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Preface

v

This is an introductory textbook on global spectral modeling designed for senior-level 

undergraduates and possibly for first-year graduate students.  This text starts with an 

introduction to elementary finite-difference methods and moves on towards the gradual 

description of sophisticated dynamical and physical models in spherical coordinates.  

Computational aspects of the spectral transform method, the planetary boundary layer 

physics, the physics of precipitation processes in large-scale models, the radiative transfer 

including effects of diagnostic clouds and diurnal cycle, the surface energy balance over 

land and ocean, and the treatment of mountains are some issues that are addressed.  The 

topic of model initialization includes the treatment of normal modes and physical 

processes.  A concluding chapter covers the spectral energetics as a diagnostic tool for 

model evaluation. 

 This revised second edition of the text also includes three additional chapters.  

Chapter 11 deals with the formulation of a regional spectral model for mesoscale 

modeling which uses a double Fourier expansion of data and model equations for its 

transform.  Chapter 12 deals with ensemble modeling. This is a new and important area 

for numerical weather and climate prediction.  Finally, yet another new area that has to 

do with adaptive observational strategies is included as Chapter 13.  It foretells where 

data deficiencies may reside in model from an exploratory ensemble run of experiments 

and the spread of such forecasts. 

 These classroom lectures emerged from discussions with a large number of 

former colleagues that include:  Masao Kanamitsu, Richard Pasch, Hua-Lu Pan, Steve 

Cocke, Chia Bo Chang, John Molinari, Naomi Surgi, Lahouari Bounoua, Fred Carr, 

Simon Low-Nam, Takeo Kitade, Masato Sugi, Mukut Mathur, and Jishan Xue.  Many 

others who were part of Krish’s laboratory at the Florida State University also 

contributed in many ways towards the material presented here.  In addition, we owe a 

great deal to the United States funding agencies who supported our research in this area:  

NSF (Pamela Stephens), ONR (Scott Sandgathe), and NOAA (Kenneth Mooney).
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Chapter 1 

Introduction

The spectral modeling approach to numerical weather prediction is being practiced in 

many parts of the world.  Historically, the spectral approach came into atmospheric 

sciences from studies of geomagnetism, where it was introduced by Elsasser in the late 

nineteenth century.  The first attempt of spectral representation of data sets and its use via 

simple vorticity conserving models came in the 1940s.  The works of Neamtan (1946) 

from the University of Manitoba and Haurwitz (1940) and Craig (1945) from New York 

University were pioneering during this era.  These were still close to linear problems, 

lacking any formalism for addressing the nonlinear advective dynamics. 

 It was in the late 1950s when we saw the emergence of formal proposals for the 

solution of the nonlinear barotropic vorticity equation.  Pioneering work from the 

University Chicago (Platzman 1960; Baer 1964) explored what is sometimes called the 

interaction coefficients approach for the nonlinear problem.  Around the same time at 

MIT we saw the elucidation of what are now called the low-order systems.  This 

pioneering work of Lorenz (1960b) and Saltzman (1959) brought to us the first exposure 

to simple nonlinear systems and the concept of chaos. These simple three-component 

systems demonstrated some of the essentials of nonlinear dynamics and the growth of 

errors arising from initial state uncertainties. 

 The interaction coefficients approach to the solution of the weather forecast 

problem led to unmanageably large memory requirements that were not easily amenable 

to the then available, or even to the present, memory of computers.  It was during the 

mid-1950s when the Cooley-Tukey algorithm (1965) emerged and provided a break 

though via the fast Fourier transform.  This was exploited and demonstrated to provide 

accurate representations of the quadratic terms for fast computation of the nonlinear 

advective dynamics by contributions from Eliasen et al. (1970) and Machenhauer (1974) 

from the University of Copenhagen and from Orszag (1970) at MIT. 

 Thereafter, we saw a rapid development of global spectral models in many parts 

of the world, especially Australia, Canada, England, Japan, and the United States.  

Noteworthy contributions on the multilevel framework came from Machenhauer and 

Daley (1972) in Copenhagen, Bourke (1974) from the Bureau of Meteorology Research 

Center in Melbourne, and Robert (1966), Daley et al. (1976), and Merilees (1968) from 

the research Provision Numerique in Montreal.  Numerous others have contributed to 

these developments.  Currently there are as many as 30 global modeling groups that are 

active in different parts of the world. 

1
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approach.  Knowledge of simple finite differences in the space and time domains are still 

useful ingredients in the overall construction of spectral models. 

 Chapters 2 and 3 provide an introduction to finite-differencing and time-

differencing procedures.  The definition of a spectral model is provided in Chapter 4, 

where we introduce the concept of the Galerkin techniques.  Chapter 5 addresses the 

Lorenz-type low-order systems with an introduction to chaotic systems.  The use of 

spherical harmonics as basis functions for the casting of meteorological equations in the 

spectral space is provided in Chapter 6. This chapter also provides the recurrence 

relations for the accurate computation of associated Legendre functions and their 

derivatives using the Gaussian quadrature.  Spectral relationships for the kinematics of 

the atmospheric variables are also provided in this chapter.  Using the above principles, 

the construction of simple single-level barotropic and shallow-water spectral models is 

also presented here.  This entails the use of the semi-implicit algorithm and solutions of 

Helmholtz-type equations.  The use of Fourier-Legendre transforms and inverse

transforms is an integral part of these models, and this is brought out throughout the 

chapter.

 The multilevel spectral weather prediction model is elaborated on in Chapter 7, 

where the use of a vertical coordinate system following the earth’s surface forms the 

basis for the definition of variables in the vertical.  The vorticity and divergence 

equations replace the conventional momentum equations.  The closed system includes 

conservation laws for momentum, mass, moisture, and heat.  The Fourier-Legendre 

transform of this basic closed system of equations leads to a coupled system of nonlinear 

of ordinary differential equations.

 A reasonably sized weather prediction model carries 100 waves in the zonal and 

meridional directions over some 20 vertical layers of the atmosphere.  Computationally, 

this amounts to close to 1.5 million coupled ordinary differential equations.  These 

equations can be solved by various methods, such as those described in Chapter 7. 

 These model equations include a number of physical processes, such as the effects 

of cumulus convection, nonconvective precipitation, surface fluxes of heat, moisture, and 

momentum, the planetary boundary layer, land-surface processes, radiative transfer, 

cloud radiative interactions, diurnal change, surface energy balance, effects of orography, 

and the effects of oceans, snow cover, and ice cover.  This is a rather comprehensive list.  

A brief treatment of the physical processes is provided in Chapter 8. 

 Data initialization issues are addressed in Chapter 9.  Here, the emphasis is on 

two currently popular themes: one called normal mode initialization and the other called 

physical initialization.  The former deals with the suppression of gravity-inertia 

oscillations arising from initial data imbalances in the mass and motion fields.  The latter 

discusses the issue of improving the rain rates of the model’s initial state. 

 Spectral energetics is a topic that deals with model output diagnostics.  Kinetic 

and potential energy are exchanged among zonal flows and different wave components 

and are also mutually exchanged among the different waves.  Saltzman (1957) laid the 

foundation for these types of inquiries in the late 1950s and carried out such studies to 

An Introduction to Global Spectral Modeling

 There are several components to the global spectral modeling of the weather

prediction problem.  In this introductory text, we only provide an exposure to this 
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completion in the late 1970s.  The theoretical basis for these formulations is presented in 

Chapter 10. 

 In Chapter 11, the workings of a limited area regional spectral model are 

provided. Chapter 12 deals with a new area in weather and climate forecasting. This 

includes a description of the multimodel superensemble that appears to carry higher 

forecast skills compared to member models of a suite. Chapter 13 addresses a new and 

upcoming area for forecast modeling called ‘adaptive observational strategies’. This 

design addresses finding regions where observations are needed for improving the skill of 

a specific forecast.



Chapter 2 

An Introduction to Finite Differencing

2.1  Introduction 

This chapter on finite differencing appears oddly placed in the early part of a text on 

spectral modeling.  Finite differences are still traditionally used for vertical differencing 

and for time differencing.  Therefore, we feel that an introduction to finite-differencing 

methods is quite useful.  Furthermore, the student reading this chapter has the opportunity 

to compare these methods with the spectral method which will be developed in later 

chapters.

 One may use Taylor’s expansion of a given function about a single point to 

approximate the derivative(s) at that point (Fig. 2.1).  Derivatives in the equation 

involving a function are replaced by finite difference approximations.  The values of the 

function are known at discrete points in both space and time.  The resulting equation is 

then solved algebraically with appropriate restrictions. 

 Suppose u  is a function of x  possessing derivatives of all orders in the interval 

,x n x x n x .  Then we can obtain the value of u  at points x n x , where n  is 

any integer, in terms of the value of the function and its derivatives at point x , that is, 

u x  and its higher derivatives.  For example: 

22

2
( ) ( )

2!
x x

xdu d u
u x x u x x

dx dx

11

1! 1 !

n n
n n

n n

x

x xd u d u

dx n dx n
,         2.1) 

where x  is finite increment for the value of x  and /n x

x
d u dx  is the value of the thn

derivative at point x .  It should be noted that x  may be negative.  However, for 

convenience we let 0x .  Furthermore, we assume that x x x .

 Similarly, we may write 

22

2
( ) ( )

2!
x x

xdu d u
u x x u x x

dx dx
    (2.2) 

4
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(2.1) (2.2)

(2.4) (2.3)

2                                          2x x x x x x x x x

Figure 2.1. Representation of grid spacing and corresponding Taylor series expansion 

equations.     

             

11
1

1
1 1

! 1 !

n n
n n

n n

n n

x

x xd u d u

dx n dx n
,

where x x x .  Likewise, 

22

2

2
( 2 ) ( ) 2

2!
x

xdu d u
u x x u x x

dx dx

             

11

1

2(2 )

! 1 !

n
n n n

n n

x

xd u x d u

dx n dx n
,                  (2.3) 

where 2x x x , and

22

2

2
( 2 ) ( ) 2

2!
x x

xdu d u
u x x u x x

dx dx
                       (2.4) 

11
1

1

2(2 )
1 1

! 1 !

n
n n n

n n

n n

x

xd u x d u

dx n dx n
,

where 2x x x .  Notice that the right hand sides of u x x  and 2u x x

contain alternating signs. 

 The value of x  is taken to be small ( 1)x , such that ( )n
x  would be even 

smaller than x  for 2n .  We can then approximate the series on the right-hand side by 

truncating the higher-order terms.  As a result, we incorporate some error which is known 

as truncation error.  In general, the more terms we keep on the right-hand side, then the 

better and more accurate the value of ( )u x n x  would be.

2.2  Application of Taylor’s Series to Finite Differencing

If a function u  is defined by an array of points in a single dimension, then by Taylor 

series expansion (2.1) we get 

2 3
2

2 3

1
( ) ( ) h.o.t.

2! 3!
x x x

du d u d u x
x u x x u x x

dx dx dx
,

where h.o.t. stands for the higher-order terms.  Dividing throughout by x  we obtain 
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2 3

2 3

( ) ( ) 1
h.o.t.

2! 3!
x x x

du u x x u x d u d u x
x

dx x dx dx
.    (2.5) 

If we introduce the notation O( )x , which means of the order of x , then (2.5) can be 

written as

( ) ( )
O

x

du u x x u x
x

dx x
,

or

( ) ( )

x

du u x x u x

dx x
,      (2.6) 

where

2 3

2 3

1
O h.o.t.

2! 3!
x x

d u d u x
x x

dx dx
.

For finding the value of /
x

du dx , we are only using the values of the function u  at points 

x  and x x .  All other values are neglected in this calculation.  Also, the order of the 

truncation error involved is O( )x , which is not very desirable. 

2.3  Forward and Backward Differencing 

Given the values of a function u at discrete points in one dimension, two methods are 

presented to obtain the approximation for the derivative at a given point.  Using (2.1), we 

can write 

2 32 3

2 3
( ) ( ) h.o.t.

2! 3!
x x x

x xdu d u d u
x u x x u x

dx dx dx
.          (2.7) 

Furthermore, using (2.2), we can write 

2 32 3

2 3
( ) ( ) h.o.t.

2! 3!
x x x

x xdu d u d u
x u x u x x

dx dx dx
.          (2.8) 

Dividing the above two equation by x , we obtain 

22 3

2 3

( ) ( )
h.o.t.

2! 3!
x x x

xdu u x x u x d u x d u

dx x dx dx
,

22 3

2 3

( ) ( )
h.o.t.

2! 3!
x x x

xdu u x u x x d u x d u

dx x dx dx
.

Neglecting the terms in the parentheses, we have 

An Introduction to Global Spectral Modeling
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( ) ( )

x

du u x x u x

dx x
,      (2.9) 

( ) ( )

x

du u x u x x

dx x
.     (2.10) 

Equation (2.9) is known as forward finite differencing, and (2.10) is known as backward

finite differencing.  These are also called first-order accurate one-sided differences.  In 

both of the above, the truncation error is of the order of x , that is, O( )x , which 

corresponds to the largest term we neglected in approximating /
x

du dx .

 Weather forecasters are continually making truncation errors which in turn have 

an impact on the weather forecast.  For example, in the atmosphere advection can occur 

on small scales.  However, the grid spacing in our finite difference representation may be 

on the order of 100 km, which is too coarse to resolve this advection.  This introduces 

errors into our finite differencing equations that will compound as our forecast proceeds. 

2.4  Centered Finite Differencing 

In the previous section we obtained the approximation to /
x

du dx with a truncation error 

of O( )x .  In this section we will obtain a better approximation for /
x

du dx  based on the 

centered finite-difference approximation, which has a truncation error of 2O( )x .

 By adding (2.7) and (2.8) and dividing by x , we obtain 

3
2

3

( ) ( ) 1
2 2( ) h.o.t.

3!
x x

du u x x u x x d u
x

dx x dx
,

   2( ) ( )
O( )

2
x

du u x x u x x
x

dx x
.     (2.11) 

Here the order of the truncation error is 2( )x , that is, 2O( )x , which is the largest term 

omitted in approximating /
x

du dx .  Higher-order derivatives, namely /n n

x
d u dx  for 

2n , can also be found using finite-difference methods. 

 Adding (2.1) and (2.2) gives 

2 42 4

2 4
( ) ( ) 2 ( ) 2 2 h.o.t.

2! 4!
x x

x xd u d u
u x x u x x u x

dx dx
,

where terms with derivatives of the order /n n

x
d u dx  for n=1, 3, 5, … have cancelled 

out.  This can be written as 

22 4
4

2 4

1
2 ( ) ( ) 2 ( ) ( ) 2 h.o.t.

2! 4!
x x

xd u d u
u x x u x x u x x

dx dx
.

Now dividing by ( x)
2
 throughout, we obtain 
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Table 2.1.  Some finite difference formulas, along with their accuracy and order of 

truncation error. 

Formula O(error) Accuracy 

( ) ( )

x

du u x x u x

dx x

O( )x First-order forward 

( ) ( )

x

du u x u x x

dx x

O( )x First-order

backward

( ) ( )

2
x

du u x x u x x

dx x

2O( )x Second-order

centered

2

2 2

( ) ( ) 2 ( )

( )
x

d u u x x u x x u x

dx x

2O( )x Second-order

centered

2 4
2

2 2 4

( ) ( ) 2 ( ) 1
( ) 2 h.o.t.

( ) 4!
x x

d u u x x u x x u x d u
x

dx x dx
.

This can be expressed as

2
2

2 2

( ) ( ) 2 ( )
O( )

( )
x

d u u x x u x x u x
x

dx x
,    (2.12) 

which is the second-order accurate, second derivative formula.  Here the truncation error 

in the leading term is of the order of 2( )x , that is, 2O( )x .

 In summary, we may write the first-order forward and backward finite difference 

formulas and the second-order centered difference formulas as in Table 2.1.  We next 

derive the fourth-order accurate formulas for /
x

du dx  and 
2 2/

x
d u dx , respectively. 

2.5  Fourth-Order Accurate Formulas

2.5.1 First Derivative

The fourth-order finite-differencing schemes can be obtained by an appropriate linear 

combination of (2.1) to (2.4) such that the terms of order 2( )x , 3( )x , and 4( )x  are 

eliminated in the sum and the leading error term is 4O( )x .  That is, 

( ) ( ) ( ) ( 2 ) ( 2 )Au x B u x x u x x C u x x u x x

5O( )
x

du
x x

dx
.     (2.13) 

To determine the coefficients A, B, and C, consider the following Taylor series 

representations:

An Introduction to Global Spectral Modeling
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3 53 5

3 5
( ) ( ) 2

3 60
x x x

x xdu d u d u
u x x u x x x

dx dx dx
      (2.14) 

and
3 53 5

3 5

2 2
( 2 ) ( 2 ) 2 2

3 60
x x x

x xdu d u d u
u x x u x x x

dx dx dx
.   (2.15) 

Using equation (2.13) and substituting in the right hand sides of (2.14) and (2.15) 

we obtain 

33
5

3
( ) 2 O

3
x x

xdu d u
Au x B x x

dx dx

33
5 5

3

2
2 2 O O

3
x x x

xdu d u du
C x x x x

dx dx dx
,

33

3
( ) 2 4

3
x x x

xdu du d u
Au x B x C x B

dx dx dx

33
5

3
8 O

3
x x

xd u du
C x x

dx dx
,

33
5

3
( ) (2 4 ) ( 8 )

3
x x x

xdu d u du
Au x B C x B C O x x

dx dx dx
.

Equating coefficients of ( )u x , /
x

du dx x , and 3 3 3[ / ( ) ] / 3
x

d u d x x , we obtain 

A = 0,  2B + 4C = 1,  B + 8C = 0 

 or 

A = 0,  B = 2/3,  C = -1/12. 

Using (2.13) and the values of constants A, B, and C, we obtain 

42 ( ) ( ) 1 ( 2 ) ( 2 )
O

3 12
x

du u x x u x x u x x u x x
x

dx x x
,

or by neglecting the terms 4O( )x , we obtain 

4 ( ) ( ) 1 ( 2 ) ( 2 )

3 2 3 4
x

du u x x u x x u x x u x x

dx x x
.   (2.16) 

In deriving (2.16), we have neglected terms 5O( )x  and higher in the Taylor series.  

Therefore this expression for /du dx  is accurate to the fourth order. 

An Introduction to Finite Differencing 



10

We want to write a general form invoking coefficients A, B, and C such that

( ) ( ) ( ) ( 2 ) ( 2 )Au x B u x x u x x C u x x u x x

2
2

2
( )

x

d u
x

dx
.     (2.17) 

We next determine coefficients A, B, and C such that terms of order 3( )x , 4( )x , and 
5( )x  are zero. 

Consider the two equations which come about from the addition of (2.1) and (2.2) 

and the addition of (2.3) and (2.4), respectively, 

42 4
2 6

2 4
( ) ( ) 2 ( ) O

12
x x

xd u d u
u x x u x x u x x x

dx dx
, (2.18)

2 4
2 4 6

2 4

4
( 2 ) ( 2 ) 2 ( ) 4 O

3
x x

d u d u
u x x u x x u x x x x

dx dx
,  (2.19) 

so that (2.17) can be written as 

2 4 4
2 6

2 4

( )
( ) 2 ( ) ( ) O( )

12
x x

d u d u x
Au x B u x x x

dx dx

           
2 4 2

4 22 6

2 4 2

4
2 ( ) 4 ( ) O( )

3
x x x

d u d u d u
C u x x x x x

dx dx dx
.

This equation can be rearranged as

2
2

2
( 2 2 ) ( ) ( 4 )

x

d u
A B C u x B C x

dx

4 2
4 6 2

4 2

4
O

12 3
x x

B C d u d u
x x x

dx dx
.

Equating coefficients of ( )u x ,
2 2 2/ ( )

x
d u dx x , and 

4 4 4/ ( )
x

d u dx x  on both sides 

gives 2 2 0A B C , 4 1B C , and /12 4 / 3 0B C .  This gives 5 / 2A ,

4 / 3B , and 1/12C , so that 

2

2 2

1 5 4
( ) ( ) ( )

( ) 2 3
x

d u
u x u x x u x x

dx x

        
41

[ ( 2 ) ( 2 )] O
12

u x x u x x x .    (2.20) 

2.5.2 Second Derivative 
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Figure 2.2.  A 5-point diamond stencil. 

This is a fourth-order accurate representation of the second derivative.  It can be shown 

that fourth-order accurate finite difference representation more closely mirrors the exact 

derivative than second-order accurate finite difference representation. 

2.6  Second-Order Accurate Laplacian 

2.6.1 5-Point Diamond Stencil 

We start with Laplace’s equation,

2 0 ,      (2.21) 

where 2  is the three-dimensional or two-dimensional Laplacian operator in the 

Cartesian coordinate system, that is,

2 2 2
2

2 2 2
x y z

,

         
2 2

2

2 2
x y

.

Let ,x y  be any scalar function of x and y.  The finite-difference analog of the 

second-order accurate Laplacian will be discussed with reference to the 5-point stencil 

shown in Fig. 2.2. 

 Let us suppose that we want to calculate 2 , where  is the streamfunction.  

Using Taylor’s expansion (see Appendix A) for a function of two variables about point 

( , )I J , we can write the Taylor expansion of the right point with respect to the central 

point, that is, 

22

2
, ,

1, ,
2!I J I J

x
I J I J x

x x

An Introduction to Finite Differencing 
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11

1
, ,! ( 1)!

n n
n n

n n

I J J

x x

x n x n
,   (2.22) 

where ( , )J  is a point on the line joining points ( 1, )I J  and ( , )I J  and x  is the grid 

spacing in the x-direction.  The Taylor expansion of the left point with respect to the 

central point is given by 

22

2
, ,

1, ,
2!I J I J

x
I J I J x

x x
   (2.23) 

11
1

1
, ,

1 1
! ( 1)!

n n
n n

n n

n n

I J J

x x

x n x n
,

where ( , )J  is a point on the line joining points ( 1, )I J  and ( , )I J .  Similarly, 

22

2
, ,

, 1 ,
2!I J I J

y
I J I J y

y y

       

11

1
, ,! ( 1)!

n n
n n

n n

I J I

y y

y n y n
,  (2.24) 

where ( , )I  is a point on the line joining points ( , 1)I J  and ( , )I J  and y is the grid 

spacing in the y-direction.  Also, 

22

2
, ,

, 1 ,
2!I J I J

y
I J I J y

y y
   (2.25) 

       

11
1

1
, ,

1 1
! ( 1)!

n n
n n

n n

n n

I J I

y y

y n y n
,

where ( , )I  is a point on the line joining points ( , 1)I J  and ( , )I J .

 In general, we can have x y .  For simplicity, assume that we have an even 

mesh, that is, x y .  Adding (2.22), (2.23), (2.24), and (2.25), we obtain 

1, 1, , 1 , 1 4 ,I J I J I J I J I J

4 4 4 4
2 2

, 4 4
,

2 h.o.t.
4! 4!

I J

I Jx y
  (2.26) 

After dividing by 2  and neglecting terms of order 2  and higher, we obtain the second-

order accurate Laplacian 

2 2

, 1, 1, , 1 , 1 4 , /
I J

I J I J I J I J I J .  (2.27) 

Weight assigned to the five points ( 1, )I J , ( 1, )I J , ( , 1)I J , ( , 1)I J , and ( , )I J  in 

this 5-point stencil are 1, 1, 1, 1 and -4, respectively.

An Introduction to Global Spectral Modeling
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Figure 2.3.  A 5-point square stencil. 

2.6.2 5-Point Square Stencil

There is yet another 5-point stencil which also gives second-order accurate results.  This 

uses the points shown in Fig. 2.3.  To obtain the finite-difference expression for the 2

operator, we use the following equations: 

,

1, 1 ,
I J

I J I J
x y

     (2.28) 

        
2 2 2 2

2

2 2
, ,2! I J I Jx y x y

,

,

1, 1 ,
I J

I J I J
x y

    (2.29) 

      
2 2 2 2

2

2 2
, ,2! I J I Jx y x y

,

,

1, 1 ,
I J

I J I J
x y

    (2.30) 

      
2 2 2 2

2

2 2
, ,2! I J I Jx y x y

,

,

1, 1 ,
I J

I J I J
x y

    (2.31) 

2 2 2 2
2

2 2
, ,2! I J I Jx y x y

.

After adding the above four equations, we obtain 

1, 1 1, 1 1, 1 1, 1 4 ,I J I J I J I J I J

2 2 4 4 4 4
2

2 2 4 4 2 2
, ,

2 6 h.o.t.
6I J I Jx y x y x y

 (2.32) 

By taking differences along the diagonal, (2.32) can also be written as

An Introduction to Finite Differencing 
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Figure 2.4.  Diamond and square finite-difference representations of the Laplacian and 

their ability to represent an area of low-pressure.  

1, 1 1, 1 1, 1 1, 1 4 ,I J I J I J I J I J

4
1

2
2

1
2 42

,

2

2 2
4!

I J

2 2 4 4

,

1
2

3
I J

.         (2.33) 

Dividing both sides by 22 , we can write 

2

2

1
1, 1 1, 1 1, 1

2
I J I J I J

          
2

1, 1 4 , OI J I J .     (2.34) 

This gives the finite-difference expression for the second-order Laplacian represented by 

the 5-point square stencil.

Which 5-point stencil is more accurate, and why? Using a 5-point stencil with 

diamond configuration of points is slightly more accurate than a 5-point square stencil.  

This is because the distance from the center point ( , )I J  to the other points is less in the 

diamond stencil ( ) than the corresponding distance in the square stencil (2
1/2

).

It is important to note that the analytical Laplacian is invariant with respect to the 

rotation of the coordinate system, i.e. 2  has one and only one value.  However, finite 

difference representations (diamond or square) of the Laplacian are not invariant to 

coordinate transformations.  That is, we will get different answers for different finite 

difference schemes.  For example, suppose we have a 5-point diamond stencil with an 

area of low-pressure located to the northwest of the grid points (Fig. 2.4).  In this 

particular case, the diamond stencil will not allow us to catch this low-pressure area in 

our finite difference representation.  However, by using a 5-point square stencil we were 

able to catch this area. 

2.6.3 9-Point Stencil 

There is yet another second-order accurate Laplacian which is based on a 9-point stencil.  

These nine points are shown in Fig. 2.5, with the corresponding weights written in   
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Figure 2.5.  A 9-point stencil used for the second-order Laplacian with the weights 

assigned to each node given in parentheses. 

parentheses.  It should be noted that this configuration is made up of the two 5-point 

stencils discussed earlier. 

Consider now the Taylor expansion of the eight outer points with respect to the 

central point ( , )I J .  Combining (2.26) and (2.33) linearly in such a way that the terms 
2O( ) in the two equations are neglected at the same accuracy, we obtain 

1, 1 1, 1 1, 1 1, 1I J I J I J I J

4 , 1 1, , 1 1, 20 ,I J I J I J I J I J

           
2 2 4 4

, ,

2
6 h.o.t.

3
I J I J

   (2.35) 

Dividing both sides by 26 , we obtain 

2

, 2

1
1, 1 1, 1 1, 1 1, 1

6
I J

I J I J I J I J

2
4 , 1 1, , 1 1, 20 , OI J I J I J I J I J . (2.36) 

This formulation uses more information around the central point. Therefore the 

results can be locally more accurate than the 5-point stencil given by (2.27) or (2.34). 

2.7 Fourth-Order Accurate Laplacian 

Let us attempt to formulate a fourth-order accurate Laplacian using the two different 5-

point stencils discussed earlier.  We make use of the gridpoint representation in Fig. 2.6.  

Using (2.26), we can write 

An Introduction to Finite Differencing 
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Figure 2.6.  The nine grid points for a fourth-order accurate Laplacian. 

1, 1, , 1 , 1 4 ,I J I J I J I J I J

     
4 4 4 6 6 6

2 2

, 4 4 6 6
, ,

2 2 h.o.t.
4! 6!

I J

I J I Jx y x y
 (2.37) 

Similarly, using the five grid points ( 1, 1)I J , ( 1, 1)I J , ( 1, 1)I J , ( 1, 1)I J ,

and ( , )I J , we can write

1, 1 1, 1 1, 1 1, 1 4 ,I J I J I J I J I J

4
1

2
4 42

1
2 2

, 4 4
,

2

2 2
4!

I J

I Jx y

6
1

2
6 6

6 6
,

2

2 h.o.t.
6! I Jx y

      (2.38) 

Note that here the distance between grid point ( , )I J  and its surrounding points is 1 22 .

 To eliminate the terms 4O( )  from the above two equations, we multiply (2.37) 

by 4, from the resultant equation subtract (2.38), and divide by 22  to obtain 

2

, 2

1
4 , 1 1, , 1

2
I J

I J I J I J

      1, 1, 1 1, 1I J I J I J

      1, 1 1, 1 12 ,I J I J I J

      
4 6 6

6 6
,

h.o.t.
180 I Jx y
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Figure 2.7.  Another 9-point stencil for a fourth-order accurate Laplacian. 

Hence the fourth-order accurate Laplacian obtained by using two 5-point stencils (in all 

we use nine grid points) is expressed as

2

, 2

1
4 , 1 1, , 1

2
I J

I J I J I J

      1, 1, 1 1, 1I J I J I J        (2.39) 

      
4

1, 1 1, 1 12 , OI J I J I J .

 Continuing on the same idea, we will next formulate a fourth-order Laplacian 

using the nine-grid-point representation in Fig. 2.7.  First, using the inner diamond grid 

points ( 1, )I J , ( 1, )I J , ( , 1)I J , ( , 1)I J , and ( , )I J , we can write

1, , 1 1, , 1 4 ,I J I J I J I J I J

4 4 4
2 2

, 4 4
,

2
4!

I J

I Jx y

         
6 6 6

6 6
,

2 h.o.t.
6! I Jx y

    (2.40) 

Next using the outer diamond grid points ( 2, )I J , ( 2, )I J , ( , 2)I J , ( , 2)I J , and 

( , )I J , which have grid spacing 2  we can write 

, 2 2, , 2 2, 4 ,I J I J I J I J I J

An Introduction to Finite Differencing 
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4 4 4
22

, 4 4
,

(2 )
2 2

4!
I J

I Jx y

         
6 6 6

6 6
,

(2 )
2 h.o.t.

6! I Jx y
     (2.41) 

 We seek a representation for 2

,I J
 without the term of order 2 .  This is 

achieved by multiplying (2.40) by 16, then subtracting (2.41) from the resulting equation, 

and dividing by 212  to obtain 

2

, 2

1
16 1, , 1 1,

12
I J

I J I J I J

           , 1 , 2 2, , 2I J I J I J I J

            
4 6 6

6 6
,

2, 60 , h.o.t.
90 I J

I J I J
x y

,

or

2

, 2

1
16 1, , 1 1,

12
I J

I J I J I J

             , 1 , 2 2, , 2I J I J I J I J

            42, 60 , OI J I J .     (2.42) 

Equation (2.42) represents yet another fourth-order accurate Laplacian.  In general, this 

idea of adding and subtracting finite difference analogs can be used to develop finite-

differencing schemes of various higher orders.

In review, the various finite difference representations of the Laplacian and their 

corresponding equations are given below in order from most accurate to least accurate 

representation:

Square stencil           Equation (2.39) 

9-point               

Fourth-order accurate        

Interspersed diamonds    Equation (2.42) 

9-point    

Fourth-order accurate        

Square stencil           Equation (2.36) 

9-point               

Second-order accurate             

An Introduction to Global Spectral Modeling



19 

Diamond stencil     Equation (2.27) 

5-point          

Second-order accurate   

Square stencil           Equation (2.34) 

5-point     

Second-order accurate        

2.8 Elliptic Partial Differential Equation in Meteorology 

The most commonly occurring elliptic partial differential equations in atmospheric 

modeling are of the type 

           2
G   Poisson’s equation,     (2.43) 

2
H G  Helmholtz equation.        (2.44) 

These equations occur in the relationship between vorticity and streamfunction, that is, 
2 , where  is the streamfunction and  is the relative vorticity.  A similar type of 

relationship occurs between divergence and velocity potential, or when going from  to 

and from  to  in a balance equation, or when obtaining time tendencies in the 

quasigeostrophic prediction models or in the solution of the omega ( ) equation (Holton 

1992).

There are two ways in which we can solve these equations.  One is based on the 

direct solution of simultaneous equations, which works efficiently for small domains but 

is computationally heavy for large domains.  The other is called the relaxation method,

which is more efficient for large domains. 

2.9 Direct Method 

For solving the three-dimensional elliptic boundary value problem of the type (2.43) and 

(2.44), one uses a similarity transform method involving matrices.  A general outline of 

the method is to first write the given equation in finite difference form for each of the N

vertical levels.  This gives rise to a set of N linear algebraic equations.  This set of N

linear algebraic equations is then written in matrix form and solved. 

 Consider the even-mesh domain shown in Fig. 2.8 on a horizontal plane with 

x y .  Here i and j are nodes in x and y, respectively. 1(1)i K  and 1(1)j L ,

that is, i and j vary  from 1 to K and L, respectively, with increments of 1. 

Assume that and G are functions of x, y, and z.  Then (2.44) can be written as 

          
2

2

2 2
H G

z
.    (2.45) 

The finite-difference representation for 2 2/ z  can be written as 
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 Figure 2.8.  A horizontal mesh with x y .

         
2

1 1

2 2

2

( )

k k k

z z
,    (2.46) 

where z  is the distance between levels k and 1k .  The finite-difference form of (2.45) 

can be written as 

      
2 2 2

2 1 2 2 1 1 1

2 2

2 2

( )

k k k k k k

k k k
H G

z
   (2.47) 

for 2(1)( 1)k N  where x y .  Thus the three-dimensional elliptic partial 

differential equation is transformed into a two-dimensional equation. 

For the top layer ( 1)k  we have 

          
2 2

2 2 2 1 2 1
1 1 12 2

2 2

( )
H G

z
   (2.48) 

For the bottom layer ( )k N  we have

             
2 2

2 2 1 1

2 2

2 2

( )

N N N N

N N N
H G

z
,   (2.49)   

where we assume 0 1 0
N

.  This is equivalent to saying that the geopotential 

anomaly vanishes at the top and bottom. 

 Rewriting (2.47), (2.48), and (2.49) in matrix form, we obtain 

          2 *

2 A B G ,     (2.50) 

where A and B are N N  coefficient matrices while and G
*
 are column vectors, that 

is,
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1

2

3

N

and

1

2

*

3

N

G

G

G G

G

Here
k
 and 

k
G  are the values of  and G at a particular level k and a fixed grid point in 

the horizontal. 

After premultiplying (2.50) by the matrix 1
B , we obtain 

             1 2 1 1 *

2B A B B B G .     (2.51) 

Also, using the distributive property of the 2

2 operator, we obtain 

                 1 2 2 1 2 1

2 2 2B A B A A B   (2.52)  

and 2 1

2 0B , since 1
B  is a matrix of numbers which are constant.  Noting also that 

1 1B B , we then have

                   2 1 1 *

2 B A B G .    (2.53) 

Let 1
B A C , a new matrix of order N N .  Then (2.53) can be written as

                 2 1 *

2 C B G .     (2.54) 

One can now diagonalize matrix C using a similarity transformation.  This calls for two 

matrices U and 1
U  such that

              1
UCU D ,      (2.55) 

where D is a diagonal matrix.  After rearranging, we obtain

             1
C U DU ,     (2.56) 

where D is a diagonal matrix shown in Fig. 2.9.  Each 
k

d , 1(1)k N  is an eigenvalue of 

matrix C, that is, 

             
k k k

CX d X       (2.57) 

for some column vector 
k

X .  Substituting (2.56) into (2.54), we obtain
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Figure 2.9.  The elements of the diagonal matrix D. 

            2 1 1 *

2 U DU B G ,

or premultiplying by U, we can write 

            2 1 *

2 DU U UB G .     (2.58) 

Let us define U V (a column vector) and 1
UB F  (an N N  matrix).  Then 

(2.58) can be rewritten as

                   2 *

2V DV FG .     (2.59) 

Equation (2.59) is the equivalent matrix representation for a set of N linearly independent 

Helmholtz equations.  Solutions of (2.59) will provide us with the values of V, that is,  

1

2

3

N

V

V

V V

V

.

Since we have U V , we can write 

                  1
U V .     (2.60) 

Thus if the value of V is known, then by premultiplying V by 1
U  we can easily 

determine .  Now  is known, that is, 

1

2

3

N

.
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 Next we obtain matrix U.  Let 
k k

d X , 1(1)k N  be the eigenpairs of matrix C; in 

other words, 
k

d  is the eigenvalue and 
k

X  is the corresponding eigenvector.  It should be 

noted that there is the possibility that we have more than one eigenvector corresponding 

to a single eigenvalue, but to simplify matters we assume that there are N distinct 

eigenpairs
k k

d X , 1(1)k N .

Since
k k

d X  is an eigenpair of C, we have 
k k k

CX d X such that

                CX XD ,                                  (2.61) 

where X is the matrix consisting of the eigenvectors of C.  Postmultiplying (2.61) by 1
X

gives

         1
C XDX .                     (2.62) 

From (2.56) and (2.62), we obtain 

          1
U X .                    (2.63) 

Hence U is the inverse matrix of X.

2.10  Relaxation Method 

This method is commonly used for solving Poisson- and Helmholtz-type equations.  

Given the 5-point stencil, the Laplacian of any function  is calculated as

1, 1, , 1 , 1 ,2

2

4
i j i j i j i j i j

,             (2.64) 

where ,i j
 is the value of  at the node point ( , )i j .  Also assume that x y .  The 

Helmholtz equation 

            2
F ,      (2.65) 

 can then be written as

2 2

1, 1, , 1 , 1 , ,4
i j i j i j i j i j i j

x F x .   (2.66) 

In the relaxation method, the values of F are specified at each of the interior 

points of the domain.  It is desired to find the values of ,i j
 at every point which satisfy 

(2.66) and the given boundary conditions.  There are three types of boundary conditions

that are commonly used.  One is where the value of  is prescribed at the boundaries 

(called the Dirichlet boundary condition).  Another is where the value of the normal 

derivative n  is specified at the boundaries (called the Neumann boundary 

condition).  The last one is the mixed boundary condition, that is, / n  is 

specified at the boundaries.  These are three possible boundary conditions.  Usually any 

other prescription defines an over specified system. 

 Next we describe the procedure to obtain the solution using relaxation techniques.  

To begin, we assume a first guess field for , say 0 , over the domain and ask, does 0
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satisfy the Helmholtz equation and the boundary conditions?  If yes, then we have a 

solution.  Otherwise, find the difference 2

0 0
F .  This is the residual between the 

actual solution and the first guess, that is, 

         2

0 0
F R ,     (2.67) 

where R is residual.  Now we aim to change 0  iteratively such that R is minimized to an 

acceptable degree of tolerance for every point in the domain. 

 There are two types of relaxation schemes, the simultaneous relaxation scheme 

and the sequential relaxation scheme.  The simultaneous relaxation scheme uses the 

original values of ,i j
 from the previous iteration to calculate values at the next iteration.  

The sequential relaxation scheme uses new values of ,i j
 for calculating values at the 

next iteration.  As will be shown below, the sequential relaxation scheme turns out to be 

faster than the simultaneous relaxation.  The analysis presented here follows a procedure 

described by Thompson (1961). 

 We now address the simultaneous relaxation scheme, assuming that we are at 

level m of iteration at grid point ( , )i j .  Then

      2

1, 1, , 1 , 1 , , ,4m m m m m m

i j i j i j i j i j i j i j
H d F R ,   (2.68) 

where 2
H d  and 2 2 2( ) ( )d x y . ,

m

i j
R  is the residual at grid point ( , )i j  at the 

mth iteration.  Note that 2

,

m

i j
R Rd  and has the dimensions of .  We change the value of 

,i j
 such that the residual vanishes locally in the above equation.  If ,

m

i j
 is changed to 

1

,

m

i j
 for iteration 1m , then we obtain 

       1 2

1, 1, , 1 , 1 , ,4m m m m m

i j i j i j i j i j i j
H d F .    (2.69) 

If we subtract (2.69) from (2.68), we obtain 

                 
,1

, , ,
4

m

i jm m m

i j i j i j

R

H
,     (2.70) 

where ,

m

i j
 denotes the change in ,i j

 necessary to make the residual vanish from (2.68). 

 We next address the convergence of the above interation procedure.  Let us 

assume that ,i j
 is the solution.  Then 

        2

1, 1, , 1 , 1 , ,4
i j i j i j i j i j i j

H d F .    (2.71) 

It should be noted that there is no residual term ,i j
R  in the above equation since ,i j

 is the 

exact solution.  Subtracting (2.71) from (2.68), the error equation at the mth iteration is 

given by 

     1, 1, , 1 , 1 , ,(4 )m m m m m m

i j i j i j i j i j i j
H R ,   (2.72) 

where ,

m

i j
 is the error in ,i j

 at the mth iteration. 

An Introduction to Global Spectral Modeling

From the governing Helmholtz equation we have 



25 

 

2 2

, , ,
ˆ m m m

i j i j i j
d R ,     (2.73) 

where
2

, 1, 1, , 1 , 1 ,
ˆ 4

i j i j i j i j i j i j
.

Furthermore, when ,

m

i j
 is changed to 1

,

m

i j
so as to make the residual term vanish from the 

above equation, we obtain 

      
,1

, ,
4

m

i jm m

i j i j

R

H
.     (2.74) 

Using (2.73) and (2.74), we obtain 

        
1 2 2

, , , ,

1 ˆ
4

m m m m

i j i j i j i j
d

H
   (2.75) 

and the ratio 

        

1 2

, , ,

, ,

ˆ 4

(4 )

m m m

i j i j i j

m m

i j i j
H

.     (2.76) 

If 1

, ,( ) 1m m

i j i j
, then the error decreases as we increase the number of iterations, and the 

scheme converges.  Now we ask ourselves, what is the condition that will guarantee 

convergence?

 To examine this we express the error function at grid point ( , )k l  at iteration m by 

a Fourier expansion, that is,

( ) ( )

, ,

m m i pk x i ql y

k l p q

p q

A e e ,

where p and q denote the east-west and north-south wavenumber, respectively, and m is 

the number of iterations.  We use here the grid-point index ( , )k l  instead of ( , )i j  to avoid 

confusion with 
1 2( 1)i .

 Substituting the above into (2.75), we obtain 

1 ( ) ( ) ( ) ( )

, ,

m i pk x i ql y m i pk x i ql y

p q p q

p q p q

A e e A e e

2 2 ( ) ( )

, ,

1 ˆ
4

m m i pk x i ql y

i j p q

p q

d A e e
H

.  (2.77) 

Furthermore, the expression for 2

,
ˆ m

k l
 equal to 

2 [ ( 1) ] ( ) [ ( 1) ] ( ) ( ) [ ( 1) ]

, ,
ˆ m m i p k x i ql y i p k x i ql y i pk x i q l y

k l p q

p q

A e e e e e e

( ) [ ( 1) ] ( ) ( )4i pk x i q l y i pk x i ql y
e e e e .     (2.78) 

For the sake of simplicity, we have again assumed that x y .

An Introduction to Finite Differencing 



26

 Substituting the above expression for 2

,
ˆ m

k l
 into (2.77) and equating the 

coefficients of ( ) ( )i pk x i ql y
e e , we can write 

1 2

, ,

1
1 4

4

m m ip x ip x iq y

p q p q
A A e e e d

H
.  (2.79) 

Using the Euler relation 

        cos
2

i x i x
e e

x ,      (2.80) 

we obtain 

1 2

, ,

1
1 2cos 2 cos 4

4

m m

p q p q
A A p x q y d

H
.

Furthermore, using 2cos 2 1 2sinx x  and 2
H d , we obtain 

        1 2 2

, ,

1
1 2 4sin 2 4sin 4

4 2 2

m m

p q p q

p x q y
A A H

H
,

or

1 2 2

, ,

1
1 4sin 4sin

4 2 2

m m

p q p q

p x q y
A A H

H
,   (2.81) 

so that

        

1

, 2 2

,

1
1 4sin 4sin

4 2 2

m

p q

m

p q

A p x q y
H

A H
.  (2.82) 

Let v be defined by 

           2 2 2sin sin 2
2 2

p x p y
.    (2.83) 

Hence we obtain 
1

, 2

,

1
1 4

4

m

p q

m

p q

A
H

A H
.     (2.84) 

 The ratio on the left-hand side of the above equation can satisfy one of the 

following possible scenarios. If

1

,

,

1

m

p q

m

p q

A

A
,

then we have strong convergence.  If 

1

,

,

1

m

p q

m

p q

A

A
,

then this is the neutral or nonamplifying case.  If
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1

,

,

1

m

p q

m

p q

A

A
,

then the scheme will not converge.  We can increase the convergence role of a relaxation 

scheme by the use of an appropriate relaxation factor.  The change in ,i j
 from iteration 

m to 1m  is

,1

, , ,
4

m

i jm m m

i j i j i j

R

H
.    (2.85) 

In the case of over relaxation or underrelaxation, we change ,

m

i j
 by ,

ˆ m

i j
, where

,

, ,
ˆ

4

m

i jm m

i j i j

R

H
.     (2.86) 

Here  is a relaxation factor.

 Next we show that this relaxation factor will result in faster convergence.  If 

1, we are back to , , /(4 )m m

i j i j
R H .   For 1  and for larger scales, p x  and 

q y  are small.  The term 2  is very small if we choose 1.  Then (2.84) becomes 

             

1

. 2

,

1 (4 )
4

m

p q

m

p q

A
H

A H
.     (2.87) 

We can select the values of the relaxation factor  such that 

         

1 1

. .

, ,

m m

p q p q

m m

p q p q

A A

A A
,      (2.88) 

where 1

, ,/m m

p q p q
A A denotes that we are using the relaxation factor  which is not equal to 

1.

 For large scales (i.e., for small p and q) in which 

           
24

1
4

H

H
,

an overrelaxation factor ( 1)  would give rise to a faster rate of convergence.  

However, if scales are small (i.e., p and q are larger), then overrelaxation does not work.  

In that case, an underrelaxation coefficient ( 1)  is better suited.  An overrelaxation 

coefficient with values around 1.2 to 1.7, depending up the domain, is generally helpful 

for fast convergence.  The scale of the wave depends on the domain.  The larger the 

domain, then generally the larger the wavenumbers p and q will be. 

2.11  Sequential Relaxation Versus Simultaneous Relaxation 

Here we answer the question, is sequential relaxation more efficient than simultaneous 

relaxation?  We consider a Helmholtz equation in one dimension only, i.e., 
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2

2
F

x
.       (2.89) 

To make the problem simple, we consider the domain consisting of points 2i , 1i ,

1i , and 2i , where 2i  and 2i  are boundary grid points with known prescribed 

values of 2i
 and 2i

.

 We can express 
2 2/

i
x in its finite-difference form as 

2

1 1

2 2

2

( )

i i i

i
x x

,      (2.90) 

where x  is the distance between two successive grid points and 
i
 is the value of  at 

the ith grid point.  Substituting this into (2.89), we obtain 

2 2

1 1 2
i i i i i

x F x .     (2.91) 

If 2( )H x  and 2 2( )x d , then we obtain 

2

1 12
i i i i

H F d .      (2.92) 

 First consider simultaneous relaxation.  At the mth level of iteration we have 

2

1 12m m m m

i i i i i
H F d R .    (2.93) 

At the (m + 1)th iteration, m

i
 is changed to 1m

i
 so that m

i
R  vanishes.  This gives 

1 2

1 12m m m

i i i i
H F d .      (2.94) 

The corresponding error equations are 

    1

1 12 0m m m

i i i
H  at grid point i,     (2.95) 

           1

10 2 0m m

i i
H  at grid point i - 1,     (2.96) 

1

12 0m m

i i
H  at grid point i + 1.   (2.97) 

It should be noted that there are no terms containing 2

m

i
 and 2

m

i
, since 2i

 and 2i
are

known boundary values and only 1i , i
, and 1i

 are to be determined. 

One additional iteration at point i results in

1 2 1

1 12 0m m m

i i i
H .

After eliminating 1

1

m

i
and 1

1

m

i
with the help of the error equations (2.96) and (2.97) at 

grid points ( 1)i  and ( 1)i , we obtain 

22 0
2 2

m m

mi i

i
H

H H
,     (2.98) 

2 22 2 0m m

i i
H ,       (2.99) 
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2

2

2

(2 )

m m

i i

H
.        (2.100) 

 Next consider the sequential relaxation procedure.  Here we use the new values of 

the function at the previously corrected points during an iteration.  The corresponding 

error equation is

1 1

1 12 0m m m

i i i
H     at grid point i.     (2.101) 

We have used the changed value of  at the (i -1)th grid point.  Furthermore, 

1

10 2 0m m

i i
H     at grid point i - 1.          (2.102) 

Similarly, we obtain 

1 1

12 0 0m m

i i
H     at grid point i + 1.     (2.103) 

          The error at the (i -1)th grid point is related to the error at the ith grid point by 

1

1
2

m

m i

i

H
.          (2.104) 

Substituting the above value of 1

1

m

i
 into (2.101) gives 

1

12 0
2

m

m mi

i i
H

H
,

or

         
2 1

12 2 0m m m

i i i
H H .     (2.105) 

From the error equation at the ( 1)thi  grid point at the mth iteration, we can get 

1 /(2 )m m

i i
H .  Substituting into (2.105), we obtain 

        
2 12 0m m m

i i i
H ,

or

              1

2

2

(2 )

m m

i i

H
.       (2.106) 

Thus, the convergence given by (2.106) is twice as fast as that given by (2.100).  In 

conclusion, sequential relaxation converges faster than simultaneous relaxation.

2.12  Advective Nonlinear Dynamics 

Advective nonlinear dynamics is one of the most difficult processes to resolve.  It creates 

a lot of noise in a forecast.  Arakawa was the first to show how to correctly use finite 

differencing for nonlinear dynamics.  He explained that to understand the numerics of 

nonlinear advective dynamics you must first be able to compute the finite difference of 

the Jacobian, which is simple nonlinear advective dynamics.  The barotropic vorticity 
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2.12.1 Barotropic Vorticity Equation 

Consider the horizontal momentum equations and the nondivergent continuity equation in 

the (x, y, p) coordinate system which make up the primitive form of the barotropic 

vorticity equation: 

u u u z
u v fv g

t x y x
,    (2.107) 

v v v z
u v fu g

t x y x
,    (2.108) 

0
u v

x y
.     (2.109) 

Here we have three equations with three unknowns: u, v, and z.  For nondivergent flow 

we let /u y , /v x , and 2 / /v x u y .  By differentiating (2.107) 

with respect to y and (2.108) with respect to x and subtracting the two resulting equations, 

we get the barotropic vorticity equation: 

2 2,J
t x

,     (2.110) 

which consists of the time tendency of vorticity, the horizontal advection of vorticity 

represented by the Jacobian function, and the beta term, respectively, where /f y .

In this equation, the Jacobian is a nonlinear term and all other terms are linear.  Also 

differentiating (2.107) with respect to x and (2.108) with respect to y and adding, we 

obtain the nonlinear balanced equation: 

          2 2 ,f J
x y

,   (2.111) 

where we have neglected the time-derivative terms.  The Jacobian function J is defined 

as

      ,
A B A B

J A B
x y y x

.

Here we have two equations and two unknowns,  and .

 Arakawa showed that the barotropic vorticity model (2-D) has several integral 

constraints.  These constraints that are maintained are kinetic energy, total vorticity, and 

total square vorticity. That is, the kinetic energy of nondivergent flow and the absolute 

vorticity have the following invariant properties over a closed domain: 

domain invariant :
2 2

2

u v
,

a
, n

a
.

equation allows us to understand the properties of the Jacobian from which we can then 

ensure that the numerics meet these requirements. 
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Q dx dy

Q

dx dy

.

Conservation of these properties precludes nonlinear computational instability.  

Conservation of enstrophy ( 2

a
) and kinetic energy is called quadratic invariance.  If one 

satisfies quadratic invariance, then n

a
 for 2n  also seems to remain well bounded.  

The parcel-invariant physical quantities are 
a
 and n

a
.  If we set n = 2 in the domain-

invariant quantity n

a
, then we obtain 2

a
 as invariant.  These are important invariants 

(both parcel and domain).

 Next we prove the domain invariance for 2

a
.  We start with barotropic vorticity 

equation (2.110), which can be written as

2 2,f J f
t

.       (2.112)  

By multiplying (2.112) by 2
f , we obtain 

2 2
2 2

,
2 2

f f
J

t

since

       ( , )
A B A B

J A B
x y y x

        
2 2

 ( , )
2 2

A B A B
B J A B

x y y x

             
2

,
2

BJ A .

Integrating over the closed domain D leads to 

2 2
2 2

,   0
2 2

D D

f f
dx dy J dx dy

t
,

since the integral of a Jacobian over a closed domain vanishes.  Hence 

      
2 2( )

0
2

f

t
.       (2.113) 

In this case, 
a

f , n is a real number, and ( )  denotes the mean over the domain, 

i.e.,
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Figure 2.10.  A 5-point stencil for the Jacobian using the vector identity. 

Therefore

           
2 2( )

2

f

is invariant with time.  Thus the square of absolute vorticity is conserved over a closed 

domain.  In the same manner, it can be shown that all powers of absolute vorticity (i.e., 
n

a
) are time-invariant. 

 Next we show the conservation of 2 2( ) / 2k u v .  Multiply (2.112) by to

obtain

       

2
2 2,

2
J f

t
.      (2.114) 

The right-hand side vanishes on integration over a closed domain.  Hence 

             2  0
D

dx dy
t

.      (2.115) 

Using the vector identity

2 .

2t t t
,

we obtain 

2       
2

D D D

dx dy dx dy dx dy
t t t

.  (2.116) 

As the first term on the right-hand side of (2.116) vanishes over a closed domain, we are 

left with
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or

         

22( ) ˆ ˆ 2
2

i j
x yt t

          

22

2
x yt

              
2 2

0
2

u v

t
.        (2.117) 

Thus the kinetic energy over a closed domain is time-invariant.  In designing any simple 

atmospheric model, we generally try to write the finite differencing schemes so as to 

satisfy conservation of kinetic energy ( )k , vorticity ( )
a

, and the square of vorticity 

2( )
a

 over a closed domain. 

2.13  The 5-Point Jacobian 

Let us first consider a 5-point Jacobian.  Given the definition 

,J
x y y x

and starting with the five grid points as shown in Fig. 2.10, the Jacobian J( , ) can be 

expressed by 

1 3 1 32 4 2 4,
2 2 2 2

J
x y y x

.

If x y , then 

2

1 3 2 4 2 4 1 32

1
, ( ) ( ) ( ) ( ) O

4
J .    (2.118) 

This is a second-order accurate Jacobian.  It should be noted that this Jacobian does not 

satisfy all invariants. 

2.14  Arakawa Jacobian 

We discuss here the design of a Jacobian which conserves kinetic energy and enstrophy 

(square of the vorticity) over a closed domain.  This form of the Jacobian was first 

designed by Arakawa (1966), and is commonly known as the Arakawa Jacobian.  We 

consider both the second- and fourth-order accurate Arakawa Jacobians. 

 We can write ( , )J  in the following three forms: 

        

2

2   0
2

D D

dx dy dx dy
t t

,
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Figure 2.11. A 9-point stencil for the Jacobian. 

,J
x y y x

,      (2.119) 

,J
x y y x

,    (2.120) 

,J
y x x y

.     (2.121) 

Analytically these three forms of ( , )J  have the same value.  However, in their finite-

difference form they are not identical.  For this consider the 9-point stencil with its 

different points labeled as in Fig. 2.11 with grid distance d.

 With respect to Fig. 211, the finite-difference form of the right-hand side of 

(2.119), (2.120), and (2.121) may be written as

00 10 10 01 0 12

1
,

4
J

d

01 0 1 10 10 ,       (2.122) 

00 10 11 1 1 10 11 1 12

1
,

4
J

d

01 11 11 0 1 1 1 1 1 ,    (2.123) 

00 01 11 11 0 1 1 1 1 12

1
,

4
J

d

10 11 1 1 10 11 1 1 ,     

which can also be written as 

00 11 01 10 1 1 10 0 12

1
,

4
J

d

11 01 10 1 1 10 0 1 .      (2.124) 
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Superscripts  and 
+
 denote the location of  and  values (in that order) involved in the 

finite-difference approximation of the Jacobian.  The 
+
 symbol indicates that values 

involved are located at points 10, -10, 01, and 0-1, while the 
x
 symbol indicates their 

location at points 11, -1-1, -11, and 1-1.  The subscripts denote the point at which the 

Jacobian is centered.

 Let us now consider the conservation of mean-square vorticity, for which the 

condition is

( , ) 0J .     (2.125) 

In finite-difference form this condition is satisfied if the products of J  at various grid 

points in the finite-difference from of (2.125) cancel when added over the closed domain. 

Now from (2.122) we obtain nine equations, one equation for each grid point of 

our 9-point stencil 

00 00 00 10 01 0 12

1
,

4
J

d
,    (2.126) 

10 10 10 00 11 1 12

1
,

4
J

d
,    (2.127) 

and so on.  Also from (2.123) we get 

00 00 00 10 11 1 12

1
,

4
J

d
,      (2.128) 

10 10 10 00 01 0 12

1
,

4
J

d
,      (2.129) 

and so on.  Similarly from (2.124) we have 

00 00 00 11 01 102

1
,

4
J

d
,      (2.130) 

11 11 11 00 01 102

1
,

4
J

d
,      (2.131) 

and so on.  From (2.126) and (2.127) we see that the sum of the terms involving the 

product 00 10  does not vanish.  The various terms of ( , )J  therefore do not cancel 

when added over the whole closed domain.  Therefore the domain integral of ( , )J

does not vanish. 

 From (2.128) and (2.129) we find that the same is true for ( , )J , that is, its 

domain integral also does not vanish.  However, as the terms involving 00 10  in (2.126) 

and (2.129) are equal and opposite in sign, as are those in (2.127) and (2.128), various 

terms of the sum ( , ) ( , )J J  cancel, that is, 

( , ) ( , ) 0x
J J .   (2.132) 

Also terms involving 00 10  in (2.130) and (2.131) are equal and opposite.  

Therefore various terms of ( , )J  cancel on  addition  over  a  closed  domain.  Thus
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            ( , ) 0x
J .     (2.133) 

Thus ( , ) ( , )J J  and ( , )J  individually conserve mean-square vorticity.  

Similarly it can be shown that 

( , ) ( , ) 0x
J J ,   (2.134) 

and

            ( , ) 0x
J ,     (2.135) 

so that ( , ) ( , )J J  and ( , )J  individually conserve mean kinetic energy. 

From these we can take the three forms of the Jacobian, take a weighted average 

of the three, and add them up, 

, , , 0J J J ,

such that 1.  Arakawa searched for values of , , and  that satisfied the 

invariants and found that 1
3

 best satisfies the invariants.  From this, we 

conclude that the finite difference Jacobian is 

1

1
, , , ,

3
J J J J  (2.136) 

as it conserves the square of vorticity and kinetic energy over a closed domain.  To 

investigate the accuracy of the finite-difference scheme, we expand  and  in Taylor 

series:
2 2 3 3

4

10 00 2 3

00 00 00

O
2 6

F d F d F
F F d d

x x x
,

2 2 3 3
4

0 1 00 2 3

00 00 00

O
2 6

F d F d F
F F d d

y y y
,

2 2 2 2

1 1 00 2 2

00 00

2
2

F F d F F F
F F d

x y x x y y

       
3 3 3 3 3

4

3 2 2 3

00

3 3 O
6

d F F F F
d

x x y x y y
,

2 2 2 2

1 1 00 2 2

00 00

2
2

F F d F F F
F F d

x y x x y y

       
3 3 3 3 3

4

3 2 2 3

00

3 3 O
6

d F F F F
d

x x y x y y
.

In these expansions, F represents either  or .  After substituting these expansions into 

(2.122), (2.123), and (2.124), we obtain 
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Figure 2.12.  A 13-point stencil for the Jacobian. 

2 3 3

3 3
, ,

6

d
J J

x y y x

3 3
4

3 3
O d

x y y x
,      (2.137) 

2 3 3

2 2
, ,

2

d
J J

x x y y x y

2 2 2
4

2 2
O d

x y x y
,      (2.138) 

2 3 3

2 2
, ,

2

d
J J

x x y y x y

2 2 2
4

2 2
O d

x y x y
.    (2.139) 

Note that equations (2.138) and (2.139) contain all of equation (2.137).  Therefore the 

second-order accurate Jacobian is 

1

1
, , ,

3
J J J J

      2 4, OJ d d ,      (2.140) 

where
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3 3 3 3

3 3 3 3
6

x y y x x y y x

3 3 2 2 2

2 2 2 2
x x y y x y x y x y

3 3 2 2 2

2 2 2 2
x x y y x y x y x y

.   (2.141) 

 There are other finite-difference forms of the Jacobian which conserve square 

vorticity and kinetic energy.  One such scheme can be designed with a 13-point stencil as 

shown in Fig. 2.12.  This stencil can be obtained by rotating the stencil in Fig. 2.11 by 

45  so that point 11, -11, -1-1, and 1-1 in Fig. 2.12 correspond to points 10, 01, -10, and 

0-1 in Fig. 2.11 and points 20, 02, -20, and 0-2 in Fig. 2.12 correspond to points 1-1, 11, -

11, and -1-1 in Fig. 2.11.  Also we note that the distance between the points (i.e., between 

00 and 11) is now 2
1/2

d.

 As this stencil is obtained simply by a 45  rotation of the stencil in Fig. 2.11, 

‡ ‡

2

1
, , , ,

3
J J J J      (2.142) 

will also conserve kinetic energy and the square of vorticity, where 

00 11 1 1 11 1 12

1
,

8

xx
J

d

11 1 1 11 1 1 ,       (2.143) 

‡

00 11 02 20 1 1 20 0 22

1
,

8
J

d

11 02 20 1 1 20 0 2 ,      (2.144) 

‡

00 20 11 1 1 20 11 1 12

1
,

8
J

d

02 11 11 0 2 1 1 1 1 .     (2.145) 

As 2 ,J  also has centered differences, it is a second-order accurate Jacobian as well. 

Using Taylor series we get an equation similar to (2.140), that is, 

‡ ‡

2

1
, , , ,

3
J J J J     

     2 4, 2 OJ d d ,     (2.146) 

where 2 d
2

is from (2
1/2

d)
2
.  From (2.140) and  (2.146) we get 

4

3 1 2, 2 , , , OJ J J J d   (2.147) 

as the fourth-order accurate Arakawa Jacobian, which conserves kinetic energy and 

mean-square vorticity. 
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 Now that we have computed the fourth-order accurate Jacobian we ask what is the 

importance of finding it?  If we were to make a barotropic forecast, which utilizes both 

the Laplacian and Jacobian, 

       
2 2,J

t x

and used a fourth-order accurate scheme for each the Laplacian, Jacobian, and / x , we 

could obtain a good forecast.  In other words, understanding of fourth-order accurate 

schemes makes for better forecasts.

2.15 Exercises 

2.1. Consider the function 

1 2

          0          /6          /4            /2

( )     0          1/2            1/(2 )      1.0

x

u x

Evaluate /du dx at / 4x  using (a) forward differencing, (b) centered 

differencing, (c) backward differencing, and (d) the second-order finite-difference 

analog.  Analytically, ( )u x  represents sin x .  Which of the finite-difference 

formulas represents the best approximation to 
/ 4

/
x

du dx ?

2.2. For the function of Exercise 2.1, evaluate ( )u x at 7 /12x , given that the second-

order derivative of ( )u x  at / 2x  is exactly equal to its analytic value. 

