reflected back, or absorbed in the film (see Fig. 41). Considering that
the plane wave is infinite in extent, each of the three energy contribu-
tions is infinite. Let the field distribution in the presence of the film
be termed the “incident field.” Let us now etch an aperture of finite
cross section in this film. Let the difference of the field after and be-
fore etching the aperture be termed the “scattered field.” We follow
an analysis similar to the case of the antennas. The aperture is the
source of the scattered field. Owing to the loss in the metal, this scat-
tered field decays inside the metal with increasing lateral distance
from the aperture. Since the metal film is infinite in its plane, the
hypothetical surface used in defining the equivalent currents has to
wrap around the metal at infinity. We define the surface (see Fig. 42)
to be S1 — S2 — S3 on one side, and S4 — S5 — S6 on the other. The
expression for the power flux, (17), is applicable here. However, the

Transmitted Plane Wave

Incident Plane Reflected Plane
Wave Wave

Figure 41. Incident geometry.
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Figure 42. Aperture geometry.

key difference from the antenna case is that /; is no longer zero. In
fact, the principle of energy conservation implies that /; and the net
power absorbed inside the closed surface before etching the aper-
ture, o, add up to zero. Note, both are infinite quantities. Also, /
and the net power absorbed inside the closed surface after etching
the aperture, /,,, add up to zero. Hence,

[s + (Iaa - [af) = _[c- (18)

The scatterer (aperture) is finite in extent. Moreover, owing to the
loss in the metal, fields decay in the film away from the aperture;
hence, I, I, — I,f, and I are finite quantities. The definition of
the scattering cross section is analogous to the antenna case. How-
ever, in the definition of the absorption cross section, we replace /I,
with I,, — Ih¢. In the case of the antenna, the term /. was stated to
be directly proportional to the radiation intensity in the forward di-
rection. For the aperture, a Green’s function analysis similar to the
antenna case indicates that the contribution to /. from the surface
S1—S2 — S3 is proportional to the radiation intensity in the forward
direction. Similarly, the contribution from the surface S4 — S5 — S6
is proportional to the radiation intensity in the backward direction.
Thus, /. is a linear combination of the radiation intensity in the for-
ward and backward directions.

To calculate the radiation pattern of the apertures using FDTD,
we need to define the equivalent currents on the hypothetical surface.
To overcome the difficulty of dealing with an infinite surface, we
choose the closed surface to be S2 —S7—S5 — S8. The assumption is
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that the surfaces S7 and S8 are chosen far away from the aperture, so
that the scattered field is negligible on them. Our claim is as follows:
it is possible to choose surfaces S1, S3, S4, and S6 infinitesimally
close to the metal film surface and surfaces S7 and S8 sufficiently
far from the aperture, such that the scattered field on the surfaces
S1, S3, S4, S6, S7, and S8 is infinitesimally small. This is possible
owing to the dissipation in the metal. Thus, the equivalent currents
are essentially present only on S2 and S5. Thus, in the FDTD code,
the radiation pattern can be calculated exactly as in the antenna case
— by using the closed surface S2 — S7 — S5 — S8.

3. Numerical Modeling

We apply the concepts discussed in the last few sections to the case
of a C aperture in aluminum. The thickness of the aluminum film is
chosen to be 100 nm. The dimensions of the C aperture are as fol-
lows: aperture length 155 nm, aperture width 70 nm, tongue width
25 nm, and gap width 25 nm. The incident field is X-polarized. The
XZ plane is a mirror symmetry plane for the C aperture. The sur-
rounding dielectric is assumed to be free space. The normalized scat-
tering and absorption cross sections as a function of wavelength are
shown in Fig. 43.

—— Scattering

Cross—section (area normalized)
-
(6]

0.5 —+— Absorption
O n n
500 600 700 800

Wavelength in nm

Figure 43. Cross sections of the C aperture (normalized by
the area).
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—a— Scattering cross—section
—+— Absorption cross—section

—e— Near field intensity

Magnitude (magnitude normalized)

500 600 700 800
Wavelength in nm

Figure 44. Cross sections and near-field intensity of a C
aperture (magnitude normalized).

The near-field intensity is calculated at a point, in the gap, 5 nm
beyond the transmission side of the aperture. The cross sections are
normalized with respect to the physical area of the aperture. For
comparison with the near-field intensity, we normalize the cross sec-
tions such that the peak cross section is unity. To distinguish this
from the area normalization, we call this the “magnitude normaliza-
tion.” The cross sections and the near-field intensity are shown in
Fig.44.

The three quantities have been magnitude-normalized in this
plot. Geometrically, the C aperture is a ridge waveguide of finite
extent. For a PEC waveguide of the same cross section, the cutoff
wavelength for the lowest-order transverse electric mode is around
500nm. As one approaches the cutoff wavelength from shorter
wavelengths, the longitudinal wave vector decreases in magnitude.
Hence, for the same length of the waveguide, the field has a larger
number of transverse traversals in the aperture. On the other hand,
if one moves away from the cutoff wavelength towards longer wave-
lengths, the longitudinal wave vector becomes imaginary, indicating
evanescent decay. Hence, the strongest resonance is expected to be at
the cutoff wavelength. Three things about the aluminum C aperture
are different from the PEC waveguide: the metal can support surface
plasmons, the incident field (field in the metal film before the aper-
ture is etched) has a Fabry—Perot resonance, and leaky modes that
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Figure 45. Radiation pattern of a
C aperture.
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Figure 46. Near-field intensity of the C aperture.

are not seen in an infinite waveguide can be excited in the case of a
waveguide whose length is a fraction of the wavelength. One or more
of these effects could cause a shift in the resonance wavelength. In
fact, we observe a resonance at approximately 650 nm. The radia-
tion pattern of the aperture at a wavelength of 650 nm is plotted in
Fig.45. The corresponding near field intensity is shown in Fig. 46.
An electric dipole is induced in the gap of the C aperture.
The far-field radiation pattern of the dipole is expected to have a
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Figure 47. Effect of the medium on the near-field resonance
of a C aperture.

doughnut shape with X as the cylindrical symmetry axis. However,
the presence of the infinite metal in the xy plane is expected to
quench the radiation pattern in that plane. This would cause a pinch-
ing of the radiation pattern in the xy plane. This is seen in Fig. 45.

To see the effect of the medium, we place a cobalt film 5nm
from the aperture. The magnitude-normalized near-field intensity
with and without the medium is plotted in Fig.47. A considerable
shift in the resonance wavelength in seen. Thus, the medium loads
the C aperture.

We then consider the antenna structure complementary to the C
aperture — the C antenna. Even though we do not have a PEC an-
tenna, we would like to test the agreement with Babinet’s principle.
Instead of rotating the polarization of the incident beam by 90°, we
rotate the antenna structure by 90°. The normalized cross sections of
the C antenna are shown in Fig. 48. The resonance wavelength is the
same as that of the C aperture; however, the scattering cross section
is much more enhanced in this case. If we assume that a resonance
enhancement of the electric field has an associated enhancement in
the magnetic field, and vice versa, then Babinet’s principle suggests
that the complementary structure should also have a resonance in the
same spectral region. An enhanced magnetic field of opposite phase
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Figure 48. Cross sections of the C antenna (normalized by
the area).
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Figure 49. Radiation pattern of the C
antenna.

would be needed to nullify the enhancement in the electric field of
the complementary structure.

The radiation pattern of the antenna at a wavelength of 650 nm is
plotted in Fig. 49. This radiation pattern shows the cylindrical sym-
metry of the doughnut-shaped dipolar radiation pattern.
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IX. PHOTONIC NANOJETS

Up to this point we have been considering NFTs for applications
such as HAMR. The transducer itself, however, is only one part of a
complete device for recording. The transducer will not be effective
unless it is situated at the position of a large field amplitude from
the incident laser beam. This is generally accomplished by focusing
the beam onto the transducer. A simple objective lens may be quite
satisfactory for this purpose. In this section we discuss techniques
for highly concentrating an incident beam into a “nanojet,” i.e., a
narrow beam of energy with an extended path length. In principle,
nanojet optics could form one part of the complete system for near-
field recording.

In the geometrical optics description of conventional lens
focusing, the focus is the point where all the light rays converge. In
Fig. 50, the focusing of a plane wave by a lens is shown.

The focal point is situated in the middle of a sphere. If the re-
fractive index of the sphere is greater than unity and the sphere is
truncated to a hemisphere (part on the right of the dashed line is
removed), we end up with a SIL. The key feature of this geometry
is that all the rays converge to a point — the focal point. If, instead,
the lens is removed from the system such that all parallel incident
rays fall directly on the sphere (Fig.51), then all the rays will not
converge to a single point.

Lens

Figure 50. Focusing by a lens.
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Caustic

Figure 51. Focusing to a caustic.

Nonetheless, for an appropriate choice of the sphere refractive
index, there exists a surface such that several rays converge at every
point of the surface. In other words, the focal point degenerates into
a surface. This surface is termed a “caustic.” Owing to the symmetry
of the problem, the caustic has a cylindrical symmetry. The caustic
has a cusp at the point where the caustic intersects the symmetry
axis. Our discussion so far has been based on geometrical optics.
When one goes to a complete electromagnetic description, the focal
point of a lens does not have a field singularity. Nonetheless, there is
a focal region of high field concentration. Similarly, for the caustic
one ends up with a region of high field concentration in the neighbor-
hood of the geometrical caustic. In addition, in the electromagnetic
description, the wavelength adds a length scale to the phenomenon.
Thus, for a fixed radius and refractive index of the sphere, the caustic
region will depend on the wavelength of light (in free space).

In Fig. 51, the cusp of the caustic is shown to lie inside the
sphere. In such a situation, the cusp can be pushed to the surface of
the sphere by reducing the refractive index of the sphere. In the geo-
metrical optics description, this will happen when the refractive in-
dex of the sphere is twice that of the surrounding medium (assumed
to be free space here). In the physical optics description, the choice
of the refractive index ratio depends on the ratio of the radius of the
sphere to the wavelength. Typically, it is found to be smaller than 2.
When the cusp region is chosen close to the sphere surface, an in-
teresting phenomenon of “photonic nanojet” emerges. On the free
space side of the surface, an intense optical-jet-like region is gener-
ated. A two-dimensional FDTD model of this phenomenon is shown
in Fig. 52.
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Figure 52. Two-dimensional photonic nanojet intensity mod-
eled using the FDTD method.

The photonic nanojets display two remarkable features. Even
though the spot size is comparable to a high-numerical-aperture
diffraction-limited SIL spot, the depth of focus is much larger. For
a comparable spot size from a lens, the depth of focus would have
been much smaller. Secondly, from Fig. 52, the decay length of the
two-dimensional photonic nanojet (distance between the peak field
and the 1/e field in the longitudinal direction) is larger than the wave-
length. The spot size of the nanojet at its waist is marginally larger
than the size of a spot generated by a two-dimensional lens of unit
numerical aperture¥(see Fig. 53).

The angular spectrum (spatial frequency content) of the pho-
tonic nanojet is shown in Fig. 54. The amplitude distribution of the
angular spectrum alone does not explain the long decay length of
the photonic nanojet. The bathtub-shaped phase distribution plays a
key role. Different spatial frequencies gain different phases on prop-
agation. This dephasing causes spot divergence. The bathtub shape
counteracts the typical dephasing factor that decreases with increas-
ing magnitude of the spatial frequency.

When a nanoparticle is placed in the light path, light is scat-
tered. Assuming that the incident light is a plane wave, the light
that radiates back towards the source is termed the “backscattered
light”” When nanoparticles are illuminated by a plane wave, the in-
tensity of backscattered light is small compared with the intensity
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Figure 54. Angular spectrum of a two-dimensional nanojet. s and & are the spatial
frequency and the free-space wave vector, respectively. (Reprinted from Ref. [38].
Copyright 2005 with permission from the Optical Society of America.)

of the incident light. If instead, a lens is used to focus light onto
the nanoparticle, the backscattered light intensity increases by a few
orders of magnitude. However, if the nanoparticle is placed in the
photonic nanojet, the backscattering increases by several orders of
magnitude.?® In the two-dimensional case, the effect is still seen,
but it is not as pronounced. The enhanced backscattering for the two-
dimensional case is shown in Fig. 55. The effect of the particle size
on the back-cattering enhancement is shown in Fig. 56.
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Figure 55. Differential cross section of a particle placed in a nanojet. (Reprinted from
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Chen et al.* have argued that while the large intensity of the
nanojet provides a lenslike enhancement of the backscattering, it is
the coordination between the backscattering and the modes of the
nanojet-creating sphere that generates the superenhancement of the
nanojet.

X. CONCLUSION

A variety of mechanisms have been discussed for enhancing the
efficiency of NFTs for use in HAMR. These include the LSPR effect,
the lightning rod effect, and the dual-dipole effect. Several common
FOMs for NFTs have been discussed and it has been shown that peak
|E|? field intensity within the recording medium, or even better, the
dissipated power within the recording medium are the best FOMs.
On the other hand, far-field transmittance or even peak field ampli-
tude in the absence of a recording medium are not useful for judging
the merits of NFTs for HAMR. Several transducer designs have been
analyzed theoretically and compared using a standard geometry that
approximates the situation found in HAMR. The results are sum-
marized in Table 1. Surprisingly large power coupling efficiencies
can be obtained theoretically for the best transducer designs, lend-
ing credibility to the engineering challenge of building such a data
storage device.

Our study of the C aperture indicates that the resonance wave-
length for an aperture of finite length can be shifted from the cutoff

Table 1.
Summary of near-field transducer (NFT') performance. The peak
|E|? intensity is normalized by that of the incident beam.

