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Preface

The stimulus for this volume on the historical development of permutation statistical
methods from 1920 to 2000 was a 2006 Ph.D. dissertation by the second author on
ranching in Colorado in which permutation methods were extensively employed
[695]. This was followed by an invited overview paper on permutation statistical
methods in Wiley Interdisciplinary Reviews: Computational Statistics, by all three
authors in 2011 [117]. Although a number of research monographs and textbooks
have been published on permutation statistical methods, few have included much
historical material, with the notable exception of Edgington and Onghena in the
fourth edition of their book on Randomization Tests published in 2007 [396]. In
addition, David provided a brief history of the beginnings of permutation statistical
methods in a 2008 publication [326], which was preceded by a more technical and
detailed description of the structure of permutation tests by Bell and Sen in 1984
[93]. However, none of these sources provides an extensive historical account of the
development of permutation statistical methods.

As Stephen Stigler noted in the opening paragraph of his 1999 book on Statistics
on the Table: The History of Statistical Concepts and Methods:

[s]tatistical concepts are ubiquitous in every province of human thought. they are more
likely to be noticed in the sciences, but they also underlie crucial arguments in history,
literature, and religion. As a consequence, the history of statistics is broad in scope and
rich in diversity, occasionally technical and complicated in structure, and never covered
completely [1321, p. 1].

This book emphasizes the historical and social context of permutation statistical
methods, as well as the motivation for the development of selected permutation tests.
The field is broadly interpreted and it is notable that many of the early pioneers were
major contributors to, and may be best remembered for, work in other disciplines
and areas. Many of the early contributors to the development of permutation
methods were trained for other professions such as mathematics, economics,
agriculture, the military, or chemistry. In more recent times, researchers from
atmospheric science, biology, botany, computer science, ecology, epidemiology,
environmental health, geology, medicine, psychology, and sociology have made
significant contributions to the advancement of permutation statistical methods.
Their common characteristic was an interest in, and capacity to use, quantitative
methods on problems judged to be important in their respective disciplines.
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viii Preface

The purpose of this book is to chronicle the birth and development of permutation
statistical methods over the approximately 80-year period from 1920 to 2000. As to
what the state of permutation methods will be 80 years in the future—one can only
guess. Not even our adult children will live to see the permutation methods of that
day. As for ourselves, we have to deal with the present and the past. It is our hope in
this writing that knowledge of the past will help the reader to think critically about
the present. Those who write intellectual history, as Hayden White maintained,
“do not build up knowledge that others might use, they generate a discourse about
the past” (White, quoted in Cohen [267, pp. 184–185]). Although the authors are
not historians, they are still appreciative of the responsibility historians necessarily
assume when trying to accurately, impartially, and objectively interpret the past.
Moreover, the authors are acutely aware of the 1984 Orwellian warning that “Who
controls the past . . . controls the future” [1073, p. 19]. The authors are also fully
cognizant that there are the records of the past, then there is the interpretation of
those records. The gap between them is a source of concern. As Appleby, Hunt,
and Jacob noted in Telling the Truth About History, “[a]t best, the past only dimly
corresponds to what the historians say about it” [28, p. 248]. In writing this book,
the authors were reminded of the memorable quote by Walter Sellar and Robert
Yeatman, the authors of 1066 and All That: A Memorable History of England:
“History is not what you thought. It is what you can remember” [1245, p. vii].1 In
researching the development of permutation methods, the authors constantly dis-
covered historical events of which they were not aware, remembered events they
thought they had forgotten, and often found what they thought they remembered was
incorrect. Debates as to how to present historical information about the development
of permutation methods will likely be prompted by this volume. What is not up for
debate is the impact that permutation methods have had on contemporary statistical
methods. Finally, as researchers who have worked in the field of statistics for many
years, the authors fondly recall a sentient quote by Karl Pearson:

I do feel how wrongful it was to work for so many years at statistics and neglect its history
[1098, p. 1].

A number of books and articles detailing the history of statistics have been
written, but there is little coverage of the historical development of permutation
methods. While many of the books and articles have briefly touched on the
development of permutation methods, none has been devoted entirely to the topic.
Among the many important sources on the history of probability and statistics, a
few have served the authors well, being informative, interesting, or both. Among
these we count Natural Selection, Heredity and Eugenics: Selected Correspondence
of R.A. Fisher with Leonard Darwin and Others and Statistical Inference and
Analysis: Selected Correspondence of R.A. Fisher by J.H. Bennett [96, 97]; “A
history of statistics in the social sciences” by V. Coven [289]; A History of Inverse
Probability from Thomas Bayes to Karl Pearson by A.I. Dale [310]; Games, Gods,

1Emphasis in the original.



Preface ix

and Gambling: The Origin and History of Probability and Statistical Ideas from the
Earliest Times to the Newtonian Era by F.N. David [320]; “Behavioral statistics: An
historical perspective” by A.L. Dudycha and L.W. Dudycha [361]; “A brief history
of statistics in three and one-half chapters” by S.E. Fienberg [428]; The Making
of Statisticians edited by J. Gani [493]; The Empire of Chance: How Probability
Changed Science and Everyday Life by G. Gigerenzer, Z. Swijtink, T.M. Porter,
and L. Daston [512]; The Emergence of Probability and The Taming of Chance by
I. Hacking [567, 568]; History of Probability and Statistics and Their Applications
Before 1750 and A History of Mathematical Statistics from 1750 to 1930 by A. Hald
[571,572]; “The method of least squares and some alternatives: Part I,” “The method
of least squares and some alternatives: Part II,” “The method of least squares and
some alternatives: Part III,” “The method of least squares and some alternatives:
Part IV,” “The method of least squares and some alternatives: Addendum to Part IV,”
“The method of least squares and some alternatives: Part V,” and “The method of
least squares and some alternatives: Part VI” by H.L. Harter [589–595]; Statisticians
of the Centuries edited by C.C. Heyde and E. Seneta [613]; Leading Personalities
in Statistical Sciences: From the Seventeenth Century to the Present edited by
N.L. Johnson and S. Kotz [691]; Bibliography of Statistical Literature: 1950–1958,
Bibliography of Statistical Literature: 1940–1949, and Bibliography of Statistical
Literature: Pre 1940 by M.G. Kendall and A.G. Doig [743–745].

Also, Studies in the History of Statistics and Probability edited by M.G.
Kendall and R.L. Plackett [747]; Creative Minds, Charmed Lives: Interviews at
Institute for Mathematical Sciences, National University of Singapore edited by
L.Y. Kiang [752]; “A bibliography of contingency table literature: 1900 to 1974”
by R.A. Killion and D.A. Zahn [754]; The Probabilistic Revolution edited by
L. Krüger, L. Daston, and M. Heidelberger [775]; Reminiscences of a Statistician:
The Company I Kept and Fisher, Neyman, and the Creation of Classical Statistics by
E.L. Lehmann [814,816]; Statistics in Britain, 1865–1930: The Social Construction
of Scientific Knowledge by D. MacKenzie [863]; The History of Statistics in the
17th and 18th Centuries Against the Changing Background of Intellectual, Scientific
and Religious Thought edited by E.S. Pearson [1098]; Studies in the History of
Statistics and Probability edited by E.S. Pearson and M.G. Kendall [1103]; The Rise
of Statistical Thinking, 1820–1900 by T.M. Porter [1141]; Milestones in Computer
Science and Information Technology by E.D. Reilly [1162]; The Lady Tasting Tea:
How Statistics Revolutionized Science in the Twentieth Century by D. Salsburg
[1218]; Bibliography of Nonparametric Statistics by I.R. Savage [1225]; Theory of
Probability: A Historical Essay by O.B. Sheynin [1263]; American Contributions
to Mathematical Statistics in the Nineteenth Century, Volumes 1 and 2, The History
of Statistics: The Measurement of Uncertainty Before 1900, and Statistics on the
Table: The History of Statistical Concepts and Methods by S.M. Stigler [1318–
1321], Studies in the History of Statistical Method by H.M. Walker [1409], and the
44 articles published by various authors under the title “Studies in the history of
probability and statistics” that appeared in Biometrika between 1955 and 2000.

In addition, the authors have consulted myriad addresses, anthologies, arti-
cles, autobiographies, bibliographies, biographies, books, celebrations, chronicles,
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collections, commentaries, comments, compendiums, compilations, conversations,
correspondences, dialogues, discussions, dissertations, documents, essays, eulogies,
encyclopedias, festschrifts, histories, letters, manuscripts, memoirs, memorials,
obituaries, remembrances, reports, reviews, speeches, summaries, synopses, theses,
tributes, web sites, and various other sources on the contributions of individual
statisticians to permutation methods, many of which are listed in the references at
the end of the book.

No preface to a chronicle of the development of permutation statistical methods
would be complete without acknowledging the major contributors to the field,
some of whom contributed theory, others methods and algorithms, and still others
promoted permutation methods to new audiences. At the risk of slighting someone
of importance, in the early years from 1920 to 1939 important contributions were
made by Thomas Eden, Ronald Fisher, Roy Geary, Harold Hotelling, Joseph Irwin,
Jerzy Neyman, Edwin Olds, Margaret Pabst, Edwin Pitman, Bernard Welch, and
Frank Yates. Later, the prominent names were Bernard Babington Smith, George
Box, Meyer Dwass, Eugene Edgington, Churchill Eisenhart, Alvan Feinstein, Leon
Festinger, David Finney, Gerald Freeman, Milton Friedman, Arthur Ghent, John
Haldane, John Halton, Wassily Hoeffding, Lawrence Hubert, Maurice Kendall,
Oscar Kempthorne, William Kruskal, Erich Lehmann, Patrick Leslie, Henry Mann,
M. Donal McCarthy, Cyrus Mehta, Nitin Patel, Henry Scheffé, Cedric Smith,
Charles Spearman, Charles Stein, John Tukey, Abraham Wald, Dirk van der Reyden,
W. Allen Wallis, John Whitfield, Donald Whitney, Frank Wilcoxon, Samuel Wilks,
and Jacob Wolfowitz. More recently, one should recognize Alan Agresti, Brian
Cade, Herbert David, Hugh Dudley, David Freedman, Phillip Good, Peter Kennedy,
David Lane, John Ludbrook, Bryan Manly, Patrick Onghena, Fortunato Pesarin, Jon
Richards, and Cajo ter Braak.
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1Introduction

Permutation statistical methods are a paradox of old and new. While permutation
methods pre-date many traditional parametric statistical methods, only recently
have permutation methods become part of the mainstream discussion regarding
statistical testing. Permutation statistical methods follow a permutation model
whereby a test statistic is computed on the observed data, then (1) the observed
data are permuted over all possible arrangements of the observations—an exact
permutation test, (2) the observed data are used for calculating the exact moments
of the underlying discrete permutation distribution and the moments are fitted
to an associated continuous distribution—a moment-approximation permutation
test, or (3) the observed data are permuted over a random subset of all possible
arrangements of the observations—a resampling-approximation permutation test
[977, pp. 216–218].

1.1 Overview of This Chapter

This first chapter begins with a brief description of the advantages of permu-
tation methods from statisticians who were, or are, advocates of permutation
tests, followed by a description of the methods of permutation tests including
exact, moment-approximation, and resampling-approximation permutation tests.
The chapter continues with an example that contrasts the well-known Student t

test and results from exact, moment-approximation, and resampling-approximation
permutation tests using historical data. The chapter concludes with brief overviews
of the remaining chapters.

Permutation tests are often described as the gold standard against which con-
ventional parametric tests are tested and evaluated. Bakeman, Robinson, and Quera
remarked that “like Read and Cressie (1988), we think permutation tests represent
the standard against which asymptotic tests must be judged” [50, p. 6]. Edgington
and Onghena opined that “randomization tests . . . have come to be recognized
by many in the field of medicine as the ‘gold standard’ of statistical tests for
randomized experiments” [396, p. 9]; Friedman, in comparing tests of significance
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2 1 Introduction

for m rankings, referred to an exact permutation test as “the correct one” [486,
p. 88]; Feinstein remarked that conventional statistical tests “yield reasonably reli-
able approximations of the more exact results provided by permutation procedures”
[421, p. 912]; and Good noted that Fisher himself regarded randomization as a
technique for validating tests of significance, i.e., making sure that conventional
probability values were accurate [521, p. 263].

Early statisticians understood well the value of permutation statistical tests even
during the period in which the computationally-intensive nature of the tests made
them impractical. Notably, in 1955 Kempthorne wrote that “[t]ests of significance
in the randomized experiment have frequently been presented by way of normal law
theory, whereas their validity stems from randomization theory” [719, p. 947] and

[w]hen one considers the whole problem of experimental inference, that is of tests of
significance, estimation of treatment differences and estimation of the errors of estimated
differences, there seems little point in the present state of knowledge in using method of
inference other randomization analysis [719, p. 966].

In 1966 Kempthorne re-emphasized that “the proper way to make tests of
significance in the simple randomized experiments is by way of the randomiza-
tion (or permutation) test” [720, p. 20] and “in the randomized experiment one
should, logically, make tests of significance by way of the randomization test”
[720, p. 21].1 Similarly, in 1959 Scheffé stated that the conventional analysis of
variance F test “can often be regarded as a good approximation to a permutation
[randomization] test, which is an exact test under a less restrictive model” [1232,
p. 313]. In 1968 Bradley indicated that “eminent statisticians have stated that the
randomization test is the truly correct one and that the corresponding parametric
test is valid only to the extent that it results in the same statistical decision” [201,
p. 85].

With the advent of high-speed computing, permutation tests became more
practical and researchers increasingly appreciated the benefits of the randomization
model. In 1998, Ludbrook and Dudley stated that “it is our thesis that the
randomization rather than the population model applies, and that the statistical
procedures best adapted to this model are those based on permutation” [856, p. 127],
concluding that “statistical inferences from the experiments are valid only under the
randomization model of inference” [856, p. 131].

In 2000, Bergmann, Ludbrook, and Dudley, in a cogent analysis of the
Wilcoxon–Mann–Whitney two-sample rank-sum test, observed that “the only
accurate form of the Wilcoxon–Mann–Whitney procedure is one in which the
exact permutation null distribution is compiled for the actual data” [100, p. 72] and
concluded:

[o]n theoretical grounds, it is clear that the only infallible way of executing the
[Wilcoxon–Mann–Whitney] test is to compile the null distribution of the rank-sum statistic
by exact permutation. This was, in effect, Wilcoxon’s (1945) thesis and it provided the
theoretical basis for his [two-sample rank-sum] test [100, p. 76].

1The terms “permutation test” and “randomization test” are often used interchangeably.
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1.2 TwoModels of Statistical Inference

Essentially, two models of statistical inference coexist: the population model
and the permutation model; see for further discussion, articles by Curran-Everett
[307], Hubbard [663], Kempthorne [721], Kennedy [748], Lachin [787], Ludbrook
[849, 850], and Ludbrook and Dudley [854]. The population model, formally
proposed by Jerzy Neyman and Egon Pearson in 1928 [1035, 1036], assumes
random sampling from one or more specified populations. Under the population
model, the level of statistical significance that results from applying a statistical
test to the results of an experiment or a survey corresponds to the frequency with
which the null hypothesis would be rejected in repeated random samplings from the
same specified population(s). Because repeated sampling of the true population(s) is
usually impractical, it is assumed that the sampling distribution of the test statistics
generated under repeated random sampling conforms to an assumed, conjectured,
hypothetical distribution, such as the normal distribution.

The size of a statistical test, e.g., 0.05, is the probability under a specified
null hypothesis that repeated outcomes based on random samples of the same
size are equal to or more extreme than the observed outcome. In the population
model, assignment of treatments to subjects is viewed as fixed with the stochastic
element taking the form of an error that would vary if the experiment was repeated
[748]. Probability values are then calculated based on the potential outcomes of
conceptual repeated draws of these errors. The model is sometimes referred to
as the “conditional-on-assignment” model, as the distribution used for structuring
the test is conditional on the treatment assignment of the observed sample; see for
example, a comprehensive and informative 1995 article by Peter Kennedy in Journal
of Business & Economic Statistics [748].

The permutation model was introduced by R.A. Fisher in 1925 [448] and further
developed by R.C. Geary in 1927 [500], T. Eden and F. Yates in 1933 [379], and
E.J.G. Pitman in 1937 and 1938 [1129–1131]. Permutation tests do not refer to any
particular statistical tests, but to a general method of determining probability values.
In a permutation statistical test the only assumption made is that experimental
variability has caused the observed result. That assumption, or null hypothesis,
is then tested. The smaller the probability, the stronger is the evidence against
the assumption [648]. Under the permutation model, a permutation test statistic
is computed for the observed data, then the observations are permuted over all
possible arrangements of the observations and the test statistic is computed for
each equally-likely arrangement of the observed data [307]. For clarification, an
ordered sequence of n exchangeable objects .!1; : : : ; !n/ yields nŠ equally-likely
arrangements of the n objects, vide infra. The proportion of cases with test statistic
values equal to or more extreme than the observed case yields the probability of
the observed test statistic. In contrast to the population model, the assignment of
errors to subjects is viewed as fixed, with the stochastic element taking the form
of the assignment of treatments to subjects for each arrangement [748]. Probability
values are then calculated according to all outcomes associated with assignments
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of treatments to subjects for each case. This model is sometimes referred to as the
“conditional-on-errors” model, as the distribution used for structuring the test is
conditional on the individual errors drawn for the observed sample; see for example,
a 1995 article by Peter Kennedy [748].

Exchangeability
A sufficient condition for a permutation test is the exchangeability of the
random variables. Sequences that are independent and identically distributed
(i.i.d.) are always exchangeable, but so is sampling without replacement from
a finite population. However, while i.i.d. implies exchangeability, exchange-
ability does not imply i.i.d. [528, 601, 758]. Diaconis and Freedman present a
readable discussion of exchangeability using urns and colored balls [346].

More formally, variables X1; X2; : : : ; Xn are exchangeable if

P

"
n\

iD1

.Xi � xi /

#
D P

"
n\

iD1

.Xi � xci /

#
;

where x1; x2; : : : ; xn are n observed values and fc1; c2; : : : ; cng is any one of
the nŠ equally-likely permutations of f1; 2; : : : ; ng [1215].

1.3 Permutation Tests

Three types of permutation tests are common: exact, moment-approximation, and
resampling-approximation permutation tests. While the three types are methodolog-
ically quite different, all three approaches are based on the same specified null
hypothesis.

1.3.1 Exact Permutation Tests

Exact permutation tests enumerate all equally-likely arrangements of the observed
data. For each arrangement, the desired test statistic is calculated. The obtained
data yield the observed value of the test statistic. The probability of obtaining the
observed value of the test statistic, or a more extreme value, is the proportion of
the enumerated test statistics with values equal to or more extreme than the value
of the observed test statistic. As sample sizes increase, the number of possible
arrangements can become very large and exact methods become impractical. For
example, permuting two small samples of sizes n1 D n2 D 20 yields

M D .n1 C n2/Š

n1Š n2Š
D .20C 20/Š

.20Š/2
D 137;846;528;820

different arrangements of the observed data.
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1.3.2 Moment-Approximation Permutation Tests

The moment-approximation of a test statistic requires computation of the exact
moments of the test statistic, assuming equally-likely arrangements of the observed
data. The moments are then used to fit a specified distribution. For example,
the first three exact moments may be used to fit a Pearson type III distribution.
Then, the Pearson type III distribution approximates the underlying discrete per-
mutation distribution and provides an approximate probability value. For many
years moment-approximation permutation tests provided an important intermediary
approximation when computers lacked both the speed and the storage for calculating
exact permutation tests. More recently, resampling-approximation permutation tests
have largely replaced moment-approximation permutation tests, except when either
the size of the data set is very large or the probability of the observed test statistic is
very small.

1.3.3 Resampling-Approximation Permutation Tests

Resampling-approximation permutation tests generate and examine a Monte Carlo
random subset of all possible equally-likely arrangements of the observed data.
In the case of a resampling-approximation permutation test, the probability of
obtaining the observed value of the test statistic, or a more extreme value, is the
proportion of the resampled test statistics with values equal to or more extreme than
the value of the observed test statistic [368, 649]. Thus, resampling permutation
probability values are computationally quite similar to exact permutation tests, but
the number of resamplings to be considered is decided upon by the researcher rather
than by considering all possible arrangements of the observed data. With sufficient
resamplings, a researcher can compute a probability value to any accuracy desired.
Read and Cressie [1157], Bakeman, Robinson, and Quera [50], and Edgington and
Onghena [396, p. 9] described permutation methods as the “gold standard” against
which asymptotic methods must be judged. Tukey took it one step further, labeling
resampling permutation methods the “platinum standard” of permutation methods
[216, 1381, 1382].2

1.3.4 Compared with Parametric Tests

Permutation tests differ from traditional parametric tests based on an assumed
population model in several ways.

2In a reversal Tukey could not have predicted, at the time of this writing gold was trading at $1,775
per troy ounce, while platinum was only $1,712 per troy ounce [275].
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1. Permutation tests are data dependent, in that all the information required for
analysis is contained within the observed data set; see a 2007 discussion by
Mielke and Berry [965, p. 3].3

2. Permutation tests do not assume an underlying theoretical distribution; see a
1983 article by Gabriel and Hall [489].

3. Permutation tests do not depend on the assumptions associated with traditional
parametric tests, such as normality and homogeneity; see articles by Kennedy
in 1995 [748] and Berry, Mielke, and Mielke in 2002 [162].4

4. Permutation tests provide probability values based on the discrete permutation
distribution of equally-likely test statistic values, rather than an approximate
probability value based on a conjectured theoretical distribution, such as a
normal, chi-squared, or F distribution; see a 2001 article by Berry, Johnston,
and Mielke [117].

5. Whereas permutation tests are suitable when a random sample is obtained from
a designated population, permutation tests are also appropriate for nonrandom
samples, such as are common in biomedical research; see discussions by
Kempthorne in 1977 [721], Gabriel and Hall in 1983 [489], Bear in 1995 [88],
Frick in 1998 [482], Ludbrook and Dudley in 1998 [856], and Edgington and
Onghena in 2007 [396, pp. 6–8].

6. Permutation tests are appropriate when analyzing entire populations, as permu-
tation tests are not predicated on repeated random sampling from a specified
population; see discussions by Ludbrook and Dudley in 1998 [856], Holford in
2003 [638], and Edgington and Onghena in 2007 [396, pp. 1–8].

7. Permutation tests can be defined for any selected test statistic; thus, researchers
have the option of using a wide variety of test statistics, including the
majority of statistics commonly utilized in traditional statistical approaches;
see discussions by Mielke and Berry in 2007 [965].

8. Permutation tests are ideal for very small data sets, when conjectured, hypo-
thetical distribution functions may provide very poor fits; see a 1998 article by
Ludbrook and Dudley [856].

9. Appropriate permutation tests are resistant to extreme values, such as are
common in demographic data, e.g., income, age at first marriage, number of
children, and so on; see a discussion by Mielke and Berry in 2007 [965, pp. 52–
53] and an article by Mielke, Berry, and Johnston in 2011 [978]. Consequently,
the need for any data transformation is mitigated in the permutation context
and in general is not recommended, e.g., square root, logarithmic, the use of

3Echoing Fisher’s argument that inference must be based solely on the data at hand [460], Haber
refers to data dependency as “the data at hand principle” [565, p. 148].
4Barton and David noted that it is desirable to make the minimum of assumptions, since,
witness the oft-cited Bertrand paradox [163], that the assumptions made will often prejudice the
conclusions reached [83, p. 455].
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rank-order statistics,5 and the choice of a distance function, in particular, may
be very misleading [978].

10. Permutation tests provide data-dependent statistical inferences only to the
actual experiment or survey that has been performed, and are not dependent
on a contrived super population; see for example, discussions by Feinstein in
1973 [421] and Edgington and Onghena in 2007 [396, pp. 7–8].

1.3.5 The Bootstrap and the Jackknife

This chronicle is confined to permutation methods, although many researchers
consider that permutation methods, bootstrapping, and the jackknife are closely
related. Traditionally, jackknife (leave-one-out) methods have been used to reduce
bias in small samples, calculate confidence intervals around parameter estimates,
and test hypotheses [789, 876, 1376], while bootstrap methods have been used to
estimate standard errors in cases where the distribution of the data is unknown [789].
In general, permutation methods are considered to be more powerful than either the
bootstrap or (possibly) the jackknife approaches [789].

While permutation methods and bootstrapping both involve computing simula-
tions, and the rejection of the null hypothesis occurs when a common test statistic
is extreme under both bootstrapping and permutation, they are conceptually and
mechanically quite different. On the other hand, they do have some similarities,
including equivalence in an asymptotic sense [358,1189]. The two approaches differ
in their distinct sampling methods. In resampling, a “new” sample is obtained by
drawing the data without replacement, whereas in bootstrapping a “new” sample is
obtained by drawing from the data with replacement [748, 1189]. Thus, bootstrap-
ping and resampling are associated with sampling with and without replacement,
respectively. Philip Good has been reported as saying that the difference between
permutation tests and bootstrap tests is that “[p]ermutations test hypotheses con-
cerning distributions; bootstraps test hypotheses concerning parameters.”

Specifically, resampling is a data-dependent procedure, dealing with all finite
arrangements of the observed data, and based on sampling without replacement.
In contrast, bootstrapping involves repeated sampling from a finite population
that conceptually yields an induced infinite population based on sampling with
replacement. In addition, when bootstrapping is used with small samples it is
necessary to make complex adjustments to control the risk of error; see for example,
discussions by Hall and Wilson in 1991 [577], Efron and Tibshirani in 1993 [402],
and Westfall and Young, also in 1993 [1437]. Finally, the bootstrap distribution
may be viewed as an unconditional approximation to the null distribution of the

5Rank-order statistics were among the earliest permutation tests, transforming the observed data
into ranks, e.g., from smallest to largest. While they were an important step in the history of
permutation tests, modern computing has superseded the need for rank-order tests in the majority
of cases.
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test statistic, while the resampling distribution may be viewed as a conditional
distribution of the test statistic [1189].

In 1991 Donegani argued that it is preferable to compute a permutation test based
on sampling without replacement (i.e., resampling) than with replacement (i.e.,
bootstrap), although, as he noted, the two techniques are asymptotically equivalent
[358]. In a thorough comparison and analysis of the two methods, he demonstrated
that (1) the bootstrap procedure is “bad” for small sample sizes or whenever the
alternative is close to the null hypothesis and (2) resampling tests should be used in
order to take advantage of their flexibility in the choice of a distance criteria [358,
p. 183].

In 1988 Tukey stated that the relationship between permutation procedures, on
the one hand, and bootstrap and jackknife procedures, on the other hand, is “far from
close” [1382]. Specifically, Tukey listed four major differences between bootstrap
and jackknife procedures, which he called “resampling,” and permutation methods,
which he called “rerandomization” [1382].
1. Bootstrap and jackknife procedures need not begin until the data is collected.

Rerandomization requires planning before the data collection is specified.
2. Bootstrap and jackknife procedures play games of omission of units with data

already collected. Rerandomization plays games of exchange of treatments,
while using all numerical results each time.

3. Bootstrap and jackknife procedures apply to experiences as well as experiments.
Rerandomization only applies to randomized experiments.

4. Bootstrap and jackknife procedures give one only a better approximation to a
desired confidence interval. Rerandomization gives one a “platinum standard”
significance test, which can be extended in simple cases—by the usual devices—
to a “platinum standard” confidence interval.
Thus, bootstrapping remains firmly in the conditional-on-assignment tradition,

assuming that the true error distribution can be approximated by a discrete distribu-
tion with equal probability attached to each of the cases [850]. On the other hand,
permutation tests view the errors as fixed in repeated samples [748]. Finally, some
researchers have tacitly conceived of permutation methods in a Bayesian context.
Specifically, this interpretation amounts to a primitive Bayesian analysis where the
prior distribution is the assumption of equally-likely arrangements associated with
the observed data, and the posterior distribution is the resulting data-dependent
distribution of the test statistic induced by the prior distribution.

1.4 Student’s t Test

Student’s pooled t test [1331] for two independent samples is a convenient vehicle
to illustrate permutation tests and to compare a permutation test with its parametric
counterpart. As a historical note, Student’s 1908 publication used z for the test
statistic, and not t. The first mention of t appeared in a letter from William Sealy
Gosset (“Student”) to R.A. Fisher in November of 1922. It appears that the decision
to change from z to t originated with Fisher, but the choice of the letter t was due
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to Student. Eisenhart [408] and Box [196] provide historical commentaries on the
transition from Student’s z test to Student’s t test.

Student’s pooled t test for two independent samples is well-known, familiar
to most researchers, widely used in quantitative analyses, and elegantly simple.
The pooled t test evaluates the mean difference between two independent random
samples. Under the null hypothesis, H0W �1 D �2, Student’s pooled t test statistic
is defined as

t D . Nx1 � Nx2/ � .�1 � �2/

s Nx1�Nx2

;

where the standard error of the sampling distribution of differences between two
independent sample means is given by

s Nx1�Nx2 D
2
4 .n1 � 1/s2

1 C .n2 � 1/s2
2

n1 C n2 � 2

�
n1 C n2

n1 n2

�35
1=2

;

�1 and �2 denote the hypothesized population means, Nx1 and Nx2 denote the sample
means, s2

1 and s2
2 denote the sample variances, and t follows Student’s t distribution

with n1Cn2�2 degrees of freedom, assuming the data samples are from independent
normal distributions with equal variances.

1.4.1 An Exact Permutation t Test

Exact permutation tests are based on all possible arrangements of the observed
data. For the two-sample t test, the number of permutations of the observed data
is given by

M D N Š

n1Š n2Š
;

where N D n1 C n2.
Let xij denote the ith observed score in the jth independent sample, j D 1; 2

and i D 1; : : : ; nj , let to denote the Student t statistic computed on the observed
data, and let tk denote the Student t statistic computed on each permutation of the
observed data for k D 1; : : : ; M . For the first permutation of the observed data
set, interchange x13 and x12, compute t1, and compare t1 with to. For the second
permutation, interchange x12 and x22, compute t2, and compare t2 with to. Continue
the process for k D 1; : : : ; M .

To illustrate the exact permutation procedure, consider two independent samples
of n1 D n2 D 3 observations and let fx11; x21; x31g denote the n1 D 3 observations
in Sample 1 and fx12; x22; x32g denote the n2 D 3 observations in Sample 2.
Table 1.1 depicts the
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Table 1.1 Illustrative
M D 20 permutations of
N D 6 observations in two
independent samples with
n1 D n2 D 3

Sample 1 Sample 2

Permutation 1 2 3 1 2 3 t

1 x11 x21 x31 x12 x22 x32 t1
2 x11 x21 x12 x31 x22 x32 t2
3 x11 x21 x22 x31 x12 x32 t3
4 x11 x21 x32 x31 x12 x22 t4
5 x11 x31 x12 x21 x22 x32 t5

6 x11 x31 x22 x21 x12 x32 t6
7 x11 x31 x32 x21 x12 x22 t7
8 x11 x12 x22 x21 x31 x32 t8
9 x11 x12 x32 x21 x31 x22 t9

10 x11 x22 x32 x21 x31 x12 t10

11 x21 x31 x12 x11 x22 x32 t11

12 x21 x31 x22 x11 x12 x32 t12

13 x21 x31 x32 x11 x12 x22 t13

14 x21 x12 x22 x11 x31 x32 t14

15 x21 x12 x32 x11 x31 x22 t15

16 x21 x22 x32 x11 x31 x12 t16

17 x31 x12 x22 x11 x21 x32 t17

18 x31 x12 x32 x11 x21 x22 t18

19 x31 x22 x32 x11 x21 x12 t19

20 x12 x22 x32 x11 x21 x31 t20

M D 6Š

3Š 3Š
D 20

arrangements of n1 D n2 D 3 observations in each of the two independent samples
where to D t1, the subscripts denote the original position of each observation in
either Sample 1 or Sample 2, and the position of the observation in Table 1.1 on
either the left side of the table in Sample 1 or the right side of the table in Sample
2 indicates the placement of the observation after permutation. The exact two-sided
probability (P ) value is then given by

P D number of jtkj values � jtoj
M

for k D 1; : : : ; M :

1.4.2 AMoment-Approximation t Test

Moment-approximation permutation tests filled an important gap in the develop-
ment of permutation statistical methods. Prior to the advent of modern computers,
exact tests were impossible to compute except for extremely small samples, and
even resampling-approximation permutation tests were limited in the number of
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random permutations of the data possible, thus yielding too few places of accuracy
for research purposes.

A moment-approximation permutation test is based, for example, on the first
three exact moments of the underlying discrete permutation distribution, yielding
the exact mean, variance, and skewness, i.e., �x , �2

x , and �x. Computational details
for the exact moments are given in Sect. 4.15 of Chap. 4. An approximate probability
value is obtained by fitting the exact moments to the associated Pearson type III
distribution, which is completely characterized by the first three moments, and
integrating the obtained Pearson type III distribution.

1.4.3 A Resampling-Approximation t Test

When M is very large, exact permutation tests are impractical, even with high-speed
computers, and resampling-approximation permutation tests become an important
alternative. Resampling-approximation tests provide more precise probability
values than moment-approximation tests and are similar in structure to exact tests,
except that only a random sample of size L selected from all possible permutations,
M , is generated, where L is usually a large number to guarantee accuracy to a
specified number of places. For instance, L D 1;000;000 will likely ensure three
places of accuracy [696]. The resampling two-sided approximate probability value
is then given by

OP D number of jtkj values � jtoj
L

for k D 1; : : : ; L :

1.5 An Example Data Analysis

The English poor laws, the relief expenditure act, and a comparison of two
English counties provide vehicles to illustrate exact, moment-approximation, and
resampling-approximation permutation tests.

The English Poor Laws
Up until the Reformation, it was considered a Christian duty in England to
undertake the seven corporal works of mercy. In accordance with Matthew
25:32–46, Christians were to feed the hungry, give drink to the thirsty,
welcome a stranger, clothe the naked, visit the sick, visit the prisoner, and
bury the dead. After the Reformation and the establishment of the Church of
England, many of these precepts were neglected, the poor were left without
adequate assistance, and it became necessary to regulate relief of the poor

(continued)
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by statute. The Poor Laws passed during the reign of Elizabeth I played a
determining role in England’s system of welfare, signaling a progression from
private charity to a welfare state, where care of the poor was embodied in law.
Boyer [198] provides an exhaustive description of the historical development
of the English Poor Laws.

In 1552, Parish registers of the poor were introduced to ensure a well-
documented official record, and in 1563, Justices of the Peace were empow-
ered to raise funds to support the poor. In 1572, it was made compulsory that
all people pay a poor tax, with those funds used to help the deserving poor.
In 1597, Parliament passed a law that each parish appoint an Overseer of
the Poor who calculated how much money was needed for the parish, set the
poor tax accordingly, collected the poor rate from property owners, dispensed
either food or money to the poor, and supervised the parish poor house. In
1601, the Poor Law Act was passed by Parliament, which brought together
all prior measures into one legal document. The act of 1601 endured until the
Poor Law Amendment Act was passed in 1834.

Consider an example data analysis utilizing Student’s pooled two-sample t

test based on historical parish-relief expenditure data from the 1800s [697]. To
investigate factors that contributed to the level of relief expenditures, Boyer [198]
assembled a data set comprised of a sample of 311 parishes in 20 counties in the
south of England in 1831. The relief expenditure data were obtained from Blaug
[172].6 Table 1.2 contains the 1831 per capita relief expenditures, in shillings, for
36 parishes in two counties: Oxford and Hertford. For this example, the data were
rounded to four places.

The relief expenditure data from Oxford and Hertford counties are listed in
Table 1.2. Oxford County consisted of 24 parishes with a sample mean relief of
Nx1 D 20:28 shillings and a sample variance of s2

1 D 58:37 shillings. Hertford
County consisted of 12 parishes with a sample mean relief of Nx2 D 13:47 shillings
and a sample variance of s2

2 D 37:58 shillings. A conventional two-sample t test
yields to D C2:68 and, with 24 C 12 � 2 D 34 degrees of freedom, a two-sided
approximate probability value of OP D :0113. Although there are

M D 36Š

24Š 12Š
D 1;251;677;700

possible arrangements of the observed data and an exact permutation test is therefore
not practical, it is not impossible. For the Oxford and Hertford relief expenditure

6The complete data set is available in several formats at the Cambridge University Press site: http://
uk.cambridge.org/resources/0521806631.

http://uk.cambridge.org/resources/0521806631
http://uk.cambridge.org/resources/0521806631
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Table 1.2 Average per
capita relief expenditures for
Oxford and Hertford counties
in shillings: 1831

Oxford County Hertford County

Parish Expenditure Parish Expenditure Parish Expenditure

1 20.3619 13 25.4683 1 27.9748
2 29.0861 14 12.5632 2 6.4173
3 14.9318 15 13.2780 3 10.4841
4 24.1232 16 27.3030 4 10.0057
5 18.2075 17 29.6055 5 9.7699
6 20.7287 18 13.6132 6 15.8665
7 8.1195 19 11.3714 7 19.3424
8 14.0201 20 21.5248 8 17.1452
9 18.4248 21 20.9408 9 13.1342

10 34.5466 22 11.5952 10 10.0420
11 16.0927 23 18.2355 11 15.0838
12 24.6166 24 37.8809 12 6.3985

data in Table 1.2, an exact permutation analysis yields a two-sided probability value
of P D 10;635;310=1;251;677;700 D 0:0085.

A moment-approximation permutation analysis of the Oxford and Hertford relief
expenditure data in Table 1.2 based on the Pearson type III distribution, yields a two-
sided approximate probability value of OP D 0:0100.

Finally, a resampling analysis of the Oxford and Hertford relief expenditure
data based on L D 1;000;000 random arrangements of the observed data in
Table 1.2, yields 8,478 calculated t values equal to or more extreme than the
observed value of to D C2:68, and a two-sided approximate probability value of
OP D 8;478=1;000;000 D 0:0085.

1.6 Overviews of Chaps. 2–6

Chapters 2–6 describe the birth and development of statistical permutation methods.
Chapter 2 covers the period from 1920 to 1939; Chap. 3, the period from 1940 to
1959; Chap. 4, the period from 1960 to 1979; and Chap. 5, the period from 1980
to 2000. Chapter 6 looks beyond the year 2000, summarizing the development of
permutation methods from 2001 to 2010. Following Chap. 6 is a brief epilogue
summarizing the attributes that distinguish permutation statistical methods from
conventional statistical methods.

Chapter 2: 1920–1939

Chapter 2 chronicles the period from 1920 to 1939 when the earliest discussions of
permutation methods appeared in the literature. In this period J. Spława-Neyman,
R.A. Fisher, R.C. Geary, T. Eden, F. Yates, and E.J.G. Pitman laid the foundations
of permutation methods as we know them today. As is evident in this period,
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permutation methods had their roots in agriculture and, from the beginning, were
widely recognized as the gold standard against which conventional methods could
be verified and confirmed.

In 1923 Spława-Neyman introduced a permutation model for the analysis of field
experiments [1312], and in 1925 Fisher calculated an exact probability using the
binomial distribution [448]. Two years later in 1927, Geary used an exact analysis
to support the use of asymptotic methods for correlation and regression [500], and
in 1933 Eden and Yates used a resampling-approximation permutation approach to
validate the assumption of normality in an agricultural experiment [379].

In 1935, Fisher’s well-known hypothesized experiment involving “the lady
tasting tea” was published in the first edition of The Design of Experiments [451].
In 1936, Fisher used a shuffling technique to demonstrate how a permutation test
works [453], and in the same year Hotelling and Pabst utilized permutation methods
to calculate exact probability values for the analysis of rank data [653].

In 1937 and 1938, Pitman published three seminal articles on permutation
methods. The first article dealt with permutation methods in general, with an
emphasis on the two-sample test; the second article with permutation methods as
applied to bivariate correlation; and the third article with permutation methods as
applied to a randomized blocks analysis of variance [1129–1131].

In addition to laying the foundations for permutation tests, the 1920s and 1930s
were also periods in which tools to ease the computation of permutation tests
were developed. Probability tables provided exact values for small samples, rank
tests simplified the calculations, and desktop calculators became more available.
Importantly, statistical laboratories began to appear in the United States in the
1920s and 1930s, notably at the University of Michigan and Iowa State College of
Agriculture (now, Iowa State University). These statistical centers not only resulted
in setting the foundations for the development of the computing power that would
eventually make permutation tests feasible, they also initiated the formal study of
statistics as a stand-alone discipline.

Chapter 3: 1940–1959

Chapter 3 explores the period between 1940 and 1959 with attention to the continu-
ing development of permutation methods. This period may be considered as a bridge
between the early years where permutation methods were first conceptualized and
the next period, 1960–1979, in which gains in computer technology provided the
necessary tools to successfully employ specific permutation tests.

Between 1940 and 1959, the work on establishing permutation statistical meth-
ods that began in the 1920s continued. In the 1940s, researchers applied known
permutation techniques to create tables of exact probability values for small
samples, among them tables for 2�2 contingency tables; the Spearman and Kendall
rank-order correlation coefficients; the Wilcoxon, Mann–Whitney, and Festinger
two-sample rank-sum tests; and the Mann test for trend.
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Theoretical work, driven primarily by the computational challenges of
calculating exact permutation probability values, was also completed during this
period. Instead of the focus being on new permutation tests, however, attention
turned to developing more simple alternatives to do calculations by converting data
to rank-order statistics. Examples of rank tests that were developed between 1940
and 1959 include non-parametric randomization tests, exact tests for randomness
based on serial correlation, and tests of significance when the underlying probability
distribution is unknown.

While this theoretical undertaking continued, other researchers worked on
developing practical non-parametric rank tests. Key among these tests were the
Kendall rank-order correlation coefficient, the Kruskal–Wallis one-way analysis of
variance rank test, the Wilcoxon and Mann–Whitney two-sample rank-sum tests,
and the Mood median test.

Chapter 4: 1960–1979

Chapter 4 surveys the development of permutation methods in the period between
1960 and 1979 that was witness to dramatic improvements in computer technology,
a process that was integral to the further development of permutation statistical
methods. Prior to 1960, computers were based on vacuum tubes7 and were large,
slow, expensive, and availability was severely limited. Between 1960 and 1979
computers increasingly became based on transistors and were smaller, faster, more
affordable, and more readily available to researchers. As computers became more
accessible to researchers, work on permutation tests continued with much of the
focus of that work driven by computer limitations in speed and storage.

During this period, work on permutation methods fell primarily into three
categories: writing algorithms that efficiently generated permutation sequences;
designing exact permutation analogs for existing parametric statistics; and, for
the first time, developing statistics specifically designed for permutation methods.
Numerous algorithms were published in the 1960s and 1970s with a focus on
increasing the speed and efficiency of the routines for generating permutation
sequences. Other researchers focused on existing statistics, creating permutation
counterparts for well-known conventional statistics, notably the Fisher exact proba-
bility test for 2�2 contingency tables, the Pitman test for two independent samples,
the F test for randomized block designs, and the chi-squared test for goodness of fit.
The first procedures designed specifically for permutation methods, multi-response
permutation procedures (MRPP), appeared during this period.

7The diode and triode vacuum tubes were invented in 1906 and 1908, respectively, by Lee de
Forest.
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Chapter 5: 1980–2000

Chapter 5 details the development of permutation methods during the period 1980
to 2000. It is in this period that permutation tests may be said to have arrived.
One measure of this arrival was the expansion in the coverage of permutation
tests, branching out from the traditional coverage areas in computer technology and
statistical journals, and into such diverse subject areas as anthropology, atmospheric
science, biomedical science, psychology, and environmental health. A second
measure of the arrival of permutation statistical methods was the sheer number of
algorithms that continued to be developed in this period, including the development
of a pivotal network algorithm by Mehta and Patel in 1980 [919]. Finally, additional
procedures designed specifically for permutation methods, multivariate randomized
block permutation (MRBP) procedures, were published in 1982 by Mielke and
Iyer [984].

This period was also home to the first books that dealt specifically with permu-
tation tests, including volumes by Edgington in 1980, 1987 and 1995 [392–394],
Hubert in 1987 [666], Noreen in 1989 [1041], Good in 1994 and 1999 [522–524],
Manly in 1991 and 1997 [875, 876], and Simon in 1997 [1277], among others.
Permutation versions of known statistics continued to be developed in the 1980s
and 1990s, and work also continued on developing permutation statistical tests that
did not possess existing parametric analogs.

Chapter 6: Beyond 2000

Chapter 6 describes permutation methods after the year 2000, an era in which
permutation tests have become much more commonplace. Computer memory and
speed issues that hampered early permutation tests are no longer factors and
computers are readily available to virtually all researchers. Software packages for
permutation tests now exist for well-known statistical programs such as StatXact,
SPSS, Stata, and SAS. A number of books on permutation methods have been
published in this period, including works by Chihara and Hesterberg in 2011,
Edgington and Onghena in 2007 [396], Good in 2000 and 2001 [525–527],
Lunneborg in 2000 [858], Manly in 2007 [877], Mielke and Berry in 2001 and 2007
[961, 965], and Pesarin and Salmaso in 2010 [1122].

Among the many permutation methods considered in this period are analysis
of variance, linear regression and correlation, analysis of clinical trials, measures
of agreement and concordance, rank tests, ridit analysis, power, and Bayesian
hierarchical analysis. In addition, permutation methods expanded into new fields
of inquiry, including animal research, bioinformatics, chemistry, clinical trials,
operations research, and veterinary medicine.

The growth in the field of permutations is made palpable by a search of The
Web of Science R� using the key word “permutation.” Between 1915 and 1959, the
key word search reveals 43 journal articles. That number increases to 540 articles
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for the period between 1960 and 1979 and jumps to 3,792 articles for the period
between 1980 and 1999. From 2000 to 2010, the keyword search for permutation
results in 9,259 journal articles.

Epilogue

A brief coda concludes the book. Chapter 2 contains a description of the celebrated
“lady tasting tea” experiment introduced by Fisher in 1935 [451, pp. 11–29], which
is the iconic permutation test. The Epilogue returns full circle to the lady tasting
tea experiment, analyzing the original experiment to summarize the attributes that
distinguish permutation tests from conventional tests in general.

Researchers early on understood the superiority of permutation tests for
calculating exact probability values. These same researchers also well understood
the limitations of trying to calculate exact probability values. While some
researchers turned to developing asymptotic solutions for calculating probability
values, other researchers remained focused on the continued development of
permutation tests. This book chronicles the search for better methods for calculating
permutation tests, the development of permutation counterparts for existing
parametric statistical tests, and the development of separate, unique permutation
tests.
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The second chapter of A Chronicle of Permutation Statistical Methods is devoted to
describing the earliest permutation tests and the statisticians that developed them.
Examples of these early tests are provided and, in many cases, include the original
data. The chapter begins with a brief overview of the development of permutation
methods in the 1920s and 1930s and is followed by an in-depth treatment of selected
contributions. The chapter concludes with a brief discussion of the early threads in
the permutation literature that proved to be important as the field progressed and
developed from the early 1920s to the present.

2.1 Overview of This Chapter

The 1920s and 1930s ushered in the field of permutation statistical methods.
Several important themes emerged in these early years. First was the use of
permutation methods to evaluate statistics based on normal theory. Second was the
considerable frustration expressed with the difficulty of the computations on which
exact permutation methods were based. Third was the widespread reluctance to
substitute permutation methods for normal-theory methods, regarding permutation
tests as a valuable device, but not as replacements for existing statistical tests. Fourth
was the use of moments to approximate the discrete permutation distribution, as
exact computations were too cumbersome except for the very smallest of samples.
Fifth was the recognition that a permutation distribution could be based on only
the variable portion of the sample statistic, thereby greatly reducing the number of
calculations required. Sixth was an early reliance on recursion methods to generate
successive values of the test statistic. And seventh was a fixation on the use of
levels of significance, such as ˛ D 0:05, even when the exact probability value
was available from the discrete permutation distribution.

The initial contributions to permutation methods were made by J. Spława-
Neyman, R.A. Fisher, and R.C. Geary in the 1920s [448, 500, 1312]. Neyman’s
1923 article foreshadowed the use of permutation methods, which were developed
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by Fisher while at the Rothamsted Experimental Station. In 1927, Geary was the
first to use an exact permutation analysis to evaluate and demonstrate the utility of
asymptotic approaches. In the early 1930s T. Eden and F. Yates utilized permutation
methods to evaluate conventional parametric methods in an agricultural experiment,
using a random sample of all permutations of the observed data comprised of
measurements on heights of Yeoman II wheat shoots [379]. This was perhaps the
first example of the use of resampling techniques in an experiment. The middle
1930s witnessed three articles emphasizing permutation methods to generate exact
probability values for 2 � 2 contingency tables by R.A. Fisher, F. Yates, and
J.O. Irwin [452,674,1472]. In 1926 Fisher published an article on “The arrangement
of field experiments” [449] in which the term “randomization” was apparently used
for the first time [176, 323]. In 1935 Fisher compared the means of randomized
pairs of observations by permutation methods using data from Charles Darwin on
Zea mays plantings [451], and in 1936 Fisher described a card-shuffling procedure
for analyzing data that offered an alternative approach to permutation statistical
tests [453].

In 1936 H. Hotelling and M.R. Pabst utilized permutation methods to circumvent
the assumption of normality and for calculating exact probability values for small
samples of rank data [653], and in 1937 M. Friedman built on the work of
Hotelling and Pabst to investigate the use of rank data in the ordinary analysis
of variance [485]. In 1937 B.L. Welch compared the normal theory of Fisher’s
variance-ratio z test (later, Snedecor’s F test) with permutation-version analyses of
randomized block and Latin square designs [1428], and in 1938 Welch used an
exact permutation test to address tests of homogeneity for the correlation ratio, �2

[1429]. Egon Pearson was highly critical of permutation methods, especially the
permutation methods of Fisher, and in 1937 Pearson published an important critique
of permutation methods with special attention to the works of Fisher on the analysis
of Darwin’s Zea mays data and Fisher’s thinly-veiled criticism of the coefficient of
racial likeness developed by Pearson’s famous father, Karl Pearson [1093].

In 1937 and 1938 E.J.G. Pitman published three seminal articles on permutation
tests in which he examined permutation versions of two-sample tests, bivariate
correlation, and randomized blocks analysis of variance [1129–1131]. Building on
the work of Hotelling and Pabst in 1936, E.G. Olds used permutation methods to
generate exact probability values for Spearman’s rank-order correlation coefficient
in 1938 [1054], and in that same year M.G. Kendall incorporated permutation
methods in the construction of a new measure of rank-order correlation based
on the difference between the sums of concordant and discordant pairs [728].
Finally, in 1939 M.D. McCarthy argued for the use of permutation methods as first
approximations before considering the data by means of an asymptotic distribution.

2.2 Neyman–Fisher–Geary and the Beginning

Although precursors to permutation methods based on discrete probability val-
ues were common prior to 1920 [396, pp. 13–15], it was not until the early
1920s that statistical tests were developed in forms that are recognized today as
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permutation methods. The 1920s and 1930s were critical to the development of
permutation methods because it was during this nascent period that permutation
methods were first conceptualized and began to develop into a legitimate statistical
approach. The beginnings are founded in three farsighted publications in the 1920s
by J. Spława-Neyman, R.A. Fisher, and R.C. Geary.1

2.2.1 Spława-Neyman and Agricultural Experiments

In 1923 Jerzy Spława-Neyman introduced a permutation model for the analysis
of agricultural field experiments. This early paper used permutation methods to
compare and evaluate differences among several crop varieties [1312].

J. Spława-Neyman
Jerzy Spława-Neyman earned an undergraduate degree from the University
of Kharkov (later, Maxim Gorki University2) in mathematics in 1917 and
the following year was a docent at the Institute of Technology, Kharkov.
He took his first job as the only statistician at the National Institute of
Agriculture in Bydgoszcz in northern Poland and went on to receive a Ph.D.
in mathematics from the University of Warsaw in 1924 with a dissertation,
written in Bydgoszcz, on applying the theory of probability to agricultural
experiments [817, p. 161]. It was during this period that he dropped the
“Spława” from his surname, resulting in the more commonly-recognized
Jerzy Neyman. Constance Reid, Spława-Neyman’s biographer, explained that
Neyman published his early papers under the name Spława-Neyman, and that
the word Spława refers to Neyman’s family coat of arms and was a sign of
nobility [1160, p. 45]. Spława-Neyman is used here because the 1923 paper
was published under that name.

After a year of lecturing on statistics at the Central College of Agriculture
in Warsaw and the Universities of Warsaw and Krakow, Neyman was sent
by the Polish government to University College, London, to study statistics
with Karl Pearson [817, p. 161]. Thus it was in 1925 that Neyman moved
to England and, coincidentally, began a decade-long association with Egon
Pearson, the son of Karl Pearson. That collaboration eventually yielded

(continued)

1For an enlightened discussion of the differences and similarities between Neyman and Fisher and
their collective impact on the field of statistics, see a 1966 article by Stephen Fienberg and Judith
Tanur in International Statistical Review [430] and also E.L. Lehmann’s remarkable last book,
published posthumously in 2011, on Fisher, Neyman, and the Creation of Classical Statistics [816].
2Maxim Gorki (Maksim Gorky) is a pseudonym for Aleksei Maksimovich Peshkov (1868–1936),
Russian short-story writer, novelist, and political activist.
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the formal theory of tests of hypotheses and led to Neyman’s subsequent
invention of confidence intervals [431].

Neyman returned to his native Poland in 1927, remaining there until 1934
whereupon he returned to England to join Egon Pearson at University College,
London, as a Senior Lecturer and then Reader. In 1938 Neyman received a
letter from Griffith C. Evans, Chair of the Mathematics Department at the
University of California at Berkeley, offering Neyman a position teaching
probability and statistics in his department. Neyman accepted the offer, moved
to Berkeley, and in 1955 founded the Department of Statistics. Neyman
formally retired from Berkeley at the age of 66 but at the urging of his
colleagues, was permitted to serve as the director of the Statistical Laboratory
as Emeritus Professor, remaining an active member of the Berkeley academic
community for 40 years. In 1979 Neyman was elected Fellow of the Royal
Society.3 As Lehmann and Reid related, Neyman spent the last days of his life
in the hospital with a sign on the door to his room that read, “Family members
only,” and the hospital staff were amazed at the size of Jerzy’s family [817,
p. 192]. Jerzy Spława-Neyman F.R.S. passed away in Oakland, California, on
5 August 1981 at the age of 87 [252, 431, 581, 727, 814, 816, 817, 1241].

A brief story will illustrate a little of Neyman’s personality and his relationship
with his graduate students, of which he had many during his many years at the
University of California at Berkeley.

A Jerzy Neyman Story
In 1939, Jerzy Neyman was teaching in the mathematics department at the
University of California, Berkeley. Famously, one of the first year doctoral
students, George B. Dantzig, arrived late to class, and observing two equations
on the chalk-board, assumed they were homework problems and wrote them
down. He turned in his homework a few days later apologizing for the delay,
noting that these problems had been more difficult than usual. Six weeks later,
Dantzig and his wife were awakened early on a Sunday morning by a knock

(continued)

3The Royal Society is a fellowship of the world’s most eminent scientists and is the oldest scientific
society in continuous existence. The society was founded on 28 November 1660 when a group
of 12 scholars met at Gresham College and decided to found “a Colledge for the Promoting of
Physico-Mathematicall Experimentall Learning” and received a Royal Charter on 5 December
1660 from Charles II. The original members included Christopher Wren, Robert Boyle, John
Wilkins, Sir Robert Moray, and William, Viscount Brouncker, who subsequently became the first
president of the Society [357, 1144, 1351].
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on their front door. Dantzig answered the door to find Neyman holding papers
in his hand and, as the door opened, Neyman began excitedly telling Dantzig
that he “written an introduction to one of [Dantzig’s] papers” [10, p. 301].
Dantzig had no idea as to what Neyman was referring, but Neyman explained.
Rather than being homework, the equations that Dantzig had worked out were
two famous unsolved problems in statistics, and the paper Neyman held was
the solution to the first of those two problems.

A year later, the now-solved equations were formally put together as
Dantzig’s doctoral dissertation. In 1950, Dantzig received a letter from Abra-
ham Wald that included proofs of a paper. Wald had solved the second of the
two equations not knowing about Dantzig’s solutions and when he submitted
it for publication, a reviewer informed Wald about Dantzig’s dissertation.
Wald contacted Dantzig suggesting they publish the paper together. The first
solution was published in 1940, “On the non-existence of tests of ‘Student’s’
hypothesis having power functions independent of �” by Dantzig [315] and
the second solution was published in 1951 “On the fundamental lemma of
Neyman and Pearson” by Dantzig and Wald [316].

G.B. Dantzig
George Bernard Dantzig went on to a distinguished career at Stanford
University in the department of Operations Research, which he founded in
1966. In 1975 President Gerald Ford awarded Dantzig a National Medal of
Science “for inventing Linear Programming and for discovering the Simplex
Algorithm that led to wide-scale scientific and technical applications to
important problems in logistics, scheduling, and network optimization, and
to the use of computers in making efficient use of the mathematical theory”
[287, 824]. George Bernard Dantzig died peacefully on 13 May 2005 at his
home in Stanford, California, at the age of 90.

The earliest discussions of permutation methods appeared in the literature when
Jerzy Spława-Neyman foreshadowed the use of permutation methods in a 1923
article “On the application of probability theory to agricultural experiments”;
however, there is no indication that any of those who worked to establish the field
of permutation methods were aware of the work by Spława-Neyman, which was
not translated from its original Polish-language text until 1990 by D.M. Dabrowska
and T.P. Speed [309]. In this early article, Spława-Neyman introduced a permutation
model for the analysis of field experiments conducted for the purpose of comparing
a number of crop varieties [1312]. The article was part of his doctoral thesis
submitted to the University of Warsaw in 1924 and was based on research that he
had previously carried out at the Agricultural Institute of Bydgoszcz in northern
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Poland [1304]. A brief synopsis of the article by Spława-Neyman can be found in
Scheffé [1231, p. 269, fn. 13]. Additionally, an introduction by Speed to the 1990
translation of “On the application of probability theory to agricultural experiments”
by Dabrowska and Speed also provides a useful summary [1304], and a commentary
on the translated article by D.B. Rubin is especially helpful in understanding the
contribution made to permutation methods by Spława-Neyman in 1923 [1203]. See
also a 1966 article by Stephen Fienberg and Judith Tanur in International Statistical
Review [430].

Spława-Neyman introduced his model for the analysis of field experiments based
on the completely randomized model, a model that Joan Fisher Box, R.A. Fisher’s
daughter, described as “a novel mathematical model for field experiments” [195,
p. 263]. He described an urn model for determining the variety of seed each plot
would receive. For m plots on which v varieties might be applied, there would be
n D m=v plots exposed to each variety. Rubin contended that this article represented
“the first attempt to evaluate . . . the repeated-sampling properties of statistics over
their non-null randomization distributions” [1203, p. 477] and concluded that the
contribution was uniquely and distinctly Spława-Neyman’s [1203, p. 479]. Rubin
contrasted the contributions of Spława-Neyman and Fisher, which he observed, were
completely different [1203, p. 478]. As Rubin summarized, Fisher posited a null
hypothesis under which all values were known, calculated the value of a specified
statistic under the null hypothesis for each possible permutation of the data, located
the observed value in the permutation distribution, and calculated the proportion of
possible values as or more unusual than the observed value to generate a probability
value. In contrast, Spława-Neyman offered a more general plan for evaluating the
proposed procedures [1203]. J.F. Box, commenting on the differences between
Spława-Neyman and Fisher, noted that the conflict between Spława-Neyman and
Fisher was primarily conditioned by their two different approaches: “Fisher was
a research scientist using mathematical skills, Neyman a mathematician applying
mathematical concepts to experimentation” [195, p. 265].4

2.2.2 Fisher and the Binomial Distribution

Ronald Aylmer Fisher was arguably the greatest statistician of any century [576,
738, 1483], although it is well known that his work in genetics was of comparable
status, where geneticists know him for his part in the Wright–Fisher–Haldane theory
of the neo-Darwinian synthesis, the integration of Darwinian natural selection with
Mendelian genetics, and his 1930 publication of The Genetical Theory of Natural

4Fisher and Neyman differed in other ways as well. In general, they differed on the fundamental
approach to statistical testing, with Fisher’s ideas on significance testing and inductive inference
and Neyman’s views on hypothesis testing and inductive behavior; see an excellent summary
in a 2004 article by Hubbard [663] as well as a comprehensive account of the controversy by
Gigerenzer, Swijtink, Porter, and Daston published in 1989 [512, pp. 90–106].
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Selection [80,576]. As L.J. Savage expressed it: “[e]ven today [1976], I occasionally
meet geneticists who ask me whether it is true that the great geneticist R. A. Fisher
was also an important statistician” [401, 1226, p. 445].

R.A. Fisher
Ronald Aylmer Fisher held two chairs in genetics, but was never a professor
of statistics. Fisher was born on 17 February 1890 and even as a youth his
eyesight was very poor; therefore, he was forbidden by his doctors to work by
electric light [1477]. For example, James F. Crow, of the Genetics Department
at the University of Wisconsin, recalled his first meeting with Fisher at North
Carolina State University at Raleigh: “I . . . realized for the first time that in
poor light Fisher was nearly blind” [297, p. 210]. Studying in the dark gave
Fisher exceptional ability to solve mathematical problems entirely in his head,
and also a strong geometrical sense [1477]. Fisher was educated at the Harrow
School and the University of Cambridge [628]. His undergraduate degree
was in mathematics at Gonville & Caius College, University of Cambridge,
(informally known as Cambridge University or, simply, Cambridge), where
he graduated as a Wrangler in 1912.5

After graduation, Fisher spent a post-graduate year studying quantum
theory and statistical mechanics under mathematician and physicist James
Hopwood Jeans and the theory of errors (i.e., the normal distribution) under
astronomer and physicist Frederick John Marrian Stratton. It should be
mentioned that while at the University of Cambridge, Fisher took only a
single course in statistics. After graduating from Cambridge, Fisher taught
mathematics and physics in a series of secondary schools and devoted his
intellectual energies almost exclusively to eugenics. As Stigler reported,
between 1914 and 1920 Fisher published 95 separate pieces; 92 in eugenics,
one in statistical genetics, and two in mathematical statistics [1323, p. 24].

In 1918, almost simultaneously, Fisher received two invitations: one for a
temporary position as a statistical analyst at the Rothamsted Experimental Sta-
tion and the second from Karl Pearson at the Galton Biometric Laboratory at
University College, London. The position at the Galton Biometric Laboratory
came with the condition that Fisher teach and publish only what Pearson
approved [778, p. 1020]; consequently, in 1919 Fisher took the position at
the Rothamsted Experimental Station. As George Box described it:

(continued)

5Those students doing best on the examinations were designated as “Wranglers.” More specifically,
the 40 top-scoring students out of the approximately 100 mathematics graduates each year were
designated as Wranglers, whereas 400–450 students graduated from the University of Cambridge
annually at that time. Wranglers were rank-ordered according to scores on their final mathematics
examination, which was a 44-h test spread over 8 days [713, p. 657].
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Fisher rejected the security and prestige of working under Karl Pearson in the most
distinguished statistical laboratory in Britain and at that time certainly in the world.
Instead, he took up a temporary job as the sole statistician in a small agricultural
station in the country [191, p. 792].

Fisher left Rothamsted in 1933 after 14 years to assume the position of
Galton Professor of Eugenics at University College, London. This was an
uncomfortable arrangement for Fisher, in that the Department of Applied
Statistics at University College, London, founded by Karl Pearson, was split
into two departments upon Karl Pearson’s retirement in 1933: the Department
of Applied Statistics with Karl Pearson’s son Egon as the head, and the
Department of Eugenics with Fisher as the head and Galton Professor of
Eugenics. Consequently, Fisher was barred from teaching statistics [816, p. 2].
When World War II broke out in 1939, Fisher’s Department of Eugenics was
evacuated from London and the faculty dispersed. Fisher did not find another
position until 1943 when he returned to the University of Cambridge as the
Arthur Balfour Chair of Genetics, succeeding the geneticist R.C. Punnett
[1477]. Fisher was elected Fellow of the Royal Society in 1929 and knighted
by Queen Elizabeth II in 1952. Sir Ronald Aylmer Fisher F.R.S. died in
Adelaide, Australia, following complications from surgery on 29 July 1962
at the age of 72 [197, 814, 816, 1497, pp. 420–421].

Although Fisher published a great deal, his writing style sometimes confounded
readers. There are numerous stories about the obscurity of Fisher’s writing. To put
it bluntly, Fisher did not always write with style and clarity. W.S. Gosset was once
quoted as saying:

[w]hen I come to Fisher’s favourite sentence — “It is therefore obvious that . . . ”
— I know I’m in for hard work till the early hours before I get to the next line (Gosset,
quoted in Edwards and Bodmer [398, p. 29]).

Fisher’s classical work on The Genetical Theory of Natural Selection, which has
been described as the deepest book on evolution since Darwin’s On the Origin of
Species [398, p. 27], has come in for both considerable criticism and praise for his
writing style. W.F. Bodmer stated:

[m]any a terse paragraph in his classical work The Genetical Theory of Natural Selection
has been the basis for a whole new field of experimental and theoretical analysis (Bodmer,
quoted in Edwards and Bodmer [398, p. 29],

and Fred Hoyle, the English astronomer, once wrote:

I would like to recommend especially R.A. Fisher’s The Genetical Theory of Natural
Selection for its brilliant obscurity. After two or three months of investigation it will be
found possible to understand some of Fisher’s sentences (Hoyle, quoted in Edwards and
Bodmer [398, p. 29]).
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Fisher’s 1925 textbook Statistical Methods for Research Workers has also come
under fire for its difficulty. M.G. Kendall has been quoted as saying:

[s]omebody once said that no student should attempt to read [Statistical Methods for
Research Workers] unless he had read it before (Kendall, quoted in Edwards and Bodmer
[398, p. 29]).

While chemistry had its Mendeleev, mathematics its Gauss, physics its Einstein,
and biology its Darwin, statistics had its Fisher. None of these scientists did all
the work, but they did the most work, and they did it more eloquently than others.
When simplifying history it is tempting to give each of these scientists too much
credit as they did the important work in building the foundation on which to develop
future works. On the other hand, the contributions of R.A. Fisher to the field of
statistics cannot be overstated. There are few achievements in the history of statistics
to compare—in number, impact, or scope—with Fisher’s output of books and
papers. In fact, Fisher was not trained as a statistician; he was a Cambridge-trained
mathematician, with an extraordinary command of special functions, combinatorics,
and n-dimensional geometry [1226].

In 1952, when presenting Fisher for the Honorary degree of Doctor of Science at
the University of Chicago, W. Allen Wallis described Fisher in these words:

[h]e has made contributions to many areas of science; among them are agronomy, anthro-
pology, astronomy, bacteriology, botany, economics, forestry, meteorology, psychology,
public health, and — above all — genetics, in which he is recognized as one of the leaders.
Out of this varied scientific research and his skill in mathematics, he has evolved systematic
principles for the interpretation of empirical data; and he has founded a science of
experimental design. On the foundations he has laid down, there has been erected a structure
of statistical techniques that are used whenever men attempt to learn about nature from
experiment and observation (Wallis, quoted in Box [191, p. 791]).

In 1922 Fisher published a paper titled “On the mathematical foundations
of theoretical statistics” that Stigler has called “the most influential article
on . . . [theoretical statistics] in the twentieth century,” describing the article as
“an astonishing work” [1322, p. 32]. It is in this paper that the phrase “testing for
significance” appears in print for the first time [816, p. 11]. However, as Bartlett
explained in the first Fisher Memorial Lecture in 1965, while it is customary for
statisticians to concentrate on Fisher’s publications in statistics, his work in genetics
was of comparable status [80, p. 395]. Fisher’s interest in statistics began with a
paper in 1912 [441] and his subsequent contributions can be divided into three main
lines: exact sampling distribution problems, a general set of principles of statistical
inference, and precise techniques of experimental design and analysis [80, p. 396].
In the present context, Fisher’s contributions to permutation methods is the focus,
especially his development of exact probability analysis.6

6The standard biography of R.A. Fisher is that written by his daughter in 1978, Joan Fisher Box
[195], but others have provided more specialized biographies, including those by P.C. Mahalanobis
[868], F. Yates [1474], F. Yates and K. Mather [1477], M.S. Bartlett [80], S.M. Stigler [1322,1323],
C.R. Rao [1155], W.H. Kruskal [778], M.J.R. Healy [607], N.S. Hall [575], E.L. Lehmann [816],
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“Student” and Sampling Distributions
In 1925 R.A. Fisher published his first book, titled Statistical Methods for
Research Workers [448]. It was in this book that Fisher acknowledged that
“[t]he study of the exact distributions of statistics commences in 1908 with
‘Student’s’ paper The Probable Error of a Mean” [448, p. 23]. In neither
of Student’s 1908 papers, “The probable error of a mean” [1331] or “The
probable error of a correlation coefficient” [1330] does Student make any
reference to a previous use of the method and Egon Pearson stated in 1939
that Student’s 1908 paper was the first instance of the use of exact distributions
that was known to him [1094, p. 223].

The story of Student and the problem of finding the distribution of
the standard deviation and the ratio of the mean to the standard deviation
(the t statistic) is common knowledge. “Student” was born, as is well known,
William Sealy Gosset on 13 June 1876 in Canterbury, England. He attended
Winchester College and New College, University of Oxford (informally
known as Oxford University or, simply, Oxford), graduating in 1899 with
degrees in mathematics and chemistry. That same year he joined the Dublin
Brewery of Messrs. Arthur Guinness Son & Company, Ltd. at St. James’ Gate.
In 1906–1907 Student was on leave from Guinness for a year’s specialized
study on probability theory. He spent the greater part of the year working at
or in close contact with Karl Pearson’s Biometric Laboratory at University
College, London, where he first tackled the problem of inference from small
samples empirically through a sampling experiment [177].

Student used as his study population a series of 3,000 pairs of measure-
ments that had been published in an article on criminal anthropometry by
William Robert Macdonell in Biometrika in 1902 [862]. The data consisted
of measurements obtained by Macdonell of the height and length of the left
middle finger of 3,000 criminals over 20 years of age and serving sentences in
the chief prisons of England and Wales [862, p. 216]. (Student [1331, p. 13]
lists page 219 for the Macdonell data, but the data used actually appear on
page 216.) For the sampling experiment, Student recorded the data on 3,000
pieces of cardboard that were constantly shuffled and a card drawn at random,
resulting in the 3,000 paired measurements arranged in random order. Then,
each consecutive set of four measurements was selected as a sample—750 in
all—and the mean, standard deviation, and correlation of each sample was
calculated [see 1344]. He plotted the empirical distributions of the statistics
and compared them to the theoretical ones he had derived. Using chi-squared

(continued)

L.J. Savage [1226], and G.E.P. Box [191]. The collected papers of R.A. Fisher are posted at
http://www.adelaide.edu.au/library/special/digital/fisherj/. In addition, two large volumes of the
selected correspondence of R.A Fisher were published in 1983 and 1990 by J.H. Bennett [96, 97].

http://www.adelaide.edu.au/library/special/digital/fisherj/
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tests for goodness of fit between the empirical and theoretical distributions,
Student deemed the results to be satisfactory, noting “if the distribution
is approximately normal our theory gives us a satisfactory measure of the
certainty to be derived from a small sample” [1331, p. 19].

Egon Pearson had this to say of the 1908 paper of Student on small
samples:

[i]t is probably true to say that this investigation published in 1908 has done more
than any other single paper to bring these subjects within the range of statistical
inquiry; as it stands it has provided an essential tool for the practical worker, while
on the theoretical side it has proved to contain the seed of new ideas which have
since grown and multiplied an hundredfold [1094, p. 224].

During his 30 years of scientific activity, Student published all of his work
under the pseudonym “Student” with only one exception, when reading a
paper before the Industrial and Agricultural Research Section of the Royal
Statistical Society in the Spring of 1936 [1034]. The reason for the pseudonym
was a policy by Guinness against work done for the firm being made public.
Allowing Gosset to publish under a pseudonym was a concession by Guinness
that resulted in the birth of the statistician “Student” [813]. William Sealy
Gosset died on 16 October 1937 at the age of 61 while still employed at
Guinness.

In 1925, 2 years after Spława-Neyman introduced a permutation model for the
analysis of field experiments, Fisher calculated an exact probability value using the
binomial probability distribution in his first book: Statistical Methods for Research
Workers [448, Sect. 18]. Although the use of the binomial distribution to obtain
a probability value is not usually considered to be a permutation test per se,
Scheffé considered it the first application in the literature of a permutation test
[1230, p. 318]. Also, the binomial distribution does yield an exact probability value
and Fisher found it useful in calculating the exact expected values for experimental
data. Fisher wrote that the utility of any statistic depends on the original distribution
and “appropriate and exact methods,” which he noted have been worked out for only
a few cases. He explained that the application is greatly extended as many statistics
tend to the normal distribution as the sample size increases, acknowledging that it is
therefore customary to assume normality and to limit consideration of statistical
variability to calculations of the standard error or probable error.7 That said, in

7Early on, the probable error was an important concept in statistical analysis and was defined as
one-half the interquartile range. In terms of the normal distribution, the probable error is 0.6745
times the standard error. Therefore, as a test of significance a deviation of three times the probable
error is effectively equivalent to one of twice the standard error [292, 448, pp. 47–48]. “Probable
error” instead of “standard error” was still being used in the English-speaking countries in the
1920s and far into the 1930s; however, “probable error” was rarely used in Scandinavia or in the
German-speaking countries [859, p. 214].



30 2 1920–1939

Table 2.1 Weldon’s data on dice cast 26,306 times with a face showing five or six pips considered
a success

Number of dice Observed Expected Difference
with a 5 or a 6 frequency frequency frequency

0 185 202.75 �17.75
1 1,149 1,216.50 �67.50
2 3,265 3,345.37 �80.37
3 5,475 5,575.61 �100.61
4 6,114 6,272.56 �158.56
5 5,194 5,018.05 C175.95
6 3,067 2,927.20 C139.80
7 1,331 1,254.51 C76.49
8 403 392.04 C10.96
9 105 87.12 C17.88

10 14 13.07 C0.93
11 4 1.19 C2.81
12 0 0.05 �0.05
Total 26,306 26,306 �0.02

Chap. III, Sect. 18 of Statistical Methods for Research Workers, Fisher considered
the binomial distribution and provided two examples.

The first example utilized data from the evolutionary biologist Walter Frank
Raphael Weldon. Weldon threw 12 dice 26,306 times for a total of 315,672
observations, recording the number of times a 5 or a 6 occurred. Fisher did not
provide a reference for the Weldon data, but the source was a letter from Weldon
to Francis Galton dated 2 February 1894 in which Weldon enclosed the data for
all 26,306 throws and asked Galton his opinion as to the validity of the data
[717, pp. 216–217]. Fisher used the binomial distribution to obtain the exact
expected value for each of the possible outcomes of 0, 1, . . . ,12. For example, the
binomial probability for six of 12 dice showing either a 5 or a 6 is given as

p.6j12/ D
 

12

6

!�
2

6

�6 �
4

6

�12�6

D .924/.0:0014/.0:0878/D 0:1113 :

Multiplying 0.1113 by n D 26;306 gives an expectation of 2,927.20. Table 2.1
summarizes the Weldon dice data; see also Fisher [448, p. 67] and Pearson [1107,
p. 167]. Fisher concluded the dice example by calculating a chi-squared goodness-
of-fit test and a normal approximation to the discrete binomial distribution.

For the second example, Fisher analyzed data from Arthur Geissler on the sex
ratio at birth in German families. Here again, Fisher did not provide a reference to
the Geissler data, but it was taken from the sex-ratio data obtained by Geissler from
hospital records in Saxony and published in Zeitschrift des Königlich Sächsischen
Statistischen Bureaus in 1889 [504]. The data consisted of the number of males in
53,680 families, ranging from 0 to 8 males. Geissler’s estimate of the sex ratio for
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Table 2.2 Geissler’s data on the sex ratio in German families with expected values and differ-
ences, and Fisher’s expected values and differences

Geissler’s data and expected values Fisher’s expected values

Number Observed Expected Difference Expected Difference
of males sibships sibships (Obs – Exp) sibships (Obs – Exp)

8 342 264.64 C77.36 264.30 C77.70
7 2,092 1,995.88 C96.12 1,993.78 C98.22
6 6,678 6,584.71 C93.29 6,580.24 C97.76
5 11,929 12.413.82 �484.82 12,409.87 �480.87
4 14,959 14,626.99 C332.01 14,627.60 C331.40
3 10,649 11,030.22 �381.22 11,034.65 �385.65
2 5,331 5,198.69 C132.31 5,202.65 C128.35
1 1,485 1,400.08 C84.92 1,401.69 C83.31
0 215 164.96 C50.04 165.22 C49.78
Total 53,680 53,679.99 C0.01 53,680.00 0.00

the population in Saxony was obtained by simply calculating the mean proportion
of males in his data. Table 2.2 summarizes the Geissler sex-ratio data [793, p. 154].
In this second example, Fisher never specified a value for p, but H.O. Lancaster,
in a reanalysis of Geissler’s data, gave the value as p D 0:5147676 [793], which
translates to a sex ratio of 1.061.8 Working backwards from Fisher’s analysis, it is
apparent that he used p D 0:5146772. Thus, for example, the binomial probability
for five males is actually given by

p.5j8/ D
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Multiplying 0.2312 by n D 53;680 gives an expectation of 12,409.87, which agrees
with Fisher’s expected value.

