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PREFACE TO THE ENGLISH EDITION  
 

This monograph is presented by two authors working at the Institute of 
Atmospheric Optics, Siberia, Russian Academy of Sciences (Tomsk, Russia). It 
is an overview of our results reported in recent years (up to 1999). 

Specialists know that now it is practically impossible to write a book that 
thoroughly reviews the state of the art in adaptive optics because of the rapid 
advances in this field. Therefore, in this book we omit such a review and only 
give the necessary references to original papers (as of 1998, the year this book 
was written in Russian). We apologize to those authors whose papers were 
undeservedly ignored and not cited. 
 This book does not pretend to be a generalization of the most recent results. 
It is more like a compendium of results and ideas the authors followed when 
developing this particular area of modern optics. These days, the world 
community has developed approaches and concepts different from those 
presented in this book, and they have the right to their own existence and 
development as well.  

  
With due respect for our readers,  

 
Vladimir P. Lukin  

Boris V. Fortes 
June 2002 
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INTRODUCTION 
 

The extensive use of optical technologies for solving problems of information 
transfer, narrow-directional electromagnetic energy transport, and image 
formation in an outdoor atmosphere calls for the development of adaptive 
correction methods and devices of that are an effective means of controlling the 
decrease in the efficiency of atmospheric optical systems caused by 
inhomogeneities in large-scale refractive indexes. These inhomogeneities are due 
to the turbulent mixing of atmospheric air masses and molecular and aerosol 
absorption in the channel of optical radiation propagation.  
 Adaptive optical systems (AOS) that operate in real time allow one to 
 • improve laser radiation focusing on a target, and hence increase the 

radiation intensity within the focal spot;  
 • decrease the image blooming of astronomical and other objects in 

telescopes, increase image sharpness, and decrease the probability of 
object recognition errors; and 

 • decrease the noise level and increase the data rate in optical 
communication systems. 

 Annual international conferences on adaptive optics held under the auspices 
of SPIE (The International Society for Optical Engineering), OSA (Optical 
Society of America), and adaptive optics sessions included in the programs of 
other conferences on atmospheric optics testify to the urgency of this problem. In 
1994, a special issue of the Journal of the Optical Society of America was 
devoted to problems of adaptive correction of atmospheric distortions. Special 
annual issues of Atmospheric and Oceanic Optics are published by the Institute 
of Atmospheric Optics. Recently, AOS has been introduced in astronomical 
telescopes in many countries, including Russia, where the original Russian 
project of the AST-10 10-m adaptive telescope is being developed. 
 Wide practical application of AOS has revealed a number of problems that 
call for the development of a theory of optical wave propagation under adaptive 
control conditions. A search for answers to these problems necessitates the 
development of detailed and adequate mathematical AOS models and the 
application of research methods such as numerical experiments that solve a 
system of differential equations describing optical wave propagation in the 
atmosphere.  
 This monograph is primarily concerned with the original results of our 
investigations carried out using numerical experiments (models). The sole 
exceptions are sections devoted to adaptive image formation. Numerical 
experiments allow the maximum number of parameters to be considered to 
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correctly model AOS and to investigate practically any significant radiative 
characteristic—the effective size of the light spot, the peak radiant intensity, the 
radiation power incident on the receiving aperture, the statistical characteristics 
of the radiant intensity and phase—in the context of a universal approach. A 
numerical experiment with applications to AOS allows one to predict the 
efficiency of various system configurations. Much time and considerable expense 
would be required to perform field experiments. 
 Work on numerical modeling of atmospheric distortions of beams and 
images and also on the possibility of their adaptive correction goes back to the 
early 1970s. It was started nearly simultaneously in several large U.S. 
laboratories (including Lincoln Laboratory at Massachusetts Institute of 
Technology and the Lawrence Livermore Laboratory at the University of 
California). Here it is pertinent to mention, in particular, the first reports on the 
results of numerical modeling of thermal self-action obtained by Gebhardt and 
Smith, Bradley and Herrmann, and Ulrich et al. The first work devoted to phase 
compensation for thermal blooming was published in 1974, and the first work 
devoted to a numerical investigation of the adaptive correction for turbulent 
image distortions was published in the same year. In 1976, Fleck, Morris, and 
Feit described in detail a procedure for solving the nonstationary problem of 
thermal self-action in a turbulent atmosphere. The first special issue of the 
Journal of the Optical Society of America, which summarized the results of 
theoretical and experimental investigations into adaptive optics in the United 
States, was published in 1977. 
 In the USSR, this field has developed since the late 1970s. The first work 
devoted to the theory of adaptive correction was published by V. P. Lukin in 
1977. B. S. Agrovskii and V. V. Vorob’ev et al. (Institute of Atmospheric 
Physics RAS) and P. A. Konyaev (Institute of Atmospheric Optics SB RAS) 
studied AOS numerically. At the same time, M. A. Vorontsov, S. S. Chesnokov, 
V. A. Vysloukh, K. D. Egorov, and V. P. Kandidov (Moscow State University) 
published papers devoted to phase correction for nonlinear distortions. Special 
issues of the journal Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika and 
monographs by M. A. Vorontsov and V. I. Shmal’gauzen (Principles of Adaptive 
Optics); V. P. Lukin (Atmospheric Adaptive Optics); and M. A. Vorontsov, 
A. V. Koryabin, and V. I. Shmal’gauzen (Controllable Optical Systems) review 
previous work in this field. 
 The current state of research on numerical modeling of adaptive optical 
systems can be characterized as follows. Basic numerical methods of solving the 
problems of optical wave propagation in randomly inhomogeneous media, 
including the thermal action of high-power beams, have been developed, and 
work on the development of numerical models of individual AOS components 
that takes into account their geometrical parameters and spatiotemporal 
resolution has been started, along with a search for the most efficient correction 
algorithms. This monograph summarizes the main results of our work in this 
field from 1985 to 1997. 
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 The first chapter considers methodological aspects of numerical modeling of 
propagation of monochromatic coherent radiation in a randomly inhomogeneous, 
weakly absorbing medium. It describes numerical methods used to solve the 
inhomogeneous wave equation together with mathematical models of turbulent 
distortions and thermal inhomogeneities arising during optical radiation 
propagation through an absorbing medium. Numerical techniques of dynamic 
modeling of random phase screens are further developed and methods of 
modeling large-scale portions of the turbulence spectrum are described. In the 
last section of this chapter, the lens transformation is generalized to the case of an 
arbitrary optically inhomogeneous medium. 
 The second chapter describes numerical modeling of a closed AOS system 
and numerical models of a reference wave, sensors, and wavefront (WF) 
correctors. Mathematical models and the main points of numerical modeling are 
described for the following AOS components: an oncoming reference beam; 
natural and artificial reference stars; an ideal-square law and Hartmann wavefront 
sensors; and modal, segmented, and flexible adaptive mirrors. 
 In the third chapter, the problem of minimization and adaptive correction for 
turbulent distortions is solved. Here, the effect of the outer scale of turbulence on 
the main parameters of image formation in an atmosphere–telescope system, 
including the Strehl factor (SF) and the angular resolution (the width of the point 
spread function, PSF), is studied. The possibility of wavelength optimization is 
estimated quantitatively in a situation in which the size of the outer scale of 
turbulence is comparable to the aperture diameter. The angular resolution is 
further studied for incomplete (partial) correction for turbulent image distortions. 
In the last section of this chapter, the efficiency of phase correction is analyzed 
for extended paths and weak intensity fluctuations of the reference and corrected 
waves. 
 In the fourth chapter, the efficiency of adaptive correction for thermal 
activity is investigated. At the beginning of the chapter, the thermal effect of a 
wide-aperture high-power beam propagating along a vertical path represented by 
a composite nonlinear phase screen is analyzed. The parameters of beam power 
optimization and lower-mode correction for phase distortions are calculated for 
various intensity distributions over the beam cross section with allowance for the 
altitude dependence of the wind direction. The salient features of the functioning 
of phase-conjugation (PC) AOS used to correct for nonstationary action on a 
homogeneous horizontal path are further studied. A correlation between 
oscillations arising in these systems and phase dislocations in the reference wave 
is demonstrated. The results of numerical experiments for an AOS with the 
Hartmann WF sensor are given in the last section together with the modified 
phase conjugation algorithm and curves of power optimization that prove the 
efficiency of this modification. 
 The fifth chapter is devoted to an urgent problem of compensation for 
turbulent jitter in the image of an astronomical object when a laser guide star 
(LGS) is used as a reference source. Different configurations (bistatic and 
monostatic) of the system for measuring the random refraction are considered. 
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The efficiency of jitter correction is studied as a function of the ratio of the 
receiving and transmitting apertures. An algorithm of optimal correction for 
wavefront tilts is suggested and its efficiency is estimated.  
 The authors are indebted to their colleagues who were both formal and 
informal co-authors of the scientific results presented here: they include P.A. 
Konyaev, N.N. Maier, and E.V. Nosov; the staff of the Laboratory of Applied 
and Adaptive Optics; and many researchers at the Institute of Atmospheric 
Optics. Communications with them have helped determine the content of our 
monograph. 
 

Vladimir P. Lukin 
Boris V. Fortes 
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CHAPTER 1  

Mathematical Simulation of Laser Beam 
Propagation in the Atmosphere 

 
A key aspect of the numerical simulation of turbulent effects is generation of 2D 
random phase screens that imitate distortion of the wavefront during propagation 
through the atmosphere. One of the first papers devoted to numerical simulation 
of turbulent distortions of optical waves was by Buckley, who used a Fourier 
transform (method of spectral samples) to model 1D random phase screens [1]. 
In papers by Fleck, Morris, and Feit [2], Kandidov and Ledenev [3], and 
Konyaev [4], the method of spectral samples was used to generate 2D random 
phase screens in the problem of propagation of a coherent beam through a 
randomly inhomogeneous medium and, in particular, for estimating the 
efficiency of phase correction of atmospheric distortions. In a paper by Martin 
and Flatte [5], a similar method was used to study the probability density of 
intensity fluctuations. 

The Fourier transform method was originally used for numerical simulation 
in radio engineering [6]. However, a prominent feature of the turbulent 
atmosphere as a randomly inhomogeneous medium is the wide range of spatial 
scales of refractive index inhomogeneities. To correctly simulate all of the scales 
(from inner to outer) of turbulent fluctuations, a computational grid should have 
at least a thousand nodes along every coordinate, which leads to huge 
computational time and expense. 

To overcome the difficulties connected with the wide-band spectrum of 
atmospheric turbulence, it makes sense to use some “combined” method, which 
was first proposed in papers by Duncan and Collins [7, 8], as well as in a paper 
by Tel’pukhovskii and Chesnokov [9]. The main idea consists in the joint use of 
spectral (harmonic) and polynomial representations, each of which is used to 
simulate its own region of spatial scales: spectral decomposition is used to 
simulate small-scale inhomogeneities, and polynomial decomposition is used to 
represent scales larger than the size of the computational grid. This approach was 
further developed in Fortes and Lukin [10], where it was generalized to include 
nonstationary (dynamic) problems. More recent approaches for optical modeling 
[11] and physical modeling [12], as well as numerical approaches have also been 
developed [13-15]. 

In the following sections we apply our method for numerical solution to two 
tasks: high-power laser beam propagation in homogeneous media with 
absorption, and optical wave propagation through a random inhomogeneous 
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turbulent atmosphere. As high-power coherent (laser) beams propagate through a 
nonturbid atmosphere, thermal blooming is one of the main factors causing 
distortion, along with turbulent fluctuations of the refractive index. This 
nonlinear effect has the lowest energy threshold and arises as a result of 
absorption of part of the beam energy and the formation of thermal 
inhomogeneity in the beam channel. The software developed by Konyaev [16] 
(Institute of Atmospheric Optics SB RAS, Tomsk, Russia) served as a basic 
model for numerical simulation of thermal blooming of a paraxial wave beam. 

We have implemented several numerical schemes for solving differential 
equations that describe different hydrodynamic conditions of thermal blooming 
[17, 18]. In this chapter, we present examples that demonstrate the reliability of 
the results obtained. 
 
1.1   Numerical Solution to Problems of Coherent 

Radiation Propagation 
 
For both propagation of coherent beams and imaging in a randomly 
inhomogeneous medium, the wave equation for the electromagnetic field of an 
optical wave is the basis for a mathematical model. In the problems considered 
here, polarization effects are negligible, and the ratio of path length to aperture 
diameter is chosen so that the small-angle approximation (approximation of 
paraxial beams) is applicable for a scalar field amplitude [19-21]. 
 
1.1.1 Wave equation 
 
Let us introduce a slowly varying component ( , , )E z t


 of the complex amplitude 

of an electromagnetic field in the following way: 
 

0 ( , , ) ( , , )exp( ),
8

cn
E z t eE z t ikz i t    



  
                    (1.1.1) 

 
so the intensity I is related to the component ( , , )E z t


 as 

 
*EE I .                                              (1.1.2) 

 
Here, c is the speed of light in a vacuum, n0 is the refractive index of a medium, 
e


 is the vector of polarization, 2 /k     is wave number,   is the frequency of 
electromagnetic oscillations, ( , )x y 


 is the vector of coordinates in the beam 

cross section (the beam is directed along the 0z axis), and t is time. 
In the paraxial approximation, propagation of a monochromatic linearly 

polarized beam in a dielectrically inhomogeneous nonmagnetic medium is 
described by the parabolic equation for the complex amplitude E: 
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2 2
2 2 2

02 2
2 2 ( / 1)

E
k k n n E

z x y

   
        

,    (1.1.3) 

 
or as  

2 2
2

2 2
2 2

E
k k n E

z x y

   
        

,    (1.1.4) 

 
on the assumption that deviations of the refractive index from unity are small; 
i.e.,  
 

0 1n  ,   ( 1) 1n n    .     (1.1.5) 
 

Initially, algorithms based on various finite-difference methods were used to 
solve the parabolic equation [22]. But, currently, the common method for 
solution in the domain of spatial frequencies of the complex amplitude E is the 
splitting algorithm applied together with a discrete Fourier transform (DFT). 

The solution to the parabolic equation (1.1.4) corresponding to propagation 
of a wave from the plane lz  to the plane 1lz  can be written in operator form [2]: 

 
1

2 2
1( , , ) exp 2 ( , , ),

2

l

l

z

l l

z

i
E x y z z k ndz E x y z

k



 

  
       
    

       (1.1.6) 

2 2
2

2 2x y


 
  

 
. 

 
This equation can be approximated [23, 24] by a symmetrized split operator: 
 

2
1 1

1 1ˆ ˆ ˆ( , , ) ( , ) ( ) ( )
2 2l l l lE x y z D z R z z D z E z O z 

          
   

, 

21ˆ ( ) exp
2

D z i z
k 

      
 

,   
1

1( , ) exp
l

l

z

l l

z

R z z ik ndz




 
   
 
 

 .   (1.1.7) 

 

Here, the operator 1
ˆ( , )l lR z z   describes refraction on inhomogeneities of the 

refractive index, and the operator ˆ ( )D z  corresponds to the solution of the 
problem of free diffraction. The second order of accuracy of this approximation 
has been proved analytically [2, 23] and confirmed by numerical experiments 
[24]. 

For optical waves, the problem of free diffraction at an arbitrary distance z 
can be solved using the representation for the complex amplitude in the form of a 
finite Fourier series [25]: 
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/ 2 / 2

/ 2 1 / 2 1

2
( , , ) ( )exp ( )

N N

mn
m N n N

i
E x y z E z xm yn

L   

      ,        (1.1.8) 

 
where 
 

2 2
0 0

1 2
( ) ( , , )exp ( )

4

L L

mnE z dxdyE x y z i xm yn
LL

               (1.1.9) 

 
are the expansion coefficients, L is the size of the domain of expansion, and N is 
the number of terms in the series. It is also assumed that the spectrum of spatial 
frequencies for the function E(x, y, z) is finite and the function itself is periodic or 
can be supplemented by a periodic function. In a numerical simulation, a 
continuous field E(x, y, z) is replaced by a discrete field defined at the nodes of a 
computational grid. The transition from the domain of the original function to the 
spectral space and back is performed by DFT.  

Substituting the spectral representation into the parabolic equation (1.1.4), 
we obtain 

 
2

2 2
2

4
2 ( )mn

mn

E
ik m n E

z L

 
  


               (1.1.10) 

 
with the following exact solution 
 

2
2 2

2

4
( ) ( 0)exp ( )

2
mn mn

z
E z E z m n

ikL

 
    

 
.               (1.1.11) 

 
To solve the problem of refraction in the layer z, we need to obtain the 

numerical representation for inhomogeneities ( , )n z 


 of the refractive index. 
Refraction is described as beam passage through a phase screen: 

 

 1
ˆ( , ) exp ( )l l lR z z i   


,        

1

( ) ( , )
l

l

z

l

z

ik n z dz


     
 

.    (1.1.12) 

 
The mathematical model of refractive index inhomogeneities depends on the 
process by which they arise. Here we consider two effects: a lowest-threshold 
nonlinear effect known as random thermal blooming and fluctuations induced by 
atmospheric turbulence. 
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1.1.2 Thermal blooming of high-power laser beams 
 
The longitudinal scale of variability for thermal inhomogeneities induced in the 
propagation channel of a high-power laser beam is comparable to the diffraction 
length of the beam. In the interval z, the equation for the phase screen can be 
approximated by the product of a step length z and the refractive index 
distribution at the center of the interval [zl; zl+z]: 
 

21
( ) , ( )

2l lk z n z z O z           
 

 
.                      (1.1.13) 

 
It follows from the above that we have only to determine perturbations of the 
refractive index in some planes, the positions of which are determined by the 
scheme of the splitting algorithm. 

Heating of the medium that is caused by absorption of radiation energy 
induces variation of its density, which leads to a decrease in the refractive index 
related to the density  by the following law [26]: 

 
n K   ,                                       (1.1.14) 

 
where K is a constant equal to two-thirds of the polarization factor of a molecule 
or gas atom. 

In the isobaric approximation, the density of the medium is explicitly related 
to temperature by the ideal gas law, so variations of the refractive index can be 
expressed through temperature variations: 

 

 0 .T

n
n T T n T

T

     


                                (1.1.15) 

 
The isobaric approximation is valid for the normal atmospheric conditions. 
Exceptions are fast scanning of a continuous-wave (cw) high-power beam when 
the beam speed with respect to the medium is greater than the sonic speed, and 
when the pulse duration p is comparable with the acoustic time s: 
 

/ ,p S Sa c                                          (1.1.16) 

 
where a is the beam size and cs is the sonic speed. 

When the isobaric approximation is valid, the distribution of the refractive 
index in the beam cross section is determined by the heat balance, which is 
described by the heat transfer equation for the temperature field T(x, y, z): 

 

0

( , , )
,

p

T x y z
V T T I

t C 
 

    
 


      (1.1.17) 
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where ( , )x yV V V 


 is the transverse component of the beam velocity relative to 

the medium,  is heat conductivity, 0 is the specific density of the medium,  is 
the absorption coefficient, and Cp is the specific heat at constant.  

When the isobaric approximation becomes invalid, variations in the density 
of the medium are described by the linearized equations of hydrodynamics, 
which follow from the law of continuity and the laws of impetus and energy 
conservation [21, 26]: 

 

1
0 1 0

d

dt


    ,     0

d

dt t x

 
  
 

,                        (1.1.18) 

 

1
0 1

d
p

dt


   ,                                       (1.1.19) 

 

2
1 1( ) ( 1)S

d
p c I

dt
      .                               (1.1.20) 

 
These equations are valid for small perturbations of density 1, pressure p1, and 
local speed of the medium flow v1 with respect to the unperturbed values of 
density 0, pressure p0, and local speed of medium flow v0 along the x-axis. By 
eliminating the variables describing perturbation of speed and pressure, Eqs. 
(1.1.18)–(1.1.20) can be transformed into the following equation, which 
describes perturbations of the density: 
 

2
2 2 21

2
( 1)S

dd с I
dtdt

  
      

 
.                        (1.1.21) 

 
For a steady-state condition, this equation takes the form 
 

2 2
2 21

2 2 2

( 1)
(1 )

S

d
M I

dxy x c

     
       

,                (1.1.22) 

 
where / SM c   is Mach’s number and  = Cp/Cv is the specific heat ratio at a 
constant volume. 

When the flow rate of the medium is low ( / SM c  <<1), Eq. (1.1.22) 
transforms into the equation written in the isobaric approximation: 

 

1
2

( 1)

S

d
I

dx c

  
 


.                                  (1.1.23) 
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Solution of this equation yields a result equivalent to that of Eq. (1.1.17), with 
vy = 0 and 0  . 

With no wind, under conditions of gravitational convection, the heat balance 
equation should be solved by a set of equations for incompressible liquid 
hydrodynamics. The plane (2D) flow of this liquid in the Boussinesq–Oberbeck 
approximation is described by the vortex (vorticity) function  and the stream 
function  [27] equations: 

 
T

v g
t x 

 
    

 


 ;   (1.1.24) 

 

    ,    (1.1.25) 
 
where  is the volume expansion coefficient,  is the kinematic viscosity 
coefficient, and g is the absolute value of the acceleration of gravity directed 
along the 0y axis. 

The local speed of the flow in the equations for temperature and vorticity is 
now a function of transverse coordinates. Its components are related to the partial 
derivatives of the stream function as follows: 

 

,x yv v
y x

 
  
 

 .   (1.1.26) 

 
When describing thermal blooming under conditions of free convection, 

Eqs. (1.1.17), (1.1.24), and (1.1.25) are complemented by the corresponding 
initial and boundary conditions. In the case of propagation in a closed space, they 
are the conditions of adhesion and zero flow speed at the boundary  for the 
normal and tangential components of the flow velocity: 

 
     , 0, , 0, ,n sv x y v x y x y   .  (1.1.27) 

 
These conditions in turn determine the boundary conditions for the stream 

function and its derivative with respect to the normal to the boundary surface: 
 

   , 0, 0, , .x y x y
n


   


  (1.1.28) 

 
The boundary and initial conditions for the temperature field are usually set to be 
zero. 

So the mathematical model of thermal blooming of high-power coherent 
laser beams in a low-absorbing medium includes the parabolic wave equation for 
the scalar complex amplitude [Eq. (1.1.4)] and the corresponding material 
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equation (or set of equations) describing density and temperature variations and 
determining the distribution of the refractive index in the beam channel: 

 
2 2

2
2 2

2 2
,

ˆ ( )

E
ik k n E

z x y

M n I

    
        

   

                     (1.1.29) 

 

where the operator M̂  describes the relation between the induced optical 
inhomogeneities and the absorbed energy I. 

Below we present the results of applying our numerical technique for 
estimating the thermal blooming distortions of coherent beams propagating along 
atmospheric paths that were developed in Refs. [4], [16-18], [24], [30], and [49]. 
To allow for the regular altitudinal variation of thermodynamic parameters, we 
have used statistical seasonal atmospheric models, built from refined data 
obtained by the Institute of Atmospheric Optics in Tomsk [56-58]. The altitude 
profile of the molecular absorption coefficient for summer and winter mean-
latitude models was obtained by means of a software program that calculates 
molecular absorption line by line [59].  

As an example of implementation of the mathematical model, let us consider 
the results computed for thermal blooming of a focused Gaussian beam crossing 
a thin layer L of a nonlinear medium (nonlinear phase screen). In this example, 
the approximation of a nonlinear phase screen indicates that the thickness L of 
the layer is much shorter than the beam focal length and the diffraction length 

2
0dL ka  of the beam and that the Bouguer extinction is low ( L <<1). 

In Fig. 1.1.1, the dynamics of thermal blooming under conditions of forced 
convection are illustrated for a convective flow speed that is much lower than the 
sonic speed [isobaric approximation, Eq. (1.1.17)] and for the heat conductivity 

0  . In this case, the sole parameter of the problem [56-59] is the integral 
nonlinearity of the medium layer: 

 

0 02
N T

p

a I
P n L

C V

 
 

, 

 

where I0 is the initial intensity of the beam, 0a  is the initial size of the Gaussian 

beam, and   is the Bouguer extinction of media. When transient processes end, 
the phase screen can be described as an integral of the normalized beam 
intensity: 
 

     2 2
0, , exp .

x x

N Nx y P I y I d P y d
 

          (1.1.30) 
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At a large distance x, the value of phase  at the 0z axis (y = 0) tends toward 

1.77N NP P  . In calculations, the value of PN was assumed to be equal to 10; 

this value corresponds to the maximal phase difference of 17.7 rad or 2.8. For 
such nonlinear distortions, the steady-state maximal value of the focus intensity 
decreases more than 10 times. Figure 1.1.1 shows two examples of calculations 
for different directions of the wind vector. For every instant of time t (here, time t 

is normalized at a value of 0 ,a V  where V  is wind velocity) the 2D 
distributions of phase distortions in the plane of the emitting aperture are shown, 
along with the intensity distribution in the focal plane for the Gaussian beam. In 
the first case the wind was directed along the ordinate; and in the second case, the 
angle between the wind and the ordinate was 45 deg. 

Figure 1.1.2 shows typical images of thermal blooming of laser radiation 
under different stream velocities. The numbers in each image box of Figs. 1.1.1 
and 1.1.2 show the maximum and minimum values of the functions  I


  and 

  


. It can be seen that the estimate of phase distortions in the steady state 

(17.7 rad) is in good agreement with the results obtained in the numerical 
experiment (16.9 and 16 rad). The difference of 5–10% can be attributed to the 
error of the numerical model and the fact that the transient processes did not end 
completely. 

The calculations have been performed by the monotonic conservative 
procedure with the second-order approximation, differences were taken with 
respect to the stream [27], and the model viscosity (heat conductivity) was 
compensated for according to Samarskii’s algorithm [28]. The advantage of this 
method is that it makes it possible to solve the dynamic problem of heat transfer 
at an arbitrary orientation of the wind vector. The method is stable for both small 
and large intervals of time discretization and it allows the solution of the heat 
transfer problem when wind velocity depends on the transverse coordinates       
(x,y). Thus, the calculations can be performed for the problem of thermal 
blooming under free (gravitational) convection conditions [Eq. (1.1.17) together 
with Eqs. (1.1.24) and (1.1.25)], as well as the boundary conditions of adhesion 
and zero speed. Some sample calculations are given in Ref. [29]. In this text we 
do not consider these convection conditions in greater detail because 
gravitational convection is atypical for open atmospheric paths. 

Next we consider the situation of a high-power beam with scanning. In this 
case, the speed of beam transition with respect to the medium at some distance 
from the source can be close to or even higher than sonic speed. In Fig. 1.1.2, 
density perturbations are shown for forced convection conditions with the speed 
of the flow close to sonic speed [Eq. (1.1.22)]. The value of the parameter PN was 
assumed to be two times smaller than in the previous example. In the isobaric 
approximation, this corresponds to the maximal phase change on the path (8.8 
rad). It is seen that for a Mach number range of M = 0.5–0.7 the results do not 
differ widely. With a further increase in M (i.e., M approaches unity), phase 
distortions increase sharply. For an M greater than unity, we obtain a solution 
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approximately equal to the results of the isobaric approximation, but two times 
greater. It can be shown analytically that for M approaching infinity this 
conclusion is correct. 
  
 
                    I


                  


              I


              


 

t = 0.5 

  

t = 1.0 

  

t = 1.5 

  

t = 2.0 

  

t = 2.5 

  

t = 3.0 

  
 

              a    b 
 
Figure 1.1.1. Dynamics of thermal blooming under conditions of forced 
convection (isobaric approximation): (a) wind is directed along the 0x-axis and (b) 

at an angle of 45 deg to the 0x-axis;  I 


 is the intensity distribution in the far 
zone;   


 is the phase screen. 
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                   


            I

             


      I


  

M = 0.5  M = 1.1  

M = 0.6  M = 1.2  

M = 0.7  M = 1.3 

 

M = 0.8  M = 1.4 

 

M = 0.9  M = 1.5 

 
 
 
Figure 1.1.2. Thermal blooming behind the phase screen under conditions of 
forced convection (stationary solution of the linearized equations of 

hydrodynamics);  I

  is the intensity distribution in the far zone,   


 is the 

phase screen. 
 
1.1.3 Turbulent distortions of a wavefront 
 
Under conditions of turbulent fluctuation, the longitudinal scale of variability of 
the refractive index is on the same order as the inner scale of turbulence l0, which 
is usually much less than the discretization step z for a reasonable (in terms of 
computational expense) number of integration steps for the wave equation. In this 
case, integration of refractive index inhomogeneities along the z coordinate 
should be performed analytically. And, because a statistical method is used to 
describe turbulent fluctuations ( , )n z 


, the integration yields the equation for 

statistical characteristics, for example, the correlation function of phase 
fluctuations: 
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2( ) ( ) ( ) ( , ) ( , ) .
z z

l lB r r k dz dz n r z z n r z z
 

                 
        

(1.1.31) 
 
The corresponding spectral density F  obtained in Ref. [2] for the von Karman 

spectrum of turbulence has the form 
 

2 0
0( ) 2 Ф ( , 0, ) , ,n z

L
F k z L K

z 
          

  
             (1.1.32) 

 
where Фn  is the 3D spectral density of refractive index fluctuations, L0 is the 
outer scale, K is the correction function approaching unity for small values of the 
second argument (which corresponds to the Markov approximation), and 


 is 

the spatial frequency. 
When considering propagation of high-power laser beams in a randomly 

inhomogeneous medium, thermal distortions caused by heating of the medium 
as a result of radiation propagation should be taken into account, along with 
turbulent fluctuations of temperature. Within the integration step along the 
longitudinal coordinate, turbulent and nonlinear phase distortions can be 
considered as additive; i.e., 

 
1

1 2( , ) ( , , ) ( , ) ( , ),
l

l

z

z

t k n z t dz t t


          
   

                (1.1.33) 

 
where 1  stands for nonlinear distortions and 2  stands for turbulent ones. 

Thus, during numerical simulation of optical wave propagation through a 
randomly inhomogeneous medium, the solution to the problem of refraction at 
every step of integration of the differential wave equation by the splitting 
algorithm is reduced to generation of random phase screens that meet the preset 
statistics. Simulation of random processes is a special branch of computational 
mathematics and its application to the study of turbulent distortions of optical 
waves in the atmosphere will be considered later. Here we consider only such 
problems as the choice of discretization step along the transverse coordinate  
and the size of the averaging sample. 

The applicability of this numerical model is determined mainly by its ability 
to represent the complex amplitude of an optical wave as a discrete function. 
According to sampling theorem, this condition limits the spatial width max  of 
the spectrum of this function as 

 

max /    ,                                       (1.1.34) 
 

where   is a spatial step. 
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The width of the spectrum can be estimated using the well-known fact that 
the angular size of the image of a point object W observed through a turbulent 
atmosphere is approximately equal to the ratio of the wavelength  to the 
coherence length r0: 

 

0/ ,W r      5/3 2 2
0 0.423 nr k C dz   .         (1.1.35) 

 
Since a lens—the simplest imaging system—in effect performs Fourier 
transformation of the incident field, the size of W corresponds to the width of the 
spatial spectrum; i.e., max /W   . It should be noted that the ratio 0/ r  
corresponds to the image of a full-width half-maximum (FWHM). The radius of 
the spot including 95% of the energy is three times larger. Correspondingly, for a 
plane wave that has passed through a layer of atmospheric turbulence, the width 
of the spectrum can be estimated as  
 

max 03 / 3/W r    .                                 (1.1.36) 
 

This leads to the following restriction for the discretization step: 
 

0 1
3

r


   .                                         (1.1.37) 

 
Another restriction occurs because small-scale turbulent distortions with the 

spatial frequencies max    are lost during discretization with step . This 

leads to underestimation of the phase distortion variance 2 by a value 
approximately equal to the integral over the corresponding spectral interval. Let 
us impose a limit on this value corresponding to the “/10” criterion: 

 

 

 

max max

2 5/3 8/3
0

5/35/3 5/3 2
0 max 0

2 ( ) 2 0.489

3
0.489 0.3 /( ) (0.2 ) 0.4.

5

F d r d

r r

 
 


 

 

         

       

 
     (1.1.38) 

 
Here we have a less strict condition for the discretization step; namely, 0r   . 

Let us now consider a sample size of smp.N  For the problems considered 

here, we are interested only in the moment of the first order, i.e., the mean 
intensity. The variance of the estimation errors for a mean value is related to the 
fluctuation variance as follows: 

2
2
estm err

smp

I

N


  .                                    (1.1.39) 
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From this equation we obtain the following condition, which ensures the 10% 
root-mean-square (rms) error of estimation: 
 

 

2 2 2

smp 2 2 2
estm err

100 .
0.1

I I IN
II

  
  


  (1.1.40) 

 
Now we can estimate the sample size a priori using the known relative variance 
of intensity fluctuations and the well-known effect of saturation of intensity 
fluctuations. Experimental data [21] and the results of numerical experiments [5, 
30-32] indicate that the normalized variance of intensity fluctuations almost 
never exceeds unity. This is true both for a plane wave and for close-to-axis 
regions of a spatially limited beam or in the image plane. So, we have        

smpN = 100 for a 10% estimation accuracy of the mean intensity at the optical 

axis of the system.  
A less strict condition is typical for estimating the efficiency of adaptive 

correction because even incomplete correction of distortions significantly 
suppresses intensity fluctuations. In the calculations whose results are given here, 
the sample size smpN  = 100 allowed the mean intensity of the corrected beam or 

image to be estimated with a 5% accuracy. 
Thus, we have determined the requirements for the basic parameters of 

numerical simulation: the step of the computational grid and the size of the 
averaging sample. The issues of sample generation are considered in the 
following sections. 

 
1.2 Generation of 2D Random Phase Screens by the  

Fourier Transform Method 
 
In this section we consider the problem of generating 2D random phase screens 
on an equidistant computational grid. This problem falls in the class of problems 
of numerical simulation of normal random processes with known statistics. When 
describing optical wave propagation in a turbulent atmosphere, the starting point 
of the simulation is the “2/3” law [33-34] for the structure function of refractive 
index fluctuations:  
 

   2 2/ 3
n nD C   ,      (1.2.1) 

 

where 2
nC  is the structure constant of refractive index fluctuations. 

The equation for the structure function Dn determines the form of the 3D 
spectral density:  

 

   1/ 22 11/3 2 2 20.033 ,n n x y zC           


. (1.2.2) 
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If it is necessary to take into account the effects connected with the inner l0 or 
outer L0 scales of turbulence, various modifications of the turbulent spectrum are 
used [35]; for example,  
 

n() = 0.033 C
2
n (

2
 + 

2
0)

–11/6
 exp (– 

2
/

2
m); 

0 = 2/L0, m = 2/l0.    (1.2.3) 
 

For a plane wave passed through a layer of a randomly inhomogeneous 
medium with length L, the 2D spectral density of phase fluctuations in the 
geometric optics approximation has the form 

 

   22S nF k L     ,   (1.2.4) 
 

where k = 2/ is the wave number of the optical radiation. This equation is 
derived in the Markovian approximation corresponding to the delta correlation of 
refractive index fluctuations along the direction of propagation. 

Let us consider simulation of a stationary random process with a given 
spectral density ( )F  . In a description of random processes, the process S is 
usually represented as the stochastic Fourier–Stieltjes integral [36]: 

 
2( ) exp( ) ( )S i d H   

  
.                          (1.2.5) 

In stationary random processes, spectral components 2 ( )d H 


 of random 
processes are delta correlated and related to the spectral density by the following 
equation: 

 
2 2 * 2 2( ) ( ) ( ) ( ) .Sd H d H F d d           

    
     (1.2.6) 

 
Hereafter, angular brackets indicate averaging over an ensemble, and an asterisk 
(*) is used for complex conjugation. 

In numerical simulation of stationary random processes, the field ( )S 


 
discretized over spatial variables should be generated in such a way that the 
statistical and correlation properties of the discrete random processes correspond 
to the properties of the initial continuous process. According to the Fourier 
transform method, the simulated process is represented as a truncated Fourier 

series whose coefficients form the 2D N  N matrix of spectral counts :S  
 

/ 2 / 2

, ,
/ 2 / 2

( ) ( )exp( ),
N N

L M L M
N N

S S i
 

             (1.2.7) 
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where L and M are summation indices. In numerical experiments, we are usually 
interested in values of a function at the nodes of the equidistant computational 
grid, 
 

,I J x ye I e J    
  

,    , 0, 1, ..., ;I J N                 (1.2.8) 

 
so the double sum in Eq. (1.2.7) can be rewritten as 
 

 
/ 2 / 2

, , ,
/ 2 / 2

( ) exp ( )
N N

I J I J L M
N N

S S S i I L J M
 

         .   (1.2.9) 

 
Assuming that 
 

2

N


 


                                          (1.2.10) 

 
and changing the summation limits, we obtain the standard equation of a 2D 
DFT: 
 

1 1

, ,
0 0

2
exp ( ) ,

N N

I J L M

i
S S I L J M

N

            (1.2.11) 

 
or an equivalent formula, 
 

1 1

, ,
/ 2 / 2

2 2
exp exp .

N N

I J L M
N N

i i
S J M S I L

N N

 

 

         
       (1.2.12) 

 
It has been shown [1, 6] that to obtain the given correlation properties, the 

coefficients of the Fourier series should be related to the spectral density of the 
initial process by the following equation: 

 
2 2

, ( )I J S LMS F   , 2 2
LM L M    ,                 (1.2.13) 

 
where   is the discretization step for the spatial frequency. In this case, the 
correlation function of the series obtained corresponds to the correlation function 
of the simulated random process if the correlation length of the random process 
and the values used for the correlation function are smaller than the size of the 
spatial region covered by the computational grid. This restriction is due to the 
periodicity of the series resulting from the DFT. 