2.3. Consider Poisson’s equation 2
G , where ( , )x y  and ( , )G G x y . Assume 

an even mesh in x and y and that 0 10x , 0 10y .  Also take 1x y  and 

let

,0 ,10 0x x 0 10x ,

0, 10, 0y y 0 10y ,

, , 0G x y S x y 0 10x  and 0 10y .

Find  if 0S , 2 22( )S x y , 102exp( ) /S x y e , and 2cos sinS x y .  Plot 

the analytic solution as well as the solution obtained using the finite-difference 

method.

2.4. Let 

,J J
x y y x

represent the Jacobian.  Show that  0
D

J dx dy  over the closed domain D with 

a x b  and c y d .

An Introduction to Finite Differencing 



Chapter 3 

Time-Differencing Schemes

3.1   Introduction 

Atmospheric models generally require the solutions of partial differential equations.  In 

spectral models, the governing partial differential equations reduce to a set of coupled 

ordinary nonlinear differential equations where the dependent variables contain 

derivatives with respect to time as well. 

 To march forward in time in numerical weather prediction, one needs to use a 

time-differencing scheme.  Although much sophistication has emerged for the spatial 

derivatives (i.e., second- and fourth-order differencing), the time derivative has remained 

constructed mostly around the first- and second-order accurate schemes.  Higher-order 

schemes in time require the specification of more than a single initial state, which has 

been considered to be rather cumbersome.  Therefore, following the current state of the 

art, we focus on the first- and second-order accurate schemes.  However, higher-order 

schemes, especially for long-term integrations such as climate modeling, deserve 

examination.

 We start with the differential equation /dF dt G , where ( )F F t  and 

( )G G t .  If the exact solution of the above equation can be expressed by trigonometric 

functions, then our problem would be to choose an appropriate time step in order to 

obtain a solution which behaves properly; that is, it remains bounded with time.  This is 

illustrated in Fig. 3.1.  We next show that: (1) if an improper time step is chosen, then the 

approximate finite difference solution may become unbounded, and (2) if a proper time 

step is chosen, then the finite difference solution will behave quite similar to the exact 

solution.

 The stability or instability of a numerical scheme will be discussed for a single 

Fourier wave.  This would also be valid for a somewhat more general case, since the total 

solution is a linear combination of sine and cosine functions, which are all bounded.  We 

next define an amplification factor , the magnitude of which would determine whether 

a scheme is stable or not. 

3.2   Amplification Factor 

Consider a linear wave equation such as

40
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Figure 3.1.  Stable and unstable time step t.

0
u u

c
t x

      (3.1) 

which contains the wave speed, c, and the advection term u x .  What we learn from 

this equation is also applicable to the full spectral model.  In other words, we can find the 

time-differencing scheme from this equation and then apply that scheme to the full 

spectral model.  It happens that if the time-differencing scheme works with this equation 

then it seems to also work for the full model.  Let the analytic solution of this equation be 

in the form of a single harmonic given by ( , ) Re[ ( ) ]ikx
u x t U t e , where ( )U t  is the wave 

amplitude and k is the wavenumber.  Substituting this into (3.1), we obtain an equation 

for the amplitude function ( )U t  as 

      0
dU

ikcU
dt

      (3.2) 

Thus we have reduced the above partial differential equation to an ordinary differential 

equation whose exact solution is given by 

( ) (0) ikct
U t U e .       (3.3) 

Hence the desired harmonic solution is given by 

       ( )( , ) Re (0) ik x ct
u x t U e .      (3.4) 

Time-Differencing Schemes 
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The exact solution is bounded and not amplifying in time so any finite difference 

representation that is made from this solution is also bounded in time. 

 Therefore each wave component is advected at a constant velocity c along the x-

axis with no change in amplitude.  We now look for an analogous solution for the finite-

difference equation, where we can substitute the form Re( )n n ikj x

j
u U e , where n

U  is the 

amplitude at the nth time level.  We define the amplification factor  so that 

      1n n
U U ,     (3.5) 

or

              1n n
U U .     (3.6) 

 Substituting for 1 2| | | || |n n
U U  and 2 3| | | || |n n

U U  and following this 

procedure, we obtain 0| | | | | |n n
U U .  For the scheme to be stable, it is required that 

| |n
U A , where A is some finite number.  Therefore

          
0nn

U U A .      (3.7) 

Taking the natural logarithm of both sides, we obtain 

             0ln ln ln lnn
U n U A .

Simplifying, we obtain 

             
0

ln ln
A

n
U

.

Now let 

0
ln '

A
A

U
.

 Dividing the time t into n equal intervals, each of which is equal to t , we obtain 

t n t .  Hence 

'
ln

A

n
 ,      (3.8) 

'
ln

A
t

n
.     (3.9) 

As we require the boundedness of the solution for a finite time t, we obtain

      ln O t .      (3.10) 

If we now define | | 1 , then 

2 3 4

ln 1
2 3 4

     for 1 1 .

The stability condition obtained is equivalent to O t , so that

1 O t .       (3.11)  
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 This is the Von Neumann necessary condition for stability.  This condition allows 

for an exponential growth of the solution, and it is required when the true solution grows 

exponentially.  However, when it is known that the true solution does not grow, it is 

customary to replace this condition by a sufficient condition 

            1.       (3.12) 

 We apply all our schemes to the linear wave equation (3.1).  If the amplification 

factor  is less than 1, then we obtain a stable solution.  The reason why we apply our 

schemes to the above wave equation is that the solutions of wave equations are bounded 

trigonometric functions, which help us to examine the stability of the solution.  The 

general stability criteria are: 

  Unstable scheme if   1 ,

    Neutral scheme  if   1 ,

      Stable scheme  if   1.

3.3   Stability 

In this section we discuss the computational stability of the following time-differencing 

schemes applied to the linear wave equation, namely the Euler, backward, trapezoidal, 

Matsuno and Heun predictor-corrector, leap-frog, Adams-Bashforth, and implicit

schemes.

3.3.1 Euler, Backward, and Trapezoidal Schemes 

Consider the linear wave equation (3.1) and assume 

, ikx
u x t U t e .      (3.13) 

Let the value of U at time n t  be known.  We wish to predict the value of U at time 

( 1)n t .  Substituting the assumed solution, we obtain the marching equation for time-

differencing (3.2) 

,
dU

f U t
dt

U U t ,    (3.14) 

where f ikcU i U  and kc .  Integrating the above equation between time 

n t  and ( 1)n t  where n is the current time level and 1n  is the future time level, we 

obtain
( 1)

1 ,
n t

n n

n t

U U f U t dt .

We can also write 
( 1)

1 ,
n t

n n

n t

U U f U t dt .     (3.15) 
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 We have two possible values for ( , )f U t , which we assume to be constant over 

the time interval [ ,  ( 1) ]n t n t , namely, (a) ( ,  )n n
f f U n t  and (b) 

1 1[ ,  ( 1) ]n n
f f U n t .  In the case of (b), if 1n

f f  (i.e., f depends on 1n
U ), then 

the scheme is called implicit.  If n
f f  (i.e., f depends on n

U ), then the scheme is called 

explicit.

 We can also use a linear combination of n
f  and 1n

f  to define the value of 

( , )f U t  in the time interval [ ,  ( 1) ]n t n t , which we assume to be constant and defined 

as 1( , ) n n
f U t f f , where  and  are two real constants satisfying 1.

Thus (3.15) reduces to

( 1)
1 1

n t
n n n n

n t

U U f f dt .

Alternatively, we can write the time-differencing scheme as 

1 1n n n n
U U t f f .      (3.16) 

 By assigning different values to  and , we obtain the different time-differencing 

schemes.  In particular, for 

      Euler’s forward schemes,  1 and 0

    backward schemes,   0 and 1

trapezoidal schemes,   0.5 .

As n n
f i U , 1 1n n

f i U , and 1 1( )n n n n
U U t i U i U , we can then write

1 1n n n n
U U i tU i tU

1 1n n n n
U i tU U i tU

1 1 1n n
U i t U i t

       1 1

1

n n i t
U U

i t
.        (3.17) 

Comparing the above equation with 1n n
U U , we observe that

            
1

1

i t

i t
.      (3.18) 

 Let us define p t , so that (1 ) /(1 )i p i p , where  is the frequency 

of the wave we are studying, which we have chosen, and t  is the time step we are 

assigning.  After dividing and multiplying by the conjugate of (1 )i p , we obtain 

2

2 2

1 ( )

1

p ip

p
,

or, since 1, we can write 
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2

2 2

1

1

p ip

p
.       (3.19) 

Now let us discuss the stability of the above-mentioned three schemes.

Euler Forward Scheme.  The Euler scheme is obtained by assigning 1 and 0 .

Note that f is not centered in time in the Euler scheme.  This now gives us 1 ip , so 

knowing that if a ib  then 
2 2 1 2| | ( )a b  we can also write 

1 2
21 p .      (3.20) 

Since p t  is real and 2 0p , it follows that | | 1; thus the Euler scheme is always 

unstable whatever the time step may be.  It is a first-order-accurate time-differencing 

scheme.

Backward Scheme.  The backward scheme is obtained by assigning 0  and 1.

This gives 

2

1

1

ip

p
,      (3.21) 

or

      
2 1 2

2 2 1 2

(1 ) 1
1

1 (1 )

p

p p
,  as 0p .    (3.22)  

 Hence the backward scheme is unconditionally stable for any time step.  

Furthermore, it is a damping scheme, and the amount of damping increases with p or as 

the frequency  increases.  During numerical integration, high-frequency modes often get 

excited and amplified unrealistically due to errors in the initial data.  The damping 

property of the backward scheme is therefore desirable to reduce the amplitude of such 

high-frequency modes and to filter them out.  It is also a first-order-accurate time-

differencing scheme.

Trapezoidal Scheme.  By assigning 0.5 , the trapezoidal scheme is obtained.  In 

this case, 
2

2

4 4

4

p i p

p
.

Thus
4 2 2 1 2

2

(16 8 16 )
1

4

p p p

p
.     (3.23) 

Therefore | | 1 for any time interval t , and thus this scheme is always neutral.  The 

amplitude of the numerical solution remains constant, just as in the exact solution.  It is a 

second-order-accurate time-differencing scheme. 

Time-Differencing Schemes 
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3.3.2 Predictor-Corrector Schemes 

These types of schemes work on the following basic principle.  First an attempt is made 

to predict the value of U at the (n+1)th time step, which we  denote by ( 1)*n
U .  Euler’s 

forward scheme is usually used to predict ( 1)*n
U .  This value is then used to find the 

value of 1n
f  at the  (n+1)th  time step, and  we  denote  this  by ( 1)*n

f .   This value 
( 1)*n

f  is used to correct the previous ( 1)*n
U  to get the final value of ( 1)n

U .  The step for 

finding ( 1)*n
U  is the predictor step, and the step for finding ( 1)n

U  using ( 1)*n
U  is the 

corrector step.

 The finite-difference equations for such a scheme are  

( 1)*n n n
U U tf    (predictor step)    (3.24) 

and

          ( 1) ( 1)*n n n n
U U t f f     (corrector  step),    (3.25) 

where 1.  As mentioned before, ( 1)*n
f  and n

f  are defined as 

     
( 1)* ( 1)*,  ( 1)n n

f f U n t     (3.26) 

and

             ,n n
f f U n t .      (3.27) 

 To look into the stability of such a scheme, we again consider the linear wave 

equation (3.1).  Recalling n n
f i U  and 1 1n n

f i U  the predictor step is described as

           ( 1)*n n n
U U i tU       (3.28) 

and the corrector step is formulated as 

           ( 1) ( 1)*n n n n
U U i t U U .      (3.29) 

Substituting for ( 1)*n
U  from the predictor step into the corrector step, we obtain 

( 1) [ ( )]n n n n n
U U i t U U i tU , or we can write

1 2 2 2n n n n n
U U i t U i t U i t U

         ( 1) 2 21 ( )n n
U t i t U .    (3.30) 

Thus ( 1) 2 2/ (1 ) ( )n n
U U t i t .  Since 1, the amplification 

factor for this scheme is given by

1 2
2 2 2 2 2(1 )t t .    (3.31)  

Examples of this kind of scheme are the Matsuno scheme and Heun’s scheme. 

Matsuno Scheme.  The Matsuno scheme is obtained by taking 0  and 1  such  that 
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1 2
2

2 2 2 21 t t

1 2
2 2 4 4 2 21 2 t t t

1 2
2 2 4 41 t t

If 1t , then 4 4 2 2( ) ( ) 1t t .  Thus if 1t , then 1.  Hence the 

Matsuno scheme is a stable scheme for 1t .  This is also a first-order-accurate time-

differencing scheme. 

Heun’s Scheme.  Heun’s scheme is obtained by assigning 1 2 .  We can then 

write

       
2 2( )

1
2

t
i t .

Thus we obtain 
1 2

4 4
2 2 2 2( )

1 ( ) ( )
4

t
t t ,

or

          

1 2
4 4( )

1
4

t
.      (3.32) 

 As 4 4( ) / 4 0t  for any t , we observe that 1  for all values of t .

Therefore, Heun’s scheme is an unstable scheme.  We next illustrate the leap-frog time-

differencing scheme. 

3.3.3 Centered or Leap-Frog Scheme 

We have discussed two-time-level differencing schemes so far.  One of the most widely 

used time-integration schemes in numerical weather prediction is the centered, or leap-

frog, time-integration scheme.  This is a three-time-level scheme.  The values of the 

function at time levels ( 1)n  and n are known (or predicted using one forward time step 

to start the process), and from these we predict the value of the function at time level 

( 1)n .  We make a centered evaluation of the integral as

( 1)
1 1

( 1)
,

n t
n n

n t

U U f U t dt    (3.33) 

We take f = constant in the above integral.  Let this constant be denoted as n
f , the value 

of f at time t n t , so that (3.33) reduces to 

            1 1 2n n n
U U tf      (3.34) 
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 Thus we use the information at two previous time levels to generate the 

information at the next time level.  The truncation error is of the order of 2( )t .  This 

scheme is called the centered or the leap-frog scheme.

 Consider the leap-frog scheme applied to the linear wave equation (3.1).  

Substituting ( , ) Re[ ( ) ]ikx
u x t U t e  as the solution, we obtain 

          0
dU

i U
dt

,        where kc .     (3.35) 

Using a centered time-differencing scheme as in (3.34), we have

           1 1 2n n n
U U i tU ,     (3.36) 

where n n
f i U .  Furthermore, we have 

         1 2 1n n n
U U U , as 1n n

U U    (3.37) 

and we can replace all n
U  and 1n

U  with 1n
U  and simplify equation (3.36).  Since 

equation (3.36) is a second-order differential equation it has a quadratic equation for .

Substituting these into the above equations, we obtain 

2 1 1 12n n n
U U i t U

            2 2 1 0i p ,     (3.38) 

where p t .  The roots of this second-order equation are

              
1 2

2

1 1 p ip      (3.39) 

and

            
1 2

2

2 1 p ip .     (3.40) 

 If 1n n
U U  is to represent an approximation to the true solution, then we must 

have 1 as 0t .  For the above roots, since 0p t  as 0t , we have 

1 1.  However, at the same time, 2 1.  The solution associated with 1 is an 

approximation of the true solution and is called the physical mode.  On the other hand, 

the solution associated with 2 is not the true solution and is called the computational

mode.

 The complete solution of the centered time-differencing scheme is the sum of the 

solutions corresponding to the physical mode and the computational mode.  Because 2

n

is positive for even values of n and negative for odd values of n, 2

n  alternatively takes 

positive and negative values as the integration proceeds.  This results in an oscillation of 

the computational mode about the true solution.  This is an undesirable feature of the 

scheme, and methods are available to suitably suppress the computational mode during 

the course of integration.
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3.3.3.1  Centered in Time and Space 

One method used to suppress the computational mode is to start the integration with one 

forward time step and then compute 49 centered difference time steps.  After these 50 

time steps, we want to break the process and repeat it again for as many time steps that 

are needed.  This is done so that the computational factor 2( )  does not blow up. 

In the discussion on the centered time-differencing scheme, we have used a 

centered approximation for the time differential /u t  and an analytical value for the 

space differential /u x  in the wave equation.  We now examine the scheme using 

centered differencing both in time and space.

 With x m x  and t n t , we write ( , ) ( ) ikx
u x t U t e  as

          , ikm x n ikm x
u m x n t U n t e U e    (3.41) 

which is the finite difference representation of the trial solution.  Substituting (3.41) into 

the linear wave equation (3.1) gives 

          
1 1 ( )

2 2

n n n ik x n ik x
U U U e U e

c
t x

          1 1n n n ik x ik xc t
U U U e e

x
,

or

          1 1n n n ik x ik xc t
U U U e e

x
     (3.42) 

Futhermore, using 1 2 1n n n
U U U , we obtain 

2 1 1 1n n n ik x ik xc t
U U U e e

x

2 1 0ik x ik xc t
e e

x

Using the identity 

      sin
2

ik x ik x
e e

k x
i

we obtain 

2 2 sin 1 0
t

i c k x
x

    (3.43) 

which is the quadratic representation for space-time differencing.  The roots of (3.43) are 

1/ 2
2

2

1 1 sin sin
c t t

k x ic k x
x x

,

1/ 2
2

2

2 1 sin sin
c t t

k x ic k x
x x

.
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The absolute values of 1  and 2  are 

1/ 2
2 2

2 2

1 2 1 sin sin 1
c t c t

k x k x
x x

.  (3.44) 

Thus we can write 1 2 1.

 When 0x  and 0t , then the numerical solution should converge to the 

true solution.  This turns out to be true with 1 , since in this case 1

1

n n n
U U U .

However, if we instead take 2 as the solution, then 1

2

n n n
U U U .  Hence 2

corresponds to the oscillating computational mode of the equation and 1  corresponds to 

the physical mode. 

3.3.3.2 Alternative Method for Space-time Differencing 

         ( 1) ( 1)ˆ ˆ ˆi n t i n t i n t ik x ik xc t
ue ue ue e e

x

ˆ ˆ ˆi n t i t i n t i t i n t ik x ik xc t
ue e ue e ue e e

x

       
i t i t ik x ik xc t

e e e e
x

,

or

sin sin
c t

t k x
x

.    (3.45) 

Because k is a real wavenumber, sin 1k x  so that (3.45) is satisfied for a real value of v

if / 1c t x .  However, if / 1c t x , v must have an imaginary component.  In that 

case, the finite-difference solution becomes unstable.  The condition / 1c t x  is a 

necessary condition for the stability of an explicit time-differencing scheme.  It was first 

discovered by Courant, Friedrichs, and Levy (1928) and is commonly known as the CFL

criterion for the stability of a time-differencing scheme.  According to this, in fine-mesh 

models where x  is small, we need small time steps t  to ensure computational 

stability.  Also t  should be small for fast-moving waves such as gravity waves, because 

c is small.

 Some examples of models and their respective time steps and grid spacing are 

listed below: 

Model x t

Barotropic model 100 km 1 hour 

Primitive equation model 100 km 6 minutes 

MM5 20 km 1 minute 

Micrometeorology 10 m Few seconds 
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3.3.4 Adams-Bashforth scheme 

This is a three-time-level scheme in which the value of the space derivative is 

approximated from a linear extrapolation of f in the center to time levels n and ( 1)n

from its value at time levels n and ( 1)n .  With such an approximation, the finite-

difference analog of (3.1) takes the form 

1 13 1

2 2

n n n n
U U t f f

which is a second-order differential equation.  After applying this scheme to the linear 

wave equation, we obtain 

            
1 13 1

2 2

n n n n
U U ikc t U U .   (3.47)  

Substituting 1n n
U U  and 1n n

U U , we obtain 

         
2 3 1

2 2
ick t ,

or

2 3 1
1 0

2 2
i t i t ,    (3.48) 

where kc .  The roots of the above equation are

1/ 2

2 2

1

1 3 9
1 1 ( )

2 2 4
i t t i t ,   (3.49) 

1/ 2

2 2

2

1 3 9
1 1 ( )

2 2 4
i t t i t .   (3.50) 

We note that if 0t , then 1 1 and 2 0 .  Thus 1 denotes the physical 

mode and 2  denotes the computational mode.  As the time step t  is reduced, the 

Adams-Bashforth method approaches the true solution.

 On power series expansion of (3.49) and (3.50), it can be shown that 1| | 1

while 2| | 1 .  Thus the computational mode in this scheme tends to dampen, which is a 

beneficial property.  However, the physical mode tends to amplify.  The rate of 

amplification is small if t  is small, and the scheme is weakly unstable.  The Adams-

Bashforth scheme is therefore suitable for short periods of integration with a small time 

step such as in a squall or flow past a mountain. 
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3.3.5 Implicit Schemes 

There are two types of implicit schemes, one is the fully implicit scheme discussed below 

and the other is a semi-implicit scheme discussed in Sec. 3.4.  In the time-differencing 

schemes discussed so far, the time step should satisfy the CFL condition.  The implicit 

time-integration scheme permits longer time steps than specified by the CFL condition 

and is therefore more economical than explicit time-differencing schemes.  In the implicit 

scheme, the space derivative at time level n is obtained as the mean of the space 

derivatives at time levels ( )n  and ( 1)n .  Since the future value of the function is not 

known explicitly, the scheme is called implicit.

 If m is the space index and n is the time index, the fully implicit finite-difference 

analog of the linear wave equation takes the form 

1 1 1

1 1 1 1

2 2 2

n n n n n n

m m m m m m
u u u u u uc

t x x
    (3.51) 

which is a first-order non-separable difference equation.  In this equation, the unknown 

function u at time level ( 1)n  appears at the three space points ( 1)m , m, and ( 1)m .

Such equations are associated with each space grid point; this system of equations, in 

principle, can be solved by inverting a matrix with proper boundary conditions.  

However, for a large number of grid points, the procedure becomes difficult.  In such 

cases, relaxation or spectral methods are more convenient. 

Assuming a solution of the form n n ikm x

m
u U e , we obtain 

1 1 ( 1) 1 ( 1)U U U U

2 2

n ikm x n ikm x n ik m x n ik m x
e e c e e

t x

( 1) ( 1)U

2

n ik m x n ik m x
e U e

x

1 1 1U U U U

2 2

n ikm x n ikm x n ikm x ik x n ikm x ik x
e e c e e e e

t x

U

2

n ikm x ik x n ikm x ik x
e e U e e

x

1 1 1U U U U U U

2 2 2

n n n ik x n ik x n ik x n ik x
c e e e e

t x x

11 U UU U

2 2 2 2

n ik x ik x n ik x ik x
n n e e e ec c

t x x
.   (3.52) 

Rearranging equation (3.52) and using Euler’s relation, i.e., sin ( ) / 2ix ix
x e e i , we 

obtain
11 U UU U

2 2 2 2

n ik x ik x n ik x ik x
n ne e e ec c

t x t x
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1
1U sin U sin

U U
2 2 2 2

n n

n nic k x ic k x

t x t x

1 1 sin 1 sin
2 2

n nt t
U ic k x U ic k x

x x
.    (3.53) 

Hence

1 1 sin
U 2

U
1 sin

2

n

n

t
ic k x

x

t
ic k x

x

.    (3.54) 

 This is the ratio of the amplitude at time level ( 1)n  to that at time level n at a 

particular spatial point m.  Furthermore, multiplying (3.54) by the complex conjugate of 

the denominator and taking the absolute value gives 1| | | / | 1n n
U U , which implies 

stability regardless of the value of /c t x .  The future values of the function u will be of 

the same order as the previous values.  Hence this scheme is nonamplifying. 

 We next show another way of demonstrating the stability of the implicit scheme, 

which is called the trigonometric method.  Starting from the finite-difference analog of 

the linear wave equation, that is, 

1 1 1

1 1 1 1
4

n n n n n n

m m m m m m

c t
u u u u u u

x
,   (3.55) 

we can write 
1 [( 1) ( 1) ]

1
ˆn ik m x c n t

m
u ue

                         ( ) ( ) ( )ˆ ik m x cn t ik x c t n ik x c t

m
ue e u e ,    (3.56) 

where ( )ˆn ik m x nc t

m
u ue .  Similarly,      

[( 1) ]

1
ˆn ik m x cn t

m
u ue

( )ˆ ik m x cn t ik x n ik x

m
ue e u e ,

[( 1) ]

1
ˆn ik m x cn t

m
u ue        

( )ˆ ik m x cn t ik x n ik x

m
ue e u e ,

1 [( 1) ( 1) ]

1
ˆn ik m x c n t

m
u ue

( ) ( ) ( )ˆ ik m x cn t ik x c t n ik x c t

m
ue e u e ,

1 [ ( 1) ]ˆn ik m x c n t

m
u ue

( )ˆ ik m x cn t ikc t n ikc t

m
ue e u e .

Then substituting these equations into (3.55), we obtain 

( ) ( ) ( )1
4

n ikc t ik x c t ik x ik x c t ik x n

m m

c t
u e e e e e u

x
.  (3.57) 

From this we can write 

            1 ( 1) ( 1)
4

ikc t ik x ikc t ik x ikc tc t
e e e e e

x
,
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or

      1 ( ) ( 1)
4

ikc t ik x ik x ikc tc t
e e e e

x
.   (3.58) 

We then obtain 

1

1 4

ikc t

ik x ik x

ikc t

e c t
e e

e x
,

or

tan sin
2 2

kc t c t
k x

x
.     (3.59) 

 The sine of an angle is bounded between –1 and 1 while the tangent of an angle 

varies from  to .  Hence, any value of t  can satisfy this equation, i.e. (3.59) is 

satisfied for all values of ( ) /c t x .  Thus the stability of this scheme does not depend on 

the value of ( ) /c t x and is therefore unconditionally stable.  In the following section 

we illustrate the application of the semi-implicit time-differencing scheme to the shallow-

water model equations. 

3.4 Shallow-Water Model 

To demonstrate the semi-implicit time-differencing scheme the shallow water equations 

are used instead of the linear wave equation.  The linear wave equation is a one-wave 

solution equation, whereas the shallow water equations are, in essence, a stripped down 

version of the full model equations, i.e., they have some properties of the atmosphere.  In 

the semi-implicit scheme the nonlinear part of an equation is handled explicitly while the 

linear part is handled implicitly.

In the shallow-water model we have a layer of fluid with constant density.  Under 

the hydrostatic assumption, there is no vertical variation of the pressure gradient force if 

density is constant.  Therefore, if initially the horizontal velocities are independent of 

height, they will remain so during all times. 

 As / / 0u z z , the vertical advection terms do not appear in the shallow-

water equations.  These equations may be written in the Cartesian coordinate system as 

the momentum equations:

0
u u u

u v fv
t x y x

,    (3.60) 

0
v v v

u v fu
t x y y

,    (3.61) 

and the mass continuity equation : 

             0
u v w

x y z
.     (3.62) 

Here u is the x-component of the wind vector, v is the y-component of the wind vector, f

is the Coriolis parameter,  is the geopotential, and w is the vertical component of the 

wind vector. 
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 The mass continuity equation can be integrated in the vertical to obtain 

0
top bottom

u v
w w h

x y
,    (3.63) 

since u and v are independent of height.  Let H be the mean depth of the fluid, which is 

invariant with time, and h' be the perturbation height, so that 'h H h .  Furthermore, 

with a flat surface at the bottom we assume 0
bottom

w .  We then have 

             '
top

dh u v u v
w H h

dt x y x y
.

This equation can be written as 

    '
dh h h h u v u v

u v H h
dt t x y x y x y

.   (3.64) 

After multiplying by g and defining the geopotential ( )  as gh , we obtain the 

continuity equation: 

       
'

( ') ( ') 0
x

u v
u v

t x y y
.   (3.65) 

Here, gH  and ' .  Equation (3.65) describes the variation in the height of 

the free surface.  Equations (3.60), (3.61) and (3.65) form the shallow-water model. 

 A linearized shallow-water system has a frequency equation which is cubic.  Two 

of the solutions are gravitational modes, and the third is a Rossby wave.  To look into the 

nature of the gravity wave solution of the shallow-water equations, we examine their 

linearized form (hence, no nonlinear dynamics) on a nonrotating frame (i.e., 0f ) and 

assume no basic flow (i.e., 0,  0u v ):

'
0

u

t x
,      (3.66) 

'
0

v

t y
,      (3.67) 

      
'

0
u v

t x y
.      (3.68) 

Differentiating (3.68) with respect to t and making use of (3.66) and (3.67), we can write 

2
2

2

'
' 0

t
    (3.69) 

Assuming that the perturbation is only in the x-direction, the above equation further 

simplifies to
2 2

2 2

' '
0

t x
.     (3.70) 
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Assuming a solution to be of the form ( )' ik x ct
e  and solving for phase speed c, we 

obtain
2

c gH ,       or
1 2

c gH .

 This is the gravity wave phase speed.  This disturbance is forced by gravity and 

moves both in the positive and negative directions. For an isothermal atmosphere, taking 

the mean height as H = 9 km and g = 9.8 ms
-1

, we obtain c  300 ms
-1

, which is very 

close to the speed of sound waves. 

 We next look at the nature of the Rossby wave solution.  Consider the horizontal 

motion of the fluid under the influence of the Coriolis force and assume no basic flow.  

Furthermore, assume the flow to be nondivergent, so that 

          u
y

, v
x

, and 0
u v

x y
.    (3.71) 

The linearized equations of motion are then 

u
fv

t x
,     (3.72) 

v
fu

t y
 .     (3.73) 

Differentiating (3.73) with respect to x and (3.72) with respect to y and subtracting, we 

get the linearized form of the vorticity equation.  That is, 

       / t v ,     (3.74)

f y  and 2/ /v x u y .  In other words, we can write 

              2

t x
.      (3.75) 

Let us assume a solution of the form ( )ˆ i kx ly t
e . Then we have 

2 2( )k l k ,

          
2 2

k

k l
.       (3.76) 

Using this, we obtain the phase speed in the x-direction

       
2 2x

v
c

k k l
.      (3.77) 

This is the phase speed of Rossby waves caused by the variation in the Coriolis force (the 

 effect).  The phase speed is directly proportional to and inversely proportional to the 

square of the wavenumber 2 2
k l .

 Therefore, we observe that the shallow-water equations contain both slow-moving 

Rossby waves and high-frequency grravity waves.  Handling of high-frequency gravity 

waves will require shorter time steps as demanded by the CFL criterion, which is 

computationally expensive. 
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 To overcome this, it is economical to apply the implicit time integration scheme, 

which permits relatively longer time steps.  Because the nonlinear part of the equations 

cannot be dealt with implicitly, we calculate it explicitly.  The linear part of the equations 

is treated implicitly.  Such a scheme is known as a semi-implicit time-integration scheme. 

 Based on these considerations, we write the fully nonlinear shallow-water 

equations as

          
'

u

u u u
u v fv N

t x x y
,    (3.78) 

          
'

v

v v v
u v fu N

t y x y
,    (3.79) 

         
' ' '

h

u v u v
N

t x y x y
,   (3.80) 

where the left-hand sides of the equations are the terms that excite gravity waves, the 

right-hand sides of the equations are the terms for the Rossby waves, and 
u

N ,
v

N , and

h
N  are the nonlinear terms.  We assume nonlinear dynamics do not by themselves excite 

gravity waves.  For simplicity, the prime (') is dropped from the '  term in the following 

discussion.

 The finite-difference analog of (3.78) can be written as 

            
1 1 1 11

2 2

n n n n
n

u

u u
N

t x x
,   (3.81) 

where n denotes the time level.  The term 1 11/ 2( / / )n n
x x  denotes the mean 

value for / x  at time levels ( 1)n  and ( 1)n .  Furthermore, the nonlinear term 
n

u
N  is calculated at time level n.

 Thus we can write 

      
1 1

1 1 2
n n

nn n

u
u u t t N

x x
,    (3.82) 

      
1 1

1 1 2
n n

nn n

v
v v t t N

y y
.    (3.83) 

In addition, the mass continuity equation can be written as 

          
1 1 1 1

1 1 2
n n n n

nn n

h

u v u v
t t N

x y x y
.  (3.84) 

At this point there are three unknowns from equations (3.82), (3.83), and (3.84): 
1n

u , 1n
v , and 1n .  From these equations we can obtain a single equation for the 

geopotential.  This can be accomplished by first taking / x  of (3.82) and / y  of 

(3.83) and substituting into the continuity equation as 
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1 1 1 1 2
nn n n n

u
u u t t N

x x x x x x

and

1 1 1 1 2
nn n n n

v
v v t t N

y y y y x y
.

Next, substituting these two equations into equation (3.84) we obtain 

1 1 1 1 1 2
nn n n n n

u
t u t t N

x x x x x

1 1 1 1 12
nn n n n n

v
v t t N u v

y y y y y x y
,

2 2 2 2
1 1 1 1 1 1 1 1

2 2 2 2

n n n n n n n n
t u v t

x y x y x y

1 12 2
n n nn n

u v h
t N N u v t N

x y x y
,

2 21 1 2 1 2 1n n n n
t t

                
21 2

n nn

u v
t V t N N

x y

               1 2
nn

h
t V t N ,

where 1 1 1/ /n n n
V u x v y .  We place all terms at time level ( 1)n  on the left-

hand side and the rest of the terms on the right-hand side.  Then we write 

2 2 1 1 1 2 2 1 1( ) ( ) 2 (n n n n n
t t t V

               
2

2 2
n n n

u v h
t N N t N

x y
.

This equation can be written as 

1 1
2 1

2 2( ) ( )

n n n

n F G

t t
,    (3.85)  

where
1 1 2 2 1 1( ) 2 (n n n n

F t t V ,

2 ( ) ( )
2 2

n n
nn u v

h

N N
G t t N

x y
.

 This is a Helmholtz equation for the variable 1n , i.e. one equation and one 

unknown.  It can be solved using relaxation techniques or casting it into a tridiagonal 

matrix.  Once a solution 1n  is obtained, it can be substituted into (3.82) and (3.83) to 

An Introduction to Global Spectral Modeling



59

obtain future values of the velocity components 1n
u  and 1n

v .  Therefore, in principle, 

one can march forward in time and obtain future values of , u, and v.  This technique can 

be used to forecast an event such as the propagation of an African wave and will be good 

for at most one day since it does not include convection.

Time-Differencing Schemes 



Chapter 4 

What Is a Spectral Model? 

4.1  Introduction 

If one takes a closed system of the basic meteorological equations and introduces within 

this system a finite expansion of the dependent variables using functions such as double 

Fourier or Fourier-Legendre functions in space, then the use of the orthogonality 

properties of these spatial functions enables one to obtain a set of coupled nonlinear 

ordinary differential equations for the coefficients of these functions.  These coefficients 

are functions of time and the vertical coordinate, since the horizontal spatial dependence 

has been removed by taking a Fourier or a Fourier-Legendre transform of the equations.  

The coupled nonlinear ordinary differential equations for the coefficients are usually 

solved by simple time-differencing and vertical finite-differencing schemes.  The 

mapping of the solution requires the multiplication of the coefficients with the spatial 

functions summed over a set of chosen finite spatial basis functions.  This is what defines 

spectral modeling.

 Meteorological application of the spectral method was initiated by Silberman 

(1954), who studied the nondivergent barotropic vorticity equation in the spherical 

coordinate system using the spectral technique.  In its earlier days, the spectral method 

was particularly suitable for low-resolution simple models.  The equations of these 

simple models involved nonlinear terms evaluated at each time step.  Evaluation of the 

nonlinear terms was performed using the interaction coefficient method and thus required 

large memory allocations, which was an undesirable proposition. 

 However, with the introduction of the transform method, developed in 

dependently by Eliasen et al. (1970) and Orszag (1970), the method for evaluation of 

these nonlinear terms changed completely.  This transform method also made it feasible 

to include nonadiabatic effects in the model equations.  For the past couple of decades, 

the spectral method has become an increasingly popular technique for studies of general 

circulation and numerical weather prediction at the operational and research centers. 

4.2  The Galerkin Method  

This method forms the basis for spectral modeling, and it is easy to understand if the 

reader has some background in linear algebra.  We have a set of linearly independent 

functions ( )
i

x , which are called the basis functions.  The dependent variables of the 
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problem are represented by a finite sum of these basis functions.  To illustrate the 

application of the Galerkin method, let us consider the following problem: 

         ,                L u g x x ,   (4.1) 

where L is a differential operator, u is the unknown dependent variable, g is the forcing 

function, and x is the independent variable.  The bounds of x are indicated by the real 

numbers  and .

Our objective is to solve (4.1) given appropriate boundary conditions.  The first 

step in obtaining a solution to (4.1) is to approximate ( )u x  by a finite sum of basis 

functions as 

            

1

N

i i

i

u x u x .      (4.2)  

Here
i

u  represents the coefficient of the ith basis function ( )
i

x  and N is some 

prescribed integer.  When one approximates ( )u x  by (4.2), the error involved in 

satisfying (4.1) is given by 

       
1

ERROR
N

i iN

i

L u x g x .     (4.3) 

Our objective is to determine 
i

u  for 1,  2, 3,  , i N .  This is done by imposing 

the condition that the error given by (4.3) is orthogonal to each and every basis function 

( )
i

x  in the interval x .  Mathematically, this condition can be written as 

     ERROR 0
i

N

x dx         for 1,  2, 3,  , i N .   (4.4)  

Then from (4.4) we can write 

        
1

0
N

j j i i

j

L u x x dx g x x dx ,   (4.5) 

for 1,  2, 3,  , i N .  Equation (4.5) represents N algebraic equations for N unknowns 

1 2 3,  ,  ,   , 
N

u u u u . Therefore, in principle, one can solve for these unknowns.  To 

illustrate the Galerkin method, let us consider the following example. 

 We want to solve the system given by  

       
2

2

d u
F x

dx
      (4.6) 

where 0 x  and 
0

/ / 0
x x

du dx du dx  are the boundary conditions.  By 

inspection, the following basis functions are suitable for the above problem, since they 

satisfy the prescribed boundary conditions: 

cos ,             1,  2, 3,  , 
n

x nx n N .

In this example, 2 2/L d dx  and 
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2 2

2

2 2
cos cos

n n

d d
L u x u x nx n nx

dx dx
.

Thus

           2

1 1

( )
N N

i i i i

i i

L u x i u x .

The error in satisfying (4.6) is given by 

1

ERROR ( )
N

i iN

i

L u x F x ,

which can also be written as 

      2

1

ERROR
N

i iN

i

i u x F x .    (4.7) 

Imposing the condition that ERROR
N

 is orthogonal to each and every basis function 

for the range 0 x , we obtain 

        2

0 0
1

N

i i j j

i

i u x x dx x F x dx .     (4.8) 

It should be noted that in this example, 

0 0
cos cos  

i j
x x dx ix jx dx  . 

 Furthermore, we know from the orthogonality property of the Fourier function 

that

0
cos cos  

2
ij

ix jx dx ,     (4.9) 

where  is the Kronecker delta function with the values

         
1    if

0    if
ij

i j

i j
.      (4.10) 

With this, (4.8) leads to 

     2

0
,        1,  2, 3,  , 

2
j j

j u x F x dx j N ,

from which we can write 

        
2

0

2
,        =1, 2, 3,  , 

j j
u x F x dx j N

j
,    (4.11) 

If ( )F x  can also be represented using a finite sum of the basis functions cos nx , then the 

solution would be exact.  Furthermore,
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0

n
x F x dx

represents a kind of transform using the basis functions. 

 Let us consider the specific case when ( ) cos cos 2 cos3F x x x x .  Then using 

(4.11) we have 

1 2
0

2
cos cos cos 2 cos3

1
u x x x x dx

2

0

2
cos  1x dx .     (4.12) 

Similarly we get 2 1/ 4u  and 3 1/ 9u .  Furthermore, 

4 5 6  0
N

u u u u .

Thus, 1 1u , 2 1/ 4u  and 3 1/ 9u  are the desired spectral coefficients.  Hence the 

solution of
2

2
cos cos 2 cos3 ,       0

d u
x x x x

dx
,    (4.13) 

where
0

/ / 0
x x

du dx du dx , is given by 

1

1 1
( ) cos cos 2 cos3

4 9

N

i i

i

u u x x x x .   (4.14) 

In this case, we have an exact solution since ( )F x , the forcing function, can be 

represented exactly as the sum of our basis functions. 

 Two of the most useful Galerkin methods are the spectral method and the finite

element method.  In the above example, if we introduce time as one of the independent 

variables, then the ordinary differential equation has to be recast as a partial differential 

equation and the spectral coefficients would depend on time.

4.3   A Meteorological Application 

Suppose we want to represent the observed temperature field at 850 mb around a latitude 

circle using wave-like functions.  We use a sum of sine and cosine functions to do this.  

This gives us the finite discrete Fourier series as 

1

0

1 1

cos sin
n n

i k k

k k

ik ik
T A A B

n n
,     (4.15) 

where n is the total number of wave components used to describe the temperature field.  

The points at which the temperature is known are represented by 

0,  1, 2, 3,  , 2 1i n .

 If T is defined at 100 points, then we will have a total of 50 waves.  The integer k 

is called the zonal wavenumber, which denotes the number of waves along a latitude 
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circle.  Thus 10k  implies a wavelength of 360 /10 36L .  The coefficients 
k

A

and
k

B are obtained using the following formulas, i.e., the discrete Fourier transform:

2 1 2 1

0 0

1 1
cos ,           sin

n n

k i k i

i i

ik ik
A T B T

n n n n
.   (4.16) 

The temperature data are used to obtain 
k

A  and 
k

B .  Furthermore, (4.15) can be used 

along with the above equation in order to reconstruct the original temperature field if we 

know the coefficients. 

 The functions used in most global atmospheric spectral models as the basis 

functions are the spherical harmonics, a combination of sine and cosine functions that 

represent the zonal structure and associated Legendre functions that represent the 

meridional structure.  Moreover, we work with the spherical domain.   This is unlike the 

grid-point finite-difference models, where we generally work with a limited area in the 

Cartesian coordinate system. 

Using the above basis functions, a dependent variable, say ( , )A , can be 

represented as 

        , sin

j mj

m im m

n n

m j n m

A A e P ,    (4.17)  

where m is the zonal wavenumber, n is the two-dimensional (total) wavenumber, j is the 

maximum wavenumber resolved,  is the longitude,  is the latitude, m

n
A  is the spectral 

coefficient, and m

n
P  is an associated Legendre function of the first kind.  A more detailed 

discussion of these functions is presented in Chapter 6. 

4.4  Exercises 

4.1  Consider the heat equation, 
2

2
,         0

u u
k x L

t x
,

with the boundary conditions (0, ) 0u t  and ( , ) 0u L t  and the initial condition 

( ,0) ( )u x f x .  Find the required solution ( , )u x t  of the above problem.  (Hint: Use 

separation of variables). 

4.2. In Exercise 4.1 assume (a) ( ) 12 8cos /f x n x L  and (b) ( ) 8sin /f x x L .

An Introduction to Global Spectral Modeling

Obtain a solution for Exercise 4.1. 



Chapter 5 

Lower-Order Spectral Model 

5.1  Introduction 

This system was first developed by Lorenz (1960b).  It is an elegant system that provides 

an introduction to the concepts of spectral modeling.  It is based on the premise that the 

dynamic equations governing the atmosphere can be simplified to the greatest extent 

possible and still be realistic enough to describe certain desired features.  The extent to 

which we can simplify the equations depends on the particular phenomena we are 

studying.  This simplification can aid in our understanding of a certain phenomena and 

help to form reasonable hypotheses which we can then test through a more advanced 

system of equations.  The system is based on the use of double Fourier series 

representations of the basic equations in a doubly periodic domain.  That is, the equations 

are expanded into a series of eigenfunctions, some of whose coefficients are retained as 

the new dependent variables.  These new dependent variables correspond to features of 

the largest scale.  Here we examine the barotropic vorticity equation.  We start with the 

equation governing the conservation of vorticity of a parcel for two-dimensional, 

homogeneous, incompressible, and inviscid fluid flow on an f-plane given by

    
2 2 2 2, ,       or      J k

t t
    (5.1) 

where  is the streamfunction and J is the Jacobian.  Since we are working on an f-plane,

the  term does not appear in this equation.

 We let be doubly periodic and state the periodicity property by the relation 

2 2
, , , ,x y t x y t

k l
,

where k and l are the wavenumbers and are specified constants.  The area is now finite 

but unbounded.  We seek a solution to (5.1) in a closed horizontal domain.  For this, we 

expand following Lorenz (1960b), that is, 

   

0

2 2 2 2

0

1
cos sin

mn mn

m n n

A mkx nly B mkx nly
m k n l

.        (5.2) 
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This is the double Fourier representation of the function .  The coefficients 
mn

A  and 

mn
B  are functions of time, where m and n are integers representing east-west and north-

south wavenumbers, respectively.  Note that 00 0A .  In addition, the lower limit 0n  of n

is specified as 

0

    if   0

0         if    0

m
n

m
 . 

 The series will now be truncated and we consider only those terms for which m

equals 0 and +1 and n equals -1, 0, and +1; in other words, we include only one wave in 

both directions.  Equation (5.2) for the streamfunction then reduces to

10 01 11

2 2 2 2
cos cos cos

A A A
kx ly kx ly

k l k l

         10 011 1

2 2 2 2
cos sin sin

B BA
kx ly kx ly

k l k l

         11 1 1

2 2 2 2
sin sin

B B
kx ly kx ly

k l k l
,     (5.3) 

which is the time dependent solution for (5.1) for one wave.  The corresponding relative 

vorticity is given by 

2

10 01 11cos cos cosA kx A ly A kx ly

             1, 1 10cos sinA kx ly B kx

             01 11 1, 1sin sin sinB ly B kx ly B kx ly .    (5.4) 

Substituting the Fourier expansion of and 2 into (5.1) and taking the Fourier 

transform of both sides of the resulting equation, we get the prediction equations for the 

amplitude of the different wave components.  In all, we have eight equations providing 

time tendencies for each of the eight amplitudes. 

5.2   Maximum Simplification 

After substituting for and 2  from (5.3) and (5.4) into (5.1) and equating the 

coefficients of the various Fourier functions on both sides of the resulting equation, we 

get a set of differential equations for the coefficients 10A , 01A , 11A , 1 1A , 10B , 01B , 11B ,

and 1 1B .  Following Lorenz (1960b), we assume: (a) If 10B , 01B , 11B , and 1 1B , vanish 

initially, then they will remain zero for all time since their tendencies are always equal to 

zero, that is, 

10 01 11 1 1 0
dB dB dB dB

dt dt dt dt
.

We thus obtain 10 01 11 1 1 0B B B B .  (b) If 1 1 11A A  initially, then 1 1A  will 

remain equal to 11A  for all time.  Furthermore, let 01A A , 10A F , and 11A G .

With this, (5.3) reduces to 
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2 2 2 2

cos cos 2 sin sin
A F G

ly kx kx ly
l k k l

.    (5.5) 

A, F, and G are functions of time.  The term 2( / ) cosA l ly  describes the basic zonal 

current, that is, it has no x dependence.  The term 
2 2 2( / ) cos [2 /( )]sin sinF k kx G k l kx ly  describes the eddies.  The corresponding 

relative vorticity is given by 

2 cos cos 2 sin sinA ly F kx G kx ly .   (5.6) 

Next we obtain an expression for 

       
2 2

2,J
x y y x

.   (5.7) 

Now,

      
2 2

2
sin cos sin

F Gk
kx kx ly

x k k l
,    (5.8) 

      
2 2

2
sin sin cos

A Gl
ly kx ly

y l k l
,    (5.9) 

      2 sin 2 cos sinFk kx Gk kx ly
x

,    (5.10) 

      2 sin 2 sin cosAl ly Gl kx ly
y

.    (5.11) 

Hence

           2

2 2

2
, sin sin cos

F Gk
J kx ly kx

k k l

           sin 2 sin cosAl ly Gl kx ly

           
2 2

2
sin cos sin

A Gl
ly ly kx

l k l

            sin 2 cos sinFk kx G kx ly .

After simplifying, we obtain 

2

2 2

1 1
, sin sinJ AFkl kx ly

l k

                     2

2 2 2

1 1
2 sin cosFGkl kx ly

k k l

          2

2 2 2

1 1
2 sin cosAGkl ly kx

l k l
.   (5.12) 

Differentiating (5.6) with respect to t, we get 

        2 cos cos 2 sin sin
dA dF dG

ly kx kx ly
t dt dt dt

.    (5.13) 

From the barotropic vorticity equation (5.1) along with (5.12) and (5.13), we get 
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cos cos 2 sin sin
dA dF dG

ly kx kx ly
dt dt dt

2 2

1 1
sin sinAFkl kx ly

l k

       2

2 2 2

1 1
2 sin cosFGkl kx ly

k k l

       2

2 2 2

1 1
2 sin cosAGkl ly kx

l k l
.    (5.14) 

 If we multiply (5.14) by cos ly  and integrate both sides over the entire doubly 

periodic fundamental domain, then using the orthogonality properties of the Fourier 

functions we obtain

2 2
2

2 2 2
0 0

1 1
cos   2

dA
ly dx dy klFG

dt k k l

             
2 2

2 2

0 0
sin cos   kx ly dx dy .    (5.15) 

Integrating, we obtain 

           2 2

2 2 2

1 1
2 2

dA
klFG

dt k k l
,   

or

       
2 2 2

1 1dA
klFG

dt k k l
.    (5.16) 

Similarly, if we multiply (5.14) by cos kx  and sin sinkx ly  and integrate over the domain, 

we get

       
2 2 2

1 1dF
klAG

dt l k l
,     (5.17) 

       
2 2

1 1 1

2

dG
klAF

dt l k
.    (5.18)

 Equations (5.16), (5.17), and (5.18) are a system of three coupled nonlinear first-

order ordinary differential equations that constitute the barotropic vorticity equation in 

the three unknowns A, F, and G.  If their initial values are known, then their future values 

can be obtained using numerical integration.  The above system has exact solutions 

which can be expressed by elliptic functions (or circular functions) in time. 

5.3   Conservation of Mean-Square Vorticity and Mean Kinetic Energy 

In this section we will attempt to answer the following question:  Does this simplified 

system conserve mean-square vorticity and mean kinetic energy?  Consider the 

expression for the total-square vorticity, which is written as
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2 2 2

2

0 0
dx dy .

On substituting the Fourier expansion for 2 , we obtain 

2 2 2 22 22

0 0 0 0
 cos cos 2 sin sin  dx dy A ly F kx G kx ly dx dy .

This can be written as

2 2 2 22
2 2 2 2 2

0 0 0 0
 cos cosdx dy A ly F kx

                        2 2 24 sin sin 2 cos cosG kx ly AF ly kx

                4 sin sin cosAG kx ly ly

                4 sin sin cos  FG kx ly kx dx dy .   (5.19) 

The integrals involving terms AF, AG, and FG turn out to be zero using the 

orthogonality rules, and we are left with 

2 2 2 22
2 2 2 2 2

0 0 0 0
 cos cosdx dy A ly F kx

                 2 2 24 sin sin  G kx ly dx dy .    (5.20) 

This gives 
2 2 2

2 2 2 2 2 2 2

0 0
 2 2 4dx dy A F G

.   

 

                        2 2 2 22 2A F G    (5.21) 

Thus the total-square vorticity over the domain is

         
2 2 2

2 2 2 2 2

0 0
 2 2dx dy A F G .     (5.22) 

Because the domain area is given by 
2 2 2

0 0
4dx dy , the mean-square vorticity is

            
2

2 2 2 21
2

2
A F G .    (5.23) 

 Next we show that the mean-square vorticity of this system is conserved.  From 

(5.23), using the relation 21

2

d dA
A A

dt dt
 the time rate of change of mean-square 

vorticity 2 2( )  is given by 

.
2

2 2 2 21
( 2 ) 2

2

d d dA dF dG
A F G A F G

dt dt dt dt dt
. (5.24) 

Substituting for /dA dt , /dF dt , and /dG dt  from (5.16), (5.17), and (5.18), we get

2
2

2 2 2 2 2 2

1 1 1 1d
AFG kl kl

dt k k l l k l
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2 2

1 1
0kl

l k
.       (5.25) 

Thus, the mean-square vorticity of this three-component low-order system is conserved. 

 We next show that the mean kinetic energy is also conserved by the low-order 

system.  Following a similar procedure, 

        

22
2 2

0 0

1
Total K.E.   

2
dx dy

x y

         

2
2 2

2 2
0 0

1 2
sin cos sin

2

F Gk
kx kx ly

k k l

                

2

2 2

2
sin sin cos   

A Gl
ly kx ly dx dy

l k l

           
2 2 22 2

2 2 2

2 2 2 2
0 0

1 4
sin cos sin

2 ( )

F k G
kx kx ly

k k l

      
2 2

4
sin sin cos

FG
kx ly kx

k l
    (5.26) 

2 2 2
2 2 2

2 2 2 2

4
sin cos sin

( )

A l G
ly ly kx

l k l

      
2 2

4
sin sin cos   

AG
kx ly ly dx dy

k l

2 2 2 2 2 2
2 2 2 2

2 2 2 2 2 2 2 2

1 4 4
2 2

2 ( ) ( )

F k G A l G

k k l l k l
.

Hence

              
2 2 2

2

2 2 2 2

2
Total K.E.

F A G

k l k l
.     (5.27) 

Note that the domain area equals 24 .  Thus the mean kinetic energy is given by  

             
2 2 2

2 2 2 2

1 2
K.E.

4

F A G

k l k l
 .    (5.28) 

Now we show that /  K.E. 0d dt ,

2 2 2

2 2 2 2

1 2
K.E.

4

d d F A G

dt dt k l k l

      
2 2 2 2

1 2

2

A dA F dF G dG

l dt k dt k l dt
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2 2 2 2 2 2 2 2

1 1 1 1 1 1 1

2 l k k l k l k l

            
2 2 2 2

1 1 1
AFGkl

k l l k
    

2 2 2 2 2 2 2 2

1 1 1 1

2 ( ) ( )l k l k l k k l

       
2 2 2 2 2 2 2 2

1 1 1

( ) ( )
AFGkl

k l l k l k k l
   

0 .       (5.29) 

Thus /  K.E. 0d dt .  Hence the mean kinetic energy is conserved with time. 

5.4 Energy Transformations 

In the previous section, we saw that the mean kinetic energy of the low-order system is 

conserved with time.  However, the zonal kinetic energy and the eddy kinetic energy 

individually are not conserved, as we show below.  Thus, continuous exchanges of 

kinetic energy take place between the zonal flow and the eddies.  At times, the zonal may 

gain kinetic energy at the expense of the eddies while at other times the eddies may gain 

kinetic energy at the expense of the zonal flow.  This occurs in such a way that the total 

kinetic energy is invariant. 

 In our low-order system, the zonal flow is represented by 

Z 2
cos

A
ly

l
,     (5.30) 

while the eddy flow is given by 

        E 2 2 2

2
cos sin sin

F G
kx kx ly

k k l
.     (5.31) 

The mean zonal and mean eddy kinetic energies therefore are given by 

22 2 2 22 2

Z Z2 2 2
0 0 0 0

1 1 1 1
K  sin   

4 2 4 2

A
dx dy ly dx dy

l
2

2

1

4

A

l
,        (5.32) 

       
2 2 2

E E2
0 0

1 1
K

4 2
dx dy

            

2
2 2

2 2 2
0 0

1 1 2
sin cos sin

4 2

F Gk
kx kx ly

k k l

     

2

2 2

2
sin cos  

Gl
kx ly dx dy

k l
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2 2 22 2

2 2 2

22 2
2 20 0

1 1 4
sin cos sin

4 2

F G k
kx kx ly

k k l

     
2 2

2 2

2 2 2 2 2

4 4
sin cos sin cos sin  

( )

G l GF
kx ly kx kx ly dx dy

k l k l

2 2

2 2 2

1 2

4

F G

k k l
.        (5.33) 

Thus we have 
2

Z

2 2

K 1

2 2

d d A A dA

dt dt l l dt
.    (5.34) 

This, after substituting the value of /dA dt  from (5.16), gives 

Z

2 2 2 2 2 2 2

K 1 1 1 1

2 2

d kl k
AFG AFG

dt l k k l l k k l
.  (5.35) 

Similarly,

E

2 2 2

dK 1 1

dt 2

dF dG
F G

k dt k l dt

                    
2 2 2 2 2 2 2 2

1 1 1 1 1 1

2

AFGkl

k l k l k l l k

                      
2 2 2

1 1

2

AFGk

l k k l
.      (5.36) 

We denote ZK / t  as E ZK , K , which is the change in ZK  due to energy transfer 

from the eddy to the zonal flow.  Also, Z EK , K  denotes EK / t  and represents the 

change in EK  due to transfer from the zonal to the eddy flow.  Note that E ZK , K  and 

Z EK , K  are equal in magnitude but opposite in sign.  Thus in this low-order system, 

the gain of kinetic energy by the zonal flow is equal to the loss of kinetic energy by the 

eddy flow or vice versa, so that the total kinetic energy is invariant with time.  Such 

barotropic energy exchange is an important property of a nondivergent flow. 

5.5  Mapping the Solution 

In the expression for the streamfunction of a low-order system, that is, 

2 2 2 2
cos cos 2 sin sin

A F G
ly kx kx ly

l k k l
,   (5.37) 

the latitudes /(2 ),  3 /(2 ),  5 /(2 ),  l l l  correspond to the zonal wind maxima and are 

fixed.  However, the intensity of the zonal flow given by /A l  may vary.  Thus the 

variable A denotes the zonal index.  The last two terms represent disturbances 

superimposed on the zonal flow.  Both of these combined describe a wave of a single 
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wavenumber, but with a variable shape and phase.  This simple model simulates the 

interaction of the zonal flow with the superimposed disturbance. 

 This problem is easy to solve on any simple calculator or a personal computer.  

The student is strongly advised to try this as an exercise.  The initial values of A, F, G and 

the wavenumbers k and l need to be assigned.  For numerical integration in time, one 

forward time step may be followed by centered time steps.  For that purpose, one uses 

(5.16), (5.17), and (5.18).  At the end of each day of integration, the predicted values of 

A, F and G can be substituted in (5.37) to map the forecast. 

5.6   An Example of Chaos 

In order to illustrate the sensitivity of the low-order model to small changes of 

parameters, we examine the following sixth-order system:

2
2

2 2

1 3
(1 ) 0

1 2 1
A A D BC ,   (5.38) 

3
0

4
B B AC ,      (5.39) 

3
2

2 2

1
(4 ) 0

4 2 4
C C F AB ,   (5.40) 

2 1
(1 ) 0

2
D D R A AE BF ,    (5.41) 

1
4 0

2
E E AD ,      (5.42) 

2 1
(4 ) 0

2
F F R C BD .    (5.43) 

This is a coupled nonlinear system of six equations for the six dependent variables A, B, 

C, D, E, and F.  The independent variable here is time.  Furthermore, an overdot (
.
)

represents a derivative with respect to time,  is the wavenumber, and R is the Rayleigh 

number, which is expressed as 3 /( )R g Td .  Here g is the acceleration due to 

gravity,  is the thermal expansion coefficient,  is the thermal diffusivity,  is the 

kinematic viscosity, T  is the temperature excess of the bottom boundary over the top 

boundary, and d is the distance between these two boundaries. 

 This problem is solved numerically (see Fig. 5.1) in the same manner as the 

simple three-component system illustrated above.  In fact, with 0B C F , this six-

component system reduces to a three-component Lorenz system.  A time-differencing 

scheme is needed to solve this coupled system numerically.  In the coding of this 

problem, we have used an Adams-Bashforth time-differencing scheme, which was 

described in Chapter 3. 

 The sensitivity of the solution to small changes in the Rayleigh number R is 

illustrated in Fig. 5.1.  Here we show a periodic solution for R = 50.2299 and a chaotic 

solution for R = 50.2300.  The abscissa denotes the value of the coefficient B, and the 

ordinate denotes the value of coefficient C.  The time evolution of the solution for R =
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Figure 5.1.  Periodic and chaotic solutions of a six-component system. 

50.2299 repeats itself, whereas for R = 50.2300 the solution is chaotic.  It should be noted 

that the same sort of multidimensional behavior (periodic or chaotic) is found for other 

pairs of variable choices as well.  Hence, we see that there are huge initial uncertainties in 

non-linear systems. 

5.7.   Exercises 

5.1. In the equations 

2 2 2

1 1dA
klFG

dt k k l
,

2 2 2

1 1dF
klAG

dt l k l
,

2 2

1 1 1

2

dG
klAF

dt l k
,

set 2 / 5000l  and 2 / 2500k , so that / 2k l .  For initial conditions, let 

(0) 0.06A  units, (0) 0.12F  units, and (0) 0G .  Obtain the future values of 

( )A t , ( )F t , and ( )G t  using 6t  hours. 
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5.2. For ( )A t , ( )F t , and ( )G t  in Exercise 5.1, map the resulting streamfunction at time 

0t  and time 24t  hours.



Chapter 6 

Mathematical Aspects of Spectral Models 

6.1  Introduction 

In this chapter we provide an introduction to the topic of spherical harmonics as basis 

functions for a global spectral model.  The spherical harmonics are made up of 

trigonometric functions along the zonal direction and associated Legendre functions in 

the meridional direction.  A number of properties of these functions need to be 

understood for the formulation of a spectral model.  This chapter describes some useful 

properties that will be used to illustrate the procedure for the representation of data sets 

over a sphere with spherical harmonics as basis functions.  The calculations of Fourier 

and Legendre transforms and their inverse transforms are an important part of global 

spectral modeling, and these are covered in some detail in this chapter.  Finally, this 

chapter addresses the formulation of two simple spectral models.  One of these is a 

single-level barotropic model, and the other is a shallow-water model.

 Consider the equation 

2
2

2 2

1 u
u

c t
,

which is satisfied by the velocity potential of a compressible fluid.  Here u represents the 

velocity potential and c is the speed of gravity waves in the fluid.  If the fluid is in a 

steady state, this equation reduces to Laplace’s equation, which is

       
2 2 2

2

2 2 2
0

u u u
u

x y z
.     (6.1) 

A similar equation describes the steady-state diffusive process or the heat conduction 

process in a medium.  Laplace’s equation and its solutions, which are harmonic functions, 

are of fundamental importance in the study of fluid dynamics.  The solutions of Laplace’s 

equation in a spherical coordinate system are the spherical harmonics, and are obtained 

by the method of separation of variables.  That is, the solutions can be broken up into 

factors, each factor being the function of a single coordinate. 

 The transformation between Cartesian and spherical coordinates is given by 

        cos  sin ,       sin  cos ,       cosx r y r z r ,    (6.2) 
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where r is the radius,  is longitude, and  is co-latitude.  Substituting x, y, and z from 

(6.2) into (6.1), we obtain Laplace’s equation on a sphere: 

2 2 2
2

2 2 2 2 2 2 2

2 1 cot 1
0

sin

u u u u u
u

r r r r r r
,   (6.3)   

or

     
2

2

2 2 2

1 1 1
sin 0

sin sin

u u u
r

r r r
.

 In the case of atmospheric models, latitude is usually used instead of co-latitude 

as one of the coordinates.  Hereafter,  denotes the latitude.  Laplace’s equation (6.3) in 

the (r, , ) coordinate system (where  is latitude and remembering sin(colat) = cos(lat)) 

then takes the form 

      
2

2

2 2 2

1 1 1
cos 0

cos cos

u u u
r

r r r
,

or

      
2

2

2 2

1 1
cos 0

cos cos

u u u
r

r r
.    (6.4) 

We use the method of separation of variables to solve (6.4).  For this, assume a solution 

of the form 

          ( ) ( ) ( )u R r L P     (6.5) 

where R is a function of r, L is a function of , and P is a function of .  Substituting (6.5) 

into (6.4) we obtain 

2
2

2 2
cos 0

cos cos

d dR RL d dP RP d L
LP r

dr dr d d d
,

or, on dividing by RLP, we get 

2
2

2 2

1 1 1
cos

cos cos

d dP d L d dR
r

P d d L d R dr dr
.    (6.6) 

The left-hand side of (6.6) is a function of  and , while the right-hand side is a function 

of r only.  Therefore, both sides should be equal to a constant, say k.