In both these early examples Fisher demonstrated a preference for exact solu-
tions, eschewing the normal approximation to the discrete binomial distribution even
though the sample sizes were very large. While exact binomial probability values
are perhaps not to be considered as permutation tests, Fisher was to go on to develop
many permutation methods and this early work provides a glimpse into how Fisher
advanced exact solutions for statistical problems.

2.2.3 Geary and Correlation

In 1927, R.C. Geary was the first to use an exact analysis to demonstrate the utility
of asymptotic approaches for data analysis in an investigation of the properties of
correlation and regression in finite populations [500].

8For comparison, the sex ratio at birth in Germany in 2013 was 1.055.
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R.C. Geary
Robert Charles (Roy) Geary was a renowned Irish economist and statistician
who earned his B.Sc. degree from University College, Dublin, in 1916 and
pursued graduate work at the Sorbonne in Paris where he studied under Henri
Lebesgue, Émile Borel, Élie Cartan, and Paul Langevin [1307]. Geary’s early
contributions in statistics were greatly influenced by the work of R.A. Fisher,
although in later years Geary’s attention turned towards more social issues,
e.g., poverty and inequality [1306]. Geary did work on permutation tests early
in his career and was an early critic of reliance on the normal distribution.
In 1947, for example, he considered the problem of statistics and normal
theory, calling for future statistics textbooks to include the phrase, “Normality
is a myth; there never was, and never will be, a normal distribution” [501,
p. 241].

Geary founded the Central Statistics Office of Ireland in 1960 and the Eco-
nomic Research Institute (later, the Economic and Social Research Institute)
in 1949, and was head of the National Accounts Branch of the United Nations
from 1957 to 1960. Interestingly, more than half of Geary’s 127 publications
were written in the 1960s after Geary had reached 65 years of age. Robert
Charles Geary retired in 1966 and passed away on 8 February 1983 at the age
of 86 [1305, 1306].

In 1927 Geary devoted a paper to “an examination of the mathematical principles
underlying a method for indicating the correlation . . . between two variates,” arguing
that “the formal theory of correlation . . . makes too great demands upon the slender
mathematical equipment of even the intelligent public” [500, p. 83]. Geary provided
a number of example analyses noting “[w]e are not dealing with a sample drawn
from a larger universe” [500, p. 87] and addressed the problem of deciding
significance when calculating from a known limited universe. One example that
Geary provided was based on the assertion that cancer may be caused by the over
consumption of “animal food.” Geary investigated the ways that cancer mortality
rates varied with the consumption of potatoes in Ireland, drawing up a contingency
table showing 151 poor-law unions in Ireland arranged according to their percentage
of deaths from cancer during the years 1901–1910 and the acreage of potatoes per
100 total population.9 Table 2.3 summarizes Geary’s data on cancer and potato
consumption [500, p. 94].

In this investigation, Geary considered potato consumption and the incidence
of cancer deaths in Ireland. Geary categorized each of the 151 poor law unions

9The Irish Poor Law of 1838 was an attempt to ameliorate some of the problems arising out of
widespread poverty in the early 1800s in Ireland. Influenced by the Great Reform Act of 1834
in England (q.v. page 11), Ireland was originally divided into 131 poor law unions, each with a
workhouse at its center.
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Table 2.3 Percentage of deaths from cancer to all deaths during the 10 years 1901–1910 cross
classified by acreage of potatoes per 100 total population

Number of poor law unions in which
Cancer deaths as acreage of potatoes per 100 persons
percentage of total in 1911 was

deaths 1901–1910 Under 15.5 15.5–20.5 Over 20.5 Number of unions

Under 3.5 % 12 24 12 48
3.5–4.5 % 18 14 16 48
Over 4.5 % 20 17 18 55
Number of unions 50 55 46 151

as a percentage of cancer deaths to overall deaths in the union; cancer deaths less
than 3.5 % of total deaths (48 poor law unions), cancer deaths 3.5–4.5 % of total
deaths (48 poor law unions) and cancer deaths greater than 4.5 % of total deaths
(55 poor law unions). Table 2.3 illustrates the marginal distribution of 48, 48, and
55 poor law unions. He repeated the experiment holding the marginal frequency
totals constant, and found that cell arrangements greater than those of the actual
experiment occurred in 231 of 1,000 repetitions, concluding that the relationship
between potato consumption and cancer was not statistically significant.

2.3 Fisher and the Variance-Ratio Statistic

Because of its importance, some historical perspective on Fisher’s variance-ratio z
test and the analysis of variance is appropriate. Fisher’s variance-ratio z test statistic
is given by

z D 1

2
loge

�
v1

v0

�
; (2.1)

where v1 D MSBetween D MSTreatment and v0 D MSWithin D MSError in modern
notation, and which Fisher termed, for obvious reasons, the “variance-ratio” statis-
tic. In a 1921 article on grain yields from Broadbalk wheat from the Rothamsted
Experimental Station (q.v. page 57) in The Journal of Agricultural Science,
Fisher partitioned the total sum of squares of deviations from the mean into a
number of independent components and made estimates of the component variances
by associating each sum of squares with its appropriate degrees of freedom [445].
Fisher made the analysis of variance source table explicit in 1923 in a second
article on “Studies in crop variation II,” subtitled “The manurial response of
different potato varieties,” in The Journal of Agricultural Science with his assistant
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Winifred A. Mackenzie [462].10;11 The analysis of variance appears in this article
with Mackenzie for the first time in its entirety, although it is not reflected in the
title [191, p. 795].12 Experimental randomization is also firmly established in this
article.13 After the algebraic identity between the total sum of squares and the
within- and between-treatments sum of squares had been presented, Fisher and
Mackenzie stated:

[i]f all the plots were undifferentiated, as if the numbers had been mixed up and written
down in random order, the average value of each of the two parts is proportional to the
number of degrees of freedom in the variation of which it is compared [462, p. 315], quoted
in [191, p. 795].

However, as Joan Fisher Box explained, the analysis was incorrect because the
trial was actually a split-plot design as it incorporated a third factor: potassium.
At the time of the writing of the article, 1923, Fisher did not fully understand
the rules of the analysis of variance, nor the role of randomization [261]. Fisher
quickly corrected this in the first edition of Statistical Methods for Research Workers
published in 1925 [448, p. 238].

In Statistical Methods for Research Workers Fisher detailed the analysis of
variance in Chap. VII on “Intraclass correlations and the analysis of variance” [448].
An important observation by J.F. Box, is that it tends to be forgotten that prior
to 1920, problems that would later be dealt with by the analysis of variance were
thought of as problems in correlation [195, p. 100]; thus, R.A. Fisher introduced the
subject of analysis of variance in terms of its relation to the intraclass correlation
coefficient. The relationship between the intraclass correlation coefficient, rI , and
Fisher’s z is given by

z D 1

2
loge

��
k

k � 1

��
1C rI .n � 1/

1 � rI

��
;

where n is the number of observations in each of k treatments.
By way of example, consider two samples of n1 and n2 observations, each sample

drawn from one of two populations consisting of normally distributed variates with

10Mackenzie is sometimes spelled “Mackenzie” [195] and other times “MacKenzie” [191, 576,
720]. In the original article, Mackenzie is all in upper-case letters.
11The experiment on potatoes had been conducted by Thomas Eden at the Rothamsted Experi-
mental Station, wherein each of twelve varieties of potatoes had been treated with six different
combinations of manure [191].
12Previously, in 1918 in an article on Mendelian inheritance in Eugenics Review, Fisher had coined
the term “analysis of variance” [443]; see also a 2012 article by Edwards and Bodmer on this topic
[398, p. 29].
13This 1923 article by Fisher and Mackenzie is often cited as the first randomized trial experiment
[484, 517, 893, 925]. However, the first documented publication of a randomized trial experiment
was by the American philosopher Charles Sanders Peirce and his colleague at Johns Hopkins
University, Joseph Jastrow, in 1885 [1113]; see also, in this regard, discussions by Neuhauser and
Diaz [1030, pp. 192–195], Stigler [1321], and an autobiography by Jastrow [682].
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equal population variances. It can be shown that the distribution of z approaches
normality as min.n1; n2/!1, with mean and variance given by

Nz D 1

2

�
1

n2 � 1
� 1

n1 � 1

�

and

s2
z D

1

2

�
1

n2 � 1
C 1

n1 � 1

�
;

respectively [36, p. 439]. These results stimulated Fisher to prefer the designation
z for the analysis of variance test statistic over the F proposed by Snedecor in
1934 [1289].

2.3.1 Snedecor and the F Distribution

G.W. Snedecor was the director of the Statistical Laboratory at Iowa State College
(technically, Iowa Agricultural College and Model Farm) and was instrumental in
introducing R.A. Fisher and his statistical methods to American researchers.

G.W. Snedecor
George Waddle Snedecor earned his B.S. degree in mathematics and physics
from the University of Alabama in 1905 and his A.M. degree in physics
from the University of Michigan in 1913, whereupon Snedecor accepted
a position as Assistant Professor of mathematics at Iowa State College of
Agriculture (now, Iowa State University). Snedecor’s interest in statistics led
him to offer the first course in statistics in 1915 on the Mathematical Theory of
Statistics at Iowa State College of Agriculture. In 1933, Snedecor became the
Director of the Statistical Laboratory, remaining there until 1947. Snedecor
was responsible for inviting R.A. Fisher to Iowa State College during the
summers of 1931 and 1936 to introduce statistical methods to faculty and
research workers [295].

In 1937, Snedecor published a textbook on Statistical Methods, subtitled
Applied to Experiments in Agriculture and Biology, which was a phenomenal
success selling more than 200,000 copies in eight editions. The first five
editions were authored by Snedecor alone and the next three editions were
co-authored with William Gemmell Cochran. Snedecor’s Statistical Meth-
ods roughly covered the same material as Fisher’s Statistical Methods for
Research Workers, but also included material from Fisher’s book on The
Design of Experiments, such as factorial experiments, randomized blocks,

(continued)
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Latin squares and confounding [816, p. 27]. Joan Fisher Box wrote in her
biography of her father that “[i]t was George W. Snedecor, working with
agricultural applications, who was to act as midwife in delivering the new
statistics in the United States” [195, p. 313]. George Waddle Snedecor died
on 15 February 1974 at the age of 92 [59, 243, 611].

Fisher had, in the first edition of Statistical Methods for Research Workers, pro-
vided a brief tabulation of critical values for z—Table VI in [448]—corresponding
to a 5 % level of significance, noting “I can only beg the reader’s indulgence
for the inadequacy of the present table” [448, p. 24]. In 1934, apparently in an
attempt to eliminate the natural logarithms required for calculating z, Snedecor
[1289] published tabled values in a small monograph for Fisher’s variance-ratio
z statistic and rechristened the statistic, F [1289, p. 15]. Snedecor’s F-ratio statistic
was comprised of

F D MSBetween

MSWithin
D MSTreatment

MSError
;

whereas Fisher had used

z D 1

2
loge

�
v1

v0

�
D 1

2
loge .F / :

In terms of the intraclass correlation coefficient,

F D
�

k

k � 1

�
1C rI .n � 1/

1 � rI

and, conversely,

rI D .k � 1/F � k

.k � 1/F C .n � 1/k
:

It has often been reported that Fisher was displeased when the variance-ratio
z statistic was renamed the F-ratio by Snedecor, presumably in honor of Fisher;
see also discussions by Box [195, p. 325] and Hall on this topic [575, p. 295].
Fisher recounted in a letter to H.W. Heckstall-Smith in 1956 that “I think it was
only an afterthought that led Snedecor to say that the capital letter F he had used
was intended as a compliment to myself” [97, p. 319].14 In this same letter, Fisher
also wrote that he had added a short historical note in the 12th edition of Statistical

14H.W. Heckstall-Smith, Headmaster, Chippenham Grammar School, had written to Fisher
requesting permission to quote from Fisher in an article he was preparing for a medical journal.
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Methods for Research Workers published in 1954 that he “hoped [would] prevent
expositors from representing the F-test . . . with the z-test” [97, p. 319]. On this topic,
in a 1938 letter to Snedecor, Fisher objected to the assignment of the symbol F to the
variance-ratio z statistic, and used the letter to point out that P.C. Mahalanobis had
previously published tabled values of the variance-ratio z statistic using a different
symbol, although Snedecor apparently produced his F-ratio with no knowledge of
the Mahalanobis tables [195, p. 325].

Indeed, in 1932 Mahalanobis, responding to complaints from field workers who
were not familiar with the use of natural logarithms and had difficulty with Fisher’s
variance-ratio z statistic as given in Eq. (2.1), published six tables in Indian Journal
of Agricultural Science. Two tables were designed for working with ordinary
logarithms (base 10 instead of base e), two tables were designed for working directly
with the ratio of standard deviations instead of variances, and two tables were
designed for the ratio of variances without recourse to natural logarithms, with one
table in each set corresponding to the 5 % level of significance and the other set to
the 1 % level of significance [867]. Fisher avoided using the symbol F in Statistical
Tables for Biological, Agricultural and Medical Research published with Yates in
1938, as Fisher felt that the tabulation of Mahalanobis had priority [195, p. 325].

2.4 Eden–Yates and Non-normal Data

In 1933 Frank Yates succeeded R.A. Fisher as head of the Statistics Department at
the Rothamsted Experimental Station, a post he held for a quarter of a century.

F. Yates
Frank Yates graduated from St. John’s College, University of Cambridge, with
a B.A. degree in mathematics in 1924 and earned his D.Sc. in mathematics
from Cambridge in 1938. His first important job was as research officer and
mathematical advisor to the Geodetic Survey of the Gold Coast (presently,
Ghana). In August 1931, Yates joined Fisher at the Rothamsted Experimental
Station as an Assistant Statistician. Within 2 years, Fisher had left Rothamsted
and Yates became head of the Statistics Department, a post which he held
for 25 years until 1958. From 1958 until his retirement in 1968, Yates was
Deputy Director of Rothamsted [437]. Although retired, Yates maintained an
office at Rothamsted as an “Honorary Scientist” in the Computing Department
and all told, was at Rothamsted for a total of 60 years. Perhaps Frank Yates’
greatest contribution to statistics was his embrace of the use of computing to

(continued)

The article, with M.G. Ellis, was eventually published in the journal Tubercle in December of 1955
under the title “Fun with statistics” [409].
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solve statistical problems [633, p. 4]. In 1948 Yates was elected Fellow of the
Royal Society. Frank Yates F.R.S. passed away on 17 June 1994 at the age of
92 [369, 436, 605, 606, 1028].

T. Eden
Little is known about Thomas Eden, except that he was at the Rothamsted
Experimental Station as a crop ecologist in the Field Experiments Department
from 1921 to 1927 and published several papers with Fisher on experimental
design [377,378]. Upon leaving Rothamsted, Eden was employed as a chemist
at the Tea Research Institute of Ceylon [575, p. 318]. Eden published a
number of books in his lifetime, including Soil Erosion in 1933 [374],
Elements of Tropical Soil Science in 1947 [375], and Tea in 1958 [376].

Like Geary in 1927 [500], Thomas Eden and Frank Yates utilized permutation
methods in 1933 to compare a theoretical distribution to an empirical distribution
[379]. Eden and Yates questioned the use of Fisher’s variance-ratio z test in
applications to non-normal data. Citing articles by Shewhart and Winters [1262]
and Pearson and Adyanthāya [1100] in which small samples from non-normal and
skewed populations had been investigated, Eden and Yates declared the results
“inconclusive” [379, p. 7], despite an affirmation by “Student” that “ ‘Student’s’
distribution will be found to be very little affected by the sort of small departures
from normality which obtain in most biological and experimental work” [1332,
p. 93] and Fisher’s contention that he had “never known difficulty to arise in
biological work from imperfect normality of variation” [440, p. 267]. Eden and
Yates noted that from the perspective of the investigator who is using statistics as
a tool “the theoretical distributions from which the samples were drawn bear no
relationship to those he is likely to encounter” [379, p. 7] and listed three conditions
which must be observed to compare a theoretical distribution with an empirical
distribution:
1. Samples must be taken from one or more actual distribution(s).
2. The experimental procedure must correspond with what would be used on actual

investigational data.
3. The departure of the distribution of the statistical tests from expectation must

itself be tested for significance, and the sampling must be sufficiently extensive
to give reliable evidence of the distribution in the neighborhood of the 0.05 and
0.01 levels of significance.
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Some Historical Perspective
A little historical background will shed some light on the exchange between
Fisher and Eden and Yates. In 1929, in the 8 June issue of Nature, Egon
Pearson reviewed the second edition of Fisher’s Statistical Methods for
Research Workers that had been published in 1928. In that review, Pearson
criticized Fisher’s approach, noting:

[a] large number of the tests developed are based upon the assumption that the
population sampled is of the ‘normal’ form. . . . It does not appear reasonable to lay
stress on the ‘exactness’ of tests, when no means whatever are given of appreci-
ating how rapidly they become inexact as the population diverges from normality
[1099, p. 867].

Fisher was deeply offended and he wrote a blistering reply to Nature that
has not been preserved [816, p. 23]. Eventually, Fisher asked W.S. Gosset to
reply for him, which Gosset did under his pseudonym “Student” in Nature on
20 July 1929, stating:

[p]ersonally, I have always believed . . . that in point of fact ‘Student’s distribution
will be found to be very little affected by the sort of small departures from normality
which obtain in most biological and experimental work, and recent work on small
samples confirms me in this belief. We should all of us, however, be grateful to
Dr. Fisher if he would show us elsewhere on theoretical grounds what sort of
modification of his tables we require to make when the samples with which we are
working are drawn from populations which are neither symmetrical nor mesokurtic
[1332, p. 93].

This was followed by a letter in Nature by Fisher on 17 August 1929, in
which he rejected Gosset’s suggestion that he should give some guidance on
how to modify the t test for data from non-normal populations [440]. How-
ever, he did hint in this letter at the possibility of developing distribution-free
tests. Finally, a rejoinder by E.S. Pearson appeared in Nature on 19 October
1929 [1092].

In hindsight, E.S. Pearson was probably correct in questioning the t

test established by “Student” and proved by Fisher under the assumption
of normality. Interestingly, the same argument also holds for the Neyman–
Pearson statistical approach that requires the use of conjectured theoretical
distributions such as the normal and gamma distributions. On a related note,
Fisher seemed to have eventually accepted Pearson’s normality concern since
he introduced the notion of an exact permutation test a short time later.

In 1933 Eden and Yates observed that if evidence could be adduced showing
that the distribution of z for treatments versus residuals was statistically identical
to that expected from normal data, then the variance-ratio z statistic could be used
with confidence when establishing significance to data of this type. Eden and Yates
went on to examine height measurements of Yeoman II wheat shoots grown in eight
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blocks, each consisting of four sub-blocks of eight plots.15 For the experiment, the
observations were collapsed into four treatments randomly applied to four sub-
blocks in each block. Thus, the experimental data consisted of g D 4 treatment
groups and b D 8 treatment blocks for a total of

.gŠ/b�1 D .4Š/8�1 D 4;586;471;424

possible arrangements of the observed data.16 Eden and Yates chose a sample of
1,000 of these arrangements at random (now termed resampling) and generated a
table listing the simulated probability values generated by the random sample and
the theoretical counterparts to those probability values based on the normality
assumption.17

Eden and Yates were able to reduce the considerable computations of the analysis
by introducing “certain modifications” [379, p. 11]. Specifically, they observed that
the block sum of squares and the total sum of squares would be constant for all 1,000
samples; consequently, the value of z for each sample would be uniquely defined by
the value for the treatment sum of squares. This observation became increasingly
valuable in later decades as researchers developed permutation versions of other
statistical tests and increased the speed of computing by ignoring the components
of equations that are invariant over permutation.

The simulated and theoretical probability values based on the normality assump-
tion were compared by a chi-squared goodness-of-fit test and were found to be in
close agreement, supporting the assumption of normality [379]. Eden and Yates
therefore contended that Fisher’s variance-ratio z statistic could be applied to data
of this type with confidence. Specifically, Eden and Yates concluded:

[t]he results of this investigation, which deals with an actual experimental distribution of a
definitely skew nature and with a population extending over a wide range of values, show
that in actual practice there is little to fear in the employment of the analysis of variance and
the z test to data of a similar type [379, p. 16].

In 1935 Yates had one more opportunity to comment on this experiment,
emphasizing once again reliance on the information contained in the sample
alone. On March 28th, 1935, Neyman presented a paper before the Industrial and
Agricultural Research Section of the Royal Statistical Society, later published in
Supplement to the Journal of the Royal Statistical Society [1033], where Yates

15Yeoman wheat is a hybrid variety that resists wheat rust. It was developed and released in 1916
by Sir Rowland Biffen, Director of the Plant Breeding Institute at the University of Cambridge
School of Agriculture.
16Because it is possible to hold one block constant and to randomize the remaining blocks with
respect to the fixed block, it is only necessary to randomize b�1 blocks, thereby greatly decreasing
the total number of possible arrangements. In this case, .4Š/7 D 4;586;471;424 instead of .4Š/8 D
110;075;314;176 randomizations.
17H.A. David has written that the 1933 Eden–Yates paper “may be regarded as introducing
randomization [permutation] theory” [326, p. 70].
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was a discussant. Referring back to the Yeoman II wheat shoot experiment, Yates
commented:

[w]hat the experiment does show is that the randomisation process effectively generates the
distribution of z, and the need for the postulation of any parent population from which the
thirty-two values are to be regarded as a sample is entirely avoided [1473, p. 165].

2.5 Fisher and 2 � 2 Contingency Tables

On 18 December 1934, R.A. Fisher (q.v. page 25) presented a paper describing the
logic of permutation tests to the Royal Statistical Society, a paper that appeared in
Journal of the Royal Statistical Society the following year [452].18 Fisher did not
expressly discuss permutation tests, but instead used the product of two binomial
distributions to arrive at an exact probability value for a 2 � 2 contingency table.
Here, Fisher described data on criminal same-sex twins from a study originally
conducted by Lange [801, pp. 41–45]. Dr. Johannes Lange was Chief Physician
at the Munich–Schwabing Hospital and Department Director of the German
Experimental Station for Psychiatry (Kaiser Wilhelm Institute) in Munich. Lange
had access to data on 37 pairs of criminal same-sex twins, including 15 monozygotic
(identical) and 22 dizygotic (fraternal) twins, but in two cases of the monozygotic
twins and five of the dizygotic twins, neither twin had been convicted, thus reducing
the overall number of twin pairs to 30.

The data analyzed by Fisher consisted of 13 pairs of monozygotic twins and 17
pairs of dizygotic twins. For each of the 30 pairs of twins, one twin was known to
be a convict. The study considered whether the twin brother of the known convict
was himself “convicted” or “not convicted.” Fisher observed that in 10 of the 13
cases of monozygotic twins, the twin brother was convicted, while in the remaining
three cases, the twin was not convicted. Among the 17 pairs of dizygotic twins,
two of the twins were convicted and 15 of the twins were not convicted. The data
from Lange are summarized in Table 2.4. Fisher considered the many methods
available for the analysis of a 2 � 2 table and suggested a new method based on
the concept of ancillary information [816, p. 48–49]. Fisher explained: [i]f one
blocked out the cell frequencies of Table 2.4 leaving only the marginal frequency
totals, which provide no information by themselves, then the information supplied

18As was customary in scientific societies at the time, these special research papers were printed
in advance and circulated to the membership of the society. Then, only a brief introduction was
made by the author at the meeting and the remaining time was devoted to discussion. By tradition,
the “proposer of the vote of thanks” said what was he thought was good about the paper, and
the seconder said what he thought was not so good. Subsequently, there was a general discussion
by the Fellows of the Society and often a number of prominent statisticians offered comments,
suggestions, or criticisms [192, p. 41]. In this instance the discussants were Arthur Bowley, Leon
Isserlis, Joseph Irwin, Julius Wolf, Egon Pearson, Major Greenwood, Harold Jeffreys, Maurice
Bartlett, and Jerzy Neyman. As might be evident from the list of names, not all comments were
constructive.
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Table 2.4 Convictions of
like-sex twins of criminals

Twin type Convicted Not convicted Total

Monozygotic 10 3 13
Dizygotic 2 15 17
Total 12 18 30

by the marginal frequency totals is “wholly ancillary” [452, p. 48].19 Fisher was
then concerned with the number of different ways the four cell frequencies could be
filled, subject to the fixed marginal frequency totals. For these data, the maximum
value of the convicted dizygotic cell is the minimum of the corresponding marginal
frequency totals, and the minimum value of the convicted dizygotic cell is the
greater of zero and the sum of the corresponding marginal frequency totals minus
the total sample size. Thus, the number of possible configurations of cell frequencies
completely specified by the number of dizygotic convicts is 13, ranging from 0,
given by max.0; 17C 12 � 30/ D 0, to 12, given by min.12; 17/ D 12.

The approach is clever and deserves consideration. Fisher posited that if the
probability of a twin brother of a convict of monozygotic origin is denoted by p,
then the probability that of 13 monozygotic twins 12�x have been convicted, while
x C 1 monozygotic twins have escaped conviction, is given by the binomial

13Š

.12� x/Š .1C x/Š
p12�x.1 � p/1Cx :

The probability of the brother of a criminal known to be dizygotic being convicted
is also p and the probability that 17 of these x have been convicted and (17 � x)
have never been convicted, is given by the binomial

17Š

xŠ .17� x/Š
px.1 � p/17�x :

The probability of the simultaneous occurrence of the two events, given by the
product of the respective probabilities, is therefore

13Š 17Š

.12� x/Š .1C x/Š xŠ .17 � x/Š
p12.1 � p/18 :

Fisher noted that the probability of any value of x occurring is proportional to

1

.12� x/Š .1C x/Š xŠ .17� x/Š
;

19According to Lehmann [816, p. 48, fn. 1], this statement is in fact not completely true, although
very nearly so. See also a 1977 article by Plackett in this regard [1137].
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and on summing the series obtained over x, the absolute probability values are found
to be

13Š 17Š 12Š 18Š

30Š
� 1

.12� x/Š .1C x/Š xŠ .17� x/Š

[452, p. 49]. Thus, it is only necessary to compute the probability of one of the
four cells; Fisher chose the dizygotic convicts, the lower-left cell in Table 2.4 with a
frequency of 2. Computing the discrepancies from proportionality as great or greater
than the observed configuration in Table 2.4, subject to the conditions specified
by the ancillary information, yields for 2, 1, and 0 dizygotic convicts, a one-tailed
probability of

P f2j17; 12; 30g C P f1j17; 12; 30g C P f0j17; 12; 30g

D 13Š 17Š 12Š 18Š

30Š 10Š 3Š 2Š 15Š
C 13Š 17Š 12Š 18Š

30Š 11Š 2Š 1Š 16Š
C 13Š 17Š 12Š 18Š

30Š 12Š 1Š 0Š 17Š

D 0:000449699C 0:000015331C 0:000000150 ;

which sums to approximately 0.0005.
The point of the twin example—that for small samples exact tests are possible,

thereby eliminating the need for estimation—indicates an early understanding of the
superiority of exact probability values computed from known discrete distributions
over approximations based on assumed theoretical distributions. As Fisher pointed
out, “[t]he test of significance is therefore direct, and exact for small samples. No
process of estimation is involved” [451, p. 50]. In this regard, see also the fifth
edition of Statistical Methods for Research Workers published in 1934 where Fisher
added a small section on “The exact treatment of a 2 � 2 table” [450, Sect. 21.02].
The exact binomial solution proposed by Fisher was not without controversy
[1197]. Indeed, Stephen Senn observed in 2012 that “statisticians have caused the
destruction of whole forests to provide paper to print their disputes regarding the
analysis of 2 � 2 tables” [1251, p. 33].

2.6 Yates and the Chi-Squared Test for Small Samples

In 1934 Frank Yates (q.v. page 37) published an article on contingency tables
involving small frequencies and the chi-squared (�2) test of independence in
Supplement to the Journal of the Royal Statistical Society [1472]. The stated purpose
of the article was twofold: first, to introduce statisticians to Fisher’s exact probability
test, which was very new at the time, and to use Fisher’s exact probability test as
a gold standard against which the small-sample performance of the Pearson chi-
squared test might be judged; and second, present the correction for continuity to
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the chi-squared test of independence, resulting in a better approximation to Fisher’s
exact probability test [633]. Yates motivated the discussion by asserting:

[t]he �2 test is admittedly approximate, for in order to establish the test it is necessary
to regard each cell value as normally distributed with a variance equal to the expected
value, the whole set of values being subject to certain restrictions. The accuracy of this
approximation depends on the numbers in the various cells, and in practice it has been
customary to regard �2 as sufficiently accurate if no cell has an expectancy of less than 5
[1472, p. 217].20

The 1934 article by Yates soon became elevated to a classic as it introduced
Yates’ correction for continuity to chi-squared for 2 � 2 contingency tables.
However, the article contained much more than the continuity correction for 2 � 2

contingency tables. In this 1934 article Yates referred to Fisher’s calculation of the
exact probability of any observed set of values in a 2 � 2 contingency table with
given marginal frequency totals and compared chi-squared probability values, with
and without the correction for continuity, with exact probability values for small
2 � 2 contingency tables. Yates used the exact probability values obtained from
the discrete hypergeometric probability distribution to evaluate the corresponding
probability values obtained from the continuous chi-squared distribution. It is
notable that Yates referred to the exact probability values as the “true” probability
values [1472, p. 222] and the exact probability values were used in this article as
a benchmark against which to compare and validate the approximate probability
values obtained from the chi-squared distribution.21

While there is much of importance in this classic paper, it is the generation of
the exact probability values that is germane to a discussion of permutation methods.
Although Yates only summarized the procedure by which he obtained the exact
permutation values, the process is not difficult to reconstruct. Yates described the
process:

[i]n cases where N is not too large the distribution with any particular numerical values of
the marginal totals can be computed quite quickly, using a table of factorials to determine
some convenient term, and working out the rest of the distribution term by term, by simple
multiplications and divisions. If a table of factorials is not available we may start with any
convenient term as unity, and divide by the sum of the terms so obtained [1472, p. 219].

Note that N denotes the total number of observations. Here, in the last sentence
of the quote, Yates identified a procedure that was to assume great importance
in exact permutation methods; viz., probability values obtained from discrete
distributions using recursion with an arbitrary initial value. The importance of this
approach for the future of permutation methods should not be underestimated.

20As Hitchcock has noted, the variance equals the mean in the archetypical count model of the
Poisson, and the normal approximates the Poisson when the mean is large [633, p. 2].
21It should be mentioned that because Yates was primarily interested in 2 � 2 contingency tables
and, therefore, �2 was distributed as chi-squared with 1 degree of freedom, he obtained the requisite
probability values from tables of the normal distribution since �2

1 D z2.



2.6 Yates and the Chi-Squared Test for Small Samples 45

Fig. 2.1 Notation for a 2 � 2

contingency table as used by
Yates [1472]

Next, Yates defined a 2 � 2 contingency table using the notation in Fig. 2.1, where
n � n0 � 1

2
N .

Giving due credit to Fisher, Yates showed that the probability value cor-
responding to any set of cell frequencies, a; b; c; d , was the hypergeometric
point-probability value given by

nŠ n0Š .N � n/Š .N � n0/Š
N Š aŠ bŠ cŠ d Š

:

Since the exact probability value of a 2 � 2 contingency table with fixed marginal

frequency totals is equivalent to the probability value of any one cell (because
there is only one degree of freedom in a 2 � 2 contingency table), determining the
probability value of cell a is sufficient. If

P faC 1jN � n; N � n0; N g D P fajN � n; N � n0; N g � f .a/

then, solving for f .a/ produces

f .a/ D P faC 1jN � n; N � n0; N g
P fajN � n; N � n0; N g

D aŠ bŠ cŠ d Š

.aC 1/Š .b � 1/Š .c � 1/Š .d C 1/Š

and, after cancelling, yields

f .a/ D .b/.c/

.aC 1/.d C 1/
:

Yates provided an example analysis based on data from Milo Hellman on bottle
feeding and malocclusion that had been published in Dental Cosmos in 1914 [609];
the data are summarized in Table 2.5 and the six exhaustive 2 � 2 contingency
tables from the data in Table 2.5 are listed in Table 2.6. Yates generated the entire
exact probability distribution as follows. The probability of obtaining zero normal
breastfed babies for cell arrangement (1) in Table 2.6 was given by

P fa D 0j20; 5; 42g D 5Š 37Š 20Š 22Š

42Š 0Š 20Š 5Š 17Š
D 0:030957
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Table 2.5 Hellman’s data
on breast feeding and
malocclusion.

Feeding type Normal teeth Malocclusion Total

Breast-fed baby 4 16 20
Bottle-fed baby 1 21 22

Total 5 37 42

Table 2.6 Six possible arrangements of cell frequencies with n D 42 and marginal frequency
totals of 20, 22, 5, and 37

(1) (2) (3) (4) (5) (6)

0 20 1 19 2 18 3 17 4 16 5 15
5 17 4 18 3 19 2 20 1 21 0 22

and calculated utilizing a table of factorials. Then, the probability values for a D
1; 2; 3; 4; and 5 in Table 2.6 were recursively given by

P fa D 1j20; 5; 42g D 0:030957� .20/.5/

.1/.18/
D 0:171982 ;

P fa D 2j20; 5; 42g D 0:171982� .19/.4/

.2/.19/
D 0:343965 ;

P fa D 3j20; 5; 42g D 0:343964� .18/.3/

.3/.20/
D 0:309568 ;

P fa D 4j20; 5; 42g D 0:309568� .17/.2/

.4/.21/
D 0:125301 ;

and

P fa D 5j20; 5; 42g D 0:125301� .16/.1/

.5/.22/
D 0:018226 ;

respectively. In this manner, Yates was able to recursively generate the entire dis-
crete permutation distribution from min.a/ D max.0; N�n�n0/ D max.0;�17/ D
0 to max.a/ D min.N � n; N � n0/ D min.20; 5/ D 5.

2.6.1 Calculation with an Arbitrary Initial Value

To illustrate the use of an arbitrary origin in a recursion procedure, consider
arrangement (1) in Table 2.6 and set C fa D 0j20; 5; 42g to some small arbitrarily-
chosen value, say 5.00; thus, C fa D 0j20; 5; 42g D 5:00. Then,
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C fa D 1j20; 5; 42g D 5:000000� .20/.5/

.1/.18/
D 27:777778 ;

C fa D 2j20; 5; 42g D 27:777778� .19/.4/

.2/.19/
D 55:555556 ;

C fa D 3j20; 5; 42g D 55:555556� .18/.3/

.3/.20/
D 50:000000 ;

C fa D 4j20; 5; 42g D 50:000000� .17/.2/

.4/.21/
D 20:238095 ;

and

C fa D 5j20; 5; 42g D 20:238095� .16/.1/

.5/.22/
D 2:943723 ;

for a total of C f0; : : : ; 5j20; 5; 42g D 161:515152. The desired probability values
are then obtained by dividing each relative probability value by the recursively-
obtained total 161.515152; e.g.,

P fa D 0j20; 5; 42g D 5:000000

161:515152
D 0:030957 ;

P fa D 1j20; 5; 42g D 27:777778

161:515152
D 0:171982 ;

P fa D 2j20; 5; 42g D 55:555556

161:515152
D 0:343965 ;

P fa D 3j20; 5; 42g D 50:000000

161:515152
D 0:309568 ;

P fa D 4j20; 5; 42g D 20:238095

161:515152
D 0:125301 ;

and

P fa D 5j20; 5; 42g D 2:943723

161:515152
D 0:018226 :

In this manner, the entire analysis could be conducted utilizing an arbitrary initial
value and a recursion procedure, thereby eliminating all factorial expressions. When
max.a/�min.a/C 1 is large, the computational savings can be substantial.

The historical significance of Yates’ 1934 article has surely been underrated.
It not only provided one the earliest and clearest explanations of Fisher’s exact
probability test, but also formally proposed the continuity correction to the chi-
squared test for the first time. In addition, Yates’ numerical studies in the paper
were the first in a long and often contentious series of investigations into the best
methods of testing for association in contingency tables [633, p. 17].



48 2 1920–1939

2.7 Irwin and Fourfold Contingency Tables

Fisher’s exact probability test for 2 � 2 contingency tables was independently
developed R.A. Fisher in 1935 [452], Frank Yates in 1934 [1472] and Joseph Irwin
in 1935 [674]. Thus, the test is variously referred to as the Fisher exact probability
test (FEPT), the Fisher–Yates exact probability test, and the Fisher–Irwin exact
probability test.22

J.O. Irwin
It is not uncommon to find Fisher’s exact probability test referred to as the
Fisher–Irwin test, e.g., [33, 239, 281, 897, 1349]. Joseph Oscar Irwin earned
his undergraduate degree from Christ’s College, University of Cambridge,
in 1921, whereupon he was offered a position with Karl Pearson at the
Galton Biometric Laboratory, University College, London, with whom he had
worked prior to entering Cambridge. While at University College, Irwin was
in contact not only with Karl Pearson, but also with Egon Pearson and with
Jerzy Neyman who was at University College, London, from 1925 to 1927
and again from 1934 to 1938. Irwin’s academic degrees continued with a
M.Sc. degree from the University of London in 1923, an M.A. degree from
the University of Cambridge in 1924, a D.Sc. degree from the University of
London in 1929 and the D.Sc. degree from the University of Cambridge in
1937 [31, 32, 550].

In 1928 Irwin joined R.A. Fisher’s Statistical Laboratory at the Rothamsted
Experimental Station, thereby becoming one of the few people to have studied
with both Pearson and Fisher [81]. In 1931 Irwin joined the staff of the
Medical Research Council at the London School of Hygiene & Tropical
Medicine, where he remained for the next 30 years, except for the war years
(1940–1945) when the staff of the London School of Hygiene & Tropical
Medicine was evacuated from London and Irwin was temporarily attached
to the Faculty of Mathematics at Queen’s College, University of Cambridge,
where he taught statistics to mathematicians. In his later years, Irwin was a
visiting professor at the University of North Carolina at Chapel Hill during
the academic years 1958–1959 and 1961–1962, and for one semester in 1965
[31]. Joseph Oscar Irwin retired in 1965 and passed away on 27 July 1982 at
the age of 83 [81].

22Good has argued that the test should more properly be referred to as the Fisher–Yates–Irwin–
Mood test [519, p. 318].
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Table 2.7 Irwin’s data on 2 � 2 contingency tables with equal marginal totals.

Table with 2 marked items Table with r marked items

Sample Marked Unmarked Total Sample Marked Unmarked Total

1 2 4 6 1 r 6 � r 6
2 6 0 6 2 8 � r r � 2 6

Total 8 4 12 Total 8 4 12

In 1935 Irwin published an exact probability test for 2 � 2 contingency tables
in the Italian journal Metron [674].23 The publication was original and independent
of the results published by Yates in 1934 [1472] and Fisher in 1935 [452] on the
same theme.24 In fact, Irwin noted in this paper that the paper was actually finished
in May of 1933, but publication was “unavoidably delayed” until 1935.25 In a
footnote to this article Irwin acknowledged that a paper dealing with the same
subject, “in some respects more completely” had previously been published by
F. Yates in 1934.26 In this 1935 paper Irwin described the difficulty in analyzing
2 � 2 contingency tables with Pearson’s chi-squared statistic when the expected
frequency in any cell was less than 5. In response to this difficulty, Irwin developed
three approaches to analyze 2 � 2 contingency tables, in addition to the usual chi-
squared analysis. He dismissed the first two approaches as impractical or inaccurate
and advocated the third approach based on fixed marginal frequency totals [674].
An example will serve to illustrate Irwin’s approach.

Consider the 2�2 contingency table on the left side of Table 2.7. Irwin observed
that, given the marginal frequency totals, the cell frequency for the Marked items
in Sample 1 could not be smaller than max.0; 6 C 8 � 12/ D 2 nor larger than
min.6; 8/ D 6. He suggested taking samples of size 6 from a universe in which p

is the probability of a Marked item. Then, the chance of getting eight Marked and
four Unmarked items was  

12

4

!
p8.1 � p/12�8

23Although Metron Rivista Internazionale di Statistica was published in Italy, the article by Irwin
was in English.
24For the early history of Fisher, Yates, Irwin, and the exact analysis of 2 � 2 contingency tables,
see articles by Barnard [71] and Good [519–521].
25Irwin suffered from chronic poor health from early childhood and it is possible that was what
delayed publication.
26Irwin joined the Rothamsted Experimental Station in 1928 and remained there until 1931,
which was when Yates joined Rothamsted. Since they were both employed in Fisher’s Statistical
Laboratory at Rothamsted and both overlapped as undergraduates at the University of Cambridge,
it is likely they were well acquainted.
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and he could easily enumerate the 2 � 2 contingency tables which satisfied this
condition by supposing r items in Sample 1 to be Marked, as illustrated on the right
side of Table 2.7. Irwin calculated that the chance of obtaining the 2�2 table on the
right side of Table 2.7 was

 
6

r

!
pr.1 � p/6�r �

 
6

8 � r

!
p8�r .1 � p/r�2 D

 
6

r

! 
6

8� r

!
p8.1 � p/12�8

and he then generated the probability values for all possible tables with r D
2; : : : ; 6; viz.,

 
6

2

! 
6

6

!
p8.1 � p/12�8 D 15p8.1 � p/4 ;

 
6

3

! 
6

5

!
p8.1 � p/12�8 D 120p8.1 � p/4 ;

 
6

4

! 
6

4

!
p8.1 � p/12�8 D 225p8.1 � p/4 ;

 
6

5

! 
6

3

!
p8.1 � p/12�8 D 120p8.1 � p/4 ;

and

 
6

6

! 
6

2

!
p8.1 � p/12�8 D 15p8.1 � p/4 ;

thus yielding a total of

 
12

4

!
p8.1 � p/12�8 D 495p8.1 � p/4 :

Thus, as Irwin illustrated, if r D 2 the exact chance of a contingency table
arising with a number of Marked items as small or smaller than in Sample 1 was
15=495 D 0:0303 and the exact chance of an equally probable or less probable
table arising was 15=495C 15=495 D 0:0606. Irwin then compared these results
to a conventional chi-squared probability value where �2 D 6:00, � D 2:4495,
and the corresponding probability values, obtained from a N.0; 1/ distribution, were
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Table 2.8 Irwin’s data on 2 � 2 contingency tables with unequal marginal totals.

Table with 3 unmarked items Table with s unmarked items

Sample Marked Unmarked Total Sample Marked Unmarked Total

1 79 3 82 1 82 � s s 82
2 56 7 63 2 53 C s 10 � s 63

Total 135 10 145 Total 135 10 145

Fig. 2.2 Probability values
for the unmarked items on the
right side of Table 2.8

0.0072 and 0.0143, respectively.27 Irwin concluded that the chi-squared test would
“considerably overestimate the significance” [674, p. 86] and recommended that
when the numbers in all cells were small the exact method should be used, but if
samples were of reasonable size and there were small cell frequencies in only one
or two cells yielding expected frequencies less than five, then the researcher “shall
seldom be misled by applying the usual [chi-squared] test” [674, p. 94].

Irwin concluded the article with a number of examples. In several of the
examples, the row marginal frequency totals were not equal, as they are in Table 2.7
where the marginal row totals for Samples 1 and 2 are both 6. Here Irwin did
something interesting and somewhat controversial, even today. A second example
will illustrate that procedure.

Irwin noted that s Unmarked items in Sample 1 on the right side of Table 2.8
could take on the values 0; 1; : : : ; 10 and he found the corresponding probability
values listed in Fig. 2.2. In calculating the two-tailed probability value, Irwin noted
that the observed cell frequency of 3 with a point-probability value of 0.0594
appeared in the lower tail of the distribution. He therefore accumulated all the
probability values in the lower tail that were equal to or less than the observed
probability value of 0.0594 to get the one-tail cumulative probability value, e.g.,

27To clarify, Irwin took the positive square root of �2, i.e., �, which with one degree of freedom
is a normal deviate, and thus obtained the probability values from a standard unit-normal table of
probability values.
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0:0002C0:0024C0:0156C0:0594D 0:0776. Then Irwin calculated the upper-tail
probability value as the sum of the probability values in the upper tail that were less
than or equal to the observed probability value of 0.0594, e.g., 0:0224C 0:0026 D
0:0250. Following that, he combined the two cumulative probability values to
compute 0:0776 C 0:0250 D 0:1026 as the two-tailed probability value, whereas
it was customary at the time to simply double the lower-tail probability value, i.e.,
0:0776C0:0776D 0:1552. This became known as “Irwin’s rule” and is still referred
to today as such; see for example, Armitage and Berry [33, pp. 131–132] and
Campbell [239].28 Incidentally, Irwin’s rule extends to any r-way contingency table.

2.8 The RothamstedManorial Estate

The Rothamsted Experimental Station began as the Rothamsted manorial estate,
which can be dated from the early 1300s, when it was held by the Cressy family for
about 200 years.

Manorial Estates
The manorial or seignorial system was a social and economic system of
medieval Europe under which serfs and peasants tilled the arable land of
a manorial estate in return for dues in kind, money, or services. A typical
manorial estate was comprised of the manor house of the Lord of the Manor;
the demesne, or land held and controlled by the Lord of the Manor usually
consisting of arable lands, meadows, woodlands, and fish ponds; the serf
holdings that were usually strips of arable land, not necessarily adjacent,
which passed down through generations of serf families; and free peasants
who farmed land on the estate and paid rent to the Lord of the Manor.

The meadows were usually held in common, but the woodlands and fish
ponds belonged to the Lord. Serfs were expected to recompense the Lord for
hunting in the woods, fishing in the ponds, and cutting wood for fuel. The
Lord of the Manor collected payments from the serfs and peasants and in turn
rendered protection, administered justice, and provided for the serfs in times
of poor harvest [1278].

28The controversy as to whether to use the doubling rule or Irwin’s rule to obtain a two-tailed
probability value persisted for many years; see for example, articles by Cormack [279, 280] in
1984 and 1986, Cormack and Mantel in 1991 [281], Healy in 1984 [604], Jagger in 1984 [678],
Mantel in 1984 and 1990 [884, 885], Yates in 1984 [1476], and Neuhäuser in 2004 [1031].
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Like many other English manorial estates, Rothamsted Manor goes back to a
remote antiquity [1209, p. 161].29 Around the first century BC, the Celts occupied
the Rothamsted area, leaving some archaeological evidence consisting of hearths,
pot boilers, and broken pottery (i.e., shards). Under Roman rule, from about 55
BC to AD 450, Rothamsted flourished with a shrine, a flint wall around a square
enclosure, and burial sites; see, for this historical period, a report by Lowther
[848, p. 108–114]. The Romans left in the fifth century and were replaced by the
Saxons, who left no building at the site, but gave the place its name, “Rochamstede,”
meaning “rook-frequented homestead” [860, 1209].

The first recorded mention of Rothamsted was in 1212 when Richard de Merston
held lands there. A house with a chapel and garden are referred to in 1221 when
Henry Gubion granted some land to Richard de Merston. At this time the house
was a simple timber-framed building. At the beginning of the fourteenth century,
Rothamsted was held by the Noels (or Nowells) who passed it to the Cressy
(or Cressey) family in 1355 [542, 1352]. The Cressy family held the estate until
1525, but the male lineage died out. The Cressy’s daughter, Elizabeth, remained
in possession, marrying Edmund Bardolph who improved the manor house and
extended the estate, purchasing the adjoining Hoos manor, among others. By the
end of the sixteenth century, Rothamsted Manor was a substantial dwelling of at
least 16 rooms [1352].

The Wittewronges30 were Flemish Calvinists who, led by Jacques Wittewronge
(1531–1593), emigrated from Ghent in 1564 owing to the religious persecution
of Protestants by Philip II in the Spanish Netherlands at the time [574]. Jacques
Wittewronges had two sons: Abraham and Jacob. Jacob Wittewronge (1558–1622)
was a successful businessman and in 1611 he obtained a mortgage on Rothamsted
Manor by means of a loan to Edmund Bardolph. Jacob Wittewronge married twice;
his second wife was Anne Vanacker, the daughter and co-heiress of another Flemish
refugee, Gerard (or Gerrard) van Acker (or Vanacker) a merchant from Antwerp
who had settled in England. Anne bore Jacob Wittewronge a daughter. Anne, in
1616 and a son, John, in 1618. Jacob Wittewronge died on 22 July 1622. After
Jacob’s death, Anne Wittewronge married Sir Thomas Myddleton,31 Lord Mayor of
London, and in 1623 Dame Anne Myddleton procured the Rothamsted estate for
her son John.

Upon the passing of Dame Anne Myddleton in 1649, John Wittewronge inherited
the estate and made many improvements, especially to the manor house, holding
the estate until his death on 23 June 1693. John had graduated from Trinity College,
Oxford, in 1634 and by the time he was 18 had taken up his duties as Lord of the
Manor [1352]. In 1640 he was knighted by Charles I. The Wittewronge descendants
held the estate until male descendants ceased in 1763 and the estate then passed to

29For this section of the book, the authors are indebted to Sir E. John Russell (q.v. page 57) who,
in 1942, compiled the early history of the Rothamsted Manor.
30Originally, Wittewronghele.
31Sometimes spelled Midleton or Middleton.
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the Bennet family by the marriage of Elizabeth Wittewronge to Thomas Bennet, and
finally to the Lawes family by the marriage of Mary Bennet, great-granddaughter
of James Wittewronge, son of John and Elizabeth Myddleton Wittewronge, to
Thomas Lawes. His son, John Bennet Lawes, was the father of John Bennet Lawes
[1211, 1228, 1415]. John Bennet Lawes was born in 1814 and educated at Eton
and the University of Oxford. Somehow, as a youth, he had acquired a proclivity
for conducting chemical experiments, which he did at home. His early experiments
were with drugs and he grew many medicinal plants on the estate, including poppies,
hemlock, henbane, colchicum, and belladonna. He soon began to apply chemistry
to agriculture and discovered the value of superphosphate of lime as a fertilizer and
established a factory to produce the first mineral fertilizer.32 In the 1830s Lawes
established the Rothamsted Experimental Station on the estate.

Lawes died on 31 August 1900 at the age of 85 and was succeeded by his son,
Charles Bennet Lawes, then aged 57, who assumed the ancestral name of Wit-
tewronge. Unfortunately, Charles died in 1911 after a brief illness and the income
had been sufficiently reduced that the family could no longer live at Rothamsted.
The estate was leased to and carefully tended by Major R.B. Sidebottom and
his wife, the Honorable Mrs. Sidebottom [1209, p. 166]. The Rothamsted estate
was sold by the Wittewronge–Lawes family to the Rothamsted Agricultural Trust
in 1934.

J.B. Lawes
John Bennet Lawes, 1st Baronet, F.R.S., Lord of Rothamsted Manor, was born
on 28 December 1814 and in 1822 at the age of eight inherited his father’s
sixteenth century estate of somewhat more than 1,000 acres (approximately
1.7 square miles). Lawes was educated at Eton and at Brasenose College,
University of Oxford, leaving in 1835 without taking a degree, whereupon
he entered into the personal management of the home farm at Rothamsted of
about 250 acres. In the 1830s Lawes created the Rothamsted Experimental
Station on the family estate to investigate the effects on the soil of different
combinations of bonemeal, burnt bones, and various types of mineral phos-
phate treated with sulphate or muriate of ammonia. Initially, Lawes created
superphosphate from sulphuric acid and ground-up bones, then graduated to
mineral phosphates, such as coprolites, and finally used imported apatite, i.e.,
calcium phosphate. As related by A.D. Hall, the application of sulphuric acid

(continued)

32Today, phosphate-based fertilizers are used throughout the world and there is presently concern
that the world will eventually run out of easily accessible sources of phosphate rock [278, 784].
On the other hand, heavy spring rains generate runoff from farmer’s fields into ponds and lakes,
spawning growth of toxic blue-green algae, such as Microsystis aeurginosa, which are fed by the
phosphorus from the fields [1463].
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to calcium phosphate yields a mixture of monocalcic phosphate, phosphoric
acid, and gypsum. The phosphates in this compound are soluble in water and
produce an efficacious fertilizer [574, p. xxii].

On 23 May 1842 Lawes was granted a patent for the development and
manufacture of superphosphate-bone meal—calcium phosphate treated with
sulfuric acid—as an artificial agricultural fertilizer, and in 1843 Lawes was
joined by the English chemist Sir Joseph Henry Gilbert in what began a
lifelong collaboration on over 100 published articles, including papers on
turnip culture, the amount of water given off by plants, the fattening qualities
of different breeds of sheep, the relative advantages of malted and unmalted
barley as food for stock, the valuations of unexhausted manures, nitrification,
experiments on the mixed herbage of permanent meadow, climate and wheat
crops, composition of rain and drainage waters, nitrogen in soils, the growth
of root crops for many years in succession on the same land, the rotation
of crops, and many other similar agricultural topics [331]. A full account
with detailed descriptions of the major Rothamsted agricultural experiments
is given is The Book of the Rothamsted Experiments by A.D. Hall [574]. In
addition, Hall lists the publications issued from the Rothamsted Experimental
Station between 1843 and 1905 [574, pp. 273–285].

A factory to manufacture superphosphate of lime was established by Lawes
on 1 July 1843 at Deptford Creek, London. Lawes was elected Fellow of the
Royal Society in 1854, in 1877 the University of Edinburgh conferred upon
Lawes the honorary degree of LL.D., in 1882 Lawes was made a baronet, and
in 1894 the University of Cambridge awarded Lawes the degree of D.Sc. Sir
John Bennet Lawes F.R.S. passed away on 31 August 1900 at Rothamsted
Manor at the age of 86 [331].

J.H. Gilbert
Joseph Henry Gilbert was born at Kingston-upon-Hull on 1 August 1817. He
was educated at Glasgow University where he worked in the laboratory of
Professor Thomas Thomson. He moved to University College, London, in the
autumn of 1839 and worked briefly in the laboratory of Professor Anthony
Todd Thomson. It was in Thomson’s laboratory that Gilbert and Lawes first
met. He received his Ph.D. in 1840 from the University of Giessen in Germany
where he studied under the renowned chemist, Professor Justus van Liebig,
who had established the world’s first major school of chemistry. Another
famous student of von Liebig was August Kekulé, the discover of the benzene
ring [1180, pp. 133–135].

(continued)
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Gilbert, at the age of 26, was invited by Lawes on 1 June 1843 to
oversee the Rothamsted experiments. Thus began a partnership in research
that lasted for 58 years. Lawes possessed an originating mind and had a
thorough knowledge of practical agriculture. Gilbert, on the other hand, was
possessed of indomitable perseverance, combined with extreme patience. In
his research he united scrupulous accuracy with attention to detail. In general,
Lawes directed the agricultural operations in the experimental fields and the
execution of the experiments was in the hands of Gilbert [574, pp. xxii–xl].
Gilbert was elected Fellow of the Royal Society in 1860 and knighted by
Queen Victoria in 1893. Sir Joseph Henry Gilbert F.R.S. died at his home
in Harpenden on 23 December 1901 in his 85th year and is buried in the
churchyard of St. Nicholas Church, next to his long-time friend, John Bennet
Lawes [184, 1416].

The Experimental Station
The Rothamsted Experimental Station, now Rothamsted Research, in Harp-
enden, Hertfordshire, England, about 25 miles northeast of London, had its
beginnings in the 1830s, vide supra. Together Lawes and Gilbert established
the Rothamsted Experimental Station on the family estate, the first agricul-
tural research station in the world, and in 1889 Lawes established the Lawes
Agricultural Trust, setting aside £100,000, one-third of the proceeds from the
sale of his fertilizer business in 1872, to ensure the continued existence of the
Rothamsted Experimental Station [184,331,1280] (According to the Rotham-
sted Research website, the equivalent amount today would be approximately
£5,000,000 or $7,800,000 [341].) In 1911 David Lloyd George, Chancellor of
the Exchequer set up the Development Fund for the rehabilitation of British
farming, making £1,000,000 available for research funding. In 1867 Lawes
and Gilbert received the Royal Society’s Royal Medal, also called the Queen’s
medal, awarded for important contributions in the applied biological and
physical sciences.

Expansions beginning in 1902 provided new facilities and added chemists,
bacteriologists, and botanists to the staff at Rothamsted. Researchers at
Rothamsted have made many significant contributions to science over the
years, including the discovery and development of the pyrethroid insecticides,
as well as pioneering contributions in the fields of virology, nematology, soil
science, and pesticide resistance. In 2012 Rothamsted Research supported 350
scientists, 150 administrative staff, and 60 Ph.D. students [341].
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Sir John Russell, who came from Wye Agricultural College33 in 1907 and
assumed the directorship of the Rothamsted Experimental Station in 1912,
appointed R.A. Fisher to the Rothamsted Experimental Station in October, 1919 and
commissioned him to study yield data on 67 years of Broadbalk wheat,34 for which
trials had begun as far back as 1843. Sir Russell initially hired Fisher on a temporary
basis, as he had only £200 appropriated for the appointment, but he soon recognized
the genius of Fisher and set about securing the necessary funds to hire him on a
permanent basis; however, not before Fisher had spent twice the £200 [191, p. 792].
Fisher made Rothamsted into a major center for research in statistics and genetics,
remaining at Rothamsted as the head of the Statistical Laboratory until 1933 when
he left to assume the post of Galton Professor of Eugenics at University College,
London. Fisher was succeeded by Frank Yates who had come to Rothamsted in 1931
as Assistant Statistician. Regular afternoon tea had been instituted at Rothamsted in
1906, 13 years prior to Fisher’s arrival, when Dr. Winifred E. Brenchley joined the
scientific staff as its first woman member [1354].35 Sir John Russell recalled:

[n]o one in those days knew what to do with a woman worker in a laboratory; it was felt,
however, that she must have tea, and so from the day of her arrival a tray of tea and a tin
of Bath Oliver biscuits appeared each afternoon at four o’clock precisely; and the scientific
staff, then numbering five, was invited to partake thereof [1210, p. 235] (Russell, quoted in
Box [195, p. 132]).

This tea service ended up being an important part of the story of Fisher and the
beginnings of permutation methods.

E.J. Russell
Edward John Russell was born on 31 October 1872 and was educated
at Carmarthen Presbyterian College, Aberystwyth University College, and
Owen’s College, Manchester, graduating with a B.Sc. and First Class Honors
in Chemistry in 1896. Russell was awarded the degree of D.Sc. by the
University of London for his researches at Manchester [1195, 1361].

In January 1901 Russell, who preferred the name John Russell, obtained a
Lectureship in Chemistry at Wye Agricultural College, at which the Principal

(continued)

33The College of St. Gregory and St. Martin at Wye, more commonly known as Wye College, was
an educational institution in the small village of Wye, Kent, about 60 miles east of London.
34Broadbalk refers to the fields at Rothamsted on which winter wheat was cultivated, not a strain
of wheat.
35Afternoon tea had been a British tradition since one of Queen Victoria’s (1819–1901) ladies-
in-waiting, Anna Maria Russell (née Stanhope) (1783–1857), the seventh Duchess of Bedford,
introduced it at Belvoir (pronounced Beaver) Castle in the summer of 1840, the idea being a
light repast around 4 p.m. would bridge the lengthy gap between luncheon and dinner, which
in fashionable circles at that time was not taken until 8 p.m.
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was Alfred Daniel Hall. Hall left Wye shortly after Russell joined the staff
to become Director of Rothamsted Experimental Station. Meanwhile, the
Goldsmith’s Company had given a capital grant of £10,000 to endow a
position in soil research at Rothamsted, which allowed Hall and the Lawes
Agricultural Trust to offer Russell a post as the first Goldsmith’s Company
Soil Chemist. Russell accepted the offer and moved from Wye College to
Rothamsted in July of 1907. At that time the scientific staff was comprised of
Hall and Russell and, in addition, Winifred Elsie Brenchley as botanist, Henry
Brougham Hutchinson as bacteriologist, and Norman H.J. Miller as chemist
[1361, 1404].

Hall left Rothamsted in October of 1912 and Russell was appointed
Director of the Rothamsted Experimental Station in 1912 and served as
Director until 1943. He was elected Fellow of the Royal Society in 1917,
received the Order of the British Empire in 1918, and was knighted by King
George V in 1922. In 1943, Russell, now 70, retired from Rothamsted and was
succeeded by William Gammie Ogg. Sir E. John Russell O.B.E. F.R.S. died
on 12 July 1965 at the age of 92. A complete bibliography of his writings and
publications is contained in a biography by Thornton [1361, pp. 474–477].

In The Design of Experiments (familiarly known as DOE), first published in
1935, Fisher (q.v. page 25) again intimated at the utility of a permutation approach
to obtain exact probability values [451, Sect. 11], and it is this formative text that
many researchers refer to as setting the idea of permutation tests into motion,
e.g., Conover [272], Kempthorne [719], Kruskal and Wallis [779], and Wald and
Wolfowitz [1407]. Fisher’s description of the “lady tasting tea” is often referenced
to describe the underlying logic of permutation tests. It appears that the story has
never been told in its entirety in a single place and is worth relating. While several
versions of the story exist, the account here relies primarily on the description by
Joan Fisher Box [195, pp. 131–132].

2.8.1 The Rothamsted Lady Tasting Tea Experiment

The “lady tasting tea” experiment at the Rothamsted Experimental Station in the
early 1920s has become one of the most referenced experiments in the statistical lit-
erature. A search of the Internet in February of 2013 produced 25,600 citations.36

36For a detailed explanation as to why it matters whether the tea or the milk is poured into the
teacup first, see a 2012 article by Stephen Senn in Significance [1251].
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The Lady Tasting Tea
At Rothamsted in the 1920s, afternoon tea was served at 4 o’clock in the
sample house in inclement weather or, otherwise, outside the sample house
on a table set with an urn of tea and cups. One afternoon in the early 1920s,
Fisher drew a cup of tea from the urn, added milk, and proffered it to the lady
beside him, Dr. Blanche Muriel Bristol, an algologist. She declined the cup of
tea offered by Fisher, stating that she preferred a cup into which the milk had
been poured first. Fisher’s quick response was, “[n]onsense, surely it makes
no difference” [195, p. 134].

Dr. William A. Roach, a chemist at the laboratory who was soon to marry
Dr. Bristol, suggested a test, to which Dr. Bristol agreed. Consequently, eight
cups of tea were prepared, four with the tea added after the milk and four
with the milk added after the tea, and presented to Dr. Bristol in random
order [195, p. 134]. Dr. Bristol’s personal triumph was never recorded and
Fisher does not describe the outcome of the experiment; however, H. Fairfield
Smith was present at the experiment and he later reported that Dr. Bristol had
identified all eight cups of tea correctly [1218, p. 8]. William Roach, however,
apparently reported that Dr. Bristol “made nearly every choice correctly”
[191, p. 793]. Incidentally, the probability of correctly dividing the eight cups
into two sets of four by chance alone is only 1 in 70 or 0.0143. It should
be noted that another version of the story has the event taking place at the
University of Cambridge in the late 1920s [1218], but it seems unlikely that
this version of the story is correct. In addition, according to Dr. Roach, Dr.
Bristol was correct on enough of the cups to prove her point [575, 1251].37

For additional descriptions of the tea tasting experiment, see Fisher [451,
pp. 11–29], Fisher [459, Chap. 6], Box [191], Box [195, pp. 134–135],
Gridgeman [555], Salsburg [1218, pp. 1–2], Lehmann [816, pp. 63–64], Hall
[575, p. 315], Okamoto [1053], Senn [1250–1252], and Springate [1313]. For
a decidedly different (Baysian) take on the lady tasting tea experiment, see a
1984 paper on “A Bayesian lady tasting tea” by Dennis Lindley [829] and a
1992 paper on “Further comments concerning the lady tasting tea or beer:
P -values and restricted randomization” by Irving (I.J.) Good [521].

37For a biography of Dr. B. Muriel Bristol and a picture, see a 2012 article by Stephen Senn in
Significance [1251].
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Table 2.9 Five possible arrangements of cell frequencies with n D 8 and identical marginal
frequency totals of 4, 4, 4, and 4

(1) (2) (3) (4) (5)

4 0 3 1 2 2 1 3 0 4
0 4 1 3 2 2 3 1 4 0

2.8.2 Analysis of The Lady Tasting Tea Experiment

A dozen years later, in 1935, Fisher provided a detailed discussion of the tea tasting
experiment [451].38 In what Fisher termed a hypothetical experiment in Chap. II,
Sect. 5 of The Design of Experiments, Fisher described a woman who claimed to be
able to tell the difference between tea with milk added first and tea with milk added
second [451]. He concocted an experiment, without mentioning the Rothamsted
experiment or Dr. Bristol, whereby a woman sampled eight cups of tea, four of each
type, and identified the point at which the milk had been added—before the tea,
or after.39 Fisher then outlined the chances of the woman being correct merely by
guessing, based on the number of trials; in this case, eight cups of tea [646]. The
five possible 2 � 2 tables are listed in Table 2.9.

The null hypothesis in this experiment was that the judgments of the lady were
in no way influenced by the order in which the ingredients were added. Fisher
explained that the probability of correctly classifying all eight cups of tea was one
in 70, i.e., the hypergeometric point-probability value for cell arrangement (1) in
Table 2.9 is given by

P f4j4; 4; 8g D 4Š 4Š 4Š 4Š

8Š 4Š 0Š 4Š 0Š
D 24

1;680
D 1

70
:

Fisher went on to note that only if every cup was correctly classified would the
lady be judged successful; a single mistake would reduce her performance below
the level of significance. For example, with one misclassification the one-tailed
probability for cell arrangements (1) and (2) in Table 2.9 is given by

P f3j4; 4; 8g C P f4j4; 4; 8g D 4Š 4Š 4Š 4Š

8Š 3Š 1Š 3Š 1Š
C 4Š 4Š 4Š 4Š

8Š 4Š 0Š 4Š 0Š
D 16

70
C 1

70
D 17

70

and 17=70 D 0:2429 is much greater than 0.05, whereas 1=70 D 0:0143 is
considerably less than 0.05.

38In 1956 Fisher published a lengthy discussion of the lady tasting tea experiment titled
“Mathematics of a lady tasting tea” in J.R. Newman’s book titled The World of Mathematics [459,
pp. 1512–1521].
39It should be noted that Francis Galton, after much experimentation, always chose to put the milk
into the teacup first [1251, p. 32].
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Table 2.10 Seven possible arrangements of cell frequencies with n D 36 and identical marginal
frequency totals of 6, 6, 6 and 6

(1) (2) (3) (4) (5) (6) (7)

0 6 1 5 2 4 3 3 4 2 5 1 6 0
6 0 5 1 4 3 3 3 2 4 1 5 0 6

To increase the sensitivity of the experiment, Fisher suggested a new experiment
with 12 cups of tea, six with the milk added first and six with the milk added
second. Table 2.10 lists the seven possible 2 � 2 tables. Here the hypergeometric
probability of correctly classifying all 12 cups of tea as listed in cell arrangement
(1) of Table 2.10 is one in 924 and is given by

P f0j6; 6; 12g D 6Š 6Š 6Š 6Š

12Š 0Š 6Š 6Š 0Š
D 720

665;280
D 1

924
;

and for one misclassification the one-tailed probability for cell arrangements (1) and
(2) in Table 2.10 is given by

P f1j6; 6; 12g C P f0j6; 6; 12g
D 6Š 6Š 6Š 6Š

12Š 1Š 5Š 5Š 1Š
C 6Š 6Š 6Š 6Š

12Š 0Š 6Š 6Š 0Š
D 36

924
C 1

924
D 37

924
:

Fisher determined that since 37=924 D 0:04 was less than 0.05, the experiment
would be considered significant even with one misclassification. This additional
configuration led Fisher to observe that increasing the size of the experiment
rendered it more sensitive and he concluded that the value of an experiment is
increased whenever it permits the null hypothesis to be more readily disproved.
It should be noted that in this example Fisher simply assumed 0.05 as the level of
significance, without explicitly identifying the level of significance.40

2.9 Fisher and the Analysis of Darwin’s ZeamaysData

In 1935 Fisher (q.v. page 25) provided a second hypothetical discussion of
permutation tests in The Design of Experiments, describing a way to compare
the means of randomized pairs of observations by permutation [451, Sect. 21].

40It is generally understood that the conventional use of the 5 % level of significance as the
maximum acceptable probability for determining statistical significance was established by Fisher
when he developed his procedures for the analysis of variance in 1925 [292]. Fisher also
recommended 0.05 as a level of significance in relation to chi-squared in the first edition of
Statistical Methods for Research Workers [448, pp. 79–80]. Today, p D 0:05 is regarded as
sacred by many researchers [1281]. However, Fisher readily acknowledged that other levels of
significance could be used [449, p. 504]. In this regard, see discussions by Cowles and Davis [292]
and Lehmann [816, pp. 51–53].
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Table 2.11 Heights of crossed- and self-fertilized Zea mays plants in inches

Crossed- Self- Difference Difference
Pot fertilized fertilized (inches) (eighths)

I 23 4
8

17 3
8

C6 1
8

C49

12 20 3
8

�8 3
8

�67

21 20 C1 C8

II 22 20 C2 C16

19 1
8

18 3
8

C0 6
8

C6

21 4
8

18 5
8

C2 7
8

C23

III 22 1
8

18 5
8

C3 4
8

C28

20 3
8

15 2
8

C5 1
8

C41

18 2
8

16 4
8

C1 6
8

C14

21 5
8

18 C3 5
8

C29

23 2
8

16 2
8

C7 C56

IV 21 18 C3 C24

22 1
8

12 6
8

C9 3
8

C75

23 15 4
8

C7 4
8

C60

12 18 �6 �48

Total 302 7
8

263 5
8

C39 2
8

C314

In this case Fisher carried the example through for the first time, calculating test
statistics for all possible pairs of the observed data [646]. For this example analysis,
Fisher considered data from Charles Darwin on 15 pairs of planters containing
Zea mays (“maize” in the United States) seeds in similar soils and locations, with
heights to be measured when the plants reached a given age [318]. As Darwin
described the experiment, Zea mays is monoecious and was selected for trial on
this account.41 Some of the plants were raised in a greenhouse and crossed with
pollen taken from a separate plant; and other plants, grown separately in another
part of the greenhouse, were allowed to fertilize spontaneously. The seeds obtained
were placed in damp sand and allowed to germinate. As they developed, plant pairs
of equal age were planted on opposite sides of four very large pots, which were
kept in the greenhouse. The plants were measured to the tips of their leaves when
between 1 and 2 ft in height. The data from the experiment are given in the first two
columns of Table 2.11 and are from Table XCVII in Darwin’s The Effects of Cross
and Self Fertilisation in the Vegetable Kingdom [318, p. 234].

Using the data in the last column of Table 2.11 where the differences between the
heights of the crossed- and self-fertilized plants were recorded in eighths of an inch,

41For a concise summary of the Zea mays experiment, see a discussion by Erich Lehmann in his
posthumously published 2011 book on Fisher, Neyman, and the Creation of Classical Statistics
[816, pp. 65–66].
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Fisher first calculated a matched-pairs t test. He found the mean difference between
the crossed- and self-fertilized Zea mays plants to be

Nd D 1

n

nX
iD1

di D 314

15
D 20:933

and the standard error to be

s Nd D

vuuuut
nX

iD1

d 2
i � Nd

nX
iD1

di

n.n � 1/
D
s

26;518� .20:933/.314/

15.15� 1/
D 9:746 :

Then, Student’s matched-pairs t test yielded an observed statistic of

t D
Nd

s Nd
D 20:933

9:746
D 2:148 :

Fisher pointed out that the 5 % t value with 14 degrees of freedom was 2.145 and
concluded since 2.148 just exceeded 2.145, the result was “significant” at the 5 %
level.

Fisher then turned his attention to an exact permutation test, calculating sums of
the differences for the 215 D 32;768 possible arrangements of the data, based on
the null hypothesis of no difference between self-fertilized and cross-fertilized Zea
mays plants. The exact probability value was calculated as the proportion of values
with differences as, or more extreme, than the observed value. Fisher found that in
835 out of 32,768 cases the deviations were greater than the observed value of 314;
in an equal number of cases, less than 314; and in 28 cases, exactly equal to 314.
Fisher explained that in just 835C28 D 863 out of a possible 32,768 cases, the total
deviation would have a positive value as great or greater than the observed value of
314, and in an equal number of cases it would have as great a negative value. The two
groups together constituted 1;726=32;768 D 5:267 % of the possibilities available,
a result very nearly equivalent to that obtained using Student’s t test, where the
two-tailed probability value for t D 2:148 with 14 degrees of freedom is 4.970 %
[461, p. 47]. Fisher additionally noted that the example served to demonstrate that an
“independent check” existed for the “more expeditious methods” that were typically
in use, such as Student’s t test [451, pp. 45–46].

Finally, Fisher argued that, because the t distribution is continuous and the
permutation distribution is discrete, the t distribution was counting only half of
the 28 cases that corresponded exactly with the observed total of 314. He went
on to show that making an adjustment corresponding to a correction for continuity
provided a t probability value more in line with the exact probability value. The
corrected value of t was 2.139, yielding a probability value of 5.054 % which is
closer to the exact value of 5.267 % than the unadjusted value of 4.970 %. For
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excellent synopses of the Zea mays experiment, see discussions by Kempthorne
[719, p. 947], Holschuh [646], Lehmann [816, pp. 65–66], McHugh [914], and E.S.
Pearson [1093].

One of the benefits Fisher attributed to permutation methods was its utility in
validating normal-theory analyses [451, Chaps. 20 and 21]. Here Fisher argued that,
when testing the hypothesis of no treatment effect in an agricultural experiment,
the normal-theory significance level usually approximates the corresponding per-
mutation significance level. As noted by Hooper [647], this tendency for agreement
between normal-theory and permutation tests has also been examined using both
real and simulated data by Eden and Yates [379] and Kempthorne and Doerfler
[725]; moment calculations by Bailey [49], Pitman [1131], and Welch [1428];
Edgeworth expansions by Davis and Speed [329]; and limit theorems by Ho and
Chen [634], Hoeffding [636], and Robinson [1178]. In this regard, Fisher was fond
of referring to a 1931 article by Olof Tedin [1343] in which Tedin demonstrated that
when the assumptions of the classical analysis of variance test are met in practice,
the classical test and the corresponding randomization test yielded essentially the
same probability values [1126].

O. Tedin
Olof Tedin (1898–1966) was a Swedish geneticist who spent most of his
professional career as a plant breeder with the Swedish Seed Association,
Svalöf, where he was in charge of the breeding of barley and fodder roots
in the Weibullsholm Plant Breeding Station, Landskrona. In 1931, with the
help of Fisher, he published a paper on the influence of systematic plot
arrangements on the estimate of error in field experiments [1343]. Fisher
had previously shown that of the numerous possible arrangements of plots
subject to the condition that each treatment should appear once in each row
and once in each column (an Euler Latin Square), it was possible to choose
at random one to be used in the field that would be statistically valid. Tedin
fashioned 12 blocks of 5 � 5 plots with five treatments distributed according
to different plans.

Two of the 12 arrangements were knight’s moves (Knut Vik), Latin
Squares in which all cells containing any one of the treatment values can
be visited by a succession of knight’s moves (as in chess) and where no
two diagonally adjacent cells have the same treatment value; two of the
arrangements were diagonal Latin Squares in which each of the treatment
values appears once in one of the diagonals and the other diagonal is
composed of the same treatment value, e.g., all 1s; seven of the arrangements
were random arrangement Latin Squares, as recommended by Fisher [449];
and one was a specially constructed Latin Square to evaluate “spread,”
wherein arrangements in which adjacent plots never have the same treatment.

(continued)
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Examples of the knight’s move, diagonal, and random Latin Square arrange-
ments used by Tedin are:

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

1 2 3 4 5

4 3 1 5 2

1 5 2 3 4

5 2 4 1 3

2 1 3 4 5

3 4 5 2 1

Knight’s Move Diagonal Random

Tedin found that systematic arrangements introduced bias in the estimate
of the error of the experiment, with the knight’s move arrangements over-
estimating the error and the diagonal arrangements under-estimating the error.
He concluded that “the present study confirms the views of Fisher, not only
in the one special case, but in all other cases of systematic plot arrangements
as well” [1343, p. 207].

2.10 Fisher and the Coefficient of Racial Likeness

Fisher’s 1936 article on “‘The coefficient of racial likeness’ and the future of cran-
iometry” provided an alternative explanation of how permutation tests work [453].
Without explicitly labeling the technique a permutation test, Fisher described a
shuffling procedure for analyzing data. His description began with two hypothetical
groups of n1 D 100 Frenchmen and n2 D 100 Englishmen with a measurement of
stature on each member of the two groups. After recording the differences in height
between the two groups in the observed data, the measurements were recorded on
200 cards, shuffled, and divided at random into two groups of 100 each, a division
that could be repeated in an enormous, but finite and conceptually calculable number
of ways. 42 A consideration of all possible arrangements of the pairs of cards
would provide an answer to the question, “Could these samples have been drawn at
random from the same population?” [453, p. 486]. Fisher explained that a statistician
usually does not carry out this tedious process, but explained that the statistician’s
conclusions “have no justification beyond the fact that they agree with those which
could have been arrived at by this elementary method” [453, p. 58]. Fisher went
on to stress that the test of significance calculates a probability value and does not

42Authors’ note: actually, 90,548,514,656,103,281,165,404,177,077,484,163,874,504,589,675,413,
336,841,320 ways.
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calculate a metrical difference [453, pp. 59–60], anticipating perhaps the current
emphasis on calculating effect sizes as well as tests of significance.