When selecting the form of the distribution function for the probability 
density of random Fourier coefficients, we have a certain amount of freedom. For 
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example, it has been shown [37] that both the normal and homogeneous 
distributions of counts in a spectral domain can be used to obtain the series of 
correlated Gaussian numbers. In the latter case, the multidimensional 
characteristic function of the correlated series obtained converges to the 

multidimensional characteristic function of the Gaussian process as (1 )O N . 

To obtain a random sample of spectral counts, other authors have used the 2 -  
distribution for the absolute values of complex counts and the homogeneous (in 
interval [0, 2]) distribution for the arguments (this is equivalent to the normal 
distribution of their real and imaginary parts). Indeed, the real and imaginary 
parts of counts obtained as a result of a discrete Fourier transform applied to a 
correlated series of normal random numbers are also normally distributed random 
numbers. From this point of view, it is quite justifiable to use the Gaussian 
function. 

A shortcoming that is common to all of the references quoted above is the 
absence of an explanation of why a particular form of the distribution function is 
chosen for random counts from the viewpoint of simulation of a steady-state 
random process. However, usually the problem is one of obtaining a series of 
correlated numbers rather than the simulation of a random process. The 
arguments given below clearly indicate that to make the procedure more rigorous 
from a mathematical point of view, one should take the constant absolute value 
and the uniformly distributed argument for spectral counts in the interval [0; 2].  

Rewrite the spectral representation in Eq. (1.2.5) as an ordinary Fourier 
integral: 

         2 2exp exp ,SS i d H A i d        
    

 (1.2.14) 

 
keeping in mind that the spectral amplitude  
 

 
 

    2
2

1
exp

2
A S i d     

 
  

     (1.2.15) 

 
is a generalized random function. Since  H 


 is a function with independent 

random increments  a 


 [36], 
 

     a H d H      
   

,        (1.2.16) 
 

the spectral amplitude must include the delta function  
 

     1 2A a    
  

.    (1.2.17) 
 
Taking this into account and rewriting Eq. (1.2.6) as 
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   ( ) ( ) SA A F         
    

,  (1.2.18) 

 
we can see that the density variance of the spectral amplitude is  
 

   ( ) ( ) 0 SA A F    
  

,        (1.2.19) 

 
and the variance of  a 


 is equal to the spectral density 

 

 ( ) ( ) Sa a F   
  

.   (1.2.20) 

 
Thus, the spectral amplitude A should be considered as a delta-correlated 
generalized random function. Therefore, the Fourier integral in Eq. (1.2.14) cannot 
be estimated according to the trapezium or rectangle rule, as was done in Ref. 
[2]. Instead, we should first construct the spectral approximation of the random 
process S. The initial random process is represented as a sum of narrow-band 
processes,  

   
1

N

n
n

S S


   
,   (1.2.21) 

 
each characterized by the spectrum located in a narrow-band : 
 

 
   

 
, ,

,
0, ,

n n
n

n n

F
F

            

    


             (1.2.22) 

 
and connected by the Fourier transform with the corresponding generalized 
spectral amplitude An: 

      2expn nS A i d    
  

;        (1.2.23) 

 

   ( ) ( )n n nA A F         
    

.     (1.2.24) 

 
When moving from the integral to the Fourier series, we replace the sum of 

narrow-band random processes with the sum of harmonics with random 
coefficients. At this point, we face the problem of selecting the probability 
distribution function for the coefficients of the series. Since our purpose is to 
obtain a random process in which the given spectral density reflects the 
distribution of fluctuation “energy” over the spatial frequencies, the normalized 
energy of every narrow-band process must coincide with the normalized variance 
of the corresponding harmonic of the Fourier series: 
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 
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2
2,

2
2 2,

,

.
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L M
L M

A d
S

S A d

 

 





 



 



 








 
  (1.2.25) 

 
The denominators here contain the energy of fluctuations in the entire frequency 
band. 

Consider the integral in the numerator on the right-hand side of the equation. 
If the spectral density varies insignificantly within the bandwidth 


, then the 

density of the spectral amplitude  A 


 and the square of its absolute value have 
the same statistical characteristics throughout the integration interval. Let us 
show that integration over the band 


 can be considered as averaging over an 

ensemble. For this purpose, use the definition of the integral as a limit of the 
integral sum used: 

 

   

       
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N
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  


 

     
 

           
 









 

  
 

(1.2.26) 
 
Here, the parameter N refers to the number of division points in the interval ; I,J 
are the points at which the value of the function is selected when calculating the 
integral sum. Here we consider A(I,J) as terms of the N-sized sample of a random 
parameter A(L,M), where L,M is a point inside the interval . This approximation 
is valid if the integral  is small and the statistics of the random field A() vary 
insignificantly within its limits. 

Calculation of the integral in the numerator of the right-hand side of 
Eq. (1.2.23) gives  

 

       2 2 2 20 0A d F d
 

 

         
  

.  (1.2.27) 

 
The sum in the numerator on the left-hand side of Eq. (1.2.25) is the variance of 
the process with a discrete spectrum. If we require that the variances of both 
processes be equal to each other, then from Eqs. (1.2.25)–(1.2.27) we obtain  
 

 2 2
, ,L M L MS F  


.   (1.2.28) 
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Note that the right-hand side of this equation is deterministic, whereas the left-
hand side is the squared absolute value of a complex random parameter. This 
means that only the argument of this parameter is random, whereas the absolute 
value is the same for all terms of a stochastic ensemble. 

In fact, the above mathematical manipulations indicate that the energy in an 
arbitrarily small but finite interval of spectral representation of a random process 
does not fluctuate, although the spectral amplitude of every harmonic and its 
absolute value are random numbers. Therefore, when replacing the continuous 
spectrum with the discrete one, if we want the harmonics of the discrete spectrum 
to replace the bands of the continuous spectrum and the intensity ratio of the 
harmonics to correspond to the energy ratio of the bands of the continuous 
spectrum, only the phase of the harmonics should be set in a random manner.  

As for the distribution functions of phases (arguments) for the Fourier series 
coefficients, they can be chosen arbitrarily, because this choice has no effect on 
the form of the spectral density. However, it follows from the statistical 
independence of the real and imaginary parts that the arguments of the 
coefficients of the Fourier series are distributed uniformly in the interval [0; 2]. 

Let us consider some peculiarities connected with the fact that the process 
being considered is a real one. This fact is often used to obtain two phase screens 
as a result of a Fourier transform: one in the real part and another in the 
imaginary part. However, this approach is efficient only for a statistically 
uniform (for example, horizontal) path because only then can both screens have 
the same statistics. For vertical paths, the intensity of turbulence and its outer and 
inner scales, as well as the speed of phase screen transition (wind speed) vary 
along the path. 

It is well known that the real component of a Fourier transform of a 1D real 
function is an even frequency function, whereas the imaginary component is an 
odd function; i.e., 

*( ) ( )А А   .                                   (1.2.29) 
 

The Fourier transform of a 2D field has an analogous property: 
 

*( ) ( )А А  
 

.                              (1.2.30) 
 

The symmetry property in Eq. (1.2.30) with respect to operation of conjugation 
for the discrete spectrum of the real function takes the form 
 

*
, ,L M L MS S   .                                    (1.2.31) 

 
After calculation of the inner sum in Eq. (1.2.12) and row-by-row 

implementation of the Fourier transform, we obtain the matrix of counts: 
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,

/ 2

,
/ 2

2
exp ,

L M

N
x
L M

N

i
S S L I

N 


   
                          (1.2.32) 

 

where the property *
, ,

ˆ .x x
L M L MS S    This allows us to calculate the inner sum for 

only non-negative values of M and thus obtain a twofold decrease in the number 
of mathematical operations. 

Thus, the modification developed for the spectral sample method is the 
following sequence of operations: 

 
1. Determine the first half of the rows of the 2D array of Fourier 

coefficients according to Eq. (1.2.28) for the modulo spectrum and 
the phase rand  uniformly distributed in the interval [0; 2]: 

 

 1/ 2 2 2
, randexp( )L MS F L M i     ,   (1.2.33) 

/ 2, / 2; 0, 1, ..., / 2.L N N M N         
      

2.  Calculate the 1D Fourier transforms of these rows: 
 

,

/ 2

,
/ 2

2
exp , 0, 1,..., / 2

L M

N
x
L M

N

i
S S L I M N

N

    
  .  (1.2.34) 

 
3.  Map of these transforms onto the second half of the rows with 

conjugation: 
 

,

*
, ; / 2,..., 1

I M

x x
I MS S M N


     .           (1.2.35) 

 
4. Calculate the Fourier transform column by column:  
 

,

/ 2

,
/ 2

2
exp , 0, 1,..., 1

I M

N
x x
I J

N

S S M J J N
N

     
   .        (1.2.36) 

 
Within the framework of the “frozen turbulence” hypothesis, which can be 
formulated mathematically as follows: 
 

( , ) ( ,0)S t S V t   
 

,                                   (1.2.37) 
 
this technique can be readily generalized to dynamics problems.  

One of the properties of a Fourier transform is that the shift of the original 
function is equivalent to the addition of a linear component to the Fourier 
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transform phase. Taking into account this property, Eq. (1.2.33) can be rewritten 
as 

   1/ 2 2 2
, rand( ) exp( )exp ,L M x yS t F L M i i t V L V M        

 / 2, / 2; 0, 1, ..., / 2L N N M N   .    (1.2.38) 
 

Figure 1.2.1 shows an example of a series of phase screens representing 
turbulent distortions at the instants of time separated by 10.2( / )t V   . The 

angle  between the wind velocity and the abscissa was equal to 30 deg. As can 
be seen from this figure, turbulence moves along the wind velocity vector. 
Setting the direction so it does not coincide with the coordinate axis, we can 
obtain sufficiently long nonrecurring temporal realizations of turbulent 
distortions. This is possible because at every cycle along the abscissa with the 
duration ( ) / ,x xT N V   the phase screen shifts along the ordinate by 

y x yD T V . The period of exact recurrence is determined by the following 

condition: 

y xnV T mN  , 

 
where n and m are even numbers. And, hence, 
 

( ) /

/ mctg .

y x y x y x

x y

nV T nV N V mN nV nV

n mV V

    

   
         (1.2.39) 

 
The technique was tested by comparing the integral square phase within a circle 
after subtraction of one or several aberrations  1, ..., 10N   described by the 

Zernike polynomials :lZ  
 

2
2

2
1

1
( ) ( ) ,

N

N l l
lR

d S a Z
R 

 
        


 

             (1.2.40) 

 
with the corresponding parameters obtained theoretically in [42] and [43]. The 
calculated values of the integral variance of the approximation error obtained by 
averaging over 100 realizations are shown in Fig. 1.2.2 for a 128  128 
computational grid and three different values of the ratio of the size L of the 
domain covered by the computational grid to the aperture diameter D. The 
calculated values are normalized to the corresponding analytically obtained 
values borrowed from Ref. [43]. The results are presented in Table 1.2.1. 
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 t = 0  t = 51.0

 

 t = 10.2   t = 61.2

 

 t = 20.4   t = 71.4

 

 t = 30.6   t = 81.6

 

 t = 40.8    t = 91.8

 
 
 
Figure 1.2.1. Series of phase screens representing turbulent distortions at time 
instants separated by the interval t = 10.2 (/V). 
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Figure 1.2.2. Calculated values of N from Eq. (1.2.40) normalized to the 
theoretical value for the power spectrum of turbulence. 

 
Table 1.2.1. Analytically obtained integral variance of the error of approximating 
the turbulent wavefront by a finite number of Zernike polynomials. 

Number of  
polynomials, N 

5 / 3
0/( / )N D r  

1             1.03 

3             0.134 

6             0.0648 

8             0.0525 

 
From the plots shown in Fig. 1.2.2 it can be seen that linear and quadratic 

aberrations are affected considerably by the loss of spatial scales larger than the 
size of the computational grid. This fact is also confirmed by calculation of the 
variance for the coefficients of wavefront expansion in terms of the Zernike 
polynomials for turbulent spectral density with the finite outer scale. The 
parameter 1,  which characterizes phase distortions minus the phase constant 

over the entire aperture (polynomial 1Z ), is much less than the corresponding 

theoretical value. At the same time, for / 8,L D   the parameters 6  and 10  

differ from the theoretically obtained values by no more than 5%. For / 8,L D   

the value of 1 increases very slowly toward the theoretical limit, whereas 
parameters 3 , 6 , and 10  decrease at approximately the same speed, thus 
showing the poor approximation of high-order aberrations.  

Thus, using the Fourier transform method to simulate a turbulent phase 
screen with the power spectrum, we obtain greatly underestimated values of tilt 
fluctuations (tilt corresponds to the first-order polynomials 2Z and 3Z ) and 
somewhat underestimated values for fluctuations of quadratic aberrations. This 
can be explained by the fact that the method is not suitable for simulation of 

N  
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0.6 

0.8 

1.0 

 N = 1
 N = 3
 N = 6
 N = 10

L / D

              



Mathematical Simulation of Laser Beam Propagation in the Atmosphere 25 
 

large-scale random inhomogeneities and that the grid size L is an analog to the 
outer scale of turbulence. 

 
1.3   Dynamic Simulation of the Large-Scale Part of 

Turbulent Aberrations of an Optical Phase 
 
As mentioned earlier, the spectral sample method does not allow one to 
reproduce scales larger than the size of the computational grid. As a result, low 
spatial frequencies of the turbulent spectrum are lost, and this results in 
underestimation of atmospheric distortions, mainly those of random refraction 
and quadratic aberrations of the wavefront. 

It is natural to try to compensate for underestimation of these aberrations. To 
do so, we need to know their statistics. Then we can sum two random phase 
screens: one generated by the Fourier transform method and including high and 
medium spatial frequencies, and another that includes aberrations induced by low 
spatial frequencies of the spectrum. This approach was formulated for the first 
time by Duncan and Collins in 1975 [7, 40]. In this section, we present a detailed 
justification and description of this approach, which is generalized here to the 
case of a time-dependent problem. 

Since linear and quadratic aberrations coincide with the first terms of the 
Zernike series that is traditionally used in optics, it is convenient to apply the 
theory developed for this series; namely, the equations for statistical 
characteristics of Zernike coefficients that relate these statistical characteristics to 
the spectrum of a random process to be simulated. 

Let us consider the representation of the wavefront as a Zernike series within 
a circular aperture with the radius R; 

 

0

( ) ( )l l
l

S r a Z r




 
.                                     (1.3.1) 

 

A Zernike polynomial Zl [40-44] is a product of the radial  m
nR and azimuth 

 ,m lV components: 
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l тn n m lZ с R r R V 
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,  0 / 22 1m
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which are characterized by a radial power n and an azimuth frequency m so that 
the difference n–m  is an even number and m  n ( is the polar angle of the 
vector r


). In addition, Zernike polynomials are orthogonal within a circle; i.e., 

 
2( ) ( ) ,l l l ll

r R

Z r Z r d r c 



 
 

                           (1.3.4) 

 
where ll  is the Kronecker delta function. 

The method of simulation for a random phase screen using the aberration 
representation consists of the following: first, we generate the vector of 
expansion coefficients and then this vector is substituted into the sum [Eq. 
(1.3.1)]. So, the problem is reduced to obtaining an ensemble of random Zernike 
coefficients. The simulated process is normal with a zero mean, therefore the 
expansion coefficients, 

2
2

1
( ) ( ) ,l l

r R

a S r Z r d r
R 


 

 
                    (1.3.5) 

 
are also Gaussian with a zero mean. To determine these coefficients, we have 
only to calculate the elements of the correlation matrix 
 

 
 

       2 2
22

1
kl k l k k

r R r R

C a a d r d r Z r Z r S r S r
R   

      


 
   

.   (1.3.6) 

 
Upon substitution of a random process  S r


 represented in the form of the 

Fourier–Stieltjes integral, 

     2exp ,S r i r d H




  
  

     (1.3.7) 

 
alternation of the order of integration over spatial and frequency coordinates, and 
representation [44] of the Fourier transform of Zernike polynomials as  
 

     2
2

1
expl l

r R

Q d rZ r i r
R 
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 

  
,    (1.3.8) 

 
we obtain the following equation for elements of the correlation matrix Ck l: 
 

       2 2
kl k lC Q Q d H d H

   
 
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          
   

 .  (1.3.9) 
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Calculation of the integral [Eq. (1.3.8)] yields the following equation for 
representation of polynomials in the frequency region: 

 

       
 
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   

 . (1.3.10) 

 
In this equation,  is the polar angle of the vector 


. 

With allowance made for delta correlation of the spectral components H, 
 

       2 2 2 2d H d H F d d               
    

, (1.3.11) 

 
upon integration of Eq. (1.3.9) over the angle of the vector of spatial frequency, 
we have 
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    (1.3.12) 

where l corresponds to n and m, but l corresponds to n and m. This equation 
determines the correlation of the coefficients of polynomials with the same 
azimuth factors. In other cases the correlation is zero. 

For dynamic simulation, we also need to know the autocorrelation functions 
of the expansion coefficients 

 

     l l lB a t a t    .       (1.3.13) 

 
On the assumption of the “frozen” field  S 


, i.e., at 

 

   , ,S r t S r V t    
 

,       (1.3.14) 

 

where  ,V V 


 is the wind velocity ( is the polar angle of the vector 


V ), we 
have  

       2 2expl lB Q F i V d
 

 

       
   

.       (1.3.15) 

 
Upon transition into the polar coordinate system and integration over the 

angular coordinate of the vector, we derive the following equation for Bl(): 
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 (1.3.16) 

For simulation of random temporal samples of the coefficients al(t) according to 
the Fourier transform method, we need the analytical equation for the spectral 
density of fluctuations of the coefficients al, which is connected to the correlation 
function by the Wiener–Khintchine theorem: 
 

0

1
( ) ( )cos( )l lW d B



    
  ,                             (1.3.17) 

 
where  is the temporal frequency. 

Substituting ( )lB   from Eq. (1.3.17) into Eq. (1.3.16) and calculating the 

integral with respect to  , we obtain the following equation: 
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            


  (1.3.18) 

 
which can be used to generate random temporal realizations of the expansion 
coefficients. However, a difficulty arises that is due to correlation of the 
expansion coefficients in terms of the Zernike polynomials. The correlation 
matrix is nondiagonal, so we cannot generate coefficients as statistically 
independent random numbers. To solve this problem, we can use the expansion 
in the Karhunen–Loeve series [55], the correlation matrix of whose coefficients 
is diagonal by definition. However, the direct use of the Karhunen–Loeve 
expansion is problematic because the functions in this case have no explicit 
analytical form. It is possible to express the Zernike polynomials in terms of the 
Karhunen–Loeve functions through orthogonalization of the correlation matrix of 
the Zernike coefficients by a general similarity transformation. A detailed 
description of this procedure is given by Roddier in Ref. [45]. 

A more complicated problem arises in the case of dynamic simulation. 
Sometimes orthogonalization of the correlation matrix is impossible because 
polynomial coefficients with different angular components are correlated as well. 

Note that the correlation function for the coefficients of two polynomials 
with the same radial n and angular m indices takes the form 
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              (1.3.19) 

 
To break the correlation between these polynomials, it is sufficient to direct the 
abscissa of the coordinate system in which the polynomials are defined along the 
wind velocity vector. For this geometry, 
 

arctan( / ) 0,y xV V      (1.3.20) 

 
and the correlation of Eq. (1.3.19) is absent. This allows us to properly simulate 
the dynamics of the first- and second-order polynomial coefficients, i.e., tip and 
tilt, as well as those of defocusing and astigmatism (polynomials 2 6, ...Z Z ).  

In this case, small-scale aberrations can be simulated by the spectral sample 
method. The initial random process can be represented as a sum of the high- and 
low-frequency components Shigh and Slow, whose spectra do not overlap: 

 

             
max max

2 2
low high exp expS r S r S r i r d H i r d H

   

         

       
. 

   (1.3.21) 
 

Correlation of these terms is  
 

          
max max

2 2
low high expS r S r i r r d H d H 

    

             
        

      
max max

2 2exp 0i r r F d d
    

                   
    

  

   (1.3.22) 
 

owing to the properties of the delta function. With allowance for the fact that the 
processes are normal, we can consider them as statistically independent and 
simulate them separately, thus obtaining (after integration) a process with the 
required spectral density. 

To implement this technique, we have developed a procedure for calculating 
the time spectra of the coefficient fluctuations of a Zernike expansion 
[Eq. (1.3.18)]. Figure 1.3.1 shows the spectra calculated for the polynomials of 
the first, second, and third radial orders. Temporal samples of the Zernike 
coefficients were generated according to the technique described in Sec. 1.2 for 
the 1D case. Figure 1.3.2 shows examples of realizations for the coefficients 
corresponding to tip and tilt, defocusing, and astigmatism. Figure 1.3.3 shows the 
dynamics of a phase screen obtained by summing the linear and quadratic 
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aberrations with small-scale distortions generated by the spectral sample method 
described in Sec. 1.2. 
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Figure 1.3.1. Spectra of fluctuations for the coefficients of Zernike polynomials of 
the first, second, and third radial orders at different values of the outer scale; 

  2/ 1 2 nW W      is the normalized spectrum; /(3 / )nV R    is the 
normalized frequency; 2

n  is the variance of polynomial fluctuations for the infinite 
outer scale; n is the radial order of a polynomial; V is the wind velocity (directed 

along the 0x-axis); and R is the aperture radius. The three sets of subscripts to 

W correspond to radial order, azimuth frequency, and parity parameter, 
respectively. In all figures the lower curves correspond to L0/D = 1, the upper 

curves to L0/D = 10, and the medium curves to L0/D = 3; D is the aperture 
diameter. 

              



Mathematical Simulation of Laser Beam Propagation in the Atmosphere 31 
 

 

 

 

 

–2

–1

0

1

2

( 1,1,0)a( t )

 

–2

–1

0

1

2

(1,1,1)a( t )

 

2 4 6 8 10 12 14 16 18

–2

–1

0

1

2

( 2,0,0)a( t )

t 0  

 

Figure 1.3.2. Random temporal samples of tilt and defocusing coefficients: 

,n n na a t t V R     ; n is the standard deviation; L0/D = 10. The numbers 
in parentheses above the curves correspond to radial order, azimuth frequency, 
and parity parameter. 
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Figure 1.3.3. Dynamics of a phase screen obtained by summing linear and 
quadratic aberrations with small-scale distortions generated by the spectral 
sample method. The time is normalized to D/V; simulation was performed for the 
outer scale L0 = 50D, r0 = D  (r0 is the Fried radius). 
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These calculations have been made for L0 = 50D = 100R; i.e., for an outer 
scale two orders of magnitude larger than the aperture radius. A further increase 
in the outer scale leads to decreased accuracy during numerical calculation of the 
integral in Eq. (1.3.18). The precision of the simulation was verified by 
comparing the variance of the random realizations obtained with the variance 
calculated by Eq. (1.3.12). At L0 < 100R the difference did not exceed 5%, and at 
L0  > 100R it increased quickly because of the growing calculation error of the 
integral in Eq. (1.3.18). 

 
1.4   Modification of the Numerical Model for Partially 

Coherent Beams 
 
In the preceding sections we considered propagation of coherent beams. 
However, the radiation divergence for real laser sources is always greater than 
the diffraction limit. This is due to the processes that develop in the active 
medium of a laser, deformations of a laser cavity, the multimode structure of 
laser radiation, and so on. 

Formally speaking, under the boundary conditions of the wave equation, we 
should allow for phase and amplitude fluctuations within the emitting aperture. 
Under time-dependent circumstances, this means the time dependence of the 
phase and amplitude [46, 47] is 

 

 0( , 0) ( , ) exp ( , )E z I t i t     
  

.                        (1.4.1) 
 

In a stochastic representation, the phase and intensity become random functions 
of the transverse coordinates: 
 

 0( , 0) ( ) exp ( )E z I i     
  

.                               (1.4.2) 
 

It is obvious that in both cases the statistical or dynamic description of the 
emitted radiation is unique for every type of laser source and even for a single 
laser. However, the temporal scales of fluctuations of the source intensity and 
phase are much less than that of the refractive index in the atmosphere. Thus, in 
our model we can omit the details of the space-time structure of partially 
coherent beams. Common practice in this case is to determine the boundary 
condition for the second-order coherence function: 
 

*
2 1 2 1 2( , ) ( ) ( )Г E E    
   

.                 (1.4.3) 

 
If the statistics are uniform, we can introduce the coherence length in the 
following way: 
 

2 2
2 1 2 20 1 2 1 2( , ) ( , )exp( / )cГ Г        
     

,     (1.4.4) 
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where 20 1 2( , )Г  
 

 corresponds to the completely coherent radiation   :c    

 
*

20 1 2 0 1 2 2Г ( , ) ( ) ( )U U    
   

,                                (1.4.5) 
 

and where 0 ( )U 


 is a regular component of the field. 
In the mathematical model employed, we have to solve the wave equation 

describing the field. In the framework of this model, we need a method that 
allows propagation of partially coherent radiation. Note that partial coherence is 
equivalent to additional angular divergence of a beam. Equations for the effective 
size a of a partially coherent Gaussian beam propagating in a turbulent 
atmosphere can be written as [48] 

 
2 2 2 2 2

g d c ta a a a a    .                           (1.4.6) 

 
Here, 

0 (1 / )ga a z F                                       (1.4.7) 

 
is the size of the beam focused at a distance F in the cross section z, and 0a  is the 
initial effective radius of the Gaussian beam; 
 

0 0/ , 2da z ka z D a
D


                                (1.4.8) 

 
is the cross section of a cone with a base equal to the diffraction divergence 

01/ ;ka  

/с сa z k                                            (1.4.9) 
 

is the cross section of a cone with a base equal to the divergence of the partially 
coherent beam, and 

0/ta z k       (1.4.10) 
 

is the cross section of a cone with a base inversely proportional to the coherence 
length of the turbulent phase screen 0 .  

Note that the last equation addresses the problem of beam propagation 
behind a random phase screen. For a beam propagating in a randomly 
inhomogeneous medium, turbulent divergence is a function of longitudinal 
coordinate z. So, to take into account the different factors that influence beam 
propagation, we should sum the corresponding cross sections. Naturally, the 
effect of the different factors is assumed to be independent. 

In the following discussion we propose a modification of the numerical 
model for propagation of a coherent beam to allow for the initial divergence of 
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the beam. In the case of a random phase screen, the result obtained coincides 
absolutely with the analytical equation written above. 

Consider now the proposed modification. As described earlier, the wave 
equation is solved for a coherent beam. However, the intensity in the cross 
sections is calculated as a convolution of the intensity of coherent radiation, with  
function W describing beam broadening that is due to partial coherence of the 
source: 

2( , ) ( , ) ( , )I z E z W z    
  

,    (1.4.11) 
 

where   refers to convolution. Assuming that W is a Gaussian function with the 
width /с сa z k   and that 
 

2 2
2 2

2 2
( , ) exp exp ,c

c

W z k
a z

    
        

  


               (1.4.12) 

 
and solving the problem of diffraction of a partially coherent beam in a vacuum, 
we obtain results that are exactly the same as those obtained with the use of the 
analytical equation. Indeed, convolution of two Gaussian functions with widths 
a1 and a2 is a Gaussian function with the square width equal to the sum of the 
square widths of these two functions: 
 

     2 2 2 2 2 2 2
1 2 1 2exp exp const expa a a a        .     (1.4.13) 

 
This equation can be readily proved by calculating convolution through a Fourier 
transform. 

Therefore, Eq. (1.4.6) can be considered as a sequential convolution (in the 
beam cross section) of the initial Gaussian intensity distribution obtained by the 
ray-optics approximation, with functions that describe diffraction, partial 
coherence, or turbulent divergence. 

Another interpretation of the problem is possible as well. Let us assume that 
partial coherence of the beam is due to high-frequency fluctuations of the beam 
direction, and the angle   between the beam direction and the axis of the optical 
system is a random value. Then, the distribution of the mean intensity in the 
beam cross section at a distance z from the source is 

 

     2( , ) , ( ) , /I z I z z f d I z f z         
    

.         (1.4.14) 

 
Here ( )f 


 is a two-dimensional function of the probability density of the beam 

direction and ( , )I z


 is the intensity distribution in the cross section of the 
unperturbed beam. The second-order coherence function is 
 

              



36 Chapter 1 
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   

          (1.4.15) 

 
on the assumption that the beam direction is a two-dimensional normally 
distributed random function with the variance 2

  in every realization, and that 

the correlation between the components of the vector 


 is absent. It follows from 
the previous equation that the relationship between the coherence length and the 
mean-square value of 


 is 

2
,с k 

 


 or 
2

.
сk 


                             (1.4.16) 

 
Thus, by considering the case in which partial coherence is caused by beam jitter, 
we have also obtained the equation in which the mean intensity of the partially 
coherent beam is determined by convolution of the diffraction-limited solution of 
the wave equation with the function describing additional beam broadening. 

Let us also note that when deriving the convolution equation we did not 
impose any restrictions on the intensity distribution in the beam cross section or 
on the probability density function of random wandering of the beam direction. 
This equation is valid for non-Gaussian beams as well. Moreover, we did not 
make any assumptions concerning the phase of the regular field component, so 
the equation is also suitable for describing beam propagation behind a random or 
nonlinear phase screen. 

Overall, the propagation of a high-power partially coherent laser beam is 
described by the following set of equations: 
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



 

                     (1.4.17) 

 
As defined earlier, M is the operator that describes variations of the refractive 
index that are due to absorption of the beam energy and U0 is the regular field 
component (i.e., c   ). The parameter 2

  is the angular divergence that is due 

to partial coherence (this divergence is not necessarily caused by random 
fluctuations of the beam direction); normC  is the normalization constant. 
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According to the splitting algorithm [49, 50], convolutions are calculated only in 
the cross sections corresponding to the coordinates of the nonlinear phase screen 
and in the plane of the receiving aperture. 

In order to properly estimate thermal blooming of a beam in a thick layer of a 
randomly inhomogeneous medium, further investigation of the proposed model is 
needed. It is possible that the form of the function W depends on the mechanism 
limiting the coherence length. However, the general features of our approach 
remain if the source field is averaged over fluctuations more quickly than 
variations of the refractive index. 
 
1.5 Lens Transformation of Coordinates in an 

Inhomogeneous Wave Equation 
 
In some circumstances, a transformation of coordinates is needed for optical 
beams propagating in random media. There is one interesting approach that uses 
lens transformation. Lens transformation of coordinates, known as Talanov 
transformation, has been used by several authors [2, 39, 51-54] to transform the 
problem of propagation of a beam focused by an aperture with one Fresnel 
number into the same problem but with an aperture with a different Fresnel 
number. During numerical solution of the problem of paraxial beam propagation, 
this transformation allows the computational expense to be decreased markedly, 
particularly in the case of large Fresnel numbers (small wave parameters). Here 
we give the rigorous deduction of the equation for this transformation, which 
allows construction of this transformation as applied to complex cases of 
interaction of a high-power beam with a medium. This is demonstrated in this 
section using nonstationary thermal blooming under conditions of forced 
convection with allowance made for thermal conductivity of the medium. 

Consider first the case of free diffraction. Propagation of the complex 
amplitude  ,U z


 in the direction of the 0z-axis is described by the 

homogeneous wave equation: 
 

22
U

ik U
z 


 


.     (1.5.1) 

 
Solution of this wave equation by the Fourier transform method or Green’s 
functions yields the well-known convolution integral: 
 

     22
0, exp

2
i ikU z d U

zz
           

   
 .   (1.5.2) 

 
Consider two thin collecting lenses L1 and L2 with the focal lengths f1 and f2. Let 

the wave with the complex amplitude  0U 


 be incident on the entrance pupil of 
each lens. Then, for the distance z1 behind the plane of the lens L1 we have the 
following equation for the field U1: 
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1 1
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   

. 

  (1.5.3) 
 

Similarly, at the distance z2 behind the plane of the second lens, 
 

   2 2 2
2 2 0

2 2 2 2 2

1 1
, exp exp exp .

2 2

i ik k ik
U z d U i

z z z f z

                              
   

   (1.5.4) 
 
In the particular case of z1 = f1 and z2 = f2, it follows from Eqs. (1.5.3)–(1.5.4) that 
the fields in the focal planes are related to each other by the following equation: 
 

  21 1
2 2 1 1

2 2 1 2

1 1
, , exp

2

f f i
U f U f k

f f f f

    
         

    

 
 ,   (1.5.5) 

 
and the corresponding intensity distributions differ by a factor and a scale 
  

      2
2 2 1 2 1 1 2,I f f f I f f  


.                (1.5.6) 
 

Generally, one field can be expressed through another if the following 
condition is fulfilled: 

 

1 1 2 21 1 1 1f z f z   .     (1.5.7) 
 

Upon designation of 2 11 1f f   , we obtain 
 

 1 2 21z z z   ,            (1.5.8) 
 

 2 1 11z z z   .      (1.5.9) 
 

The fields in these cross sections are related by the equation 
 

  2
2 2 1 1

2 2 2

1
, , exp .

(1 ) (1 ) 2 (1 )

ik
U z U z

z z z

    
             


  (1.5.10) 

 
Substituting Eq. (1.5.8) into this equation and omitting the subscript of z, we have  
 

  2
2 1

1
, , exp

(1 ) (1 ) (1 ) 2 (1 )

z ik
U z U

z z z z

                   


  (1.5.11) 

and similarly 
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  2
1 2

1
, , exp .

(1 ) (1 ) (1 ) 2 (1 )

z ik
U z U

z z z z

                   


  (1.5.12) 

 
Thus, the fields, which differ in the plane z = 0 by the square phase factor 

 2exp 1 2ik , are related by Eqs. (1.5.11) and (1.5.12) at diffraction in a free 

space or an optically homogeneous medium. These equations allow one field to 
be expressed through another in the cross sections meeting the condition of Eq. 
(1.5.7). 

In an optically inhomogeneous medium, in which the refractive index is a 
function of coordinates, the propagation of the complex amplitude is described 
by the inhomogeneous parabolic equation: 

 

  2 22 2 ,
U

ik U k n z U
z 


   


 .       (1.5.13) 

 
Let the boundary conditions be given in the plane z = 0 as 
 

   1 0,0U U  
 

,        (1.5.14) 
 

    2
2 0

1
,0 exp

2
U U ik      

 
.       (1.5.15) 

 
As has been shown earlier, while propagating in a homogeneous medium, 

these fields are related by Eqs. (1.5.11) and (1.5.12). Let the field U1 propagate in 
a medium with the refractive index  1 ,n z


; then Eq. (1.5.13) can be written as 

  

   2 2
1 1 1 12 2 ,ik U z U k n z U     

 .       (1.5.16) 
 

Our purpose is to find a distribution of the refractive index  2 ,n z


 such that 
with propagation of the wave U2 meeting the equation  

 

   2 2
2 2 2 22 2 , ;ik U z U k n z U     

        (1.5.17) 
 

Eqs. (1.5.11) and (1.5.12) remain valid. 
For convenience, rewrite the last two equations as 
 

         2
2 2 2 2 22 2 z xx yyk n r U r ikU r U r U r    
     , (1.5.18) 

 

         2
1 1 1 1 12 2 z xx yyk n r U r ikU r U r U r    
     ,    (1.5.19) 
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using  

 1 1 /zU r U z   


,   2 2 /zU r U z   


,   2 2
1 1 /xxU r U x   


, 

  2 2
2 2 /xxU r U x   


,    2 2

1 1 /yyU r U y   


,    2 2
2 2 /yyU r U y   


. 

  
Without loss of generality, the latter can be written in the transformed 

coordinate system as 
 

   
     

2
1 1

1 1 1

2 (1 ) (1 )

2 (1 ) (1 ) (1 ) .z xx yy

k n r z U r z

ikU r z U r z U r z

   
          

 
     (1.5.20) 

 
Dividing Eq. (1.5.18) by Eq. (1.5.20), we get  

 

 
 

 
 

     
     

12

1 2

2 2 2

1 1 1

(1 )

(1 )

2
.

2 (1 ) (1 ) (1 )
z xx yy

z xx yy

U r zn r

n r z U r

ikU r U r U r

ikU r z U r z U r z

 


 
   


         


 

  
  

  (1.5.21) 

 
The first fraction on the right-hand side of Eq. (1.5.21) follows from Eq. (1.5.11): 
 

 
 

 
  21

2

(1 ) 1
1 exp .

2 (1 )

U r z
z ik

U r z

          


         (1.5.22) 

 
To calculate the second fraction, differentiate Eq. (1.5.11) with respect to  z, 

 x2, and  y2. Combining the results of differentiation, we can then derive the 
following equation: 

 

     
 

      

2
2 2 2 3

1 1 1

1 1
2 exp (1 )

21

2 (1 ) (1 ) (1 ) ,

z xx yy

z xx yy

ikU r U r U r k z
z

ikU r z U r z U r z

           

          

  

  
 (1.5.23) 

 
from which it is seen that the second fraction on the right-hand side of 
Eq. (1.5.21) is equal to  
 

 

2

3

1
exp (1 )

2
1

k z

z

     
 

.        (1.5.24) 

 
Substituting Eqs. (1.5.22) and (1.5.24) into Eq. (1.5.21), we find the relation 

sought: 
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 
 

 2 12

1
(1 )

1
n r n r z

z
   

 
 

.       (1.5.25) 

 
Let us use this relation in a problem of thermal blooming. In an isobaric 

approximation, the temperature field T is described by the forced heat transfer 
equation: 

     2

P

T
V z T z T I r

t C 
 

     
 

 
,     (1.5.26) 

 
where  is the absorption coefficient, 0 is the medium density, CP is specific 

heat at constant pressure,  V z


 is the wind velocity profile, and  is heat 
conductivity. 

Assuming the refractive index to be a linear function of temperature, i.e., at 
 0 0Tn n n T T   , we obtain the following differential equation for it: 

 

   2( ) ( )tn V z n z n q z I r        
 

,       (1.5.27) 
 

where 
0

( )
( ) , /t

t
P

z n
q z n n t

C

    


. 