NEFT design Ares  Peak |[E|?  Piss FWHM spot size (nm?)
Circular aperture 650 0.07 0.14% 113 x 142
Rectangular aperture 650 0.80 0.92 43 x 25

Bow-tie aperture 725 1.38 1.7 59 x 56

C aperture 700 242 2.1 34 x 39

Triangle antenna 650 0.77 1.1 55 x 54

Beaked triangle 725 2.82 2.9 43 x 41

Bow-tie antenna 650 1.41 1.4 39 x 36

Canted bow tie 750 2.61 2.1 31 x 36

FWHM full width at half maximum
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wavelength of the corresponding PEC waveguide, especially at
optical frequencies. The far-field cross sections and the near field
intensity have resonances at around the same wavelength. The
strong currents associated with the near-field enhancement are also
responsible for the absorption and far-field radiation. It might be
possible to come up with a current distribution of certain orienta-
tion and phase relationship such that the far-field radiation is small.
Whether there is a geometry in which this current distribution can
be excited by a plane wave is an open question. Complementary
aperture/antenna systems that seem to be resonating in completely
different modes can still have similar resonance properties in accor-
dance with Babinet’s principle.

Finally, we have briefly considered one interesting optical tech-
nique for exciting the NFT via a nanojet.
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Summary. The modelling of light—matter interactions at nanometre
length scales is becoming increasingly important in modern nano-
electrochemistry. The ability to fabricate extremely sophisticated
nanostructures in the laboratory that cannot be described analytically
has driven the need for modelling. Advances in scientific compu-
tation techniques, and the availability of computing resources have
also led to cost savings in several industries, such as the automo-
tive industry. One of the most important considerations for choosing
the optimal numerical technique for a problem is symmetry. This
rather old-fashioned consideration has tremendous effects on both
the accuracy and the efficiency of numerical methods. We show how
symmetry considerations play a major role in modern scientific com-
putation. Examples of supported and unsupported quantum dots and
quantum dot clusters are presented.
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I. INTRODUCTION

The ability to fabricate nanostructures on surfaces and to exploit
their optical, chemical and electrical properties has defined the fron-
tier of surface science.! These properties are increasingly being used
in the development of technologies in several industries. Examples
are nanostructured catalysts in the automobile industry, nanoplas-
monic sensors in the biomedical industry and nano-interconnects in
the electronics industry. Often, computational modelling is used to
advance research in these applications, and the big advantage is cost
savings. Despite advances in techniques of scientific computation,
and sheer computing power, the true gain in R&D time depends on
the choice of the optimal numerical method. A critical criterion in
the choice of numerical technique is the symmetry of the problem,
which significantly affects both the accuracy and the efficiency of
the numerical method used.

With advances in nanotechnology, quantum dots are ubiqui-
tous in surfaces with myriad applications in electrochemistry. In this
chapter, we discuss the numerical modelling of quantum dots — both
the spherically symmetric (metal or semiconductor) dots embedded
in a matrix (usually a dielectric) and the hemispherical metal dots
(a.k.a. nanoparticles or thin-film islands) supported by a substrate
(again, usually a dielectric). We are particularly concerned about the
optical properties of quantum dots, since the interaction of light with
quantum dots is used widely for several applications in surface elec-
trochemistry — from characterization of the thickness and quality of
thin films, to the development of surface sensors — as well as in na-
noelectronics and quantum computing.

Quantum dots are probed with light in two ways — with white
light to extract macroscopic information such as size and refrac-
tive index, and with coherent, laser light to manipulate the quan-
tum wavefunction of the bound electrons. Therefore, we present the
computational methods used in the modelling of two categories of
experiments — white light interaction with metallic unsupported and
supported quantum dots, and laser interaction with spherical semi-
conductor quantum dots. In the former category, we are interested in
the macroscopic effects of the quantum dot (and the substrate) on the
absorption, transmission and reflection of the incident white light.
In the latter category, we are interested in the quantum wavefunction
and energy of the quantum dot that can be probed and manipulated
by a laser.
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II. OPTICAL PROPERTIES OF METAL NANOPARTICLES

In this section, we describe theoretical methods that describe
the macroscopic optical properties of metal nanoparticles (a.k.a
quantum dots). Recently, silver and gold nanoparticles have found
tremendous use in biological assays, detection, labelling and sens-
ing because of their sensitive optical spectra. While some works in
the literature refer to these as ‘quantum dots’, in optical absorption
experiments their quantized energy structure is not probed. The
spectrum is a probe of the localized surface plasmon phenomenon,
a collective electronic excitation that is localized in spatial extent
owing to the small size of the nanoparticle compared with the
wavelength.

1. Macroscopic Theories

For a single spheroidal nanoparticle with dimensions much smaller
than the wavelength of light, the absorption spectrum can be calcu-
lated to experimental accuracy using the well-known Mie theory.?
The incident light sets up the localized surface plasmon oscillation,
and the induced potential is to a good approximation a dipole. The
spectrum of the re-radiated light is calculated, and this has a peak
whose position depends on the size, shape and composition of the
nanoparticle.

A collection of nanoparticles embedded in a dielectric medium
is modelled by effective medium theories such as the Maxwell—
Garnett>* theory where each nanoparticle is treated as a dipole, and
the medium is treated as homogeneous with effective dielectric prop-
erties. This model provides qualitative agreement with experimental
absorption spectra, but applications such as sensing and catalysis
demand greater agreement between theoretical predictions and ex-
perimental results.

In-between the two limits is the interesting regime where one
must study electrochemistry produced by nanoclusters.>® Nanopar-
ticles linked by ligands show a spectrum completely different from
that when they are apart. This phenomenon is the basis of several
biosensing schemes. The analytical theory of the optical properties
of dimers is challenging. The coupled-dipole approximation (where
each nanoparticle is modelled as a dipole and their interaction is
dipole—dipole) is limited to very small nanoparticles. In practice,
nanoparticles of dimension 20—50 nm have a significant quadrupolar
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contribution in their induced potentials. Recently, Klimov et al.’
completed a beautiful mathematical treatment of the localized sur-
face plasmon eigenmodes of a nanoparticle dimer, but did not con-
nect their results to optical experiments.

2. Discrete-Dipole Approximation

One numerical method that is suitable for the study of small clus-
ters (N = 2 — 10) of nanoparticles (10-30 nm) is the well-known
discrete-dipole approximation (DDA). Developed by Draine and
Flatau® for modelling atmospheric phenomena, the DDA relies on
the approximation of a continuous material by a discretized cubic
grid of N point dipoles. One of the limitations of the method is the
faithful representation of target surfaces. This problem could be cir-
cumvented by increasing the dipole density in high-curvature sur-
face regions, but this means giving up the use the of the fast Fourier
transform algorithm, which requires equally spaced grid points.

Each dipole is uniquely described by its grid location r; and po-
larizability «;. The polarizabilities are calculated from the complex
dielectric function &; of the material, using the Clausius—Mossotti
relation:”

g —1 :ndai 0
&+ 2 37

where nq is the number density of the array. The polarizabilities give
a relation between the polarizations of the dipoles and the local elec-
tric field (the incident field plus the fields of all other dipoles). From
the above equation, one may construct a system of 3N complex, lin-
ear equations from which the polarization may be extracted. After
solving for the polarization, one may use it to construct the near-
field and far-field optical properties of the target. We are interested
in the extinction cross-section of the particles, or the sum of the ab-
sorption and scattering cross-sections.

The validity criterion for the DDA is the long-wavelength ap-
proximation: |m|kd < 1, where m is the complex refractive index,
k is the wavenumber and d is the grid spacing. We choose the grid
spacing to be small enough so as to satisfy this criterion. The DDA
calculations for a coated gold sphere (both in air and in an aque-
ous medium) compared with the calculation from Mie theory? agree
extremely well.
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A second advantage of this method is that we can plot contour
maps of the evanescent field around a metal nanoparticle. This gives
us the ability to extract optoelectrical information at an extremely
small surface. A limitation of this method is that computational re-
sources (memory and time) place a limit on the size of the nanopar-
ticles and/or the number of particles in a cluster.

3. Optical Properties of Nanoparticles on a Surface

In modern sensing applications, nanoparticles are immobilized on
a surface so they present the maximum detection surface to the an-
alyte. The sensing signal is the optical absorption spectrum. This
configuration is well known to researchers in the surface science
community as surface quantum dots or supported thin-film islands,
and their optical properties have been studied for a while. Specifi-
cally, the Marton—Schlesinger!? method and the Bedeaux—Vlieger!!
methods have provided both quantitative calculations of the opti-
cal properties of nanoparticles on a surface. One big advantage of
the latter method is the effect of the substrate is naturally built into
the formalism (see Fig. 1). A limitation of these methods is that the

Effect of SiO2 substrate on LSPR of 14nm AuNPs
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Figure 1. Calculated absorption spectrum of a hemispherical gold nanoparticle of
radius 7 nm with and without a SiO; substrate. Inset: Geometry of calculation.
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Optical spectrum of hemispherical gold nanoparticle dimer of
radius 7nm, and center to center separation 17.5nm
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Figure 2. Calculated localized surface plasmon resonance spectrum of a dimer of
hemispherical gold nanoparticles of radius 7nm and interparticle centre-to-centre
distance 17.5 nm. A dielectric coating of n = 1.45 and thickness 1.75 nm leads to a
second absorption feature at 650 nm.

electric field itself cannot be mapped, and more complex structures
(such as nanoparticles made of concentric shells of materials) can-
not be modelled. Note that later modifications of this method!? have
made it possible to visualize the multipolar potential, yielding more
physical insights into this problem.

Despite the limitations of the DDA method, it is best suited for
applications where it is important to know the local electric field on
the surface, or when the nanoparticle itself has a composite structure.
For example, the second feature in the two-nanoparticle absorption
spectrum shown!3 in Fig.2 can be explained by plotting the elec-
tric field map. The map reveals that the presence of a dielectric can
mediate the overlap of evanescent fields, an effect that was hitherto
unknown. 14

4. Towards an Optical Method of Surface Electrochemistry

In concluding this section, we would like to present a teaser of
an idea. The holy grail of electrochemistry is to determine the
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electrochemical potentials that determine and control chemical re-
actions. The more complex the molecule’s geometry, the more dif-
ficult this process is. It would be exciting to develop an easy and
inexpensive method for this determination. With this goal in mind,
consider the following experiment. Molecule B is a long molecule
that has ligands that bind to gold. Clusters of gold nanoparticles can
be created in solution by linking individual nanoparticles via these
linkers. Molecule A is a reducing agent that reduces a specific bond
in the linker, creating monomers. During this process, the peak of
the absorption spectrum changes by approximately 100 nm as seen
in Fig.3.15 An exciting recent finding!? is that if one uses various
types of reducing agents, the rate of the spectral change depends on
the size of the reducing agent. From an electrochemical viewpoint,
apart from stearic hindrance, the rate of reduction would depend on
the reduction potential. Thus, the rate of change of the spectrum,
once it has been calibrated, can provide an optical (and inexpensive)
means of determining the reduction potentials in a class of reactions!

Absorption spectrum of 20nm gold nanoparticle clusters and
monomers

Absorbance (arb. units)

400 450 500 550 600 650 700 750 800
Wavelength (nm)

Figure 3. Measured absorption spectrum of a colloid of gold nanoparticles of radius
10 nm. When linked by molecule B, they are clustered with an absorption spectrum
in the blue. When reducing agent molecule A is added, monomers are formed, and
the absorption spectrum turns red.
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III. OPTICAL MANIPULATION OF SEMICONDUCTOR
QUANTUM DOTS

In this section, we describe the modelling of experiments in which
laser light (both single-frequency and broadband) is used to probe
and manipulate the quantum wavefunction of a semiconductor quan-
tum dot. As in the case of naturally occurring atoms, quantum dots
have discrete bound electronic states, and hence are referred to
as ‘artificial atoms’. As explained by Kastner,'® “Modern techniques
of lithography make it possible to confine electrons to sufficiently
small dimensions that the quantization of both their charge and their
energy are easily observable. In fact, there is a close analogy between
the confined electrons inside an single electron transistor (SET) and
an atom”. Recent developments in optical technologies have en-
abled the probing of this electronic structure using single-frequency
(continuous-wave laser) or broadband (pulsed laser) coherent light.
The experiments involve the exact determination of the energy lev-
els (spectroscopy) or the precise control of the electronic wavefunc-
tion (quantum control), much in the ways of atomic, molecular and
optical physics or physical chemistry. The applications range from
nanoelectronics to solid-state quantum optics.

1. Atomic Model of Semiconductor Quantum Dots

As described above, a semiconductor quantum dot can be modelled
with good accuracy as a hydrogen-like atom. An excellent introduc-
tion to the quantum hydrogen atom is presented in chapter II of vol-
ume 43 of Modern Aspects of Electrochemistry, as well as in classic
texts.!”

Briefly, the electron in a hydrogen atom lies in a spherically
symmetric ‘Coulomb’ potential due to the positively charged nu-
cleus (in atomic units withe = m, = i = 1):

1
Vr)= - 2)

The Schrodinger equation that describes the stationary states of an
electron in this potential is

VZ
-V VO =Ey. 3)
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Recall the well-known result that symmetries in a problem are
associated with conserved quantities. Because of the spherical and
reflection symmetries in the potential, it immediately follows that
angular momentum and parity are conserved quantities in this sys-
tem. In spherical coordinates, the above equation is separable into its
radial and angular components and the radial equation correspond-
ing to an angular momentum £ is

1 d 5 Ay
S
dr

2r2 dr ) + Vi) Vne(r) = Enne(r),  (4)

where the effective potential is

I Le+1)
Vi) = — + 52 (5)
The eigenvalues E, = —2r+2 and eigenvectors W (r) which are

the products of the radial functions 1,0 () and spherical harmonics
Yem have long been known. An excellent pictorial representation of
the radial wavefunctions can be found in the text Theoretical Atomic
Physics.'®

Since the energy eigenvalues depend only on 7, they are degen-
erate with respect to both £ and m. For each value of n, £ can vary
from 0 to n — 1, and for each value of ¢, m can vary from —¢ to +¢.
Degeneracies in energy are associated with conserved quantities and
symmetries in a system. The degeneracy in m is characteristic of a
central force field, for which the potential depends only on the radial
distance. The ¢ degeneracy is characteristic of the Coulomb field,
as distinguished from other central force fields.!® This degeneracy,
sometimes referred to as ‘accidental degeneracy’ in the literature, is
associated not with a geometrical symmetry but with a dynamical
symmetry — represented by the O(4) group, of which the angular
momentum vector and the Runge—Lenz vectors are generators.”” In
equivalent classical terms, the angular momentum and the Lenz vec-
tor are constants of motion for an electron in a Coulomb potential.