 If we now consider the right-hand side of (6.6), we obtain 

    
21 d dR

r k
R dr dr

,

    
21

0
d dR

k r
R dr dr

,

2 0
d dR

r kR
dr dr

.      (6.7) 
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Let the solution of (6.7) be of the form R = r
n
, where n is an integer.  If n is positive, then 

on substitution of R = r
n
 into (6.7) we obtain 

2 0
n

nd dr
r r k

dr dr
,

2 1 0n nd
r nr r k

dr
,

1 0n nd
n r r k

dr
,

( 1) 0n n
n n r r k ,

      ( 1) 0n n k R , or 

     ( 1)k n n .

We see that the value of k is not altered if we replace n by 1n .  Therefore 1n
r  is also 

a solution of (6.7), for which ( 1)k n n .  Thus k is of the form ( 1)n n , n being a 

positive integer including zero. Equation (6.6) thus reduces to 

2

2 2

1 1
cos ( 1)

cos cos

d dP d L
n n

P d d L d
,

or multiplying by 2cos  and rearranging we obtain 

2
2

2

cos 1
cos ( 1)cos

d dP d L
n n

P d d L d
.   (6.8)   

Since the left-hand side of (6.8) is a function of  and the right-hand side is a 

function of , both sides must be equal to a constant, say m
2
.  Considering the right-hand 

side of (6.8) gives 

2
2

2

1 d L
m

L d
,

      
2

2

2
0

d L
m L

d
,      (6.9) 

which has a solution of the form 

           ,  0,  1,  2, 3,im
L e m

Hence after multiplying (6.8) by 2cosP  and remembering both sides of the equation 

are equal to m
2
 the equation reduces to

2

2

1
cos ( 1)

cos cos

d dP m P
n n P

d d
,

       
2

2

1
cos 1 0

cos cos

d dP m
n n P

d d
.    (6.10)  
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If  = sin  and 
sin

cos
d d d d d d

d d d d d d
, then (6.10) can be written as 

           
2

2

2
1 1 0

1

d dP m
n n P

d d
,    (6.11) 

remembering 2 21 sin cos .  Since varies from - /2 to /2,  varies from -1 to 1.  

Equations (6.10) and (6.11) are both known as associated Legendre equations, as they 

apply to all wavenumbers, m.

6.2  Legendre Equation and Associated Legendre Equation 

If m = 0 in equation (6.11), we obtain 

21 ( 1) 0
d dP

n n P
d d

,    (6.12) 

which is called the Legendre equation. We next discuss the solutions of the Legendre 

equation and the associated Legendre equation.  Furthermore, we discuss the properties 

of their solutions without rigorous mathematical proofs.

 Solutions of the Legendre equation are known as Legendre polynomials and are 

denoted by ( )
n

P .  For a given n, ( )
n

P  is a polynomial of degree n and is given by 

2

0

2 2 !
( ) 1

2 ! ! - 2 !  

M
r n r

n n

r

n r
P

r n r n r
,   (6.13)  

where / 2M n if n is even and ( 1) / 2M n  if n is odd. 

 A more convenient form of ( )
n

P  is given by Rodrigues’ formula, namely

        21
( ) 1 ,  0,  1, 2, 3, , 1

2 !

n
n

n n n

d
P n

n d
.  (6.14) 

In particular, 

0 ( ) 1P ,

2

1

1
( ) 1

2

d
P

d
,

2
2

2 2

2 2

1 1
( ) 1 3 1

8 2

d
P

d
,

3
3

2 2

3 3

1 1
( ) 1 5 3

48 2

d
P

d
,

4
4

2 4 2

4 4

1 1
( ) 1 35 30 3

384 8

d
P

d
,

5
5

2 5 3

5 5

1 1
( ) 1 63 70 15

3840 8

d
P

d
.
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Figure 6.1. Representation of Legendre polynomials 0 ( )P  to 5 ( )P .  The number of 

zero crossings is the same as the degree of the polynomial, n.  If n is even, ( )
n

P  is 

symmetric about the equator.  If n is odd, ( )
n

P  is antisymmetric about the equator. 

Figure 6.1 shows the graphs of 0 ( )P  to 5 ( )P  for -1  1. 

 Three useful properties of ( )
n

P  are as follows:  (1) ( 1) 1
n

P .  (2) If n is 

even, ( )
n

P  has only even powers of  and is symmetric with respect to the equator (  = 

0).  (3) If n is odd, ( )
n

P  has only odd powers of  and is antisymmetric with respect to 

the equator.  In other words, for odd n, the graph on the negative side of the -axis is a 

mirror image of the graph on the positive side of the -axis, as shown in Fig. 6.1. 

 We now consider the associated Legendre equation (6.11).  Solutions of this 

equation involve two parameters, m and n, and are denoted by m

n
P . m

n
P  are 

called associated Legendre functions of the first kind of order m and degree n.  Here m is 

any integer and n is a non-negative integer such that n m .

 One can obtain m

n
P  by using Rodrigues’ formula, 

2 / 2
2(1 )

1
2 !

m n m
n

m

n n n m

d
P

n d
, | |  1.    (6.15) 

In particular, for n = 5, 

0 5 3

5

1
63 70 15

8
P ,

1 2
1 2 4 2

5

15
1 21 14 1

8
P ,

2 2 3

5

105
1 3

2
P ,
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Figure 6.2.  Representation of associated Legendre functions 0

5P  to 5

5P .  Each 

m

n
P  is normalized by multiplying by !/ !n m n m .  If n m  is even, m

n
P  is 

symmetric about the equator and is antisymmetric if n m  is odd.  

3 2
3 2 2

5

105
1 9 1

2
P ,

2
4 2

5 945 1P ,

5 2
5 2

5 945 1P .

Figure 6.2 shows the graphical representation of the above associated Legendre 

functions.

 Since m

n
P  is a polynomial of degree n, it has n roots given by the equation 

0m

n
P .  It is clear from (6.15) that m of these roots are at the poles (  = 1), while 

n m  roots are between the poles.  The n m  roots between the poles are called the 

zeroes of the associated Legendre function
m

n
P .  If n m  is even, then m

n
P  is 

symmetric with respect to the equator.  If n m  is odd, then m

n
P  is antisymmetric 

with respect to the equator.  Three useful properties of m

n
P  are as follows: 

0m

n
P   if n m ,

( )!
1

( )!

mm m

n n

n m
P P

n m
,

1
n mm m

n n
P P .
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6.3 Laplace’s Equation 

So far we have been working with only one independent variable.  We next consider two 

independent variables.  Laplace’s equation can be written as

2
2

2 2

1
(1 ) ( 1) 0

1

d dY Y
n n Y

d d
,    (6.16) 

where  is longitude,  = sin , with   being latitude. 

 Equation (6.16) is of the form 2 ( 1) 0Y n n Y , where 
2
 is the two-

dimensional Laplacian on a sphere.  Let the solution of (6.16) be of the form 

( , )Y P L .  Substituting this into (6.16), we obtain 

              
2

2 2
( 1) 0

1

P L
L n n PL ,     (6.17) 

After dividing by PL and multiplying by 21 , (6.17) may be written as 

      
2 2

2 2

2

1 1
(1 ) 1 1

d dP d L
n n

P d d L d
.     (6.18) 

 The left-hand side of the above equation is a function of , while the right-hand 

side is a function of .  This implies that both sides must be equal to some constant.  Let 

this constant be m
2
, so that from the right-hand side of (6.18) we obtain 

2
2

2

1 d L
m

L d
,

2
2

2

d
Lm

d

    
2

2

2
0

d L
m L

d
.      (6.19) 

The solution of (6.19) is given by im
L e .  Furthermore, from the left-hand side of 

(6.18) we obtain 

2
2 2 21

(1 ) 1 1
d dP

n n m
P d d

,

or upon multiplication by 21P

      
2

2

2
(1 ) ( 1) 0

1

d dP m
n n P

d d
,   (6.20) 

which is an associated Legendre equation.  As mentioned in Section 6.2, this has a 

solution of the form m

n
P .
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 Thus given the solution of equation (6.16), ( , )Y P L , we found that 

im
L e  using equation (6.19) and that P  has the form m

n
P  using equation 

(6.20).  Hence, the solution of Laplace’s equation on a sphere is of the form 

,m m im

n n
Y P e . ,m

n
Y  is a spherical harmonic of order m and degree n.  The 

factor e
im

describes the east-west variation, and the factor m

n
P  describes the north-

south variation of the spherical harmonic wave ,m

n
Y .  Some useful mathematical 

properties of ,m

n
Y  are 

, 0m

n
Y          for n m ,

* ,m m im

n n
Y P e ,

( )!
, 1

( )!

mm m im m im

n n n

n m
Y P e P e

n m
,

2

2

( 1)m m

n n

n n
Y Y

a
,

where * ,m

n
Y  is the complex conjugate of ,m

n
Y  and 

2
2

2 2

1 1
cos

cos cosa
,

and a is the radius of the sphere. 

6.4   Orthogonality Properties 

The spectral equations that we work with contain a system of nonlinear differential 

equations that are functions of time only.  In order to derive such a set of equations, one 

needs to remove the spatial dependence.  Spherical harmonics (containing trigonometric 

functions in the zonal direction and associated Legendre functions in the meridional 

direction) describe this spatial dependence.  These are removed by invoking 

orthogonality properties of the trigonometric and Legendre functions using what are 

called Fourier and Legendre transforms.  In this section, we provide a theoretical 

background for the desired orthogonality properties.

 Legendre polynomials satisfy the orthogonality condition 

1

1

0

2

2 1

m n

if m n

P P d
if m n

n

.      (6.21) 

To prove this, we first evaluate the integral

1

1
,           m

n
P d m n .      (6.22) 

Using Rodrigues’ formula and integrating the above equation by parts m times, we have 

Mathematical Aspects of Spectral Models 



84

21 1

1 1

1 ( 1)

2 !

n n

m m

n n n

d
P d d

n d

     

1
1 2 1 21

1

1 1
1

1

1 ( 1) ( 1)

2 ! 2 !

n n n n

m m

n n n n

d m d
d

n d n d

     
1

2

1
1 1

2 !

n
m

n

m
d

n
      if m = n,

     0         if m n .        (6.23) 

Hence
1

2
1

1

1

1
( ) ( 1)       if

2

0       if

n n

m n

n

d m n
P d

m n

.    (6.24) 

 Let us next evaluate 
1 2

1
1 1

nn

d .  Writing sin  and after 

integrating by parts, we obtain 

1 / 2
2 2 1

1 / 2
1 1 cos

nn n
d d

              
/ 2/ 2

2 2 1 2

/ 2 / 2
cos sin 2 cos sinn n

n d

                
/ 2

2 1 2

/ 2
2 cos 1 cosn

n d d ,

or
/ 2 / 2

2 1 2 1

/ 2 / 2

2
cos cos

2 1

n nn
d d

n
    (6.25) 

       
2 2/ 2

/ 2

2 2 2 2 2(2 ) ( !)
... cos

2 1 2 1 3 (2 1)!

n
n n n

d
n n n

.

Thus
1 2

1

1

2 ( !)
      if

(2 1)!

0       if

n

m

n

n
m n

P d n

m n

.     (6.26) 

 Now we prove the orthogonality condition given by (6.21).  For this, without loss 

of generality, assume that m n in (6.21).  Writing 
m

P  in polynomial form using 

Rodrigues’ formula, we have 

1 1

1 1

(2 )!

2 ! !

m

m n m

m
P P d

m m
    (6.27) 

2(2 2)!

2 1!( 1)!( 2)!

m

nm

m
P d

m m
.
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From (6.26), if m n (i.e., m < n), then each term in the brackets, when multiplied by 

n
P  and integrated over the interval -1 to 1, has a value of zero.  If m = n, then only 

the term with the highest degree n contributes toward the integral, so that 

1 12

2
1 1

(2 )!

2 ( !)

n

n nn

n
P d P d

n

                          
1 2

2

(2 )! 2 ( !) 2

2 ( !) (2 1)! 2 1

n

n

n n

n n n
.      (6.28) 

This proves the orthogonality conditions given by (6.21). 

 For associated Legendre functions, a similar orthogonality condition is

1 2

1 2

1 2

1
1 2

1
1 2

1 2

          if  and( )! 2

      if( )! 2 1

       if and/or
0

if

m m

n n

m m mn m

n n nn m n
P P d

m m

n n

.

To prove this, first let m1 m2 and/or n1 n2 and write the associated Legendre equation 

with indices m1, n1 and m2, n2 as 

1 1

1 1

2
'

'21
1 1 2
( 1) 1

1

m m

n n

m
n n P P      (6.29) 

and

'
2 2

2 1

2 '
22

2 2 2
( 1) 1

1

m m

n n

m
n n P P ,   (6.30) 

where the prime denotes a derivative with respect to .

 Multiplying the first equation by 2

2

m

n
P , the second by 1

1

m

n
P , and subtracting the 

second from the first, we obtain 

1 2

1 2

2 2

1 2
1 1 2 2 2
( 1) ( 1)

1

m m

n n

m m
n n n n P P      (6.31) 

1 2 2 1

1 2 2 1

' '
' '2 2(1 ) 1m m m m

n n n n
P P P P

21 2 1

1 2 2 1

' ''2 2 '(1 ) 1
mm m m

n n n n
P P P P .

Because the right-hand side of (6.31) vanishes on integrating between the limits -1 and 1, 

we have 

1 2

1 2

2 21
1 2

1 1 2 2 2
1

( 1) ( 1) 0
1

m m

n n

m m
n n n n P P d .     (6.32) 

As m1 m2 and/or n1 n2, the term within brackets does not vanish.  Therefore, the 

integral will vanish only if 1 2

1 2

1

1
0m m

n n
P P d  for m1 m2 and/or n1 n2.
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 We next consider the case when m1 = m2 = m and n1 = n2 = n.  Then using

( )!
1

( )!

mm m

n n

n m
P P

n m
,

we have 

1 12

1 1

m m m

n n n
P d P P d

1

1

( )!
1

( )!

m m m

n n

n m
P P d

n m

2 21

2 2
1

( )! 1 ( 1) ( 1)
1

( )! (2 ) ( !)

n m n n m n
m

n n m n m

n m d d
d

n m n d d
.   (6.33) 

Let

2 2

( )! 1
1

( )! (2 ) ( !)

m

mn n

n m
K

n m n
,

and integrating by parts we obtain 
1

2 1 21 2

1
1

1

( 1) ( 1)n m n n m n

m

n mn n m n m

d d
P d K

d d
   

           
1 2 1 21

1 1
1

( 1) ( 1)n m n n m n

n m n m

d d
d

d d
.

Then we can write 
1 2 1 21 12

1 1
1 1

( 1) ( 1)n m n n m n

m

n mn n m n m

d d
P d K d

d d
.

Continuing the process m times, we obtain 

2 21 12

1 1

( 1) ( 1)
1

n n n n
mm

n mn n n

d d
P d K d

d d

         

2
21

1

( )! 1 ( 1)

( )! 2 !

n n

n n

n m d
d

n m n d
    (6.34) 

            
1 2

1

( )! ( )! 2

( )! ( )! 2 1
n

n m n m
P d

n m n m n
.

 In practice, for spectral modeling it is more convenient to use normalized 

Legendre polynomials and associated Legendre functions.  We may normalize a 

Legendre polynomial 
n

P  by multiplying it by 
1 2

2 1 / 2n .  Denoting a normalized 

polynomial by 
n

P , we then write the orthogonality relation as

1

1

0 if
( ) ( )

1 if
m n

m n
P P

m n
.   (6.35) 

Likewise, a normalized associated Legendre function m

n
P  is given by 
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1/ 2 1/ 2
( )! (2 1)

( ) ( )
( )! 2

m m

n n

n m n
P P

n m
,

and the corresponding orthogonality relation becomes 

1 2

1 2

1
1 2 1 2

1
1 2 1 2

0 if and/or  
( ) ( )

1 if and

m m

n n

m m n n
P P d

m m m n n n
.  (6.36) 

Note that with this normalization, 1
mm m

n n
P P .

 Throughout the remainder of the book, we deal with normalized Legendre 

polynomials and normalized associated Legendre functions.  We will, however, drop the 

tilde ( ) so that from now on ( )
n

P  and ( )m

n
P  represent normalized Legendre 

polynomial and normalized associated Legendre function, respectively, unless otherwise 

stated.

6.5   Recurrence Relations 

Taking a derivative in the east-west direction of a spherical harmonic given by 
m m im

n n
Y P e  we obtain 

m m im

n n
Y P e

m m im

n n
Y imP e .

However, taking a derivative in the north-south direction of the same harmonic is more 

complicated.  For this we need recurrence relations.  There are a number of relations 

relating the associated Legendre functions of different orders and degrees as well as their 

derivatives.  These are useful for calculating associated Legendre functions and their 

derivatives needed for spectral modeling.  For our purpose, the following four recurrence 

relations for the normalized associated Legendre functions are most useful: 

(1) 1 1 1( ) ( )m m m m m

n n n n n
P P P ,   or

       1 1 1sin (sin ) (sin ) (sin )m m m m m

n n n n n
P P P ,    (6.37) 

where
1/ 2

2 2

24 1

m

n

n m

n
 . 

(2) 2

1 1 11 / ( 1)m m m m m

n n n n n
dP d n P n P , or

1 1 1

(sin )
cos sin ( 1) sin

m

m m m mn

n n n n

dP
n P n P

d
.  (6.38) 

Eliminating 1

m

n
P  between (6.37) and (6.38), we obtain the following relations: 
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(3) 2

11 / 2 1m m m m

n n n n
dP d n P n P , or

1

(sin )
cos (2 1) sin sin sin

m

m m mn

n n n

dP
n P n P

d
.  (6.39) 

(4)
1 2

2 1 1

1 11 ( ) ( )m m m m m

n n n n n
P g P h P ,  or 

1 1

1 1cos sin (sin ) (sin )m m m m m

n n n n n
P g P h P ,    (6.40) 

where

      

1/ 2

( 1) ( 2)

(2 1) (2 3)

m

n

n m n m
g

n n

and    
1/ 2

( 1) ( )

(2 1) (2 1)

m

n

n m n m
h

n n
.

 Using (6.37) to (6.40), we can calculate m

n
P  and their derivatives for any 

given m and n.  Starting with the value of 0

0P , the recurrence relations (1) and (4) 

given by (6.37) and (6.40) can generate the values of associated Legendre functions of 

any given order m and degree n.  The value of normalized 0

0P  for the global domain 

(  = -1 to  = 1) is 1/(2
1/2

), and for the hemispheric domain (  = -1 to  = 0 or  = 0 to 

= 1) it is 1. 

 With m = 0 and n = 0, recurrence relation (4) becomes 

1 2
0 1 2 0

0 1 01g P P .    (6.41) 

From the above equality, if we know 0

0P , then we can determine 1

1P .  If we know 

1

1P , then the same recurrence relation can be used to obtain 2

2P .  Thus 

proceeding recursively, we can find the value of m

m
P  for any given m.  Likewise if we 

know m

m
P , then recurrence relation (1) determines the value of 1

m

m
P .  From 

m

m
P , and 1

m

m
P , the same relation gives value of 2

m

m
P .  Thus proceeding 

recursively, we can calculate the value of m

n
P  for any given degree n.

 Recurrence relation (2) can be used to calculate the differential of any m

m
P

from the values of 1

m

n
P  and 1

m

n
P .  Recurrence relation (3) serves a similar 

purpose, but we need 1

m

n
P  and m

n
P  to calculate differentials of m

n
P .  To 

calculate the derivative of m

n
P  of the highest degree n using recurrence relation (2), 

we need the value of 1

m

n
P , which is beyond the usual truncation of the series.  

Recurrence relation (3) uses the values of associated Legendre functions within the 

truncation limit only.  For calculation of differentials of m

n
P , it is therefore preferable 

to use recurrence relation (3) rather relation (2). 
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6.6  Gaussian Quadrature 

To obtain the coefficients of the truncated spherical harmonics in the spectral model we 

have to perform a Fourier transform as well as evaluate the Legendre transform.  This 

requires the evaluation of numerical integrals. The Gaussian quadrature is used for the 

Legendre transform of data in the north-south direction.  We show that the Gaussian 

quadrature is an efficient numerical quadrature for this purpose.  Furthermore, we 

describe the procedure to design it. 

 Consider the integral ( )
b

a
f x dx , where ( )f x  is an integrable function on a x

b.  We can write this as 

1

( ) ( )
n

b

i i
a

i

f x dx w f x ,     (6.42) 

where the expression on the right-hand side is the numerical equivalent of the integral on 

the left-hand side.  The expression on the right-hand side is known as a numerical

integral quadrature.  Our aim is to select wi and xi such that the summation on the right-

hand side is exactly equal to the integral on the left-hand side.  If we choose xi equally 

spaced within the interval of integration, then we shall have n values of wi as a function 

of the location of these points. 

 It is possible to make the quadrature 1 ( )n

i i i
w f x  exact for ( )f x  of degree n - 

1 by suitable selection of wi.  However, we show that if we can choose both wi and xi

suitably, it is possible to make the numerical quadrature 1 ( )n

i i i
w f x  exactly equal to the 

integral on the left-hand side for ( )f x  of degree  2n - 1, which is the highest possible 

accuracy attainable from 2n degrees of freedom (n for xi and n for wi).  We call wi the 

Gaussian weights and xi the Gaussian ordinates, and the numerical quadrature is called 

the Gaussian quadrature.

 For convenience, we transform the interval of integration from (a, b) to (-1, 1).  

This can be done by defining a new variable, that is, 

2 ( )x a b
z

b a
;

( )

2

b a z a b
x  ,     

so that 

       
1 1

1 1

( )
( ) ( )

2 2

b

a

b a b a z a b
f x dx f F z dz ,  (6.44) 

where

            
( )

( )
2 2

b a b a z a b
F x f .

For Gaussian quadrature, one needs to find n values of xi and wi such that 
1

11
( ) ( )n

i i i
F x dx w F x , which is exact  for ( )F x  of degree  2n -1. 

Consider first the case when xi is arbitrarily predefined, and also suppose that they 

are equidistant with x1 = -1 and xn = 1.  In addition, F (x1), F(x2),. . ., F(xi), . . ., F(xn)

represent the values of ( )F x  at x1, x2,. . ., xi,. . ., xn, respectively.  Then using Lagrange’s 
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interpolation formula, we can find a unique polynomial 1( )
n

G x  of n-1 degree passing 

through these n values.  This is given by

1

1

( ) ( ) ( )
n

n i i

i

G x L x x F x ,     (6.45) 

where

1 2 1 1

1 2 1 1

( )( )...( )( )...( )
( )

( ) ( )...( )( )...( )

i i n

i

i i i i i i i n

x x x x x x x x x x
L x x

x x x x x x x x x x

.

We can write this as

      ( )
( ) ( )

n

i

i n

i i

x x
L x x

x x x
,     (6.46) 

where

1 2( ) ( )( ) ( )n

i n
x x x x x x x x

and
'

1 2 1 1( ) ( )( ) ( )( ) ( )n

i i i i i i i i i n
x x x x x x x x x x x x .

Because

1     if
( )

0     ifi

x x
iL x x

x x
i

,

1( )
n

G x  has values ( )
i

F x  at xi, i = 1, 2, 3,. . . , n.  Thus 1( )
n

G x  is the desired polynomial 

passing through the given n values.  Integrating (6.45) over the limit (-1, 1), we obtain 

      
1 1

1
1 1 1

( ) ( ) ( )

n

n i i

i

G x dx L x x F x dx .    (6.47) 

Interchanging the order of summation and integration operations on the right-hand side, 

we obtain 

                    
1 1

1
1 1 1 1

( ) ( ) ( ) ( )

n n

n i i i i

i i

G x dx L x x F x dx w F x ,   (6.48)

where

           
1

1
( )

i i
w L x x dx .       (6.49) 

Thus for such values of wi, the summation 1 ( )n

i i i
w F x  is exactly equal to the integral 

1

11
( )

n
G x dx , where 1( )

n
G x  is a curve of degree n -1 passing through the n ordinates 

1 2( ),  ( ), ,  ( )
n

F x F x F x .

 Suppose next that we have ( )F x as an arbitrary polynomial of degree 2n-1 having 

values at each xi, i = 1, 2, . . . , n.  By Lagrange’s interpolation formula, we can again find 

a polynomial 1( )
n

G x  passing through ( )F x  at the given points, so that

1( ) ( )
n i i

G x F x .     (6.50) 

We write this arbitrary polynomial ( )F x  of degree 2n - 1 in the form 
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1 1

1

( ) ( ) ( ) ( )
n

n n i

i

F x G x x x x ,    (6.51) 

where 1( )
n

G x  is a polynomial of degree n -1 passing through the n ordinates ( )
i

F x ,

1( )
n

x  is an arbitrary polynomial of degree n - 1, and 1( )n

i i
x x  is a polynomial of 

degree n.  Then the polynomial on the right-hand side of (6.51) is equal to ( )F x  and is of 

degree 2n - 1. 

 If we integrate (6.51) from (-1, 1), we obtain 

1 1 1

1 1
1 1 1

1

( ) ( ) ( ) ( )
n

n n i

i

F x dx G x dx x x x dx ,

or

     
1 1

1
1 1

1 1

( ) ( ) ( ) ( )
nn

i i n i

i i

F x dx w F x x x x dx .   (6.52) 

If 1 ( )n

i i i
w F x  is to be exactly equal to 

1

1
( )F x dx  for ( )F x  of degree 2n - 1, then the 

second term on the right-hand side of (6.52) must vanish.  This can be achieved by 

suitable positioning of points x1, x2, x3, . . . , xn so that 

           
1

1
1

1

( ) ( ) 0
n

n i

i

x x x dx .     (6.53) 

 Because 1( )
n

x  is an arbitrary polynomial, the integral on the left-hand side of 

(6.53) must vanish for every polynomial 11( ) ( )n

in i
x x x .  This is possible if 

11( ) ( ) 0n

in i
x x x .  Since 1( )

n
x  is an arbitrary polynomial (which may not 

necessarily equal zero), we have 

1

( ) 0
n

i

i

x x .      (6.54) 

Thus xi are the roots of 1( ) 0n

i i
x x .

 We may represent 1( )
n

x  and 1( )n

i i
x x  in terms of Legendre polynomials as

1

1

0

( ) ( )
n

n k k

k

x a P x  and 
01

( ) ( )
n n

i j j

ji

x x b P x .    (6.55) 

Note that because 1( )
n

x  and 1( )n

i i
x x  are polynomials of degree n-1 and n,

respectively, the coefficients of 1n
P  in the summation for 1n

 and for Pn in the 

summation for 1( )n

i i
x x  must not vanish; in other words, 1 0

n
a  and 0

n
b .

Substituting (6.55) into (6.53) and using the orthogonality property of Legendre 

polynomials, we obtain 
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11 1

1
1 1

0 01

( ) ( ) ( ) ( )
n n n

n i k k j j

k ji

x x x dx a P x b P x dx

        
11

2

1
0

( )
n

k k k

k

a b P x dx .       (6.56) 

Since 1( )
n

x  is an arbitrary polynomial, ak for k = 0, 1 , 2, 3, . . . . , n - 1 in general do 

not vanish.  Therefore, the above integral will vanish only if 0
k

b  for k = 0, 1, 2, 3,  . . . 

. , n - 1. 

 Thus the integral (6.53) vanishes for all values of 1( )
n

x  only if

1

( ) ( )
n

i n n

i

x x b P x .     (6.57) 

From (6.54) and (6.57) we note that xi are the roots of ( )
n

P x  (i.e., of the Legendre 

polynomial of degree n).  Also, 

         
'

1

( ) ( ) ( ) ' ( )

i
i

n

n

i i n n n n i

x xi x x

d d
x x x b P x b P x

dx dx
.  (6.58) 

The weights wi in (6.49) may now be expressed as 

1 1

'
1 1

( )
( )

( ) ( )

n

i

i i n

i i

x x
w L x x dx dx

x x x

            
1

1

( )

( ) ' ( )

n n

i n n i

b P x
dx

x x b P x
,

or
1

1

( )1

' ( )

n

i

n i i

P x
w dx

P x x x
.      (6.59) 

 To evaluate 
1

1
( ) /( )

n i
P x x x dx , we make use of recurrence relation (1) given by 

(6.37), that is, 
0 0

1 1 1( ) ( ) ( )
l l l l l

P x xP x P x .   (6.60) 

For
i

x x , (6.60) may be written as 

0 0

1 1 1( ) ( ) ( )
l l i i l i l l i

P x x P x P x .     (6.61) 

If we multiply (6.60) by ( )
l i

P x  and (6.61) by ( )
l

P x and then subtract the resulting 

equations, we obtain 

0

1 1 1( ) ( ) ( ) ( )
l l l i l i l

P x P x P x P x

         0

1 1( ) ( )( ) ( ) ( ) ( ) ( )
l l i i l l l i l i l

P x P x x x P x P x P x P x . (6.62)  

 After summation of the two sides of (6.62) over the range l = 1 to l = n, we obtain 
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0

1 1 1

0

( ) ( ) ( ) ( )
n

l l l i l i l

l

P x P x P x P x

0

1 1

0

( ) ( )( ) ( ) ( ) ( ) ( )
n

l l i i l l l i l i l

l

P x P x x x P x P x P x P x .

After some simplification we obtain 

0

1 1 1

0

( ) ( )( ) ( ) ( ) ( ) ( )
n

l l i i n n n i n i n

l

P x P x x x P x P x P x P x

0

1 0 1 0 1( ) ( ) ( ) ( )
i i n

P x P x P x P x .  (6.63) 

Noting that for the spherical domain, 

0 1/ 2

1
( )

2
P x , 0 1/ 2

1
( )

2
i

P x ,

1/ 2

1

3
( )

2
P x x ,

1/ 2

1

3
( )

2
i i

P x x ,
0

1 1/ 2

1

3
,

and ( ) 0
n i

P x , since xi are the roots of the Legendre polynomial ( )
n

P x .  We finally 

obtain

0

1 1

1

( ) ( )( ) ( ) ( )
2

n

i

l l i i n n i n

l

x x
P x P x x x P x P x     (6.64) 

       0

1 1 0 0( ) ( ) ( ) ( )( )
n n i n i i

P x P x P x P x x x .

 Transferring the second term from the right-hand side to the left-hand side, we 

obtain

0

1 1

0

( ) ( )( ) ( ) ( )
n

l l i i n n i n

l

P x P x x x P x P x ,

or

        
0

1 1

0

( ) ( )
( ) ( )

n

n n i n

l l i

li

P x P x
P x P x

x x
.     (6.65) 

Integrating (6.65) from -1 to 1, we obtain 

         
1 1

0

1 1
1 1

0

( )
( ) ( ) ( )

n

n

n n i l l i

li

P x
P x dx P x P x dx

x x
,

or

         
1 1

0

1 1
1 1

0

( )
( ) ( ) ( )

n

n

n n i l i l

li

P x
P x dx P x P x dx

x x
.   (6.66) 

Because
1

1
( ) 0

l
P x dx  for all l except 0l , (6.66) reduces to 

1 1
0

1 1 0 0
1 1

( )
( ) ( ) ( ) 1n

n n i i

i

P x
P x dx P x P x dx

x x
.   (6.67) 
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Thus

      
1

0
1

1 1

( ) 1

( )

n

i n n i

P x
dx

x x P x
.    (6.68) 

Substituting into (6.59), we obtain 

         
0 '

1 1

1

( ) ( )
i

n n i n i

w
P x P x

.     (6.69) 

 These are the corresponding weights assigned to the various xi.  The expression 

for wi given by (6.69), though proper, is not very convenient, because it needs the values 

of 1( )
n i

P x  and the derivatives '( )
i

P x .  We express wi in a more convenient form below. 

 Using recurrence relation (2) given by (6.39) at x = xi, we obtain 

            2 ' 0

11 ( ) (2 1) ( ) 0
i n i n n i

x P x n P x .

( ) 0
n i

P x  since xi are the roots of ( )
n

P x , or 

         
0

'

12

(2 1)
( ) ( )

1

n

n i n i

i

n
P x P x

x
.    (6.70) 

Also, using recurrence relation (1) given by (6.37) at x = xi and noting that ( ) 0
n i

P x ,

we obtain 

         0 0

1 1 1( ) ( )
n n i n n i

P x P x ,

or

           
0

1 10

1

( ) ( )n

n i n i

n

P x P x .     (6.71) 

Substituting (6.70) and (6.71) into (6.69), we obtain 

        
2

0 2 2

1

1

(2 1) ( ) ( )

i

i

n n i

x
w

n P x
,

or

            
2 1

2

2 2

1

2(1 ) ( )

( )

i

i

n i

x n
w

n P x
,    (6.72) 

which is a more convenient expression for the Gaussian weights wi.

 Thus if a polynomial ( )F x of degree 2 1n  has values ( )
i

F x  available at n

points xi, 1,  2, 3,  , i n , as the roots (zeroes) of the Legendre polynomial Pn, then the 

integral
1

1
( )F x dx is evaluated exactly by the Gaussian quadrature 1 ( )n

i i i
w F x  where xi

are the zeroes of the Legendre polynomial of degree n and wi are the weights given by 

(6.72).

 The efficiency of the Gaussian quadrature lies in the fact that it can evaluate the 

integral of a function of degree 2 1n  from its values given at n points.  For designing a 

Gaussian quadrature, we need to take the following steps: 
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1. If N is the highest degree of the polynomial to be integrated, then the minimum 

number of points n needed for the Gaussian quadrature is given by 2 1n N , or 

( 1) / 2n N .

2. The Gaussian points xi, 1,  2,  , i n , are determined as the zeroes of the 

Legendre polynomials of degree n, that is, as the roots of ( ) 0
n

P x .  The roots of 

( )
n

P x  are not equally spaced, but are nearly so.  They can be determined 

iteratively using the Newton-Raphson method starting with the first guess of xi as 

n equally spaced points between -1 and 1. 

3. Once xi are found, the weights wi can be obtained from (6.72). 

 In the case of a Legendre polynomial of even degree, its zeroes are located 

symmetrically, in other words, at 
i

x .  In the case of a Legendre polynomial of odd 

degree, 0x  is one of the zeroes and the rest of the zeroes would be located 

symmetrically at 
i

x .  The weight wi has the same value for 
i

x .  It is therefore 

sufficient to calculate the zeroes of the Legendre polynomials and the corresponding 

weights for 0x  to complete the Gaussian quadrature.  In a spectral model, the use of a 

suitable fast Fourier transform (FFT) for the Fourier transform and Gaussian quadrature 

for the Legendre transform achieves the optimally fast and accurate calculations. 

6.7   Spectral Representation of Physical Fields 

Any smooth function over a sphere can be expressed as a sum of spherical harmonics.  

However, the convergence of term-by-term derivatives of the function is assured for 

much less liberal conditions, that is, the absolute convergence of the series.  With most 

meteorological quantities (scalars), this is generally not a problem.  However, sharp 

discontinuities across clouds, rain areas, fronts, and so on, are not easy to represent.  

There is also a problem with the horizontal wind components u and v, which have a 

singular behavior at the poles.  While u and v can be expressed to any desired accuracy 

by a series of spherical harmonics, there is no guarantee that the derivative of such a 

series will converge properly (this is the pole problem).  The cross-polar flow cannot be 

expressed by a series.  At one side, the flow may appear to be northerly, while at the 

other side of the pole the flow might appear southerly.  This poses a singularity at the 

pole.

 In the past u and v were set equal to zero at the poles for all times.  However, due 

to this singularity at the poles, the velocity components are carried in terms of the 

following pseudoscalar fields (called Robert functions):

     
cosu

U
a

   and  
cosv

V
a

,   (6.73) 

where  is the latitude and a is the radius of the earth.  At the poles, 2 , so 

0U V , but we can find U and V very close to 90°N and 90°S.  The Robert functions 

U and V are therefore well defined at the poles.  It is these functions rather than u and v

that we work with. 
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 One can obtain a simple kinematic relationship between the flow-field variables 

in the spectral domain using the formula discussed in earlier sections.  We deal with 

variables such as , , , D, U and V, where  is the stream function,  is the 

velocity potential,  is the relative vorticity, D is the divergence, and U and V are the 

Robert functions defined in (6.73).  The relationships between U, V and ,  (or , D)

are given by 

2

1
cosU

a
,     (6.74) 

2

1
cosV

a
,     (6.75) 

2

1 U
cos

cos

V
,    (6.76) 

2

1
cos

cos

U V
D ,    (6.77) 

where  is the latitude,  is the longitude, and a is the radius of the earth.

 If  and are both well-behaved, which generally is the case, then for a given 

truncation we can expand  and  by the relations

2 ,m m

n n

m n

a Y     (6.78) 

and
2 ,m m

n n

m n

a Y .    (6.79) 

For the same truncation, remembering the mathematical property 2

2

( 1)m m

n n

n n
Y Y

a

given in Sec. 6.3, we can express the vorticity and divergence as 

          2 ( 1) m m

n n

m n

n n Y    (6.80) 

and

         2 ( 1) m m

n n

m n

D n n Y .   (6.81) 

Using the spectral expansions m m

n n
m n

Y  and m m

n n
m n

D D Y  we get the spectral 

form of  and D for one harmonic so that 

         ( 1)m m

n n
n n      (6.82) 

and

        ( 1)m m

n n
D n n .     (6.83) 



Mathematical Aspects of Spectral Models 97

( , )m m im

n n
Y P e ,

( , )m

m imn

n

Y
imP e ,

( , )
,

m

mn

n

Y
imY     (6.84) 

and using the recurrence relation (6.38) where im
e  has been multiplied through 

2

1 1

( , )
1 ,

m

m mn

n n

Y
n Y

       1( 1) ,m m

n n
n Y ,    (6.85) 

we obtain the spectral expansions of both U and V.  That is,

2 2

2

1
cosm m m m m m

n n n n n n

m n m n m n

U U Y a Y a Y
a

.

Remembering m m im

n n
Y P e , cos , and sin  and using (6.84), we obtain 

cos cosm m m m

n n n n

m n m n

U im Y Y .

Using the identity 2 2 2cos 1 sin 1 , we obtain  

21
m

m m m n

n n n

m n m n

Y
U im Y .

Finally, using (6.85) we obtain 

m m m m

n n n n

m n m n

U U Y im Y

1 1 1( 1)m m m m m

n n n n n

m n

n Y n Y .    (6.86) 

Similarly for V we obtain 

m m m m

n n n n

m n m n

V V Y im Y

1 1 1( 1)m m m m m

n n n n n

m n

n Y n Y .    (6.87) 

Equating the coefficients of m

n
Y on both sides of the above equations, we obtain 

 By substituting the spectral representations of   (6.78) and  (6.79) into (6.74) 

and (6.75) and making use of the zonal meridional differentials of ,m

n
Y  given by 
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1 1 1( 1) ( 2)m m m m m m

n n n n n n
U im n n ,   (6.88) 

1 1 1( 1) ( 2)m m m m m m

n n n n n n
V im n n .   (6.89) 

Since ( 1)m m

n n
n n  and ( 1)m m

n n
D n , we may also write 

           1 1 1( 1) ( 1)m m m m m m

n n n n n n
n n U imD n n ,  (6.90) 

           1 1 1( 1) ( 1)m m m m m m

n n n n n n
n n V im n D n D .   (6.91) 

For m = 0 and n = 0 and remembering , 0m

n
Y  for n m ,

            0 0 0 0 0

0 1 1 1 12U ,     (6.92) 

            0 0 0 0 0

0 1 1 1 12V D .     (6.93) 

 At this point, let us ask the following questions: How does kinematics work, 

given m

n
and m

n
? If we are given the spectral coefficients of the stream function and 

the velocity potential (i.e., given m

n
and m

n
), can we obtain m

n
, m

n
D , m

n
U , and m

n
V ?

Since we know m

n
 and m

n
 for all desired values of n and m, we can use (6.88) and 

(6.89) to obtain m

n
U  and m

n
V , respectively. 

 Using (6.82) and (6.83), one can obtain m

n
 and m

n
D , respectively.  Furthermore, 

one can obtain the true velocity components u and v using the inverse Robert functions.  

That is, equations (6.82), (6.83), and (6.88)-(6.91) are a series of equations that enable 

one to solve for , , , D, U and V given two spectral coefficients.  This can be called 

the triangle problem.  Without worrying about details, the orthogonality properties of 

Legendre polynomials and associated Legendre functions are used for determining the 

expansion coefficients.  This leads to

     
2 1 2 1

* *

0 1 0 1

m m m m

n n n n

m n

AY d d A Y Y d d ,   (6.94) 

where *m

n
Y is the complex conjugate of m

n
Y .  We have used the orthogonality of the 

spherical harmonics, that is, 

            
2 1

*

0 1

0    if  and/or 1

1     if  and 2

m k

n j mk nj

m j n j
Y Y d d

m k n j
.

Transformation from grid space to spectral space and vice versa is important in 

spectral modeling.  Grid space is represented by ( , )A  and is the representation on a 

weather map.  Spectral space is represented by m

n
A  and are the amplitudes of the 

spherical harmonics of ( , )A .  It is important to learn to switch between grid 

( ( , )A ) and spectral space ( m

n
A ), i.e. to get weather maps from the spectral 

coefficients.  To do this we must utilize the Fourier transform, Legendre transform, 

inverse Fourier transform, and inverse Legendre transform.  We can write a function A 

as
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m m

n n

m n

A A Y ,

where ( , )A A  and

        
2 1

*

0 1

1

2

m m

n n
A AY d d .    (6.95)

It is necessary to truncate the series at some wavenumber.  There are two common ways 

of truncating the series:  (1) Rhomboidal truncation, which has the form 

      , ,

m NN

m m

n n

m N n m

A A Y ,    (6.96) 

and (2) triangular truncation, which has the form 

, ,
N N

m m

n n

m N n m

A A Y .   (6.97)  

We discuss these truncations in detail in Chapter 7. 

 If the set of spectral coefficients m

n
A  is known, then by using either (6.96) or 

(6.97) the function ( , )A  can be defined everywhere over the globe.  In practice, it is 

necessary to evaluate the function at a finite set of grid points.  Likewise, the evaluation 

of the integrals in the Fourier-Legendre transform is based on data at only a finite 

number of points. 

6.7.1 Grid to Spectral Space 

 In practice, the evaluation of m

n
A  from ( , )A  is carried out in two steps.

Step 1:  Perform the Fourier transform of the space field along latitudes, 

2

0

1
,

2

m im
A A e d .     (6.98) 

Step 2:  Perform the Legendre transform of the Fourier components, 

1

1

m m m

n n
A A P d .      (6.99) 

The Fourier transform is evaluate using the trapezoidal quadrature formula, that is, 

2 1

0

1
,

2

j

M

imm

k j k

j

A A e
M

,    (6.100) 

where [(2 ) /(2 )] ( / )
j

M j M j .  This integration is exact for any function which 

may be represented by a truncated Fourier series with wavenumbers 2 1M .  This 

calculation is very efficiently done by the FFT.  The Legendre transform is evaluated 

using the Gaussian quadrature formula, that is, 
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1

K

m m m

n k k n k

k

A W A P ,    (6.101) 

where
k
 are the Gaussian latitudes and ( )

k
W  are the Gaussian weights, as discussed 

in Section 6.6.  This formula is exact for any polynomial [here ( ) ( )m m

n
A P ] of degree 

2 1K .

6.7.2 Spectral to Grid Space 

 The transformation from spectral to grid space is also achieved similarly in two steps.

Step 1: Perform the reverse Legendre transform, 

m m m

k n n k

n

A A P .     (6.102) 

Step 2: Perform the reverse Fourier transform, 

, jimm

j k n k
A A e .    (6.103) 

Thus one proceeds from spherical harmonic components m

n
A  to Fourier components A

m

and then to grid-point values ( , )
j k

A .  It should be noted that the use of Gaussian 

latitudes and weights enables one to calculate the Legendre transform exactly. 

6.8   Barotropic Spectral Model on a Sphere 

In Chapter 2 we discussed the finite-difference barotropic model where we were 

concerned with the proper formulation of the space-differencing schemes, the Jacobian, 

the Laplacian, and the solution of Poisson’s equation.  In this section, we consider a 

spectral model on a sphere, the integration of which will be through a coupled system of 

nonlinear ordinary differential equations.  This system of equations is obtained by 

transforming the model equations from the space to the spectral domain.  The basis 

functions for this transformation will be surface spherical harmonics, some important 

properties of which have already been discussed. 

 If  represents the longitude and  the latitude, then the barotropic vorticity 

equation on a sphere is given by 

2

1
( ) ( )f f

t a
,    (6.104) 

where sin .  Noting that / 0f  and / 2f , we obtain 

2 2

1 2

t a a
,

or

2

2
,F

t a
.     (6.105) 
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In the above equation, the nonlinear advective term 

2

1

a

is written as ( , )F .  The second term on the right-hand side of (6.105) is the earth’s 

rotation term and it is linear. 

 To transform (6.105) into its spectral form, we take the Fourier-Legendre 

expansion of variables , , and F

, , ,m m

n n

m n

t t Y ,     (6.106) 

, , ,m m

n n

m n

t t Y ,    (6.107)  

, , ,m m

n n

m n

F t F t Y .     (6.108) 

Substituting into (6.105) we obtain 

( )
, ( ) ( , )

m

m m mn

n n n

m n m n

d t
Y F t Y

dt

2

2
( ) ( , )m m

n n
t Y

a
.     (6.109) 

Using 2 and looking at the left-hand side of equation (6.105) only, we get 

2

( ) ( )( 1)
, ,

m m

m mn n

n n

d t d tn n
Y Y

dt a dt
,   (6.110) 

remembering 2

2

( 1)m m

n n

n n
Y Y

a
.  Also, 

, ,m m

n n
Y imY .      (6.111) 

Substituting (6.110) and (6.111) into (6.109) and then equating the coefficients of 

,m

n
Y  on both sides of the above equation, we obtain 

2 2

1 2
, , ,

m

n m m m m m

n n n n n

n n d t
Y F t Y t imY

a dt a

22

( 1) ( 1)

m

m mn

n n

d im a
F

dt n n n n
   (6.112) 

as the spectral form of the barotropic vorticity equation (6.105).  The first term on the 

right-hand side of (6.112) is the beta term (the acceleration due to the advection of the 

earth’s vorticity), while the second term is the advection of relative vorticity.
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 The spectral form of the barotropic vorticity equation consists of a set of ordinary 

nonlinear differential equations in spectral space.  It should be noted that m

n
F  is a 

nonlinear term.  We use the transform method to evaluate such nonlinear terms. 

 The transform method involves calculating the terms / , / , / ,

and /  on the grid points by projecting the spectral coefficients onto the space 

domain.  These are then multiplied to get values of the nonlinear terms ( , )F  on the 

grid points.  The spectral analysis of ( , )F  then involves the Fourier analysis of the 

( , )F  along latitude circles, followed by a Legendre transform of the resulting 

Fourier coefficients to obtain the spectrum m

n
F .  This procedure is called the Fourier-

Legendre transform.

 We can write 

2

1
( , )F

a
     (6.113) 

2 2

2 2

1
(1 ) (1 )

(1 )a
.

Let

, ( ) ,m m

n n

m n

t Y ,     (6.114) 

so that upon taking the derivative of (6.114) with respect to , multiplying by 2(1 ) ,

and remembering that ( , ) ( )m m im

n n
Y P e  we obtain the north-south derivative of 

2 2(1 ) ( ) (1 ) ( )m im m

n n

m n

t e P ,    (6.115) 

where by the recurrence relation (6.38) we have 

2

1 1 1(1 ) ( ) ( ) ( 1) ( )m m m m m

n n n n n

d
P n P n P

d

and
1/ 2

2 2

24 1

m

n

n m

n
.

Hence using the recurrence relation in equation (6.115) we obtain 

2

1 1(1 ) ( )m m m

n n n

m n

n P

             11 ( )m m im

n n
n P e     (6.116) 

where the term in brackets is always known. 

 If we differentiate (6.114) with respect to , we obtain the east-west derivative 

of
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( ) ( ) .m m im

n n

m n

im t P e     (6.117) 

Using (6.116) and (6.117) we can obtain the grid-point values of /  and 
2(1 ) / .  Similarly, the grid-point values of 2(1 ) /  and /  are 

calculated from the spectral coefficients of vorticity m

n
.  Having obtained 

2(1 ) / , / , 2(1 ) / , and /  in grid space, we obtain 

( , )F  from (6.113) in grid space.  The Fourier-Legendre transform is then applied to 

( , )F  to obtain m

n
F .

 Knowing the spectral coefficients m

n
 and m

n
F , one can calculate the term on the 

right-hand side of the spectral form of vorticity equation (6.112).  This gives us 

/m

n
d dt , the time tendency of m

n
, which, along with the value of m

n
 at the previous 

time step, can be used to obtain m

n
 at a future time step.  In practice, the following steps 

are needed to integrate the barotropic vorticity equation: 

Step 1: From the coefficients m

n
 and m

n
, obtain the grid-point values of 

2(1 ) /  and 2(1 ) /  along a latitude circle using (6.116). 

Step 2: Similarly, using (6.117), obtain grid-point values of /  and /  along 

the latitude circle. 

Step 3: Multiply 2(1 ) / , / , /  and 2(1 ) /  to calculate 

2

1
( , )F

a
      

2 2

2 2

1
(1 ) (1 )

(1 )a

on the grid points ( , ) .

Step 4: Perform the Fourier transform of ( , )F  along the latitude circle to obtain the 

Fourier components ( )m
F .  This is done by using the FFT. 

Step 5:  Perform the Legendre transform of ( )m
F  at the various latitude to obtain m

n
F ,

the spherical harmonic amplitudes of ( , )F .  This is done by using Gaussian 

quadrature.

Step 6:  From m

n
and m

n
F , calculate the right-hand side of the spectral vorticity equation 

and obtain /m

n
d dt .

Step 7:  From ( )m

n
t t  and /m

n
d dt , obtain ( )m

n
t t  at the next time step as 

( ) ( ) 2
m

m m n

n n

d
t t t t t

dt
.
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6.9   Shallow-Water Spectral Model 

Earlier we discussed the integration of the shallow-water equations using finite 

differences in both time and space.  We now structure the shallow-water system to a 

similar time-differencing scheme, but the space differentials will be calculated 

spectrally.  In this system, we use the momentum and the mass continuity equations.  In 

a shallow-water model, we consider a homogeneous incompressible fluid with a rigid 

lower boundary and an upper free surface.  The horizontal velocity is taken to be 

invariant with height. 

 The continuity equation for an incompressible fluid is 

0
u v w

x y z
.      (6.118) 

Integrating (6.118) vertically with a lower boundary condition 0w  at 0 0z , we obtain 

w u v
dz dz

z x y
,

0z

u v
w w z

x y
,

z

u v
w z

x y
,      (6.119) 

where z is the height of the free surface and wz is the vertical velocity of the free surface.  

Also,

z H

dz z
w V z

dt t
.     (6.120) 

From (6.119) and (6.120) we obtain 

H

z u v
V z z

t x y
,

H H

z
V z z V

t
,

which on multiplication by g gives 

H H
V V

t
,     (6.121) 

where  is the  geopotential at the free surface. 

 Writing '  as the sum of the mean and its deviation from the mean, 

where  is the time-variant area mean, we obtain 

'
( ') ( ') ' ' ,

H H H H H
V V V V V

t
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or

'
'

H H
V V

t
.     (6.122) 

Equation (6.122) now represents the continuity equation. 

 The horizontal momentum equation for the shallow-water model is

       H

H H H

V
V V f k V

t
.    (6.123) 

Using the vector identity 

       ,
2

H H

H H H

V V
V V k V

the horizontal momentum equation may be written as 

( ) ,
2

H H H

H

V V V
f k V

t

or

( ) ' ,
2

H H H

H

V V V
f k V

t
   (6.124) 

because 0 .  We express the momentum equation (6.124) in terms of the vorticity 

and divergence equations, which are more suitable for a spectral model. 

 The vorticity equation is obtained by operating on (6.124) with the vector 

operator k .  Thus 

( ) '
2

H
H H

H

k V V V
k f k V k

t
.

After simplifying, we obtain 

( )
H

f V
t

      (6.125) 

as the desired vorticity equation.  Similarly, the divergence equation is obtained by 

applying the vector operator  to (6.124).  Thus 

( ) '
2

H
H H

H

V V V
f k V

t
.

After further simplification we obtain the divergence equation as 

2 HV( ) cos ( )
'+

cos  cos  2

H
VD v f u f

t a a
.  (6.126) 
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The vorticity, divergence, and continuity equations given by (6.125), (6.126), 

and (6.122) form the shallow-water model on a sphere.  To remove the discontinuity in 

the wind field at the poles, we replace u and v by the Robert functions defined by (6.73).  

Using these functions, the vorticity, divergence, and continuity equations take the 

following form in spherical coordinates: 

2

1 ( ) ( )
cos

cos

U f V f

t
,    (6.127) 

2

1 ( ) ( )
cos

cos

D V f U f

t

           
2 2

2

2
'

2cos

U V
,       (6.128) 

2

' 1 ( ') ( ')
cos

cos

U V
D

t
.    (6.129) 

These can be written in terms of , , and '  as

2 2 2

2

1 ( ) ( )
cos

cos

U f V f

t
,   (6.130) 

2 2 2

2

1 ( ) ( )
cos

cos

V f U f

t

     
2 2

2

2
'

2cos

U V
,      (6.131) 

2

' 1 ( ') ( ')
cos

cos

U V
D

t
.    (6.132) 

 It can be shown that the above set of vorticity, divergence, and continuity 

equations ensures the conservation of vorticity, kinetic energy, and potential energy 

during the course of computations. Because the first term on the right-hand side in these 

equations is of the same form, the equations can be calculated by an identical 

computation algorithm. 

 Our aim is to solve (6.130), (6.131), and (6.132) spectrally using a fully explicit 

method.  This is achieved by expanding , , ' , U, and V spectrally, that is,

2 m m

n n

m n

a Y ,      (6.133) 

and similarly for , ‘, U, and V.  In (6.130) to (6.132), , , and ' are the prognostic 

variables.  In addition to these, we need U and V to calculate the right-hand side of these 

equations.  To obtain U m

n
 and V m

n
, the spectral components of U and V, from the spectral 

components of and , we make use of (6.88) and (6.89). 

 Substituting the spectral expansions of , , ' , U, and V into (6.130) to (6.132), 

the spectral form of the shallow-water equations takes the following form: 
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       1 ( , )
m

mn

n
n n A B

t
,     (6.134) 

   
2 2

2

2
1 ( , ) '

2cos

m
m

mn

n

n

U V
n n B A

t
,   (6.135) 

           
'

( , )
m

m mn

n n
U V D

t
,     (6.136) 

where 2( )A U f , 2( )B V f , D V , V Ui Vj , and the operator  is 

defined as

     
2

1
, cos

cos

A B
A B .

The spectral amplitudes of the nonlinear terms on the right-hand side of (6.134) 

to (6.136) are calculated by first projecting the values of , , ' , U, and V from the 

spectral domain onto the space domain on a Gaussian grid, and then multiplying them in 

the space domain to obtain the grid-point values of the nonlinear terms.  The Fourier-

Legendre transform is then used to convert these grid-point values to the spectral 

amplitudes of the nonlinear terms.  The sum of the nonlinear terms and linear terms 

forms the tendencies of the various spectral amplitudes in the shallow-water model. 

These tendencies, along with the values of m

n
, m

n
, and 'm

n
 at the previous time step, 

are used to obtain the future values of these functions using the following finite-

difference analog: 

2
m

m m n

n n
t t t t t

t
,   (6.137) 

2
m

m m n

n n
t t t t t

t
,    (6.138) 

'
' ' 2

m

m m n

n n
t t t t t

t
.    (6.139) 

 To march forward in time, we make use of centered time differencing except for 

the first time step, where forward time differencing is applied.  Marching forward in 

time over the forecast period, we obtain the final forecast values of m

n
, m

n
, and 'm

n
.

These amplitudes are then projected onto the space domain to obtain the forecast fields 

of stream function (or vorticity), velocity potential (or divergence), and the geopotential 

(or height) at the free surface.

 This shallow water spectral model has gravity waves and Rossby waves.  Gravity 

waves require small computational time steps while Rossby waves can take larger 

computational time steps.  If we are using centered time differencing we need to use 

small time steps for this model which is computationally expensive.  For this reason, the 

fully explicit method is rarely used and the semi-implicit shallow water model is 

employed instead. 
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6.10    Semi-implicit Shallow-Water Spectral Model 

We next address the formulation of a shallow-water model based on the semi-implicit 

time-integration scheme.  In this formulation, the linear terms are integrated implicitly, 

while the nonlinear terms are integrated explicitly.  As the vorticity equation has only 

nonlinear terms on its right-hand side which do not excite gravity waves, it is integrated 

explicitly. The divergence equation and the continuity equation have both linear and 

nonlinear terms on their right-hand sides and therefore are integrated implicitly. 

 Separating the linear and nonlinear terms, the divergence and continuity 

equations can be written as 

2

1 'D F
t

      (6.140) 

and

2' 'F D
t

,      (6.141) 

where
2 2

2 2 2

1 2 2

1
( ) cos ( )

cos 2cos

U V
F V f U f

and

2 2

1
' ( ') cos ( ')

cos
F U V    

are the nonlinear terms.  

 The reason for doing such a partitioning is that we want to treat the gravitational 

modes differently from the Rossby waves.  We integrate the linear terms responsible for 

the fast-moving gravitational modes implicitly and the nonlinear terms explicitly. 

 Let us define a time-average operator ( )t  as 

2

t t t t

t D D
D ,      (6.142) 

noting that from the centered time differencing scheme we have 

2

t t t t
D D D

t t
.

Solving equation (6.142) for t t
D  and substituting it into the above equation we can 

rewrite (6.140) using the above averaged value as 

2

1 ( ) '
2

t t t t t t t

t tD D D D
F

t t
.   (6.143) 

Similarly, equation (6.141) can be rewritten as 
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2

' ' ' '
( ')

2

t t t t t t t

t t
F D

t t
.     (6.144) 

It should be noted that the values of '  and D in the linear terms on the right-hand side 

of (6.143) and (6.144) are averages of their values at time levels t t  and t t , while 

the nonlinear terms are calculated at time level t.

 Equations (6.143) and (6.144) may be written as 

         2 '

1 ( )t t t t t
D D F t t ,      (6.145) 

          2' ' ( ')t t t t t
F t D t .      (6.146) 

In order to solve this system of equations, we eliminate one of the unknown variables 

( t
D or 't ) from these equations in order to obtain an equation in a single unknown 

variable.  We eliminate 't  to get an equation in the single variable t
D .  This is 

achieved by applying the 2  operator to (6.146) and multiplying the resultant equation 

by t

2 22 2 2 2

2' ' 't t t t t
t t t F t D ,

then substituting for 2 't t  into (6.145) to obtain 

    
2 22 2 2

1 2' 't t t t t t t t
D D F t t t F t D ,

or, on rearranging, we obtain a Helmholtz equation, that is, 

2 ,2

3 , ',
t t tt t

t D D F D ,    (6.147) 

where

   
, 2 2 2

3 2 1, ', ' '
t t t t t t t t t

F D t F tF t D .

 We can write (6.147) in spectral form as 

2

32

( 1) t t
m m m

n n n

n n
t D D F

a
,

or

     3

2

2

( 1)
1 ( )

m
t

m n

n

F
D

n n
t

a

 .      (6.148) 

Hence we can obtain the unknown variable 
t

m

n
D using the above equation.  The value of 

m

n
D at time level t t  is then obtained from 

          2
t t t t t

m m m

n n n
D D D .      (6.149) 
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By substituting 
t

m

n
D into (6.146), one also obtains the spectrum of 't and hence 't t .

The spectrum of t t  is obtained explicitly from the spectral form of the vorticity 

equation (6.134).  This completes a one-time-step forecast of the shallow-water model 

using a semi-implicit time-integration scheme. 

6.11   Inclusion of Bottom Topography 

It is relatively easy to cast a spectral shallow-water model that includes the effects of 

mountains.  The only changes that are involved in the basic equations are in the pressure 

gradient force, where

                  is replaced by gh

and

                  is replaced by gh .

 The mass continuity equation remains unaltered.  Here h is the height of the 

mountain (i.e., the bottom topography of the shallow-water model) and gh  defines 

the geopotential of the free surface.  The derivation of the Helmholtz equations for the 

shallow-water equations with bottom topography is left as an exercise for the student. 

6.12   Exercises 

6.1. In Section 6.2, Rodrigues’ formula, 

21
1 ,        0,  1, 2, 3,  ,      1

2 !

n
n

n n n

d
P n

n d
,

was described.  Using (6.13), try to prove the above formula.  Hint: Apply a 

binomial expansion of 2(1 )n .

6.2. We define the generating function of the ordinary Legendre polynomial as follows: 

         
1/ 2

2
0

1
,      1,      1

1 2

n

n

h

P x x

x x

.

Prove the above equality.  Hint: Use the binomial expansion of 1 21/(1 )y , set 
22y x x , and multiply the powers of 22 x x  out and collect terms involving 

x
n
.

6.3. Prove the recurrence relation 

1 11 2 1 ,       1,  2, 3, 
n n n

n P n P nP n
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Hint:  Differentiate the generating function with respect to x.  The above equation is 

called Bonnet’s recursion.

6.4. Represent the following polynomials in terms of Legendre polynomials:  1, , 2 ,

and 3 ; i.e., find the matrix A such that 

0

1

2

2

3

3

( ) 1

( )
A

( )

( )

P

P

P

P

.

  Describe the most salient feature of matrix A.  What does this feature imply? 

6.5. Show that 1
n

P  for 1 1.



Chapter 7 

Multilevel Global Spectral Model 

7.1  Introduction 

Since the 1970s, the spectral method has become an increasingly popular technique for 

global numerical weather prediction.  Global numerical models formulated using the 

spectral technique are used worldwide for both research and operational purposes.  The 

success of the spectral technique can be attributed to the spectral transform technique 

developed independently by Eliasen et al. (1970) and Orszag (1970), and later refined by 

Bourke (1972). 

 Prior to the introduction of the transform technique, the nonlinear terms were 

computed using a very tedious process called the interaction coefficients method.  This 

method required large amounts of computer resources as well as enormous bookkeeping.  

The transform technique facilitates the computation of the nonlinear terms, as discussed 

later in Section 7.4.  Furthermore, the Galerkin method discussed in Chapter 4 is widely 

used in most spectral models and provides us with alias-free computation of the nonlinear 

terms. 

 The transform technique enables the current spectral models to be competitive in 

terms of computational overhead with respect to their grid-point counterparts.  The 

transform technique is also well suited for incorporating the terms dealing with physics in 

the prediction scheme.  There are a number of advantages to using the spectral technique 

over the conventional grid-point method.  However, we will not get into this discussion 

here.  It should be noted that the model truncation limit specifies the scale of the shortest 

wavelength that can be resolved by the model.  In the following section, we discuss the 

two most widely used truncations in a spectral model. 

7.2  Truncation in a Spectral Model 

As we saw earlier, any variable field (say , , etc.) can be represented by a series of 

spherical harmonics as

, ,m m

n n

m n

Y ,    (7.1) 

, ,m m

n n

m n

Y ,    (7.2) 
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where the double summation is infinite in general, in other words, m  and 

| |m n .  However, in practice, representation in terms of an infinite series is not 

possible and one needs to truncate the series at some point.  It can be shown that once we 

decide on the maximum number of spectral components to be present in the double 

summation, then we can achieve a consistent energy, momentum, and vorticity 

conservation for the spectrally truncated equations.  In doing so, we neglect waves 

outside the spectrum (i.e., beyond the designated highest wavenumber).  In practice, one 

truncates smaller-scale waves in the spectral truncation. 