Then consider the propagation of two high-power optical beams with the 
boundary conditions of Eqs. (1.5.14) and (1.5.15). We have the parameters of the 

path at which thermal blooming of the first beam occurs:  1 ,V z


 1(z), and 

 1 z . The problem is to determine the parameters of the second path (with 

parameters  2 ,V z


 1(z), and  1 z  so that condition (1.5.25) is fulfilled and 
the complex amplitudes of the beams are related by Eqs. (1.5.11) and (1.5.12). 

Divide Eq. (1.5.27) written for  1 (1 )n r z 


 by Eq. (1.5.25) for  2n r


. 
With allowance made for the intensity cross section ratio being the consequence 
of Eq. (1.5.6): 

 

  2
1 2I (1 ) I ( ) (1 ) ,r z r z    
 

        (1.5.28) 
 

and the results of differentiation of Eq. (1.5.25): 
 

     

     

     

2
1 2

3
1 1

42 2
1 1

/(1 ) 1

/(1 ) 1

/(1 ) 1 ,

t tn r z z n r

n r z z n r

n r z z n r

 

 

      

      

      

 
  

 
       (1.5.29) 

 
we obtain the following equation: 
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2 2
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2 2 2 2 2
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n z V z z n z z z n
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z z

z

 

 

              
    

  



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

   (1.5.30) 

 
It can be seen that the equality is fulfilled in the following relation between the 
path parameters: 
 

   2 1 /(1 )z z z     ;        (1.5.31) 
 

     2 11 /(1 )V z z V z z     
 

;        (1.5.32) 
 

     2
2 11 /(1 )z z z z       .      (1.5.33) 

 
Equations (1.5.31)–(1.5.33) give the profiles of absorption, wind velocity, 

and thermal conductivity at which the solution of the problem of thermal 
blooming for a beam with a focal length f2 at every instant can be found in the 
solution of the initial problem for a beam focused at a distance f1 (by the lens 
transformation equations). 

In this chapter, we have considered various aspects of numerical simulation 
of optical wave propagation through the atmosphere. In the following chapters 
these results will be used as a basis for studying the efficiency of various 
schemes and algorithms for minimizing atmospheric distortions in beaming and 
imaging. 
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CHAPTER 2 

Modeling an Adaptive Optics System 
 

In Chapter 1, we discussed methods for numerically simulating the propagation 
of an optical wave through the atmosphere. The approaches considered allow 
adequate modeling of turbulent distortion and thermal blooming of coherent 
optical radiation. However, the development of a numerical model for atmospheric 
distortions of optical waves is not our objective; it is only a tool for studying the 
efficiency of adaptive correction of distortions introduced by a propagation medium 
in the operation of optical systems. 

In the schemes and algorithms of adaptive correction discussed in this book, 
it was presumed that the optical feedback loop necessarily included three 
principal elements: a reference wave containing information on inhomogeneities 
of the refractive index of the medium, a wavefront sensor extracting this 
information, and a wavefront corrector. In a system operating by the phase 
conjugation algorithm, the corrector introduces predistortions into the emitted wave, 
and in the compensation system it corrects aberrations of the radiation received. 

To study the efficiency of adaptive correction of atmospheric distortions, one 
should keep in mind the finite spatial and temporal resolution of an adaptive 
system, i.e., its ability to control the wavefront (or wave phase) to be corrected 
with a certain speed and in some finite range of spatial scales. The temporal 
resolution of an adaptive system is determined on the one hand by the correction 
algorithm and on the other hand by the operating band of the frequencies of the 
electronic, mechanical, and optical elements of the system. The spatial resolution, 
in turn, is mostly determined by the geometry of such key elements of the system 
as the wavefront sensor and the corrector. In this chapter we consider just this 
aspect of the problem, i.e., development of an efficient numerical model of the 
sensor and corrector from the viewpoint of making allowance for their geometry, 
in particular the arrangement and number of elements. 

An important factor that affects the efficiency of adaptive optics systems using a 
reference wave is the technique by which the source of this wave is formed, as well 
as the principles and methodology of extracting information on atmospheric 
distortions from this wave. Recently, some new aspects to this problem have arisen. 
One of them is the description of phase distortions of the wave with wavefront 
dislocations that are due to points with zero intensity arising in the reference wave 
[1, 2]. Another no less interesting and urgent aspect is the use of an artificial 
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reference star [3, 4] formed using the effect of laser radiation scattering in the 
atmosphere. 

Thus, in this chapter we consider the problems of theoretical analysis and 
numerical simulation of the following principal elements constituting adaptive 
optics systems: (1) the source of the reference wave, (2) a sensor of wavefront 
distortions, and (3) a wavefront corrector. Here we also discuss the problems of 
efficient and adequate simulation of the following versions of AOS elements: an 
independent reference source, a natural reference star, an artificial reference star, 
an ideal quadrature phase sensor, an ideal phase difference sensor, a local tilt 
sensor (Hartmann sensor), a modal corrector, a deformable mirror with given 
response functions, and a segmented mirror consisting of hexagonal elements. 
This study is necessary for conducting the numerical experiments on adaptive 
correction of atmospheric distortions described in Chapters 3 and 4 of this book. 
Every section of this chapter considers one of the AOS elements listed here. 

 
2.1  A Reference Wave in an Adaptive Optics System 

 
Most adaptive systems use a reference wave to obtain information on 
atmospheric aberrations [5, 6]. The almost the sole exception is the system of a 
priori correction [7, 8]. In phase conjugation systems [9-11], a flare from a target, 
an additional laser, or radiation backscattered by the atmosphere serves as a 
source of the reference wave [3]. In image correction systems employing 
compensation for wavefront aberrations [12, 13], a part of the energy of the wave 
to be corrected is used to measure distortions. 

To estimate the limiting capabilities of adaptive correction, we consider the 
reference wave to be coherent monochromatic radiation described by the 
complex amplitude  , ,U z t


, 

 

   ref , , ( , , )exp .E z t U z t i t ikz    
  

      (2.1.1) 

 
In a paraxial approximation, propagation of this wave in the negative 

direction of the z-axis is described by the following parabolic equation: 
 

 
2 2

2 2 2
02 2

2 1
U

ik k n n U
z x y

   
        

.                  (2.1.2) 

 
In image correction systems, the wave to be corrected propagates in the same 

direction as the reference wave and is described similarly, whereas in beam-
focusing systems the propagation directions of these waves are opposite; i.e., the 
complex amplitude of the beam to be corrected, 

 

   , , ( , , ) exp ,E z t e E z t i t ikz      
  

           (2.1.3) 
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is described in the paraxial approximation by the following equation: 
 

 
2 2

2 2 2
02 2

2 1
E

ik k n n E
z x y

   
       

.                   (2.1.4) 

 
Obviously, for a closed description of an adaptive loop, Eq. (2.1.2) should be 
complemented by the corresponding boundary condition in the plane of the 
reference wave source. 

 
2.1.1 Counterpropagating a reference beam in a phase 

conjugation system 
 

Consider a system operating by the phase conjugation algorithm. To study the 
limiting capabilities of this algorithm, it is logical to set the reference wave so that 
in the absence of distortions the beam propagates in the same way it does in the 
absence of adaptive control. To do this, the boundary condition for the field E0 of 
the corrected beam should be written through the deviation S of the phase S of 
the reference wave from the diffraction distribution dS : 

 
           0 00, exp , dE E A i S S S S          
    

,         (2.1.5) 

 
or, what is equivalent,  
 

        0 0 exp arg .dE A i U U        
   

              (2.1.6) 

 
Here A0 is the complex amplitude of the initial beam in the plane of the emitting 
aperture. If the wavelengths of the reference beam and the beam to be corrected 
are different, then adaptive correction should be formulated in terms of the 
wavefront; i.e., through an eikonal of the reference wave  : 
 

         0 0 exp .dE A ik        
   

            (2.1.7) 

 
Equations (2.1.6) and (2.1.7) impose no restrictions on the reference wave, but 
they assume that the diffraction-limited phase of the reference wave is known. 

We can proceed from the fact that the phase conjugation correction is usually 
formulated as a wavefront reversal (WFR): 

 

   0 0E U   
 

     (for WFR)                              (2.1.8) 

 
in the absence of amplitude control; i.e., 
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       0 0 0exp argE A i U    
  

    (for PC correction).     (2.1.9) 

 
For the result of correction by Eq. (2.1.9) at diffraction propagation to be the 
same that for an uncorrected beam, it is sufficient to impose the following 
condition on the field of the reference wave: 
 

   0 0constdU A  
 

; i.e.,     d
0 0arg argU A    
 

.     (2.1.10) 

 
Because of reversibility of the wave equation, this condition is fulfilled if the 

boundary condition for the reference wave is expressed through the diffraction 
solution for the uncorrected beam: 

 

   , const ,dU L E L  
 

,                               (2.1.11) 

 
where L is the length of the propagation path. 

In such a formulation of the boundary condition for the reference wave, the 
PC moves toward the exact WFR as optical distortions on the path decrease. This 
guarantees that at least for small distortions, the result of correction with 
boundary condition (2.1.11) is closer to the diffraction solution than with any other 
boundary condition. Thus, the estimates of the correction efficiency can be 
considered to be estimates of the limiting efficiency (if the efficiency criterion is 
chosen so that its value reaches the maximum at diffraction-limited propagation). 

As distortions increase, such a reference wave differs increasingly more from 
the optimal one. The problem of finding the optimal boundary conditions for the 
reference beam is not considered here because in practice it is usually impossible 
to create a reference wave with given boundary conditions. 

 
2.1.2 Guide star in an adaptive telescope 
 
Consider now the problem of modeling a reference source in an adaptive image 
correction system. In this case, the reference wave and the wave to be corrected 
propagate in the same direction. In a particular case in which a part of the energy 
of the wave to be corrected is directed onto the sensor of wavefront distortions, 
this wave also serves as a reference wave at the same time. 

In an image correction system such as a ground-based astronomical adaptive 
telescope, the source of the reference wave is either a natural or an artificial star. 
(We will return to this problem in Chapter 5). For a natural star, the main sources 
of the residual error of correction are angular anisoplanatism [14-18] and 
quantum noise connected with low radiation intensity. For an artificial (laser) 
guide star, the error of correction is connected with an additional (other) type of 
anisoplanatism caused by the fact that the divergent reference wave and the plane 
wave to be corrected pass through different turbulent inhomogeneities. Another 
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source of error is jitter in the location of the artificial star, which makes it 
impossible to correct the global tilt. 

It is not difficult to write the boundary conditions for a reference wave whose 
source is a natural star. It is a simple plane wave incident on the atmosphere at some 
angle to the z-axis: 

 
   0 , expU A ik   
  

,                                (2.1.12) 

 
where 


 is the vector determining the angle of inclination to the system’s axis. 

However, if this angle is larger than 1 arcsec, we face some difficulties in 
numerically simulating propagation of the reference wave. Actually, the spatial 
spectrum of the complex amplitude of such radiation has the form  
 

       2exp expU A ik i d A k
 

 

        
                (2.1.13) 

 
and corresponds to the spatial frequency .k    The maximum spatial frequency 
that can be presented adequately on a grid with the step   according to the 
Kotelnikov sampling theorem is equal to  
 

max /    .                                      (2.1.14) 

 
From the condition maxk    we have 

 
/ / 2k       .                             (2.1.15) 

 
For the typical values of  = 106 m and  = 101 m, 
 

65 10 1arcsec.                                      (2.1.16) 

 
At the same time, to estimate the effect of angular anisoplanatism on the 

quality of image correction, angular distances on the order of 10 arcsec are most 
significant from a practical viewpoint; therefore, calculations should be 
performed on a grid with a step of 102 m. In this case, to make calculations for a 
10-m telescope, we need a 1000  1000 grid, leading us to unjustifiably high 
computational expense. 

This expense can be decreased in the following way: The boundary condition 
for the complex amplitude is formulated similarly to that of a wave propagating 
exactly along the axis of the optical system ( 0  ), and every phase screen  S 


 

is shifted in the cross-wise direction by the distance z  
 

 that is equal to the 
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distance between the axis of the optical system and the “central” ray of the plane 
wave; i.e., the following substitution occurs: 

 
       0 0, , , 0 ,U S U S z         
      

.              (2.1.17) 

 
For 10 arcsec,   the shift is roughly 1 m at the top boundary of the 

atmosphere z = 20 km. Note that in simulating the large-scale segment of the 
spectrum of atmospheric turbulence by the polynomial method, this requires the 
diameter of the circle of expansion to be also increased by 1 m. If the direction of 

the vector 


 coincides with the direction of the vector V


, then the spatial shift of 

the phase screen can be replaced with the equivalent time interval; i.e., 
 

       0 0, , , , 0 , ,U S t U S z V        
      

.              (2.1.18) 

 
Consider then the problem of simulation of an artificial guide star. The idea 

of forming an artificial reference source arose because of the need to eliminate 
the correction error caused by angular anisoplanatism. Therefore, the location of 
such a reference source almost coincides with the direction of the optical axis. 

A laser guide star is formed by radiation backscattered in the atmosphere. In 
this case, one has to simulate both upward propagation of the laser beam and 
downward propagation of the backscattered radiation. Both cases are complicated 
by some difficulties that require modification of the numerical method. 

One difficulty arises when a calculation is performed for a focused beam 
with a large Fresnel number. For example, for a 3-m telescope (aperture D=3 m) 
when laser radiation is used at a wavelength of 0.5×106 m focused at the altitude 
L = 10 km, the Fresnel number is  

 

F 6 4

3
42,

0.5 10 10

D
N

L 
  

  
                      (2.1.19) 

 
and the wave parameter for the Gaussian beam (for R = D/2) is 
 

 

6 4
1 3

2 2 2

0.5 10 10
1.5 10

6.28 0.752 4

L L

kR D


   

     


.   (2.1.20) 

 
At such a small wave parameter, the need to apply lens conversion is obvious, 

but its use in such a situation is rather problematic. At the same time, the main factor 
giving rise to the residual error of correction is of a purely geometric character. The 
large Fresnel number for a relatively short vertical atmospheric path also leads to the 
conclusion that the approximation of geometrical optics is probably acceptable for 
this problem. Such an approximation is used in Fried’s paper [19]. However, this 
paper is analytical. In our case, this geometrical optics treatment should be 
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included in the numerical model developed for the wave optics. The following 
solution of this problem is proposed. 

The upward propagation of the radiation is viewed as the formation of a 
convergent cone of rays crossing in the focal plane of a lens, and the diameter of the 
cone base is equal to the diameter of the emitting aperture. In simulating the 
upward propagation, it is important to determine the shift of the focal spot in the 
cross direction caused by random refraction. Diffraction and turbulent broadening 
can be neglected here in the first approximation because the size of the sensor 
subaperture d is usually selected to be roughly equal to the coherence length r0. As a 
result, the angular size of the focal spot (~/r0) roughly corresponds to the diffraction 
size of the spot at the focus of a subaperture of the Hartmann sensor (~/d). 
Therefore, the reference source is visible through the subaperture as an almost 
unresolved object. 

The shift of the focal spot (cone vertex) can be written as 
 

 
0

L

s z dz  
 

,                                     (2.1.21) 

 
where L is the path length and  s z


 is the vector determining the direction of the 

beam axis in the cross section z. In a numerical experiment, because of discrete 
representation of a randomly inhomogeneous medium, this integral is expressed 
as a sum corresponding to approximation of the integral by the method of 
rectangles:  

   1
1

ZN

j j j
j

s z z z


   
,                               (2.1.22) 

 
where zj is the location of the jth phase screen and Nz is the number of phase 
screens. The tilt of the beam’s axis is determined by its refraction at all previous 
phase screens, including the current one; i.e., 
 

 
1

j

j j
j

s z s 


 
,                                     (2.1.23) 

 
where js


 is the contribution of the jth screen. It is proposed to determine it as the 

average gradient of the phase Sj, with averaging performed over the cross section 
of the cone in the plane zj: 
 

( , ) ( , )
r

jx
j j r j r

r

S
s dx dy dy S x y S x y

x



       , 

2 2 ,rx r y                                (2.1.24) 
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where r is the cone radius in this cross section. The origin of the coordinate 
system (x, y) in the integral is brought into coincidence with the location of the 
cone axis in the cross section. 

The next step is simulation of the downward propagation of the reference 
wave. Assuming the reference source to be pointlike (with location b


) and 

neglecting ray bending at propagation through the turbulent medium, we can 
write fluctuations of the optical path for the ray coming at the point  ,0


 as 

follows: 

    
0

,
L

b
bl n z L z dz

L


       

      .            (2.1.25) 

 
This equation has been derived under the condition  
 

 2
b 

 
/L

2
 << 1;                                    (2.1.26) 

 
i.e., in the paraxial approximation, where b


 is the coordinate of the reference 

source (beacon). 
The well-known conclusion that an adaptive system operating against an 

artificial guide star cannot compensate for image jitter follows directly from the 
above equation. In reality, an inhomogeneity in the form of a thin prism is 
situated immediately in front of the telescope aperture; i.e., 

 
 ( , )n z z  

   ,                                    (2.1.27) 

 
where 


 is the prism angle, and L is the height (distance) at which the reference 

source is located. From purely geometric reasoning, it is clear that the reference 
source formed through this lens is situated at the point 
 

b L  
 

.                                            (2.1.28) 

 
Then, as expected, 
 

   
0

0
L

L
l z dz

L


         

        .              (2.1.29) 
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Equation (2.1.25) is basic for numerical simulation. The randomly 
inhomogeneous field of the refractive index is represented, according to the 
splitting technique, as a series of thin phase screens; this is equivalent to the 
following representation of  ,n z

 : 

 

     
1

,
ZN

j j
j

n z S z


     .                       (2.1.30) 

 
Substituting Eq. (2.1.30) into Eq. (2.1.25), we obtain 
 

   
1

ZN
b

j b j
j

l S z L
L 


         

     .                (2.1.31) 

 
In numerical simulation, the cross coordinates are also discrete; that is, the 

values of phase distortions are known only at the nodes of the grid: 
 

 , , , ,l m j l m jS S x y z .                                (2.1.32) 

 
In the case being considered, these values are to be interpolated to an 

arbitrary point. Simple two-dimensional linear interpolation seems to be 
sufficient for this problem. The interpolation is performed according to the 
following equations: 

 

         

         
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S x y S x y
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y

S x y S x y
S x y S x y x x

x






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


  


    (2.1.33) 

 
Here the subscripts (l, m) correspond to the left bottom node of the grid cell 
containing the point with the coordinates  ,x y 


. To calculate the optical 

propagation difference in the plane of the emitting aperture at the nodes of the 
computational grid, we use Eq. (2.1.31) in the form  
 

   , , , , ,
1

zN
b

l m l m l m j l m b l m j
j

l l S z L
L 


          

      ,  (2.1.34) 

 
with interpolation according to Eq. (2.1.33). 

Thus, in this section we have considered three possible models of the 
reference wave. The model of a counterpropagating beam has been formulated so 
that the effects of anisoplanatism are minimal; i.e., the trajectories of the 
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reference beam and the beam to be corrected coincide exactly in the absence of 
distortions. Therefore, when using this model, we are studying the limiting 
efficiency of phase correction in the pure form. The effects of anisoplanatism for 
such problems were considered in Ref. [20], which studied correction of 
turbulent distortions in a wide beam using a narrow reference beam and vice 
versa. 

Since for vertical paths the effects of diffraction at turbulent inhomogeneities 
can usually be neglected, the efficiencies of the phase and amplitude-phase 
correction in telescopes differ insignificantly. Therefore, anisoplanatism is the 
main factor in the problems of adaptive formation of images of astronomical objects. 
Anisoplanatism is a purely geometric factor, and in this respect the models of a 
guide star discussed here are different than the model of a counterpropagating 
beam. 
 
2.2   Wavefront Sensors 

 
In Sec. 2.1, we considered the problem of numerical simulation of a reference 
source that emits a wave bearing information on inhomogeneities in the refractive 
index field of the propagation medium. To extract this information for further use 
in control problems, some electro-optical device should be used. Such devices in 
general are called “wavefront sensors.” This section is devoted to their numerical 
simulation. 

In a general form, the problem of simulating a wavefront sensor can be 
formulated in the following way: there is a grid representation of the complex 
amplitude of an optical wave 

 

 , , , , 0, 1,..., 1I J I JU U I J N   


                      (2.2.1) 

 
resulting from numerical solution of the propagation problem. To be determined 
is a two-dimensional (grid or continuous) function, which is an estimate of the 
phase   (or eikonal  ) of the wave, and the accuracy of this estimate 

characterizes the spatial and temporal resolution of the wavefront sensor to be 
simulated. For an ideal sensor, this estimate should differ from the true value by 
no more than a constant. It is also desirable for the estimate to be a continuous 
function, since the main types of wavefront correctors are incapable of 
reproducing a discontinuous surface. 
 
2.2.1 Ideal quadrature sensors 

 
Some problems of adaptive optics involve determining the limiting efficiency of 
phase correction algorithms as compared with algorithms of amplitude-phase 
correction. Toward this end, it is sufficient in principle to have a model of some 
ideal sensor. Because in the numerical experiment we deal with both the real part  
of the complex amplitude ReE = A cos  and the imaginary part of the complex 
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amplitude ImE = A sin , such an ideal sensor can be called the “quadrature 

sensor” [21]. The phase at every point (node of the computational grid) is 
calculated as the principal argument of the complex amplitude arg(E). Since the 
area of arg(E) is limited by the range [0, 2  ], lines of phase discontinuity 
inevitably arise for aberrations larger than the wavelength  . If these lines are 
closed, they can be removed by adding or subtracting 2 n (n is an integer 
number) in the area enclosed by the discontinuity. 

Direct measurement of the quadrature components of electromagnetic 
oscillations in the optical region is practically impossible. The operating principle 
of any wavefront sensor is based on intensity measurements. Certainly, there are 
a number of wavefront sensor alternatives to the Hartmann sensor [22]. Among 
them are the wavefront curvature sensor and phase contrast sensors [23-25]. A 
wave is first subjected to some (diffraction or interference) transformation, and 
then the intensity distribution pattern is analyzed mathematically [26]. The result 
of this analysis is the estimate of the 2D phase distribution that is sought. 

 
2.2.2 Ideal phase difference sensor 
 
There are two main approaches to the problem of wavefront measurement: one is 
based on measurement of the phase difference, and the other on measurement of 
the local tilt. Measurement of phase difference is based on the interference 
transformation, and the optical part of the sensor is an interferometer. Adaptive 
systems mostly employ lateral shear interferometers. The result of measurement 
in a shear interferometer is an estimate of the phase difference between two small 
areas, and in the ideal case it is the phase difference between two spatially 
separated points. 

Using numerical simulation of optical radiation propagation, it is possible to 
form, in a natural way, a two-dimensional array of phase differences between 
neighboring nodes of the computational grid in the directions of the 0x- and 0y-axes. 
The elements of this array can be written as 
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respectively. These differences can be distorted by imposing, for example, 
additive noise that imitates errors of the interferometric sensor: 
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The reconstruction of the phase as applied to problems of adaptive optics was 
considered in sufficient detail in Refs. [27]–[31]. In numerical simulation, the direct 
method based on the use of a two-dimensional discrete Fourier transform is most 
convenient [32-34] because the complex amplitude of the field is set on a uniform 
grid whose dimensions allows application of a fast Fourier transform (FFT). The 
number of values of the phase difference is twice as large as the number of points 
at which the phase is sought; therefore, the problem is too large to solve. Thus, 
additional conditions are usually imposed on the problem, namely, minimization 
of the square discrepancy [35]: 

 

   2 2

1, , , , 1 , ,
,

minx y
I J I J I J I J I J I J

I J
                  ,    (2.2.4) 

 
or minimization of the integral variance of the estimation error [28]: 
 

2
, ,

,

ˆ( ) min.I J I J
I J

                                   (2.2.5) 

 
Here the angle brackets indicate statistical averaging over the noise ensemble, 

,I J  is the sought estimate of the phase, and ,ˆ I J  is the exact value of the phase. 

In both cases, the problem is reduced to the solution of a set of linear equations in 
the following form: 
 

1, 1, 1 1 ,

, , , 1 1, ,

4

.

I J I J J J I J

x y y x
I J I J I J I J I Jf

   

 

        

        
                     (2.2.6) 

 
The solution of this set of equations is based on the representation of the 

sought and known functions as a Fourier series and the solution has the following 
form: 

    
,

, 2 cos 2 cos 2 2
L M

L M

F

L N M N
 

   
,                (2.2.7) 

 
where Ф is a two-dimensional Fourier transform of the phase  array, and F is 

two-dimensional Fourier transform of the right-hand side of the initial equation. 
If the denominator vanishes at L = M = 0, this indicates that the problem can be 
solved accurately to a constant. 

Since the values of the sought function (phase) at the boundaries are not 
known, the boundary conditions should be given for the phase difference. These 
boundary conditions are included in the right-hand side of the set of equations in 
(2.2.6), but they are connected to the values of the phase at the points lying 
beyond the grid area: 
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Thus, assignment of the boundary conditions depends on the method of 

extrapolating the sought function beyond the domain of definition. Any grid 
function given at a finite N  N grid can be complemented with the periodic one 
by at least one of the two following methods. In the first case, the grid function is 
directly extrapolated periodically without the application of any transformation: 

 
 ,I N J  = ,I J  = ,I N J ;   ,I J N  = ,I J  = ,I J N ,           (2.2.9) 

 
and a discontinuity (jump) is possible at the boundaries of the periods. The 
differences at the boundaries can be calculated through the known values in the 
following way: 
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The other method is to construct a new grid function on the double-sized grid by 
a mirror reflection of the initial grid function [33, 36]. The new grid function 
obtained in such a way continues periodically in both directions with a period of 
2N. The differences at the boundaries of the period for such a function are equal 
to zero, and the problem of reconstruction is solved by the same equation (2.2.6), 
the only difference being that the grid size N is replaced by the double value 2N. 
In the solution obtained, only a quarter of the values corresponding to the initial 
N-dimensional grid are used. 

Since the same set of equations is solved in both cases, the solution 
apparently is independent of the method of periodic extrapolation, at least in the 
absence of noise. Obviously, the first method is more economical in the number 
of mathematical operations because the discrete Fourier transform is performed 
on the N  N matrix, whereas in the second case the matrix is 2N  2N. 

Thus, solution of the set of equations in (2.2.6) with the right-hand side given 
by Eq. (2.2.2) allows the phase (argument) of the complex amplitude to be 
reconstructed accurately to a constant. The addition of noise by Eq. (2.2.3) 
imitates measurement errors. As a result, this mathematical model corresponds to 
an interferometric sensor with a spatial resolution equal to the distance between 
the grid nodes. 

This algorithm also provides a solution to the phase joining problem that 
arises in the model of an ideal quadrature sensor, but only if all discontinuity lines 
of the phase function are closed. This algorithm can be applied instead of 
constructing an algorithm that seeks discontinuity lines; in addition, it automatically 
performs joining. It should be kept in mind that all discontinuities, including  
unclosed ones that join phase dislocations, are eliminated in this case. Thus, the 
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algorithm for solving the problem of reconstructing the grid function from the 
known values of its first differences can be used both for simulation of an ideal 
sensor and for approximate simulation of an interferometric sensor. 

 
2.2.3 Hartmann sensor 
 
Consider the problem of simulation of the second type of sensor: the Shack–
Hartmann sensor. The idea that forms the basis for operation of these sensors was 
formulated by Hartmann [37]. It consists of measurement of local tilts of the 
wavefront at the sensor’s subapertures, followed by calculation of the tilt map for 
the entire aperture. Initially this method was used for testing large-sized (mostly 
astronomical) optics, i.e., as a method of optical testing [38]. 

In the early 1970s, the technology to produce the special Hartmann-type 
diaphragm was developed [39]. This has made it possible to use the Hartmann 
sensor in adaptive optics systems for measuring atmospheric aberrations of the 
wavefront in real time. This modified sensor is also called the Shack–Hartmann 
sensor. 

The Shack–Hartmann sensor is now used most widely in adaptive optics 
systems. The basic layout of this sensor is shown in Fig. 2.2.1. The sensor 
consists of an array of collecting lenslets in whose focal plane the photodetector 
array is situated. Usually the lenslets (subapertures) are arranged in rows, but 
sometimes other configurations (e.g., hexagonal packing) are used [40]. To 
amplify the light flux incident on the photodetectors, photomultiplier tubes or 
other amplifiers are applied. 

The operating principle of the Shack–Hartmann sensor consists of is the 
following: Every subaperture focuses the corresponding partial beam onto the 
plane of the photodetectors. The signals coming from the photodetectors are used 
to estimate the shift of every beam from the optical axis of the corresponding 
lenslet. This shift is assumed to be proportional to the mean local tilt of the 
wavefront within the corresponding subaperture. If an array with a sufficiently 
large number of photosensitive elements [e.g., a charge-coupled device (CCD) 
array] is used, the shift of the focal spot is determined as a shift of its centroid. 
Otherwise, redistribution of energy between quadrants of a four-quadrant 
photodetector is recorded, and the shift is estimated from the predetermined 
direction-finding characteristic. In some systems, the four-quadrant detector 
operates in the zero stabilization mode [40]; i.e., the orientation of the detector is 
adjusted until the image of the light spot creates an equal light level on all four 
quadrants. For numerical simulation of the Hartmann sensor, we have 
implemented two approaches [41]. 
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Figure 2.2.1. Basic layout of the Shack–Hartmann sensor. 

 
2.2.3.1 First method for modeling the Hartmann sensor 
 
This method is based on direct calculation of the intensity distribution in the 
focal spot for every subaperture following estimation of the shift of its centroid. 
Toward this end, fragments corresponding to subapertures are separated from the 
initial array of the complex amplitude. The two-dimensional arrays obtained 
usually have a small size; therefore it makes sense to complement them with zeros 
to obtain the intensity distribution at the focus on a denser grid. The input pupil 
of the sensor has the shape of a circle, and therefore the single-amplitude mask 
should be placed on the distribution of the complex amplitude. The amplitude 
mask is also placed on every subaperture. The hyper-Gaussian mask smoothes 
the sharp edges of a subaperture and improves the accuracy of solution of the 
diffraction problem by preventing overlapping in the region of spatial 
frequencies. 

The next step of the algorithm is calculation of the field intensity distribution 
at a subaperture focus. This step can be carried out in either of two ways: by 
solving the problem of diffraction of a focused beam or by calculating the 
angular distribution of the field in the far zone. In both cases, the result is 
practically the same, since in the paraxial approximation the intensity in the focal 
plane coincides with the angular spectrum of the field. The difference is only in 
the grid scale factor. 

An important factor affecting the measurement error is shot noise caused by 
the quantum nature of light and the photodetector dark current. In numerical 
simulation of the sensor, it is convenient to set the mean number of photons <Np> 
falling on the sensor aperture during the exposure with allowance for the 
quantum efficiency of photoelements as an input parameter. Every node of the 
computational grid in the plane of the focal spot corresponds to a small area of 
the photodetector. For every such area, the mathematical expectation of the 
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number of photoelectrons <np> is determined as a product of <Np> and the 
fraction of light energy incident on this area. From the calculated mean <np>, the 
corresponding random value np is generated, which obeys Poisson statistics. The 
shift of the focal spot is estimated as deviation 


 of the centroid of the 

distribution of grid realization np(xI, yJ). Then the local tilt is estimated as a value 
proportional to the centroid shift and inversely proportional to the focal length f: 

 

cs f 


.                                        (2.2.11) 

 
2.2.3.2 Second method for modeling the Hartmann sensor 
 
This modeling method allows the calculation of the intensity distribution at the 
focus of every subaperture to be omitted. It is based on direct calculation of the 
centroid shift as a gradient of the phase  weighted to the intensity I and 

averaged over the subaperture A. Starting from the parabolic equation, one can 
readily derive the well-known equation [42] for the vector c


of the focal spot 

centroid within the subaperture A: 
 

  2
c

A

kf
I d

P
    

 
.                           (2.2.12) 

 
Here P is the total power of radiation incident on a subaperture. However, the use 
of this equation is complicated by a difficulty connected with differentiation of 
the phase. If after solution of the propagation problem we know the complex 
amplitude, then there is no guarantee that we will succeed in obtaining the 
continuous phase. To avoid this, the weighted phase gradient should be expressed 
through the gradients of the real and imaginary parts of the complex amplitude E: 
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Then, we have the following equation for estimating the local tilt: 
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This equation can also be derived more rigorously by starting from the 

parabolic equation for the complex amplitude without invoking the concept of 
phase. In the computer model, the partial derivatives of the real and imaginary 
parts of the field are calculated with the use of the discrete Fourier transform, 
which is performed at once on the entire grid, and then integrals for separate 
subapertures are estimated. This significantly reduces the number of 
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mathematical operations needed to simulate a sensor with a large number of 
subapertures. 

Reconstruction of the wavefront can also be carried out by different methods. 
There are two main approaches. In one case, local tilts are used to calculate phase 
differences and then algorithms similar to those in interferometric sensors are 
applied [28-30]. In another approach, the wavefront is represented as a sum of 
some functions, and then the local tilts of the wavefront are fitted to the measured 
values. 

For modal reconstruction of the wavefront on the sensor aperture from 
estimates of local tilts, we have implemented a method [43, 44] in which the 
sought distribution is presented as an expansion in some Zernike polynomials Zl: 
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l l
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                                     (2.2.15) 

 
(al are the expansion coefficients) and local tilts in this expansion are fitted to the 
estimates obtained in the wavefront sensor: 
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Here, 

Zlm  is the local tilt of the lth basis function Zl on the mth subaperture, and 

ms


 is the tilt measured on the mth subaperture. The local tilt Zlm can be determined 

by different methods; for example, as a gradient at the center of the subaperture [43] 
or a gradient averaged over the subaperture area [44]. It is easiest to determine the 
components of the local tilt as coefficients of approximation by a linear function; i.e., 
as a result of fitting to the closest plane. The minimization problem [Eq. (2.2.16)] is 
solved by the ordinary variational method, i.e., the partial derivatives with respect to 
the expansion coefficient are set at zero: 
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,                       (2.2.17) 

 
and the resulting set of linear equations can be written in a matrix form as 
 

 kl l kA a B ,                                          (2.2.18) 

 
where Bk is the right-hand side of the kth equation, Akl is the matrix of 
coefficients, and l is the number of the unknown al, 
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The solution of this set can be represented by the inverse matrix: 
 

1
l kl ka A B .                                          (2.2.20) 

 
The matrix is inverted numerically at initialization of the sensor data. Once 

calculated, the inverse matrix is then used at every exposure. The same occurs in 
the actual adaptive system; the reconstruction matrix is saved in the memory of a 
specialized processor whose input data are the vector of measurements. 

Different sets of functions are used for the expansion in Eq. (2.2.15). Most often 
they are Zernike polynomials, as well as the Karhunen–Loeve expansion; however, 
it is worth using the latter if the statistics of aberrations are known [45]. In the 
case of nonlinear distortions, the Karhunen–Loeve expansion loses the sense. The 
software used in the model described here employs Zernike polynomials as a 
basis. 

Another method of phase reconstruction implemented with the same software 
is based on a zonal principle. The first step is estimation of the phase difference 
Δ between the centers of neighboring subapertures: 

 
  1

2km k m k mg g    
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, 

 
where k


 and m


 are the coordinates of the centers of the mth and kth subapertures 

and kg


 and mg


 are the estimates of the phase front tilt on these subapertures. The 

vector character of this record allows the algorithm to be generalized for most 
geometries of subapertures. In particular, we have implemented a model of a cellular 
configuration. For this model, the problem of reconstructing the phase corresponding 
to the minimal discrepancy is written as  
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The inner sum on the left-hand side of this equation consists of six subapertures 
next to the kth subaperture. The minimization problem is solved by the 
variational method, leading to a set of linear equations whose number is equal to 
the number of subapertures N. At N < 100, inversion of the corresponding matrix 
creates no difficulties. Because the phase is determined accurately to some 
constant, an additional condition, e.g., 1  = 0, should be imposed on the matrix 

for conditionality. 
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The numerical model of the sensor was tested in the following way: The 
reference phase was set as a sum of the first ten Zernike polynomials and then the 
Shack–Hartmann sensor was modeled by the technique described here. The 
reconstruction error for the expansion coefficients in the parameters of the 
numerical experiment did not exceed 1% at wavefront aberrations reaching 1–2  
in an area equal to the size of the sensor subaperture. 
 
2.3   Wavefront Correctors 

 
In a certain sense, the wavefront corrector is a final element in an adaptive system. It 
realizes the possibilities embedded in the correction algorithm and provided by other 
elements. The efficiency of an adaptive optics system as a whole depends ultimately 
on the spatial and temporal resolution of the corrector. 

In spite of significant technological progress, it is still a complicated and 
expensive task to produce a high-quality corrector. Therefore, it is an important 
preliminary to determine the requirements for spatial and temporal resolution that 
will provide the desired quality of correction. This determines the parameters in 
the development of numerical models of a wavefront corrector. 

Controllable mirrors are now the main type of correctors applied in adaptive 
optics systems. Two types of adaptive mirrors are usually distinguished: deformable 
and segmented. Specific designs of these mirrors differ in the number of degrees 
of freedom, geometry of actuators, material, shape of segments, etc. Let us 
consider approaches to modeling existing correctors, starting from the most 
widely used theoretical model—a modal corrector. 