Finally, it should be noted that while Fisher never referenced nor provided a
footnote to Karl Pearson in this article, it is abundantly evident that this article is a
thinly-veiled criticism of Pearson’s coefficient of racial likeness published in 1926
[1110], as the formula for the coefficient of racial likeness on page 60 of Fisher’s
article is taken directly from Pearson’s 1926 article. For a concise description of the
card shuffling experiment and a critical retort to Fisher’s analyses of Darwin’s Zea
mays data and the racial craniometry data see E.S. Pearson [1093], a summary of
which is provided on page 76.

Continuing the theme of shuffling cards to obtain permutations of observed data
sets, in 1938 Fisher and Yates described in considerable detail an algorithm for
generating a random permutation of a finite set, i.e., shuffling the entire set [463,
p. 20]. The basic method proposed by Fisher and Yates consisted of four steps and
resulted in a random permutation of the original numbers [463, p. 20]:
1. Write down all the numbers from 1 to n, where n is the size of the finite set.
2. Pick a number k between 1 and n and cross out that number.
3. Pick a number k between 1 and n� 1, then counting from the low end, cross out

the kth number not yet crossed out.
4. Repeat step 3, reducing n by one each time.43

2.11 Hotelling–Pabst and Simple Bivariate Correlation

While at Columbia University, Harold Hotelling was a charter member of the
Statistical Research Group (q.v. page 69) along with Jacob Wolfowitz and W. Allen
Wallis. This elite membership brought him into contact with a number of talented
and influential statisticians of the day.

H. Hotelling
Harold Hotelling entered the University of Washington in Seattle in 1913 but
his education was interrupted when he was called up for military service in
World War I. Hotelling recalled that he, “having studied mathematics, science
and classics at school and college, was considered by [the] Army authorities
competent to care for mules. The result was [that] a temperamental mule
named Dynamite temporarily broke my leg and thereby saved his life, as

(continued)

43The Fisher–Yates shuffle, with little change, became the basis for more sophisticated computer
shuffling techniques by Richard Durstenfeld in 1964 [367], Donald Knuth in 1969 [762], and
Sandra Sattolo in 1986 [1222]. N. John Castellan [245] and Timothy J. Rolfe [1188] urged caution
in choosing a shuffling routine as many widely-used shuffling algorithms are incorrect.
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the rest of the division was sent to France and [was] wiped out” (Hotelling,
quoted in Darnell [317, p. 57]). Hotelling was discharged from the Army on 4
February 1919, and returned to the University of Washington to continue his
studies.

Hotelling earned his B.A. degree in journalism from the University of
Washington in 1919, his M.S. degree in mathematics from the University of
Washington in 1921, and his Ph.D. in mathematics (topology) from Princeton
University under Oswald Veblen in 1924. The topic of the thesis was “Three-
dimensional Manifolds of States of Motion.” He began his career at Stanford
University, first as a research associate with the Food Research Institute
from 1924 to 1927, and then as an Associate Professor in the Department
of Mathematics from 1927 to 1931. It was during this time that Hotelling
began corresponding with Fisher in England. This correspondence eventually
led to Hotelling traveling to the Rothamsted Experimental Station to study
with Fisher in 1929. In his unsolicited review of Fisher’s Statistical Methods
for Research Workers, first published in 1925, Hotelling wrote:

[m]ost books on statistics consist of pedagogic rehashes of identical material. This
comfortably orthodox subject matter is absent from the volume under review, which
summarizes for the mathematical reader the author’s independent codification of
statistical theory and some of his brilliant contributions to the subject, not all of
which have previously been published [651, p. 412].

Despite the fact that the book did not receive even one other single
positive review [576, p. 219], Hotelling concluded that Fisher’s “work is of
revolutionary importance and should be far better known in this country”
[651, p. 412]. Hotelling was so impressed with Statistical Methods for
Research Workers that he volunteered a review for the second edition in
1928. Hotelling subsequently volunteered a review for the third, fourth, fifth,
sixth, and seventh editions [816, p. 22]. Eventually, 14 editions of Statistical
Methods for Research Workers were published, the last in 1970, and it has
been translated into six languages [192, p. 153].

Hotelling was recruited to Columbia University in 1931 as Professor of
Economics and to initiate a Mathematical Statistics program. Columbia long
had a reputation for incorporating statistical methods into the social sciences,
especially economics under the leadership of Henry Ludwell Moore, but
also in psychology with James McKeen Cattell, anthropology with Franz
Boas, and sociology with Franklin Henry Giddings [238]. While at Columbia,
Hotelling was a charter member of the Statistical Research Group (q.v. page
69). In 1946 Hotelling left Columbia University for the University of North
Carolina at Chapel Hill at the urging of Gertrude Mary Cox to establish what
would become a renowned Department of Mathematical Statistics. Harold
Hotelling retired in 1966 and died on 26 December 1973 at the age of 78

(continued)
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from injuries sustained after falling on a patch of ice outside his home at
Chapel Hill, North Carolina [37, 814, 1058, 1288].

M.R. Pabst
Margaret Hayes Pabst (née Richards) graduated with an A.B. degree from
Vassar College in 1931 [1076, p. 3], received her A.M. degree from the Uni-
versity of Chicago in mathematics in 1932, and earned her Ph.D. in economics
from Columbia University in 1944, where she studied with Hotelling.44 In
1935 Margaret Hayes Richards married William Richard Pabst, Jr., who
was at that time teaching economics at Cornell University [826, p. 752]. In
that same year, Margaret Pabst was hired as an assistant in the College of
Agriculture at Cornell University [826, p. 752]. In the fall of 1936 William
Pabst returned to his alma mater, Amherst College, as an Assistant Professor,
and from 1936 to 1938 Margaret Pabst was employed as a researcher with
the Council of Industrial Studies at Smith College in nearby Northampton,
Massachusetts. Her major work for the Council was a report titled “Agricul-
tural Trends in the Connecticut Valley Region of Massachusetts, 1800–1900,”
which was her dissertation at Columbia University and was later published in
Smith Studies in History [1079]. Margaret Pabst also published a small volume
in 1932 on Properties of Bilinear Transformations in Unimodular Form that
was the title of her Master’s thesis at the University of Chicago [1077],
and another small volume in 1933 on The Public Welfare Administration of
Dutchess County, New York that was the Norris Fellowship Report of 1932–
1933 [1078].

In 1938 William Pabst accepted a position as Associate Professor of
Economics at Tulane University in New Orleans, Louisiana [1080, p. 876]
and in 1941 William and Margaret Pabst moved to Washington, DC, where he
worked for the War Production Board and the Office of Price Administration
until 1944, when he went into the Navy and was stationed at the Bureau of

(continued)

44Authors’ note: special thanks to Nanci A. Young, College Archivist, William A. Neilson
Library at Smith College, Northampton, Massachusetts, for retrieving the information on Margaret
Richards Pabst, and to Nancy Lyons, Program Analyst, United States Department of Agriculture,
Food and Nutrition Service, for contacting Archivist Nanci Young at Smith College on our behalf.
Special thanks also to Sarah Jane Pabst Hogenauer and Dr. Margaret Pabst Battin, Distinguished
Professor of Philosophy and Adjunct Professor of Internal Medicine, Division of Medical Ethics at
the University of Utah, who are the daughters of Margaret Richards Pabst and who graciously
shared details of their mother’s life, including having Muriel Hotelling, Harold Hotelling’s
daughter, as a babysitter and, as girls of 10 or 11, having lunch with R.A. Fisher.
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Ordnance in Washington, DC [1284, p. C4]. In 1946 he left active duty and
became Chief Statistician in the Navy’s Bureau of Ordnance as a civilian.
Margaret Pabst also worked for the United States government during the war,
and after the war, taught piano and published two books on music, co-authored
with Laura Pendleton MacCartney. Margaret Hayes Richards Pabst died on 15
April 1962 in Washington, DC.

While at Columbia University, on 1 July 1942, Harold Hotelling along with
W. Allen Wallis and Jacob Wolfowitz, became charter members of the renowned
Statistical Research Group which was based at Columbia during World War II and
remained in existence until 30 September 1945. The SRG attracted an extraordinary
group of research statisticians to Columbia and brought Hotelling into contact with
many of the foremost mathematical statisticians of the time [1219].

The SRG at Columbia
The Statistical Research Group (SRG) was based at Columbia University
during the Second World War from 1942 to 1945 and was supported by the
Applied Mathematics Panel of the National Defense Research Committee,
which was part of the Office of Scientific Research and Development (OSRD).
In addition to Harold Hotelling, Wilson Allen Wallis, and Jacob Wolfowitz,
the membership of the SRG included Edward Paulson, Julian Bigelow, Milton
Friedman, Abraham Wald, Albert Bowker, Harold Freeman, Rollin Bennett,
Leonard Jimmie Savage, Kenneth Arnold, Millard Hastay, Abraham Meyer
Girshick, Frederick Mosteller, Churchill Eisenhart, Herbert Solomon, and
George Stigler [1412]. For concise histories of the SRG, see articles by
W. Allen Wallis [1412] and Ingram Olkin [1056, pp. 123–125].

In 1936 Hotelling and Pabst used permutation methods for calculating exact
probability values for small samples of rank data in their research on simple
bivariate correlation [653]. Noting that tests of significance are primarily based on
the assumption of a normal distribution in a hypothetical population from which
the observations are assumed to be a random sample, Hotelling and Pabst set out to
develop methods of statistical inference without assuming any particular distribution
of the variates in the population from which the sample had been drawn. Hotelling
and Pabst noted that a false assumption of normality usually does not give rise to
serious error in the interpretation of simple means due to the central limit theorem,
but cautioned that the sampling distribution of second-order statistics are more
seriously disturbed by the lack of normality and pointed to “the grave dangers
in using even those distributions which for normal populations are accurate, in
the absence of definite evidence of normality” [653, p. 30]. Hotelling and Pabst
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also cautioned researchers about the pitfalls of using Pearson’s standard error to
provide probability values, noting that in order to use the standard error it was
necessary to assume that (1) the underlying population must be distributed as
bivariate normal—a more stringent assumption than requiring that each variate be
normally distributed, (2) only the first few terms of Pearson’s infinite series are
sufficient,45 (3) the distribution of Spearman’s rank-order correlation coefficient
is normal, and (4) sample values can be substituted for population values in the
formula for the standard error.

Consider n individuals arranged in two orders with respect to two differ-
ent attributes. If Xi denotes the rank of the ith individual with respect to one
attribute and Yi the rank with respect to the other attribute so that X1; : : : ; Xn

and Y1; : : : ; Yn are two permutations of the n natural integers 1; : : : ; n, then define
xi D Xi � NX and yi D Yi � NY where NX D NY D .n C 1/=2.46 The rank-order
correlation coefficient is then defined as

r 0 D

nX
iD1

xi yi

vuut nX
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i
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i
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Hotelling and Pabst showed that
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ranks for the ith individual, so that di D Xi � Yi D xi � yi , then
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Substituting into Eq. (2.2) and simplifying yields

45In 1907, Pearson derived the standard error of Spearman’s rank-order correlation coefficient.
Assuming normality, Pearson generated the first four terms of an infinite series to provide an
approximate standard error [1109].
46In the early years of statistics it was common to denote raw scores with upper-case letters, e.g.,
X and Y , and deviations from the mean scores with lower-case letters, e.g., x and y.
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r 0 D 1 �
6

nX
iD1

d 2
i

n3 � n
;

which is Spearman’s rank-order correlation coefficient, first published by Charles
Spearman in 1904 in American Journal of Psychology [1300].

The article by Hotelling and Pabst utilized the calculation of a probability value
that incorporated all nŠ permutations of the data, under the null hypothesis that all
permutations were equally-likely (q.v. page 4).47 The probability for any particular
value was calculated as the proportion of the number of permutations equal to or
more extreme than the value obtained from the observed data. Following on the work
of Charles Spearman and Karl Pearson who had provided rough standard deviations
for a measure of rank-order correlation, Hotelling and Pabst provided a thorough
and accurate analysis that allowed for small samples. Although Hotelling and Pabst
did not produce tables for tests of significance, they did provide exact probability
values for small samples of n D 2; 3; and 4 [653, p. 35]. Finally, reflecting the
frustration of many statisticians in the 1930s, Hotelling and Pabst observed that for
large samples the calculation of exact probability values was very laborious, forcing
researchers to use approximations.

It is notable that while earlier works contained the essence of permutation tests,
the article by Hotelling and Pabst included a much more explicit description of
permutation procedures, including notation and specific examples for small data
sets. Thus, this 1936 article may well be the first example that detailed the method
of calculating a permutation test using all possible arrangements of the observed
data. It is interesting to note, however, that the work by Hotelling and Pabst became
important in the discussion of distribution-free procedures involving rank data, but
did not have a noticeable impact in the furthering of permutation tests.

2.12 Friedman and Analysis of Variance for Ranks

Trained as an economist, Milton Friedman became one of the most celebrated
statisticians of his time. In addition to his contributions as an academic at the
University of Chicago, he was also a public servant at the national level.

M. Friedman

(continued)

47This is an area of some controversy. Some researchers hold that, if and only if generalizing from
a sample to a population, permutations are equally likely in controlled experimentation, but may
not be equally likely in non-experimental research; see for example Zieffler, Harring, and Long
[1493, pp. 132–134].
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Milton Friedman graduated from Rutgers University in 1932 with an under-
graduate degree in mathematics and economics, earned his M.A. degree from
the University of Chicago in economics in 1933, and his Ph.D. in economics
from Columbia University in 1946, where he worked with Harold Hotelling.
During World War II, Friedman worked in Columbia’s Statistical Research
Group as a mathematical statistician (q.v. page 69). After the war, Friedman
spent 1 year at the University of Minnesota where his good friend George
Stigler was employed, but then accepted an appointment at the University
of Chicago, where he taught for the next 30 years, while simultaneously
maintaining a position with the National Bureau of Economic Research in
New York City. Friedman was an academic who also spent much of his
life in public service, but considered these part time activities, noting that
his primary interest was his “scientific work” [487]. He was a member
of President Ronald Reagan’s Economic Policy Advisory Board and was
awarded the Nobel Prize in Economic Sciences in 1976. Milton Friedman
passed away on 16 November 2006 at the advanced age of 94 [483, 487].

Noting the contribution by Hotelling and Pabst on using rank data to overcome
the assumption of normality in simple bivariate correlation, in 1937 Friedman
outlined a similar procedure employing rank data in place of the ordinary analysis
of variance [485].48 If p denotes the number of ranks, Friedman utilized known
results such as sums of natural integers, squared natural integers, and cubed natural
integers from 1 to p given by p.pC 1/=2, p.pC 1/.2pC 1/=6, and p2.p� 1/2=4,
respectively.

Friedman went on to show that the sampling distribution of the mean of ranks,
where Nrj denotes the mean rank of the jth of p columns, would have a mean
value � D .p C 1/=2 and a variance of �2 D .p2 � 1/=.12n/, where n is the
number of ranks averaged over the jth column. The hypothesis that the means come
from a single homogeneous normal universe could then be tested by computing a
statistic, �2

r , which Friedman noted tends to be distributed as the usual chi-squared
distribution with p � 1 degrees of freedom when the ranks are, in fact, random, i.e.,
when the factor tested has no influence [485, p. 676]. Friedman defined �2

r as
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�
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2

�2

;

which for calculation purposes reduces to

48A clear and concise explanation of the Friedman analysis of variance for ranks test was given by
Lincoln Moses in a 1952 publication on “Non-parametric statistics for psychological research” in
Psychological Bulletin [1010].
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where rij denotes the rank in the ith of n rows and jth of p columns.
Friedman emphasized that the proposed method of ranks did not utilize all of the

information provided by the observed data, as the method relied solely on the order
of the variate and thus made no use of the quantitative magnitude of the variate.
The consequences of that, he explained, were that (1) the method of ranks makes
no assumption whatsoever as to the similarity of the distribution of the variate for
the different rows, (2) the method of ranks does not provide for interaction because
without quantitative measurements interaction is meaningless, and (3) the method
of ranks is independent of the assumption of normality.

Friedman demonstrated that for n D 2, �2
r tends to normality as p increases,

and when n is large the discrete distribution of �2
r approaches the continuous �2

distribution and the latter approaches normality as the degrees of freedom increases.
For small samples, Friedman presented, in Tables V and VI in [485], the exact
distribution of �2

r in the case of p D 3 for n D 2; : : : ; 9 and in the case of p D 4,
for n D 2; 3; and 4 [485, pp. 688–689]. Finally, returning to the work of Hotelling
and Pabst, Friedman showed that the Spearman rank-order correlation coefficient
investigated by Hotelling and Pabst was related to �2

r when n D 2 as

�2
r D .p � 1/.1� r 0/ ;

where r 0 denotes the Spearman rank-order correlation coefficient. In 1997 Röhmel
published an algorithm for computing the exact permutation distribution of the
Friedman analysis of variance for ranks test [1186].

2.13 Welch’s Randomized Blocks and Latin Squares

In 1937 B.L. Welch published an article in Biometrika that described permutation
versions of randomized block and Latin square analysis of variance designs [1428].
He then compared the permutation versions of the two designs with the existing
normal-theory versions.

B.L. Welch
Bernard Lewis Welch graduated with a degree in mathematics from Brasenose
College, University of Oxford, in 1933. He then pursued a study of mathe-
matical statistics at University College, London, where Pearson and Fisher
had created a center for studies in statistical inference and biostatistics.
Welch received an appointment to a Readership in Statistics in the University

(continued)
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of Leeds, was appointed to the Chair in Statistics in 1968, and in the same year
was appointed head of the newly created Department of Statistics. Bernard
Lewis Welch suffered a stroke in June 1989 and died on 29 December of that
same year; he was 78 years old [892].

In an article on randomized block and Latin square analysis of variance designs
in Biometrika in 1937, Welch described Fisher’s inference to an exact probability,
referencing The Design of Experiments, and noted that although the calculations
would be lengthy, the result would be a hypothesis test that was free of assumptions
about the data [1428]. In this seminal article, Welch compared the normal-theory
version of Fisher’s variance-ratio z test with a permutation version in analyses of
randomized block and Latin square designs.

Welch found it convenient to consider, instead of z, a monotonically increasing
function of z given by

U D S1

S0 C S1

D
h
.n � 1/ exp.�2z/C 1

i�1

;

where S1 D SSBetween D SSTreatment and S0 D SSWithin D SSError in modern notation,
although Jerzy Neyman had previously pointed out the advisability of considering
the z-distribution directly [1033]. Like Eden and Yates in 1933 [379] and Pitman in
1937 [1129], Welch was able to reduce the amount of computation by considering
only the variable portions of z. Welch explained that the convenience of U over z
lies in the fact that in the permutation procedure (S0CS1) is constant, thus only the
variation of S1 D SSBetween need be considered.

Utilizing the first two moments of the distribution of U , Welch analyzed a
number of small published data sets in investigations of randomized block and Latin
square designs. For randomized block designs, Welch found the expectations of
differences and of mean squares based on permutations of the data generally to agree
with those based on normal-theory methods. However, for Latin square designs
Welch found that the permutation variance was considerably smaller than that of the
normal-theory variance. Anticipating a debate that would appear and reappear in the
permutation literature, Welch considered two possibilities for statistical inference.
The first alternative considered a statistical inference about only the particular
experimental data being analyzed; in Welch’s case, a statistical inference only about
the agricultural yields of a particular experimental field [1428, p. 48]. The second
alternative considered the statistical inference drawn from the experimental data to
a defined population, thus regarding the permutation distribution of z as a random
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sample from a set of similar distributions hypothetically obtained from other similar
experiments [1428, p. 48].49

2.14 Egon Pearson on Randomization

E.S. Pearson, the son of Karl Pearson, had a distinguished career as a statistician in
his own right. He collaborated extensively with Neyman and H.O. Hartley, among
others, producing some of the most important and enduring statistical inference
procedures of his time. His partnership with H.O. Hartley led to the two volume
work on Biometrika Tables for Statisticians and his association with Jerzy Neyman
led, of course, to the classical Neyman–Pearson approach to statistical inference,
testing hypotheses, and confidence intervals.

E.S. Pearson
Egon Sharpe Pearson was the only son of Karl Pearson, who also had two
daughters, and the two shared a deep interest in the history of probability and
statistics [76]. E.S. Pearson was educated at Winchester College and Trinity
College, University of Cambridge, but his education was interrupted by World
War I. In 1920, Pearson was awarded a B.A. degree in mathematics after
taking the Military Special Examination, set up by the British Government for
those whose studies were delayed by the onset of the war. Pearson joined the
Department of Applied Statistics, University College, London in 1920, where
he attended lectures given by his father [814]. When Karl Pearson retired in
1933, the Department of Applied Statistics was divided into two departments.
E.S. Pearson was appointed head of the Department of Applied Statistics and
R.A. Fisher was appointed head of the Department of Eugenics.

Egon Pearson collaborated extensively with Jerzy Neyman (q.v. page 21)
researching statistical inference [1035,1036], an account of which is given by
Pearson [1097], Reid [1160], and Lehmann [816, Chap. 3]. Pearson continued
work begun by his father on editing the two volumes of Tables for Statisticians
and Biometricians, collaborating with H.O. Hartley to compile and edit the
tables that were eventually published as Biometrika Tables for Statisticians,
Volume I in 1954 and Biometrika Tables for Statisticians, Volume II in 1972
[1101,1102]. Pearson was elected Fellow of the Royal Society in 1966. Egon
Sharpe Pearson F.R.S. died on 12 June 1980 at the age of 84.

49For a concise summary of the 1937 Welch paper, see a 2008 article by H.A. David on “The
beginnings of randomization tests” in The American Statistician [326].
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H.O. Hartley
Herman Otto Hartley (née Hirschfeld) fled Germany in 1934 shortly after
completing his Ph.D. in mathematics at the University of Berlin to begin post-
graduate work at the University of Cambridge. It was while in England that
Hartley met E.S. Pearson at University College, London. In 1953, Hartley
emigrated from England to the United States, joining the department of
statistics at Iowa State University. In 1969, Hartley accepted a position as
distinguished professor at Texas A&M University, and in 1979 Hartley was
elected the 74th president of the American Statistical Association [321,1287].
Herman Otto Hartley passed away on 30 December 1980 in Durham, North
Carolina, from complications following open heart surgery [321,1286,1287].

In 1937 E.S. Pearson referenced the Fisher text on The Design of Experiments in
his consideration of randomizations in “Some aspects of the problem of randomiza-
tion” [1093]. Pearson discussed the principle of randomization (i.e., permutation)
and noted that most statistical tests used were developed on the assumption that
the variables were normally distributed, but permutation tests, as developed by
Fisher, were claimed to be independent of the assumption of normality. Pearson
then asked “how far can tests be constructed which are completely independent of
any assumption of normality?” [1093, p. 56].

Pearson provided concise summaries of several studies utilizing permutation
methods, questioning whether the studies were truly independent of normality. The
first study examined by Pearson was Fisher’s investigation into Darwin’s data on
the heights of crossed- and self-fertilized Zea mays plants (q.v. page 62). Pearson
noted that Fisher’s study of the Zea mays plants found that 1,722 out of 32,768
possible values of the mean heights of plants were greater than the mean height of
the observed plants, which was 20.933 in. (although the value given by Pearson of
1,722 appears to be a slight misprint) and that this was in no way unique. Pearson
explained that Fisher could have used the geometric mean, for example, instead
of the arithmetic mean and possibly found different results. The point being not
that the geometric mean was a rational choice, but that “if variation is normal, a
criterion based on the observed mean difference in samples [would] be most efficient
in determining a real population difference” [1093, p. 58] and therefore using the
arithmetic mean implied that the researcher believed a priori that the characteristics
measured were likely to be normally distributed.

A second study examined by Pearson was Fisher’s investigation into the coef-
ficient of racial likeness [453]. As noted on page 65, Fisher considered measures
of the statures of a random sample of n D 100 Frenchmen and n D 100

Englishmen to test the hypothesis that the mean heights of the sampled populations
of Frenchmen and Englishmen were identical. Recall that Fisher conjectured writing
the 2n measurements on cards, then shuffling the cards without regard to nationality.



2.14 Egon Pearson on Randomization 77

Thus, it would be possible to divide the cards into two groups, each containing
n cards, in .2n/Š=.nŠ/2 ways. The test statistic suggested was the difference
between the means of the two groups. Again, Pearson questioned whether there
was something fundamental about the form of the test “so it [could] be used as a
standard against which to compare other more expeditious tests, such as Student’s”
[1093, p. 59].

Pearson continued with a hypothetical study based on two samples of seven
observations each. The data for Samples 1 and 2 were: {45, 21, 69, 82, 79, 93,
34} and {120, 122, 107, 127, 124, 41, 37}, respectively. Sample 1 had a mean of
Nx1 D 60:43 and a midpoint, defined as the arithmetic average of the lowest and
highest scores in the sample, of m1 D 57; Sample 2 had a mean of Nx2 D 96:86

and a midpoint of m2 D 82. He showed that after pooling the fourteen numbers,
they could be divided into two groups of seven each in .14Š/=.7Š/2 D 3;432

ways. Pearson found that the differences in means of the two samples had an
equal or greater negative value than the observed mean difference of Nx1 � Nx2 D
60:43 � 96:86 D �36:43 in 126 out of 3,432 possible divisions, or 3.67 %. On
the other hand, he found that the differences in midpoints of the two samples
had an equal or greater negative value than the observed midpoint difference of
m1 �m2 D 57� 82 D �25 in 45 of the 3,432 divisions or, 1.31 %.

Pearson explained that random assignments of the 14 numbers into two groups
of seven would give numerical values as large or larger than that observed to the
difference in means on 2 � 3:67 D 7:34 % of occasions, and numerical values as
large or larger than that observed to the difference in midpoints on 2�1:31 D 2:62 %
of occasions. Pearson concluded that “applying this form of test to the midpoints, we
would be more likely to suspect a difference in populations sampled than in applying
the test to the means” [1093, p. 60]. Later in the article, Pearson confessed that he
structured the data to favor the midpoints. Specifically, Pearson used Tippett’s tables
of uniform random numbers to draw the two samples from a rectangular distribution
[1362]. Pearson showed that the standard error of the midpoint in samples of size n

from a rectangular population with standard deviation �x was

�m D �x

s
6

.nC 1/.nC 2/
D �x

s
6

.7C 1/.7C 2/
D 0:289 �x ;

while for the mean the standard error was considerably larger at

� Nx D �xp
n
D �xp

7
D 0:378 �x :

On this basis, Pearson argued “we should expect on theoretical grounds that
the difference in sample midpoints, rather than in sample means, would be more
efficient in detecting real differences” [1093, p. 61]. Pearson acknowledged that
very few variables actually possess a rectangular distribution, but that he introduced
these examples because they suggested that it is impossible to make a rational choice
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among alternative tests unless some information beyond that contained in the sample
data is introduced. Pearson concluded the article with the acknowledgment that
Fisher’s randomization test was both exceedingly suggestive and often useful, but
should be described as a valuable device rather than a fundamental principle.

As with Fisher, neither Welch nor Pearson fully explained the permutation
technique. It was not until 1937 and 1938 that a series of articles by E.J.G. Pitman
[1129–1131] explicitly discussed the permutation approach for statistical analysis.
These three articles extended permutation methods to include data that were not
amenable to ranking.

2.15 Pitman and Three Seminal Articles

E.J.G. Pitman, trained as a mathematician and isolated by distance from the
centers of statistics in England due to his teaching duties at the University of
Tasmania for 36 years, nonetheless contributed extensively to the early development
of permutation methods. Some insight into Pitman the mathematician/statistician
can be gleaned from a 1982 publication by Pitman titled “Reminiscences of a
mathematician who strayed into statistics” in The Making of Statisticians edited
by Joseph (Joe) Gani [1133].

E.J.G. Pitman
Edwin James George Pitman graduated from the University of Melbourne
with a B.A. degree in mathematics in 1921, a B.Sc. degree in mathematics in
1922, and an M.A. degree in mathematics in 1923 [1458]. In 1926 Pitman was
appointed Professor of Mathematics at the University of Tasmania, a position
he held from 1926 to 1962. Like many contributors to statistical methods of
this era, Pitman had no formal training in statistics, but was intrigued by the
work of R.A. Fisher on statistical inference and randomization.

Pitman produced three formative papers on permutation methods in 1937
and 1938 [814, 1133, 1457]. In the introduction to the first paper on “Signif-
icance tests which may be applied to samples from any populations,” Pitman
first stated the object of the paper was to “devise valid tests of significance
which involve no assumptions about the forms of the population sampled,”
and second, noted that the idea underlying permutation tests “seem[ed] to
be implicit in all of Fisher’s writings” [1129, p. 119]. Eugene Edgington,
however, recounted that in 1986 Pitman expressed dissatisfaction with the
introduction to his paper, writing “I [Pitman] was always dissatisfied with
the sentence I wrote . . . I wanted to say I really was doing something new”
(Pitman, quoted in Edgington [394, p. 18]). Edwin James George Pitman
retired from the University of Tasmania in 1962 and died on 21 July 1993
at the age of 95.
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2.15.1 Permutation Analysis of Two Samples

In the first of three seminal papers, Pitman demonstrated how researchers could
devise valid tests of significance between two independent samples that made no
assumptions about the distributions of the sampled populations. In addition, Pitman
showed how precise limits could be determined for the difference between two inde-
pendent means, again without making any assumptions about the populations from
which the samples were obtained. An example will serve to illustrate Pitman’s two-
sample permutation test of significance. Consider two independent samples with m

and n observations, respectively, and let m � n. Denote the observations in the first
sample as x1; x2; : : : ; xm with mean Nx, and denote the observations in the second
sample as y1; y2; : : : ; yn with mean Ny. Let the grand mean of the mCn observations
be given by

Nz D m Nx C n Ny
mC n

and note that Nz is invariant over all

N D
 

mC n

m

!

permutations of the mC n observations with m and n held constant. Then

Ny D 1

n

h
.mC n/Nz �m Nx

i
and the spread of the separation between Nx and Ny is given by

j Nx � Nyj D
ˇ̌̌
Nx � 1

n

h
.mC n/Nz �m Nx

i ˇ̌̌
D mC n

n

ˇ̌ Nx � Nz ˇ̌
D
ˇ̌̌ mX

iD1

xi �mNz
ˇ̌̌mC n

mn
:

Since m, n, and Nz are invariant over the permutations of the observed data,
each arrangement of the observed data is a simple function of

Pm
iD1 xi for a one-

sided probability value and jPm
iD1 xi � mNz j for a two-sided probability value;

consequently, the computation required for each arrangement of the data is reduced
considerably.

In contrast to contemporary permutation methods that compute the probability
of an observed result as the proportion of simulated results as or more extreme
than the observed result, Pitman devised a test of significance as follows. Let M

be a fixed integer less than N and consider any particular mean difference denoted
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Table 2.12 Eight groups of m D 4 with the largest values of jPm
iD1 xi � 68j

Group Groups of m D 4
Pm

iD1 xi jPm
iD1 xi � 68j

1 0 11 12 16 39 29
2 0 11 12 19 42 26
3 0 11 12 20 43 25
4 0 11 12 22 45 23
5 29 24 22 20 95 27
6 29 24 22 19 94 26
7 29 24 20 19 92 24
8 29 24 22 16 91 23

by R. If there are not more than M arrangements with a mean difference equal to or
greater than that of R, the result is considered significant, and if there are M or more
mean differences greater than that of R, the result is considered non-significant. As
Pitman observed, in practice M is typically chosen to correspond with one of the
usual working values, i.e., 5 or 1 %.

Pitman provided the following example, asking “Are the following samples
significantly different?” {1.2, 2.3, 2.4, 3.2} and {2.8, 3.1, 3.4, 3.6, 4.1}. To
simplify calculation, Pitman subtracted 1.2 from each sample value, multiplied each
difference by 10 to eliminate the decimal points, and re-arranged the nine values
in order of magnitude, yielding {0, 11, 12, 16, 19, 20, 22, 24, 29}. He found the
overall mean value to be Nz D 17, so mNz D 68. Pitman explained that there were
N D .4C 5/Š=.4Š 5Š/ D 126 of mC n D 9 values divided into samples of m D 4

and n D 5. The eight groups of m D 4 that gave the largest values of jPm
iD1 xi�68j

are listed in Table 2.12. Pitman observed that the third group of {0, 11, 12, 20} gave
the fifth largest value of jPm

iD1 xi � 68j D 25 and was therefore significant at any
level exceeding 5=126D 0:0397.

Importantly, Pitman noted that while only one test based on differences between
two means was presented in this initial paper, the principle was applicable to all
tests [1129, p. 119]. Pitman went on to mention that other tests of significance
could be developed along the same lines, in particular an analysis of variance test,
and commented that “the author hopes to deal with this in a further paper” [1129,
p. 130].50

2.15.2 Permutation Analysis of Correlation

In the second of the three papers, Pitman began to fulfill his promise in the
first paper and developed the permutation approach for the Pearson product-
moment correlation coefficient “which makes no assumptions about the population

50H.A. David provides a concise summary of the 1937 Pitman paper in his 2008 article in The
American Statistician on “The beginnings of randomization tests” [326].



2.15 Pitman and Three Seminal Articles 81

sampled” [1130, p. 232]. Consider bivariate observations on n objects consisting
of x1; x2; : : : ; xn and y1; y2; : : : ; yn, with means Nx and Ny, respectively. Pitman
showed that the observations of one set (x) may be paired with the observations
of the other set (y) in nŠ ways. Pitman’s test of significance then paralleled the test
of significance in the first paper. Pitman explained as follows. Let M be a fixed
integer less than N D nŠ and consider any particular pairing R. If there are not
more than M pairings with a correlation coefficient equal to or greater than that of
R in absolute value, then R is considered significant, and if there are M or more
pairings with a correlation coefficient greater in absolute value than R, then R is
considered non-significant.

Pitman summarized the results of his investigation by stating that the proposed
test of significance for the correlation of a sample made no assumptions about
the sampled population and concluded that some modification of the analysis
of variance procedure would free it from its present assumptions, “but further
discussion must be reserved for another paper” [1130, p. 232].

2.15.3 Permutation Analysis of Variance

True to form, Pitman followed up on this second promise in the third of his three
papers, although this paper deviated somewhat from the presentations in the earlier
two papers. In this third paper, Pitman proposed a permutation test for the analysis
of variance “which involves no assumptions of normality” [1131, p. 335]. In this
case, however, Pitman did not calculate a permutation test on actual data. Rather,
Pitman detailed the mechanics and advantages of such a permutation test without
carrying through the actual permutation analysis of experimental data, as he had
in the previous two papers. Instead, Pitman noted that in the form of analysis of
variance test discussed in the paper (randomized blocks) the observed numbers were
not regarded as a sample from a larger population. Pitman went on to describe an
experiment consisting of m batches, each batch composed of n individuals with the
individuals of each batch subjected to n different treatments, and defined

W D SSTreatment

SSTreatment C SSError
;

which is a monotonic increasing function of SSTreatment=SSError.51 Pitman explained
that the problem of testing the null hypothesis that the treatments are equal is
undertaken without making any assumptions. He went on to say that if the null
hypothesis is true, then the observed value of W is the result of the chance allocation
of the treatments to the individuals in the batches. He imagined repetitions of the
same experiment with the same batches and the same individuals, but with different
allocations of the treatments to the individuals in the various batches. Pitman also

51Pitman’s use of SSTreatment and SSError is equivalent to SSBetween and SSWithin, respectively, as used
by others.
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noted that there were N D .nŠ/m�1 ways in which the numbers may be grouped
into n groups, so that W may take on N values, and that all values of W are
equally-likely. However, Pitman stopped short of actually calculating a permutation
test based on W . Instead he focused on deriving the first four moments of W and,
based on the beta distribution, concluded that when both m and n are not too small,
“the usual test may be safely applied” [1131, p. 335].52

2.16 Welch and the Correlation Ratio

In a 1938 article, “On tests for homogeneity,” B.L. Welch (q.v. page 73) addressed
tests of homogeneity for the correlation ratio, �2. Assuming a set of k samples,
Welch questioned whether they could reasonably be regarded as having all been
drawn from the same population [1429]. Welch noted that �2 depends on the
observations having been drawn as random samples from an infinite hypothetical
population and suggested that it may be better to consider the observations as
samples from a limited population. Welch advocated calculating exact values on a
limited population before moving into an examination of the moments of an infinite
population [1429].

Welch explained that if there are N total observations with ni observations in
each treatment, i D 1; : : : ; k, then the N observations may be assigned to the k

treatments in

N Š

n1Š n2Š � � � nkŠ

ways and a discrete distribution of �2 values may be constructed to which the
observed value of �2 may be referred [1429]. Welch continued with an example
of an exact calculation and further concluded that if the variances of different
samples were markedly different, normal-theory methods could badly underestimate
significant differences that might exist. An exact permutation test, however, being
free from the assumptions usually associated with asymptotic statistical tests,
had no such limitation. Welch argued for the limited population approach on the
grounds that it assumes nothing not obtained directly from the observed sample
values.53 However, Welch also noted that a limited population is only a mental
construct. As an example, he pointed to a population of unemployed workers. This
population definitely existed and could be sampled, but a population generated by
shuffling the observed observations “does not correspond to anything concrete”
other than the observed sample [1429, p. 154].

52The method of moments was first proposed by Karl Pearson in 1894 [1105].
53Today, this approach is termed “data-dependent” analysis.
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2.17 Olds and Rank-Order Correlation

E.G. Olds, trained as a mathematician, nonetheless achieved substantial recognition
in the fields of statistical assurance and quality control. In addition, Olds contributed
to the growing literature on rank-order correlation methods begun by Spearman in
1904 [1300] and continued by Hotelling and Pabst in 1936 [653].

E.G. Olds
Edwin Glenn Olds graduated with a B.A. degree from Cornell University in
1918 and, at that point, went to Watkins (New York) High School as vice-
principal and athletic coach, then became principal of Beeman Academy
and the New Haven graded schools at New Haven, Vermont [284]. In 1923,
Olds was appointed as instructor in mathematics at the Carnegie Institute of
Technology [282].54 Olds received his M.A. degree in mathematics from the
University of Pittsburgh in 1925 [283] and his Ph.D. in mathematics from the
University of Pittsburgh in 1931 [285], remaining at the Carnegie Institute of
Technology for nearly 40 years [296]. Olds achieved considerable prominence
in the fields of statistical assurance and quality control. Edwin Glenn Olds
died following a heart attack on 10 October 1961 in his Pittsburgh home at
the age of 61.

In 1938 Olds [1054], following up on the work by Hotelling and Pabst on rank-
order correlation methods [653], calculated probability values up to n D 10 for
Spearman’s rank-order correlation coefficient [1300]. The probability values were
based on the relative frequencies in the nŠ permutations of one ranking against the
other (q.v. page 4). The probability values for n D 2; : : : ; 7 were computed from
exact frequencies, however those for n D 8; 9; and 10 were computed from Pearson
type II curves.55 Commenting on the difficulty of computing exact probability
values, even for ranks, Olds echoed the frustration of many statisticians with the
lack of computing power of the day, lamenting: “[f]or sums greater than 8 the
[asymptotic] method becomes quite inviting” [1054, p. 141], and “[f]or n as small as
8, [an exact test] means the requirement of 42 formulas. It is fairly evident that these
formulas will comprise polynomials ranging in degree from 0 to 41” [1054, p. 141].
Despite this, some 11 years later in 1949 Olds was able to extend the probability
values for n D 11; 12; : : : ; 30, again employing Pearson type II curves [1055].

54In 1967, the Carnegie Institute of Technology merged with the Mellon Institute of Industrial
Research to form Carnegie Mellon University, which abuts the campus of the University of
Pittsburgh. The Carnegie Institute of Technology is now the school of engineering at Carnegie
Mellon University.
55There was an error in the denominator of the variance in the 1938 paper. It was first noticed by
Scheffé in 1943 [1230] and corrected by Olds in 1949 [1055].
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2.18 Kendall and Rank Correlation

M.G. Kendall is probably best remembered as the author of seminal books on
rank-order correlation methods, advanced statistical methods, and a dictionary of
statistical terms [729, 731, 734, 742]. However, he was also instrumental in the
development and promotion of permutation statistical methods.

M.G. Kendall
Maurice George Kendall received his B.A. degree in mathematics from St.
John’s College, University of Cambridge, in 1929. In 1930, Kendall joined
the British Civil Service in the Ministry of Agriculture, where he first became
involved in statistical work. In 1949, Kendall accepted the second chair of
statistics at the London School of Economics, which he held until 1961.
Kendall spent the rest of his career in industry and in 1972 became Director of
the World Fertility Study where he remained until 1980 when illness forced
him to step down [1064]. Kendall is perhaps best remembered today for his
revision of George Udny Yule’s textbook An Introduction to the Theory of
Statistics in 1937 [1482], first published in 1911 and continuing through 14
editions; Kendall’s two volume work on The Advanced Theory of Statistics,
with Volume I on “Distribution Theory” appearing in 1943 [729] and Volume
II on “Inference and Relationship” in 1946 [731];56 Kendall’s definitive Rank
Correlation Methods, first published in 1948; and Kendall’s Dictionary of
Statistical Terms with William R. Buckland, published in 1957 [742]. Kendall
was knighted by Queen Elizabeth II in 1974 [73, 1328]. Sir Maurice George
Kendall died on 29 March 1983 at the age of 75.

Kendall incorporated exact probability values utilizing the “entire universe” of
permutations in the construction of � , a new measure of rank-order correlation in
1938 [728].57 The new measure of rank correlation was based on the difference
between the sums of the concordant and discordant pairs of observations. The
actual score for any given ranking of the data was denoted as † by Kendall. For
example, consider the data of two sets (A and B) of ten ranks in Fig. 2.3. There are
n.n � 1/=2 D 10.10 � 1/=2 D 45 possible pairs, divisible into concordant and

56While The Advanced Theory of Statistics began as a two-volume work, in 1966 Alan Stuart
joined with Maurice Kendall and The Advanced Theory was rewritten in three volumes. Keith Ord
joined in the early eighties and a new volume on Bayesian Inference was published in 1994. More
recently, Steven Arnold was invited to join with Keith Ord.
57As Kendall explained in a later publication, the coefficient � was considered earlier by Greiner
[554] and Esscher [414] as a method of estimating correlations in a normal population, and was
rediscovered by Kendall [728] who considered it purely as a measure of rank-order correlation
[734].
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Fig. 2.3 Sets A and B of ten
ranks each

Fig. 2.4 Successive arrays of
† values as delineated by
Kendall [728]

discordant pairs of observations. A concordant pair has the same order and sign and
a discordant pair has a different order and sign. For example, the first pair, starting
from the left, is A D f1; 2g and B D f4; 7g. Since 1 � 2 D �1 and 4 � 7 D �3,
the first pair is concordant as both signs are negative. The second pair is A D f1; 3g
and B D f4; 2g and since 1�3 D �2 and 4�2 D C2, the second pair is discordant
as the signs do not agree, with one being negative and the other positive. The last
pair is A D f9; 10g and B D f5; 9g and since 9 � 10 D �1 and 5 � 9 D �4, the
last pair is concordant as the signs agree. For these data, the number of concordant
pairs is 25 and the number of discordant pairs is 20. Thus, † D 25 � 20 D C5 for
these data.

Kendall considered the entire universe of values of † obtained from the observed
rankings 1; 2; : : : ; n and the nŠ possible permutations of the n ranks (q.v. page 4).
A clever recursive procedure permitted the calculation of the frequency array of †,
yielding a figurate triangle similar to Pascal’s triangle.58

As Kendall explained, the successive arrays of † were constituted by the process
illustrated in Fig. 2.4. For each row, to find the array for .n C 1/, write down the
nth array .nC 1/ times, one under the other and moving one place to the right each

58A recursive process is one in which items are defined in terms of items of similar kind. Using
a recurrence relation, a class of items can be constructed from a few initial values (a base) and a
small number of relationships (rules). For example, given the base, F0 D 0 and F1 D F2 D 1,
the Fibonacci series {0, 1, 1, 2, 3, 5, 8, 13, 21, . . . } can be constructed by the recursive rule Fn D
Fn�1 C Fn�2 for n > 2.
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Fig. 2.5 Figurate triangle for
values of † with
n D 1; : : : ; 5

time, and then sum the .nC 1/ arrays. The process may be condensed by forming
a figurate triangle as in Fig. 2.5. Here, a number in the nth row is the sum of the
number immediately above it and the n�1 (or fewer) numbers to the immediate left
of that number.

Consider row n D 5 in the figurate triangle in Fig. 2.5 where the value of 4 in the
second position from the left in row 5 is the sum of the number above it (3) in row 4
and all the numbers to the left of 3 in row 4 (1), since there are fewer than n�1 D 4

numbers to the left of 3; the value of 9 in the third position from the left in row 5 is
the sum of the number above it (5) in row 4 and all the numbers to the left of 5 in
row 4 (3 and 1), since there are fewer than n � 1 D 4 numbers to the left of 3; the
value of 15 in the fourth position from the left in row 5 is the sum of the number
above it (6) in row 4 and all the numbers to the left of 3 in row 4 (5, 3, and 1), since
there are fewer than n � 1 D 4 numbers to the left of 6; the value of 20 in the fifth
position from the left in row 5 is the sum of the number above it (5) in row 4 and
all the numbers to the left of 5 in row 4 (6, 5, 3, and 1), since there are n � 1 D 4

numbers to the left of 5; and the value of 22 in the sixth position from the left in row
5 is the sum of the number above it (3) in row 4 and the n � 1 D 4 numbers to the
left of 3 in row 4 (5, 6, 5, and 3), since there are more than n � 1 D 4 numbers to
the left of 3. The terms to the right of the last number are filled in from the left, as
each array is symmetrical. A check is provided by the fact that the total in the nth
row is equal to nŠ. Utilizing this technique, Kendall was able to construct a table of
the distribution of † for values of n from 1 to 10 [728, p. 88].

This accomplishment was further extended in a 1939 publication in which
Kendall and Bernard Babington Smith considered “The problem of m rankings,”
developing the well-known coefficient of concordance [739].59;60 Let n and m

denote the number of ranks and the number of judges, respectively, then Kendall
and Babington Smith defined the coefficient of concordance, W , as

W D 12S

m2.n3 � n/
;

59A correction was proffered by J.A. van der Heiden in 1952 for observers who declined to express
a preference between a pair of objects [1390].
60The coefficient of concordance was independently developed by W. Allen Wallis in 1939, which
he termed the “correlation ratio for ranked data” [1411].
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where S is the observed sum of squares of the deviations of sums of ranks from
the mean value m.n C 1/=2. W is simply related to the average of the

�
m
2

	
Spearman rank-order correlation coefficients between pairs of m rankings. Kendall
and Babington Smith showed that the average Spearman rank-order correlation, �av,
is given by

�av D mW � 1

m � 1

and pointed out that �av is simply the intraclass correlation coefficient, rI , for the m

sets of ranks. The coefficient of concordance is also equivalent to the Friedman two-
way analysis of variance for ranks, as noted by I.R. Savage in 1957 [1224, p. 335].

Since m2.n3�n/ is invariant over permutation of the observed data, Kendall and
Babington Smith showed that to test whether an observed value of S is statistically
significant it is necessary to consider the distribution of S by permuting the n ranks
in all possible ways. Letting one of the m sets of ranks be fixed, then there are
.nŠ/m�1 possible values of S . Based on this permutation procedure, Kendall and
Babington Smith created four tables that provided exact probability values for n D 3

and m D 2; : : : ; 10, n D 4 and m D 2; : : : ; 6, and n D 5 and m D 3.
In the same year, 1939, Kendall, Kendall, and Babington Smith utilized per-

mutation methods in a discussion of the distribution of Spearman’s coefficient of
rank-order correlation, �s , introduced by Spearman in 1904 [1300] and given by

�s D 1 �
6

nX
iD1

d 2
i

n3 � n
;

where di D Xi � Yi and Xi and Yi , i D 1; : : : ; n, are the permutation sequences
of the natural integers from 1 to n [746]. Kendall, Kendall, and Babington Smith
observed that to judge the significance of a value of �s it is necessary to consider the
distribution of values obtained from the observed ranks with all other permutations
of the numbers from 1 to n and further noted that in practice it is generally more
convenient to consider the distribution of

Pn
iD1 d 2

i [746, p. 251]. They remarked that
distributions for small values of n obtained by Hotelling and Pabst [653] deviated
considerably from normality and that Hotelling and Pabst proved that as n ! 1
the distribution of �s tends to normality. They went on to mention that �s is mainly
of service when 10 � n � 30 and stated that “it is the aim of the present paper
to throw some light on this crepuscular territory” [746, p. 252]. Finally, Kendall,
Kendall, and Babington Smith gave explicit values up to and including n D 8 with
some experimental distributions for n D 10 and n D 20. The distributions for n

up to 8 were exact and the distributions for n D 10 and n D 20 were based on a
random sample of 2,000 permutations [746, pp. 261–267].
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2.19 McCarthy and Randomized Blocks

M.D. McCarthy, trained as a statistician, was both an accomplished academic and
an able administrator, ultimately serving for 11 years as president of University
College, Cork, in Ireland. McCarthy urged researchers to first use a permutation test
as an approximation to a normal-theory test, then apply the normal-theory test.

M.D. McCarthy
M. Donal McCarthy received most of his advanced education at University
College, Cork, earning a B.A. degree in mathematics and mathematical
physics in 1928, an M.Sc. degree in mathematical science in 1934, and a Ph.D.
in statistics in 1938. He was an academic until he was appointed Director of
the Central Statistics Office, Ireland, on the resignation of R.C. Geary, serving
from 1957 to 1966. From 1967 to 1978 he served as President of University
College, Cork. M. Donal McCarthy died on 31 January 1980 at the age of
71 [910].

In 1939 McCarthy [911] also argued for the use of a permutation test as a first
approximation before considering the data via an asymptotic distribution, citing
earlier works by Fisher in 1935 [451] and 1936 [453] as well as by Welch in
1938 [1429]. McCarthy explained that in certain experiments, especially those in
the physical and chemical sciences, it is possible for a researcher to repeat an
experiment over and over. The repetition provides a series of observations of the
“true value,” subject only to random errors. However, in the biological and social
sciences it is nearly impossible to repeat an experiment under the same essential
conditions. McCarthy addressed the problem of analyzing data from a randomized
blocks experiment and utilized Fisher’s variance-ratio z statistic (q.v. page 33).
He concluded that the use of the z statistic is theoretically justifiable only when
the variations within each block are negligible, and suggested a permutation test on
the yields from a single block as a first approximation.

2.20 Computing and Calculators

The binary (base 2) system is the foundation of virtually all modern computer archi-
tecture. Although the full documentation of the binary system is usually attributed
to the German philosopher and mathematician Gottfried Leibniz61 in his 1703
article on “Explication de l’arithmétique binaire” (Explanation of binary arithmetic)

61Also spelled Leibnitz.
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[508, pp. 223–227], priority should probably be given to the English mathematician
and astronomer Thomas Harriot62 [357, 1047, 1266].

T. Harriot
Thomas Harriot, born circa 1560 in Oxfordshire, England, was an astronomer,
mathematician, ethnographer, translator, and the founder of the English school
of algebra [1047]. He graduated from St. Mary’s Hall, University of Oxford,
in 1580 and immediately moved to London. In 1583 Harriot entered Sir
Walter Raleigh’s service as a cartographer, navigational instructor to Raleigh’s
seamen, Raleigh’s accountant, and designer of expeditionary ships. He sailed
with Raleigh to Virginia in 1585–1586 and most probably accompanied
Raleigh on his expedition to Roanoke Island off the coast of North Carolina
in 1584. Harriot translated the Carolina Algonquin language from two native
Americans, Wanchese and Manteo, who had been brought back to England
by Raleigh in 1584 [586].

In the 1590s Harriot moved from working with Raleigh to an association
with Henry Percy, the 9th Earl of Northumberland. The Earl introduced him
to a circle of scholars, gave him property in the form of a former Abbey, and
provided him with a handsome pension and a house on Northumberland’s
estate of Syon House, west of London on the Thames River near Kew,
that Harriot used as both a residence and a scientific laboratory. Harriot is
best known for his work on algebra, introducing a simplified notation and
working with equations of higher degrees [1392]. Harriot published only one
book in his lifetime, leaving unpublished some 7,000 pages of hand-written
manuscripts that have slowly come into the mainstream of historical record
over the past three centuries. The book, published in 1588, was an abstract
of his extensive Chronicle (now lost) as A Briefe and True Report of the
New Found Land of Virginia—the first book in English about the New World,
detailing the flora, fauna, and land resources of Virginia [587].

As described on the website of the Thomas Harriot College of Arts and
Sciences, Harriot was a man of both intellect and action, described by a
contemporary as, “[t]he master of all essential and true knowledge.” He played
many roles as an adventurer, anthropologist, astronomer, author, cartogra-
pher, ethnographer, explorer, geographer, historian, linguist, mathematician,
naturalist, navigator, oceanographer, philosopher, planner, scientist, surveyor,
versifier, and teacher [586]. The sweeping breadth of Harriot’s life story is
well told in John W. Shirley’s book Thomas Harriot: A Biography [1267]. In
addition, the Thomas Harriot College of Arts and Sciences at East Carolina
State University in Greenville, North Carolina, maintains a list of Internet

(continued)

62Also spelled Hariot, Harriott, or Heriot.
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web-based sources on Thomas Harriot and his times [1265]. Thomas Harriot
died on 2 July 1621 in London and was buried in St. Christopher le Stocks,
which was destroyed in the Great Fire of London in 1666 and is presently the
site of the Bank of England.

G.W. Leibniz
Gottfried Wilhelm von Leibniz was born on 1 July 1646 in Leipzig, Saxony,
although some sources put the date of birth as 21 June 1646 using the Julian
calendar. In 1661 Liebniz began his university education at the University of
Leipzig. After earning his B.A. from Leipzig in December 1662, he continued
his studies at the University of Altdorf, earning a Doctorate of Law in 1667.
While at Altdorf, Leibniz published his Dissertation de arte combinatoria
(Dissertation on the Art of Combinations) in 1661 at the age of 20. In 1672 the
Elector of Mainz, Johann Philipp von Schönborn, sent Leibniz on a diplomatic
mission to Paris, then the center of learning and science. He remained in Paris
for 4 years, meeting with many of the major figures of the intellectual world.
In addition, he was given access to the unpublished manuscripts of both René
Descartes and Blaise Pascal. It was upon reading these manuscripts that he
began to conceive of the differential calculus and his eventual work on infinite
series [842].

In 1673 Leibniz traveled to London to present a prototype of his Stepped
Reckoner calculating machine to the Royal Society. In 1676 Leibniz was
appointed to the position of Privy Counselor of Justice to the Duke of
Hanover, serving three consecutive rulers of the House of Brunswick in
Hanover as historian, political advisor, and as librarian of the ducal library.
Leibniz is considered by modern scholars as the most important logician
between Aristotle and the year 1847, when George Boole and Augustus
De Morgan published separate books on modern formal logic. In addition,
Leibniz made important discoveries in mathematics, physics, geology, paleon-
tology, psychology, and sociology. Leibniz also wrote extensively on politics,
law, ethics, theology, history, and philosophy [819].

Today. Leibniz is best remembered, along with Sir Isaac Newton, for the
invention of infinitesimal calculus. He introduced many of the notations used
today, including the integral sign,

R
, and the d used for differentials. Gottfried

Wilhelm von Leibniz died in Hanover on 14 November 1716.

While Leibniz invented the Stepped Reckoner, a decimal (non-binary) calculator
that could add (subtract) an 8 digit number to (from) a 16 digit number, multiply
two 8 digit numbers together by repeated addition, or divide a 16 digit number by
an 8 digit divisor by repeated subtraction, computing by machine had its beginnings
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with the work of Charles Babbage, variously referred to as the “Grandfather” or
the “Patron Saint” of computing. Sometime around 1821, Babbage had the idea
to develop mechanical computation. Babbage was frustrated with the many errors
in tables used for calculating complex equations, some of which had persisted for
hundreds of years. The errors were largely due to the fact that the tables were copied
by hand and further transcribed to plates for printing. This led Babbage to develop
a mechanical device to calculate and print new tables; the device was called the
Difference Engine as it was designed for calculating polynomials of higher orders
using the method of differences [1336]. The Difference Engine was never finished
by Babbage, but was finally constructed in 1991 and presently resides in the London
Science Museum.63

C. Babbage
Charles Babbage was born in London on 26 December 1791, the son of a
London banker. He attended Trinity College, University of Cambridge, in
1810 but was disappointed in the level of mathematical instruction available
at the time at Trinity. In 1812 he transferred to Peterhouse College, University
of Cambridge, graduating in 1814. In 1817 Babbage received an M.A. degree
from Cambridge. In his twenties, Babbage worked as a mathematician and
was a founder of the Analytical Society along with George Peacock, John
Herschel, Michael Slegg, Edward Bromhead, Alexander D’Arblay, Edward
Ryan, Frederick Maule, and others. In 1821 Babbage invented the Difference
Engine to compile mathematical tables [106, 1290]. From 1828 to 1839
Babbage occupied the Lucasian Chair of Mathematics64 at the University of
Cambridge—Isaac Newton’s former position and one of the most prestigious
professorships at Cambridge—and played an important role in the establish-
ment of the Astronomical Society with mathematician and astronomer John
Frederick William Herschel, the London Statistical Society in 1834 (later,
in 1887, the Royal Statistical Society) and the British Association for the
Advancement of Science (BAAS) in 1831 [1027]. In 1856 he conceived of
a general symbol manipulator, the Analytical Engine.

As an interesting aside, in 1833, at a meeting of the British Association
for the Advancement of Science (now, the British Science Association) the
poet Samuel Taylor Coleridge raised the question as to what name to give
to professional experts in various scientific disciplines: an umbrella term that

(continued)

63Actually, the model in the London Science Museum is of Difference Engine Number 2, designed
by Babbage between 1846 and 1849 [1290, pp. 290–291].
64In a wonderful little book on the history of British science during the nineteenth century, Laura
Snyder noted that while Lucasian Professor of Mathematics at the University of Cambridge from
1828 to 1839, Charles Babbage never delivered a single lecture [1290, p. 130].



92 2 1920–1939

would include anatomists, astronomers, biologists, chemists, and others. The
word “scientist” was suggested by William Whewell, a mineralogist, historian
of science, and future master of Trinity College, and thus was coined the term
“scientist” [1175, p. 8].

Babbage published some eighty volumes in his lifetime and was elected
Fellow of the Royal Society in 1816. Among other accomplishments, Bab-
bage published a table of logarithms from 1 to 108,000 in 1827 and invented
the cow-catcher, the dynamometer, the standard railroad gauge, and occulting
lights for lighthouses. Charles Babbage F.R.S. passed away at home in
London on 18 October 1871 at the age of 79 [672, 1447].

In a well-known story, the textile industry served as the stimulus for Babbage to
provide instructions to the Difference Engine. On 30 June 1836 Babbage conceived
the idea of using punch cards like those devised by Joseph-Marie Jacquard in 1801
to produce patterns in weaving looms. These were similar in both form and function
to those used by Herman Hollerith in 1884 for his electric punch-card tabulator.
Babbage devised a system using four different types of punch cards, each about the
height and width of a modern-day brick. Operation cards instructed the engine to
add subtract, multiply, or divide; variable cards instructed the engine from where to
retrieve the number and where to store the result; combinatorial cards instructed the
engine to repeat a set of instructions a specified number of times; and number cards
were used to save the results [1290, p. 215].

The Jacquard Loom
The Jacquard loom used a series of cards with tiny holes to dictate the raising
and lowering of the warp threads. The warp threads are the longitudinal
threads and the weft threads are the lateral threads. In the weaving process,
the warp threads are raised and lowered as the weft threads are passed through
to create the textile. Rods were linked to wire hooks, each of which could lift
one of the warp threads. The cards were pressed up against the ends of the
rods. When a rod coincided with a hole in the card, the rod passed through the
hole and no action was taken with the thread. On the other hand, if no hole
coincided with a rod, then the card pressed against the rod and this activated
the wire hook that lifted the warp thread, allowing the shuttle carrying the
weft to pass underneath the warp thread [1290, p. 214–215]. The arrangement
of the holes determined the pattern of the weave. The Jacquard method, for
intricate weaving, could require as many as 20,000 punched cards with 1,000
holes per card.



2.20 Computing and Calculators 93

Fig. 2.6 Example of
generating successive values
for f .x/ D 3x2 � 2x C 5

using the method of
differences

2.20.1 TheMethod of Differences

The method of differences defines a process for calculating complex polynomial
expressions using only addition—no multiplication or division—thereby making
it highly amenable to machine calculation. To illustrate the method of differences,
consider a second degree polynomial f .x/ D 3x2�2xC5. Figure 2.6 demonstrates
how the method of differences works. Column 1 in Fig. 2.6 lists possible values of
x from 0 to 4 in Roman typeface, where 4 is the order of the polynomial plus 2.
Column 2 evaluates the polynomial expression f .x/ D 3x2 � 2x C 5. Column
3 lists difference values for 	1 D f .x C 1/ � f .x/ obtained from Column 2,
commonly called first-order differences. Column 4 lists the second-order differences
	2 D 	1.x C 1/ � 	1.x/ that yield a common value of 6. For any polynomial of
order n, Column nC 2 will be a constant.

Once stasis has been reached in Column n C 2, additional values of x can be
evaluated by simple addition by reversing the process. Add an additional value of
the constant 6 to Column 4 (shown in bold typeface); then add that value (6) to the
last value in Column 3 (6C19 D 25); add that value (25) to the last value in Column
2 (25C 45 D 70); and finally increment Column 1 by 1 (4C 1 D 5). For the next
step add another value of 6 to Column 4; add that 6 to the last value in Column 3
(6 C 25 D 31); add the 31 to the last value in Column 2 (31 C 70 D 101); and
increment Column 1 by 1 (5C 1 D 6). The process can be continued indefinitely.

2.20.2 Statistical Computing in the 1920s and 1930s

Permutation methods, by their very nature, incorporate computationally-intensive
procedures and it would be imprudent not to mention the tabulating procedures
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of the 1920s and 1930s. Fisher had purchased a Millionaire calculator soon after
he arrived at the Rothamsted Experimental Station in 1919.65 While addition,
subtraction, and multiplication were easy to implement on the Millionaire, division
was not, and hand-written tables of reciprocals were attached to the lid of the
Millionaire to ease the problem [1027].66 Fisher’s original Millionaire was still
in the office of Frank Yates at Rothamsted in 1974.67 Karl Pearson relied on his
beloved Brunsviga calculators at the Galton Biometric Laboratory, which were
noisy, limited, but very robust machines. Division was done by repeated subtraction
until a bell rang to indicate passage through zero [1027]. Toward the end of his
life in 1936, Pearson was still using a vintage Brunsviga that dated from the turn
of the century and Maurice Kendall was using a Brunsviga in 1965 that he had
inherited from Udny Yule [1164, p. 18]. Commenting on the use of mechanical
desk calculators between 1945 and 1969, M.G. Kendall wrote:

[p]ractical statistics was conditioned by what such a machine — or in a few favored cases, a
battery of such machines — could accomplish. In consequence theoretical advance was held
back, not so much by the shortage of ideas or even of capable men to explore them as by
the technological impossibility of performing the necessary calculations. The Golden Age
of theoretical statistics was also the age of the desk computer. Perhaps this was not a net
disadvantage. It generated, like all situations of scarcity, some very resourceful shortcuts,
economies, and what are known unkindly and unfairly as quick and dirty methods. But it
was undoubtedly still a barrier [738, p. 204].

Statistical computing in the United States in the 1920s was concentrated in
modest statistical laboratories scattered around the country and employed small
mechanical desk calculators such as those manufactured by the Burroughs, Victor,
Monroe, Marchant, or Sundstrand companies [557]. Grier provides an excellent
historical summary of the development of statistical laboratories in the United
States in the 1920s and 1930s [557] and Redin provides a brief but comprehensive
history of the development of mechanical calculators in this period [1158]. Most
of these research laboratories were small ad hoc university organizations and many
were nothing more than a single faculty member arranging to use the university
tabulating machines during off hours [557]. The largest of these laboratories were
substantial organizations funded by small foundations or by private individuals. One
of the first of these statistical computing laboratories was founded at the University
of Michigan by James Glover, a professor of mathematics, under whom George
Snedecor studied. Interest in statistical computing became a popular field of study

65The Millionaire calculator was the first commercial calculator that could perform direct
multiplication. It was in production from 1893 to 1935.
66For Fisher’s first major publication in 1921 on “Studies in crop variation, I,” Fisher produced 15
tables [445]. At approximately 1 min for each large multiplication or division problem, it has been
estimated that Fisher spent 185 h using the Millionaire to produce each of the 15 tables [618, p. 4].
67For pictures of the Millionaire calculator and Frank Yates using the Millionaire, see a 2012 article
by Gavin Ross in Significance [1196]. Also, there is a YouTube video of a Millionaire calculator
calculating the surface of a circle with diameter 3.18311 at http://www.youtube.com/watch?v=
r9Nnl-u-Xf8.

http://www.youtube.com/watch?v=r9Nnl-u-Xf8.
http://www.youtube.com/watch?v=r9Nnl-u-Xf8.
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during the 1930s, as research laboratories acquired the early punch-card tabulator,
first developed by Herman Hollerith for the 1890 census [557]. A picture of the
Hollerith 1890 census tabulator can be viewed at a website on computing history
constructed by Frank da Cruz [308].

H. Hollerith
Herman Hollerith, often called “the father of automatic computation,” grad-
uated from Columbia University with an Engineer of Mines (EM) degree in
1879 and then worked for the U.S. Bureau of the Census on the 1880 census.
Hollerith quickly determined that if numbers could be punched as holes into
specific locations on cards, such as used to produce patterns in a Jacquard
weaving loom, then the punched cards could be sorted and counted electro-
mechanically. The punched cards were especially designed by Hollerith,
having one corner cut off diagonally to protect against the possibility of
upside-down or backwards cards and each punched card was constructed to
be exactly 3.25 in. wide by 7.375 in. long, designed to be the same size as
the 1887 U.S. paper currency because Hollerith used Treasury Department
containers as card boxes. The actual size of the United States currency in 1887
was approximately 3.125 in. wide by 7.4218 in. long (79 mm�189 mm), with
modern currency introduced in 1929 measuring 2.61 in. wide by 6.14 in. long
(66:3 mm � 156 mm).

Hollerith submitted a description of this system, An Electric Tabulating
System [640, 641], to Columbia University as his doctoral thesis and was
awarded a Ph.D. from Columbia University in 1890. There has always been a
suspicion that this was an honorary degree, but it has recently been definitively
established that the degree was not an honorary degree and was awarded by
the Board of Trustees granting Hollerith “the degree of Doctor of Philosophy
upon the work which he has performed” [308].

Hollerith went on to invent a sorter and tabulating machine for the punched
cards, as well as the first automatic card-feed mechanism and the first key
punch. On 8 January 1889 Hollerith was issued U.S. Patent 395,782 for
automation of the census. It should be noted that the 1880 census with 50
million people to be counted took over 7 years to tabulate, while the 1890
census with over 62 million people took less than a year using the tabulating
equipment of Hollerith (different sources give different numbers for the 1890
census, ranging from 6 weeks to 3 years) [308].

In 1896 Hollerith started his own business, founding the Tabulating
Machine Company. Most of the major census bureaus in Russia, Austria,
Canada, France Norway, Puerto Rico, Cuba, and the Philippines leased
his tabulating equipment and purchased his cards, as did many insurance
companies. In 1911 financier Charles R. Flint arranged the merger of the

(continued)
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Tabulating Machine Company, the International Time Recording Company,
and the Computing Scale Company to form the Computing Tabulating
Recording Corporation (CTR). In 1914 Flint recruited Thomas J. Watson from
the National Cash Register (NCR) Company to lead the new company. In 1924
CTR was renamed the International Business Machines Corporation (IBM).
Herman Hollerith passed away on 17 November 1929 in Washington, DC.

In the absence at that time of government granting agencies such as the National
Science Foundation (NSF) and the National Institutes of Health (NIH), it fell to
the United States Department of Agriculture (USDA) to establish the largest of the
early statistical laboratories: the Statistical Laboratory at Iowa State College (now,
Iowa State University) under the direction of George W. Snedecor in 1933 (q.v.
page 35).68 Snedecor previously had been trained by James Glover in the Statistical
Laboratory at the University of Michigan.

The Graduate College of Iowa State College was always alert for opportunities
to invite outstanding scientists to visit and give lectures on their recent work. This
helped keep the local staff abreast of promising developments at other research
centers. Largely due to Dean R.E. Buchanan of the Graduate College and Professor
E.W. Lindstrom of the Department of Genetics, it was the regular custom through
the 1930s and 1940s to invite an outstanding scientist as a Visiting Professor for 6
weeks each summer. The Graduate College provided the expenses and honorarium
of the visiting scientist [859]. In 1931 and 1936 Snedecor invited R.A. Fisher to visit
the Department of Statistics at Iowa State College for the summer. Fisher’s lodging
was a room on the second floor of the Kappa Sigma (K†) fraternity house several
blocks from the Iowa State campus. To combat the summer heat in Iowa, Fisher
would put the sheets from his bed into the refrigerator for the day, then remake his
bed every evening [576].69

While Fisher was at Iowa State College in 1936, the college awarded him an
honorary D.Sc. degree, his first of many.70 Over the two summers, Fisher met and
worked with about 50 researchers eager to learn his methods of analysis. One of
these researchers was Henry Agard Wallace, who later left Iowa State College to
become Secretary of Agriculture.71 As Secretary, Wallace devised and prepared

68Iowa Agricultural College and Model Farm was established in 1858 and changed its name to
Iowa State University of Science and Technology in 1959, although it is commonly known as Iowa
State University.
69For more interesting stories about Fisher, see a 2012 article in Significance by A.E.W. Edwards
and W.F. Bodmer [401].
70Interestingly, the Statistical Laboratory at Iowa State College initiated four o’clock afternoon tea
while Fisher was there in the summer of 1936 [57, 576].
71Henry A. Wallace served as Secretary of Agriculture from 1933 to 1940. When John Nance
Garner broke with then President Franklin Delano Roosevelt in 1940, Roosevelt designated
Wallace to run as his Vice-President. Wallace served as Vice President from 1941 to 1945 when
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the Agricultural Adjustment Act, which required the Department of Agriculture to
undertake large studies of major farm products. Thus, the Agricultural Adjustment
Act of 1933 was a boon to the Statistical Laboratory at Iowa State College.72 Coin-
cidentally, the first statistical computing laboratory to use a punched-card tabulator
was not a university laboratory, but the computing laboratory of the Bureau of
Agricultural Economics, a division of the Department of Agriculture, which started
using punched cards in 1900 [557].

2.21 Looking Ahead

A number of notable threads of inquiry were established during the period 1920
to 1939 that were destined to become important in the later development of
permutation methods.
1. There was widespread recognition of the computational difficulties inherent in

constructing permutation tests by hand, with several researchers bemoaning the
restriction of permutation methods to small samples. For example, Hotelling and
Pabst were forced to limit construction of their exact tables for Spearman’s rank-
order correlation coefficient to small samples of n D 2; 3; and 4, noting that
for larger samples the calculation of exact probability values would be very
laborious [653, p. 35]. Like Hotelling and Pabst, Olds calculated probability
values up to n D 10 for Spearman’s rank-order correlation coefficient, but
only the probability values for n D 2; : : : ; 7 were calculated exactly; those
for n D 8; 9; and 10 were approximated by Pearson type II curves [1054]. In
like manner, Kendall, utilizing a recursion procedure, was able to provide exact
probability values for the � measure of rank-order correlation, but only up to
n D 10 [728].

2. Throughout the period 1920–1939 there was general acceptance that permu-
tation tests were data-dependent, relying solely on the information contained
in the observed sample without any reference to the population from which
the sample had been drawn. Thus, permutation tests were considered to be
distribution-free and not restricted by any assumptions about a population, such
as normality. For example Frank Yates, commenting on the experiment on
Yeoman II wheat shoots conducted by Thomas Eden and himself, concluded that
the need for the postulation of any parent population from which the observed

Roosevelt jettisoned Wallace in favor of Harry S. Truman, who succeeded Roosevelt upon his death
on 12 April 1945 [597]. Finally, Wallace served as Secretary of Commerce from 1945 to 1946.
72The best accounts of the origins and development of the Iowa State College Statistical Laboratory
are Statistics: An Appraisal, edited by H.A. David and H.T. David [327], “Statistics in U.S.
universities in 1933 and the establishment of the Statistical Laboratory at Iowa State” by H.A.
David [324], “Highlights of some expansion years of the Iowa State Statistical Laboratory, 1947–
72” by T.A. Bancroft [58], “Revisiting the past and anticipating the future” by O. Kempthorne
[724], “The Iowa State Statistical Laboratory: Antecedents and early years” by H.A. David [322],
and “Early statistics at Iowa State University” by J.L. Lush [859].
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values are to be regarded as a sample is entirely avoided [1473, p. 165], and
the ground-breaking work by Harold Hotelling and Margaret Pabst on rank
data was designated to be completely distribution-free [653]. Bernard Welch,
commenting on Fisher’s The Design of Experiments in 1937, concluded that
while the calculations required by exact inference would be lengthy, the result
would be a test of hypothesis that was free of any assumptions [1428], and in
1938 Welch noted that an exact test of significance assumed nothing not obtained
directly from the observed sample values [1429, p. 154].

E.J.G. Pitman, in his first of three papers, emphasized that the difference
between two independent means could be determined without making any
assumptions about the populations from which the samples were obtained; in the
second paper on correlation, Pitman summarized the results of his investigation
by stating that the test of significance made no assumptions about the sampled
population; and in the third paper on analysis of variance, Pitman proposed a
permutation test that involved no assumptions of normality, explaining that the
observations were not to be regarded as a sample from a larger population [1129–
1131]. Finally in 1938, Fisher in a little-known book published by the University
of Calcutta Press, Statistical Theory of Estimation, was quoted as saying “it
should be possible to draw valid conclusions from the data alone, and without
a priori assumptions” [455, p. 23].

3. Associated with data-dependency and distribution-free alternatives to conven-
tional tests, it was widely recognized that when utilizing permutation methods,
samples need not be random samples from a specified population. Yates,
discussing the Yeoman II wheat experiment, completely dismissed the notion that
a sample of observations be drawn from a parent population [1473]. Also, Pitman
noted in his discussion of the permutation version of the analysis of variance, that
observations were not to be regarded as a sample from a larger population [1131].
Finally, Welch in his analysis of the correlation ratio, explained that he preferred
to consider samples as drawn from a well-defined limited population rather than
a hypothetical infinite population [1429].

4. It was generally accepted by many researchers that it was not necessary to
calculate an entire statistic, such as a t or a z (later, F ) when undertaking
a permutation test. In fact, only that portion of the statistic that varied under
permutation was required and the invariant portion could therefore be ignored,
for permutation purposes. This recognition greatly reduced the computations
necessary to perform an exact permutation test and allowed for more arrange-
ments of the observed data to be considered in resampling permutation tests.

For example, Eden and Yates substantially reduced calculations by recog-
nizing that the block and total sums of squares would be constant for all of
their 1,000 samples and, consequently, the value of z for each sample would
be uniquely defined by the treatment sum of squares, i.e., the treatment sum of
squares was sufficient for a permutation analysis of variance test [379]. Welch,
in his permutation analysis of randomized blocks, considered a monotonically
increasing function of z that contained only the portion of z that varied under
permutation. In this case, like Eden and Yates, Welch considered only the
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treatment sum of squares [1428]. Pitman, in his permutation analysis of two
samples, observed that since the sample sizes (m and n) and grand mean (Nz) were
invariant over permutation of the observed data, each arrangement was a simple
function of the sum of one sample for a one-sided probability value [1129].

Kendall and Babington Smith, in their discussion of the problem of m

rankings, substantially reduced their calculations by recognizing that the number
of rankings (m) and number of ranks (n) were invariant over permutation of
the observed data and, therefore, calculated only the sum of squared deviations
from the mean of the ranks in their permutation analysis of m rankings [739].
Likewise, Kendall, Kendall, and Babington Smith in their permutation analysis
of Spearman’s rank-order correlation coefficient, considered only the sum of the
squared differences between ranks, which reduced computation considerably for
each of the nŠ arrangements of the observed rank-order statistics [746].

5. Yates developed a recursion process to generate hypergeometric probability
values [1472] and Kendall utilized a recursion technique to generate successive
frequency arrays of sums of concordant and discordant pairs for n D 1; : : : ; 10

[728]. Recursion methods were not new at this time, having been utilized
historically by Blaise Pascal, Christiaan Huygens, James Bernoulli, Willem
’sGravesande, Pierre Rémond de Montmort, and Adolphe Quetelet, among others
[571, 572]. Recursion methods were destined to become powerful tools for the
production of exact probability values in the 1980s and 1990s when computers
were finally able to generate complete discrete probability distributions with con-
siderable speed and efficiency. It is important to mention recursion methods here
as precursors to the algorithmic procedures employed by computer programmers
in later decades.