 In a global spectral model, two types of truncation schemes are generally used.  

They are called the triangular truncation and the rhomboidal truncation.  In the case of 

triangular truncation, the highest degree of the various spherical harmonics m

n
Y (m

denotes the order of a spherical harmonic and n the degree) is fixed and is set equal to the 

highest order of these waves.  Thus, this truncation is represented mathematically by 

| |

, ,
N N

m m

n n

m N n m

Y ,    (7.3) 

and is schematically represented in Fig. 7.1. 

 Under this truncation, the number of zeroes n m  for different wavenumbers m

vary, and thus different wavenumbers m have different degrees of freedom along a 

latitude.  The two-dimensional wave index has the same maximum value for all waves, 

and all waves are truncated at the same two-dimensional scale. 

 The rhomboidal truncation has a fixed value of the maximum number of zeroes 

for every wavenumber m, thus giving equal degrees of freedom along a latitude for all 

waves.  This truncation is represented as

         
| |

| |

,
m JN

m m

n n

m N n m

Y .    (7.4) 

If J N , the truncation is called rhomboidal.  When J N , it may be called 

parallelogramic truncation.  Schematically, this can be represented as in Fig. 7.2.  The 

triangular truncation at wavenumber N is often abbreviated as T N ; likewise, 

rhomboidal truncation at wavenumber N is abbreviated as R N .

Figure 7.1. Triangular truncation.
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Figure 7.2. Rhomboidal truncation.

 There has been considerable discussion as to which of the two truncations is 

better suited for different problems.  Both of these representations have their advantages 

and disadvantages.  The triangular truncation assumes that the variance contained in 

waves shorter than a particular two-dimensional wave is zero.  However, the 

representation in the meridional direction does not have the same number of degrees of 

freedom for all waves. In general, it is seen that for the same number of wave 

components, triangular truncation contains more variance than the rhomboidal one.

 The total number of m

n
P  for a triangular truncation that is truncated at 

wavenumber N is equal to ( 1)( 2) / 2N N  (see Fig. 7.1).  This can be obtained as 

follows: In a triangular truncation with maximum wavenumber N, there are 1N

Legendre functions with 0

0
P , 0

1
P , 0

2
P , …, 0

N
P  zonal wavenumbers.  Likewise, the 

number of Legendre functions containing wavenumbers 1, 2, 3, …, N is N, 1N , 2N ,

…, 1, respectively. Thus on average there are ( 2) / 2N  Legendre functions per zonal 

wavenumber.  The total number of zonal wavenumbers, including wavenumber zero, 

equals 1N .  This means that the total number of Legendre functions, or spectral 

components, in a triangular truncation truncated at wavenumber N is set at 

( 1)( 2) / 2N N .  Therefore a 42T  spectral model (truncated at wavenumber 42) 

contains (43 44) / 2 946  spectral components.  Likewise, 106T  and 170T  models 

would have 5778 and 14706 spectral components, respectively. 

 The total number of m

n
P  for a rhomboidal truncation R N  is equal to 

( 1)( 1)N N .  This can be obtained as follows: In a rhomboidal truncation, there are 

1N  Legendre functions  ( m

n
P , 1

m

n
P , 2

m

n
P , …, m

n J
P ) for any zonal wavenumber m.  The 

total number of zonal wavenumbers, including wavenumber zero, is 1N .  Therefore, 

the total number of Legendre functions or wave components in this truncation is 

( 1)( 1)N N .  Thus 42R  truncation has 43 43 1849 m

n
P .
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7.3  Aliasing  

Given some data at 2 1N  points along a line, we can analyze them into a maximum of 

N-Fourier (N-sine and N-cosine) components.  If one tries to calculate more than N

components, a false representation, or aliasing, of lower wavenumbers into higher 

wavenumbers occurs.  To show this, let 

0

M

imx

m

m

y x a e ,     (7.5) 

where y has values 1 2 2 1,  ,  , 
N

y y y  at 2 1N  equally spaced points 1 2 2 1,  x ,  , x
N

x ,

with 1 0x  and 2 1 2
N

x .  Multiplying both sides of (7.5) by imx
e  and summing over 

all possible grid points j, we obtain 

2 1 2 1
( / )( 1)

1 1

1 1

2 1 2 1

j

N N

imx im N j

m j j

j j

a y e y e
N N

.   (7.6) 

If m N , then we can write 2 'm N m , where 'm N ,

2 1
(2 ')( / )( 1)

1

N

i N m N j

m j

j

a y e

            
2 1

'( / )( 1)

1

N

i m N j

j

j

y e ,       because 2 ( 1) 1i j
e

               'm
a ,    or   'm m

a a .     (7.7) 

Thus we see that the amplitude 
m

a  is actually reflected as 'm
a , which is the 

amplitude of the lower wavenumber m', where 'm N .  Thus if one tries to analyze a 

data set at 2 1N  equally spaced points into wavenumbers greater than N, one runs into 

aliasing problems.  The minimum number of points needed to analyze a field into N-

Fourier components is 2 1N .  When we analyze the product terms, we need still more 

points for alias-free calculating, as will be seen in the next section. 

7.4  Transform Method 

The nonlinear terms in a spectral model truncated at the model’s spectral resolution can 

be calculated by one of the following methods: (a) the interaction coefficients method or 

(b) the transform method.  The interaction coefficients method consists of obtaining the 

spectral amplitudes of the nonlinear products directly from the spectral amplitudes of the 

individual members of the product terms using relevant trigonometric or Legendre 

function formulas.  This procedure is exact and free from any computational errors.  If 

the number of spectral components in the model is small, say four to six, as is the case in 

many theoretical studies, this method is very efficient and elegant.  However, when 

dealing with a large number of spectral components, the number of interaction 

coefficients becomes too large and their storage , bookkeeping,  and  off and  on  retrieval 
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becomes very cumbersome.  For a large number of wave components, the transform 

method is simpler and more efficient. 

In the transform method, the nonlinear terms are calculated in the space domain 

and then transformed to the spectral domain.  The nonlinear terms in an atmospheric 

model are generally quadratic products of the form /u u , /v u , etc., where u and 

v are the spectrally truncated variables.  We are required to spectrally analyze these 

products truncated at the model’s resolution. 

 To spectrally analyze the product of variables ( , )A  and ( , )B , the transform 

method consists of the following three steps, which are repeated at every time step during 

model integration: 

1. Perform a spectral to grid-point transform of the model variables. 

  (a) This involves the calculation of the Fourier amplitudes from the spherical 

harmonic amplitudes at each latitude using the relations 

N

m m m

n n

n m

A a P ,

N

m m m

n n

n m

B b P ,

where m

n
a  and m

n
b  are the spherical harmonic amplitudes of the two variables 

involved in the nonlinear term, while ( )m
A  and ( )m

B  are their Fourier 

amplitudes at a particular latitude .

(b) Calculate the grid-point values from the Fourier components as 

, ( )
M

m im

m M

A A e ,

, ( )
M

m im

m M

B B e .

Processes 1(a) and 1(b) are the inverse Legendre and inverse Fourier transforms, 

respectively.

2. Perform a calculation of the nonlinear products on grid points.  The components 

,A  and ,B  at each grid point are multiplied to get the nonlinear product 

,C , that is, 

, , ,C A B .

Here, A and B may be the grid point values of variables like u, v, /u , /v , and 

so on. 

3. Perform a spectral transform of the nonlinear products at grid points.  This process is 

again achieved in two transform steps: 
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(a) A Fourier transform of grid-point products on latitude circles. 

(b) A Legendre transform of the Fourier components obtained in step 3(a). 

 Now we consider the requirements for alias-free calculations.  For this, let 

,A  and ,B  be the space values of the two variables spectrally truncated at 

order (zonal wavenumber) M and degree N of the spherical harmonics series.  Then the 

product ,C  may be written as

1 1 2 2

1 1 2 2

1 1 1 2 2 2

, , ,
M N M N

m m m m

n n n n

m M n m m M n m

C a Y b Y

         1 2 1 2 1 2

1 2 1 2

1 2 1 1 2 2

( )
M M N N

m m m m i m m

n n n n

m M m M n m n m

a b P P e .   (7.8) 

The two-dimensional spectral amplitude m

n
C  of a spherical harmonic wave is given by

1 2
*

1 0

1
( , ) ,

4

m m

n n
C C Y d d

                 
1 2

1 0

1
( , )

4

im m

n
C e d P d .

Substituting for ,C  from (7.8), we get

      

1 2 1 1 2 2

1 2

1 0
| | | |

1 1

2 2

M M N N

m

n

m M m M n m n m

C

            1 2 1 2 1 2

1 2 1 2

( )m m m m i m m im m

n n n n n
a b P P e e d P d .   (7.9) 

 The integral with respect to  on the right-hand side of (7.9) is nonzero only for 

cases when 1 2m m m .  Thus the zonal wavenumber m of the nonlinear product results 

from the interaction of those wavenumbers 1m  and 2m  of the individual components of 

the product for which 1 2m m m .  The integration with respect to  results in the 

Fourier analysis of ,C  along latitude circles.  Also, if m
C  is the Fourier amplitude 

of wavenumber m, then 
1

1

1
( ) ( )

2

m m m

n n
C C P d .      (7.10) 

Comparing (7.9) and (7.10), we have 

    1 2 1 2

1 2 1 2

1 2 1 1 2 2

2

0
| | | |

1
( ) ( )

2

M M N N

m m m mm

n n n n n

m M m M n m n m

C a b P P

                1 2( )i m m m
e d
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                1 2 1 2

1 2 1 2

1 2 1 1 2 2| | | |

M M N N

m m m m

n n n n

m M m M n m n m

a b P P ,     (7.11) 

where 1 2m m m .  Thus 

1 2 1 2

1 2 1 2

1 2 1 1 2 2

1

1
| | | |

1

2

M M N N

m m m mm m

n n n n n

m M m M n m n m

C a b P P P d .   (7.12) 

This calculation of spectral components m

n
C  of the product C AB  involves the 

evaluation of an integral of the form 1 2

1 2

1

1

m m m

n n n
P P P d , where 1 2m m m .  During the 

Legendre transform, it is necessary that this integral be evaluated exactly.  We examine 

the requirements of numerical quadrature to achieve such exact evaluation of the integral. 

 We may write a normalized Legendre function, 

1/ 2 1/ 2 2
2 / 21 ( )! 2 1 ( 1)

( ) (1 )
2 ! ( )! 2

n m n

m m

n n n m

n m n d
P

n n m d

             
/ 2

21
m

n m
p ,       (7.13) 

where
n m

p  is a polynomial of degree n m .  With this, we can write 

1 2 1

1 2 1 1

/ 22( ) ( ) ( ) (1 )m m mm

n n n n m
P P P p

             2

2 2

/ 22 2 / 2(1 ) (1 )m m

n m n m
p p

              2 2

1 1 2 2

( ) / 22(1 ) m m m

n m n m n m
p p p

              
1 1 2 22m n m n m n m

p p p p .     (7.14) 

Because 1 2m m m ,

          1 2( ) / 22 2

2(1 ) (1 )m m m m

m
p

is a polynomial of degree 2m.  Furthermore, 
1 1 2 2

,
n m n m

p p , and 
n m

p , are polynomials in 

 of degree 1 1 2 2,n m n m , and n m , respectively.  Consider first the rhomboidal or 

the parallelogramic truncation of the form 

        
| |

| |

.
m JN

m N n m

The highest degree of 2m
p  is 2N and that of 

1 1 2 2
,

n m n m
p p , and 

n m
p  is J.

  Therefore, 1 2

1 2
( ) ( ) ( )m m m

n n n
P P P  has the highest degree 2 3N J .  By using a 

Gaussian quadrature, we can integrate a polynomial of highest degree 2 1k  from its 

values available at k Gaussian quadrature points.  In this case, the highest degree of the 

triple-product 1 2

1 2

m m m

n n n
P P P  is 2 3N J .  Therefore 

1 2

1 2

1

1
( ) ( ) ( )m m m

n n n
P P P d      (7.15) 
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can be evaluated exactly if 2 1 2 3k N J  or if (2 3 1) / 2k N J .  In a rhomboidal 

truncation J N , therefore (5 1) / 2k N  is the minimum number of Gaussian latitudes 

for the Legendre transform.

 Consider next the triangular truncation, which has the form 

        .
N N

m N n m

For triangular truncation, the product 1 2

1 2
( ) ( ) ( )m m m

n n n
P P P  can be represented by a 

polynomial of the form (7.14).  However, in this case the highest degree of 
1 2

1 2
( ) ,  ( )m m

n n
P P , and ( )m

n
P  is fixed at N.  The highest degree of the product 

1 2

1 2
( ) ( ) ( )m m m

n n n
P P P  in this case may therefore be represented by the polynomial 

      
1 2

1 2 1 2

2 2
2(1 )

m m m

N m N m N m m N m N m n m
p p p p p p p

                   3N
p ,     (7.16) 

since 1 2m m m .  The highest degree of the triple product 1 2

1 2
( ) ( ) ( )m m m

n n n
P P P  in this 

case is 3N, and it can be integrated exactly using Gaussian quadrature with a minimum of 

k Gaussian latitudes, where 2 1 3k N  or (3 1) / 2k N .

 For the Fourier transform in an 42R  resolution model, the minimum number of 

grid points in the zonal direction is 3 42 1 127 .  Because the FFT needs these points 

to be multiples of 2, 3, or 5, the minimum number of points is taken as 128.  The same 

number of points in the zonal direction are required for 42T  truncation.  However, the 

minimum number of Gaussian latitudes for an 42R  resolution is 106 [ (5 42 1) / 2] ,

and for 42T  it is 64 [ (3 42 1) / 2] .

7.5  The x-y-  Coordinate System 

In most applications of the hydrodynamic equations, the horizontal coordinate system is 

either the Cartesian coordinate system or the spherical coordinate system.  However, the 

vertical coordinate system has more possible variations.  The most common vertical 

coordinates are height (z) and pressure (p).  One of the disadvantages of using z or p as a 

vertical coordinate is that the lower coordinate surfaces are frequently below the ground 

in regions of high elevation (Andes, Himalayas, Rockies), which may cause difficulties 

when incorporating the effect of surface topography into the model equations. 

 To avoid this, use is made of the sigma ( ) coordinate (Phillips 1957), in which 

the lowest  surface follows the earth’s surface.  The  vertical coordinate is defined as 

        
s

p

p
,      (7.17) 

where
s

p  is the surface pressure.  Then 

Multilevel Global Spectral Model 



120

Figure 7.3.  Location of points on pressure and sigma surfaces. 

                
1  at the earth's surface

0   at the top of the atmosphere.

In a quasi-static system,  varies monotonically with height and has the desired 

properties of a vertical coordinate. 

 The transform from an x-y-p coordinate system to an x-y-  coordinate will be 

presented here.  As shown in Fig. 7.3 let 1Q and 2Q be the values of variable Q on a 

surface at two points a zonal distance x  apart from each other.  Let 3Q  be the value at 

the projection of 2Q  on the p surface so that the zonal distance between 1Q  and 3Q  is also 

x .  Let the vertical distance between 2Q  and 3Q  in the  coordinate be .  With this, 

we may write  

3 1 3 22 1Q Q Q QQ Q

x x x
.            (7.18) 

Taking the limits 0x  and 0 , we obtain

         
p p

Q Q Q

x x x
.    (7.19) 

Similarly, one can write an expression for the derivatives with respects to y and t.

However, along vertical we have 

Q Q

p p
.     (7.20) 

If we assume that  is a single-valued function of pressure, then the above expression is 

justified.  In a non-hydrostatic, vigorous, small-scale weather system such as a tornado, 

pressure may not decrease monotonically with height.  Therefore (7.20) will not be 

applicable in such cases. 

 The following transformation laws describe the conversion from the p to the 

coordinate system: 
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p p

Q Q Q

x x x
,     (7.21) 

      
p p

Q Q Q

y y y
,     (7.22) 

      
p p

Q Q Q

t t t
,     (7.23) 

Q Q

p p
.     (7.24) 

Now that we have the template for conversion from the p to the  coordinate system, in 

order to form a closed system of equations for the full spectral model, we first need to 

transform the substantial derivative, the pressure gradient term, the hydrostatic equation, 

and the mass continuity equation from pressure coordinates to sigma coordinates.  This is 

done in the following sections.

7.5.1 Substantial Time Derivative ( / )d dt  in  Coordinates 

The substantial derivative (i.e., /dQ dt ), in the (x, y, p) system is given by 

         
p p p

dQ Q Q Q Q
u v

dt t x y p
.    (7.25) 

On making use of (7.21) to (7.24), this can be written as 

p p p

  +  
t p

dQ Q Q Q Q
u v u v

dt t x y x y
.

Thus we obtain 

        
dQ Q Q Q Q d

u v
dt t x y dt

,

or

        
dQ Q Q Q Q

u v
dt t x y

,    (7.26) 

where /d dt , the vertical velocity in  coordinates. 

7.5.2.  Pressure Gradient Term in  Coordinates 

We start from the terms /
p

g z x  and /
p

g z y  in the pressure coordinate system.  

Using transformation rule (7.21), we can write 
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p p

z z z
g g g

x x x
.

Using the hydrostatic equation, / ( / )p z g g p RT , we can rearrange g z

from the above equation to obtain 

       
z z p RT p

g g
p p

.

Hence

p p

z z RT p
g g

x x p x
.    (7.27) 

If we let Q p  in (7.21) and noting that / 0
p

p x , we obtain 

0
p

p p

x x
.    (7.28) 

From (7.27) and (7.28) we obtain 

      
p

z z RT p
g g

x x p x
.    (7.29) 

Similarly,

      
p

z z RT p
g g

y y p y
.    (7.30) 

Equations (7.29) and (7.30) give the conversion of the horizontal pressure gradient terms 

from p to  coordinates. 

It is often convenient to introduce the Exner function

       

/

0

p
R c

p

p
,     (7.31) 

where 0 1000 mbp .  From the above definition, by taking the natural logarithm of both 

sides of (7.31) and differentiating with respect to x it follows that 

0

ln ln
p

R
c

p

p
,

0ln ln ln
p

R
p p

c
,

        0ln ln ln
p

R
p p

x x c
,

0

1
ln ln

p

R
p p

x c x
,
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1

p

R p

x pc x
.    (7.32) 

Now (7.29) may be written as 

p

p

z z T
g g c

x x x
.

Furthermore, using T , we obtain 

p

p

z z
g g c

x x x
.    (7.33) 

Similarly,

p

p

z z
g g c

y y y
.    (7.34) 

 It should be noted that the individual terms on the right-hand side of (7.29), 

(7.30), (7.33), and (7.34), like /g z x  and ( / ) /RT p p x , are very large in 

magnitude but have opposite signs.  Small errors in the calculation of these terms can 

lead to larger errors in the estimation of the pressure gradient force, which is a small sum 

of these two large terms with opposite signs.  This problem becomes particularly serious 

over regions covered by steep mountains. 

7.5.3 Hydrostatic Equation in  Coordinates 

The hydrostatic equation may be expressed as 

1 RT

p p
,

or

RT

p p
.

Using the relation /
s

p p  and noting that

1 1

s s s

p p

p p p p p p
,

we get  

s

p
RT

p
,

or

RT .     (7.35) 
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This is the hydrostatic equation in  coordinates.  An alternative form of the hydrostatic 

equation can be obtained from the Exner function (7.31).  We take the natural logarithm 

of both sides of (7.31) and differentiate with respect to  to obtain 

1

p

R p

c p
.     (7.36) 

Using the hydrostatic equation, / ( / )p z g g p RT , we obtain 

             
1 1

p

z
g

c T
,

or

p

z
g c ,        as T .   (7.37) 

This is also an hydrostatic equation in (x, y, ) coordinates. 

7.5.4 Mass Continuity Equation in  Coordinates 

The mass continuity equation in the (x, y, p) system is 

            0
p p

u v

x y p
,    (7.38) 

where /dp dt  is the vertical velocity in the pressure coordinate system.  Making use 

of (7.21) and (7.22), we may write

            
p p

u u u

x x x
,    (7.39) 

            
p p

v v v

y y y
.    (7.40) 

The term / p  may also be written as 

dp dp

p p dt dt p

                
p p p p

u v
t x y p

                 
p

u v
t x y

                       
u p v p p

x y p
,    (7.41) 

or
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d p u p v p p

p p dt x y p
.    (7.42) 

Letting Q p  in (7.21) and (7.22), we obtain 

         
p p

p p p

x x x

and   

p p

p p p

y y y
.

Since / / 0,
p p

p x p y  we obtain 

            
p

p p

x x
 

and   

p

p p

y y
.    (7.43) 

Substituting for / and /p x p y into (7.42), we obtain 

p p

d p p u v

p p dt x y p
.  (7.44) 

 From (7.39), (7.40) and (7.44), the continuity equation (7.38) may be written in 

the (x, y, ) coordinate system as 

p p

u u v v d p

x x y y p dt

0
p p

p u v

x y p
,

or

        0
u v d p

x y p dt
.     (7.45) 

As /
s

p p  and /
s

p p , (7.45) can be written as 

            
1

0s

s

dp u v

p dt x y
,    (7.46) 

or   
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ln

0s
d p u v

dt x y
.    (7.47) 

This is the mass continuity equation in the (x, y, ) coordinate system. 

 Often it is useful to write the continuity equation in flux form.  This can be done 

by multiplying (7.46) by 
s

p  to obtain 

           0s

s

dp u v
p

dt x y
,

or

        0s s s s

s s s

p p p p u v
u v p p p

t x y x y
,

or

( ) ( ) ( ) 0
s s s s

p up vp p
t x y

.    (7.48) 

This is the flux form of the continuity equation in the (x, y, ) system. 

7.6   A Closed System of Equations in  Coordinates on a Sphere 

In Section 7.5 we transformed the substantial time derivative, the pressure gradient term, 

and the mass continuity equation from the (x, y, p) to the (x, y, ) coordinate system.  We 

make use of these to write a closed system of equations for a global model with  as the 

vertical coordinate.  The appropriate coordinate system for a global domain is the 

spherical curvilinear coordinates.  The position of any point in this coordinate system is 

given by ( , , r), where  is the longitude,  is the latitude, and r is the distance from the 

center of the earth. 

 It is convenient to regard the earth as a sphere with radius a, so that r a z ,

where z is the vertical height of the point from the earth’s surface.  With this, we obtain 

cos ,                ,          and   x r y r z r .

Because z a , r a , so that we may write 

cos ,                ,          and   x a y a z r .   (7.49) 

If instead of height we take pressure as the vertical coordinate, then the position of any 

point is given by ( , , p) and the distance increments are 

cos ,                ,          and   
p

x a y a z
g

.   (7.50) 

 The basic equations governing the atmosphere are the three momentum equations, 

the mass continuity equation, and the thermodynamic equation.  The large-scale 

atmospheric flow is quasi-horizontal with very small vertical acceleration.  For such an 
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atmosphere, the vertical momentum equation is approximated by the hydrostatic 

assumption:

p
g

z
,

where p is the pressure, z is the height, g is the acceleration due to gravity, and  is the 

density of air.  With this, the equations for a global model in ( , , p) coordinates are as 

follows:

The horizontal momentum equation 

V V
V V fk V F

t p
.    (7.51) 

The hydrostatic equation 

p
.      (7.52) 

The thermodynamic equation 

      
p p

T T RT Q
V T

t p c p c
.    (7.53) 

The mass continuity equation 

             0V
p

.      (7.54) 

The moisture equation 

        
r r r r

u v E P
t x y p

.    (7.55) 

Here V ui vj  is the horizontal wind vector, t is time, gz  is the geopotential, f is 

the Coriolis parameter, T is the temperature,  is the vertical velocity /dp dt , F  is the 

frictional force vector, Q  represents all the diabatic sources and sinks of heat, r is the 

specific humidity, E is the evaporation, and P is the precipitation. 

 If we take the vector equation (7.51) as two scalar equations, (7.51) to (7.55) are 

the six equations in the six dependent variables u, v, , , T, and r (x, , , and p are 

independent variables) that form a closed system. 

 We now write the above set of equations with  as the vertical coordinate.  With 

 as the vertical coordinate, we have 0  at the top ( 0)p  and 1 at the bottom 

( )
s

p p  of the atmosphere.  Therefore, / 0d dt  at 0  and 1.  These are 

the top and bottom boundary conditions for .  From (7.29) and (7.30), we have 

ln
p

RT
p RT p

p
,   (7.56) 
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where  is a two-dimensional operator.  With the fact that 
s

p p  and that  is 

constant on  surfaces, (7.56) may be written as 

       ln
p s

RT p .    (7.57) 

Thus the momentum equation in the  coordinate system becomes 

     ( ln )
s

V V
V V fk V RT p F

t
.

Furthermore, making use of the identity 

     ( )
2 2

V V V V
V V V V k V ,

the momentum equation takes the form 

           ( ) ln
2

s

V V V V
f k V RT p F

t
.  (7.58) 

The hydrostatic equation takes the form 

RT .     (7.59) 

The continuity equation (7.47) is then 

          
ln

lns

s

p
V p V

t
.    (7.60) 

It should be noted that since ln
s

p  is a function of  and  only, then ln / 0
s

p .

Thus the vertical advection term ln /
s

p  does not appear in (7.47).  The 

thermodynamic equation, or the first law of thermodynamics, is 

1
p

dT dp
c Q

dt dt
.     (7.61) 

From the definition of , we obtain /
s s

dp dt p p .  Then (7.61) takes the form 

( )
s s T

p

T T RT
V T p p H

t c p

                s

T

p p s

dpT RT RT
V T H

c c p dt

                 
ln

s

T

p p

d pT RT RT
V T H

c c dt
.   (7.62) 

From (7.62) and (7.60) we get 
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T

p

T RT
V T V H

t c
,   (7.63) 

where / /
p

RT c T  is the static stability and /
T p

H Q c  represents the diabatic 

heat sources and sinks.  The moisture equation is

r r
V r E P

t
.     (7.64) 

Thus (7.58), (7.59), (7.60), (7.63), and (7.64) represent a closed system of equations in 

( , , ) coordinates.

 For a global spectral model, it is convenient to write the horizontal momentum 

equation (7.58) as vorticity and divergence equations.  If we operate on (7.58) by k ,

we obtain the vorticity equation.  Operating on the same equation by  results in the 

divergence equation.  Furthermore, it is advantageous to write these equations in flux 

form.  With this, the desired closed system of equations takes the following form as given 

by Daley et al. (1976): 

   ( )
V

f V k RT q F
t

,    (7.65) 

( )
D

k f V
t

           2

2

V V V
RT q F ,     (7.66) 

T

p

T RT
TV TD D H

t c
,     (7.67) 

q

q
V D

t
,       (7.68) 

RT ,        (7.69) 

r r
rV rD E P

t
.     (7.70) 

A summary of the basic equations can be found in Appendix B. 

 In the above equations,  is the vorticity, D is the divergence, f is the Coriolis 

parameter, V is the horizontal wind vector ui vj , T is the temperature, ln
s

q p , r is 

the specific humidity, / /
p

RT c T  is the static stability parameter, F is the 

frictional force, 
T

H  is the diabatic heat sources and sinks, E is the evaporation, and P is 

the precipitation. 

 There are different ways to treat the moisture variables in a model.  Most of the 

models treat the moisture in terms of specific humidity, as in (7.70).  In the Florida State 

University Global Spectral Model, however, it is the dew-point depression 
d

T T  that is 
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used as the moisture variable.  We present below a prediction equation for the dew-point 

depression also. 

 The dew-point temperature 
d

T  is a function of pressure p and specific humidity r,

so that 

d d d

pr

dT T Tdp dr

dt p dt r dt
 .   (7.71) 

The first term on the right-hand side gives the change in 
d

T  due to changes in pressure, 

keeping specific humidity constant.  This change occurs due to atmospheric dynamics.  

The second term represents the change in 
d

T  due to changes in specific humidity at 

constant pressure.  This results from external moisture sources or sinks (evaporation and 

precipitation, etc.) and may be denoted by 
M

H .

 To determine a suitable expression for /
d r

T p , consider the Clausius-Clapeyron 

equation,

        
2

( )1 1
s d d

s d

e L T T

e p R T p
,      (7.72) 

where
s

e  is the saturation vapor pressure, 0.622  is the ratio of the molecular weight 

of water vapor to the molecular weight of dry air, and R is the gas constant for dry air, 

and L is the latent heat of phase change and is a function of 
d

T .  The specific humidity is 

defined as 

         s
e

r
p

.       (7.73) 

Taking the natural logarithm of (7.73) and differentiating the resulting equation with 

respect to p, we obtain 

       ln ln ln ln ln ln lns

s s

e
r e p e p

p
,

        ln ln ln ln
s

r e p
p p p p

,

             
ln 1 1

s

s

er

p e p p
.      (7.74) 

From (7.72) and (7.74) we get 

                  
2

( )ln 1
d d

d

L T Tr

p R T p p
.    (7.75) 

For constant r, 

                 
constant

ln
0

r

r

p
.

Therefore
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2

( ) 1 1
0d d

d

L T T

R p T p
,

or  
2

constant
( )

d d

dr

T RT

p pL T
.      (7.76) 

Thus from (7.71) 

        
2

( )

d d

M

d

dT RT
H

dt pL T
.      (7.77) 

 Vertical velocity is given by

            s

s s s

s

p
p p p

p

ln
s

d p
p p D

dt
.    (7.78) 

With this, (7.77) takes the form 

2

( )

d d d

d d M

d

T T RT
T V T D D H

t L T
.   (7.79) 

This is a prediction equation for dew-point temperature, 
d

T .  Subtracting (7.79) from 

(7.67), we obtain a prediction equation for dew-point depression as 

S S
VS SD

t

                    
2

( )

d

T M

p d

RTRT
D H H

c L T
,   (7.80) 

where
d

S T T  is the dew-point depression. 

 We have used , the vertical velocity in  coordinates, in the model equations, 

but have not discussed the procedure to calculate it.  We now derive a diagnostic 

equation to obtain .

 We define the vertical integral operators ( ) and ( ) as 

1

0
F̂ Fd        and

1

F̂ Fd .    (7.81) 

Integrating the continuity equation (7.68) from 0  to 1, we obtain

1 1 1 1

0 0 0 0

q
d V q d V d d

t
.

As ln
s

q p  is not a function , and vanishes at 0  and 1, we obtain 

ˆ ˆq
V q V

t
,     (7.82) 
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where
1

0

ˆ
V Vd .  If we integrate the continuity equation from  to 1, we 

obtain
1 1 1 1q

d V q d V d d
t

,

or

ˆ ˆ
1

q
V q V

t
.    (7.83) 

Eliminating /q t  from (7.82) and (7.83), we obtain 

ˆ ˆ ˆ ˆ
( 1) V V q V V q ,

or

       
ˆ ˆˆ ˆ( 1) D V q D V q .   (7.84) 

This is the diagnostic equation for , where D V .

 Before we transform the global model equations into their spectral form, we 

separate their linear and nonlinear parts.  This is necessary in order to integrate the model 

using a semi-implicit time-integration scheme. 

 The pressure gradient term is divided into linear and nonlinear parts assuming 
* 'T T T , where *

T  is the horizontal mean at a level, which is a function of  only, 

and T' is the deviation from *
T .  Likewise, * ' .  To remove the wind singularity 

at the poles, we define the Robert functions as 

        
cosu

U
a

        and
cosv

V
a

.    (7.85) 

We also define an operator  as 

           
2

1
, cos

cos

A B
A B .    (7.86) 

We now make use of this operator , the Robert functions, and the definition of *
T  to 

recast the model equations. 

 If we now consider the terms on the right-hand side of the vorticity equation 

(7.65), we have 

2

1 ( )

cos

f U
f V       

        
( )

cos
f V

,     (7.87) 

*ˆ ˆ ˆ
'k RT q k RT q k RT q

             
ˆ

'k RT q
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2 2

1 '
cos

cos

RT q

a

          
2

'
cos

RT q

a
,     (7.88) 

2

1ˆ

cos

V V
k        

                  cos
U

,     (7.89) 

1ˆ

cos

F F
k F

a a
.     (7.90) 

 Thus using (7.87), (7.88), (7.89) and (7.90), the vorticity equation takes the form 

2

1
+

cos

V
f U

t

                     
2

'
cos cos cos ( )

FRT q
f V

a a

                       
2

'
cos

FU RT q

a a

              
2

1
cos

cos

A B
.      (7.91) 

In a more compact form, we may write the vorticity equation as 

,A B
t

.     (7.92) 

Similarly, the divergence equation may be written as 

      2 * 2 2,
D

RT q B A a E
t

.    (7.93) 

The thermodynamic equation may be expressed as 

      
*

* ', '
T

p

T RT q
UT VT B

t c t
.    (7.94) 

The continuity equation can be written as 

ˆ ˆ 0
q

G D
t

.     (7.95) 

The hydrostatic equation is given as 

RT .     (7.96) 
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Equations (7.92) to (7.96) along with the equation of state form a closed set of equations 

for the dry atmosphere.  Finally, the moisture (dew-point depression) equation takes the 

form

        ,
S

S
US VS B

t
.     (7.97) 

In the above set of equations, 

2

'
cos cos

FV RT q
A f U

a a
,

2

'
cos

FU RT q
B f V

a a
,

2

1
cos

cos

q q
G U V ,

2 2

22cos

U V
E ,

ˆ ˆˆ ˆ( 1) G D G D ,

*' ˆ ˆ ˆˆ' '
T T

p p

RT RT
B T D G D G H G G

c c
,

2

ˆ ˆ
( )

d

S T M

p d

RTS RT
B SD G G D H H

c L T
.

 We next define a pseudopressure function P as 

*
P RT q .     (7.98) 

This function enables the pressure gradient term to be split into linear and nonlinear parts.

Differentiating (7.98) by , we get 

*
P T

R q .

Making use of the hydrostatic equation ( / )RT , we can write 

*
P T

RT R q .     (7.99) 

If we take / t  of the above equation and substitute for /T t  from (7.94), we obtain 

*
* ( ', ')

T

p

P RT q
R UT VT B

t c t

            
* * *

T q T T
R R q R q

t t t
.   (7.100) 

Since *
T  is independent of time, the term */ ( / )t T  is zero.  Furthermore, the local 

time rate of change of  on a  surface is zero.  Thus 
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*
* ( ', ')

T

p

P RT q
R UT VT B

t c t

            
*

T q
R

t
.       (7.101) 

From (7.95) and (7.101), we get 

       
* ( ', ')

T

P
R UT VT B

t

                          
* *

ˆ ˆ

p

T RT
R G D

c
.    (7.102) 

 We next introduce a pseudo-vertical velocity function W by the expression 
ˆ ˆ( )W G D , where Ĝ  is the vertically integrated advection of surface pressure 

and D̂  is the vertically integrated divergence. W may also be expressed as 

q
W

t
.     (7.103) 

The surface value of W is given by ˆ ˆ(at 1) ( )
s

W W G D .  With this and noting 

that * * *( ) / /
p

RT c T , (7.102) becomes 

* ( ', ')
T

P
R W R UT VT RB

t
.    (7.104) 

The divergence equation takes the form 

          2 2 2( , )
D

P B A a E
t

.    (7.105) 

Furthermore, the vertically integrated continuity equation (7.95) can be expressed as 

          ˆ ˆ
s

q
G D W

t
.     (7.106) 

 Relating the four variables P, W, D, and q, we have three equations.  Thus, we 

need an additional equation to complete this system.  For this purpose, we write the 

continuity equation in the form 

          ( )
q

D G
t

    at any level.   (7.107) 

Since ˆ ˆW G D , we obtain 

ˆ ˆ( )
W q

G D
t

.    (7.108) 

Substituting for /q t , we obtain 
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W

W
D B ,     (7.109) 

where
W

B G .

 We have four equations for the four unknowns P, W, D, and q.  A summary of the 

multi-level spectral model equations can be found in Appendix B.  We will be using a 

semi-implicit time-differencing scheme for integrating (7.104) to (7.106) and (7.109).  It 

is customary to treat the vorticity and moisture equations explicitly.  Along with the other 

model equations, we transform the above four equations to spectral form, and then we 

combine them to form a single spectral equation for semi-implicit integration. 

7.7   Spectral Form of the Primitive Equations 

The model equations are transformed into their spectral form similar to Daley et al. 

(1976) by (a) writing each of the model variables as a truncated series of spherical 

harmonics and (b) multiplying both sides of the equations by the complex conjugate of 

the spherical harmonics and integrating, making use of the orthogonality relationship 

       1 2

1 2

1 2
1 2 1 2*

1 0
1 2 1 2

if  and1

   if and/or0

m m

l l

l l m m
Y Y d du

l l m m
.

This enables us to obtain the spectral form of the equations for each of the spherical 

harmonic amplitudes.  The spectral amplitudes of the nonlinear parts of the equations are, 

however, obtained by the transform method. 

 The spectral amplitude of the horizontal component of wind in terms of Robert 

functions is obtained from the relations 

          1 1 12

1
( 1) ( 2)m m m m m m

l l l l l l
U im l l

a
   (7.110) 

and

          1 1 12

1
( 1) ( 2)m m m m m m

l l l l l l
V im l l

a
,   (7.111) 

where

             

1/ 2
2 2

24 1

m

l

l m

l
.

There are also relationships between m

l
U , m

l
V , m

l
, and m

l
D , where m

l
 and m

l
D  are 

coefficients of  and D, respectively.  Namely,

           1 1 11 1m m m m m m

l l l l l l
l l U imD l l ,    (7.112) 

           1 1 11 1m m m m m m

l l l l l l
l l V l D l D im .   (7.113) 

 Following the above procedure, we get the spectral form of the equations:

Vorticity equation: 

             ( , )
m

m
l

l
A B

t
.     (7.114) 
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Divergence equation: 

2 ( 1) ( , ) ( 1)
m

mm ml

l ll

D
a l l P B A l l E

t
.   (7.115) 

Thermodynamic equation: 

     
2

* [ ( ', ') ]
m

m ml

l T l

P
R W R UT VT B

t
.    (7.116) 

Hydrostatic equation: 
m

ml

l
RT .     (7.117) 

Pseudo-vertical velocity equation: 

            
m

mml

l W l

W
D B .     (7.118) 

Mass continuity equation: 
m

m
l

s l

q
W

t
.      (7.119) 

Moisture (dew-point depression) equation: 

,
m

m
l

S
l

S
US VS B

t
.    (7.120) 

The left-hand side of the above equations contain the linear parts, while the nonlinear 

parts are put on the right-hand side.  This is to facilitate their integration using the semi-

implicit time-integration scheme.  Note that in (7.116), m

l
P  is a spectral component of 

*
P RT q .  It should not be confused with the Legendre polynomial ( )m

n
P .

Semi-implicit Time-Differencing Scheme.  The primitive equation model has both 

slow-moving atmospheric waves and fast-moving gravity waves as its solution.  Gravity 

waves have phase speeds of the order of 300 ms
-1

, which is more than an order of 

magnitude higher than the phase speeds of atmospheric waves.  A centered time-

differencing scheme used to accommodate the gravity waves will need very small time 

steps to avoid violating the CFL criterion.  This makes the integration of a primitive 

equation model computationally very expensive, particularly for a high-resolution model. 

 To overcome this problem, the gravity wave part of the primitive equation 

solution is integrated using an implicit time-integration scheme, which is an 

unconditionally stable scheme at time steps much larger than those permitted by the CFL 

criterion.  The atmospheric wave solution is integrated using an explicit time-differencing 

scheme.  Implicit integration is used only for the linear parts of the equations.  The 

nonlinear parts are integrated explicitly.  This time-differencing scheme, where part of 

the equations are integrated explicitly and part implicitly, is called a semi-implicit time-

differencing scheme.  The time step needed for this scheme will be that needed by the 

fastest-moving atmospheric waves to satisfy the CFL criterion. 

 The gravity waves are excited in the divergent part of flow by the force of gravity.  

The divergence equation, the thermodynamic equation, and the mass continuity equation 

contain the gravity wave solution as well as the atmospheric wave solution.  They will  be 
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integrated using the semi-implicit time-integration scheme.  The vorticity equation and 

the moisture equation are integrated explicitly. 

 To develop semi-implicit time differencing, we define 

( ) ( )

2

t F t t F t t
F ,     (7.121) 

so that 

( ) ( ) ( )

2

t

F F t t F t t F F t t

t t t
.   (7.122) 

The terms in the model equations that are treated explicitly are calculated at time t, while 

those that are treated implicitly are calculated as means at time t t  and t t .

 With this, the spectral forms of the divergence equation may be written as 

2( )
( 1) [ ( , )] ( 1)

t
m m

t
m m ml l

l l l

D D t t
a l l P B A l l E

t
,

or

2 ( 1)
t t

m m

l l
D a tl l P        (7.123) 

{[ ( , )] ( 1) } ( )m m m

l l l
t B A l l E D t t .

The thermodynamic equation is written as 

*

( )

[ ( ', ') ]

t
m m

l l

t
m m

l T l

P P t t

R W R UT VT B
t

,

or

       * [ ( ', ') ]

t
m

t
m ml

l T l

P
tR W tR UT VT B ,

           
( )m

l
P t t

.    (7.124) 

The equation for pseudo-vertical velocity is written as 

          

t
m

t
mml

l W l

W
D B ,     (7.125) 

and the mass continuity equation becomes 

       
( )

,

t
m m

m
l l

s l

q q t t
W

t

or

( )
t

mm m

l s ll
q t W q t t .     (7.126) 
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 After eliminating 
t

m

l
D  between the divergence equation (7.123) and the pseudo-

vertical velocity equation (7.125), we get 

2 ( 1)

t
m

t
ml

l

W
a tl l P         (7.127) 

, 1
m mm m

l W lll
t B A l l E B D t t .

Now eliminating 
t

m

l
W  from the above equation and the thermodynamic equation (7.124), 

we get 

2 2

*
( 1)

t t
m m

l l
P a R t l l P

         
* *

( )
( ', ')

m
m

l

T l

P t ttR
UT VT B

             , 1
m

l
R t t B A l l E

             
m m

W ll
B D t t ,

which may be written as 

2 2

* *
( 1) ( )

m
t t

m m mT

l l D l

l

C
P a R t l l P C ,  (7.128) 

where

          
( )

', '
m

mm
l

T Tl l

P t t
C R t UT VT B

and

         , 1
mm m m

D W ll ll
C R t t B A l l E B D t t .

Equation (7.128) is a Helmholtz-type second-order differential equation in 
t

m

l
P .  The 

term on the right-hand side of this equation is a function of time t or t t  and can be 

calculated via the transform method. 

 One can solve this equation using a finite-difference analog.  For this, consider 

the nth level of an N-level model (i.e., 1 n N ).  Let
n
 be the sigma value at the layer 

interface and let 
n
 be the sigma value in the center of the layer, where 1 2

1( )
n n n

.

Also, the logarithmic spacing between two adjacent levels is defined as 

1
1ln ln ln n

n n n

n

d ,    (7.129) 

and the vertical spacing between adjacent  levels is 1n n n
for 1 2n N .

Considering  the top of the model as  the  top of  the  atmosphere (where 0 )  and  the
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Figure 7.4.  Vertical structure of the model. 

bottom of the model as the earth’s surface (where 1), we get 0 1  and 

1 11
N N

.  Figure 7.4 shows the vertical structure of the model.

One can then write the finite-difference analog of (7.128) as 

2
1 1

* * 2

1 11

1
( 1)

t t t t

tn n n n

n

n n n nn

P P P P R t
l l P

d d a
    (7.130) 

1* *

11

1 1 1
( ) ( ) ( )

T n T n D n

n nn

C C C ,

where the tilde ( ) indicates the value in the middle of the layer.  For simplicity, we have 

dropped the wavenumber index m, l in the above equation. 

 Equation (7.130) leads to 2N  algebraic equations for the N unknowns 
t

nP .

Two equations can be obtained by using the boundary conditions; thus this leads to a 

closed set of N algebraic equations for the N unknowns.  At the top boundary ( 0 ),

0  and thus 0W .  Then from (7.125) we get 

           
1

1
0

0
t

t

W

W
D B ,

or

        
1

1
0

t

t

W

W
D B      at    1 .

 Substituting the above value of 1

t

W  into the finite-difference analog of (7.124), we 

get
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2 1 1
11* *

1 1 10 0

( )1 1
( )

t t

t
T

W

CP P
R t B D

d
.   (7.131) 

Eliminating 1

t

D  between (7.131) and (7.123) at level one gives 

2
2 1 1

1 1* 2 *

1 10 0 1

( )1
( 1) ( )

t t

t
T

D

CP P R t
l l P C

d a
.   (7.132) 

At the lower boundary, the finite-difference analog of (7.125) becomes 

1 *

t t

tN N

NN T
N

N

P P
R t W C

d
.

As *
1

t t
t

N s
s s

P P RT q , the above equation may be written as 

      
*

*

t

tN ts s
NN T

N
N N N

RTP
q R t W C

d d d
.   (7.133) 

Assuming that 

           
* * *

* * 1
1

1
N N N

N N

N p N

RT T T

c d
,

we get 

            * * * *

1 1s N N N N N

p

R
T T d T

c
.    (7.134) 

Also, from the definition of pseudo-vertical velocity in layers 1N  and N, we get 

          1 1 1

t t

N sN N
W W      (7.135) 

and

            
t t

N sN N
W W .    (7.136) 

Combining (7.135) and (7.136) gives 

            1 1( )
t t t

N N sN N
W hW h W ,    (7.137) 

where 1/
N N

h .

 Substituting for *

s
T  from (7.133) and 

t

NW  from (7.136) into (7.132) and with 

some further simplification, we get the finite-difference analog of the thermodynamic 

equation at level 
N

 as 

           *
11* * *

t
t t TN N
N sN N

N N N

CP R T
d h W R TW ,   (7.138) 

where
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* *
* *

1 1
N N

N N N

p N

RT T
h

c d
.

Here 0 1h  and 1N N
h .

 A relation can be obtained between 
t

sW , 1

t

NW , and 
t

NP  using finite-difference 

analogs of the divergence equation and the pseudo-vertical-velocity equation applied to 

the
N

 level.  Furthermore, a relation between 1

t

NP ,
t

NP , and 1

t

NW  can be obtained by 

the finite-difference analog of the thermodynamic equation at the 1N
 level. 

 Thus we have four unknowns, namely 1

t

NP ,
t

NP , 1

t

NW , and 
t

sW , and three 

equations.  These three equations can be simplified to eliminate 1

t

NW  and 
t

sW  to obtain a 

single equation involving 1

t

NP  and 
t

NP , that is, 

2
1

2* *

1 1 1

1 ( 1)
t t t t

N N N N

N N N N N

P P P R t l l P

ad d
     (7.139) 

* * 1
1 1

1 1 1
T T D

N N N
N N N

C C C ,

where   
* *

* 1
1 * *

1

N N

N

N N
h

.

 Finally, (7.130), (7.132), and (7.139) define a system of N equations in N

unknowns.  The coefficient matrix is an N N  tridiagonal matrix and the unknowns are 
t

nP  for 1 n N .  Once 
t

nP  is obtained, one can find 
t

nD ,
t

nW , 1

t

NW , and 
t

sW .

Furthermore, q can be obtained from 
t

sW  using the mass continuity equation.  A 

summary of the spectral equations can be found in Appendix B.

7.8   Examples 

We show here some examples of the quality of forecasts produced by the multilevel 

spectral model.  Overall performance of the model is determined by anomaly correlation.  

Also we demonstrate the prediction of hurricanes by such models. 

Anomaly Correlation.  We start with an anomaly which is defined as 

( ) ( )
n

Q t Q t Q , where ( )Q t  is a variable and 
n

Q  is its climatological mean value.  

The anomaly correlation, as shown in Figure 7.5, is defined by 

1/ 2 1/ 2
2 21

( ) ( ) ( ) ( )1

( ) ( ) ( ) ( )

N
p p o o

n

p p o o

Q t Q t Q t Q t

A
N

Q t Q t Q t Q t

.
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Figure 7.5.  (a) Geopotential height anomaly correlation at (a) 1000 mb and (b) 500 mb 

and root-mean-square error at (c) 1000 mb and (d) 500 mb for the Northern Hemisphere 

at model resolutions T-213 and T-106.  Source: ECMWF. 

Figure 7.6.  Predicted positions of a monsoon depression on day five of the forecast are 

shown by dots.  Each dot is the forecast at a particular horizontal resolution ( 21T ,

31T , 42T , 63T , 106T , and 170T ) of the global spectral model.  The flow 

field shows the verification chart on day five, based on ECMWF analysis. 

Multilevel Global Spectral Model 



144

Here N denotes the number of cases, the subscript p denotes the predicted state, the 

subscript o denotes the observed state, and the overbar denotes an ensemble mean of all 

cases.

 Figure 7.5 illustrates the anomaly correlation and root-mean-square errors of 

typical forecasts at the European Centre for Medium-Range Weather Forecasts 

(ECMWF) in England.  Panels 7.5a and 7.5c show the 1000-mb errors, whereas panels 

7.5b and 7.5d show the 500-mb errors. 

Resolution.  The impact of resolution on spectral modeling is illustrated here in 

the context of monsoon forecasts (see Fig. 7.6).  Here we show the ECMWF analysis of a 

tropical depression over northeastern India.  This is the flow field at 850 mb for 7 July 

1979 at 1200 UTC.  The dots shown are in the vicinity of the forecast positions of the 

center of this storm (assessed from minimum geopotential height at the 850-mb surface).  

We find that as the resolution was increased from 21T  successively (i.e., 31T ,

42T , 63T , 106T , and 170T ), the predicted position of the depression at day 

five of the forecast improved.  This illustrates the sensitivity of tropical forecasts to 

resolution.

Extratropical Cyclone.  An example of a successful forecast of an extratropical 

storm is shown in Fig. 7.7.  Here the top-left panel (Fig. 7.7a) illustrates the observed sea-

level pressure for an extratropical cyclone located southwest of England.  Panels 7.7b to 

7.7f illustrate forecasts (valid at the same time as panel 7.7a) at the end of day two, three, 

four, five, and six.  These forecasts were experimental and based on a new advancement 

in the analysis procedure called four-dimensional assimilation (Rabier et al. 1993).  It is 

interesting to note that all of these forecasts were successful in predicting the intense 

cyclone over southwestern Europe through day six of the forecasts. 

Hurricane Forecast.  An example of hurricane formation is illustrated in Fig. 7.8.  

This relates to hurricane Frederic of 1979, which formed over the Atlantic Ocean.  Here 

we illustrate the growth of the speed field during a 72-hour forecast.  This wind speed at 

850 mb is around 6 ms
-1

 at the start of the forecast.  The intensity grows to around 38 ms
-

1
 as the hurricane forms by hour 72 of the forecast.  This is one of several such forecasts 

that have been made by research and operational groups.  This kind of study requires very 

high-resolution global modeling (Krishnamurti et al. 1994a). 
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Figure 7.7.  An example of the prediction of an extratropical cyclone.  (a) Observed field 

of surface pressure (mb).  Days two (b), three (c), four (d), five (e), and six (f) of an 

ECMWF model prediction are valid at the same time as (a). 

Figure 7.8.  Forecasts of the wind speed (ms
-1

) at 850 mb made with a global spectral 

model for hurricane Frederic of 1979 over the Atlantic Ocean.  The three-hourly fields 

cover the period between hours 3 and 72 of a high-resolution ( 170T ) forecast. 
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Chapter 8 

Physical Processes 

8.1  Introduction 

In this chapter we present some of the physical processes that are used in numerical 

weather prediction modeling. Grid-point models, based on finite differences, and spectral 

models both generally treat the physical processes in the same manner. The vertical 

columns above the horizontal grid points (the transform grid for the spectral models) are 

the ones along which estimates of the effects of the physical processes are made.  In this 

chapter we present a treatment of the planetary boundary layer, including a discussion on 

the surface similarity theory.  Also covered is the cumulus parameterization problem in 

terms of the Kuo scheme and the Arakawa Schubert scheme.  Large-scale condensation 

and radiative transfer in clear and cloudy skies are the final topics reviewed. 

8.2  The Planetary Boundary Layer 

There are at least three types of fluxes that one deals with, namely momentum, sensible 

heat, and moisture.  Furthermore, one needs to examine separately the land and ocean 

regions.  In this section we present the so-called bulk aerodynamic methods as well as the 

similarity analysis approach for the estimation of the surface fluxes. 

 The radiation code in a numerical weather prediction model is usually coupled to 

the calculation of the surface energy balance.  This will be covered later in Section 8.5.6.  

This surface energy balance is usually carried out over land areas, where one balances the 

net radiation against the surface fluxes of heat and moisture for the determination of soil 

temperature.  Over oceans, the sea-surface temperatures are prescribed where the surface 

energy balance is implicit.  Thus it is quite apparent that what one does in the 

parameterization of the planetary boundary layer has to be integrated with the radiative 

parameterization in a consistent manner. 

8.2.1 Bulk Aerodynamic Calculations Over Oceans and Land 

Here the surface fluxes of sensible heat, water vapor, and momentum are expressed by 

relations of the type 

H p H a w a
F C C V T T  sensible heat, 
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q q q a w a
F L C V q q    latent heat,     (8.1) 

M D a a
F C V V     momentum. 

a
V ,

a
T , and 

a
q  are the wind speed, the air temperature, and the specific humidity, 

respectively, at the anemometer level.  
w

T  and 
w

q  denote the surface temperature and the 

saturation specific humidity at the surface.  The currently accepted values of the 

dimensionless exchange coefficients are 

       3 3 31.4 10 ,     1.6 10 ,     and    1.1 10
H q D

C C C .

These were determined experimentally during the Global Atmospheric Research Program 

(GARP) Atlantic Tropical Experiment (GATE). 

 The choice of units is quite important for the calculation of these fluxes.  For most 

meteorological purposes it is desirable to express 
H

F  and 
q

F  in units of W m
-2

, while 
M

F

is usually expressed in the familiar units of dynes cm
-2

.  For these units, one can simplify 

the bulk formulas (using 31.23 10  g cm
-3

) to read 

1.72
H a w a

F V T T ,

34.9 10
q a w a

F V q q ,     (8.2) 

2 21.35 10
M a

F V .

Here the wind speed is measured in m s
-1

, temperature in K or °C and specific humidity 

in g kg
-1

.

 In situations of strong wind speed, the ocean waves exert a large drag on the air, 

and one finds it desirable to allow for a variation of drag coefficient as a function of wind 

speed.  The variation of drag as a function of wind speed has been expressed by 

31.1 10
D DO

C C    for    5.8V  m s
-1

,

              0.74 0.046
DO

C V   for     5.8 16.8V  m s
-1

,

              0.94 0.034
DO

C V   for    16.8V  m s
-1

.

In dealing with tropical storms and hurricanes, a variation of drag as a function of 

wind speed is generally invoked.  The variation of the surface drag coefficient as a 

function of wind speed is also formally described in the section on the roughness 

parameter, 0z , described below. 

8.2.2. The Roughness Parameter 0z

Although 0z varies in space, it should be regarded as a function of time as well.  Over 

oceans under conditions of strong winds, the wave drag can be quite large.  Given a 

domain of calculation 0 x L  and 0 y M , one needs a tabulation of a land-ocean 

matrix IL  and a tabulation of orographic height h.  Let us suppose 0IL  over oceans 

and 1IL  over land.  The tabulation of h can be obtained from data centers that provide 

such information. 
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Over Oceans.  The well-known Charnock formula (Charnock 1955) is an accepted 

method for defining 0z over oceans, that is, 

*2

0

u
z M

g
,      (8.3) 

where M is a constant and has a value around 0.04.  One cannot calculate 0z  from this 

formula until *
u , the friction velocity, is known.  That, as we will show, appears in the 

similarity analysis and requires a knowledge of 0z .  Thus an iteration procedure is 

required to solve for 0z  and *
u  successively.  Note that 

          *2 0

0

' 'u u w  ,     (8.4) 

where 0  is the surface stress and 0  is the density of air.  A first-guess field of *
u  can 

be obtained from the bulk aerodynamic representation, noting that ' 'u w  represents the 

vertical eddy flux of momentum.  Given a first-guess field of 0z , one next goes to the 

similarity approach (described below) to determine the surface fluxes which define *
u ,

and in turn define the final value of 0z , the roughness parameter. 

Over Land.  Over land, an empirical method described by Manobianco (1989) allows for 

the variation of the roughness parameter as a function of the elevation based on the 

mesoscale variance of the mountain heights.  In its simplest form, it is expressed by the 

relation

       6

0 15 473.6 0.0368 10z h ,     (8.5) 

where units of the grid-scale mountain height h and of the roughness parameter 0z  are 

cm.  For numerical weather prediction, it is desirable to restrict the upper limit of 0z  to 

4000 cm. 

8.2.3 Surface Similarity Theory 

The basis of the similarity analysis presented here follows planetary boundary-layer 

observations, e.g., Businger et al. (1971).  According to these observations, 

nondimensionalized vertical gradients of large-scale quantities such as wind, potential 

temperature, and specific humidity can be expressed as universal functions of a 

nondimensional height /z L , where z is the height above the earth’s surface and L is the 

Monin-Obukhov length, which is defined by 

*2

*

u
L .       (8.6) 
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Here 0/g , where 0  is a reference temperature, *
u  is the friction velocity, *  is a 

characteristic temperature, and  is the von Karman constant.  These are usually 

expressed by the following relations: 

Nondimensional shear: 

         
*

/
m

z u
z L

u z
.      (8.7) 

Nondimensional vertical gradient of potential temperature:

        
*

/
h

z
z L

z
.        (8.8) 

Nondimensional vertical gradient of specific humidity: 

        
*

/
q

z q
z L

q z
,      (8.9) 

where *
q  is a characteristic specific humidity.  Here *

u , * , and *
q  are related to the 

surface fluxes by the expressions: 

*2

0' ' |u u w ,      (8.10) 

           * *

0' ' |u w ,      (8.11) 

           * *

0' ' |u q q w .       (8.12) 

The right-hand sides of the above equations are eddy correlations estimated over a period 

of time.  This defines the variables *
u , * , and *

q .

 The empirical fits of the boundary-layer observations are usually separated in 

terms of stability.  Stability is usually expressed as a function of the sign of the Monin-

Obukhov length L, or of the bulk Richardson number Ri
B

.  The definition of stability is 

based on surface heat flux.  Unstable (heat flux up), stable (heat flux down), or neutral 

(heat flux = 0) correspond to 0L , 0L , and 0L , respectively.  Note that *
u  is a 

velocity and is always positive definite.  Hence, this implies that for an unstable case 

( 0L ) *  is always positive and vice versa for the stable case. 

 We next express this in terms of the bulk Richardson number, which is the ratio of 

stability to the square of wind shear.  Here 

        
2

Ri
B

d

dz

du

dz

.       (8.13) 

For a stable surface layer, the heat flux is downward, in other words, 0L  or 0
B

Ri .

For an unstable surface layer, the heat flux is upward, that is, 0L  or 0
B

Ri .  For a 

neutral surface layer, there is no vertical heat flux, that is 0L  or 0
B

Ri .  Since a

priori the Monin-Obukhov length is an unknown quantity, stability is assessed from the 
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sign of the bulk Richardson number Ri
B

.  Empirical fits of the boundary-layer 

observations (Businger et al. 1971) for the unstable and stable cases may be expressed 

following Chang (1978) by nondimensional relations such as 

       

1/ 4

*
1 15

z u z

u z L
,     (8.14)  

       

1/ 2

*
0.74 1 9

z z

z L
,    (8.15) 

       

1/ 2

*
0.74 1 9

z q z

q z L
     (8.16) 

for the unstable case and 

       
*

1.0 4.7
z u z

u z L
,    (8.17)  

       
*

0.74 4.7
z z

z L
,     (8.18) 

       
*

0.74 4.7
z q z

q z L
     (8.19) 

for the stable case.  The above six relations were obtained from a least-squares fit of 

observations.

 For both the stable and unstable cases, the definition of the Monin-Obukhov 

length yields a fourth equation, 
*

*2

z z

L u
.     (8.20) 

The four equations (for the stable or the unstable case) need to be solved for the four 

variables *
u , * , *

q , and the Monin–Obukhov length L.  The surface fluxes of 

momentum, heat, and moisture are defined by 

        
*2

0' ' |
M

F u u w ,

        * *

0' ' |
H

F u w ,     (8.21) 

        
* *

0' ' |
q

F u q q w .

 The solution procedures followed by different investigators for the 

aforementioned equations vary somewhat.  We illustrate here a method developed in our 

studies with a global spectral model (Krishnamurti et al. 1983, 1984).  A two-level 

surface-layer representation is convenient for the evaluation of surface fluxes. 

 Let 1z and 2z  denote two levels, where 1 0z z  (the roughness length), 2z  is the 

top of the surface layer, and 2 1z z z  is roughly 10 to 50 meters, which is considered 

the depth of the constant flux layer.  At these two levels, the respective winds, potential 

temperature, and specific humidity may be denote by 1 1,u v , 2 2,u v , 1 2, , and 

1 2,q q .  These are known quantities. 
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 We next write the bulk Richardson number in finite-difference form, that is, 

         
2 1

2 2

2 2

Ri
B

z

u v
.      (8.22) 

Note that 1 1 0u v .  The solution for the unstable case is more complicated because of 

the fractional negative powers in (8.14) to (8.16).  Following Chang (1978), we can 

express the two-level representation of these flux relations for the unstable case by 

       
2 1 12 2

2 1 2

ln /
Ri

0.74 ln /
B

z zz z

L z z z
,    (8.23) 

where 1 and 2  are functions of L and are defined as 

       

2
2

1 12 2
1 2 1 2 12

1 1

1 1
/ , / ln 2 tan 2 tan

1 1
z L z L ,   (8.24) 

2
2 2 1

1

1
/ , / 2 ln

1
z L z L .    (8.25) 

Here

           

1/ 4

2
1

2 1

/
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/

z L

z z
,

           

1/ 4

2
2 1 15

z

L
,

           

1/ 2

2
1

2 1

/
1 9

/

z L

z z
,

and     
1/ 2

2
2 1 9

z

L
.

 Integrating (8.14) from 1z  to 2z , we obtain 

         
2 2

1 1

1/ 4

*

1 15
1

u z

u z

z
du dz

u z L
,

or

         
2

1

1/ 4

2 1*

1 1 1 15
( ) 1

z

z

z
u u dz

u z z z L

               
2 2

1 1

1/ 4
1 1 15

1 1
z z

z z

z
dz dz

z z L
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               2 2 2
1

1 1

ln ,
z z z

z L z
.     (8.26) 

Similar vertical integration of (8.15) and (8.16) results in

         
2 1

2 2 2
2*

1 1

ln ,
0.74

z z z

z L z
,    (8.27) 

         
2 1

2 2 2
2*

1 1

ln ,
0.74

q q z z z

q z L z
.   (8.28) 

Here    

2

1

1/ 2

2

1 9
1 1  

z

z

z
dz

z L
,

            
2

1

1/ 4

1

1 15
1 1  

z

z

z
dz

z L
.

 Equations (8.14), (8.15), (8.16), and (8.20) are solved for the variables L, *
u , * ,

and *
q  rather simply.  The variation of the Monin-Obukhov length is monotonic with 

respect to *
u  and *  (Businger et al. 1971).  A simple linear incremental search of L in 

(8.20) provides a rapid solution to the desired degree of accuracy.  After substitution for 

L on the right-hand side of (8.14), (8.15), and (8.16), one obtains the corresponding 

solution for *
u , * , and *

q .