More relevant to our understanding of quantum dots are alkali-
metal atoms. Alkali-metal atoms are similar to hydrogen since they
have one valence electron. The behaviour of the outer electron may
be understood as a single electron moving in the combined potential
of the nucleus and the inner-shell electrons, i.e. the core. This com-
bined potential is central but only approximately of the Coulomb
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form because of the size of the core and multielectron effects within
it. This prevents the states with the same quantum number n from
having the same energy (as in the Coulomb degeneracy in field-free
hydrogen). In spite of this difference, the energy levels of field-free
alkali metals can be calculated from a relation that is very similar to
that for hydrogen,

—1

Eyp=—"—9¥—¥—"——,
"7 20— pp)?

(6)

where /1¢ is the quantum defect.?! This arises owing to the core pen-

etration of the wavefunction where the potential is not Coulombic.
Recall from (5) that the higher the angular momentum number, the
further out is the centrifugal potential barrier. The radial wavefunc-
tions with smaller ¢ values penetrate the core (and feel the effects
of the inner electrons), while those with / > 2 hardly penetrate the
core at all. Thus, the quantum defect depends on the £ quantum num-
ber, being large for the £ = 0 or s states and small for states with
£ > 2. Therefore for states with high » or ¢, the approximation of
the nuclear potential as Coulombic is a very good one.

To translate the physics of atoms to that of quantum dots, it
is necessary to modify the mass of the electron using an effec-
tive electron mass.?? Calculation of the quantized energy values
of a quantum dot can be accomplished numerically by solving the
Schrodinger equation of the hydrogen-like atom with an effective
electron mass.??

Owing to rapid technological developments in the last two
decades, quantum dots are increasingly being subjected to external
fields, and often to rapidly changing external fields. It is now possi-
ble to dynamically manipulate the quantum wavefunction of a quan-
tum dot. Indeed, such systems are being considered as candidates
for quantum computing! It is useful therefore to have methods of
modelling such processes.

Again, the quantum dot is modelled as a hydrogenic atom with
an effective electron mass that simply scales the calculation. The
potential experienced by an atomic electron in a static electric field
& 1n the z direction is

V()= —l + &z. @)
r
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The system exhibits competing symmetries — spherical symmetry
due to the Coulomb potential and axial symmetry due to the Stark
potential (applied electric field). Parity and angular momentum, ¢,
are no longer conserved; only the magnetic quantum number, m, is
a good quantum number in this system. However, the z-component
of the Runge-Lenz vector (besides L) is a constant of the motion in
this system.

An atom in a strong magnetic field is another example of a
system which exhibits competing symmetries (spherical symmetry
due to the Coulomb potential and cylindrical symmetry due to the
magnetic field). The Hamiltonian for the hydrogen atom in a mag-
netic field in the z direction®* (one atomic unit of magnetic field is
2.35x 10° T) is

P2 1 L-B B> , |,
H=——--A@L-S+ ——+S-B+ —x"+»9). (8
2 r 2 8
The L - S term is negligible except at very low values of the mag-
netic field; i.e. for the magnetic field strengths that we are interested
in, the spin and angular momentum are decoupled and the contri-
bution of spin may be ignored. The paramagnetic terms, which are
linear in B, add a constant energy to the Hamiltonian, yielding an
overall phase factor in the time-dependent wavefunction, and may
also be ignored. This Hamiltonian also conserves parity; thus, for
the Coulomb—diamagnetic problem, the magnetic quantum number
m as well as parity are conserved quantities. For each value of m, the
unperturbed Hamiltonian is (n — |m|)-fold degenerate. The degener-
acy of the ¢ states, [m| < £ < n, is then lifted by the diamagnetic
potential, which is quadratic in the magnetic field. The Schrodinger
equation representing the diamagnetic atom is not separable in any
coordinate system, in contrast to its counterpart, an atom in an elec-
tric field, which separates in parabolic coordinates.

We will look at numerical methods to compute both the energy
levels of a quantum dot as well the dynamics of the quantum wave-
function in the presence of an external field. There are a variety of
methods to choose from, and in this section we show that by using
the symmetry properties one can greatly enhance the accuracy and
efficiency of the calculation.
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2. Pseudospectral Method

Here, we present a method that is highly efficient and accurate at
solving the eigenproblem of the hydrogen-like atom when only a
limited number of eigenstates need be known. The radial, time-
independent Schrodinger equation (4) for a hydrogen atom is a
second-order differential equation. The numerical method presented
is a pseudospectral method (also known as ‘collocation method’).
First, the dependent variable of the differential equation is expanded
in a basis of orthogonal functions that is truncated at some order M.
In this method, the residual is set to zero at each of the N collocation
points (defined for that basis). This produces a matrix eigenvalue
problem whose eigenvalues are the same as that of the differential
equation eigenproblem.?’

While expanding in a basis of orthogonal functions is fairly eas-
ily understood, care must be taken in choosing an appropriate set
of basis functions. In this case the symmetry of the basis functions
chosen must match that of the problem, as seen below. The impor-
tance of symmetry in the problem is beautifully presented by the
choice of basis for the radial coordinate. Consider two choices of the
basis for the radial coordinate — a Fourier basis and a Laguerre ba-
sis. That is, the radial functions can be expanded in a basis of Fourier
functions (sines and cosines) or Laguerre functions. The collocation
points can be loosely thought of as the nodes of the basis functions.

In the Fourier basis, the collocation points (think of nodes of
sines and cosines) are equally spaced from —oo to +00. The prob-
lem of representing a Coulomb potential on a uniform grid is well
known; since the potential is steep near the origin, the wavefunc-
tions are highly oscillatory there, and need a finely spaced grid to be
represented there. This can be overcome by mapping the exact po-
tential on a nonuniform grid to a transformed, uniform collocation
grid. But another problem is the radial hydrogen wavefunctions have
a domain from 0 to oo, whereas the domains of the Fourier functions
are from —oo to +00. The problem of the domain matching is over-
come by expanding the radial collocation grid to negative values to
—o0, and choosing only those solutions that go to 0 at » = 0.

The Laguerre basis suits the symmetry of the problem, because
its collocation points (think of nodes of the Laguerre functions) lie
between 0 and 0o, and the collocation grid spacing is nonuniform. Of
course, we have prior intuition that this basis is better suited because
the analytic solutions of the hydrogen atom Schrodinger equation are
Laguerre polynomials.
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Comparison between Mapped Fourier and Laguerre basis
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Figure 4. Comparison between the use of a Laguerre basis and a mapped-Fourier
basis for the calculation of energy eigenvectors and eigenvalues of the hydrogen
atom.

The effect of choosing a symmetry-suited basis is stunning in
the accuracy of the calculation,® as shown in Fig. 4. One sees that
the accuracy of the mapped-Fourier basis (although nominally expo-
nential) reduces to polynomial because of the Coulomb singularity
and the artificial method used for domain matching. On the other
hand, the error is fairly constant over all the eigenmodes. The La-
guerre basis calculation provides extremely accurate eigenvalues (up
to machine precision). However, this accuracy is only for a range of
eigenmodes.

Thus, to model experiments with spectroscopic accuracy, it
might be better to use the Laguerre basis, but to model experiments
that need rough estimates of many energy eigenvalues, it might be
better to use the mapped-Fourier basis. The limitation of the pseu-
dospectral method is that it is very time consuming to calculate dy-
namics, especially when multiple angular momenta are involved.

3. Finite-Difference Method

The modelling of atoms in external fields can be effectively ac-
complished using the finite-difference method. In a finite-difference
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method, derivatives are approximated by differences between val-
ues at infinitesimally close points. Thus, this method lends itself
to representation of solutions of differential equations on a grid.?’
The power of this method lies in the ability to calculate the initial
state wavefunctions with reasonable accuracy, propagate them in the
presence of external fields, and use them to calculate experimentally
measurable quantities both for bound states (transition probabilities)
and for continuum states (ionization probabilities).

The solution of the field-free eigenproblem is found by expand-
ing the wavefunction (solution) in a mixed basis of discretized radial
functions times spherical harmonics, while retaining a finite number
of spherical harmonics:

Zmax

Wy, 0,0) =Y ()Y 0, ), Q)

=0

where j is an index corresponding to a radial grid point. Thus, the
truncation in the number of spherical basis functions (which gives an
exponentially small error) is challenged by the truncation in the ra-
dial grid extent (which gives a polynomial error). The Coulomb sin-
gularity is avoided by using a nonuniform radial grid®® (see Fig. 5)
and a softening of the potential at the origin. The resulting dif-
ferential equation for ¢ (r;) is then discretized using second-order
approximations for the derivatives and discretization yields an eigen-
value equation of a symmetric tridiagonal matrix, which is then
solved.?’

The unperturbed eigenstates |k,¢(r;)) are eigenstates of a real,
symmetric, tridiagonal matrix. A diagonalization can yield N eigen-
states and eigenvalues (where N is the number of grid points), of
which we require only the lowest few. The complexity of this proce-
dure is of O(N). The grid is chosen to yield eigenvalues with a max-
imum error of 0.01% by comparing them with known eigenvalues of
the hydrogen atom. The radial functions are also in excellent agree-
ment with the analytic solutions to the radial part of the Schrodinger
equation for values of the principal quantum number up to n = 35.

The time evolution of individual eigenstates can be performed
by multiplication with the appropriate phase:

k(1)) = e K |K(0)). (10)
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Figure 5. Grid spacing in a nonuniform radial grid used to
model the hydrogen atom (spherical quantum dot). The grid
points are closely spaced near the origin where the potential
has a singularity, and are widely spaced away from the origin
where the potential goes asymptotically to 0.

In the presence of an external time-dependent field, the time-
dependent Schrodinger equation, a first-order differential equation
in time, must be solved. The key problem is that the field also
mixes the radial and angular coordinates, making typical implicit
methods (that are unconditionally stable and accurate) very resource
intensive. Therefore, the Peacemann— Rachford method is recom-
mended.3? In the total Hamiltonian H = Hy + Hi, Hp connects
adjacent radial points of functions with the same ¢ value, whereas
the interaction Hi couples functions of different £ values at the same
radial point.

0 (—i)" t t 2
\I'(r,t+6t)=z ' /dn/dzz.../ dt,
= ontJo 0 0

T[H(t1) H(t2) ... H({t) ¥ (r, 1), )

where T represents the time-ordering operator.
To second order, the short-time propagator is

W(r, t 4+ 6t) = exp |:—iH <t + %) 8ti| W(r, t). (12)
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We expand the propagator as
AN AN
W(r,t 4+ 6t) = 1+1H03 1+1H15

(1 —iH1%> (1 —iHo%) V(). (13)

The Peacemann—Rachford propagator agrees with the full prop-
agator up to the third order in &z. In combining this with the
finite-difference method described above, the first two operations
on W(r, t) are straightforward, and the next two require finding the
solution to five-term and three-term recurrence relations in £ and r,
respectively. The computational complexity of this operation is of
first order in N, x Ny.

The advantage of this method is that since both positive and neg-
ative energy states are represented on the same grid, this allows us to
study the dynamics of bound states as well as ionization problems.
The limitation of this method is that the radial grid is closely spaced
near the nucleus, with the spacing increasing to a constant value to-
wards the outer edge. Although this makes it possible to represent
field-free wavefunctions accurately, it limits the accurate represen-
tation of high-momentum processes away from the nucleus. Thus,
the finite-difference method is effective in modelling experiments
where the semiconductor quantum dot is probed or manipulated by
coherent (laser) light.

IV. SUMMARY

We have presented a variety of methods to model light-matter in-
teractions in nanoelectrochemistry. In particular, the experiments in-
volved include the probing of metal quantum dots using white light
(nanoplasmonics), and the manipulation of semiconductor quantum
dots using laser light (semiconductor quantum optics). These exper-
iments drive applications in myriad areas such as surface electro-
chemistry, biosensor development, nanolithography, nanoelectronics
and quantum computing. We showed that the symmetry of the prob-
lem is an important consideration in choosing the optimal numerical
method. This consideration, when carefully applied, can lead to sig-
nificant cost and time savings in R&D.
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puter simulations and quantum and statistical mechanics in the
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lations of lithium-battery charging and electrochemical adsorption
of bromine on single-crystal silver electrodes.
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I. INTRODUCTION

The interface between a solid electrode and a liquid electrolyte is a
complicated many-particle system, in which the electrode ions and
electrons interact with solute ions and solvent ions or molecules
through several channels of interaction, including forces due to
quantum-mechanical exchange, electrostatics, hydrodynamics, and
elastic deformation of the substrate. Over the last few decades, sur-
face electrochemistry has been revolutionized by new techniques
that enable atomic-scale observation and manipulation of solid—
liquid interfaces,'>? yielding novel methods for materials analysis,
synthesis, and modification. This development has been paralleled
by equally revolutionary developments in computer hardware and
algorithms that by now enable simulations with millions of individ-
ual particles,® so there is now significant overlap between system
sizes that can be treated computationally and experimentally.

In this chapter, we discuss some of the methods available
to study the structure and dynamics of electrode—electrolyte in-
terfaces using computers and techniques based on quantum and
statistical mechanics. These methods are illustrated by some re-
cent applications. The rest of the chapter is organized as follows.
In Sect. II, we present fully three dimensional, simulations in con-
tinuous space by molecular dynamics (MD) of ion intercalation
during charging of lithium-ion batteries. In Sect. III, we discuss
the simplifications that are possible by mapping a chemisorption
problem onto an effective lattice-gas (LG) Hamiltonian, and in
Sect. IV we demonstrate how input parameters for a statistical-
mechanical LG model can be estimated from quantum-mechanical
density-functional theory (DFT) calculations. Section V is de-
voted to a discussion of Monte Carlo (MC) simulations, both for
equilibrium problems (Sect. V.1) and for dynamics (Sect. V.2).
As an example of the latter, we present in Sect. VI a simula-
tional demonstration of a method to classify surface-phase tran-
sitions in adsorbate systems, which is an extension of standard
cyclic voltammetry (CV): the electrochemical first-order rever-
sal curve (FORC) method. A concluding summary is given in
Sect. VIL.
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II. MOLECULAR DYNAMICS SIMULATIONS OF ION
INTERCALATION IN LITHIUM BATTERIES

The charging process in lithium-ion batteries is marked by the in-
tercalation of lithium ions into the graphite anode material. Here we
present MD simulations of this process and suggest a new charging
method that has the potential for shorter charging times, as well as
the possibility of providing higher power densities.