6. Many of the permutation methods utilized by researchers in the 1920s and 1930s
produced exact probability values based on all possible arrangements of the
observed data values. For example, Fisher in his investigation of monozygotic
and dizygotic twins calculated exact probability values based on all possible
arrangements of Johannes Lange’s data on twins and criminal activity [451].
Fisher also conducted an exact permutation analysis of the lady tasting tea
experiment and an exact permutation analysis of Darwin’s Zea mays data
[451]. Hotelling and Pabst calculated exact probability values based on all nŠ

arrangements of the observed rank data, albeit for very small samples [653], and
Friedman presented the exact distribution of �2

r for a variety of values of p and n

[485]. Pitman calculated exact probability values for his analysis of two-sample
tests [1129]; Olds provided exact probability values for Spearman’s rank-order
correlation coefficient for values of n D 2; : : : ; 7 based on the nŠ possible
arrangements of one ranking against the other [1054]; Kendall constructed exact
values of the differences between concordant and discordant pairs (†) for values
of n from 1 to 10 [728]; and Kendall and Babington Smith created four tables of
exact values for statistic W [739].

On the other hand, some researchers relied on a random sample of all pos-
sible arrangements of the observed data values, i.e., resampling-approximation
probability values. While credit is usually given to Dwass in 1957 for the idea of
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resampling probability values [368], it is readily apparent that resampling was in
use in the 1920s and 1930s, although in a rudimentary way. For example, Geary
utilized a random sample of 1,000 arrangements of cell frequencies to establish
the approximate probability of a correlation between potato consumption and the
incidence of cancer [500], and Eden and Yates examined 1,000 out of a possible
4,586,471,424 arrangements of Yeoman II wheat shoots grown in eight blocks to
generate an approximate probability value [379].

Something that was not emphasized in this chapter was the use of the method
of moments to fit a continuous distribution to the discrete permutation distri-
bution to obtain approximate probability values. The method of moments was
typically used to generate probability values based on permutation distributions
to compare with probability values obtained from asymptotic distributions, such
as the normal or chi-squared distributions. For example, Pitman utilized a method
of moments approach to obtain approximate probability values in all three of
his seminal papers [1129–1131]. There, moments based on the observed data
were equated to the moments of the beta distribution to obtain the correspondence
between the probabilities of the observed statistic and probabilities from the
associated beta distribution. Others who utilized moments of the permutation
distribution to compare results to asymptotic distributions were Welch [1428]
and Friedman [485] in 1937; Olds [1054] and Kendall [728] in 1938; and Kendall
and Babington Smith [739], Kendall, Kendall, and Babington Smith [746], and
McCarthy [911] in 1939.

7. Finally, the profusion of research on permutation methods for small samples by
Hotelling and Pabst; Olds; Kendall and Babington Smith; and Kendall, Kendall,
and Babington Smith ushered in the 1940s when tables of exact probability
values were published for a number of statistics with small sample sizes. These
early works constituted a harbinger of much of the work on permutation methods
during the 1940s: a focus on creating tables for small samples that employed
permutations for the calculations of exact probability values, primarily for
rank tests.



31940–1959

The 1920s and 1930s constituted a time of early development for permutation
statistical methods. This was also a period during which researchers recognized
the difficulties of computing exact probability values for all but the smallest of
data sets. Progress on the development of permutation methods continued over
the next two decades, but in many ways that work took on a different focus from
that of the previous two decades. The recognition of permutation methods as the
gold standard against which conventional statistical methods were to be evaluated,
while often implicit in the 1920s and 1930s, is manifest in many of the publications
on permutation methods that appeared between 1940 and 1959. Also, a number
of researchers turned their attention during this time period to rank tests, which
simplified the calculation of exact probability values; other researchers continued
work on calculating exact probability values, creating tables for small samples; and
still others continued the theoretical work begun in the 1920s. What follows is first
a brief overview of the achievements that took place in the two decades bridging the
1940s and 1950s, followed by an in-depth treatment of selected contributions. The
chapter concludes with a look ahead at the rapid expansion of permutation statistical
methods between 1960 and 1979.

3.1 Overview of This Chapter

The 1940s and 1950s saw a proliferation of non-parametric rank tests, which is not
surprising since, strictly speaking, every rank test is a permutation test; although,
not vice-versa; see for example, discussions by Feinstein in 1973 [421], Bradbury
in 1987 [200], May and Hunter in 1993 [908], Good in 1994 and 2004 [523, 529],
and Ernst in 2004 [413].1 Examples of rank tests in this period include the Kendall
rank-order correlation coefficient [728, 734]; the Friedman two-way analysis of

1A comprehensive overview of statistics in the 1950s is provided by Tertius de Wet in his
presidential address to the South African Statistical Association in 2003 [335].
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variance for ranks [485, 486], which is equivalent to the Kendall coefficient of
concordance [734, 739, 1224, p. 335] and also to the Wallis correlation ratio for
ranked data [1411]; the Wilcoxon two-sample rank-sum test [1453], independently
developed by Mann and Whitney [880], Haldane and Smith [573], van der Reyden
[1391], and Festinger, who, incidentally, was the first to accommodate unequal
sample sizes [427]; the Wald–Wolfowitz runs test [1405]; the Jonckheere–Terpstra
test for ordered alternatives [699, 1347]; the Mann test for trend [879]; the
Kruskal–Wallis one-way analysis of variance rank test [779]; and the Mood median
test [1001].

In addition, permutation methods were often employed to generate tables of
exact probability values for small samples, e.g., tables for testing randomness by
Swed and Eisenhart [1337]; for 2 � 2 contingency tables by Finney [434]; for the
Spearman rank-order correlation coefficient by David, Kendall, and Stuart [328]; for
the Wilcoxon two-sample rank-sum test by Wilcoxon [1453, 1454], White [1441],
and Fix and Hodges [465]; for the Mann test for trend by Mann [879]; for a rank
test of dispersion by Kamat [707]; and for the Mann–Whitney two-sample rank-sum
test by van der Reyden [1391] and Auble [40].

A theme that was commonly repeated between 1940 and 1959 involved the
difficulty of computing exact probability values for raw data and, in response,
the conversion of the raw data to ranks to simplify computation. On this topic,
in 1943 Scheffé [1230] introduced non-parametric randomization tests, building
on the work of Fisher [448], remarking that “except for very small samples
the calculation . . . [was] usually extremely tedious” [1230, p. 311], a problem
that plagued permutation tests until the advent of high-speed computers. In that
same year, Wald and Wolfowitz [1406] developed an exact test procedure for
randomness based on serial correlation, which pointed the way for other researchers
to develop derivations of asymptotic distributions for the non-rank case of the
randomization method [1230, p. 311]. The Wald–Wolfowitz test provided an exact
test of significance by enumerating all possible values of a test statistic for the
measurement of serial correlation.

A year later, Wald and Wolfowitz [1407] devised exact tests of significance for
use in cases when the form of the underlying probability distribution was unknown,
extending the work done by R.A. Fisher in 1925 and 1935 [448, 451]. A general
theorem on the limiting distribution of linear forms in the universe of permutations
of observations was derived. Included in the discussion were applications to the
Pitman test for two samples drawn from the same population [1129], the Pitman test
for dependence between two variates [1130], the Welch [1428] and Pitman [1131]
tests for randomized block designs, and Hotelling’s T 2 generalization of Student’s
two-sample t test [652].

In 1948 Haldane and Smith provided an exact permutation test for birth-
order defects, complete with tables [573]. This exact test was devised to test
whether the probability of a child inheriting a certain medical condition, such as
phenylketonuria, increased with birth order and was equivalent to the Wilcoxon
two-sample rank-sum test. Pitman [1132] in unpublished, but widely circulated
lecture notes for a course given at Columbia University in 1948, showed that the
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Wilcoxon [1453] test for location had an asymptotic relative efficiency (ARE) of
3=
 when compared to Student’s t test under the assumption of normality. Also,
Pitman showed that the Wald and Wolfowitz [1405] runs test had zero asymptotic
efficiency for testing either location or dispersion [1001, p. 520]. New concepts
introduced in these lectures included efficiency, asymptotic power, and asymptotic
relative efficiency. Pitman’s approach to ARE was first published by Noether in 1950
and extended by Noether in 1955 [1038, 1039]; see also a 2009 article on this topic
by Lehmann [815]. Later, infinite classes of linear rank tests were introduced along
with the distributions for which these tests were asymptotically most powerful for
location and scale alternatives by Mielke in 1972 and 1974 [932,933] and by Mielke
and Sen in 1981 [987].

In 1949 Wolfowitz [1466] surveyed a number of problems in non-parametric
inference and recommended that methods for obtaining critical regions be developed
in connection with the randomization methods of Fisher [448] and Pitman [1129].
Lehmann and Stein showed that the permutation tests introduced by Pitman [1129–
1131], when applied to certain discrete problems, coincided with the Fisher two-
sample permutation test and that the two-sample permutation test of Pitman [1129]
was most powerful against the alternative that the two samples were independently
normally-distributed with common variance [818]. In 1951 Freeman and Halton
[480], in what would later become a landmark article, described an exact test for
small samples in r � c and 2 � 2 � 2 contingency tables when the chi-squared test
of independence was not applicable.

In 1952 Wassily Hoeffding (also, Höffding) investigated the power of a family of
non-parametric tests based on permutations of observations, finding the permutation
tests to be asymptotically as powerful as the related parametric tests [636]. These
tests included the Pitman tests for two independent samples [1129], bivariate
correlation [1130], and randomized blocks analysis of variance [1131]; the Fisher
analysis of variance [451]; and the Welch test for randomized blocks [1428].
This was a recurring theme that was also addressed by Silvey in 1953 and 1954,
who further considered the problem of determining the conditions under which
the permutation distribution of a statistic and its normal-theory distribution were
asymptotically equivalent [1275, 1276].2 As detailed by Baker and Collier [52],
Silvey showed analytically that the permutation distribution of the Fisher variance-
ratio z statistic for a one-factor treatment arrangement was asymptotically the F
distribution [52]. In 1955 Box and Andersen also discussed the use of permutation
tests to assess the effect of departures from normality on standard statistical tests,
with specific references to the one-way analysis of variance and randomized block
designs [193]. Similarly, see a 1973 article by Robinson who considered the same
problem as Hoeffding, but did not assume that the errors were independently
distributed with equal variances [1178].

2Unfortunately, these two important articles by Samuel Silvey went largely unnoticed, published as
they were in Proceedings of the Glasgow Mathematical Association, a journal that was not widely
distributed at the time.
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In 1955 Hack generated an empirical F-ratio distribution based on 100 random
selections of the possible permutations of 80 values for each of two root depths
for tomato plants grown under greenhouse conditions [566]. Hack found that
when the data were approximately normally-distributed, Snedecor’s F-ratio and the
permutation version of the analysis of variance F test generally agreed, but when
the data were skewed, a deficiency of large and small values of F underestimated
significance at the 5 % level. Hack included in his study one data set with skewness
coefficient g1 D 1:5, and kurtosis coefficient g2 D 3:0, and a second set of data with
g1 D 3:6 and g2 D 15:9. As documented by Baker and Collier [52], only for the
latter set did the empirical permutation distributions of the variance ratios differ
noticeably from the corresponding F distributions under normal-theory methods
[52]. In 1958 Johnson [690] found the empirical distribution of the F-ratio to be
similar to the randomization distribution studied by Welch in 1937 [1428].

Also in 1955, Kempthorne described the use of randomization in experimental
designs and how randomization permitted evaluation of the experimental results
[719]. Included in his discussion were analysis of variance procedures for com-
pletely randomized, randomized block, and Latin square designs. In 1956 Kamat
[707] proposed a test for the equivalence of two parameters of dispersion, based
on ranks, which was a modification of the Mann–Whitney two-sample rank-sum
test [880]. Kamat also included tables for selected significance levels for small
samples.

In 1956 Scheffé discussed alternative permutation models for the analysis of
variance [1231]. Under the heading of “randomization models,” Scheffé provided
an insightful comparison of the ordinary analysis of variance and the permutation
version of the analysis of variance. The following year, 1957, Dwass [368]
continued the general theme of computational difficulties for permutation tests, even
with small samples. In the same manner as Eden and Yates in 1933 [379], Dwass
recommended taking random samples of all possible permutations for a two-sample
test and making the decision to reject or fail to reject the null hypothesis on the basis
of these random permutations only.

In 1958 Sawrey published a short paper on the distinction between exact and
approximate non-parametric methods, with the first leading to an exact significance
level and the second to an approximate significance level [1227]. Sawrey cautioned
future researchers on the importance of the differences and concluded that when an
exact permutation test was available, it should “always be used unless the labor is
completely prohibitive” [1227, p. 175].

Also in 1958 Chung and Fraser proposed a number of randomization tests for
multivariate two-sample problems [254]. Noting that with few observations on a
large number of variables the Hotelling generalized T 2 test cannot be computed,
they proposed several alternative tests based on permutation methods. Finally, like
Dwass [368], they observed that valid permutation tests could be obtained from a
subgroup of all possible permutations, thereby substantially reducing the amount of
computation required.
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3.2 Development of Computing

Because permutation tests are inherently computationally-intensive, it took the
development of high-speed computing for permutation tests to achieve their poten-
tial. What few computers were available in the period between 1940 and 1959 were
large, slow, very expensive to use, and located at only a few computing centers.
Moreover, in large part their use was restricted to military and industrial applications
and thus were not generally accessible to those involved in the development of
permutation methods. John Vincent Atanasoff at Iowa State University, with the
assistance of his graduate student Clifford Berry, is usually credited with inventing
the first automatic electronic digital computer, which was fully completed in 1942.
Atanasoff, in an attempt to justify the construction of a computer, described the
problems it could be expected to solve.3 Although Atanasoff was an engineer and
applied scientist, the first three problems on his grant request to Iowa State College
were statistical problems: multiple correlation, curve fitting, and the method of
least squares. Other problems on his list included questions relating to quantum
mechanics, electric circuit analysis, elasticity, and other problems primarily of
interest to engineers.

By the late 1930s punched-card machine technology had become so well
established and reliable that Howard Aiken, a graduate student in theoretical
physics at Harvard University, in collaboration with engineers at IBM, undertook
construction of a large automatic digital computer that eventually became known
as the Harvard Mark I.4 The Mark I was the largest electro-mechanical calculator
ever built. It was a behemoth of a machine that was 51 ft long, 3 ft deep, 8 ft high,
weighed nearly five tons, possessed 765,000 components, and contained 530 miles
of wiring. The Mark I was completed in 1944, but its use was largely restricted to
producing mathematical tables. The Mark I was superseded by the Mark II in 1948,
the Mark III in 1949, and the Mark IV in 1952.

J. Cornfield and the Mark I
Salsburg relates an interesting anecdote about Jerome Cornfield and the Mark
I which illustrates both the expense and limited access of computers at that
time [1218]; see also a chapter by Hilbe for another version of this story [618].
In the late 1940s, Jerome Cornfield at the Bureau of Labor Statistics had a
mathematical problem. Cornfield needed to invert a 24�24 matrix for Wassily

(continued)

3Atanasoff’s proposal for construction of the computer was funded by Iowa State College, (now,
Iowa State University) which granted Atanasoff $5,000 to complete his computing machine.
4Technically, the computer was originally called the Aiken–IBM Automatic Sequence Controlled
Calculator (ASCC) and was renamed the Mark I by Harvard University when it was acquired from
IBM on 7 August 1944.
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Leontief, the Nobel prize-winning Columbia University economist he was
working with at the time, but the estimated time for him to invert the matrix
by hand was 100 years working 12 h a day. Cornfield and Leontief decided
to send their 24 � 24 matrix to Harvard University to have it inverted on the
Mark I. When they contracted to pay for the project, the funding was denied
by the Bureau of Labor Statistics on the grounds that the government would
pay for “goods,” but not for “services.” Cornfield then negotiated with the
Bureau for a purchase order for capital goods. The invoice called for “one
matrix, inverted” [1218, pp. 177–179]. The matrix was successfully inverted
by the Mark I, taking only several days instead of 100 years [618, pp. 5–6].

The IAS (Institute for Advanced Study) computer was built from late 1945
to 1951 under the direction of John von Neumann (originally, Neumann János
Lajos) for the Institute for Advanced Study in Princeton, New Jersey. The IAS
computer was a stored-program parallel-processor computer and the architectural
design was so successful that most computers built since the 1940s have been
“von Neumann” machines [41, Sect. 5.8]. The IAS was a binary computer with a
40-bit word and 1,024 words of memory. It could perform 2,000 multiplications
in one second and add or subtract 100,000 times in the same period [240, p.
278]. In March of 1953 there were only 53 kilobytes of high-speed random-access
memory in the entire world; five kilobytes (40,960 bits) were housed in the IAS
computer [370, p. 4]. When President Eisenhower appointed von Neumann to the
Atomic Energy Commission (AEC) in 1954, von Neumann left the Institute and
the computer project went into decline. Three years later, on 8 February 1957,
John von Neumann died of advanced metastasizing cancer; he was only 53 years
of age.5 As George Dyson reported, without its messiah, the computer project at
the Institute of Advanced Study lost support and was terminated. At midnight on
15 July 1958, Julian Himely Bigelow, von Neumann’s chief engineer, turned off the
master control, logged off with his initials, J.H.B, and The Institute for Advanced
Study Numerical Computing Machine ceased functioning [370, p. 315].

The year 1946 saw the completion of ENIAC (Electronic Numerical Integrator
and Computer), the first general purpose computer built for the United States Army
Ballistic Research Laboratory in the Moore School of Engineering at the University
of Pennsylvania with a speed of 5,000 simple additions or subtractions per second.
The ENIAC computer contained 17,648 double-triode vacuum tubes, had 500,000
soldered joints, 1,500 hundred relays, hundreds of thousands of resistors, capacitors,
and inductors, weighed 27 tons, and occupied 680 ft2 of space [1424]. In 1949
Andrew Hamilton famously predicted that “[w]here a calculator like the ENIAC
today is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the

5For an interesting biography of John von Neumann, as related to computers and computing
science, see Chap. 4 in the 2012 book Turing’s Cathedral by George Dyson [370, Chap. 4].
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future may have only 1,000 vacuum tubes and perhaps weigh only 1 1
2

tons” [580,
p. 258]. In late 1947 the ENIAC was moved 200 miles to its permanent home at the
Ballistics Research Laboratory at Aberdeen Proving Ground in Maryland.

In 1947, the transistor was invented by William Shockley, Walter Brattain, and
John Bardeen at Bell Laboratories (now, Alcatel–Lucent) in Murray Hill, New
Jersey.6 However, it was not until 1956 that the first transistorized computer was
constructed; it was named the TX-0 by its designers at the Massachusetts Institute of
Technology [618]. The impact of the transistor on computing cannot be overstated.
When Bell Laboratories announced the invention of the transistor in 1948, the press
release boasted that more than a hundred transistors could easily be held in the palm
of the hand. Today, a person can hold more than 100 billion transistors in the palm
of one hand. Moreover, on today’s market, transistors cost only about a dollar per
billion, making them the cheapest and most abundant manufactured commodity in
human history [602, p. 106].

In 1949 the EDSAC (Electronic Delay Storage Automatic Calculator) computer
successfully ran its first program at the University of Cambridge, computing all
the squares of numbers from 0 to 99. EDSAC was a general purpose serial
electronic calculating machine installed at the Cambridge University Mathematical
Laboratory. EDSAC could process 650 instructions per second with 1,024 17-bit
words of memory stored in mercury delay lines, each of which was about 5 ft long,
and ran at 500 kHz with a multiplication time of about 7 ms. In 1950 EDSAC began
providing general service to the University of Cambridge users.

Fisher and Computing
Many people have surmised what R.A. Fisher could have accomplished if
only he had access to a modern computer. As noted by Edwards in 2012
[401, p. 44], in 1950 Fisher was the first person to tackle a biological problem
with a computer, publishing the results in an article titled “Gene frequencies
in a cline determined by selection and diffusion” in Biometrics [458]. The
analysis required the tabulation of the solution of a second-order non-linear
differential equation with two boundary point conditions; consequently, he
called on his friend Maurice Wilkes, the constructor of the EDSAC computer
at the University of Cambridge, who passed the problem to one of his students,
David Wheeler, in whose Ph.D. thesis the solution first appears [401, p. 44].
In Fisher’s own words:

[v]alues of q [one minus the probability] to eight decimal places, from x D 0,
by intervals of .02, to extinction, are given in Table I. I owe this tabulation to

(continued)

6This statement paints a rosy picture of the relationship between Shockley, on the one hand, and
Brattain and Bardeen, on the other hand, that was nothing but congenial. For a more detailed
account, see a 2010 book by Sam Kean titled The Disappearing Spoon [712, pp. 41–43].
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Dr. M. V. Wilkes and Mr. D. J. Wheeler, operating the EDSAC electronic computer.
The last decimal place may be in error by 3 or 4 digits [458, p. 357].

It was a difficult solution as it involved programming of an automatic trial-
and-error method for satisfying the boundary conditions at the two ends of the
interval. The entire story is related in the autobiography of Maurice V. Wilkes,
Memoirs of a Computer Pioneer, published in 1985 [1455, pp. 148–149].

It is interesting to compare the advances in computing in the United States
after World War II with those of Great Britain. The two models, one based on
a cooperative effort between private industry and the federal government, and the
other based on the federal government alone, provide a vivid contrast in the speed
with which computing was adopted by both universities and private corporations in
both countries.

Computing in Great Britain
When World War II broke out, British mathematicians and physicists were
enlisted to work on the development of intelligence and early warning systems
in government laboratories and institutions. Two of the institutions were
the Telecommunications Research Establishment in Great Malvern and the
highly secretive Government Code and Cipher School at Bletchley Park
[426, p. 53]. As Georgina Ferry related in a book titled A Computer Called
LEO, at that time Great Britain was actually ahead of the United States
in developing computing capability. The Mark I Colossus, the first truly
electronic programmable digital computer, was developed by Thomas H.
(Tommy) Flowers at Bletchley Park in 1943, and was followed six months
later by the Mark II Colossus, which was five times faster than the Mark I
Colossus. Thus, electronic computers had been built and were working in
Great Britain while ENIAC was still on the drawing boards at the Moore
School of Engineering at the University of Pennsylvania [426, pp. 55–57].

The development and construction of computers in the United States was
often a joint effort between the government and the private sector, including
Bell Laboratories and such universities as the University of Pennsylvania,
Iowa State University, and Harvard University. Thus, while ENIAC was
quickly declassified and achieved world fame in the post-war years, Colossus
was a military project and remained obscured behind the impervious wall of
the Official Secrets Act [426, p. 56]. As Newton E. Morton described in an
obituary of Cedric Smith, human genetics and other scientific fields in Great
Britain were “[expletive deleted] by government policy that protested British
computers [and] for a score of years the sciences that needed competitive

(continued)
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computing were stifled, and many of their practitioners changed disciplines
or countries” [1008, p. 10]. Thus, there was no concerted effort by the British
government to explore and develop civilian applications [426, p. 57]. It was
not until 30 years later in 1974 that the secrecy act was lifted.7 In the
meantime, Tommy Flowers had done as he was told and burned all of his
records. Today, the Bletchley Park Trust proudly shows visitors around the
site and in 1996 a reconstruction of Colossus was unveiled [426, p. 57].

In 1951, the first UNIVAC (UNIVersal Automatic Computer) computer was
delivered to the United States Census Bureau, with a speed of 1,905 operations per
second. In 1952 Univac Computer Corporation applied for and eventually received a
patent on the digital computer, which was voided in the late 1960s when Honeywell
Computer Corporation sued Univac claiming that Univac did not have a right to a
patent on computers [556]. It was a UNIVAC 1 computer at the United States Census
Bureau that provided, for the first time, a computer-based forecast of the 1952 U.S.
Presidential election between Dwight D. Eisenhower and Adlai E. Stevenson. It also
was the first time that a working computer was shown on television, as the returns
were broadcast by the Columbia Broadcasting System (CBS) in November of 1952
[556].

A year earlier, in November of 1951, LEO (Lyons Electronic Office) became
the first computer in the world to be harnessed to the task of managing a business,
anticipating IBM by 5 years. That business was J. Lyons & Company, renowned
throughout England for its fine teas and cakes [426, p. viii]. In 1952, the MANIAC
(Mathematical Analyzer, Numerical Integrator, And Computer) computer was
installed at the Los Alamos Scientific Laboratory in New Mexico. MANIAC was
an all vacuum-tube computer primarily used for “Project Mike” in the development
of the first hydrogen bomb. MANIAC had 1,024 words of memory with a word
length of 40 bits and, in addition, had a 10,000 word drum for auxiliary storage
[1436]. Maniac was later upgraded to five kilobytes of memory. As George Dyson
observed in 2012, that is less than what is allocated to displaying a single icon on a
computer screen today [370, p. ix].

In 1953 the ORACLE (Oak Ridge Automatic Computer and Logical Engine)
computer was installed at the Clinton Engineer Works in Oak Ridge, Tennessee.
ORACLE was based on the IAS architecture developed by John von Neumann
and used both vacuum tubes and transistors (q.v. page 106). ORACLE employed
a Williams tube for 1,024 words of memory of 40 bits each (later doubled to 2,048
words) and, at the time, was the fastest computer and possessed the largest data

7In fact, it took 70 years for the Government Communications Headquarters (GCHQ) to release two
papers written by Alan Turing between April 1941 and April 1942 while he was head of wartime
code-breaking at Bletchley Park. The two papers on “Paper on the statistics of repetitions” and
“Other applications of probability to cryptography” were finally released in April of 2012 [25].
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storage capacity of any computer in the world [753]. In 1953, the first magnetic
core memory was installed at the Massachusetts Institute of Technology and IBM
shipped its first computer, the IBM 701, with a speed of 16,000 operations per
second. In 1957, FORTRAN (FORmula TRANslation) was developed by John
Warner Backus at IBM,8 and in 1958 Jack Kilby created the first monolithic
integrated circuit at Texas Instruments in Dallas, Texas. At the same time, Robert
Noyce at Fairchild Semiconductor in Mountain View, California, independently
created the integrated circuit. Kilby made his integrated circuit with a germanium
(Ge) surface, while Noyce made his with a surface of silicon oxide (SiO2) [618].
The first computer hard drive was developed by IBM in 1956; it consisted of 50
two-foot diameter platters, could store five million characters, and weighed one ton
[618].

It is, perhaps, interesting to note that in the mid-1950s computers contained either
built-in pseudorandom number generators (PRNG) or could refer to random number
tables [1419]. Unfortunately, the initial random number (seed) in the standard
FORTRAN library was a constant, meaning that all simulations using this subroutine
were using the same series of random numbers [1344, p. 43].

No account detailing the development of computing in this period would be
complete without a mention of Rear Admiral Grace Hopper, programmer of, at that
time, the world’s most complex computing machine, the “mother of COBOL,” and
the first woman to earn a Ph.D. in mathematics from Yale University in the school’s
223 year history [165, pp. 25–26].9

Grace Hopper
Grace Brewster Murray Hopper graduated Phi Beta Kappa with a degree in
mathematics and physics from Vassar College in Poughkeepsie, New York, in
1928, then earned her M.A. in mathematics from Yale University in 1930 and
her Ph.D. in mathematics from Yale University in 1934 under the direction
of algebraist Øystein Ore. In 1934 Hopper accepted a full-time academic
position at her undergraduate alma mater, Vassar. In 1940 Hopper took a
1-year sabbatical to study with the celebrated mathematician Richard Courant
at New York University. In the fall of 1942 Hopper returned to her tenured
position at Vassar. However, in late 1943 Hopper took a leave of absence from
her position at Vassar, making a life-altering decision to serve her country
by joining the U.S. Navy. She reported to the United States Naval Reserve

(continued)

8For a history of the development of FORTRAN, see the recollection by John Backus in the special
issue of ACM SIGPLAN Notices on the history of programming [44].
9This statement is from Kurt Beyer, Grace Hopper and the Invention of the Information Age.
Actually, the first woman to earn a Ph.D. in mathematics from Yale University was Charlotte
Cynthia Barnum (1860–1934) who received her Ph.D. in mathematics in 1895 [1018].
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Midshipmen’s School–Women in Northampton, Massachusetts, in December
of 1943. Hopper graduated from Midshipmen’s School in 1944 as battalion
commander and first in her class [165].

Much to her surprise, upon graduation Lieutenant (Junior Grade) Hopper
was assigned to the Bureau of Ordnance Computation at Harvard Univer-
sity, becoming the third programmer of the world’s most complex, unique
computing machine, the Automatic Sequence Controlled Calculator (ASCC),
later renamed the Harvard Mark I. The ASCC was an early example of a
programmable machine and was housed, under high security, in the basement
of Harvard University’s Cruft Physics Laboratory. Hopper worked under
Commander Howard H. Aiken and it was here that she was credited with
coining the term “bug” in reference to a glitch in the computer: actually a large
moth had flown into the laboratory through an open window on 9 September
1945 and was stuck between points at Relay #70, Panel F, of the Mark II
Aiken Relay Computer, whereupon she remarked that they were “debugging”
the system [870, 1042].

At the conclusion of the war, Hopper resigned from Vassar to become a
research fellow in engineering and applied physics at Harvard’s Computation
Laboratory and in 1949 she joined the Eckert–Mauchly Computer Corpora-
tion as a senior mathematician, retaining her Naval Reserve commission. The
corporation was soon purchased by Remington Rand in 1950, which merged
into the Sperry Corporation in 1955. Here Hopper designed the first compiler,
A-0, which translated symbolic mathematical code into machine code [870].
In 1966, then Commander Hopper retired from the Naval Reserves, but was
recalled less than seven months later. In 1973 Hopper was promoted to the
rank of Captain, in 1983 she was promoted to the rank of Commodore in a
ceremony at the White House, and in 1985 she was elevated to the rank of
Rear Admiral. In 1986, after 43 years of military service, Rear Admiral Grace
Hopper retired from the U.S. Navy on the deck of the USS Constitution at
the age of 80. She spent the remainder of her life as a senior consultant to
the Digital Equipment Corporation (DEC). Grace Brewster Murray Hopper
died in her sleep on 1 January 1992 at the age of 86 and was buried with
full military honors at Arlington National Cemetery in Arlington, Virginia
[823, 1042].

3.3 Kendall–Babington Smith and Paired Comparisons

In 1940 Maurice G. Kendall (q.v. page 84) and Bernard Babington Smith, the
renowned University of Oxford experimental psychologist, published a lengthy
article on the method of paired comparisons [741]. This article dealt with the same
problem as their 1939 article (q.v. page 86) on the problem of m rankings [739],
but in a very different manner. They considered a general method of investigating
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preferences. As they explained, given n objects suppose that each of the
�

n
2

	
possible

pairs is presented to an observer and the preference of one member of each pair is
recorded. With m observers the data then comprise m

�
n
2

	
preferences. The primary

question for Kendall and Babington Smith was: is there any significant concordance
of preferences between observers? [741, p. 325].

B. Babington Smith
Bernard Babington Smith, known as BBS, was one of four sons and five
daughters of Sir Henry Babington Smith and Lady Elizabeth Babington Smith
(née Bruce), daughter of the 9th Earl of Elgin (Victor Alexander Bruce),
grandson of the Lord Elgin (Thomas Bruce) who removed the Elgin marbles
from the Parthenon and other buildings on the Acropolis of Athens while
he was serving as the British ambassador to the Ottoman Empire from 1799
to 1803. Little is known of the early years of Bernard Babington Smith,
but he was most likely home-schooled like his sister, Constance Babington
Smith. In 1939 Babington Smith was a Lecturer in Experimental Psychology
at the University of St. Andrews in Scotland, but resigned to join the
Royal Air Force (RAF) at the beginning of World War II. He served with
his celebrated sister, Constance Babington Smith, and with Sarah Oliver,
daughter of Sir Winston Churchill, as wartime photographic interpreters in
the Allied Photographic Intelligence Unit at Medmenham, Buckinghamshire.
It was Constance Babington Smith who first identified a pilotless aircraft at
Peenemünde, a major German rocket research facility on the Baltic Coast,
and it was her discovery that led to a critical bombing campaign by Allied
Forces that flattened strategic launch sites in France. Constance Babington
Smith writes about her brother in her book Evidence in Camera, and supplies
a picture of Bernard Babington Smith [42].

After the war Babington Smith joined the faculty at the University of
Oxford in 1946. While at Oxford, Babington Smith collaborated with Maurice
Kendall (q.v. page 84) on a number of projects that resulted in important
publications on ranking methods and random numbers. One of his students
was Ralph Coverdale, founder of the Coverdale Organisation. Coverdale and
Babington Smith worked together for many years on Coverdale Training, a
highly developed form of learning through action. In 1973 when Babington
Smith retired, he was Senior Lecturer in Experimental Psychology and Fellow
of Pembroke College at the University of Oxford. Bernard Babington Smith
died on 24 August 1993 at the age of 88 [683, 808].

Consider a set of n objects f!1; : : : ; !ng and an observer who is asked to choose
between every pair. If !1 is preferred over !2, write !1 ! !2. If the observer is
not completely consistent, preferences might be made of the type !1 ! !2 !
!3 ! !1. This they termed an inconsistent or circular triad. Let d be the number
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of circular triads in a given experiment, then Kendall and Babington Smith showed
that

� D 1 � 24d

n3 � n
if n is odd

and

� D 1 � 24d

n3 � 4n
if n is even

may be regarded as a coefficient of consistency, with 0 � � � 1 and n � 3.
For a brief aside, consider that 10 years later in 1950, B. Babington Smith

served as a discussant at a symposium on ranking methods organized by the Royal
Statistical Society with presenters P.A.P. Moran, J.W. Whitfield, and H.E. Daniels
[314, 1005, 1444]. Here Babington Smith expressed caution regarding the use of
paired ranking methods, in general, and the coefficient of consistency, in particular.
He related watching a subject rank order nine items and observed that the subject
made more than 70 comparisons between pairs of items.10;11 As to the coefficient
of consistency, Babington Smith suggested a new definition and a new symbol for
the coefficient, where

„ D 1 �
 

n

2

!�1

4d ;

which gives the same form, but a different minimum value, for n odd and even. The
advantage, he noted, is that „ is more in line with other coefficients and when the
chance expectation of circular triads is realized, the value of „ is zero. Finally, he
observed that there is a certain advantage to attaching a negative sign to the situation
where the number of circular triads exceeds chance expectation.

Based on the permutation structure of �, Kendall and Babington Smith calculated
the exact probability distribution of � for n D 3; : : : ; 7, and conjectured that the four
moments of � were given by

10The maximum number of inversions required to reverse the order of ranks follows an irregular
series. For n D 2, the maximum number of inversions, I , is 1; for n D 3, I D 3; for n D 4,
I D 6; and so on. Thus, the sequence is 1, 3, 6, 10, 15, 21, and so on. The sequence is a component
of Pascal’s triangle; see Column 3 in Table 3.11 of this chapter, page 186. Any successive number
can be obtained by n.n C 1/=2. Thus, for n D 9 objects the maximum number of inversions is
9.9C1/=2 D 45. It stretches the imagination that a subject made more than 70 paired comparisons
to rank order only nine objects.
11This is the reason that the Academy of Motion Picture Arts and Sciences places a maximum limit
of 10 nominations for the Academy Awards (Oscars), as it is too difficult for the judges to rank
order a larger number of nominations.
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�0
1 D

1

4

 
n

3

!
;

�2 D 3

16

 
n

3

!
;

�3 D � 3

32

 
n

3

!
.n � 4/ ;

and

�4 D 3

256

 
n

3

!"
9

 
n � 3

3

!
C 39

 
n � 3

2

!
C 9

 
n � 3

1

!
C 7

#
;

these being polynomials in n which agreed with their numerical calculations for
n D 3; : : : ; 7. If m < s, then

�
m
s

	 D 0. Kendall and Babington Smith explained that
they had very little doubt that the moments were correct, but were unable to offer
a rigorous proof [741, p. 332]. They further conjectured that the distribution of �

tended to normality as n increased.12

3.4 Dixon and a Two-Sample Rank Test

In 1940 Wilfrid Dixon devised a statistic that he called C 2. The new statistic was
designed to test the null hypothesis that two samples represent populations with the
same distribution function [353].

W.J. Dixon
Wilfrid Joseph Dixon received his B.A. degree in mathematics from Oregon
State College (now, Oregon State University) in 1938, his M.A. degree in
mathematics from the University of Wisconsin in 1939, and his Ph.D. in math-
ematical statistics from Princeton University in 1944 under the supervision of
Samuel S. Wilks. Dixon accepted a position at the University of Oklahoma
in 1942, moved to the University of Oregon in 1946, and moved again to the
University of California at Los Angeles (UCLA) in 1955, where he remained
until his retirement in 1986. While at UCLA, Dixon formed the Biostatistics

(continued)

12These results were later proved by Patrick Moran in a brief article on “The method of paired
comparisons” in Biometrika in 1947 [1003].
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Division in the School of Public Health and also organized and chaired the
Department of Biomathematics in the School of Medicine. Wilfrid Joseph
Dixon died at home from heart disease on 20 September 2008 at the age of 92
[472, 473].

In 1940 Dixon published a short note in The Annals of Mathematical Statistics
on a criterion for testing the null hypothesis that two samples have been drawn from
populations with the same distribution function [353]. Following the notation of
Dixon [353], let the two samples, On and Om, be of size n and m, respectively and
assume n � m. Arrange in order the elements u1; : : : ; un of On into their order
statistics, i.e., u1 < u2 < � � � < un, where the elements represent points along a line.
The elements of the second sample, Om, represented as points on the same line are
then divided into nC 1 groupings by the first sample, On in the following manner:
let m1 be the number of points with a value u1, mi is the number of points with a
value greater than ui and less than or equal to uiC1 for i D 1; : : : ; n, and mnC1 is
the number of points with a value greater than un. The criterion proposed by Dixon
was

C 2 D
nC1X
iD1

�
1

nC 1
� mi

m

�2

: (3.1)

An example will illustrate the calculation of C 2. Consider samples On D
f3; 9; 1; 5g with n D 4 elements, Om D f6; 2; 8; 7; 2g with m D 5 elements,
and arrange the elements in order representing points along a line:

1; 2; 2; 3; 5; 6; 7; 8; 9;

where an underline indicates the element is from the first sample, On. Then m1 D 0,
as there are no points less than u1 D 1; m2 D 2, as there are two points (2 and 2)
between u1 D 1 and u2 D 3; m3 D 0, as there are no points between u2 D 3 and
u3 D 5; m4 D 3, as there are three points (6, 7, and 8) between u3 D 5 and u4 D 9;
and m5 D 0, as there are no points greater than u4 D 9. Then, following Eq. (3.1),

C 2 D 3

�
1

4C 1
� 0

5

�2

C
�

1

4C 1
� 2

5

�2

C
�

1

4C 1
� 3

5

�2

D 3.0:02/2 C .�0:20/2 C .�0:40/2

D 0:60C 0:04C 0:16

D 0:80 :
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Dixon provided a table for values of C 2 for m � 10, n � 10, and ˛ D 0.01, 0.05,
and 0.10 where C 2

˛ was defined as the smallest value of C 2 for which P.C 2 �
C 2

˛ / � ˛.13

Dixon showed that if m and n increased indefinitely in the ratio n=m D � ,
then nC 2 converged stochastically to � C 1, whereas if n is small, nC 2 ranged
from 0 to n2=.nC 1/, indicating a distribution with a tail to the right. To illustrate
the range of nC 2, consider two samples On D f1; 2; 3; 4g with n D 4 elements,
Om D f5; 6; 7; 8; 9g with m D 5 elements, arranged in order representing points
along a line:

1; 2; 3; 4; 5; 6; 7; 8; 9;

where an underline indicates the element is from the first sample, On. Then, m1 D
m2 D m3 D m4 D 0, m5 D 5, and following Eq. (3.1),

C 2 D 4

�
1

4C 1
� 0

5

�2

C
�

1

4C 1
� 5

5

�2

D 4.0:20/2C .�0:80/2

D 0:16C 0:64

D 0:80 :

Then, nC 2 D 4.0:80/ D 3:20, which is equal to n2=.nC 1/ D 42=.4C 1/ D 3:20,
the upper limit of the range given by Dixon [353, p. 202].

For the lower limit of the range, consider two samples On D f2; 4; 6; 8g with
n D 4 elements consisting of four consecutive even integers, Om D f1; 3; 5; 7; 9g
with m D 5 elements consisting of five consecutive odd integers, arranged in order
representing points along a line:

1; 2; 3; 4; 5; 6; 7; 8; 9;

where an underline indicates the element is from the first sample, On. Then m1 D
m2 D m3 D m4 D m5 D 1, and following Eq. (3.1),

C 2 D 5

�
1

4C 1
� 1

5

�2

D 5.0/2 D 0:00 :

Thus, when the two samples are in random order with respect to each other, the
lower limit is nC 2 D 4.0:00/ D 0. This suggested to Dixon that for larger samples
of m and n it was reasonable to try to fit the distribution of nC 2 by the method of

13This was a typical approach for the time. Because a permutation test generally did not generate
a value of the statistic that coincided exactly with ˛ (e.g., 0.05 or 0.01) of the permutation
distribution, a value of the permuted statistic, C 2

˛ , was defined as the smallest value of statistic
C 2 for which P.C 2 � C 2

˛ / � ˛.
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moments. The rest of this short article by Dixon was devoted to finding the moments
of nC 2 and fitting a continuous probability distribution, in this case the chi-squared
distribution with v degrees of freedom, where

v D an.nCmC 1/

nC 1

and

a D m.nC 3/.nC 4/

2.m� 1/.mC nC 2/.nC 1/
:

3.5 Swed–Eisenhart and Tables for the Runs Test

In 1943 Frieda Swed and Churchill Eisenhart, both of whom were at the University
of Wisconsin at the time, developed a runs test that was based on the existing runs
test of Wald and Wolfowitz [1337].

F.S. Swed
Little is known of Frieda Selma Swed after she earned her B.A. and M.A. in
mathematics from the University of Wisconsin at Madison in 1935 and 1936,
respectively. In 1937 she was appointed as a research assistant in Agricultural
Economics and in 1942 as a research assistant in the Agricultural Statistical
Service at the University of Wisconsin. On 17 March 1946 she married
Herbert E. Cohn who was an accountant for the University of Wisconsin.
Herbert Cohn passed away on 27 June 1995 at age 81. Frieda Cohn worked
for the University of Wisconsin for 50 years, principally for the Numerical
Analysis Laboratory. She was an ardent University of Wisconsin booster, who
for many years tutored the University of Wisconsin athletes in calculus and
higher mathematics. Frieda Swed Cohn passed away on 7 October 2003 at the
age of 88 [332, p. 27].

C. Eisenhart
Churchill Eisenhart received his A.B. degree in mathematical physics in 1934
and a year later, his A.M. degree in mathematics, earning both from Princeton
University. During his junior year, Eisenhart was introduced to statistics when
his professor, Dr. Robert U. Condon, gave him a copy of Statistical Methods

(continued)
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for Research Workers by R.A. Fisher. As a physics major, the Fisher text made
Eisenhart realize that “most physicists simply do not know how to handle
small sets of measurements” [1057, p. 513] and the book kindled his interest
in statistics. Eisenhart worked with Samuel Wilks while he was at Princeton,
and it was Wilks who suggested that Eisenhart move to University College,
London, where Egon Pearson was chair, for his Ph.D. studies.

Eisenhart completed his Ph.D. at University College, London, in 1937
under the direction of Jerzy Neyman. Upon graduation, Eisenhart returned to
the United States, taking a position at the University of Wisconsin at Madison,
where he remained until 1947, although during World War II Eisenhart
was a Research Associate at Tufts University, a Research Mathematician
in the Applied Mathematics Group at Columbia University, and Principal
Mathematical Statistician for the Statistical Research Group at Columbia (q.v.
page 69). In 1945, Condon was appointed head of the National Bureau of
Standards (NBS)14 and brought Eisenhart to the Bureau in October of 1946.
Eisenhart was appointed Chief of the NBS Statistical Engineering Laboratory
in 1947 and in 1963 became a Senior Research Fellow. He retired from the
NBS in 1983, but stayed on as a guest researcher. Churchill Eisenhart died
from cancer at the age of 82 on 25 June 1994 [406, 1057, 1140].

In 1940 Abraham Wald (q.v. page 122) and Jacob Wolfowitz (q.v. page 122)
published a new procedure to test whether two samples had been drawn from
the same or identical populations [1405]. In this article they observed that in the
problem treated by “Student,” the distribution functions were assumed to be known,
i.e., normal in form and completely specified by two parameters. They argued that
such assumptions were open to very serious objections. For example, as they pointed
out, the distributions may be radically different, yet have the same first moments.
Wald and Wolfowitz proposed an alternative non-parametric procedure that was
termed U and was based on the total number of runs and which, as Mood later
stated, was very similar to his test published in the same year [999, p. 370].15;16

In 1943 Frieda Swed and Churchill Eisenhart, building on the runs test of Wald
and Wolfowitz [1405], considered two different kinds of objects arranged along a

14The National Bureau of Standards was founded in 1901 as a non-regulatory agency of the United
States Department of Commerce in Gaithersburg, Maryland. The NBS was renamed The National
Institute of Standards and Technology (NIST) in 1988.
15In a 1943 article in The Annals of Mathematical Statistics, Wolfowitz commented that the choice
of U as a test statistic was somewhat arbitrary and that other reasonable tests could certainly be
devised [1465, p. 284], such as that proposed by Wilfrid Dixon in 1940, also in The Annals of
Mathematical Statistics [353].
16A clear exposition of the Wald–Wolfowitz runs test was given in an article by Lincoln Moses on
“Non-parametric statistics for psychological research” published in Psychological Bulletin in 1952
[1010].
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line, e.g., fa; a; b; b; b; a; bg, where there are 3 as and 4 bs, forming four runs,
two of as, i.e., fa; ag and fag and two of bs, i.e., fb; b; bg and fbg [1337]. Thus, a
run is a succession of similar events preceded and succeeded by different events; the
number of elements in a run is referred to as its length [999, p. 367]. They showed
that if there were m objects of one kind and n objects of the other kind, there were

 
mC n

m

!

equally-likely distinct arrangements of the objects under the null hypothesis, with
m � n. If u is defined to be the number of distinct groupings of like objects, then
the proportion of arrangements of the observed data yielding u0 or fewer groupings
is given by

P fu � u0g D
 

mC n

m

!�1 u0X
uD2

fu ;

where

fu D 2

 
m � 1

k � 1

! 
n � 1

k � 1

!
if u D 2k

and

fu D
�

mC n

k
� 2

� 
m � 1

k � 1

! 
n � 1

k � 1

!
if u D 2k C 1

for 1 � k � m � n. Incidentally, the approximation to the normal distribution for u
based on the large sample method of moments is given by

u � �u

�u
.

dD/ N.0; 1/ ;

where the exact mean and variance of u are given by

�u D 2mnCmC n

mC n

and

�2
u D

2mn.2mn�m � n/

.mC n/2.mC n � 1/
;

respectively.
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Swed and Eisenhart prepared three tables of probability values. The first table
provided exact probability values for P fu � u0g to seven places for m � n � 20

with a range of m from 2 to 20, inclusive. The second table provided exact
probability values of u" for " D 0:005, 0.01, 0.025, 0.05, 0.95, 0.975, 0.99, and
0.995, where u" is the largest integer, u0, for which P fu � u0g � " when " < 0:50

and is the smallest integer, u0, for which P fu � u0g � " when " > 0:50.
The third table utilized the normal distribution provided by Wald and Wolfowitz,
enhanced by a correction for continuity. In the third table, the values of u" from
m D n D 10 through m D n D 20 were provided. There was a total of 736 values
in the third table and all but five agreed with the exact values in the second table,
leading Swed and Eisenhart to conclude “[i]t appears that the approximation will
be adequate in general for m D n � 20” [1337, p. 67]. As Swed and Eisenhart
noted, the merit of the test was that it employed a minimum of assumptions; only
that the common population be continuous and the samples be independently drawn
at random [1337]. The generalized runs test as presented by Mielke and Berry
extended the Wald–Wolfowitz runs test from t D 1 tree, g D 2 groups, N � k

objects, and L D N � 1 links to t � 1 trees, g � 1 groups, and N � k objects,
where N > k if g D 1 and L � N � 1 links [965, pp, 103–108].

3.6 Scheffé and Non-parametric Statistical Inference

In 1943 Henry Scheffé published an extensive 28 page introduction to statistical
inference for non-parametric statistics in The Annals of Mathematical Statistics. At
the time, this paper was considered a definitive work in the area of non-parametric
tests and measures [1230].

H. Scheffé
Henry Scheffé received his A.B., A.M., and Ph.D. degrees in mathematics
from the University of Wisconsin in 1931, 1933, and 1935, respectively.
Scheffé held several academic positions at the University of Wisconsin,
Oregon State University, Princeton University, Syracuse University, and
the University of California at Los Angeles before accepting a position
at Columbia University in 1948. In 1953 he moved to the University of
California at Berkeley where he remained until his retirement in 1974. After
his retirement from Berkeley, Scheffé accepted a 3-year appointment at the
University of Indiana at Bloomington. Henry Scheffé returned to Berkeley in
1977 to complete work on a new edition of his magnum opus, The Analysis of
Variance, but passed away 3 weeks later on 5 July at the age of 70, following
a bicycling accident [814].
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In 1943 Scheffé published what soon became a seminal article on non-parametric
statistical inference. This article was an extensive introduction to what was then
the relatively new field of non-parametric statistics [1230]. Scheffé prefaced this
paper with an introduction in which he acknowledged that in most problems of
statistical inference, where solutions do exist, the distribution function is assumed
to depend on parameters, the values of which are unknown. Scheffé labeled this
the “parametric case” under which, he said, falls all the theory based on normality
assumptions [1230, p. 305]. He further observed that only a very small fraction
of the extensive literature of mathematical statistics was devoted to the non-
parametric case and that most of the non-parametric literature was quite recent.
More formally, Scheffé defined a non-parametric test, noting that in any problem of
statistical inference it is assumed that the cumulative distribution function Fn of the
measurements is a member of a given class � of n-variate distribution functions. If
� is a k-parameter family of functions the problem is called “parametric,” otherwise
it is called “non-parametric” [1230, p. 307].

In an extensive review and highly mathematical summary of the non-parametric
literature, Scheffé provided an excellent description of permutation methods, which
he termed “randomization methods” and attributed the origins of permutation
methods to the work of R.A. Fisher in 1925 [448].17 Scheffé noted that a special
case of permutation methods was the “methods of ranks” to which he devoted
considerable space and much detail. Near the end of a section on permutation
methods, Scheffé mentioned a few difficulties with permutation methods when used
in actual applications. The primary difficulty was, of course, that except for very
small samples the calculation of exact permutation tests was “usually extremely
tedious” [1230, p. 311]. He expressed dissatisfaction with those cases where the
author of the test provided an approximation to the discrete permutation distribution
by means of some familiar continuous distribution for which tables were readily
available. He objected to “the laborious exact calculation by enumeration . . . being
replaced by the computation of a few moments . . . and the use of existing tables
of percentage points of the continuous distribution” [1230, p. 311]. Scheffé clearly
took exception to the method of moments, emphasizing that with the exception of a
few rank tests, the justification of these approximations was never satisfactory from
a mathematical point of view, with the argument being based on two, three, or at
most four moments.

In the following sections of this lengthy paper, Scheffé described in summary
fashion the contributions to permutation tests by Hotelling and Pabst, who had
previously investigated the Spearman coefficient of rank-order correlation [653];
Thompson and his rank test for two samples [1360], which was shown to be
inconsistent with respect to certain alternatives by Wald and Wolfowitz [1405];

17Tests based on permutations of observations require that, under the null hypothesis, the
probability distribution is symmetric under all permutations of the observations. This symmetry
can be assured by randomly assigning treatments to the experimental units. As a result, these tests
are often referred to as “randomization tests” in the literature [254, p. 729].
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Swed and Eisenhart who provided tables for the 0.05 and 0.01 levels of significance
for the runs test [1337]; Dixon who developed a two-sample test based on ranks for
small sample sizes at the 0.01, 0.05, and 0.10 levels of significance [353]; Welch and
his method of randomization for an analysis of variance ratio [1428]; Pitman’s three
randomization permutation tests for two independent samples, bivariate correlation,
and randomized blocks analysis of variance [1129–1131]; Kendall’s new � measure
of rank-order correlation with tables of exact probability values for small samples
[728]; Kendall, Kendall, and Babington Smith and the permutation version of
Spearman’s rank-order correlation coefficient [746]; and Friedman and the analysis
of variance for ranks [485], among others.

3.7 Wald–Wolfowitz and Serial Correlation

Early in the 1940s, Abraham Wald and Jacob Wolfowitz, both at Columbia
University, published an exact permutation test of randomness based on serial
correlation and designed for quality assurance analysis [1406].

A. Wald
Abraham Wald began his studies at the University of Cluj in Austria–Hungary
(present-day Romania), then moved to the University of Vienna where he
earned his Ph.D. in 1931. The pre-war environment provided few academic
opportunities to Wald, who was Jewish, so he took a position as a tutor in
mathematics. Wald immigrated to the United States in 1938, moving first to
Colorado Springs, Colorado, to join the Cowles Commission for Research
in Economics, but moving after only a few months to become a research
associate at Columbia University at the invitation of Harold Hotelling. During
his time at Columbia, Wald was a member of the Statistics Research Group
(q.v. page 69) and it was while Wald was at Columbia that he met and began
working with Jacob Wolfowitz, then a graduate student at Columbia. Abraham
Wald remained at Columbia until his untimely death in a plane crash in
southern India on 13 December 1950 at the age of 48 [814, 1426].

J. Wolfowitz
Jacob Wolfowitz earned his B.S. degree from City College of New York
in 1931, his M.S. degree from Columbia University in 1933, and a Ph.D.
from New York University in 1942. Between earning his M.S. and Ph.D.
degrees, Wolfowitz taught high school mathematics to support his family,
while continuing his studies at Columbia. Sometime in the 1930s, Wolfowitz

(continued)
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began studying statistics at Columbia and it was at Columbia that Wolfowitz
met Wald in 1938. In the spring of 1939, Wolfowitz and Wald began having
long discussions about statistics, which resulted in Wald identifying a series of
problems for the two of them to work on together. These discussions resulted
in a series of collaborations in mathematical statistics and a lifelong friendship
[814].

Wolfowitz also joined Wald as a member of the Statistics Research Group
at Columbia in 1942 (q.v. page 69). Wolfowitz moved briefly to the University
of North Carolina in 1945, but returned to Columbia University in 1946 where
he remained until Wald’s death in 1950.

In 1951 Wolfowitz took a position as professor of mathematics at Cornell
University where he remained until 1970. In 1970 he joined the University
of Illinois at Urbana, retiring in 1978, when he then went to the University
of South Florida at Tampa as Shannon Lecturer in the Institute of Electrical
and Electronic Engineers. Jacob Wolfowitz suffered a heart attack and passed
away on 16 July 1981 at the age of 71 in Tampa, Florida [9].

As an interesting aside, Wolfowitz has been credited [323] with coining
the term “non-parametric” in his 1942 paper on “Additive partition functions
and a class of statistical hypotheses” in The Annals of Mathematical Statistics
[1464, p. 264].

In 1943 Wald and Wolfowitz devised an exact non-parametric test for ran-
domness based on serial correlation [1406]. Noting that the problem of testing
randomness frequently arose in quality control of manufactured products and in the
analysis of time series data, Wald and Wolfowitz constructed an exact permutation
test based on serial correlation with a defined lag [1406]. Following the notation of
Wald and Wolfowitz, suppose that x denotes some quality character of a product and
that x1; : : : ; xN are the values of x for N consecutive units of the product arranged
in the order they were produced. The production process is considered to be in a
state of statistical control if the sequence fx1; : : : ; xN g satisfies the condition of
randomness. The serial correlation coefficient with lag h is defined as

Rh D

NX
iD1

xi xhCi �
 

NX
iD1

xi

!2

N

NX
iD1

x2
i �

 
NX

iD1

xi

!2

N

; (3.2)

where xhCi is to be replaced by xhCi�N for all values of i for which hC i > N .
Denote by ai the observed value of xi , i D 1; : : : ; N , and consider the sub-

population where the set fx1; : : : ; xN g is restricted to permutations of a1; : : : ; aN .
In the subpopulation, the probability that fx1; : : : ; xN g is any particular permutation
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fa0
1; : : : ; a0

N g of fa1; : : : ; aN g is equal to 1=N Š if the hypothesis of randomness is
true. Then the probability distribution of Rh in the subpopulation can be determined.
Consider the set of N Š values of Rh obtained by substituting for fx1; : : : ; xN g all
possible permutations of fa1; : : : ; aN g. Each value of Rh has the probability 1=N Š.
Let ˛ denote the level of significance and choose as a critical region a subset of M

values of the set of N Š values of Rh where M=N Š D ˛.
Next, Wald and Wolfowitz considered the statistic

NRh D
NX

iD1

xi xhCi ;

where xhCi is to be replaced by xhCi�N for all values of i for which h C i > N .
They pointed out that since

PN
iD1 xi and

PN
iD1 x2

i in Eq. (3.2) are constants and
therefore invariant under permutation, the statistic NRh is a linear function of Rh

in the subpopulation and could be substituted for Rh when constructing the exact
permutation distribution [1406]. This dramatically simplified calculations. However,
as Wald and Wolfowitz noted, difficulties in carrying out the test arose if N was
neither sufficiently small to make the computations of the N Š values of NR practically
possible, nor sufficiently large to permit the use of a limiting distribution. They
concluded that “it may be helpful to determine the third, fourth, and perhaps higher,
moments of NR, on the basis of which upper and lower limits for the cumulative
distribution of NR can be derived” [1406, p. 381]. The remainder of the paper is
devoted to deriving the mean and variance of NR. Finally, Wald and Wolfowitz
observed that they could replace the observed values fa1; : : : ; aN g by their ranks,
but questioned the wisdom in making the test on the rank-transformed values instead
of the original observations [1406, p. 387].

The following year Wald and Wolfowitz published a general paper on a variety
of statistical tests based on permutations of observations [1407]. They observed that
one of the problems of statistical inference was to devise exact tests of significance
when the form of the underlying probability distribution was unknown, such as
Fisher had discussed in 1925 and 1935 [448, 451]. They explained that an exact
test on the level of significance ˛ could be constructed by choosing a proportion
˛ of the permutations of the observations as a critical region. Wald and Wolfowitz
noted that Scheffé had previously shown that for a general class of problems this
was the only possible method of constructing exact tests of significance [1230].

In this 1944 paper, a general theorem on the limiting distribution of linear
forms in the universe of permutations of the observations was derived by Wald
and Wolfowitz. Applications of this general theorem were made by Wald and
Wolfowitz for a number of existing permutation tests, including Spearman’s rank-
order correlation coefficient [1300, 1301], the limiting distribution which had
previously been proved by Hotelling and Pabst [653]; Pitman’s test of dependence
between two variates [1130]; Pitman’s test of the hypothesis that two samples came
from the same population [1129]; the analysis of variance for randomized blocks as
developed by both Pitman and Welch [1131, 1428]; and Hotelling’s generalized T 2
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for permutations of the observations [652]. In this last case, Wald and Wolfowitz
derived the limiting distribution of T 2 in the universe of permutations of the
observations, an original contribution by Wald and Wolfowitz to the Hotelling paper
[652].

3.8 Mann and a Test of Randomness Against Trend

In 1945 Henry Mann introduced a two-sample rank test of randomness based on the
number of reversal arrangements necessary to convert one set of ranks into a second
set of ranks [879].

H.B. Mann
Henry Berthold Mann received his Ph.D. in mathematics from the University
of Vienna in 1935, then emigrated from Austria to the United States in
1938. In 1942 he was the recipient of a Carnegie Fellowship for the study
of statistics at Columbia University where he had the opportunity to work
with Abraham Wald in the Department of Economics, which at the time
was headed by Harold Hotelling. This likely would have put him in contact
with other members of the Statistical Research Group at Columbia University
such as W. Allen Wallis, Jacob Wolfowitz, Milton Friedman, Jimmie Savage,
Frederick Mosteller, and Churchill Eisenhart (q.v. page 69).

In 1946 Mann accepted a position at The Ohio State University, remaining
there until his retirement in 1964, at which point he moved to the U.S. Army’s
Mathematics Research Center at the University of Wisconsin. In 1971, Mann
moved again to the University of Arizona, retiring a second time in 1975.
Henry Mann remained in Arizona until his death on 1 February 2000 at the
age of 94 [1060].

In 1945 Mann introduced two non-parametric tests of randomness against trend
[879]. Both tests were based on ranks, but it is the first of his two tests that pertains
to permutation statistical methods. Mann noted, as had others, that the advantages
of such rank tests are that they may be used if the quantities considered cannot be
measured, as long as it is possible to rank the observations [879, p. 247]. By way of
examples of such quantities, Mann specifically mentioned ranking the intensity of
sensory impressions, such as pleasure and pain.

As Mann explained, let Xi1; : : : ; Xin be a permutation of the n distinct numbers
X1; : : : ; Xn, let T count the number of inequalities Xik < Xil where k < l , and
label one such inequality a “reverse arrangement.” If X1; : : : ; Xn all have the same
continuous distribution, then the probability of obtaining a sample of size n with T

reversal arrangements is proportional to the number of permutations of the variables
1; 2; : : : ; n with T reversal arrangements. Mann stated that the statistic T was first
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Table 3.1 Reversal sequences for n D 5 ranks to obtain no reversals from an observed data set

Reversal sequence

Observed 1 2 3 4 5 6 7

1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1
2 4 2 4 2 4 2 1 2 3 2 3 2 3 2 2
3 5 3 5 3 1 3 4 3 4 3 4 3 2 3 3
4 2 4 1 4 5 4 5 4 5 4 2 4 4 4 4
5 1 5 2 5 2 5 2 5 2 5 5 5 5 5 5

proposed by M.G. Kendall in 1938 and acknowledged that Kendall had also derived
a recursion formula, tabulated the distribution of T for T � 10, and proved that
the asymptotic distribution of T is normal; see Sect. 2.18 in Chap. 2. What Mann
contributed in his paper was a table of probability values that was easier to use
and a simpler proof of the normality of the asymptotic distribution of T . The table
produced by Mann provided cumulative probability values for 3 � n � 10 with
T or fewer reversal arrangements, where 0 � T � 21 and every permutation
occured with probability 1=nŠ. The counting of the reversal arrangements followed
the technique described by M.G. Kendall in 1938 [728].

Table 3.1 illustrates the counting of reversal arrangements in a sequence of ranks
from 1 to 5. The first set of two columns in Table 3.1 lists the observed ranks for two
groups, and subsequent sets of columns illustrate the number of reversals necessary
to produce the first column from the second. In this case, seven reversal sequences
are required with one reversal arrangement per sequence. For example, reversal
sequence 1 in Table 3.1 exchanges ranks 2 and 1 in the observed column, reversal
sequence 2 exchanges ranks 5 and 1 in reversal sequence 1, reversal sequence 3
exchanges ranks 4 and 1 in reversal sequence 2, and so on until reversal sequence 7
exchanges ranks 3 and 2 in reversal sequence 6 to achieve the ordered sequence in
reversal sequence 7.

The technique that Mann described is similar to a graphic computation of
disarray first constructed by S.D. Holmes and published in an appendix to a
book on Educational Psychology by P. Sandiford in 1928 with application to the
Pearson product-moment correlation coefficient [1221, pp. 391–394], and in a
later publication by H.D. Griffin in 1958 with reference to the Kendall rank-order
correlation coefficient, �a [558].

A proof that the number of interchanges of nearest neighbors required to reduce
one ranking to the other is related to T was provided by P.A.P. Moran in 1947 [1003]
and was, according to Moran, first proved by Olinde Rodrigues in 1839 [1182].18

On this note, in 1948 Moran mathematically established the relationship between

18A summary in English of the Rodrigues 1839 article is available in Mathematics and Social
Utopias in France: Olinde Rodrigues and His Times [39, pp. 110–112].
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Fig. 3.1 Graphic depiction
of the number of reversals for
two sets of ranks, from 1 to 5

rank-order correlation and permutation distributions [1004].19 Consider n objects
denoted by 1; : : : ; n and let s be the least number of interchanges of adjacent objects
required to restore the permutations to the normal order. In his 1938 article that
introduced a new coefficient of rank-order correlation, � , Kendall (q.v. page 84)
showed that S D � n.n � 1/=2 is distributed about a mean of zero with variance
given by n.n�1/.2nC5/=18 in a distribution that tended to normality as n increased
[728]. Utilizing a theorem of Haden [569], Moran proved that s D n.n�1/=4�S=2

so that

� D 1 � 4s

n.n � 1/
D � 4t

n.n � 1/
;

where t D s � n.n � 1/=4. This showed that Kendall’s � rank-order correlation
coefficient could be defined in terms of s and, therefore, the theory of rank-order
correlation could be mathematically linked with the theory of permutations. This
ultimately became an observation of considerable importance.

A graphic that depicts the number of reversals consists of lines that are drawn
between like values in the two columns and the number of reversals is represented
by the number of times the lines cross [558]. For example, consider the two sets of
ranks given in Fig. 3.1.20

There are five crosses (�) among the n D 5 lines, i.e., both diagonal lines
cross two horizontal lines and each other, indicating the five reversals required to
produce the distribution of ranks on the left from the distribution of ranks on the
right. Thus, beginning with the right column of f4; 2; 3; 1; 5g and for the first
reversal, exchange ranks 3 and 1, yielding f4; 2; 1; 3; 5g; for the second reversal,
exchange ranks 2 and 1, yielding f4; 1; 2; 3; 5g; for the third reversal, exchange
ranks 4 and 1, yielding f1; 4; 2; 3; 5g; for the fourth reversal, exchange ranks 4

19This paper was cited by Moran in [1005, p. 162] as “Rank correlation and a paper by
H.G. Haden,” but apparently the title was changed at some point to “Rank correlation and
permutation distributions” when it was published in Proceedings of the Cambridge Philosophical
Society in 1948.
20Technically, Fig. 3.1 is a permutation graph of a family of line segments that connect two
parallel lines in the Euclidean plane. Given a permutation f4; 2; 3; 1; 5g of the positive integers
f1; 2; 3; 4; 5g, there exists a vertex for each number f1; 2; 3; 4; 5g and an edge between two
numbers where the segments cross in the permutation diagram.
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Table 3.2 Permutations and number of reversals for n D 4 ranks: f1; 2; 3; 4g
Number Permutation Reversals Number Permutation Reversals

1 1 2 3 4 0 13 3 1 2 4 2
2 1 2 4 3 1 14 3 1 4 2 3
3 1 3 2 4 1 15 3 2 1 4 3
4 1 3 4 2 2 16 3 2 4 1 4
5 1 4 2 3 2 17 3 4 1 2 5
6 1 4 3 2 3 18 3 4 2 1 3
7 2 1 3 4 1 19 4 1 2 3 4
8 2 1 4 3 2 20 4 1 3 2 4
9 2 3 1 4 2 21 4 2 1 3 4

10 2 3 4 1 3 22 4 2 3 1 5
11 2 4 1 3 3 23 4 3 1 2 5
12 2 4 3 1 4 24 4 3 2 1 6

and 2, yielding f1; 2; 4; 3; 5g; and for the fifth reversal, exchange ranks 4 and 3,
yielding f1; 2; 3; 4; 5g.

To illustrate the Mann procedure to obtain exact probability values under the
null hypothesis of randomness, P.Xi > Xk/ D 1=2, consider an example with
n D 4 ranks, where there are nŠ D 4Š D 24 possible permutations of the ranks.
Table 3.2 lists the 24 permutations of the four ranks, along with the number of
reversal arrangements required to achieve a sequence of f1; 2; 3; 4g. As can be seen
in Table 3.2, there is only one permutation with no (zero) reversal arrangements,
i.e., permutation number 1 with f1; 2; 3; 4g. Thus, the probability of zero reversal
arrangements is

P.T D 0/ D 1

24
D 0:0417 :

There are three permutations with one reversal arrangement, i.e., permutations 2,
3, and 7; thus, the cumulative probability of one or fewer reversal arrangements is

P.T � 1/ D 3

24
C 1

24
D 4

24
D 0:1667 :

There are five permutations with two reversal arrangements, i.e., permutations
4, 5, 8, 9, and 13; thus, the cumulative probability of two or fewer reversal
arrangements is

P.T � 2/ D 5

24
C 3

24
C 1

24
D 9

24
D 0:3750 :

There are six permutations with three reversal arrangements, i.e., permutations 6,
10, 11, 14, 15, and 18; thus, the cumulative probability of three or fewer reversal
arrangements is
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Fig. 3.2 Portion of a figurate
triangle with n D 4 and 5

P.T � 3/ D 6

24
C 5

24
C 3

24
C 1

24
D 15

24
D 0:6250 :

There are five permutations with four reversal arrangements, i.e., permutations
12, 16, 19, 20, and 21; thus, the cumulative probability of four or fewer reversal
arrangements is

P.T � 4/ D 5

24
C 6

24
C 5

24
C 3

24
C 1

24
D 20

24
D 0:8333 :

There are three permutations with five reversal arrangements, i.e., permutations 17,
22, and 23; thus, the cumulative probability of five or fewer reversal arrangements is

P.T � 5/ D 3

24
C 5

24
C 6

24
C 5

24
C 3

24
C 1

24
D 23

24
D 0:9583 :

Finally, there is only one permutation with six reversal arrangements, i.e., permuta-
tion 24 with f4; 3; 2; 1g; thus, the cumulative probability of six or fewer reversal
arrangements is

P.T � 6/ D 1

24
C 3

24
C 5

24
C 6

24
C 5

24
C 3

24
C 1

24
D 24

24
D 1:0000 :

Note that in this example with n D 4 ranks, the numerators of the final fractions
are 1, 3, 5, 6, 5, 3, 1 and, using the Kendall recursion procedure (q.v. page 86),
Mann was able to generate numerator values for successive values of n up to 10.
For example, consider n D 5 where the denominator is nŠ D 5Š D 120 and there
are 11 numerator values instead of 7. The process is as follows. First for n D 2

there are two numerator values, for n D 3 there are four values, for n D 4 there
are seven values, and for n D 5 there are 11 numerator values. Thus, add n � 1 to
the previous number of values, e.g., for n D 2 with two values, n D 3 will have
2Cn�1 D 2C3�1 D 4 values, n D 4 will have 7Cn�1 D 7C5�1 D 11 values
and so on. The numerator values for n D 5 can be obtained from the numerator
values for n D 4 by a figurate triangle, a portion of which is listed in Fig. 3.2. For
the full figurate triangle, see page 86 in Chap. 2.

Here, as in Kendall’s 1938 article [728], a number in the nth row is the sum of
the number immediately above it and the n � 1 or fewer numbers to the left of that
number, e.g., in row n D 5 the number 9 in the third position from the left is the
sum of the number above it (5) in row 4 and all the numbers to the left of 5 in row 4
(3 and 1), since there are fewer than n�1 D 5�1 D 4 numbers to the left of 3; and
in row n D 5, 22 in the sixth position from the left is the sum of the number above
it (3) and the n� 1 D 5� 1 D 4 numbers to the left of 3: 22 D 3C 5C 6C 5C 3.
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In this manner, Mann constructed a table of exact probability values for a test of
trend with 3 � n � 10, under the null hypothesis of randomness. The remainder
of the article was concerned with determining approximate probability values for
T . Under the null hypothesis of randomness Mann obtained the mean of T , i.e.,
E.T / D n.n � 1/=4, and continued to find the higher moments beyond the mean.
He then proved that the limiting distribution of T was normal.

Gottfried Emanuel Noether further investigated certain asymptotic properties of
the test of randomness based on the statistic Rh proposed by Wald and Wolfowitz
[1038]. He was able to show that the conditions given in the original paper by Wald
and Wolfowitz [1406] for the asymptotic normality of Rh when the null hypothesis
of randomness was true could be weakened considerably. Further, Noether described
a simple condition for the asymptotic normality of Rh for ranks under the alternative
hypothesis. He then utilized this asymptotic normality to compare the asymptotic
power of Rh with the T statistic proposed by Mann [879] in the case of downward
trend [1038].

3.9 Barnard and 2 � 2 Contingency Tables

In 1945 George Barnard introduced the CSM test for 2 � 2 contingency tables that
was based on two binomial distributions representing the two rows of the observed
contingency table [63]. In this article, Barnard claimed that the proposed CSM test
was more powerful than the Fisher–Yates exact probability test.

G.A. Barnard
George Alfred Barnard attended St. John’s College, University of Cambridge,
on a scholarship, earning a degree in mathematics in 1937. From 1937 to
1939 he did graduate work on mathematical logic under Alonzo Church at
Princeton University. Another prominent Englishman who was at Princeton at
the same time as Barnard and also studying under Church was Alan Mathison
Turing, British logician, cryptologist, and the “father of computer science and
artificial intelligence” [188, p. 272].21

Barnard was on holiday in Great Britain when World War II began and
he never returned to Princeton to finish his Ph.D. Complicating the matter
was Barnard’s radical left-wing views, a consequence of which was that
he was denied a visa for the United States for many years after the war;
for Barnard’s views on this, see “A conversation with George A. Barnard”
by Morris DeGroot published in Statistical Science in 1988 [339, p. 206].

(continued)

21See also a discussion about the relationship between Turing and Church by George Dyson in a
2012 book titled Turing’s Cathedral [370, pp. 249–250].
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As Dennis Lindley noted, Barnard’s expressions of his anti-establishment
views most likely accounts for Barnard never being elected to a Fellowship in
the Royal Society [831].

In 1940 Barnard accepted a position at the Plessey Company, an engi-
neering firm, as a mathematical consultant, and in 1942 he joined the
Ministry of Supply as head of a research group that applied quality control
to the products for which they were responsible. It was at that time that he
developed an interest in statistics. The research group that he supervised
included Dennis Lindley; Peter Armitage; Robin Plackett; Peter Burman;
Patrick Rivett, who subsequently went into operational research as the first
professor of operational research in the United Kingdom; Dennis Newman,
of the Newman–Keuls test; and Frank Anscombe [339].

At the conclusion of the war, Barnard accepted an appointment at Imperial
College, London, where he was named professor of mathematics in 1954,
but he left in 1966 for the newly created University of Essex, from which
he retired in 1975 (the University of Essex in Colchester was established
in 1963 and received its Royal Charter in 1965). After retirement, Barnard
spent much of each year, until 1981, at the University of Waterloo in Ontario,
Canada. George Alfred Barnard died peacefully in Brightlingsea, Essex, on
30 July 2002 at the age of 86 [830, 831]. For some personal insights on the
life of George Barnard, see the fourth chapter in G.E.P. Box’s autobiography
An Accidental Statistician published in 2013 [192, Chap. 4].

In 1945 George Barnard introduced a new test for 2 � 2 contingency tables
that he claimed was more powerful than the Fisher–Yates exact probability test
[63].22 Taking the table to be generated by samples of n1 and n2 from two binomial
distributions with probabilities p1 and p2, respectively, Barnard argued that if
p1 D p2 D p and n1 D n2 D 3, for example, the probability of observing a
2 � 2 contingency table with rows f3; 0g and f0; 3g was p3.1 � p/3, which gave
the probability value 1/64 when p D 0:5 and was less than this for all other values
of p, as opposed to a probability value of 1/20 if all marginal frequency totals were
regarded as fixed, as Fisher had recommended.

The new test prompted an exchange between Fisher and Barnard [64, 457],
debating the merits of both methods; see also articles by Barnard in 1947 and 1949
[67, 68] and by E.S. Pearson in 1947 [1095]. In 1947 Barnard named the test the
CSM test [67, p. 124], but in 1949, in a paper read before the Research Section of
the Royal Statistical Society, Barnard withdrew the test from further consideration.
He allowed as he had never been satisfied with the position he had taken in 1945
and said that “further meditation has led me to think that Professor Fisher was right

22This was actually Barnard’s first, of many, published papers. It was published in Nature while
Barnard was employed at the Ministry of Supply and is only one-half page in length.
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after all” [68, p. 115]. He credited Egon Pearson for strengthening this conclusion
by his remarks in his article on choosing statistical tests [1095].23;24

3.10 Wilcoxon and the Two-Sample Rank-Sum Test

Frank Wilcoxon, trained as a chemist, was also an accomplished statistician. In 1945
Wilcoxon, in a concise article in the first volume of Biometrics Bulletin, introduced
two new rank tests: the two-sample rank-sum test for two independent (unpaired)
samples, and the matched-pairs (signed-ranks) rank-sum test for two dependent
(paired) samples [1453].

F. Wilcoxon
Frank Wilcoxon had an interesting early life. Wilcoxon’s parents were
wealthy Americans and were honeymooning in Europe. They rented the
Glengarriff Castle near Cork, Ireland, where Wilcoxon and his twin sister
were born on 2 September 1892. In 1908, at the age of 16, Wilcoxon
ran away to sea. At some point he jumped ship and hid for years in
the back country of West Virginia working as an oil-well worker and a
tree surgeon [221]. Returning home to Catskill, New York, he enrolled at
the Pennsylvania Military College. Wilcoxon earned his B.Sc. degree from
Pennsylvania Military College in 1917, an M.S. degree in chemistry from
Rutgers University in 1921, and a Ph.D. in chemistry from Cornell University
in 1924.