 
2.3.1 Modal correctors 
 
We have implemented numerical models of correctors of three types; two of 
them are mentioned above—deformable and segmented correctors. The third 
type—a modal corrector—is a hypothetical device whose response functions are 
components of some expansion basis; usually they are Zernike polynomials. 
Although the corresponding physical device does not actually exist, estimation of 
the efficiency of using this corrector has both theoretical and practical 
significance for several reasons. First, some deformable adaptive mirrors are 
developed and equipped with an interface, which makes it possible to reconstruct 
the set of aberrations corresponding to several first Zernike polynomials [46]. 
Second, the modal algorithm of wavefront reconstruction described in Sec. 2.2 
gives the aberration coefficients from whose number (which is needed to achieve 
the required quality of correction) we can determine the requirements for the 
wavefront sensor. And third, the statistics of the coefficients of the Zernike 
expansion have been well studied for turbulent distortions of the wavefront    
[47-51], and in some cases they give rather simple equations for estimating the 
efficiency of an adaptive correction [52-56]. However, this is not true for 
nonlinear distortions of high-power beams. 
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When using a modal corrector, the corrected phase or wavefront is calculated 
as a difference between the initial wavefront and the truncated series of Zernike 
polynomials: 
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The coefficients al of the series are usually sought from the minimization 
condition of the integral square error of approximation: 
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                   (2.3.2) 

 
If the aperture function corresponds to a circle of the radius R: 
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then, because of orthogonality of the Zernike polynomials on a circle, the 
coefficients are determined as the expansion coefficients: 
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Otherwise, the problem is solved by the variational method, giving a set of 

linear equations that can be written in a matrix as  
 

kl l kA a B ,                                     (2.3.5) 
 

where 
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   (2.3.6) 
2( ) ( / ) ( )k kB W Z R d     

  
. 

 
In a numerical model, all functions are as a rule given on the grid and the 
integrals are replaced by the corresponding sums: 
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In this case, solving Eq. (2.3.5), we minimize the parameter 
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2.3.2 Deformable mirrors 

 
There are various deformable mirrors that are different in both the design of their 
actuators and how they are fastened to the back surface of a mirror plate, 
adaptive mirrors with a bimorph basis [57-60] in which the distributed load is 
applied to the plane surface, etc. Mirrors with discretely arranged points of force 
(in some case, force moment) application have gained the widest acceptance [61]. 
Here we consider the simplest and therefore most widely used technique of 
mirror surface control involving the use of actuators. In theoretical papers, it is 
usually acceptable to describe such a deformable mirror through the given 
response functions. The mirror surface is described as a weighted sum: 
 

   
1

L

l l l
l

S a f


     
,                              (2.3.9) 

 
where al is the deflection of the mirror surface at the point of fastening of the lth 
actuator .l


 The response functions fl can be measured experimentally, 

calculated as a solution of the set of mechanical equations, or given, based on 
some reasons. In a number of papers [62, 63] it was shown that the Gaussian 
response function 

  2 2exp( / )f w  


                               (2.3.10) 

 
agrees well with experimental response functions.The halfwidth w can be found 
from comparison with the experimental data. It typically ranges from 0.7 to 
0.8 d, where d is the spacing between actuators. 

To approximate the surface needed by a deformable mirror with the given 
response functions, the minimization problem [Eq. (2.3.8)] written in the 
following form: 
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2

2 2

1

min
L

l l
l
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   
            (2.3.11) 

 
was solved. 
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To reduce computational expense, the response functions were given as the 
truncated Gaussian function: 

 

   2 2exp , 2

20,

w w
f

w

       


.                        (2.3.12) 

 
The elements of the matrices [Eq. (2.3.5)] were calculated as follows: 
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             (2.3.13) 

 
The actuator fastening points were set as a equidistant grid whose node 
coordinates (xl, yl), l = 1,..., L, were calculated by the following equations: 
 

[ / ]l cx R l L d   ; 

{ / }l cy R l L L d   .                       (2.3.14) 

 
The square brackets in Eq. (2.3.14) denote the integer part of a value and the 
braces are for the fractional part of a value; Rc is the radius of the corrector 
aperture. 
 
2.3.3 Segmented correctors 

 
The currently available designs of segmented correctors [64, 65] differ in two 
principal parameters: segment (element) shape and the number of their degrees of 
freedom. The shape of an element is usually either square or hexagonal. The number 
of degrees of freedom of every element varies from one to three and determines, 
respectively, position control (one degree of freedom), slope control (two degrees 
of freedom), and position and slope control (three degrees of freedom). 

The corrector surface S can be described mathematically through the 
response functions: 

   
1

( )
L

l l l l
l

S a w f


         
,                    (2.3.15) 

 
where the response function fl  is given in the form  
 

     ; ; ,l l l l l l l l lf C f A x B y f A x B y C        
  

    (2.3.16) 
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for one, two, and three degrees of freedom, respectively. The aperture function of 
a corrector element w is taken to be equal to unity inside the corrector plate and 
zero outside of it: 
 

 
1, ,

0, .

A
w

A

   




                         (2.3.17) 

 
For a corrector with the square shape of elements, the aperture function can 

be easily set as 
 

 
2 2,1,

2 2,0,

x d y d
w

x d y d

       


                          (2.3.18) 

 
where d is the cross dimension of the element. It is a more complicated problem 
to set the aperture function and the central positions of elements for a corrector 
with hexagonal packing of segments. Some difficulties arise in formalization of 
the algorithm and its numerical implementation, especially when constructing a 
numerical model of a corrector with an arbitrary number of elements inscribed in 
an aperture of a given size. 

In our software, this problem is solved in the following way: The input 
parameters of the procedure are the corrector aperture radius R and the number of 
“rings” of elements N. One ring corresponds to a 7-element corrector, two rings 
to a 19-element corrector, three rings to a 37-element corrector, and so on. The 
first step is determination of the radius r of a circle circumscribed around the 
element. It is calculated so that corrector segments completely fill an aperture of 
the radius R. Omitting the corresponding purely geometric consideration, we 
present here only the resulting equation [66]: 

 
r = R/3 [(N + 1)/2 – 1]   for odd N,    (2.3.19) 

r = R/ 3/4 + (3/2 N + 1/2)
2
   for even N. 

 
Then the circle of rings of segments begins. For every ring, the circle begins from 
the segment whose center lies on the abscissa to the right of the corrector center. 
The coordinates of the segment centers are calculated by the following iterative 
formula: 
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         (2.3.20) 
 

where m is the ring number, k is the number of a segment in the ring, and braces 
are for the fractional part of a value. Then the circle of grid points inside the 
segment begins. To determine whether a current point lies within the segment, 
the length of a line connecting the segment center and the boundary and passing 
through the current point (x, y) is calculated as 
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    (2.3.21) 

 
where arctan2 is the Fortran function. The aperture function of the segment is 
determined as follows: 
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For every segment, the control vector {Al, Bl, Cl} is determined by solving the 
problem of minimization of the square error of the approximation of phase  : 

 

        22 2 minl l l lW w f d          
     

.   (2.3.23) 

 
This problem is solved by the least-squares method. 

In this section we have considered the problem of numerical simulation of 
wavefront correctors and described the algorithms for its solution. At this point 
we finish consideration of the adaptive system elements and description of the 
software for their numerical simulation. 

We have developed a flexible and efficient numerical model for the elements 
of the optical feedback loop of an adaptive optics system. This model fits well 
with our software package describing the propagation of optical waves through 
the atmosphere. It has made it possible to estimate the limiting efficiency of 
adaptive correction and to transform the well-known mathematical model of the 
correction loop into real algorithms, numerical schemes, and computer programs 
that have passed thorough testing. In some cases, to achieve this result the 
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corresponding mathematical equations were reformulated in forms more 
convenient for numerical simulation. As a result, this chapter presents and 
systematizes ideas on numerical simulation of the correction loop that were 
published in different years [66-69]. 

The following chapters are devoted directly to the efficiency of applying 
adaptive correction to the formation of beams and images in the atmosphere. The 
calculated results presented in these chapters are in good agreement with the 
known analytical estimates and experimental data. This points to the correctness 
of our numerical simulation methodology, the algorithms used, and the 
corresponding computer programs. 
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CHAPTER 3 

Adaptive Imaging 
 

In this chapter we consider several problems for adaptive imaging in a turbulent 
atmosphere. It is well known that the angular resolution of diffraction-limited 
optical systems is determined by the ratio of the working wavelength  to the 
diameter of the entrance pupil D [1]. When the image of an extraterrestrial object 
is formed, the resolution is determined by the ratio of the wavelength to the 
coherence length r0 [2, 3], whose value in turn is determined by the integral 

structure characteristic of atmospheric turbulence 2
nC . At the places where 

astronomical observatories are located, the typical value of r0 is roughly 10–
20 cm for the visible spectral region. 

Up-to-date astronomical instruments include a primary mirror from 2 to 10 m 
in size. Their actual angular atmospheric resolution, which is on the order of 1 
arcsec, proves to be D/r0  10–100 times worse than the diffraction limit and is 
mostly independent of the aperture diameter and the wavelength. The aim of an 
adaptive optics system is to suppress atmospheric blurring of an image and 
provide for the angular resolution close to the diffraction limit. The typical 
structure of an adaptive telescope is shown in the schematic below.  

 

 
 

Structure of an adaptive telescope. 
 

A wavefront distorted by turbulent inhomogeneities is reflected from the 
primary and secondary mirrors and arrives at the wavefront corrector. Some of 
the energy of the corrected radiation is directed to the image recording system 
and the rest goes to the wavefront sensor, which measures residual aberrations 
and generates the corrector control signals. 
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This chapter considers the aspects of telescopic imaging that are important 
from the viewpoint of improving the efficiency of astronomical observations; 
namely,  

  minimization of the width of the point spread function of an 
atmosphere–telescope system that is due to selection of the optimal 
wavelength without correction of distortions; 

 PSF parameters during operation of an adaptive system in the partial 
correction mode, i.e., at large residual aberrations; and 

 efficiency of phase correction of turbulent distortions on a horizontal 
path at strong intensity scintillation; this problem is connected with the 
use of adaptive systems in optical communication. 

 
3.1  Calculation and Minimization of Image Distortions 

 
In this section we consider the possibility of minimizing blurring of the image of 
a pointlike source such as an astronomical object. The optimized parameter is the 
observational wavelength, and the allowance for the outer scale of turbulence is a 
decisive factor in the problem considered. 

 
3.1.1 Imaging in an atmosphere–telescope system  
 
Let the imaging system (telescope) be a thin collecting lens with the focal length 
f described as an amplitude-phase transparent 
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( )exp
2

A W ik
f

 
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,                                 (3.1.1) 

 
where  W


  is the pupil amplitude function. Now study the propagation of 

monochromatic radiation between the plane of the entrance pupil and the system 
focus within the framework of the scalar theory of diffraction. Determine the 
slow component  ,E z


 of the complex amplitude of the electric component of 

electromagnetic oscillations  ,E z
 

 and its intensity as 
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EE I  ,         (3.1.3) 
 

where c is the speed of light in a vacuum, n0 is the refractive index of the 
medium, e


 is the polarization vector, k is the wave number, and  is the 

frequency of electromagnetic oscillations. In the paraxial approximation, the 
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propagation of the complex amplitude is described by a parabolic equation of the 
following form: 
 

2 2

2 2
2

E
ik E

z x y

   
     

.                                  (3.1.4) 

 
The boundary conditions of the problem are the product of the complex 

amplitude of the incident field Е0 and the function of the entrance pupil  A

 : 

 

0( , 0) ( ) ( )E E A    
  

.                                  (3.1.5) 
 

The solution of the parabolic equation (3.1.4) with the boundary condition of 
Eq. (3.1.5) in the focal plane z = f  has the form [4] 

 

           

 
 

2
0

2

, exp ;

exp
,

fE f E C d W E ik f

i ik
C

f

            

 
 




    

 

 
and can be expressed through the Fourier transform (angular energy spectrum) 
 

       2
0 expQ d W E i        

    
      (3.1.6) 

 
in the following way: 
 

         2 ( )fE C Q k f c Q f        
  

.                (3.1.7) 

 
In the angular coordinates ,f  

 
 

 
   ( )fE C f Q k   
  

.       (3.1.8) 

 
Then, the mean (long-exposure) [3] intensity distribution in the image plane can 
be written as follows: 

 

      2( ) f fI E E Q k     
   

.             (3.1.9) 

 
Consider the equation for the mean square of the modulo spectrum  
 

              



80 Chapter 3 

 
 

 

          

2

2 2 exp .

Q

d d W W E E i



                  



        

      (3.1.10) 
 

Replacing the representation of the field in terms of the complex amplitude by 
the representation in terms of the complex phase   , 


 

 

    0 expE I i   
 

,                 (3.1.11) 

 
we derive the following equation for the expression in the angle brackets in the 
integrand of Eq. (3.1.10): 
 

         

       

0

2
0 0

exp

1 1
exp exp ,

2 2

E E I i

I I D





         

              

   

     (3.1.12) 

 
where ФD  is the structure function of the complex phase and I0 is the mean 

intensity of the field. After a change of variables, 
 

, ( ) / 2 r           
     

,                         (3.1.13) 

 
Eq. (3.1.10) takes the form 

 

       2 2 21
0 2exp exp

2 2
Q I d i D d rW r W r

               
    

      
. 

  (3.1.14) 
 

For a round aperture of diameter D, 
 

 
1, 2

.
0, 2

D
W

D

     
                                (3.1.15) 

 
Calculation of the inner integral in Eq. (3.1.14) gives the following equation: 
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(3.1.16) 
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and corresponds to the unnormalized diffraction-limited optical transfer function 
  


. Integration over the angular variable in the outer integral in Eq. (3.1.14) 

for the isotropic structure function leads to the following final equation for the 
mean intensity of the image: 
 

     
2

0
0 0 0 02

0

1
( ) exp , .

2 4

D
P D

I d J k D P I
              

 
 (3.1.17) 

 
In the neglect of turbulent amplitude fluctuations, the structure function of 

the complex phase transforms into the structure function of the real phase: 
 

   D D    .                              (3.1.18) 

 
It is connected to the spatial spectrum of phase fluctuations F by the equation 
  

      2
0

0

4 1D F J d


         .                (3.1.19) 

 
The equations obtained [Eqs. (3.1.17) and (3.1.19)] serve then as a basis for 
calculating the turbulent PSF, knowledge of which is needed to solve a number 
of problems. The first is the minimization of the PSF width, which is considered 
next. 

 
3.1.2 Minimization of the width of a turbulent PSF 

 
Generally, the measure of the resolution of optical systems is usually the integral 
resolution, which is equal to the integral of the normalized optical transfer 
function (OTF)   


. When the images of pointlike objects are formed, for 

example, in astronomy, the resolution is characterized, as a rule, by the width of 
the PSF. Traditionally, astronomers determine the level of turbulent distortions as 
the PSF width, which is defined as the angular distance at which the value of the 
PSF halves. 

Before turning our attention to the problem of adaptive correction, let us 
study the possibility of minimizing turbulent image distortions. By minimizing, 
we mean selection of the wavelength at which the PSF width achieves the 
minimum for the given parameters of the astroclimate: the integral intensity and 
the outer scale of turbulence. 

The width of the turbulent PSF is determined by the largest of two values: 
the diffraction resolution of the instrument /D and the turbulent resolution /r0. 
With a diameter much larger than the coherence length, the PSF width is 
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determined by turbulence and at D < r0, it is determined by diffraction at the 
aperture. 

At D < r0, an increase in the diameter leads to a corresponding decrease in 
the PSF width. When the aperture diameter reaches the coherence radius, its 
further increase leads only to an increase in the image intensity, because the 
images formed by subapertures with radii r0 add up incoherently (in intensity). 

Within the framework of the Kolmogorov theory of turbulence, wavelength 
variations have practically no effect on the angular resolution of a ground-based 

telescope because r0
6 5   and  r0

1 6  . As the wavelength changes from the 

visible (0.5 m) to the infrared (10 m) region, the turbulent resolution is 
improved only 1.65 times, whereas the diffraction resolution decreases 20 times. 
Therefore, a marked gain can be obtained only with a very large aperture. For the 
actual parameters, the PSF width usually has a slightly pronounced extreme point 
(minimum) in the near IR region. 

The above reasons are true if the outer scale of turbulence L0 is much larger 
than the aperture diameter. However, some recently published papers [5, 6] assert 
that the effective outer scale of turbulence on vertical paths is not as large as was 
thought earlier. In any case, for the apertures of current telescopes, the ratio D /L0 
does not satisfy the condition D/L0  << 1. Therefore the angular resolution 
becomes a function of three parameters: aperture diameter, Fried radius, and 
outer scale. The normalized (to the diffraction limit) resolution becomes a 
function of two parameters: D/r0 and D/L0. 

The dependence of the angular resolution on these parameters should be 
studied for evaluation of astroclimatic conditions in the places where 
astronomical observatories are situated and for the possible gain from partial 
adaptive correction; i.e., from equipping the telescope with an adaptive system 
having low spatial resolution. First of all, this is important for designing the 
“simplest” adaptive systems that correct the total wavefront tilt, because the 
variance of its fluctuations depends significantly on the outer scale. 

In our calculations, Eqs. (3.1.17) and (3.1.19) were used and the spatial 
spectrum of phase fluctuations was set in the form of the Karman spectrum      [7, 
8]: 

    11 65/3 2 2
0 00.489F r L

 
     .                       (3.1.20) 

 
The structure function corresponding to this spectrum and calculated by 
numerical integration of Eq. (3.1.17) is shown in Fig. 3.1.1.  
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Figure 3.1.1. Phase structure function corresponding to the spectrum of Eq. 
(3.1.20) and calculated by numerical integration of Eq. (3.1.17). 

 
As can be seen from the figure, the structure function saturates at 3.7(L0/r0)

5/3, 
reaching the level of 0.9 saturation at /L0 = 3. This agrees with the theoretical value 
for the phase variance:  

 
2 2 2 5/3 5/3

0 0 00.78 1.85( / )nk C LL L r   . 

 
Consider now how the PSF changes as the outer scale L0 decreases for the 

fixed ratio D/r0. The results calculated for the PSF [as a function of /( / )D  , 

where   is the angle] are shown in Fig. 3.1.2. The calculation has been made for 
D/r0 = 10. The ratio D/L0 took the values of 1, 101, and 102. It can be seen that 
the PSF width depends markedly on the outer scale. The axial value of the PSF 
[Strehl ratio, SR] almost doubles as the outer scale decreases from 100 to 1 
aperture diameter. 

 

 
 

Figure 3.1.2. Turbulent PSF for different values of the outer scale: D/L0 = 1 
(solid curve), 101 (dotted curve), and 102 (dashed curve). The normalized 
aperture diameter D/r0 = 10. 
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Let us study in detail the dependence of the PSF width and the SR on L0/D at 
different values of D/r0 (Fig. 3.1.3). It can be seen that the outer scale affects 
most strongly the PSF parameters at the aperture diameter D/r0  10. At small 
D/r0, turbulence has a weak effect on the PSF and therefore the effect of its outer 
scale is also weak. 

 
 
 

 

 

 

 
Figure 3.1.3. Dependence of PSF width and SR on L0/D at different values 
of D/r0. 
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For large values of D/r0 (D/r0 > 20), the effect of the outer scale also 
weakens, but for another reason. From a mathematical point of view, this can be 
explained as follows: In the integral [Eq. (3.1.17)], the domain significant for 
integration is determined by the exponent of the phase structure function  .D   

At 0 ,r   the value of the exponential factor becomes much less than unity. 

Consequently, the domain of significant integration is limited by the 
inequality 0.r   Therefore, as D/r0 increases, the value of L0 at which the 

structure function deviates markedly from the power dependence decreases. 
Let us study now the wavelength dependence of the PSF width for the finite 

outer scale. Consider a particular example. For places with a good astroclimate, 
the typical value of the parameter r0 in the visible region (0.5 m) is about 20 cm. 
The corresponding integral structure characteristic of refractive index 
fluctuations is Cn

2
 L = 2.21013, and for an arbitrary wavelength it is r0 = 20 cm 

×(/0.5 m)6/5. 
Figure 3.1.4 shows the wavelength dependence of the PSF width for the 

outer scale of turbulence from 0.1 to 100 m. The calculations have been made for 
telescopes 1–8 m in diameter. 

At L0 > 10 m, an increase in the wavelength leads to some decrease in the 
PSF width. However, this gain is noticeable only for large apertures. For 
D = 8 m, the transition from  = 0.5 to  = 4.5 m causes a decrease in turbulent 
blurring from 0.5 arcsec to 0.25 arcsec at L0 = 1 m. For apertures of 1–2 m, the 
transition into the infrared region gives rise to diffraction effects and an increase 
in the PSF width. At the outer scale L0 = (0.1–0.3) m, the PSF width is determined 
by the diffraction effects in almost the entire region of the wavelength; i.e., it 
increases linearly with growing . 

A quantitative analysis shows that at L0 = 1 m the wavelength dependence of 
the telescope’s resolution is most pronounced. Thus, the optimal wavelength 
increases from 1 m for a 1-m aperture to 2 m for a telescope 8 m in diameter. 
As this takes place, the minimum PSF width changes respectively from 0.35 to 
0.05 arcsec. For an 8-m telescope, this gives an almost eightfold gain compared 
with the visible region (0.4 arcsec at 0.5 m). The gain in resolution achieved at 
the optimal wavelength increases almost linearly as the telescope diameter 
increases and roughly equals D/L0. 
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Figure 3.1.4. Wavelength dependence of the PSF width for the outer scale of 
turbulence from 0.1 to 100 m and different diameters D of the telescope. 

 
3.2 Study of Angular Resolution and Contrast in Large 

Residual Wavefront Distortions 
 
Up-to-date telescopes have apertures whose diameter is 10 times larger than the 
atmospheric coherence length for the visible region. To correct turbulent 
distortions completely, the adaptive system in such telescopes should have 
hundreds of correction channels. The complexity and cost of adaptive optics 
devices grows rapidly as the requirements for spatial resolution increase. 

Many projects aimed at developing adaptive systems for large telescopes 
involve the development of technological solutions for a relatively small number of 
degrees of freedom in the corrector. In the infrared region, such systems can provide 
almost complete compensation for turbulent distortions, whereas in the visible 
region the compensation is only partial. 

A complete correction usually describes a correction providing for an SR 
higher than 0.5. A partial correction may also give a considerable gain. For 
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example, if the SR is 0.01 without correction and 0.1 after correction, then the 
time of image recording can be decreased by an order of magnitude. 

In this section we consider the results of numerical simulation of an adaptive 
system operating in the mode of partial correction. We are interested first in the 
dependence of the PSF width on the level of residual distortions. Consider first 
the residual distortions that are due to finite spatial resolution of the wavefront 
corrector. 

 
3.2.1 Effect of a corrector’s spatial resolution on PSF 

parameters 
 

Let us begin our discussion with a modal corrector capable of correcting N 
Zernike polynomials. The theory of the modal corrector as applied to 
compensation for turbulent distortions has been the subject of several theoretical 
papers [9-12]. The efficiency of the modal corrector can be estimated from the 
results obtained in Ref. [10], where the variance of residual phase distortions of 
the corrected wave was calculated. This variance is a function of the normalized 
diameter of the telescope aperture D/r0 and the number of Zernike polynomials 
compensated by the modal corrector. The corresponding equation has the form 
[10]: 

     5 32 2 2
0

1

1
, 2

N

N N t l l

A

d C D r a Z D
S

          
 

,  (3.2.1) 

 
where S is the area of the aperture A,  t are turbulence-induced phase distortions, 
Zl are Zernike polynomials, and al are the coefficients determined from the 

condition of the minimum variance 2 .N  The values of the coefficients CN are 

given in Table 3.2.1, where N = 1 corresponds to compensation for the constant 
component, N = 3 to compensation for the constant component and tilts (linear 
aberrations), N = 6 to compensation for aberrations up to and including square 
ones, and so on. 
 

Table 3.2.1. Values of coefficients of CN. 
 

N 1 3 6 10 15 21 
CN 1.03 0.134 0.065 0.040 0.028 0.021

 

For large values of N there exists the approximate equation [10] 
 

3 20.2944NC N                                      (3.2.2) 
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for estimating the degree of residual distortions for a given parameter N of the 
modal corrector and vice versa, the number of polynomials to be compensated 
from the given level of residual distortions. 

Let us estimate the number of polynomials to be compensated for the 

complete correction to be achieved. Take the condition 2 1N   as a quantitative 

criterion. In terms of wavefront aberrations or an ikonal, this corresponds to the 
/6 criterion for the root-mean-square value of wavefront aberrations. At such a 
level of distortion, the Strehl ratio is  

 

SR = exp  2
N  = 1/e  0.37.                             (3.2.3) 

 

Substituting the condition 2 1N   into Eq. (3.2.2), we obtain the estimate of the 

needed degrees of freedom of the modal corrector: 
 

N = 0.244 (D/r0)
1 92.                                (3.2.4) 

 
The dependence of N on the normalized aperture diameter is given in Table 3.2.2. 

 
Table 3.2.2. Dependence of N on normalized diameter. 

 
D/r0 10 20 30 40 50 

N 20 78 170 295 454 
 
Compare these theoretical estimates with the results of our numerical 

experiment conducted in the following way: Turbulent distortions were simulated 
in the approximation of a phase screen with the given parameter r0. Intensity 
scintillation was ignored. Wavefront distortions were assumed to be known (the 
ideal sensor model was used). The definition of corrector control was based on 
minimization of the integral square correction error. 

The calculations have been performed for the normalized aperture diameter 
D/r0 = 10–30. The second parameter of the problem was the number N of 
corrected polynomials, which varied in the range from 3 to 28 corresponding to 
correction of aberrations with radial polynomials from the first to the fifth 
degree. The computational grid was 128128, and averaging was made over 100 
realizations of random phase screens. 

Figure 3.2.1 shows the PSF for D/r0 = 20. According to Table 3.2.2, for 
complete correction of distortions at such an aperture diameter, a modal corrector 
with N = 78 is needed. However, we see that even at N = 10, the first diffraction 
fringes are observable in the central part of the PSF. In this case, the intensity of 
the PSF central lobe is 66 times lower than in the diffraction-limited system 
(SR = 0.015 = 1/66). 
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It can be seen from Fig. 3.2.1 that the partially corrected PSF consists of two 
components, one having a width roughly equal to the width of the turbulent PSF, 
and another having a diffraction-limited angular size equal to /D. 

 

   

 
   

 

 

     8 

 
Figure 3.2.1. Two-dimensional distribution of the PSF intensity at modal 
correction; the normalized aperture diameter D/r0 = 20; N is the number of 
corrected modes (Zernike polynomials). 
 

Consider the radial cross sections of the PSF normalized to an on-axis value 
that are shown in Fig. 3.2.2. This normalization makes it easier to see the PSF 
structure at different levels of residual distortions. The value of the Strehl ratio is 
shown in Fig. 3.2.2 next to the number of corrected aberrations. At D/r0 = 10 and 
N = 21 it is equal to 0.44. It follows from Table 3.2.2 that at D/r0 = 10 the 
number of polynomials to be corrected for achieving SR = 0.37 is N = 20. The 
results of numerical simulation agree well with analytical estimates. 

It is interesting to study how the PSF contrast parameter changes as the 
normalized aperture diameter and the number of corrected aberrations increase. 
Let us define the contrast as the ratio of the on-axis intensity to the intensity at 
the level of the first light fringe. 
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Figure 3.2.2. The PSF with the use of a modal corrector. Parameter N 
corresponds to the number of Zernike polynomials. The PSF is normalized to the 
on-axis value. 
 

In a problem of resolving two pointlike objects spaced by the angular 
distance /D, the contrast determines the limiting brightness ratio at which the 
dim object is still seen against the background of the brighter one (Fig. 3.2.3). 

It can be seen from Fig. 3.2.3 that at the same SR, a far higher contrast is 
achieved at larger aperture diameters. Consequently, a pronounced diffraction 
nucleus against the background of a turbulent spot can be seen earlier (for large 
residual distortions) at a higher level of initial turbulent aberrations. This is 
explained by the fact that at the low intensity level of the turbulent component of 
the partially corrected PSF, its diffraction-limited segment is characterized by a 
higher contrast at the same SR. 

For example, if for the uncorrected image the SR equals 0.001, then a partial 
correction increasing the on-axis intensity up to 0.01 leads to the diffraction 
component of the PSF with a contrast parameter of about 10. To obtain the same 
contrast at an initial level of distortions corresponding to SR = 0.01, turbulent 
distortions should be corrected down to the level corresponding to SR = 0.1. This is 
achieved at the far smaller value of the variance of initial phase distortions. In 
parallel with calculation of the PSF according to Eq. (3.2.1), the sample-average 
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variance of residual phase distortions was calculated. Figure 3.2.4 shows the 
dependence of the SR on this variance. 
 

 
Figure 3.2.3. Dependence of PSF contrast on the Strehl ratio at modal correction 
for the aperture diameter D/r0 = 10, 20, and 30. The straight-line slope 
coefficients obtained from fitting by linear regression are equal to 37, 99, and 
206, respectively. The contrast is defined as the ratio of the PSF intensity on the 
optical axis ( = 0) to the intensity at the level of the first light fringe (  2/D). 
 

Figure 3.2.4. Dependence of SR on variance of residual phase distortions. 
 
Thus, a sufficiently contrasting diffraction nucleus of the PSF can remain up to 

an SR on the order of 0.01 and for D/r0 > 30, probably to even lower values. This 
fact, generally speaking, is not obvious. Actually, it could be expected that the 
tenfold decrease of the on-axis intensity of the image would lead to its almost 
threefold widening because the intensity is inversely proportional to the square 
effective size at the unchanged shape of the intensity distribution in the image 
plane. 
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However, in compensating for the lowest aberrations, the spatial spectrum of 
wavefront distortions changes significantly. Uncorrected small-scale aberrations 
lead to redistribution of the corrected PSF energy into far wings (compared with 
the turbulent PSF at the same variance of phase distortions). In this case, the PSF 
width differs only slightly from the diffraction-limited one. This allows the 
astronomic measurements of angular positions of objects to be conducted with an 
accuracy close to the diffraction limit at even relatively weak (in terms of SR) 
correction. 

Nearly diffraction-limited resolution at low SR values is also possible with the 
use of other classes of wavefront correctors. Let us consider deformable mirrors of 
the zonal type and segmented correctors from this point of view. For both the zonal-
type mirrors and segmented correctors, the equation for the variance of the residual 
error of phase correction has the following form: 

 
2 = C(d/r0)

5/3,                                 (3.2.5) 
 

where d is the characteristic scale of the corrector, i.e., the distance between control 
points of a zonal mirror, or the size of an element of the segmented mirror, and the 
coefficient C depends on corrector’s features. For approximate estimation, we can 
take C = 0.2 for the corrector with the Gaussian response function [13] and 
C = 0.134 for the segmented mirror, the tilt and position of whose elements are 
corrected. In the latter case, we have used the theory of the modal corrector 
assuming that every segment eliminates the piston mode and wavefront tilts within 
its subaperture. 

The ratio of the aperture diameter to the size of the corrector zone at 2 = 1 is 
determined as  

3 5
0

D
N C D r

d
  .                                   (3.2.6) 

 
Table 3.2.3 gives the values of N rounded to the closest integer for correctors of 
both types. The upper row gives the values of the normalized aperture diameter 
(10–50); the medium row corresponds to the segmented corrector, and the lower 
one is for the deformable mirror. 

 
Table 3.2.3. Rounded values of N. 

 

D/r0 10 20 30 40 50 
C = 0.134 3 6 9 12 15 
C = 0.200 4 8 11 15 19 

 
Consider now the results of numerical simulation. Figure 3.2.5 shows the 

results calculated for a segmented corrector with cellular segment packing at 
D/d = 11. This spatial resolution is sufficient for complete correction at 
D/r0 ~ 30. It can be seen from the figure that at D/r0 = 50 the normalized PSF is 
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almost indistinguishable from the diffraction-limited one within the first light 
fringe, whereas the SR is roughly equal to 0.1, i.e., the on-axis intensity is an 
order of magnitude lower than the diffraction-limited value. 

 

 

 

 

 

Figure 3.2.5. A PSF with the use of a segmented adaptive mirror consisting of 
84 hexagonal segments, each controlled in both position and tilt: Upper panel, 
PSF normalized to the on-axis value; lower panel, PSF normalized to the 
diffraction maximum. 
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Similar calculations have been made for a deformable mirror with a Gaussian 
response function. The results are shown in Fig. 3.2.6. According to Table 3.2.3, 
the resolution N = 9 is sufficient for complete correction only at the diameter 
D/r0 = 20; however, even at D/r0 = 50, the PSF has a diffraction nucleus with a 
contrast of about 6. 

 

 

 
Figure 3.2.6. A PSF with the use of a deformable adaptive mirror with a 
Gaussian response function. The parameter N corresponds to the number of 
control points on the aperture diameter; the PSF is normalized to the on-axis 
value. 
 
 
3.2.2 Measurement of distortions under limited photon flux 
 
Let us consider here the Shack–Hartmann sensor, which is used most widely in 
astronomical applications. In this sensor, the spatial resolution is determined by 
the subaperture size and the temporal resolution is determined by the time of 
signal accumulation. The product of the subaperture area, accumulation time, and 
the intensity of reference radiation determine the number of photoelectrons N at 
the sensor output. This number is the parameter determining the signal-to-noise 
ratio. 
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Let us now study the effect of limited photon flux on the quality of correction 
using as an example a numerical experiment for a Shack–Hartmann sensor with a 
1010 subaperture array [14]. To reconstruct the pattern of aberrations, we use 
the modal reconstruction algorithm and calculate coefficients of 28 Zernike 
polynomials. Let the ideal corrector reconstruct exactly all aberrations and let the 
diameter of the telescope aperture be D = 10r0. Thus, the diameter of the sensor 
subaperture is equal to the coherence length. The correction delay is assumed to 
be negligibly short. Turbulent distortions are modeled in the approximation of 
the phase screen; intensity scintillations are ignored. 

Figure 3.2.7 shows the PSF obtained in the numerical experiment. The mean 
number of photons Nph falling on one sensor subaperture for one measurement 
cycle varied from 3 to 100. The figure shows the PSF for Nph = 5, 10, and 100. At 
Nph = 100, the SR equals 0.38. This value is close to the result obtained for the 
modal corrector with the same number of aberrations to be corrected (28) with 
the use of the ideal sensor model (SR = 0.53). The difference is explained by the 
finite resolution of the sensor and a small error due to noise. At Nph = 5, the on-
axis value of the PSF almost halves and the SR equals 0.19. A comparison of 
PSFs normalized to the on-axis value shows that the PSF width changes only 
slightly and the contrast equals 10 even at this noise level. 

A further decrease in the intensity of the reference wave leads to a rapid 
increase in the variance of residual phase distortions 2 and a decrease in the SR. 
Figure 3.2.8 shows the dependencies of these parameters on the number of 
photons. At Nph = 3, the variance 2 reaches 9, and the SR value drops to 0.06. 
This value is almost twice as large as the value resulting from tilt correction 
(0.0033). 

Thus, in this case, the increase in residual distortions with the decreasing 
brightness of the reference source again leads to manifestation of the two-
component structure of the partially corrected PSF: a diffraction lobe and 
turbulent spot. 

 
 
 

              



96 Chapter 3 

 
 

 

a b 

 
Figure 3.2.7. Modeled results for an adaptive telescope with a Shack–Hartmann 
sensor. The normalized diameter of the telescope aperture D/r0 = 10. The sensor 
includes a 1010 lenslet array. Wavefront aberrations were estimated using the 
modal algorithm (28 Zernike polynomials). The parameter N is the mean number 
of photons on a subaperture for one exposure. The PSF is normalized to the 
diffraction maximum (a) and to the on-axis value (b). 
 

 
 

 

 
Figure 3.2.8. Variance of the residual error of phase correction 2 and SR vs. 
brightness of the reference source. The parameters of the numerical experiment 
are the same as in Fig. 3.2.7. 

 
3.2.3 Effect of cone anisoplanatism 

 
The quest to obtain a measurement accuracy that is not dependent on the 
presence of a sufficiently bright star in the field of view of an adaptive system 

              



Adaptive Imaging 97 

 
 

has stimulated the development of artificial laser reference sources. These are 
formed by the atmospheric backscattering of laser pulses. The backscattered 
radiation is distorted by the atmosphere as a spherical wave, while the radiation 
of an astronomical object is a plane wave. This gives rise to a new type of 
correction error called the “error of cone anisoplanatism.” 

Consider how this error affects the PSF width [15]. We assume that the 
adaptive system has infinite spatial and temporal resolution, noise is absent, and 
the sole source of error is cone anisoplanatism. The atmosphere is modeled by a 
set of random phase screens. Propagation of the wave through phase screens is 
calculated by a ray-optics approximation that ignores the diffraction effects and 
intensity scintillation. It is assumed that fluctuations of the incoming angle are 
corrected against a bright star. 

For this study, we took an altitude profile of the turbulence intensity 
corresponding to Gurvich’s model of “best conditions” [16]. The aperture 
diameter was 10 m; this value corresponds to the diameters of the twin Keck 
telescopes. The height of the artificial beacon H was taken to be equal to 10 and 
100 km, corresponding to the typical schemes based on Rayleigh scattering and 
resonance scattering in the sodium layer. The wavelength  was varied from 1 to 
5 m for the Rayleigh beacon (H = 10 km) and from 0.5 to 2 m for the sodium 
one (H = 100 km). 

Figure 3.2.9 shows the PSFs for these two cases. It can be seen that the use of 
the Rayleigh reference source is efficient only in the IR region ( > 1 m). The 
use of the sodium beacon allows SR > 0.7 and the diffraction-limited angular 
resolution to be achieved in the infrared region (  > 1 m). In the visible region, 
the PSF width is also close to the diffraction limit at SR = 0.23 and the contrast is 
higher than 10. With allowance for the fact that the angular coordinate is 
normalized to the ratio /D, the angular resolution in the visible region is higher 
than in the infrared. 