1. Molecular Dynamics and Model System

MD is based on solving the classical equations of motion for a sys-
tem of N atoms interacting through forces derived from a potential-
energy function.*® From the potential energy Ep, the force on the
ith atom, F;, is calculated. Thus, the equation of motion is

i) = 9Ep dv; 8%r;
= =mi— =m;—F,
ar; "ot " 9r2

(1
where 7;, v;, and m; are the position, velocity, and mass of the
ith atom, respectively. Consequently, the quality of the simulations
strongly depends on the ability of the classical force field to reason-
ably describe the atomistic behavior.

The newly developed general AMBER force field (GAFF)? was
used to approximate the bonded interactions of all the simulation
molecules, while the simulation package Spartan (Wavefunction,
Irvine, CA, USA) was used at the Hartree—Fock/6-31g* level to ob-
tain the necessary point charges for each of the atoms. To simulate a
charging field, the charge on the carbon atoms of the graphite sheets
was set to —0.0125e per atom. The bonded (first three terms of (2))
and nonbonded (last term) interactions in the AMBER force field are
represented by the following potential-energy function:

Ep = Z K. (r — req)2 + Z Ko(0 — 9eq)2 (2)

bonds angles

+ ) E[1+cos(nq>— )]
L v
dihedrals

qiq;
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Figure 1. (a) Snapshot of the model system containing four graphite sheets, two
PF, ions, and ten Lit ions (spheres), solvated in 69 propylene carbonate and
87 ethylene carbonate molecules after reaching constant volume in the NPT
ensemble. (b) Snapshot after 200 ns molecular dynamics simulation. The en-
semble is the NV T ensemble. The system has periodic boundary conditions
and is simulated at 1 atm and 300 K. 7op view, perpendicular to the plane of the
graphite sheets.

where K, Ky, and V;, are the bond stretching, bending and torsional
constants, respectively, the constants 4 and B define van der Waals
interactions between unbonded atoms, and € is the electrostatic per-
mittivity. The simulation package NAMD!? was used for the MD
simulations, while the graphics package VMD!! was used for visu-
alization and analysis of the simulation results.

The model system representing the anode half-cell is composed
of four graphite sheets (anode) containing 160 carbon atoms each,
two PF, ions, and ten Li™ ions, solvated in an electrolyte made of
69 propylene carbonate and 87 ethylene carbonate molecules (see
Fig. 1a). The graphite sheets were fixed from one side by keeping
the positions of the edge carbon atoms fixed.

2. Simulations and Results

After energy minimization, the simulations were run at constant
pressure using a Langevin piston Nosé—Hoover method'? '3 as im-
plemented in the NAMD software package until the system had
reached its equilibrium volume at a pressure of 1 atm and 300K in
the NPT (constant particle number, pressure, and temperature) en-
semble. The system’s behavior was then simulated for 200 ns (100
million steps) in the NV T (constant particle number, volume, and
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temperature) ensemble. Two observations were made: first, the Li™
ions stayed randomly distributed within the electrolyte, and second,
none of the Li™ ions had intercalated between the graphite sheets
after 200 ns (see Fig. 1b).

While the lithium ions do not intercalate within the simulation
time given above, it is expected that given enough time they will
move towards the graphite sheets and be intercalated. To test whether
intercalation is possible in such a model system, one of the lithium
ions was positioned between the graphite sheets at the beginning of
a simulation, and we observed whether it diffused out from between
the sheets. The lithium ion stayed intercalated, even after 400 ns.

For intercalation to occur, the lithium ion has first to diffuse
within the electrolyte until it reaches the graphite electrode. Con-
sequently, faster diffusion would result in faster intercalation and
shorter charging time. To increase the diffusion of lithium ions in
the electrolyte, we explored a new charging method. In addition to
the charging field due to the fixed charge on the graphite carbons, an
external oscillating square-wave field (amplitude 5 kcal mol ™!, fre-
quency 25 MHz) was applied in the direction perpendicular to the
plane of the graphite sheets. Not only does this additional field in-
crease diffusion, but also some of the lithium ions intercalate into
the graphite sheets within an average time of about 50 ns. Figure 2

25 T T T T T T
ot 20 | “
= | “ et
: T ’
£ 15 il
3
&
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E —— no external EF
> —— with external EF
5 —
0 " 1 " 1 " 1 "
0 50 100 150 200
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Figure 2. Root-mean-square displacement of lithium ions as a func-
tion of time. Diffusion is much faster with the additional oscillating

electric field (amplitude 5 kcal mol 1, frequency 25 MHz).
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shows a plot of the root-mean-square displacement of lithium ions
as a function of time for a system with and without an applied ex-
ternal field. The increased diffusion and intercalation indicate that
a charging protocol involving an oscillating field may decrease the
charging time and possibly increase the battery’s power density.

IT1. LATTICE-GAS MODELS OF CHEMISORBED
SYSTEMS

As mentioned in Sect. I, even the simplest electrosorption sys-
tems are extremely complicated. This complexity means that a
comprehensive theoretical description that enables predictions for
phenomena on macroscopic scales of time and space is still gen-
erally impossible with present-day methods and technology. (Note
that MD simulations, such as those presented in Sect. II, are only
possible up to times of a few hundred nanoseconds.) Therefore, it is
necessary to use a variety of analytical and computational methods
and to study various simplified models of the solid-liquid inter-
face. One such class of simplified models are LG models, in which
chemisorbed particles (solutes or solvents) can only be located at
specific adsorption sites, commensurate with the substrate’s crystal
structure. This can often be a very good approximation, for instance,
for halides on the (100) surface of Ag, for which it can be shown
that the adsorbates spend the vast majority of their time near the
fourfold hollow surface sites.'* A LG approximation to such a con-
tinuum model, appropriate for chemisorption of small molecules
or ions,!5 2% is defined by the discrete, effective grand-canonical
Hamiltonian,

(n)

'}—[LG=Z<—¢(n)<lXj;CiCj>+H3—ﬁXi:ci- (3)

n

Here, the lattice sites i are the preferred adsorption sites (the min-
ima of the continuous corrugation potential), and ¢; is a local occu-
pation variable, with 1 corresponding to an adsorbed particle and 0
to a solvated site. The sums ZE% and ), run over all nth-neighbor

pairs and over all adsorption sites, respectively, @ is the effec-
tive nth-neighbor pair interaction, and ), runs over the interaction
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ranges. The term 3 contains multiparticle interactions.?!>3 The
sign convention is such that ¢ < 0 implies repulsion, and o > 0
favors adsorption. Equation (3) is also easily generalized to multiple
species.?*

To connect the electrochemical potentials to the concentrations
in bulk solution of species X, [X], and the electrode potential, E,
one has (in the dilute-solution approximation)

E
fix(T, [X], E) = iy + ks T In(IX1/[X]") — e/EO Ww(ENAE', (4)

where kg is Boltzmann’s constant, 7 the temperature, e the ele-
mentary charge, and y4(E) the electrosorption valency?®2° of X.
The importance of the integral over the potential-dependent elec-
trosorption valency [rather than just the product ey (E)E ana-
logous to the case of potential-independent 4] was pointed out
in Ref. [30]. The quantities superscripted 0 are reference values
that include local binding energies. The interaction constants and
electrosorption valencies are effective parameters influenced by sev-
eral physical effects, including electronic structure,?! >3 surface
deformation, (screened) electrostatic interactions,?' 33 and the fluid
electrolyte.>*3% The density conjugate to jix is the coverage relative
to the number N of adsorption sites,

Ox=N") c. )

IV. CALCULATION OF LATTICE-GAS PARAMETERS
BY DENSITY FUNCTIONAL THEORY

There are many methods to estimate LG parameters. One of these
is comparison of MC simulations (see Sect. V) of a LG model with
experimental adsorption isotherms. For detailed descriptions of this
method we refer to Refs. [30,31,36-39]. Here we instead concentrate
on the purely theoretical method based on quantum-mechanical DFT
calculations.?

DFT is the most widely used method to calculate ground-state
properties of many-electron systems. It is based on the Hohenberg—
Kohn theorem, which states that all properties of the many-particle
ground state can be expressed in terms of the ground-state electron
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charge-density distribution®” and leads to the Kohn-Sham equa-
tions for single-particle wave functions.*! These are second-order
differential equations, which include potential terms due to the ions
and the classical Coulomb repulsive energy between the electrons,
as well as the electronic exchange—correlation energy, and they
are solved self-consistently. For surface structural studies, DFT is
usually performed using pseudopotentials with slab models and
plane-wave basis sets. The slab consists of a finite number of atomic
layers, periodic in the direction parallel to the surface, which can be
repeated periodically in the third direction (separated by a vacuum
interval), or not. The fluid solvent can be considered either as an
effective continuum or by molecular models.

Here we present preliminary results on a DFT calculation of
lateral interaction constants pertaining to a LG model for the ad-
sorption of Br on single-crystal Ag(100) surfaces.>?373%42 The LG
model is represented by (3) on a square lattice with lattice constant
a =2.95 A, H3 = 0, infinitely repulsive interactions for adparticles
at nearest-neighbor sites, and the long-range repulsion

3
¢ij = @(ﬁnnn for 7 > \/5, (6)

ij

which is compatible with dipole—dipole interactions or elastically
mediated interactions. (Here, 7;; is given in units of a.) Since the
DFT calculations are performed in the canonical ensemble (fixed
adsorbate coverage), i in (3) is replaced by the binding energy of a
single adparticle, Ey,.

We prepared slabs with seven metal layers, which were placed
inside a supercell with periodic boundary conditions. Two different
sizes of supercells were used: a 2 x 2 supercell with size of 2a x 2a x
36.95 A, and a 3 x 3 supercell with size of 3a x 3a x 36.95 A. The
vacuum region above the surface was twice the thickness of the slab,
and the orientation of the surface normal was in the z direction. One,
two, and three Br atoms were placed on the 3 x 3 surface to represent
coverages ® = 1/9,2/9, and 1/3. Two Br atoms were placed on the
2 x 2 surface to represent & = 1/2, and one Br atom was placed
on the 2 x 2 surface to represent ® = 1/4. Supercells with different
coverages of Br are shown in Fig. 3.

The DFT calculations were performed using the Vienna ab ini-
tio simulation package (VASP).*** The basis set was plane-wave,
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Figure 3. (a) Cross section of a 3 x 3 supercell with
® = 1/9. (b) Three-dimensional representation of the
same cell and coverage. (¢) Top view of a 3 x 3 surface
and a 2 x 2 surface with various coverages.

with the generalized gradient-corrected exchange—correlation func-
tion,*®:4” and Vanderbilt pseudopotentials.*® The k-point mesh was
generated using the Monkhorst method*” witha 5 x 5 x 1 grid for
the 3 x 3 cellsand a 7 x 7 x 1 grid for the 2 x 2 cells. All calculations
were done on a 54 x 54 x 192 real-space grid.

Individual DFT calculations provide total energies, £, and
charge densities, p(x). The adsorption energy FE,qs for a single
adatom and the corresponding charge-transfer function Ap(x) are
obtained from calculations of the adsorbed system and isolated slab
and atoms as follows:

Eags = [Esyst - Eslab] /Nads — EBr (7
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and®?

Ap(x) = [p(X)syst — p(X)slabl/ Nads — P (X)Br » (3)

where N,gs = N is the number of adsorbed Br atoms in the cell,
and the quantities subscripted Br refer to a single, isolated Br atom.

Since the system is electrically neutral, the integral over space
of Ap(x) vanishes. The surface dipole moment is defined as

p= [ =80, ©)

Kohn and Lau’! have shown that the nonoscillatory part of the
dipole—dipole interaction energy between adsorbates separated by
a distance R behaves as

2papp
4TC€()R3

Gdip—dip = (10)
for large R (in our case larger than the nearest-neighbor distance).
This result is twice what one might naively expect. Thus, the next-
nearest-neighbor interaction constant from (6) would be

2 p2

T3
4meo Ry n

an

Pdip—dipann =
with p obtained from the DFT by (9). This estimate, which depends
on O, is included in Fig. 4 as solid circles.

Alternatively, the interaction constant ¢, in the LG Hamilto-

nian, (3), can be estimated by performing a nonlinear least-squares
fit of the ®-dependent DFT adsorption energy E,qs in (7) to

Eads = _¢nnnZ@ - Eb@s (12)
with ¢pnn = A(1 + B@)z, using the three fitting parameters 4, B,

and Ey. This is consistent with the theoretical prediction of (11) with
a dipole moment that depends linearly on ®. The quantity

Yo =

3 .
(‘/]3) g (13)

i< Tij
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Figure 4. Three different estimates of the lattice-gas interaction con-
stant ¢nnn. Circles based on (10) with the dipole moment p directly
obtained from the density functional theory (DFT) calculation. Squares
based on a three-parameter fit to the DFT adsorption energy E,qs
as described in (12). Diamonds based on minimizing mean-square
deviations (MSD) from the estimate based on the DFT dipole moment
p. constrained to retain a low value of x2 from the fit to Eqqgs- See the
discussion in the text.

can be calculated numerically to any given accuracy for a partic-
ular coverage and adsorbate configuration. This estimate for ¢pn
is included in Fig. 4 as solid squares. It does not agree particularly
closely with the result obtained from the dipole moments. However,
we found that x2 of the fit, considered as a function of the fitting pa-
rameters, was characterized by an extremely wide and shallow basin
surrounding its minimum. We therefore further minimized the mean-
square deviation (MSD) between the values of ¢nn, obtained from
this fitting procedure and those obtained directly from (11) with the
DFT values for p within the three-dimensional parameter region for
which the original x* was close to its minimum. This procedure gave
significantly improved consistency between the two estimates for
¢unn, Without a significant increase in x2. The final result is shown
as solid diamonds in Fig.4, and the corresponding parameters are
listed in Table 1.