Wilcoxon spent much of his adult life as a chemist working for the
Boyce Thompson Institute for Plant Research in Yonkers, New York, the
Atlas Powder Company in Wilmington, Delaware, and, finally, the Lederle
Laboratories Division at the American Cyanamid Company in Norwalk,
Connecticut. It was while at the Boyce Thompson Institute that Wilcoxon’s
interest in statistics was spurred through his work with a small reading group
that met to study R.A. Fisher’s Statistical Methods for Research Workers.
Organizers of the group were Wilcoxon, fellow chemist William John (Jack)
Youden, and biologist Frank E. Denny. This introduction to statistics had a

(continued)

23In 1984 Barnard revealed the meaning behind labeling the statistic CSM, recalling “there was a
private pun in my labelling the suggested procedure CSM—it referred . . . to the Company Sergeant
Major in my Home Guard unit at the time, my relations with whom were not altogether cordial. I
still feel that the test, like the man, is best forgotten” [70, p. 450].
24The Barnard test will not die and from time to time the test is resurrected and advocated; see for
example, articles by McDonald, Davis, and Milliken [913] in 1977; Barnard [72], Hill [621], and
Rice [1167, 1168] in 1988; Dupont [365] and Martín Andrés and Luna del Castillo [900] in 1989;
and Campbell [239] in 2007.
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profound effect on the subsequent careers of Wilcoxon and Youden as both
became leading statisticians of the time. Wilcoxon retired from the American
Cyanamid Company in 1957 and 3 years later, at the behest of Ralph Bradley,
joined the faculty at Florida State University in Tallahassee, Florida, where he
helped develop its Department of Statistics.

As Bradley related, he and Wilcoxon had met several times at Gordon
Research Conferences,25 and in 1959 Bradley was recruited from Virginia
Polytechnic Institute to initiate a department of statistics at Florida State Uni-
versity (formerly, the Florida State College for Women). Bradley persuaded
Wilcoxon, who had retired in Florida, to come out of retirement and join the
newly-formed department. Wilcoxon agreed to a half-time position teaching
applied statistics as he wanted time off to kayak and ride his motorcycle [639].
Frank Wilcoxon died on 18 November 1965 after a brief illness at the age of
73 [203–205]. At the time of his death, Wilcoxon was Distinguished Lecturer
in the Department of Statistics at Florida State University [363].

In 1945 Wilcoxon introduced a two-sample test statistic, W , for rank-order
statistics [1453].26 In this very brief paper of only three pages Wilcoxon considered
the case of two samples of equal sizes and provided a table of exact probability
values for the lesser of the two sums of ranks for both paired and unpaired
experiments [1453]. In the case of unpaired samples, a table provided exact
probability values for 5–10 replicates in each sample; and for paired samples, a
table provided exact probability values for 7–16 paired comparisons.27 Bradley has
referred to the unpaired and paired rank tests as the catalysts for the flourishing of
non-parametric statistics [639] and Brooks described the Wilcoxon 1945 article as
“a bombshell which broke new and permanent ground” and the unpaired and paired
rank tests as “cornerstones in the edifice of nonparametric statistics” [221].

25The Gordon Research Conferences on Statistics in Chemistry and Chemical Engineering began
in 1951 and continued through the summer of 2005.
26The Wilcoxon two-sample rank-sum test statistic is conventionally expressed as W in textbooks,
but Wilcoxon actually designated his test statistic as T . Also, many textbooks describe the
Wilcoxon test as a “difference between group medians” test, when it is clearly a test for the
difference between mean ranks; see for example, an article by Bergmann, Ludbrook, and Spooren
in 2000 [100] and an article by Conroy in 2012 [274].
27A clear and concise exposition of the Wilcoxon unpaired and paired sample rank tests is given in
an article by Lincoln Moses on “Non-parametric statistics for psychological research” published
in Psychological Bulletin in 1952 [1010].
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Wilcoxon’s 1945 Article
While Wilcoxon’s 1945 article may have been a “bombshell,” it should be
emphasized that the original Wilcoxon article can be difficult to read. It is
cryptic, incomplete, and contains notational errors. Moreover, Wilcoxon was
trained as a chemist and not as a mathematician; consequently, his notation
was somewhat unconventional. For example, as late as 1945 Wilcoxon was
still using the old representation for n factorial of jn instead of the customary
nŠ expression. The expression jn was developed by Thomas Jarrett, an
English churchman and orientalist, and first published in 1830, appearing in
a paper “On algebraic notation” printed in Transactions of the Cambridge
Philosophical Society [681, p. 67]. The familiar nŠ expression was introduced
by the French mathematician Chrétien (Christian) Kramp as a convenience to
his printer who was unable to typeset Jarrett’s jn. The factorial symbol nŠ first
appeared in Kramp’s book on Éléments d’arithmétique universelle in 1808
[770].28

3.10.1 Unpaired Samples

Wilcoxon showed that in the case of two unpaired samples with rank numbers
from 1 to 2q, where q denotes the number of ranks (replicates) in each sample,
the minimum sum of ranks possible is given by q.qC 1/=2, where W is the sum of
ranks in one sample, continuing by steps up to the maximum sum of ranks given
by q.3q C 1/=2. For example, consider two samples of q D 5 measurements
converted to ranks from 1 to 2q D 10. The minimum sum of ranks for either
group is f1 C 2 C 3 C 4 C 5g D 5.5 C 1/=2 D 15 and the maximum sum of
ranks is f6C 7C 8C 9C 10g D 5Œ.3/.5/C 1=2 D 40. Wilcoxon explained that
these two values could be obtained in only one way, but intermediate sums could be
obtained in more than one way. For example, the sum of T D 20 could be obtained
in seven ways, with no part greater than 2q D 10: f1; 2; 3; 4; 10g, f1; 2; 3; 5; 9g,
f1; 2; 3; 6; 8g, f1; 2; 4; 5; 8g, f1; 2; 4; 6; 7g, f1; 3; 4; 5; 7g, and f2; 3; 4; 5; 6g.
The number of ways each sum could arise is given by the number of q-part, here
5-part partitions of T D 20, the sum in question.29

28For a brief history of the factorial symbol, see a 1921 article in Isis by Florian Cajori on the
“History of symbols for n D factorial” [237].
29Wilcoxon’s use of the term “partitions” here is a little misleading. These are actually sums of
T D 20, each sum consisting of five integer values between 1 and 2q D 10 with no integer
value repeated e.g., f1; 2; 3; 4; 10g D 20 which consists of five non-repeating integer values, but
not f5; 7; 8g D 20 which consists of only three integer values, nor f1; 3; 3; 5; 8g D 20 which
contains multiple values of 3.
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This was not a trivial problem to solve, as calculating the number of partitions is
quite difficult, even today with the availability of high-speed computers. In general,
the problem is known as the “subset-sum problem” and requires a generating
function to solve. The difficulty is in finding all subsets of a set of numbers that
sum to a specified total, without repetitions. The approach that Wilcoxon took was
ingenious and is worth examining, as the technique became the basic method for
other researchers as well as the basis for several computer algorithms in later years.
Wilcoxon showed that the required partitions were “equinumerous” with another
set of partitions, r , that were much easier to enumerate, a technique he apparently
learned from a volume by Percy Alexander MacMahon on Combinatory Analysis
[865].30 He defined r as the serial number of T in the possible series of sums,
beginning with 0, i.e., 0, 1, 2, . . . , r .

For an illustrative example, consider vide supra q D 5 replications of mea-
surements on two samples and assign ranks 1 through 2q D 10 to the data:
f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g. The lowest possible sum is 1C2C3C4C5 D 15 and
the highest possible sum is 6C7C8C9C10 D 40. Then the question is: in how many
ways can a total of T D 20 be obtained, i.e., how many unequal five-part partitions
of T D 20 exist, having no part greater than 2q D 10 and no repetition of values? As
shown above, there are seven such partitions. Now, T D 20 is sixth in the possible
series of totals, i.e., T D 15; 16; 17; 18; 19; 20; : : : ; 40; therefore, r D 5 and the
total number of partitions that sum to T D 20 is equivalent to the total number of
partitions that sum to r D 5 with no part greater than q D 5; specifically, f5g, f1; 4g,
f2; 3g, f1; 1; 3g, f1; 2; 2g, f1; 1; 1; 2g, and f1; 1; 1; 1; 1g. These are, of course,
true partitions consisting of one to five integer values between 1 and 5, summing
to 5 with repetitions allowed. Wilcoxon capitalized on the relationship between the
two subset-sum problems, T D 20 and r D 5, to enumerate the partitions of r D 5

from an available table of partitions included in a 1942 book by William Allen
Whitworth titled Choice and Chance [1446], which then corresponded to the more
difficult enumeration of the five-part partitions of T D 20.

Partitions
The number theory function known as the partition function gives the number
of ways of writing any integer as a sum of smaller positive integers [505]. As
above, the integer 5 can be written in seven different ways: f5g, f1; 4g, f2; 3g,
f1; 1; 3g, f1; 2; 2g, f1; 1; 1; 2g, and f1; 1; 1; 1; 1g. The partition number of

(continued)

30MacMahon’s monumental two-volume work on Combinatory Analysis, published in 1916,
contained a section in Volume II, Chap. III, on “Ramanujan’s Identities” in which MacMahon
demonstrated the relationship between the number of q-part unequal partitions without repetitions
with no part greater than 2q and the number of partitions with repetitions with no part greater than
q [865, pp. 33–48].
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Fig. 3.3 Values of T and
corresponding values of r

5 is, therefore, 7. As given by Gelman [505, p. 183], the partition numbers of
the integers from 1 to 10 are:

Integer: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Partition number: 1, 2, 3, 5, 7, 11, 15, 22, 30, 42

Thus, there are 30 ways to sum smaller integers to make a sum of
9 and 42 ways to sum smaller integers to make a sum of 10, with
repetitions. As Gelman observed, while the partition number of 100
is only 190,569,292, the partition number of 1,000 is an astounding
24,061,467,864,032,622,473,692,149,727,991 [505, p. 183]. In 1918 Godfrey
Harold (G.H.) Hardy and Srinivasa Ramanujan, in a remarkable article in
Proceedings of the London Mathematical Society, provided the asymptotic
formula for partition numbers, p.n/, showing that as n!1,

p.n/ � 1

4n
p

3
exp

 



r
2n

3

!

[585, p. 79]. See also a 2004 article on this topic by Berry, Johnston, and
Mielke in Psychological Reports [111].

To illustrate the Wilcoxon procedure, consider an example two-sample rank-sum
test analysis with q D 7 replicates in each treatment and the lesser of the two
sums of ranks T D 35. The minimum value of T with q D 7 replicates is T D
1 C 2 C 3 C 4 C 5 C 6 C 7 D 7.7 C 1/=2 D 28. The values of T with the
corresponding values of r are given in Fig. 3.3.

The exact lower one-sided probability (P ) value of T D 35 is given by

P D
8<
:1C

rX
iD1

qX
j D1

P
i
j �

r�qX
kD1

�
.r � q � k C 1/P

q�2Ck
q�1

�9=
;



.2q/Š

.qŠ/2
;

where P
i
j represents the number of j -part partitions of i ; r is the serial number of

possible rank totals, 0, 1, 2, . . . , r ; and q is the number of replicates [1453, p. 82].
If q � r , the summation

Pr�q

kD1 is assumed to be zero. For the example data, the
equation is

P D
8<
:1C

7X
iD1

7X
j D1

P
i
j �

7�7X
kD1

�
.7 � 7 � k C 1/P7�2Ck

7�1

�9=
;



14Š

.7Š/2
;
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Table 3.3 Illustrative table comparing the q D 7-part partitions of T D 35 with the
corresponding partitions of r D 7

Partition

Number q D 7; T D 35 r D 7

1 1 2 3 4 5 6 14 1 1 1 1 1 1 1
2 1 2 3 4 5 7 13 1 1 1 1 1 2
3 1 2 3 4 5 8 12 1 1 1 2 2
4 1 2 3 4 6 7 12 1 2 2 2
5 1 2 3 4 5 9 11 1 1 1 1 3
6 1 2 3 4 6 8 11 1 1 2 3
7 1 2 3 5 6 7 11 2 2 3
8 1 2 3 4 6 9 10 1 3 3
9 1 2 3 4 7 8 10 1 1 1 4
10 1 2 3 5 6 8 10 1 2 4
11 1 2 4 5 6 7 10 3 4
12 1 2 3 5 7 8 9 1 1 5
13 1 2 4 5 6 8 9 2 5
14 1 3 4 5 6 7 9 1 6
15 2 3 4 5 6 7 8 7

and the exact lower one-sided probability value is

P D f1C 1C 2C 3C 5C 7C 11C 15� 0g = �87;178;291;200=.5;0402
�

D 45=3;432 D 0:0131 :

The correspondence between the number of unequal q-part partitions of T with no
part greater than 2q and the number of partitions of r with no part greater than q used
by Wilcoxon greatly reduced the calculations required. For example, the values in
the solution above of 1, 2, 3, 5, 7, 11, and 15 are obtained simply by finding the parti-
tions of 1, 2, 3, 4, 5, 6, and 7, respectively. To illustrate how Wilcoxon simplified the
calculations, consider T D 35 in the example above. What is necessary to compute
is the number of unequal q D 7-part partitions of T D 35 with no part greater than
2q D .2/.7/ D 14. Since r D 7 corresponds to T D 35, as illustrated in Fig. 3.3,
the number of unequal 7-part partitions of T D 35 is equivalent to the number of
(equal or unequal) partitions of r D 7 with no part greater than q D 7. Table 3.3 lists
the 15 unequal q D 7-part partitions of T D 35 with no part greater than 2q D 14

and the corresponding 15 partitions of r D 7 with no part greater than q D 7.

3.10.2 Paired Samples

As with the unpaired data, Wilcoxon availed himself of a similar simplification for
the case of paired data. Wilcoxon showed that for paired data, the number of unequal
j-part partitions of r , with no part greater than i , was equal to the number of j-part
partitions of r � �j

2

	
. For example, if r D 10, j D 3, and i D 7, then the unequal
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Fig. 3.4 Analysis with
j D 1 and
r ��j

2

	 D 8��1
2

	 D 8�0 D 8

3-part partitions of r D 10 are f1; 2; 7g, f1; 3; 6g, f1; 4; 5g, and f2; 3; 5g, but the
3-part partitions of 10 � �3

2

	 D 10 � 3 D 7 with no part greater than i � j C 1 D
7 � 3 C 1 D 5 are f1; 1; 5g, f1; 2; 4g, f1; 3; 3g, and f2; 2; 3g, which are much
easier to enumerate and could readily be found in available tables of partitions.

Consider an example analysis on paired ranks with q D 10 paired differences and
the sum of the negative differences between the ranks to be T D �8. The minimum
value of T is zero when all the rank numbers are positive. The next possible sum is
�1, when rank one receives a negative sign. As the sum of negative ranks increases,
there are more and more ways in which a given total can be formed. The values for
T and r are the same as both begin with zero. Then the one-sided probability value
of r D 8 is given by

P D

2
641C

X
j

0
B@

r�
�

j
2

	X
iDj

P
j
i

1
CA
3
75
,

2q ;

where P
j
i represents the number of j -part partitions of i , q is the number of paired

differences, and r is the serial number of the total under consideration in the series
of possible totals. If in

�
j
2

	
j is less than 2,

�
j
2

	
is considered to be zero and if

�
j
2

	
is

greater than r , r � �j
2

	
is undefined. For the example data with r D 8 and q D 10,

Figs. 3.4, 3.5, and 3.6 illustrate the P
j
i for j D 1; 2; 3, respectively. Thus, for the

example data, the equation is

P D

2
641C

X
j

0
B@

8�
�

j
2

	X
iDj

P
j
i

1
CA
3
75
,

210 ;

and the one-sided probability value is

P D 1C 8C 12C 4

1;024
D 25

1;024
D 0:0244 ;

where the summations of the partitions yielding the sums of 8, 12, and 4 are
illustrated in Figs. 3.4, 3.5, and 3.6.
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Fig. 3.5 Analysis with
j D 2 and
r ��j

2

	 D 8��2
2

	 D 8�1 D 7

Fig. 3.6 Analysis with
j D 3 and
r ��j

2

	 D 8��3

2

	 D 8�3 D 5

3.11 Festinger and the Two-Sample Rank-Sum Test

The social psychologist, Leon Festinger, was also an accomplished statistician. In
1946 Festinger developed a new statistical test to evaluate differences between two
independent means by first converting the data to ranks, a test that has largely been
ignored [427]. This is unfortunate as, unlike the Wilcoxon test, Festinger’s otherwise
equivalent test allowed for unequal sample sizes.

L. Festinger
Leon Festinger is best known for his work in social psychology and,
especially, his theories of cognitive dissonance and social comparisons, but
Festinger was also a gifted statistician, working in the area of non-parametric
statistics. Festinger was born in New York City and earned his B.Sc. degree
in psychology from City College of New York in 1939, then moved to the
University of Iowa to earn his Ph.D. in psychology in 1942.31 After earning
his Ph.D., Festinger worked first as a Research Associate at the University of
Iowa, then joined the University of Rochester in 1943 as a Senior Statistician.
In 1945, Festinger moved to the Massachusetts Institute of Technology,

(continued)

31Several sources list Festinger earning his Ph.D. in 1942 from Iowa State University, not the
University of Iowa. Since his dissertation advisor was Kurt Lewin, who was at the University of
Iowa from 1935 to 1944, the University of Iowa appears correct.
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then to the University of Michigan in 1948, the University of Minnesota in
1951, Stanford University in 1955, and finally to the New School for Social
Research (now, The New School) in 1968. Festinger remained at the New
School until his death from liver cancer on 11 February 1989 at the age of 69
[1009, 1229].

In 1946 Festinger introduced a statistical test of differences between two inde-
pendent means by first converting raw scores to ranks, then testing the difference
between the means of the ranks [427]. Festinger provided tables for tests of sig-
nificance based on exact probability values for the 0.05 and 0.01 confidence levels
for n D 2; : : : ; 15, the smaller of the two samples, and m D 2; : : : ; 38, the larger
sample. Festinger’s approach to the two-sample rank-sum problem was developed
independently of Wilcoxon’s solution; moreover, Festinger’s tables considered both
equal and unequal sample sizes, whereas Wilcoxon’s [1453] method allowed for
only equal sample sizes. In addition, the approach that Festinger took was quite
different from that of Wilcoxon. While both approaches generated all possible
permutations of outcomes, Festinger’s was considerably simpler to implement
and is worth consideration here as a unique and ingenious recursive permutation
generation method.

Consider two independent samples fx1; x2; : : : ; xmg and fy1; y2; : : : ; yng with
n � m. Combining the samples x and y and assigning ranks to each case from
1 to m C n structures the question as to the probability of obtaining any specified
difference between sample ranks if both samples are drawn at random from the same
population. Stated in terms of sums of ranks: what is the probability of obtaining any
specified sum of ranks of n cases selected at random from the total of mC n cases?
The problem for Festinger was to generate exact probability distributions for sums
of ranks given specified values of m and n.

For simplicity, consider first m D 2 and n D 2. The possible combinations of
mCn D 2C2 D 4 considered n D 2 at a time are f1; 2g, f1; 3g, f1; 4g, f2; 3g, f2; 4g,
and f3; 4g, yielding sums of 3, 4, 5, 5, 6, and 7, respectively. Thus, the frequency
distribution of the sums is 3(1), 4(1), 5(2), 6(1), and 7(1), where the frequencies are
enclosed in parentheses. If each case is independent of every other case and equally
likely to be drawn, then each combination is equiprobable. However, as Festinger
showed, there is an alternative way to generate this frequency distribution of sums.
The frequency distribution of sums for

�
mCn

n

	
can be constructed from the frequency

distributions of sums for
�

mCn�1

n

	
and

�
mCn�1

n�1

	
, as illustrated in Table 3.4.32 The

frequency distribution of
�

mCn�1
n

	 D �
2C2�1

2

	 D �
3
2

	
is listed in Column 1 of

32The decomposition
�

n
r

	 D �
n�1

r

	 C �
n�1
r�1

	
has been well known since the publication of Blaise

Pascal’s Traité du triangle arithmétique in 1665, 3 years after his death [1088]. Thus, considering
any one of n objects,

�
n�1

r

	
gives the number of combinations that exclude it and

�
n�1
r�1

	
the number

of combinations that include it.
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Table 3.4 Generation of frequency arrays for 3, 4, 5, 6, and 7 objects considered n D 2 at a time

Column

1 2 3 4 5 6 7 8 9

Sum
�

3
2

	 �
3
1

	 �
4
2

	 �
4
1

	 �
5
2

	 �
5
1

	 �
6
2

	 �
6
1

	 �
7
2

	
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 2 2 2 2
6 1 1 1 2 2 2
7 1 1 1 2 1 3 3
8 1 1 1 2 1 3
9 1 1 1 2 1 3
10 1 1 1 2
11 1 1 1 2
12 1 1
13 1 1

Table 3.4 and the frequency distribution of sums for
�

mCn�1
n�1

	 D �
2C2�1

2�1

	 D �
3
1

	
is listed in Column 2 of Table 3.4. Note that the frequency distribution of sums
for

�
3
1

	
is offset from the frequency distribution of sums for

�
3
2

	
. Since the sum of

ranks below the value 5 would not be affected by the addition of a 4th case to the
ranks of

�
3
2

	
, only the totals of 5, 6, and 7 would be augmented by one or more

possibilities. In general, the starting value for frequency distribution
�

mCn�1
n�1

	
is

given by n.nC 1/=2C m; in this case, 2.2C 1/=2C 2 D 5. Thus, the frequency
distribution of sums for

�
mCn

n

	 D �4
2

	
in Column 3 is constructed from the frequency

distributions of sums for
�

mCn�1
n

	 D �
3
2

	
and

�
mCn�1

n�1

	 D �
3
1

	
in Columns 1 and 2

in Table 3.4, respectively, by simply adding across Columns 1 and 2 to obtain the
frequency distribution of sums for

�
4
2

	
in Column 3.

Now consider the frequency distribution of sums for m D 3 and n D 2. The
possible combinations of mC n D 5 considered n D 2 at a time are f1; 2g, f1; 3g,
f1; 4g, f1; 5g, f2; 3g, f2; 4g, f2; 5g, f3; 4g, f3; 5g, and f4; 5g, yielding sums of 3, 4,
5, 6, 5, 6, 7, 7, 8, and 9, respectively. The frequency distribution of the sums is
therefore 3(1), 4(1), 5(2), 6(2), 7(2), 8(1), and 9(1). The frequency distribution of
sums for

�
mCn

n

	 D �
3C2

2

	 D �
5
2

	
in Column 5 of Table 3.4 can be constructed from

the frequency distributions of sums for
�

mCn�1
n

	 D �
3C2�1

2

	 D �
4
2

	
and

�
mCn�1

n�1

	 D�
3C2�1

2�1

	 D �
4

1

	
in Columns 3 and 4, respectively, in Table 3.4. In similar fashion

to the previous case, no sum of ranks below the value 6 would be affected by the
addition of a 5th case to the sum of ranks for

�
4

2

	
, thus the starting position for

the frequency distribution of
�

4
1

	
in Column 4 is the value n.n C 1/=2 C m D

2.2C 1/=2C 3 D 6. Again, the frequency distribution of sums for
�

mCn
n

	 D �
5
2

	
in

Column 5 is constructed from the frequency distributions of sums for
�

mCn�1

n

	 D �4
2

	
and

�
mCn�1

n�1

	 D �
4
1

	
in Columns 3 and 4 in Table 3.4, respectively, by adding across

Columns 3 and 4 to obtain the frequency distribution of sums for
�

5
2

	
in Column 5.
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Table 3.5 Generation of frequency arrays for 4, 5, 6, 7, and 8 objects considered n D 3 at a time

Column

1 2 3 4 5 6 7 8 9

Sum
�

4
3

	 �
4
2

	 �
5
3

	 �
5
2

	 �
6
3

	 �
6
2

	 �
7
3

	 �
7
2

	 �
8
3

	
6 1 1 1 1 1
7 1 1 1 1 1
8 1 1 2 2 2 2
9 1 1 2 1 3 3 3
10 2 2 1 3 1 4 4
11 1 1 2 3 1 4 1 5
12 1 1 2 3 2 5 1 6
13 2 2 2 4 2 6
14 1 1 3 4 2 6
15 1 1 2 3 3 6
16 2 2 3 5
17 1 1 3 4
18 1 1 2 3
19 2 2
20 1 1
21 1 1

In this manner, Festinger was able to recursively generate all frequency distri-
butions of sums for m C n objects considered n D 2 at a time. In addition to the
frequency distributions of sums for

�
4
2

	
and

�
5
2

	
, Table 3.4 illustrates the construction

of the frequency distribution of sums for
�

6
2

	
in Column 7 from the frequency

distributions of sums for
�

5
2

	
and

�
5
1

	
in Columns 5 and 6, respectively, and the

frequency distribution of sums for
�

7
2

	
in Column 9 from the frequency distributions

of sums for
�

6

2

	
and

�
6

1

	
in Columns 7 and 8, respectively. Thus, for example, with

m D 4, m > n D 2, and m C n D 4 C 2 D 6 the sum of 7 can occur in only
three ways: f1; 6g, f2; 5g, and f3; 4g. As illustrated in Table 3.4, the frequency 3 is
read in Column 7 with heading

�
6

2

	
in the row designated as Sum 7. The probability,

therefore, of a sum of 7 is 3=
�
mCn

n

	 D 3=
�

4C2
2

	 D 3=
�
6
2

	 D 3=15 D 0:20.
Once the exact frequency distributions of sums for mCn ranks considered n D 2

at a time are established, it is relatively straightforward to construct exact frequency
distributions of sums for m C n ranks considered n D 3 at a time, using the same
method. Table 3.5 illustrates the construction of the frequency distribution of sums
for

�
mCn

n

	 D �
3C2

3

	 D �
5
3

	
in Column 3 from the frequency distributions of sums for�

mCn�1
n

	 D �4
3

	
and

�
mCn�1

n�1

	 D �4
2

	
in Columns 1 and 2, respectively. In like manner,

the frequency distribution of sums for
�

6

3

	
in Column 5 is constructed from the

frequency distributions of sums for
�

5
3

	
and

�
5
2

	
in Columns 3 and 4, respectively; the

frequency distribution of sums for
�

7
3

	
in Column 7 is constructed from the frequency

distributions of sums for
�

6
3

	
and

�
6
2

	
in Columns 5 and 6, respectively; and the

frequency distribution of sums for
�

8
3

	
in Column 9 is constructed from the frequency
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distributions of sums for
�

7
3

	
and

�
7
2

	
in Columns 7 and 8, respectively. As before, the

frequency distribution of sums for
�

mCn�1
n�1

	
is offset and has a starting value given

by n.nC 1/=2Cm, e.g., for
�

8
3

	
the starting value for

�
7
2

	
is 3.3C 1/=2C 5 D 11.

This method allowed Festinger to recursively generate exact frequency distri-
butions of sums for any combination of m C n and n. For example, to obtain the
exact frequency distribution of the sum of n D 7 cases selected at random from
m C n D 18 ranked cases with n D 7 and m D 11, add to the distribution of the
sums of n D 7 cases from m C n � 1 D 17 ranked cases, the distribution of the
sums of n � 1 D 6 cases from the mC n � 1 D 17 ranked cases, making the first
addition for the sum equal to n.nC 1/=2Cm D 7.7C 1/=2C 11 D 39, which is
the lowest sum where the frequency sums will be affected. Festinger explained that
since the distributions of sums were symmetrical about

n.mC nC 1/

2
;

only one-half of the distribution need be computed.

Finally, Festinger proposed a convenient alternative for summarizing and pre-
senting the frequency distributions of sums. He replaced the sums of ranks of the
smaller of the two samples with the absolute deviation (d ) of the mean of the ranks
of the smaller sample from the mean of the ranks of the total group, using

d D
ˇ̌̌
ˇ̌1
n

nX
iD1

Ri � mC nC 1

2

ˇ̌̌
ˇ̌ ; (3.3)

where n is the number of cases in the smaller sample, mC n is the number of cases

in both samples combined, and
Pn

iD1 Ri is the sum of the ranks of the cases in the
smaller sample. The last term in Eq. (3.3) is, of course, the mean of the mCn ranks.
Festinger then presented two tables containing the d values necessary for tests of
significance at the 0.01 and 0.05 levels of confidence. For values of n from 2 to 12,
the Festinger tables listed values of d from m D 2 to m D 38 [427].

3.12 Mann–Whitney and a Two-Sample Rank-Sum Test

Henry Mann and his graduate student, Donald Whitney, published a two-sample
rank-sum test in 1947 that was equivalent to the two-sample rank-sum test proposed
by Wilcoxon 2 years prior, but was easier to calculate, allowed for unequal sample
sizes, and also permitted larger samples than the Wilcoxon two-sample rank-sum
test [880].
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D.R. Whitney
While Henry Mann (q.v. page 125) was at The Ohio State University from
1946 to 1964, one of his graduate students was Donald Ransom Whitney.
Whitney had earned his B.A. degree in mathematics from Oberlin College in
1936 and his M.S. degree in mathematics from Princeton University in 1939.
After service in the Navy during World War II, Whitney enrolled in the Ph.D.
program at The Ohio State University in 1946, where eventually he came to
work under Henry Mann. After receiving his Ph.D. in mathematics in 1949,
Whitney remained at The Ohio State University, eventually becoming Chair of
the newly established Department of Statistics in 1974. Whitney retired from
The Ohio State University in 1982, whereupon he received the University
Distinguished Service Award. Donald Ransom Whitney passed away on 16
August 2007 at the age of 92 [1460].

In 1947 Mann and Whitney, acknowledging the previous work by Wilcoxon
on the two-sample rank-sum test [1453], proposed an equivalent test statistic,
U , based on the relative ranks of two samples denoted by fx1; x2; : : : ; xng and
fy1; y2; : : : ; ymg [880].33 Like Festinger in 1946, Mann and Whitney utilized a
recurrence relation involving n and m and, using this relation, computed tables of
exact probability values for U up to n D m D 8, many more, they noted, than
the few probability values provided by Wilcoxon. As Mann and Whitney explained,
let the measurements fx1; x2; : : : ; xng and fy1; y2; : : : ; ymg be arranged in order
and let U count the number of times a y precedes an x. For example, given n D 4

x values and m D 2 y values, consider the sequence fx; y; x; x; y; xg where
U D 4: the first y precedes three x values and the second y precedes one x value;
thus, U D 3C1 D 4. Also, let the Wilcoxon statistic, W , be the sum of the m rank-
order statistics fy1; y2; : : : ; ymg. The relationship between Wilcoxon’s W statistic
and Mann and Whitney’s U statistic can be expressed as

U D mnC m.mC 1/

2
�W ;

where 0 � U � mn. Mann and Whitney noted that since Wilcoxon only considered
the case of n D m, it seemed worthwhile to extend this important work to n ¤ m

and larger values of n and m.
Consider again the ordered sequences of n x and m y values, replace each x with

a 0 and each y with a 1, let U denote the number of times a 1 precedes a 0, and let
Npn; m.U / represent the number of sequences of n 0s and m 1s in each of which a

33A particularly clear exposition of the Mann–Whitney U test is given in a 1952 paper by Lincoln
Moses on “Non-parametric statistics for psychological research” published in Psychological
Bulletin [1010].
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Table 3.6 Sequences of n D 4 0s and m D 2 1s for Npn; m.U /, Npn�1; m.U � m/, and Npn; m�1.U /

Npn; m.U / Npn�1; m.U � m/ Npn; m�1.U /

Row Sequence U Sequence U Sequence U

1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0
2 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1
3 0 0 1 0 0 1 2 0 1 0 0 1 2 0 0 1 0 0 2
4 0 1 0 0 0 1 3 1 0 0 0 1 3 0 1 0 0 0 3
5 1 0 0 0 0 1 4 0 0 1 1 0 2 1 0 0 0 0 4
6 0 0 0 1 1 0 2 0 1 0 1 0 3
7 0 0 1 0 1 0 3 1 0 0 1 0 4
8 0 1 0 0 1 0 4 0 1 1 0 0 4
9 1 0 0 0 1 0 5 1 0 1 0 0 5

10 0 0 1 1 0 0 4 1 1 0 0 0 6
11 0 1 0 1 0 0 5
12 1 0 0 1 0 0 6
13 0 1 1 0 0 0 6
14 1 0 1 0 0 0 7
15 1 1 0 0 0 0 8

1 precedes a 0 U times. For example, suppose the sequence is f1; 1; 0; 0; 1; 0g,
then U D 7 as the first 1 precedes three 0 values, the second 1 precedes the same
three 0 values, and the third 1 precedes only one 0 value. Mann and Whitney then
developed the recurrence relation,

Npn; m.U / D Npn�1; m.U �m/C Npn; m�1.U / ; (3.4)

where Npn�1; m.U �m/ D 0 if U � m.
An example of the recurrence relation will illustrate the Mann–Whitney proce-

dure. Table 3.6 lists all the sequences of 0s and 1s and corresponding values of U

for Npn; m.U /, Npn�1; m.U � m/, and Npn; m�1.U / for n D 4 and m D 2. There are�
mCn

m

	 D �
2C4

2

	 D 15 values of U in the first sequence of 0s and 1s in Table 3.6,�
mCn�1

m

	 D �
2C4�1

2

	 D 10 values of U in the second sequence of 0s and 1s, and�
m�1Cn

m�1

	 D �
2�1C4

2�1

	 D 5 values of U in the third sequence of 0s and 1s.34 To
illustrate the recurrence process with U D 3, Npn; m.3/ D 2, as there are two
occurrences of U D 3 (in Rows 4 and 7) in the leftmost column of sequences in
Table 3.6. Then, Npn�1; m.U � m/ D Np4�1; 2.3 � 2/ D 1, as there is only a single
occurrence of U D 1 (in Row 2) in the middle column of sequences in Table 3.6,
and Npn; m�1.U / D Np4; 2�1.3/ D 1, as there is only a single occurrence of U D 3 (in
Row 4) in the rightmost column of sequences in Table 3.6. Then, following Eq. (3.4),
2 D 1C 1.

34Here, the decomposition is identical to Festinger’s, as given in [427].
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Given that under the null hypothesis each of the .nCm/Š=.nŠ mŠ/ sequences of
n 0s and m 1s is equally-likely, let pn; m.U / represent the probability of a sequence
in which a 1 precedes a 0 U times. For example, for U D 3 in the leftmost column
of sequences of 0s and 1s in Table 3.6,

pn; m.U / � nŠ mŠ

.nCm/Š
D p4; 2.3/ � 4Š 2Š

.4C 2/Š
D 2

15
D 0:1333 :

Mann and Whitney also provided a recurrence relation for the probability values of
U given by

pn; m.U / D n

nCm
pn�1; m.U �m/C m

nCm
pn; m�1.U / ;

where

pn�1; m.U �m/ D Npn�1; m.U �m/ � .n � 1/Š mŠ

.nCm � 1/Š

and

pn; m�1.U / D Npn; m�1.U / � nŠ .m � 1/Š

.nCm� 1/Š
:

Thus, for U D 3 in Table 3.6,

p4;2.3/ D 4

4C 2
p4�1; 2.3� 2/C 2

4C 2
p4; 2�1.3/

2

15
D
�

4

6

��
1

10

�
C
�

2

6

��
1

5

�
2

15
D 1

15
C 1

15
:

Mann and Whitney used this recurrence relation to construct tables of exact
probability values up to and including n D m D 8. Finally, from the recurrence
relation Mann and Whitney derived explicit expressions for the mean, variance, and
various higher moments for U , and explained that the limit of the distribution is
normal if min.n; m/!1 [880].

It should be noted that in 1914 Gustav Deuchler suggested an approach that
was essentially the same as that used by Mann and Whitney in their treatment of
the two-sample rank-sum test [345]. Deuchler’s work in this area seems to have
been neglected, but William Kruskal attempted to redress this failure in a 1957
article on “Historical notes on the Wilcoxon unpaired two-sample test” in Journal
of the American Statistical Association [776]. In a 1952 article W.H. Kruskal and
W.A. Wallis provided a list of independent discoveries of the Wilcoxon two-sample
rank-sum test [779] and this 1957 article is, in part, an attempt to update that list.
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Fig. 3.7 Rankings of a
dichotomous variable

Also mentioned in the 1957 article, but omitted in the 1952 article, was a 1947 article
by J.W. Whitfield who independently discovered the Mann–Whitney test [1443].

3.13 Whitfield and aMeasure of Ranked Correlation

In 1947 John W. Whitfield proposed a measure of rank-order correlation between
two variables, one of which was composed of ranks and the other dichotomous
[1443].35 While not presented as a permutation test per se, the article by Whitfield
is of historical importance as it is occasionally cited as an independent discovery
of the Wilcoxon two-sample rank-sum test [e.g., 776, pp. 358–359]. Whitfield
considered the dichotomous variable as a ranking composed entirely of two sets
of tied rankings. An example will illustrate the procedure. Following Whitfield,
consider the rank data in Fig. 3.7 where the � andC signs indicate the dichotomous
variable and the ranks are from 1 to 6. Let m D 2 denote the number of ranks in the
“C” group and let n D 4 denote the number of ranks in the “�” group.

Now consider the n D 4 ranks in the group identified by a � sign: 1, 3, 4, and 5.
Beginning with rank 1 with a � sign, there are no ranks with a C sign to the left of
rank 1 and two ranks with aC sign to the right of rank 1 (ranks 2 and 6); so compute
0�2 D �2. For rank 3 with a � sign, there is one rank to the left of rank 3 with aC
sign (rank 2) and one rank to the right of rank 3 with aC sign (rank 6); so compute
1 � 1 D 0. For rank 4 with a � sign, there is one rank to the left of rank 4 with a C
sign (rank 2) and one rank to the right of rank 4 with aC sign (rank 6); so compute
1 � 1 D 0. Finally, for rank 5 with a � sign, there is one rank to the left of rank 5
with aC sign (rank 2) and one rank to the right of rank 5 with aC sign (rank 6); so
compute 1 � 1 D 0. The sum of the differences is S D �2C 0C 0C 0 D �2. In
this manner, Whitfield’s approach incorporated unequal sample sizes with m 6D n

as well as tied ranks.
Since the number of possible pairs of m C n consecutive integers is given by

.mC n/.mC n � 1/=2, Whitfield defined and calculated his test statistic as

� D 2S

.mC n/.mC n � 1/
D 2.�2/

.2C 4/.2C 4 � 1/
D �4

30
D �0:1333 :

35Whitfield’s article was followed immediately in the same issue of Biometrika with a comment
by M.G. Kendall noting that “Mr Whitfield has correctly surmised the variance [of � ] when one
ranking contains ties, and the other is a dichotomy” [733, p. 297].
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Table 3.7 Fifteen paired observations with concordant/discordant (C=D) pairs and associated
pair values

Number Pair C=D Value Number Pair C=D Value

1 1–2 �; C �1 9 2–6 C; C 0
2 1–3 �; � 0 10 3–4 �; � 0
3 1–4 �; � 0 11 3–5 �; � 0
4 1–5 �; � 0 12 3–6 �; C �1

5 1–6 �; C �1 13 4–5 �; � 0
6 2–3 C; � C1 14 4–6 �; C �1

7 2–4 C; � C1 15 5–6 �; C �1

8 2–5 C; � C1

Whitfield’s S is directly related to the U statistic of Mann and Whitney [880]
and, hence, to the W statistic of Wilcoxon [1453].36 Compare statistic S with the
U statistic of Mann and Whitney. For the data in Fig. 3.7 there are m D 2C signs
and n D 4 � signs, so considering the lesser of the two (the m D 2 C signs),
the first C sign (rank 2) precedes three � signs (ranks 3–5) and the second C sign
precedes no � signs, so U D 3 C 0 D 3. The relationship between Whitfield’s
S and Mann and Whitney’s U is given by S D 2U � mn [229, 776]; thus, S D
2.3/ � .2/.4/ D 6 � 8 D �2. For the example data in Fig. 3.7, the Wilcoxon’s W

test statistic for the smaller of the two sums (with the m D 2 C signs) is W D
2C 6 D 8 and the relationship with S is given by S D m.mC nC 1/� 2W ; thus,
S D 2.2C 4C 1/� .2/.8/ D 14� 16 D �2.

As Whitfield mentioned, the calculation of S was fashioned after a procedure first
introduced by Kendall in 194537 and Whitfield was apparently unaware of the two-
sample rank-sum tests published by Wilcoxon in 1945, Festinger in 1946, and Mann
and Whitney in 1947, as they are not referenced in the Whitfield article. Kendall
considered the number of concordant (C ) and discordant (D) pairs, of which there
is a total of .m C n/.m C n � 1/=2 pairs when there are no ties in the m C n

consecutive integers [730]. For the example data in Fig. 3.7 there are .2C4/.2C4�
1/=2 D 15 pairs. Table 3.7 numbers and lists the 15 pairs, the concordant/discordant
classification of pairs, and the pair values, where concordant pairs (�;� andC;C)
are given a value of 0, and discordant pairs (C;� and �;C) are given values of
C1 and �1, respectively. The sum of the pair values in Table 3.7 for the 15 pairs is
S D �5C 3 D �2.

Today it is well-known, although poorly documented, that when one classifi-
cation is a dichotomy and the other classification is ordered, with or without tied
values, the S statistic of Kendall is equivalent to the Mann–Whitney U statistic; see
also articles by Lincoln Moses in 1956 and Edmund John Burr in 1960 on this topic

36In 1968 Charles R. Kraft and Constance van Eeden showed how Kendall’s � can be computed as
a sum of Wilcoxon W statistics [768, pp. 180–181].
37Whitfield lists the date of the Kendall article as 1946, but Kendall’s article was actually published
in Biometrika in 1945.
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[229, 1011]. Whitfield was apparently the first to discover the relationship between
S , the statistic underlying Kendall’s � rank-order correlation coefficient, and U ,
the Mann–Whitney two-sample rank-sum statistic for two independent samples.
However, it was Hemelrijk in 1952 [610] and Jonckheere in 1954 [699] who made
the relationship explicit; see also a discussion by Leach in 1979 [806, p. 183].
Because the Jonckheere–Terpstra test, when restricted to two independent samples,
is mathematically identical in reverse application to the Wilcoxon and Mann–
Whitney tests (see [699, p. 138] and [1153, p. 396]), the two-sample rank-sum test
is sometimes referred to as the Kendall–Wilcoxon–Mann–Whitney–Jonckheere–
Festinger test [1011, p. 246]. Whitfield concluded his article with derivations of
the variances of S for both untied and tied rankings and included a correction for
continuity. For untied ranks the variance of S , as given by Kendall [731], is

�2
S D

.mC n/.mC n � 1/Œ2.mC n/C 5

18

and the desired probability value is obtained from the asymptotically N.0; 1/

distribution when min.m; n/ ! 1. For the example data listed in Fig. 3.7, the
variance of S is calculated as

�2
S D

.2C 4/.2C 4 � 1/Œ2.2C 4/C 5

18
D 28:3333

and

� D S

�S

D �2p
28:3333

D �0:3757 ;

with a one-sided probability value of 0.3536.

3.13.1 An Example ofWhitfield’s Approach

It is common today to transform a Pearson correlation coefficient between two
variables (rxy) into Student’s pooled t test for two independent samples and vice-
versa, i.e.,

t D rxy

s
mC n � 2

1 � r2
xy

and rxy D tq
t2 CmC n � 2

;

where m and n indicate the number of observations in Samples 1 and 2, respectively.
It appears that Whitfield was the first to transform Kendall’s rank-order correlation
coefficient, � , into Mann and Whitney’s two-sample rank-sum test, U , for two
independent samples. Actually, since

� D 2S

.mC n/.mC n � 1/
;
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Fig. 3.8 Listing of the m C n D 17 age and rank scores from Samples A and B

Fig. 3.9 Contingency table of the frequency of ranks in Fig. 3.8

Whitfield established the relationship between the variable part of Kendall’s � ,
S , and Mann and Whitney’s U . To show just how Whitfield accomplished this,
consider the data listed in Fig. 3.8. The data consist of m D 12 adult ages from
Sample A and n D 5 adult ages from Sample B , with associated ranks. The sample
membership of the ages/ranks is indicated by an A or a B immediately beneath the
rank score.

Now, arrange the two samples into a contingency table with two rows and
columns equal to the frequency distribution of the combined samples, as in Fig. 3.9.
Here the first row of frequencies in Fig. 3.9 represents the runs in the list of ranks
in Fig. 3.8 labeled as A, i.e., there are four values of 2 1

2
, no value of 5, two values

of 6 1
2
, no value of 9, four values of 10 1

2
, and so on. The second row of frequencies

in Fig. 3.9 represents the runs in the list of ranks in Fig. 3.8 labeled as B , i.e., there
is no value of 2 1

2
labeled as B , one value of 5, no value of 6 1

2
, one value of 9,

and so on. Finally, the column marginal totals are simply the sums of the two rows.
This contingency arrangement permitted Whitfield to transform a problem of the
difference between two independent samples into a problem of correlation between
two sets of ranks.

Denote by X the r � c table in Fig. 3.9 with r D 2 and c D 8 and let xij indicate
a cell frequency for i D 1; : : : ; r and j D 1; : : : ; c. Then, as noted by E.J. Burr in
1960, S can be expressed as the algebraic sum of all second-order determinants in
X [229]:

S D
r�1X
iD1

rX
j DiC1

c�1X
kD1

cX
lDkC1

�
xikxjl � xilxjk

	
:

Thus, for the data listed in Fig. 3.9 there are c.c� 1/=2 D 8.8� 1/=2 D 28 second-
order determinants:

S D
ˇ̌̌
ˇ4 0

0 1

ˇ̌̌
ˇ C

ˇ̌̌
ˇ4 2

0 0

ˇ̌̌
ˇ C

ˇ̌̌
ˇ4 0

0 1

ˇ̌̌
ˇ C

ˇ̌̌
ˇ4 4

0 0

ˇ̌̌
ˇ C

ˇ̌̌
ˇ4 0

0 1

ˇ̌̌
ˇ C

ˇ̌̌
ˇ4 2

0 0

ˇ̌̌
ˇ C � � � C

ˇ̌̌
ˇ2 0

0 2

ˇ̌̌
ˇ :
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Therefore,

S D .4/.1/ � .0/.0/C .4/.0/� .2/.0/C .4/.1/� .0/.0/C .4/.0/� .4/.0/

C .4/.1/ � .0/.0/C .4/.0/� .2/.0/C .4/.2/� .0/.0/C .0/.0/� .2/.1/

C .0/.1/ � .0/.1/C .0/.0/� .4/.1/C .0/.1/� .0/.1/C .0/.0/� .2/.1/

C .0/.2/ � .0/.1/C .2/.1/� .0/.0/C .2/.0/� .4/.0/C .2/.1/� .0/.0/

C .2/.0/ � .2/.0/C .2/.2/� .0/.0/C .0/.0/� .4/.1/C .0/.1/� .0/.1/

C .0/.0/ � .2/.1/C .0/.2/� .0/.1/C .4/.1/� .0/.0/C .4/.0/� .2/.0/

C .4/.2/ � .0/.0/C .0/.0/� .2/.1/C .0/.2/� .0/.1/C .2/.2/� .0/.0/

and S D 4C 0C 4C � � � C 2C 4 D 28.
Alternatively, as Kendall showed in 1948 [734], the number of concordant pairs

is given by

C D
r�1X
iD1

c�1X
j D1

xij

0
@ rX

kDiC1

cX
lDj C1

xkl

1
A

and the number of discordant pairs is given by

D D
r�1X
iD1

c�1X
j D1

xi;c�j C1

 
rX

kDiC1

c�jX
lD1

xkl

!
:

Thus, for X in Fig. 3.9, C is calculated by proceeding from the upper-left cell with
frequency x11 D 4 downward and to the right, multiplying each cell frequency by
the sum of all cell frequencies below and to the right, and summing the products, i.e.,

C D .4/.1C 0C 1C 0C 1C 0C 2/C .0/.0C 1C 0C 1C 0C 2/

C .2/.1C 0C 1C 0C 2/C .0/.0C 1C 0C 2/

C .4/.1C 0C 2/C .0/.0C 2/C .2/.2/

D 20C 0C 8C 0C 12C 0C 4 D 44 ;

and D is calculated by proceeding from the upper-right cell with frequency x19 D 0

downward and to the left, multiplying each cell frequency by the sum of all cell
frequencies below and to the left, and summing the products, i.e.,

D D .0/.0C 1C 0C 1C 0C 1C 0/C .2/.1C 0C 1C 0C 1C 0/

C .0/.0C 1C 0C 1C 0/C .4/.1C 0C 1C 0/

C .0/.0C 1C 0/C .2/.1C 0/C .0/.0/

D 0C 6C 0C 8C 0C 2C 0 D 16 :

Then, as defined by Kendall, S D C �D D 44� 16 D 28.
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To calculate Mann and Whitney’s U for the data listed in Fig. 3.8, the number
of A ranks to the left of (less than) the first B is 4; the number of A ranks to the
left of the second B is 6; the number of A ranks to the left of the third B is 10; and
the number of A ranks to the left of the fourth and fifth B are 12 each. Then U D
4C6C10C12C12 D 44. Finally, S D 2U �mn D .2/.44/�.12/.5/ D 28. Thus,
Kendall’s S statistic, as redefined by Whitfield, includes as special cases Yule’s Q

test for association in 2 � 2 contingency tables and the Mann–Whitney two-sample
rank-sum U test for larger r � c contingency tables.

It is perhaps not surprising that Whitfield established a relationship between
Kendall’s S and Mann and Whitney’s U as Mann published a test for trend in 1945
(q.v. page 125) that was identical to Kendall’s S , as Mann noted [879]. The Mann
test is known today as the Mann–Kendall test for trend where for n values in an
ordered time series x1; : : : ; xn,

S D
n�1X
iD1

nX
j DiC1

sgn
�
xi � xj

	
;

where

sgn.�/ D

8̂̂̂
<
ˆ̂̂:
C1 if xi � xj > 0 ,

0 if xi � xj D 0 ,

�1 if xi � xj < 0 .

3.14 Olmstead–Tukey and the Quadrant-Sum Test

In 1947 Paul Olmstead and John Tukey (q.v. page 232) proposed a new test for
the association of two continuous variables [1059].38 They termed the new test
the “quadrant-sum test,” but it is better known as the “corner test for association.”
Olmstead and Tukey observed that when a moderate number of paired observations
(25–200) on two quantities were plotted as a scatter diagram, visual examination
tended to give greater weight to observations near the periphery of the scatter dia-
gram. They pointed out that a quantitative test of association with such concentration
on the periphery was lacking, and the quadrant-sum test was developed to fill this
gap [1059, p. 499]. In classic Tukey fashion, they recommended the quadrant-sum
test for exploratory investigations of large data sets, due to its simplicity and ease
of use; see also discussions by Tukey and Olmstead in 1947 [1383], Mood in 1950
[1000, pp. 410–414], and Daniel in 1978 [313, pp. 321–324].

38It was common at this time to assume continuous variables as this ensured no tied values, cf.
articles by Sun and Sherman in 1996 [1335, p. 90] and Gebhard and Schmitz in 1998 [502, p. 76].
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Consider a sample of n paired x and y values given by

.x1; y1/; .x2; y2/; : : : ; .xn; yn/ :

Plot the sample values in an xy plane and draw a horizontal line at x D xm and a ver-
tical line at y D ym, where xm (ym) is the median of the x (y) values without regard
to the values of y (x). Label the quadrants as C; �; C; �, beginning in the upper
right-hand quadrant and moving counterclockwise, so that the upper right and lower
left quadrants are positive. Then beginning at the right side of the scatter diagram
with the sample point furthest from the vertical line, count in (in order of abscissae)
along the observations until forced to cross ym. Write down the number of observa-
tions encountered before crossing ym, attaching aC sign if the observation lies in the
C quadrant and a � sign if the observation lies in the � quadrant. Denote the count
by s1. Do a similar count, moving from the top sample point downward, another
count moving from the leftmost sample point to the right, and a final count moving
from the bottom sample point upward. Let the number of points be denoted by s2, s3,
and s4, respectively, with attached C or � signs depending on whether the sample
points in each case fall into a C or � quadrant. Finally, let S denote the algebraic
(quadrant) sum of s1, s2, s3, and s4, with their respective signs attached. Note that
the order of s1; : : : ; s4 is not important and also that an observation may be counted
twice, once in counting from the top, say, and again when counting from the right.

Olmstead and Tukey explained that the set of x values, the set of y values,
and the permutations of the order of the y values when the pairs were ordered
by the x values were independently distributed, and that any permutation was as
likely as any other permutation. Thus, since the quadrant sum S depended only
on the permutation, its distribution in the absence of association did not depend
on the distribution of x and y. The question for Olmstead and Tukey was: how
many permutations yield a count of exactly k positive values? They tabulated exact
probability values of P.jS j � k/ for n D 2; 3; 4; 5; 7 and for k D 1; 2; : : : ; 30

and showed that for large n

lim
n!1 P.jS j � k/ D 9k3 C 9k2 C 168k C 208

.216/.2k/
:

Olmstead and Tukey also provided extensions to higher dimensions and applications
to serial correlation.

Consider an example with 28 paired observations as depicted in Fig. 3.10.
Beginning at the right side of the diagram, count in along the observations, moving
toward the center until forced to cross the horizontal median (ym) and write down
the number of observations met before the crossing the median (the dashed line),
attaching aC (�) sign if the observations lie in theC (�) quadrant. In this example,
s1 D C2, as the observations are in the C quadrant. Then, moving from the bottom
toward the center, s2 D C1, as the observation is in the C quadrant. Moving from
the left side, s3 D C5 and moving from the top, s4 D C3. Thus, the quadrant sum
is S D 2C 1C 5C 3 D 11, yielding an approximate probability value of 0.0342.
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Fig. 3.10 Scatter diagram of n D 28 pairs of observations to illustrate the corner test of
association by P.S. Olmstead and J.W. Tukey [1059]

3.15 Haldane–Smith and a Test for Birth-Order Effects

In 1948 John Haldane and Cedric Smith proposed a recursively-obtained two-
sample rank-sum test for birth-order effects that employed a clever decomposition
procedure similar to that used by Festinger in 1946 [573].

J.B.S. Haldane
John Burton Sanderson Haldane was educated at Eton and New College,
University of Oxford, and was a commissioned officer during World War
I. At the conclusion of the war, Haldane was awarded a fellowship at New
College, University of Oxford, and then accepted a readership in biochemistry
at Trinity College, University of Cambridge. In 1932 Haldane was elected
Fellow of the Royal Society and a year later, became Professor of Genetics
at University College, London. In the 1930s Haldane joined the Communist

(continued)
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Party and assumed editorship of the party’s London Paper, the Daily Worker.
In 1956 Haldane, disillusioned with the official Party line and the rise of
the Soviet biologist Trofim Lysenko, immigrated to India where he joined
the Indian Statistical Institute at the invitation of P.C. Mahalanobis. In 1961
he resigned from the Indian Statistical Institute and accepted a position as
Director of the Genetics and Biometry Laboratory in Orissa, India. Haldane
wrote 24 books, including science fiction and stories for children, more
than 400 scientific research papers, and innumerable popular articles [869].
John Burton Sanderson Haldane F.R.S. died of cancer on 1 December 1964,
whereupon he donated his body to Rangaraya Medical College, Kakinada,
India [869].

C.A.B. Smith
Cedric Austen Bardell Smith attended University College, London. In 1935,
Smith received a scholarship to Trinity College, University of Cambridge,
where he earned his Ph.D. in 1942.39 In 1946 Smith was appointed Assistant
Lecturer at the Galton Biometric Laboratory, University College, London,
where he first met Haldane. In 1964 Smith accepted an appointment as
the Weldon Professor of Biometry at University College, London. Cedric
Smith clearly had a sense of humor and was known to occasionally sign his
correspondence as “U.R. Blanche Descartes, Limit’d,” which was an anagram
of Cedric Austen Bardell Smith [1008]. Smith contributed to many of the
classical topics in statistical genetics, including segregation ratios in family
data, kinship, population structure, assortative mating, genetic correlation, and
estimation of gene frequencies [1008]. Cedric Austen Bardell Smith died on
10 January 2002, just a few weeks shy of his 85th birthday [400, 1008].

In 1948 Haldane and Smith introduced an exact test for birth-order effects
[573]. They had previously observed that in a number of hereditary diseases and
abnormalities, the probability that any particular member of a sibship had a specified
abnormality depended in part on his or her birth rank (birth order) [573, p. 117].
The test they proposed was based on the sum of birth ranks of all affected cases
in all sibships. In a classic description of an exact permutation test, Haldane and
Smith noted that if in each sibship the numbers of normal and affected siblings were

39Cedric Smith, Roland Brooks, Arthur Stone, and William Tutte met at Trinity College, University
of Cambridge, and were known as the Trinity Four. Together they published mathematical papers
under the pseudonym Blanche Descartes, much in the tradition of the putative Peter Ørno, John
Rainwater, and Nicolas Bourbaki.
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held constant, then if birth rank had no effect, every possible order of normal and
affected siblings would be equally-probable. Accordingly, the sum of birth ranks for
affected siblings would have a definite distribution, free from unknown parameters,
providing “a ‘conditional’ and ‘exact’ test for effect of birth-rank” [573, p. 117].
Finally, they observed that this distribution would be very nearly normal in any
practically occurring case with a mean and variance that were easily calculable.

Consider a single sibship of k births, h of which are affected. Let the birth ranks
of the affected siblings be denoted by a1; a2; : : : ; ah and their sum by A DPh

rD1 ar .
Then, there are  

k

h

!
D kŠ

hŠ.k � h/Š
(3.5)

equally-likely ways of distributing the h affected siblings.40 Of these, the number of
ways of distributing them, Ph; k.A/, so that their birth ranks sum to A is equal to the
number of partitions of A into h unequal parts, a1; a2; : : : ; ah, no part being greater
than k. Given this, the probability ph; k.A/ of obtaining a sum A is given by

ph; k.A/ D Ph; k.A/

, 
k

h

!
: (3.6)

Dividing these partitions into two classes according to whether the greatest part is
or is not k, yields

Ph; k.A/ D Ph; k�1.A/C Ph�1; k�1.A� k/ : (3.7)

Haldane and Smith observed that from the relation described in Eq. (3.7) they could
readily calculate Ph; k.A/ for small samples of h and k.

Since .k C 1 � a1/; .k C 1 � a2/; : : : ; .k C 1 � ah/ must be a set of h integers,
all different and not greater than k, and summing to h.kC 1/�A, they showed that

Ph; k.A/ D Ph; kŒh.k C 1/�A : (3.8)

Haldane and Smith went on to note that, similar to the affected siblings, in any
sibship the unaffected siblings would all have different birth ranks, none exceeding
k, but summing to k.k C 1/=2�A. Thus,

Ph; k.A/ D Pk�h; k Œk.k C 1/=2�A : (3.9)

An example will serve to illustrate the recursion procedure employed by Haldane
and Smith.41 Consider a sibship of k D 6 siblings with h D 2 of the siblings

40Equation (3.5) is incorrect in Haldane and Smith [573, p. 117] and is corrected here.
41It should be noted that while the decomposition in Eq. (3.8) is different from that employed by
Mann and Whitney in Eq. (3.4) [880], it is similar to the decomposition used by Festinger [427],
although there is no indication that Haldane and Smith were familiar with the work of Festinger.
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Table 3.8 Partitions (P ), sums (A), and frequencies (f ) for Ph; k.A/ D P2; 6.7/, Ph; k�1.A/ D
P2;5.7/, Ph�1; k�1.A � k/ D P1; 5.1/, and Pk�h; k Œk.k C 1/=2 � A D P4;6.14/

P2; 6.7/ P2; 5.7/ P1; 5.1/ P4; 6.14/

P A f P A f P A f P A f

1, 2 3 1 1, 2 3 1 1 1 1 1, 2, 3, 4 10 1
1, 3 4 1 1, 3 4 1 2 2 1 1, 2, 3, 5 11 1
1, 4 5 2 1, 4 5 2 3 3 1 1, 2, 3, 6 12 2
1, 5 6 2 1, 5 6 2 4 4 1 1, 2, 4, 5 13 2
1, 6 7 3 2, 3 7 2 5 5 1 1, 2, 4, 6 14 3
2, 3 8 2 2, 4 8 1 1, 2, 5, 6 15 2
2, 4 9 2 2, 5 9 1 1, 3, 4, 5 16 2
2, 5 10 1 3, 4 1, 3, 4, 6 17 1
2, 6 11 1 3, 5 1, 3, 5, 6 18 1
3, 4 4, 5 1, 4, 5, 6
3, 5 2, 3, 4, 5
3, 6 2, 3, 4, 6
4, 5 2, 3, 5, 6
4, 6 2, 4, 5, 6
5, 6 3, 4, 5, 6

classified as affected (a) and k � h D 6 � 2 D 4 of the siblings classified as
normal (n), with birth order indicated by subscripts: n1; a2; n3; n4; a5; n6. Thus,
the affected siblings are the second and fifth born out of six siblings and yield a
sum of A D a2 C a5 D 2 C 5 D 7. Table 3.8 lists the partitions and associated
frequency distributions for h D 2 and k D 6 in the first set of columns, h D 2

and k � 1 D 6 � 1 D 5 in the second set of columns, h � 1 D 2 � 1 D 1 and
k � 1 D 6� 1 D 5 in the third set of columns, and k � h D 6� 2 D 4 and k D 6 in
the fourth set of columns. It can be seen in Table 3.8 that Ph; k.A/ D P2; 6.7/ D 3

since there are three ways of placing an affected sibling yielding a sum of A D 7,
i.e., f1; 6g, f2; 5g, and f3; 4g. As there are a total of

 
k

h

!
D kŠ

hŠ.k � h/Š
D 6Š

2Š.6� 2/Š
D 15

equally-probable ways of placing the h D 2 affected siblings, the probability of
obtaining a sum of A D 7 as given in Eq. (3.6) is

p 2; 6.7/ D P2; 6.7/=15 D 3=15 D 0:20 :

Dividing the partitions into two classes as in Eq. (3.7) yields

P2; 6.7/ D P2; 6�1.7/C P2�1; 6�1.7 � 6/ ;

3 D P2; 5.7/C P1; 5.1/ ;

3 D 2C 1 ;
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as illustrated in Table 3.8, where P2; 6.7/ in the first set of columns is associated
with a frequency of 3, P2;5.7/ in the second set of columns is associated with a
frequency of 2, and P1; 5.7 � 6/ D P1; 5.1/ in the third set of columns is associated
with a frequency of 1; thus, 3 C 2 C 1. Note that once again, the decomposition
observed in the discussion of Festinger and the two-sample rank-sum test appears
wherein  

k

h

!
D
 

k � 1

h

!
C
 

k � 1

h� 1

!
;

 
6

2

!
D
 

6 � 1

2

!
C
 

6 � 1

2 � 1

!
;

 
6

2

!
D
 

5

2

!
C
 

5

1

!
;

15 D 10C 5 :

This decomposition can be observed in Table 3.8 where the column of frequencies
for P2; 6.A/ in the first set of columns sums to 15, the column of frequencies for
P2; 5.A/ in the second set of columns sums to 10, the column of frequencies for
P1;5.A � k/ in the third set of columns sums to 5, and 15 D 10C 5.

The affected siblings, .k C 1 � a2/ and .k C 1 � a5/, constitute a set of h D 2

integer values where .6C1�2/ D 5 and .6C1�5/ D 2 are all different with none
greater than k D 6. The values 5 and 2 sum to h.k C 1/ � A D 2.6C 1/ � 7 D 7.
Thus, as in Eq. (3.8),

P2; 6.7/ D P2; 6Œ2.6C 1/� 7 D P2; 6Œ7 D 3 :

The first set of columns in Table 3.8 lists the partitions and frequency distribution
of the partitions of P2; 6.A/ in which the sum A D 7 has a frequency of 3 based on
the partitions of f1; 6g, f2; 5g, and f3; 4g.

On the other hand, the normal siblings, .kC 1� n1/, .kC 1� n3/, .kC 1�n4/,
and .k C 1 � n6/, constitute a set of k � h D 6 � 2 D 4 integer values where
.6 C 1 � 1/ D 6, .6 C 1 � 3/ D 4, .6 C 1 � 4/ D 3, and .6 C 1 � 6/ D 1

are all different with none greater than k D 6. The values 6, 4, 3, and 1 sum to
k.k C 1/=2�A D 6.6C 1/=2� 7 D 14. Thus, as in Eq. (3.9),

P2; 6.7/ D P6�2; 6 Œ6.6C 1/=2� 7 D P4; 6Œ14 D 3 :

The rightmost set of columns in Table 3.8 lists the partitions and frequency
distribution of P4; 6Œk.k C 1/=2 � A in which the sum A D 14 has a frequency
of 3 based on the partitions f1; 2; 5; 6g, f1; 3; 4; 6g, and f2; 3; 4; 5g.
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From Eqs. (3.8) and (3.9), Haldane and Smith were able to construct a table of
values of Ph; k.A/ and

�
k
h

	
, giving the exact distribution for all values of k up to

and including 12, noting that values not explicitly given in the table could readily
be derived by the use of Eqs. (3.8) and (3.9). Additionally, Haldane and Smith
investigated the approximate distribution of A. They found it more efficient to test
6A instead of A and showed that the theoretical mean of 6A was 3h.k C 1/ and
the theoretical variance was 3h.k C 1/.k � h/, and thus provided a table of means
and variances for h D 1; : : : ; 18 and k D 2; : : : ; 20. They observed that since A

is made up of a number of independent components, the distribution of A would
be approximately normal and, therefore, if an observed value of A exceeded the
mean by more than twice the standard deviation, siblings born later were most
likely to be affected, but if the observed value of A fell short of the mean by the
same amount, siblings born earlier were most likely to be affected [573, p. 121].
They concluded the paper with an example analysis based on data from T.A. Munro
on phenylketonuria from forty-seven British families that had previously been
published in Annals of Human Genetics in January of 1947 [1014].42

3.16 Finney and the Fisher–Yates Test for 2 � 2 Tables

In 1948 David Finney constructed and published tables of exact probability values
based on the hypergeometric distribution for testing the significance of data arranged
in a 2 � 2 contingency table [434].

D.J. Finney
David John Finney read mathematics and statistics at Clare College, Univer-
sity of Cambridge, from 1934 to 1938. During his second year at Cambridge,
doctors found a small spot on one lung and suggested he move to England’s
south coast for a brief period during the summer to recuperate. While there,
he developed typhoid fever and was hospitalized for weeks, which caused him
to miss an entire term at Cambridge. Finney later recalled that the fever had
been a “happy accident” because it allowed him to deliberate on his future and
rethink his plans to become a mathematician. Thus, when Finney returned to
the University of Cambridge in 1937, he took the advice of an advisor to try
his hand at statistics and signed up to take a course from John Wishart. It was
Wishart who later told Finney about a competitive post-graduate opportunity

(continued)

42Phenylketonuria (PKU) is a autosomal recessive metabolic genetic disorder that can lead to
mental retardation, seizures, behavioral problems, and autism. Dr. Asbjørn Følling, a Norwegian
biochemist and physician, was the first to publish a description of phenylketonuria as a cause of
mental retardation in 1934 [475].
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Fig. 3.11 Notation for the
Finney standard 2 � 2

contingency table

that took him to the Galton Biometric Laboratory at University College,
London, to work with R.A. Fisher.

In 1939 Finney accepted a position as assistant to Frank Yates at Rotham-
sted Experimental Station to replace William G. Cochran who was leaving
to assume a post at Iowa State University. After leaving Rothamsted, Finney
taught statistics at the University of Oxford, the University of Aberdeen, and
the University of Edinburgh. Finney was elected Fellow of the Royal Society
in 1955 and was president of the Royal Society in 1973. Finney retired from
the University of Edinburgh in 1984 but has continued researching, with a
focus on drug safety [435, 866] David John Finney F.R.S. was born on 3
January 1917 and at the time of this writing is 96 years old.

In 1948 Finney considered the Fisher–Yates exact permutation test43 of signifi-
cance for 2� 2 contingency tables [434]. Acknowledging that the usual chi-squared
test of significance was questionable when the expected cell frequencies were small,
Finney utilized exact hypergeometric probability values to construct a table of sig-
nificance levels for 2� 2 contingency tables with small expected frequencies. Thus,
as Finney explained, for a standard 2�2 contingency table with cell frequencies and
marginal frequency totals represented as in Fig. 3.11, the hypergeometric probability
for cell b, with fixed marginal frequency totals, is given by

P fbjB; aC b; AC B g D
AŠ BŠ .aC b/Š .AC B � a � b/Š

.AC B/Š
� 1

aŠ bŠ .A� a/Š .B � b/Š
: (3.10)

Note that the first factor to the right of the equal sign in Eq. (3.10) is dependent
only on the five marginal frequency totals, while the second factor to the right of the
equal sign depends only on the four internal cell frequencies. The table presented
by Finney enabled tests of significance at one-tailed probability levels of ˛ D 0:05,
0.025, 0.01, and 0.005, to be made by direct reference for any 2 � 2 contingency

43The Fisher–Yates test of significance for 2 � 2 contingency tables was independently developed
by R.A. Fisher in 1935 [452], F. Yates in 1934 [1472], and J.O. Irwin in 1935 [674] (qq.v. pages
25, 37, and 48).
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table having no marginal frequency total greater than 15.44 Finney illustrated the use
of the table of significance levels with Johannes Lange’s data on criminal behavior
among twin brothers or sisters of criminals, previously analyzed by R.A. Fisher (q.v.
page 41).

The table to test significance published by Finney in 1948 was limited to 2 � 2

contingency tables with both the marginal frequency totals in either the rows or
columns less than or equal to 15. Latscha [804] extended Finney’s table with tables
containing marginal frequency totals up to 20 in 1953, and Armsen [34] further
extended Latscha’s tables to marginal frequencies up to 50 in 1955.

3.17 Lehmann–Stein and Non-parametric Tests

In 1949, in a highly theoretical article published in The Annals of Mathematical
Statistics, Erich Lehmann and Charles Stein investigated optimum tests for non-
parametric hypotheses against certain classes of alternatives [818].

E.L. Lehmann
Erich Leo Lehmann studied mathematics at Trinity College, University of
Cambridge, before moving to the University of California at Berkeley as
a graduate student in 1940, where he was surprisingly admitted without
having earned an undergraduate degree. Lehmann received his M.A. degree
from Berkeley in 1942, followed by his Ph.D. in 1946, both in mathematics
and both under Jerzy Neyman (q.v. page 21). After brief teaching assign-
ments at Columbia University, Princeton University, and Stanford University,
Lehmann returned to Berkeley in 1952 as an Associate Professor. In 1954
he was appointed Professor of Mathematics and the following year, Berkeley
formed a Statistics Department at which time Lehmann became a Professor of
Statistics. Lehmann remained at Berkeley for the remainder of his academic
career, retiring in 1988. Retirement did not mean, however, that Lehmann
ceased working. In fact, Lehmann completed work on his last book, Fisher,
Neyman, and the Creation of Classical Statistics, in 2009. The book was
published posthumously by Springer in 2011. Erich Leo Lehmann died at
home in Berkeley on 12 September 2009 at the age of 91 [38,215,337,1187].

44Unfortunately, Finney recommended doubling the obtained one-tailed probability value when
using a two-tailed test [434, p. 146]. This was destined to become a procedure of considerable
controversy in the mid-1980s (q.v. page 51).
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C.M. Stein
Charles M. Stein earned his B.S. in mathematics from the University of
Chicago in 1940 and began graduate work at Chicago, but his graduate studies
were interrupted by military service during World War II. After leaving the
Air Force in 1946, Stein moved to Columbia University, earning his Ph.D.
in mathematical statistics under Abraham Wald (q.v. page 122) in 1947.
Upon graduation, Stein worked first at the Neyman Statistics Laboratory at
the University of California at Berkeley and then from 1951 to 1953 was an
Associate Professor at the University of Chicago. Stein joined the faculty at
Stanford University in 1953, where he remained for the rest of his academic
career. Stein retired in 1989 and in 2010, Stanford held a symposium in
probability and statistics in honor of Stein’s 90th birthday [336,751,767,814].
Charles Stein was born on 22 March 1920 and at the time of this writing is 93
years old.

In a 1949 article Eric Lehmann and Charles Stein researched permutation tests
in a very general framework. Let Z1; : : : ; ZN D Z denote N random variables
and suppose there is a partition of the sample space z1; : : : ; zN D z into classes of
equivalent points. Denote by Tz the set of all points that are equivalent to z, which
contains a finite number of points, r , and let H be the hypothesis that the distribution
of Z is, for any z, invariant over all the points in Tz. Then a test of H is a function
of ' that assigns to each point z a number 'z between zero and one representing the
probability of rejecting H when z is observed. If

X
z02 Tz

'.z0/ D ˛r

identically in z, then ' is a similar size-˛ test of statistic H . Lehmann and Stein
showed that a most powerful and similar size-˛ test of H against a simple alternative
is given by ordering the points of Tz so that

u
�
z.1/
	 � � � � � u

�
z.r/
	

and setting

'.z/ D

8̂̂
<̂
ˆ̂̂:

1 if u .z/ > u
�
z.1CŒ˛r/

	
,

˛ if u .z/ D u
�
z.1CŒ˛r/

	
,

0 if u .z/ < u
�
z.1CŒ˛r/

	
,

where u is an appropriately chosen function and ˛ D ˛.z/ is uniquely determined
to provide a size-˛ test [818].
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Lehmann and Stein stated that in many experimental situations, the hypothesis
that the distribution of the Zs was invariant under all permutations was more real-
istic than the hypothesis that the Zs were independently and identically distributed.
They also noted in a discussion of alternative hypotheses that many of the alternative
hypotheses considered, for example those involving normality, were dictated more
by tradition and ease of treatment than by appropriateness in actual experiments
[818, p. 29].

3.18 Rank-Order Statistics

The years 1948–1950 constituted a defining period for rank-order statistical meth-
ods. The year 1948 saw the publication of M.G. Kendall’s deceptively small 160
page volume on Rank Correlation Methods [734]; also in 1948, a massive summary
of order statistics by S.S. Wilks was published in Bulletin of the American Mathe-
matical Society [1456]. In March 1950, a special symposium on ranking methods
was held by the Research Section of the Royal Statistical Society and chaired by
M.G. Kendall, with presenters that included P.A.P. Moran, J.W. Whitfield, and
H.E. Daniels, along with several discussants, including R.L. Plackett, B. Babington
Smith, A. Stuart, J.I. Mason, I.J. Good, S.T. David, and L.T. Wilkins. The text
of the symposium was later published in Journal of the Royal Statistical Society,
Series B [314, 1005, 1444]. Although the presentations by Moran, Whitfield, and
Daniels contained little on permutation methods per se, Kendall’s book was replete
with discussions of permutation statistics and the article by Wilks constituted a rich
source on permutation methods for its time [1456].

3.18.1 Kendall and Rank CorrelationMethods

The importance of Kendall’s 1948 book on rank-order correlation methods cannot
be overstated, as it forever changed the field of rank-order statistics (q.v. page
84). It has gone through five editions, the last edition with J.D. Gibbons, it has
been cited over 5,000 times, and it is still in print. The title of Kendall’s book,
Rank Correlation Methods, is perhaps a little misleading as it contained much
more than rank-order correlation methods, including an extensive summary of
permutation methods. Of particular relevance to permutation methods, Kendall
included descriptive summaries of articles that contained permutation statistics per
se and tables of exact probability values obtained from permutation distributions.

For example, Kendall summarized articles by H. Hotelling and M.R. Pabst
that used permutation methods for calculating exact probability values for small
samples of ranked data in their research on simple bivariate correlation [653];
E.J.G. Pitman on permutation tests for two independent samples, bivariate corre-
lation, and randomized blocks analysis of variance [1129–1131]; M. Friedman on
procedures employing ranked data in place of the ordinary analysis of variance
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[485]; M.G. Kendall on exact probability values for the �b measure of rank-order
correlation [728]; E.G. Olds on exact probability values for Spearman’s rank-order
correlation coefficient [1054]; B.L. Welch on exact probability values for the �2 test
of homogeneity [1429]; M.G. Kendall and B. Babington Smith on exact probability
values for the coefficient of consistency [741]; H.B. Mann on tables of exact
probability values for tests of randomness against trend [879]; F. Wilcoxon on tables
of exact probability values for the two-sample test for rank-order statistics [1453];
and H.B. Mann and D.R. Whitney on exact probability values for the two-sample
rank-sum test [880].45

3.18.2 Wilks and Order Statistics

In 1948 Samuel S. Wilks of Princeton University published a lengthy article on
order statistics in Bulletin of the American Mathematical Society that summarized
contributions by a large number of statisticians on a comprehensive collection of
statistical tests and measures and included an exhaustive list of references [1456].

S.S. Wilks
Samuel Stanley Wilks earned his B.A. degree in industrial arts at North Texas
State Teachers College (now, the University of North Texas) in 1926, his
M.A. degree in mathematics at the University of Texas, and his Ph.D. in
statistics at the University of Iowa in 1931. Upon graduation with his Ph.D.,
Wilks was awarded a National Research Council Fellowship in mathematics
at Columbia University, where he studied with Harold Hotelling. In 1932
Wilks was appointed as a National Research Council International Fellow and
studied at both the University of London and the University of Cambridge.
There, Wilks had the opportunity to work with both Karl Pearson and John
Wishart.