Summarizing the analysis of the partial correction of turbulent distortions, we 
would like to note the following: Three versions of idealized adaptive systems have 
been considered. In each case, only one factor determining residual distortions of the 
PSF was taken into consideration, namely, spatial resolution of the corrector in the 
first case, sensor noise in the second case, and cone anisoplanatism in the last case. 
In all cases, it turned out that the PSF width increases slowly and can remain nearly 
diffraction limited at rather high residual distortions [17]. 

An analogy can be drawn between this result and the PSF calculations for the 
spectrum with the finite outer scale that were presented in the Sec. 3.1.2. Partial 
correction is, first of all, the correction of the lowest aberrations corresponding to 
large-scale inhomogeneities of the turbulent atmosphere. This is especially true 
when the finite spatial resolution of the correction device plays a major role. 
Aberrations caused by inhomogeneities larger than the size of the corrector 
element are compensated for, and the spatial spectrum of residual distortions is 
similar to the spectrum with the finite outer scale equal to the size of the corrector 
element. 
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c 
 

d 

 
Figure 3.2.9. PSF for different wavelengths with adaptive correction against a 
laser guide star: (a and b) sodium laser guide star, H = 100 km; (c and d) 
Rayleigh laser guide star, H = 10 km; (a and c) PSF normalized to the diffraction 
maximum and (b and d) to the on-axis value.  
 

The appearance of the diffraction nucleus corresponding to the central lobe 
of the diffraction-limited PSF becomes clear from this. The explanation can be 
drawn from consideration of the chain structure function, OTF, and PSF. The 

phase structure function D(r) reaches the saturation level of 2 2
  at a spacing on 

the order of the outer scale of turbulence L0 or the size of the corrector element d. 
The optical transfer function of the atmosphere () = exp[–D()/2] decreases to 

the level exp  2
  and also ceases to change. Thus, the OTF consists of a 
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narrow lobe with the thickness of L0 or d and a wide pedestal whose level is 

exp  2
  times lower than the central maximum. The OTF can be thought of as 

consisting of two components: OTF = OTF1 + OTF2. The PSF is connected with 
the OTF through the two-dimensional Fourier transform F; i.e., 
PSF = F(OTF1 + OTF2) = PSF1 + PSF2. Since the width of the Fourier transform 
is inversely proportional to the width of the initial function, the narrow 
component OTF1 transforms into the wide component PSF1 (turbulent spot), 
whereas the wide component OTF2 transforms into the narrow diffraction      lobe 
PSF2. 

 
3.3 Phase Correction of Turbulent Distortions Under 

Strong Intensity Scintillation 
 

In Sec. 3.2, we discussed the characteristics of phase correction with a large 
variance in residual phase fluctuations. In this section we consider another 
limiting case—strong intensity scintillation—assuming that the adaptive system 
has infinite spatial and temporal resolution in the correction of phase distortions. 

It is well known that the phase distortions a wave acquires while passing 
through an optically inhomogeneous medium transform into modulation of the 
spatial intensity distribution during further propagation of the wave. At 
sufficiently deep modulation, points with zero intensity may arise. If the wave is 
described in terms of the complex amplitude U, then these points arise at the 
places of line intersection (or contact) where its real and imaginary parts are zero. 
If ReU and ImU alternate their sign from positive to negative when going 
through these lines, then such intersection points are the points of wavefront 
dislocations [18]. From the viewpoint of adaptive phase correction, it is 
important that the two-dimensional phase distribution becomes discontinuous 
when dislocations arise [19]. 

With such discontinuities, the error of approximation of the wavefront by an 
adaptive mirror increases markedly. Application of specialized correctors has no 
effect in the general case because the dislocations arise at randomly located 
points when correcting for turbulent distortions. 

The algorithms for mapping aberrations of the reference wave that are 
currently used in most wavefront sensors output the continuous function of the 
transverse coordinates. In actuality, they filter the vortex of the measurement 
vector [20]. 

Consider the results of numerical experiments that demonstrate the effect of 
intensity scintillation and dislocations on the correction of turbulent distortions. 
Two aspects are of practical and purely scientific interest: how strongly the loss 
of the amplitude information affects the efficiency of phase correction, and how 
strongly the loss of the information contained in the vortex part of phase 
measurements decreases the efficiency of adaptive correction. 

Numerical experiments have been conducted for two correction schemes  
[21, 22], which are shown in Fig. 3.3.1. The upper panel shows compensation for 
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distortions. A plane wave passes through the layer of a turbulent medium of 
length L and arrives at the receiving aperture of the adaptive system having a 
diameter D. The corrected wave is focused by the collecting lens onto a point 
photodetector recording the intensity at the system’s focus. The criterion of the 
correction quality is the ratio of this intensity to its diffraction-limited value 
averaged over an ensemble, i.e., the Strehl ratio. 

 

 
 

a 
 

 
 

b 
 

Figure 3.3.1. Optical layout of the numerical experiment: (a) compensation 
scheme for phase distortions and (b) phase conjugation scheme.  
 

The lower panel shows the phase conjugation scheme. The recording system 
consisting of the lens L and the photodetector P is still in the plane z = L, but the 
adaptive system is in the plane z = 0. A plane reference wave propagates from the 
plane z = L to the plane z = 0. In the plane z = 0, the adaptive system measures 
distortions of the reference radiation and corrects the wave according to the PC 
algorithm. 

For each of the two schemes, two versions of the phase measurement 
algorithms have been considered. In the first version, the ideal adaptive system 
immediately and exactly reproduces the phase of the reference wave in the entire 
cross section plane, including single points (dislocations) of the wavefront. In the 
second version, only the component corresponding to the potential part of the 
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vector field of local wavefront tilts is corrected (see the model of an ideal phase 
difference sensor in Chapter 2). Hereafter this correction is called the “correction 
of potential (or vortex-free) phase.” Thus, we have actually implemented four 
schemes of numerical experiment: 

 an ideal compensation system, 
 a system of compensation for the potential part of aberrations, 
 an ideal PC system, and 
 a PC system for the potential part of aberrations. 
 
Four parameters of the problem are the length of the propagation path L, the 

lens diameter D, the wavelength , and the turbulence intensity 2.nC  According to 

Gurvich’s similarity theory [16], the problem of propagation of a plane wave in 
the turbulent atmosphere is characterized by only two scales; for example, the 
coherence length r0 as the transverse scale and the diffraction length at the 

coherence length Lt = k
2

0r  as the longitudinal scale. Then the problem is 

characterized by the normalized path length L/Lt and the normalized aperture 

diameter D/r0. The scintillation index 2
0  of the plane wave for the power 

spectrum of turbulence is unambiguously connected with the ratio L/Lt:  
2
0  = 2.9(L/Lt)

5/6. It can be used as a parameter instead of the ratio L/Lt. 

The results of our numerical experiments are shown in Fig. 3.3.2. This figure 
shows the dependence of the Strehl ratio on the scintillation index for each 
correction scheme. The normalized aperture diameter took the values D/r0 = 10, 
20, and 30. Therefore, a family of three curves corresponds to each scheme. 

For the ideal compensation scheme, the SR is nearly independent of either 
the normalized aperture diameter or the path length. The difference of the SR 
from the diffraction-limited value (equal to unity) is almost unnoticeable. This 
agrees with the idea that a major role in image distortion is played by phase 
fluctuations, whereas the role of amplitude fluctuations is insignificant [24-26]. 
In this case, the phase fluctuations are completely corrected. 

In ideal compensation for only the vortex-free part of the phase, the 
correction efficiency decreases markedly as the scintillation index increases. The 

twofold decrease in the SR is achieved at a 2
0  of about 1–1.5. As intensity 

scintillation increases further, the intensity at the lens focus tends to the 

uncorrected value. At 2
0  = 3, i.e., L = Lt = k 2

0r , the correction efficiency 

decreases by an order of magnitude. Similar results have been obtained in the 
phase conjugation scheme (Fig. 3.3.3). This shows that application of this phase 
correction loses its efficiency when the path length achieves the diffraction length at 
the coherence length. 
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Figure 3.3.2. Dependence of SR on the scintillation index 2
0  in the 

compensation scheme for phase distortions. 
 

 
Figure 3.3.3. Dependence of SR on the scintillation index 2

0  in the phase 

conjugation scheme. 
 

The efficiency of correction in the ideal phase conjugation scheme is not as 
insensitive to the value of intensity scintillation. However, the dependence is not 

as strong as could be expected. At 2
0  = 3, the SR decreases to 0.8 and does not 

depend on the aperture diameter. 

              



Adaptive Imaging 103 

 
 

There are experimental data with which we can compare the results of our 
numerical analysis. The experiment was conducted along a 5.5-km path [27] at 
Massachusetts Institute of Technology’s Lincoln Laboratory. The adaptive system 
included a Hartmann sensor and a deformable mirror. The algorithm of phase 
conjugation for a focused beam was used. The wavelengths of the reference beam 
and the beam to be corrected were 633 and 514 nm, respectively. 

Figure 3.3.4 shows the results of this experiment. The variance of 
fluctuations in the amplitude logarithm  for a spherical wave is plotted along the 
horizontal axis. Note that the variance of intensity scintillation is four times 

larger than 2
  and the scales of the horizontal axes in Figs. 3.3.4 and 3.3.2 

almost coincide. 
 

 
 
Figure 3.3.4. Experimentally obtained dependence of SR on the variance of 
amplitude fluctuations of a spherical wave and the dependence calculated [2, 16] 
in the Rytov approximation (method of smooth perturbations, MSP). 
 

From the Lincoln Laboratory data, it is hard to judge to what degree the 
degradation of the correction efficiency is caused by phase discontinuity and 
filtering of phase dislocations, and to what degree it is caused by such factors as 
an increase in the ratio of the aperture diameter to the coherence length, errors of 
the wavefront sensor, and other errors of the adaptive system. The close 
agreement with our calculated data indicates that the use of the algorithm for 
reconstructing the wavefront of the reference beam that filters the “vortex” phase 
is the decisive factor causing degradation of the correction efficiency. 

Based on this, the following conclusions can be drawn: 

1.  The proposed numerical model of an AOS that includes the “filtering” 
wavefront reconstruction algorithm allows adequate simulation and 
qualitative estimation of the efficiency of an existing adaptive system 
under conditions of strong intensity scintillation. 

2.  In the correction of turbulent distortions, the efficiency of phase 
correction roughly halves as the normalized variance of intensity 
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scintillation (scintillation index) 2
0  increases from zero to unity. In this 

range of 2
0  values, the correction efficiency is nearly independent of 

the ratio between the aperture diameter and the coherence length. With a 
further increase in intensity scintillation, the dependence of the 
correction efficiency on the aperture diameter begins to manifest itself. 

An increase of 2
0  up to 3 results in degradation of the correction 

efficiency by a factor of 10 and even more, and the SR tends to the 
value obtained in the system without correction. 

3.  Since the level 2
0  = 3 roughly corresponds to the applicability 

boundary of the method of smooth perturbations (MSP), we can 
suppose that the applicability of the MSP is connected to the appearance 
of dislocations. Note that at the points of dislocations the intensity 
equals zero and the logarithm of the amplitude becomes infinite, 
whereas the MSP is in fact the perturbation method for the field 
logarithm. 

4.  The efficiency of adaptive correction of the vortex-free phase with the 
increasing variance of intensity scintillation degrades in roughly the 
same way in both the phase compensation scheme and the phase 
conjugation scheme. The differences between the plane wave and the 
beam are also insignificant, which follows from comparison with the 
experimental data obtained at the Lincoln Laboratory. 

It is interesting to note that at strong amplitude fluctuations, the gain is 
nevertheless significant compared with the turbulent value of the SR. Table 3.3.1 
gives the ratios of the corrected SRc to the uncorrected SRu for the compensation 

scheme for the vortex-free phase at 2
0  = 3. It can be seen from Table 3.3.1 that at 

all D/r0 the corrected value is roughly four times larger than the uncorrected one. 
 

Table 3.3.1. Ratios of corrected and uncorrected SRc. 
 

D/r0 SRu SRc SRc/SRu 
10 0.0324 0.129 3.98 
20 0.0106 0.038 3.58 
30 0.0051 0.025 4.90 
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CHAPTER 4 

Minimization and Phase Correction  
of Thermal Blooming of High-Power Beams 

 
Earlier we discussed examples of adaptive phase correction for laser beams and 
images formed in turbulent atmospheres. Thermal blooming, along with turbulent 
distortions, is a serious factor that limits concentration of the energy of laser 
beams on an object. In some situations, in particular, when using an IR laser, 
thermal blooming is almost the sole obstacle to achieving a high level of intensity 
on a target. 

Various methods are used to make the transfer of energy of an optical beam 
more efficient. Relatively simple methods are the optimization of power, 
intensity distribution, focal length [1], and time conditions of radiation. The 
methods of a priori (programmed) phase correction (APC), phase conjugation, 
and wavefront reversal are more complex. 

The first two sections in this chapter are devoted to the capabilities of 
optimization and a priori phase correction on vertical paths with allowance made 
for the altitude profile of the wind vector and the finite spatial resolution of the 
corrector in an adaptive system applied to beams with different initial intensity 
distributions in the cross section. The problem is considered in the approximation 
of a phase screen, and this allows us to estimate the correction efficiency for 
extremely wide beams on vertical paths. 

Note that the effect of the initial intensity distribution in the beam cross 
section on the concentration of energy in the receiving aperture has been 
considered in a number of papers. For example, the problem of thermal blooming 
of a scanning beam was considered in Ref. [2] and it was shown that the 
homogeneous (like a super-Gaussian) intensity distribution gives better results 
than the Gaussian beam. Various beams having on-axis null and propagating 
along a homogeneous path without scanning were considered in Ref. [3]. It was 
shown that in this situation the non-Gaussian intensity distribution gives no 
significant gain. Nevertheless, for vertical paths such beams can give a marked 
gain [4]. 

The peculiarities of thermal blooming for hyper-Gaussian beams were 
considered in Ref. [5]. In other papers, square (hyper-Gaussian) and Gaussian 
beams were compared for a homogeneous (horizontal) path [6]. However, so far 
there has been no systematic study of thermal blooming for beams of different 
types propagating along a vertical path.  
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Note that an important peculiarity of vertical (and slant) atmospheric paths is 
the rather strong dependence of the wind direction on its altitude above the 
surface. In contrast to horizontal paths, this is caused by large-scale geophysical 
processes in the atmosphere, rather than random fluctuations of the wind velocity 
vector [7]. This factor significantly affects the aberration structure of phase 
distortions and consequently the efficiency of low-mode phase correction [8-10]. 

In the second half of this chapter we study the peculiarities of the phase 
conjugation algorithm for a homogeneous (horizontal) path, the causes for PC 
instability, and ways to increase the efficiency of this correction algorithm. The 
study of the efficiency of the PC algorithm for minimization of thermal blooming 
on a homogeneous path is a classical problem that was considered by many 
investigators dealing with adaptive correction of nonlinear distortions [11-15]. 
Here this problem is considered for the first time from the viewpoint of the effect of 
topological singularities in the phase of a reference beam (phase dislocations) on 
the correction process. 

It turns out that the appearance of dislocations is closely connected with 
oscillations arising in a “fast” system of phase conjugation. A modification of 
modal phase conjugation is proposed that allows the correction efficiency to be 
noticeably improved. 

In the following section we consider the problem of optimizing the power of 
the initial laser beam, first neglecting the altitude dependence of the wind direction 
and then estimating the effect of this dependence on widening of the focal spot of a 
high-power beam using a simplified model of the atmosphere. The problem is 
solved in the approximation of a phase screen; phase correction is ignored. 

 
4.1 Amplitude Optimization for Thermal Blooming Along 

a Vertical Path 
 
Consider the efficiency of energy transfer to an object when using coherent laser 
beams with the following intensity distributions: 

 
1. Gaussian beam: 
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2. Super-Gaussian beam: 
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   
8

0 8
expI I A

R

 
    

 

 
;       (4.1.2) 

 
3. Hyper-Gaussian beam: 
 

   
8 8

0 8
exp ,

x y
I I A x y

R

 
   

 


.         (4.1.3) 

 
The intensity I0 can be determined from the normalization conditions: 
 

2( ) ,I d P   


          (4.1.4) 

 
where P is the total beam power. The aperture functions A were set so that the 
area of the emitting aperture was the same for all types of the beam and in 
addition, the intensity jump at the boundary of the emitting aperture was 
smoothed to some degree to avoid violation of the sampling theorem in 
numerical solution of the diffraction problem: 
 

   16 16
0exp , ,

0,

R
A

R

        
          (4.1.5) 

 
for the Gaussian and super-Gaussian beams (R is the aperture radius); 
 

 
   

 
16 16

20 0 2exp , and
, ; here 2

or0,

x y x r y r
A x y r R

x r y r

             
 

 
for the hyper-Gaussian beam. The value of  0 was chosen so that at the inner 
part of the aperture boundary (  = R , or x = r , y = r ) the aperture function took 

the value of 103: 
 

A(R ) = 16 16
0exp( / )R   = 10

–3
.          (4.1.6) 

 
4.1.1 Power optimization for beams with different cross-

sectional intensity distributions 
  

The intensity jump at the aperture boundary did not exceed 0.1%, and violation 
of the sampling theorem in numerical solution of the propagation problem was 
not important. Thus, the following versions of filling the emitting aperture were 
considered: 
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  a Gaussian beam whose efficient radius is equal to half the aperture 
radius, 

  a wide Gaussian beam whose effective radius is equal to the aperture 
radius, 

  a super-Gaussian beam almost uniformly filling the round aperture 
(round beam), and 

  a hyper-Gaussian beam almost uniformly filling the square aperture 
(square beam). 

For the hyper-Gaussian beam, two orientations of the square aperture were 
considered: a side (the first case) and a diagonal (the second case) of a square 
oriented along the wind direction. 

Based on the known results calculated for non-Gaussian beams, we can 
assume that the gain is maximal if nonlinear distortions are concentrated 
maximally close to the emitting aperture. To increase the possible gain, consider 
the problem of thermal blooming on a phase screen located in the plane of the 
emitting aperture. The intensity distribution in the focal plane is determined in 
the approximation of the Fraunhofer diffraction, i.e., in the far diffraction zone. 
Thus the mathematical formulation of the problem is reduced to solution of the 
diffraction problem in the far zone with the boundary conditions in the following 
form: 

      , 0 expU z I i      
  

.         (4.1.7) 

 
The phase change   


 on a nonlinear phase screen is determined from 

solution of the stationary equation of forced heat transfer: 
 

   
0

2
, , T

P

T
I x y n T L

x C V

     
  


,         (4.1.8) 

 
which can be immediately written for the phase screen: 
 

 
0

, T

p

k n L
I x y

x C V




 
,          (4.1.9) 

 
where L is the length of the nonlinear segment represented by the phase screen; 
  is the absorption coefficient of the medium, Tn  is the derivative of the 

refractive index with respect to the temperature T,  0CP is the product of the 

volume density and thermal capacity of the medium, and V  is the absolute value 

of the transverse component of the wind velocity vector. In dimensionless 
variables, this equation can be written as 
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  ,I x y
x

   


,       (4.1.10) 

 
where the transverse coordinates are normalized to the effective radius of the 
Gaussian beam a0 = R/2, and the intensity is normalized as 
 

    0, , T

p

n L
I x y I x y ka

C V

 


.      (4.1.11) 

 
Normalization of the total beam power differs by the square linear scale; i.e., 

 

0

T

p

kn L
P P

C a V

 


.     (4.1.12) 

 
The results of optimization of the dimensionless power of different beams are 

shown in Fig. 4.1.1 as the power in a spot of diameter R0: 
 

R0 = 0.64  /D,       (4.1.13) 
 

with R0 being the effective angular size of the undistorted Gaussian beam at 
D = 2a0. 

It can be seen that non-Gaussian beams give a three- to fivefold gain as 
compared with Gaussian beams. The widened Gaussian beam truncated at the 1/e 
level at the boundary of the emitting aperture also gives a significant gain 
compared with the Gaussian beam truncated at the 1/e2 level. Apparently, the 
difference between beams with different intensity distributions is caused by two 
factors: first, different effective beam sizes, which lead to better results in the 
absence of nonlinear distortions, and second, different structures of aberrations 
arising in the nonlinear medium. 
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Figure 4.1.1. Dependence of the power in the diffraction spot on the total power 
of the beam (power optimization curves). Types of beams: (1) truncated 
Gaussian beam, (2) unlimited Gaussian beam, (3) hyper-Gaussian beam 
directed at an angle to the wind, (4) wide Gaussian beam, (5) super-Gaussian 
beam, and (6) hyper-Gaussian beam directed with a side to the wind.  

 
4.1.2 Dependence of wind direction on the longitudinal 

coordinate 
 
When a beam propagates along a path on which the wind direction depends on 
the longitudinal coordinate (this is typical of vertical and slant atmospheric 
paths), the structure of aberrations at the exit from the nonlinear medium also 

depends on the directional profile of the wind vector  V z


. Therefore, the 

altitude dependence of the wind direction may be a significant factor affecting 
both the maximum achievable concentration of the energy on the object and the 
relation between beams of different types. 

Combining various states of the atmosphere with various directions and 
scanning rates of the beam behind the object gives a very wide spectrum of 
dependencies of the vector of mutual displacement between the beam axis and 
the medium. Therefore, we will consider a simplified model of a path with the 
dependence of the wind direction on the longitudinal coordinate. 

As before, we believe that nonlinear distortions are concentrated in a rather 
narrow layer near the emitting aperture, so their effect can be considered in the 
approximation of a phase screen. However, in this case, the phase screen is the 
sum of the phase screens corresponding to path layers moving in different 
directions. Denote now the phase distortions for the layer in which the angle 
between the vector of the transverse wind and the 0x-axis is equal to ,  as 

 ,  


. These are described by the following equation in partial derivatives 

(primes of dimensionless variables are omitted): 
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    cos sin I w
x y

 
     
 


,      (4.1.14) 

 
where w() is the weighting function describing the angular distribution of 
nonlinear distortions and meeting the normalization condition: 
 

 
2

0

1w d


   .      (4.1.15) 

 
The full-phase distortion at the exit from the nonlinear medium is now 

determined as 

   
2

0

, d


      
 

.      (4.1.16) 

 
Formulation of the above problem in this section is a particular case 

corresponding to the limiting transition: 
 

   w     .       (4.1.17) 
 

To describe this situation, it is convenient to use the first and second “moments” 
of the distribution w(): 
 

     
2 2

22

0 0

;w d w d
 

             .   (4.1.18) 

 
Consider now the simplest case in which   is distributed homogeneously in 

some range  2, 2  : 
 

 
1

2
; 12

0 2

w 

       
   

.     (4.1.19) 

 
This model allows us to determine in a general way, both qualitatively and 
quantitatively, the possible limits of variability of the maximum achievable 
parameters of radiation on an object according to the profile of the effective 
transverse wind. 

With the increasing width of the angular domain ,  the structure of phase 

distortions becomes more symmetrical because of the combination of thermal 
lenses arising in the layers moving in different directions. Therefore, nonlinear 
refraction, astigmatism, and other asymmetrical aberrations are bound to decrease 
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and, on the contrary, the contributions of total defocusing and other 
axisymmetrical aberrations to phase distortions are bound to increase. 

Calculations showed that this leads to a considerable change in the optimal 
power. Figure 4.1.2 shows the power optimization curves for the Gaussian and 
hyper-Gaussian beams for    = 0.5, 1, and 1.5 (   100, 200, and 300 deg). 

It is seen from Fig. 4.1.2 that symmetrization of an integral thermal lens arising 
from a combination of layers with different wind directions can result in an 
almost threefold increase of the power on the target. The following conclusion 
can be drawn from this consideration: The optimal power of a wide beam 
undergoing thermal blooming on a vertical path depends significantly on both the 
initial intensity distribution in the beam cross section and the altitude profile of 
the wind vector. 

 

Figure 4.1.2. Power optimization curves for a path with the wind vector 
dependent on the longitudinal coordinate: (1, 2, 3) Gaussian beam,  = 100, 
200, 300 deg; and (4, 5, 6) hyper-Gaussian beam,  = 100, 200, 300 deg.  
 
4.2   Programmed Modal Phase Correction of Thermal 

Blooming Along a Vertical Path 
 
Thermal blooming on a vertical path is a situation in which phase correction may 
be highly efficient [15] because nonlinear phase distortions are concentrated in a 
small (relative to the entire path) area near the emitting aperture, and the wave 
parameter of the effective length of this area is much less than unity for the wide 
beams that are usually used to transport radiation to extraterrestrial objects. In 
this situation, the main factor restricting the efficiency of phase correction of 
thermal blooming is the corrector’s number of degrees of freedom. Let us now 
examine how the efficiency of programmed correction of the lowest modes of 
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phase aberrations depends on the earlier described factors of cross-sectional 
intensity distribution of the beam along with the altitude dependence of the wind 
direction. 

A priori (programmed) phase correction is based on information on the 
medium’s parameters entering into the heat transfer equation. If they are known, 
then given the intensity distribution in the beam cross section, we can calculate 
the structure of the thermal lens in the beam channel. With the numerical 
representation of the 3D structure of optical inhomogeneities in the beam 
channel, we can select the initial phase profile of the optical wave at which the 
maximum, or close to the maximum possible, concentration of the energy on the 
object is achieved. 

The efficiency of the a priori correction is restricted by the following factors: 

 inaccuracy of the a priori information on the beam and path parameters 
affecting the formation of optical inhomogeneities in the beam channel, 

  nonoptimality of the method used to construct phase correction, and 
 finite spatial resolution of the correcting element of the adaptive system 

that limits the ability to obtain the exact formation of the phase profile. 
The most significant components of the a priori information on the state of 

the atmosphere are first, the altitude profile of the wind velocity vector and then 
the less-variable profiles of the absorption coefficient and temperature. The 
principally inaccessible a priori information is the instantaneous state of turbulent 
inhomogeneities; this restricts the regions of the most efficient application of the 
APC to the far and midrange infrared. 

The known methods of constructing phase correction can be presented as the 
following three groups in an order of increasing complexity: 

1. Phase correction is determined as predistortion that is equal, with the 
opposite sign, to the integral phase distortion in the nonlinear medium: 

 

        0

2
, , , ,c n z dz n z n z n


       

 
     .   (4.2.1) 

 
Inhomogeneities of the refractive index can be obtained here from solution 
of the thermodynamic part of the thermal blooming problem. This solution 
can be obtained from the beam intensity distribution in the plane of the 
emitting aperture [2, 16], from the 3D intensity distribution corresponding 
to the diffraction propagation of the beam [17], or by other methods. 

2. Phase correction is determined from calculation of the wavefront of some 
reference radiation propagating along the channel of the high-power beam, 
but in the opposite direction [18]. This is essentially the method of phase 
conjugation, but with a mathematical (numerical) reference source in place 
of the actual one. In contrast to a phase-conjugating adaptive system, the 
efficiency of this method depends on the accuracy of the a priori 
information used, as does the efficiency of any other APC method. 
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3. Phase correction is determined based on optimization of the coefficients of 
expansion on the basis of some functions [19], for example, on the basis 
of Zernike polynomials or the response functions of the phase corrector. 
In this case, the problem is to maximize the energy calculated by solving 
the thermal blooming problem with the available a priori information, 
rather than the actual concentration of the energy on the object. 

Method (1) is simplest to implement. The phase correction is determined 
unambiguously and in a natural way, and we can expect that this method is less 
sensitive to errors in the a priori information. However, its efficiency may prove 
to be lower than the efficiency of methods (2) and (3), if the accuracy of the a 
priori information is high. 

Consider the dependence of the APC efficiency on the corrector’s 
configuration and the number of degrees of freedom. This allows one to 
determine the upper limit of correction efficiency with the use of currently 
available APC technologies. To exclude the effect of other factors on correction 
efficiency, we represent the nonlinear medium, as in the previous section, as a 
thin phase screen located in the plane of the emitting aperture. The phase 
correction is determined as a value equal to the nonlinear phase change: 

 
   c N    
 

.        (4.2.2) 

 
The corrector control can be found by minimizing the integral square error of 

approximation: 
 

    22 2 min.cd       
 

       (4.2.3) 

 
Figure 4.2.1 shows the results calculated for a modal corrector and a Gaussian 

beam (at  = 0). Power normalization and other details of the numerical experiment 
are the same as in Sec. 4.1. One can see that a simple adaptive system that controls 
linear and quadratic aberrations allows the energy concentration on the object to be 
roughly doubled. Thus, a considerable increase in the energy concentration on the 
object is achieved at a relatively small number of degrees of freedom for the 
corrector. This is explained by the prevalence of the lowest (large-scale) aberrations 
in the structure of the thermal lens. 

Now consider how the intensity distribution in the beam cross section and the 
dependence of the wind direction on the longitudinal coordinate affect the 
efficiency of the low-mode correction. Table 4.2.1 gives the power on the target 
(at the optimal beam power) for four different intensity distributions in the plane 
of the emitting aperture. The variable parameters were the angular width of the 
domain  and the number of corrected aberrations. The first column gives the 
values obtained in the absence of correction; the second column gives those 
obtained with tilt correction; and the third column gives the values obtained with 
correction of tilt and defocusing. The values in the upper part of the table are 

              



Minimization and Phase Correction of Thermal Blooming of High-Power Beams 117 

normalized to the result for the uncorrected Gaussian beam at  = 0 deg, and 
those in the lower part have a different normalization for each . 

 

 
Figure 4.2.1. APC efficiency when using a modal corrector for a Gaussian beam: 
(1) no correction, (2) correction of tilt, (3) defocusing, (4) astigmatism, (5) coma, 
and (6) spherical aberration. 

  
It can be seen that the dependence of the wind direction on the longitudinal 

coordinate along with a variable initial intensity distribution leads to a very wide 
variability in the efficiency of low-mode adaptive correction. For example, at a 
constant wind direction ( = 0), the correction of second-order aberrations 
(third column) gives a gain of only 1.67 times. At the same time, the correction 
of only tilts for the hyper-Gaussian beam allows the power to be increased almost 
14 times. However, as  increases, i.e., the dependence of the wind direction on 
the longitudinal coordinate becomes stronger, the advantage of the hyper-
Gaussian beam decreases markedly, but the use of the super-Gaussian (round) 
beam in combination with correction of the first-order and second-order 
aberrations becomes very efficient (third column). The increased power on the 
target can achieve 37 times that for a Gaussian beam without correction and a 
constant wind direction. 
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Table 4.2.1. Power on the target at the optimal beam power. 
 



 0 deg 150 deg 300 deg 
Beam I II III I II III I II III 

Gaussian 1 1.44 1.67 1.44 2.33 3.56 2.67 2.78 6.67 

Super-Gaussian 2.22 5.56 6.67 3.11 8.44 29.44 7.33 8.56 37.44 

Hyper-
Gaussian* 

2.33 13.89 3.78 3 7.56 3.78 6.89 8 3.89 

Hyper-
Gaussian** 

1.89 3.33 2.67 3 7.78 3.89 7.22 8.56 4 

Gaussian 1 1.44 1.67 1 1.62 2.47 1 1.04 2.50 

Super-Gaussian 2.22 5.56 6.67 2.16 5.86 20.4 2.75 3.21 14.0 

Hyper-
Gaussian* 

2.33 13.89 3.78 2.08 5.25 2.62 2.59 3 1.46 

Hyper-
Gaussian** 

1.89 3.33 2.67 2.08 5.4 2.70 2.7 3.21 1.5 

 
  * The side of the aperture is oriented along the direction of the mean wind. 

** The diagonal of the aperture is oriented along the direction of the mean wind. 
 

If the wind direction is independent of the longitudinal coordinate or if there 
is a dominant direction (for example, at scanning), the use of the hyper-Gaussian 
beam in combination with the tilt correction is most efficient; otherwise, the use 
of the super-Gaussian beam with the correction of defocusing is most efficient. 

These results have been obtained under the assumption that nonlinear distortions 
are concentrated in the plane of the emitting aperture. In actuality, the thermal lens is 
extended and this distorts the additivity of correcting predistortions and nonlinear 
distortions of the wavefront; complete compensation cannot be achieved, even at the 
infinite spatial resolution of the corrector. Such a situation is characteristic of the 
horizontal path. In this situation, other phase correction algorithms are applied; for 
example, the algorithm of path conjugation that is considered in the next section. 

 
4.3  Method of Phase Conjugation on a Horizontal Path 
 
The PC algorithm is based on the reciprocity principle of propagation of 
electromagnetic waves. As applied to the problem of propagation of paraxial 
wave beams under consideration here, it can be illustrated most readily using the 
reciprocity of the parabolic wave equation for the slow component of the 
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complex amplitude of electromagnetic oscillations in free space. If a reference 
beam with the boundary conditions  
 

   , LU z L U   
 

        (4.3.1) 

 
propagating from the plane z = L to the plane z = 0 described by the equation  
 

2
U

ik U
z 


  


        (4.3.2) 

 
gives the following distribution of the complex amplitude: 
 

   0, 0U z U   
 

,        (4.3.3) 

 
then the beam with the boundary conditions  
 

   0, 0E z U    
 

        (4.3.4) 

 
propagating from the plane z = 0 in the positive direction of the 0z-axis to the 
plane z = L (propagation is diffraction limited) and described by the equation 
 

2
E

ik E
z 


 


,        (4.3.5) 

 
gives the distribution of the complex amplitude conjugate with the initial field of 
the reference beam: 

   , LE z L U    
 

.        (4.3.6) 

 
Equation (4.3.4) describes a wavefront reversal correction algorithm. In this 

case, the wave E is the reversal of the wave U, and at every space point the 
Umov-Pointing vector of the wave E is equal in the absolute value and opposing 
in the direction to the Umov-Pointing vector of the wave U. The reciprocity 
principle is valid not only for free space but also for an optically inhomogeneous 
medium; therefore the WFR algorithm can be used to correct atmospheric 
distortions. 

Although some optical devices based on nonlinear interactions of optical 
waves in crystals are capable of implementing (with a limited accuracy) [20] the 
WFR described by Eq. (4.3.4), in practice they usually restrict their operation to 
phase control (phase conjugation) corresponding to the equation 

 

      , exp arg ,0E z I U    
  

,       (4.3.7) 
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where  I 


 is the initial intensity distribution of the wave to be corrected.  

Thus, the information borne by the amplitude of the reference wave U is lost 
in phase conjugation. In Chapter 3 it was shown that the loss of this information 
does not lead to a significant decrease in the efficiency of correction of turbulent 
distortions. However, under conditions of nonlinear interaction of the radiation 
with the medium, phase correction leads to specific effects, including instabilities 
of a different character. The main problem considered in this section is the 
mechanism of development of PC instability during thermal blooming of a 
focused beam on a homogeneous horizontal path. 

The papers by Herrmann [11, 21] were most likely the first publications 
reporting the possibility of an unstable PC mode. In Ref. [11] with the simplified 
mathematical model of nonlinear propagation, it was shown that starting from 
some threshold power, the application of phase conjugation results in an 
unbounded growth in divergence of the beam to be corrected. It was also 
mentioned that small-scale instability was observed in the numerical experiment. 

The mechanism of development of small-scale instability has been 
considered in detail in recent papers [22, 23]. This type of instability is most 
likely characteristic of the situation when nonlinear (and possibly turbulent) 
distortions are concentrated within a short section of a path whose length is much 
shorter than the diffraction length of the beam. This is typical of vertical 
atmospheric paths. 

Horizontal paths are characterized by instability of the oscillatory type     [15, 
16]. However, the mechanism of its development was not fully understood. As 
we have shown in Ref. [24], this instability is connected with wavefront 
dislocations in the reference beam. 

The problem of adaptive correction is considered in the following 
formulation: A high-power focused beam propagates in a homogeneous medium 
in which there are no random inhomogeneities and all parameters determining 
thermal blooming are constant along the entire path. The reference beam 
propagates from the focal plane in a direction opposite to the high-power beam 
along its channel (its axis) without thermal blooming. The boundary conditions 
for the reference beam correspond to the WFR of the diffraction-limited high-
power beam. In the plane z = 0 (on the emitting aperture of the adaptive system), 
the phase distribution of the corrected high-power beam at every moment of time 
is equal to the phase distribution in the reference beam with the opposite sign. 
This corresponds to the algorithm of fast phase conjugation. Mathematically, the 
problem is formulated by the following set of equations: 

 

      22 2 , , 0, exp ,
E

ik E k nE E z t I i
z 


        


    

   22 2 ; , , , 0 ,
U

ik U k nU U z f E z f t
z 


         


     (4.3.8) 
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In the focal plane, the peak intensity Imax and the power P in a circle of radius 

 0R L ka  corresponding to the effective radius of the diffraction-limited 

focused Gaussian beam were measured. The transition to the dimensionless 
variables gives the following equations for the normalized intensity and power: 
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.       (4.3.9) 

 
The calculated results shown in Figs. 4.3.1–4.3.3 are given in this normalization. 
The time t is normalized to the convective time 2a0/V. The focal length was set 

equal to f = 10 ka0
2. 

As the power increases above some threshold, the well-known oscillations 
[15] arise in the parameters of the corrected beam. To understand the mechanism 
of the appearance of these oscillations, let us examine the behavior of the waist 
of the corrected beam. To do this, we record the waist position as a distance 
between the plane of the emitting aperture and the plane in which the peak 
intensity in the beam cross section reaches the maximum. Because the problem is 
solved numerically, this coordinate zmax is determined accurately to the 
discretization step z along the longitudinal coordinate. 

Figure 4.3.1 shows the dynamics of the waist position (a) and the peak 
intensity (b) in the waist cross section for the power at which oscillations are 
observed in the system. As follows from a comparison of this figure with 
Fig. 4.3.2, the oscillation period of the waist position corresponds to the oscillation 
period of the focal spot parameters. 