The average value of ¢nn, obtained by this method is con-
sistent with that found by fitting equilibrium MC simulations (see
Sect. V.1) to experimental adsorption isotherms in aqueous solution
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Table 1.

Results for the fits of the ®-dependent lattice-gas interaction
constant ¢y according to the two methods described in the text.
Here, v is the number of degrees of freedom (number of data points
minus number of parameters, here equal to 2) for the initial
nonlinear least-squares fit of ¢nn, to the density functional theory
(DFT) adsorption energy E,q4s, while MSD is the mean-square
deviation between this estimate and the estimate obtained directly
from the DFT dipole moment. Minimizing MSD within the basin of
low x? significantly reduces the MSD (see the greatly improved
agreement in Fig. 4) without significantly increasing 2.

Method A B Ey x%/v MSD/v
Min. x2 —6.017 x 102 —0.8632 3.102 2362 x 10~> 1.803 x 10~4
Min. MSD  —4.085 x 1072 —0.7595 3.070 2.675 x 10™>  7.692 x 10~°

(approximately —21 meV). However, no significant coverage depen-
dence was found in the analysis of the experimental data.’%37 It is
not surprising that results from in situ experiments and in vacuo DFT
calculations should show some differences, and we find it encourag-
ing that the average results are consistent. Application of the method
described here to Cl/Ag(100) gave less consistent results than for
Br, possibly indicating that the effective interactions for Cl are not
purely dipole—dipole in nature.>?

V. MONTE CARLO SIMULATIONS

1. Equilibrium Monte Carlo

As a method to obtain equilibrium properties of a system described
by a particular Hamiltonian, MC simulation is more accurate than
mean-field approximations, especially for low-dimensional systems
near phase transitions.>%>3 This is an effect of fluctuations, which,
while ignored or underestimated by mean-field methods, are very
important in two-dimensional systems. Given the rapid evolution of
computers and the relative ease of programming of MC codes, this
is our method of choice for equilibrium and dynamic studies of both
LG and continuum models.
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The goal of an equilibrium MC code is to bring the system to
equilibrium as rapidly as possible, and then sample the equilibrium
distribution as efficiently as possible. The only requirement is that
the transition rates between two configurations ¢ and ¢’ satisfy de-
tailed balance,

R( = ¢)/R(c — ) =exp[— (H(c) — H()) /kT]. (14)

This result applies to both continuum and discrete systems, and H
may be a classical potential of predetermined form, or the interaction
energies can be calculated “on the fly” by DFT.>* The sampling can
be accomplished with a number of different choices of the transition
rates R(c’ — c),36’53’55_62 including Metropolis, Glauber, and heat-
bath algorithms. It is important to note that the stochastic sequence
of configurations generated by an equilibrium MC algorithm does
not generally correspond to the actual dynamics of the system.

2. Kinetic Monte Carlo

To construct a MC algorithm producing a stochastic path through
configuration space that is a good approximation to the actual time
evolution of the system (in a coarse-grained sense), one can intro-
duce transition states between the LG states. Only then can “MC
time,” measured in MC steps per site in a LG simulation, be con-
sidered proportional to “physical time,” measured in seconds.*? In a
Butler—Volmer approximation,?%3¢ the free energy of the transition
state between LG configurations ¢ and ¢’ is given by

H*(e,¢) = A+ (1 —a)Hig (©) +aHig (¢) . (15)

where the symmetry constant « = 1/2 for diffusion but may be
different for adsorption/desorption.’® The “bare” barrier A must
be determined by other methods. These may be ab initio calcula-
tions,>>0376¢ MD simulations of the diffusion process on a short
time scale as in Sect. II,*® or comparison of dynamic simulations
with experiments.*> The most common choice of transition rate
for kinetic MC simulation in chemical applications is the one-step
algorithm,%7-68

R(c— ') = wexp [~ (H*(c.¢) —Hig(©) /ksT],  (16)
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where vy is an attempt frequency [often on the order of a phonon
frequency (10°—10'3 Hz), but see Ref. [42] for exceptions] that must
be determined by other means. As we have shown previously,>> 62
to obtain reliable structural information from a kinetic MC simu-
lation, the transition rates must approximate the real physical dy-
namics, which includes using transition states with proper energies.
While the need for correct transition rates may seem obvious, it is
regrettably often ignored in the literature. The most difficult barrier
to estimate is that for adsorption/desorption, which requires reorga-
nization of the adparticle’s hydration shell.

Since the transition rates used in kinetic MC simulations of
activated processes are typically small, simulations that extend to
macroscopic times must use a rejection-free algorithm, such as
the n-fold way®-7% or one of its generalizations.®”-7'~77 These
algorithms simulate the same Markov process as the “naive” MC
approach of proposing and then accepting or rejecting individual
moves. Although they require more bookkeeping (see the appendix
of Ref. [71] for an example), they avoid the large waste of computer
time resulting from rejected moves.

VI. ELECTROCHEMICAL FIRST-ORDER REVERSAL
CURVE SIMULATIONS

The FORC method was originally developed to enhance the amount
of dynamic information extracted from magnetic hysteresis exper-
iments.”®8! We recently proposed that the method can be further
developed as an extension of traditional CV to study the dynamics
of phase transitions in electrochemical adsorption.3%83

This electrochemical FORC method consists in saturating the
adsorbate coverage @ in a strong positive electrochemical poten-
tial & and, in each case starting from saturation, decreasing i at a
constant rate to a series of progressively more negative “reversal
potentials” i, (see Fig.5a). Subsequently, & is increased back to
the saturating @ at the same rate. (Saturation at negative potentials
with reversal potentials in the positive range is also possible.) The
method is thus a simple generalization of the standard CV method,
in which the negative return potential is decreased for each cy-
cle. This produces a family of FORCs, ® (i, itj), where [i; is the
instantaneous potential during the increase back toward saturation.
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Figure 5. (a) Family of first-order reversal curves (FORCs) for our model of
Br/Ag(100), corresponding to potential sweeps back and forth across the continu-
ous phase transition between the disordered and ¢(2 x 2) phases. The bold arrows
show the directions of the potential sweeps, and the vertical arrow indicates ji; for
one of the FORCs. The bold curve is the FORC whose minimum lies closest to the
critical coverage (shown in more detail in the insef). The thin curve in the middle is
the equilibrium isotherm. (b) Voltammetric currents corresponding to the FORCs in
(a). (¢) Contour plot of the FORC distribution p, corresponding to the FORCs in (a).
The jagged curve of dots in the upper part of the diagram corresponds to the minima
of the positive-going curves in (a). The area above the curve corresponds to desorp-
tion, and the area below it to adsorption. The slanted, straight line corresponds to the
bold curve in (a). After Ref. [82].

In CV experiments, one actually records the corresponding family
of voltammetric currents,

diti 96 (i, f1)

, 17
dr d i (17

(e, 1) = —ye

where y is the electrosorption valency and e is the elementary charge
(see Fig. 5b).
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The next step in extracting dynamical information from the
FORCs or the corresponding currents is to calculate the FORC
distribution,

1 0’0 _ U 9i(ir, fii)
2003 2ye(di/d) B

p= (18)

This is shown in Fig. 5c as a contour plot commonly known as a
FORC diagram in terms of the more convenient variables iy, =
(ftr + 1)/2 and jic = (fir — fi;)/2.7%8% Geometrically, p is pro-
portional to the vertical distance between adjacent current traces.

To our knowledge, the data for our model of Br/
Ag(100),2%-3773%42 which are shown in Fig. 5, are the first FORC
predictions for a continuous phase transition. The data in all three
panels are significantly different from the corresponding data for a
discontinuous transition, such as seen in underpotential deposition.
In particular, the FORC distribution for a discontinuous transition
contains a negative region, while this does not appear for continuous
transitions. (See details in Refs. [82, 83].) Closely related to this neg-
ative region is an extremum of the current density during the return
scan.* Electrochemical FORC analysis should be a useful and valu-
able method to distinguish between continuous and discontinuous
phase transitions in experiments.

VII. CONCLUSION

In this chapter we have presented some applications of the
statistical-mechanics-based computer-simulation methods of MD
and equilibrium and kinetic MC simulations complemented by
quantum-mechanical DFT calculations of interaction energies.
These include both highly technologically oriented applications
to lithium-battery technology, and basic-science investigations into
adsorption on single-crystal electrodes. Our hope is that these ex-
amples and the list of references will encourage other workers in
surface electrochemistry to take advantage of the recent spectacular
advances in computational power and algorithmic sophistication
to study ever more detailed and accurate models of processes at
solid-liquid interfaces.
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I. INTRODUCTION

Mixed, i.e. electronic and ionic, conducting materials have been
known for a rather long time although their full potential was not
always understood. As an example, a conducting polymer such as
polyaniline is the oldest conjugated known polymer; it was first
reported in 1862 by Letheby.! In 1910, polyaniline was described
as an octamer existing in four different states? and it was later anal-
ysed for its electrical properties by Jozefowicz.? Later, many works
were devoted to conducting polymers and more generally to elec-
troactive materials especially in the form of thin films deposited on
a metallic electrode.

A number of useful reviews have been published on the prop-
erties of the electroactive materials, especially on conducting poly-
mers. The reviews of Murray*> provide a summary of the early
works in this area. The reviews by Albery and Hillman,® Hillman,’
Abruna,® Evans,” Smyrl and Lien'® and Lyons'!>!? are also very
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useful. More recently, reviews have been provided by Oyama
and Ohsaka,!> Murray,'* Andrieux and Savéant,’ Inzelt'® and
Doblhofer,!” and in the book edited by Lyons.'® To our knowledge,
since the mid 1990s no thorough review has been published. So,
this text will mainly focus on the results reported in this field during
these last 10 years.

Electroactive materials are often used as thin films coating a
metallic electrode. Charge transport in these films and charge trans-
fer reactions at metal/film and film/electrolyte interfaces play key
roles in the reduction and oxidation of these electroactive films. As
an example, it is commonly accepted that the oxidation process of
such a film requires either cation expulsion or anion entry to com-
pensate for the positive charges formed inside the film. However, it
has been shown that the redox processes in electroactive films are
accompanied not only by the exchange of ions with the electrolyte
solution but also by solvent exchanges.!”

As electroneutrality is demanding, it is generally assumed that
the field-assisted transport of charged species is more rapid than the
transport of neutral species and, consequently, solvation equilibria
can only be established slowly. Therefore, the equilibria associated
with electronic, ionic and solvation processes may be established
on quite different time scales, but at long enough time scales ther-
modynamics will prevail and processes will attain a state of global
equilibrium. However, the relative rates of all the processes involved
in the charge compensation are still an open question.

Electroactive materials have attracted interest in view of
their practical applications as electrodes in batteries,?* 22 as gas-
separating membranes,>> in microelectronic devices,>* for molec-
ular recognition®> and as sensors for the detection of chemical
or biological species,?® or some inorganic ions in solutions,?’ or
even as nanostructured materials.”® New possibilities have recently
been found, e.g. in microwave absorbers for screening external
electromagnetic fields.?? Using these materials, e.g. in the field
of electroanalysis,’® requires a clear understanding of the charge
compensation processes following the redox switching of these
electroactive materials from reduced to oxidized forms or vice versa.

In this paper, after some generalities, a review of the models
and techniques used to investigate ionic and solvent transfer and
transport in electroactive materials will be first carried out. As the
models employed are largely dependent on the techniques used to
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test them, two main approaches will be described. The electrochem-
ical investigation of electroactive films, in terms of voltammetry and
electrochemical impedances, takes into account the charged species
involved in the redox process of the film. The addition of gravimetric
investigations thanks to quartz crystal microbalances (QCMs) allows
the solvent interaction to be attained. A third approach largely used
to investigate these films, as they often have electrochromic prop-
erties, is based on optical techniques, but they are out of the scope
of this paper. At the end, we shall describe the use of AC electro-
gravimetry coupled with electrochemical impedance measurements
to characterize ions and solvent motion at the film/electrolyte in-
terface during the redox switching of an electroactive material. AC
electrogravimetry allows the mass response to a small potential per-
turbation to be analysed thanks to a fast QCM used in the dynamic
regime.>!-32 This technique has already been fruitful in several
domains: copper electrodeposition,’® gold oxidation in an acidic
medium,* ionic insertion in WO333-3¢ or passivity of iron in a sul-
phuric medium.3” Here, the models proposed in the literature are re-
viewed for two and three species involved in the oxidation/reduction
process taking into account insertion laws based on diffusion and
heterogencous kinetic equations. Then, calculated electrochemical
impedances and electrogravimetric transfer functions deduced from
these models will be compared with experimental results: the influ-
ence of the nature of the ionic species which interact with the films
will be discussed.

II. GENERAL CONSIDERATIONS

Before we review ionic and solvent transfer and transport in elec-
troactive materials, some general considerations concerning the ther-
modynamics, swelling and conductivity of these materials will be
given.

1. Thermodynamics

From a thermodynamic point of view, it has been shown that the re-
dox process in an electroactive film is accompanied not only by the
exchange of ions with the electrolyte solution but also by solvent
exchange,!*38 e.g. for a polymer P immersed in an aqueous solu-
tion of a salt CA, a general redox process where cations, anions and
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solvent are exchanged with the solution to compensate the electronic
charges exchanged with the electrode can be represented by

{[P"*nA™ ]« [CTAT] B[H,0]}, +ve”
o {[PW*”)*(n — v)A*] @—8)[CTA ] (B -2 [HZO]}p
+8CT + (8 +v)A; + eH0s, (1)

where {}, and {}; mean, the species inserted in the polymer and the
species in the solution, respectively.

Owing to thermodynamic constraints and electroneutrality re-
quirements, the coefficients, «, B8, § and ¢ can be of either sign, or
equal to 0, and are not necessarily integer numbers.