In 1934, at the recommendation of Harold Hotelling, Wilks was recruited
to Princeton University by the Chair of the Department of Mathematics,
Luther Pfahler Eisenhart, who was the father of Churchill Eisenhart by his
first wife. Later, Churchill Eisenhart would earn his M.A. degree under Wilks.
Wilks remained at Princeton for his entire career. Samuel Stanley Wilks died
unexpectedly in 1964 as lamented in the opening sentences of his obituary by
Frederick Mosteller:

(continued)

45It should be noted that Kendall neglected to mention the two-sample rank-sum test developed by
Festinger 2 years prior, perhaps because it was published in the psychology journal, Psychometrika,
which was not commonly read by statisticians.
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[t]he death in his sleep of Samuel Stanley Wilks at his Princeton home on March
7, 1964, ended a life of dedicated service to statistics, education, and the nation.
Apparently in the best of health, his sudden death at the age of 57 shocked and
saddened the entire statistical community [1012, p. 411].

While at Princeton, Wilks was the editor of Annals of Mathematical
Statistics from 1938 to 1949. In addition, for 30 years Wilks worked with
the College Entrance Examination Board (CEEB) and with the Educational
Testing Service (ETS), advising on research design and analysis, score
scaling, the development of mathematical tests, and studies of mathematical
education [325, 692, 814, 1012].

Kendall’s Rank Correlation Methods was quickly followed by a substantial and
sophisticated exposition of order statistics by S.S. Wilks in 1948 [1456]. In a highly
structured organization, Wilks provided a lengthy discourse on order statistics,
summarizing the results on order statistics, and listing all the references up to that
time. Although the title of the article was “Order statistics,” the article was also a
rich source on permutation methods.

This article by Wilks on order statistics comprised some 45 pages in Bulletin
of the American Mathematical Society and is too extensive to be summarized
completely here. The article included summaries of the contributions to permutation
methods by R.A. Fisher on permutation tests in general [448, 451]; H. Hotelling
and M.R. Pabst on exact probability values for ranked data [653]; M. Friedman
on the analysis of variance for ranks [485]; E.J.G. Pitman’s classic three arti-
cles on permutation versions of the two-sample test, bivariate correlation, and
randomized blocks analysis of variance [1129–1131]; B.L. Welch on permutation
tests for randomized block and Latin square designs [1428]; E.G. Olds on a
permutation approach to rank-order correlation [1054]; W.J. Dixon on a permutation
approach to a two-sample test [353]; A.M. Mood on the exact distribution of
runs [999]; H. Scheffé’s seminal article on non-parametric statistical inference
[1230]; F.S. Swed and C. Eisenhart on exact probability values for the runs test
[1337]; A. Wald and J. Wolfowitz on two-sample tests and serial correlation
[1405, 1406]; and P.S. Olmstead and J.W. Tukey on exact probability values for
the quadrant-sum test [1059].

3.19 van der Reyden and a Two-Sample Rank-SumTest

In 1952 D. van der Reyden proposed a two-sample rank-sum test that was equivalent
to those published previously by Wilcoxon in 1945, Festinger in 1946, Mann and
Whitney in 1947, Whitfield in 1947, and Haldane and Smith in 1948. However, the
approach was quite different, as it was based on a novel tabular procedure [1391].
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D. van der Reyden
Little is known about Dirk van der Reyden other than that early in the
1950s he was a statistician for the Tobacco Research Board in Salisbury,
Southern Rhodesia.46 In 1957 he earned a Ph.D. in experimental statistics
from North Carolina State University at Raleigh and then joined the faculty
at Washington University in St. Louis. In 1952 van der Reyden independently
developed a two-sample rank-sum test equivalent to the tests of Wilcoxon
[1453], Festinger [427], Mann and Whitney [880], Whitfield [1443], and
Haldane and Smith [573], although none of these is referenced; in fact, the
article by van der Reyden contains no references whatever. The stated purpose
of the proposed test was to provide a simple exact test of significance using
sums of ranks in order to avoid computing sums of squares [1391, p. 96].

In a novel approach, van der Reyden utilized a tabular format involving
rotations of triangular matrices to generate permutation distribution frequen-
cies and published tables of critical values at two-tailed significance levels
of 0.05, 0.02, and 0.01 for all sample sizes such that if m and n denote the
population and sample sizes, respectively, 10 � m � 30 and 2 � n � 12 at
the 0.05 level, and 3 � n � 12 at the 0.02 and 0.01 levels [1391]. This work
went largely unnoticed for some years, appearing as it did in the relatively
obscure Rhodesia Agricultural Journal.

In 1952 D. van der Reyden proposed a tabular procedure for the two-sample
rank-sum test that was equivalent to tests previously proposed by Wilcoxon in 1945
[1453], Festinger in 1946 [427], Mann and Whitney in 1947 [880], Whitfield in
1947 [1443], and Haldane and Smith in 1948 [573].47 Table 3.9 illustrates the van
der Reyden tabular procedure with values of n D 1; 2; 3, m D 1; : : : ; 6, and sums
of frequencies from T D 1 to T D 15. Looking first at the column headed n D 1

in Table 3.9, note that when m D 1 and n D 1, T D 1; when m D 2 and n D 1,
T D 1 or 2; when m D 3 and n D 1, T D 1, 2, or 3; and when m D 4 and n D 1,
T D 1, 2, 3, or 4. Simply put, taking all samples of one item from m items, all
values of T will have a frequency of 1. In this case, each T has a frequency of 1 and
each frequency sums to

�
m
n

	
, e.g., for m D 4 and n D 1 the frequency distribution is

f1; 1; 1; 1gwith a sum of 4, which is
�

4
1

	 D 4. To obtain the frequencies for samples
of n D 2 items, rotate all frequencies for n D 1 clockwise through 45ı, shifting the
whole distribution downward to

46Southern Rhodesia was shortened to Rhodesia in 1965 and renamed the Republic of Zimbabwe
in 1980.
47For a brief history of the development of the two-sample rank-sum test, see a 2012 article by
Berry, Mielke, and Johnston in Computational Statistics [160].
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Table 3.9 Generation of frequency arrays for n D 1, n D 2, and n D 3 as described by van der
Reyden [1391]

n D 1 n D 2 n D 3

T/m 1 2 3 4 2 3 4 5 2 3 4 5 3 4 5 6 3 4 5 6

1 1 1 1 1
2 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 2 2
6 1 1 1 2 1 1 1 1 1
7 1 1 1 2 1 1 1 1
8 1 1 1 1 1 2 2
9 1 1 1 1 1 1 2 3
10 2 1 2 3
11 1 2 1 3
12 1 2 1 3
13 2 2
14 1 1
15 1 1

T D
 

nC 1

2

!
D n.nC 1/

2
:

Thus in Table 3.9, the frequencies obtained for n D 1 are transposed with the
first row now constituting the fourth column, the second row constituting the third
column, and so on. Then this transposed matrix is shifted downward so that it begins
at T D n.nC 1/=2 D 2.2C 1/=2 D 3. Finally, the frequencies are added together
horizontally in a specific manner, as follows.

Consider the frequency distributions listed under n D 2 in Table 3.9. There are
two sets of frequency distributions under n D 2, one on the left and one on the right,
both labeled m D 2; 3; 4; 5. So, for example, to create the frequency distribution
listed under n D 2; m D 3 on the right, add together the frequency distribution
listed under n D 2; m D 2 on the right and the frequency distribution under n D 2;

m D 3 on the left. To create the frequency distribution listed under n D 2; m D 4

on the right, add together the frequency distribution listed under n D 2; m D 3 on
the right and the frequency distribution under n D 2; m D 4 on the left. To create
the frequency distribution listed under n D 2; m D 5 on the right, add together the
frequency distribution listed under n D 2; m D 4 on the right and the frequency
distribution under n D 2; m D 5 on the left. The process continues in this manner,
recursively generating the required frequency distributions.48

48Authors’ note: in deciphering the article by van der Reyden we were often reminded of a
comment by Nathaniel Bowditch. In the memoir prefixed to the fourth volume of Bowditch’s
translation of Laplace’s Mécanique Céleste, page 62, Bowditch wrote: “[w]henever I meet in La
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For a final example, consider the frequency distributions listed under n D 3.
Again there are two sets of frequency distributions, one on the left and one on the
right. The distribution on the left is created by rotating the distribution created under
n D 2 on the right, and shifting it downward so it begins at T D n.n C 1/=2 D
3.3C 1/=2 D 6. To create the frequency distribution listed under n D 3; m D 6 on
the right, add together the frequency distribution listed under n D 3; m D 5 on the
right and the frequency distribution under n D 3; m D 6 on the left. The frequency
distributions of sums in Table 3.9 can be compared with the frequency distributions
of sums in Tables 3.4 and 3.5 that were generated with Festinger’s method [427]. In
this recursive manner, van der Reyden created tables for T from n D 2; : : : ; 12 and
m D 10; : : : ; 30 for the ˛ D 0:05, 0.02, and 0.01 levels of significance.

3.20 White and Tables for the Rank-Sum Test

Although trained as a medical doctor, Colin White also contributed to the field
of permutation statistics. In 1952 White recursively generated tables of exact
probability values for the Wilcoxon two-sample rank-sum test in which the sample
sizes could either be equal or unequal [1441].

C. White
Colin White earned his M.S. and his M.D. degrees from the University of
Sydney, Australia, in 1937 and 1940, respectively. Upon graduation, White
served as a medical officer for the Commonwealth Department of Health in
Canberra, then moved to England where he was a lecturer at the University
of Birmingham. White immigrated to the United States in 1948 and joined
Yale University as an Assistant Professor in 1953. In 1962 he was promoted
to Professor and, eventually, Chair of the Department of Epidemiology and
Public Health. White retired in 1984, but continued his research as a senior
research scientist at Yale University until 2007, enjoying a career that spanned
six decades. Colin White passed away on 1 February 2011 at the advanced age
of 97 [673].

In 1952 White introduced “elementary methods” to develop tables for the
Wilcoxon two-sample rank-sum test when the numbers of items in the two

Place with the words ‘Thus it plainly appears’ I am sure that hours, and perhaps days of hard study
will alone enable me to discover how it plainly appears.” (Bowditch, quoted in Todhunter [1363,
p. 478]; emphasis in the original).
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independent samples, n1 and n2, were not necessarily equal [1441].49 White
provided three tables that gave critical values for rank sums for n1 D 2; : : : ; 15 and
n2 D 4; : : : ; 28 for critical values of ˛ D 0:05, n1 D 2; : : : ; 15 and n2 D 5; : : : ; 28

for critical values of ˛ D 0:01, and n1 D 3; : : : ; 15 and n2 D 7; : : : ; 27 for critical
values of ˛ D 0:001.

Following the notation of White, let n1 denote the number of items in the sample
for which the rank total, T , is required, and let n2 represent the number of items in
the second sample. The ranks to be allotted are 1; 2; : : : ; n1 C n2, where the lowest
value the rank total can have is given by

n1.n1 C 1/

2
;

the largest total is given by

n1.n1 C 2n2 C 1/

2
;

and all integer values between these two limits are possible rank totals. For example,
consider n1 D 5 items drawn from the consecutive integers 1; 2; : : : ; 12, where the
lowest rank total is

n1.n1 C 1/

2
D 5.5C 1/

2
D 1C 2C 3C 4C 5 D 15 ;

and the highest rank total is

n1.n1 C 2n2 C 1/

2
D 5Œ5C .2/.7/C 1

2
D 8C 9C 10C 11C 12 D 50 :

White’s recursion procedure to obtain rank-sum totals described here is similar to
Wilcoxon’s procedure [1453]. Let W

n1; n2

T denote the number of ways of obtaining a
rank total when there are n1 items in the sample of which T is required, and n2 items
in the second sample. Now, as White showed, W

n1; n2

T can be obtained recursively;
thus,

W
n1; n2

T D W
n1; .n2�1/

T CW
.n1�1/; n2

T �n1�n2
:

For example, as shown in Table 3.10 there are 18 ways of obtaining a total of T D
23 when n1 D 5 of the integers 1; 2; 3; : : : ; n1 C n2 D 13 are summed without
repetitions, 17 ways of obtaining a total of T D 23 when n1 D 5 of the integers
1; 2; 3; : : : ; n1C .n2 � 1/ D 12 are summed, and only one way of obtaining a total
of T D 10 when n1 D 4 of the integers 1; 2; 3; : : : ; .n1�1/Cn2 D 12 are summed.
Specifically, when n1 D 5, n2 D 8, and T D 23,

49Recall that the two-sample rank-sum method proposed by Wilcoxon in 1945 considered only
equal sample sizes [1453] and Festinger, in 1946, was the first to develop a two-sample rank-sum
procedure that could accommodate different sample sizes [427].
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Table 3.10 Number of ways a sum of T D 23 can be obtained from 5 integers chosen from 13,
a sum of T D 23 can be obtained from 5 integers chosen from 12, and a sum of T D 10 can be
obtained from 4 integers chosen from 12

Count 5 from 13 5 from 12 4 from 12

1 2 3 5 6 7 2 3 5 6 7 1 2 3 4
2 1 4 5 6 7 1 4 5 6 7
3 2 3 4 6 8 2 3 4 6 8
4 1 3 5 6 8 1 3 5 6 8
5 1 3 4 7 8 1 3 4 7 8
6 1 2 5 7 8 1 2 5 7 8
7 2 3 4 5 9 2 3 4 5 9
8 1 3 4 6 9 1 3 4 6 9
9 1 2 5 6 9 1 2 5 6 9

10 1 2 4 7 9 1 2 4 7 9
11 1 2 3 8 9 1 2 3 8 9
12 1 3 4 5 10 1 3 4 5 10
13 1 2 4 6 10 1 2 4 6 10
14 1 2 3 7 10 1 2 3 7 10
15 1 2 4 5 11 1 2 4 5 11
16 1 2 3 6 11 1 2 3 6 11
17 1 2 3 5 12 1 2 3 5 12
18 1 2 3 4 13

W 5; 8
23 D W

5; .8�1/
23 CW

.5�1/; 8
23�5�8

and 18 = 17 + 1. Table 3.10 lists the various ways of obtaining a total of T D 23

from W 5; 8
23 , W 5; 7

23 , and a total of T D 10 from W 4; 8
10 . For sums based on 5 integers

drawn from 13 consecutive integers, 18 out of a possible 1,287 sums equal T D
23; for sums based on 5 integers drawn from 12 consecutive integers, 17 out of a
possible 792 sums equal T D 23; and for sums based on 4 integers drawn from
12 consecutive integers, only 1 out of a possible 495 sums equals T D 10. In this
manner, White was able recursively to generate exact rank-sum totals for various
combinations of n1 and n2.

3.21 Other Results for the Two-Sample Rank-SumTest

In addition to the published tables already mentioned by Wilcoxon, Festinger, Mann
and Whitney, White, and van der Reyden, several other extensions of tables of
exact probability values appeared in the statistical literature during this period. Two
are worth mentioning. In 1955, Fix and Hodges published extended tables for the
Wilcoxon two-sample rank-sum W statistic [465].50 If the sizes of the two samples

50For brief biographical sketches of Evelyn Fix and Joseph L. Hodges, see Lehmann’s wonderful
little book titled Reminiscences of a Statistician: The Company I Kept, published in 2008 [814, pp.
27–35].
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are designated as m and n with m � n, the tables include exact probability values
for m � 12. In 1953, Auble published extended tables for the Mann–Whitney
two-sample rank-sum U statistic [40]. If n1 and n2 denote the sizes of the two
samples, the tables from Auble give probability values for one- and two-sided tests
for ˛ D 0:05 and ˛ D 0:01 for n1 and n2 from 1 to 20. In addition, many more
tables of exact probability values appeared for W and U after 1959 when computers
made generation of exact probability values much easier. Most notable among these
were tables for the Wilcoxon two-sample rank-sum W statistic by Jacobson in 1963
[677] and extended tables for the Mann–Whitney two-sample rank-sum U statistic
by Milton in 1964 [996].

Because the subject of interest is the historical development of permutation
methods rather than a general discussion of statistics, much has had to be omitted
in the discussion of the Wilcoxon and Mann–Whitney two-sample rank-sum tests.
Consider that many of those who published tables of exact probability values also
went on to provide approximate probability values for larger sample sizes. In
general, they used methods based on moments to fit an approximate probability
distribution. For example, in 1947 Wilcoxon provided tables of approximate
probability values for both the unpaired and paired two-sample rank-sum tests
[1454]. In addition, some of the published tables included adjustments for tied ranks,
while some did not. Finally, there were errors in several of the published tables that
were corrected in later articles; see especially the article by Verdooren [1398] that
contained corrections for the tables by White [1441] and Auble [40], and an erratum
to the article by Kruskal and Wallis [779] that contained corrections to the tables by
White [1441] and van der Reyden [1391].

While these were all important contributions, they are not directly related to
the focus on the structure and development of permutation statistical methods.
However, a final note may be of some interest. The permutation methods to produce
exact probability values introduced by Wilcoxon, Festinger, Mann and Whitney,
Whitfield, Haldane and Smith, and van der Reyden are quite complex, but the test
statistics W and U are relatively straightforward to compute. That does not mean,
however, that they are simple to implement. In 2000, Bergmann, Ludbrook, and
Spooren investigated the Wilcoxon–Mann–Whitney (WMW) procedures provided
by eleven statistical packages. Some of the packages used large-sample approxima-
tions and some used exact permutation procedures. In the first case, some packages
corrected for continuity and some did not. Moreover, some packages adjusted for
tied ranks and some did not. Combinations of these choices led to very different
results. The authors concluded that the “only infallible way of executing the WMW
test is to compile the null distribution of the rank-sum statistic by exact permutation.
This was . . . Wilcoxon’s (1945) thesis and it provided the theoretical basis for his
test” [100, p. 76].51

51In this regard, see an article by John Ludbrook on “The Wilcoxon–Mann–Whitney test
condemned” in British Journal of Surgery [851] as well as a rejoinder by G.D. Murray [1017].
See also an exact permutation computer program for the Wilcoxon–Mann–Whitney test by Berry
and Mielke in 2000 [155].
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3.22 David–Kendall–Stuart and Rank-Order Correlation

In 1951 S.T. David, M.G. Kendall (q.v. page 84), and A. Stuart published an article
concerning questions of distributions in the theory of rank-order correlation [328].
This article was motivated by three articles that had appeared the previous year
in Journal of the Royal Statistical Society, the first by P.A.P. Moran on “Recent
developments in ranking theory” [1005], the second by J.W. Whitfield on “Uses of
the ranking method in psychology” [1444], and the third by H.E. Daniels on “Rank
correlation and population models” [314]. Consequently, the article by David et al. is
not primarily concerned with permutation methods. That said, this article does make
a contribution of interest in a chronicle of permutation methods. David et al. noted
that the exact distribution for Spearman’s rank-order correlation coefficient had been
given by Kendall, Kendall, and Babington Smith in 1939 for n, the rank number,
from n D 2 to 8, inclusive [746], and independently by Olds (q.v. page 83) in 1938
for n D 2 to 7, inclusive [1054]. David et al. then proceeded to provide tables of
the exact distribution of Spearman’s rank-order correlation coefficient for n D 9

and n D 10. In 1955 Litchfield and Wilcoxon provided a table of critical totals of
squared rank differences and a nomograph which permitted direct reading of the
rank-order correlation coefficient for 6–40 pairs of observations and two probability
levels, 0.05 and 0.01 [833].

What is of interest here are the comments by David et al. on the calculations of
the exact distributions, as they reflect the difficulty in computing exact probability
values in the years preceding the development of high-speed computers. David et al.
observed that the method of obtaining the distributions used by both Kendall et al.
in 1939 [746] and previously by Olds in 1938 [1054] were essentially the same, and
further noted that “the work of explicit expansion rapidly increases as n becomes
larger” [328, p. 131]. They went on to explain that they had been unable to find
any methods of alleviating the amount of work required other than those methods
previously described by Kendall et al. in 1939 and observed that the expansions to
n D 9 and n D 10 were about as far as a computer’s patience could be expected to
extend.52

3.23 Freeman–Halton and an Exact Test of Contingency

In 1951 Gerald Freeman and John Halton published a short but influential article
in Biometrika that addressed exact methods for analyzing two-way and three-way
contingency tables, given fixed marginal frequency totals [480].

52It should be explained that “computer” was a common term that referred to the person who was
responsible for calculations, usually a woman or group of women. In this case the computer was
Miss Joan Ayling of the National Institute for Social and Economic Research who was given due
credit by the authors “for her customary patience and accuracy” [328, p. 131]. See also a discussion
by George Dyson in a 2012 book titled Turing’s Cathedral [370, p. 59].
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J.H. Halton
John H. Halton received his B.A. and M.A. degrees in mathematics and
physics from the University of Cambridge in 1953 and 1957, respectively,
and his Ph.D. from the University of Oxford in 1960. He held positions as a
physicist in several locations, including the English Electric Company, the
University of Oxford’s Clarendon Laboratory, the University of Colorado
in Boulder, the Brookhaven National Laboratory, and the University of
Wisconsin at Madison. In 1984 he joined the Department of Computer
Science at the University of North Carolina at Chapel Hill. In 2008 the
University of Cambridge presented Halton with a D.Sc. degree, an honor that
was based on forty of his published works.

In 1951 Gerald H. Freeman and John H. Halton published a short note on the
exact treatment of contingency and goodness of fit. The purpose of the note was
to present an exact method of analyzing r-way contingency tables with small cell
frequencies to replace the chi-squared approximation that was considered unsuitable
for small observed and expected values [480, pp. 141, 149]. The note is somewhat
unique, as it contained no references to previous literature. The note, however, did
include an exact treatment of r � c and r � c � s contingency tables with fixed
marginal frequency totals. The approach to the two-dimensional tables utilized the
conventional hypergeometric probability distribution and can be illustrated with a
2� 3 contingency table. Given fixed marginal frequency totals ai , i D 1; : : : ; r , and
bj , j D 1; : : : ; c, let n denote the total number of objects and let xij denote a cell
frequency for i D 1; : : : ; r and j D 1; : : : ; c. Finally, index each table by t . Then,
the probability of the t th r � c contingency table is given by

PX.t/ D

rY
iD1

ai Š

cY
j D1

bj Š

nŠ

rY
iD1

cY
j D1

x
.t/
ij Š

;

which had previously been put forward by R.A. Fisher in 1935 in the “lady tasting
tea” experiment (q.v. page 58).53 Freeman and Halton further defined

PX.t/ D QL

RX.t/

; (3.11)

53A rigorous derivation of the exact contingency formula was given by John Halton in Mathemati-
cal Proceedings of the Cambridge Philosophical Society in 1969 [578].
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where

QL D

rY
iD1

ai Š

cY
j D1

bj Š

nŠ
(3.12)

and

RX.t/ D
rY

iD1

cY
j D1

x
.t/
ij Š : (3.13)

As Freeman and Halton explained, by using logarithms the calculations could then
be performed, with QL being determined once for all tables and RX.t/ separately for
each table. For an example, consider an observed contingency table L given by

L D
�
0 3 2

6 5 1

�
:

For any k-dimensional contingency table with fixed marginal frequency totals, r1 �
r2 � � � � � rk , there are v degrees of freedom, where

v D
kY

mD1

rm �
kX

mD1

.rm � 1/� 1 :

Since, for the k-dimensional contingency table, L, with r1 D 2 and r2 D 3, there are

v D .2/.3/� .2 � 1/C .3 � 1/� 1 D 2

degrees of freedom, only two independent cells need be manipulated, e.g., x11 and
x12, and the rest simply filled in, given the fixed marginal frequency totals. To
illustrate, the first six of the possible 18 cell configurations are listed here, with
the observed contingency table being L D X.2/:

X.1/ D
�
0 2 3

6 6 0

�
; X.2/ D

�
0 3 2

6 5 1

�
; X.3/ D

�
0 4 1

6 4 2

�
;

X.4/ D
�
0 5 0

6 3 3

�
; X.5/ D

�
1 1 3

5 7 0

�
; X.6/ D

�
1 2 2

5 6 1

�
:

Following Eqs. (3.11)–(3.13), the computations for the observed table L D
X.2/ D ˇ̌ 0 3 2

6 5 1

ˇ̌
are

QL D 5Š 12Š 6Š 8Š 3Š

17Š
D 28;148:4163 ;

RX.2/ D 0Š 3Š 2Š 6Š 5Š 1Š D 1;036;800 ;
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and

PX.2/ D 28;148:4163

1;036;800
D 0:0271 :

For reference, the exact probability values for the six 2� 2 contingency tables listed
above are:

PX.1/ D 28;148:4163

6;220;800
D 0:0045 ;

PX.2/ D 28;148:4163

1;036;800
D 0:0271 ;

PX.3/ D 28;148:4163

829;440
D 0:0339 ;

PX.4/ D 28;148:4163

3;110;400
D 0:0090 ;

PX.5/ D 28;148:4163

3;628;800
D 0:0078 ;

and

PX.6/ D 28;148:4163

345;600
D 0:0814 :

In an effort to expand Fisher’s exact probability test to higher dimensions, Freeman
and Halton examined three-dimensional contingency tables. A three-dimensional
contingency table is more complex, but the approach by Freeman and Halton was an
innovative permutation method. In the case, for example, of a 2� 2� 2 contingency
table, there are

v D
kY

mD1

rm �
kX

mD1

.rm � 1/� 1 D .2/.2/.2/� .2 � 1/� .2 � 1/� .2 � 1/� 1 D 4

degrees of freedom; thus, only four cells need be manipulated with the remaining
cells determined by the fixed marginal frequency totals. For Freeman and Halton,
this meant the cell frequencies in the front 2 � 2 panel and the cell frequencies in
the left uppermost cell of the rear 2 � 2 panel.54

54In many applications, “panels” are sometimes referred to as “slices” or “levels.”
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Consider the six 2 � 2 � 2 contingency tables listed here:

X.1/ D
�
0 0

0 5

ˇ̌̌
ˇ 0 3

3 14

�
; X.2/ D

�
0 0

0 5

ˇ̌̌
ˇ 1 2

2 15

�
;

X.3/ D
�
0 0

0 5

ˇ̌̌
ˇ 2 1

1 16

�
; X.4/ D

�
0 0

0 5

ˇ̌̌
ˇ 3 0

0 17

�
;

X.5/ D
�
0 0

1 4

ˇ̌̌
ˇ 0 3

2 15

�
; X.6/ D

�
0 0

1 4

ˇ̌̌
ˇ 1 2

1 16

�
;

where the vertical lines separate the front 2 � 2 panels from the rear 2 � 2 panels.
The expression for the probability of the t th three-dimensional contingency table

as given by Freeman and Halton is

PX.t/ D [t]he product of all (border totals)!

.nŠ/2 � the product of all (cell totals)!
: (3.14)

More formally, given an r � c � s contingency table with fixed marginal frequency
totals ai for i D 1; : : : ; r , bj for j D 1; : : : ; c, and dk for k D 1; : : : ; s, let n

denote the total number of objects and let xijk denote the cell frequency for i D
1; : : : ; r , j D 1; : : : ; c, and k D 1; : : : ; s. As before, index each table by t . Then the
probability of the r � c � s contingency table is given by

PX.t/ D

rY
iD1

ai Š

cY
j D1

bj Š

sY
kD1

dkŠ

.nŠ/2

rY
iD1

cY
j D1

sY
kD1

x
.t/
ijk Š

:

Thus, for example,

PX.1/ D 5Š 20Š 3Š 22Š 3Š 22Š

.25Š/2 0Š 0Š 0Š 5Š 0Š 3Š 3Š 14Š
D 1;938

13;225
D 0:1465 ;

where the panel marginals are 0C 0C 0C 5D 5 and 0C 3C 3C 14D 20, the row
marginals are 0C0C0C3 D 3 and 0C5C3C14 D 22, and the column marginals
are 0 C 0C 0C 3 D 3 and 0C 5 C 3C 14 D 22. Note that “[t]he product of all
(border totals)!” in Eq. (3.14) and nŠ are constants for all tables, thus “the product of
all (cell totals)!” in Eq. (3.14) is operative here. For reference, the exact probability
values for the six 2 � 2 � 2 contingency tables listed above are

PX.1/ D 5:5189� 1013

3:7661� 1014
D 0:1465 ;

PX.2/ D 5:5189� 1013

6:2768� 1014
D 0:0879 ;
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PX.3/ D 5:5189� 1013

5:0215� 1015
D 0:0110 ;

PX.4/ D 5:5189 � 1013

2:5609 � 1017
D 0:0002 ;

PX.5/ D 5:5189� 1013

3:7661� 1014
D 0:1465 ;

and

PX.6/ D 5:5189� 1013

1:0043� 1015
D 0:0550 :

The recursive process described by Freeman and Halton simplified calculations
and enabled computation of the probability value of a specified table from the
probability value of a preceding table, provided the arrays were properly sequenced.
Consider first contingency tables X.1/ and X.2/. Since the front panels of X.1/

and X.2/ are identical, it is only necessary to evaluate the rear panels of the two
tables. Consider the ratio of the cell frequencies in the rear panel of X.1/ to the cell
frequencies in the rear panel of X.2/; viz.,

PX.2/ D PX.1/ � 0Š 3Š 3Š 14Š

1Š 2Š 2Š 15Š
D PX.1/ �

�
3 � 3

1 � 15

�
D 0:1465 � 9

15
D 0:0879 ;

which can easily be obtained from X.1/ and X.2/ as follows. For the rear panel in
X.1/ consider the two diagonal values in the upper-right and lower-left cells, e.g., 3
and 3, and for the rear panel in X.2/ consider the two diagonal values in the upper-
left and lower-right cells, e.g., 1 and 15, yielding the ratio in square brackets

�
3�3
1�15

�
.

Next, consider the ratio of X.2/ to X.3/. Again, the front panels are identical, so the
ratio of the cell values in the two rear panels is given by

PX.3/ D PX.2/ � 1Š 2Š 2Š 15Š

2Š 1Š 1Š 16Š
D PX.2/ �

�
2 � 2

2 � 16

�
D 0:0879� 4

32
D 0:0110 :

As Freeman and Halton noted, when considering the two ratios in square
brackets, the ratio of X.2/ to X.3/ can be obtained from the preceding ratio of X.1/

to X.2/ by subtracting one from each value in the numerator (3� 3), e.g., 3� 1 D 2

and 3 � 1 D 2, and adding one to each value in the denominator (1 � 15), e.g.,
1 C 1 D 2 and 15 C 1 D 16, thereby yielding

�
2�2
2�16

�
. Thus, to obtain the ratio of

X.3/ to X.4/, subtract one from each value in the numerator (2 � 2), e.g., 2 � 1 D 1

and 2�1 D 1, and add one to each value in the denominator (2�16), e.g., 2C1 D 3

and 16C 1 D 17, yielding
�

1�1
3�17

�
. Thus,



178 3 1940–1959

PX.4/ D PX.3/ �
�

1 � 1

3 � 17

�
D 0:0110� 1

51
D 0:0002 :

At this point, the sequencing breaks down as there are two 1s in the numerator.
However, as Freeman and Halton noted, X.5/ can be obtained in alternative ways.
For example,

PX.5/ D PX.6/ �
�

1 � 16

2 � 3

�
D 0:0550� 16

6
D 0:1465 ;

where the numerator .1 � 16/ is taken from the diagonal in the rear panel of PX.6/

and the denominator 2 � 3 is taken from the diagonal in the rear panel of PX.5/ .
Note that the front panels are identical in PX.6/ and PX.5/ and can therefore safely
be ignored. Alternatively,

PX.5/ D PX.1/ �
�

3 � 5

1 � 15

�
D 0:1465� 15

15
D 0:1465 ;

where the numerator .3�5/ is taken from PX.1/ and the denominator .1�15/ is taken
from PX.5/ . Here the front panels in PX.1/ and PX.5/ are different, thus the numerator
and denominator values cannot be taken from only the rear panels of PX.1/ and
PX.5/ . The process is as follows with the eight cell frequency values of PX.1/ in the
numerator and the eight cell frequency values of PX.5/ in the denominator:

PX.5/ D PX.1/ � 0Š 0Š 0Š 3Š 0Š 5Š 3Š 14Š

0Š 0Š 1Š 4Š 0Š 3Š 2Š 15Š

D PX.1/ �
�

3 � 5

1 � 15

�
D 0:1465 � 15

15
D 0:1465 :

Freeman and Halton concluded that the exact method they described was
generally useful in cases where a chi-squared test would normally be utilized, but
should not be used because the observed and expected cell frequencies were too
small. The method, they explained, was also useful when a chi-squared test was
wholly unsuitable, such as when the entire population contained so few members
that a chi-squared test was not appropriate, but still a test of significance was
required [480, p. 149]. Finally, they cautioned that a difficulty with the exact method
described was the amount of labor involved in obtaining the exact probability values,
thus setting an upper limit to the size of the sample that could be dealt with in a
reasonable amount of time [480, p. 141].

3.24 Kruskal–Wallis and the C-sample Rank-SumTest

In 1952 William Kruskal and W. Allen Wallis proposed an exact multiple-sample
rank-sum test that they called H , and also provided tables for various levels of
significance [779].
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W.H. Kruskal
William Henry Kruskal earned his B.S. degree in mathematics and philosophy
from Harvard University in 1940 and his M.S. degree in mathematics from
Harvard University the following year. In 1941 Kruskal decided to take a job
at the U.S. Naval Proving Ground in Dahlgren, Virginia. In 1946, Kruskal
left the Navy and went to work in the family firm of Kruskal & Kruskal,
a major fur wholesale business. In 1950, W. Allen Wallis offered Kruskal a
position in the newly formed Department of Statistics at the University of
Chicago, which he enthusiastically accepted [429, p. 257]. Kruskal went on
to complete his Ph.D. in mathematical statistics from Columbia University
in 1955. In addition to teaching at the University of Chicago, Kruskal also
served as Chair of the Department of Statistics from 1966 to 1973, Dean of
the Division of Social Sciences from 1974 to 1984, and Dean of the Irving
B. Harris Graduate School of Public Policy Studies from 1988 to 1989 [429,
1484]. William Henry Kruskal died on 21 April 2005 in Chicago at age 85.

W.A. Wallis
Wilson Allen Wallis earned his Bachelor’s degree in psychology from the
University of Minnesota in 1932. He completed 1 year of graduate work at
Minnesota, followed by a second year of graduate studies at the University
of Chicago. In 1935 Wallis left the University of Chicago to study statistics
under Harold Hotelling at Columbia University. As Wallis described it, “the
only degree I ever got is a Bachelor’s degree at Minnesota, except for the
four honorary doctorates” [1056, p. 122]. From 1942 to 1946, Wallis was a
member of the Statistical Research Group at Columbia, where he worked with
such notables as Churchill Eisenhart, Milton Friedman, Fredrick Mosteller,
Jimmy Savage, Herbert Solomon, George Stigler, Abraham Wald, and Jacob
Wolfowitz, among others (q.v. page 69).

Wallis held faculty positions at Yale University, Stanford University,
and the University of Chicago, and administrative positions at Columbia
University, the University of Chicago, and the University of Rochester, where
he was President from 1962 to 1970 and Chancellor from 1970 to 1982. Wallis
served as the Under Secretary for Economic Affairs in the U.S. Department of
State from 1982 to 1989. Wallis also served as an advisor to U.S. Presidents
Dwight D. Eisenhower, Richard M. Nixon, Gerald R. Ford, and Ronald
W. Reagan [814, 1056]. Wilson Allen Wallis died on 12 October 1998 in
Rochester at the age of 85 [1410].
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In 1952 Kruskal and Wallis introduced a C -sample rank-sum test statistic that
they called H [779]. Although H is asymptotically distributed as chi-squared with
C � 1 degrees of freedom, Kruskal and Wallis provided tables based on exact
probability values for C D 3 with each sample less than or equal to 5 for ˛ D 0:10,
0.05, and 0.01 levels of significance.

Kruskal and Wallis explained that the H test statistic stems from two statistical
methods: rank transformations of the original measurements and permutations of
the rank-order statistics. They explained that if, in the one-way analysis of variance,
the permutation method based on the conventional F statistic is combined with the
rank method, the result is the H test.

Consider C random samples of possibly different sizes and denote the size of the
i th sample by ni , i D 1; : : : ; C . Let

N D
CX

iD1

ni

denote the total number of measurements, assign rank 1 to the smallest of the N

measurements, rank 2 to the next smallest, and so on up to the largest measurement,
which is assigned rank N , and let Ri denote the sum of the ranks in the i th sample,
i D 1; : : : ; C . When there are no tied ranks, test statistic H is given by

H D 12

N.N C 1/

CX
iD1

R2
i

ni

� 3.N C 1/ :

Kruskal and Wallis observed that when C D 2, H was equivalent to the
Wilcoxon [1453], Festinger [427], Mann–Whitney [880], and Haldane–Smith two-
sample rank-sum tests [573]. In 1953, in an erratum to their 1952 paper [779],
Kruskal and Wallis documented the equivalence of the H test with the two-sample
rank-sum test by van der Reyden that had recently come to their attention [1391].
In terms of permutation methods, Kruskal and Wallis provided a table of the
distribution of H for C D 3 samples and sample sizes from one to five. They
compared the exact probability values with three moment approximations, one
based on the chi-squared distribution, one on the incomplete gamma distribution,
and one on the incomplete beta distribution.

3.25 Box–Andersen and Permutation Theory

George Box and Sigurd Andersen read a paper on permutation tests and robust
criteria before the Royal Statistical Society in November of 1954, which was
subsequently published in Journal of the Royal Statistical Society, Series B in 1955
[193].
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G.E.P. Box
George Edward Pelham Box, “Pel” to his friends, began college at the
University of London as a chemistry student, but that work was interrupted
by World War II when Box was called to military service. He served as
a chemist in the British Army, but based on the work he was doing he
quickly realized the importance of statistical training. Box had no background
in statistics and, unable to find appropriate correspondence courses, taught
himself the statistics he needed to conduct his work for the Army. Box
returned to school after the War with a new interest in statistics, earning a
B.Sc. degree in mathematical statistics from the University of London in 1947.
Box worked for Imperial Chemical Industries (ICI) while he was completing
his Ph.D. at the University of London, under the direction of Egon Pearson
and H.O. Hartley. He earned his Ph.D. in statistics in 1952 and took leave
from ICI to accept a visiting professorship at the Institute of Statistics, North
Carolina State College (now, North Carolina State University at Raleigh), at
the invitation of Gertrude Cox, 1953–1954.

In 1957, Box resigned from ICI to become Director of the Statistical
Research Group at Princeton University. Two years later, Box married
Joan G. Fisher, R.A. Fisher’s daughter. In 1960, Box joined the faculty at
University of Wisconsin at Madison to form a new department of statistics,
where he remained for the rest of his career [338, 1418]. As Box noted in his
memoirs, he was appointed to initiate and head a department of statistics as a
full professor even though he had never had an academic appointment at any
university [192, p. 95]. Box was elected Fellow of the Royal Society in 1985
and in 1992 Box retired from the University of Wisconsin. (Several sources
report the year in which Box received his F.R.S. as 1979, but 21 March 1985
appears to be correct; see [192, p. 245].)

An interesting aside: Box is credited with coining the term “robustness”
in a 1953 article that appeared in Biometrika on non-normality and tests
on variances [190, p. 318]. However, John Hunter reported that Box had
remarked in his acceptance letter to Gertrude Cox that in addition to research
on the design of experiments he hoped to look into the problem of robust
statistics. Hunter stated “I believe that this is the first time the word ‘robust’
appears in a statistics context” [998]. George Box published over 200 journal
articles in his lifetime, the first at age 19 [192, pp. xviii, 17]. George Edward
Pelham Box F.R.S. died at home on 28 March 2013 in Madison, Wisconsin,
at age 93. Just days before his death, advance copies of his autobiography
were flown out to him by his publisher John Wiley & Sons; interested readers
should consult An Accidental Statistician: The Life and Memories of George
E. P. Box [192].
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S.L. Andersen
Sigurd Lökken Andersen was born in Silkeborg, Denmark, and at the age of
three, emigrated by ship to the United States with his parents. Andersen began
his education at Princeton University, but left when World War II began to
enlist in the Navy and later continued his education at Cornell University.
Upon graduation from Cornell, Anderson served at sea in the North Atlantic.
At the conclusion of World War II, Andersen enrolled at North Carolina
State University at Raleigh where he was assigned as a research assistant
to George Box, along with John Stuart (Stu) Hunter. [338, 998]. Andersen
received his Ph.D. from North Carolina State University at Raleigh in 1954
with a dissertation on robust tests for variances under the direction of Robert
John Hader. Possibly the reason why Hader is listed as Andersen’s dissertation
advisor instead of Box is because the research was funded by the Office of
Ordnance Research, United States Army, under contract DA-36-034-ORD-
1177, which was administered by Hader. After graduation, Andersen took a
position with the DuPont Corporation in Wilmington, Delaware, remaining
there for 35 years until his retirement in 1989 [874]. Sigurd Lökken Andersen
died on 5 August 2012 at the age of 88.

In November of 1954 Box and Andersen read a paper on “Permutation theory
in the derivation of robust criteria and the study of departures from assumption”
before the Research Section of the Royal Statistical Society, subsequently published
under the same title in Journal of the Royal Statistical Society, Series B in 1955
[193]. This is a lengthy paper and includes discussions by several members of the
Society. Unfortunately, the sheer length of the paper precludes anything but the
briefest summary and it is not possible to do justice to this important paper in
this limited space. Box and Andersen noted that in practical circumstances little
is usually known of the validity of assumptions, such as the normality of the error
distribution. They argued for statistical procedures that were insensitive to changes
in extraneous factors not under test, but sensitive to those factors under test, i.e.,
procedures both robust and powerful. In this context, they addressed permutation
theory as a robust method and applied it to comparisons of means and variances.

It is important to note that Box and Andersen found most of the standard normal-
theory tests to compare means to be “remarkably robust” and sufficient to fulfill
the needs of researchers. As they explained, “our object in discussing permutation
theory for these tests is to demonstrate this [robustness], and to consider more
clearly the behavior of the permutation tests in those cases with which we are
most familiar” [193, p. 33]. They emphasized, however, that their object was not
to suggest alternative tests for these research situations.

Box and Andersen pointed out that tests on differences between variances
could be so misleading as to be valueless, unless the resulting distribution was
very close to normal. They then stated “[t]he authors’ belief is that such an
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assertion [of normality] would certainly not be justified” [193, p. 2]. The solution,
they concluded, was in the use of “a remarkable new class of tests” called
permutation tests, such as introduced by R.A. Fisher in 1935 [451]. Box and
Andersen distinguished between two alternative views of the nature of inference
in permutation tests. In the first view, a data-dependent inference was confined only
to that finite population of samples produced by rearrangement of the observations
of the experiment. In the second view that was not a data-dependent inference,
the samples were to be regarded as being drawn from some hypothetical infinite
population in the usual way. It was the second alternative that was preferred by Box
and Andersen.

Like others in this era, Box and Andersen observed that evaluation of a
permutation distribution is laborious and in order to make permutation theory of
practical value, researchers such as Pitman and Welch used an approximation to the
permutation distribution based on the value of its moments, e.g., the beta distribution
[1129, 1130, 1428, 1430]. After defining a modified F test where the degrees of
freedom were adjusted to compensate for non-normality and differences among
variances, they considered two questions:
1. How good is the moment approximation to the permutation test?
2. How much power is lost by using the modified F test when the distribution

happens to be normal?
They then investigated the power and robustness of the standard F test and

the modified F test for the rectangular, normal, and double-exponential parent
distributions.

In the conclusion to the paper they noted that one of the simplest statistical
procedures was the test of hypothesis that the mean of a sample, Nx, is equal to the
mean of the population, �x , when the population standard deviation, �x , was known.
They explained that if a sample of n observations fx1; x2; : : : ; xng was available,
the criterion usually chosen was

p
n Nx=�x , which was then referred to tables of

the unit normal distribution. Box and Andersen noted that the validity of this test
of the null hypothesis does not depend on the supposition that the observations
are exactly normally distributed, as the central limit theorem guarantees that, for
almost all parent distributions, the chosen statistic is asymptotically distributed in
the assumed form. They concluded that “for all but extremely small sample sizes
and ‘pathological’ parent distributions the null test is approximately valid” [193,
p. 25]. They further noted that a similar argument may be employed to analysis of
variance tests. However, if the analysis of variance lacks the central limit property, it
is necessary to seek alternative tests with greater robustness. One way of doing this
is by approximating to the appropriate permutation test. Thus, for Box and Andersen
the permutation test was implicitly treated as a gold standard against which the F

test was to be evaluated.
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Fig. 3.12 A 2 � 2

contingency table in the
notation of Leslie [821]

3.26 Leslie and Small Contingency Tables

In 1955 Patrick Leslie proposed a new method for calculating the exact probability
value of a 2� 2 contingency table that was based on ordinary binomial coefficients,
which could easily be obtained from Pascal’s triangle [821].

P.H. Leslie
Patrick Holt Leslie, known to his family and friends as “George,” was
educated at Westminster School and Christ Church College, University of
Oxford, where he obtained an honors degree in physiology in 1921, but was
prevented from pursuing a medical degree due to a serious lung disease.
After several years of research in bacteriology in the School of Pathology
at the University of Oxford, his remarkable flair for mathematics came to
be recognized and at age 35 he turned to statistical theory and population
dynamics with the Bureau of Animal Population. He continued that work
from 1935 until his retirement from the Bureau in 1967. Later in life, Leslie
received a D.Sc. from the University of Oxford based on the published results
of his various research projects. Born with the century, Patrick Holt Leslie
died in June 1972 at the age of 72 [23, 43, 298, p. 18].

In 1955 Leslie published a short paper of only one-and-a-half folio pages on “a
simple method of calculating the exact probability in 2 � 2 contingency tables with
small marginal totals” [821]. A 2� 2 contingency table in Leslie’s notation is given
in Fig. 3.12 where N denotes the total number of observations and the marginal
frequency totals fulfill

nA � N � nA; nB � N � nB; nB � nA; ax D
 

nA

x

!
; and bx D

 
N � nA

nB � x

!
I

then

C D
nBX

xD0

axbx D N Š

nBŠ .N � nB/Š
:

Calculation of the exact hypergeometric one-tailed cumulative probability for
the appropriate tail of the distribution is then easily obtained from ax and
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Fig. 3.13 Example 2 � 2

contingency table with
N D 16 cases

Fig. 3.14 Binomial
coefficients for nA D 7 with
ax , x D 0; : : : ; nB and bx ,
x D nB; : : : ; 0

bx, x D 0; : : : ; nB . Once the appropriate tail is determined, the sum of the axbx

products for w � x for the left tail or w � x for the right tail are

1

C

xX
wD0

awbw for the left tail , or
1

C

nBX
wDx

awbw for the right tail ;

yielding a one-tailed exact cumulative probability value.
Consider a simple example with nA D 7, nB D 6, N D 16, and x D 5; the

completed 2 � 2 contingency table is shown in Fig. 3.13. The essential values are
the binomial coefficients for nA D 7, constituting ax , x D 0; : : : ; nB , and in reverse
order the binomial coefficients for N � nA D 9, constituting bx, x D nB; : : : ; 0, as
given in Fig. 3.14. The required binomial coefficients can easily be obtained from
the first nC 1 terms of the expanded binomial series,

1C n

1Š
C n.n � 1/

2Š
C n.n � 1/.n� 2/

3Š
C � � � C nŠ

nŠ
D

nX
iD0

 
n

i

!
D 2n :

Also, the required binomial coefficients can be obtained by enumerating Pascal’s

triangle up to the required marginal frequency total. For reference, Table 3.11
displays Pascal’s triangle containing the requisite binomial coefficients for n D
nB D 7 and n D N � nA D 9. To be faithful to Pascal, Fig. 3.15 shows Pascal’s
arithmetical triangle as he actually laid it out in Traité du triangle arithmétique in
1665 [399, Frontispiece].55

55As noted by Edwards [399, p. x], it was Pierre Raymond de Montmort who, in 1708, first attached
the name of Pascal to the combinatorial triangle; however, he changed the form to a staggered
version [334]. Then, in his Miscellanea Analytica of 1730, Abraham de Moivre christened Pascal’s
original triangle “Triangulum Arithmeticum PASCALIANUM.”
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Table 3.11 Pascal’s triangle for n D 0; : : : ; 9

Binomial coefficients

n 1 2 3 4 5 6 7 8 9 10

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

Fig. 3.15 Pascal’s
arithmetical triangle as
originally published in 1665
[399, Frontispiece]

The sum of the axbx product column in Fig. 3.14 is

C D
nBX

xD0

axbx D 84C 882C � � � C 7 D 8;008 ;

and since the observed cell frequency of x D 5 in the cell with the smallest
expectation is greater than the expectation given by .7� 6/=16 D 2:625, x D 5 lies
in the right tail of the distribution. Thus axbx for n D 5 and n D 6, is 189C7 D 196

and the one-tailed exact cumulative probability value is

1

C

nbX
wDx

awbw D 1

8;008
196 D 0:0245 :

3.27 A Two-Sample Rank Test for Dispersion

Wilcoxon in 1945, Festinger in 1946, Mann and Whitney in 1947, Haldane and
Smith in 1948, and van der Reyden in 1952 had developed two-sample rank-
sum tests wherein the sum of the ranks of one of the samples was used in a
test of hypothesis that the two samples came from the same population, i.e., the
hypothesis of the equivalence of the two distribution functions [427,880,1391,1441,
1453]. Such tests are sensitive to possible differences in location between the two
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distribution functions. In the 1950s, two non-parametric tests were published for the
equivalence of parameters of dispersion, both assuming that the location parameters
were equal and both yielding tables of probability values. The first of the published
papers was by Sidney Rosenbaum in 1953 and the second was by Anant Kamat in
1956.

3.27.1 Rosenbaum’s Rank Test for Dispersion

In 1953 S. Rosenbaum proposed a rank test for the equivalence of parameters of
dispersion, assuming that the location parameters (mean or median) were equal
[1193].

S. Rosenbaum
Sidney Rosenbaum was born in London in 1918 and educated at the Uni-
versity of Cambridge. Rosenbaum received an emergency commission in the
Royal Regiment of Artillery in 1943 and 2 years later became a temporary
Captain. From 1951 to 1963 Rosenbaum served as the Principal Scientific
Officer, Army Medical Statistics Branch, War Office, and during that time he
also worked on his doctorate, earning his Ph.D. in Medical Statistics at the
London School of Hygiene & Tropical Medicine in 1960 [615]. He became
the Chief Statistician at the Department of the Treasury and transferred to
the Cabinet Office before his final appointment as Director of Statistics
and Operation Research at the Civil Service College in 1972 [24]. After
retirement, Rosenbaum worked as a consultant to the Department of Health
and Social Security (DHSS) and the Ministry of Technology. Rosenbaum was
one of the longest-serving Fellows of the Royal Statistical Society, having
been elected in 1948. He was elected a Fellow of the Royal Society of
Medicine in 1956. Sidney Rosenbaum passed away in March of 2013 at the
age of 94 [24].

To illustrate the Rosenbaum rank test for dispersion, consider a sample of n

points and a second sample of m points from a population with a continuous
distribution function. As Rosenbaum noted, the probability that r points of the
sample of m will lie outside the end values of the sample of n is given by

Pr D n.n � 1/
mŠ

.m� r/Š
� .r C 1/.nCm � r � 2/Š

.nCm/Š

D n.n � 1/

 
m

r

!
B.nCm � 1 � r; r C 2/ ;

where B is the complete beta function.
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Then, for r0 � m,

r0X
rD0

Pr D
r0X

rD0

n.n � 1/

 
m

r

!
B.nCm � 1 � r; r C 2/

is the probability that the value of r is not greater than r0. As was usual during this
time, traditional fixed levels of significance took precedence over exact probability
values. Thus, Rosenbaum fixed a probability level " and arrived at an r0 such
that

r0�1X
rD0

Pr � " <

r0X
rD0

Pr :

Rosenbaum provided tables of r D r0 C 1 for " D 0:95 and 0.99 over the range
n D 2; : : : ; 50 and m D 2; : : : ; 50. The tables give the probability values, less than
0.05 and 0.01, that r or more points of a sample of size m lie outside the extreme
values of a sample of size n if the samples are drawn from the same population,
whatever its distribution [1193, pp. 665, 667].

3.27.2 Kamat’s Rank Test for Dispersion

Motivated by Rosenbaum’s 1953 article, in 1956 A.R. Kamat proposed an alter-
native rank test for the equivalence of parameters of dispersion, assuming that the
location parameters were equal [707].

A.R. Kamat
Anant Raoji Kamat was born in 1912 and completed his early education
in the Ratnagiri district of Maharashtra. Kamat was an exceptional student,
entering the University of Bombay (Mumbai) in 1929 where he received
his undergraduate and M.Sc. degrees. In 1953, Kamat earned his Ph.D.
in mathematical statistics at the University of London. Kamat was drawn
to political activism, but also worked as an academic, teaching courses in
mathematics and statistics. A gifted social scientist, Kamat joined the Gokhale
Institute of Politics and Economics, University of Poona (Pune), in 1959,
retiring from there as Joint Director in 1974. After his retirement, Kamat
received a fellowship to the Indian Council of Social Science Research to
continue to work on issues of education. Anant Raoji Kamat passed away on
9 July 1983 at the age of 71 [1019].

To illustrate Kamat’s rank test for dispersion, consider two samples xi , i D
1; : : : ; n, and yj , j D 1; : : : ; m, with m � n. Pool and rank the measurements
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in order and let Rn and Rm denote the range of ranks of x and y, respectively. The
test statistic proposed by Kamat was

Dn;m D Rn � Rm Cm;

where Dn;m can take values 0; 1; : : : ; m C n. For example, if n D 4 with ranks
f2; 4; 6; 8g and m D 5 with ranks f1; 3; 5; 7; 9g, then Rn D R4 D 8 � 2 D 6,
Rm D R5 D 9 � 1 D 8, and Dn;m D D4;5 D 6 � 8 C 5 D 3. Large and small
values of Dn;m indicate possible divergence from the hypothesis that the parameters
of dispersion of the populations from which the samples were drawn are equal
[707, p. 377]. Kamat provided a table of percentage points of Dn;m based on exact
probability values for mC n � 20 with ˛ D 0:05, 0.025, 0.005, and 0.001.

The technique used by Kamat to generate the permutation distribution of Dn;m

was based on simple combinatorial rules and is worth explaining in some detail. The
total number of ways that the mC n ranks can be arranged is given by

 
mC n

n

!
;

thus providing the total number of values of Dn;m. However, as Kamat explained,
the total number of ways can be constructed in another manner, from four separate
procedures:
(a) Rn D n � 1; Rm D m � 1; Dn;m D n.

This result can be achieved in only two ways.

(b) Rn D n � 1C i; i D 0; : : : ; m � 1; Rm D m � 1C n; Dn;m D i .
This result can be achieved in

.m � 1 � i/

 
nC i � 2

n � 2

!
ways . (3.15)

(c) Rn D n � 1Cm; Rm D m � 1C j; j D 0; : : : ; n � 1; Dn;m D n �m � j .
By symmetry, this result can be achieved in

.n � 1 � j /

 
mC j � 2

m � 2

!
ways . (3.16)

(d) Rn D n � 1 C i; i D 0; : : : ; m � 1; Rm D m � 1 C j; j D 0; : : : ; n � 1;
Dn;m D nC i � j .
This result can be achieved in

2

 
i C j � 2

j � 1

!
ways , (3.17)

where i D 1; : : : ; m � 1 and j D 1; : : : ; n � 1.
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Table 3.12 Combinations of m C n D 4 C 3 D 7 ranks considered n D 3 at a time with
associated Rn, Rm, and Dn;m values

Sequence

Number n D 3 m D 4 R3 R4 D3;4

1 1 2 3 4 5 6 7 2 3 3
2 5 6 7 1 2 3 4 2 3 3

3 2 3 4 1 5 6 7 2 6 0
4 2 3 5 1 4 6 7 3 6 1
5 2 4 5 1 3 6 7 3 6 1
6 3 4 5 1 2 6 7 2 6 0
7 2 3 6 1 4 5 7 4 6 2
8 2 4 6 1 3 5 7 4 6 2
9 3 4 6 1 2 5 7 3 6 1

10 2 5 6 1 3 4 7 4 6 2
11 3 5 6 1 2 4 7 3 6 1
12 4 5 6 1 2 3 7 2 6 0

13 1 2 7 3 4 5 6 6 3 7
14 1 3 7 2 4 5 6 6 4 6
15 1 4 7 2 3 5 6 6 4 6
16 1 5 7 2 3 4 6 6 4 6
17 1 6 7 2 3 4 5 6 3 7

18 1 2 4 3 5 6 7 3 4 3
19 1 3 4 2 5 6 7 3 5 2
20 1 2 5 3 4 6 7 4 4 4
21 1 3 5 2 4 6 7 4 5 3
22 1 4 5 2 3 6 7 4 5 3
23 1 2 6 3 4 5 7 5 4 5
24 1 3 6 2 4 5 7 5 5 4
25 1 4 6 2 3 5 7 5 5 4
26 1 5 6 2 3 4 7 5 5 4
27 2 3 7 1 4 5 6 5 5 4
28 2 4 7 1 3 5 6 5 5 4
29 3 4 7 1 2 5 6 4 5 3
30 2 5 7 1 3 4 6 5 5 4
31 3 5 7 1 2 4 6 4 5 3
32 4 5 7 1 2 3 6 3 5 2
33 2 6 7 1 3 4 5 5 4 5
34 3 6 7 1 2 4 5 4 4 4
35 4 6 7 1 2 3 5 3 4 3

To illustrate Kamat’s technique, consider n D 3 and m D 4 measurements,
pooled and ranked from 1 to mC n D 4C 3 D 7. Table 3.12 lists the 35 possible
sequences, divided into n D 3 and m D 4 ranks, with values for R3, R4, and D3;4.
Sequences 1 and 2 in Table 3.12 are the two ways possible under (a).
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Sequences 3 through 12 in Table 3.12 are the ten ways possible under (b), i.e.,
following Eq. (3.15) for i D 0,

.4 � 1 � 0/

 
3C 0 � 2

3 � 2

!
D .3/

 
1

1

!
D 3 ways I

for i D 1,

.4 � 1 � 1/

 
3C 1 � 2

3 � 2

!
D .2/

 
2

1

!
D 4 ways I

for i D 2,

.4 � 1 � 2/

 
3C 2 � 2

3 � 2

!
D .1/

 
3

1

!
D 3 ways I

and for i D 3,

.4 � 1 � 3/

 
3C 3 � 2

3 � 2

!
D .0/

 
4

1

!
D 0 ways :

Sequences 13 through 17 in Table 3.12 are the five ways possible under (c), i.e.,
following Eq. (3.16) for j D 0,

.3 � 1 � 0/

 
4C 0 � 2

4 � 2

!
D .2/

 
2

2

!
D 2 ways I

for j D 1,

.3 � 1 � 1/

 
4C 1 � 2

4 � 2

!
D .1/

 
3

2

!
D 3 ways I

and for j D 2,

.3 � 1 � 2/

 
4C 2 � 2

4 � 2

!
D .0/

 
4

2

!
D 0 ways :

Sequences 18 through 35 in Table 3.12 are the 18 ways possible under (d), i.e.,
following Eq. (3.17) for i D 1 and j D 1,

.2/

 
1C 1 � 2

1 � 1

!
D .2/

 
0

0

!
D 2 ways I

for i D 1 and j D 2,

.2/

 
1C 2 � 2

2 � 1

!
D .2/

 
1

1

!
D 2 ways I
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for i D 2 and j D 1,

.2/

 
2C 1 � 2

1 � 1

!
D .2/

 
1

0

!
D 2 ways I

for i D 2 and j D 2,

.2/

 
2C 2 � 2

2 � 1

!
D .2/

 
2

1

!
D 4 ways I

for i D 3 and j D 1,

.2/

 
3C 2 � 2

1 � 1

!
D .2/

 
2

0

!
D 2 ways I

and for i D 3 and j D 2,

.2/

 
3C 2 � 2

2 � 1

!
D .2/

 
3

1

!
D 6 ways :

Kamat then showed that by combining these four cases, (a)–(d), the probability
of Dn;m would be given by

P fDn;mg D 1 
mC n

n

!
8<
:2Ar

mX
j D1

 
r � nC 2j � 2

r � nC j � 1

!

C 2Br

nX
iD1

 
n � r C 2i � 2

n � r C i � 1

!
C Cr.m� 1 � r/

 
nC r � 2

n � 2

!

CDr .r �m � 1/

 
2mC n � r � 2

m � 2

!
C 2Er

)
;

where

Ar D
8<
:

1 if r � m ,

0 otherwise ,
Br D

8<
:

1 if r > m ,

0 otherwise ,
Cr D

8<
:

1 if r < m ,

0 otherwise ,

Dr D
8<
:

1 if r > m ,

0 otherwise ,
Er D

8<
:

1 if r D m ,

0 otherwise ,

and r D nC i � j :
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Exhibiting some frustration with calculation difficulties in the absence of
high-speed computers, Kamat noted that calculation of percentage points from
the exact distribution becomes impractical when the sequence becomes large
[707, p. 379]. The remainder of Kamat’s article was devoted to finding a suitable
approximation based on the first three moments of Dn;m. Finally, Kamat noted that
when one sample (say, the m sample) is wholly included within the extreme values
of the other sample, then the Rosenbaum test statistic r and the Kamat test statistic
Dn;m are connected by the relation Dn;m D mC r .

3.28 Dwass andModified Randomization Tests

Meyer Dwass is often credited with introducing resampling procedures for permu-
tation tests, which he termed “modified permutation tests” [1431].

M. Dwass
Meyer Dwass earned his B.A. degree in mathematics from George Wash-
ington University in 1948, his M.A. degree in mathematical statistics from
Columbia University in 1949, and his Ph.D. in statistics from the Univer-
sity of North Carolina at Chapel Hill in 1952 under Wassily Hoeffding.
Dwass immediately took a position as Assistant Professor of Mathematics
at Northwestern University where he remained for the rest of his academic
career, with the exception of a brief time spent at the University of Minnesota
from 1961 to 1962. Dwass was Chair of the Department of Mathematics at
Northwestern from 1978 to 1981 and established the Department of Statistics
at Northwestern in 1986. Meyer Dwass retired from Northwestern in 1989
and passed away on 15 July 1996 at the age of 73 [562, 1485].

While researchers prior to Dwass certainly utilized resampling to provide
approximate probability values, such as Eden and Yates in their 1933 investigation
into height measurements of Yeoman II wheat shoots in which they drew a sample
of 1,000 out of a possible 4,586,471,424 permutations (q.v. page 39) [379], Dwass
provided the first rigorous investigation of the precision of resampling probability
approximations. In 1957 Dwass published an article on modified randomization
tests for non-parametric hypotheses [368], which relied heavily on the theoretical
contributions of Lehmann and Stein’s 1949 article [818]. Dwass noted that a
practical shortcoming of exact permutation procedures was the great difficulty
in enumerating all the possible arrangements of the observed data. To illustrate,
consider as Dwass did, two samples of sizes m and n. Dwass observed that even
after elimination of those permutations yielding the same value of the statistic, the
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number of permutations could still be prohibitively large.56 Thus, for sample sizes
m D n D 5, there are

.mC n/Š D .5C 5/Š D 10Š D 3;628;800

permutations of the observed data to be considered, but only

 
mC n

m

!
D
 

5C 5

5

!
D 10Š

5Š 5Š
D 252

combinations of the observed data to be examined. However, for sample sizes as
small as m D n D 10, there are still 

mC n

m

!
D
 

10C 10

10

!
D 20Š

10Š 10Š
D 184;756

combinations of the observed data to be examined.
Dwass then proposed “the most obvious procedure” of examining a random

sample drawn without replacement from all possible permutations and “making the
decision to accept or reject the null hypothesis on the basis of those permutations
only” [368, p. 182], as suggested by Eden and Yates much earlier [379]. Dwass
determined bounds for the ratio of the power of the original procedure, in this case
a two-sample test, to the resampling procedure and provided a table containing
numerical values of the bounds. Note that in this table Dwass did not compare
bounds from exact and resampling permutation procedures, but unfortunately
compared bounds from a resampling probability procedure with those from a normal
distribution. Letting s denote the number of resamplings, Dwass made computations
for only those values of s such that ˛.sC 1/ was an integer. Thus the table provided
bounds for the ratio of the power of a two-sample test with a resampling test for
values of s D 19, 39, 49, 59, 79, 99, 119, 149, 199, 299, 499, and 999 and for ˛ D
0.01, 0.02, 0.05, and 0.10. Examination of the table by Dwass reveals reasonably
close agreement between the resampling approximate probability values and the
approximate probability values obtained from a normal distribution. For example,
let s D 99, then for ˛ D 0:01 the resampling and normal approximate bounds are
0.634 and 0.618, respectively; for ˛ D 0:02 the resampling and normal approximate
bounds values are 0.732 and 0.726, respectively; for ˛ D 0:05 the resampling
and normal approximate bounds are 0.829 and 0.827, respectively; and for ˛ D
0:10 the resampling and normal approximate bounds are both 0.881 and 0.881
[368, p. 182].

56As Box and Andersen noted in 1955, although there are .m C n/Š possible arrangements of
a sample, there are only .m C n/Š=.mŠ nŠ/ arrangements that result in possibly different mean
differences [193, p. 7].
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The main point made by Dwass was that instead of basing a statistical decision
on all possible permutations of the observations, the statistical test could be based
instead on a smaller number of permutations randomly selected from the set of
all permutations and the power of the test would be “close” to that of the most
powerful non-parametric test. Dwass observed that while it is true that s has to be
very large, the optimum exact test is usually completely impossible. He posited that
if m D n D 20, then 

mC n

m

!
D
 

20C 20

20

!
D 40Š

20Š 20Š
> 1011

(actually, 137,846,528,820) and if a machine existed that could check 10 permuta-
tions per second, the job would run something on the order of 1,000 years [368, p.
185].57

Monte Carlo Methods
Stanislaw Marcin Ulam, Polish refugee and celebrated mathematician who
worked on the Manhattan Project at the Los Alamos National Laboratory in
Los Alamos, New Mexico, spent hours playing games of Canfield solitaire
while recuperating from encephalitis in 1946. In so doing, he speculated
about the odds of any randomly dealt hand. He filled page after page with
probabilistic equations, but the problem proved intractable and he decided it
was better to play a hundred random hands and tabulate what percentage of
the time he won [372]. Unlike an experiment, the results were not certain,
but the probability was sure to be very close. In later years, Ulam explained
that the approach was named “Monte Carlo” in memory of an uncle who
liked to gamble on the “well-known generator of random integers . . . in the
Mediterranean principality [of Monte Carlo]” [712, pp. 109–111]. The term
“Monte Carlo method” was coined in 1946 by Ulam, John von Neumann, and
Nicholas Metropolis while they were working on nuclear weapons projects
at the Los Alamos National Laboratory [927, 1419]. However, George Dyson
attributes the coining of the term “Monte Carlo” to Nicholas Metropolis [370,
p. 192].

The Monte Carlo method was quickly brought to bear on problems
pertaining to thermonuclear as well as fission devices, and in 1948 Ulam
reported to the Atomic Energy Commission about the application of the

(continued)

57Presently, resampling permutation routines, which are essentially sampling without replacement
routines, generate hundreds of thousands of permutations per second when powered by an efficient
uniform pseudorandom number generator (PRNG) such as the Mersenne Twister (MT) or the
SIMD-oriented Fast Mersenne Twister (SFMT) on high-speed work stations [905, 1214].
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Monte Carlo method for such things as cosmic ray showers and the study of
the Hamilton Jacobi partial differential equation [372]. By 1949, applications
of the Monte Carlo method discussed in the literature were many and varied
and in that year a symposium on the Monte Carlo method—sponsored by the
RAND Corporation, the National Bureau of Standards’ Institute for Numer-
ical Analysis, and the Oak Ridge Laboratory—was held at the University
of California, Los Angeles [370, p. 198]. Later, a second symposium was
organized by members of the Statistical Laboratory at the University of
Florida in Gainesville [654, 926]. By 1987 it was reported that 10 billion
uniform pseudorandom numbers were being generated on computers around
the world for Monte Carlo solutions to problems that Ulam first dreamed
about 40 years previously [359].

While Dwass is usually credited with the introduction of Monte Carlo resampling
procedures for permutation tests, he was not the first to develop such procedures.
Today, Monte Carlo methods in physics are used in the design of nuclear reactors,
criticality analysis, oil well logging, health-physics problems, determinations of
radiation doses, spacecraft radiation modeling, radiation damage studies, and
research on magnetic fusion [359]. In addition, Monte Carlo methods are popular
in statistics, economics, chemistry, astronomy, engineering, and even stock market
analysis. For an extensive survey of Monte Carlo methods, including a bibliography
of some 251 references, see a 1970 article on “A retrospective and prospective
survey of the Monte Carlo method” by John Halton in SIAM Review [579].

Finally, in the context of the rank-order tests so common in the 1940s and 1950s,
and on which Dwass did his dissertation, Dwass posed the following question: “For
what value of s is the modified [resampling] test already better than some given
rank order test, or in particular, than the rank order test which is best against the
alternative under consideration?”58 [368, p. 185].

3.29 Looking Ahead

Permutation methods are by their very nature computationally-intensive and per-
mutation methods in the period between 1940 and 1959 were characterized by
researchers expressing frustration over difficulties in computing a sufficient number
of permutations of the observed data in a reasonable time. To compensate for
the difficulty, many researchers turned to rank-order statistics, which were much
more amenable to permutation methods. Thus, this period was distinguished by a
plethora of rank-order tests. Examples included the Kendall rank-order correlation
coefficient [728, 734], the Friedman two-way analysis of variance for ranks [485,

58Emphasis in the original.
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486], the Wilcoxon two-sample rank-sum test [1453], the Festinger two-sample
rank-sum test [427], the Mann–Whitney two sample rank-sum test [880], and the
Kruskal–Wallis one-way analysis of variance rank test [779]. This led ipso facto to
the publication of numerous tables of exact probability values for rank-order tests.
Examples include tables for testing randomness by Swed and Eisenhart [1337]; for
2 � 2 contingency tables by Finney [434]; for the Spearman rank-order correlation
coefficient by David, Kendall, and Stuart [328]; for the Wilcoxon–Mann–Whitney
two-sample rank-sum test by Wilcoxon [1453, 1454], White [1441], and Fix and
Hodges [465]; and for the two-sample rank-sum Mann–Whitney statistic by van der
Reyden [1391] and Auble [40]. The end of the period saw an emphasis on the power
of permutation tests compared with their conventional parametric counterparts by
Hoeffding [636], Silvey [1275, 1276], and Box and Andersen [193], and the formal
introduction of resampling techniques by Dwass in 1957 [368].

The development of computing continued unabated in the 1960s and 1970s
with increases in memory, speed, and availability to researchers. New computer
programming languages, interpreters, and operating systems were released in this
period and the personal computer became generally available. The advent of
accessible and efficient computers by researchers in the 1960s meant that the
next two decades witnessed a proliferation of computer routines and algorithms
designed to generate all permutation sequences of observed data sets, random
permutation sequences of observed data sets, and permutations of cell frequencies
in contingency tables. Many of these routines were designed by computer scientists
and not by statisticians, but statisticians applied them to statistical problems such
as permutation versions of paired and unpaired t and F tests, as well as various
analyses of cross-classification contingency tables.

In addition, this period saw the introduction of a number of permutation tests,
including the Siegel–Tukey test for relative spread in 1960 [1273]; the Mielke–
Siddiqui matrix occupancy test in 1965 [988]; the Baker–Collier analysis of variance
F test in 1966 [51, 52]; the Fisher–Yates exact probability test by Ghent in 1972
[510]; multi-response permutation procedures by Mielke, Berry, and Johnson in
1976 [971]; the Fisher exact probability test by Soms and the Baker–Hubert test
of ordering theory in 1977 [53, 1296]; the Agresti–Wackerly–Boyett test for r � c

contingency tables in 1979 [8]; and a variety of permutation-generating algorithms
by Page [1085], Boothroyd [180, 181], Bratley [206], Ord-Smith [1065], Phillips
[1124], and Langdon [799] in 1967; Ord-Smith in 1968 [1067]; Chase in 1970
[247,248]; Liu and Tang in 1973 [837]; Dershowitz in 1975 [344]; Rohl and Ives in
1976 [675, 1183]; Rohl in 1978 [1184]; and Payne and Ives in 1979 [1091].
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Permutation methods were still not completely accepted in the early 1960s, even
by some prominent and influential statisticians. The idea that permutation statistical
tests constituted a standard against which conventional normal-theory tests could be
evaluated continued to be questioned, and permutation tests were not regarded by
many as legitimate alternatives to normal-theory tests. Recall that Frank Yates joined
the Rothamsted Experimental Station in 1931, succeeding R.A. Fisher as the head
of the Statistical Laboratory when Fisher left Rothamsted in 1933 to assume the post
of Galton Professor of Eugenics at University College, London. R.A. Fisher passed
away in Adelaide, Australia, in 1962 and in 1963 in a memorial issue of Biometrics
commemorating the contributions of Fisher, Yates wrote that Fisher did not regard
the regular use of permutation tests as reasonable, remarking “unfortunately tests of
this nature, under the name of ‘non-parametric tests’, later came to have a certain
vogue, which is not yet ended” [1474, p. 318]. Later, Yates reaffirmed his position,
arguing that Fisher did not regard the regular use of randomization and other non-
parametric tests as reasonable [1475, p. 782], citing Fisher from the last section of
Chap. III in The Design of Experiments as saying:

[permutation tests] were in no sense put forward to supersede the common and expeditious
tests based on the Gaussian theory of errors. The utility of such non-parametric tests consists
in their being able to supply confirmation whenever, rightly or, more often, wrongly, it is
suspected that the simpler tests have been appreciably injured by departures from normality
[451, p. 48].

In defense of normal-theory tests, in 1964 Yates pointed out that in very small
samples, the level of significance provided by a permutation test often will not
agree with the level of significance provided by the corresponding normal-theory
test, even on many samples of values from a normally-distributed population, and
argued that “disagreement between the two tests . . . is not in itself evidence that the
normal-theory test is inappropriate” [1474, p. 318]. An alternative point of view
was provided in 1937 when Bernard Welch (q.v. page 74) published a paper on the
use of Fisher’s variance-ratio z test in randomized block and Latin square designs
in which he compared permutation and normal-theory procedures, concluding
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that the permutation procedure should be followed whenever the permutation and
normal-theory tests yielded different results [1428]. In 1963 Yates addressed this
recommendation by Welch, commenting: “[f]ortunately practical experimenters
have never taken this suggestion seriously” [1474, p. 318].1

In spite of the resistance to permutation statistical methods, work continued in
the field and much progress was recorded between 1960 and 1979. Interestingly, an
area that contributed significantly to the growth of permutation tests during this era
was not statistical, but rather occurred in an area only indirectly related to statistics
at that time: computer science.

4.1 Overview of This Chapter

As is readily apparent, permutation statistical methods are computationally-
intensive and ultimately depend on the efficient generation of permutation
sequences. In the case of exact permutation tests, all possible permutation sequences
are generated, but for Monte Carlo (resampling) permutation tests only a random
sample of permutation sequences is required. Although the first explicit description
of computer algorithms for the generation of permutation sequences was given by
Tompkins in 1956 [1364], many algorithms were presented for the generation of
permutation sequences in the period from 1960 to 1979, each touting increased
speed, efficiency, or both.

Early in this period in 1961, C.R. Rao published a non-computer procedure for
the generation of pseudorandom permutation sequences using a table of uniform
pseudorandom numbers [1154]. Following the publication by Rao, many computer-
based algorithms for permutation sequences were developed. Among them were
sequence algorithms published by Coveyou and Sullivan [290], Wells [1435],
Howell [658], Trotter [1372], Peck and Schrack [1112], Johnson [693], Heap [608],
Durstenfeld [367], Sag [1213], Boothroyd [178, 180, 181], Bratley [206], Langdon
[799], Robinson [1177], Ord-Smith [1065, 1067], Chase [247, 248], Dershowitz
[344], Fike [432], Ives [675], Woodall [1469], Rohl [1184], and Payne and Ives
[1091]. In addition, Ord-Smith in 1970 and 1971 [1068, 1069], Rabinowitz and
Berenson in 1974 [1149], Sedgewick in 1977 [1242], and Lipski in 1979 [832]
provided extensive summaries of the literature on the generation of permutation
sequences in this period.