Initially, the waist is situated near the focal plane, which follows from the theory 
of diffraction of a focused Gaussian beam. Then the waist shifts toward the emitting 
aperture as a result of correction of defocusing introduced by the evolving 
thermal lens. The reference beam passing through the thermal lens formed as a 
result of thermal blooming of the high-power beam to be corrected experiences 
defocusing. As a result of application of the phase conjugation algorithm, this 
defocusing transforms into extra focusing of the beam to be corrected. This leads 
to a waist displacement toward the APC aperture and a corresponding decrease in 
the system’s focal length. 

The diffraction-limited width of the beam decreases proportionally to the 
focal length, whereas the intensity has a square dependence. Therefore, the 
decrease in the focal length leads to a significant increase in the intensity at the 
waist. The intensity increase causes the corresponding growth of the temperature 
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gradient in the thermal lens, leading to a further increase in defocusing of the 
reference beam and focusing of the beam to be corrected. 

 
 

a 

b 
 
Figure 4.3.1. Dynamics of (a) the waist position and (b) the peak intensity in the 
waist cross section at I0 =24. The intensity is normalized to the diffraction-limited 
value of the intensity at the beam focus. The time t is normalized to the 
convective time 2a0/V. 
 

Thus, a positive feedback is formed in the optical loop of the adaptive 
system. This feedback can be represented as the following chain: appearance of a 
thermal lens, defocusing of the reference wave, focusing of the high-power beam, 
shift of the waist to the emitting aperture, increase in the intensity at the waist, 
and growth of the thermal lens. However, no unbounded increase in the “signal” 
is observed in this chain. Consequently, there are some factors limiting the waist 
shift and leading to saturation of this nonlinear system with the feedback. The 
following factors most likely act simultaneously in this case: 

1. The shift of the waist depends on the distance between the AOS emitting 
aperture and the part of the path where the thermal lens is concentrated, 
i.e., on the waist position at the previous iteration. The closer to the AOS 
aperture this part is, the smaller the waist shift, because as the beam passes 
through the waist, the excess focusing is compensated for by the thermal 
lens. 

              



Minimization and Phase Correction of Thermal Blooming of High-Power Beams 123 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.2. Dynamics of peak intensity at the focus of the beam to be 
corrected for different values of the initial intensity: I0 = 16 (upper panel), 24 
(central panel), and 32 (lower panel). 

 
2. As the waist shifts and the effective size of the beam in this cross section 

decreases, the effective cross size of the thermal lens decreases too. At the 
same time, the size of the reference beam does not decrease to the same 
degree. Therefore, the thermal lens affects only the central part of the 
reference beam, and consequently only the central part of the beam to be 
corrected undergoes extra focusing. 

3. Common defocusing prevails at the initial stage of formation of the 
thermal lens. Since the time  2 3t a V   (where a is the effective size 

of the beam in the cross section), defocusing in the direction 
perpendicular to the wind direction, i.e., astigmatism, begins to prevail. 
The corresponding focusing of the beam to be corrected at this axis leads 
to a decrease in the beam size in only one direction, and the intensity at 
the waist decreases proportionally to the corresponding focusing 
parameter rather than its square. 

Thus, there are at least three factors limiting an increase in focusing in the 
AOS considered. This indeed does not explain why the fast AOS turns into a 
self-oscillation regime, nor does it explain why this regime starts from some 
threshold power. 
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Let us now try to find the cause for oscillatory instability in the behavior of 
the reference wavefront. It is known that the WF topology can acquire a 
qualitatively new character at sufficiently strong distortions [25]. WF 
dislocations at the intersection of lines of sign alternation in the real and 
imaginary parts of the complex amplitude impart the character of a multilobed 
surface to the wavefront, and this surface projected onto the 2D cross section 
gives a phase distribution with discontinuity lines at 2. 

It is logical to suppose that a qualitatively new character of the topology of 
the reference wavefront can lead to a qualitatively new (self-oscillation) regime 
of AOS operation. Consider the results of a study of the WF topology of the 
reference beam [24]. The study was performed in the following way: At every 
iteration of the fast phase conjugation, the field of the reference beam was 
checked for dislocations and the coordinates of dislocations were fixed. 
Detection of dislocations was based on the well-known fact that the loop integral 
of the phase gradient  

 2gdl N N   


       (4.3.10) 

 
is proportional to the sum of the number of positive N+ (i.e., twisted in the 
positive direction) and negative N– topological charges inside the loop. A square 
whose vertices lie in four neighboring nodes of the computational grid is the 
smallest loop in numerical simulation. Since the integral along the straight line 
between the vertices is equal to the phase difference between these two points, 
the loop integral can be calculated as  
 

1 2 3 4         ,      (4.3.11) 

 
where 1, ..., 4 are the phase differences between the square vertices calculated 
in the following way: 1= arg (U2U1

*), and so on, where U1 is the complex 
amplitude at the vertex 1 and so on. A dislocation was considered detected if 
   . In most cases, 0   was obtained accurately to a rounding error for 

mathematical operations. Coordinates of the loop center were assigned to the 
dislocation found in this way. 

It turned out that two dislocations with opposite signs arise at the power 
corresponding to the threshold of the self-oscillation regime in the reference 
beam. Dislocations move in the direction of the wind vector and go beyond the 
recording zone. The time dependence of the dislocation coordinate is shown in 
Fig. 4.3.3. 

Comparison of this plot with the plots for the parameters of the waist and the 
focal spot shows that the periodicity of all three processes is the same. This 
means that these oscillations are closely connected with the appearance of 
dislocations in the reference beam. The comparison of all three figures forms the 
basis for the following interpretation of the AOS oscillatory regime: 
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Figure 4.3.3. Time dependence of the position (Xd) of dislocation: I0 =24 (upper 
panel) and 32 (lower panel). 

 
The shift of the waist of the high-power beam and the corresponding increase 

in its intensity lead to a strong local thermal lens. When distortions of the 
reference beam become strong enough and dislocations arise in it, the 
information about the thermal lens that is contained in the phase of the reference 
radiation is distorted so strongly that the optical feedback loop breaks. 

Then the processes in the AOS evolve most likely in the following way: The 
local thermal lens situated in the cross section where the beam waist was located 
moves in the wind direction according to the mechanism of forced heat transfer. 
This process is accompanied by dislocations of the reference beam in the same 
direction. The motion is observed in the plane of the AOS aperture. Once the 
local thermal lens goes beyond the effective cross section of the reference beam 
and the corresponding wavefront dislocations go beyond the AOS aperture, the 
phase optical feedback is restored, and this leads to a new cycle of focusing 
growth. 

Phase conjugation is WFR minus the information about amplitude 
distortions. Therefore, to the greater degree that phase distortions are transformed 
into amplitude distortions, the lesser the efficiency of the phase correction. When 
distortions of the amplitude profile become so strong that the intensity reduces to 
zero at some points, a qualitatively new situation arises. If the difference between 
the WFR and PC is characterized by the intensity ratio of the beam to be 
corrected and the reference beam at every point of the AOS aperture (for the 
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WFR it is equal to unity with the corresponding normalization), then the 
appearance of dislocations makes this parameter infinite at the points where 
dislocations arise. 

Apparently, in the problem considered we are dealing with exactly this 
mechanism of breaking of the phase optical feedback located in the functioning 
of the AOS. This break is so significant that focusing not only ceases to grow, 
but decreases rapidly, as evidenced by the quick shift of the waist to the focal 
plane. 

 
4.4  Modal Phase Conjugation on a Horizontal Path 
 
The model of an adaptive optical system considered in Sec. 4.3 corresponds to 
some hypothetical adaptive system that transfers the phase of the reference wave 
into the correcting beam with infinite spatial and temporal resolution or at least a 
resolution no less than the resolution of the numerical model used. First, we 
consider the efficiency of modal phase conjugation for propagation of a 
horizontal path optical beam. 

In actuality, the spatial scales of existing AOSs are finite. The results 
obtained correspond to the so-called zonal principle of phase correction, 
according to which the relative phase is measured at some set of points of the 
AOS aperture and the wavefront of the emitted wave is corrected in a similar 
way. In our case, this set of points corresponds to the nodes of the computational 
grid. 

 
4.4.1 Calculation of the efficiency of modal phase conjugation 
 
Another approach is known; it is a modal approach and its phase surface is 
determined by the vector of the coefficients of phase expansion on some basis. 
Since only the large-scale part of the phase expansion (corresponding to the 
lowest aberrations) is used in practice, small-scale local wavefront deformations 
are not reconstructed in this AOS. It is logical to suppose that filtering of the 
small-scale part of phase correction can considerably affect the AOS operation at 
a beam power exceeding the threshold of the self-oscillation regime. As shown 
earlier, such oscillations are connected with the appearance of wavefront 
dislocations having a local (small-scale) character. 

Since the 2D phase distribution in the presence of wavefront dislocations is 
determined with an uncertainty greater than a constant or even total wavefront 
tilt, the formulation of the problem of a modal PC (hereafter, an MPC) is 
intimately connected not only with the expansion basis used, but also with the 
specific type of the sensor and the algorithm for estimating WF. The modal 
algorithms for estimating WF are most often applied to sensors measuring a local 
phase gradient or wavefront tilt. A typical representative of such devices is the 
Hartmann sensor. 
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In the following discussion, we present the results of numerical simulation of 
phase correction of thermal blooming in a phase conjugation AOS with the 
Shack–Hartmann sensor. The parameters of the high-power and reference beams 
as well as the propagation path are the same as in Sec. 4.3. The technique of 
simulation of the wavefront sensor and the modal algorithm used to estimate 
aberrations of the reference beam phase are described in Chapter 2. 

We simulated an AOS with a Shack–Hartmann sensor consisting of 16 
subapertures (Fig. 4.4.1). Four corner subapertures were neglected, and local tilts 
were estimated in only 12 subapertures. The diameter of the sensor aperture 

04D a  corresponded to the diameter of the beam at the 21 e intensity level. We 

considered the scheme of a closed loop in which the reference wave passed 
through the same optical elements as the corrected beam. These elements were 
the focusing system and the modal corrector. The sensor measured only residual 
aberrations, i.e., the phase of the reference beam minus the diffraction component 
and distortions compensated for by the corrector at the previous iteration of phase 
conjugation. Thus, the field of the reference beam on the entrance pupil of the 
sensor US can be written as 

 

     
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 

  
,   (4.4.1) 

 
where  ,0,U t


 is its complex amplitude in the plane of the AOS receiving–

emitting aperture at the current time, f is the focal length of the forming 
telescope, t is the time between PC iterations (correction delay time), and Ф is 
phase correction.  
 
 

 
Figure 4.4.1. Configuration of the Shack–Hartmann sensor. 
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Phase correction was determined as a sum of the first 15 Zernike polynomials 
:lZ  
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,   (4.4.2) 

 
with the weights cl obtained from modal estimation of the phase on a circle 
inscribed in the sensor aperture. 

Numerical experiments with such AOS models, which have been conducted 
by us for the first time [24], have shown that correction of thermal blooming 
using an MPC is characterized by higher stability. This is illustrated in Fig. 4.4.2, 
which shows the dynamics of the peak intensity in the focal plane for different 
initial beam intensities (I0 = 24, 32, and 64). In all the cases, oscillations are 
absent, i.e., the application of such a sensor either dampens them or at least 
increases their threshold. 

 
Figure 4.4.2. Dynamics of the peak intensity in the focal plane at I0 = 24 (a), 32 
(b), and 64 (c) for MPC.  
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A study of the reference beam has shown that dislocations arise in it, but this 
does not lead to development of AOS instability. The cause of the transition to 
the steady state can be interpreted as filtering of local deformations of the 
reference wavefront when the modal algorithm for estimating aberrations of the 
reference wave is applied. 

In the AOS steady state, dislocations of the reference wavefront, if any, either 
disappear or keep their position (Figs. 4.4.3 and 4.4.4). It is interesting to note that at 
the focus of the sensor subaperture within which a dislocation falls, the focal spot 
splits into two halves. The evolution of such a double focal spot is illustrated in 
Fig. 4.4.5. An analogy of this effect for an interferometric device is known [25]. 
In the latter case, the appearance of a dislocation leads to splitting of an 
interferometric fringe, which acquires a forked shape. We can observe a similar 
effect in the AOS considered if the bias interferogram of the reference wave is 
recorded in parallel with phase correction. 

 
 

 
 

Figure 4.4.3. Waist position (MPC) at I0 = 24 (a), 32 (b), and 64 (c). 
 

a

b

c
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Figure 4.4.4. Position of WF dislocation in the reference beam at I0 = 24 (a), 32 
(b), and 64 (c). 

 
Figure 4.4.5. Appearance of a double focal spot at the focus of the subaperture 
of the Hartmann sensor. 
 
4.4.2 Modification of modal phase conjugation 
 
The waist shift to the aperture plane observed in the numerical experiment is, 
generally speaking, an unwanted effect because it leads to formation of a stronger 
thermal lens than in thermal blooming without correction. The waist shift is 
caused by the AOS tendency to compensate for thermal defocusing. This leads to 
a decrease in the focal length of the system or, what is the same, to an increase in 
the focusing parameter. It is known that the optimal value of the focusing 
parameter on a homogeneous path with thermal blooming is less than that for a 
diffraction-limited beam [4]. The nature of this effect is the same: an increase in 
the focusing parameter causes a waist shift toward the emitting aperture and the 
formation of higher temperature gradients in the regions adjacent to the waist. 

a

b

c
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Since the phase correction in an MPC is set as a weighted sum of Zernike 
polynomials, it is possible to directly control the phase correction modes. To 
prevent an unwanted waist shift, we can turn off the focusing control. In the 
mathematical description of the AOS loop, this corresponds to the following 
modification of the equation of phase correction: 
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Since defocusing along the axis perpendicular to the wind vector, i.e., 

astigmatism, becomes the dominant quadratic aberration on completion of the 
transient process, we can try to turn off the astigmatism control as well: 
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Numerical experiments have shown that removal of quadratic aberrations 

actually leads to an increase in the concentration of the beam energy on the 
target, and turning off both the focusing and astigmatism control gives the best 
result. This correction will be referred to as modified modal phase conjugation 
(MMPC). In addition to quadratic aberrations, tilt and coma contribute 
considerably to distortion of the beam phase under thermal blooming; therefore, 
MMPC mostly leads to directing the beam and straightening the characteristic 
“sickle” caused by coma. 

Compare the efficiency of MMPC, MPC, and PC using the power  
optimization curves as a basis. Figure 4.4.6 shows the steady-state power in the 
diffraction spot Pd as a function of the initial intensity of the beam to be corrected 
for MPC (with correction of all lowest aberrations up to and including the fourth 
order) and MMPC, i.e., without control of quadratic aberrations, as well as with a 
complete PC and in a system without correction. The data for PC have been 
obtained by time averaging of the corresponding instantaneous values for several 
periods of oscillation. 
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Figure 4.4.6. Power in the diffraction spot Pd as a function of the initial intensity I0 
at no correction (n.c.) and different correction algorithms (MMPC, MPC, and PC). 

 
It can be seen that the MPC efficiency is somewhat lower than that of the PC, 

whereas the MMPC is far more efficient than a PC starting from the power at 
which dislocations and a self-oscillation regime arise  0 20 24I   . In 

combination with optimization of the initial beam intensity, the MMPC gives an 
almost threefold gain in the power Pd compared with the system without 
correction, and gains of 1.5 and 1.7 times over the PC and MPC, respectively. 

We do not claim that the proposed modification of phase conjugation has 
versatility. It only gives a key to optimizing the correction algorithm by 
introducing changes in the control channels for such aberrations, which lead to 
unwanted increases in temperature gradients in the channel of the high-power 
beam. Perhaps the value of the focusing parameters in many cases should be set 
somewhat less than that optimal for diffraction-limited propagation. Under 
conditions of phase correction of thermal blooming in a turbulent medium, it 
makes sense to limit the range of correction of quadratic aberrations, rather than 
turn off the control of these aberrations. 

Summarizing the discussion of modal phase conjugation in correcting for 
thermal blooming, we would like to note the main results obtained in this section. 
First, it has been shown that the appearance of dislocations in the MPC does not 
lead to the self-oscillation regime. At any power at which we succeeded in 
conducting the numerical experiment, the system always reached the steady state. 
We can suppose that the threshold for appearance of oscillatory instability 
becomes far higher. In the problem considered, it was higher than the optimal 
beam power. The absence of the self-oscillation regime indicates that no rigid 
requirements need be imposed on the AOS speed if the level of turbulent 
distortions is low.  

Second, we have proposed a modified MPC that allows the efficiency of phase 
correction to be improved. This improvement is caused by the smaller degree of 
distortion of the amplitude profile of the reference beam that is due to preventing the 
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development of strong temperature gradients in the channel of the high-power beam 
as the waist shifts toward the AOS aperture. 

Thus, in this chapter we have considered two limiting geometries: a 
nonlinear phase screen at the beginning of the propagation path and a 
homogeneous path whose nonlinear properties are the same over the entire length 
from the emitting aperture to the beam focus. These two limiting cases have 
pronounced peculiarities in the problem of thermal blooming of a high-power 
focused beam. 

In reality, various intermediate situations occur in the atmosphere, and 
peculiarities of one or another propagation scenario manifest themselves to a 
greater or lesser degree, depending on the direction of the beam axis relative to 
the horizon, the angular scanning rate of the optical system, the path altitude, and 
other factors. In general, it is difficult to recommend particular methods and 
devices of adaptive correction, but the regularities obtained here can serve as 
guidelines for specific problems. 
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CHAPTER 5  

A Laser Reference Beacon as a Key Element 
of an Adaptive Optics System 

 
In the preceding chapters on estimating the efficiency of adaptive systems, we 
analyzed models of a turbulent atmosphere and considered methods for solving 
the wave equation that describes propagation of optical radiation in the 
atmosphere. The next important problem is the development of a combined 
model of an adaptive system using a reference source as one of its key elements. 

The importance of research into the efficiency of adaptive optics systems 
with an artificial reference source was understood by the late 1970s. In that 
period (and even earlier), the main principles of current adaptive electro-optics 
systems were formulated. According to these principles, the reference source is 
an element that helps to obtain information on the distribution of fluctuations in 
the propagation channel of optical radiation. The method of formation of the 
reference source affects the structure of the system as a whole. If the reciprocity 
principle is the basis for an adaptive system, then the most appropriate adaptive 
scheme is one with an independent reference source generating a beam 
propagating in direction opposite to the direction of the radiation to be corrected.  

For practical implementation of the emitting optical system, the atmosphere 
should be included in the feedback loop; i.e., backward scattering should be 
taken into account, with radiation reflected from an object or inhomogeneities of 
the atmosphere. In this way, an artificial (virtual) reference source is formed.  

In the early 1980s, artificial reference sources were named laser guide stars 
in adaptive astronomy. Such stars became possible through the use of Rayleigh 
backscattering or elastic scattering of atmospheric aerosols at the altitudes from 8 
to 20 km or stimulated emission in clouds of atomic metals (for example, 
sodium). In the first case, a laser guide star is referred to as a Rayleigh guide star 
and in the second as a sodium guide star.  

The requirements for a laser source that forms a Rayleigh star are loose. On 
the other hand, the requirements for the wavelength, bandwidth, and power of a 
laser source forming a sodium star are quite strict. This is due to the selectivity 
and saturation of absorption at stimulated emissions in sodium vapor at altitudes 
from 85 to 100 km. 
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5.1   Some Features of Reflected Optical Wave 
Fluctuations in a Turbulent Atmosphere 

 
Interest in this problem arose because of the need to generate reference radiation 
as a result of reflection from some objects in the atmosphere (radiation of a 
beacon or a guide star). Light can be reflected in the atmosphere from 
inhomogeneities such as clouds or aerosols and from real objects. As an example, 
we consider the radiation specularly reflected from an object. In this case, we 
have to take into account the peculiarities of fluctuations of optical parameters of 
radiation passed twice through atmospheric inhomogeneities. In adaptive phase 
control algorithms, the most important parameter is the phase of the reflected 
wave, so special attention should be paid to phase fluctuations. 

In the mid-1970s, scientists and engineers working with optical systems of 
viewing and beaming in the atmosphere as well as atmospheric sensing systems 
understood the importance of allowing for peculiarities of fluctuations of the 
reflected waves. In contrast to transmitting systems, optical sensing systems 
always involve the effect of double passage through the atmosphere. The sensing 
radiation passes through the same optical inhomogeneities two times: at forward 
and backward propagation.  

 
5.1.1 Enhanced backscatter 
 
For the situation when an object is illuminated and viewed through the same 
turbulent atmosphere, J.C. Dainty et al. and A.S. Gurvich, A.N. Bogaturov, and 
V. A. Myakinin coined the term double passage imaging. The physical basis of 
double passage imaging lies in the fact that reversible paths of illumination and 
viewing are coherent with one another, regardless of the phase distortion of the 
turbulence, and thus double passage imaging is closely linked to the phenomenon 
of enhanced backscatter encountered when dense volume media and highly 
sloped rough surfaces are illuminated [1]. 

The most complete overview of this problem is given in Refs. [2] and [3], 
which summarize the results of studying the effect of fluctuations of the 
atmospheric refractive index on optical waves under the conditions of double 
propagation through the same atmospheric region. This occurs as laser radiation 
is reflected from a target or waves are backscattered by atmospheric aerosols. In 
this case, the fluctuations of optical waves are determined by correlations 
between fluctuations in the incident and backscattered waves that have passed 
through the same inhomogeneities in the turbulent atmosphere. This may lead to 
qualitatively new properties of fluctuations compared with forward propagation, 
i.e., enhancement of backscattering of intensity fluctuations, long-range 
correlations in the field of the reflected wave, and so on.  

The important role of Russia in this field was confirmed at the International 
Meeting for Wave Propagation in Random Media “Scintillation” held in Seattle, 
Washington, in August 1992 [4]. The following Russian scientists have been 
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working in this field: Yu. A. Kravtsov, A. N. Malakhov, A.S. Gurvich, K.S. 
Gochelashvily, V.I. Shishov, A.I. Saichev, V.A. Banakh, V.A. Mironov, V.U. 
Zavorotny, V.I. Klyatskin, A.I. Kon, V.I. Tatarskii, Yu.N. Barabanenkov, S.S. 
Kashkarov, G.Ya. Patrushev, V. P. Aksenov. M.I. Charnotskii, M.L. Belov, V.M. 
Orlov, I.G. Yakushkin, Z.I. Feizulin, A.G. Vinogradov, A. B. Krupnik, L. 
Apresyan, and others.  

 
5.1.2 Phase fluctuations of specularly reflected waves 
 
In the mid-1970s, Soviet scientists and particularly the scientists working with 
the Institute of Atmospheric Optics Siberia RAS were involved in an 
investigation of the peculiarities of phase fluctuations in sensing schemes 
employing mirror reflectors, i.e., fluctuations of optical waves that have passed 
through the atmosphere twice. 

The problem of detection and ranging of mirror objects appeared in some 
practical applications, for example, as a part of a project using laser range finding 
with a corner retroreflector and in problems of atmospheric sensing, laser 
interferometry, wind velocity measurement by Doppler meters, and so on. In our 
opinion, the most interesting papers concerning this problem are the publications 
by Smith et al. [6, 7]. Following these papers, many other publications devoted to 
phase fluctuations of specularly reflected waves appeared in the period from 
1974 to 1980.   

At the Institute of Atmospheric Optics, experimental and theoretical 
investigations of the problem were begun in 1976 [8-18]. In Ref. [10], the 
increase (compared with a direct wave) of phase fluctuations for a wave 
specularly reflected from an object in a backward direction was demonstrated 
theoretically. Experimental studies carried out [11] in 1975–1976 confirmed the 
theoretical conclusions. Later (in 1977) the efficiency of compensation for phase 
distortions was considered [12]. The correction of phase fluctuations was 
assessed from the data characterizing the reflected wave for a plane mirror with a 
radius much larger than the beam radius used as a retroreflector. More detailed 
analysis of phase fluctuations in reflected waves was performed in 1980 [13]. In 
Ref. [13], the correlation and structure functions of phases for optical waves were 
calculated for a specularly reflected wave.  

Special attention was paid to the phenomenon of phase fluctuation coupling. 
It was shown that some peculiarities are specific to statistical characteristics of 
the phase and the relevant characteristics for reflected waves [14-18]. These 
peculiarities should be allowed for in evaluations of optical radar signals as well 
as in adaptive optics systems employing phase conjugation algorithms. Several 
experiments in the real atmosphere with correction of random wavefront tilt were 
carried out in 1976–1980 [16-18].  
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5.1.3 Random displacements of the image of a sensed volume 
in a turbulent atmosphere 

 
Fluctuations of an image centroid were considered by Orlov et al. [3]. The image 
was formed through an inhomogeneous medium in a sensing system with the use 
of a focused laser beam. In particular, fluctuations of the image of a sensed 
volume were studied. Monostatic and bistatic schemes were considered. Focused 
and collimated laser beams were used to irradiate the sensed volume. The 
equations describing the variance of centroid fluctuations have been derived for 
an image in the photodetector plane without any restrictions on the reflective 
properties of the object ([3], pp. 84–95).  

It was shown that for strong dispersion on a surface (Lambertian 
approximation) in a bistatic sensing scheme, the variance of linear displacements 
of the image centroid can be written as ([3], p. 92) 

 
2

2 2 2 ss 2
im lb2

( )F

F
F

x
     ,                             (5.1.1) 

 

where 2
lb is the variance of random displacements of the beam centroid in a 

sensing plane (it was assumed that the beam propagates upward) and ss 2( )F


 is 

the variance of random angular displacements of the image of a “secondary” 
immobile source (downward propagation). Thus, it was shown that for a bistatic 
scheme, the variance of angular displacements of the image is a sum of angular 
displacements of the sensing beam and the image of the “secondary” immobile 
source. If a focused beam is used in a strongly scattering medium, then the 
secondary source is, in reality, a point. 

In that period, calculations were performed for the cases when the 
“secondary” source was treated as a point (a small scattering volume) and as an 
object with a finite volume. For example, in the paper by Kallistratova and Kon 
[5], the jitter of the image of a thin luminous string was considered.  

Thus, we can conclude that in the USSR in the early 1980s, scientists 
understood that under some conditions a volume can be considered as infinitely 
small (a point source or a laser guide star), but in other problems it is necessary 
to take into account the size of this volume; i.e., if an object is large enough, 
averaging over its volume is necessary, as was done in Ref. [5]. At the same time, 
Orlov et al. [3] failed to correctly calculate the correlation between fluctuations 
of focused beam displacements and displacements of the image of the reference 
(secondary) sources. This was done in 1979–1980 by Lukin [8, 9].  

Let us calculate the correlation between random displacements of the energy 
centroid of an optical beam that has passed through a layer of a turbulent medium 
and the centroid of some image formed by the optical system through the same 
medium [8]. This can be an image of a reference source (beacon) or an optical 

              



A Laser Reference Beacon as a Key Element of an Adaptive Optics System 

 

139

beam reflected from a flat mirror with an infinite radius. Random displacements 
of the beam centroid are described by the vector [19]: 

 

2
1

0 0

1
( ) d ( , ) ( , )

2

x

c Rd x RI
P

          R R


,                    (5.1.2) 

 
where 1( , )  R  are fluctuations of permittivity at the point ( , ) R , ( , )I  R  is the 

intensity [at the point ( , ) R ] of the field generated by the source located in the 

plane 0  , and x is the thickness of the turbulent layer, 2
0 (0, )P d RI  R . 

The random displacements of the image in the focal plane of the optical 

system (equivalent to a thin lens with a focal length F and area 2
0R   ) are 

described by the equation 
 

2( , )cF

F
S x d

k 


     
 

 
,                        (5.1.3) 

 
where k is the radiation wave number and S x( , )  are the fluctuations of the 

optical wave phase over the aperture of the optical system (in the plane x  ) at 

the point 


. The correlation between the random vectors c


 and cF


 can be 

represented as 
 

   
1/ 22 2/c Fc c cFK       

   
.                    (5.1.4) 

 
Hereafter, ...  denotes averaging over the ensemble of realizations of the 

random function  1( , )R . 

To make the situation clearer, let us consider the correlation between random 
displacements of the centroid of a Gaussian beam and the centroid of the image 
for an infinite plane wave (the beam and the plane wave propagate along the 
same optical path). In what follows we assume that the functions ( , )I  R  and 

 ( , )x   are isotropic and mean intensity is described by the following 

equation [19]: 
2 2

Eff

2
/ ( )

2
Eff

( , )
( )

R aa
I e

a
  


R ,                         (5.1.5) 

where 
2 6/5

2 2 2 2
eff

1
( ) 1 (2 )

2 S

x
a x a D a

f
                   
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2ka x  , a  and f are the initial parameters of the Gaussian beam, and 

D aS (2 )  are phase structure functions. Thus we obtain 

 
1 2 2 2 2
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0 0

1/ 21 2 2
2 3 eff

0 0

1/ 21 2 2 2
3 20
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(1 ) ( )exp cos
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2
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   
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 

 

 

  

 (5.1.6) 
 
The form of K is similar for a spherical wave, as well when these waves or 

the Gaussian beam are reflected from a flat reflector with an infinite radius.  
In calculations, we use the following spectrum: 
 

n nC( ) . ( ) /    0 033 2 2
0
2 11 6 ,                           (5.1.7) 

 
which accounts for deviation from the power series near the outer scale 

1
0 02L   . 

As an example, let us estimate the correlation between displacements of the 
image for a plane wave at the focus of a telescope and random displacements of a 
beam with an initial diameter equal to the diameter of the telescope’s entrance 
pupil. The estimation is performed for a homogeneous path; the parameters of the 
problem are the following:  

 

 
6/5

1 2 2
0 0 eff 0

1
max , , , , (2 ) 1.

2 sR a x k kR x D a         
 

 
The resulting value of K is approximately equal to 0.84. Thus, it was shown that 
there is a high positive correlation between the displacements of the Gaussian 
beam and the displacements of the plane wave centroid provided that the beam 
and the image-forming wave propagate on the same path and in the same 
direction.  

Owing to the relatively high correlation, the algorithm for controlling the 
correction of random angular displacements of a beam c x


 can be based on the 

expression  1/3
0/ 2 cFa R F  , where   is the coefficient of the loop, which is 

chosen to ensure minimum residual angular displacements of the beam 
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21/ 3
0( / 2 )

min c cFa R

x F

   
 

 

 
. 

 
Thus, a transition from linear measurements to angular ones makes it possible to 
control a laser beam’s position by using the data measured on the image of the 
reference source [8].  

These results [8] were later generalized (in 1980) for the case when the beam 
and the image-forming wave propagate in opposite directions [9]. It was assumed 
that the image is formed in the focal plane of a telescope for the following 
scenarios: 

 plane wave, spherical wave, Gaussian beam, and 
 radiation reflected from a plane mirror. 

 
For a plane wave propagating over a homogeneous path and for a broad 

beam it was found that with a collimated beam K = 0.87, and for a focused beam 
it is 0.82. For spherical and any other waves, the results could be obtained from 
the data published in Ref. [9].  

So, as early as 1979 the sign of the correlation was determined and its value 
was estimated. And, in Ref. [9] (1980) the fundamental possibility of using 
radiation backscattered by atmospheric aerosol was first mentioned. These 
problems are considered in greater detail in the Sec. 5.3. Summing up, we can 
conclude that during 1976–1980 Soviet scientists obtained all the functions 
necessary to analyze random displacements of the image of a sensed object for 
both bistatic and monostatic schemes.  

However, in solving a particular problem, a model of the scattering (or 
reflecting) medium, which in turn determines the model of the secondary source 
[see Eq. (5.1.1)] is still an open question. In this case, two approaches are 
possible: direct introduction of a model of the source and solution of the problem 
of backscattering. 

 
5.2 Improvement of the Quality of an Atmospheric Image 

by Adaptive Optics Methods  
 

Consider now the possibilities of improving the quality of atmospheric images 
formed by an adaptive optics system. To correct the image of a star formed by a 
telescope, two approaches are largely used: one based on measurement of the 
field generated by the reference source and the other based on maximization of 
the sharpness function. 

In this section we consider correction by an adaptive optics system 
functioning as a system with feedback [21] and utilizing information about the 
instantaneous distribution of inhomogeneities in the propagation medium. For 
this we use the algorithms of adaptive control based on the reciprocity [22] 
principle. 
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The quality of the image of an extended object formed by an optical system 
in a turbulent atmosphere can be improved with the help of adaptive correction. 
To do this, information about the distribution of turbulent inhomogeneities of the 
medium along the propagation path is extracted from the measured fields of the 
reference source [23,24]. As an object with a known amplitude-phase 
distribution, a reference source located at a known distance from the receiver can 
be formed directly on the surface of the object being imaged; it can be located at 
infinity (a reference star); or, finally, it can be located between the object and the 
objective [23]. 

Let the extended object be in the plane xobj , the point reference source be in 

the plane refx , and the entrance aperture of the telescope be in the plane x0 . The 

distribution of the field objU  of the extended object formed in the x0  plane is 

described by the equation [20, 25] 
 

2
0, 1 obj 1 0 obj 1( ) ( ) ( , ; , )U x d U G x x     
   

.                 (5.2.1) 

 

0 obj 1( , ; , )G x x 
 

 is the Green’s function of the turbulent atmosphere between the 

planes x0  and objx .  The entrance aperture of the telescope is denoted as ( )W  , 

and the action of the telescope is replaced by an equivalent lens introducing the 

phase term 2exp( / 2 )k f  , where f is the equivalent focal length of the 

telescope. 
We assume that the correction is based on the phase conjugation algorithm 

using the phase of the wave measured from the reference source. In this regard, if 
the reference source is so small or so far away that it is not resolved by the 
optical system of the telescope, it can be treated as a point source. The phase of 
the wave (with wave number 2 /k    ) from the reference source in the 
entrance aperture plane x0  can be written as 

 
2

ref 0 0 ref ,
ref 0

( , ) ( , ; 0)
2( )

k
S x S x x

x x


   


 

,                   (5.2.2) 

 
where 0 ref ,( , ; 0)S x x


 is the random phase that is due to turbulence of a spherical 

wave as it propagates from the plane refx  to the plane 0x . We assume here that 

the point source is located on the optical axis of the telescope. This means that 
the conditions of the experiment allow us to form the reference source on the 
same optical axis as that on which the object is located. Here we omit discussing 
the techniques for formation of reference sources. 
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There are a great number of techniques for separating the diffraction phase 
2

ref 0/ 2( )k x x   from 0 ref,( , ; 0)S x x


 in Eq. (5.2.2). With the purely turbulent 

contribution to the phase of the reference source [Eq. (5.2.2)] thus available to us, 
we can solve the correction problem using either the phase conjugation algorithm 
or the total phase conjugation (TPC) algorithm. 

The TPC algorithm uses the total phase via Eq. (5.2.2) to correct the 
wavefront and therefore forms a beam of arbitrary geometry only in the plane of 
the reference source. If we succeed in whatever way in separating the diffraction 
phase from the turbulent phase in Eq. (5.2.2), then we can apply the PC 
algorithm for beam formation in an arbitrary plane (which is different from the 
plane of the reference source) or for image correction. Here, however, it is 
necessary for the turbulence-induced phase of the reference source measured in 
the 0x  plane to coincide with the phase of the object field over the entire path to 

the object. 
This can take place, for example, along slant paths, where the turbulent 

intensity 2 ( )nC h  decreases with height h . The reference source upon which the 

experimental scheme in question is based should be located somewhat higher 
than the effective layer of atmospheric turbulence effH , and the choice of its 

location is governed by the condition 
 

eff

0 0
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H H
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dh C h dhC h
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





 
 


, 

 
where   is determined by the admissible level of residual distortions in the 
optical wave in which the aberration-free image is being formed. Here it is 
assumed that the object is located practically at infinity, i.e., outside the 
atmosphere; 0H  is the height of the entrance aperture of the telescope. 

Let us consider the phase conjugation algorithm in detail, employing it only 
within the aperture ( )W  .  Then the corrected field is written as 

 
*

20 ref
0, 1 obj 1 0 obj 1*

0 0 ref

( , ; ,0)
( ) ( ) ( ) ( , ; , ),

( , ; ,0)
c

G x x
U x W d U G x x

G x x


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 
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      

 (5.2.3) 
 

where *
0 0 ref( , ; ,0)G x x


is a Green-function for free space propagation. The ratio 

* *
0 ref 0 0 ref( , ; ,0) / ( , ; ,0)G x x G x x 
 

 is called the “correction function.” The 
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corrected field in the image plane of the object objx  is formed in the same way as 

in a “thin lens”: 
 
 

2 2
im obj 2 0 2 2 obj 0 2( , ) ( , )exp( / 2 ) ( , ; , )cU x d U x ik f G x x        

   
.   

  (5.2.4) 
 

Here it is assumed that the image is formed in a vacuum in the optical system of 
the telescope. Summing Eqs. (5.2.3) and (5.2.4), we have 
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   


   

       (5.2.5) 

 
As a result, if the ratio  

 

 * *
0 1 ref 0 0 1 ref 0 1 ref( , ; ,0) / ( , ; ,0) exp ( , ; ,0)G x x G x x iS x x    
  

, 

 
then the mean intensity distribution in the image plane x is  
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   (5.2.6) 

 
Here we have used the phase approximation [2] for Green’s function 

expressed as G = G0 exp(iS), where S is the random phase caused by turbulence 
calculated in the geometric optics approximation and the angular brackets 
indicate averaging over the ensemble of turbulent fluctuations. 