When an electric field is applied across an ion-containing
membrane, ions move through the membrane owing to electromo-
tive forces. This ion transport is accompanied by solvent transport
through the membrane. Solvent is transported either by an associ-
ation with the transported ion, such as a hydration sphere, or by
hydrodynamic pumping owing to the movement of the ions and as-
sociated solvent molecules. This solvent transport accompanying the
ion transport through a membrane is termed “electro-osmosis”.>°

Electroactive polymers are a special case of ion-exchange poly-
mers in that one can control the charge site density; this charge
density range is determined by the charge type and volume con-
centration of the redox sites. For simplicity, for a polymer having
cationic sites immersed in a bathing solution containing a single 1:1
electrolyte CtA~, the partition of anions and cations (here, coun-
terions and co-ions, respectively) between the bathing solution, C{,

A, and the cationic form of the polymer, Ct, A; s is%0

Cy+A; 2Cf+4A,. )

This process satisfies the activity constraint and is described by the
equilibrium constant

K = Ci C, v /CLy, 3)

where K¢ is the salt partition coefficient, y* denotes the mean
activity coefficient in the designated phase C;{ and C; are the con-
centrations of C:{ and A" respectively and Cs represents equal con-
centrations of anion and cation in the bathing solution.
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The electroneutrality constraint for the concentration, CM+ps of
the fixed polymer sites, M, and the concentrations of mobile ions
in the polymer phase, C;l, A, leads to

cA; = CM;; + CCP+- “4)

By eliminating ¢ Ay between (3) and (4), we obtain a quadratic ex-
pression for a “permselectivity index”, R = cc /cM;:

R+ R-ST?=0, (5)

where S = cs/cM; and T = K> [ysi/ypi].
This expression means that when ST < 1 (e.g. when ¢g < 1),

R =0, which means that the film is ideally permselective (as
ccr = 0, no co-ions enter the polymer), whereas when S7 increases

(i.e. when c¢s increases), R is different from 0, which shows co-ion
ingress in the film. However, it is noticeable that the permselec-
tivity index depends upon the degree of polymer oxidation via
Cng The change of the permselectivity index has been thoroughly

investigated for various conditions of solvent and salt transfers
accompanying complete or partial redox switching.*!-42

2. Swelling

Among the physicochemical properties of electroactive materials,
such as conducting polymers, one which has attracted much atten-
tion in recent years is the so-called electrochemomechanical effect,
i.e. the expansion and contraction of the sample that arise upon redox
switching.*4* As an example, for polypyrrole (PPY), it has been
shown that a compact structure is attained at cathodic potentials, and
only the surface in contact with the electrolyte is electrochemically
active, whereas for anodic polarization the structure becomes per-
meable to ions: every polymeric chain actuates as an electroactive
interface.*>#7 For polyaniline, the volume changes can be attributed
to the influence of several factors: ion and water exchange with the
electrolyte, coulombic repulsion between charged sites in the poly-
mer backbone, anion—polymer interaction and structural changes of
the polymer backbone.*®4? In addition, it has been shown that the
anion in the electrolyte has a definite influence on the film volume
changes.*° Finally, the doping degree, the nature of the counterions
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and the method of preparation (chemical or electrochemical) have
a considerable influence upon the polymer structure.’! In some
conditions, the main part of the overall increase of volume (and
hence of conformational rearrangements) observed during oxidation
has to be attributed to an effect of solvent penetration.>> For poly
(2-methylaniline), the volume changes seem to be due to two differ-
ent processes, the faster one being proton and anion exchange with
the electrolyte, both carrying solvent molecules. The other process is
a structural change of the polymer backbone, giving higher volume
changes but having a much lower rate during the reduction step.>
These swelling phenomena have a profound influence on the rate
and magnitude of the redox-switching mass response.>* Finally, this
volume change behaviour has allowed arrangements of conducting
polymers to be considered as artificial muscles.

These volume and structure changes were studied using vari-
ous techniques.>>>¢ Microscopic observations of a minute drop of
polymer®—% were very efficient. Quartz crystal admittance mea-
surements (electroacoustic admittance) to follow the departure from
rigidity,®’ by following the shear moduli with time,>® to gain some
insight with regard to solvation®® were also helpful. This technique
was also used for identifying the rate-limiting step of the redox
switching of some polymers.®® The authors have shown that the
movement of neutral species is often slower than the movement of
charged species, and occurs to an extent which depends on the exper-
imental conditions. In particular for polyaniline in HCI, the move-
ment of water is slow and lags behind that of the protons. As a
result, at higher sweep rate it has been shown that less water en-
ters the film. It was also shown that the viscoelastic properties are
greatly influenced by the anion identity.®! As examples, perchlorate-
doped polyaniline films are compact, whereas sulphate-doped films
are more open.

3. Conductivity

The electrical conductivity of conducting polymers is known to be
a strong function of their oxidation states (or doping level). It usu-
ally increases with the potential applied to an electrode in contact
with the film, i.e. when the film is oxidized.%? This is the case for
pure PPY, but for dodecyl sulphate modified PPY the ion conduc-
tivity is at its maximum in the reduced state and decreases sig-
nificantly with increasing potential.®> For some 3,4-disubstituted
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PPYs and polythiophenes, oxidation causes the transition from a
low-conductivity to a conductive state as generally found in poly-
conjugated polymers, but these modified polymers pass to a sec-
ond low-conductivity state via a maximum.®*% The consequence
of such a dramatic change in electronic conductivity upon switching
might lead to a moving-front phenomenon, which separates a part
where the film is in its conductive state from one where it is in its in-
sulating state and propagates from the electrode to the solution.®®¢7

III. ELECTROCHEMICAL APPROACH
OF ELECTROACTIVE MATERIALS

Many organic and inorganic materials are electroactive. Among
them, electroactive polymers constitute a large family, which can be
classified into two major types: redox polymers and electronically
conducting polymers.'® The combination of a deposited polymer
film and a supporting electrode constitutes a chemically modified
electrode. The mechanism of charge percolation through surface-
deposited polymer films is of central importance. Redox polymers
are localized-state conductors, containing redox-active groups cova-
lently bound to an electrochemically inactive polymeric backbone.
In these materials electron transfer occurs via a process of sequen-
tial electron self-exchange between neighbouring redox groups. This
process is termed “electron hopping”. In contrast with electronically
conducting polymers, the polymer backbone is extensively conju-
gated, which results in considerable charge delocalization. Charge
transport (via polarons and bipolarons) along the polymer chain is
rapid and interchain charge transfer is rate-limiting. Redox poly-
mers remain conductive over only a limited range of potential. Max-
imum conductivity is observed when the concentrations of oxidized
and reduced sites in the polymer are equal. This occurs at the stan-
dard potential of the redox centre in the polymer. In contrast, elec-
tronically conducting polymers, such as PPY, display quasi-metallic
conductivity and remain conductive over a large potential range.
Redox polymers are usually preformed and subsequently deposited
onto the support electrode surface via dip or spin coating. In con-
trast, electronically conducting polymers are usually generated via
in situ electrodeposition. In this case there is electropolymerization
of the electroactive monomer.
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In all cases, the process of redox switching, i.e. the transition
from an insulating to a conducting form, is accomplished via an
electrochemically induced change in the oxidation state of the layer.
Since electroneutrality within the film must be maintained, the ox-
idation state change is accompanied by the ingress or egress of
charge-compensating counterions.

1. Models of the Charge Transport Through the Electroactive
Film

Two types of model have been used to describe the charge transport
through electroactive films: continuous models, considering ionic
transport in a compact film based on the Nernst—Planck equations,
and porous models, whose transport is described by transmission
line equivalent circuits.

(i) Compact Model (Diffusion—Migration Model)

The geometry of the modified electrode is given in Fig. 1.
By definition, the fluxes of species i, J;, are positive for outgo-
ing species:
Ji(x) >0 forx > 0. (6)

The global potential across the modified electrode, £ (the metal
electrode is supposed to be grounded), is the sum of three quantities:

E =E|+ Ey+ E3, (7

Electrode Electroactive film Electrolyte

Cations

«—>
El
ectrons Anibns

<«
Solvient

x=0 x =df

Figure 1. The electrode/film/electrolyte system.
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where E| and E3 are the interfacial differences of potential across
the metal/film (electron transfer overvoltage) and film/electrolyte
(ion transfer overvoltage) interfaces, respectively and E is the po-
tential difference across the film (diffusion + ohmic overvoltages)
with thickness df.

Generally, the total faradaic electrochemical impedance,
ZF (w), is obtained by considering

Zr (0) = Z1 () + 22 (0) + Z3 (0) @®)

where Z1(w) = (AE1/Alf) is relative to the metal/polymer in-
terface, Z(w) = (AE>/Alf) is relative to the bulk polymer and
Z3(w) = (AE3/Al) is relative to the polymer/electrolyte inter-
face, to which double-layer capacities have to be added to obtain the
measurable electrochemical impedance.%% ¢

As a simplifying assumption, which will be used in the fol-
lowing, the charge transport mechanism, which occurs in the bulk
polymer during an oxidation/reduction reaction of the polymer in
aqueous media, can be modelled by assuming that the transport
of the species in the electrolyte is sufficiently fast and is not a
limiting step.

(a) Boundary conditions

The following boundary conditions are supposed to apply. The
metal/polymer is an ion blocking interface:

ie.forx =0, Ju(0) = Jo(0) = 0. )

As anions (subscript a), and cations (subscript ¢), cannot cross the
electrode/polymer interface, only the electrons (subscript ¢), are sup-
posed to cross the interface:

L) = F 10
e( ) - F’ ( )
Jo(0) = k — K ce(0), (11)

where [r is the faradaic current density related to the charge transfer
at the metal/film interface, k and &’ are the rate constants of the elec-
tronic transfer and F is the Faraday number (96,500 C). In addition,

k = ko exp bEjandk’ = k(, exp bE},

where F is the film/electrolyte interfacial potential difference.
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On the other hand, as outwards positive fluxes give negative cur-
rents for expelled anions and positive currents for expelled cations,
by assuming monovalent ions at the film/electrolyte interface, we
have

forx =dp, —Ja(dp) + Je (dy) = %F (12)
where
Ji (dy) = kic; (d) — k,, withi =a,c (13)
and k; = kjo exp b; E3 and k] = k., exp b} E3 and
Je (dp) = 0, (14)

although for any x in the bulk polymer

I

= e () = () e () (15)
where J, (0) is the electron flux at the electrode/film interface and
Ja (df) and J; (df) are the anion and cation fluxes at the film/solution
interface, respectively.

(b) Movement of the species

For models considering the electroactive films as a homoge-
neous medium, the movement of the species is considered to be gov-
erned by migration and diffusion. This is easily understandable for
conducting polymers but is less obvious for redox polymers where
conduction through electron hopping prevails. However, Savéant
et al.”%7! Buck,’>7* and Albery et al.”> have shown that electron
hopping is not only driven by a concentration gradient but is also
field-assisted and then movement of electrons can also be described
by Nernst—Planck equations. Then, the flux, J;, of all the species
within the film can be written as

ac; F Q¢

Ji(x)=—-Dj— —z;Dj—c;—, 1 =c¢,a,c, 16
i (%) 1ax Zj tRTlax ( )
where D; is the diffusion coefficient of species i and ze = 1, z, =
—1l,and z, = 1.

The concentrations change as

aci o BJl-

= . 17
ot ox an
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The potential follows the Poisson equation:

82
85£§==§:Zﬂ3 (18)
i

and the total current is equal to

I=FY J(x)+—182¢ (19)
_ . 10%
- o € dx 0t

(c) Steady state and quasi steady state

At steady state, (d/0¢f) = 0 in the movement equations, so,
from (17), J; (x) is a constant and the boundary conditions lead to
Ji (x) = 0 and Ir = 0. In this equilibrium situation, ¢; (x) and
E (x) are constant throughout the film and are equal to ¢; and E,
respectively.

The general problem, even without consideration of space-
charge effects, is intrinsically non-linear. Only DC solutions for
potential, concentrations, fluxes and currents are possible by exact
methods in some specific cases. Time-dependence problems, such
as the derivation of the impedance, require some simplifications or
consideration of special cases. Diffusion—migration models were
used to simulate the behaviour of electroactive films both by direct
computer integration of the equations to calculate cyclic voltammo-
grams,’® or potential distributions across the film’’ and by Monte
Carlo simulation.”37

(ii) Porous Model (Transmission Line Model)

By considering that polymers have a porous nature,3083
Barker,®* Albery et al.,> Buck,%%7 and Paasch®°! have shown
that to calculate the impedance of electrode/film/solution systems
there is a full equivalence of the transport of species by diffusion—
migration and Poisson potential distribution and a transmission
line equivalent circuit, like those shown in Fig. 2. Their distributed
components are

RT

Ri(X)=—5——,
' ( ) F2Zi2Dl'Cl' (x)

(20)
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Figure 2. Transmission lines used as equivalent circuits for electroactive
films. These aperiodic circuits describe ion and electron transport in con-
ducting polymers with reversible interfacial charge exchange processes. (a)
Single Warburg impedance, (b) circuit describing film bulk and Warburg
impedance, capacitors Cp represent the Poisson equation, (¢) multi-ion and
electron exchange processes. From Buck and Mundt.87
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Z?cm,- (x)
Ci(x) = = (21)
Cp (1) = i. 22)

The transmission lines shown in Fig. 2 are such that the distributed
capacitance C}, represents the Poisson branch and parallel branches
represent each charged species. Figure2a describes the single
Warburg impedance for a single z;:z_ salt. This leads to an al-
ternative approach of the charged species movement supposed to
follow a diffusion—migration process. If the concentrations are sup-
posed to be distance-independent, the impedance is quite easy to
obtain. If not, the derivation is more intricate and needs numerical
techniques.

The solution of this transport problem in its full generality is
difficult; only numerical solutions can be obtained. Using approx-
imations, one can reach analytical solutions in some simple cases.
The main hypothesis, often made, is electroneutrality, which means

Z zjc; = 0 in the transport approach
i
or
Cp =0 in the transmission line approach.