While computer algorithms to generate permutation sequences were important,
other researchers turned their attention to computing exact probability values for
established statistical tests. Gregory [553] and Tritchler and Pedrini [1371], for
example, confined their applications to the Fisher exact probability test for 2 � 2

contingency tables, while Agresti and Wackerly [7], Agresti, Wackerly, and Boyett
[8], Fleishman [466], Howell and Gordon [657], and March [890] attempted to

1Authors’ note: it is abundantly evident from reading the many publications of Frank Yates that
although he contributed significantly to the literature of permutation methods, he considered
normal-theory tests as sacrosanct.
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extend the Fisher hypergeometric procedure to contingency tables that were larger
than 2�2, and other researchers applied permutation procedures to, for example, the
Pitman test for two independent samples [30], the F test for completely randomized
designs [52], the F test for randomized block designs [268], the chi-squared test
for goodness of fit [1150], the Kruskal–Wallis analysis of variance rank test [779],
and alternative choices of rank scores [932, 944]. On the topic of choices of
rank scores, in 1972 Mielke investigated the asymptotic behavior of two-sample
linear tests associated with infinite classes of distinct rank-order statistic functions
[932,933,987]. The study was motivated by the asymptotic behavior and tied-value
moment adjustments for linear tests based on specific sums of distinct, squared,
rank-order statistic functions; see also papers by Taha in 1964 [1339], Mielke [931]
and Grant and Mielke in 1967 [545], and Duran and Mielke in 1968 [366]. Finally,
in 1969 Edgington provided permutation procedures and examples for an extensive
inventory of statistical tests [391, pp. 93–159], and 10 years later Boyett published
an important resampling algorithm for r � c contingency tables [199].

In 1976 Mielke, Berry, and Johnson [971] introduced multi-response permutation
procedures (MRPP), techniques designed especially for data-dependent permutation
methods per se, in contrast to permutation alternatives to standard statistical tests.
Based on ordinary Euclidean distances rather than the squared Euclidean distances
of conventional tests, MRPP provided highly robust, distribution-free, Euclidean-
distance-based permutation alternatives for analyzing classical experimental designs
that normally employed such established tests as analysis of variance (ANOVA) or
multivariate analysis of variance (MANOVA) [940, 978].

During the period from 1960 to 1979, researchers were focused on defining effi-
cient methods for calculating probability values using existing computing machin-
ery. Computing inefficiencies were largely due to inadequate numerical algorithms,
low computer clock speeds, small and slow core memories, and inefficient data
transfers. Mielke, Berry, and Johnson [971] and Mielke [936] pioneered moment-
approximation permutation procedures implemented with the use of symmetric
means, introduced by Tukey in 1950 [1375], and provided the exact first three
moments of a continuous distribution that approximated the underlying discrete
permutation distribution. Since asymptotic invariance procedures did not exist for
many cases of MRPP, the three-moment approximation was essential for most cases
when no asymptotic invariance procedure, such as normality, existed [220]. The
moment-approximation permutation procedure immediately eliminated many of the
computing difficulties that had plagued the computation of permutation probability
values, provided an approximation to the underlying permutation distribution, and
circumvented the extensive calculations of an exact permutation approach.

4.2 Development of Computing

The invention and development of the modern computer is one of the seminal events
of humankind, ranking alongside the inventions of movable type and mechanical
timepieces in advancing civilization. The ability to compute and to search for
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information accurately and efficiently was a major driver in transforming the
developed world from an inefficient, error-plagued, uninformed society to one that
was efficient, knowledgeable, and technologically sophisticated.

In the early years, computers allowed computations to be done faster and more
precisely. Thus, tasks that formerly required several hours took only minutes on
an early computer, such as ENIAC, EDSAC, MANIAC, or the Harvard Mark I—a
quantitative difference in that complex problems could be solved faster, efficiently,
and more accurately. Later, computers could compute in a few seconds what would
formerly have taken 100 people 100 years to calculate. Thus, problems could be
solved that could previously be only imagined—a qualitative difference in that
problems that were impossible to solve could now be worked out in a few minutes.
As Kenneth Appel was famously quoted as saying, “[w]ithout computers, we would
be stuck only proving theorems that have short proofs” [1074, p. A19].2

Miniaturization of computer components and the development of the desktop
computer made the computer more portable and more accessible to the average
citizen. Along with accessibility and convenience, miniaturization led to greater
precision. Today, high-speed computing is well within an individual’s grasp with
desktops, laptops, tablets, notebooks, netbooks, pads, and pods widely available at
a reasonable cost.

Given the computationally-intensive nature of permutation methods, it took the
development of high-speed computers for permutation-based statistical tests to
achieve their potential. Thus, the parallel development of permutation tests and
computing is an essential part of the chronology of permutation methods [695].
While this is not the proper place for a history of computing, some notable
highlights of the development of computing between 1960 and 1979 are important
for understanding the advancement of permutation statistical methods, especially
those related to computing speed.

As Thisted and Velleman noted in 1992, statistical practice has long combined
mathematical theory, methodological research, and applications to scientific prob-
lems [1353, p. 41]. Over time, as computers became more powerful and more
accessible to researchers, they came to play an increasingly important role in all
three areas. Further advances in computational power motivated the development
of new statistical methods, such as permutation methods. Thisted and Velleman
expressed it very succinctly when they wrote in 1992:

[c]omputational advances have changed the face of statistical practice by transforming what
we do and by challenging how we think about scientific problems [1353, p. 41].

In the 1940s, computing was called “automatic computation” and in the 1950s,
“information processing.” In the 1960s, computing acquired the name “computer
science” in the United States and “informatics” in the United Kingdom. By the
1980s, computing was comprised of a complex of related fields, including computer

2Kenneth Appel and Wolfgang Haken used an IBM 370 mainframe at the University of Illinois to
solve the four-color map problem in 1977.
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science, informatics, computer engineering, software engineering, numerical
analysis, and information technology. As noted by P.J. Denning, by 1990 the term
“computing” had become the standard for referring to this core group of disciplines
[343].

The leaders of the field struggled with the essential identity of computing
from the very beginning. In the 1960s it was argued that computing was unique
among all the sciences in its study of information processes. In the early 1970s,
computing came to stand for algorithmic analysis and the catch phrase at this time
was “computer science equals programming.” In the late 1970s, computing was
redefined as the automation of information processes. Finally, in the 1980s, the view
was adopted that computing was not only a tool for science, but a new method of
thought and discovery in science [343]. For the most part, permutation statistical
methods developed by subscribing to this latter view.

Prior to 1960 computers were large, slow, expensive, and in large part their use
was restricted to military and industrial applications. For example, consider the
SAGE (Semi-Automatic Ground Environment) computer system that was initiated
in the late 1950s, became operational in 1963, and served until 1983. The SAGE
system used 30 large mainframe Whirlwind II computers built by IBM to coordinate
the United States air defense systems [370, pp. 310,330]. Each Whirlwind II
computer was 50 ft wide and 150 ft long, weighed 250 tons, and contained 60,000
vacuum tubes.3 The SAGE system was the largest, heaviest, and most expensive
computer system ever built, yet the computing power of each Whirlwind II computer
was less than that of a single netbook computer of today [1243].

No account detailing the development of computing in this period would be
complete without mention of Bill Joy, the co-founder of Sun Microsystems, the
author of the vi editor, and the developer of csh, the C shell for UNIX platforms.

Bill Joy
William Nelson (Bill) Joy Jr. graduated from high school at age 15 in Farm-
ington Hills, Michigan, and entered the University of Michigan, graduating
with a B.S. degree in computer science in 1975. As late as the 1960s,
computers were the size of small rooms and were quite rare. What is more,
even if you could find a computer it was difficult to gain access to it, and if you
could gain access, renting time on it could cost several thousands of dollars
an hour [515, 702, 1394].

Programming, at the time, meant working with cardboard punch cards,
with many programs consisting of hundreds, sometimes thousands, of
cards. Since mainframe computers could handle only one task at a time

(continued)

3The Audion vacuum tube was invented by electrical engineer Lee de Forest and patented on 25
October 1906.
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(batch-processing), the computer operator scheduled an “appointment” for
a specified job and it might take hours, or even a day, to get a job run
and returned. The University of Michigan, however, was one of the first
universities in the world to switch from batch-processing to time-sharing. At
the time that Joy was there, the University of Michigan possessed sufficient
computing power that a hundred people could be logged on to the university
mainframe and programming simultaneously. The University of Michigan
Computer Center was in the North Campus where Joy lived. Joy had 24/7
access to the Computer Center and, through a bug in the Computer Center
software, Joy was able to exploit the system and program without incurring
any computing charges [515].

In 1975 Joy entered the University of California at Berkeley, graduating in
1979 with an M.S. degree in electrical engineering and computer science.
While at Berkeley, Joy updated the department’s UNIX operating system
and won a contract to adapt the Berkeley version of UNIX for a project
called “the Internet” from the United States Department of Defense Advanced
Research Projects Agency (DARPA). Joy’s development group adapted and
reinvented two networking protocols: TCP (Transmission Control Protocol)
and IP (Internet Protocol), and in 1976 Joy developed the vi editor for UNIX
platforms. In 1982 Joy joined Vinod Khosla, a graduate of Stanford Univer-
sity, Scott McNealy, and Andreas Bechtolsheim to found Sun Microsystems,
Incorporated, and to develop SUN (Stanford University Network) worksta-
tions. In 1991 Bill Joy relocated to Aspen, Colorado, where presently he
works on assorted projects for Sun Microsystems under the rubric Aspen
Smallworks, located high above Aspen in the shadows of Smuggler, Bell, and
Shadow Mountains [1021, pp. 325–326]. Joy retired from Sun Microsystems
as vice president of research and development on 9 September 2003.

As with Bill Joy, no account of the development of computing in this period
would be complete without mention of Bill Gates, who with his long-time friend
Paul Allen co-founded Microsoft, Incorporated, who also co-founded with his wife
Melinda French Gates the Bill & Melinda Gates Foundation to reduce inequities in
the United States and around the world, and who is the author of The Road Ahead
first published in 1995 [497] and Business @ the Speed of Thought first published in
1999 [498].

Bill Gates
William Henry (Bill) Gates III was born on 28 October 1955 in Seattle,
Washington. When Gates was 13, his parents removed him from Seattle’s
public schools and enrolled him in the seventh grade at Seattle’s Lakeside

(continued)
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School, an exclusive, all-boys, preparatory, private school that catered to
Seattle’s elite families located on 30 acres near the Jackson Park Golf Course
in north Seattle [515].4

In 1968, The Mother’s Club at Lakeside School raised and donated 3,000
dollars to purchase a computer terminal and computing time for the school;
actually, an Teletype ASR-33 (for Automatic Send and Receive), which was
a time-sharing terminal with a direct link to a computer in downtown Seattle;
actually, a GE-634 mainframe built by General Electric. It is striking that Bill
Joy got the early opportunity to learn programming on a time-share system as
a freshman at the University of Michigan in 1971, while Bill Gates learned
programming on a time-share system as an eighth-grade student at Lakeside
School in Seattle in 1968 [496].

Gates spent countless hours programming at Lakeside, then was able,
through the mother of another student at Lakeside, to acquire free computer
time at the Computer Center Corporation (C-Cubed) on weekends, where a
DEC PDP-10 resided. After C-Cubed went bankrupt, Gates found free com-
puter time at Information Sciences, Incorporated, in exchange for working
on software to automate company payrolls. As Gates once remarked, he had
better exposure to software development than anyone else at that time. In
the fall of 1973, Gates enrolled at Harvard University, having scored 1,590
out of a possible 1,600 on the College SAT test. It was at Harvard that
Gates shared a dormitory room with Steven Anthony (Steve) Ballmer, who
succeeded Gates as CEO of Microsoft in January of 2000. (On 23 August
2013, Ballmer announced his pending retirement as CEO of Microsoft.) In
1975, Gates dropped out of Harvard to found Micro-Soft (the hyphen was
dropped after 1 year) with Paul Gardner Allen, a long-time childhood friend
from Lakeside School who had dropped out of Washington State University in
1974 and moved to Boston to work for Honeywell as a computer programmer.
After a somewhat shaky beginning, Microsoft’s growth exploded between
1978 and 1981. In 1981 Gates and Allen incorporated Microsoft with Gates
as president and chairman of the board and Allen as executive vice-president.
In 1986, Gates took Microsoft public and in 2008 Gates transitioned out of a
day-to-day role in Microsoft to spend more time at the Bill & Melinda Gates
Foundation that was founded in 2000 [496, 515].

4The class of 1971 was Lakeside’s last as an all-boys school; it merged with St. Nicholas, an
all-girls school, to be co-educational that fall [13, p. 51].
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Paul Allen
Paul Gardner Allen was born on 21 January 1953 in Seattle, Washington. Like
Bill Gates, Allen attended Lakeside School, although he was two grades ahead
of Gates. And like Gates, it was on the ASR-33 that Allen leaned to program.
After graduation, Allen went to Washington State University in Pullman,
Washington, where he was a member of Phi Kappa Theta (ˆK‚) fraternity.
In 1974 Allen left Washington State three semesters shy of graduating to join
Honeywell Corporation in Boston, Massachusetts, as a programmer. This put
him close to Gates, whom he persuaded to leave Harvard and found Microsoft.

Paul Allen was diagnosed with Hodgkin’s lymphoma in 1982. Although
the cancer was successfully treated, he did not return to Microsoft and in 2000
he resigned from the Microsoft Board of Directors. Presently Paul Allen, in
addition to his many business interests, is the owner of the Seattle Seahawks
of the National Football League (NFL) and the Portland Trailblazers of the
National Basketball Association (NBA). In 2011 Allen published Idea Man:
A Memoir by the Cofounder of Microsoft [13].

In the late 1960s and early 1970s, mainframe computers became widely available
to researchers at major research universities. In 1962 the LINC (Laboratory
INstrument Computer) began processing data in the Lincoln Laboratory at the
Massachusetts Institute of Technology to assist with biomedical research. The LINC
was a small, stored-program, digital, 12-bit, 2,048-word computer designed to
accept analog as well as digital inputs directly from experiments [1350]. In 1963
Douglas Engelbart invented the mouse in his research lab at the Stanford Research
Institute SRI and a patent was issued in 1967. In September of 1964 the Control Data
Corporation (CDC) introduced the first supercomputer, the CDC 6600, designed by
Seymour Roger Cray and James Edward Thornton in Chippewa Falls, Wisconsin.

In 1960 Kenneth Iverson and Adin Falkoff at IBM created APL (A Programming
Language) based on a non-conventional notational scheme that Iverson had created
in 1957 while a faculty member at Harvard University. APL is an interpretive
language based on a unique non-standard character set composed of symbols rather
than words,5 and has only one recursive precedence rule: all operators have equal
precedence and all operators associate right to left.6;7 The first personal computer
implementation of APL was on the Intel 8008-based MCM/70 (Micro Computer
Machines/70) personal computer in 1973.

In 1963 John George Kemeny (originally, Kemény János György) and Thomas
Eugene Kurtz, both in the Mathematics Department of Dartmouth College in

5Some representative APL symbols are: �, �, �, �, �, and ��.
6For examples of APL statistical programs, see [109, 110, 124, 128, 132].
7A unique feature of APL is that any value divided by itself is equal to one, including zero divided
by zero.
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Hanover, New Hampshire, developed the BASIC (Beginners All-purpose Symbolic
Instruction Code) computer language, which gave Dartmouth undergraduate stu-
dents easy access to computing.8 In 1965 the PDP-8, made by Digital Equipment
Corporation (DEC), made its début and became the first microcomputer success;
price: $18,000. In 1966 Maurice George Kendall, commenting on electronic
computers, concluded that “for most practical purposes the out-of-core memory
storage : : : is unlimited” and projecting ahead said “the process and access times
of the next generation of computers will be reckoned in nano-seconds” [737, p. 1].

In 1969 the Department of Defense (DOD) established the first computer
network, ARPAnet, and in 1971 ARPAnet transmitted the first email message.9 In
the period between 1969 and 1973, Dennis MacAlistair Ritchie and Kenneth
Lane Thompson developed the UNIX operating system at Bell Laboratories (now,
Alcatel–Lucent) in Murray Hill, New Jersey. Originally written in assembly lan-
guage, the UNIX operating system was rewritten in C, a new general-purpose
computer programming language developed by Ritchie and Thompson for use with
the UNIX operating system. Subsequently, C was introduced to the public in 1978
with the publication of The C Programming Language by Brian W. Kernighan and
Dennis M. Ritchie. In 1975 Popular Electronics put the Altair 8800 computer kit on
its January cover and its maker, Micro Instrumentation Telemetry Systems (MITS),
was flooded with requests; memory was only 256 bytes.

Somewhat prior to the introduction of the C programming language in 1978, a
so-called “canned” Statistical Package for the Social Sciences (SPSS) was released
in 1968 by Norman H. Nie, Hadlai (Tex) Hull, and Dale H. Bent. Development of
SPSS began at Stanford University where Nie was a doctoral candidate in political
science, Bent was a doctoral candidate in operations research, and Hull was a
recent graduate of Stanford University with an MBA degree. SPSS incorporated
in 1975, establishing its headquarters in Chicago, Illinois, and was publicly traded
in August of 1993 [1422]. In 1976 another statistical package called Statistical
Analysis System, or SAS, was released by the SAS Institute. SAS had its birth
as a statistical analysis system in the late 1960s. SAS grew out of a project in the
Department of Experimental Statistics at North Carolina State University at Raleigh.
This project led to the formation of the SAS Institute in 1976 [1422]. SAS was
originally developed by Anthony J. Barr, James H. Goodnight, John P. Sall, and
Jane T. Helwig, in addition to a number of other early contributors. In the same year,
1976, the S programming language was developed at Bell Laboratories under the
direction of John Chambers and Trevor Hastie, along with Richard A. Becker, Alan
Wilks, and William S. Cleveland. S was written in C as a higher-level programming

8For a history of the development of the BASIC computing language, see the 1978 recollections of
Thomas Kurtz in the special issue of ACM SIGPLAN Notices on the history of programming [782].
9A precursor to the Internet, ARPAnet was the first operational packet-switching network and
was created for the United States Defense Advanced Research Projects Agency (DARPA) in
1969. ARPAnet was decommissioned in 1990 when it was superseded by the National Science
Foundation Network (NSFNET).
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language with separate algorithms developed for different statistical procedures
[618].10

As with Bill Joy, Bill Gates, and Paul Allen, no history of computing in this
period would be complete without mention of Gordon Moore, co-founder of Intel
Corporation with Robert Noyce and Andrew Grove, and author of Moore’s law
[1002].

G.E. Moore
Gordon Earl Moore received his B.S. degree in chemistry from the University
of California at Berkeley in 1950 and his Ph.D. in chemistry and physics
from the California Institute of Technology in 1953. In 1957 he co-founded
Fairchild Semiconductor with Julius Blank, Victor Grinich, Jean Hoerni,
Eugene Kleiner, Jay Last, Robert Noyce, and Sheldon Roberts, known as
the “traitorous eight” because they left William Bradford Shockley and the
Shockley Semiconductor Laboratory to form their own company, Fairchild
Semiconductor, in 1957 [103, Chap. 5]. In 1965 Moore published a short
article in the 19 April issue of Electronics with the title “Cramming more
components onto integrated circuits” [1002]. In this 1965 article Moore
described a trend in the history of computing where the number of transistors
that could be placed on an integrated circuit had doubled every year. He
initially projected that the doubling would continue every year, but later
revised the projection to doubling every 2 years [13, p. 2]. According to
Moore, the trend later was labeled “Moore’s Law” by computer scientist
Carver Mead at the California Institute of Technology. The trend has been
maintained more or less consistently for over 50 years. In July 1968 Moore
left Fairchild Semiconductor and founded Intel Corporation with partners
Robert Noyce and Andrew Grove [103, Chap. 7]. Moore retired from Intel
in 1997.

As Michael Kanellos has related, Moore once extrapolated that if the car
industry followed the same rules of progress, cars would get 100,000 miles
per gallon, travel at millions of miles per hour, and be so cheap that it would
cost less to buy a Rolls–Royce than to park it downtown for a day. However,
as a friend pointed out, Moore also said, “[the car] would only be a half-inch
long and a quarter-inch high” [708] (Moore, quoted in Seel [1243, p. 15]).

Beginning in 1975 with the success of Paul Allen, who at the time was a
Honeywell programmer in Boston, Massachusetts, and Bill Gates, a freshman
at Harvard University, who together wrote an interpreter for a subset of BASIC

10S-PLUS R� is a commercial implementation of the computing language S and was first produced
in 1988 by Statistical Sciences, Incorporated, a Seattle-based start-up company founded by
R. Douglas Martin, a professor of statistics at the University of Washington, Seattle.
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commands to the Altair 8800 personal computer, BASIC accelerated the personal
computer revolution [598]. By the end of this period in 1979, personal computers,
although not common, were available to many researchers, with the PDP-8, the
first affordable mini-computer, introduced by the Digital Equipment Corporation in
1963; the Altair computer, the very first full-flexed personal computer on the market,
introduced in 1975; and the Commodore PET introduced in 1977. In 1976 Steven
Paul Jobs and Stephen Gary Wozniak, two college dropouts,11 released the Apple
I computer, which they had developed in the garage belonging to Jobs’ parents. A
year later in 1977, Jobs and Wozniak introduced the Apple II computer that included
color graphics and housed its electronics inside a plastic case. The Apple II soon
became the first mass-marketed personal computer.

During this same period, the speed of computing increased greatly. For example,
in 1971 Intel introduced the 4004 microprocessor with 2,300 transistors and a
clock speed of 108 KHz, but by 1979 the Intel 8088 microprocessor with 29,000
transistors was running at a speed of 5 MHz. By the mid-1970s, John Kemeny,
who was then president of Dartmouth College, was quoted as saying that “the
average undergraduate at Dartmouth with a pocket calculator was holding more
computing power in his left hand than existed in the entire world just 15 years
earlier,” and in comparing his experiences as a young mathematician working in the
theoretical division of the Manhattan Project at the Los Alamos National Laboratory
in 1946 with those of a Dartmouth undergraduate in 1975, was quoted as saying
that “[i]t took twenty of us working 20 h a day for an entire year to accomplish
what one student can now do in an afternoon.” In retrospect, the speed of computing
increased greatly between 1960 and 1979, paving the way for the rapid development
of permutation statistical methods.

4.3 Permutation Algorithms and Programs

Exact permutation statistical methods ultimately depend on the generation of
the nŠ possible permutations of the n consecutive integers from 1 to n (q.v.
page 4). Alternatively, resampling-approximation permutation methods depend on
the Monte Carlo generation of a random subset of the nŠ possible permutations of
the n consecutive integers from 1 to n. In both cases, the permutation sequences
are used as subscripts to the observed measurement values so that the values can be
shuffled in all nŠ possible ways for an exact permutation analysis, or so that the nŠ

possible ways can be randomly sampled in a predetermined number of ways for a
resampling-approximation permutation analysis. The 1960s and 1970s witnessed a
proliferation of algorithms and programs to generate permutation sequences, each
designed to be faster, more efficient, or more elegant than previous algorithms.

11Steve Wozniak eventually returned to college and completed his B.S. degree in Electrical
Engineering and Computer Science at the University of California at Berkeley in 1987.
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Fig. 4.1 Example permutation sequences for the first four consecutive integers f1; 2; 3; 4g,
where the sequences are to be read vertically

Figure 4.1 illustrates lexicographical sequences of 4Š D 24 permutations based
on an initial sequence of the first four consecutive integers f1; 2; 3; 4g, where the
permutations sequences are listed vertically.

Most of the algorithms published in this time period resulted in an exhaustive list
of the nŠ possible permutations of the consecutive integers from 1 to n, but several
were designed to generate a random subset of all nŠ possible permutations. It should
be noted that, for the most part, these algorithms were not specifically designed with
permutation statistical methods in mind, appearing as they did primarily in computer
science journals. There are simply too many algorithms to examine here in detail,
or even to list completely; however, a number of them should be mentioned, and a
few deserve a thorough description.

In 1938 R.A. Fisher and Frank Yates published a method for obtaining random
permutations of the consecutive integers from 1 to n utilizing tables of random digits
[463]. Unfortunately, the process described by Fisher and Yates was inefficient,
rejecting on average 75 % of the random numbers generated. In 1961 C.R. Rao
presented a more efficient method of generating random permutations of the integers
1 to n for any n from a table of random digits that did not waste any random number
generated [1154]. In 1962 M. Sandelius described a randomization procedure that
consisted of distributing a deck of cards into ten decks using random decimal digits
and repeating this step with each deck consisting of three or more cards [1220].
The procedure by Sandelius was essentially a special case of the general procedure
described by Rao in 1961 [1154].

While the approaches described by Fisher and Yates [463], Rao [1154], and
Sandelius [1220] utilized tables of random digits, in 1961 Coveyou and Sulli-
van described a computer algorithm utilizing a computer-based pseudorandom
number generator that produced all permutations of the integers from 0 to n

[290]. Also in 1961 Wells [1435], following on the work of Tompkins [1364],
presented a scheme to generate all nŠ permutations of n marks whereby each
step consisted of merely transposing two marks (q.v. page 218), a procedure that
was considerably faster than the Tompkins–Paige method presented by Tompkins
in 1956[1364].

The transposition algorithm of Wells is typical of the permutation algorithms of
this time. First, let Pn represent a permutation sequence of length n and place an

arrow above every number in Pn, e.g.,
 �
1
 �
2
 �
3
 �
4 . Any number in Pn is considered
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Fig. 4.2 Implementation of
the Wells permutation
algorithm by adjacent
transposition with n D 4

to be in an “active state” when the adjacent number in the arrow direction of the

number is smaller than the number itself. Thus, the numbers
 �
2 ,
 �
3 , and

 �
4 are in an

active state in this example [cf. 1492]. The Wells adjacent transposition permutation
algorithm can be described in three simple steps [1492]:

Fig. 4.2 illustrates implementation of the Wells permutation algorithm by adja-

cent transposition with P4 D f �1 �2 �3 �4 g.
1. If there is no number in Pn in an active state, stop; otherwise go to Step 2.
2. Find the maximum number in Pn in an active state and label it M . Transpose M

and the adjacent number in the arrow direction of M and go to Step 3.
3. Change the arrow direction of all the numbers in Pn that are larger than M and

go to Step 1.

Random Number Generators
Prior to the widespread availability of computers, random numbers were
obtained from mechanical devices such as well-stirred urns, dice, roulette
wheels, or other instruments of chance, and the results were recorded in
tables [355]. Up to 1955, tables of uniform pseudorandom number digits were
published by Tippett [1362], Fisher and Yates [463], Kendall and Babington
Smith [740], Peatman and Shafer [1111], Hald [570], Royo and Ferrer [1201],
and Steinhaus [1316], among others. The total number of random digits in
these tables ranged from 1,600 to 250,000. Beginning in 1947, the RAND
Corporation compiled a million random digits by electronic simulation of a
roulette wheel attached to a computer [225]. The device had 32 slots, of which

(continued)
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12 were ignored; the others were numbered from 0 to 9 twice [1417].12 The
results were published in 1955 as A Million Random Digits with 100,000
Normal Deviates [1152].

Pseudorandom number generation by computer was in its infancy at
this time when scientists began to explore efficient methods of obtaining a
sequence of independent uniform random numbers with computer programs
by deterministic functions with a specified distribution. Unfortunately, the
sequences of digits produced at this time were not always very random;
see articles by Behrenz in 1962 [92], Marsaglia and Bray in 1968 [895],
and Grosenbaugh in 1969 [559]. A notable example was the “middle-square
method” developed by John von Neumann at the Los Alamos National
Laboratory that had a very short period and other weaknesses [1402]. As
Knuth noted:

[t]he authors of many contributions to the science of random number generation were
unaware that particular methods they were advocating would prove to be inadequate
[763, p. 173] (Knuth, quoted in Dodge [355, p. 331]).

The middle-square method of von Neumann for the generation of pseudo-
random numbers is quite elementary and can be described in just four steps:
1. Define a seed number of length n.
2. Square the seed number to obtain a 2n-digit number, adding leading zeroes

if necessary.
3. The next pseudorandom number is the middle n digits.
4. Repeat as necessary to obtain the required number of pseudorandom

numbers.
For the interested reader, Sowey [1298] provides an extensive bibliography

on random number generation in the period 1927 to 1971; Niederreiter [1037],
Rubenstein [1204], Ripley [1172], L’Ecuyer [807], and Tezuka [1348] provide
surveys on uniform pseudorandom number generators; Teichroew provides a
history of distribution sampling prior to the era of the computer [1344], and
Knuth [763] provides a complete chapter of 177 pages on the generation of
uniform pseudorandom numbers [355].

The year 1962 marked the beginning of a proliferation of computer-based
permutation sequence generators. In 1962 Peck and Schrack presented algorithm
PERMUTE [1112], which inspired algorithm PERM by Trotter [1372]. Although it
was only 1962, Trotter noted that the excuse for adding PERM to the “growing
pile of permutation generators” was that PERM offered an advantage in speed over
previous algorithms [1372, p. 435]. Rather tongue-in-cheek, Trotter also noted that

12European roulette wheels have 37 slots (0–36), while American roulette wheels have 38 slots
(0, 00, 1–36).
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PERM “also has the (probably useless) property that the permutations it generates
are alternatively odd and even” [1372, p. 435].

The Peck and Schrack [1112] and Trotter [1372] algorithms were quickly
followed by a plethora of other algorithms to generate permutations or combina-
tions, including algorithm PERMUTATION by Howell [658], PERMULEX by Schrack
and Shimrat that produced permutations in lexicographical order [1238], PERMUTE

by Eaves [371], COMBINATION by Kurtzberg [783], and an unnamed algorithm
by Lotto [843], nearly all published in Communications of the ACM in 1962. In
addition, in 1962 Shen [1258] published a new method to generate permutations and
combinations in lexicographical order that proved superior to a well-known method
of generation by addition utilized by Howell in algorithm PERMUTATION [659].

In 1963 Wolfson and Wright [1467], Wright and Wolfson [1470], and Mif-
sud [992, 993] presented algorithms to generate all possible combinations of n

objects, Shen published algorithm PERLE that generated all possible permutations
in lexicographical order [1259], Johnson published a paper on the generation of
permutations by adjacent transposition wherein each permutation was derived from
its predecessor by a single interchange of two marks in adjacent positions [693],
and Heap presented methods for obtaining all possible permutations of a number
of objects, in which each permutation differed from its predecessor only by the
interchange of two of the objects [608]. The Heap algorithm was later described by
Lipski in 1979 as “probably the most efficient method known” [832, p. 358].

The year 1964 turned out to be an important year for permutation sequence
generators, in general, and random permutation sequence generators, in particular.
First, Sag introduced an algorithm to generate all permutations of a set with
repetitions [1213]. Second, Durstenfeld put forth procedure SHUFFLE that generated
random permutations of a sequence f1; 2; : : : ; ng. The procedure by Durstenfeld
was based on the shuffling method first described by Fisher and Yates in Statistical
Tables for Biological, Agricultural and Medical Research in 1938, but more
importantly it was popularized by Donald Knuth, Professor of Computer Science,
Stanford University, when he included it in Volume 2 of his exhaustive four volume
work on The Art of Computer Programming in 1969 [762].

D.E. Knuth
Donald Ervin Knuth is Emeritus Professor at Stanford University and author
of The Art of Computer Programming (TAOCP), which consists of four
volumes on Fundamental Algorithms, Seminumerical Algorithms, Sorting
and Searching, and Combinatorial Algorithms. A fifth volume on Syntactic
Algorithms is in preparation and expected in 2020. In 1999, American
Scientist named The Art of Computer Programming as among the best twelve

(continued)
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Table 4.1 Illustration of the Fisher–Yates and Durstenfeld shuffling procedures with N D 6

Fisher–Yates Durstenfeld

LIMIT I J ARRAY STORE SWAP ARRAY

6 0.54 4 123456 4 4 $ 6 123456
5 0.46 3 123 56 34 3 $ 5 123654
4 0.82 4 12 56 634 4 $ 4 125634
3 0.37 2 12 5 2634 2 $ 3 125634
2 0.16 1 1 5 12634 1 $ 2 152634
1 5 512634 512634

physical-science monographs of the century [1007]. For completeness, the
other eleven books were:
1. Paul Dirac, Quantum Mechanics (1930)
2. Albert Einstein, The Collected Papers of Albert Einstein: The Swiss Years:

Writings, 1902–1909 (1930)
3. Benoit B. Mandelbrot, Fractals (1977)
4. Linus Pauling, Nature of the Chemical Bond (1939)
5. Bertrand Russell and Alfred North Whitehead, Principia Mathematica,

Volumes 1, 2, and 3 (1910–1913)
6. Cyril Smith, Search for Structure (1981)
7. John von Neumann and Oskar Morgenstern, Theory of Games and Eco-

nomic Behavior (1944)
8. Norbert Weiner, Cybernetics (1948)
9. Richard B. Woodward and Roald Hoffmann, Conservation of Orbital

Symmetry (1970)
10. Albert Einstein, The Meaning of Relativity (1922)
11. Richard Feynman, QED (1985)

Durstenfeld’s algorithm differed from that proposed by Fisher–Yates in that
instead of removing elements of ARRAY to storage array STORE, he swapped each
selected element with the last unswapped element at each step. The algorithm by
Durstenfeld is known as an in situ procedure as it shuffled the numbers of the array
in place, rather than storing them elsewhere.13 Table 4.1 illustrates the Fisher–Yates
and Durstenfeld shuffling procedures for the sequence f123456g.

13Another difference between the Fisher–Yates and Durstenfeld shuffling procedures is that
Fisher–Yates obtained their pseudorandom numbers from tables of random digits, while Dursten-
feld used a computer-based pseudorandom number generator.
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The Fisher–Yates Shuffle
The Fisher–Yates shuffle was designed to generate a random permutation of
the consecutive integers 1; 2; : : : ; N and can be summarized in just a few
steps:
1. Store the numbers from 1 to N in array ARRAY and set the value of

LIMIT D N .
2. Choose a pseudorandom number, I , on Œ 0; 1/ and scale it so it lies between

1 and LIMIT, which is N on the first selection. Denote the rescaled
pseudorandom number J , where J D Int.I � LIMIT/C 1:

3. Starting from the low end, remove the J th remaining element of ARRAY
and store it in array STORE.

4. Set LIMIT to LIMIT–1 and go to step 2, repeating until all the elements of
ARRAY numbers have been moved to array STORE.

In 1965 Hill and Pike designed an algorithm for computing tail-area probability
values for 2 � 2 contingency tables that was based on the exact method for fixed
marginal frequency totals [622]. It was interesting because it provided a one-tailed
probability value by summing the individual probability values equal to or less than
the observed probability value, and then provided two quite different two-tailed
exact probability values. One two-tailed probability value was obtained from the
sum of the one-tailed probability value and a probability value calculated in similar
fashion from the second tail. The second two-tailed probability value was obtained
by including in the second tail all those terms that gave an inverse odds-ratio statistic
as least as great as the odds-ratio statistic for the observed table.14

In 1967 algorithms to generate permutation sequences were presented by Page
[1085], Boothroyd [178–181], Bratley [206], Ord-Smith [1065], Phillips [1124],
and Langdon [799, 800]. The procedure by Langdon prompted a criticism by Ord-
Smith [1066] and a defense by Rodden [1181], both based on Langdon’s use of
a rotational scheme designed to capitalize on the hardware design of computers
of the time instead of the more conventional transpositional scheme. In 1991,
Rohl showed that the pseudo-lexicographical algorithm of Ord-Smith [1065] was
essentially equivalent to the Tompkins–Paige algorithm, given by Peck and Schrack
[1112].15

In 1968 Ord-Smith introduced algorithm BESTLEX based on transpositions that
produced all nŠ permutations of n marks in lexicographical order [1067], and
Plackett published an extensive article on permutations in which he described
an algorithm that minimized the amount of randomization necessary to generate

14Almost 20 years later, in 1984, Hill explained that he and Pike could not agree on how to compute
the two-tailed probability value. Pike argued for the odds-ratio method and Hill for the first method.
In the end, as Hill noted “our algorithm included both and gave the user the choice” [620, p. 452].
15Schrack is variously misspelled in the literature as Schrank [1185] and Schrock [270].
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a random permutation [1136]. In addition, Plackett described the probability
distributions for the number of digits required by standard methods of generation
from a sequence of random digits [1136].

In 1970 Chase published algorithm TWIDDLE designed to generate combinations
of M out of N objects, which was based on an unpublished procedure discovered
by Leo Lathroum in 1965 [248]; see also a remark by Chase in 1970 [249,
p. 368]. Algorithm TWIDDLE was the combination equivalent to the Johnson–
Trotter permutation generator [693, 1372]. Also in 1970, Ord-Smith published Part
1 (of two parts) of an overview on the generation of permutation sequences in which
he detailed algorithms based on the Tompkins algorithm, nested cycle algorithms,
the Wells, Johnson, and Trotter algorithms, lexicographic algorithms, and pseudo-
lexicographic algorithms [1068]. Part 1 was quickly followed by Part 2 in 1971
[1069]. Here, Ord-Smith presented what he considered to be the six fastest general
permutation algorithms; the article concluded with an extensive bibliography on
published permutation sequence generators available at the time.

In 1971 Thomas presented an algorithm and FORTRAN subroutine for exact
confidence limits for the odds-ratio statistic in 2 � 2 contingency tables [1355].
Assuming fixed marginal frequency totals, an iterative process was employed. In
1975 Thomas extended his work on the odds-ratio statistic to include exact and
asymptotic methods for a series of 2� 2 contingency tables [1356]. He provided an
option for computing exact one- or two-tailed confidence limits for the odds-ratio
statistic. As Thomas noted, since this was a discrete problem it was not possible
to obtain a predetermined confidence interval of exactly 1 � ˛, but rather 1 � ˛0,
where ˛0 < ˛ and ˛0 depended on the fixed marginal frequency totals. Thus, the
results were “exact” in the sense that the confidence limits were at least 1 � ˛ and,
consequently, always conservative [1356, p. 425, fn. 1].

In 1973 Liu and Tang developed subroutine NXCBN in FORTRAN that generated
all combinations of m out of n objects [837]. Also in 1973, Ehrlich presented
four new combinatorial algorithms [403]. The four algorithms had in common
the important property that they used neither loops nor recursion; thus, the time
needed for producing a new configuration was unaffected by the size of the
configuration. The listing of these four algorithms was followed by a more lengthy
discussion on loop-free algorithms for generating permutations, combinations, and
other combinatorial configurations [403].

In 1975 Dershowitz described a simplified loop-free algorithm for generating
all nŠ permutations of a set of n elements (q.v. page 4). This was a simplification
of Ehrlich’s loop-free version of Johnson’s and Trotter’s algorithms [693, 1372].
Each permutation was generated by exchanging two adjacent elements of the
preceding permutation. Also in 1975, Bebbington presented a simple method of
drawing a random sample without replacement that was essentially a Fisher–
Yates shuffle of elements [90]. Finally in 1975, Fike described a new method for
generating permutation sequences [432]. Timing experiments indicated that the
method proposed by Fike was competitive with the interchange methods of Wells
[1435], Johnson [693], and Trotter [1372].
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In 1976 Rohl presented programming improvements based on recursion
procedures for Fike’s algorithm for generating permutations that improved the
performance of Fike’s algorithm by a factor of two [1183]. Also in 1976 Hu and
Tien noted that when all items were distinct the algorithms developed by Johnson
[693] and Trotter [1372] generated all permutations by adjacent transposition, but
the method did not provide a solution if not all items were distinct. To this end,
Hu and Tien proposed an algorithm to generate all permutations when not all items
were distinct [661]. The algorithm of Hu and Tien was an extension of the 1963
algorithm of Johnson [693] and was based on a series of binary sequences.

In 1976 Ives introduced four new algorithms for generating the nŠ permutations
of n marks [675] (q.v. page 4). Performance checks by Ives showed superiority of
the new algorithms over Boothroyd’s implementation of the algorithm by Wells and
Ehrlich’s implementation of the Johnson–Trotter algorithm.

In 1977 Woodall noted that Fike’s algorithm had proved to be one of the fastest
known, but he was able to develop a new algorithm that was even faster [1469].
Woodall’s algorithm LEXPERM was a lexicographic procedure where recursion was
eliminated, yielding an algorithm with a very fast procedure time. In the same year,
Buckles and Lybanon presented a new algorithm COMB to generate a random set
of combinations of n items taken p at a time and arranged in lexicographical order
[228]. Finally in 1977, Sedgewick produced an extensive survey of permutation
generation methods in which he surveyed the numerous methods that had been
proposed for permutation generation by computer, described the various algorithms
that had been developed over the years in considerable detail, and implemented
them in a modern ALGOL-like language [1242]. In addition, as Sedgewick noted,
the paper was intended not only as a survey of permutation methods, but also as a
tutorial on how to compare a number of different algorithms for the same computing
task [1242, p. 137].

In 1978 two articles were published that are worth mentioning. The first article
by Rohl provided a simple, general algorithm to produce arrangements of n

marks taken r at a time, where the marks need not be distinct [1184]. Various
procedures based on the new algorithm were presented by Rohl, some producing
arrangements in lexicographical order, some not. As Rohl noted, more important
than the algorithm itself was the technique involved in its implementation—the
use of a procedure that contained within itself a second procedure that was highly
recursive. Thus, the algorithm effectively simulated a nest of r loops by means of a
recursive procedure that called itself r times [1184, p. 305].16

The second article, by Roy, evaluated permutation algorithms with special
attention to those published since Ord-Smith’s review of algorithms in 1970 and
1971 [1199]. These included new algorithms by Fike [432] and Ives [675] and

16It should be noted that most of these procedures were written in computing languages that did
not permit recursion, such as FORTRAN; therefore, it was necessary to generate all combinations by
simulating nested loops. The problem was addressed by Jane Gentleman in 1975 with subroutine
ALLNR, written in FORTRAN, that generated a complete set of all N CR combinations of N things
considered R at a time using simulated nested loops instead of recursion [507].
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improvements to previously published algorithms by Ehrlich [403], Lenstra [820],
and Rohl [1183]. Roy noted that there were a number of different permutation
sequences that were widely used: one by Ives, another by Wells, those that were
lexicographic, and those that were pseudo-lexicographic.17 However, Roy found that
all the different permutation sequences were generated from only two fundamental
schemes.

The first scheme generated the nŠ permutations of the n marks from knowledge of
the .n�1/Š permutations of the first .n�1/ marks. Each of the .n�1/ permutations
yielded n of the n-permutations [1199, p. 296]. The second scheme was described
by Roy as follows. Suppose a procedure can generate only the .k�1/Š permutations
of k � 1 marks (k < n). The kŠ permutations of the first k marks can then be
generated by repeating the procedure k times by taking .k � 1/ of the k marks at a
time and the remaining mark occupying the kth position.

Roy termed algorithms using the first scheme A-type algorithms, and those using
the second scheme, B-type algorithms. Roy determined that the Ives procedure was
the best A-type algorithm, the Wells procedure the best B-type algorithm, and that
A-type algorithms were, in general, superior to B-type algorithms.

In 1979 Payne and Ives reconsidered the 1973 Liu–Tang combination enumera-
tion algorithm that produced a cyclic sequence of combinations [1091]. While the
Liu–Tang algorithm relied on generating combinations from marks, Payne and Ives
considered pointers to the marks [1091].

Marks and Pointers to Marks
Combination and permutation sequences can be specified in two fundamental
ways: marks and pointers to marks. First, the marks can be specified. For
example, the combination

�
8
5

	
can be written with 5 0s and 8 � 5 D 3

1s, e.g., f00000111g, which is the sum of binary 5 f00000101g and binary
3 f00000011g, yielding binary 8 f00001000g. Then, the original sequence
of marks f00000111g can be systematically rearranged, e.g., f00001011g,
f00001101g, f00001110g, and so on, always maintaining 5 0s and 3 1s.

Second, the serial location specified by pointers to the marks can be spec-
ified. For this example, 678, locating the positions of the 1s for f00000111g,
i.e., the 1s are in positions 6, 7, and 8, from the left, and the 0s are in
positions 1, 2, 3, 4, and 5, from the left. Then, the pointers for rearrangement
f00001011g are 578, the pointers for rearrangement f00001101g are 568, and
the pointers for rearrangement f00001110g are 567, and so on. Alternatively,
the pointers can refer to the 0s: 12345, 12346, 12347, and 12348, respectively,
but it is customary, and more efficient, to point to the less numerous marks.

(continued)

17In general, ordered permutations, such as lexicographic sequences, are of no consequence in
permutation methods, either exact or resampling.
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Fig. 4.3 Robertson’s
notation for an observed
2 � 2 contingency table

Most combination generators use only the pointers to the marks rather than
the marks themselves, as the pointers represent the ranks of one set of two
combined ordered samples [1091].

Payne and Ives developed a pointer-programmed version of the Liu–Tang
algorithm that greatly improved the speed of execution compared to the original
coding, when k or n � k was small as they appear in

�
n
k

	
. They compared their

implementation not only to the Liu–Tang algorithm based on rearrangements of
marks, but also with other combination enumeration generators by Kurtzberg
[783], Chase [247], Bitner, Ehrlich, and Reingold [167], Mifsud [992], and Ehrlich
[403, 404].

4.3.1 Permutation Methods and Contingency Tables

In work that was to prove to be a harbinger to the extensive contributions to come
in the 1980s and 1990s, a number of articles were introduced on the computation
of exact probability values for contingency tables and goodness-of-fit tests between
1960 and 1979. In 1960 Robertson published an article on programming Fisher’s
exact probability method of comparing two percentages [1174]. In this paper,
Robertson described the application of a high-speed computer for determining
the exact probability associated with the problem of comparing two percentages
utilizing the Fisher–Yates exact probability method.18 In programming the Fisher–
Yates exact probability method, Robertson relied on stored logarithms of factorials.
Robertson’s notation for the cell frequencies and marginal frequency totals is given
in Fig. 4.3 and the Fisher–Yates exact probability of any 2�2 contingency table was
given by

P D .aC b/Š .c C d/Š .aC c/Š .b C d/Š

aŠ bŠ cŠ d Š .aC b C c C d/Š
:

18The “high speed computer” in this case was a Royal McBee LGP-30. The Royal McBee
Librascope General Purpose (LGP) computer was considered a desktop computer, even though
it weighed 740 pounds, contained a 4,096 word magnetic drum memory and had a clock rate of
120 kHz.
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Fig. 4.4 Feldman and
Klinger’s representation of an
observed 2 � 2 contingency
table

Robertson found that the computing time required for his program varied directly
with the magnitudes of a and c, but was independent of the magnitudes of b and d .
Consequently, the speed of the program depended largely on the number of division-
multiplication cycles involved, which he calculated to be precisely .a C 1/.3a C
2c/=2.

In 1963 Feldman and Klinger published an efficient method for calculating the
Fisher–Yates exact probability test for 2� 2 contingency tables [424]. By that time,
however, Finney had already published tables in 1948 for the Fisher–Yates exact
test with marginal frequency totals up to 15 [434], Latscha had extended Finney’s
tables for marginal frequency totals up to 20 in 1953 [804], Armsen had extended
Latscha’s tables for marginal frequency totals up to 50 in 1955 [34], and in 1963
Finney, Latscha, Bennett, and Hsu published Tables for Testing Significance in a
2 � 2 Contingency Table [439]. Also, Finney’s tables had already been incorporated
into the widely-distributed Biometrika Tables for Statisticians by E.S. Pearson and
H.O. Hartley in 1954 [1101]. However, Feldman and Klinger felt the need for a
solution that fell outside the scope of the published tables [424, p. 289]. They argued
that the tabled values suffered from two limitations. First, the tables reported critical
values only for selected levels of significance, e.g., 0.05, 0.025, 0.01. Second, for
N > 30 the tables listed critical values only for cases with equal marginal frequency
totals [553, p. 698].

Given a 2�2 contingency table as illustrated in Fig. 4.4, the procedure suggested
by Feldman and Klinger was to apply the usual formula for the hypergeometric
probability value,

P0 D .a0 C b0/Š .a0 C c0/Š .b0 C d0/Š .c0 C d0/Š

N Š a0Š b0Š c0Š d0Š
;

only to the observed table. Since

P1 D a0 d0

b1 c1

P0

and, in general,

PiC1 D ai di

biC1 ciC1

Pi ;

the solution proposed by Feldman and Klinger was a recursive procedure based
on the observed probability value, where a researcher need only determine P0

and then multiply it and each subsequent Pi by the product of the i th diagonal



4.3 Permutation Algorithms and Programs 221

that was reduced, divided by the product of the .i C 1/th diagonal that was
increased. Then, summing the probability values that were as or more extreme
than the observed probability value yielded the appropriate probability estimate for
the observed contingency table [424, p. 291]. However, Johnson noted that while
Feldman and Klinger recommended that the data be arranged such that a0 � b0, c0,
d0, this was in error as it provided the complement of the desired probability value
[689].

In 1964 Arnold investigated the multivariate generalization of Student’s t test
for two independent samples [35]. The first four permutation cumulants were
determined for a statistic that was a simple function of Hotelling’s T 2 test given by

t D T 2

.m � 1/C T 2
;

where m was the number of blocks, and applied by Arnold to samples from bivariate
normal, rectangular, and double exponential distributions. The samples examined
ranged in size from n D 48 for m D 4 to n D 800 for m D 8. The results suggested
that a test utilizing Hotelling’s generalized T 2 statistic, when applied to non-normal
data, was not likely to be biased by more than 1 or 2 percentage points at the 5 %
level of significance.

In 1968 Hope introduced a simplified Monte Carlo test procedure for significance
testing [649]. Noting that exact permutation tests were unnecessarily complicated
due to the excessive number of permutations required, Hope advocated Monte
Carlo (resampling) test procedures with smaller reference sets than required by
exact permutation tests. Hope was able to demonstrate that the necessary number
of Monte Carlo permutations could be determined from the level of significance
adopted. For additional articles with a similar theme in this period, see a 1977 article
by Besag and Diggle [164] and a 1979 article by Marriott [894].

In 1969 Kempthorne and Doerfler published a paper examining the behavior of
selected tests of significance under experimental randomization [725]. They selected
three tests for a matched-pairs design and concluded that the Fisher randomization
test was to be preferred over the Wilcoxon matched-pairs rank-sum test, which
in turn, was to be preferred over the sign test. All comparisons were based on
Monte Carlo test procedures with 50 sets of randomly-generated data from eight
distributions for experiments on 3–6 pairs of observations.

While the purported purpose of the paper was to compare matched-pairs designs,
the paper actually contained a great deal more. First, Kempthorne and Doerfler
objected to the use of specified cut-off points for the significance level ˛, and
to classifying the conclusion as being simply significant or not significant, i.e.,
less than or greater than ˛. They argued that the use of such a dichotomy was
inappropriate in the reporting of experimental data as it resulted in a loss of
information [725, p. 239]. Second, they objected to the common practice of adding
very small values such as 10�100 to measurements so as to avoid ties when
converting to ranks. They referred to this practice as “fudging” the data. Third,
they suggested that the term “significance level” of a test be eliminated from



222 4 1960–1979

the statistical vocabulary; see also a 2012 article by Megan Higgs on this topic
in American Scientist [616]. Finally, they dismissed the assumption of random
samples in comparative populations and praised randomization tests for their ability
to answer the question “What does this experiment, on its own, tell us?” [725,
p. 235].19 For a concise summary of the Kempthorne and Doerfler paper, see
Kempthorne [720, pp. 22–25].

In 1971 Zelen considered the problem of analyzing data arranged into k � 2

contingency tables, each of size 2�2 [1487]. The principal result was the derivation
of a statistical test for determining whether each of the k contingency tables has the
same relative risk. Zelen noted that the test was based on a conditional reference set
and regarded the solution as an extension of the Fisher–Irwin exact probability test
for a single 2 � 2 contingency table [1487, p. 129].20

In 1954 Cochran [260] had investigated this problem with respect to testing
whether the success probability for each of two treatments was the same for
every contingency table, recommending the technique whenever the difference
between the two populations on a logit or probit scale was nearly constant for
each contingency table. Note that the constant logistic difference is equivalent to
the relative risk being equal for all k tables.21

Mantel and Haenszel had previously proposed a method very similar to
Cochran’s, except for a modification dealing with the correction factor associated
with a finite population [887]. Zelen investigated the more general problem when
the difference between logits in each table was not necessarily constant [1487].
The exact and asymptotic distributions were derived by Zelen for both the null and
non-null cases.

4.4 Ghent and the Fisher–Yates Exact Test

No account of the analysis of contingency tables would be complete without
mention of the work of Arthur Ghent, who in 1972 extended the method of binomial
coefficients first proposed by Patrick Leslie in 1955 [510].

19For Kempthorne and Doerfler, while randomization tests are based on permutations of the
observations, they reserved the term “permutation tests” for the comparison of random samples
from unspecified distributions and “randomization tests” for the comparison of the material
actually used in an experiment.
20Recall that Fisher in 1935 [452], Yates in 1934 [1472], and Irwin in 1935 [674] independently
developed the exact permutation analysis of a 2�2 contingency table with fixed marginal frequency
totals (qq.v. pages 25, 37, and 48). Thus, references to either the Fisher–Yates or the Fisher–Irwin
exact probability test are quite common.
21In general, when considering multiple 2 � 2 contingency tables the relative risk for each table
must be in the same direction, e.g., measures of relative risk such as odds-ratios must all be greater
(less) than 1 and approximately equal in magnitude.
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Fig. 4.5 Example Ghent
observed 2 � 2 contingency
table

A.W. Ghent
Born in Canada, Arthur W. Ghent earned his B.Sc. and M.A. degrees in
zoology from the University of Toronto in 1950 and 1954, respectively, and
his Ph.D. in zoology at the University of Chicago in 1960. Ghent worked
as a forest ecologist with the Canada Department of Agriculture while he
was a student and upon his graduation, joined the faculty at the University of
Oklahoma to begin an academic career as Assistant Professor of Quantitative
Zoology. In 1964 Ghent moved to the University of Illinois where he was
appointed Assistant Professor of zoology, achieving the ranks of Associate
Professor and Professor in 1965 and 1970, respectively. In 1973 he accepted
an appointment as Professor, School of Medical Sciences, at the University of
Illinois. Arthur W. Ghent retired from the University of Illinois in 1997 and
passed away on 27 April 2001 in Urbana, Illinois, at the age of 73 [509].

In 1972 Ghent examined the literature on the alignment and multiplication of
appropriate binomial coefficients for computing the Fisher–Yates exact probability
test for 2 � 2 contingency tables with fixed marginal frequency totals [510]. In
an exceptionally clear and cogent presentation, Ghent reviewed the method of
binomial coefficients first proposed by P.H. Leslie in 1955 [821] and independently
discovered by Sakoda and Cohen in 1957 [1216].

The method of binomial coefficients, as described by Leslie [821], was a
computational procedure involving, first, the selection of the appropriate series
of binomial coefficients; second, their alignment at starting points in accord with
the configuration of integers in the observed contingency table; and finally, the
multiplication of adjacent coefficients that constitute the numerators of the exact
hypergeometric probability values of all 2 � 2 contingency tables equal to or more
extreme than the probability of the observed contingency table, given fixed marginal
frequency totals [510, pp. 18–19].

An example will illustrate the binomial-product method as described by Ghent.
Consider the example observed 2 � 2 contingency table in Fig. 4.5, where it is only
necessary to examine the first row, as the second row is redundant, given the fixed
marginal frequency totals.

For Cell (1, 1) in Fig. 4.5, the cell frequencies can vary from a minimum of 0
to a maximum of 7, the first column marginal frequency total. The possible cell
frequencies for Cell (1, 1) are listed in the first column of Table 4.2. On the other
hand, the cell frequencies in Cell (1, 2) can vary only from a maximum of 8 to a
minimum of 1, and not from the column marginal frequency total of 13 down to
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Table 4.2 Illustration of the Ghent method of binomial coefficients to obtain Fisher–Yates exact
probability values for a 2 � 2 contingency table

Cell Binomial coefficients

(1, 1) (1, 2) .p C q/7 .p C q/13 Product Probability

0 8 1 � 1,287 D 1,287 0.0102
1 7 7 � 1,716 D 12,012 0.0954
2 6 21 � 1,716 D 36,036 0.2861
3 5 35 � 1,287 D 45,045 0.3576
4 4 35 � 715 D 25,025 0.1987
5 3 21 � 286 D 6,006 0.0477
6 2 7 � 78 D 546 0.0043
7 1 1 � 13 D 13 0.0001

Total 125,970 1.0000

a minimum of 0, as the frequencies for Cell (1, 2) are constrained by the marginal
frequency total of 8 in the first row i.e., the two cells, (1, 1) and (1, 2), must sum to
the row marginal frequency total of 8. The corresponding possible cell frequencies
for Cell (1, 2) are listed in the second column of Table 4.2.

Because the frequencies for Cell (1, 1) can vary over the entire range of 0 to
7, the full complement of binomial coefficients of .p C q/7 is listed in the third
column of Table 4.2. However, the binomial coefficients of .p C q/13, which are
f1; 13; 78; 286; 715; 1;287; 1;716; 1;716; 1;287; 715; 286; 78; 13; 1g, are constrained
by the range of possible cell frequencies for Cell (1, 2), i.e., from 8 to 1. Since 9, 10,
11, 12, and 13 are not possible cell frequencies for Cell (1, 2), eliminate the first five
terms from the binomial coefficients for .pC q/13, i.e., 1, 13, 78, 286, and 715, and
since 0 is not a possible cell frequency for Cell (1, 2), eliminate the last term from
the binomial coefficients for .p C q/13, i.e., 1. The remaining binomial coefficients
are listed in the fourth column of Table 4.2. The required binomial coefficients can
easily be obtained from the first nC 1 terms of the expanded binomial series,

1C n

1Š
C n.n � 1/

2Š
C n.n � 1/.n � 2/

3Š
C � � � C nŠ

nŠ
D

nX
iD0

 
n

i

!
D 2n

or, for small samples, from Pascal’s triangle (q.v. page 185). The two binomial series
are then multiplied together and totaled, as illustrated in the fifth (Product) column
of Table 4.2. Dividing each binomial product by the total yields the exact probability
values, as listed in the last (Probability) column of Table 4.2.

The procedure is also described in some detail in Chap. 1940–1959 in the section
on Patrick Leslie (q.v. page 184). Ghent extended the Leslie procedure to 2 � 3

and 2 � c contingency tables, requiring 3 and c series of binomial coefficients,
respectively. Finally, he extended these results to 3� 3 and r � c contingency tables
using a two-step procedure that collapsed the larger contingency tables into smaller
tables, then reassembled the results.
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Since the 1930s, some controversy has existed over how correctly to compute
a two-tailed probability value for the Fisher–Yates–Irwin exact probability test for
2� 2 contingency tables. One approach is to sum the tail probability values equal to
or less than the observed probability value for the tail in which the observed table
fell, then simply double that probability value (doubling rule); see for example, an
article by D.J. Finney in 1948 [434, p. 146]. The second approach is to sum the
tail probability values in the “observed” tail, then add to that sum the sum of the
probability values equal to or less than the observed probability value in the other
tail (Irwin’s rule) [674].

The difference can be illustrated with the listings in Table 4.2. The observed
table containing cell values (1, 7) with a binomial product of 12,012 is in the upper
tail of the distribution of products. Thus, its one-tail exact probability value is
.1;287 C 12;012/=125;970 D 0:1056, since 1,287 is less than 12,012. Doubling
that probability value yields a two-tailed probability value of 2 � 0:1056 D 0:2112.
On the other hand, the binomial products less than 12,012 in the lower tail are 13,
546, and 6,006. Then, the two-tailed probability value is .1;287C 12;012C 13C
546C 6;006/=125;970 D 0:1577.

Ghent was unequivocal on this matter, noting that “it is the sum of the equally,
or more, extreme probabilities separately calculated in both tails that is logically
continuous with the procedure by which Freeman and Halton (1951) obtain
probabilities for 2 � 3 and larger contingency tables in their extension of the Fisher
exact test principle” [510, p. 20].22

4.5 Programs for Contingency Table Analysis

In 1973 Gregory developed a FORTRAN computer program for the Fisher–Yates
exact probability test that yielded a one-tailed exact probability value [553]. In
this article Gregory made the controversial statement that since the Fisher–Yates
statistic was inherently one-tailed, “the derived probability is simply doubled to test
a two-tailed hypothesis” [553, p. 697]. This, of course, is certainly true if the two
sets of marginal frequency totals are identical, resulting in a symmetric probability
distribution; otherwise, it is a subject of some considerable debate. On this matter,
see also articles by Cormack [279, 280], Haber [564], Healy [604], Jagger [678],
Lloyd [838], Mantel [884, 885], Plackett [1139], and Yates [1476].

In 1975 Tritchler and Pedrini published a computer program for the Fisher–Yates
exact probability test that yielded a one-tailed probability value and could evaluate
samples up to size n D 500 [1371]. Also in 1975, Hays presented a FORTRAN

procedure for the Fisher–Yates exact probability test [603]. The program relied on
logarithms of factorials and produced the exact probability value associated with the
observed 2 � 2 contingency table, the exact probability values associated with each

22Emphasis in the original.
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of the more extreme possible tables, and the two-tailed probability of observing a
result as or more divergent than that in the observed 2 � 2 contingency table.

In 1978 J. Berkson published a controversial article titled “In dispraise of the
exact test” [102] and a second article questioning whether the marginal frequency
totals of the 2 � 2 contingency table contain relevant information regarding the
table proportions [101]. In these two articles, Berkson disagreed with Fisher’s
assertion that the marginal frequency totals of a 2 � 2 contingency table were
“ancillary statistics” and therefore the observed marginal frequency totals provided
no information regarding the configurations of the body of the table. However,
Berkson’s argument was incorrect. Berkson compared one-sided probability values
from the Fisher–Yates exact probability test for 2 � 2 contingency tables with the
normal test for the nominal significance levels 0.05 and 0.01, i.e., an exact versus
asymptotic comparison. He showed that the effective level was closer to the nominal
level with the normal test than with the exact test and concluded that the power of
the normal test was considerably larger than the power of the exact test. Needless to
say, the article by Berkson prompted several replies, most notably by Barnard [69],
Basu [85], Corsten and de Kroon [286], and Kempthorne [722]; see also a 1984
article by Yates [1476, pp. 439–441].23

Permutations of cell frequencies for contingency tables in this period were not
limited to determination of the exact Fisher–Yates probability value for 2 � 2

contingency tables. In 1970 Pierce developed an ALGOL computer program for
computing the Fisher–Yates exact probability value for a 2 � 3 contingency table
[1127, pp. 129–130, 283–287]. Pierce used a recursive procedure that essentially
eliminated all factorial expressions and provided the opportunity to combine groups
of constants for storage in the computer memory.

In 1972, March published algorithm CONP in FORTRAN for computing exact
probabilities for r � c contingency tables. As March noted, if a sample of size
N is subjected to two different and independent classifications, A and B , with R

and C classes, respectively, the probability Px of obtaining the observed array of
cell frequencies X.xij/, under the conditions imposed by the arrays of marginal
frequency totals A.ri / and B.cj /, is given by

Px D

RY
iD1

ri Š

CY
j D1

cj Š

N Š

RY
iD1

CY
j D1

xijŠ

:

23The controversy was to become a long-standing argument as to the proper method to analyze
2 � 2 contingency tables when both marginal frequency distributions were considered to be fixed,
only one marginal frequency distribution was considered to be fixed, or neither marginal frequency
distribution was considered to be fixed. In this regard, see also two articles by Barnard in 1947
[66,67], an article by Plackett in 1977 [1137], an article by Yates in 1984 [1476], and an article by
Campbell in 2007 [239].
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The method utilized by March was to redefine Px as

Px D Qx

Rx

;

where

Qx D

RY
iD1

ri Š

CY
j D1

cj Š

N Š
;

which, as March noted, was constant for the given set of marginal frequency totals,
ri and cj , and

Rx D
RY

iD1

CY
j D1

xijŠ ;

which varied depending on the array of cell frequencies .xij/. March then used
floating point logarithms (base 10) to compute the factorial expressions up to 100;
above 100 he used Stirling’s approximation. He tested the program using 2 � 3

contingency tables with N D 30, 2 � 4 contingency tables with N D 7, and 3 � 3

contingency tables with N D 7.

James Stirling
James Stirling was born in May 1692 in Garden, Stirlingshire, approximately
20 km from the town of Stirling, Scotland. Nothing is known of Stirling’s
early childhood, but it is documented that he enrolled in Balliol College,
University of Oxford, in 1710 as a Snell Exhibitioner and was further awarded
the Bishop Warner Exhibition scholarship in 1711.24 Stirling lost his funding
when, because he was a Jacobite, he refused to swear a loyalty oath to the
British Crown. His refusal to swear the oath meant that Stirling could not
graduate; however, he remained at Oxford for 6 years, until 1717 [1046].

In 1717 Stirling published his first paper extending a theory of plane curves
by Newton, who was provided a copy of the paper. That same year, Stirling
traveled to Venice where it is thought that he expected to become Chair of
Mathematics, but for reasons unknown the appointment fell through. In 1722

(continued)

24At the University of Oxford, and other universities in England, an Exhibition is a financial grant
or bursary awarded on the basis of merit. The recipient is an exhibitioner. The amount awarded is
usually less than a Scholarship.
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Stirling returned to Scotland and in late 1724 moved to London to teach
mathematics at William Watt’s Academy, in part on the recommendation of
Newton. In 1730, Stirling produced Methodus Differentialis sive Tractatus
de Summatione et Interpolatione Serierum Infinitarum (Differential Method
with a Tract on Summation and Interpolation of Infinite Series) [1046]. It was
Example 2 to Proposition 28 that became Stirling’s most important and
enduring work, his asymptotic calculation for nŠ or “Stirling’s approxima-
tion.” Stirling’s formula, given by

nŠ
:D p2
n

n

e

�n

;

is in fact the first approximation to what is called “Stirling’s series” given by

nŠ
:D p2
n

n

e

�n
�

1C 1

12n
C 1

288n2
� 139

51;840n3

� 571

2;488;320n4
C 163;879

209;018;880n5
C � � �

�

[2, p. 257]. The asymptotic expansion of the natural logarithm of nŠ is also
referred to as “Stirling’s series” and is given by

ln nŠ
:D n ln n� nC 1

2
ln.2
n/C 1

12n
� 1

360n3
C 1

1;260n5

� 1

1;680n7
C 1

1;188n9
� 691

360;360n11
� � �

[1173].25 Sir Isaac Newton was elected President of the Royal Society in
1724 and served until his death in 1727. Stirling, on the recommendation
of Newton, was elected Fellow of the Royal Society in 1726. James Stirling
F.R.S. died in Edinburgh on 5 December 1770 at age 78.

The procedure by March [890] prompted several comments. Boulton noted
that the method proposed by March was rather inefficient as it operated by
generating all combinations that satisfied a weakened set of constraints, rejecting
those combinations that violated the constraints imposed by the observed marginal
frequency totals [185, p. 326]. Boulton modified the algorithm by March, utilizing

25It should be noted that in 1730 Abraham de Moivre published his Miscellanea Analytica de
Seriebus et Quadraturis in which de Moivre first gave the expansion of factorials now known as
Stirling’s series, which should probably be referred to as the de Moivre–Stirling series [361, p. 8].
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a procedure by Boulton and Wallace [187]. In 1975 Hancock [583] also revised the
algorithm by March and compared the two methods. Hancock found his proposed
modification to be much faster than the March algorithm. As Hancock illustrated, for
a 4 � 4 contingency table with all cell frequencies equal to 1, the March algorithm
examined 1,953,125 contingency tables before it reached a result, compared with
only 10,147 contingency tables for Hancock’s revised method. In 1976 Boulton also
compared times for his 1973 algorithm with the algorithm of Hancock and found the
Boulton procedure to be faster than the Hancock procedure [186].

In 1976 Howell and Gordon [657] published FORTRAN subroutine CONTIN,
which was just a special case of the general method for an r � c contingency table
with fixed marginal frequency totals described previously by Freeman and Halton
in 1951 [480]. The Howell and Gordon procedure enumerated all possible r � c

contingency tables, given fixed marginal frequency totals, and calculated the exact
probability of the observed contingency table or one more extreme. The subroutine
relied on the inefficient calculation of factorials and was based on the formula for the
exact probability of a single r � c contingency table, given the marginal frequency
distributions,

Pk D

rY
iD1

Ri:Š

cY
j D1

C:j Š

N Š

rY
iD1

cY
j D1

XijŠ

;

where Ri: and C:j denoted the fixed row and column marginal frequency totals, N

was the total number of observations, Xij denoted the observed cell frequencies, and
Pk was the probability of contingency table k.

The year 1977 was to be important for calculating exact probability values for
r � c contingency tables. First, Fleishman developed a program for calculating the
exact probability for r � c contingency tables [466]. The program by Fleishman
was based on an extension of the Fisher–Yates exact probability test and utilized the
general method of Freeman and Halton [480] (q.v. page 172). As Fleishman noted,
for a 4 � 3 contingency table with a total frequency of 82 there were over 804,000
contingency tables enumerated, and the execution time was over 40 min on an IBM
360/75, graphically illustrating the difficulties of computing at the time.

Second, Agresti and Wackerly published an article on exact conditional tests
of independence for r � c contingency tables with fixed marginal frequency
totals [7]. In this case, Agresti and Wackerly were less concerned with the exact
hypergeometric probability and more concerned with the exact probability of
established statistics, such as Pearson’s chi-squared statistic. They were able to show
that exact tests of independence using the chi-squared formula, or any measure of
association as the test statistic, were manageable, i.e., required less than a minute of
CPU times on an IBM 360/165 mainframe computer for a variety of 2 � 3, 2 � 4,
2 � 5, 2 � 6, 2 � 7, 3 � 3, 3 � 4, 3 � 5, and 4 � 4 contingency tables.
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Agresti and Wackerly noted that procedures that ordered sample points solely on
the basis of the probability of occurrence had received strong criticism, especially
from Radlow and Alf in 1975 [1150]. The rationale of the criticism was that some
configurations of cell frequencies may be less likely than the observed table under
the null hypothesis, but exhibit less discrepancy from the null hypothesis than the
observed table. Thus, Agresti and Wackerly defined the attained significance level
to be the sum of the probability values of all tables for which the value of the test
statistic was at least as large as the value of the test statistic for the observed table
[7, p. 114]. This was destined to become an important observation.

Third, Bedeian and Armenakis developed a program for computing the Fisher–
Yates exact probability test and the coefficient of association lambda (�) for r � c

contingency tables [91]. The stated purpose of the Bedeian and Armenakis paper
was to provide a mathematical algorithm for the Fisher–Yates exact test that was
adaptable to r � c contingency tables and also provided the user with �, an index of
predictive association designed for cross-tabulation of two nominal-level variables
developed by Leo A. Goodman and William H. Kruskal at the University of Chicago
in 1954 [534].26

Goodman–Kruskal’s Lambda
Lambda was developed by Leo A. Goodman and William H. Kruskal in 1954
at the University of Chicago [534]. Lambda was designed to measure the
degree of association between two categorical (nominal-level) variables that
had been cross-classified into an r � c contingency table.

Three lambda coefficients were defined: two asymmetric and one sym-
metric. The first, �rowsjcols, was for cases when the column variable was the
independent variable and the row variable was the dependent variable; the
second, �colsjrows, was for cases when the row variable was the independent
variable and the column variable was the dependent variable; and the third,
�symmetric, was essentially an average of �rowsjcols and �colsjrows.

Perfect association between the row and column variables results in � D 1,
and � D 1 implies perfect association. On the other hand, independence of
the row and column variables results in � D 0, but � D 0 does not necessarily
imply independence. The reason for this is that � is ultimately based on modal
values and if the modal values of one variable all occur in the same category
of the other variable, � defaults to zero, a serious deficiency of Goodman and
Kruskal’s �.

26The 1954 article by Goodman and Kruskal was the first of four articles on measures of association
for cross classifications published in Journal of the American Statistical Association in 1954, 1959,
1963, and 1972 [534–537]. Robert Somers referred to the first of these papers as “a landmark to
those working with statistics in the behavioral sciences” [1295, p. 804] and Stephen Fienberg was
quoted as saying that the series constituted “four landmark papers on measures of association for
cross classifications” [538, p. v].
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Fig. 4.6 The 2 � 3

contingency table of Bedeian
and Armenakis

The table used by Bedeian and Armenakis to illustrate their procedure is given in
Fig. 4.6 [91, p. 256]. Based on the 2 � 3 contingency table in Fig. 4.6, Bedeian and
Armenakis calculated the Fisher–Yates exact probability value to be 0.11944, and
the lambda values to be �rowsjcols D 0:00, �colsjrows D 0:00, and �symmetric D 0:00.

Unfortunately, 0.11944 is the point-probability value for the observed table in
Fig. 4.6 rather than the two-tailed probability value.27 For the table in Fig. 4.6, there
are 15 possible cell configurations given the fixed marginal frequency totals, of
which 13 are as or more extreme than the observed cell frequencies, resulting in
an exact two-tailed probability value of 0.6636.

Even more unfortunate was the poor choice by Bedeian and Armenakis for the
example 2 � 3 contingency table depicted in Fig. 4.6. Since the modal values of the
row variable (142 and 106) both occur in the same category of the column variable
(third column), and the modal values of the column variable (2, 2, and 142) all occur
in the same category of the row variable (first row), then all three lambda coefficients
are necessarily zero.

Finally in 1977, Baker introduced FORTRAN subroutine TABPDF that evaluated
an r � c contingency table for three models [55]. The first model considered both
sets of marginal frequency totals as fixed. The second model considered the row
marginal frequency totals only as fixed, so that the summation of the probability
values was over all r�c contingency tables with marginal frequency totals consistent
with just the row marginal frequency totals. The third model considered neither
row nor column marginal frequency totals as fixed, so that the summation of the
probability values was over all r � c contingency tables with the same frequency
total.28

4.6 Siegel–Tukey and Tables for the Test of Variability

To this point, Chap. 4 has primarily considered the decades of the 1960s and 1970s
in terms of computing power, concentrating on the contributions of researchers
who provided algorithms for generating random permutation sequences, computing
exact and resampling-approximation probability values, the analysis of contingency
tables, and a moment-approximation approach designed specifically for permutation
tests, per se. The remainder of the chapter is dedicated to the statistical permutation

27The correct point-probability value for the table in Fig. 4.6 is 0.11946.
28The three research designs were first described by George Barnard in a 1947 Biometrika article
[67] (q.v. page 130).
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literature that was developed in the same period. It begins with a 1960 article on
two-sample rank tests by Sidney Siegel and John Tukey.

Work on the publication of tables that listed exact probability values for a variety
of rank tests that had begun in the 1950s continued in the 1960s. In 1960 Siegel
and Tukey developed a non-parametric two-sample test based on differences in
variability between the two unpaired samples, rather than the more conventional
tests for differences in location [1273]. The Siegel–Tukey test was designed to
replace parametric F tests for differences in variances that depended heavily on
normality, such as Bartlett’s F and Hartley’s Fmax tests for homogeneity of variance
[78,596]. Within this article Siegel and Tukey provided tables of one- and two-sided
critical values based on exact probabilities for a number of levels of significance.29

S. Siegel
Sidney Siegel received his B.A. degree from San José State College (now,
San José State University) in 1951 and his Ph.D. in psychology from Stanford
University in 1953 [1271]. It was while Siegel was a graduate student
at Stanford that he was first exposed to statistics, studying under Quinn
McNemar, Lincoln Moses, George Polya, Albert Bowker, Kenneth Arrow,
and John Charles Chenoweth (J.C.C.) McKinsey. He served for 1 year as
a Fellow at the Center for Advanced Study in the Behavioral Sciences at
Stanford, thereafter he was employed at Pennsylvania State University. He
was the author of Nonparametric Statistics for the Behavioral Sciences, which
ultimately became one of the best selling statistics books of all time, appearing
in English, Japanese, Italian, German, and Spanish [1272]. Sidney Siegel
passed away on 29 November 1961 at the early age of 45 from coronary
thrombosis [1271, p. 16]. His book was resurrected and revised in 1988 by
N. John Castellan and published as a second edition with authors Siegel
and Castellan. N. John Castellan died at home on 21 December 1993 at the
age of 54.

J.W. Tukey
John Wilder Tukey received his B.A. and M.A. degrees in chemistry from
Brown University in 1936 and 1937, respectively, and his Ph.D. in mathemat-
ics from Princeton University in 1939 under the supervision of the algebraic
topologist Solomon Lefschetz, followed by an immediate appointment as

(continued)

29In 1960 A.R. Ansari and R.A. Bradley published an article titled “Rank sum tests for dispersion”
that provided tables of critical values for the symmetrical version of the Siegel–Tukey test and also
discussed the normal approximation to the null distribution [812, p. 52].
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Henry B. Fine Instructor in Mathematics [425]. A decade later, at age 35,
he was advanced to Professor and in 1976 he was awarded the Donner
Professor of Science chair. Tukey spent his entire academic career at Princeton
University, but simultaneously worked for 40 years in the Department of
Statistics and Data Analysis at the AT&T Bell Laboratories (now, Alcatel–
Lucent) in Murray Hill, New Jersey, until his retirement in 1985. In 1956
Tukey assumed the directorship of the newly founded Statistical Research
Group at Princeton and then Head of the Department of Statistics at Princeton
when it was established in 1965. In 1973, President Nixon awarded Tukey the
National Medal of Science.

Among his many accomplishments, Tukey is known for his work on
exploratory data analysis (EDA), his coining of the word “software” in the
January 1958 issue of American Mathematical Monthly [1256, p. 772], and
his invention of the word “bit” to represent a binary digit in 1946.30 His
collaboration with fellow mathematician James William Cooley resulted in
the discovery of the fast Fourier transform (FFT), which was to become
important in permutation methods in the 1990s. Tukey held honorary degrees
from the Case Institute of Technology, the University of Chicago, and Brown,
Temple, Yale, and Waterloo Universities; in June 1998, he was awarded an
honorary degree from Princeton University [425]. The eight volumes of The
Collected Works of John W. Tukey provide an excellent compendium of the
writings of John Tukey, as well as a rich source of biographical material
[207,212,213,258,294,700,701,871]. John Wilder Tukey passed away from
a heart attack that followed a brief illness on 26 July 2000 at the age of 85
[214, 704].