 The solution for the stable case is relatively straightforward and requires a 

sequential solution of four linear algebraic equations.  One of these is

         
1/ 2

2 1 2

1

9.4Ri 0.74 (4.89Ri 0.55)
ln

9.4 44.18Ri

B B

B

z z z

L z
.   (8.29) 

Equation  (8.29) is obtained from eliminating *
u  and *  from vertically integrated forms 

of (8.17), (8.18), and (8.20) within the constant flux layer.  The finite-difference forms of 

these three vertically integrated equations are

2 1
2 2 1

*

1

ln 4.7
u u z z z

u z L
,    (8.30) 

         
2 1

2 2 1

*

1

0.47 ln 4.7
z z z

z L
,    (8.31) 

            
*

2 1 2 1

*2

( )z z z z

L u
.    (8.32) 

 The lower level 1z  is identified with the roughness length 0z . At these two levels, 

one needs to define wind, potential temperature, and specific humidity in order to carry  
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out the desired computations.  At the lower level 1z  we set all wind ( 1 1,u v ) to zero.  The 

temperature 1T at the lower level is set to the sea-surface temperature.  Over land 

surfaces, 1T  is determined from surface energy balance, which is described below.  

Furthermore one sets 1 1T , since the surface pressure is close to 1000 mb.  The specific 

humidity 1q  at the lower level over the ocean is set to the saturation value at temperature 

1T .  The upper-level height 2z  is set to a value of 10 meters above the surface.  The wind 

components 2u  and 2v  are usually interpolated using a log-linear profile, while the 

temperature 2T  and the specific humidity 2q  are linearly interpolated between 1000 and 

850 mb from the analyzed data. 

 The numerical model algorithm requires information at the top of the constant 

flux layer, which is usually obtained by interpolation of large-scale atmospheric 

information between 1000 and 850 mb.  The von Karman constant  has a value of 0.35. 

 stands for 0/g  where 0  is a constant  reference potential temperature.  Since Ri
B

 is 

know from large-scale data sets, this sequence of calculations yields L,
*

u , * , and *
q .

 A rigorous comparison of the aforementioned method was made with respect to 

direct observations of fluxes obtained from the so-called eddy correlation method.  This 

was done using GATE observations, and results were in close agreement.  The virtue of 

this method over the bulk method lies in the dependence of the implicit bulk coefficients 

on stability and shear.  These are expressed by the following equivalent bulk coefficients:

            
2

2

2 1ln ( / ) (4.7 ) /
D

C

z z z L

,

       
2

2 1 2 1

1

ln ( / ) (4.7 ) / 0.74ln ( / ) (4.7 ) /
q

C C
z z z L z z z L

for the stable case and 
2

2

2 1 1ln ( / )
D

C

z z

,

     
2

2 1 2 2 1 10.74 ln ( / ) [ln ( / ) ]
q

C C
z z z z

for the unstable case.  The neutral cases are usually calculated in the same manner as the 

stable situations. 

8.2.4 Vertical Disposition of Surface Fluxes 

The vertical disposition of eddy fluxes of momentum, heat, and moisture above the 

surface layer is based on K-theory.  This theory uses an eddy diffusion coefficient K that 

depends on the mixing length l, the vertical wind shear, and the stability of the 

atmosphere as determined by the bulk Richardson number Ri
B

.

 The eddy diffusion coefficient for heat and moisture is 
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2 | |
Ri

H Q h B

V
K K l F

z
,     (8.33) 

and for momentum it is given by 

        2 | |
Ri

M m B

V
K l F

z
.     (8.34) 

Here, l is the mixing length based on a formula given by Blackadar (1962), i.e., 

              
1 /

z
l

z
,

where  is the von Karman constant, taken as 0.35, and  is the asymptotic mixing 

length, which is set to 450 m for heat and moisture exchange and 150 m for momentum 

exchange.

 Following Louis (1979), 
h

F  and 
m

F  are given as 

          
2

1

(1 5Ri )
h m

B

F F , Ri 0
B

    (8.35) 

for the stable case and
1/ 2

1/ 2

1 1.286| Ri | 8Ri

1 1.286| Ri |

B B

h

B

F Ri 0
B

,    (8.36) 

1/ 2

1/ 2

1 1.746| Ri | 8Ri

1 1.746| Ri |

B B

m

B

F Ri 0
B

    (8.37) 

for the unstable case.  Here, the bulk Richardson number over an atmospheric layer is 

given by 

                      
2

Ri
| |

B

g z

V

z

.     (8.38) 

It can be shown that Ri 0.212
B

 is a physically valid value. 

 The time tendency due to diffusive fluxes at any level is given by 

         
1

K
t z z

,     (8.39) 

where ,  ,  ,  or u v q , and  is density of air.  In  coordinates, (8.39) takes the form 

2
2

2

s

g
K

t p
.     (8.40) 

The upper and lower boundary conditions for (8.40) are / 0  at the top and 

/ the boundary-layer fluxes at the top of the constant flux layer at the bottom. 

 Using these boundary conditions, (8.40) is solved implicitly, where it takes the 

finite-difference form
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* 2

2

( ) ( ) ( )

2
s

t t t t g t t
K

t p
,   (8.41) 

where *( )t t  is the value of ,  ,  ,  or u v q  before vertical disposition of the fluxes at 

time ( )t t , and ( )t t  is the value after vertical disposition of the fluxes.  The 

solution of (8.41) is obtained by writing the equation in the form *( ) ( )A t t t t ,

where A  is a tridiagonal coefficient matrix and ( )t t  and *( )t t  are vectors 

defining the values of ( )t t  and *( )t t  at different levels. 

8.3  Cumulus Parameterization  

The scale of cumulus clouds is much smaller than the scale of the grid squares (or the 

smallest resolvable scale) of a numerical weather prediction model.  The individual 

cumulus cloud has a scale of a few kilometers, whereas the model grid square is more 

like a few hundred kilometers.  Within larger synoptic-scale disturbances often reside 

organized mesoscale convective systems with scales of the order of a few hundred 

kilometers.  These are the mesoscales over which the clouds show organization.  Thus the 

interaction of cumulus clouds with the broad synoptic scale appears to be an important 

multiscale problem.  Cumulus parameterization addresses the effects of the cumulus scale 

on the resolvable scale, given the information on the latter scales. 

 Minimally, one needs to derive three parameters from a cumulus parameterization 

scheme.  These are the vertical distribution of both heating and moistening, and the 

rainfall rates.  We first outline a version of Kuo’s scheme which has been modified in 

recent years by Krishnamurti et al. (1983) to provide successful forecasts of the life cycle 

of tropical cyclones.  We follow that with a scheme based on the work of Arakawa and 

Schubert (1974), which has also been used successfully by several research scientists and 

numerical weather prediction centers. 

8.3.1 Kuo’s Scheme 

According to Kuo, organized cumulus convection requires the presence of conditional 

instability and a net supply of moisture.  In the earlier formulation of Kuo (1965), in 

those regions where the two conditions were met the following form of the moisture 

equation was used, i.e., 

s
q qq

a
t

,     (8.42) 

where  is a cloud time-scale parameter and a denotes the fraction area of the grid box 

that would be covered by the newly formed convective clouds.  The parameter a is 

defined by the relation 
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1

( )1

B

T

B

T

p

p

p
p s s

p

qV q dp
g p

a
c T T q q

dp
g L

.    (8.43) 

 In the following we use the symbol Q for the denominator of (8.43).  In this 

relation the denominator may be interpreted as the amount of moisture supply needed to 

cover the entire grid-square area by a model cloud (a local moist adiabat ,
s s

T q ).  The 

numerator, on the other hand, is a measure of the available moisture supply.  The total 

convective rainfall rate is expressed by 

( )1 B

T

p
p s

T
p

ac T T
P dp

g L
.     (8.44) 

 It should be noted that the definition of a as given by (8.43) and the 

parameterization of the moisture in (8.42) are consistent with the principle of 

conservation of moisture.  This can be shown by considering the moisture conservation 

law in the form 

            
q

qV qw E P
t p

.    (8.45) 

After integration of (8.45) from 
T

p  to 
B

p with the assumption that evaporation E occurs 

only at the air-sea interface (i.e., below 
B

p ), we obtain 

        
1 B

T

p

T
p

q
dp I P

g t
,     (8.46) 

where
T

P  is the total precipitation rate for the vertical column and I is the moisture 

convergence rate at  the grid point.  Noting that

           
1 1

s s

p

T T q q
I aQ a c dp dp

g L g
    (8.47) 

and substituting for 
T

P  from (8.44) into (8.46), we obtain 

             
1 1B B

T T

p p
s

p p

q qq
dp a dp

g t g
.    (8.48) 

Hence the use of (8.43) is consistent with the moisture conservation law (8.45). 

We furthermore note that part of the moisture convergence I is being used for 

raising the level of moisture, and part of it goes into condensational heating.  This 

partitioning may be expressed by the relation 

        
q

I I I .      (8.49) 

We note that in general 
q

I is larger than I  initially.  However, as q tends to ,
s

q Q

becomes small; as a consequence, a becomes very large.  From then on, I starts to 
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become very large and 
q

I tends to zero.  This leads to a slight computational instability at 

a few grid points due to the very large heat release and very strong resulting vertical 

motions.  This defect is primarily related to a disproportionate partitioning of I into 
q

I

and I .

 Kuo applied this early formulation of the cumulus parameterization scheme to 

hurricanes for which it worked well.  However, it was found that it did not succeed for 

modeling other large-scale disturbances.  This scheme produces too much moistening, 

too little rain, and too little heating.  In a high-resolution model, such as used to model a 

hurricane, there is a great deal of moisture convergence and hence more rain and heating.  

However, in a coarser resolution model, there is less moisture convergence and therefore 

less heating and rain. 

 Now we consider the parameterization of deep, moist convection with a modified 

Kuo scheme.  The large-scale convergence of the flux of moisture is expressed by the 

relation

         qM

q
C V

p
,

or in advective form, 

         
M

q
C V q

p
.     (8.50) 

In the Kuo type of cumulus parameterization schemes, the supply of moisture is usually 

defined from a vertical integral of the above expression.  The supply is then used to 

define the moist adiabatic cloud elements in various versions of Kuo’s scheme. 

 Krishnamurti et al. (1983) and Anthes (1977) have noted that the supply of 

moisture for the definition of clouds may be expressed simply by the second term in 

(8.50).  The first term, namely the horizontal advection, is used for a direct moistening of 

the air as a large-scale advective term.  Thus we define the supply of moisture by

          
1 B

T

p

L
p

q
I dp

g p
.     (8.51) 

Here
T

p  and 
B

p denote the cloud top and the cloud base, respectively.  They are defined 

in terms of the vanishing buoyancy level and the lifting condensation level, respectively. 

 From our experience (Krishnamurti et al. 1980, 1983), we have noted that the 

above definition for the large-scale supply is a close measure of the rainfall rate, and thus 

sufficient supply is not available to account for the observed moistening of the vertical 

columns.  These statements are based on semiprognostic studies made with GATE 

observations.  This research leads us to propose a mesoscale convergence parameter 

and a moistening parameter b

                1
L

I I ,      (8.52) 

where
L

I  denotes the net mesoscale moisture supply. 

 The total moisture supply is partitioned into a precipitation part and a moistening 

part via the following relations: 
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1 1 1
L

R I b I b ,

                      1
L

M Ib I b .     (8.53) 

Following Krishnamurti et al. (1983), we define the total supply of moisture required to 

produce a grid-scale moist-adiabatic sounding by 

( )1 1B B

T T

p p
p s ps

p p

c T c Tq q
Q dp dp

g g L L p
.  (8.54) 

Here  denotes a cloud time-scale approximately equal to 30 minutes.  The two 

respective terms are denoted by 
q

Q  and Q , so that 

       
q

Q Q Q .     (8.55) 

Note that equation (8.54) differs from the definition of Q in the classic Kuo scheme.  The 

last term on the right-hand side has been added and it is the amount of energy needed to 

overcome adiabatic cooling.  In the classic Kuo scheme when saturation was reached 

0Q  so that /a I Q  would blow up.  The new term was added so that if saturation is 

reached Q would tend toward the value of this term. 

 The total supply I may likewise be split into moistening and heating parts by

            1
q L

I Ib I b      (8.56) 

and

1 1 1
L

I I b I b .   (8.57) 

The temperature and moisture equations are expressed by 

     s
V a

t p p
,    (8.58) 

       s

q

q qq
V q a

t
,     (8.59) 

where a , the fractional area of a cloud that releases latent heat, and 
q

a , the fractional 

area of a cloud that moistens, are defined by 

        
(1 ) (1 )(1 )

L
I I bI b

a
Q Q Q

,    (8.60) 

                
(1 )q L

q

q q q

I I bIb
a

Q Q Q
.     (8.61) 

The parameterization is closed if b and  are somehow determined.  Then a  and 
q

a

may be evaluated from (8.60) and (8.61).  Note that Q  and 
q

Q  are known quantities. 

 Krishnamurti et al. (1983) proposed a closure for b and  based on a screening 

multiregression analysis of GATE observations.  Here they regressed normalized heating 

/
L

R I  and moistening /
L

M I  against a number of large-scale variables.  From GATE  
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observations they noted significant correlations for the heating and moistening from the 

following relations. 

            1 1 1

L

M
a b c

I
,     (8.62) 

           2 2 2

L

R
a b c

I
.    (8.63) 

Here  is the relative vorticity of the lower troposphere,  is a vertically averaged 

vertical velocity, and 1 1 1 2 2 2,  ,  ,  ,  ,  and a b c a b c  are regression constants whose 

magnitudes may be found in Krishnamurti et al. (1983). 

 Thus in numerical weather prediction,  and  determine /
L

M I  and /
L

R I  since 

(1 )
L

M
b

I
      (8.64) 

and

            (1 ) (1 )
L

R
b

I
.     (8.65) 

These two relations determine b and .  We can find a  and 
q

a  from 

(1 ) (1 )
L

I b R
a

Q Q
    (8.66) 

and

        
(1 )

L

q

q q

I b M
a

Q Q
.     (8.67) 

 It is also of interest to note that the apparent heat source 1Q  and the apparent

moisture sink 2Q  for this formulation are expressed by 

      1
s

p p p R s

T T T
Q a c c c H H

p
,   (8.68) 

2
s

q

q q q
Q La

p
,     (8.69) 

where
R

H  is the total radiative potential temperature rate of change and 
s

H  is the 

vertical sensible heat flux by subgrid-scale motions.  The total rainfall is given by 

        
1 B

T

p
p s

p

c T
P a dp

g L p
.    (8.70) 

8.3.2 The Arakawa–Schubert Cumulus Parameterization 

This scheme is considered to be the best scheme in terms of relating the physics and 

dynamics of the cloud system to the large-scale environment.  The Arakawa-Schubert 
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(hereafter AS) cumulus parameterization scheme (Arakawa and Schubert 1974) attempts 

to quantify the effect of cumulus convection on the large-scale environment.  From a 

modeling perspective, this parameterization scheme breaks down into static control, 

dynamic control, and the feedback.  However, this scheme is somewhat complicated and 

requires a large amount of computational overhead.  In this section we present a brief 

outline of the basic concepts and formulation of the AS scheme.

 In the AS scheme, we have a cloud ensemble consisting of various subensembles.  

Each cloud type is characterized by a parameter .  Furthermore, it is assumed that  can 

take values between zero and max .  By doing so, the whole cloud ensemble is covered.  

In this formulation, a cloud subensemble is defined to have the value of parameter 

between  and d .  We can think as if there is a cloud ensemble present between the 

cloud base and the cloud top.  Each cloud in this ensemble has its own entrainment rate 

and mass flux across the cloud base.  It is assumed that each cloud in this ensemble has 

the same cloud base.  However, their tops may vary.  Furthermore, it is assumed that the 

cloud ensemble occupies a sufficiently large area.  However, the area of the large-scale 

system (our cloud ensemble is a part of this) is assumed to be much larger than the area 

of the cloud ensemble itself. 

 It is assumed that every thermodynamic structure of the environment is associated 

with a cloud ensemble and that the fractional entrainment rate  can be used to determine 

all the properties of the cloud subensemble represented by 
k
 in the interval ( , d ).

These properties include the precipitation rate, the rate of destruction of the convective 

instability of the environment, the work done by the buoyancy force, the speed of the 

updraft within the cloud, the cloud-top level, the vertical mass flux at any vertical level, 

the buoyancy of air inside the cloud, and the total mass of cloud air that is detrained at the 

cloud top. 

 The dynamic control deals with how the convective clouds are influenced by the 

large-scale environment.  Furthermore, the dynamic control determines the spectral 

distribution of the clouds.  The static control determines cloud thermodynamic properties 

and is often linked to the dynamic control.  The feedback mechanism determines the 

effect of convection on the environment.  In other words, the static control is a way of 

communication between the feedback and the dynamic control, the dynamic control 

determines the effect of the environment on cumulus clouds, and the feedback determines 

the effect of cumulus clouds on the environment. 

 AS proposed that the amount of convection is related to the rate of destabilization 

of the environment.  Furthermore, they assumed that the clouds would minimize this rate 

of destabilization of the large-scale environment.  A single convective element was 

modeled as steady state jet by AS.  They assumed a constant entrainment rate with 

height, and the mass flux in the cloud was solely determined by the entrainment rate and 

the net mass flux at the base of this cloud. 

 The AS scheme defines a cloud ensemble via the mass, moisture, and heat 

budgets of the cumulus-scale moist convection.  Large-scale eddy flux convergence of 

these are related to the cloud ensemble properties. 

 The fractional rate of entrainment  is defined by 
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1 ( , )
,

( , )

z
z

z z
.     (8.71) 

Here  denotes the normalized vertical mass flux within the cloud.  The total cloud mass

flux
c

M  at a level z is defined by 

( )

0
( ) ( , )

D
z

c
M z m z d ,     (8.72) 

where ( )( , ) ( ) B
z z

B
m z m e .  Here 

D
 is the detrainment level, which is the top of the 

cloud.   may be regarded as a vertical coordinate with 0  residing at the top of the 

atmosphere.
B

m  is the cloud-base mass flux.  
D

 is the top level of a cloud.  It is 

assumed that all of the cloud detrainment occurs at the top.  A normalized cloud mass 

function  can be defined as 

   

( )
B

z z

The detrainment at the cloud top at level z is defined as

( )
, D

D

d z
D z m z z

dz
.    (8.73) 

In order to define a relationship between the large-scale and the cloud ensemble-

scale heat and moisture budgets, we express their respective large-scale changes by 

         ( ) ' '
R

s s
V s w Q L c e w s

t z z
,   (8.74) 

         ( ) ' '
q q

V q w c e w q
t z z

.   (8.75) 

Here  denotes the density of air, s  is the dry static energy, q  is the specific humidity, 

R
Q  denotes radiative heating, c  denotes condensation rate, and e  denotes evaporation 

rate.  The last term in (8.74) and (8.75) denotes the eddy flux convergence of heat and 

moisture per unit volume of air, respectively.  These eddy flux convergences can be 

related to the cloud mass flux.  If 
c

w  and w  are the vertical velocity of the clouds and 

their environment, respectively, we can write 

            
c c

M w        and (1 )M w .    (8.76) 

Furthermore, we can express other properties in the same way, for example 

             1
c

s s s ,     (8.77) 

             1
c

q q q .     (8.78) 

 Next we derive the very useful relation ' ' ( )
c c

A w M A A  where A is any 

property.  We can write 

            (1 )
c

A A A ,     (8.79) 
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             (1 )
c

w w w ,     (8.80) 

        (1 )
c c

Aw A w Aw .     (8.81) 

To the order , we can write 

            2 ( )
c c

Aw Aw Aw A w w A ,    (8.82) 

then ' 'A w Aw Aw  can be approximated as 

        ( ) ( )
c c c c

w A A M A A .    (8.83) 

Here we assumed that 1, | | | |
c

w w  and 
c c

A A A A .  Thus the eddy fluxes of s,

q, and h can be written in the form 

             ' ' ( )
c c

s w M s s ,    (8.84) 

             ' ' ( )
c c

q w M q q ,    (8.85) 

             ' ' ( )
c c

h w M h h .    (8.86) 

Then we can express the eddy fluxes by 

( )

0
' ' ( , ) ( , ) ( )

D
z

c
w s m z s z s z d     (8.87) 

and
( )

0
' ' ( , ) ( , ) ( )

D
z

c
w q m z q z q z d ,    (8.88) 

where subscript c denotes a cloud variable and the overbar denotes a large-scale variable. 

 Using the notion of a one-dimensional steady-state entraining cloud model with 

the following definition for the cloud top, i.e., 

          ,
c D D D

s z z s z

and

          ,
c D D D

q z z q q ,

we can write eddy convergence  of fluxes as 

          ' '
c

s
w s Lc M

z z
     (8.89) 

and

             *' ' ( )
c

q
w q D q q M c

z z
,   (8.90) 

where *
q  is the saturation specific humidity of the cloud environment.  Substituting 

(8.89) and (8.90) into (8.74) and (8.75), we can express the large-scale equation by the 

relations

ˆ
c R

s s s
V s w DLl M Q

t z z
   (8.91) 

and
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* ˆ( )
c

q q q
V q w D q q l M

t z z
.  (8.92) 

Here l̂ denotes the liquid-water mixing ratio and D is the detrainment.  We have replaced 

e  by ˆDl ; i.e., cloud evaporation occurs entirely at the detrainment level (at the cloud 

top).

 A single equation for the dry static energy ( )h s Lq  can be obtained from the 

above two equations, i.e., 

         
*( )

c R

h h h
V h w DL q q M Q

t z z
.  (8.93) 

In (8.91) and (8.92), /
c

M s z  and /
c

M q z  are to be interpreted as the heating and 

drying effects from the cumulus-induced subsidence.  It should be noted that ˆDl  is

exactly equal to evaporation e if evaporation of falling rain is not considered.  *( )D q q

is interpreted as the detrainment of cloud water vapor into the environment.  The 

following expressions for the apparent heat source 1Q  and the apparent moisture sink 2Q

are implicit in the above analysis 

           1
ˆ

c R

s s s
Q V s w DLl M Q

t z z
,   (8.94) 

           2

q q
Q L V q w

t z

          * ˆ( )
c

q
DL q q l LM

z
.     (8.95) 

 We next move on to the major issues of the AS cumulus parameterization scheme.

This includes the quasi-equilibrium hypothesis and the definition of a cloud work 

function.  In the dynamic control, a cloud work function, which is a measure of the 

buoyancy force associated with a subensemble, is described.  The cloud work function is 

derived through the following equation: 

      
2

1

2

c c

r

c

dw wd
Bu F

dt w dt
,     (8.96) 

where
c

w is the vertical velocity for a cloud subensemble, Bu  is the acceleration due to 

buoyancy, and 
r

F  represents the deceleration due to friction.  It should be noted that 
c

w

is a function of both  and z.

 If we multiply the above equation by 
c c
w  and integrate the resultant equation 

over the depth of the cloud, we obtain 

2

( )  ( )
2

T T

B B

z z
c

c B B
z z

wd
dz m Bu dz Dm

dt
.   (8.97) 
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We have made use of ( , ) ( ) ( , )
z B

m z m z  and 
z c c

m w .  Here D represents the 

cloud-scale kinetic energy dissipation per unit mass flux, 
B

z  is the height of the cloud 

base, and 
T

z  is the cloud-top level (level of zero buoyancy).  One can write (8.97) as 

           
B B

d
KE A m D m

dt
.    (8.98) 

The work function ( )A  is defined by 

            
( )

( , ) ( , ) ( )
( )

D

B

z

c
z

p

g
A z s z s z dz

c T z
,   (8.99) 

where
c

s  is the cloud static energy.  A is a measure of the kinetic energy generated by the 

buoyancy force for the subensemble .  The quasi-equilibrium hypothesis assumes that 

the stabilization by the cumulus-scale forcing and the destabilization by the large-scale 

forcing are in an essential balance. 

 The time derivative of the work function is expressed by 

        
( ) ( )( )

( ) ( ) ( ) ( , ) ( , )
D D

B B

z z
M

z z

hA h
z z dz z b z z dz

t t t

           
( )

( ) ( ) ( , )
D

B

z

z

s
z z z dz

t
,      (8.100) 

where    

( )
( ) ( )

p

g
z

c T z z
,

         
*

1 1
( )

( )( )
1p

p p

g
z

zc T z L q

c T

,

and

           
( ) ( ') ( ')

( , ) '
( )

D
z

z

z z
b z dz

z
.

Here
M

h  denotes the total moist static energy of the mixed layer.  If we substitute for 

/s t  and /h t from (8.91) and (8.93), we obtain 

( )
( )

M

A
F

t
        (8.101) 

      
max

0
[ ( , ') ( , ')] ( ') ' ( )

v D B c
K K m d F ,

where

      
( )

( , ) ( , )
D

B

z

c R
z

h
F z b z w V h Q

z
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        ( )
R

s
z w V s Q z dz

z
 , 

            
( )

( ) ( )
D

B

z
M

M
z

h
F z z dz

t
,

( )

, ' ( , ) ( , ') ( , ) ( )
D

B

z

v
z

h s
K z z b z z dz

z z
,

          *, ' ( ' , ) ( ' , ') ( ' , ) ( ' ) ( ' )
D D D D D D

K z z b z L q z q z

                   ' ( ' )
D D

z Ll z .

 The cloud work function ( )A  is a measure of the generation of kinetic energy 

inside the cloud.  When ( )A  is positive, it implies that the environment has moist 

convective instability.  For a given value of , it defines a property of the environment.  

Furthermore, we can obtain the rate of generation of kinetic energy by the vertical motion 

through ( )A .

 It is known that the convective instability of the environment is destroyed by 

cumulus convection through subsidence.  Subsidence also reduces the buoyancy and 

kinetic energy of the cloud updraft.  It should be noted that there are two types of 

processes (namely, cloud-cloud interaction and the influence of large-scale physics and 

dynamics) that can influence ( )A .  If we assume that there are two cloud types (i.e., 

cloud type  and cloud type '), then cumulus convection tends to destroy the convective 

instability of the environment and subsidence reduces the buoyancy as well as the kinetic 

energy of the cloud updrafts. 

8.3.3 An Example of Cumulus Parameterization 

Thirteen research ships were deployed during the GATE experiment.  Twelve of these 

ships formed two embedded hexagons near 10° N and 20° W, and one was located at the 

center of the hexagons.  These ships provided upper-air data sets and some carried a 

shipboard precipitation radar as well.  With this array of ships, it was possible to carry out 

tests of the aforementioned cumulus parameterization methods. 

 The Kuo and the Arakawa-Schubert hexagonal schemes were run in this 

hexagonal array of grid points.  One-time step forecasts (called the semiprognostic 

method) were carried out.  The result of a comparison between the observed and the 

model-based rain rates is shown in Fig. 8.1.  The passage of African easterly waves gives 

rise to enhanced rain amounts on the order of 30 mm day
-1

.  Both models performed 

extremely well in predicting the observed rainfall rates.  The observed rainfall over the 

hexagonal ship array comes from the area-averaged rainfall determined by the radar 

reflectively, which in turn had been calibrated against rain gauge estimates. 

 In these tests, the semiprognostic evaluation of rainfall from both schemes using 

GATE observation appears to be quite comparable.  The vertical distribution of heating 

and moistening also appeared quite similar for these two methods.  Details of these 

comparisons appear in Krishnamurti et al. (1980). 
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Figure 8.1.  A comparison between observed and semiprognostic rainfall rates during 

GATE using (a) the Kuo (1974) and (b) the Arakawa-Schubert (after Lord 1978) cumulus 

parameterization schemes. 

A further test of the sensitivity of model forecasts to cumulus parameterization is 

illustrated in Fig. 8.2.  Here we illustrate the formation of a hurricane-like disturbance 

called the onset vortex of the monsoon.  Figure 8.2a illustrates the initial flow field at 850 

mb over the monsoon area, while the observed field six days later is shown in Fig. 8.2b.  

Figure 8.2c shows the six-day forecast based on a refined cumulus parameterization 

scheme (Krishnamurti and Bedi 1988).  The forecast for the same period using classical 

Kuo cumulus parameterization is shown in Fig. 8.2b.  The initial flow field over the 

Arabian Sea is anticyclonic.  Six days later, the commencement of a moist current over 

the southern part of India resulted in the onset of the monsoon.  This was brought on by 

the formation of a hurricane-like vortex that formed over the northern Arabian Sea.

The model using a classical Kuo parameterization scheme did not predict any of 

these features, whereas the model with the refined cumulus parameterization scheme 

captured the onset of the monsoon as well as the formation of the onset vortex.  This 

forecast also successfully predicted the first seasonal monsoon rains over southwestern 

India.  This sensitivity to cumulus parameterization is attributed mainly to a more robust 

heating from condensation in the improved scheme. 
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Figure 8.2.  Sensitivity of the monsoon onset to cumulus parameterization.  Shown at 

850 mb is the observed flow (a) at the initial time and (b) on day 6.  Also shown at 850 

mb is the predicted flow on day 6 from (c) improved cumulus parameterization and (d) 

classical cumulus parameterization.  Wind speed indicated in m s
-1

.

8.4  Large-Scale Condensation 

8.4.1  Disposition of Supersaturation 

Large-scale condensation is usually invoked in a numerical weather prediction 

experiment if dynamic ascent of absolutely stable, near saturated air occurs at any level 

of the atmosphere.  The ascent is usually a consequence of large-scale dynamics such as 

differential vorticity advection, thermal advection, slow orographic ascent, or even 

buoyancy-driven ascent from the lower troposphere.  In the latter case, convective and 

nonconvective clouds coexist over the same region. 

 The stable air refers to absolute stability, where both potential and equivalent 

potential temperature increase with height.  The saturation refers to the ratio of specific 

humidity to saturation specific humidity, which is close to unity.  However, one uses a 

saturation ratio on the order of 0.8 to take into account possible sub-grid-scale saturation. 

 We may express these conditions via the relations 

                     0      (ascent), 

     / ,  / 0
e

p p      (stable), 

and
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/ 0.8
s

q q      (saturation). 

Saturation is defined at 80% in order to catch possible sub-grid-scale saturation at this 

lower threshold.  This value has been verified from experimentation.  In the following we 

consider regions where these conditions are met. 

 The removal of supersaturation will now be addressed.  Let 
s

q q q .  If 

0q , then at that level of the atmosphere one can incorporate the contributions from 

large-scale condensation into the first law of thermodynamics and the water-vapor 

continuity equation by the relations 

             
p

T L q
c

t t

     (8.102) 

and

        
q q

t t
.       (8.103) 

Thus the supersaturation is simply condensed out with an equivalent heat release at the 

level of the atmosphere in the thermodynamic equation.  This is usually done at the end 

of each time step t  when other processes in the model have contributed to a positive 

q .

Calculation of the saturation specific humidity 
s

q  is usually carried out with the 

use of various approximations, such as Teten’s formula given below.  In this formula, 

saturation vapor pressure is expressed by. 

( 273.16)
6.11exp

s

a T
e

T b
,    (8.104) 

and the saturation specific humidity is given by 

0.622
s

s

e
q

p
,      (8.105) 

where the constants a and b are defined in terms of saturation over water 

( 17.26,  35.86a b ) or over ice ( 21.87,  7.66a b ).  Teten’s formula has been tested 

and found to be a reasonable approximation for the construction of moist adiabats in the 

troposphere.

8.4.2  Using a Local Moist Adiabat 

 In the simplest formulation for nonconvective heating, 

s

NC

dq
H L

dt

is approximated by 

              s

NC

q
H L

p
,      (8.106) 
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where /
s

q p  is measured along a moist adiabat.  From Teten’s formula we can obtain 

/
s

q p

273.16
exp

0.622 6.11

s

s

s

a T

T b
q

p
,

2

273.16 273.16
exp exp

0.622 6.11

s s

s ss

a T a T
p

T b p T bq

p p
,

where

2

273.16
273.16 273.16

exp exp

s s

s s

s s

s ss

T T
a T b a T

a T a Tp p

p T b T bT b

                  
2

273.16
273.16

exp

s

s s

s

ss

T
a T b T

a Tp

T bT b

                  
2

273.16 273.16
exp

ss

ss

a b a TT

p T bT b

,

so that 

( 273.16)0.622 6.11
exps s

s

q a T

p p T b

             
2

1 (273.16 )

( )

s

s

Ta b

p T b p
.      (8.107) 

Conservation of moist static energy along a moist adiabat can be expressed by the 

conservation equation 

           
s p s s s

gz c T Lq E .      (8.108) 

After differentiating with respect to pressure we obtain 

       0s s s

P

z T q
g c L

p p p
,

or by using the hydrostatic equation 

       
(1 0.61 )

0s s s s

P

RT q T q
c L

p p p
.   (8.109) 

Eliminating /
s

T p  from (8.107) and (8.109), we obtain the relation 

     
( 273.16)0.622 6.11

exps s

s

q a T

p p T b
    (8.11) 
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2

1 (273.16 )
(1 0.61 )

( )

s s

s

s P P

RT qa b L
q

p T b c p c p
.

We can solve for /
s

q p  from this relation and obtain 

         1 2

1 31

s

p

q C C

Lp
C C

c

,     (8.111) 

where

            1

273.160.622 6.11
exp

s

s

a T
C

p T b
,

3 2

273.16

( )
s

a b
C

T b
,

and

          2 3

1
(1 0.61 )s

s

p

RT
C C q

p c p
.

The use of (8.111) within (8.106) provides the desired heating function.  Stable rainfall 

rate is expressed by the integral 

            
0

1 s
C

p
N

s

H
R dp

g L
.     (8.112) 

Scheme Based on Saturation Conditions 

An approach for the estimation of large-scale condensation can also be obtained from a 

complete form of the relative humidity equation.  The heating is obtained by seeking a 

condition based on the local change of relative humidity set to zero.  Saturation is 

maintained by a number of dynamic, thermodynamic, and moist processes.  Here we 

assume first that the air is absolutely stable and is undergoing dynamic large-scale ascent. 

 Relative humidity is defined as /
s

r q q , or 
s

q rq .  Here q is the specific 

humidity,
s

q  is its saturation value, and r is the relative humidity.  Using the horizontal 

advective operator 

              
H p

d
V

dt t
,

we obtain 

              s

s

dqdq dr
r q

dt dt dt
.     (8.113) 

Since
s

q  is a function of potential temperature , we may write 

         s

s

p

dqdq d dr
r q

dt d dt dt
.     (8.114) 
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We next define saturation specific humidity by 

         s

s

e
q

p
,      (8.115) 

where 0.622 ,
s

e  denotes the saturation vapor pressure, and p stands for pressure.  

Hence, using the Clausius-Clapeyron equation, we obtain 

         
2

s s s

p p

dq e Lq

dT p T RT
,     (8.116) 

where T  denotes the temperature.  Hence 

      
2

s s s

pp

dq Lq LqT

d RT RT
.    (8.117) 

Now we can rewrite the relative humidity equation (8.114) as 

         s

s

Lrqdq d dr
q

dt RT dt dt
.      (8.118) 

We next substitute for /dq dt  and /d dt  from the moisture conservation equation and 

the first law of thermodynamics, respectively, that is, 

q

q

Fdq q
P g D

dt p p
     (8.119) 

and     

Fd
H g D

dt p p
,     (8.120) 

where P denotes the precipitation rate and 
q

F  and F  denote vertical eddy fluxes of 

moisture and heat, respectively.  H represents all forms of diabatic heating.  
q

D  and D

are the horizontal diffusion of q and , respectively.

After substituting (8.119) and (8.120) into (8.118), we obtain 

1
s

s

Lrq Fdr
H g D

dt q RT p p

q

q

Fq
P g D

p p

               
s

Fq Lr
H g D

q p RT p p

                      
1 q

q

s

F
g P D

q p
.       (8.121) 

The first term on the right-hand side denotes relative humidity change from the vertical 

advection of moisture, the second term within the brackets denotes the effect of 
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temperature change on relative humidity, and the last term denotes the effect from 

changes in specific humidity due to vertical fluxes, horizontal diffusion, and 

precipitation.  If we do not permit supersaturation, then the saturation limit is governed 

by a balance condition (i.e., / 0r t ) which can be expressed as 

    s

NC x

s

q FLr Lr
H H g D

RT q p RT p p

             
1 q

q s

s

F
g P D q V r

q p
.     (8.122) 

Here we have set / 0r t  and also divided the heating into two parts, 
NC

H  and 
x

H ,

where
NC

H  denotes large-scale condensational heating and 
x

H  denotes all other forms 

diabatic heating. 

 Noting that the large-scale condensation is 

NC

P

H T
P c

L
     (8.123) 

and 1r  for saturation, we obtain 

1
s

NC

s
P

s

q L Lr
H

T L q p RT p RT
c

Lq RT

             
1 q

x q s

s

FF
H g D g D q V r

p q p
.    (8.124) 

The first bracketed term on the right-hand side denotes the moist adiabatic heating, while 

the remaining terms are somewhat less important.  Thus the computation of large-scale 

condensational heating 
NC

H  and the associated precipitation P requires the estimation of 

all of these terms. 

 What do these other smaller terms imply?  They state such things as the 

following:  If any process, adiabatic or diabatic, in the first law of thermodynamics raises 

(or lowers) the temperature, then the saturation specific humidity accordingly increases  

(or decreases) and saturation takes a little different supply of moisture to achieve 

/ 0r t .  This sort of interpretation is required for each of the terms. 

 In the monsoon region, the cumulonimbus anvils and the cloud debris from 

previously active deep convection can last for long periods in the form of active stable 

clouds in the middle and upper troposphere.  As one proceeds from tropical waves to 

tropical depressions to hurricanes and to intense extratropical cyclones, the percent of 

nonconvective rain increases.  The successive increases for these categories are generally 

close to 15%, 25%, 40%, and 75%, respectively. 

 Thus, stable heating 
NC

H  can be very important.  Although precipitation occurs 

from long-lasting clouds, not much of this precipitation reaches the ground since it 

undergoes considerable evaporation.  That is especially true for cold air blowing from the 
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north (in the Northern Hemisphere), which is usually relatively dry and contributes to a 

significant evaporation of the falling rain from overriding warmer moist air. 

8.5  Parameterization of Radiative Processes 

In numerical weather prediction and climate modeling, the following details of radiative 

parameterization need consideration: longwave and shortwave radiative transfer, effects 

of clouds, diurnal change, and surface energy balance.  We first introduce the concepts of 

radiative transfer for longwave and shortwave radiation for clear and cloudy skies based 

on two current methods.  The first of these is based on an emissivity-absorptivity method.  

The second utilizes a band model for radiative transfer.  Next we address some of the 

current methods for the specification of clouds within the radiative transfer computations. 

 The surface energy balance is an integral part of the vertical column irradiances.  

Surface energy balance addresses the balance between the net radiation reaching the 

earth’s surface and the radiant energy emitted from the earth’s surface.  The components 

of the surface energy balance include shortwave and longwave irradiances as well as the 

fluxes of latent and sensible heat from the earth’s surface.  The soil heat flux, the ground 

hydrology, and diurnal changes are important aspects of this problem.  The surface 

energy balance needs to be closely coupled to the surface similarity theory discussed in 

Section 8.2.3. 

8.5.1 The Emissivity-Absorptivity Model 

Shortwave Radiation (the Absorptivity Method).  The zenith angle  is given by the 

relation

       cos sin sin cos cos cos hr ,    (8.125) 

where  is the latitude,  is the declination of the sun, and hr  is the hour angle of the sun 

(measured from local solar noon, e.g., six hours = 90°).  The declination of the sun is its 

angular distance north (+) or south (-) of the celestial equator. 

 The optical depth of the atmosphere is a function of the mixing ratio of the 

atmospheric constituents, the pressure, and temperature distribution.  It is usually 

expressed by the relation 

            

0.85 0.5

0

0
0

1 p Tp
W p q dp

g p T
,    (8.126) 

where the path length is estimated from the top of the atmosphere ( 0p ) to a reference 

level p.  In radiative flux calculations, ( )W p  is frequently regarded as a vertical 

coordinate increasing downwards.  q is regarded here as the specific humidity of the 

absorbing constituent.  In this simple formulation, only water vapor is being considered.  

The empirical coefficients are from the work of Kuhn (1963). 

 The solar radiation incident at the top of the atmosphere is broken into a scattered 

and an absorbed part following Katayama (1966) and Joseph (1966). Shortwave radiation 

is depleted due to absorption by water vapor and Rayleigh scattering by aerosols.  The 

treatment of aerosols is poor in the present state of the art.  We consider two parts (i.e., 
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the scattered and the absorbed part) of shortwave radiation.  Thus following Katayama 

we write 

          0scattered part 0.651 coss
S S ,

          0absorbed part 0.349 cosa
S S ,

where 0S  is the solar constant (the currently accepted value is approximately 1367 W m
-

2
).  These two parts are handled somewhat differently in numerical calculations.  It should 

be noted that we are primarily interested in illustrating a computational procedure for 

estimating the role of shortwave radiative warming of the atmosphere and the earth’s 

surface.

 In the following analysis, we first omit the attenuation of shortwave radiation by 

clouds.  From empirical studies, Joseph (1966) has defined an absorptivity function

( )A W .  This function defines the depletion of solar radiation by the absorbing 

constituent, e.g., water vapor.  Here W is the path length through which the radiation has 

to pass.  He defines ( )A W  by the empirical relation

      
0.303

( ) 0.271 secA W W .    (8.127) 

The absorbed part of the direct solar radiation reaching a reference level i is written as

         1 seca

i
S A W .     (8.128) 

 In order to estimate the net downward flux of shortwave radiation at a reference 

level of the atmosphere, one should take into account the amount of diffuse radiation that 

comes up from the earth’s surface.  Here one should take into account the albedo of the 

earth’s surface and also consider the absorptivity of the layer between the earth’s surface 

and the reference level so that 0[1 ]a

s
S A W  is the amount of diffuse shortwave 

radiation that is reflected by the earth’s surface.  Note that the diffuse radiation is not a 

function of the zenith angle.  Here 
s
 denotes the albedo of the earth’s surface.  The 

diffuse radiation, in general, experiences a longer path length as compared to direct solar 

radiation.

 Following Joseph (1966), the absorptivity for diffuse radiation is expressed by 

(1.66 )A W  instead of ( )A W .  The factor 1.66 was shown to account for the increased 

path length for diffuse radiation.  Hence we can write an expression for the diffuse 

radiation that reaches a level i from the earth’s surface, that is, 

0 01 sec 1 1.66a

s i
S A W A W W .    (8.129) 

The total downward flux of shortwave radiation at the level i is given by the relation 

1 seca

i
Si S A W

         0 01 sec 1 1.66a

s i
S A W A W W .    (8.130) 

Next we outline the inclusion of clouds.  We only illustrate a single-layer cloud 

configuration.  a
S  is the absorbed part of the shortwave radiation at the top of the 
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atmosphere. [1 sec ]a

i
S A W  is the amount of shortwave radiation that reaches a 

reference level i just above the cloud level.  We place this single cloud below the 

reference level i.  The diffuse radiation that emanates upwards at the cloud level is 

determined by [1 sec ]a

ct c
S A W , where 

ct
W  is the path length at the cloud-top level 

and
c
 is the albedo of the cloud.  Part of this diffuse radiation would be absorbed before 

its arrival at reference level i.  The upward diffuse radiation that reaches level i would be 

expressed as 

[1 sec ] 1 1.66a

ct c ct i
S A W A W W .    (8.131) 

The net absorbed downward flux of shortwave radiation passing through a reference level 

i when there is a cloud layer present below is expressed as 

1 seca a

i
Si S A W

           1 sec 1 1.66a

ct c ct i
S A W A W W .    (8.132) 

The next step is to examine the amount of shortwave radiation that passes through 

a cloud layer.  To do this, one should define the absorptivity of the cloud.  Since there are 

both liquid water and water vapor within clouds, Katayama (1966) defines the 

absorptivity of the clouds by a function *( )
ci

A W , where *

ci
W  is an augmented path length 

which takes into account the equivalent amount of water vapor within the cloud.  If a
S  is 

the absorbed part of the shortwave radiation reaching the top of the atmosphere, then we 

write

1 sec 1a

ct c
S A W      (8.133) 

as the amount enters the cloud from above.  The amount that reaches below the cloud is 

written as 
*1 sec 1 1a

ct c ci
S A W A W .     (8.134) 

 If we want to know the downward flux of net shortwave radiation below a single-

cloud atmosphere, then we have to consider the upward flux of diffuse shortwave 

radiation that comes up from the earth’s surface.  This latter calculation should be 

performed similar to the cloud-free case.  The total downward flux of absorbed shortwave 

radiation at a reference level i below a single-cloud atmosphere is thus given by 

               *1 sec 1 1 1.66a a

ct c ci i cb
Si S A W A W W W

         *

01 1.66
ci cb s

A W W W

         01 1.66
i

A W W  ,      (8.135) 

where
i

W  is the path length at the reference level, 0W  is the path length at the ground, 

cb
W  is the path length at the cloud base, *

ci
W  is the equivalent path length of the cloud, 

c

is the albedo of the cloud, and 
s
 is the albedo of the earth’s surface.  If there exists more 

than one cloud layer, then we carry out a simple logical extension of the above analysis. 
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 Thus far we have not addressed the scattered part of the shortwave radiation.  In 

general we can say that the rate of warming of the atmosphere by the scattered part of 

shortwave radiation is very small.  This scattered part cannot, however, be neglected in 

the energy balance of the earth’s surface.  Following Chang (1978), we present two 

empirical formulas that are frequently used to define the scattered part of the shortwave 

radiation:

            0

0

0.085 0.245ln coss
p

p
,    (8.136) 

where 0  is the albedo of the atmosphere, 
s

p  is the surface pressure, and 0p  is 1000 mb.  

The scattered part of the solar radiation reaching the earth’s surface is given by 

0 01 1s s

g s
S S ,    (8.137) 

where s
S  is the scattered part at the top of the atmosphere and 

s
 is the albedo of the 

earth’s surface.  It can be shown that, over periods of the order of several days, this is not 

a negligible effect. 

Longwave Radiation (the Emissivity Method).  All of the longwave radiation originates at 

the earth’s surface or from the atmosphere (and clouds).  The atmosphere absorbs 

longwave radiation much more strongly than solar radiation.  Among ozone, water vapor, 

and carbon dioxide, the absorption by water vapor is considered here.  A similar 

formulation is needed for the other constituents.  The water vapor absorption is strong 

around 6 and 20 m (in the vibrational and the rotational bands, respectively).  The 

atmosphere both absorbs and re-emits longwave radiation. 

 We start from Schwartzchild’s equation,

      ,dF k T E du ,     (8.138) 

where k is the absorption coefficient, dF  is the flux change in a layer of optical 

thickness du , ,T  is the blackbody emission as given by Planck’s  equation, and E

is the flux density at wavelength .  By Kirchhoff’s law, the emissivity of the layer is 

equal to the absorptivity, k du .  The above equation expresses the difference between 

absorption and emission in a layer.  In principle, this equation can be used for a model 

atmosphere.  However, it is not very well suited for line absorbers since k  varies 

greatly.

We describe some simple calculation procedures for the evaluation of longwave 

radiative flux divergence.  The aim in the end is to evaluate the rate of longwave heating 

or cooling at the earth’s surface and in the atmosphere.  Calculations for clear and cloudy 

sky situations are illustrated.

 First we consider the cloud-free case and describe the so-called emissivity method 

for estimating longwave radiative effects.  We examine the upward flux of longwave 

radiation at a reference level i.  We can divide this into two parts.  The part that comes up 

to level i from the earth’s surface (whose temperature is 
g

T ) may be written as
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              4

01
g g i

F T W W ,    (8.139) 

and the part which is emitted by the layer between the reference level i and the ground is 

given by 

          
0 4 ( )

i

W

gi i
W

F T W W dW
W

,    (8.140) 

where  is the Stefan-Boltzmann constant, 0W  is the path length at the ground, 
i

W  is the 

path length at the reference level, and  is the emissivity.

 It is possible to make use of tables of emissivity as a function of path length to 

obtain reliable estimates of the longwave fluxes (Kuhn 1963).  Rodgers (1967) has shown 

that emissivity tabulations yield results nearly as good as those one obtains from exact 

integration of the transfer equations.  The error estimates are of the order of 0.1° C day
-1

in the atmosphere.  This is tolerable for most purposes. 

 The total upward flux of longwave radiation at a reference level i in the cloud-free 

case is given by the sum of the two terms, that is, 

     
04 4

0

( )
1

i

W
i

i g i
W

W W
F T W W T dW

W
.   (8.141) 

Here / W  is a measure of the change of emissivity with respect to optical depth.  

The downward flux in a cloud-free case is given by just one term, i.e., 

          4

0

( )i
W

i

i

W W
F T dW D

W
.    (8.142) 

Here D stands for the incoming longwave radiation at the top of the model. 

 If we have one cloud layer above the reference level, then the cloud will affect the 

downward flux at the reference level.  In this case we write 

      4 4 ( )
1

i

cb

W
i

i cb i cb
W

W W
F T W W T dW

W
,  (8.143) 

where
cb

T  is the temperature at the cloud base and 
cb

W  is the path length at that level.  If 

there is one cloud layer below the reference level i, then the formula for the upward 

longwave radiative flux would be

     4 4 ( )
1

ct

i

W
i

i ct ct i
W

W W
F T W W T dW

W
.  (8.144) 

Multiple cloud layers require a logical extension of the above illustrated principle. 

 The question of what one should do within a cloud remains an unsolved problem 

at this stage.  For simplicity, one could set the net heating (or cooling) equal to zero if the 

reference level falls within a cloud layer.  If we let 
i i

F F F  represent the 

longwave radiative flux at any level, then warming (or cooling) would be determined by 

the divergence (or convergence) of flux, i.e., 

        
longwave

p

T F
c g

t p
 .     (8.145) 
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The negative sign is consistent with flux convergence, noting that F is positive for 

downward flux. 

8.5.2 The Band Model:  Longwave Radiation 

The main absorber of solar radiation in the troposphere is water vapor, while the main 

absorbers of longwave radiation are water vapor, carbon dioxide, and ozone.  The 

spectral line-by-line computation of shortwave and longwave fluxes is in practice 

difficult and computationally very expensive.  Current radiative transfer models avoid 

this problem by resorting to certain assumptions regarding the distribution of spectral 

lines in the various absorption bands and constructing approximate band models.

 We describe a band model based on the radiation scheme of the University of 

California, Los Angeles/Goddard Laboratory for Atmospheric Studies (UCLA/GLAS) 

general circulation model (GCM) (Harshvardhan and Corsetti 1984).  The equations for 

the upward and downward fluxes in a clear sky can be expressed as

( ) ( , )
clr v s v s

v

F p B T p p

           
( , ')

[ ( ')] '
's

p
v

v
p

d p p
B T p dp dv

dp
,   (8.146) 

( , ')
( ') '

't

p
v

clr v
v p

d p p
F p B T p dp dv

dp
.   (8.147) 

These equations are for a clear sky case integrated over the spectral range .  These 

equations are quite analogous to (8.141) and (8.142).  Here ( )
v

B T  is the blackbody flux 

at surface temperature T and wavelength ,
s

p  is the surface pressure, 
t

p  is the pressure 

at the top of the atmosphere, ( ')T p  is the air temperature at pressure 'p , ( , ')
v

p p  is the 

diffuse transmittance between levels p and 'p , and  is the spectral wavenumber.  

Integration of (8.146) and (8.147) gives

    , , , ,
clr s s s s

F p B T p G p p T G p p T p

                     
( )

( )

[ , ', ( ')]
( ')

s
T p

T p

G p p T p
dT p

T
,    (8.148) 

    , ,
clr t t

F p B T p G p p T p

                   
( )

( )

[ , ', ( ')]
( ')

t
T p

T p

G p p T p
dT p

T
,    (8.149) 

where

          ( )
v

v

B T p B T dv ,

                 , ', ( , ') ( )
v v

v

G p p T p p B T dv ,

       
( )( , ', )

( , ') v

v
v

B TG p p T
p p dv

T T
.
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 The spectral width of the 9.6 m and 15 m bands over which carbon dioxide and 

ozone, respectively, absorb the terrestrial radiation are narrow enough to use a mean 

value of the transmission function.  The equation for G then becomes

, ', ( , ') ( )
v v

v v

dv
G p p T p p B T dv

v
.    (8.150) 

The radiative cooling rate or the divergence of net flux is the final output of the model.  It 

is given by

       
( )

p

dT g d F F

dt c dp
.     (8.151) 

The model uses (8.148) and (8.149) to calculate the longwave flux of the atmosphere.  

Special considerations are given for overcast or partial cloud cover.  The surface flux is 

also calculated. 

The methods for solving the fluxes vary slightly for each type of radiatively active 

atmospheric constituent.  The water vapor flux is solved by the methods of Chou and 

Arking (1980) and Chou (1984).  The carbon dioxide flux is solved by the method of 

Chou and Peng (1983).  The ozone flux is solved by the method of Rodgers (1968).  The 

method used to compute each band is described in detail below. 

Water Vapor Bands. The IR spectrum is divided into the water vapor bands, the 15- m

band and the 9.6- m band.  The spectral ranges for the water vapor band centers and 

wings are listed in Table 8.1.  According to Chou and Arking (1980), the diffuse 

transmittance associated with a molecular line at wavenumber v is

          
1

1 2
1 2

0

( , ) ( , )
, 2 exp  v r r

k p T w p p
p p d ,   (8.152) 

where
v

k is the molecular line-absorption coefficient, T is the temperature,  is the cosine 

of the zenith angle, p is the pressure, 
r

p  is the reference pressure,  
r

T   is the reference 

temperature (
r

p and
r

T  are listed in Table 8.1) , and w is the scaled water vapor amount 

given by

           
2

1

1 2

( ) ( )
,

p

p
r

R T p q pp
w p p dp

p g
,    (8.153) 

where g is gravity, q is the water vapor mixing ratio, and ( )R T  is the temperature scaling 

factor which is given by ( ) exp[ ( )]
r

R T r T T .  Here r is a factor from Chou (1984) and 

is also listed in Table 8.1. 

 The diffuse transmittance associated with e-type absorption is 

1
0 1 2

1 2
0

( ) ( , )
, 2 exp  v

T u p p
p p d ,   (8.154) 

where
v
 is the e-type absorption coefficient, 0 296 KT , and u  is a  scaled  water  vapor 
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Table 8.1. Water vapor absorption parameters from Chou (1984). 

 H2O

Band Center 

H2O

Band Wing 
15- m

Band

9.6- m

Band

Spectral 0-340 340-540 540-800 980-1100 

       Range 1380-1900 800-980   

       (cm
-1

)  1100-1380   

  1900-3000   

r
p  (mb) 275 550 550 - 

r
T  (K) 225 256 256 - 

r (K
-1

) 0.005 0.016 0.016 - 

amount given by 

        
2

1

1 2

0

1 1 ( )
, ( ) exp 1800

( )

p

p

q p
u p p e p dp

T p T g
.   (8.155) 

In this case, ( )e p  is the water vapor pressure (in units of atmospheres), 0 296 KT , and 

1800 represents 1800 K, a temperature-dependent constant.  Roberts et al. (1976) state 

that this is in accord with the fact that the hydrogen bond between two water molecules is 

in the neighborhood of 3-4 kcal, which leads to  1800 K. 

 Broad transmission functions can be derived by averaging (8.152) and (8.154) 

over wide spectral intervals.  In the water vapor bands, the Planck weighted transmission 

function is

            
( ) ( ) ( )

, ,
( )

v v v
B T w u

w u T dv
B T

,    (8.156) 

where ( )B T  is the spectrally integrated Planck flux, ( )
v

B T  is the Planck flux, ( )
v

w  is 

the transmittance given by (8.152), and ( )
v

u  is the transmittance given by (8.154).  

Since ( , , )w u T  is a slowly varying function of temperature, it can be fitted by the 

quadratic function (Chou 1984) 

        
2

, , , , 250 1 , 250 , 250w u T w u w u T w u T ,

where ,w u  and ,w u  are the regression coefficients and , , 250w u  is the 

standardized transmission function given by Chou (1984). 

 The band center region absorption can be neglected because it is dominated by 

molecular lines and the effect due to e-type absorption is small.  Therefore in the tables of 

Chou (1984), the last column shows that , , and  are functions of w only.  Equation 

(8.156) gives the Planck weighted transmission function to within an error of less than 

0.002.

 For the 15- m region, Chou (1984) has fitted the diffuse transmission function 

averaged over the entire band as 
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0.6

6.7
exp

1 16

w
w

w
,     (8.157) 

           0.83exp 27u u .     (8.158) 

Since the molecular line absorption is weak in the 9.6- m region, only the e-type 

absorption is considered.  Chou (1984) has also fitted the diffuse transmission associated 

with the e-type absorption in this region as 

              exp 9.79u u .     (8.159) 

The difference between the transmission functions using (8.157), (8.158), and (8.159) and 

those derived from (8.152) and (8.154) is less than 0.015 ( 5%  of the mean absorption). 

CO2 Bands.  The spectral thermal radiative flux in a nonscattering atmosphere can be 

found by integrating the Schwartzchild equation, 

          
0

( ') , '
',

'

p
v v

B T p d p p
F p dp

dp
    (8.160) 

where ( , ')
v

p p  is the transmittance averaged over zenith angles  and is given by 

          
1

0

, '
, ' 2 exp

v
u p p

p p d .    (8.161) 

Also,

          
'

'' '', ''
, ' ''

p
v

p

c p k p T p
u p p dp

g
 ,  (8.162) 

where ( '')c p  is the CO2 concentration and [ '', ( '')]k p T p  is the absorption coefficient.  

For a small enough spectral interval 
i
, integration of (8.160) gives 

          
0

( ') , '
'

'i

p
i i

B T p d p p
F p dp

dp
,    (8.163) 

where [ ( ')]
i

B T p  is the spectrally integrated Planck flux and ( , ')p p  is the spectrally 

averaged diffuse transmittance given by 

, '
, '

i

v

i
v

i

p p
p p dv

v
.     (8.164) 

 With (8.164) we now have an equation where the spectrally averaged diffuse 

transmittance depends on the transmittance at a single wavenumber 
v
.  However, we see 

from (8.161) and (8.162) that 
v
 is dependent on the absorption coefficient, which is a 

function of wavenumber, temperature, and pressure.  Therefore, 
v
 requires computations 

at numerous points in the spectral interval for each atmospheric situation in order to find 

the mean diffuse transmittance.  Fortunately, the computations can be simplified by 



182 An Introduction to Global Spectral Modeling

relating the absorption coefficient to a reference pressure 
r

p  and a reference temperature 

r
T  through a scaling function ( , )f p T  such as 

, , ,
r r

k p T k p T f p T .    (8.165) 

 We may now combine and rewrite (8.161) and (8.162) as 

            
1

0

, , '
, ' 2 exp

v r r
k p T w p p

p p d ,   (8.166) 

where ( , ')w p p  is the scaled CO2 amount and is given by 

'

'' '', ''
, '  ''

p

p

c p f p T p
w p p dp

g
.   (8.167) 

Here, (8.166) treats an inhomogeneous atmosphere as a homogeneous atmosphere with a 

constant pressure and temperature of 
r

p  and 
r

T .  This is possible because (8.167) scales 

the CO2 concentration to simulate the absorption in an inhomogeneous atmosphere. 

 Equation (8.165) separates the absorption coefficient from the pressure and 

temperature variables.  We may now write (8.164) to express the mean transmittance 

averaged over the spectral interval 
i
 as a function of only the scaled absorber amount 

w as 

           
( )

.
i

v

i
v

i

w
w dv

v
     (8.168) 

 We can now accurately precompute 
i
 as a function of w, with ( , )

r r
k p T

obtained from accurate line-by-line calculations.  
i
 may then be stored in a look-up table  

for quick and efficient use.  Chou and Peng (1983) have shown that the spectrally 

averaged diffuse transmittance 
i
 can be accurately precomputed from the analytical 

function

          exp
1

i n

aw
w

bw
,     (8.169) 

mean-square error in ( )
i

w  is minimized.  Chou and Peng (1983) have computed values 

for a, b, and n.  They are shown in Table 8.2.

 The absorption coefficients at the selected reference levels are accurately 

computed using line-by-line methods.  Radiative transfer in the regions close to the 

reference levels will also be accurately computed.  Therefore the values of 
r

p  and 
r

T

should be close to the regions where accurate computations of radiative transfer are 

important.

 One important region is the stratosphere, where radiative cooling due to CO2

emission is a dominant factor.  Another important region is the lower troposphere, where 

the downward radiative flux at the surface is an important component affecting the

where a, b, and n are chosen for individual spectral intervals such that the computed  root-
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Table 8.2.  15 m spectral band parameters from Chou and Peng (1983). 

   Band Wings 
  Band Center Narrow Wide 

 (cm
-1

) 620-720 580-620 540-620 

   720-760 720-800 

r
p  (mb) 30 300 300 

c
p  (mb) 1 1 1 

 m 0.85 0.85 0.50 

 n 0.56 0.55 0.57 

 a 3.1 0.08 0.04 

 b 15.1 0.9 0.9 

r
T  (K) 240 240 240 

( , )
r

R T T 0.0089 0.025 0.025 

surface temperature.  Cooling of the stratosphere is mostly due to the absorption band 

center, and cooling in the lower troposphere is mostly due to the absorption band wings.  

We must choose a 
r

p  representative of the lower troposphere.  Chou and Peng (1983) 

state that the temperature is less critical to the equations and they use a value of 240 K, 

which they considered to be an intermediate value for both the stratosphere and the 

troposphere.

 The scaling function used is  

       , ,

m

r

r

p
f p T R T T

p
,    (8.170) 

which is from the work of Chow and Arking (1980) . Here m is a parameter for correcting 

the error arising from the assumption of linear dependence of the absorption coefficient 

on pressure. ( , )
r

R T T  is a temperature scaling factor and is given by

        , exp
r r

R T T r T T ,

where r = 0.0089 for the band center and 0.025 for the band wings.  Also, 240 K
r

T  for 

both the band center and band wings.  The pressures scaling in (8.170) assumes that the 

absorption coefficient follows the Lorentz function. This assumption is not valid at low 

pressures, where broadening of absorption lines due to Doppler shift is important.  In the 

15- m spectral region, the height where line broadening due to molecular collision and 

Doppler shift is equally important is approximately 10 mb.  For a Doppler line function, 

the absorption is independent of pressure.  To account for the Doppler effect, we define a 

critical pressure level 
c

p .  At pressures higher than the critical pressure, the absorption 

coefficient is independent of pressure. 
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Table 8.3.  Ozone coefficients from Rodgers (1968). 

 k a 

 (cm g
-1

) (cm
-1

) (cm
-1

) (cm
-1

)

 208 81.21 0.28 0.1  

 We may write (8.170) as 

, ,

m

c

r

r

p
f p T R T T

p
   for 

c
p p ,   (8.171) 

where the values for 
r

p ,
r

T ,
c

p , and m were obtained empirically by Chou and Peng 

(1983) and are listed in Table 8.2. 

Ozone Bands.  Rodgers (1968) defines a transmission function for a Lorentz line shape as

0.5

4
, , exp 1 1

2
i

p km
T k m p

p
,   (8.172) 

where  is the line width at one atmosphere,  is the mean spectral interval, k is the line 

strength, and m is the ozone concentration.  Rodgers (1968) used this transmission 

function to find the 9.6- m ozone band absorption.  The absorption equation is

, 1 , ,
i i

i

A m p a T k m p ,    (8.173) 

where
i

a  is the spectral interval for the ith absorption band. 

 The values of the coefficients were chosen empirically by Rodgers (1968) and are 

listed in Table 8.3.  Using the fact that transmission can be defined as one minus the 

absorption, Harshvardhan and Corsetti (1984) obtained the ozone transmission through 

the atmosphere simply by subtracting ( , )A m p  from 1.0. 

Treatment of Clouds.  Consider a simple five-layer atmosphere with only one cloud layer.