Below, for convenience we denote the expression in the angular brackets in 

Eq. (5.2.6) simply as ... . In calculating ... , we assume that the fluctuations of 

the phase S are Gaussian, from which it follows that 
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   (5.2.7) 

 
where  0 1 2 obj 1 2, ; ,sD x x  r r 

 is the phase structure function of two spherical 

waves whose sources are separated by the displacement r r1 2  and observation 

points are separated by the vector 1 2 
 

. Let us consider the correlation 

functions of the type    0 1 ref 0 2 obj 1, ; ,0 , ; ,S x x S x x  r 
 in more detail. Since the 

random phase in the geometric optics approximation can be represented in the 
form [20] 

   
 

ref

0

0 ref
ref 0

, ; ,0 , exp ,
x

x

S x x k d dn i
x x

 
                 (5.2.8) 

 
the correlation can be written as 
 

       

   

ref

0

2
ref 1 obj 2 2 1 1 2 2

1 2
1 1 2 2

ref 0 ref 0

, , , ,

exp .

x

x

S x S x k d dn dn

i
x x x x

       

   
          

 
      (5.2.9) 

 
Using the representation [20] 

 

          2 2
1 1 2 2 1 2 1 2 1 1 1 2, , 2 Ф , ,ndn dn d d                  

 
we can transform Eq. (5.2.9) into the following form: 
 

    ref obj

0

2 2
ref 1 obj 2

ref 0
ref 0 1 2

obj 0

, 2 ( , )

exp /( ) ,

x x

n
x

S x S x k d d Ф

x x
i x x

x x


       

                

 
 

    

 
where  Ф ,n    is the spectral density of the refractive index fluctuations. Thus, 

in the geometric optics approximation, 
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   0 1 ref 0 2 obj 1

ref 0
0 1 2 ref 1

obj 0

, ; ,0 , ; ,

, ; , .S

S x x S x x

x x
B x x

x x

 

  
       

r

r

 

                          (5.2.10) 

 
Now, taking Eq. (5.2.10) into account, we bring Eq. (5.2.7) into the form   
 

    0 1 2 ref 0 1 2 obj 1 2

ref 0
0 ref 1

obj 0

ref 0
0 1 2 ref 1

obj 0
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0 1 2 ref 2
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1 1
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2 2

1
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1
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1
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2

S S
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S
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D x x
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x x
D x x
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x x
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x x

D x x

     

  
     

  
      

  
      



r r

r

r

r

   

 

 

ref 0
ef 2

obj 0

, .
x x

x x

   
      

r

(5.2.11) 

 
Using the representation of Green’s function in free space, we can rewrite 

Eq. (5.2.6) as 
 

 
   

   

 
   

 
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 
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 
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2 2 2
1 2 1
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2 2 2
2 1 1 2 2

0 obj obj 0 obj 0

,
16
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2 2

... .
2 2

im

k
I x d d r W W

x x x x

U r ik ik
f x x

r r
ik ik ik

x x x x x x

     
  

    
   

   
      




 


    
 

(5.2.12) 
 

Let us first consider the diffraction terms in Eq. (5.2.12), which control the 
formation of the image in a vacuum. We choose the plane x, which is conjugate 
to the plane x, as the image plane. From the condition for conjugate planes, we 
have 

      0 obj obj 01 1 1x x x x f    ,                          (5.2.13) 
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and since  obj 0 0 obj( , )x x f x x    we arrive at the conclusion that 

 

 0 obj1 1 .x x f   

 
Consequently, remote objects are practically always imaged at the focus. 

Based on this result, it is possible to simplify the diffraction terms in Eq. (5.2.12). 
It follows that in a vacuum the intensity distribution in the focal plane has the 
following form:  

 

 
 

     

       
 

4
4 4

1,2 1,2 1 2 obj 122 2
obj 0

2 2
1 1 2 2* 1 2

obj 2
obj 0

,
16

exp .
2

k
I f d d r W W U r

f x x

r r
U r ik ik

f x x

    
 

              
  


 

    


 

(5.2.14) 
 

If we assume a Gaussian object    2 2
obj objexp 2U r r a   (here obja  is the 

effective radius of the object), we have  
 

         

      

2 2
obj 4 * 1 2

1,2 1 22 2 2
obj

2 2
1 obj 2 obj

obj 0

, exp
4 1

1 1 ,
2

k
I f d W W ik

ff

k
i i i

x x

        
  

        


  

 

(5.2.15) 
 

where  2
obj obj obj 0k a x x   . 

Let us turn back to the case of image correction. Here it should be noted that 
there is one term (the second) in the exponent in Eq. (5.2.11) that determines 
fluctuations in the system without correction. This term depends on the 
integration over the entire path from the object to the telescope. The rest of the 
terms in Eq. (5.2.11) are associated with correction. In calculations we use the 
following equation for the phase structure function: 

 

     
 

 

 
 

 

2
1 2 1 2 1 2

5 3

1 2

, ; , 2.91

.

x

S n

x

x
D x x r r k d C

x x

x
r r

x x



         


 
 




    

 
 

(5.2.16) 
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The structure characteristic of the refractive index in the integrand in Eq. (5.2.16) 

depends on the integration variable 2
nC  along the propagation path. 

Let us consider the case of vertical propagation (a telescope pointed at the 

zenith). In calculations we make allowance for the altitude dependence of 2
nC . 

This dependence is realized in practice in the form of various models. 
Let us carry out an estimation based on the following model [20]: 
 

 
 

 
0

1

2 32
0 02

4 32

, ,

, ,

n t

n

n t t

C x x x x x
C x

C x x x x





   


            (5.2.17) 

 

where 
0

2
nC  is the value of the structure characteristic at the initial altitude, tx  is 

the altitude at which the two-thirds power dependence goes over to the four-

thirds power dependence, and  
1 0

2 32 2
1 0 .n nC C x x    Thus, this model is 

determined by the parameters tx  and 
0

2
nC . In calculations connected with 

Eq. (5.2.11), we require that obj refmin( , ) tx x x . Substituting Eq. (5.2.16) into 

Eq. (5.2.11), after combining like terms, we have 
 

o‡

0

5 32 5 3 5 3 2
1 2 obj 0 0... exp 1.46 ( ) ( ) ( )

x

n

x

k x x x C d
        



 

 

o‡

o•

5 32 5 3 5 3 2
1 2 obj 0 obj1.46 ( ) ( ) ( )

x

n

x

k x x x C d        
 

  

o•

0

5 3 5 3
obj5 32 2ref

1 2
obj 0 ref 0

1.46 ( ) .
x

n

x

x x
k C d

x x x x

                        


 
 

(5.2.18) 
 

Here, note that 1r


 and 2r


 are the variables of integration over the object, and 1


 

and 2


 are the variables of integration over the aperture of the telescope. 

Analysis of Eq. (5.2.18) reveals that the term containing 5 3
1 2r r
 

 (the object 

variables) remains the same as in the absence of correction. This is the term that 
is determined by the action of so-called anisoplanatism of the atmosphere. 

This parameter is connected [23, 24] with the problem of constructing the 
image of an extended object. There are two terms in Eq. (5.2.18) containing 

5 3
1 2 
 

 (the variables of the entrance aperture of the telescope), one of which 

is determined by inhomogeneities in the region between the reference source and 
the object (this part remains uncompensated since the reference source is located 
closer to the objective than the object) and another is determined by the 
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inhomogeneities between the objective and the reference source (its presence is 
due to the inequality of the curvature of the spherical waves arriving from the 
reference source and from the object’s plane). 

It is clear that for the model of Eq. (5.2.17) the altitude region corresponding 
to the two-thirds power law gives the largest contribution and therefore it is 
always necessary to choose ref tx x . In this regard, all the integrals in 

Eq. (5.2.18) can be divided into two parts: 
 

     
obj obj

0 0

... ... ...
t

t

x xx

x x x

d d d       .              (5.2.19) 

 
If the region corresponding to the two-thirds power law is absent from the 

spectrum in Eq. (5.2.17), then the first term in Eq. (5.2.19) is equal to zero. 
Substituting the model of Eq. (5.2.17) into Eq. (5.2.18), we arrive at the equation 
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 
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       

 
       

 

 

 

 

 

  5 3
f .

       (5.2.20) 

 
Now let us consider each of the terms in Eq. (5.2.20) separately. First, let us 

turn our attention to the term containing 5 3
1 2 .r r
 

 It determines what objects 

can be seen clearly and in their entirety in the objective at a given level of 
turbulence along the path and do not undergo any change upon correction. 
Consequently, correction with one reference source does not remove the problem 
of anisoplanatism, and for correction of the image of a large object it is necessary 
to form several reference sources. For further calculation, we introduce the 
parameter ra, the radius of the isoplanar region, as follows:   
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 

 
   (5.2.21) 
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In this context, we can say that the object is located in the isoplanar region if 

obj aa r . The parameter ra has a simple physical meaning. From Eq. (5.2.21), 

taking into account only the first (and main) term, we have 
 

 
 

0

3 5obj 1 32 2 2 3
0 0

0

2.68 ,a n t
t

x
r k C x x x

x x


   

 

or 

 
 

0

3 51 32 2 2 3
0 0

obj 0

2.68
.

n ta

t

k C x x xr

x x x


  


 

 
Thus, it turns out that the region of isoplanatism in the object’s plane is 
discernible from a distance that is equal to the range of the object at the same 
angle at which the coherence length of the atmospheric layer is discernible 
through this layer.  

Let us consider the term containing 5 3
1 2 
 

: 

    

   

    
0 1

5 32 2 2 3 4 3 4 3 2
1 2 0 0 ref

5 31 3 1 3
ref ref

5
1.46

4

1 1 .

n t n t

t t t

k C x x x x C x

x x x x x

   
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 
         (5.2.22) 

 
Note that for 0tx x  this term reduces to 

 

0

5 32 2 2 3 4 3
1 2 0 ref1.825 .n tk C x x x  
 

 

 
Compare it with the same term in the case of no correction: 
 

0

5 32 2 2 3 1 3
1 2 010.22 .n tk C x x  
 

 

 
The action of correction is characterized by a relative decrease in fluctuations 

that is proportional to reftx x . The term in Eq. (5.2.22) can be represented, in 

analogy with the phase structure function in the absence of correction, as 
5 3 5 3

1 2 effr 
 

, where effr  is the effective coherence length. 

Summing up all these results, we obtain the following equation for an object 
having a Gaussian shape: 
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       (5.2.23) 

 
which can be compared with the diffraction-limited result of Eq. (5.2.12). 
Calculating the diffraction integral gives the following results: 
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for a circular aperture 
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obtained by 
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Finally we arrive at the following equation for objR  : 
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     

 

2
2 4 2 1 1

obj obj
0 2 2 2 2 2

obj obj

22 2 2 2 2 2
2

1 2 1 22 2 2
obj

1 4 1

2;1,3; 2;1,3;
4 64 1 4

R

R

k R k R
J J

k R f f
I

k Rf k R
ff

k R k R
F F

f f

     
            
             

    
        

   (5.2.24) 

 
when the image of a Gaussian object is formed in the telescope in the absence of 
turbulence. 

To carry out the corresponding calculations in Eq. (5.2.23) without a 
computer, we use the quadratic approximation. Introduce the optical transfer 
function  r


 for an atmosphere–telescope system as [25] 
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              (5.2.25) 

 
After some simple calculations we arrive at the equation 
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Calculating further the optical transfer function  r


 for a Gaussian 

aperture    2 2exp 2W x x R  , we obtain 
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    (5.2.26) 

 
If the beam propagates through vacuum, we have the following equation: 
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          (5.2.27) 

 
for the optical transfer function of a telescope imaging the Gaussian beam.  

Let us analyze the case  2
obj obj obj obj, 1,a R         in detail. From 

Eqs. (5.2.26) and (5.2.27) we have 
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  (5.2.28) 

 
Thus, the optical transfer function in Eq. (5.2.28) depends substantially on 

the ratio of the entrance radius of the telescope to the effective coherence length 

 2 2
eff effR R r    and the radius of the object to the radius of the 

isoplanatism zone  2 2
obj obja aa r   , as well as on combinations of these 

parameters. If the conditions eff obj,R a    , and objR   are fulfilled, 

i.e., if the object occupies one isoplanar zone, then the effective coherence length 
exceeds the radius of the entrance aperture and the falloff scale of  r  


 

coincides with the falloff scale of  0 r . It is easy to see that for a plane wave 

 obj   the Fourier transform of Eq. (5.2.27), analogous to Eq. (5.2.25), is 

written as 
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                         (5.2.29) 

 
Both for the Gaussian and circular aperture [Eq. (5.2.26)] in a vacuum, the 

intensity distribution of the image decreases substantially at the distance 
f kR  . Correspondingly, the scale of the optical transfer function  0 r  is 

equal to the radius of the entrance aperture of the telescope R. Transforming 
Eq. (5.2.28), we have 
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(5.2.30) 
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Renormalize  0 r , as in Ref. [23], for  0 0 1  . Employing the optical 

transfer function introduced in this way, we can calculate one of the functions 
that determine the quality of the combined atmosphere–telescope optical system, 
namely, the resolution [25, 21, 23]: 

 

   2 ,d                                        (5.2.32) 

 
where k r f   is the spatial frequency.  Integrating over the spatial frequencies 

directly in Eq. (5.2.26), we obtain  
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 (5.2.33) 
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The resolution  , as a measure of the optical quality of the system, 

determines the minimal resolvable distance  1 2 .l    The optical system 

has its maximum resolution in a vacuum and is determined by the parameters 
,R  , and f  for a planar wavefront: 

 

0 .
2 2

f
l

kR
 


 

 
In a turbulent medium, the limiting resolution (the minimum value of l ) for 

an arbitrarily large telescope (the limit R  ) is determined by the coherence 
length r0 : 

min 0
0

, .
2 2

f
l r R

kr
  


                         (5.2.34) 

 
This circumstance lowers the efficiency of large telescopes. Practically 

speaking, 02R r  represents the limiting resolution for large telescopes. The 

application of adaptive correction to a telescope increases its limiting resolution. 
Applying Eq. (5.2.33) to the case obj obj, 1R    , we obtain 
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Consequently, the resolution is determined by the minimal value of the 

telescope radius R, the effective coherence length effr , and the radius of 

isoplanatism ra. Given the telescope radius and the height of the object (which 
determines the isoplanatism angle and the isoplanatism radius ra), it is possible, 
by an appropriate choice of the location of the reference source refx , to increase 

refr . If we place the reference source on the object itself (in practice this means 

effr   ), we have 
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In this case the resolution of the system in the object’s plane is limited by the 

radius of the zone of isoplanatism ra. From Eq. (5.2.35) we have 
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i.e., the objective of the telescope becomes diffraction limited when  

eff,aR r R r  . If one of these conditions is not fulfilled, the quality of the 

optical system decreases. In this case, the radius of the objective having the 
limiting efficiency is  

1 2

2 2
eff

1 1
2 ,

a

R
r r

 
  

 
                                    (5.2.37) 

 
and for the reference source on the object  eff ,r    

 
 lim 2 .aR r                                             (5.2.38) 

 
Thus, we find that by choosing the position of the reference source, we can 

change the radius of the aperture that gives the maximum efficiency [Eq. 
(5.2.37)] all the way to the limit limR  [Eq. (5.2.38)]. 

In conclusion, we can state that an adaptive optics system operating in the 
atmosphere and using a reference source can substantially increase its efficiency. 

The height of the reference source is chosen according to both the form of the 2
nC  

profile along the propagation path and the level of permissible residual 
distortions. The optical system forms an aberration-free image of only one 
isoplanar region. If the angular dimensions of the object exceed this region, then 
it is not possible to obtain a diffraction-limited image using only one reference 
source. The size of this isoplanar region depends linearly on the distance, and the 
isoplanatism angle (the ratio of the object’s radius to the distance from the 
observation plane to the object) coincides with the angle at which the coherence 
length of the atmosphere is discernible within the effective layer from a distance 
equal to the thickness of this layer. By making the appropriate choice of the 
location of the reference source, the efficiency of the optical device from the 
point of view of its resolution can be brought up to its limiting level determined 
by the radius of the isoplanar region; consequently, starting from heights for 
which ar R , we have the diffraction-limited resolution [21, 23]. 

Owing to reciprocity [22] (of fluctuations), these results extend to the 
problem of focusing an optical beam through the atmosphere with the help of a 
reference source. If the problem is to focus optical radiation in the plane of the 
reference source, the total phase conjugation algorithm can be used by invoking 
the entire phase of Eq. (5.2.2), but only if the initial beam is collimated. An 
interesting situation arises when the wavelengths of the beam formed and the 
reference source are different (let 1  be the wavelength of the reference beam 

and 2  be that of the beam formed through the atmosphere). Then the plane of 

optimal focusing (for an initial collimated beam) focx  is related to the position of 

the reference source plane as follows: 
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In order to focus the beam in the plane of the reference source, additional 

focusing is necessary with the curvature length  
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5.3 A Modern Concept of Adaptive Optics Systems with 

a Laser Guide Star 
 

From 1982 to 1985, interest in the development of optical schemes employing 
artificial reference sources increased, as evidenced by the large number of papers 
published during this period. The studies in the field of adaptive optics were 
connected with developing a technique using the signal backscattered from 
atmospheric inhomogeneities to create a reference wave. It was noted that the 
signal backscattered from atmospheric inhomogeneities can be used to correct an 
image formed in ground-based astronomical telescopes. 

The development of ground-based telescopes using the signal of a laser guide 
star became one of the most promising investigations in modern astronomy. The 
importance of research into the efficiency of artificial reference sources was 
understood as early as the late 1970s [21-23, 31]. The basic principles of the 
modern concept of adaptive optics systems were formulated during that period. 

According to this concept, the reference source is a key element of the 
electro-optics scheme that is used to obtain information on the distribution of 
inhomogeneities in the medium’s refractive index in the propagation channel. 
The structure of the electro-optics scheme as a whole depends significantly on 
the way in which the reference wave is formed. If the adaptive scheme is based 
on the reciprocity principle, then a scheme using an independent source of 
radiation propagating in the direction opposite to the direction of the beam to be 
corrected is most efficient. In practice, an adaptive optics system should include 
the atmosphere as a part of the closed feedback loop, i.e., account for the 
radiation backscattered from objects or atmospheric inhomogeneities. Artificial 
(virtual) reference sources such as laser guide stars are formed in this way. 

The most promising method of improving a ground-based adaptive telescope 
is to equip it with an additional optical system for formation of a laser guide star 
[26-28]. A rather complete bibliography (unfortunately, not including the papers 
published by scientists from the USSR and the Russian Federation) on the main 
stages of development of the systems for the formation of laser guide stars is 
given in the paper by Ragazzoni [28]. 
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This book is a logical continuation of work done from 1966 to 1986 in the 
USSR [2, 3, 5, 8, 9, 15, 19, 20, 21-23, 29-31], as well as the 1990s [32-36]. 
Theoretical and applied studies on the use of lasers for the formation of artificial 
reference stars have become popular in recent years, and this has forced us to 
return to some earlier results, although they were obtained about 20 years ago. 
Schemes for image correction using scattered laser radiation (see Fig. 5.3.1) were 
proposed in 1979–1986 in the USSR [8, 9, 23, 24]. These results were presented 
in detail in Refs. [8], [9], and [21], but became available to a wide range of 
investigators once a monograph on adaptive optics [24] was published (the fourth 
and fifth chapters of Ref. [24] are devoted to this problem). Many problems that 
are discussed now were solved during those years. 

 
 

 
Figure 5.3.1. First approach to formation of a laser guide star through the 
atmosphere (1980). The optical system includes a laser, an adaptive mirror with 
a main telescope mirror, an additional lens, an optical sensor–optical measurer, 
an electric multiplier for adaptive mirror control, and a photodetector. 
 
5.3.1 Some features of fluctuations of reflected waves 
 
During the 1980s, the main principles were published that provide the 
operational basis of systems using reference sources to obtain information about 
fluctuations in the propagation channel of optical radiation. From a practical 
point of view, systems that use radiation backscattered from atmospheric 
inhomogeneities or an object are the most realizable. In this case, an artificial 
(virtual) reference source such as a laser guide star is formed [9]. There are two 
schemes for forming an LGS: monostatic and bistatic. The laser used is ground 
based and therefore the optical radiation passes twice through the same 
inhomogeneities, the first time at upward propagation to form the LGS and the 
second time at downward propagation as a result of backscattering (secondary 
emission, elastic aerosols, or molecular scattering) from atmospheric 
inhomogeneities. As indicated earlier, in both schemes, the peculiarities of 
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fluctuations of optical waves that have passed through the atmosphere twice 
should be taken into account. 

A number of terms have been coined to describe sensing schemes that 
account for this double passage through the atmosphere. They include effective 
scattering volume, a monostatic optical scheme, bistatic laser sensing, and some 
others.  

 
5.4 Monostatic and Bistatic Schemes for Formation of a 

Laser Guide Star 
 
In a monostatic scheme it is assumed that the laser beam is formed in the 
atmosphere in such a way that fluctuations for a laser guide star at forward and 
backward passage are maximally correlated. The contrary situation is 
characteristic of a bistatic scheme, in which it is assumed that there is no 
correlation between fluctuations caused by passage along the forward and 
backward paths. 

Here we present results calculated for a “general” scheme of LGS formation 
with an arbitrary value for the correlation between random angular image 
displacements caused by fluctuations at the forward and backward paths. The 
equations for the monostatic and bistatic schemes in this case are derived as 
limiting cases. 

While interest in this problem was aroused in connection with using a laser 
guide star signal to correct the image in a ground-based telescope, several serious 
difficulties arise, as was shown in particular by Fugate [27]. They are the 
influence of focal isoplanatism and the practical impossibility (for a monostatic 
scheme) of separating the contributions of upward and backward propagation to 
jitter of the LGS image. 

In recent years papers have been published [37-39] that propose several 
approaches to solving one of these problems. Thus, in Refs. [38] and [39] the 
scheme of LGS formation uses a laser beam that passes through the main 
telescope; two auxiliary telescopes that measure LGS image jitter are also used 
for measurements. The optical scenario is such that the LGS is a pointlike object 
for the main telescope, but an extended object for the auxiliary telescopes. 
Therefore, as was shown in Ref. [38], the wavefront tilt correction in the main 
telescope cannot be used, but the bistatic scheme (with auxiliary telescopes) 
allows separation of the component in the LGS image jitter that corresponds to 
the directed laser beam and is highly correlated with the wavefront tilt for a 
natural star. 
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5.4.1 Correlation between random displacements of a laser 
beam and a natural star image for a bistatic scheme 

 
Following the Ragazzoni approach [28], let us consider, as in Refs. [34] and [36], 
the following scheme for LGS formation (Fig. 5.4.1): The LGS is created by an 
auxiliary laser with an individual aperture. The parameters of the problem are the 
following: 0R  is the aperture radius of the main telescope; X is the altitude of 

(distance from) the LGS; the entrance pupil of the telescope is placed in the plane 
0;   a is the radius of the emitting aperture of the laser source; and 0


 is the 

vector of displacement of the laser source with respect to the telescope optical 
axis. We presume that the tip-tilt measurements of the wavefront are conducted 
in the telescope with the use of an LGS formed at an altitude X above the 
entrance aperture exactly at the telescope’s optical axis. The telescope is pointed 
toward the zenith, and a weak natural star and the LGS are both at the telescope’s 
axis (or within the isoplanatic region out of the axis).  The zenith angle of the 
laser beam is 0 / X


(on the assumption that 0 X 


). 

Let us also assume that the observed star (as a scientific object) has a plane 
wavefront. The vector characterizing a random tilt of this wavefront (function 

pl
F


) that is due to atmospheric turbulence is (see Ref. [20]) described by 

Eq.(5.1.3), where 
 

   pl 2

0

0, , exp( )S k d d n x i


       
  

                     (5.4.1) 

 
are phase fluctuations for a plane wave on the telescope’s aperture and the 
following spectral expansion [19, 9] is used for fluctuations of the atmospheric 
refractive index: 

 2
1( , ) , exp( )n d n x      

  
. 
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Figure 5.4.1. Scheme of formation of a laser guide star. 
 

In Eq. (5.4.1) it is taken into account that the wave from the natural star passes 
downward. Random angular shifts of the centroid of the LGS [function lb 0( ) 

 
] 

formed by the laser source at the altitude Х can be written [29] using Eq. (5.1.2) 
with 

0, (1 / )I I R X       
 

. 

 
In this equation, it is taken into account that the laser beam (see Fig. 5.3.1) is 
shifted by the vector 0


 and its optical axis is tilted by the angle 0 / X


 with 

respect to the zenith.  
Assume that the laser beam to be focused is sufficiently wide (so that 

1 2
0 1ka X   ) and its extra broadening that is due to turbulence is 

insignificant. As viewed from the entrance pupil of the main telescope, the laser 
guide star can be considered a point source. At backward propagation, the 
additional angular jitter of such a spherical wave can be written [20] in the 
following form:  

 sp 2 sp1
0,F d S



    
 

 
                            (5.4.2) 
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to obtain the correlation function between random angular shifts of the natural 

star image [function pl
F


, Eq. (5.1.3)] formed by the telescope and shifts of the 

centroid of a focused beam formed by a tilted laser system [function lb 0( ) 
 

]. 

This formulation is based on our results published in Refs. [8], [9], [34], and [36]. 
The deviation of the turbulence spectrum from the power function in the region 
of large scales was accounted for [40-43] as 
 

2 11/3 2 2
0( , ) 0.033 ( ) 1 exp( / )n nФ C            ,               (5.4.3) 

 

where 2 ( )nC   is turbulence intensity on the propagation path and 1
0 ( )   is the 

outer scale of turbulence. With allowance made for these properties, it is possible 
to obtain [8, 9, 34, 36] the following equation for the correlation function: 
 



pl 2 1/3 1/3 2
lb 0 0

0

2 2
2 2 1/6

1 1 2 2

2 2
2 2 2 1/ 6

1 1 2 2 2

1
( ) 2 0.033 2 ( )(1 / )

6

1 (1 / )
[1 (1 / ) ] ,1;

6 1 (1 / )

1 (1 / )
[1 (1 / ) 4 ] ,1;

6 1 (1 / ) 4

X

F nГ R d C X

d X
b X F

b X

d X
b X c F

b X c







               

       
       
         

      


  

.



 

(5.4.4) 
 

Here, the following designations are used: parameters 0/b a R , 0 0/d R 


, 
1 1

0 0c R   , and 1 1 (...)F  is the Gaussian confluent hypergeometric function. 

It can be readily shown that the second term of (5.4.4) in the braces is related 
to the outer scale of turbulence. For an infinite outer scale, this term can be 
neglected, so the correlation function takes the form: 

 

pl 2 1/3 1/3 2
lb 0 0

0

2 2
1/62 2

1 1 2 2

1
( ) 2 0.033 2 ( )(1 / )

6

1 (1 / )
1 (1 / ) , 1 ; .

6 1 (1 / )

x

F nГ R d C X

d X
b X F

b X





               

                  


  

    (5.4.5) 

The value 0d   corresponds to a monostatic scheme of LGS.  For the bistatic 
scheme  0d  , the condition 1d   corresponds to the asymptotic of a 

hypergeometric function 1 1 (...)F . Thus, 
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pl 2 1/3 1 1/ 3 1/3
lb 0 0

1 5
( ) 2 0.033 2

6 6F Г Г R d              
   

  
 

2 2/3

0

( )(1 / )
X

nd C X     .     (5.4.6) 

 
From an analysis of Eq. (5.4.6) we can conclude that the correlation between the 

plane wave and the beam decreases to 0.1 for 310d  . This value is characteristic 
for a bistatic scheme (there is no correlation between the upward and downward 
propagation) for the infinite outer scale of turbulence. 

Numerous experimentally obtained data [44–47] justify the assumption that 

the outer scale of turbulence 1
0 ( )   in the atmosphere is finite. Moreover, as a 

result of numerical estimations performed with different altitude profiles of 
2 ( )nC   and 1

0 ( ),   scientists have come to the conclusion that it is possible to 

introduce some characteristics (a spatial outer scale of coherence [48] or an 
effective outer scale of turbulence [49]) for a description of the entire 
atmospheric column.  As it turned out, under moderate conditions of observation 
[50], the value of this effective outer scale is 5 to 60 m [49]. So for a telescope 

with 0R =4 m, the parameter 1 1
0 0 10.c R     

Let us perform an asymptotic analysis of the influence of the outer scale on 
the correlation function expressed by Eq. (5.4.4). We take the variable d as an 
argument of the function and the variables b, c, and X as parameters. Simple 
estimations show that when the parameter d = 0 and c < 5, the correlation at the 
finite outer scale is 2 to 3 times lower than in the case of the infinite outer scale. 
With increasing d (for d > 1), the correlation calculated by Eq. (5.4.4) is no 
higher than 0.2. For d > 2c, the correlation is 17 times lower than that for the 
infinite outer scale. And finally, for d >> c, the sign of the correlation function 

p l
lb ( ) Fd 
 

 alternates and the dependence on d arises 7 /3d  . 

To confirm this conclusion, let us numerically estimate the correlation 
coefficient 

 

pl
lb 0

2 pl 2
lb 0

( )
( , , , )

( ) ( )

F

F

K d b c X
  


  

  

   .                     (5.4.7) 

 
The coefficient can be expressed through the correlation function (5.3.4) and the 
corresponding variances: 
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 
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            


 

   (5.4.9) 

 

Calculations have been performed with the model of 2 ( )nC   corresponding to 

moderate conditions of observation [50]. The altitudes corresponding to Rayleigh 
and sodium artificial stars (10 and 100 km) were included in the initial 
conditions. The parameter b was chosen as follows: b = 0.1, 0.3, 0.7, 1.0, 3.0, and 
5.0. The values of b greater than unity are typical of a situation when a large 
telescope forms an artificial star for a smaller one. Such ratios of parameters can 
be obtained in observatories equipped with telescopes of different sizes, for 
example, at the Mauna Kea observatory, where the 10-m Keck telescope is used 
as an auxiliary one for a small telescope. In calculations, the values of c were the 
following: 1, 3, 5, 10, 100, and 1000. The case that c = 1000 in practice 
corresponds to the infinite outer scale. 

The results obtained are shown (omitting the sign) in Figs. 5.4.2 and 5.4.3. 
All parameters are shown in the figures. It should be noted that the numerically 
obtained results confirm the conclusions of the above analytical analysis, so, it is 
possible to draw the following conclusions: 
1.  With large outer scales (c =100 and 1000), the scheme for LGS formation 

can be considered as bistatic (the upward and downward paths are 
uncorrelated) if the separation between the axes of the main and auxiliary 
telescopes is (200–1000) 0R ; i.e., if d > 200. 

2.  With a finite outer scale (c < 5), separations of d that are 2 to 3 times larger 
than the outer scale indicate that the monostatic scheme should be replaced 
by the bistatic one (in which the correlation between upward and downward 
propagation is negligible). 

3.  Smaller values of d correspond to intermediate schemes (with partial 
correlation between the upward and downward paths). 

4.  It should be also noted that the results of our calculations do not coincide 
with the results reported in Refs. [39] and [53], since those papers considered 
the correlation functions for two plane waves traveling from infinity at 
different angles. In particular, in our calculations the correlation coefficient K 
for d = 0 is not equal to unity (with the minus sign). Only with decreasing X 
does the coefficient K asymptotically approach unity. 

5.  It is interesting to consider the behavior of K in the region of small values of 
c (c = 1, 3, 5) and relatively large values of b (b =3, 5). This situation is 
characteristic when a large telescope generates an artificial star for a smaller 
one. The results obtained (Figs. 5.4.2 and 5.4.3) show that in this scheme the 
correlation in the region d < c is practically constant (equal to 0.4, 0.5, and 
0.7, respectively). 
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Figure 5.4.2. Correlation coefficient K from Eq. (5.4.7) for different values of the 
outer scale of turbulence (parameter c) and laser system aperture radius 
(parameter b); beacon altitude X=10 km. 

              



Chapter 5 

 

166

 

 

Figure 5.4.3. Correlation coefficient K from Eq. (5.4.7) for different values of the 
outer scale of turbulence (parameter c) and laser system aperture radius 
(parameter b); beacon altitude X=100 km. 
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6.  With increasing c, the characteristic scale of the correlation function K 
increases; i.e., the correlation radius increases. This effect was mentioned in 
Ref. [39] (for two plane waves). 

7.  The increase in the correlation radius is not infinite; gradual saturation is 
observed in our numerical experiments. For small values of c (the outer scale 
is small), the correlation function К(d) decreases to 0.1 for d = c. But even 
for c = 100, the correlation falls to 0.1 at d = c/2.  For c = 1000, this 
decrease occurs at d = c/10. This takes place for the altitudes X=10 and 
100 km. 

 
The alternation of the sign of the correlation function predicted on the basis 

of asymptotic analysis [by comparing Eqs. (5.4.4) and (5.4.5)] is due to the finite 
size of the outer scale of turbulence. When the outer scale is small (c = 1, 2, 3) 
and d > (2–3)c, the correlation function alternates its sign. For large c, this effect 
is not observed. When the outer scale is large, the coefficient K [Eq. (5.4.7)] 
keeps its sign [51, 52]. 

It is interesting to find a relationship between the correlation length for two 
plane waves [53, 39] and the correlation length for a plane wave and a slanted 
laser beam (the latter is shown in Figs. 5.4.2 and 5.4.3). If determined, these data 
allow one to use the results of direct astronomical observations of the images of 
two stars viewed at different angles to predict the correlation (for tip-tilt 
correction) in the system of a telescope and a LGS, as well as to draw more 
correct conclusions on the mode of operation of this system. To our regret, it is 
impossible to simply compare the curves in Figs. 5.4.2 and 5.4.3 and the data 
presented in Ref. [39] because different models of atmospheric turbulence were 
used in the calculations. However, based on Figs. 5.4.2 and 5.4.3 [and 
Eqs. (5.4.4) and (5.4.5)], it is possible to estimate the real level of correlation 
between motion of the natural star image measured in the telescope and the 
auxiliary tilted laser beam that forms the LGS on the telescope’s optical axis, and 
to obtain the parameters for calculating the efficiency of tip-tilt correction with 
any interesting parameters of the telescope, the size of the laser beam, the outer 
scale of turbulence, and the separation between the axes of the telescope and the 
laser beam. 

The real level of correlation between the motion of the natural star image and 
the auxiliary tilted laser beam forming the LGS was calculated using a model 
spectrum of atmospheric turbulence. The structure parameters and outer scale of 
turbulence are the model’s parameters. In this way, we have studied the 
peculiarities of the correlation connected with the finite outer scale of turbulence. 
Moreover, since all these parameters depend not only on the propagation path but 
also on the actual altitude of the telescope above sea level, possible variations of 
the model should be seriously discussed in relation to this aspect (model 
parameters), depending on the aerography of the underlying surface. Recall that 
numerous experimentally obtained data [44-47] justify the assumption that the 

outer scale 1
0 ( )   is finite. Moreover, as a result of numerical estimations 
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performed with different altitude profiles of 2 ( )nC   and 1
0 ( )  , scientists have 

come to the conclusion that it is possible to introduce some characteristics 
(spatial outer scale of coherence [48] or effective outer scale of turbulence [49]) 
to describe the entire atmospheric column.  

At the same time, models of the spectrum of atmospheric turbulence that take 
into account the finiteness of the outer scale of turbulence and especially the 

varying value of the parameter 1
0 ( )   for vertical paths are rarely used. For 

homogeneous surface paths, it is shown that the value of 1
0
  is fully finite and 

commensurable with the height above the underlying surface. However, for 

astronomical observations, a number of researchers consider the value of 1
0
  to 

range from hundreds of meters to some kilometers [40]. In many observations, 
the results corresponded to an outer scale on the order of 1 m [44, 46]. 

Undoubtedly, the outer scale of the turbulence varies significantly both in the 
surface atmospheric layer and at high altitudes. Therefore, we cannot speak about 
the outer scale as having a definite value over the entire atmosphere. We propose 
to consider a number of possible versions of variations of the outer scale with the 
altitude h: 

 

(A)                     1
0 ( ) 0.4h h  , 

(B)                     1
0

0.4 25 m
( )

2 , 25 m

h h
h

h h
 

  


 

(C)                     1
0

0.4 , 25 m

( ) 2 , 25m 2000 m

89.4 m, 2000 m

h h

h h h

h




   
 

 

(D)                     
   

1
0 2

5
( )

1 7500 / 2000
h

h
 

 
 

(E)                      
   

1
0 2

5
( ) .

1 7500 / 2000
h

h
 

 
 

 
Model (A) was recommended in Ref. [20] for use at low altitudes; model (B) is 
proposed by Fried in Ref. [25]; and model (C) is a generalization of the first two 
models. Models (D) and (E) are obtained as a generalization of the results of 
direct measurements in the United States, France, and Chile [25, 54-56]. Similar 
values of these parameters were obtained for the Mauna Kea Observatory 
(Hawaii) [25, 56].  Some investigators have cast doubt on these models [25, 44]; 
however, altitude variations in the outer scale within wide limits have gained 
recognition. 
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Figures 5.4.4 and 5.4.5 show the results calculated for the same 
characteristics as in Figs. 5.4.2 and 5.4.3, but for the outer scale as given by 
models (A–E) instead of the different values of the outer scale. The curves in 
Figs. 5.4.2 and 5.4.4 (as well as in Figs. 5.4.3 and 5.4.5) are very similar, but for 
models (D) and (E) the correlation level is lower for small separation between the 
axes of the main telescope and the laser beam. 

 
 
Figure 5.4.4. Correlation coefficient K from Eq. (5.4.7) for different models (A, B, 
C, D, E) of the outer scale of turbulence and the aperture radius of the laser 
system (parameter b); beacon altitude X=10 km. 
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Figure 5.4.5. Correlation coefficient K from Eq. (5.4.7) for different models (A, B, 
C, D, E) of the outer scale of turbulence and the aperture radius of the laser 
system (parameter b); beacon altitude X=100 km. 
 
 
5.4.2 Optimal algorithm for tip-tilt correction  
 
The use of a laser guide star extends the domain of stable operation for an 
adaptive optics system. But the star is formed at some finite distance, so the 
problem arises of how to correct the data from optical measurements made 
against the guide star to ensure efficient compensation for aberrations in an 
image of a real astronomical object [23, 27]. This correction of the data becomes 
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possible with the use of atmospheric models [52, 34, 36]. The models of 
atmospheric turbulence allow one to 
 estimate the level of turbulent aberrations above the reference star, i.e., to 

calculate the optimal altitude of the star,  
 compensate for partial focal isoplanatism in a system operating against a 

reference star situated at a finite altitude in the atmosphere, and 
 improve the capabilities of tip-tilt correction. 