2. Calculation of the Impedance

At the beginning, the impedance of a polymer film was calculated
by taking into account the transport of the species by diffusion
alone,”® %3 then both diffusion and migration were considered.* %>
For the latter, an exact solution can be obtained for two species,
whereas only approximate solutions are obtained for three species.

(i) Two-Species Problems

The impedance of an electroactive film where the insertion
of one ion (subscript i in the following equations) occurs at the
film/electrolyte interface, balanced by the entry of electrons at the
metal/film interface has been calculated for compact and porous rep-
resentations. By assuming local electroneutrality [c. (x) = ¢; (x)]
in the polymer, Buck”® and Vorotyntsev®’ followed by others?® 101
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found the solution of the Nernst—Planck equations for the following
boundary conditions:

I
x=0,J=0 and Jo=— =k, — kece (0), (23)
e

I
x=dp Jo=0 and Jj=—-t. 24)
e

At steady state, Jo = J; = 0, ce (x) = ¢i(x) = ¢p, and ¢ (x) =
¢p, and then the concentrations of the species and the potential are
uniform in the bulk film.

In a low-amplitude sine wave regime, the various impedances
were calculated,

De+Di
Z] (w) = Re + Rpm [(De + Dl) coth v — (De — D,-)tanh U] s
(25)
(De — D;)?
Z =R R,——  tanh v, 26
2@ =Ry + Ry 40D.D; anh v (26)
De +Di

Z3(w) = Ri + R “[(De + D;) coth v + (De — Dj) tanh v],

P 8uD.D;
(27)

and then the total faradaic impedance of the electroactive film is

Zp(w) = Re + R; +Rp

+ R g [(De + D)2 coth v + (De — D;)? tanh u],
(28)
where
L 201 -1 2
,  jed*(D7'+ DY ds F
v = 68 - ) szgy O—=(D€+DZ)CPE~5

1 1
Ri = 117’ Re = .
F [bikici(dp) — bjk] F [baka — bokece(0)]

R and Rj are the electronic and ionic charge transfer resistances at
the metal/film and film/electrolyte interfaces, respectively, Rj, is the
resistance of the bulk film, and o is the conductivity of the film.
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At low frequencies, w — 0, we have

Zp(w) ~ Re + Ri + Rp

+ Ry [(De + Dy (% + g) + (De — Dl»)zv] :

(29)

4UDeDl’

Then, in the low-frequency range, the impedance is equivalent to a
Ri¢, Cjf series circuit, such as

R (De + D;)?
Rif= R.+ Ri + R P D, — D;)? + ——"2 ),
If e+ Ri + p+4DeDi (( e i)+ 3
(30)
d? dy F?
Cii=———1—— e Cr==cp—. 31)
2Rp(De + Dy) 2 PRT

Figure 3 shows the various shapes of the impedance of the thin film
calculated for equal coefficients of ions and electrons (D, = D;j =
D) but taking into account the double-layer capacities, C; and Ce,
across the film/electrolyte and electrode/film interfaces, respectively.

1 1 coth v
Z(@) = - - N . ()
joCi + 7 joCe + - v

where
v = (jw/o*)"* andw* = 4D /d?.

For the same geometry, Paasch found for a transmission line like the

one in Fig. 2 for the porous model of the conducting polymers®8-2°

2 2

+ p5 coth(d 2 d d
Ze(w) = pL+ P (dtB) 42 A t0102 . 33)
p1+p2 B p1 + p2 sinh(dB) = p1 + p2

where P

B> = (k+i0)CSc(pr + p2), k==,

CS.

where g is the charge transfer conductance which couples electrons
and ions, p1 and p; are the resistivities of the electronically conduct-
ing porous material and the pore filled with electrolyte with ionic
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Figure 3. Impedance calculated

Rp+Re+R;

from (32) plot-

ted in the complex (—Im[Z (®)], Re[Z (w)]) for
equal diffusion coefficients of ions and electrons

De = D; and o* = 0.4, Re =

Ri = Rp/4, (a)

Ce = C; = 0.01Ry 'w; ! (curve 1), 0.001R; ' w;!

(curve 2), 0 (curve 3); (b)
Ce = 0.001R, ;! (curve 1)

C; = 100Ce,
, 0.0001R, ;!

(curve 2), 0.00001 R, 1w; ! (curve 3), 0 (curve 4).

From Buck et al.%¢
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conductivity, respectively, C is the capacity of the pore unit area and
S¢ is the effective pore area per unit volume.

When k£ = gt = 0, (33) has exactly the same form as (28) when
R. = R; = 0, noting that

_ coth(y/2) + tanh(y/2) and 1 coth(y/2) — tanh(y/2)

th _
oLy 2 sinh y 2

(34

Then, the two models give equivalent results. This calculation was
also given by Buck without the electroneutrality hypothesis (i.e.
Cp # 0). The transmission line approach is often called the “porous
model” of a conducting polymer as electrons are supposed to cross
the polymer (phase 1) and ions are supposed to move into pores,
filled by electrolyte, represented by the second branch of the trans-
mission line. It is noticeable that the transmission line approach
allows more complicated kinetics to be tested for a two-species prob-
lem, e.g. charge transfer in parallel to the capacity C(x) and C;(x),
or diffusion of the ion in the “ionic pores”, i.e. to introduce complex
impedances instead of the real resistance p; and/or p;, of the pure
capacitances C and/or Cj. It also allows position-dependent param-
eters to be introduced to mimic concentration gradients in the poly-
mer [c;(x) # constant].

(ii) Three-Species Problems

For three charged species, where electrons crossing the metal/
polymer interface and anions and cations crossing the polymer/
electrolyte interface are considered, the problem is far more involved
and has to be solved by numerical methods.!?> To obtain analytical
solutions, questionable assumptions have to be made. Using the al-
ternative model, 3D transmission lines have to be considered and
only numerical solutions can be obtained.3¢ 103

Two types of hypothesis were invoked, which lead to position-
independent parameters [c; (x) = constant], to analytically solve the
Nernst—Planck equations. Either relationships between the concen-
trations are supposed in addition to electroneutrality in the bulk film
or the migration terms are neglected.

(a) Inzelt model'™

In this model, in addition to ¢;(x) = constant and local steady
state electroneutrality (ce+c.—ca = 0), a strict relationship between
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the concentration fluctuations resulting from the potential perturba-
tion was assumed:

Ace = (1 —y)Aca,

Ace = Y Acy. 3%

These assumptions lead to the three elementary impedances which
form the total impedance of the modified electrode:

1 k3 a ¢\ coth(sds/2)
Z1(w) = 2 (24 0) /202
W) = e T 2k NF (P 1) s
k2 tanh(sds/2
2 (f_ﬁ) anh(s f/)’ (36)
ZkINF I P A
d 1 /¢ a tanh(sd¢/2)
Zr(®) = — —(———)U—, 37
2@ =gt a7 TP 37
1 kx ¢ a\ coth(sds/2)
Z = — 4 (= D)2/ e
3@) = 5 T SONE (1 P) p
kj a ¢\ tanh(sd¢/2)
- — =) —, 38
+ 2ksNF (P I) ) (38)
where D D D
a=—Co, b=—C., c=—C,
RT RT RT
and ©
s =j—,
o
where
D, 1— D, b)D
wO:VC e+ ( y)cDe + (a +b) a’ Ne—atbte
N
and

U= ynD,+ (1 —y)De — D,

N )
o (ma+ b)Dy 4+ yncDe + (1 — y)eD,
N )
p— y(b+c)De+ (1 —y)aDe —aD,
N ,
- ynbDe — (1 — y)(na + ¢)D, — bDa'

N
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If all the species are supposed to have the same diffusion coefficient,
De =D, =D, =Dandn = 1,then U =0, = —D, P =
Dy ((b+c—a)/a+b+c)and H = —D(1—y). Then, the impedance
is simplified under the form

i (a +b)(yb—a)
Z = 2 th(sds/2
@)= 2k1NFs< b coth(sdt/2)
b? b
+L(a+) tanh(sdf/2)> )
yb
(39)
dr
VA =—, 40
2(w) NF (40)
1 ky (@a+Db)(yb—a)
Z = 4 th (sd¢/2
3(@) Fks + 2k3NFs< yb coth (sd/2)
b2 b
Gy ra@®h) o on (sdf/2)> .
yb
(41)
If, in addition, ¢, < ce and c,, then
Zi@) ~ b _a® o sd
W)™ o = NEs yp O 69D
and
1 K, 4>
Ziw) ~ — — —2 & oth (sdp)

Fky FksNFsyb

The value of the impedance obtained by Inzelt is very close to
Vorotyntsev’s value?’ when the cation movement is neglected, i.e.
when Do = 0,5 =0,y = 1 and Cy3 = Ce. This is due to the hy-
pothesis made on the concentration fluctuations which limit the two
approaches to the same number of degrees of freedom.

(b) Diffusion model

Another possible assumption is to neglect the migration terms
in the Nernst—Planck equations so the charged species behave inde-
pendently. Local electroneutrality is not imposed.'%
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Here, anions, cations and electrons are supposed to be trans-
ported through the polymer only by diffusion:

8ACZ'

AJ; = —D; , 1=e¢e, a,c, (42)
dx
ie. SAT
joAc; = —— (43)
ox
or
d*Ac;
ja)Acl- = d)CZCl , 1 =¢,a,c. (44)
Atx =d, AJ(dp) =0 (45)
and
AJi(dr) = KiAci(dr) + G;AE3, i=a,c. (46)
Atx =0, AJe(0) = KeAce(0) + GoAE, (47)
and
AJ(0) = AJ.(0) = AJs(0) = 0. (48)
This leads to
AJ; G;
Sid) _ ‘ , i=a,c (49)
AEs 14K ((coth diy /jw/Di)/,/ja)Di)
and
AJe(0 G
L(0) _ . 50
AE1 | _g, [(coth ds, /ja)/De> / ‘/ije]
Concerning the bulk film, the Poisson equation leads to
?AE  4rm
= [Ace() + Acex) — Aca@)],  (51)
dx £&y
where
Aci(x) = G; cosh x,/jw/D; i—ac

AE;,
VJjwD; sinh d¢/jw/D; + K; cosh dg\/jw/D;
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and

Aco(x) Gecosh(x — dp)/jw/De
ce(x) =
VJjoDe sinh(dg/jw /D) — K. cosh(dy, /Ja)/De)

(53)
SO as
AE> = AE(0) — AE(dy), (54)

then

& G¢(1—cosh dpy/jw/Dc) AE3
@ /joDcsinh diy/jw/De—Ke cosh diy/jw/De

AE, — _% ' ' Ga(l—f:osh dia/iw/Da) : AE; V. (55)
/j®Dy sinh df\/_]w/Da*Ka cosh df\/_]w/Da

D, Ge(cosh dey/jw/De—1)
4+ Le AE
Jo - /jwDe sinh df\/Ja)/De K cosh df\/.]a)/De

<1 B Kecoth df,/ja)/De> ’ (56)

JoDe
G
1+ Ke [(coth diy/j0) Do) /\/ja)_Dc]
G,

1+ Ka [(coth dr\/i0] Dy) /,/ija]
df 47
o _]0)880
D¢G¢(1—cosh ds/jow/De)
AiwDe sinh dy/jo/De+Ke cosh dia/jo/ De
<1 _ DyGa(1—cosh din/jw/ Dy) Z3(0)

A/jw Dy sinh dgy/jo Da+Kq cosh diy/jw/ Dy 3
De(cosh dpr/jw/De—1)

F\/joDesinh diy/jw/De

(57)

Z(w) = (58)
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(c) Limiting cases

If the electron transfer is supposed to be very fast and AE; is
negligible, the total impedance is reduced to Z3(w).!%® On the other
hand, if the cation movement is neglected (G, = 0),

coth df/jw/D
Z(@) = —— (14 &, 2R IVI D (59)
FG, iwD,
and
Zr() 4 D, (1 — cosh dp\/jw/D,)
20w) = — + ¢ -
o jwegyF VjwD, sinh dg\/jw/ D,

De(cosh ds/jw/De — 1)
+— ; : - (60)
VJjwDe sinh dg\/jw/ De

Equation (60) has the same general form as (28), which gives the
impedance for a permselective film, taking into account (34):

(/Fatanh f\/ja)/Dal
— /D tanh %ij/De) ,

whose low-frequency limit is equal to

Zr(w) = —
o _]a)&‘é‘oF\/]—a)

dndDD

Z5(0
200 =t e F DD,

(iii) Applications of Impedance Analysis

Impedance techniques were largely applied to investigate the
behaviour of electroactive materials. Many conducting polymers,
among them polyaniline,!?7-110 ppy 11L112 poly(o-toluidine),! 1
poly(o-aminophenol), 14116 polythiophene!!”  and  poly(3-
methylthiophene)! ' 119 were investigated. It has even possi-
ble to separate the transport of two different species in PPY/
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polystyrenesulphonate.'?* For PPY, it has been proposed that a
fast and a slow charge transport may occur in the polymer. The
fast faradaic process is assumed to arise from ionic motion in the
bulk of the film and the slow one to arise from ionic motion in
the double layer.!?! The study of the transport of species in free-
standing polymer membranes was also fruitful.!?> The behaviour of
inorganic electroactive materials, among them potassium (Prussian
blue),'23-125 cobalt, 26127 indium,'?® nickel,'?” chromium,'3° and
platinum'3! hexacyanoferrates, was also examined by impedance
techniques.