The fractional cloud cover in that layer is defined as N.  Equation (8.149) for a level 

below the cloud may then be rewritten as 

1 , ,
cld t t

F p B T p N G p p T p

                   
( )

( )

, ', ( ')
1 ( ')

t
T p

T p

G p p T p
N dT p

T

                    
( )

( )

, ', ( ')
( ')

cb
T p

T p

G p p T p
N dT p

T
,    (8.174) 

where cb is the cloud base, t is the top of the atmosphere, N is the fractional cloud cover 

in the layer, and 1 N  is the probability of a clear line of sight from p to 
t

p .

 By splitting the limits of integration, (8.174) may be written as
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1 , ,
cld t t

F p B T p N G p p T p

                    
( )

( )

, ', ( ')
1 ( ')

t

cb

T p

T p

G p p T p
N dT p

T

                   
( )

( )

, ', ( ')
( ')

cb
T p

T p

G p p T p
dT p

T
.    (8.175) 

The probability of a clear line of sight between any two levels will always be in the range 

from zero to one, as shown below. 

Probability  Levels 

1 N p to pt

1 N p to p' (where p' is between 
cb

p  and 
t

p  )

1.0 p to p' (where p' is between p and
cb

p )

Equation (8.175) may now be written as 

, , , ( )
cld t t t

F p B T p C p p G p p T p

                   
( )

( )

, ', ( ')
( , ') ( ')

t
T p

T p

G p p T p
C p p dT p

T
,    (8.176) 

where ( , ')C p p  is the probability of a clear line of sight from p to p'.  Equation (8.148) 

may be manipulated in the same way to yield

, , , , , ( )
cld s s s s s

F p B T p C p p G p p T G p p T p

                   
( )

( )

, ', ( ')
( , ') ( ')

s
T p

T p

G p p T p
C p p dT p

T
.    (8.177) 

 Equations (8.176) and (8.177) are still valid even when there is more than one 

cloud layer.  The longwave parameterization utilizes a random overlap of clouds.  The 

random overlap of clouds is equal to the product of all fractional cloud amounts for all 

levels that have clouds. 

8.5.3 The Band Mode: Shortwave Radiation 

The solar radiation at the earth’s surface and in the atmosphere is the initial source of 

energy causing atmospheric motions.  The main absorbers of solar radiation in the earth’s 

atmosphere are water vapor in the troposphere and ozone in the stratosphere.  Water 

vapor absorbs primarily in the near-infrared region, 0.7 m 4 m .  Ozone (O3) is 

effective in the ultraviolet region, 0.35 m , and in the visible region, 

0.5 m 0.7 m .

 As an introduction to understanding the shortwave radiation parameterization 

scheme used, the transfer of shortwave radiation through a nonscattering clear 

atmosphere is described first.  The transfer of shortwave radiation through the 

atmosphere with negligible scattering is given by 
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     0 0 0
0

, , ,
v

S z S z d ,    (8.178) 

where S  is the downward radiation at height z having a solar radiance ( )
v

S  at the top 

of the atmosphere and inclined at a zenith angle 0  (or 0 0cos ) and 0( , , )z  is 

the monochromatic transmittance given by

           0

0

1
, , exp

v
z

z k du .    (8.179) 

Here
v

k  is the monochromatic absorption coefficient and u is the optical path length for 

the particular absorber. 

 A mean transmission function can be defined as given in Stephens (1984) by 

            0 0

1
, , exp ( )

r v
v z

z m k du dv
v

,   (8.180) 

where the relative air mass factor 0( )
r

m  is used in place of 01/ .  This factor takes into 

account the earth’s curvature and atmospheric refraction and is given by 

0 2 1/ 2

0

35
( )

(1224 1)
r

m  .     (8.181) 

It is easy to see that for small zenith angles ( 0 1), we obtain 01/
r

m .

Mean transmittance can also be defined as the convolution of the transmission 

function and ( )S  over the entire solar spectrum, that is,

         0 0
0

1
, , , ,  

( )
z S z d

S
,   (8.182) 

where ( )S  is the net solar radiation at the top of the atmosphere.  Knowledge of the 

absorption coefficient 
v

k  and ( )S  is enough to provide the mean transmission function 

for a particular optical path u.  The downward solar flux at height z for a nonscattering 

atmosphere can now be written as 

      0 0, ,S z S z .     (8.183) 

The transmission function 0( , , )z  can also written as ( ) .  That is, it can be 

written as a function of optical path.  With this notation, the upward solar radiative flux at 

level z by reflection from the ground is similarly defined as 

       *

0 g
S z S R ,    (8.184) 

where
g

R  is the surface albedo integrated over the entire spectral range and *  is the 

effective optical path traversed by diffusively reflected radiation and can be 

approximated by (Lacis and Hansen 1974) 

*

0 0 0r
m u m ,     (8.185) 



Physical Processes 187

where 0  is the total thickness up from the ground and m  is an effective magnification 

factor for diffuse radiation. 

 The heating rate at height z due to the shortwave radiative flux is given by

1
( ) ( )

P P

T d g d
S S S S

t c dz c dp
,   (8.186) 

where

      
( ) ( ) ( ) ( )

( )
d S p p S p p S p S p

S S
dp p

        
* *

0 ( ) ( ) ( )
g

S R u p p u p

           0 ( ) ( ) ( ) /S u p p u p p

        * *

0 ( ) ( ) ( )
g

S R A u p A u p p

           0 ( ) ( ) ( ) /S A u p A u p p p .    (8.187) 

Here the absorption function A is given by 1A .  The heating rate by shortwave 

radiation is therefore proportional to /dA dp .  Alternatively stated, to determine the 

heating rate, we must first determine the absorption functions. 

 The parameterization of the absorption and transmission functions in the model is 

based on the ULCA/GLAS GCM scheme and is described to some extent by Davies 

(1982).  It includes a parameterization for the major absorption processes in the 

stratosphere, troposphere, and at the earth’s surface.  The parameterization is a function 

of the water vapor distribution, the cloud coverage, the zenith angle of the sun, the albedo 

of the earth’s surface, and the ozone distribution.  In this scheme, ozone absorption and 

water vapor absorption are assumed to be in the above-mentioned separable spectral 

regions.  Multiple scattering is taken into account whenever it is significant.  We next 

give a brief description of the specification of clouds used in the scheme. 

8.5.4 Specification of Clouds 

The specification of clouds is based on threshold values of relative humidity (Slingo 

1985; Dickinson and Temperton 1985).  Three types of clouds (low, medium, and high) 

are allowed.  Low clouds are assumed to be present between 900 and 700 mb, medium 

clouds between 700 and 400 mb, and high clouds between 400 and 100 mb.  Clouds are 

assumed to be present when the mean relative humidity RH  in a layer exceeds the 

threshold value 
c

RH . The cloud amount N for each cloud type is defined by

       

2

, ,or 
1

c

L M H

c

RH RH
C

RH
,

c
RH RH ,    (8.188) 

where
c

RH  is set to 0.66, 0.50, and 0.40 for low, medium, and high clouds, respectively.  

When
c

RH RH , the cloud amount N is set to 0.  The maximum possible value of N is 

1.  This definition of cloud cover allows eight categories of sky conditions to be defined: 



188 An Introduction to Global Spectral Modeling

1 (1 )(1 )(1 )
L M H

C C C C    clear sky 

2 (1 )(1 )
L M H

C C C C   low clouds only 

3 (1 )
L M H

C C C C    low and middle clouds 

4 L M H
C C C C     low, middle and high clouds 

5 (1 )(1 )
M L H

C C C C   middle clouds only 

6 (1 )
M H L

C C C C    middle and high clouds 

7 (1 )(1 )
H L M

C C C C   high clouds only 

8 (1 )
L H M

C C C C    low and high clouds 

 The relative humidity distribution determines the low  (
L

C ), middle (
M

C ), and 

high (
H

C ) cloud amounts.  The radiation calculations are first carried out eight times, 

assuming a weight of one for each of the above categories.  Then the radiative fluxes are 

weighted by fractional cloud coverage under each of the above eight categories to give a 

total flux at any level i as
8

1

i n in

n

F C F .      (8.189) 

8.5.5 Surface Energy Balance 

The heat balance of the earth’s surface will now be considered.  For most tropical 

meteorological problems, the ocean is assumed to have an infinite heat capacity.  Since 

the ocean’s diurnal temperature changes are not as large as for land areas, one does not 

address the problems of heat balance of the ocean surface when small time scales of 

atmospheric changes are considered.  When one is concerned with monthly or seasonal 

changes, the oceanic problem becomes very important.  The land surface heat balance 

problem is very important for the present study, since the desert areas exhibit diurnal 

changes of the order of 30 C to 40 C.  The elements of the heat balance at the earth’s 

surface are described next. 

 First we discuss sensible and latent heat fluxes.  The sensible heat flux from land 

areas, following Chang (1978), is expressed by the relations 

S p H a g a
H c C V T T ,     (8.190) 

L q a g a w
H LC V q q G .     (8.191) 

Here we assumed an unsteady planetary boundary layer over homogenous terrain.  The 

above expressions are consistent for a log-linear profile in the constant flux layer.  
H

C

and
q

C are the stability-dependent exchange coefficients based on similarity theory as 

discussed in Section 8.2.3.  
w

G  is the ground wetness parameter with values between 0 

and 1. 

 The following steps are carried out in the computation of ground temperature 
g

T .

We first estimate the net downward flux of shortwave radiation 
S

F  and longwave 
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radiation
L

F  using emissivity or a band radiation model as described in Sections 8.5.1 

and 8.5.2.  The soil moisture is estimated from an empirical relation based on the surface 

albedo, that is, 
2200(0.25 )

0.85 1 exp g

w
G ,    (8.192) 

where
g

 is the albedo of the surface. 

 The proper evaluation of ground wetness and the evaporative flux is important.  

Any excess in these measures usually results in excessive rainfall over desert areas.  On 

the contrary, the occasional rainfall in the dry sub-Saharan belts is not predicted by the 

model if the ground wetness is significantly underestimated.  The empirical formulas 

presented here are not guaranteed to represent the hydrology of the semiarid regions. 

 The heat balance condition may be expressed by 

           
4(1 ) ( )

g

g S L S L g

T
C F F H H T

t
.    (8.193) 

g
T  is the ground surface temperature,  is the Stefan-Boltzmann constant, 

g
 is the 

surface albedo, and C is the heat capacity of the soil.  The left-hand side of this equation 

is small since C is very small.  However, /
g

T t  is appreciable.  If the heat capacity of 

the ground is assumed to be zero, then we may write 

      4(1 ) ( ) 0
g S L S L g

F F H H T .    (8.194) 

 This equation may be used to solve for the diurnally varying surface temperature.  

Surface temperature explicitly appears in the formulations of 
S

H  and 
L

H .  This is a 

transcendental equation in the surface temperature, and numerical methods such as the 

Newton-Raphson method are used for its determination. 

 The diurnal change arises via the inclusion of a varying zenith angle of the sun.  

In this balanced state, diurnal variation over warm land areas is accompanied by 

substantial diurnal changes in the fluxes of 
S

F ,
L

F ,
S

H , and 
L

H .  This formula was 

also tested against ground-based measurements of surface temperature and was found to 

give a reasonable diurnal cycle of surface temperature. 

8.5.6 Surface Energy Balance and Similarity Theory Coupling 

The surface energy balance equation can be solved for the ground temperature Tg without 

any reference to the surface fluxes from the similarity theory.  If that were done, then we 

would have to separate solutions for the surface fluxes of sensible and latent heat - that is, 

one from surface energy balance and the other from similarity theory.  In order to avoid 

this inconsistency, we propose an iterative solution of the two problems that couples the 

two solutions. 

 The surface energy balance equation may be expressed by 

4

* * * *1 0
L g g S p

F T F c u Lu q .    (8.195) 
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Here
L

F denotes the downward flux of longwave radiation, 
S

F  denotes the downward 

flux of shortwave radiation, 
g

 denotes the surface albedo, and *  and *q  denote the 

characteristic temperature and specific humidity of the surface layer, respectively.  

Furthermore, it should be noted that * *p
c u  denotes the flux of sensible heat from the 

earth’s surface to the atmosphere, and * *
Lu q  denotes the flux of latent heat. 

 In section 8.2.3 we have discussed a procedure for the solutions of *u , * , and *q

for stable and unstable conditions.  Stability is determined from the sign of Monin-

Obukhov length L or bulk Richardson number Ri
B .  Given a first-guess (superscript 1) 

value of the surface temperature (1)

g
T , one can evaluate the corresponding bulk 

Richardson number by 

         

(1)

(1)

2

( )

( )

a g

g

a g

T T z
Ri

u u
,     (8.196) 

where
a

T  is an interpolated air temperature at the top of the constant flux layer where the 

wind speed is 
a

u , z  is the thickness of the constant flux layer, and 0/g , 0  being 

the reference temperature.  The ground temperature is 
g

T  and the wind speed at the 

surface is 0
g

u .  One next solves for (1)( / )z L  for the stable ( 0
B

Ri ) and unstable 

( 0
B

Ri ) situations from (8.29) and (8.23), respectively. 

 The stability exchange coefficients (1)

D
C , (1)

H
C , and (1)

q
C  are next evaluated by 

utilizing the first-guess value of the Monin-Obukhov length, (1)
L .  It is now possible to 

update the values of the surface fluxes 2

*u , * *u , and * *u q  as a function of the Monin-

Obukhov length and stability.  Here we use (8.21).  At this point, *u , * , and *q  are 

substituted into the energy balance equation and one solves for an updated ground 

temperature (2)

g
T .  This cycle is repeated to minimize the difference of 1v v

g g
T T  as a 

function of the scan v.  This procedure converges very rapidly, yielding a coupling 

between the surface energy balance and the surface similarity theory. 

8.5.7 Column Model Results 

The UCLA/GLAS radiation algorithm was verified against line-by-line calculations using 

standard atmosphere profiles.  The Florida State University Global Spectral Model 

(FSUGSM) algorithm was verified using the same standard atmosphere profiles.  Figure 

8.3a shows the column model results of the band model versus the emissivity model for a 

standard tropical atmosphere.  The largest difference between the two models is stronger 

cooling of the troposphere in the band model. 

 Figure 8.3b shows the same atmospheric profile, except that the moisture in the 

lower layers has been modified to produce clouds.  The maximum cooling in the 

emissivity model is several layers above the cloud tops.  In addition, the band model 

shows stronger cooling than the emissivity model.  This strong radiative cooling plays an
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Figure 8.3.  Vertical distribution of longwave radiative warming in units of °C day
-1

 for 

(a) clear and (b) cloudy conditions for the band model (dashed lines) and the emissivity 

model (solid lines). 

important role in many tropical processes.  Krishnamurti et al. (1991b) have 

demonstrated the effect of these two radiation schemes on the life cycle of typhoon Hope.  

The emissivity method, with smaller cooling at the cloud-top level, could not maintain an 

adequate radiative destabilization for the typhoon to continue development.  On the other 

hand, the band model developed a stronger typhoon. 



Chapter 9 

Initialization Procedures 

9.1  Introduction 

In this chapter we describe two of the most commonly used initialization procedures.  

These are the dynamic normal mode initialization and the physical initialization methods.  

Historically, initialization for primitive equation models started from a hierarchy of static 

initialization methods.  These include balancing the mass and the wind fields using a 

linear or nonlinear balance equation (Charney 1955; Phillips 1960), variational 

techniques for such adjustments satisfying the constraints of the model equations (Sasaki 

1958), and dynamic initialization involving forward and backward integration of the 

model over a number of cycles to suppress high-frequency gravity oscillations before the 

start of the integration (Miyakoda and Moyer 1968; Nitta and Hovermale 1969; 

Temperton 1976).  A description of these classical methods can be found in textbooks 

such as Haltiner and Williams (1980). 

 Basically, these methods invoke a balanced relationship between the mass and 

motion fields.  However, it was soon realized that significant departures from the balance 

laws do occur over the tropics and the upper-level jet stream region.  It was also noted 

that such departures can be functions of the heat sources and sinks and dynamic 

instabilities of the atmosphere.  The procedure called nonlinear normal mode 

initialization with physics overcomes some of these difficulties.  Physical initialization is 

a powerful method that permits the incorporation of realistic rainfall distribution in the 

model’s initial state. 

9.2  Normal Mode Initialization 

This is an elegant and successful initialization procedure based on selective damping of 

the normal modes of the atmosphere, where the high-frequency gravity modes are 

suppressed while the slow-moving Rossby modes are left untouched.  Williamson   

(1976) used the normal modes of a shallow-water model for initialization by setting the 

initial amplitudes of the high-frequency gravity modes equal to zero.  Machenhauer 

(1977) and Baer (1977) developed the procedure for nonlinear normal mode  

initialization (NMI), which takes into account the nonlinearities in the model equations.  

Kitade (1983) incorporated the effect of physical processes in this initialization 

procedure.
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 We describe here the normal mode initialization procedure.  Essentially following 

Kasahara and Puri (1981), we first derive the equations for vertical and horizontal modes 

of the linearized form of the model equations.  Thereafter, the procedures for determining 

the normal modes of atmospheric models with a discrete number of vertical levels and a 

discrete horizontal resolution will be outlined. 

9.2.1 Basic Equations 

As discussed in Chapter 7, the basic equations for atmospheric motion on a spherical 

surface in the  coordinate system are 

      
tanu u

V u f u v
t a

             
1

cos

q
RT

a
,     (9.1) 

      
tanv v

V v f u u
t a

             
1 q

RT
a

,      (9.2) 

      
T T

V T
t

               .T V V V q ,    (9.3) 

      
q

V q V
t

,      (9.4) 

      0V V V V q ,    (9.5) 

      0
RT

.        (9.6) 

Here ln
s

q p ,
1

0
V V d , and /

p
k R c .  The vertical boundary conditions for this 

system of equations are = 0 at  = 0 and  = 1. 

 We now introduce two new variables P and W defined by 

0P RT q ,     (9.7)

W V V q ,     (9.8) 

where 0T  is the mean horizontal temperature and is a function of  only.  Differentiating 

(9.7) with respect to  and using the hydrostatic relation, we get,  

0dTP RT
R q

d
.      (9.9) 
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The horizontal momentum equations (9.1) and (9.2) along with (9.5) may be written in 

terms of P and W as 

       1

1

cos

u P
fv C

t a
,     (9.10) 

       
2

1v P
fu C

t a
,     (9.11) 

       
W

V V q .      (9.12) 

Differentiating (9.9) with respect to t and utilizing (9.3) and (9.4) gives

      3

0

P
W C

RT t
.      (9.13) 

 Equations (9.10) to (9.13) are a new set of atmospheric equations which will be 

used for further analysis.  The right-hand sides of these equations are the nonlinear terms 

and are given by 

1

' tan

cos

u RT q uv
C V u

a a
,

2

2

' tanv RT q u
C V u

a a
,

3

0

1 ' '
'

T T
C V T W TV q ,

where 0' ( )T T T  and 0 0 0( ) / /T T  is a measure of the static stability of 

the basic (horizontally averaged) atmosphere.  The boundary conditions for these 

equations are 

             0        at 0W      (9.14)  

and

0 0       at 1H

H

P
RT

t
,    (9.15) 

where
H

P  and 
H

W  are the surface values ( 1) of P and W given by

            0H H H
P RT q ,

H
W V V q .

H
 and 0( )

H
T  are the geopotential and mean temperature at  = 1, respectively. 

9.2.2  Linearized Equations 

The linearized forms of (9.10) to (9.13) with the basic state at rest and the horizontally 

averaged temperature 0T  as a function of  are 
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' '
2 'sin

cos

u P
v

t a
,     (9.16) 

' '
2 'sin

v P
u

t a
,     (9.17) 

             
'

' 0
W

V ,     (9.18) 

        
0

'
' 0

P
W

R t
.      (9.19) 

Elimination of 'W  between (9.18) and (9.19) yields 

            
0

'
' 0

P
V

t R
.     (9.20) 

Equations (9.16), (9.17), and (9.20) constitute a system of equations for the perturbation 

quantities u', v', and P'.

 The upper-boundary condition is now 

'P
 = a finite value at  = 0.     (9.21) 

At the lower boundary, that is, at  = 1, (9.19) becomes 

         
'

0

1 '
0

H

P
W

R t
.      (9.22) 

On elimination of '

H
W  between the linear form of (9.15) and (9.22) we obtain 

'0

0

'
0 at 1

H

H

P
P

T
.     (9.23) 

We now consider the separation of the vertical and horizontal dependence of the 

variables by assuming 

              ' ( , ) ( )u u ,     (9.24) 

              ' ( , ) ( )v v ,     (9.25) 

and

             ' ( , ) ( )P .      (9.26) 

Substituting the above values of u', v', and P' into (9.16), (9.17), and (9.20) and separating 

the variables, we get 

              
1

2 sin
cos

u
v

t a
,     (9.27) 

       
1

2 sin
v

u
t a

,      (9.28) 

and
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             0gD V
t

,      (9.29) 

where D is the separation constant with the dimensions of height, and it satisfies the 

differential equation of vertical dependency, that is, 

       
0

1
0

d d

d R d gD
.     (9.30) 

The boundary conditions (9.21) and (9.23) now become 

              = a finite constant at  = 0,    (9.31) 

which for practical purposes can be taken as 0, and 

        0

0

0 at 1
T

.      (9.32) 

 Equation (9.30) is the vertical structure equation with D as an eigenvalue.  

Equations (9.27) to (9.29) are the equations for horizontal structure.  We note that this set 

of equations is identical to the linearized shallow-water equations with a mean height of 

the fluid D, which is commonly referred to as the equivalent height.

9.2.3 Vertical Structure Functions 

The vertical structure equation (9.30) with the boundary conditions (9.31) and (9.32) can 

be solved using vertical discretization and finite differencing in the model.  If the 

atmospheric models has L vertical levels with vertical discretization shown in Fig. 9.1, 

then the finite-difference form of (9.30) for levels l = 1 to L may be written as 

1

2
1

1 2 2

2 (2) (1) (1)
0 0

D
,   (9.33) 

1 1

2 2
2 1

2 3 3 2

2 (3) (2) (2) (1) (2)
0

D
,  (9.34) 

      1 1
22

1

1 1

2 ( 1) ( ) ( ) ( 1) ( )
0

ll

l l l l

l l l l l

D
,  (9.35) 

and

0
1

1 2
1

0 2

( )
2 ( ) ( 1) ( )

0

1
H

L
L L L

L

L
T L L L

D

T

, (9.36)

where 0[( ) /( )]
l l

g R  and 0/( )
H H

g R .  The subscript H indicates the surface  

(  = 1)  value.  While writing  (9.33)  and (9.36),  use has  been  made  of  boundary
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Figure 9.1.  Vertical discretization of the FSU model. 

conditions (9.31) and (9.32).  Also, at the lower boundary it is assumed that 

( 1/ 2) [ ( ) ( 1)] / 2L L L .

The above set of equations may be written as an algebraic eigenvalue problem of 

the type 
1 0A D , where A is matrix of finite coefficients of dimension L and  is 

a column vector.  The solution is L eigenvalues (equivalent depth D) with L eigenvectors 

associated with each equivalent depth. 

Figure 9.2 shows the equivalent depth and eigenvectors corresponding to each 

equivalent depth for the 12-level FSUGSM.  The gravest mode (first mode with the 

largest equivalent depth) is the external mode and has very little vertical structure.  The 

other modes are the internal modes.  With decreasing equivalent depth, the modes have 

more and more vertical structure. 

9.2.4  Horizontal Structure Functions 

To solve the horizontal equations (9.27) to (9.29), we assume 

        ( 2 )

2

m

i m t

m

m

u u

v iv e  ,     (9.37) 
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Figure 9.2.  Vertical modes (eigenfunctions) and the corresponding equivalent depths 

(eigenvalues) for the 12-layer FSU model. 

where m is the zonal wavenumber,  is the nondimensional frequency and um, vm, and m

have dimensions LT
-1

.  With this, (9.27) to (9.29) reduce to

      sin 0
cos

m

m m

m
u v

a
,    (9.38) 

       
1

sin 0m

m m
v u

a
,    (9.39) 

and   

2
( cos ) 0

4 cos
m m m

gD
mu v

a
.   (9.40) 

From (9.38) and (9.39), we get 

An Introduction to Global Spectral Modeling



199

      
2 2

1 sin

sin cos
m m

m
u

a a
    (9.41) 

and

      
2 2

1 sin

sin cos
m m

m
v

a a
.    (9.42) 

 Substituting the values of 
m

u  and 
m

v  into (9.40), and after some simplification, 

we get the horizontal structure equation in 
m

 as 

2 2 2

2 2 2 2 2 2 2

1 cos 1 sin

cos sin sin sin cos
m

m m

2 22
0

m

a

gD
.      (9.43) 

The eigenvalues for this equation are the nondimensional frequency , and the 

eigenvectors are 
m

.  Substituting 
m

 into (9.38) and (9.39), we obtain the eigenvectors 

m
u  and 

m
v .

 However, (9.43) is not convenient for solving.  Instead, it is easy to solve (9.38) 

to (9.40) without combining them.  In spectral modeling, if the horizontal equations are 

written in terms of vorticity and divergence equations, the determination of the horizontal 

structure is more convenient.

Equations (9.27) to (9.29) may be written in vorticity and divergence form as 

       
' cos ' 1 '

2 sin ' 2 0
cos

D
t a a a

,   (9.44) 
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and     
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where

     
2

2

2 2

1ˆ cos cos
cos

,

2 2ˆ' 1/ 'a , and 2 2ˆ' 1/ 'D a .  Note that '  and '  are the streamfunction and 

velocity potential, respectively.  Writing 

( 2 )
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gH e

h hH

,    (9.47) 
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we have 

           im           and  2i
t

,

where ˆˆ ˆ,  ,  h  and  are the nondimensional values of the streamfunction , velocity 

potential , height h, and frequency v, respectively. 

 The above set of equations reduces to 

     
2 2 2ˆ ˆˆ ˆ(1 ) 0m i ,    (9.48) 
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where ( )m

n
P  are normalized Legendre functions.  As shown in Chapter 6, ( )m

n
P

satisfy the following relations: 

          2ˆ ( 1)m m

n n
P n n P ,

      1 1 1

m m m m m

n n n n n
P P P ,

and

     2

1 1 1(1 ) ( 1)
m

m m m mn

n n n n

dP
n P n P

d
,

where
1/ 2

2 2

24 1

m

n

n m

n
,

so that 

        2ˆ 1m m

n n
m P n n m P     (9.52) 

and
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2 2

1 1
ˆ (1 ) ( 2)m m m

n n n
P n n P

            11 1 m m

n n
n n P .    (9.53) 

 Substituting the expansions of ˆ ˆ,  ,  and ĥ  from (9.51) into (9.48) to (9.50) and 

making use of (9.52) and (9.53) and collecting coefficients of particular m

n
P  gives 

       1 1 1

1 2
0

1 ( 1)

m m m m m

n n n n n

n n m
A A B

n n n n
,   (9.54) 

          1

1

( 1)

m m m

n n n

m n
A B

n n n

                1 1

2
0

1

m m m

n n n

n
B C

n
,   (9.55) 

and     

        
( 1)

0m m

n n

n n
A C .     (9.56) 

Assuming a rhomboidal truncation at wavenumber N, we must then have n m , 1m ,

2m , . . . , N.  This gives a set of 3( 1)N  equations for each zonal wavenumber m,

which may be written as ( ) 0A I X , where A  is a 3( 1) 3( 1)N N  coefficient 

matrix and X is a column vector given by 

X = 

1

1

1

m

m

m

m

m

m

m

m

m

m

m

m

m

N

m

N

m

N

A

B

C

A

B

C

A

B

C

.

 This eigenvalue problem has 3( 1)N  eigenvalues  (nondimensional 

frequencies) corresponding to each vertical mode H [which come through 
2 24 /( )a gH ].  Out of these, 1N  eigenvalues correspond to Rossby modes and 

2( 1)N  eigenvalues correspond to gravity modes.  Each eigenvalue has 3( 1)N

eigenvectors corresponding to the spectra of variables , , and h (or u, v, and ).
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 The normal mode initialization involves selective damping of the amplitudes of 

the gravity modes.  The first (gravest) mode has a phase speed very close to the speed of 

sound.  For the higher modes, the phase speed decreases as the equivalent height 

decreases, and the phase speed of the gravity modes becomes comparable to that of the 

Rossby modes.  It is desirable to suppress the amplitudes of the higher-frequency gravity 

modes only.  In a numerical model with a vertical resolution of 10-15 levels, the gravity 

modes higher than about the first eight modes have phase speeds comparable to that of 

the Rossby modes.  In practice, it is therefore sufficient to suppress the amplitudes of the 

first four to six modes only. 

9.3  Physical Initialization 

Krishnamurti et al. (1991a) developed a procedure of physical initialization that 

assimilates observed measures of rain rates into an atmospheric model.  During this 

process, the surface fluxes of moisture, the vertical distribution of the humidity variable, 

the mass divergence, the convective heating, the apparent moisture sink [following Yanai 

et al. (1973)], and the surface pressure experience a spin-up consistent with the model 

physics and the imposed (observed) rain rates. 

 This is accomplished through a number of reverse physical algorithms within the 

assimilation mode.  These include a reverse similarity algorithm, a reverse cumulus 

parameterization algorithm, and an algorithm that restructures the vertical distribution of 

relative humidity to provide a match between the model-calculated outgoing longwave 

radiation (OLR) and its satellite-based observations. 

 The reverse similarity algorithm is structured from the vertically integrated 

equations for the apparent moisture sink 2Q̂  and the apparent heat source 1Q̂ .  Using the 

observed rain rates, the surface evaporative flux can be obtained from the sum of the 

apparent moisture sink 2Q̂  and the observed rain rate P.  The surface sensible heat flux 

can also be obtained from a knowledge of the apparent heat source 1Q̂  and the net 

radiative heating ˆ
R

Q .

 During the assimilation, 1Q̂ , 2Q̂ , and ˆ
R

Q  continually evolve from the insertion of 

the observed rain rates.  The resulting surface fluxes (called Yanai fluxes) tend to exhibit 

a consistency with the observed rain rates, which is an important component of the 

reverse similarity theory (Krishnamurti et al. 1991a, 1993, 1994a).  These fluxes are then 

used within the similarity theory, where one solves for potential temperature and the 

humidity variable (assumed to be unknowns) at the top of the constant flux layer.  The 

assimilation of these data provides a consistency among the observed rain rates and the 

surface fluxes.  A robust coupling of the ocean and the atmosphere is also seen to result 

from this approach (Krishnamurti et al. 1993). 

 We have shown (Krishnamurti et al. 1994a) that this procedure results in a very 

high skill for the nowcasting of rainfall.  The observed rain rates are obtained from a mix 

of Special Sensor Microwave/Imager (SSM/I) and OLR based algorithm and rain gauge 

data sets.  Skill is measured from correlations of accumulated rain over six-hour periods 

and over transform grid squares of the very high-resolution global model. 
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9.3.1 Reverse Similarity Theory 

Given the Yanai fluxes of sensible and latent heat as input to the similarity theory, one 

can in principle solve for a potential temperature and the moisture variable on top of the 

constant flux layer.  In the conventional problem, one solves the similarity equations for 

the variables L, u
*
,

*
, and q

*
.  Here L is the Monin-Obukhov length and the remaining 

variables represent the momentum, heat, and moisture fluxes, respectively. 

 Different sets of similarity equations describe stable ( 0L ) and unstable ( 0L )

surface layers.  In this problem, the basic variables such as wind, temperature, and 

moisture at the bottom and top of the constant flux layer and the surface roughness are 

prescribed.  We will not discuss these equations in detail here, since they were already 

provided in Chapter 8.  We express the similarity fluxes of momentum, heat, and 

moisture, respectively, by the relations 

         
2

2 1M M
F C U U ,     (9.57) 

            2 1 2 1H H p
F C c U U ,    (9.58) 

          2 1 2 1Q q p w
F C c U U q q g ,    (9.59) 

where
w

g  is the ground wetness parameter and the similarity exchange coefficients are 

given as follows: 

 For the stable and neutral cases, the bulk Richardson number Ri
B

 is greater than 

0, and we have 

            
2 2

*

2 2 2

2 1 2 1

1

( ) [ln( / )] (1 4.7Ri )
M

B

U k
C

U U Z Z
,    (9.60) 

            * *

2 1 2 1( ) ( )
H

U
C

U U

        
2

2 2

2 1

1 1

0.74 [ln( / )] (1 4.7Ri )
B

k

Z Z
,    (9.61) 

and

1.7
q H

C C .      (9.62)

For the unstable case, Ri 0
B

 and 

         

2 2

*

2 2 1/ 2

2 1 2 1

9.4Ri
1

( ) [ln( / )] 1 | Ri |

B

M

B

U k
C

U U Z Z C
,   (9.63) 

         * *

2 1 2 1( ) ( )
H

U
C

U U

         
2

2 1/ 2

2 1

9.4Ri1
1

0.74 [ln( / )] 1 | Ri |

B

B

k

Z Z C
,    (9.64) 

and   

1.7
q H

C C .       (9.65)
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Here 1
Z  and 2

Z  denote, respectively, the height of the bottom and top of the constant 

flux layer.  1
Z  is identified with a roughness length 0

Z .  ( 1U , 2U ) and ( 1 , 2 ) denote the 

wind and potential temperature at the bottom and top of the surface layer.  The bulk 

Richardson number Ri
B

 is a measure of stability, and k denotes the von Karman 

constant.

 Over land areas, the roughness length 0
Z  is defined as a function of elevation h

following Manobianco (1989), that is, 

       
28

0 0.15 0.2 10 2368 18.42Z h ,    (9.66) 

while over oceans Charnock’s formula is used, i.e., 

*2

0

0.04U
Z

g
.      (9.67) 

The expression for C follows the analysis of Louis (1979), where 

       

1/ 2
2

2

2

2 1 1

7.4 9.4

[ln( / )]

Zk
C

Z Z Z

for momentum and

       

1/ 2
2

2

2

2 1 1

5.3 9.4

[ln( / )]

Zk
C

Z Z Z

for heat and moisture.  Here the following definition of the bulk Richardson number is 

used:

       2 1 2 1

2

2 1

( ) ( )
Ri

( )
B

g Z Z

U U
.      (9.68) 

 We next address the reverse similarity theory, where one solves for 2  and 2q

given the surface fluxes of heat and moisture.  For a closure of the reverse similarity 

equation, we assume that the wind at the lowest model level 2U  is known.  Since the heat 

flux is defined by the stability, the only unknown in (9.61) and (9.64) is 2 , which can be 

solved for directly or iteratively. 

 For the unstable case, where * * 0U , we define an objective function 

* *

2 1 2 1( ) ( )

U
F

U U

          
2

2 1/ 2

2 1

9.4Ri
1

0.74[ln( / )] 1 | Ri |

B

B

k

Z Z C
.    (9.69) 

Next we search for the value of 2  which minimizes F.  Given a guess of 2

n  and a small 

increment of 2

n  say 2 , 2 2

n
F  and 2 2

n
F  can be computed using (9.69).   
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One can also compute an approximation for the derivative of F with respect to 2 , that  

is,

         
2 2 2 2

2 2

n n n
F FF

.     (9.70) 

Then an updated value of 2  can be computed from the Newton-Raphson approach: 

       
21

2 2

2/

n

n n

n

F

F

.      (9.71) 

This iterative procedure is continued until we have an accepted threshold value of 
1

2 2

n n .  Experiments show that the above scheme indeed converges extremely fast. 

 For stable conditions, (9.61) may be written as 

2 24.7 Ri 9.4 Ri 1 0
B B

A ,    (9.72) 

where

        
3 2

2 1

2

* * 2 1

( )1

0.74 [ln( / )]

U U k
A

g z U Z Z
.

It is easy to prove that the sign of both roots of (9.72) is positive and that the root with the 

larger value is beyond the physical upper limit of Ri
B

.  In other words, the solution 

should be the smaller root.  With Ri
B

 known, 2  can be obtained from (9.68).  Here, the 

influence of the change of is disregarded. 

 Once 2  is computed, 
H

C  and 
q

C  can be obtained using (9.61), (9.62), (9.64), 

and (9.65), while 2q  is obtained from (9.59).  For the stable case, the exact solutions for 

2  and 2q  are given by (9.61) and (9.62) and have no convergence problem. 

 For the unstable case, the Newton-Raphson method provides a convergence to the 

prescribed Yanai fluxes within three to four iterations.  The convergence is very rapid 

and accurate to roughly 1 W m
-2

.  Thus the Yanai fluxes are nearly exactly reproduced 

from the proposed reverse similarity theory.  Figure 9.3 illustrates the typical 

convergence for the bulk Richardson number Ri
B

.  Only a few examples of convergence 

over land and ocean are illustrated here.  The global convergence over all of the Gaussian 

grid points is easily obtained for the unstable surface layers.  The exact solution is, as 

stated above, possible for all the stable surface layer points.  In the global model over all 

of the Gaussian grid points, the convergence is met within three to four scans and the 

Yanai fluxes are recovered. 

9.3.2 Reverse Cumulus Parameterization 

The vertical distribution of specific humidity is reanalyzed such that the rainfall implied 

by the cumulus parameterization algorithm closely matches the prescribed observed 

rainfall rates.  The procedure for the construction of a reverse cumulus parameterization  
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algorithm is discussed in Krishnamurti et al. (1984, 1988).  This particular procedure is 

designed for a modified Kuo’s scheme that is described in Krishnamurti et al. (1983).  

Similar reverse cumulus parameterization algorithms have been proposed by Donner  

(1988).

As discussed in Chapter 8, our modified Kuo’s scheme invokes two parameters, b

and , where b is a moistening parameter and  is a mesoscale convergence parameter.  

The large-scale moisture convergence is defined by 

Figure 9.3.  The convergence of  (K) on top of the constant flux layer and of Ri
B
 as a 

function of iterations for oceanic and land grid points. 
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B

T

s

L

p q
I d

g
,     (9.73) 

where
B

 and 
T

 denote a sigma surface at the cloud base and cloud top, respectively.  

The total moisture supply is denoted by 

1
L

I I .      (9.74) 

The total moistening and rainfall rates are expressed by the relations 

1
L

M I b      (9.75) 

and

            1 1
L

R I b .      (9.76) 

 The modified Kuo’s scheme makes use of multiple regression to optimize the 

heating, moistening, and rainfall rates.  Here, M and R are expressed as functions of 

several large-scale variables that have a strong control on deep convection.  Thus the 

evolving large-scale variables of a forecast determine the local values of M and R, which 

in turn determine b and .  Thus a closure of the parameterization is accomplished. 

 In the reverse Kuo, the specific humidity q is modified using the relation 

       
B

T

m

s

qR
q

p q
d

g

1

1
1

B

T

B B

T T

s

q d
Rg

p q
d d

g g

.   (9.77) 

Here
m

q is the modified specific humidity, q is the specific humidity prior to 

modification, and R is the observed rainfall rate.  The moisture convergence 

corresponding to the modified specific humidity matches the observed rainfall, which is 

given by the relation 

        
B

T

s m
p q

d R
g

.      (9.78) 

The total precipitable water remains an invariant, that is, 

       
1 1B B

T T

m
q d q d

g g
.      (9.79) 

 The limitations of the matching are obvious.  In a region where 0R , if the 

supply
L

I  is zero or negative, this method would not work.  Furthermore, saturation is 

imposed as a limit; in other words, 
m

q  cannot exceed 
s

q (the saturation value).  Thus an 

exact match is not possible by this procedure in regions of excessive rainfall. 

 In Fig. 9.4 we illustrate an example of tropical rainfall distribution from (a) 

observed, (b) use of cumulus parameterization from the control analysis of humidity, and 
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(c) use of cumulus parameterization from the modified analysis of humidity.  Figure 9.4 

illustrates a typical distribution of these three fields for 12 UTC 26-27 July 1979. 

 The reverse cumulus parameterization is only applied to the tropical latitudes 

between 30° S and 30° N.  Elsewhere, a smooth transition to the control values (i.e., 

unadjusted) is retained beyond 25° S and 25° N.  The calculations shown in Fig. 9.4b, c 

illustrate a major improvement from the use of the reverse cumulus parameterization 

algorithm in the data-sparse tropics.  The arrows in Fig. 9.4c identify regions where the 

control experiment failed to specify the initial rainfall, and therefore where improvements 

were possible from the use of this procedure.  This illustration is a snapshot view of the 

reverse cumulus parameterization and matching of rainfall. 

 It should be noted that this procedure is not sufficient for the improvement of 

numerical weather prediction.  This was also noted by Puri and Miller (1990).  It is 

necessary to assimilate the related condensational heating and the spin-up of the 

divergent wind to the model’s initial state.  That is accomplished by a Newtonian 

relaxation of the humidity field during a preintegration phase prior to the day of the 

forecast.  The interpolated rainfall is subject to the reverse cumulus parameterization at 

each time step.  The moisture and the related heating field exert their influence on the 

divergence field, which is initialized in a consistent manner. 

In Fig 9.5a, b we show the precipitation forecast skill.  These are correlations 

among the observed and model rainfall totals over 24-hour periods.  These data sets are 

   

Figure 9.4.  An example of precipitation initialization from 12 UTC 26-27 July 1979.   

(a) Based on satellite rain gauge observations.  (b) Based on a control experiment’s 

rainfall rates from the first time-step.  (c) Based on a Newtonian relaxation experiment 

from day –1 to day 0.
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averaged over six hours in time and over a transform grid square in space.  The 

nowcasting of rainfall, shown in the top panel, illustrates a very high skill compared to 

the National Meteorological Center (NMC) operational forecasts.  Also shown in the 

lower panel of this illustration is the one-day precipitation forecast skill.  Here again, it is 

clearly noted that the forecasts with the physical initialization maintain a very high skill.  

9.3.3 Newtonian Relaxation 

Also termed nudging (Hoke and Anthes 1976), this is a powerful technique for the 

initialization of physical processes.  It is possible to introduce the notions of physical 

initialization as proposed in the earlier sections.  This will be carried out using a 

Newtonian nudging of the basic variables of the model during a preintegration phase.  

Some of the variables will be strongly relaxed in comparison to the others.  This has to  

do with their overall distribution in the tropics, as well as the need to improve the 

regional and global spin-up. 

Initialization Procedures 

Figure 9.5.  Correlations between the FSU analysis and physically initialized exper-

iments, NMC, and ECMWF operational centers at day 0 and day 1.  (a) FSU rainfall 

analysis correlated with postphysical initialization rainfall (solid line) and NMC global 

data assimilation system rainfall (dashed line).  (b) FSU rainfall analysis correlated with 

the day 1 forecast of FSU postphysical initialization (solid line), FSU control (dot-dash 

line), ECMWF model (thin dashed line), and NMC model (thick dashed line). 

These are the results from 31 experiments that were carried out for October 1991. 
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 The vorticity, divergence, and pressure tendency equations are subjected to a 

Newtonian relaxation for which the spectral equations take the form 

     0( ) ( )
( , ) [ ( ) ( )]

2

m m

m m ml l

l l l

A t t A t t
F A t N A t A t

t
.    (9.80) 

Here N denotes the relaxation coefficient and 0m

l
A  represents a specified future value to 

which the Newtonian relaxation is aimed at.  ( , )m

l
F A t  is the forcing term in the equation 

for the variable m

l
A .  The integrations are carried out in two steps, with the tendencies for 

the normal forcing terms m

l
F  carried out first.  The Newtonian term is expressed in finite-

difference form using the relation 

*
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m m
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l l
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,

or
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1 2 ( , )

m m

m l l

l

A t t tN A t A t t
A t t

tN A t
.    (9.81) 

Here * ( )m

l
A t t  denotes the value of m

l
A  at time t t  prior to the Newtonian 

relaxation.

 It is clear that the value of m

l
A  in the relaxation process is a weighted average of 

the model-predicted and the observed value, and thus it falls between these values as the 

relaxation proceeds.  Following Krishnamurti et al. (1988), the relaxation coefficients 

were kept time-invariant.  Their values were simply determined from numerical 

experimentation.  The following values were used: 

41 10N  s
-1

 for vorticity, 

      55 10N  s
-1

 for divergence, 

and

            41 10N  s
-1

 for surface pressure. 

A lower value of N for the divergence is used to permit the impact of physical 

initialization.  The divergence field evolves strongly from the imposed heating (the 

prescribed rainfall rates) and is weakly relaxed to the analysis. 

9.4 Initialization of the Earth’s Radiation Budget 

It is possible to produce a close match between OLR as inferred by the polar orbiting 

satellite and as determined from the model’s radiation algorithm.  The humidity 

measurements above 500 mb can be defined using a single parameter .  The local 

difference between the two estimates of OLR (satellite versus model) can be minimized, 

thus determining an optimal value of .  This procedure tends to improve the high and 

middle clouds and the planetary albedo, thus resulting in an overall improvement of the  
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Figure 9.6.  Field of the initial OLR from 27 July 1979.  Analysis interval is 40 W m
-2

(<240 W m
-2

 shaded): based on (a) polar orbiting satellite data sets; (b) a control 

experiment forecast at resolution T–42; (c) a Newtonian relaxation experiment at 

resolution T–42.

earth’s radiation budget.  This is not a unique method, since a matching of OLR can in 

principle be accomplished by altering the cloud fractions.  In principle, infinitely many 

possible combinations of low, middle, and high clouds can provide this matching.

 The humidity analysis entails an iterative procedure.  Thus for l iterations we 

write

1 1
l l

q q ,     (9.82) 

where for 0l , 0q q (analysis).  Let OLR OLR
M SAT

, where the subscript M

denotes the model-based value and the subscript SAT denotes the satellite-based value.  A 

tolerance value of 10 W m
-2

for  was assigned; that is, if 10  W m
-2

, the iteration is 

discontinued.

 If 1 2 0
l l

 (i.e., when either 
1

OLR OLR
l

M SAT
 and 

2
OLR OLR

l
M SAT

 or 

1
OLR OLR

l
M SAT

 and 
2

OLR OLR
l

M SAT
), then we define 1 2l l

F F  and 

1 10.01
l l l

R F , and we set

1 1
l l l

q q .      (9.83) 

If 1 2 0
l l

 (i.e., when either 
1

OLR OLR
l

M SAT
 and 

2
OLR OLR

l
M SAT

 or 

1
OLR OLR

l
M SAT

 and 
2

OLR OLR
l

M SAT
), then we define 1 20.5

l l
F F  and

1 10.01
l l l

R F , and set
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Figure 9.7.  Field of the initial OLR and the satellite from 27 July 1979.  Analysis 

interval is 40 W m
-2

 (<240 W m
-2

 shaded): based on (a) polar orbiting satellite data sets;  

(b) a control experiment forecast at resolution T–106; (c) a Newtonian relaxation 

experiment at resolution T–106.

1 1
l l l

q q .    (9.84) 

Here
11 OLR OLR

l
l SAT M

R  is the residual at the end of iteration 1l .  An initial value 

of the convergence factor F is set to 1.0.  The process (9.82) to (9.84) exhibits a rapid 

convergence in roughly four scans.  A match between the model-based OLR and the 

satellite-based values to within 10 W m
-2

 is realized by this bisection procedure. 

 Here we illustrate two examples of the initialization of OLR.  The tropical 

distribution of OLR is illustrated in Fig 9.6.  The three respective panels show the OLR 

values as determined from the satellite, the control model, and the model after 

initialization.  These were calculated for a model resolution of T–42.

 Figure 9.7 illustrates a second example which was initialized for the resolution T–

106.  Basically, a very close matching of OLR is indeed realized.  The correlation 

coefficient between the satellite-based and initialized OLR is on the order 0.95, while that 

for the satellite-based and the control OLR is on the order of 0.4.  The initial humidity 

analysis in the upper troposphere is thus constrained to the matching of OLR.  The 

limitations of this method were stated earlier. 
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Chapter 10 

Spectral Energetics 

10.1  Introduction 

In this chapter we present spectral energetics.  This is a useful tool for the interpretation 

of model output.  It can be used to interpret both short-term weather evolution and 

climate time scales.  These same procedures can be used with both real atmospheric data 

and model output.  A comparison of energetics histories can be very useful for the 

assessment of model performance. 

 In the first section of the chapter we derive the equations for atmospheric 

energetics.  In the following section, a method for the representation of these equations in 

the Fourier domain is introduced, and the equations are derived in the one-dimensional 

(zonal) wavenumber domain.  In the last section, we view the problem in two-

dimensional wavenumber domain and derive expressions for barotropic energy 

exchanges and baroclinic energy conversions in this framework.  Some sample results of 

the energetics in two-dimensional wavenumber domain are also presented in this section. 

10.2  Energy Equations on a Sphere 

In this section we consider a system of basic equations in spherical coordinates and 

derive the relevant energy equations for the zonally averaged flow and the eddy flow.  

These derivations are essentially based on the work of Saltzman (1957). 

10.2.1 Kinetic Energy 

We assume that the large-scale atmosphere is in a state of hydrostatic equilibrium, so that 

in spherical coordinates with pressure as the vertical coordinate we can write: 

     1

tan
A

cos
H

u u u g z
V u v f

t p a a
,   (10.1) 

     1

tan
B

H

v v u g z
V v u f

t p a a
,   (10.2) 

       
z

g
p

,       (10.3) 
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1 1 tan

cos
H

u v v
V

p a a a
,  (10.4) 

              
p

dT
c h
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,    (10.5) 

         
RT

p
.       (10.6) 

The horizontal momentum equations are given by (10.1) and (10.2), (10.3) is the 

hydrostatic equation, (10.4) is the continuity equation, (10.5) is the thermodynamic 

equation, and (10.6) is the equation of state.  In these equations  represents longitude, 

represents latitude, u is the eastward component of the wind, v is the northward 

component of the wind, ˆ ˆ
H

V ui vj , where î  is a unit vector in the eastward direction 

and ĵ  is a unit vector in the northward direction, /dp dt ,

ˆ ˆ1/( cos ) / 1/ /a i aj , a is the radius of the earth, z is the height of an 

isobaric surface, 1/  is the specific volume, 1A  and 1B  are the frictional forces per 

unit mass, 2 sinf  is the Coriolis parameter, t is time, h is the heat sources and 

sinks,
p

c  is the specific heat of air at constant pressure, T is the temperature, and R is the 

gas constant.  We also assume that the earth is a perfect sphere, so that orographic effects 

can be neglected. 

 Next we obtain the equations for total, mean, and eddy kinetic energy.  

Multiplying (10.1) by u and (10.2) by v, we obtain

2 2

2

1

2 2 tan
A

2 cos
H

u u

u u gu z
V uv f u

t p a a
, (10.7)

2 2

2

1

2 2 tan
B

2
H

v v

v u gv z
V uv f v

t p a a
.  (10.8) 

Notice that the term [ ( tan ) / ]uv f u a  in (10.7) and (10.8) has opposite signs.  This 

term therefore represents the transfer of kinetic energy between the zonal and meridional 

components of the wind, but it does not contribute towards change of total kinetic energy. 

 If we add (10.7) and (10.8), we obtain 

     
H H H

k k
V k gV z V F

t p
,    (10.9) 

where 2 2( ) / 2k u v  and 1 1
ˆ ˆA BF i j  is the frictional force per unit mass of air.  If 

we integrate (10.7), (10.8), and (10.9) along a latitude circle, we obtain 
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2 2

2
2

1

2 2 tan
A

2 cos
H

u u

u g z
V u v f uv u u

t p a a
, (10.10)  

2 2

2
2

1

2 2 tan
B

2
H

v v

v g z
V u v f uv v v

t p a a
,  (10.11) 

     
H H H

k k
V k gV z V F

t p
,    (10.12) 

2 2 2'u u u ,     (10.13) 

2 2 2'v v v ,      (10.14) 

           
2

2 2 2 2 21 1 1
' ' '

2 2 2
H H

k u v u v V V ,   (10.15) 

( ) ( cos ) ( )

cos cos

u uu uv u

t a a p

           1

tan
A

cos

u z
v f g

a a
,    (10.16) 

    
( ) ( cos ) ( )

cos cos

v uv vv v

t a a p

          1

tan
B

u z
u f g

a a
.     (10.17) 

Multiplying (10.16) by u  and integrating over 0, 2  gives

2 2

0 0

cos1 1

2 2 cos cos

uu uv uu
u u u u d

t a a p

             
2

0

1 tan

2

u
uv f d

a

             
2 2

1
0 0

1 1
A

2 cos 2

z
g u d u d

a
.   (10.18) 

where
2

0
( ) 1/(2 ) ( )d  denotes a zonal average (average around a latitude circle).  

We can further resolve the kinetic energy averaged around a latitude circle into the 

kinetic energy of the zonally averaged flow and that of the eddy motions: 

where the prime denotes deviations from the zonal mean, in other words, 'u u u  and 

'v v v .

 We now write the equations for the time rate of change of the kinetic energy of 

the zonally averaged flow.  With the help of the continuity equation (10.4), we may write 

the momentum equations (10.1) and (10.2) in flux form as
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Using the notation 
2

0
1/(2 ) ( ) ( )d  and noting that 

         
2

0
0

cos

uu
u d

a

and     
2

0
0

cos

z
u d

a
,

we get from (10.18)  
2

2 cos

cos

u

uv uu
u

t a p

         1

tan
A

uv
u f v u

a
.     (10.19) 

Similarly, multiplying (10.17) by v and integrating over 0, 2  gives 

2

2 cos2

cos

v

v vv
v

t a p

             
2

1

tan
B

u gv z
v f u v

a a
.   (10.20) 

Writing 'u u u  and 'v v v , we can represent the various terms on the right-

hand side of (10.19) as follows: 

cos cos ' '1
cos

cos cos cos

uv uuv uv u vu u

a a a

             

2

2cos1
cos

cos cos

u

uuv

v
a a

' '
cos

cos

u v u

a

            

2 2 cos1
cos

cos 2 2 cos

vu u
v uuv

a a

' ' tan
cos ' '

cos

u v u
u v u

a a
,  (10.21) 
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( )

( ' ')
u u u u

u u u
p p p

              

2

2

( ) 2 ' '
2

u

u u u u
u

p p p p

              

2 2

' '
2 2

u u u
u u u

p p p
,   (10.22) 

     
tan tan

( ' ')u f v uv u f v u v u v
a a

             
tan tan

' 'u v f u u v u
a a

.    (10.23) 

From  (10.19) and (10.21) to (10.23) and noting that 

            
cos

0
cos

v

a p
,

we get    
2 2 2

1
cos

2 cos 2 2

u u u
v u uv u u

t a p

           
cos

' ' ' '
cos

u u
u v u

a p

           1

tan
A

u
u v f u

a
.      (10.24) 

Similarly, (10.20) can be written as 

2 2 2

1
cos

2 cos 2 2

v v v
v v vv v v

t a p

           
' ' tan

' ' ' '
v v v v

v u u v
a p a

           1

tan
B

v z
u v f u g v

a a
.    (10.25) 

Adding (10.24) and (10.25) gives the time rate of change of the kinetic energy of the 

zonally averaged flow as 

2 2

1
cos

2 cos 2

H H
V V

v u uv v vv
t a

   (10.26) 
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2

tan 1
' ' ' '

2

H
V v

u u v v u u v v v
p a a

                    
cos

' ' ' ' ' '
cos

u u v v z
u v u v g C

a p p a
,

where   

       1 1A B
H

C V F u v

is the rate of frictional dissipation of the kinetic energy of the mean flow.

 One can obtain an equation for the rate of change of eddy kinetic energy by 

subtracting (10.24) from (10.10) and (10.25) from (10.11).  Subtracting (10.24) from 

(10.10) and making use of (10.13), (10.14), and (10.15) leads to 

22 2'

2 2 2

u u u

t t t

         
2 21 ' '

cos
cos 2 2

u u
v

a p

cos
' ' ' '

cos

u u
u v u

a p

               
' ' '

' ' tan tan '
cos

u u u g z
u v f v u

a a a

               1

'
' tan 'A '
v

uu u
a

.       (10.27) 

Similarly, subtracting (10.25) from (10.11) and using (10.13), (10.14), and (10.15), we 

obtain

2 2 2'

2 2 2

v v v

t t t

        
2 21 ' '

cos
cos 2 2

v v
v

a p

           
1

' ' ' ' ' ' tan
v v u

v v v u v f
a p a

              1

' '
' tan ' 'B'
v g z

uu v v
a a

.      (10.28) 

Finally, by adding (10.27) and (10.28) we obtain 
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2 2 2' ' '1
cos

2 cos 2 2

H H H
V V V

v
t a p

         
cos 1

' ' ' ' ' '
cos

u v u
u v v v u

a a p

         '' '
' ' tan ' '

H

v u u
v v gV z C

p a
,    (10.29) 

where
'

1 1' 'A' 'B '
H

C V F u v .

Integrating (10.26) over a closed mass of air, which in our case is the entire globe, 

we get 
2 2

1
cos

2 cos 2

H H

M M

V V
v u uv v vv

t a

             

2

1
' '

2

H

M

V v
u u v v dm v v

p a

             
cos

' ' ' ' ' '
cos

u u v
u v u v

a p p

               
' '

tan
u u v z

v g C dm
a a

,    (10.30) 

where

         
2 cosa

dm d d dp
g

and M denotes integration over the entire atmosphere, that is, 

0 2 ;        ;        0
2 2

s
p p .

Since M is considered to be independent of time, 

           

2 2

2 2

H H

M M

V V
dm dm

t t
.

We also assume that 0  at the top and bottom of the atmosphere.  With this, the first 

integral on the right-hand side of (10.30) vanishes, hence 

2

cos
' '

2 cos

H

M M

V u
dm u v

t a
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1 ' '

' ' tan ' ' ' '
v u u u v

v v v u v dm
a a p p

       
M M

v z
g dm C dm

a
.      (10.31) 

Similarly, integrating (10.29) over the entire globe gives 

2' cos
' '

2 cos

H

M M

V u
dm u v

t a

        
1 ' '

' ' tan ' ' ' '
v u u u v

v v v u v dm
a a p p

        ' ' '
H

M M

gV z dm C dm .      (10.32) 

The first integral on the right-hand side of (10.31) is equal to but with opposite sign of the 

first integral on the right-hand side of (10.32).  This term therefore represents the 

transformation of kinetic energy between the zonal flow and the eddies.  By adding 

(10.31) and (10.32) we obtain 

H H
M M M

k dm gV z dm V F dm
t

,    (10.33) 

which is an equation for total kinetic energy. It can be shown that over a closed domain 

H
M M

gV z dm dm ,

where  is the specific volume.  With this, (10.33) can be written as 

H
M M M

k dm dm V F dm
t

.     (10.34) 

As will be shown in the next section, the first term on the right-hand side of 

(10.34) (i.e., 
M

dm ) represents conversion between available potential energy and 

kinetic energy.  The last term in (10.34) is a measure of dissipation of kinetic energy by 

frictional forces. 

10.2.2 Available Potential Energy 

The available potential energy is that portion of the total potential energy which is 

available for conversion into kinetic energy.  Lorenz (1955) defined the available 

potential energy as the difference between the total potential energy and the minimum 

potential energy achieved by an adiabatic rearrangement of the temperature field which 

yields a stable, horizontal stratification of the potential temperature field.  Following this 

definition by Lorenz (1955), the total available potential energy of the atmosphere over 

the globe can be shown to be 
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2

1

0
00

1 '
(1 )

2 (1 )

p

S

c p
A p ds d

gp p
,    (10.35) 

where 00p  is 1000 mb, p  is the mean pressure on an isentropic surface, and p' is the 

departure of the actual pressure from its mean value.  Integration with respect to s is over 

the whole global horizontal area S.  Vertical integration is with respect to potential 

temperature , with lower and upper limits 0  and , respectively. 

We may write

' '
p

p       (10.36) 

and

         d dp dp
p p

,      (10.37) 

where p  is the mean pressure on an isentropic surface and  is the mean potential 

temperature on a pressure surface.  Using  (10.36) and (10.37), we can transfer the 

vertical integration in (10.35) from the  to the p coordinate to get 

0
2

1

20
00

1 1 '

2

p

S

R
A p ds dp

g p p

p

.   (10.38) 

From the equation of state and the definition of potential temperature on a 

constant pressure surface, we can write 

       
' ' 'T

T
,

or

        ' ' ,       (10.39) 

so that (10.38) may be written as 

      
0

2
2

1

20
00

1 1 '

2

p

S

R
A p ds dp

g p

p

.    (10.40) 

Noting that

         00

1

oo
p p

T
p R p

,

we  get

             
0

'21 1

2

p

o S

A ds dp
g

p

,
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or  

0
'21

2

p

o s

A ds dp
g

,     (10.41) 

or
'2

2M

A dm .     (10.42) 

Here

p

is the mean static stability and M is the total mass of the atmosphere.

To obtain an equation for available potential energy, we write the thermodynamic 

equation as 

     
p p

R R
V H V H

t c p c p
.   (10.43) 

Taking the global average and noting that for a nondivergent flow the global average of 

is zero, we get 

p

R
H

t c p
.     (10.44) 

Subtracting (10.44) from (10.43) gives 

'
' ' ' '

p p

R R
V H V H

t c p c p
.  (10.45) 

Multiplying by '/ , integrating over the entire global mass, and applying the 

( ) operator, we get 

         
' '

' ' '
M M M

p

A R
dm dm H dm

t t c p
.   (10.46) 

Since 0 , the first term on the right-hand side of (10.46) can be written as 

M
dm .  This term is equal and opposite in sign to the first term on the right-hand side 

of (10.34), and therefore represents conversion between available potential energy (APE) 

and kinetic energy (KE).  If this term is negative, a conversion of APE to KE takes place.  

This is possible if the  covariance is negative, which results from rising (negative )

of warm air (positive ') and sinking (positive ) of cold air (negative ').  The second 

term in (10.46) represents the generation of available potential energy, which can also be 

written as 

           
2

2
' '

M

p

R
H T dm

c p
.
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A net generation of APE results from a positive covariance between 'T  and 'H , which 

can result from warming of warm regions (positive ' 'H T ) and cooling of cold regions 

(negative ' 'H T ).

 We now derive equations for zonal available potential energy and eddy available 

potential energy.  For this let ' ' '
Z E

, where '
Z

is the zonal average of '  and 

'
E

 is the departure of '  from '
Z

.  Likewise we may write 

Z E
,

Z E
u u u ,

Z E Z
v v v v ,         since 0

Z
v ,

' ''
Z E

H H H ,

' ' '
Z E

T T T .

Taking the zonal average of the flux form of (10.45), we get 

     
' 1

( ' ) cos '
cos

Z

E E Z Z Z

p

R
v H

t a c p
.   (10.47) 

After multiplying by ' /z  and integrating over the whole global atmosphere, we get 

2' '
' cos

2 cos

Z Z Z

E E
ZM M

A
dm v dm

t t a

            ' ' '
Z Z Z Z

M M

p

R
dm H dm

c p
    (10.48) 

as the equation for zonal available potential energy.  Also subtracting (10.47) from 

(10.45) and noting that 
E

v v , we obtain 

      
' 1

( ' ) cos '
cos

E

E E Z E E

p

R
v H

t a c p
.   (10.49) 

Multiplying by '/  and integrating over the global domain gives 

2' ' '
' cos

2 cos

E E Z

E E
ZM M

A
dm v dm

t t a

           ' ' '
E E E E

M M

p

R
dm H dm

c p
    (10.50) 

as the equation for eddy available potential energy.  The first term on the right-hand side 

of (10.50) is equal but opposite in sign to the first term on the right-hand side of (10.48).  

This term therefore represents the exchange of available potential energy between zonally 

averaged and eddy flows. 