Undoubtedly, when we use an LGS formed in the atmosphere by the 
backscattered signal in the algorithm correcting for random wandering [27, 28, 
39, 34, 36] of the natural star image, the problem of optimization of data 
processing arises. Let us try to construct the algorithm for correcting the angular 

motion of a natural star image pl
F


 using the data measured on the LGS angular 

position m


 as follows [34, 36]: 

 
pl
F mА  
 

.                                           (5.4.10) 

 
This algorithm should ensure minimization of the variance for residual angular 
displacements for the natural star image under tip-tilt correction with the proper 
choice of the coefficient A: 
 

     
2 2 22 pl pl 2 pl2F m F m F mА А А           

     
.   (5.4.11) 

 

From Eq.(5.4.11) we obtain as a minimum: 
 

   
2 2 22 pl pl

min F F m m      
   

,             (5.4.12) 

 

when the correcting coefficient A is expressed through determinate functions as 
 

pl 2
F m mА    
 

.                              (5.4.13) 
 

The form of this coefficient allows us to conclude that the coefficient A can be 
calculated from data in direct optical experiments (some time before adaptive 
telescope operation). Unfortunately, on the other hand, in a real experiment we 

can obtain only the data on m


 because the vector pl
F


 characterizing angular 

wandering of the natural star image cannot be measured, owing to insufficient 
intensity of light from the natural star. In similar cases, we can estimate the 
coefficient A by Eq. (5.4.13), using the models of atmospheric turbulence [36] as 
well as the results of calculation of the correlation function [Eq. (5.4.4)] and the 
variances [Eqs. (5.4.5) and (5.4.6)]. 
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It should also be noted that the minimum variance in Eq. (5.4.11) cannot be 
found traditionally by using the correction algorithm of Eq. (5.4.10) with A = –1. 
To demonstrate this, let us compare the residual variance for the optimal and 
nonoptimal (traditional) correction algorithms. In our designations, the minimum 
variance of residual fluctuations of angular shifts of the star image in the scheme 
shown in Fig. 5.3.1 can be estimated as 

 

   

1/3 2
2 pl 2

min 2
1/ 61/ 3 7 / 6 2

1 1 2

2 ( , , , )
( ) 1

1
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6 1
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  (5.4.15) 
 

depends on parameters of the optical experiment as well as on the atmospheric 
model used [Eqs. (5.4.10–5.4.15) are written assuming that the outer scale of 
turbulence is infinite and the LGS is a point source]. For the traditional algorithm 
[A= –1 in Eq. (5.4.10)], the residual variance for natural star motion is 
determined by Eq. (5.4.11). 

Numerical analysis of these equations showed [34, 36] that the residual 
angular distortions in the optimal correction algorithm can be less than the 
residual distortions of traditional control methods. To illustrate the advantages of 
the optimal algorithm over the nonoptimal (traditional) one, we present Table 
5.4.1, which gives the values of residual angular distortions for a telescope with a 
bistatic reference star. In this table, the values of residual variances are 
normalized to the variance of the angular motion of the natural star image 
without tip-tilt correction: 

 

       2 2 222 pl 2 pl pl pl1 2F m F F m FА А         
     

 (5.4.16)
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Table 5.4.1. Comparison of the efficiency of optimal and traditional algorithms of 
tip-tilt correction for a bistatic scheme. 
 

  Residual level of aberrations  
 

X (km) 
 
b 

Optimal 
algorithm 

Traditional 
algorithm 

 
A 

 8 0.3 0.640 1.291 0.43 
 0.5 0.603 1.105 0.47 
 0.7 0.578 0.999 0.50 
 1 0.552 0.899 0.53 
 2 0.500 0.736 0.59 
 3 0.471 0.656 0.63 
 5 0.434 0.570 0.67 

20 0.3 0.612 1.354 0.42 
 0.5 0.572 1.148 0.46 
 0.7 0.545 1.030 0.49 
 1 0.516 0.918 0.52 
 2 0.461 0.736 0.58 
 3 0.429 0.647 0.62 
 5 0.390 0.551 0.66 

40 0.3 0.602 1.406 0.41 
 0.5 0.561 1.187 0.46 
 0.7 0.533 1.062 0.48 
 1 0.504 0.944 0.52 
 2 0.447 0.751 0.57 
 3 0.414 0.657 0.61 
 5 0.374 0.556 0.65 
80 0.3 0.600 1.446 0.41 
 0.5 0.558 1.220 0.45 
 0.7 0.531 1.091 0.48 
 1 0.501 0.969 0.51 
 2 0.443 0.769 0.57 
 3 0.410 0.672 0.60 
 5 0.370 0.567 0.64 
100 0.3 0.599 1.455 0.41 

 0.5 0.588 1.227 0.45 
 0.7 0.530 1.097 0.48 
 1 0.500 0.974 0.51 
 2 0.443 0.774 0.56 
 3 0.410 0.676 0.60 
 5 0.370 0.570 0.64 
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for the optimal and traditional algorithms of correction. The values of the 
correcting coefficient A calculated for the model of turbulence from Ref. [50] are 
given in the fifth column. The results are presented for different values of the size 
of the auxiliary laser beam (parameter b=0.3, 0.5, 0.7, 1, 2, 3, 5) and the LGS 
altitude (X= 8, 20, 40, 80, and 100 km); the model of the turbulent atmosphere 
was taken from Ref. [50] and the parameter d >5000. 

It can be seen from the table that optimal correction with a properly chosen 
coefficient A decreases the residual distortions. So, a conclusion can be drawn 
about the efficiency of optimal correction using information on the altitude 
profiles of turbulence. At the same time, the intensity of distortions may even 
increase as a result of nonoptimal (traditional) correction in the bistatic scheme 
(for the parameter d > 5000, i.e., for a negligible level of correlation between the 
beam and motion of the natural star image), as can be seen from Figs. 5.4.1 and 
5.4.2.  But even with the considerable reduction of tilt jitter owing to the proper 
choice of A, a relatively large level of residual tilt affects the image of the natural 
star. It should be noted that this conclusion is based on the assumption that the 
LGS image is a point. 
 
5.4.3 A laser guide star as an extended source 
 
In some bistatic schemes, the LGS image has the form of an extended source   
[28, 38, 39].  As a consequence, random displacements for a motionless 
“secondary” source might be averaged over its angular extent [28, 38, 39]. This 
problem was considered early in Refs. [3], [5], and [29] for a reflecting surface 
and sources like a thin luminous string and an extended Gaussian beam. 

In this section, the emphasis is on the difference and similarity between two 
bistatic schemes: Ragazzoni’s approach [28] of two auxiliary slanted laser beams 
and a single telescope, and the approach used in papers [38] and [39], which is a 
main telescope with a laser beam and two auxiliary telescopes. In both schemes, 
the variances for random displacement of the LGS image are given by Eq. 
(5.1.1).  If the observed LGS extent 0ba R  (the aperture size of the main 

telescope or the aperture size of the auxiliary telescopes), then the variance      [5, 
29, 39] for the “secondary” source is described by the equation: 

 

2 2 1/3

2 sp 2 1/3 0
ss 0

2 5/3
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( )(1 / ) ( / )

( ) ( / ) .
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F b X

n
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d C X





    

  

   




     (5.4.17) 

 
In the next step, let us compare the minimal variances for the residual level 

of motion of the natural star image after tip-tilt correction for these two schemes 
with the optimal correction algorithm of Eq. (5.4.10). For the scheme from Ref. 
[28], the minimal variance is described by following equation: 
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     2 2 2 2pl pl pl pl 2
ss1 ( ) ,F m F F F mA            

      
   (5.4.18) 

 
and for the scheme from Refs. [38] and [39]: 
 

     2 2 2 2pl pl pl pl 2
lb1 ( ) .F m F F F mA            

      
   (5.4.19) 

 
The last equation can be transformed into the form: 
 

   
2

2 2 sspl pl 2
2
lb

1 (0) 1 ,F m FA K
 

       
  

  
            (5.4.20) 

 
where the correlation coefficient K is given in Eq. (5.4.7) for the parameter d = 0 
and shown in Figs. 5.4.2–5.4.5. The second term in Eq. (5.4.20) is the normalized 
function of correlation between the angular image displacements of the plane 
wave and the secondary source—a broad beam having the size of the isoplanar 
zone in the LGS plane; as a result, it takes the form 
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 (5.4.21) 
 

The second terms in Eqs. (5.4.20) and (5.4.21) are similar, and hence it is 
possible to obtain an approximately equal level of correction in these approaches 
[27, 38, 39]. Using the models of the turbulent atmosphere [40, 41, 50] and 
applying Eqs. (5.4.20) and (5.4.21), we can estimate the minimal level of residual 
tip-tilt distortions for different LGS schemes. 

The scheme of Refs. [38] and [39] requires two additional auxiliary 
telescopes to measure the motion of the LGS image with an accuracy of 0.05 
arcsec. Hence, the approach in Ref. [28] is less expensive, owing to the use of 
only one large-scale telescope and two small-scale laser beam directors, whereas 
the second approach [38, 39] requires one main large-scale telescope with a laser 
beam setup and two auxiliary telescopes. The most promising method for       
full-aperture tip-tilt correction is to use an LGS adaptive optics system with a 
hybrid scheme and algorithms for tip-tilt correction [39, 57, 58]. 
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5.5  Hybrid Scheme of Forming a Laser Guide Star 
 
This section is logical continuation of a number of publications [34, 36, 59-61]. 
In addition, there is a definite connection between the main idea of this section 
and Refs. [62] and [39].  

To implement the proposed correction algorithm based on the hybrid scheme 
of forming a laser reference star, three telescopes should be used: a main 
telescope and two auxiliary telescopes placed so that their configuration forms an 
isosceles rectangular triangle. The following scheme is used to form the laser 
reference star: A wide Gaussian laser beam is focused with the main telescope at 
a distance X. The star is formed solely by the central part of the main telescope (it 
is assumed that the initial laser beam diameter a0 < at, where at is the aperture 
diameter of the main telescope). 

In the focal plane of the main telescope, the angular jitter in the image 
centroid of the laser reference star is measured along the 0y- and 0z-axes. 
Simultaneously, in the focal planes of two auxiliary telescopes the angular shifts 
of the image along one of the two axes are measured in a direction transverse to 
the corresponding direction of separation of the axes of the main and auxiliary 
telescopes. 

The laser reference star formed by focusing the laser radiation represents a 
long cylinder with a diameter am and length ab (ab >> am). Suppose that the 
separation between the main and auxiliary telescopes is such that for the auxiliary 
telescopes the laser reference star is formed by the bistatic scheme [60, 62, 39]. 
In this case, the size of a laser beacon ab (connected with ao, the altitude of star 
formation X, and separations between the axes of the auxiliary telescopes and the 
main telescope) seen from the location points of the auxiliary telescopes is much 
greater than the beacon size seen from the location of the main telescope 
(ab >> am). Thus, for the main telescope, the formed star can be considered to be 
monostatic. Then, the instantaneous position of its image (on the 0y- and 0z-axes) 
is 

m,y = lb,y + ps,y ,      

m,z = lb,z + ps,z ,     (5.5.1) 

 
where (lb,y; lb,z) specify the instantaneous angular positions (on the axes) of the 
centroid of the laser beam focused at a distance X in the turbulent atmosphere; 
(ps,y; ps,z) specify the instantaneous angular positions of the image of the 
focused laser beacon considered as a point source. The auxiliary telescopes 
measure only one component of the image jitter of the laser reference star; that is, 
finally we have the following pair of measurable angles: 
 

b,y = lb,y + ss,y , 

b,z = lb,z + ss,z ,     (5.5.2) 
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where (ss,y; ss,z) characterize the instantaneous angular positions of the image 
formed by an extended incoherent source (not fully correctly calculated in Ref. 
[39]). Furthermore, we calculate the corresponding differences: 
 

m,y – b,y = ps,y – ss,y ,              

m,z – b,z = ps,z – ss,z .           (5.5.3) 

 
Because the auxiliary telescopes operate in the regime of the bistatic 

reference star, the corresponding variances of differences [Eq. (5.5.3)] are 
expressed as 

 

 2 2 2 2 1/3
ps, ss, ps, ss, ps,(  )  = ( )  + ( )  = ( ) 1 + ( / ) ,   y y y y y b ata a        

 (5.5.4) 
 

where аat is the size of the auxiliary telescope. 
Now let us formulate the problem of optimal correction (decrease) for the 

angular jitter in the natural star 


ns(ns,y, ns,z) on the basis of the measured angles 
[Eqs. (5.5.1)–(5.5.3)] and the necessary calculations. In fact, we should minimize 
the variance of the residual angular shifts of the natural star through correction 
based on the measurements; namely, 
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       (5.5.5) 

 
Taking advantage of the results obtained in Refs. [60], [36], [61], and [34], 

we have (for the isotropic spectrum of turbulence) 
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where 
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,       (5.5.7) 

 
2

ns,( )y  is the variance of the angular shift of the natural star image (along one 

axis); b = a0/aat.  The optimal value of the correcting coefficient A minimizing the 
functionals [Eq. (5.5.5)] is calculated for the mean model vertical profiles of the 
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structure parameter of the reflective index in the atmosphere C
2
n() characterizing 

the turbulent intensity 
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    (5.5.8) 

 
Let us numerically estimate the efficiency of this correction for real 

experimental parameters. Let the main telescope have a diameter varying 
between 3 and 10 m. The auxiliary telescopes are from the class of 1-m 
telescopes. Let the diameter of the laser beam forming the star be a0 = 1 m.  The 
wave parameter for the focused laser beam  ( = ka

2
0/X) ranges from 10 to 100 

for altitudes X varying from 10 to 100 km. Hence, in the focal waist the size of 
the laser beacon is am = 1–10 cm. Thus, the laser star cross section is seen by the 
main telescope at angles   0.1 arcsec and it can be practically considered as a 
point source. At the same time, the length of the laser star is ab, and hence for 
proper separation of the auxiliary telescope axes, the visible size of the star ab 
may be several minutes of arc; that is, the laser star can be considered as an 
extended incoherent source in the image planes of the auxiliary telescopes. In 
reality, the ratio ab/aat  103, b = 1.  In calculations we used the mean model С2

n

() suggested in Ref. [50]. 
Summarizing these data and making calculations, we obtain for Eqs. (5.5.6)–

(5.5.8), 
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. (5.5.10) 

 
The results of numerical calculations, as well as the data for nonoptimal 

correction (that is, for A = 1) are given in Table 5.5.1.  In the latter case,  
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.  (5.5.11) 

 
Thus, it can be seen from the table that for a laser reference star higher than 

10 km, this algorithm effectively corrects the jitter in the natural star image based 
on measuring the jitter (two components) in the monostatic star image in the 
main telescope and individual components of the jitter in two normally separated 
telescopes. 

It should be noted that in practice there is no need to optimize the correction 
by this scheme (that is, to calculate the parameter A); nonoptimal correction (for 
A = 1) also highly efficiently corrects for the angular shift of the natural star 
image within the limits of isoplanar angles with the use of the laser reference star. 

 
Table 5.5.1. Calculation results and data for nonoptimal correction. 

 
X  (km)   Аopt  from Eq. (5.5.9)      from Eq. (5.5.11) 
1 –1.22 0.509 0.5139 
10 –1.096 0.1799 0.1802 
100 –1.019 0.0866 0.0927 

 
5.6  Two Bistatic Schemes for LGS Formation 
 
In this section, we present the results calculated for a “general” scheme of LGS 
formation in which it is possible to obtain an arbitrary value of correlation 
between random angular image displacements caused by fluctuations at the 
forward and backward paths. 

As is known, the use of laser guide stars to improve the image quality in 
ground-based telescopes significantly extends the possibilities of applying 
adaptive correction in astronomy. However, the direct use of an LGS signal for 
full-aperture tip-tilt correction is impossible because it is first necessary to 
separate the valid signal from the data of optical observations on LGS image 
jitter. 
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In his recent papers Ragazzoni [28, 37, 62, 72-74] tried to systematize 
numerous approaches to solving the problem of LGS tilt retrieval for an adaptive 
optical system operating against an LGS signal. There are various approaches to 
solving of this problem; however, they also considerably increase the technical 
complexity of the system itself. For example, there are proposals to 
simultaneously measure the full-aperture angular jitter of a sufficiently bright 
natural reference star [73, 74] or to use two-color laser guide stars [75], 
additional telescopes [38, 39], or additional laser projectors [28, 37, 72]. In the 
last two cases, at a certain geometry the laser guide star cannot be considered as a 
point source. It should be noted that these approaches (with the use of additional 
telescopes or additional laser projectors) are realized through rather simple 
optical schemes. 

Repeatedly in the scientific literature it was noted [28, 37, 39] that the 
bistatic schemes of LGS formation are the most efficient from the point of view 
of full-aperture tip-tilt correction. Figure 5.6.1 shows two proposed bistatic 
schemes. Scheme a has two additional telescopes (with the aperture aR ), and 

scheme b has two additional laser illuminators. For these schemes, the measured 
angular fluctuations of random displacement of the LGS image are [3] 

 

lb ssm    
  

,                       (5.6.1) 

 
where lb


 is the random vector of angular displacement of the laser beam 

forming the LGS and ss


 is the random angular displacement of the image of the 

secondary source, actually an LGS. 
 
 

 
a b 

Figure 5.6.1. Bistatic schemes for the formation of a laser guide star: 1, laser 
guide star; 2, main telescope; 3, auxiliary laser; 4, illuminator auxiliary telescope. 
Scheme a was proposed in Refs. [28] and [37], scheme b in Ref. [39]. 
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For the scheme a under conditions of a “limiting bistatic” [39, 8, 32, 34-36], 
 

2 2 2
lb ss( ) ( ) ( )m    

  
.                          (5.6.2) 

 
Let us characterize the quality of tip-tilt correction as a ratio of the variance 

of residual fluctuations to the value of the initial variance 2
pl( )


: 
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If LGS is formed by the full aperture of the main telescope 0R , then 

pl lb pl sp     
   

, where sp


 is the angle of displacement of the point source 

image in the focal plane of the main telescope. We obtain from Eq. (5.6.3) [36, 
58, 51, 66, 67]: 
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  

  
  ,                        (5.6.4) 

 
where 
 

pl sp

2 2
pl sp

( )
( ) ( )

K X
 


 

 

  . 

 
For the models in Refs. [40], [44], [68], [41], [42], [69], and [70] for 

turbulence parameters, this last function is given in Table 5.6.1 for various 
heights X of formation of the laser guide star. 

 
 

Table 5.6.1. Function K for various heights of LGS formation. 
X (km) K(X) K2(X) 1- K2(X) 

  1 0.65 0.42 0.58 
  2 0.72 0.52 0.48 
  3 0.75 0.56 0.44 
  4 0.79 0.62 0.38 
10 0.84 0.71 0.29 
20 0.88 0.77 0.23 
40 0.89 0.79 0.21 

100 0.90 0.81 0.19 
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At the same time, for scheme b, the result of tip-tilt correction is 
 

2
pl ss2

2 2 2
pl lb ss

1
( ) ( ) ( )

 
  

     

 
   .                       (5.6.5) 

 
It can be easily shown that for a real height X the correlation 

pl ss pl sp    
   

. Thus, the efficiency of full-aperture tip-tilt correction for the 

bistatic scheme [51] is determined by the value of 2 ( )K X  and the ratio 
2 2

ss sp( ) / 
 

. For further consideration, it is necessary to take into account the 

size of the secondary source and calculate the jitter of an extended source.  
 

5.6.1 Jitter of an extended source 
 
It is known that in bistatic schemes the LGS is not a point object. If the 
longitudinal size of the LGS is designated as lb, then the observed size of a 
beacon at points separated from the axis of the main telescope by (x, y) is  
 

/z z
b ba l X  ,  /y y

b ba l X  . 

 
Let us consider numerically the variance of the jitter of the extended source 

image by comparing it with the jitter image of a spherical wave. Let us designate 
their attitude 

2 2
ss sp( ) / ( ) ( , ).f b a  
 

                               (5.6.6) 

 
The variance of the jitter of an extended source image was studied rather 

thoroughly earlier by a number of authors [3, 5, 29, 37]. We use the equation for 
2

ss( )


 from Ref. [39] with small corrections. Then, to within 5% accuracy we 

obtain for the ratio 
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 (5.6.7) 
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Here, ab is seen as the linear size of an extended “secondary” source, and aR  

is the size of the aperture of an additional telescope. We use here the following 

normalizations: 0/bb a R , 0/aa R R , and 2 2 2
0 02c R   .  

The ratios of variances ss 2 2
lb( ) / ( , )F f b a  

 
 for various ratios of ab, Ra, 

a0 were calculated for a model of a spectrum of atmospheric turbulence    [40, 44, 
68, 41, 42]: 

 
2 11/3 2 2

0( , ) 0.033 ( ) 1 exp( / )n nФ C            , 

 

where  0
1 ( )  is the outer-scale atmospheric turbulence. In the calculations in 

Ref. [51] the outer scale of atmospheric turbulence was set as a constant size for 
the whole atmosphere. This is hardly justified for all cases. Let us take advantage 
of several models [69, 70] of a vertical structure of the outer scale (taking into 
account models A–E from Sec. 5.3). 

The model of high-altitude profiles of 2 ( )nC   was taken from Ref. [31]; 

appropriate “average” conditions of vision through an atmosphere are used. 
Some models for describing the high-altitude profiles of outer-scale atmospheric 
turbulence presented here are used; namely, models C and E, along with fixed 

values of  0
1  = 3, 10, 100, and 1000 m. The calculations were carried out for 

several sizes of apertures of the main telescope: 0R  = 1, 4, and 10 m. The results 

of the calculations of functions of ss 2 2
lb( ) / ( , )F f b a  

 
 are presented in Figs. 

5.6.2. and 5.6.3.  
The results are given in Fig. 5.6.2 (for X  10  km) and Fig. 5.6.3 (for 
100X km) as six graphs. The graphs on the left vertically correspond to 

0/aR R  = 0.1 and those on the right to 0/aR R  = 1.0. Horizontally, the three 

groups correspond to main telescope’s aperture sizes: 0R = 1 m, 4 m, and 10 m. 

The ratio of the observed size of an extended “secondary” source ba  to the initial 

size of a laser beam was set in intervals from 0.1 to 1000. Thus, we have all the 
characteristics necessary to estimate the efficiency of correction of a general 
wavefront inclination. 
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Figure 5.6.2.  Variance of the image jitter of an extended source obtained by 
comparing it with the image jitter of a spherical wave. The altitude of the 
reference laser star was 10 km. 
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Figure 5.6.3. Variance of the image jitter of an extended source obtained by 
comparing it with the image jitter of a spherical wave. The altitude of the 
reference laser star was 100 km. 
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5.6.2 Basic shortcomings of schemes a and b for LGS 
formation 

 
Using the designations of Eq. (5.6.6) we have for scheme a: 
 

2
2 ( )

1
1 ( , )

K X

f b a
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
,                                    (5.6.8) 

 
and for scheme b: 
 

2
2 ( )

1
(0, ) ( , 1)

K X

f a f b
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
.          (5.6.9) 

 
Note here that (0, )f a  characterizes the altitude of the variances for a point 

source for the apertures aR  and 0R , and for (0, 1)f = 1. Thus, using our 

calculations (Table 5.6.1, and Figs. 5.6.2 and 5.6.3), proceeding from the 
formulas of Eqs. (5.6.8) and (5.6.9), it is possible to obtain the relative efficiency 
of correction of a general wavefront inclination. The following requirements 
should be noted: 

For scheme a: 
1. At formation LGS by the full aperture of the main telescope has a place 

the phosphorescence of elements of an optical train of a telescope. 
2. Besides the main telescope, it is necessary to have two rather large 

auxiliary telescopes. 
3. Two additional wavefront sensors are also needed. 
4. The spacing of the axis of an auxiliary telescope should be at least 10–40 

km. 
For scheme b: 
1. It is necessary to have a laser illuminator of a rather large size. 
2. The spacing of the axes of the telescope and illuminator should be on the 

order of 10–40 km. 
It is possible to ensure a high level of correction of the fluctuations of a 

general wavefront inclination in observatories with smaller telescopes if the 
largest telescope is used to create the guide star. 

 
5.6.3 A differential scheme 

 
Here we present a new approach: the differential scheme for LGS. This scheme 
uses (see Fig. 5.6.4) a narrow laser beam formed outside of the aperture (and 
even of the dome) of the main telescope and two additional telescopes. Jitter of 
the image is measured in the aperture of the main telescope: 
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mono lb ss 0( )y y y R     , mono lb ss 0( )z z z R      

 
and the auxiliary telescopes 
 

bi lb ss ( )y y y
aR     ,  bi lb ss ( )z z z

aR     . 

 
We calculate their differences: 
 

mono bi ss 0 ss( ) ( )y y y y
aR R      , mono bi ss 0 ss( ) ( )y y y y

aR R      . 

(5.6.10) 
 
 

 

 
 

Figure 5.6.4. A differential scheme for LGS formation with an auxiliary illuminator 
and two auxiliary telescopes. 

 
Since the main telescope “sees” a guide star as a point, i.e., ss 0 sp 0( ) ( )R R  

 
, 

the efficiency of a full-aperture tip-tilt correction for this differential scheme is 
 

2
2 ( )

1
1 ( , )

K X

f b a
  


.                             (5.6.11) 

 
The advantages of such a differential scheme are (1) there is no dependence 

on parameters of the laser transmitter, and (2) there is no parasitic illumination of 
elements of the main telescope aperture. 
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To take advantage of temporary averaging [71] of the differential signal of 
Eq. (5.6.10), we obtain 

 
2

2 ( )
1

1 ( , ) ( )

K X

f b a g T
  


,                                 (5.6.12) 

 
where the function ( )g T < 1  and T is the period of temporary averaging of the 

differential signal. 
At the same time, as can be seen from Figs. 5.6.2 and 5.6.3, a good 

correction level for a general wavefront inclination requires a scheme in which 
310b  , i.e., 3

010 .ba R  This means that the spacing of the axes should be more 

than 
3

010 /y
bR X l  , 3

010 /z
bR X l  .                         (5.6.13) 

 
For 0R = 4 m, X= 100 km, bl =10 km, we obtain 40 km. It  is probably not 

convenient to have too large a space between the main and auxiliary telescopes. 
 

5.7  A New Scheme for LGS Formation 
 

Here we present a new, dynamic type of LGS. It is possible to implement a 
different technique to create an LGS as two crossing lines. In this scheme, 
production of two narrow laser beams and fast angular scanning of each of these 
beams (in two orthogonal directions) are carried out simultaneously. The rapid 
scanning creates a luminous cross. 

In a monostatic receiver, a wavefront sensor (in the focal plane of the main 
telescope) based on two CCD matrices is used to detect signals from two lines: 
one along the y and a second along the z direction. The optical train of the 
wavefront sensor allows us to obtain only one image of the single line on each 
CCD matrix. Special controls for each matrix are used to obtain two signals from 

each matrix; namely, signal y  from entire y matrix (or z from the z matrix) 

and a signal y
c  from the middle part of the y matrix (or z

c  from the z matrix). 

We used the differences of these signals: 
 

y y y
c      for the y matrix and z z z

c      for the z matrix. 

 
It is easy to show that the components of this equation are 
 

lb ss
y y y     ,  lb sp

y y y
c     , 

lb ss
z z z     ,  lb sp

z z z
c     . 
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Finally, the differential signal as a vector is ss sp   
  

. The residual level 

of the general inclination for a common correction is 
 

2
2

pl sppl2
2 2

pl pl

[ ]
( ,1)

( ) ( )
f b

       
   

 

 
  . 

 
The first term is connecting with the cone nonisoplanarity, and second term 

with extension of the LGS. Note that for an optimal algorithm of correction, the 
residual level of general inclination is  

 
2

2pl2
2

pl

( )
1

1 ( , 1)( )

K X

f b

    
   





 . 

 
Through the choice of the angular scanning value, the second components of 

the differential signal can be made as small as needed. This value should be 
enough to ensure high-frequency (10–20 kHz) scanning of an angle on the order 
of 2–3 degrees of an arc and equivalent to spacing of an auxiliary telescope axis 
at 40 km. As a result, additional telescopes are not required; it is only necessary 
to have a wavefront sensor with two matrices in the structure of the main 
telescope. Thus, it is necessary to ensure that the field of view of this wavefront 
sensor is approximately 2–3 degrees of an arc (with a telescope with an 8-m 
diameter, it is necessary to have a focus of no more than 200 m). 

 
5.7.1 Attempt to reduce the effect of angular anisoplanatism 

 
Between an observable star and another star (chosen as guide star) let there be an 
angular mismatch equal to . It is known that any function (let it be phase 
fluctuations observed in the zenith star) can be represented as the decomposition 
of orthogonal polynomials,  
 

1

( , , 0) ( / , / )
N

j jS y z a F y R z R . 

                          
Let us take advantage of the fact that the correlation functions ( )jb   of the 

fluctuations of the modal components ( 1,..., )ja j N  can be calculated. Further 

data on measurements carried out on the guide star can be corrected (in the  
direction) in the following scheme: 
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1

( , , ) ( ) ( / , / )
N

j j jS y z b a F y R z R   .                       (5.7.1) 

 
It is easy to show that for any one modal component, the residual mistake 

caused by focal nonisoplanarity is expressed in a component of the 
decomposition of a phase as follows: 

 
2 2(0) ( ) ( ) 2 [1 ( )]j j j j ja a D a b         .                  (5.7.2) 

 
It is obvious that at angles of  exceeding the angular of correlation, the error is 
reduced twofold. If we take advantage of an estimate like that of Eq. (5.7.1), we 
find that the residual mistake for any component of Eq. (5.7.2) becomes only 
 

2 2 2( ) ( ) [1 ( )]j j j ja a a b        . 

 
With an increased number of modal components, the radius of correlation also 
falls, and we find that at the fixed angle  of a mismatch we can more than 
double the accuracy of the correction. 
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CONCLUSION 
 
The range of problems that are successfully solved with the use of laser systems 
has grown considerably in recent years. The expanding application of current 
optoelectronic and adaptive optics systems is state-of-the-art optics. Historically, 
adaptive optics was first used in astronomy and more recently in ground-based 
systems for imaging artificial satellites and other space objects, but now other 
efficient applications are being reported increasingly often. In our opinion, in the 
near future adaptive optics will be widely used in a number of areas. Current 
adaptive optics can produce breakthroughs in industrial technologies and 
medicine. The performance of optoelectronic devices in manufacturing and 
medical applications (such as welding and cutting, drilling metal and extrahard 
materials, laser scalpels, or optical systems in ophthalmology) that employ 
coherent processing of signals can be considerably improved through 
implementation of adaptive optics elements and systems. 

However, the development of optoelectronic systems is a rather long process 
that usually proceeds in the absence of complete information on the peculiarities 
of the medium of propagation. Also, modern optoelectronic systems are rather 
expensive because at the initial stage of their design they require calculating and 
estimating the efficiency of applying various algorithms and programs that are 
based on current adaptive optics technologies. The main parameters of such 
systems can hardly be changed during their operation. This forces designers to 
keep in mind possible changes in the system’s main parameters at different stages 
of design and production. 

The feasibility of sufficiently flexible adjustment of optical system 
parameters is now one of the main requirements in designing optoelectronic 
devices, and this feasibility is provided by adaptive optics systems. This is 
because a change in the main parameters of an optical system can be made 
simply by replacing the operational algorithm of an adaptive system. 

The creation of optical systems necessarily includes designing the systems 
and determining the possibilities of their application under actual atmospheric 
conditions. In this book we have described these stages, taking into account 
present-day achievements.   

Adaptive optics systems differ from other systems in the elements included 
in the optical scheme: a wavefront sensor, an active optical element (active 
mirror), and a reference source supplying information on fluctuations and the 
radiation propagation channel. Each element of the optical scheme calls for 
precalculations; therefore, calculations of not only the parameters of adaptive 
optics, but the system as a whole are often needed. Corresponding calculations 
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are performed for the wavefront sensor, active mirror, and certainly the reference 
source formed in the propagation channel of the optical radiation to be corrected. 

One of the ways to create a reference source is to use a signal backscattered 
from atmospheric inhomogeneities. Various schemes for formation of a reference 
source (a laser guide star) for imaging purposes have been described. In this 
book, we discussed the limited capabilities of image correction using a signal 
based on measurement of the LGS position. The direct use of an LGS signal for 
full-aperture tip-tilt correction is impossible because the valid signal should be 
first separated from the data of optical observations of LGS image jitter. This 
aspect of the problem was described in detail in this book with allowance made 
for modern advances in this field. Earlier, attempts were undertaken to 
systematize numerous approaches solving the problem of LGS tilt retrieval for an 
adaptive optics scheme operating against an LGS signal. We have considered 
here a “general” scheme for forming a laser guide star. 

Since numerical simulation of optical wave propagation through the 
atmosphere is now one of the main methods for studying and designing modern 
optoelectronic systems, we have paid considerable attention to describing the 
computational algorithms that can be used in software packages for modeling the 
adaptive control of laser beams and imaging systems in the atmosphere. The 
propagation of optical radiation through a randomly inhomogeneous medium is 
simulated using a numerical solution of the wave equation written in the 
parabolic approximation for the scalar complex amplitude of the optical field and 
the field of the refractive index of the medium. When dynamic and nonlinear 
problems are modeled, the wave equation is solved together with some material 
equation describing how the state of the medium changes in time. In our 
calculations we use the modified splitting method and the fast Fourier transform 
algorithm. 

The algorithms and programs developed by us allow the operation of an 
optoelectronic system to be modeled as a whole. It becomes possible to describe 
such phenomena as nonstationary thermal blooming, in which the refractive 
index of the medium varies because the medium is heated by the laser radiation 
propagating through it. The algorithms proposed here make it possible to model 
the evolution of the temperature field by taking into account two mechanisms: 
forced convection (in the arbitrary direction of the wind velocity) and molecular 
heat conductivity; this is very important if there are dead zones on the path of the 
laser radiation. 

To take into account the effect of turbulent fluctuations of the atmospheric 
refractive index on the propagation of laser radiation (the laser beam), we model 
two-dimensional randomly inhomogeneous phase distortions of the wavefront 
with a spectral density corresponding to the Kolmogorov model of the turbulence 
spectrum that accounts for the finiteness of the inner and outer scales of 
turbulence. According to the Kolmogorov–Obukhov hypothesis, the structure 
function in fluctuations of temperature and the atmospheric refractive index 
obeys the power law. The finite values of the inner and outer scales of turbulence 
were introduced in the calculations. The ratio of these scales is taken, as a rule, to 
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be equal to 1000. The structure function depends on the intensity of turbulent 
distortions. In the atmospheric surface layer (h < 20 m) this intensity decreases 
with height, and the character of this height dependence changes with 
meteorological conditions. This significantly complicates the development of a 
single universal model. We use several models, including a rather simple 
empirical model obtained from experimental data (up to 20 km) under the 
conditions of best, medium, and worst visibility.  

The conditions of propagation of laser radiation through the atmosphere include 
such characteristics as the position of the laser source and the position and motion of 
the receiver. The atmosphere is modeled as a stratified medium. The variable 
parameters of the problem are the altitude of the laser source, the initial radius of 
the beam, the radiation intensity at the optical axis, the intensity distribution 
profile of the optical beam, the altitude of the receiver, the zenith angle of the 
propagation path, and the azimuth and scanning rate of the laser source. 

To take into account the vertical variability of atmospheric parameters 
entering into the equations to be solved, we propose to use the standard models 
of the atmosphere that allow for physical and geographical conditions, as well as 
spatiotemporal variations of meteorological parameters based on statistical 
measurements over many years. 

The atmospheric air is assumed to be an ideal gas of a constant composition 
that is described by the state equation, including pressure, density, and 
temperature. The atmosphere is divided into the following layers: troposphere, 
stratosphere, mesosphere, and thermosphere. The altitude profile of the 
temperature for each layer is approximated by a linear function of the 
geopotential altitude. The vertical profile of the air density is calculated from the 
given profiles of temperature and pressure based on the state equation of the ideal 
gas. 

Because of considerable spatiotemporal variability of the wind in the 
atmosphere, when solving applied problems we think it is worth using the data 
from online sensing of the path along which the optoelectronic system will 
operate. However, to evaluate the efficiency of adaptive optics systems designed 
to operate through the atmosphere, it is quite sufficient to restrict consideration to 
the models of the wind structure that were obtained from long-term 
measurements at sensing stations. 

Since molecular absorption of laser radiation in the atmosphere has 
pronounced frequency dependence, a line-by-line calculation is now the most 
universal and accurate method for determining absorption characteristics. 

Actual adaptive optics systems employ several types of sensors, including the 
Hartmann sensor, to record phase distortions. We propose a specialized sensor 
based on the Hartmann algorithm. We use up-to-date approaches to develop a 
stable phase reconstruction algorithm, in particular for strong intensity 
scintillations, as well as algorithms for phase “joining” under dislocation 
conditions. 

We have analyzed a wide range of control elements with different degrees of 
freedom, geometries of mutual arrangement, and frequencies and spatial 
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fluctuations of the response of every control element. In this analysis we included 
mirrors for tip-tilt correction of the optical beam as a whole. In addition, we have 
studied various active and adaptive mirrors: zonal and modal correctors and 
segmented mirrors of different geometries, as well as a static model of a flexible 
mirror and a numerical model of a dynamic mirror. 

The authors hope that this book will be interesting for its readers. It will be 
useful for specialists dealing with the development of devices and elements of 
adaptive optics systems. 
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