For electroactive films, the electrochemical impedance tech-
nique alone is not able to discriminate among the various models
which have been proposed in the literature because the exper-
imental plots always have the same shape. The scanning elec-
trochemical microscope (SECM) has been used successfully to
study the various ion fluxes from and towards the polymer dur-
ing a redox process and to identify them. The movements of
C1713 and protons'?* have actually been proved by using the
SECM for polyaniline in HCl medium. A quantitative approach
to the rate of counterion ejection in a PPY film leading to a
discussion of the nature (porous or compact) of the film has
been reported.!3* SECM investigations have been carried out on
many other polymers, such as poly(vinylferrocene),'3> poly(4-
vinylpyridine),!3®  poly(benzobisimidazobenzophenanthroline),'3’
poly(3,4-ethylenedioxythiophene) (PEDOT)!3® and Nafion.!*°

As the electrochemical techniques are sensitive only to charged
species, other techniques have been used additionally to provide
novel insights into the composition and structure of polymer films.
Radiotracer study,'*’ surface-enhanced Raman scattering,'#! neu-
tron reflectivity 42144 and Kelvin probe measurements'*> have been
employed. Optical beam deflection is a powerful technique to study
ionic movements. The principle of mirage spectroscopy involves the
measurement of laser beam deviation provoked by a refractive index
gradient at the film/solution interface.!#-14% This technique was de-
veloped in the early 1980s by Boccara et al.'>* Coupled with voltam-
metry, it allows the movements of cations and anions to be easily
distinguished, especially if there is no solvent exchange between the
polymer and the bathing solution.
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IV. COUPLED ELECTROCHEMICAL
AND GRAVIMETRIC APPROACH
FOR ELECTROACTIVE MATERIALS

Numerous studies of electroactive thin films were conducted with
cyclic voltammetry (see the references given in the reviews listed at
the beginning of this text) but the performances of this technique
were largely improved by using fast scan rates at ultramicroelec-
trodes.!3>152 However, to gain real insight into the movements of
species during the oxidation and reduction of electroactive thin films,
particularly concerning the solvent, the QCM has been employed
with great success. From the i(E) and m(E) recorded experimental
raw data of the current and mass changes with respect to potential,
the authors have processed these data as efficiently as possible to ex-
tract information on the redox behaviour of the electroactive films,
in particular concerning the ingress and egress of neutral species and
charged species occurring during the redox switching.

1. Cyclic Voltammetry and Quartz Crystal Microbalance

Since the pioneering works in the 1980s,'33-15% Bruckenstein and
Hillman have thoroughly investigated the species involved in the
charge compensation occurring mainly in conducting polymers
when they are reduced or oxidized by coupling cyclic voltammetry
and gravimetry by means of a QCM.

The simplest data processing has been based on the calculation
of the charge, ¢ (), with respect to time by integrating the current
i(t). Then, the change of mass per charge unit, FAm/Aq, or the
slope of the FAm(q) function, leads to the apparent molar mass of
the species exchanged between the electroactive film and the bathing
solution.'%- 161 However, this apparent molar mass is the mass of
the species if only one species is involved, but can be very different
when more than one species is involved in the charge compensation
process. So, functions ®;, such as ®; = Am + g(m;/z; F) for an
ion j, where m ; and z; F are the molar mass and the charge carried
per mole of species j, have been considered to eliminate the contri-
bution of ion j from the measured mass. Simple plots involving ¢,
Am, and @ (or their time derivatives) as one of the variables per-
mit an unequivocal test for the existence of a global equilibrium. In
the absence of a global equilibrium, the nature of the rate-limiting
step — motion of electrons, specified ions or neutral species — can
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be established. Once the identity of the slow species has been es-
tablished, quantitative interpretation becomes possible using ¢ data
(in the case of electrons) or ® and Am data (in the case of heavy
species).92:163 In the late 1990s, these authors proposed using a
scheme of cubes to visualize complicated electroactive film redox
switching mechanisms where multiple redox, solvation and config-
uration processes might accompany oxidation or reduction of the
film.164-166 A5 an example, Fig. 4 shows redox switching of poly-
thionine in aqueous acetic acid.

This cube was based on a previous scheme of squares visual ap-
proach.!! Here, the axes x, y and z, respectively, represent coupled
electron/proton transfer, solvent transfer and acetic acid coordina-
tion. Four equilibrium constants describe the coordination reactions
for the four pairs of species on the left and right faces of the cube.
The authors interpreted their data on partial redox switching of
poly(vinylferrocene) films under permselective conditions in aque-
ous perchlorate bathing electrolytes which produce films that reach

-2 -2H*

N ]
+2¢ + 2H"

Figure 4. Cube representation for redox switch-
ing of polythionine in aqueous acetic acid. L and
T denote the reduced (leucothionine) and oxi-
dized (thionine) states, respectively. Superscript
a denotes the acetic acid coordinated state. The
mechanistic pathway for the redox cycle is illus-
trated by the heavy arrows. From Bruckenstein
and Hillman, 163
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equilibrium very slowly. The relaxation kinetics involves polymer
reconfiguration and solvent (water) transfer. Even after 1 h at an
open circuit, the film still exchanges small amounts of solvent with
the bathing electrolyte. In addition, they showed that the structure
of the polymerized film, which is determined by the counterion in-
troduced during the precipitation, exhibits tortuous pores of various
size and voids of molecular dimensions within the film. Then, since
a smaller anion meets less resistance than a larger anion during trans-
port within the film, the total amount of counteranion that can enter
the film increases with a decrease in anion size and in scan rate.
They suggested that a free volume constraint within the film deter-
mines the amount of water that transfers between the film and the
bathing electrolyte, and concluded that the amount of water trans-
ferred decreases with increased size of the counteranion. !¢’

For PPY, in general when the anion is small and then mobile,
the anion transfer will be dominant, and when the anion is very
large (immobile), the cation transfer will be dominant on the time
scale of most electrochemical measurements. When PPY is exposed
to aqueous tosylate solutions, the authors explored the time scale ef-
fects on the competing ion transfers closely associated with solvent
transfer. By using the scheme of cubes approach, they showed that
on short time scales during reduction, cation entry competes effec-
tively with anion ejection as a means of satisfying film electroneu-
trality. On longer time scales, the thermodynamically favoured anion
mechanism prevails.'®

To quantify the relative quantity of solvent and ion for a perms-
elective film, the ratio p of the flux of water [ fiv = (dm,/dt) /4]
divided by the flux of counterions [ fion, = (dmion/dt) /A], at any
time, potential £ or charge level ¢, is calculated from experimen-
tal data. mjo, is obtained from ¢ using Faraday’s law (mj,, =
Miong/zF, where Mo, is the molar mass of the ion and zF is its
charge) and my, = motal — Mion:

_ Jw ie p= dmy,
fion’ dmion

p can be used as a diagnostic tool to show whether the redox pro-
cess is thermodynamically reversible or kinetically controlled. In
the latter situation, it allows the slower step, coupled electron/ion
or neutral species (water) transfer, to be determined.!®® For Prus-
sian blue in K»SOy as the apparent molar mass of K, which is the

P (61)



AC-Electrogravimetry Investigation in Electroactive Thin Films 177

counterion required for maintaining electroneutrality, is lower than
39 g, Bruckenstein and Hillman concluded that water transfers in the
opposite direction to it during redox cycling. In other solutions, the
change in molar mass indicates that anion transfer competes with
K+ transfer.!’" The analysis of the mechanism through the ratio
of solvent and counterion fluxes has been widened by using cyclic
voltammetry with changing sweep rates and potential jump exper-
iments to characterize the rate-controlling process as a function of
the extent of film oxidation. This method has the capability to re-
solve time scale — and potential (charge) — dependent mechanistic
shifts and film relaxation phenomena as they are reflected through
the flux ratio.!”!

More recently, Bruckenstein and Hillman have proposed a new
model for the population of electroactive film mobile species (ion
and solvent) under a range of thermodynamically and kinetically
controlled conditions that allows the film state to be visualized in
three dimensions, including E (V), ¢ (C cm™2), and A-space, where
A represents the film composition and contains the concentrations
of the individual mobile species populations, I} (mol cm~2).172 For
a permselective film undergoing a redox process,

Red < Ox + ¢, (62)

they have supposed a classical kinetic law for the change of the cou-
pled electron/ion population:!7?

dlo _ _
dr = = ke <FRed77(l o Fom( oz)) , (63)
which can be written
dl'o _ _
dar = = ke [(FT - FOX)U(1 o FOxn( a)] s (64)

where ke.(s™!) is the rate constant for coupled electron/ion
transfer into/out of the film, 't = Tox + [Red and n =
exp [nF(E — E°)/RT].

For the solvent transfer, the following solvation model has been
considered:
K
Ox + xS Oxs, (65)

kp
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where Ox is an oxidized site in the polymer, S is the solvent in the
solution and Oxg is a solvated oxidized site in the polymer. The rate
equation for the solvent population in the film is

drs
ek kiTox[SI* — kv Tox,s. (66)
where ki and ky, are the heterogeneous rate constants for solvent
transfer into and out of the film defined by reaction (65). Since
a relatively small absolute amount of solvent transfers across the
film/solution interface (as compared with the vast excess in bulk so-
lution), the change in solvent concentration in the bulk solution is
essentially 0, i.e. [S] ~ constant. Therefore, (66) simplifies to
drys
5 = kilox — kbl Ox.s, (67)
where
ke = k;[S]x.

The population (/px) of unsolvated oxidized sites can be calculated
from the total number (solvated and non-solvated) of oxidized sites
(It Ox,T):

drls

5 = ke (Fox,t — Tox,s) — kvl ox,s- (68)

The total solvent population is the mean number of solvent
molecules associated with all oxidized sites and their local envi-
ronment without distinction as to whether the solvent is “bound”
or “free”. Thus, I's = x10oxs, where x is the number of solvent
molecules (whether “bound” or “free”) per oxidized site.

s _ ke <Fox,T - ﬁ) — ko <§> : (69)
dr X X

The film compositional signature in £, ¢, and A-space allows vi-
sual diagnosis of thermodynamic compared with kinetic control and
the identification of various possible phenomena; these include film
reconfiguration, ion and solvent trapping, relative rates of ion and
solvent transfer, and relative rates of solvent entry and exit.

Figure 5 shows the 3D (£, ¢, Is) compositional space repre-
sentation of the behaviour of the electroactive film mobile species
(ion and solvent). This representation has been extended to combine
thermodynamic non-ideality (attractive or repulsive interaction
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Figure 5. 3D representation in the (Q, E, I's) space for slow electron/ion and slow
solvent transfers (equal forward and reverse solvent transfer rates), where Q repre-
sents the film ion population and I is the film solvent population. Arrows indicate
the potential scan direction. From Jackson et al.172

between solvent and redox sites) with slow electron/counterion and
solvent transfer kinetics.!”* For polyaniline in perchloric acid, this
approach, combined with the analysis of the ion flux to solvent flux
ratio, has shown that the early stages of the film oxidation are associ-
ated with proton transfer (exit) and the latter stages with perchlorate
transfer (entry) to satisfy electroneutrality. By a change of the scan
rate, it has been also demonstrated that the film solvent population
is in equilibrium on the time scale of slow scan voltammetry, but
shows thermodynamic non-idealities.!”> For poly(vinylferrocene)
in perchlorate solutions of various cations, it has been shown that
the cation as well as perchlorate and water transport participated in
the redox switching process. By a change of the scan rate and the
use of potential steps, it has been demonstrated that the films exhibit
transient non-permselectivity during redox switching. The flux of
water per anion was determined in all the media studied. Finally,
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it has been recognized that the cation and/or water leave/leaves the
polymer in an amount that depends on the cations in the solution.!”

In their recent publication, for permselective films, these authors
reported the use of current and microbalance frequency responses
to generate time-resolved ion and solvent flux data as functions of
potential. The total mass change, mT(?), is, at any stage of the re-
dox process, the sum of the contributions from anion and solvent
transfers, ma (t) + ms(¢). Then, application of the electroneutrality
condition and the Faraday law to the current data yields the ion flux:

1 dma i
= — —— = —— 70
JA My dt ZAF (70)
where M and z4 are the molar mass and charge number of the an-
ion.

The total mass flux is defined by

1 me
T = — —— 71
JT T, (71)
and the solvent flux is calculated from the total mass flux and the ion
flux: L4 . q )
. ms m i
Mg dt Ms dt zZa F

As mT(E) and i(E) are recorded experimentally at various scan
rates of the voltammetry, ja, jT and js can be calculated. For
PEDOT in tetracthylammonium tetrafluoroborate, acetonitrile or
dichloromethane solutions under permselective conditions, it has
been shown that the rate of solvent expulsion (during doping) and
entry (during dedoping) are key determinants of the switching
mechanism, which changes between kinetically limited transfer
and rapid solvent transfer, which depend upon the identity of the
solvent.!77-178

Other groups have also proposed other data processing to ex-
tract information on the switching mechanism from the raw ex-
perimental mass and current changes with respect to the potential.
Torresi and colleagues used the following two fundamental equa-
tions giving the mass and charge changes:'7°

Am = mCEC + mafa + msés’ (73)
qg=—-F¢—&), (74)
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where m; and §&; are the molar mass and the number of moles of
species i exchanged, respectively (where species i is the cation, an-
ion, or solvent). They obtained the flux of cations and anions, each
with a contribution from solvent, as a function of the current density
and mass flux:

d(EC“' Z_;SS> 1 dAm  m, j

= - , 75

dt Wea dt Meg F (75

d<§a+%$s) _ 1 dAm L me j 76)
dr 7T mea F’

where m, is the molar mass of the salt.

They were not been able to quantitatively determine the solvent
contribution as it is not possible to evaluate the individual amount of
each species involved in the charge compensation process. However,
with some hypotheses (e.g. assuming that solvent molecules are as-
sociated with the hydration layer of the cations, & = h&;) they were
able to extract information on the transport number of cations with
potential and on the relation between the participation of solvent and
the oxidation state of the polymer matrix.!80 181

By simultaneously measuring the current and mass changes
during voltammetric experiments and calculating the instantaneous
mass to electrical charge ratio, F dm/dg, at each potential, one can
have access to the atomic mass of the inserted anion or cation if
only one species is involved or to the difference between the atomic
masses of the two species if two species are involved.!8? By consid-
ering the same fundamental equations (73) and (74) (where 71, = &,
and 71, = —&.), Ivaska and colleagues have used a quantity similar
to Fdm/dq:

NaMg + A
r — - S .

S 77)
Neg — Na
This quantity can have two extreme values, i.e. either when only
cations, i.e. |iic| > |74, or only anions, i.e. |iiy| > |ii|, are con-
tributing to the ionic transfer. Then,
Mg = My 2 —My.

When the observed value of m, is larger than the limits, m. and