 Using the hydrostatic equation and the continuity equation for the zonally 

averaged and eddy flow, it can be shown that 
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'
Z Z

M M

u Z
dm g dm

a
    (10.51) 

and

            ' ' '
E E

M M

dm gV Z dm .    (10.52) 

The second integral on the right-hand side in (10.48) is therefore equal to the second 

integral in (10.31), but has opposite sign.  It therefore represents the conversion of zonal 

available potential energy to zonal kinetic energy.  Similarly, the second integral in 

(10.32) and (10.50) gives the conversion of eddy available potential energy to eddy 

kinetic energy.  The last integral in (10.48) and (10.50) represents the generation of zonal 

available potential energy and eddy available potential energy, respectively.  The last 

term in (10.31) and (10.32) represents the dissipation of zonal kinetic energy and eddy 

kinetic energy, respectively, by frictional forces. 

As already mentioned, the term 

cos 1 tan
' ' ' ' ' '

cosM

u v
u v v v u u v

a a a

                  ' ' ' '
u v

u v dm
p p

    (10.53) 

in (10.31) and (10.32) represents the exchange of kinetic energy between the zonal mean 

flow and the eddies.  The term 

          
'

' cos
cos

Z

E E
ZM

v dm
a

    (10.54) 

in (10.48) and (10.50) appears with opposite signs.  It therefore represents the exchange 

of available potential energy between the zonal flow and the eddies. 

10.2.3 Energy Budget of Nondivergent and Divergent Flow ( -  Interactions)

We can study the energy budget of the atmosphere by decomposing the wind field into its 

nondivergent (rotational) and divergent parts.  As we shall see, this provides some 

interesting insight into the energy exchanges between the divergent and nondivergent 

parts of the wind. 

 We can write  

            V k ,     (10.55) 

          2
k V ,     (10.56) 

and

            2
D V .     (10.57) 

Note that here we defined /u x  and /v y .  The area-averaged kinetic 

energy is then given by 
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,
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Since ( , ) 0J , K K K .  Now

2( ) .

Therefore since ( ) 0 , 2
K , and similarly 2

K .  Also, 

       21
( )

2

K

t t t t t
.

As

              0
t

,

we get 

             2K

t t
.     (10.58) 

Similarly,

             
2K

t t
.     (10.59) 

The vorticity and divergence equations are 

( ) ( )
H H

V f f V
t p

             H
V

k F
p

     (10.60) 

and   

( )
H H

D V
V V

t p

            2( )
H D

f k V F .    (10.61) 

The thermodynamic equation is 

p H p p

T
c T V c T c H

t p p
.    (10.62) 

Here F  and 
D

F  are frictional forces and H represents heat sources and sinks.  Making 

use of (10.55), (10.56), and (10.57), we may write (10.60) to (10.62) in terms of  and 

as

2 2 2,J f f
t
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2 2 2 ,f J F

p p p
, (10.63) 

2 2 2 21 1
( ) ( ) ( , )

2 2
J

t

     2 2 2 2( ) ( ) ,J
p p

                2( , ) ( , )f J f J
p

     2 2
f F ,       (10.64) 

and   

2, ( ) ( )
p p p p p

c T J c T c T c T c T G
t t

. (10.65) 

Note that here F F ,
D

F F , and G H .

 After multiplying (10.63) by , (10.64) by , and integrating over a closed 

domain, we get after some simplifications 

2
K

t t

2
2 2 ( )

,
2

f J F
p

 (10.66) 

and

2
K

t t

          
2

2 2 ( )

2
f

2,J F
p

.      (10.67) 

Also after integrating (10.65) over a closed domain, we get after some simplifications 

         
2( )P I G

t
.     (10.68) 

Here (  )  indicates integration over a three-dimensional (x, y, p) closed domain.  

0

0
1/  

p
P g d p  and 

0

0
1/  

p

v
I g c T dp  are the potential energy and internal energy, 

respectively.  Also note that 
0

0
1/  

p

p
P I g c T dp .

The terms within the brackets on the right-hand side of (10.66) and (10.67) 

involve both  and , and provide the interaction between the rotational and divergent 
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parts of the wind (i.e., -  interactions).  These terms in (10.66) and (10.67) are equal but 

have opposite sign.  They therefore represent the exchange of kinetic energy between the 

rotational and divergent parts of the wind through -  interactions.  The term 
2 in

(10.67) and (10.68) appears with opposite sign and represents the conversion between 

potential energy and kinetic energy of the divergent part of the wind. 

 Using the hydrostatic relation it can be shown that 

           2 R
T

p
.

Thus 2  is equal to the covariance of vertical velocity and specific volume  or of 

vertical velocity and temperature T , and is a measure of the conversion of potential 

energy to kinetic energy of the divergent wind.  The terms F  and F  in (10.66) and 

(10.67) are the dissipation of kinetic energy of the rotational and divergent parts of the 

wind due to frictional forces.  The second term on the right-hand side of (10.68), that is 

H , is the generation of potential energy. 

If 0F , 0F , and 0H , then on adding (10.66), (10.67), and (10.68) we 

get

         0K K P I
t

.     (10.69) 

Thus in the absence of energy generation and dissipation forces, the sum of the kinetic 

energy of the rotational and divergent flows and the potential and internal energies are 

conserved over a closed domain. 

 In the presence of dissipation and generation of energy, the energy conversion 

scenario is as follows: The potential energy is generated due to the covariance of 

temperature and heat sources and sinks G .  Most of the potential energy generated thus 

is converted into kinetic energy of the divergent flow (through the 2  term).  A small 

part of it may be used to change the total potential energy of the atmosphere (i.e., 

/P I t ).  A larger part of the kinetic energy of the divergent flow converted from 

potential energy is converted to the kinetic energy of the nondivergent flow through  -

interactions.  A part of it ( F ) is also dissipated by frictional forces and a part is used in 

changing the total energy of the divergent flow (i.e., /K t ).   A larger part of the 

kinetic energy of the nondivergent flow that is converted from the kinetic energy of the 

divergent flow is dissipated by frictional forces F  while a small part of it may be used 

to change the total energy of the nondivergent flow (i.e., /K t ).



228 An Introduction to Global Spectral Modeling

10.3  Energy Equations in Wavenumber Domain 

10.3.1 Basic Concepts of Fourier Analysis 

Any real, single-valued function ( )f  which is also piecewise differentiable in the 

interval 0 2  may be represented in terms of a Fourier series as 

          ( ) ( ) in

n

f F n e ,     (10.70) 

where ( )F n  is a complex coefficient given by 

               
2

0

1
( ) ( )

2

in
F n f e d .    (10.71) 

Here ( )f  may be any meteorological field along a given latitude circle.  The above 

representation can then be used for writing the atmospheric equations in their spectral 

form.  Also,  is the longitude and n is the wavenumber (i.e., the number of waves around 

a latitude circle). ( )F n , the spectral amplitude of wavenumber n for the space function 

( )f , can be obtained using (10.71).  The function ( )f  can be obtained from the 

spectral amplitudes ( )F n  using (10.70).  Therefore (10.70) and (10.71) are often referred 

to as a Fourier transform pair.

 Given a function ( ,  ,  ,  )f p t , we may have a Fourier representation of its 

derivative as follows: 

            ( ) in

n

f
inF n e ;    (10.72) 

hence

      
2

0

1

2

inf
inF n e d .    (10.73) 

The Fourier representation of the derivative with respect to , p, or t, for which 

( ,  ,  ,  )f p t  is not periodic may be written as 

            ( ) in

n

f
F n e ,    (10.74) 

2

0

1

2

inf
F n e d ,    (10.75) 

where  can be , p, or t.  The subscript here denotes partial differentiation with respect 

to .

 If we have the functions ( )f  and ( )g , then we can find the Fourier 

representation of their product.  If ( )F n  and ( )G n  are Fourier amplitudes of ( )f  and 

( )g , respectively, then we can write 
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2 2

0 0

1 1
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in ik in

k

f g e d f G k e e d .   (10.76) 

Interchanging the summation and the integral sign, we may write 

2 2
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0 0

1 1
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k

f g e d G k f e d .   (10.77) 

From (10.71) we obtain 
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After substituting this into (10.77), we finally obtain 

2

0

1
( ) ( ) ( ) ( )

2

in

k

f g e d G k F n k .    (10.78) 

A special case of (10.78) is when 0n .  In this case we are calculating the area mean of 

the product ( ) ( )f g  in the spectral domain, that is, 

        
2

0

1
( ) ( ) ( ) ( )

2 k

f g d G k F k .     (10.79) 

A second special case is if f g .  Then we obtain 

2 22

0

1
( ) ( )

2 k

f d F k .    (10.80)  

Note that ( )F k  is the complex conjugate of ( )F k , hence 

         
2

F k F k F k .

Equations (10.79) and (10.80) are both known as Parseval’s Theorem.

We make use of the above basic concepts of Fourier analysis in transforming the 

basic equations into their spectral from.  This treatment essentially follows Saltzman 

(1957).  The representation of atmospheric variables in the space domain and the spectral 

domain will also be similar to Saltzman (1957), and is given in Table 10.1. 

 As a simple example, consider the wave equation 

       
u u

u
t x

      (10.81) 

in the domain 0 2x .  To transfer it into spectral form, let

      , ( , ) imx

m

u x t U m t e      (10.82) 

and

( , )
( , ) imx

m

u x t
imU m t e

x
,      (10.83)
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Table 10.1.  Fourier transform pairs of common meteorological variables. 

( )f : u v z T h A1 B1 ’

( )F n :  U V Z B H P Q 

so that 

1

1

1 1( , ) ( , ) im ximx

m m

u
u U m t e imU m t e

x
    (10.84) 

and

           
( , ) inx

n

u dU n t
e

t dt
.      (10.85) 

In (10.84) and (10.85) we have used the different wavenumber indices m, 1m , and n to

permit various wave components of u and /u x  to interact with each other to produce 

different wave components of /u t .

 With (10.84) and (10.85), we can write (10.81) as 

          1

1

( )

1 1

( )
( ) ( ) i m m xinx

n m m

dU n
e imU m U m e

dt
.    (10.86) 

Multiplying both sides of (10.86) by inx
e  and integrating over the domain (0,  2 ) , we 

get

     1

1

2
( )

1 1
0

( ) 1
( ) ( )

2

i m m n x

m m

dU n
imU m U m e dx

dt
.    (10.87) 

The integral on the right-hand side of (10.87) vanishes except for those terms for which 

1 0m m n  or 1m n m .  As a result, (10.87) reduces to

         
( )

( ) ( ) ( )
m

dU n
i n m U m U n m

dt
.     (10.88) 

Thus each wavenumber m of u interacts with wavenumber n m  of /u x  to 

contribute towards wavenumber n of /u t .  Since m and 1m  could be positive or 

negative, it is clear that those Fourier components of u and /u x  for which the sum or 

difference is equal to n interact to produce wavenumber n of the product /u u x .

 We can also write (10.88) as 

            
( )

( ) ( )
m

dU n
imU m U n m

dt
,     (10.89) 

which can be interpreted as the interaction of each wavenumber m of /u x  with 

wavenumber n m of u to produce ( ) /dU n dt .  Equations (10.88) and (10.89) are both 

spectral forms of the wave equation (10.81). 
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10.3.2 Governing Equations in Wavenumber Domain 

One can transform the basic equations (10.1) to (10.5) from space domain to 

wavenumber domain using the Fourier transform described in Section 10.3.1.  Space and 

spectral representations of the various variables will be used as in Table 10.1.  Space to 

spectral domain transformations can be carried out by multiplying the basic equations by 

(1/ 2 ) in
e  and integrating around a latitude circle.  Multiplication of the zonal 

momentum equation (10.1) by (1/ 2 ) in
e  and integration around a latitude circle results 

in

2 2

0 0

1 1

2 2

in inu u
e d V u e d

t p

          
2

1
0

1 tan

2 cos

inu g z
v f A e d

a a
. (10.90) 

Noting that 

       
2

0

1

2

in
U n ue d

and
2

0

( ) 1

2

inU n u
e d

t t

and transforming the various quadratic product terms into their spectral form, we obtain 

the equation for the zonal wind component in wavenumber domain as 

1
( ) ( ) ( ) ( ) ( )

cosm

im
U n U m U n m U m V n m

t a a

           
tan

( ) ( ) ( ) ( )
p

U m n m U m V n m
a

           ( ) ( ) ( )
cos

ing
Z n fV n P n

a
.      (10.91) 

Similarly, the equation for the meridional wind component (10.2) is written in 

wavenumber domain as 

1
( ) ( ) ( ) ( ) ( )

cosm

im
V n V m U n m V m V n m

t a a

          
tan

( ) ( ) ( ) ( )
p

V m n m U m U n m
a

           ( ) ( ) ( )
g

Z n fU n Q n
a

.      (10.92) 

The hydrostatic equation (10.3) takes the form 

           ( ) ( )
p

R
Z n B n

pg
     (10.93) 
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and the continuity equation (10.4) takes the following form:

           
1 tan

( ) ( ) ( ) ( )
cos

p

in
n U n V n V n

a a a
.    (10.94) 

Lastly, the thermodynamic energy equation (10.5) has the following form: 

( ) ( ) ( )
cosm

im
B n B m U n m

t a

         
1

( ) ( ) ( ) ( )
p

B m V n m B m n m
a

         
1

( ) ( ) ( )
P P

R
B m n m H n

pc c
.     (10.95) 

Given the frictional forcings P and Q and the heating distribution H, the set of equations 

(10.91) to (10.95) represents a closed system of equations with the five dependent 

variables as U, V, , Z, and B; each a function of n, , p, and t.

 We next derive the equation for the rate of change of kinetic energy for a given 

scale of motion.  Wavenumber zero corresponds to the zonal mean flow, while 

wavenumber n corresponds to a wavelength of 2  / n.  The kinetic energy is given by 
2 21/ 2( )k u v . Therefore, the zonally averaged kinetic energy is given by 

       
2

2 2

0

1 1

2 2
k u v d .

Using Parseval’s Theorem, 

2 21
( ) ( )

2 n

k U n V n .     (10.96) 

Since ( ) ( )U n U n , (10.96) may be written as 

          
2 2 2 2

1

1
(0) (0) ( ) ( )

2 n

k U V U n V n ,   (10.97) 

where

          
2

2 21 1
0 (0) (0)

2 2
k V U V

is the mean kinetic energy of the zonally averaged flow, while 

2 2

1

( ) ( ) ( )
n

k n U n V n

is the mean kinetic energy of the zonal eddy flow in wavenumber domain. 

 We now present an equation for kinetic energy in wavenumber domain.  If we 

multiply (10.91) by ( )U n , we obtain

( ) ( ) ( ) ( )
cosm

im
U n U n U n U m U n m

t a
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1

( ) ( ) ( ) ( )
P

U m V n m U m n m
a

       
tan

( ) ( ) ( ) ( )
cos

ing
U m V n m U n Z n

a a

       fU n V n U n P n .           (10.98) 

Similarly, we also get

( ) ( ) ( ) ( ) ( )
cosm

im
U n U n U n U m U n m

t a

      
1

( ) ( ) ( ) ( )
p

U m V n m U m n m
a

      
tan

( ) ( ) ( ) ( )
cos

ing
U m V n m U n Z n

a a

      fU n V n U n P n ,    (10.99) 

as

2
( ) ( ) ( ) ( ) ( ) ( ) ( )U n U n U n U n U n U n U n

t t t t
.

Therefore, adding (10.98) and (10.99) gives 

2
( ) ( ) ( ) ( )

cosm

im
U n U m U n U n m U n U n m

t a

1
( ) ( ) ( ) ( ) ( )U m U n V n m U n V n m

a

          ( ) ( ) ( ) ( ) ( )
p

U m U n n m U n n m

          
tan

( ) ( ) ( )
m

U m U n V n m U n V n m
a

          [ ( ) ( ) ( ) ( )
cos

ing
U n Z n U n Z n

a

          f U n V n U n V n

          U n P n U n P n .               (10.100) 

Separating the term for 0m  from the terms under the summation ,
m

writing (0)U u  and (0)V v , and making use of the continuity equation (10.94), 

(10.100) can be simplified to

2 cos
( ) ( ) ( ) ( ) ( )

cos

u
U n U n V n U n V n

t a

                 ( ) ( ) ( ) ( )
u

U n n U n n
p
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tan

( ) ( ) ( ) ( )v U n U n U n U n
a

          

0

( ) ( ) ( )
cosm

m

in
U m U n U n m

a

        ( ) ( )U n U n m

           
1

( ) ( ) ( ) cos
cos

U n U m V n m
a

           ( ) ( ) ( ) cosU n U m V n m

           ( ) ( ) ( ) ( ) ( ) ( )
p p

U n U m n m U n U m n m

           
tan

( ) ( ) ( ) ( ) ( )V m U n m U n U n m U n
a

           ( ) ( ) ( ) ( )
cos

ing
Z n U n Z n U n

a

            tan ( ) ( ) ( ) ( )
u

f U n V n U n V n
a

           ( ) ( ) ( ) ( )U n P n U n P n .     (10.101) 

Similarly,

2
( ) ( ) ( ) ( ) ( )V n V n V n V n V n

t t t

      ( ) ( ) ( ) ( ) ( )
cosm

im
V m V n U n m V n U n m

a

         
1

( ) ( ) ( ) ( ) ( )V m V n V n m V n V n m
a

         ( ) ( ) ( ) ( ) ( )
P

V m V n n m V n n m

         
tan

( ) ( ) ( ) ( ) ( )U m V n U n m V n U n m
a

         ( ) ( ) ( ) ( )
g

V n Z n V n Z n
a

( ) ( ) ( ) ( )f V n U n V n U n

         ( ) ( ) ( ) ( )V n Q n V n Q n ,       (10.102) 

which can be further be simplified to give the final form as

2 1
( ) ( ) ( ) ( ) ( )

v
V n V n V n V n V n

t a

         ( ) ( ) ( ) ( )
v

V n n V n n
p
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0

( ( ) ( ) ( ) ( )
cosm

m

in
V m V n U n m V n U n m

a

         
1

( ) ( ) ( ) cos
cos

V n V m V n m
a

         ( ) ( ) ( ) cosV n V m V n m

         ( ) ( ) ( ) ( ) ( ) ( ) }
p p

V n V m n m V n V m n m

         
tan

( ) ( ) ( )U m V n U n m
a

         ( ) ( ) ( ) ( ) ( ) ( )
g

V n U n m Z n V n Z n V n
a

         
tan

( ) ( ) ( ) ( )f u U n V n U n V n
a

         ( ) ( ) ( ) ( )V n Q n V n Q n .       (10.103) 

 By adding (10.101) and (10.103) and integrating the resulting equation over the 

entire mass of the atmosphere, one can obtain the time rate of change of the total kinetic 

energy for a given wavenumber as 

cos
( ) ( ) ( ) ( ) ( )

cosM M

u
K n dm U n V n U n V n

t a

1
( ) ( ) ( ) ( )

v
V n V n V n V n

a

( ) ( ) ( ) ( )
u

U n n U n n
p

( ) ( ) ( ) ( )
v

V n n V n n
p

tan
( ) ( ) ( ) ( )U n U n U n U n v dm

a

0

( )
( ) ( ( )

cosM
m

m

inU n
U m U n m

a

( )
( )

cos

inU n
U n m

a

1 ( ) ( )
( ) ( )

U n U n
V n m V n m

a

( ) ( )
( ) ( )

U n U n
n m n m

p p



tan
( ) ( ) ( ) ( )U n m V n U n m V n

a

( ) ( )
( ) ( ) ( )

cos cos

inV n inV n
V m U n m U n m

a a

1 ( ) ( )
( ) ( )

V n V n
V n m V n m

a

( ) ( )
( ) ( )

V n V n
n m n m

p p

tan
( ) ( ) ( ) ( )U n m U n U n m U n dm

a

1
( ) ( ) ( ) ( )

cosM

g U n inZ n U n inZ n
a

1 ( ) ( )
( ) ( )

Z n Z n
V n V n dm

a

( ) ( ) ( ) ( )
M

U n P n U n P n

( ) ( ) ( ) ( )V n Q n V n Q n dm .      (10.104) 

Letting

         ( )
f

f inF n ,

         
( )f F n

f ,

and

         
( )

p

f F n
f

p p
,

we can write (10.104) as 

cos
( ) ( )

cos
uv

M M

u
K n dm n

t a

     
1

( ) ( )
vv u

v u
n n

a p

     
tan

( ) ( )
v uu

v
n n v dm

p a

     

0

1
( ) ( , )

cos
uu

M
m

m

U m m n
a

     
1 tan

( , ) ( , ) ( , )
p

vu u uv
m n m n m n

a a
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1 1

( ) ( , ) ( , )
cos

uv vv
V m m n m n

a a

     
tan

( , ) ( , )
p

v uu
m n m n dm

a

     
1 1

( ) ( )
cos

uz vz
M

g n n dm
a a

     
1 1
( ) ( )

uA vB
M

n n dm       (10.105) 

where

( ) ( ) ( ) ( ) ( )
fg

n F n G n F n G n      (10.106) 

and

     ( , )
fg

m n F n m G n F n m G n .    (10.107) 

As a particular case, one can obtain the time rate of change of kinetic energy of the mean 

flow by using the fact that 

       

2 2
2 0 0

0
2 2

U VV
K .   

Thus setting 0n  in (10.105) and using the continuity equation (10.94), we obtain
2

1

cos
( )

2 cos
uv

M M
m

V u
dm m

t a
     (10.108) 

      
1

( ) ( ) ( )
vv u v

v u v
m m m

a p p

      
tan

( )
uu

M M

g z
m v dm v dm c dm

a a
.

 Now let us try to attach physical meanings to the terms appearing in (10.105).  

The first integral, namely

cos 1
( ) ( )

cos
uv vv

M

u v
n n

a a

tan
( ) ( ) ( )

u v uu

u v
n n n v dm

p p a
,

can be regarded as a transformation function which measures the transfer of energy 

between any individual scale of disturbance and the mean flow.  The second integral, 

namely

0

1
( ) ( , )

cos
uu

M
m

m

U m m n
a

1 tan
, , ,

p
vu u uv

m n m n m n
a a



1 1
( ) ( , ) ( , )

cos
uv vv

V m m n m n
a a

tan
( , ) ( , )

p
v uu

m n m n dm
a

,

is a measure of the transfer of energy between a particular wavenumber n and all other 

wavenumbers due to nonlinear interactions.  If we sum this integral over all 

wavenumbers  (including wavenumber 0), the result must be zero.  Fjørtoft (1953) 

showed that for two-dimensional divergent motions, if kinetic energy of one scale of 

motion is changed, then this will result in changes in the kinetic energy of  both smaller- 

and larger-scale motions. 

 Using the continuity equation and hydrostatic equation, one can write the third 

integral on the right-hand side of (10.105) as 

1 1
( ) ( )

cos
uz vz

M

g n n dm
a a

( ) ( )
p

z T
M M

R
g n dm n dm

p
.   (10.109) 

This integral measures the conversion between eddy available potential energy and eddy 

kinetic energy of a particular wavenumber n.  This integral shows that the baroclinic 

growth of a given wavenumber in a disturbance depends on the degree to which a 

particular wave in the vertical motion field is in phase with the same wave in the 

temperature field.  The last integral in (10.105), namely 

1 1
( ) ( )

uA vB
M

n n dm ,

represents frictional dissipation of various scales.

 We shall next derive the equation for available potential energy in wavenumber 

domain.  From (10.42),  the available potential energy in wavenumber domain may be 

written as 
2 2 2

1

| ( ) | | (0) | | ( ) |

2 2M M M
n n

n n
A dm dm dm ,  (10.110) 

so that 

1 (0)
(0)

M

A
dm

t t
       (10.111) 

          
1

1 ( ) ( )
( ) ( )

M
n

n n
n n dm

t t
,

where

            
1 (0)

(0)
M

A
dm

t t

and

       
1

' 1 ( ) ( )
( ) ( )

M
n

A n n
n n dm

t t t

are the time rate of change of zonal and eddy available potential energy in wavenumber 

domain.
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( ) 1 ( ) ( )

( ) ( )
M

A n n n
n n dm

t t t

is the time rate of change of eddy available potential energy for a particular wavenumber 

n.

 To get the equation for available potential energy, we write (10.45) in 

wavenumber domain as 

         
( ) ( ) ( )

( ) ( )
cosm

n im m m
U n m V n m

t a a

            ( ) ( )
p

R
n H n

c p
.       (10.112) 

Similarly,

( ) ( ) ( )
( ) ( )

cosm

n im m m
U n m V n m

t a a

       ( ) ( )
p

R
n H n

c p
.      (10.113) 

Multiplying (10.112) by ( ) /n , (10.113) by ( ) /n , adding, and integrating over 

the whole mass M, we get

( ) 1 ( ) ( )
( ) ( )

M

A n n n
n n dm

t t t

            
1 ( )

( ) ( ) ( ) ( )
cosM

m

im m
n U n m n U n m

a

    
1 ( )

( ) ( ) ( ) ( )
m

n V n m n V n m dm
a

    
M

n n n n dm

    
M

p

R
n H n n H n dm

c p
.   (10.114) 

 Using the continuity equation for nondivergent flow, 

       
( ) 1

U ( ) | ( ) cos | 0
cos cos

i n m
n m V n m

a a

and    

( ) 1
( ) | ( ) cos | 0

cos cos

i n m
U n m V n m

a a
,

and after some simplification, (10.114) may be written as 

( ) 1 (0)
( ) ( ) ( ) ( )

M

A n
n V n n V n dm

t a

         

0

1 ( )
( ) ( )

cosM
m

m

in n
m U n m
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( )

( )
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in n
U n m

a

         
1 ( )

( ) ( )
n

m V n m
a

         
1 ( )

( )
n

V n m dm
a

         
M

n n n n dm

        
M

p

R
n H n n H n dm

c p
.  (10.115) 

Setting 0n  and noting that (0) 0V , we get the equation for zonal available potential 

energy as 

1 (0)
(0)

M

A
dm

t t

         

0

1 1 (0)
( ) ( )

M
m

m

m V m dm
a

            (0) (0) (0) (0)
M M

p

R
dm H dm

c p

         
1

1 (0)
( ) ( ) ( ) ( )

M
m

m V m m V m dm
a

            (0) (0) (0) (0)
M M

p

R
dm H dm

c p
.    (10.116) 

Equation (10.115) is the eddy available potential energy equation for wavenumber n and 

(10.116) is the equation for zonal available potential energy. 

 We note that the first integral in (10.115) is equal and opposite in sign to the first 

integral for wavenumber n in (10.116).  It therefore represents the exchange between 

zonal available potential energy and eddy available potential energy of wavenumber n.

The second integral in (10.115) represents exchanges of eddy available potential energy 

among different waves to provide energy to wavenumber n.  The two integrals

            (0) (0)
M

dm

and

        ( ) ( ) ( ) ( )
M

n n n n dm

represent the conversion of zonal available potential energy to zonal kinetic energy and 

of eddy available potential energy to eddy kinetic energy (of wavenumber n),

respectively.  Finally, 

      (0) (0)
M

p

R
H dm

c p

and
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( ) ( ) ( ) ( )
M

p

R
n H n n H n dm

c p

represents generation of zonal available potential energy and eddy available potential 

energy (of wavenumber n ), respectively. 

10.4 Energy equations in Two-Dimensional Wavenumber Domain 

In section 10.3 we derived the equations for atmospheric energetics in zonal wavenumber 

domain, where various atmospheric fields and their derivatives in the zonal direction 

were represented in terms of a truncated Fourier series.  Finite differences were used for 

calculating derivatives in the meridional and vertical directions.  Energy exchanges and 

energy conversions in wavenumber domain were determined using the orthogonality 

properties of the Fourier functions.  This mixture of Fourier representation and finite 

differencing is well-suited for a limited domain in the meridional direction.  For a 

complete global domain or a hemispheric domain the spectral energetics in spherical 

harmonics as basis functions are more appropriate. 

 Using the spectral properties of spherical harmonics discussed in Chapter 6, we 

derive here the equations for atmospheric energetics in two-dimensional wavenumber 

domain.  The equation for available potential energy can be written in terms of specific 

volume  or potential temperature .  In Section 10.3.2, this equation in one-dimensional 

wavenumber domain was obtained in terms of specific volume.  In this section we derive 

the available potential energy equation in terms of potential temperature in the two-

dimensional wavenumber domain. 

 As mentioned earlier, for a two-dimensional spectral representation it is 

convenient to represent the wind field in terms of vorticity and divergence (or 

streamfunction and velocity potential) as 

V k      (10.117) 
2

k V      (10.118) 
2

D V .     (10.119) 

The area-average kinetic energy is then given by 

        
1 1

2 2
K K K .    (10.120) 

As shown in Section 10.2.3, from (10.120) we may write

        2 21 1

2 2
K K K .    (10.121) 

 Using a triangular trunctation for the spectral representation as 
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we get 
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Similarly,
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.    (10.125) 

Likewise, the mean available potential energy is

0 1 2
2

0 1 0

1 1
'

2

p

A d d dp
g

           
0

1
1 2

2

0 1 0
00

1 1
'

2 /

pR p
d d dp

g p p
.

Its spectral form may be written as 
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,   (10.126) 

where 00p = 1000 mb and 0p  is the pressure at the bottom level. 

 We now derive the equations for the kinetic energy and available potential energy 

exchanges based on the quasi-nondivergent equations of Lorenz (1960a).  These consist 

of only the vorticity, thermodynamic, and linear balance equations of the form 

          
2

2( ) ( )V f f k F
t

,   (10.127) 

         00' 1
' '

p

p
V H

t p p c
,    (10.128) 

and

       2
f .     (10.129) 

Equation (10.128) is an alternative form of

'
' '

p

R
V H

t c p
.   (10.130) 

Here 2ln / ,p , and 
0

p
dp .

 We can write (10.127) as 

2 2 2( , ) ( , )J J f f f k F
t

. (10.131) 

The spectral representation of the various terms in (10.131) is
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and
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On interchanging indices in (10.133) we also get 
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 From (10.133) and (10.134) we get a symmetric form of this transform as
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and
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While deriving spectral representations (10.137) and (10.138) we have made use of 

recurrence relations (1) and (2) in Section 6.5.  Substituting (10.132) and (10.135) to 

(10.139) into (10.131) and multiplying both sides by 1

1

*m

n
Y  and integrating over 1,  1

and 0,  2  gives
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 It can also be shown that  
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From (10.124) we have 
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From (10.140), (10.141), and (10.142) we get 
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This is the spectral form of the kinetic energy equation for nondivergent flow in two-

dimensional wavenumber domain.  To obtain the equation for available potential energy 

we write the thermodynamic equation (10.128) in its spectral form as 
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Differentiating (10.126) with respect to time gives 
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Substituting for /m

n
t  and * /m

n
t  from (10.144) we get
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 The first integral on the right-hand side of (10.143) represents the nonlinear 

exchanges of kinetic energy between different waves as well as between waves and the 

zonal flow.  Likewise, the first integral on the right-hand side of (10.146) describes such 

nonlinear exchanges of available potential energy.  Following Fjørtoft (1953), it can be 

shown that the sum of these kinetic energy exchanges and potential energy exchanges 

over the complete truncated spectrum vanishes. 

 We shall show that the second integral on the right-hand side of (10.143) and 

(10.146) represents conversion between available potential energy and kinetic energy.  

Differentiating the linear balance equation (10.129) with respect to p and making use of 

the hydrostatic relation, we get
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Following (10.137) and (10.138), the spectral transform of (10.147) can be shown to be 
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Assuming that the vertical vorticity for all waves vanishes at the top and bottom 

of the atmosphere, (10.148) reduces to 
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Thus we see that the second integral on the right-hand side of the kinetic energy equation 

(10.143) is equal and has opposite sign to the second integral in the available potential 

energy equation (10.146).  These terms therefore represent conversion of available 

potential energy to kinetic energy.  The last integral in (10.143) is the dissipation rate of 

kinetic energy due to frictional forces, while in (10.146) it represents generation of 

available potential energy resulting from the covariance of temperature and heat sources 

and sinks. 

 In actual calculations of atmospheric energetics in two-dimensional wavenumber 

domain using the primitive equations of the atmosphere, it is convenient to use the 

transform method in calculating the nonlinear terms of the energetics equations. These 

terms represent the energy transformation between various two-dimensional 

wavenumbers. Also it is convenient to replace the momentum equation with vorticity and 

divergence equations.  In the vorticity and divergence equations one can then separate the 

terms involving the rotational and divergent part of the flow and those involving products 

of the rotational and divergent parts as discussed in Section 10.2.3.  Using such a 

framework, we show the energetics in two-dimensional wavenumber domain for the 

troposphere between 200 and 1000 mb during January 1989 for T–15 spectral resolution.
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Table 10.2.  Spectral distribution of the mean kinetic energy of the rotational part of the 

wind in units of 10
2
 J m

-2
. K  = 0.1059  10

7
 J m

-2
.

15 15 11 13 11 15 12 8 7 10 5 7 6 4 3 4 1 

14 7 21 20 9 9 13 10 10 7 6 7 5 6 2 1  

13 22 16 16 15 26 23 15 9 9 11 9 9 4 1 

12 11 35 30 31 23 20 21 19 14 13 9 5 2  

11 16 45 52 37 25 29 52 29 24 8 12 3   

10 155 187 15 68 38 58 64 29 21 17 4   

9 18 113 77 97 66 83 81 46 25 6 

8 75 40 53 59 160 96 57 30 7  

n  7 92 308 99 107 78 70 48 17  

6 91 371 51 160 81 57 14   

5 822 87 39 72 25 19

4 157 73 43 18 17

3 1541 52 15 3 

2 80 37 2  

1 2926 1   

0 0   

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

     m    

Table 10.3.  Spectral distribution of the mean kinetic energy of the divergent part of the 

wind in units of  10
2
 J m

-2
. K  = 0.8422  10

4
 J m

-2
.

 15 5 14 9 16 12 14 17 14 13 17 14 15 27 23 19 22 

 14 9 18 16 16 19 18 22 18 20 18 28 29 21 21 21 

 13 10 17 18 20 18 22 25 23 28 28 31 30 21 20  

 12 11 16 22 27 29 32 24 30 26 21 52 33 25 

 11 17 38 21 29 33 29 38 40 43 52 35 31  

 10 15 30 25 37 35 45 83 65 66 46 45 

 9 24 30 29 56 62 80 80 81 62 47  

 8 20 45 60 53 69 81 171 134 61

n 7 74 29 42 63 72 86 154 63 

 6 269 93 101 82 117 151 118

 5 93 86 93 110 122 111

 4 164 45 72 58 260

 3 173 100 70 188 

 2 15 95 259  

 1 211 1169   

 0 0          

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

     m       



Table 10.4.  Spectral distribution of the mean potential energy of the divergent part of the 

wind in units of 10
2
 J m

-2
. APE  = 0.5031  10

7
 J m

-2
.

 15 3 6 6 6 5 4 5 2 2 3 3 1 2 1 0 0
 14 8 8 6 5 6 5 6 3 4 2 3 2 1 1 0 

 13 6 10 8 11 7 7 7 6 5 4 3 2 1 0  

 12 10 14 18 12 11 8 11 9 6 3 3 2 1  

 11 13 22 12 17 15 16 21 13 6 6 2 1   

 10 9 27 20 32 27 32 34 15 12 4 1    

 9 29 97 34 43 45 51 36 16 5 3     

 8 117 54 75 40 46 53 35 16 6     

n 7 70 156 61 99 103 63 19 6     

 6 98 137 165 128 37 35 11     

 5 49 114 194 95 86 22     

 4 131 326 140 70 32     

 3 122 206 101 51     

 2 41587 189 34      

 1 3860 187       

 0 0       

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

     m     

A lower resolution has been purposely chosen so that the results can be easily shown in 

tabular form. 

 Tables 10.2 and 10.3 show the spectral distribution of the mean kinetic energy of 

the rotational and divergent components of the flow, respectively.  Table 10.4 shows the 

spectral distribution of mean available potential energy.  The energy distribution in these 

tables is in units of 10
2
 J m

-2
.  The total energy contents ( K , K , and APE ) for the 

whole spectrum are also shown in these tables. 

 The available potential energy is about five times the kinetic energy.  The kinetic 

energy of the divergent flow is two orders of magnitude smaller than the kinetic energy 

of the divergent part of the flow.  Nearly 80% of the total available potential energy is 

found to reside in component 0

2Y .  The kinetic energy of the rotational flow is maximum 

(about 30% of the total) in component 0

1Y , which is a measure of mean angular 

momentum.  The component 1

1Y  contains about 15% of the total kinetic energy of the 

divergent flow, while the rest is distributed over different components, mostly up to 

wavenumbers 8 to 10. 

 Tables 10.5 and 10.6 show the spectral distribution of nonlinear exchanges of the 

kinetic energy of the rotational flow and available potential energy, respectively, between 

different two-dimensional scales.  The sum of the nonlinear exchanges of kinetic energy 

as well as of available potential energy over the whole spectrum is found to vanish.  From 

Table 10.5, we notice that in accordance with the Fjørtoft theorem [Fjørtoft (1953)], the 

small-and large-scale waves gain kinetic energy at the expense of medium-scale waves 

though wave-wave energy exchange.  In the case of available potential energy exchanges, 

nearly all wave components gain available potential energy at the expense of zonal
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Table 10.5.  Spectral distribution of nonlinear exchanges of the kinetic energy of the 

rotational flow between different two-dimensional wavenumbers in units of 10
-4

 W m
-2

.

15 -11 15 3 28 31 65 -14 11 32 14 44 50 50 11 5 - 2 

14 -23 61 29 23 -13 84 13 40 36 33 29 25 19 13 7  

13 45 -66 -5 49 61 100 96 15 10 -16 -26 -24 -25 -2   

12 -4 19 52 1 90 76 -30 -10 13 18 -6 -6 0    

11 18 -10 26 44 -68 12 -44 -15 -29 7 -17 -12     

10 -92 -270 -50 166 -44 -106 -106 -133 -121 57 14      

9 50 -50 16 346 27 172 -230 -191 -28 5       

8 120 -150 -54 -38 -13 -167 -378 -123 -19        

n 7 -269 51 152 -520 123 -296 -107 -69         

6 -242 396 -211 -138 -98 -52 -83          

5 223 -272 -71 -96 -155 -32           

4 52 85 -189 -60 -32            

3 2519 -149 35 16             

2 129 124 11              

1 0 0               

0 0                

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1 4 1 5 

     m     

Table 10.6.  Spectral distribution of nonlinear exchanges of available potential energy 

between different two-dimensional wavenumbers in units of 10
-4

 W m
-2

.

 15 55 64 45 50 54 52 73 19 46 40 25 12 12 -2 2 0 

 14 23 28 56 44 59 72 80 31 36 43 55 20 1 0 -1  

 13 78 57 39 137 77 130 164 58 77 33 39 16 -2 2   

 12 60 137 33 146 56 118 106 96 58 21 4 -10 -4    

 11 68 114 105 86 84 124 287 194 91 12 -23 0     

 10 108 198 159 172 96 234 584 255 122 -3 -8      

 9 60 646 283 118 354 266 470 215 28 -12       

 8 505 -8 10 167 360 419 609 179 -5        

n 7 325 69 283 53 282 162 250 34         

 6 -387 694 260 364 393 257 0          

 5 2 545 556 436 -60 -178           

 4 686 -223 454 249 13            

 3 220 334 134 -54             

 2 -16271 171 130              

 1 -762 -12               

 0 0                

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

         m         



Table 10.7.  The conversion of available potential energy to kinetic energy of the 

divergent flow in units of 10
-4

 W m
-2

.  Total APE to K  = -0.832 W m
-2

.

 15 -19 -18 -19 -17 -47 -35 -75 -23 -29 -50 -27 -14 -28 -2 -7 -2 
 14 -12 -45 -44 -55 44 -34 -39 -24 -37 -18 -61 -14 -4 -2 -2  

 13 -27 15 -4 -44 -53 -67 -127 -49 -67 -45 -27 -16 0 4 

 12 -5 -35 28 -89 -23 -71 -84 -65 -56 -2 35 5 -8 

 11 110 14 -72 -57 -89 -136 -170 -152 -73 -4 13 -1  

 10 -90 -73 -51 -63 21 -161 -329 -176 -91 11 0 

 9 -52 -117 -156 90 -167 -164 -271 -190 -19 13  

 8 -119 51 138 -297 -116 -240 -379 -170 -2   

n 7 121 254 -76 -122 102 1 -214 -9    

 6 931 -187 -371 -95 -332 -199 6 

 5 149 -6 -571 -324 147 103 

 4 -407 -127 -93 -46 -190  

 3 -164 -352 59 -84

 2 1634 -70 -289 

 1 -1063 -883  

 0 0          

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

         m        

Table 10.8.  A summary of mean energetics.  In units of W m
-2

.

K

t
= K K +dis.K

0.096 =   0.577 -0.481 

    

K

t
= A K + K K +dis.K

0.003 = 0.832  -0.577 -0.252 

   

A

t
= A K +gen.A

-0.067 = -0.832   +0.765 
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components 0

1Y  and 0

2Y .  Medium-scale waves gain maximum available potential energy 

through nonlinear exchanges. 

 Table 10.7 shows the conversion of available potential energy to kinetic energy of 

the divergent flow.  Except for some zonal components, the available potential energy is 

converted to kinetic energy of the divergent flow over all scales.  Maximum conversion 

takes place at medium-and large-scale waves. 

 A summary of mean energetics based on these calculations is given in Table 10.8.  

The available potential energy is generated at the rate of 0.765 W m
-2

.  In this particular 

case, 0.832 W m
-2

 are converted to kinetic energy of the divergent flow, resulting in a net 

decrease in available potential energy of the atmosphere at the rate of 0.067 W m
-2.

About 70% of the divergent kinetic energy converted from available potential energy gets 

transformed to kinetic energy of the rotational flow while the remaining 30% is 

dissipated by frictional forces. 

 Most of the kinetic energy of the rotational part of the flow received from its 

divergent part gets dissipated by frictional forces, while a small part is used to strengthen 

the rotational flow.  It is interesting to note that even though the kinetic energy of the 

rotational part of the flow is about two orders of magnitude greater than that of the 

divergent flow, the dissipation of the rotational kinetic energy is only twice that of the 

divergent kinetic energy.  Thus dissipation of the divergent part of the kinetic energy by 

frictional forces is very high as compared to its rotational counterpart. 



Chapter 11 

Limited Area Spectral Model 

11.1 Introduction 

As we have seen, global spectral models have some definite advantages over grid point 

models. On account of this, global spectral models are used by most of the numerical 

weather prediction centers for short and medium-range weather forecasts.  The accuracy 

of the numerical forecasts by these models increases as the model resolution is increased, 

since at a higher resolution they are able to capture finer scales that are necessary to 

define and forecast smaller regional-scale weather systems properly.  However, at very 

high resolution the global spectral models become computationally very expensive.  The 

current computational resources at many centers tend to limit the horizontal resolution of 

global spectral models to about T-255, which is equivalent to a 50 km grid resolution near 

the equator.  Often our interest in a very high-resolution forecast is over some specified 

limited area over the globe.  This can be achieved effectively by running a very high-

resolution limited area model in conjunction with a relatively low-resolution global 

model, rather than increasing the resolution of the global model.  Until recently, most of 

the limited area models have used grid point or finite difference methods.  In spite of 

careful formulation of finite differencing schemes, the grid point models continue to have 

some problems, such as phase and aliasing errors and nonlinear instability.  Computing 

space derivatives with higher-order finite differencing schemes also does not resolve 

these problems.  Besides, economical time integration methods, such as semi-implicit 

time integration schemes, are not very convenient to implement in a grid point model.

To overcome these problems and exploit the advantages of spectral methods, a 

number of limited area spectral models have been developed recently (Tatsumi 1986, 

Hoyer 1987, Juang and Kanamitsu 1994, Cocke 1998).  These limited area models are 

currently one-way nested with the global model.  In one-way nesting the output from the 

global model provides boundary values or basic large-scale fields to the limited area 

model.  The output from the limited area model is not used in global model integration. 

The spectral methods for a limited area model have some difficulties in spectral 

representation of fields with time-dependent boundary conditions.  Tatsumi (1986) 

overcame this problem by representing time-dependent boundary values by non-

orthogonal functions, while using orthogonal Fourier series to represent interior fields.  

Haugen and Machenhaur (1993) solved the lateral boundary problem by extending the 
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domain beyond lateral boundaries to handle the periodicity of sine and cosine basis 

functions.

Another approach is the perturbation technique for a limited area forecast.  Such a 

technique has been used by Hoyer (1987) for the ECMWF Spectral Limited Area Model, 

by Juang and Kanamitsu (1994) for the NCEP Regional Spectral Model, and by Cocke 

(1998) for the Florida State University Nested Regional Spectral Model.  In these models, 

the finer regional scales are represented by perturbations or deviations with respect to a 

coarser resolution global model.  We shall discuss in detail the perturbation technique for 

limited area modeling as applied by Cocke (1998) to the FSU Nested Regional Spectral 

Model.

11.2 Map Projection 

For limited area modeling over lower and middle latitudes, the Mercator projection is 

very suitable. The transformation of spherical coordinates to the Mercator projection 

coordinates, with the equator as the standard latitude, is given by 

             x ,   

and    

       
1 1 1 sin

cos ln
2 1 sin

y d .   (11.1) 

Here  = longitude and  = latitude are the spherical coordinates, and x, y are the 

coordinates on the Mercator projection.  The zonal and meridional distance increments 

are related as

               x      and 1cosy .   (11.2) 

An inverse coordinate transformation (from Mercator to spherical coordinates) is 

          x      and
2

1

2

1
sin

1

y

y

e

e
,   (11.3) 

and the distance increments are

            x      and cos y .   (11.4) 

Following Cocke (1998), we define 2cos
F

m  as the map factor, which is the ratio of 

the area x y  on the Mercator projection to the area on earth’s surface. 

 The Mercator projection is a conformal map projection wherein, like on earth’s 

surface, the latitudes and longitudes run orthogonal to each other.  The longitudinal lines 

appear equispaced while the separation of latitudinal lines increases with latitude. The 

regional model has equal grid spacing on the Mercator map projection.  In the physical 

space, corresponding spacing will not be equal; it is related to map projection spacing 

through the map factor.  This results in distortion of weather patterns at higher latitudes.  

From computational considerations, this distortion from varying grid spacing has 

consequences with respect to the CFL condition at higher latitudes due to the decrease in 

physical grid spacing with latitude.  It is therefore desirable to restrict the meridional 

extent of the regional model to within about 45°S and 45°N.  In case the model domain is 
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at a higher latitude, a rotation of coordinates is recommended so that the central parts of 

the regional model are placed over the equator of the rotated coordinates.

11.3 Model Equations 

The primitive equations for the regional spectral model are the same as used in the global 

spectral model in the  coordinate system and, as detailed in Chapter 7, are written as: 

The divergence equation   

              2 2 2,
D

P B A a E
t

,   (11.5) 

The vorticity equation   

      ,A B
t

,    (11.6) 

The thermodynamics equation

    
* *

1
,

T
P D UT VT B G

t R
, (11.7) 

The continuity equation   

       ˆˆq
D G

t
,    (11.8) 

The moisture equation   

           ,
s

S
US VS B

t
,    (11.9) 

where

   
2

cos
cos

FV RT q
A f U

a a
,   (11.10) 

2

cos FU RT q
B f V

a a
,    (11.11) 

2

1
, cos

cos

A B
A B ,     (11.12) 

2 2

22cos

U V
E ,        (11.13) 

2

1
cos

cos

q q
G U V ,     (11.14) 

*
T T T ,        (11.15) 

*
P RT q ,       (11.16) 

*' ˆ ˆ' ' ( )N

T T

p p

RT RT
B DT G D G r G G H

C C
, (11.17) 
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T ,        (11.20) 

* ,        (11.21) 

ˆ ˆˆ ˆ1 D G D G ,     (11.22) 

1

0

D̂ D d ,        (11.23) 

1

0

D̂ D d ,        (11.24) 

and

   
cosu

U
a

 and 
cosv

V
a

.     (11.25)  

 For a regional model on a Mercator projection, the terms involving horizontal 

space derivatives get modified.  The Laplacian operator ( 2 ) in spherical coordinates is, 

2 2 2
2 2

2 2 2 2

1 cos cos
cos

cos x y
  (11.26) 

or  

      2 1 2

F
m .   

Here

              
2 2

2

2 2
x y

is the Laplacian operator in Mercator projection coordinates, 2  is the Laplacian 

operator in spherical coordinates, and 2cos
F

m  is the map factor.  Similarly the 

divergence and the vorticity become 

           1

F
D m D      and 1

F
m .    (11.27) 

Also,  and G in equations (11.12) and (11.14) become 

           1

F
m      and 1

F
G m G .    (11.28) 

The derivatives  and cos , where they appear, change to x  and y .

The modified divergence and vorticity, D and , are related to wind components as  

             cos
U V U V

D
x y

   (11.29) 

and
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             cos
V U V U

x y
.   (11.30) 

With these, the above primitive equations for a Mercator projection can be written as 

        2 1RHS
F

D
P m D

t
,    (11.31) 

1, RHS
F

A B m
t

,    (11.32) 

        RHS
F

P
m D P

t R
,   (11.33) 

            
ˆ

RHS
F

q
m D q

t
,    (11.34) 

and

RHS
S

S
t

,     (11.35) 

where RHSD, RHS , RHSP, RHSq, and RHSS are the nonlinear terms on the right-

hand side of the divergence, vorticity, thermodynamic, continuity, and moisture 

equations, respectively. The left-hand side of these equations contains the linear terms.  

Such separation of linear and nonlinear terms is necessary for integrating the model using 

the semi-implicit time integration scheme.  However, the terms 
F

m D  and 
ˆ

F
m D  on the 

left-hand side of equations (11.33) and (11.34), respectively, are nonlinear.  To linearize 

these equations fully we take 
F o

m m m , where 
o

m  is the domain average value of 

F
m  and m  is the deviation from it.  With this, the above set of equations take the form 

        2 1RHS
t F
D P m D ,    (11.36) 

            1RHS
t F

m  ,    (11.37) 

             RHS '
t o

P m D P m DA ,    (11.38) 

             RHS
t o
q m D q m DI I ,    (11.39) 

and

RHS
t
S S .     (11.40) 

 From semi-implicit time integration considerations, we have replaced P by P  in 

equation (11.36) and D  by D  on the left-hand side of equations (11.38) and (11.39), 

where

             / 2D D t t D t t    (11.41) 

and

         / 2
t
D D t t D t t t    (11.42) 

is the centered time-differencing approximation for D t .
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 The operators A  and I  are the second-order vertical finite differencing operator 

and the vertical finite integration operator, respectively. 

 The model variables D , , P, q, and S in equations (11.36)-(11.40) are full 

variables, i.e. the sum of the regional perturbation and the large-scale base field from the 

global model.  The purpose of the regional model is to predict the perturbation fields 

only.  For this, we split various variables on the left-hand side of equations (11.36)-

(11.40) into perturbation and base (global) fields.  The equations then take the form 

        2 2 1 RHS RHS
t t g g F
D P D P m D D ,  (11.43) 

        1 RHS RHS
t t g F

m ,   (11.44) 

    RHS RHS
t o t g o g

P m D P m D P m D PA A ,  (11.45) 

      RHS RHS
t o t g o g
q m D q m D q m D qI I I ,  (11.46) 

and

    RHS RHS
t t g
S S S S .   (11.47) 

 The terms on the right-hand side of the above equations are calculated on the 

transform grid.  The terms based on global base variables (indicated by subscript g) are 

based on global model output.  The rest of the terms are calculated via nonlinear 

products.  The right-hand side terms are then Fourier analyzed using two-dimensional 

trigonometric (sine and cosine) functions and the transform method.  With this, the above 

set of equations can be written in spectral form as 

             
222 RHS

t mn x y mn mn
D a mf nf P D ,  (11.48) 

            RHS
t mn mn

,    (11.49) 

    RHS
t mn o mn mn

P m D PA ,   (11.50) 

    RHS
t mn o mn mn
q m D qI ,    (11.51) 

and

            RHS
t mn mn
S S .    (11.52) 

 In the above equations, subscripts m and n indicate Fourier wavenumbers in the 

zonal and meridional direction, respectively.  The details of Fourier functions and 

wavenumber truncation used for spectral representation are given in sections 11.5 and 

11.6.

 The vorticity equation and the moisture equation in the above system of equations 

are integrated explicitly using centered time-differencing schemes.  The divergence 

equation, the thermodynamic equation, and the continuity equation are integrated using 

an implicit time integration scheme.  Using the time-differencing and time-averaging 

equations (11.41) and (11.42), we can eliminate 
mn

D  from equations (11.48) and (11.50).  

This results in a second-order differential equation in the vertical for 

/ 2
mn mn mn

P P t t P t t .  This equation is written in a linear tridiagonal 

system of equations in the vertical and solved for 
mn

P t t  for each (m, n).  The 
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forecast value 
mn

P t t  is then substituted into equation (11.48) to provide 

mn
D t t  which, in turn, is used in equation (11.51) to obtain ( )

mn
q t t .  This 

procedure of semi-implicit time integration is similar to that used in the global model and 

has been discussed in detail in Chapter 7.

11.4 Orography and Lateral Boundary Relaxation 

A finer orography is included in the regional model by means of a perturbation 

orography,
s
, which is obtained as the deviation of orography of a higher resolution 

global model data set from that of the lower resolution global model.  The initial 

perturbation fields for the atmospheric variables are also likewise obtained from these 

models.  Thus, a consistency between the atmospheric variable perturbations and 

orography perturbations is maintained.  In practice, these perturbation fields are usually 

obtained this way, but they can also be obtained from a high-resolution regional analysis. 

 The effect of perturbation orography in the model dynamics is incorporated via a 

pseudo-pressure perturbation, 

     *
P RT q ,    (11.53) 

where

      
1

s
RT d .    (11.54) 

 The perturbation orography is blended at the lateral boundaries to the global 

model orography to provide continuity between the regional and the global orography.  A 

similar continuity between the regional model and the global model variables is ensured 

at the boundaries.  For this, a simple method is used to relax the perturbation variables to 

zero value at the lateral boundaries.  An extra term is added to each tendency equation 

such that 
ref

A A
A A

t t
, where 0  in the interior of the regional domain 

and 1  near the boundaries,  being the relaxation time typically of the order of 

one hour.  Generally,  is very small or zero over most of the interior so the relaxation is 

effective essentially only near the boundaries.

 The blending of regional orography with global orography at the boundaries and 

relaxation of perturbations of model variables to zero value at the boundaries is done in 

such a way that the consistency between orography perturbations and model variable 

perturbations is maintained. 

11.5 Spectral Representation and Lateral Boundary Conditions 

In Chapter 6, we saw that the spherical harmonics used as the basis functions for the 

global spectral model are the eigenfunctions of the Laplace equation in spherical 

coordinates.  The Laplacian on the Mercator projection is 
2

2

2

2
2

yx

~
.  This has 

two-dimensional Fourier (sine and cosine) functions as its eigenfunctions, which form the 

basis functions for the regional model.
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 For this model, the regional domain is taken as -periodic.  If the number of east-

west and north-south grid points in the regional model are J and I respectively, then the 

spectral representation of any perturbation field ( , )A x y  is given by 

            ,
mn

n m

i m j n
A x y a f g

I J
,   (11.55) 

where f and g are either sine or cosine functions, m and n are the zonal and meridional 

wavenumbers, respectively, and ( , )i j  are grid point coordinates.  It is necessary that the 

spectral representation of various model variables is consistent with lateral boundary 

conditions of the model.

 The regional model has slip-wall lateral boundary conditions with respect to 

perturbations, i.e., there can be perturbation wind flow along the boundary but not across 

the boundary.  Also, no advection of perturbations of scalar fields like temperature, 

pressure, and moisture is allowed across the boundaries.  This is possible if the spectral 

representation of these fields ensures vanishing of their gradients normal to boundaries.  

For a -periodic domain, these conditions can be fulfilled by selecting the basis 

functions as follows: 

        sin cos
i m j n

U
I J

,    (11.56) 

       cos sin
i m j n

V
I J

,    (11.57) 

       sin sin
i m j n

I J
,    (11.58) 

       cos cos
i m j n

D
I J

,    (11.59)  

and

       , ,  and cos cos
i m j n

T P S q
I J

.   (11.60) 

11.6 Spectral Truncation 

As in the global model, the spectral resolution of the regional model is also truncated at 

an appropriate wavenumber.  The number of grid points on the transform grid for such 

truncation ensure that the calculation of nonlinear quadratic terms by the transform 

method are free from any aliasing errors.  In Chapter 7, we saw that for the aliasing-free 

Fourier transform of quadratic terms on a 2 -periodic domain the minimum number of 

grid points is 3 1M , where M is the wavenumber at which the Fourier series is 

truncated.  If I is the number of east-west grid points on a -periodic domain, then the 

number of points to represent a 2 -periodic domain will be 2( 1)I .  Therefore, if the 

east-west Fourier functions are truncated at wavenumber M, then for aliasing-free 

transform we have

              3 1 2 1M I

or   
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              2 3 / 3M I .     (11.61) 

Similarly,   

              2 3 / 3N J .     (11.62) 

 Thus, for aliasing-free calculations of nonlinear terms using the transform method 

with spectral truncation of the zonal and meridional wavenumbers at wavenumbers M

and N, respectively, the minimum number of grid points I and J in the zonal and 

meridional directions on a -periodic domain are given by 

            3 3 / 2I M      (11.63) 

and

            3 3 / 2J N .      (11.64) 

 As with the global model, the regional model also can have two types of 

truncations – the rectangular truncation and the elliptic truncation.  In the rectangular 

truncation,

     m M      and n N ,    (11.65) 

while in the elliptic truncation 

               

2 2

1
m n

M N
.    (11.66) 

The elliptic truncation, being isotropic, provides a better description of a field than the 

rectangular one.  Both types of truncations are available in the FSU regional spectral 

model, however, the elliptic truncation is more commonly used. 

11.7 Model Physics and Vertical Structure 

The physics parameterization and the vertical structure of the regional spectral model is 

similar to those in the global spectral model.  As with the global model, the regional 

model physics include short and longwave radiation incorporating the effect of clouds 

and surface heat balance, the convective and large-scale precipitation, the shallow 

convection, boundary layer fluxes of sensible heat, moisture, and momentum based on 

similarity theory, and the horizontal and vertical diffusion processes.

 In the vertical, the 
s

p p  coordinate is used with 14 discrete  levels: 0.05, 

0.07, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.85, 0.90, 0.95, and 0.99, which are 

the same levels used in the global model.  The base field and initial perturbations are 

spectrally transformed from the global model to the regional model on surfaces.  This 

eliminates the need for any interpolation from grid points and thus reduces interpolation 

errors.  As currently implemented, the regional and global models share the same physics, 

but it is not a requirement of the spectral perturbation method.  Even now there are some 

differences in the physics of the two models.  The regional model calls radiation every 1 

hour while the global model calls radiation every 3 hours.  There are also some 

modifications in cumulus parameterization due to very high resolution of the regional 

model.
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Figure 11.1.  Regional Spectral Model integration – a schematic representation. 

11.8 Regional Model Forecast Procedure 

The regional spectral model predicts only the perturbations fields.  Fig. 11.1 outlines the 

procedure for integration of the regional spectral model for their prediction.

 The coarse resolution (T-106 or T-126) global model is run for a specified 

forecast period and its output (relevant to the regional model) is saved at the interval of 

every 3 hours to provide the base field for the regional model.  The difference between 

the initial fields from a high-resolution global (or regional) analysis and the coarse 

resolution analysis provides the initial perturbation fields for the regional model.  The 

perturbation orography is also obtained in a similar way.  At the lateral boundaries, 

perturbations are set to zero.  These perturbation fields are blended in such a way that at 

the lateral boundaries, perturbations smoothly go to their zero value.  These perturbation 

fields are then spectrally analyzed consistent with slip-wall boundary conditions and 

recast on grid points.

 The global fields and their horizontal derivatives are spectrally transformed to the 

regional grid and then are linearly interpolated to the regional model time step.  The 

global time tendencies, 
tg

, are also reconstructed from the global field at the regional 
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grid.  The sum of the perturbations and the global field then provides the full values of 

various fields used for calculation of nonlinear terms: RHSD, RHS , RHSP, RHSq, and 

RHSS, which also include the effect of physical processes such as radiation, deep 

convection, non-convective precipitation, and boundary layer processes. 

 These terms when added to terms originating from global 
g

P  and 
g

D  fields, 

global tendencies, and terms due to linearization of map-factor give the right-hand sides 

of equations (11.43)-(11.47).  The right-hand side terms of equations (11.43) – (11.47) 

are then spectrally analyzed using transform methods.  The resulting spectral equations 

(11.48) – (11.52) are then solved to provide spectral tendencies of perturbation quantities.  

These time tendencies are relaxed to their boundary values using a simple relaxation 

scheme

            
D D

D
t t

,

where 0  in the interior domain and 1  near boundaries,  being relaxation 

time.

 As already mentioned, the vorticity and moisture equations are integrated 

explicitly, while the divergence equation, thermodynamic equation, and continuity 

equation are integrated implicitly. 
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Ensemble Forecasting 

12.1 Introduction 

Since the atmosphere is a chaotic dynamic system, any small errors in the initial 

condition can lead to growing errors in the forecast.  In a numerical weather prediction 

system, these errors may be due to observational errors, errors in data transmission, or the 

errors resulting from the analysis scheme.  Any systematic errors can normally be 

corrected if the nature and the source of such errors are known.  But, the random errors 

are hard to correct as we have little knowledge about their source.  These errors, however, 

are small within the range of observational or analysis error.  Since numerical weather 

prediction is an initial value problem, even if the prediction models are perfect the 

forecasts are sensitive to any errors in the initial input.  Lorenz (1969) has shown that the 

limited errors in small scales grow rapidly inducing errors in larger scales.  These in turn 

grow into still larger scales and in about two days the errors have invaded the synoptic 

scales.  Likewise, the initial errors in larger scales invade into smaller scales and synoptic 

scales.  Thus all scales of motion are affected by the initial errors, eventually leading to 

total loss of predictive information.  The rate of the error growth and hence the lead time 

at which predictability is lost depends on factors such as the circulation regime, season, 

and geographical location.  It is possible to know the effect of initial errors and hence 

have information on the inherent predictability by running the model with a number of 

initial conditions, which differ from the control analysis within the uncertainty limits of 

the analysis.  In their pioneering works, Epstein (1969) and Leith (1974) showed that a 

mean based on an ensemble of such forecasts provides a better forecast than that from the 

control analysis, as long as the initial states of the ensemble represent the uncertainty 

present in our control analysis.  This important finding is the basis of ensemble 

forecasting.  The various ensemble forecast techniques differ primarily from the way the 

initial perturbed state of the ensemble members is defined.  In view of its classical 

significance, we first describe below the Monte Carlo method. 

12.2 Monte Carlo Method 

The processes which involve an element of random chance are referred to as Monte Carlo 

processes.  The random errors in atmospheric observations and analyses fall in this 

category.  In general, one does not know beforehand the location of errors in the initial 

data which are of importance for the eventual accuracy of the forecast.  The idea of the 
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Monte Carlo method is to perturb all data simultaneously with random numbers of a 

realistic magnitude.  The resulting forecast will differ almost throughout the forecast 

domain.  Repeating the experiment many times with different sets of numbers, one can 

get the idea of the forecast errors that are due to the uncertainty of the observations and 

analyses.

The Monte Carlo method for ensemble forecasting was first applied by Leith 

(1974) in a perfect model environment.  He generated a set of perturbations which were 

normally distributed with a zero mean and the perturbation sets were orthogonal to each 

other.  If (0)X  is the initial analysis and 
i

E  is the ith set of random errors (random 

numbers), then the ith perturbed initial state (0)X  is given by 

(0) (0)E

i i
X X E ,               (12.1)  

where the multivariable vector 
i

E  satisfies the conditions 

0
i

E                       (12.2) 

and
*

i j ij
E E                               (12.3) 

where  is the variance of random errors. 

If ( )E

i
X t  is the forecast of the ith ensemble member after time t, then 

1

1
( ) ( )

N

E

i

i

X t X t
N

                          (12.4) 

is the ensemble mean forecast and

2

1

1
( ) ( )

N

x i

i

X t X t
N

     (12.5) 

is the forecast variance, a measure of the spread of the ensemble forecast.

The Monte Carlo technique has been applied for ensemble forecasts by Tribbia 

and Baumhefner (1988).  Kuo and Low-Nam (1990) and Mullen and Baumhefner (1994) 

used this technique for storm forecasting.

Although the ensemble mean forecast is found to become closer to the truth as the 

ensemble size increases, the random perturbations generated in the Monte Carlo method 

are not an efficient way of creating initial perturbed states, as the errors of operational 

analysis are rarely random.  In the operational analysis cycle, the previous 6 hour forecast 

is generally used as the first guess for the analysis.  The final analysis, therefore, has 

errors of forecast as well as of observations.  The errors of forecast contain fast growing 

baroclinic unstable modes as well as slow growing or non-growing modes, depending 

upon synoptic conditions and geographical locations.  The observational errors are 

generally of random nature.  The operational analysis, thus, contains a combination of all 

these types of errors.  The growing type of errors are much more important than the non-

growing errors that affect the forecast skill, hence, the ensemble forecasts, based on 

initial perturbed states are worthy of examination. In the recent years, techniques have 

been developed to identify the growing modes of perturbations in order to define the 

initial perturbed states for the ensemble forecast.  We describe below the techniques 

developed at the National Center for Environmental Prediction (NCEP), Florida State 

University (FSU), the European Center for Medium Range Weather Forecasts 
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(ECMWF), and finally the Superensemble Method developed at the Florida State 

University.

12.3 National Center for Environmental Prediction (NCEP) Method 

12.3.1 Generation of Perturbations  

The ensemble forecast method used at NCEP is a combination of the Lagged-Average-

Forecasting (LAF) (Hoffmann and Kalnay 1983) and the Breeding of Growing Modes 

(Toth and Kalnay 1991) methods.

The forecast carries regions where error growth is large and also regions where 

error growth is small.  The differences between the predicted field and the corresponding 

verification analysis will be large over regions of large error growth.  The LAF method 

thus allows the selection of preferred growing modes.  Because of the error growth over 

some regions, forecasts started at an earlier time may grow into larger amplitudes 

compared to forecasts that were started at a later time.  This is a feature of the lagged 

average forecasting.  This deficiency was corrected by Hoffman and Kalnay (1983) by 

using different weights for different members of the ensemble.  Later, in the Scaled 

Lagged-Forecasting (SLAF) method, the correction was done by rescaling of 

perturbations by their ‘age’ factor, where smaller weights are assigned to perturbations 

from forecasts started at earlier times and larger weights for those started more recently, 

resulting in similar sized perturbations from all forecasts (Ebisuzaki and Kalnay 1991).  

To further increase the growing component in the perturbations, Kalnay and Toth (1991) 

used the difference between short-range forecasts (SRFD) started at earlier times, but 

verified at the initial time of ensemble.  Experiments by Toth and Kalnay (1991) on 

different methods of generating the perturbation showed a clear increase in the growth 

rate of perturbations from random perturbation to SLAF and from SLAF to SRFD.  These 

increases were also accompanied by an increase in the quality of the ensemble mean 

forecasts.  Figure 12.1, after Toth and Kalnay (1993), shows schematically the generation 

of perturbations by the various methods described above.

12.3.2  The Breeding of Fast-growing Modes  

The Breeding of Growing Modes (BGM) method, developed by Toth and Kalnay (1991), 

identifies the fast growing errors during the analysis/forecast cycle.  During the 

analysis/forecast cycle of the data assimilation system, the perturbations periodically get 

rescaled at each analysis due to blending of observations with the first guess.  Since 

observations are sparse they cannot eliminate all errors from the short-range forecast that 

becomes the first guess for the next analysis.  Obviously, any errors that grow in the 

previous short-range forecast will have a larger chance of remaining in the latest analysis.  

These growing errors will then start growing quickly in the next short-range forecast.  

Thus the analysis contains fast growing errors that are dynamically created by repetitive
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Figure 12.1.  Schematic of the creation of LAF SRFD perturbations.  Note that the LAF 

perturbation includes not only the short-range forecast errors but also the random errors 

of the latest analysis, whereas the SRFD perturbation is not affected by the random errors 

of the latest analysis.  This results in a significant reduction of the random errors and 

therefore in a higher growth rate for the SRFD perturbations.  Figure taken from Toth and 

Kalnay (1993). 

use of the model to create the first guess field.  This is what is referred to as Breeding 

Growing Modes (BGM).  Toth and Kalnay (1991) developed a simple method for 

identifying Breeding Growing Modes consisting of the following steps: 

a) add a small arbitrary perturbation to the atmospheric analysis, 

b) integrate the model for 6 hours with both the unperturbed (control) and perturbed 

initial condition, 

c) subtract the 6 hour control (analysis cycle) forecast from the perturbed forecast, 

and

d) scale down the difference field so that in the root mean square (RMS) sense it has 

the same size as the initial perturbation. 

This perturbation is now added to the following 6-hour analysis as in (a) and the process 

is repeated.  NCEP uses seven independent breeding cycles to generate the 14 initial 

ensemble perturbations.  Each breeding cycle begins with an analysis/forecast cycle, 

which differs from the others only in initially prescribed random errors (‘seed’).  These 

initial random errors are added and subtracted from the control analysis so that each 

breeding cycle generates a pair of perturbed analyses.  From this point on the perturbation 

patterns evolve freely in each breeding cycle.  These perturbations are just the difference 

between short-range forecast started from last perturbed analysis and the ‘control’ 

analysis, rescaled to the magnitude of the seed perturbation which is a small percentage
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Figure 12.2.  (a) Operational configuration of global predictions before 7 December 1992 

and (b) the new ensemble configuration.  In (b), individual ensemble member are 

identified by numbers 1-14. Figure obtained from NOAA. 

of (10-12%) the climatological RMS variance of the concerned field.  Since the short-

range forecasts are just the early part of the extended range prediction, the generation of 

perturbations is basically cost free with respect to the forecast/analysis system. 

12.3.3  Operational Ensemble Scheme 

Due to the non-availability of additional computational resources, at the end of 1992 

NCEP designed an operational ensemble scheme that made maximum use of the normal 

operational forecast products for the ensemble forecast (shown schematically in Fig. 

12.2).  The NCEP operational product configuration, as it was before 7 December 1992 

and which was utilized for the new operational ensemble forecast scheme, is shown in 

Fig 12.2(a).  It consisted of 10-day operational medium range forecasts at T-126 and T-62 

resolutions starting at 00 UTC of days -2, -1, and 0 and the T-126 aviation forecast up to 

3 days starting at the 12 UTC analysis of day -2.  These operational products were 

staggered to provide a 14 member family out of the 10-day ensemble forecast scheme 

within the existing computational sources as illustrated in Fig 12.2(b).  This scheme 

combines breeding growing mode (BGM) forecasts with overlapping predictions from 

time lagging (LAF) forecasts where initial differences are model short-range forecast 

errors.  As seen from Fig 12.2(b), all predictions are for a 12-day duration so that with a 

time lag of up to two days we get 14 forecasts available every day for ten days.  The T-

126 forecast started at day 0 is truncated to T-62 resolution on day 6 and integrated for 

another six days up to day 12.  Other members that begin on day 0 and that are integrated 

for twelve days are the T-62 resolution, 12-day forecast and two BGM forecasts, one with 

positive growing mode and the other with negative growing mode.  Two similar sets of 

four 12-day forecasts are prepared starting at day -1 and day -2.  In addition, the T-126

aviation forecasts starting at 12 UTC of day -2 and day -1 are integrated with T-62 

resolution beyond day 3.  Thus, all together these forecasts provide 14 members of the 

ensemble forecast valid at day 10. 
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12.4 Florida State University Method 

12.4.1 Determination of Fast Growing Modes by EOF Analysis

In the FSU method of ensemble forecast (Zhang 1997), the selection of the growing 

modes is made through the Empirical Orthogonal Function (EOF) analysis of the 

perturbation field during a short-range forecast.  Like the ‘breeding’ method, a nonlinear 

spectral model with full physics is used to generate growing perturbations in the EOF 

method.  The outline of the EOF method is as follows: 

Add random perturbations of small magnitude, comparable with the forecast 

errors, to the control analysis. 

Integrate the model with full physics for 36 hours starting with both the control 

and the perturbed initial states.  Output the forecast results every three hours from 

these runs. 

Subtract the control forecast from the perturbed forecast at the corresponding 

times.

Perform an EOF analysis of the time series of difference fields to determine the 

modes (eigenvectors) whose EOF coefficients increase rapidly with time.  These 

fast growing modes constitute the optimal perturbations. 

Choose the first few modes to construct perturbation fields. 

Add/subtract the perturbation to/from the control analysis to form initial states for 

ensemble forecasts. 

The EOF analysis is flexible enough to be applied to any domain (global or 

tropical, regular grid or Gaussian grid).  At FSU the method has been applied to the 

tropics to get better estimates of the perturbation fields over the tropical region.  As the 

EOF perturbations are calculated from the model, which includes all physical processes, 

the optimal perturbations from the EOF method may therefore include the effects of 

various instability mechanisms caused by the model physics, such as the interactions 

between cumulus convection and the large-scale flow. 

The EOF analysis is performed only for the temperature and wind fields.  In the 

case of wind, a complex vector wind perturbation 

, , ,s t s t s t
v i u ,     (12.6) 

where ,s t
u  and ,s t

v  are the perturbations of the u and v components of the wind at location 

s and time t, is defined as the difference of U and V fields from the perturbed and control 

runs.

The entire data set then can be expressed as an S x T rectangular matrix (S being 

the total grid points and T being the total time intervals at which perturbations were 

output):

11 12 1

21 22 2

1 2

... ...

... ...

... ... ... ... ...

... ...

T

T

S S ST

W .   (12.7) 

Eigenvectors and eigenvalues are calculated from the covariance matrix 
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Figure 12.3.  Schematic diagram of hurricane initial position perturbations.  Figure taken 

from Zhang (1997). 

*1
H W W

T
,     (12.8) 

where *
W  is the complex conjugate transpose of W  and H is a symmetric matrix 

composed of complex elements, with the exception of the diagonal elements which are 

real and proportional to perturbation kinetic energy for each grid point.

If
i

e  and 
i
 are eigenvectors and eigenvalues, respectively, of matrix H and the 

eigenvectors
i

e  are in descending order according to the magnitude of 
i
, then the matrix 

W can be expanded with respect to base eigenvectors 
i

e  as 

         W YE ,       (12.9)  

where matrix E consists of row vectors of 
i

e , which are function of space only.  These 

are called EOFs.  The matrix Y contains coefficients of different eigenvectors at different 

times and these are called principal components (PC).  The fast growing modes are 

selected by time evolution of the EOF coefficients. Those EOF modes whose coefficients 

increase rapidly constitute the optimal growing mode.  In actual practice, the EOF 

eigenmodes of the first order were found sufficient to construct the perturbed initial states 

for the ensemble forecast. 

12.4.2  Application of the EOF Method to Hurricane Forecasting 

The EOF method has been applied at FSU for ensemble forecasting of hurricane intensity 

and track.  The initial field for the control run is from the physically initialized ECMWF 

data.  A synthetic hurricane, based on observed estimates of maximum wind and central 

surface pressure, is inserted at the analysis location of the hurricane (Trinh and 

Krishnamurti 1992).  For generalizing the perturbed states, this initial hurricane analyzed 

position is perturbed by displacing its location by 50 km (assumed as typical error in 

hurricane position) to the north, south, east and west (Fig. 12.3).  This gives us five 

members in terms of position perturbations in the initial data.  For the initial analysis 

corresponding to each of these positions, optimal perturbations are calculated using the 

EOF method.  The original initial state and two perturbed initial states obtained by 

adding/subtracting the EOF perturbations to/from the original initial state give initial
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Figure 12.4.  Hurricane Florence.  (a) Random wind perturbations at 1000 mb at hour 0 

(top) and at hour 36 (bottom).  (b)  EOF-based wind perturbations at 1000 mb at hour 0 

(top) and at hour 36 (bottom).  The contours are isotachs of wind speed.  Figure taken 

from Zhang (1997). 

states for three ensemble members corresponding to each position.  Among these, the 

unperturbed initial state at the non-displaced (central) location of the hurricane is the 

initial state for the control run.  The other 14 ensemble members start with a perturbed 

state (with respect to location or initial perturbation or both).  The EOF perturbations of 

the u, v, and T fields are calculated from 36-hour forecasts carried out from initial random 

perturbations applied at all the five hurricane locations. A clear advantage of the EOF 

method in selecting the growing mode can be seen from Fig. 12.4.  Figure 12.4(a) shows 

the random wind perturbations for hurricane Florence (4 November 1994) at 1000 mb at 

hour 0 and at hour 36, while Fig. 12.4(b) shows the EOF based wind perturbations for 

this hurricane at the same level at these two hours.  As seen from Fig 12.4(a), the random 

perturbations are very weak and without any preferred pattern.  On the other hand, the 

EOF perturbations are strong with well-defined patterns in the proximity of the hurricane 

location.  Such preferred growing modes define the initial perturbed states for ensemble 

members in the EOF method.

As an example of the EOF method of ensemble forecasting we show here some 

aspects of the forecast of hurricane Gilbert, which occurred in September 1998.  Figure 

12.5 and Fig. 12.6 show the 850 mb streamlines of the ensemble members at hours 0 (12 

UTC 11 September 1988) and hour 48 (12 UTC 13 September 1988), respectively, for 

hurricane Gilbert.  The pattern at the top left corner is for the control experiment.  The 

initial (hour 0) difference in 850 mb streamline patterns of various ensemble members is
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Figure 12.5.  Hurricane Gilbert, 850 mb streamlines and isotachs at day 0 from 

individual ensemble members.  Figure taken from Zhang (1997). 

very small.  Looking closely, we notice the hurricane position of various ensemble 

members displaced slightly from the control with very small differences in the flow 

fields.  By hour 48, the 850 mb flow field, which was initially nearly circular in all 

members, has become very distorted and differs significantly in intensity and orientation. 

The difference in the flow fields of ensemble members was found to increase further with 

the time of integration at all levels.  A similar behavior in the surface pressure and upper-

level temperature fields was noticed in the ensemble forecasts.  The hurricane’s control 

pressure, which in various members was about 980 mb at the start, varied between 974
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Figure 12.6.  Hurricane Gilbert, 850 mb wind fields at day 2 from individual ensemble 

members.  Figure taken from Zhang (1997). 

mb and 998 mb at hour 48 of the forecast with pressure gradients differing among 

ensemble members.  

Figure 12.7 shows the predicted tracks of hurricane Gilbert starting at 12 UTC 11 

September 1988.  The top panel shows the track predicted by various ensemble members 

along with the observed track and that predicted by the control run.  The hurricane 

forecast positions by all ensemble members including the control are very close to each 

other for the first 24 hours of the forecast.  After that they start diverging.  On day 4, the 

predicted hurricane tracks are scattered over a very large area.  Among these, the control 

track has taken a more northerly direction and is a poor forecast when compared to the

An Introduction to Global Spectral Modeling



273

Figure 12.7.  Hurricane Gilbert track prediction, starting from 12 UTC 11 September 

1998.  Top panel shows the best track (solid line), the track from the control experiment 

(long dash), and the track forecasts from different ensemble members (short dash line).  

Bottom panel contains best track (solid line) compared with full ensemble mean (dash dot 

line), cluster 1 mean (short dash), track prediction from control experiment (long dash 

line), and selected track mean (dot dash line).  Figure taken from Zhang (1997). 

observed track, which has a less northerly component.  The ensemble mean track is much 

closer to the observed track than the track predicted by the control run.  This clearly 

demonstrates the advantage of ensemble forecasting.  The lower panel shows a ‘selected’ 

mean and cluster mean, along with observed, control, and ensemble mean tracks.  The 

‘selected’ mean is the mean track based on ensemble members whose 12-hour forecast 

position is sufficiently close to the observed position at that time.  For such hurricane 

track forecasts, we need to have knowledge of the observed hurricane position at hour 12.  

The cluster mean is calculated from ensemble members by cluster analysis and based on 

high correlation among them, and in this case, contain almost 90% of the total number of 

ensemble members.  

12.5  European Center for Medium Range Forecasts (ECMWF) 

Method

Ensemble forecasting at the European Center for Medium Range Weather Forecasts 

(ECMWF) is based on singular vector analysis.  The singular vector analysis was first 
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used by Lorenz (1965) for atmospheric study to compute the largest error growth rates to 

estimate atmospheric predictability of an idealized model atmosphere.  However, due to 

large computational requirements this analysis could not be applied to any realistic 

atmospheric problem until the early 1990s.  The most successful application of singular 

vector analysis has been at the ECMWF for generating the initial perturbation state for 

ensemble forecasts (Mureau et al. 1993; Molteni et al. 1996).  Though the inherent 

purpose of singular vector analysis in these studies is the same as of the breeding method 

of Toth and Kalnay (1993) or the EOF method of Zhang (1997), i.e., identifying the fast 

growing errors in the initial analysis, the singular vector techniques in selecting growing 

modes is totally different from the other two in its computational details.  As rigorous 

mathematical details of the singular vector method are out of our scope, we give below a 

brief outline of this method.

12.5.1 Singular Vectors and Linear Product 

A set of n nonlinear evolution equations of an atmospheric model using a spectral 

expansion leading to n degrees of freedom can symbolically be written as 

( )
dx

A x
dt

.         (12.10) 

Here, x is the state vector consisting of spherical harmonic components of atmospheric 

variables such as vorticity, divergence, temperature, humidity, surface pressure, etc.  The 

operator A represents the effect of nonlinear dynamical, as well as physical 

(parameterized), processes. 

Over a sufficiently small time interval the evolution of a small perturbation 'x  of 

the state vector x can be described by a linearized approximation 

( )

'
'

x t

dx dA
x

dt dt
.         (12.11) 

This system of linear ordinary differential equations is the tangent linear model in 

differential form.  Its solution between time 0t  and 1t  can be obtained by time integration 

of (12.11) as

1 1 0 0'( ) ( , ) '( )x t L t t x t .        (12.12) 

L is an ( n n ) real matrix referred to as the resolvent or forward propagator of the 

tangent linear model.  Because of linearization, L depends on the basic nonlinear 

trajectory ( )x t , the solution of the basic nonlinear model, but it does not depend on the 

perturbation 'x .  Thus 1 0( , )L t t  maps small perturbation 'x  along the basic nonlinear 

trajectory from an initial time 0t  to some future time t.

Singular vector decomposition is a linear algebra problem where any n n  real 

matrix L can be written as the product of an n n  orthogonal matrix U, an n n  diagonal 

matrix S, and the transpose of an n n  orthogonal matrix V as 
T

L USV .           (12.13) 

As U and V are orthogonal matrices 

 and T T
UU I VV I .        (12.14) 

Alternatively, pre-multiplying (12.13) by T
U  and post-multiplying it by V gives 

us
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1

2

00 0 . .

00 0 . .
    

.. . . . .

. . . . .

T

n

U LV S    (12.15) 

and U, V may be written as

1 2 1 2, ,..., ,      , ,...,
n n

U u u u V v v v .        (12.16) 

Elements of (12.15) satisfy the relation

1 2... 0
n

.     (12.17) 

Multiplying the left-hand side of (12.15) by U gives 

1 2 1 1 2 2,  i.e., , ,..., , ,...,
n n n

LV US L v v v u u u ,   (12.18) 

or 

i i i
Lv u ,         (12.19) 

where
i

v  are the right singular vectors or initial singular vectors of L.  Multiplying the 

right-hand side of (12.15) by T
V  gives 

        T T
U L SV ,            (12.20) 

which on transposing gives 

1 2 1 1 2 2,  i.e., , ,..., , ,...,T T

n n n
L U VS L u u u v v v    (12.21) 

or 

        T

i i i
L u v ,          (12.22) 

where
i

u  are the left singular vectors or final singular vectors of L.  From (12.19) and 

(12.22) we get 

           2T T

i i i i
L Lv L u v .         (12.23) 

Therefore, the initial singular vectors, 
i

v , can be obtained as eigenvectors of T
L L , a 

normal matrix whose eigenvalues are squares of the singular values.  For the final 

perturbation 1'( )x t  we get 

         1 0 0 0

1

'( ) ( , ) ( ) ,
n

i i i

i

x t L t t x t x v u ,       (12.24) 

where ,x v  is the inner product of x and v.  Taking the inner product of (12.24) with 
i

u

we get 

       1 0'( ), ( ),
i i i

x t u x t v .         (12.25) 

Thus, initial vector 
i

v  will be stretched by an amount equal to singular value 
i
 (or 

contracted if 1
i

) and the direction will be rotated to that of the evolved vector 
i

u .

The selection of the dominant singular vector is based on the maximum energy 

growth over the time 1 0t t  as determined by the norm or inner product of the 

perturbation.  The inner product of the perturbation at time t is defined as 

     
2

0 0'( ) '( ); '( ) ( ); ( )T
x t x t x t x t L Lx t .             (12.26) 
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Figure 12.8.  Streamfunction associated with the dominant singular vector (with 3-day 

global energy optimization) for 9 January 1993 at (left) initial time and (right) 

optimization time.  Top row: model level 7 (about 200 mb); middle row: model level 13 

(about 700 mb); and bottom row: model level 15 (about 850 mb).  Contour interval at 

optimization time is 20 times larger than at initial time.  Figure taken from Buizza and 

Palmer (1995). 

The components of perturbation state vector 'x  represent the perturbations in the 

vorticity, divergence, temperature, etc., fields.  At the initial time, the eigenvalues 0( )
i

v t

of T
L L  can be chosen to form a complete orthogonal basis of n-dimensional tangent 

space of linear perturbations with real eigenvalues 2 0
i

.

Thus from (12.22) 

         2

0 0( ) ( )T

i i i
L Lv t v t .         (12.27) 

At a future time, these eigenvectors evolve to 1 0( ) ( )
i i

v t Lv t , which gives us 

        2

1 1( ) ( )T

i i i
LL v t v t .       (12.28) 

From (12.26) and (12.28) we get 

      
2 2

1 0 0( ) ( ); ( )T

i i i i
v t v t L Lv t .       (12.29) 

Since any 1

0

( )

( )

x t

x t
 can be written as linear combination of ( )

i
v t ,

          
1

0 1

0

( )
max '( ) #

( )

x t
x t o

x t
.        (12.30) 
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The maximum energy growth over the time 1 0t t  is therefore associated with dominant 

singular vector 1 0( )v t  at the initial time, and )( 11 tv at the end optimization time.  As an 

example, Fig. 12.8 from Buizza and Palmer (1995) shows the streamfunction associated 

with the dominant singular vector at the initial time on 9 January 1993, as well as at the 

optimizing time (with 3-day global energy optimization).

 After the dominant perturbation modes have been selected by the singular vector 

method, the initial perturbation fields for the ensemble forecasts are constructed by 

adding or subtracting them from the base analysis.

12.6 Superensemble Methodology and Results 

12.6.1 Introduction 

The superensemble approach is a recent contribution to the general area of weather and 

climate forecasting.  This approach was developed at FSU and has been discussed in a 

series of publications, Krishnamurti et al. (1999), (2000a), (2000b), and (2001).  The 

novelty of this approach lies in the methodology, which differs from ensemble analysis 

techniques used elsewhere. This approach yields forecasts with considerable reduction in 

forecast error compared to the errors of the member models, the ‘bias-removed’ ensemble 

averaged forecasts, and the ensemble mean. This technique entails the partition of a time 

line into two parts.  One part is a ‘training’ phase where forecasts by a set of member 

models are compared to the observed or analysis fields with the objective of developing a 

statistic on the least squares fit of the forecasts to the observations.  Specifically, 

observed anomalies are fit to the member model forecasts according to the classical 

prescription

1

' ( )
N

i i i i

i

O a F F ,                (12.31)

where F is the i
th model forecast (out of N total models), F

i
is the mean of the i

th

forecast over the training period, 'O is the observed anomaly relative to the observed 

mean over the training period, the 
i

a  values represent the regression coefficients, and 
i

is an error term.  The a
i
 terms are determined by requiring the summed squared error 

integrated over the training period E =
i

2

i=1

N

  to be as small as possible.  A fit of this sort 

is performed for all model variables and at all model grid points for which reanalysis 

observations are available and typically yields close to 7 million regression parameters.  

This large number arises from the number of transform grid points, number of vertical 

levels, number of basic variables, and the number of models.  Over all such locations we 

have noted diverse performance characteristics of the member models.  That arises from 

differences in horizontal and vertical discretization, treatment of physics, handling of 

inhomogenity of the land surface, orography, lakes, water bodies, surface physics, and 

boundary conditions.  All such peculiarities tend to leave their signature in the error 

distributions and hence on these weights. These may be thought of as bias correction 

weights.  The second part of the time line is composed of genuine model predictions, i.e., 

the forecasts of the member models.  The superensemble approach combines each of 
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these forecasts according to the weights determined during the training period through the 

formulation
N

1i

iii
FFaOS )( ,     (12.32)  

where the notation is defined above.  The determination of 
i

a  follows the well-known 

Gauss-Jordan elimination method.  The prediction S is referred to as the superensemble 

forecast.  This forecast should be contrasted with the more standard anomaly forecasts 

known as the biased-removed ensemble mean  (E) or ensemble mean ( Ê ) forecasts,

E =
1

N
(F

i
− F

i
)

i=1

N

   or Ê =
1

N
(F

i
− O )

i=1

N

 .    (12.33) 

The distinction between them comes in the weighting.  Assigning all models a weight of 

1/ N  (where N is the number of models) in equation (12.32) illustrates the connection 

between the forecasts and also illustrates how the training period attempts to identify and 

highlight good model performance.

The skill of the multi-model superensemble method significantly depends on the 

error covariance matrix since the weights of each model are computed from a designed 

covariance matrix.  The current method for the construction of the superensemble utilizes 

a least square minimization principle within a multiple regression of model output against 

observed ‘analysis’ estimates.  This entails a matrix inversion that is currently solved by 

the Gauss-Jordan elimination technique.  That matrix can be ill-conditioned and singular 

depending on the interrelationships of the member models of the superensemble.  We 

have recently designed a singular value decomposition (SVD) method that overcomes 

this problem and removes the ill-conditioning of the covariance matrix entirely (Yun and 

Krishnamurti 2002).  Early tests of this method have shown great skill in weather and 

seasonal climate forecasts compared to the Gauss-Jordan elimination method. 

In medium range, real-time global weather forecasts, the largest skill 

improvements are seen for precipitation forecasts both regionally and globally.  The 

overall skill of the superensemble is 40-120% higher than the precipitation forecast skills 

of the best global models.  For forecasts of variables other than precipitation, the 

superensemble exhibited major improvements in skill for the divergent part of the wind 

and the temperature distributions.  Tropical latitudes show major improvements in daily 

weather forecasts.  For most variables, we have used the operational ECMWF analysis at 

0.5° latitude/longitude as the observed benchmark fields for the training phase.  The 

observed measures of precipitation are derived from the 2A12 algorithm of NASA 

Goddard that is described in some detail in Krishnamurti et al. (2001) and within the 

references stated therein. 

The area of seasonal climate simulations has only been addressed recently in the 

context of atmospheric climate models where the sea surface temperatures and sea ice are 

prescribed, such as the AMIP data sets.  In this context, given a training period of some 8 

years and a training data base from the ECMWF, the results exhibit improved skill 

compared to the member models and the ensemble mean.  Preliminary work in this area 

(Krishnamurti et al. 2002) examines the difficulties involved with prediction of seasonal 

precipitation anomalies.  Most individual member models perform poorly compared to 

climatology, whereas the superensemble appears to demonstrate precipitation skills 

slightly above those of climatology.  The effectiveness of weather and seasonal climate 
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forecasts from superensemble methodology has also been assessed from measures of 

standard skill scores such as correlation against observed fields, root mean square (RMS) 

errors, anomaly correlations, and the so-called Brier skill scores (Stefanova and 

Krishnamurti 2001) for climate forecasts (assessing skills above those of a climatology).

Training is a major component of this forecast initiative.  We have compared 

training with the best quality ‘observed’ past data sets versus training deliberately with 

poorer data sets.  This has shown that forecasts are improved when higher quality training 

data sets are employed for the evaluation of the multi-model bias statistics.  It was felt 

that the skill during the forecast phase could be degraded if the training was executed 

with either a poorer analysis or poorer forecasts.  This was noted in our recent work on 

precipitation forecasts where we showed that the use of poorer rainfall estimates during 

the training period affected the superensemble forecasts during the forecast phase 

(Krishnamurti et al. 2001).  In addition, issues on optimizing the number of training days 

has been addressed from an examination of training with days of high forecast skill 

versus training with low forecast skill, and training with the best available rain rate 

datasets versus those from poor representations of rain.  We have learned to improve the 

forecast skill by selectively improving the distribution of weights for the training phase.

Why does the superensemble generally have higher skill compared to all 

participating multi-models and the ensemble mean?  At each location and for all variables 

the ensemble mean assigns a weight of 1/ N  to all N member models, which includes 

several poorer performing models.  As a result, assigning the same weight of 1/ N  to 

some poorer models was noted to degrade the skill of the ensemble mean.  It is possible 

to remove the bias of models individually (at all locations and for all variables) and to 

perform an ensemble mean of the bias removed models.  That, too, has somewhat lower 

skill compared to the superensemble, which carries selective weights distributed in space 

among all multi-models and for all variables.  A poorer model simply does not reach the 

levels of the best models after its bias removal.

12.6.2 Experimental Real-time Global Weather Forecasts Based on Superensemble 

We have developed an experimental, real-time NWP capability for the forecast of all 

basic variables such as winds, temperature, surface pressure, geopotential heights, and 

precipitation.  These are multianalysis-multimodel superensemble forecasts where eleven 

models are currently being used on a daily basis.  These include the daily operational 

forecasts from the NCEP, Canadian Weather Service RPN, Australian model from the 

BMRC, U.S. Navy’s NOGAPS, the Japanese model from JMA, and different versions of 

our in-house FSU global spectral model that are physically initialized using different rain 

rate algorithms.  In some sense, the construction of the superensemble is a post-

processing of multi-model forecasts.  This is still a viable forecast product that is being 

prepared experimentally in real-time at FSU.

 The forecast product has been started with an aim to provide near real-time, 

multimodel superensemble-based weather forecasts over the entire globe up to six days in 

advance.  Forecasts for the mean sea-level pressure, 500 mb heights, surface temperature, 
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Figure 12.9.  RMS error (m s-1) of 850 mb winds over different parts of the globe, day 3 

forecast, August 1998. 

forecasts can be viewed by clicking on a specific region over the world map provided on 

the forecast page.  Apart from these dynamical variables, 5-day forecasts of the 24-hour 

total precipitation and a new 5-day accumulated flood potential forecast is also shown for 

the entire globe, which again can be viewed over a specific region of interest.  Different 

skill scores computed from these data sets are also shown on the forecast page, including 

RMS and systematic errors for forecasts of winds, mean sea level pressure and winds at 

850 mb and 200 mb, and equitable threat scores, RMS errors, and correlation coefficients 

for the precipitation forecasts.  The website also features the archives for up to ten 

previous days and provides links to recent publications based on the superensemble 

technique.

12.6.3 The Multimodel Superensemble for Numerical Weather Prediction 

As many as seven global models are being used (Krishnamurti et al. 2000a) for the 

prediction of weather on a real-time basis. Figure 12.9 illustrates typical superensemble-

based weather prediction skills derived from this product.  Here the mean RMS forecast 

errors of 850 mb winds on day 3 of the forecast for various regions of the globe for the 

month of August 1998 is shown.  The results for member models, an ensemble mean of 

these member models, and that for the superensemble are presented in this figure.  Large 

improvements in reduction of wind forecast errors can be seen over the tropical belt from 

the superensemble.  These results convey what has been stated above on the performance
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of the superensemble.  These results have been confirmed for each month since 1998 to 

the present. 

To assess how many models are minimally needed to improve the skill of the 

multimodel superensemble, we examined the issue sequentially using one to seven 

models.  Results for the mean global wind RMS errors at 850 mb during August 1998 for 

day 3 forecasts are shown in Fig. 12.10.  The models with lower and lower skill are added 

sequentially while proceeding from one model to seven models.  The dashed line shows 

the error for the ensemble mean and the solid line indicates that of the superensemble.  

The superensemble skill is higher than that of the ensemble mean for any selection of the 

number of ensemble members.  The skill of the superensemble between four and seven 

models is small, i.e., around 3.6 m s-1.  The ensemble mean error increases as we add 

more ensemble members beyond three.  This is due to the gradual addition of models 

with lower skill.  That rapid increase is not seen for the superensemble since it 

automatically assigns low weights to the models with low skill.  It is also worth noting 

that half the skill improvement comes from a single model for this procedure. 

Anomaly correlation of 500 mb geopotential heights is another stringent measure 

for assessing the performance of the superensemble in the medium-range weather 

forecasts.  Table 12.1 provides some recent results of anomaly correlations at 500 mb for 

the global belt obtained from real-time superensemble.  Here the entries for the anomaly 

correlation skills covering a forecast period from 20 August to 17 September 2000 are 

presented.  Results for the member models, the ensemble mean, and the superensemble 

are included here.  Results for forecast days 1 through 6 are provided in this table.  A 

consistent high skill around 0.75 to 0.8 for the superensemble for day 6 is noted in these 

experimental runs.  Also shown in this table are the entries for the ensemble mean, which 

lie roughly halfway in between the best model and the superensemble.  Thus it appears
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Table 12.1.  500 mb Global Geopotential Height Anomaly Correlation: 20 August – 17 

September 2000. 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

Superensemble 0.992 0.979 0.958 0.928 0.881 0.799 

Ensemble Mean 0.983 0.962 0.935 0.891 0.827 0.756 

Model-1 09.84 0.967 0.936 0.889 0.824 0.713 

Model-2 0.981 0.957 0.932 0.880 0.796 0.623 

Model-3 0.963 0.930 0.885 0.815 0.706 0.579 

Model-4 0.962 0.925 0.871 0.786 0.697 0.578 
Model-5 0.956 0.918 0.858 0.767 0.665 0.549 

Model-6 0.941 0.889 0.846 0.739 0.632  

that a substantial improvement in skill is possible from the use of the proposed 

superensemble.  The overall improvement of the superensemble over the best (available) 

model is around 10%.  This improvement of the superensemble is a result of the selective 

weighting of the available models during the training phase.  We have also noted that the 

skills over the Southern Hemisphere reach those of the Northern Hemisphere from this 

procedure. 

12.6.4 Precipitation Forecasts from TRMM–SSM/I Based Multianalysis Superensemble 

A major improvement in tropical precipitation forecasts has emerged from the use of a 

TRMM – SSM/I based multi-analysis superensemble (Krishnamurti et al. 2000b).  

“Multi-analysis” refers to different initial analyses contributing to forecasts from the 

same model.  In this study, the multi-analysis component is based on the FSU global 

spectral model (FSUGSM) initialized with TRMM and SSM/I data sets via a number of 

rain rate algorithms.  Five different initial analyses for each day are deployed that define 

the multianalysis component.  Those are based on different versions of rain rate estimates 

derived from TRMM and the DMSP-SSM/I satellites.  These rain rate initializations of 

the different rain rate estimates follow the physical initialization procedures outlined in 

Krishnamurti et al. (1991).  The differences in the analyses arise from the use of these 

rain rates within a physical initialization. The resulting initialized fields have distinct 

differences among their initial divergence, heating, moisture, and rain rate descriptions.

The impact of physical initialization on the improvement of precipitation forecast 

skills was examined in detail by Treadon (1996) where he used the GPI based rain rates 

for physical initialization.  Figure 12.11 illustrates the correlation of rainfall (observed 

versus modeled) plotted against the forecast days.  Here a very high nowcasting skill of 

the order of 0.9 is seen.  This was a feature of the physical initialization also noted by 

Krishnamurti et al. (1994b).  However, the forecast skill degrades to 0.6 by day 1 of the 

forecast and it degrades even more by days 2 and 3 to values such as 0.5 and 0.45, 

respectively.  Using the proposed superensemble approach, it is possible to improve the 

forecast skills when the TRMM-SSM/I based rain rates are used as a benchmark for the 

definition of the superensemble statistics and forecast verification.
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T 62/18L GDAS-MRF        31 May - 4 June 1994

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.0 1.0 2.0 3.0 4.0

FORECAST LENGTH (DAYS)

Operational

Physically Initialized TST 1

Physically Initialized TST 2

PHYSICAL INITIALIZATION

NMC OPERATIONAL SKILL

Figure 12.11.  Skill of precipitation forecasts over global tropics based on point 

correlation (Treadon 1996). 
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Figure 12.12 illustrates the TRMM based forecast skills over the global tropics.  

Here noticeable improvement of short-range forecasts of precipitation is noted beyond 

what was obtained in previous studies.  The three lines in Fig. 12.12 show correlations of

rainfall (observed versus modeled) as a function of forecast days 0, 1, 2, and 3.  The top 

line in this illustration shows the multianalysis superensemble forecast.  The middle line 

is the forecast from a single global model that utilizes physical initialization of rain rates 

based on TRMM and SSM/I data sets using the 2A12 and GPROF algorithms, 

respectively.  The bottom line with lowest skill represents the results from a control 

experiment that did not make use of any rain rate initialization.  It is clear from these 

illustrations that the skills from the multianalysis superensemble are higher.  These 

forecast results are based on five experiments for each start date during 1 August to 5 

August 1998.  The day 3 forecast skill reaching as high as 0.7 is indeed a very high skill 

for rainfall forecasts.

An example of the day 3 forecasts of the precipitation over the global tropical belt 

is illustrated in Fig. 12.13.  Figure 12.13a shows the observed TMI and SSM/I based 24-

hour rainfall estimate (mm day
-1

) between 12 UTC 14 August and 12 UTC 15 August 

1999.  Figure 12.13b shows the 3-day forecast from the multianalysis superensemble 

valid for the same period, while Fig. 12.13c shows the corresponding results from a 

single best model.  The global tropical correlation between the observed and the 

multianalysis superensemble is 0.55 where the correlation of the best model with respect 

to the observed estimate is 0.30 for these day 3 forecasts.  This reflects a major 

improvement in rainfall forecasts over the global tropics. 

Figure 12.13.  Day 3 rainfall forecast over the global tropical belt, 12 UTC 15 August 

1999: the accumulated rainfall (mm day-1) by (a) observation based on TRMM and 

SSM/I, (b) multianalysis superensemble, and (c) a best single model. 
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Figure 12.14.  The observed rainfall estimate from the TMI-2A12 and SSM/I-GPROF 

algorithm for 5 June 2000 is compared with the day 3 forecasts from the 11 member 

models of the multimodel-multianalysis system. 

Ensemble Forecasting 

The next area of our research was multianalysis/multimodel superensemble 

(Krishnamurti et al. 2001).  The 12 panels of Fig. 12.14 illustrate the day 3 rainfall 

forecasts valid on 6 June 2000.  Here the observed rain is shown in the top left panel. 



286

Figure 12.15.  Skill of rainfall forecasts (RMSE) over the global belt between 50
o
S and 

50oN for days 1, 2, and 3 of forecasts.  Dotted lines denote multimodel skills.  The heavy, 

dashed line denotes skill of the ensemble mean, the thin, solid line denotes skill of the 

individual model’s bias removed ensemble mean, and the thick, black line denotes the 

superensemble.  The first 75 days denote a training period whereas the last 15 days are 

the forecast days. 

The left panels show the multimodel rainfall distributions and the right panels show those 

from the multianalysis components of the forecasts.  The right panel is based on the 

forecasts from the FSU model at a resolution T-126, using different rain rate algorithms 

in their description of the initial rain.  The FSU model’s rainfall is, in general, larger than 

the operational models, and its location and phase errors are generally smaller.  Overall, 

this is the type of multimodel/multianalysis rainfall distributions that we use to construct 

the superensemble forecasts in our experimental real-time forecasts.

Some important results from the 11-model superensemble are presented here.  We 

calculate three measures of skill on a regular basis:  i) correlation of model predicted 

daily rainfall totals and observed estimates; ii) RMS errors of model predicted daily 

rainfall totals; iii) equitable threat scores for different thresholds of observed and 

predicted rain.  The root mean square errors (RMSE) in precipitation forecasts over the 

global belt, 50º S to 50º N, covering a forecast period from 1 April to 15 April 2000 are 

shown in Fig. 12.15.  The training period for these forecasts included the preceding 75 

days.  The thick black lines denote the RMSE for the multianalysis/multimodel
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Figure 12.16.  Forecast skill based on correlation of observed rainfall estimates from 

TRMM-2A12 and the SSM/I-GPROF and the superensemble for day 1, day 2, and day 3 

forecasts during September and October 2000. 

superensemble.  The dotted lines show the skills for the selected individual member 

models, whose skills were high.  The thin, solid line shows results for the ensemble 

mean, with bias removal for individual models.  Overall, these results over the global belt 

show great promise for the 3-day forecasts of precipitation.  It should be pointed out that 

these results are fairly robust and we see the same skills in the day-to-day real-time runs.  

There is some noticeable improvement in the skill for the superensemble over the 

ensemble mean.  That arises from the fact that the poorer models are assigned weights of 

1.0 over the entire globe, whereas the superensemble is more selective regionally (and 

vertically) for each variable and for each model.  Its weights are fractional positive or 

negative based on the member models’ past performance. 

We can also look at the correlation of the observed rain (24-hourly totals ending 

on days 0, 1, 2, and 3 of forecasts) derived from the TRMM-2A12 plus the SSM/I-

GPROF based rainfall against the global gridded forecasts of the superensemble-based 

rains.  Those are shown in Fig. 12.16 for the months September and October 2000.  The 

global forecast correlation skills for days 0, 1, 2, and 3 lie roughly around 0.9, 0.8, 0.62, 

and 0.55 for these months.  These are higher skills compared to what were seen for a 

single model shown in Fig. 12.10.  Similar results are noted for all the recent months. 

As was summarized in Krishnamurti et al. (2001) the one to three-day forecast 

skills of the daily precipitation totals for the three metrics used here are indeed the 

highest for the superensemble.  Table 12.2 illustrates the results of the threat scores for 

eight participating members of the real time multimodel/multianalysis system.  The threat
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scores are evaluated covering the precipitation rate intervals greater than 0.2, 10.0, 25.0, 

50.0, and 75.0 mm day-1.  The size of the individual domains is identified within the 

table.  The BIAS for the member models, ensemble mean, and superensemble were found 

to be comparable (not shown).  The threat scores for the superensemble for all rainfall 

intervals are the highest compared to the member models and the ensemble mean rainfall.  

We have also shown the threat scores for the ETA model over North America in the last 

column.  The forecasts for the member models and superensemble are for August 2000.  

This covers a 31-day period.  The ETA model’s equitable threat scores for August over 

different years (shown by the ETA entry) are shown with their highest scores included.  

Here, again, the superensemble threat scores are higher than those for the ETA.  The 

superensemble was cast at the resolution T-126 (i.e., roughly 90 km horizontal 

resolution), whereas the operational ETA model had a resolution of 32 km.  Considering 

those differences in resolution, the performance of the superensemble (for these 

experiments) appears impressive.  Although the improvement in the equitable threat

An Introduction to Global Spectral Modeling

Table 12.2.  Precipitation equitable threat score for the respective member models over 

the identical domain are displayed for the entire month of August 2000.  The ETA 

model’s threat scores for August of several years (with the highest scores) are shown in 

the last column for the North American region. 
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Figure 12.17.  A Hovmoller diagram of daily precipitation (mm day
-1

) on day 3 of the 

forecast during the Mozambique floods.   Ordinate shows days (bottom to top); abscissa 

denotes longitude.  The three panels denote (left) observed rain (from TRMM-2A12 plus 

SSM/I GPROF); (middle) superensemble forecasts; (right) best operational model. 

scores appear quite large, they should still be regarded as modest.  Heavy rain events in 

excess of 75 mm day-1 are not handled very well by any of the models.  The 

superensemble also underestimates the rain by roughly a factor of 2.  We have examined 

such cases in some detail and it is clear that much further improvement is needed from 

the member models in order to improve the superensemble based rain.  This may require 

higher resolution modeling for the member models with improved physics and 

initialization of rain. 

It is of considerable interest to ask whether the superensemble forecasts of rainfall 

can provide any useful guidance for floods. Most of the heavy rains that resulted in the 

Mozambique floods during February and March 2000 resulted from heavy rains over 

Mozambique and Zimbabwe.  The headwaters of the Limpopo River over Zimbabwe 

experienced the heaviest rainfall that resulted in the cresting of the river over southern 

Mozambique where the flooding was most severe.  Forecasts of rain from this study were 

projected on Hovmoller diagrams (longitude versus time) and are shown in Fig. 12.17.  

Here we show the daily rainfall for the belt 10ºS to 15ºS covering the longitudes 24ºE to 

45ºE for the entire month of February (dates are plotted from the bottom up).  The three 
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panels denote the ‘observed’ estimates, those based on the superensemble forecasts (for 

day 3 of forecasts) valid on the dates of the observed rains, and also those predicted (for 

day 3 of forecasts) from the best operational model for this region.  The best model is 

determined from the RMSE of rainfall for each model.  The units of rainfall are in mm 

day
-1

.  It is clear that the multimodel superensemble carries the 3-day forecasts of heavy 

rains associated with the Mozambique floods very well.  Given the higher rainfall 

forecast skills from the superensemble, it appears that useful guidance of heavy rain 

events resulting in floods may be possible from this approach.  We have examined the 

performance of superensemble in flood forecasting issues for about 10 case studies and 

the results have been equally promising.

12.6.5 Seasonal Climate Forecasts from Multimodel Superensemble 

In the area of seasonal climate forecasting, several papers have been published 

(Krishnamurti et al. 1999, 2000a, 2000b, and 2002) on the initial development of 

strategies and application with AMIP (Atmospheric Model Inter-comparison Project) 

data sets and a first effort with four versions of the FSU Coupled Models.  The 

superensemble is constructed using some arbitrary selection of eight models from about 

31 different global models of AMIP.  All of these models have a 10-year integration 

period from 1979 to 1988.  The training period consisted of the last 8 years of the data 

sets while the first two years (1979 and 1980) were subjected to the forecast phase of the 

superensemble.  Monthly mean simulations along with the monthly mean analysis fields 

provided by ECMWF were used to generate the anomaly multiregression coefficients at 

each grid point for all vertical levels and all basic variables of the multimodels.  Figure 

12.18 shows the time sequence of the RMS error for the meridional wind over the global 

tropics.  One can observe a marked improvement in the skill scores achieved using the 

superensemble approach.

Further to this study, several types of model-generated data sets are examined to 

address the question of seasonal prediction of precipitation over the Asian and the North 

American monsoon systems (Krishnamurti et al. 2002).  The main question asked is if 

there is any useful skill in predicting seasonal anomalies (beyond those of climatology).  

The superensemble methodology is applied here to the anomalies of the predicted 

multimodel data sets and the observed (analysis) fields.  We noted that the superensemble 

based anomaly forecasts have somewhat higher skill compared to the ensemble mean of 

member models, individually bias removed ensemble mean of the member models, the 

climatology, and the member models that are being used in this exercise.  The illustration 

for the seasonal correlations (of model rainfall anomalies) with respect to the observed 

anomalies is presented in Fig. 12.19a and Fig. 12.19b for the Asian Monsoon domain and 

North American Monsoon domain, respectively.  The highest anomaly correlations for 

the seasonal precipitation forecast are generally seen for the multimodel superensemble 

(heavy line).  The other heavy line shows the results for the ensemble mean, while the 

remaining thinner lines show the skill of the member models of AMIP1 and AMIP2.  The 

calculations carried out here used the cross-validation technique, i.e., all years (except the 

one being forecasted) were used to develop the training data statistics.  The skill of 
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Figure 12.18.  850 mb meridional wind RMS error (m s-1) from AMIP1 data sets.  

Training phase is from 1981 to 1988 and forecast phase is from 1979 to 1980.  Results 

from AMIP1 model forecasts, ensemble mean, superensemble, and climatology are 

shown (after Krishnamurti et al. 2000a). 

a b

Figure 12.19.  (a) Correlation of seasonal forecasts of precipitation anomalies with 

respect to observed anomaly estimates based on Xie and Arkin (1996) from the mix of 

AMIP1 and AMIP2 data sets.  Heavy line at top: superensemble.  Other heavy line: bias 

removed ensemble mean.  Thin lines:  member multimodels.  Ten years of summer 

monsoon results are shown here.  (b) Same as 12.20 (a) but for North American Monsoon 

Domain.
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forecasts from the superensemble come partly from the forecast performance of 

multimodels and partly from the training component built into this system that is based 

on past collective performance of these multimodels.  We have separated these 

components to assess the improvements of the superensemble.  Though skill of the 

forecasts from the superensemble is found to be higher than that of the ensemble mean 

and has shown some usefulness over the climatology, the issue of forecasting a season in 

advance in quantitative terms still remains a challenge and demands further advancement 

in climate modeling studies.

12.6.6 Hurricane Forecasts from Multimodel Superensemble

Real-time hurricane forecasting is another major component of the superensemble 

modeling at Florida State University.  This approach of training followed by multimodel 

real-time forecasts for tracks and intensity (up to 5 days) provides a superior forecast 

from the superensemble.  Improvements in track forecasts are 25% to 35% better 

compared to the participating operational forecast models; this has been noted over the 

Atlantic Ocean basin.  The intensity forecasts for hurricanes are only marginally better 

than those of the best models.  Recent real-time tests, during 1999 to 2001, showed 

marked skills in the forecasts of difficult storms such as Floyd and Lenny where the 

performance of the superensemble was considerably better than those of the member 

models (Williford et al. 2002).  An example of the superensemble track forecasts for 

hurricane Lenny is shown in Fig. 12.20.  Here the observed best track for hurricane 

Lenny is compared to those of a few member models and the superensemble.  In these 

track forecasts, we note improvements for days 1, 2, and 3 of forecasts for the storm 

Figure 12.20.  Superensemble track forecast of Lenny.  Here the predicted tracks of some 

member models, ensemble mean, and superensemble are shown. 
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Figure 12.21.  A seasonal summary on the performance of hurricane forecast skill during 

the year 2001 from various models including the FSU superensemble (SENS).  Here the 

errors for the intensity (mph) and track (km) are displayed for 3-day forecasts. 

positions, which were of the order of 125, 200, and 350 km.  This is an example showing 

a marked improvement for position forecasts.  The illustrations in Fig. 12.21 show the 

forecast performance during the year 2001 for the Atlantic hurricane track and intensity.  

The least error for the superensemble in both categories is a consistent feature compared 

to all the participating models.  This is an area where the use of multimodels (from 

diverse global modeling units and from FSU) has shown the most promise for forecasts 

on imminent landfall, tracks, and intensity.  A superensemble forecast constructed with a 

suite of some of the finest global models that are currently available holds great promise 

for the improvements in short-range predictions for the landfall and tracks of hurricanes. 

Similar studies on superensemble based track and intensity forecasts for the 

Pacific region (Vijaya Kumar et al. 2002) have also revealed the usefulness of this 

methodology displaying considerable improvement of the forecast skills.  A summary of 

the Pacific typhoon track and intensity errors for the years 1998-2000 is provided in Fig. 

12.22.  Here the position and intensity errors at 12-hour intervals are shown where the 

skill from the superensemble is consistently high compared to the member models and 

the ensemble mean.  In all of the aforementioned work, preservation of the member 

model features is an essential requirement during the training and the forecast phases.  If 

drastic changes occur in the member models then the proposed statistical component of 

the superensemble is invalidated.  It is apparent that if no major model changes are 

invoked during the training and the forecast phases of these forecasts, then we can obtain 

skill improvements of the order of 61, 138, 159, and 198 km for the typhoon position 

errors over the best models for forecasts at the end of days 1, 2, 3, and 4, respectively.  

The corresponding intensity forecast skills (RMS errors) at days 1, 2, 3, and 4 of forecasts 

from the superensemble exceed those of the best models by 5, 10, 13, and 20 knots.

12.6.7 Prospects for Future Research and Applications

Currently a number of regional mesoscale models (such as regional spectral 

models of FSU, NCEP, ETA, various versions of MM5, ARPS, WRF, RAMS, and
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Figure 12.22.  (a) Mean typhoon track errors for the West Pacific (km), 1998-2000. 

(b) Mean typhoon intensity errors for the West Pacific (km), 1998-2000. 

others) are available that carry out real-time forecasts over regional domains.  In 

principle, the superensemble methodology can be extended to this class of models and we 

expect much progress towards more accurate forecasts of severe weather events. 
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Chapter 13 

Adaptive Observational Strategies 

13.1 Introduction 

While carrying out a forecast it is possible to suggest observations over certain targeted 

regions that would improve the forecast.  There are some well-known strategies for 

deploying special observations over such targeted regions.  This is an important area in 

numerical weather prediction and various research groups have proposed several 

strategies in recent years.  A simple adaptive observational strategy was developed by 

Zhang and Krishnamurti (2000) that is designed for applications to hurricane forecasts.  

Zhang and Krishnamurti (1997) developed an EOF-based perturbation technique for 

hurricane ensemble predictions that utilized ensemble forecasts.  This technique worked 

towards improving the forecast skill and thus reducing the uncertainties of the initial 

states.  Ensemble studies have shown that given a basic initial analysis, the pattern of the 

ensuing NWP forecast error variance is not homogeneous.  In other words, the prediction 

in some areas tends to be more sensitive to the initial state compared to others or the 

inaccuracy of analysis has a greater affect on the growth of forecast errors over some 

locations as compared to others.  A high-resolution observational network would be too 

expensive and not feasible.  Zhang and Krishnamurti (2000) proposed a method that 

provided some guidance for aircraft reconnaissance missions in a hurricane environment.  

This was based on the mapping of the spread of forecast errors from the construction of 

the variance of some 50-member ensemble forecasts with respect to a single reference, 

i.e. a control run.  The variables at locations of maximum variance were back correlated 

to an initial field to locate regions from where the error emanates thus identifying regions 

of initial data uncertainties.  If data is deployed over such regions then a marked 

improvement for the hurricane forecasts could be demonstrated.  The method is simple 

and takes only a limited amount of resources compared to several other methods.  This 

method tags regions where additional data sets are needed in order to obtain a better 

initial analysis.

Several forecasters had noted that observations over particular locations near the 

center of a storm were very helpful in predicting the future course of that storm.  Bowie 

(1922) showed that observations on the northwest side of the cyclone were important for 

track prediction.  Aberson (2002) noted that merely obtaining data around a tropical 

storm would not improve the forecasts, rather more observations taken at particular 

regions are needed.  Gregg (1920), Riehl and Shafer (1944), and others felt that 

observations at certain vertical levels would improve the forecasts.  Aberson and Franklin 
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(1999) noted that intensity forecasts of hurricanes in which all dropwindsonde data was 

included rather than data below 400 mb were much better than those that did not utilize 

dropwindsonde data provided by special research aircraft.

Time and space are both important for targeted observations.  Bristor (1958) 

showed that initial analysis errors do not grow to an important degree as long as the 

spacing between synoptic reports confines error fields to a scale smaller than those of the 

synoptic disturbances. Sampling the environment only partially around the vortex may 

introduce an asymmetry in the flow, forcing the storm to move with an incorrect velocity 

(Derber and Bouttier 1999).

13.2 Techniques for Targeted Observations 

Different research groups have developed several techniques for targeted observations.  

Bishop and Toth (1999) used an ensemble transformation technique to assess targeting 

areas where observations were needed.  An ensemble transform technique uses nonlinear 

ensemble forecasts to construct ensemble-based approximations for the prediction error 

covariance matrices associated with a wide range of different possible deployments of 

observational resources.  Expected forecast errors are obtained from distinct deployment 

of observational resources.  Optimum deployment is where the forecast error is 

minimized.  Bishop et al. (2001) introduced the concept of Ensemble Transform Kalman 

Filter (ETKF).  This utilizes an ensemble transformation and a normalization to rapidly 

obtain the predicted error covariance matrix associated with a particular deployment of 

observations.  This enables a large number of future feasible sequences of observational 

networks to reduce forecast error variances.  This method appears to have an edge over 

the ensemble transform technique.  The dominant singular vectors of the integral linear 

propagator for a nonlinear dynamical system provide information about maximum 

perturbation growth (measured by a given norm) during finite time intervals, and can be 

used to estimate the evolution of initial errors during the course of a forecast (Lacarra and 

Talagrand 1988; Farrell 1990; Borges and Hartmann 1992).  Singular vectors are 

currently used at the European Centre for Medium-Range Weather Forecasts (ECMWF) 

in the construction of the initial perturbations of the Ensemble Prediction system (Buizza 

and Palmer 1995; Molteni et al. 1996).  Breeding of growing modes consists of one 

additional, perturbed short-range forecast, introduced on top of the regular analysis in an 

analysis cycle.  The difference between the control and (perturbed six-hour) first guess 

forecast is scaled back to the size of the initial perturbation and then reintroduced onto 

the new atmospheric analysis.  Thus, the perturbation evolves along with the time 

dependent analysis fields, ensuring that after few days of cycling the perturbation field 

consists of a superposition of fast-growing modes corresponding to the contemporaneous 

atmosphere, akin to local Lyapunov vectors (Toth and Kalnay 1993). 

Reynolds et al. (1994) and Zhu et al. (1996) indicated that, in the midlatitudes, 

most synoptic-scale errors in global numerical weather prediction models are not due 

primarily to model deficiencies and that the largest forecast improvements are likely to be 

achieved by decreasing the analysis error.

In 1982, the NOAA Hurricane Research Division (HRD) began to conduct 

synoptic flow experiments using Omega dropwindsondes deployed from the NOAA WP-

3D (P-3) aircraft.  The aim was to improve forecasts of hurricane tracks by obtaining 
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vertical profiles of wind, temperature, and humidity below approximately 400 mb within 

1000 km of the cyclone center.  Burpee et al. (1996) showed that significant 

improvements occurred (16-30% error reduction for a 12-60 hour forecast) that provided 

primary numerical guidance for the (National Hurricane Center) NHC official track 

forecast.  Since 1997, the Gulfstream IV-SP jet aircraft (G-IV), procured by NOAA in the 

previous year, has been deployed in "synoptic surveillance" missions for improvements 

of forecasts of tropical cyclones affecting the coastal United States, Puerto Rico, U.S. 

Virgin Islands, and Hawaii.  A new type of dropwindsonde developed at the National 

Center for Atmospheric Research (NCAR), which uses a Global Positioning System 

(GPS), was utilized from 1997.  They transmit data in real-time to the aircraft and the 

processed observations are then beamed to operational forecast centers for assimilation 

into numerical model analyses.  The flight tracks for synoptic surveillance missions were 

generally still drawn up subjectively, although new objective strategies are being 

developed in a research mode.  Aberson and Franklin (1999) showed that 

dropwindsondes observations reduce mean track forecast errors by 32% and the intensity 

forecasts by 20%.

13.2.1 Random perturbation based method 

Most of the above methods are somewhat more complex than the EOF based method.  

Here we shall describe the workings of the simple method based on perturbations and 

include some illustrations. 

a) A control experiment plus ensemble forecast: This is a first step in this exercise.  

One can take a single run from a global model, i.e. a forecast out to roughly 24 

hours and call it a control experiment.  This experiment utilizes all the 

conventional weather observations.  An ensemble of some fifty experiments are 

next carried out where the initial state of the control run are simply perturbed by 

introducing random numbers whose amplitudes are scaled to typical observational 

errors for variables such as winds, temperature, pressure, and humidity.  The 50-

member ensemble uses different distributions of these random members (added to 

the initial state of the control run). 

b) A next step in this analysis is to obtain a variance field from the 24-hour forecast 

field of the 50-member ensemble with respect to the control run for a selected 

variable.  Local maxima over certain regions of interest can be expected because 

of the spread of the forecasts within the 50-member ensemble.  If deploying this 

over a hurricane domain, a maxima in this variance field would indicate a spread 

of forecasts and would identify a region where forecasts errors are amplifying. 

c) A back correlation of data from the region of maximum variance to the initial 

state field distribution for the same variable would reveal the possible source 

regions of such error growth.  As an example, sea level pressures of the 50 

ensemble members (at the location of the maximum variance at hour 24) can be 

back correlated to the 50 values at hour zero at each and every transform grid 

point.  Such a field of back correlations at time 0 identifies regions where such 

error growth would have occurred. 



Figure 13.1. Distribution of variances for mean sea-level pressure for hurricanes Bonnie, 

Georges, Danielle, and Erin at forecast time t = 24 hours. 

d) A next step in the analysis is to introduce new data sets within that targeted area 

of high correlations.  Those targeted data sets are assimilated with those of the 

control run to obtain a new data analysis.

This appears to be a very powerful strategy for the deployment of adaptive observations.

13.2.2 Examples 

We shall next illustrate the workings of the above steps from illustrations of hurricane 

forecasts using a high-resolution global spectral model.  We illustrate the results from 

four experiments for hurricane Bonnie, Georges, Danielle, and Erin.  The start dates for
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Figure 13.2. Fields of back correlations for hurricanes Bonnie, Georges, Danielle, and 

Erin at time t = 0.

these experiments are 12 UTC 26 August 1998, 00 UTC 23 September 1998, 00 UTC 30 

August 1998, and 12 UTC 10 September 2001, respectively.  The control initial states for 

these experiments were obtained from the operational analysis of ECMWF.  The FSU 

model used in our studies is described in chapter 12 and has a horizontal resolution of T-

126 (with a transform grid resolution of ~80 km) and 14 vertical levels.

 Figure 13.1 illustrates the distribution of the variances for mean sea-level pressure 

calculated from the ensemble spread of 50 forecast experiments (24-hour forecasts) in 

each case.  These variances cover the region where the storm was expected to move in 24 

hours.  A large spread of the variances was noted and this suggests that model forecasts 

have a considerable sensitivity to the initial states.

The fields of back correlations for these four storms are illustrated in Fig. 13.2.  

These are analyzed to locate regions of large correlations that signify possible regions 

from where the error spread emanates.  This identifies a region for targeted observations.
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Figure 13.3. Predicted and the observed tracks for hurricanes Bonnie, Georges, Danielle, 

and Erin.  Dashed line shows control forecast, dotted line shows forecasts with targeted 

observations, and solid line show the observed track.

Special observations of humidity over these regions of high back correlations are 

assimilated along with those of the control run to prepare for the adaptive observation 

based forecast experiments.

In Fig.13.3 the predicted and the observed tracks for the four hurricanes where 

adaptive observations were deployed are compared.  Here in each panel we compare the 

observed tracks with those from the control experiment and the experiment where 

research aircraft based adaptive observations were included.  Based on all four sets of 

experiments it appears that the inclusion of the adaptive observations leads to some major 

improvements for the three-day hurricane track forecasts.  This demonstrates the promise 

of adaptive observational strategies.

In Fig. 13.4 the position errors for the hurricane forecast tracks for these four 

hurricanes are illustrated.  Errors (in kilometers) at different hours of the forecast are 
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shown.  These simply provide quantitative estimates for what is clearly apparent in Fig. 

13.3.  These examples of hurricane track forecasts show that the impact of targeted 

observations is quite clear.  Such studies have been carried out by various weather 

services using such data impact.  This is a promising area for future research.
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Figure 13.4. Position errors for the hurricane forecast tracks for hurricanes Bonnie, 

Georges, Danielle, and Erin.  (See next page.) 
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Figure 13.4. (Continued.) 
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