Let the two sample sizes be denoted by n and m with n � m and assign ranks to
the nCm ordered observations with low ranks assigned to extreme observations and
high ranks assigned to central observations. More specifically, assign rank 1 to the
smallest value, rank 2 to the largest value, rank 3 to the second largest value, rank 4
to the second smallest value, rank 5 to the third smallest value, and so on, alternately
assigning ranks to the end values two at a time (after the first) and proceeding toward
the middle. Since the sum of the ranks is fixed, Siegel and Tukey chose to work with
the sum of ranks for the smaller of the two samples, represented by Rn. They also
provided a table with one- and two-sided critical values of Rn for n � m � 20 for
various levels of ˛.

30The first use of the acronym “bit” for “binary digit” is often attributed to Claude Elwood Shannon
of Bell Laboratories, the father of information science, as it was contained in his 1948 paper on
“A mathematical theory of communication,” e.g., [1166, p. 199]. However, in this seminal paper
Shannon gave full credit to John Tukey for first suggesting the term [1254].
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Fig. 4.7 Observations and
dispersion ranks for ten
graduate students

For an example, suppose that there are n D 5 male and m D 5 female students
in a graduate seminar and the observations are the ages of n C m D 10 students,
where the ages of the male graduate students are f20; 22; 23; 28; 32g and the ages
of the female graduate students are f24; 25; 27; 30; 45g. The dispersion ranks are
depicted in Fig. 4.7 where the ages of the male graduate students are underlined and
Rn D 1C 4C 5C 7C 3 D 20.

A serious problem with the Siegel–Tukey test is its lack of symmetry. Another
test with exactly the same properties can be obtained by reversing the pattern of
Fig. 4.7, assigning rank 1 to the largest observation, rank 2 to the smallest, and so on
[812, p. 33]. For the data in Fig. 4.7 this would yield Rn D 2C 3C 6C 8C 4 D 23.
In 1962 Klotz [759] demonstrated the equivalence of the Siegel–Tukey test and
comparable tests by Barton and David [82] and Freund and Ansari [481].

Siegel and Tukey noted that their choice of ranking procedure, with low ranks
assigned to extreme observations and high ranks assigned to central observations,
allowed the use of the same tables as were used for the Wilcoxon two-sample
rank-sum test for location [1453]. Thus, they explained, their new test might
“be considered a Wilcoxon test for spread in unpaired samples” [1273, p. 431].
Alternatively, as they explained, the Siegel–Tukey tables were equally applicable
to the Wilcoxon, Mann–Whitney, White, and Festinger rank-sum procedures for
relative location of two independent samples [427, 880, 1441, 1453], and were
appropriate linear transformations of the tabled values published by Auble in 1953
[40].31

4.7 Other Tables of Critical Values

In 1961 Glasser and Winter published a paper containing approximate critical values
for Spearman’s rank-order correlation coefficient, rs, for one-tailed ˛ levels of
0.001, 0.005, 0.010, 0.025, 0.050, and 0.100 with n D 11; 12; : : : ; 30 for use in
testing the null hypothesis of independence [516]. Noting that exact probability
values for rs had been calculated for samples up to size n D 10 by Olds in 1938
[1054], Kendall, Kendall, and Babington Smith in 1939 [746], and David, Kendall,
and Stuart in 1951 [328], Glasser and Winter used a Gram–Charlier Type A series
approximation to the distribution function of rs first given by David, Kendall, and
Stuart in 1951 [328] to extend the tables of rs to n D 30.

31Siegel and Tukey did not mention, and were apparently unaware of, the equivalent tests by J.B.S.
Haldane and C.A.B. Smith, published in 1948 in Annals of Genetics (q.v. page 154), and by D. van
der Reyden, published in 1952 in Rhodesia Agricultural Journal (q.v. page 165).
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In 1963 Verdooren published new tables of exact critical values for the
Wilcoxon–Mann–Whitney two-sample rank-sum sample statistic for lower
significance levels 0.001, 0.005, 0.01, 0.025, 0.05, and 0.10 for sample sizes
m � n D 1; 2; : : : ; 25 [1398]. In an appendix to the article, Verdooren listed errata
correcting a few of the values provided in the earlier tables published by White
in 1952 [1441], Auble in 1953 [40], and Siegel and Tukey in 1960 [1273]. Also
in 1963, Bennett and Nakamura published tables for testing significance in 2 � 3

contingency tables [94]. If Aj for j D 1; 2; 3 denotes the three column marginal
frequency totals and A1 D A2 D A3, then four significance levels were tabulated by
Bennett and Nakamura using the randomized test principle of Freeman and Halton:
0.05, 0.025, 0.01, and 0.001.

In 1964 Milton published a new table of critical values for the Wilcoxon–Mann–
Whitney two-sample rank-sum sample statistic [996], extending previous tables
published by Wilcoxon [1454], White [1441], van der Reyden [1391], Auble [40],
Siegel [1272], Rümke and van Eeden [1206], Jacobson [677], Verdooren [1398], and
Owen [1075]. The extended tables were for one-tailed ˛ levels of 0.0005, 0.0025,
0.005, 0.001, 0.01, 0.025, 0.05, 0.10, and for sample sizes of n � 20 and m � 40.

4.8 Edgington and Randomization Tests

Beginning in the early 1960s, Eugene Edgington at the University of Calgary
published a number of books and articles on permutation methods and was an
influential voice in promoting the use of permutation tests and measures, especially
to psychologists and other social scientists. Edgington was especially critical of the
use of normal-theory methods when applied to nonrandom samples.

E.S. Edgington
Eugene S. Edgington, “Rusty” to his friends, received his B.S. and M.S.
degrees in psychology from Kansas State University in 1950 and 1951,
respectively, and his Ph.D. in psychology from Michigan State University
in 1955. He has enjoyed a long career in the Department of Psychology
at the University of Calgary, Alberta, where he is now Emeritus Professor.
Edgington has published many books and articles dealing with permutation
methods, the best known of which is Randomization Tests, first published in
1980 and continued through four editions, the last co-authored with Patrick
Onghena at the Katholieke Universiteit, Leuven, in 2007. Edgington has been
instrumental in the development of permutation tests for experimental designs
and an influential voice in the promotion of permutation methods, especially
among psychologists. Eugene S. Edgington is presently Professor Emeritus at
the University of Calgary, Alberta.
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In 1964 Edgington published a descriptive article on randomization tests in The
Journal of Psychology [387]. This article marked the beginning of an important
series of articles and books on methods and introduced permutation statistics to a
wide audience of psychologists, who subsequently found permutation methods both
popular and useful.32;33 In this brief article, Edgington defined a randomization test
as a statistical test that derives a sampling distribution of a statistic from repeated
computations of the statistic for various ways of pairing or dividing the scores
[387, p. 445]. He considered three types of randomization tests: tests for differences
between independent samples, tests for differences between paired samples, and
tests of correlation. Edgington noted that randomization tests could be particularly
useful whenever the assumptions of parametric tests could not be met, when samples
were very small, and when probability tables for the desired statistic were not
available.

In 1966 Edgington published an article on statistical inference and nonrandom
samples [388]. Writing primarily for psychologists, Edgington pointed out that since
experimental psychologists seldom sample randomly, it was difficult for psychol-
ogists to justify using hypothesis-testing procedures that required the assumption
of random sampling of the population or populations about which inferences were
to be made. Edgington stated his position unequivocally, “statistical inferences
cannot be made concerning populations that have not been randomly sampled”
[388, p. 485].34 In a concession to psychological researchers, however, he also
pointed out that non-statistical inferences could, of course, be drawn on the basis
of logical considerations. He went on to advocate the use of permutation methods
for statistical inferences from nonrandom samples, but also stated that “this does
not imply that parametric tests cannot be used” [388, p. 487]. He explained that
a researcher could use parametric tests as approximations to permutation tests,
echoing previous studies by Silvey [1276], Wald and Wolfowitz [1407], Friedman
[486], Eden and Yates [379], Kempthorne [718, p. 152], Pitman [1131], and Welch
[1428], supporting the claim that permutation tests are the gold standard against
which parametric tests are to be evaluated.

In a 1967 article on making statistical inferences from a sample of n D
1, Edgington further clarified the problem of making statistical inferences with
permutation methods [389]. He noted that while it was certainly correct that a
researcher could not statistically generalize to a population from only one subject,
it was also correct that a researcher could not statistically generalize to a population
from which the researcher had not taken a random sample of subjects. He noted
that this observation ruled out making inferences to populations for virtually all

32Authors’ note: Edgington termed exact permutation tests “randomization tests” and resampling
permutation tests “approximate randomization tests”; we follow his convention in this section.
33Psychologists typically study small nonrandom samples, for which permutation tests are ideally
suited (q.v. page 274).
34See also a stern warning about the use of convenience samples in research in a 1991 textbook on
Statistics by Freedman, Pisani, Purves, and Adhikari [479, p. 506].
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psychological experiments, both those with large and small sample sizes.35 Finally,
he noted that hypothesis testing was still possible without random samples, but that
significance statements were consequently limited to the effect of the experimental
treatment on the subjects actually used in the experiment, with generalization to
other subjects being based on logical, non-statistical considerations [389, p. 195].

In 1969, in the same journal, Edgington elaborated on approximate random-
ization tests, i.e., resampling or Monte Carlo permutation tests, which he had
touched on only briefly in his 1964 paper [390]. He defined an approximate
randomization test as a test in which the significance of an obtained statistic
was determined by using an approximate sampling distribution consisting of a
random sample of statistics randomly drawn from the entire sampling distribution
[390, p. 148]. An approximate randomization test could thereby greatly reduce the
amount of computation to a practical level. As an example, Edgington considered an
approximate randomization test on a correlation coefficient with n D 13 subjects,
yielding 13Š D 6;227;020;800 equally-probable pairings. He estimated the full
randomization test would take 197 years of continuous 24-h-a-day operation to
compute all the correlation coefficients in the entire sampling distribution [390,
p. 144].

In an important statement, Edgington argued that in an approximate randomiza-
tion test, the significance of an obtained statistic was determined by reference to a
distribution “composed of the approximate sampling distribution plus the obtained
statistic.” The significance was the proportion of statistics within this distribution
that were as large or larger than the obtained statistic [390, p. 148]. This was an
important observation at the time as Edgington and others recommended computing
only 999 statistics plus the obtained statistic. Today, with 1,000,000 sample statistics
being regularly generated, it is perhaps a moot point.

Also in 1969, Edgington published a book on Statistical Inference: The
Distribution-free Approach that contained an entire chapter on randomization
tests for experiments [391]. In this lengthy 76-page chapter, Edgington examined
inferences concerning hypotheses about experimental treatment effects with finite
populations, with no assumptions about the shapes of the populations, and for
nonrandom samples. He explored in great detail and with many examples,
randomization tests for paired comparisons, contingency tables, correlation,
interactions, differences between independent samples, and other randomization
tests such as differences between medians, ranges, and standard deviations. Near
the end of the chapter, Edgington turned his attention once again to approximate
randomization tests (resampling-approximation permutation tests), noting that the
amount of computation for a randomization test could be reduced to a manageable
level by using random samples of all the pairings of divisions in the entire sampling
distribution to obtain a smaller sampling distribution [391, p. 152].

35This was very much the same conclusion that John Ludbrook and Hugh Dudley came to regarding
biomedical research in an article on “Why permutation tests are superior to t and F tests in
biomedical research,” published in The American Statistician in 1998. [856].
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Edgington concluded the chapter with a discussion of normal-theory tests as
approximations to randomization tests. He argued that when an experiment has
been designed so that a randomization test can be carried out, a normal-theory test
can sometimes be used as an approximation to the randomization test. His logic,
as he explained, was that normal-theory tests can be regarded as approximations
to randomization tests to the extent that the sampling distribution of the relevant
statistic, such as a t or F , underlying the probability tables is similar to that for a
randomization test using the same statistic [391, p. 161].

In 1973 Edgington and Strain summarized computer time requirements for
a number of statistical tests, both exact randomization tests and approximate
randomization tests [397]. Included were exact and approximate randomization t

tests for two independent samples, matched-pairs, one-way analysis of variance,
and randomized blocks analysis of variance. All the tests were conducted on a
CDC 6400, which was a state of the art mainframe computer at that time. In this
article, Edgington and Strain made the observation that when subjects have not been
randomly selected from a defined population, but have been randomly assigned to
treatments, randomization tests are the only valid tests that can be performed [397,
p. 89].36 On this topic, see also a 1972 article by Youden [1478] and a 1977 article
by Kempthorne [721].

On this topic, Box, Hunter, and Hunter noted that the randomization tests
introduced by Fisher in 1935 and 1936 were early examples of what were to be later
called, in spite of Fisher’s protest, “nonparametric” or “distribution-free” tests. They
argued that (1) unless randomization has been performed, then “distribution-free”
tests do not possess the properties claimed for them, and (2) if randomization has
been performed, standard parametric tests usually supply adequate approximations
[194, p. 104].

4.9 TheMatrix Occupancy Problem

The matrix occupancy problem, as discussed by Mielke and Siddiqui in 1965 [988],
was motivated by a study of bronchial asthma associated with air pollutants from
the grain mill industry in Minneapolis, Minnesota, in 1963 [291]. Following the
notation of Mielke and Siddiqui [988], consider a b � g occupancy matrix with
b � 2 asthmatic patients (rows) and g � 2 days (columns). Let Xij denote the
observation of the ith patient, i D 1; : : : ; b, on the jth day, j D 1; : : : ; g, where
Xij D 1 if an asthmatic attack occurred and Xij D 0 if no asthmatic attack occurred.

36This is an important point emphasized by others; viz., permutation tests on experiments are valid
only when preceded by randomization of treatments to subjects; see also a 1963 article by Cox and
Kempthorne [293, p. 308] and a 1988 paper by Tukey [1382]. The randomization of treatments to
subjects was one of the few points on which Neyman and Fisher agreed, as both felt that it provided
the only reliable basis for dependable statistical inference [816, p. 76].
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Mielke and Siddiqui presented an exact permutation procedure for the matrix
occupancy problem that is most appropriate for small b and large g [988]; see also
a discussion by Mielke and Berry in 2007 [965, pp. 135–138]. Let

Ri D
gX

j D1

Xij

be a fixed row total, i D 1; : : : ; b, let

M D
bY

iD1

 
g

Ri

!

denote the total number of equally-likely distinguishable b � g occupancy matrices
under the null hypothesis, and let w D min.R1; : : : ; Rb/. If Uk is the number of
distinct b � g matrices with exactly k columns filled with 1s, then

Uw D
 

g

w

!
bY

iD1

 
g � w

Ri � w

!

is the initial value of the recursive relation

Uk D
 

g

k

!24 bY
iD1

 
g � k

Ri � k

!
�

wX
j DkC1

 
g � k

j � k

!
Uj�
g
j

	
3
5 ;

where 0 � k � w� 1. If k D 0, then

M D
wX

kD0

Uk

and the exact probability value under the null hypothesis of observing s or more
columns exactly filled with 1s is

Ps D 1

M

wX
kDs

Uk ; (4.1)

where 0 � s � w. Eicker, Siddiqui, and Mielke described extensions to the matrix
occupancy problem solution in 1972 [405].

For an example, consider an experiment with b D 6 asthmatic patients examined
over a series of g D 8 days. The data are summarized in Table 4.3. The Ri asthmatic
patient attack totals are f4; 6; 5; 7; 4; 6g; the minimum of Ri , i D 1; : : : ; b, is
w D 4; the number of observed days filled with 1s is s D 2 (days 2 and 7);

wX
kDs

Uk D
4X

kD2

Uk D 149;341;920C 6;838;720C 40;320 D 156;220;960 I
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Table 4.3 Attack (1) and no attack (0) for b D 6 asthmatic patients over a series of g D 8 days

Days

Patient 1 2 3 4 5 6 7 8 Ri

1 0 1 1 1 0 0 1 0 4
2 1 1 1 0 0 1 1 1 6
3 0 1 0 1 1 0 1 1 5
4 1 1 1 1 0 1 1 1 7
5 0 1 1 0 0 0 1 1 4
6 1 1 1 1 0 1 1 0 6

M D 1;721;036;800; and following Eq. (4.1),

Ps D 156;220;960

1;721;036;800
D 0:0908 :

For a series of articles published in The American Statistician, Nathan Mantel
[882] observed in 1974 that the solution to the matrix occupancy problem described
by Mielke and Siddiqui [988] was also the solution to the “committee problem”
considered by Mantel and Pasternack in 1968 [888], Gittelsohn in 1969 [514], Sprott
in 1969 [1314], and White in 1971 [1442]. Specifically, the committee problem
involves g � 2 members, b � 2 committees, and Xij D 0 if the jth member,
j D 1; : : : ; g, belongs to the ith committee, i D 1; : : : ; b, and Xij D 1 if the
jth member does not belong to the ith committee. Under the null hypothesis that
all distinguishable b � g matrices are equally likely, the exact probability value of
observing s columns exactly filled with 1s is the previously-defined Ps in Eq. (4.1).
Thus, in 1974 the matrix occupancy and committee problems were conclusively
shown to be identical by Mantel [882].

4.10 Kempthorne and Experimental Inference

In this period, no one did more to promote permutation methods, advocate their use
over parametric methods, and extol their virtues than Eugene Edgington of the Uni-
versity of Calgary, John Tukey of Princeton University, Alvan Feinstein of the Yale
University School of Medicine, and Oscar Kempthorne of Iowa State University.
Together, their influential voices advocated the use of permutation methods to the
exclusion of classical methods. The work of Kempthorne, in particular, has not been
received with the gravitas it deserves. In 1963 Kempthorne published an article with
David Cox on permutation methods for comparing survival curves [293] and in 1966
Kempthorne published an article on experimental inference [720]. The 1966 article
was the text of the Fisher Memorial Lecture given by Kempthorne in Philadelphia
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on 10 September 1965 to a joint session of the American Statistical Association, the
Institute of Mathematical Statistics, and the Biometrics Society.37

O. Kempthorne
Oscar Kempthorne earned his B.A. and M.A. degrees from Clare College,
University of Cambridge, in 1940 and 1943, respectively, and an honorary
Sc.D. from the University of Cambridge in 1960. He was employed at the
Rothamsted Experimental Station from 1940 to 1946, where he worked with
both R.A. Fisher and Frank Yates. In 1947 Kempthorne accepted a position
as Associate Professor at Iowa State College (now, Iowa State University)
in Ames, Iowa. He was promoted to Professor in 1951 and was named
Distinguished Professor in Sciences and Humanities at Iowa State University
in 1964 [474, 624].

Kempthorne is considered the founder of the “Iowa school” of experi-
mental design and analysis of variance. His contributions centered largely on
three major areas: experimental design, genetic statistics, and the philosophy
of statistics. In the present context, Kempthorne’s many contributions to
randomization theory is of primary importance. Kempthorne was highly
critical of both model-based inference and Bayesian statistics and strongly
embraced a randomization approach to the statistical analysis of experiments.
Much of the work he did on randomization theory is summarized in his
1994 book on Design and Analysis of Experiments, Volume 1: Introduction
to Experimental Design, co-authored with Klaus Hinkelmann [625]. Oscar
Kempthorne retired from Iowa State University in 1989 after an academic
career of 42 years and passed away on 15 November 2000 in Annapolis,
Maryland, at the age of 81 [626].

In the 1963 paper, Cox and Kempthorne, both at Iowa State University in Ames,
Iowa, analyzed data from swine concerning the genetic effects of paternal irradiation
on survival in the first generation [293]. Permutation test procedures were utilized
for the evaluation of the results “because of the inherently complex correlational
structure of the data” [293, p. 307]. Specifically, Cox and Kempthorne argued
that a permutation test procedure has an essential role with vector observations
whose correlational structure is complex and not estimable with any reasonable
precision. The permutation method is stated so succinctly and concisely that it is
worth summarizing here.

37There are several lecture series in honor of R.A. Fisher. This series is the distinguished R.A.
Fisher Lectureship and Kempthorne was, in 1965, the second lecturer. The first in a long list of
distinguished lecturers was Maurice Bartlett in 1964, and the third was John Tukey in 1966. The
lecture series continues to this day.
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Consider a permutation test to compare two groups. The permutation test
procedure considers all possible partitions of the experimental units in two groups of
the same size as those in the original experiment. A criterion of interest is evaluated
for each partition and the proportion of the partitions where the value of the criterion
equals or exceeds that observed in the original experiment is determined [293,
p. 308].

Cox and Kempthorne emphasized that the significance of the partition of the
experimental units observed in the actual experiment was to be judged directly
from the proportion of the random partitions that yielded equal or greater values
for the criterion under study. Then, following Fisher, they underscored that for the
evaluation of significance to have validity, the original division of the experimental
units “into groups subject to different treatments must be done at random” [293,
p. 308].38 Finally, Cox and Kempthorne noted that if the number of experimental
units was large, an evaluation of all possible partitions became impractical and
the solution was to examine a random sample of the possible partitions of the
experimental units.

The actual experiment analyzed by Cox and Kempthorne consisted of 3,552
swine born into N D 362 litters, with n1 D 180 from irradiated males and n2 D 182

from control males. Since there were

N Š

n1Š n2Š
D 362Š

180Š 182Š
D 3:92 � 10107

possible partitions, a random sample of all possible partitions was extracted and

only 200 partitions were examined. Three different permutation analyses were
conducted with the resulting conclusion that paternal irradiation adversely affected
early survival in swine.

In the 1966 paper Kempthorne treated permutation tests as a gold standard
against which parametric tests might be evaluated: “[i]t may well be that the
randomization [permutation] test is reasonably approximated by the t-test . . . ” [720,
p. 20]. In addition, Kempthorne argued that the proper way to make tests of
significance in simple randomized experiments is by a permutation test, concluding
that “in the randomized experiment one should, logically, make tests of significance
by way of the randomization test” [720, p. 21]. Much of the rest of the paper was
devoted to illustrating permutation tests based on results obtained by T.E. Doerfler (a
former student) and Kempthorne from a paired experiment, later published in 1969,
where comparisons were made among the F test, the corresponding randomization
test, the Wilcoxon matched-pairs rank-sum test, and the sign test [725].

38Emphasis added.
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4.11 Baker–Collier and Permutation F Tests

In 1966 Frank B. Baker and Raymond O. Collier published three articles on
permutation methods. The first of the three articles was a computer program for
analysis of variance F tests by means of permutation [51]. The second article
compared normal-theory and permutation variance-ratio tests on size and power
of the appropriate F test for one-way and two-way completely randomized exper-
imental designs [52]. The third article compared normal-theory and permutation
variance-ratio tests on size and power of the appropriate F test for randomized
blocks experimental designs [268].

4.11.1 A Permutation Computer Program

In 1966 Baker and Collier made available a FORTRAN computer program for
calculating analysis of variance F tests by means of permutation [51]. The program
was designed to handle any balanced fully-replicated or nested design with up to
eight factors involving an equal number of observations per cell. The number of
permuted samples was restricted to 1,000, as this consumed 4 min of run time on a
CDC 6400 mainframe computer in 1966.

4.11.2 Simple Randomized Designs

Also in 1966 Baker and Collier considered “some empirical results on variance
ratios under permutation” in the completely randomized analysis of variance design
[52]. In general, they found high agreement between normal-theory and permutation
tests of the probability of a type I error. They also found high agreement for power
for variance-ratio tests in completely randomized designs. They concluded that the
empirical results indicated that for the completely randomized design, the agreement
between normal-theory F tests and permutation F tests for either size or power was
acceptable over a range of skewness and kurtosis, and only extremely leptokurtic
data affected the agreement, which they found to be mitigated by increasing sample
size.

The empirical results were based on 1,000 random permutations of a basic data
set utilizing a general purpose Monte Carlo computer routine due to Baker and
Collier [51]. For a one-factor completely randomized design, Baker and Collier
investigated two treatment layouts: one with two levels and one with three levels;
in both cases they used six observations in each level, yielding a total number of
observations of N D 12 and N D 18, respectively. They examined type I error
at ˛ D 0:10; 0:05; 0:025; and 0:01, with skewness values g1 D 0:00 and C 1:00,
and kurtosis values g2 D �1:00; 0:00; and C 1:00. For a two-factor completely
randomized design they again investigated two treatment layouts: one a 2 � 2

factorial design and one a 3 � 2 factorial design, again with six subjects per
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cell for a total number of observations of N D 24 and N D 36, respectively.
As in the one-factor design, they used ˛ D 0:10; 0:05; 0:025; and 0:01, g1 D
0:00 andC1:00, and g2 D �1:00; 0:00; andC1:00.

Baker and Collier concluded that their empirical results found high agreement
between the variance-ratio test under permutation and under normal theory for the
completely randomized analysis of variance design for a broad set of conditions.
More specifically, the agreement was very good over all four treatment layouts when
the skewness coefficients of the basic data were 0:00 and C1:00 and the kurtosis
coefficients were �1:00, 0:00, andC1:00.

Finally, Baker and Collier noted that their investigations into the empirical
determinations of the probability of type I error were in agreement with those
given previously by Hack in 1958 [566], but that they had also extended Hack’s
results by analyzing both one- and two-way treatment layouts, and by studying
data sets containing fewer observations than had Hack. In addition, their power
estimates provided an extension of the randomized block results due to Kempthorne,
Zyskind, Addelman, Throckmorton, and White to the completely randomized
design published in 1961 [726].

4.11.3 Randomized Block Designs

While Baker and Collier [52] compared normal-theory and permutation tests on
size and power for variance-ratio tests in completely randomized designs, Collier
and Baker extended this work to simple randomized block designs [268]. Their
investigation into randomized block designs was an attempt to supplement previous
work on power by Kempthorne, Zyskind, Addelman, Throckmorton, and White in
1961 [726].

Because in an I treatments by J blocks design there are .I Š/J possible
permutations of the observed data, Collier and Baker chose to randomly sample
permutations from four data sets, which they termed “basal responses,” indicating
responses that a set of hypothetical experimental units would produce under null
treatment effects [268, p. 199]. To this end they investigated size and power under
permutation of the usual F test of null treatment effects for two randomized block
designs with one observation per cell: an I D 3 treatments by J D 8 blocks design
and an I D 3 treatments by J D 15 blocks design.

Specifically, 24 observations for the 3 � 8 design and 45 observations for the
3 � 15 design were randomly sampled from each of (1) a normal distribution, (2) a
log-normal distribution, (3) a one-sided exponential distribution, and (4) a two-sided
exponential distribution. Analyses of the four sets of basal responses were based on
Monte Carlo random permutations of 1,000 observations drawn from each data set.

For the power analyses, they examined power for the F test under permutation
and under normal theory for both the 3� 8 and 3� 15 designs. For the 3� 8 design
they set normal-theory size to ˛ D 0:05 with normal-theory power of �2 D 0:80

and 0.60, and ˛ D 0:01 with normal-theory power of �2 D 0:53 and 0.32. For the
3 � 15 design they set normal-theory size to ˛ D 0:05 with normal-theory power
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of �2 D 0:80 and 0.60, and ˛ D 0:01 with normal-theory power of �2 D 0:54

and 0.32.
Collier and Baker found that under null treatment effects, the permutation

distributions of F for the four sets of basal responses agreed quite well with
the F distribution under normal theory for both the 3 � 8 and 3 � 15 factorial
designs. Comparing the size of the F test under permutation with that expected
from normal theory, they observed agreement of the permutation distribution in
those regions “where significance levels are ordinarily set” [268, p. 203], and found
little difference in results for the 3 � 8 and 3 � 15 designs.

Finally, they observed that the power of the F test under permutation compared
favorably with the normal-theory counterpart. Taking the viewpoint that the value
of the power of the F test under permutation represents an exact determination,
Collier and Baker showed that the power of the test was slightly overestimated by a
normal-theory power evaluation.

4.12 Permutation Tests in the 1970s

The development of permutation statistical methods expanded greatly in the 1970s.
Among the many contributors was Alvan R. Feinstein who promoted permutation
methods to clinical researchers in the early 1970s with a long series of articles
published in Clinical Pharmacology and Therapeutics [e.g., 421]. In 1973 Dinneen
and Blakesley published an algorithm for the Mann–Whitney U statistic [351].
In 1975 Arbuckle and Aiken published a program for Pitman’s two-sample test
[30], Patil published a program for Cochran’s Q test [1090, p. 186], and Radlow
and Alf published a method for computing an exact chi-squared test [1150]. In
1976 Mielke, Berry, and Johnson introduced multi-response permutation procedures
(MRPP) that were designed especially for data-dependent permutation methods
and relied on ordinary Euclidean distances instead of squared Euclidean distances
[971]. In 1977 Gail and Mantel published an important technique whereby the
number of possible arrangements of cell frequencies in r � c contingency tables
could easily be estimated, given fixed marginal frequency totals [490]. In 1977
Soms published an algorithm for the Fisher–Pitman two-sample permutation test for
differences between two independent samples [1296], Baker and Hubert published
an article on inference procedures for ordering theory [53], and Green published a
computer program for one- and two-sample permutation tests of location [548]. In
1979 Agresti, Wackerly, and Boyett developed a permutation procedure to provide
resampling-approximation permutation tests for r � c contingency tables [8].

4.13 Feinstein and Randomization

Any chronicle of permutation methods would be incomplete without mention of
Alvan R. Feinstein: mathematician, statistician, medical doctor, and founder of
clinical epidemiology.
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A.R. Feinstein
Alvan R. Feinstein earned his B.Sc. and M.Sc. degrees in mathematics at
the University of Chicago in 1947 and 1948, respectively, and his M.D.
degree at the University of Chicago School of Medicine in 1952. After
completion of his residency in internal medicine at Yale University and
Columbia–Presbyterian Hospital in New York, and a research fellowship at
the Rockefeller Institute, he assumed the post of Medical Director of the
Irvington House Institute (now part of New York University Langone Medical
Center) in 1955. In 1962 Feinstein joined the faculty at the Yale University
School of Medicine and in 1974 he became the founding director of the Robert
Wood Johnson Clinical Scholars Program at Yale University [1026, 1310].

Feinstein is widely regarded as the founder of clinical epidemiology and
patient-oriented medicine and the originator of clinimetrics: the application of
mathematics to the field of medicine. Over his career, Feinstein published over
400 original articles and six books: Clinical Judgment, Clinical Epidemiology,
Clinimetrics, Clinical Biostatistics, Multivariate Analysis, and Principles of
Medical Statistics. At the time of his death of an apparent heart attack
on 25 October 2001 at the age of 75, Alvan R. Feinstein was Sterling
Professor of Medicine and Epidemiology, Yale University’s most prestigious
professorship, a position he occupied for the 10 years prior to his death
[918, 1045].

In 1973 Feinstein published an article on “The role of randomization in sampling,
testing, allocation, and credulous idolatry” [421]. The importance of this article
was not that it contained new permutation methods, but that it summarized and
promoted permutation methods to a new audience of clinical researchers in a
cogent and lucid manner.39;40 Feinstein, writing for a statistically unsophisticated
readership, distinguished between socio-political research where the purpose was
usually to estimate a population parameter, and medical research where the purpose
was typically to contrast a difference between two groups. He observed that a
random sample is mandatory for estimating a population parameter, but “has not
been regarded as equally imperative for contrasting a difference” [421, p. 899].
As his focus was on medical investigations, he listed the major violations of the
assumptions underlying tests of two groups:

39The 1973 Feinstein article was the 23rd in a series of informative summary articles on
statistical methods for clinical researchers published in Clinical Pharmacology and Therapeutics.
A collection of 29 of the articles written by Feinstein is available in Clinical Biostatistics where
this article was retitled “Permutation tests and ‘statistical significance”’ [422].
40Authors’ note: after 40-plus years, this 1973 article by Feinstein remains as perhaps the clearest
non-mathematical introduction to permutation tests ever written and should be consulted by all
researchers new to the field of permutation methods.
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1. The groups studied in modern clinical or epidemiologic research are seldom
selected as random samples.

2. For the many clinical and epidemiologic research projects that are performed as
surveys, the subjects are not assigned randomly.

3. The distribution of the target variable is usually unknown in the parent popula-
tion.

4. It is usually known that the target variable does not have a Gaussian distribution,
and often departs from it dramatically.

5. It is usually known that the variances of the two samples are not remotely similar.
Feinstein then compared, in meticulous detail, the classical approaches embodied

in the two-sample t test and the chi-squared test of independence for 2 � 2 contin-
gency tables. For his example data, he noted that the probability values obtained
from the classical approach differed substantially from those obtained from the
corresponding permutation tests.41 Regarding the chi-squared test of independence,
Feinstein observed that the corresponding permutation test provided an exact answer
to the research question that was “precise, unambiguous, unencumbered by any
peculiar expectations about fractional people, and unembroiled in any controversy
about the Yates’ correction [for continuity]” [421, p. 910].

Feinstein put forth some advantages and disadvantages of permutation tests
that were insightful for the time and foreshadowed later research. In terms of
permutation tests, he listed five advantages:
1. The result of a permutation test is a direct, exact probability value for the random

likelihood of the observed difference.
2. Permutation tests do not require any unwarranted inferential estimations of

means, variances, pooled variances, or other parameters of an unobserved,
hypothetical parent population. The tests are based solely on the evidence that
was actually obtained.42

3. The investigator is not forced into making any erroneous assumptions either that
the contrasted groups were chosen as random samples from a parent population,
or that treatments under study were randomly allocated to the two groups.

4. The investigator is not forced into making any erroneous or unconfirmable
assumptions about a Gaussian (or any other) distribution for the parent popu-
lation, or about equal variances in the contrasted groups.

5. A permutation test can be applied to groups of any size, no matter how large
or small. There are no degrees of freedom to be considered. In the case of a
contingency table, there is no need to worry about the magnitude of the expected
value, no need to calculate expectations based on fractions of people, and no need
to worry about applying, or not applying, Yates correction for continuity.

41Here, Feinstein utilized permutation tests as the gold standard against which to evaluate classical
tests, referencing a 1963 article by McHugh [914] and 1966 articles by Baker and Collier [52], and
Edgington [388].
42In this second advantage, Feinstein clearly described the data-dependent nature of permutation
tests, anticipating by many years later research on permutation methods.
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Feinstein observed that while there were definite advantages to permutation tests,
there were also disadvantages. The first three (of four) he considered as features that
contributed to “the existing state of statistical desuetude” and labeled them inertia,
ideology, and information [421, p. 911]:
1. Inertia: It is easier for many teachers to continue the inertia of teaching what they

were taught years ago than to revise the contents of their lectures.
2. Ideology: Investigators who ideologically believe that the goal of science is to

estimate parameters and variances will have no enthusiasm for tests that do not
include or rely on these estimations.

3. Information: Many investigators have a deep-seated horror of doing anything that
might entail losing information.

4. Permutation tests are notoriously difficult to calculate.
Feinstein elaborated on Items 3 and 4. Regarding Item 3, he emphasized that a

loss of information would occur if raw data were converted into ordinal ranks for
the sake of a non-parametric test that analyzes ranks rather than the observed raw
scores. He explained that since ranks are used in nearly all non-parametric tests and
since all non-parametric tests depend on random permutations, a statistician may
erroneously conclude that all non-parametric tests create a loss of information.43 He
retorted that that conclusion was specious as “the non-parametric permutation tests
illustrated here make use of the original values of the [observed] data, not the ranks”
[421, p. 911].

Regarding Item 4, Feinstein observed that every permutation test must be
computed entirely from the individual values of the observed data. Thus, each
application is a unique test and precludes the compilation of tables that can be used
repeatedly [421, p. 912]; a point made earlier, and most emphatically, by Bradley
[201]. He followed this with the prescient observation that “in the era of the digital
computer . . . these calculational difficulties will ultimately disappear” [421, p. 912].
Feinstein further observed that in situations where the sample sizes were large, the
exact permutation test could be “truncated” into a Monte Carlo (resampling) type of
test.

In a strongly worded conclusion, Feinstein argued that the ultimate value of
permutation tests was that their intellectual directness, precision, and simplicity
would free both the investigator and the statistician from “a deleterious pre-
occupation with sampling distributions, pooled variances, and other mathematical
distractions” [421, p. 914]. Finally, he noted that “an investigator who comprehends
the principles of his statistical tests will be less inclined to give idolatrous worship
to a numerical ‘significance’ that has no scientific connotation” [421, p. 914].44

43In the literature of mathematical statistics there are examples of distributions where a non-
parametric test that “throws away information” is clearly superior to a parametric test; see for
example, articles by Festinger in 1946 [427], Pitman in 1948 [1132], Whitney in 1948 [1445], and
van den Brink and van den Brink in 1989 [1389].
44See also an informative and engaging 2012 article on this topic by Megan Higgs in American
Scientist [616].
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4.14 TheMann–Whitney, Pitman, and Cochran Tests

In 1973 Dinneen and Blakesley published algorithm and FORTRAN subroutine
UDIST for generating the sampling distribution of the Mann–Whitney U statistic
[351]. The algorithm differed from previous algorithms in that it produced a
complete distribution of all possible U statistics instead of just a probability value.
In addition, the algorithm proved to be twenty times faster than a previous algorithm
published by Odeh in 1972 [1048]. Exact results were provided for small samples
(m; n � 10) and accurate results to nine decimal places for larger sample sizes
(m; n � 79), where m and n denote the two sample sizes.

In 1975 Arbuckle and Aiken published a FORTRAN program for Pitman’s two-
sample test for differences in location [30]. Output from the program consisted of
the value of the differences between the means of the two samples, Nx and Ny, and
one- and two-tailed exact probability values. Such an approach was also supported
by Odén and Wedel in 1975, who argued for the use of the two-sample permutation
test over the conventional Student two-sample t test [1049].

In the same year, Patil presented “a relatively simple method for computing
an exact null and nonnull distribution of [Cochran’s] Q [test]” [1090, p. 186].
Reflecting the practice of defining permutation tests as the gold standard, Patil noted
that it was now “possible to assess the performance of the asymptotic distribution”
[1090, p. 189]. Also in 1975 Radlow and Alf proposed an exact chi-squared test in
response to an article by Tate and Hyer 2 years previously [1341], where they noted
that Tate and Hyer had compared results from chi-squared goodness-of-fit tests with
results from exact multinomial tests, but had ordered terms by their probability
values instead of by their discrepancies from the null hypothesis [1150]. Radlow
and Alf concluded that an exact chi-squared test should be used whenever expected
cell frequencies were small.

4.15 Mielke–Berry–Johnson andMRPP

In 1976 Mielke, Berry, and Johnson introduced a class of data-dependent tests
termed multi-response permutation procedures (MRPP) based on distance functions
[971]. As will be noted (q.v. page 254), MRPP are able to avoid the robust-
ness problems associated with the use of squared Euclidean distances associated
with univariate and multivariate analysis of variance methods by using ordinary
Euclidean distances.

P.W. Mielke
Paul W. Mielke Jr. received his B.A. degree in mathematics from the
University of Minnesota in 1953. In 1953–1954 he was trained in meteorology
at the University of Chicago for the United States Air Force. After completing

(continued)
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his military tour of duty in 1957, he resumed his academic career earning
his M.A. degree in mathematics from the University of Arizona in 1958 and
his Ph.D. in biostatistics from the University of Minnesota in 1963. Mielke
accepted an appointment in the Department of Mathematics and Statistics at
Colorado State University in 1963, where he remained until his retirement in
2002.

K.J. Berry
Kenneth J. Berry received his B.A. degree in sociology from Kalamazoo
College in 1962 and his Ph.D. in sociology from the University of Oregon in
1966. He was employed by the State University of New York at Buffalo (now,
University of Buffalo) from 1966 to 1970 and then joined the Department of
Sociology at Colorado State University, where he remained for the rest of his
academic career.

E.S. Johnson
Earl S. Johnson received his Ph.D. in statistics from Colorado State University
in 1973 and worked for most of his career at Norwich Pharmaceuticals.

Based on ordinary Euclidean distances rather than the usual squared Euclidean
distances, MRPP provided highly-robust, distribution-free, multivariate, Euclidean-
distance-based permutation alternatives to analyzing experimental designs that
normally employed classical analysis of variance (ANOVA) or multivariate analysis
of variance (MANOVA) analyses [940, 978]. The Mielke et al. 1976 article
was motivated by a study sponsored by the National Communicable Disease
Center45 and involved comparisons of proportional contributions of five plague
organism protein bands based on electrophoresis measurements obtained from
samples of organisms associated with distinct geographical locations, such as
Colorado, Vietnam, and Tasmania. Thus this initial example motivating MRPP
involved comparisons of five-dimensional multivariate data sets. As P.K. Sen noted,
“one of the beauties of . . . permutation tests is their distribution freeness even for the
mulivariate [sic] distributions (where the unconditional tests usually fail to do so)”
[1246, p. 1210]. MRPP were capable of incorporating both squared deviations from
the mean and absolute deviations from the median.

45From 1946 to 1967, it was called the Communicable Disease Center (CDC), in 1967 it was
renamed the National Communicable Disease Center, in 1970 it was again renamed the Center
for Disease Control, in 1980 it became the Centers for Disease Control, and finally in 1992, the
Centers for Disease Control and Prevention.
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R.J. Boscovich and Absolute Deviations
The analysis of observations using absolute deviations or differences has a
long and distinguished history in the statistical literature; see for example,
articles by deLaubenfels [340], Eisenhart [407], Farebrother [419], Sheynin,
[1264], and Stigler [1317]. Its beginnings in the eighth century were in the
general area of regression analysis. As described by Sheynin, the earliest
known use of regression was by Daniel Bernoulli (circa 1734) for astro-
nomical prediction problems that involved the use of least (sum of) absolute
deviations (LAD) regression [1264, p. 310]. In 1757 the Croatian Jesuit Roger
Joseph (Rogerius Josephus) Boscovich, one of the last polymaths and an
astronomer, formulated the principle that, given paired values of variables x

and y connected by a linear relationship of the form y D ˛ C ˇx, the values
of a and b that should be adopted for ˛ and ˇ, respectively, so that the line
y D a C bx that is most nearly in accord with the observations should be
determined by two conditions:
1. The sums of the positive and negative corrections (to the y-values) shall be

equal.
2. The sum of the (absolute values of) all of the corrections, positive and

negative, shall be as small as possible.
(Boscovich, quoted in Eisenhart [407, p. 200]; see also discussions by

Sheynin in 1973 [1264, p. 307] and Farebrother in 2001 [420]). This was
a bold move that defied the canons of statistical methods of the time that
relied on squared deviations from the regression line and challenged the
conventional wisdom of least-squares analysis.

As noted by George Barnard in a series of lectures at Eidgenössische
Technische Hochschule (ETH) Zürich during the winter of 1982, the origin
of a least absolute estimator can be traced back to Galileo Galilei in 1632
[354, 1192]. In his “Dialogo due massimi sistemi” [492], Galilei considered
the question of determining the distance from the earth of a new star, given
observations on its maximum and minimum elevation and the elevation of
the pole star by 13 observers at different points on the earth’s surface [589,
p. 148]. Galilei proposed the least possible correction in order to obtain a
reliable result for the problem.

In 1789 Pierre-Simon Laplace gave an algebraic formulation and deriva-
tion of Boscovich’s equation

nX
iD1

ˇ̌
.yi � Ny/� b.xi � Nx/

ˇ̌ D minimum ;

where Nx and Ny are arithmetic means, commenting that “Boscovich has given
for this purpose an ingenious method” (Laplace, quoted in Eisenhart [407,
p. 204]). Laplace clearly recognized the value of Boscovich’s procedure and

(continued)
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employed it on several occasions. Laplace compared the method of least-
squares, which he called “the most advantageous method,” with the method
of Boscovich, which he called “the method of situation,” concluding that
the method of least-squares produced better predictions when the errors
were normally-distributed. Nathaniel Bowditch, an American mathematician,
navigator, and astronomer, in his translation of Laplace’s Mécanique Céleste,
noted in a footnote that the “method, proposed by Boscovich . . . is not now so
much used as it ought to be” and in that same footnote, he added

We shall hereafter find . . . , that the method of least-squares, when applied to a
system of observations, in which one of the extreme errors is very great, does not
generally give so correct a result as the method proposed by Boscovich . . . . The
reason is, that in the former method, this extreme error affects the result in proportion
to the second power of the error; but in the other method, it is as the first power, and
must therefore be less [802, p. 438] (Bowditch, quoted in Eisenhart [407, p. 208]
and also in Sheynin [1264, p. 311]).

In 1887 and again in 1923 Francis Ysidro Edgeworth dropped Condition
1 of Boscovich—that the sums of the positive and negative deviations
be equal—and used Condition 2—that the sum of the absolute values of
the deviations be a minimum. Thus, Edgeworth recommended the use of
the median instead of the arithmetic mean so as to reduce the influence
of “discordant” observations [381–386]; see also A.L. Bowley’s tribute to
Edgeworth in 1928 [189].

Edgeworth, examining Condition 2 of Boscovich, devised what he called a
“double median” method for determining values of a and b that corresponded
to the minimum of the sum

nX
iD1

jyi � a � bxi j ;

where the median of an odd number of observations y1; y2; : : : ; yn was the
solution to

nX
iD1

jyi � aj D minimum

[407, p. 208]; see also an informative 1997 article by Portnoy and Koenker
[1142, p. 281]. As Eisenhart summarized, if the purpose is to minimize
the apparent inconsistency of a set of observations as measured by some
simple function of their residuals, then practical requirements of objectivity,
applicability, unique solutions, and computational simplicity lead to adop-
tion of the principle of least (sum of) squared residuals, and it was for
these reasons, Eisenhart surmised, that the method of least-squares rapidly

(continued)
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pushed Boscovich’s method into the background [407, p. 209]. Roger Joseph
Boscovich F.R.S passed away on 13 February 1787 in Milan, Italy.

The ascendency of the method of least-squares, to the almost complete
exclusion of all other procedures, was greatly aided by the independent
formulation, development, and publication of the method by the French
mathematician Adrien Marie Legendre in 1805 and Carl Friedrich Gauss
in 1809. Legendre, while not the first to use the method of least-squares,
was the first to publish it [589, p. 152]. Legendre, in an appendix “On the
method of least squares” in his 1805 book titled Nouvelles méthodes pour
la détermination des orbites des comètes (New Methods for Determining the
Orbits of Comets) introduced the technique of least (sum of) squared residuals
and deduced the rules for forming the normal equations. Gauss, on the other
hand, claimed priority in the use of the method of least-squares [589, pp. 153–
154].46 For more recent work on minimizing the sum of absolute deviations,
see papers by Rhodes in 1930 [1165], Singleton in 1940 [1279], and Harris in
1950 [588].

Permutation methods, which are intrinsically distribution-free, are ideally suited
to the use of absolute deviations and differences, replacing conventional squared
deviations and differences. As noted by Westgard and Hunt in 1973, the results
of an analysis based on least squares can be invalidated by one or two errant
data points, and the least-squares results may also be inaccurate when the random
error is large and the range of the data is small [1438, p. 53]. On this topic, see
also articles by Harter in 1974 [589, p. 168], Hampel, Ronchetti, Rousseeuw, and
Stahel in 1986 [582, p. 309], and Ronchetti in 1987 [1192, pp. 67–68]. Because
permutation methods are data-dependent and do not require assumptions such as
normality, with the attendant requirement of squared deviations from the mean, the
choice of how to measure differences among observations is unrestricted. However,
a Euclidean distance, being a metric, is most defensible. The advantage of using
Euclidean distances among observations is that they minimize the impact of extreme
observations, thereby creating a robust alternative to squared Euclidean distances
among observations.47 Moreover, squared Euclidean distances among observations
yield a non-metric analysis space, whereas Euclidean distances among observations
yield a metric analysis space that is congruent with the data space usually in
question. The use of Euclidean distances among observations has proliferated in
recent decades, with applications in linear regression and comparisons of treatments
and groups, both univariate and multivariate.

46Stigler provides an excellent discussion of the priority of least-squares analysis [1321, pp. 320–
331]; see also Gigerenzer, Swijtink, Porter, and Daston [512, pp. 80–84], as well as Maltz [873].
47Tukey refers to the inclusion of extreme observations in distributions of measurements as
“contaminated distributions” [1379].
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4.15.1 Least Absolute Deviations Regression

One application involving Euclidean distances among observations deserves special
mention: least absolute deviations (LAD) regression analysis. While ordinary least-
squares (OLS) regression has long been a staple for many research applications,
the optimal properties of estimators of OLS regression are achieved only when the
errors are normally-distributed. LAD regression is an attractive alternative when the
errors are not normally-distributed; see for example, papers by Blattberg and Sargent
in 1971 [171]; Gentle, and Narula and Wellington in 1977 [506,1022,1023]; Bassett
and Koenker, Pfaffenberger and Dinkel, and Wilson in 1978 [84,1123,1462]; Narula
and Wellington in 1979 [1024]; Bloomfield and Steiger in 1980 [173]; Wellington
and Narula in 1981 [1434]; Koenker and Bassett, and Narula and Wellington in 1982
[765, 1025]; Seneta in 1983 [1248]; Seneta and Steiger in 1984 [1249]; Dielman in
1986 [349]; Dielman in 1989 [350]; Hurvich and Tsai in 1990 [670]; Mathew and
Nordström in 1993 [904]; and Cade and Richards in 1996 [233]. In addition, LAD
regression is much less sensitive to the inclusion of extreme values as the errors are
not squared [152].48

Consider a simple linear regression model with a single predictor variable (x)
and a single criterion variable (y) with n paired xi and yi observed values for i D
1; : : : ; n. The LAD regression equation is given by

Qyi D Q̨ C Q̌xi ;

where Qyi is the i th of n predicted values, xi is the i th of n predictor values, and Q̨ andQ̌ are the least absolute parameter estimates of the intercept and slope, respectively.
Estimates of LAD regression parameters are computed by minimizing the sum of
the absolute differences between the observed yi and predicted Qyi values for i D
1; : : : ; n; viz.,

nX
iD1

ˇ̌
yi � Qyi

ˇ̌
:

Unlike OLS regression, no closed-form expressions can be given for Q̨ and Q̌;
however, values for Q̨ and Q̌ may be obtained via linear programming, as detailed
by Barrodale and Roberts in 1973 and 1974 [74, 75].

4.15.2 Multi-Response Permutation Procedures

Let � D f!1; : : : ; !N g be a finite sample of N objects that is representative of
some target population in question. Let x0

I D Œx1I ; : : : ; xrI  be a transposed vector

48The 1977(4) issue of Communications in Statistics—Simulation and Computation, edited by
James E. Gentle, was devoted to computations for least absolute values estimation and is an
excellent source for an introduction to LAD regression [506].



4.15 Mielke–Berry–Johnson and MRPP 255

of r commensurate response measurements for object !I ; I D 1; : : : ; N , and let
S1; : : : ; SgC1 designate an exhaustive partitioning of the N objects comprising �

into g C 1 disjoint groups. Note that the response measurements can consist of
either rank-order statistics or interval measurements, or any combination of the two.
Also, let 	I;J be a symmetric distance function value of the response measurements
associated with objects !I and !J , i.e.,

	I;J D
"

rX
hD1

ˇ̌̌
xhI � xhJ

ˇ̌̌p#v=p

; (4.2)

where xhI and xhJ are the hth coordinates of observations I and J in an
r-dimensional space. The Minkowski family of metrics occurs when v D 1 and
p � 1 [997]. If v > 0, r � 2, and p D 2, then 	I;J is rotationally invariant. When
v D 1 and p D 1, 	I;J is a city-block metric, which is not rotationally invariant.
When v D 1 and p D 2, 	I;J is the metric known as Euclidean distance. If v D 2

and p D 2, then 	I;J is a squared Euclidean distance, which is not a metric since
the triangle inequality is not satisfied.49 In this 1976 article, p D 2 and v D 1,
yielding a Euclidean distance. The present form of the MRPP statistic, introduced
by O’Reilly and Mielke in 1980 [1070], is given by

ı D
gX

iD1

Ci�i ; (4.3)

where Ci > 0 is a classified group weight for i D 1; : : : ; g,
Pg

iD1 Ci D 1,

�i D
 

ni

2

!�1 X
I<J

	I;J �i .!I / �i .!J / (4.4)

is the average distance function value for all distinct pairs of objects in group Si

for i D 1; : : : ; g, ni � 2 is the number of a priori objects classified into group Si

for i D 1; : : : ; g, K D Pg
iD1 ni , ngC1 D N �K � 0 is the number of remaining

(unclassified) objects in an “excess” group SgC1 that is an empty group in most
applications, g � 1 where N > k if g D 1,

P
I<J is the sum over all I and J such

that 1 � I < J � N , and �.�/ is an indicator function given by

�i .!I / D
8<
:

1 if !I 2 Si ,

0 otherwise .

49A distance function is a metric if it satisfies three properties given by (1) 	I;J � 0 and 	I;I D 0,
(2) 	I;J D 	J;I (i.e., symmetry), and (3) 	I;J � 	I;K C 	K;J (i.e., the triangle inequality).
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Incidentally, 	I;J D min.	I;J ; B/ where B > 0, a specified truncation constant,
has been found useful for detecting events such as multiple clumping of response
measurements within groups [943, 965, pp. 40–44].

The choice of the classified group weights, C1; : : : ; Cg, and the symmetric
distance function, 	I;J , specify the structure of MRPP. While Mielke, Berry, and
Johnson [971] restricted Ci to

Ci D ni .ni � 1/
gX

j D1

nj .nj � 1/

for i D 1; : : : ; g, other group weights could be considered. For example

Ci D ni

K
; Ci D ni � 1

K � g
; and Ci D 1

g

for i D 1; : : : ; g. In 1970, a paper by Mantel and Valand introduced an early
version of MRPP [889]. There were three problems with the approach of Mantel
and Valand. First, Mantel and Valand used a city-block distance function which was
not invariant to coordinate rotation. Second, they chose the same inefficient group
weight as Mielke, Berry, and Johnson [971], i.e.,

Ci D ni .ni � 1/
gX

j D1

nj .nj � 1/

;

where Ci is the group weight for the ith of g groups and ni is the number of
objects in the ith group. Third, Mantel and Valand erroneously used a U -statistic
argument based on a paper by Hoeffding published in 1948 [637] that claimed that
the distribution of the statistic was asymptotically normal [935, 936].

Although not part of the 1976 article by Mielke, Berry, and Johnson, it should
be noted that when r D 1, v D p D 2, K D N , and Ci D .ni � 1/=.N � g/ for
i D 1; : : : ; g, ı is a permutation version of the squared two-sample t and the one-
way analysis of variance F statistics, commonly termed Fisher–Pitman permutation
tests [451, 1131]. Here, the identity specifying the association between F and ı is
given by

ı D
2

2
4N

NX
ID1

x2
I �

 
NX

ID1

xI

!2
3
5

N ŒN � g C .gC 1/F 

and xI is the response measurement for the Ith of N objects. Alternatively,
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ı D 2MSBetween

F
and F D 2MSBetween

ı
;

where

MSBetween D 1

g � 1

gX
iD1

� Nxi � NNx
	2

;

Nxi is the mean of the i th of g groups, and NNx is the grand mean of all objects, i.e.,

Nxi D 1

ni

niX
j D1

xij and NNx D 1

N

gX
iD1

niX
j D1

xij ;

where xij is the response measurement on the i th object in the j th group in the
usual alternate univariate analysis of variance notation; see also a 1982 paper by
Mielke, Berry, and Medina [981, p. 790] and a discussion in a 2007 book by Mielke
and Berry [965, p. 51]. When interval data are replaced with rank-order statistics,
then ı includes rank tests such as the Kruskal–Wallis analysis of variance rank test
test. When interval data are replaced with rank-order statistics and g D 2, then
ı includes the Wilcoxon [1453], Festinger [427], Mann–Whitney [880], Whitfield
[1443], Haldane–Smith [573], and van der Reyden [1391] two-sample rank-sum
tests; see also on this topic, a 1981 paper by Mielke, Berry, Brockwell, and Williams
[969]. The robustness of v D 1 over v D 2 is demonstrated via examples in
Sect. 6.16 in Chap. 6.

The null hypothesis states that equal probabilities are assigned to each of the

M D N Š

gC1Y
iD1

ni Š

possible allocations of the N objects in � to the g C 1 groups, S1; : : : ; SgC1.
Under the null hypothesis, the N multi-response measurements are exchangeable
multivariate random variables (q.v. page 4). The probability associated with an
observed value of ı, say ıo, is the probability under the null hypothesis of observing
a value of ı as extreme or more extreme than ıo. Thus, an exact probability value
for ıo may be expressed as

P.ı � ıojH0/ D number of ı values � ıo

M

or

P.ı � ıojH0/ D number of ı values � ıo

M
:
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Table 4.4 Example data set with g D 2, r D 2, N D 7, n1 D 4, and n2 D 3

Values Values

Group Object x1 x2 Group Object x1 x2

S1 !1 4 1 S2 !5 2 2
S1 !2 5 6 S2 !6 2 3
S1 !3 5 4 S2 !7 3 2
S1 !4 4 3

4.15.3 An Example MRPP Analysis

To illustrate the computation of MRPP, consider a finite sample of N D 7 objects
and let S1 and S2 denote an exhaustive partitioning of the N objects into g D 2

groups. Further, let S1 consist of n1 D 4 objects with r D 2 measurements (x1I and
x2I ) on each object for I D 1; : : : ; 7, with x 0

1 D f4; 1g, x 0
2 D f5; 6g, x 0

3 D f5; 4g,
and x 0

4 D f4; 3g, and let S2 consist of n2 D 3 objects with r D 2 measurements
on each object, with x 0

5 D f2; 2g, x 0
6 D f2; 3g, and x 0

7 D f3; 2g. Here the numbers
are deliberately made small to facilitate the example analysis. The multivariate data
for the N D 7 objects are listed in Table 4.4. For this example, let v D 1, p D 2,
C1 D n1=N D 4=7, and C2 D n2=N D 3=7, so that the two groups are weighted
proportional to their sizes, and K D N . Then following Eq. (4.2) for group S1 with
n1 D 4 objects,

	1;2 D
�
.4 � 5/2 C .1 � 6/2

�1=2 D 5:0990 ;

	1;3 D
�
.4 � 5/2 C .1 � 4/2

�1=2 D 3:1623 ;

	1;4 D
�
.4 � 4/2 C .1 � 3/2

�1=2 D 2:0000 ;

	2;3 D
�
.5 � 5/2 C .6 � 4/2

�1=2 D 2:0000 ;

	2;4 D
�
.5 � 4/2 C .6 � 3/2

�1=2 D 3:1623 ;

and

	3;4 D
�
.5 � 4/2 C .4 � 3/2

�1=2 D 1:4142 :

For group S2 with n D 3 objects,
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	5;6 D
�
.2 � 2/2 C .2 � 3/2

�1=2 D 1:0000 ;

	5;7 D
�
.2 � 3/2 C .2 � 2/2

�1=2 D 1:0000 ;

and

	6;7 D
�
.2 � 3/2 C .3 � 2/2

�1=2 D 1:4142 :

Then following Eq. (4.4),

�1 D
 

n1

2

!�1

.	1;2 C	1;3 C	1;4 C	2;3 C	2;4 C	3;4/

D
 

4

2

!�1

.5:0990C 3:1623C 2:0000C 2:0000C 3:1623C 1:4142/

D 2:8063 ;

�2 D
 

n2

2

!�1

.	5;6 C	5;7 C	6;7/

D
 

3

2

!�1

.1:0000C 1:0000C 1:4142/

D 1:1381 ;

and the weighted mean as defined in Eq. (4.3) is

ı D C1�1 C C2�2 D
�

4

7

�
.2:8063/C

�
3

7

�
.1:1381/ D 2:0903 :

Smaller values of ı indicate a concentration of response measurements within
the g groups, whereas larger values of ı indicate a lack of concentration between
response measurements among the g groups [968]. The N D 7 objects can be
partitioned into g D 2 groups, S1 and S2, with n1 D 4 and n2 D 3, respectively, in
precisely

M D N Š

n1Š n2Š
D 7Š

4Š 3Š
D 35

ways. The 35 permutations obtained from the observed data set in Table 4.4 along
with �1, �2, and ı values are listed in Table 4.5 and are ordered from lowest to highest
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Table 4.5 Permutations of the observed data set in Table 4.4 for groups S1 and S2 with values for
�1, �2, and ı, ordered by values of ı

Order S1 S2 �1 �2 ı

1 {(4, 1) (2, 2) (2, 3) (3, 2)} {(5, 6) (5, 4) (4, 3)} 1.6488 2.1922 1.8817
2 {(4, 1) (5, 6) (5, 4) (4, 3)} {(2, 2) (2, 3) (3, 2)} 2.8063 1.1381 2.0913
3 {(5, 6) (5, 4) (4, 3) (2, 3)} {(4, 1) (2, 2) (3, 2)} 2.6636 1.5501 2.1864
4 {(5, 6) (5, 4) (4, 3) (3, 2)} {(4, 1) (2, 2) (2, 3)} 2.5485 2.0215 2.3227
5 {(4, 1) (4, 3) (2, 2) (3, 2)} {(5, 6) (5, 4) (2, 3)} 1.7168 3.1350 2.3246

6 {(4, 3) (2, 2) (2, 3) (3, 2)} {(4, 1) (5, 6) (5, 4)} 1.5107 3.4204 2.3292
7 {(5, 6) (5, 4) (4, 3) (2, 2)} {(4, 1) (2, 3) (3, 2)} 2.9030 1.8856 2.4670
8 {(4, 1) (4, 3) (2, 2) (2, 3)} {(5, 6) (5, 4) (3, 2)} 2.0501 3.1002 2.5001
9 {(5, 6) (5, 4) (2, 2) (2, 3)} {(4, 1) (4, 3) (3, 2)} 3.1684 1.6095 2.5003
10 {(4, 1) (5, 6) (5, 4) (3, 2)} {(4, 3) (2, 2) (2, 3)} 3.1627 1.7454 2.5553

11 {(4, 1) (4, 3) (2, 3) (3, 2)} {(5, 6) (5, 4) (2, 2)} 1.8452 3.5352 2.5695
12 {(5, 6) (2, 2) (2, 3) (3, 2)} {(4, 1) (5, 4) (4, 3)} 2.8548 2.1922 2.5708
13 {(4, 1) (5, 6) (5, 4) (2, 3)} {(4, 3) (2, 2) (3, 2)} 3.4158 1.5501 2.6162
14 {(4, 1) (5, 4) (4, 3) (3, 2)} {(5, 6) (2, 2) (2, 3)} 2.0389 3.4142 2.6283
15 {(5, 6) (5, 4) (2, 3) (3, 2)} {(4, 1) (4, 3) (2, 2)} 3.0199 2.1574 2.6503

16 {(4, 1) (5, 6) (5, 4) (2, 2)} {(4, 3) (2, 3) (3, 2)} 3.5172 1.6095 2.6996
17 {(4, 1) (5, 4) (2, 2) (3, 2)} {(5, 6) (4, 3) (2, 3)} 2.3744 3.1350 2.7004
18 {(5, 4) (2, 2) (2, 3) (3, 2)} {(4, 1) (5, 6) (4, 3)} 2.1684 3.4204 2.7050
19 {(5, 6) (4, 3) (2, 2) (2, 3)} {(4, 1) (5, 4) (3, 2)} 2.9402 2.4683 2.7379
20 {(4, 1) (5, 6) (2, 2) (2, 3)} {(5, 4) (4, 3) (3, 2)} 3.4010 1.8856 2.7516

21 {(4, 1) (5, 6) (2, 2) (3, 2)} {(3, 4) (4, 3) (2, 3)} 3.2036 2.1922 2.7701
22 {(5, 6) (5, 4) (2, 2) (3, 2)} {(4, 1) (4, 3) (2, 3)} 3.1510 2.2761 2.7761
23 {(4, 1) (5, 6) (4, 3) (3, 2)} {(5, 4) (2, 2) (2, 3)} 2.9270 2.5893 2.7822
24 {(4, 1) (5, 4) (2, 2) (2, 3)} {(5, 6) (4, 3) (3, 2)} 2.6658 3.0162 2.8160
25 {(4, 1) (5, 4) (4, 3) (2, 2)} {(5, 6) (2, 3) (3, 2)} 2.4424 3.3763 2.8426

26 {(5, 4) (4, 3) (2, 2) (2, 3)} {(4, 1) (5, 6) (3, 2)} 2.2364 3.6618 2.8473
27 {(5, 6) (4, 3) (2, 3) (3, 2)} {(4, 1) (5, 4) (2, 2)} 2.7842 3.0013 2.8773
28 {(4, 1) (5, 4) (4, 3) (2, 3)} {(5, 6) (2, 2) (3, 2)} 2.4279 3.4907 2.8834
29 {(4, 1) (5, 6) (2, 3) (3, 2)} {(3, 4) (4, 3) (2, 2)} 3.2451 2.4186 2.8909
30 {(4, 1) (5, 4) (2, 3) (3, 2)} {(5, 6) (4, 3) (2, 2)} 2.4683 3.4661 2.8959

31 {(4, 1) (5, 6) (4, 3) (2, 3)} {(5, 4) (2, 2) (3, 2)} 3.2221 2.4780 2.9032
32 {(5, 4) (4, 3) (2, 3) (3, 2)} {(4, 1) (5, 6) (2, 2)} 2.0389 4.1117 2.9272
33 {(5, 4) (4, 3) (2, 2) (3, 2)} {(4, 1) (5, 6) (2, 3)} 2.0831 4.0567 2.9289
34 {(4, 1) (5, 6) (4, 3) (2, 2)} {(5, 4) (2, 3) (3, 2)} 3.2889 2.4683 2.9372
35 {(5, 6) (4, 3) (2, 2) (3, 2)} {(4, 1) (5, 4) (2, 3)} 2.8808 3.0510 2.9537

by the ı values. The observed statistic, ıo D 2:0913, obtained for the realized
partition is unusual since 33 of the remaining ı values exceed the observed ıo value
of 2.0913 and only one value of ı is smaller: ı D 1:8817. If all partitions occur with
equal chance, the exact probability value of ıo D 2:0903 is
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P.ı � ıojH0/ D number of ı values � ıo

M
D 2

35
D 0:0571 :

4.15.4 Approximate Probability Values

The 1976 article by Mielke, Berry, and Johnson [971] provided a useful moment-
approximation for the distribution of ı, standardizing ı by

T D ı � �ı

�ı

and approximating the distribution of

TB D T

�
˛ˇ

.˛ C ˇ/2.˛ C ˇ C 1/

�1=2

C ˛

˛ C ˇ

with the beta distribution having a density function given by

f .x/ D

8̂<
:̂

x˛�1.1 � x/ˇ�1

B.˛; ˇ/
if 0 < x < 1 ,

0 otherwise ,

where ˛ > 0, ˇ > 0, and

B.˛; ˇ/ D �.˛/�.ˇ/

�.˛ C ˇ/
:

Later, the distribution of T was approximated by the Pearson type III distribution
[968, Sect. 5.2] since the Pearson type III distribution is completely characterized
by the exact mean, variance, and skewness of ı under H0 given by

�ı D 1

M

MX
ID1

ıI ;

�2
ı D

1

M

MX
ID1

.ıI � �ı/
2 ;

and

�ı D
"

1

M

MX
ID1

.ıI � �ı/
3

#.
�3

ı ;
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respectively. Efficient computational expressions for �ı, �2
ı , and �ı under H0 were

given by

�ı D D.1/ ;

�2
ı D 2

(
gX

iD1

C 2
i

h
n

.2/
i

i�1 � �N .2/
��1

) h
D.2/ � 2D.20/CD.200/

i

C 4

"
gX

iD1

C 2
i n�1

i �N �1

#h
D.20/�D.200/

i
;

�ı D
˚
E
�
ı3
� � 3�ı�

2
ı � �3

ı

� ı
�3

ı ;

and

E
�
ı3
� D 4

gX
iD1

C 3
i

h
n

.2/
i

i�2

D.3/

C 8

gX
iD1

C 3
i n

.3/
i

h
n

.2/
i

i�3 h
3D

�
30	CD

�
3�	i

C 8

gX
iD1

C 3
i n

.4/
i

h
n

.2/
i

i�3 h
3D

�
3��	CD

�
3���	i

C 6

gX
iD1

C 2
i

�
1 � Ci C Cin

.4/
i

h
n

.2/
i

i�2
� h

n
.2/
i

i�1

D
�
300	

C 12

gX
iD1

C 2
i

�
.1 � Ci/n

.3/
i C Ci n

.5/
i

h
n

.2/
i

i�1
� h

n
.2/
i

i�2

D
�
3000	

C
gX

iD1

Ci

�
.1 � Ci /.1 � 2Ci/C 3Ci.1� Ci /n

.4/
i

h
n

.2/
i

i�2

C C 2
i n

.6/
i

h
n

.2/
i

i�3
�

D
�
30000	 ;

where

N .c/ D N Š

.N � c/Š
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and the necessary model parameters are the twelve symmetric functions defined by

D.1/ D 1

N .2/

X
	J1;J2 ;

D.2/ D 1

N .2/

X
	2

J1;J2
;

D.20/ D 1

N .3/

X
	J1;J2 	J1;J3 ;

D.200/ D 1

N .4/

X
	J1;J2 	J3;J4 ;

D.3/ D 1

N .2/

X
	3

J1;J2
;

D.30/ D 1

N .3/

X
	2

J1;J2
	J1;J3 ;

D.300/ D 1

N .4/

X
	2

J1;J2
	J3;J4 ;

D.3000/ D 1

N .5/

X
	J1;J2 	J1;J3 	J4;J5 ;

D.30000/ D 1

N .6/

X
	J1;J2 	J3;J4 	J5;J6 ;

D.3�/ D 1

N .3/

X
	J1;J2 	J1;J3 	J2;J3 ;

D.3��/ D 1

N .4/

X
	J1;J2 	J1;J3 	J2;J4 ;

and

D.3���/ D 1

N .4/

X
	J1;J2 	J1;J3 	J1;J4 ;

where J1, J2, J3, J4, J5, and J6 denote distinct integers from 1 to N , and the sums
are over all permutations of the indices. The primes and asterisks are used merely to
designate the twelve distinct symmetric function model parameters. An additional
comment pertains to the combinations of symmetric function model parameters
given by D.20/�D.200/ and D.2/�2D.20/CD.200/ in �2

ı . Although D.20/�D.200/
may be positive, negative, or zero, D.2/ � 2D.20/CD.200/ is nonnegative since

4
�
D.2/ � 2D.20/CD.200/

�
D 1

N .4/

X
.	J1;J2 �	J1;J3 �	J2;J4 C	J3;J4 /

2 � 0 :
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If Ci D ni =K and K D N , then some efficiency is secured since the coefficient of
D.20/�D.200/ in �2

ı is 0.
Because the calculation of the model parameters involves a constant multiple of

N 6, alternative computation forms are needed for calculating the model parameters
associated with �ı , �2

ı , and �ı. The following results provide efficient computation
forms to obtain the twelve symmetric function model parameters [971]. If

dkJ D
NX

J 0D1

	k
J;J 0

and

dk D
NX

J D1

dkJ

for k D 1, 2, and 3. Then,

D.1/ D 1

N .2/
d1 ;

D.2/ D 1

N .2/
d2 ;

D.3/ D 1

N .2/
d3 ;

D.20/ D 1

N .3/

"
NX

J D1

d 2
1J � d2

#
;

D.200/ D 1

N .4/

�
d 2

1 � 4N .3/D.20/� 2d2

�
;

D.30/ D 1

N .3/

"
NX

J D1

d1J d2J � d3

#
;

D.300/ D 1

N .4/

�
d1d2 � 4N .3/D.30/� 2d3

�
;

D.3�/ D 6

N .3/

X
J1<J2<J3

	J1;J2 	J1;J3 	J2;J3 ;

D.3��/ D 1

N .4/

2
42

X
J1<J2

	J1;J2 d1J1d1J2 � 2N .3/D.30/ �N .3/D.3�/ � d3

3
5 ;
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D.3���/ D 1

N .4/

"
NX

J D1

d 3
1J � 3N .3/D.30/ � d3

#
;

D.3000/ D 1

N .5/

�
N .3/d1D.20/� 4N .4/D.3��/� 2N .4/D.3���/

� 4N .3/D.30/� 2N .3/D.3�/
�

;

and

D.30000/ D 1

N .6/

�
N .4/d1D.200/� 8N .5/D.3000/� 4N .4/D.300/

� 8N .4/D.3��/
�

;

where
P

I<J <L is the sum over all I; J; and L such that 1 � I < J < L � N .
Thus, the actual computations involve only a constant multiple of N 2 operations to
obtain the model parameters associated with �ı and �2

ı and a constant multiple of
N 3 operations to obtain the model parameters associated with �ı ; see also a 1993
article by Charles Davis [330].

Near the end of the decade in 1978 and 1979, Mielke published two more papers
on MRPP [935, 936]. In the 1978 paper, Mielke addressed a conclusion in the 1970
paper by Mantel and Valand [889] that the asymptotic distribution of the MRPP
ı statistic was normal, based on the U statistics discussed by Hoeffding in 1948
[637]. The approach in the 1978 article simply established that the asymptotic
skewness of the ı statistic was a substantial negative value, thereby demonstrating
that the distribution of ı was not normal [935]. The 1979 paper by Mielke further
demonstrated that the MRPP statistics were not asymptotically normal for cases
with unequal sample sizes [936] and examined in a 1982 paper by Brockwell,
Mielke, and Robinson [220]. For more on MRPP in completely randomized
designs, see a 1983 article on permutation tests by Robinson [1179]. Due to the
increasing speed of computers during this period, resampling-approximation MRPP
probability-value programs were developed in addition to the previously-described
exact and moment-approximation MRPP probability-value programs [965].

Two general asymptotic distributional properties of ı are important to mention.
First, asymptotic non-normality of ı occurs when N=K and NCi =ni for i D
1; : : : ; g � 2 converge to 1 as N !1 [220]. Second, a necessary condition for the
asymptotic normality of ı is that D.20/�D.200/ > 0 as N !1 [1070]. Even when
N 1=2.ı � �ı/ is asymptotically non-degenerate normal, the convergence is often so
slow that a normal approximation is grossly inadequate even when N is quite large.
Moreover, there are situations where N 1=2.ı��ı/ is asymptotically degenerate and
the non-degenerate limiting distribution of N.ı � �ı/ is non-normal [220, 1070].
In this regard, see also a 1988 article by Denker and Puri published in Advances in
Applied Mathematics [342].
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Fig. 4.8 Notation for an
observed 2 � 2 contingency
table

4.16 Determining the Number of Contingency Tables

When executing an exact permutation test on a 2 � 2 contingency table such as
a Fisher exact probability test, it is possible to determine the exact number of
possible arrangements of cell frequencies, given the marginal frequency totals,
prior to enumeration of all possible 2 � 2 contingency tables. Consider a 2 � 2

contingency table with cell frequencies fa; b; c; d g, row marginal frequency totals
fa C b; c C d g, column marginal frequency totals fa C c; b C d g, and frequency
total faC bC cC d g, such as is illustrated in Fig. 4.8. Then the number of possible
arrangements of cell frequencies, given the marginal frequency totals, is given by

M D min.aC b ; aC c/ �max.0; a � d/C 1 :

In 1977 Gail and Mantel published a brief paper describing exact and approxi-
mate methods for determining the number of arrangements of cell frequencies (M )
consistent with marginal frequency totals in r � c contingency tables [490]. The
method proved invaluable to permutation researchers as it is often necessary to
determine if an exact permutation test is feasible or a resampling approach will
be required prior to conducting a permutation test. The exact method of Gail and
Mantel was restricted to smaller tables such as 2 � 2, 2 � k, and 3 � 3 contingency
tables, but the approximate method utilized a normal approximation that yielded an
estimate of the number of arrangements of cell frequencies in r � c contingency
tables, given fixed marginal frequency totals.

In the same year, Klotz and Teng noted that it was difficult to determine the
number of arrangements of cell frequencies in multi-way contingency tables with
fixed marginal frequency totals due to the lack of an easily computed, closed-form
expression that related M to the size of the table and the marginal frequency totals.
They devised a geometric approach based on paths in an r-dimensional space,
utilizing planes and lattice points that made the determination of M feasible [760].

4.17 Soms and the Fisher Exact Permutation Test

In 1977 Andrew P. Soms published an algorithm for the discrete Fisher–Pitman
permutation test for differences between two independent samples [1296]. As Soms
described the algorithm, let xi ; i D 1; : : : ; k1, and yi ; i D 1; : : : ; k2, denote
the observed values in random samples from populations 1 and 2, respectively,
and let Nx and Ny indicate the sample means. It is desired to test, at level ˛, the
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hypothesis that populations 1 and 2 are identical against the alternative hypothesis
that population 2 is stochastically smaller than population 1. Then, denote by
N the number of samples of size k2 that can be drawn from the combined set
fx1; : : : ; xk1 ; y1; : : : ; yk2g, without replacement, with sample means less than or
equal to Ny counted, and the null hypothesis rejected if

N
.  

k1 C k2

k2

!
� ˛ :

Soms noted that the permutation version of the Wilcoxon two-sample rank-sum test
is carried out in exactly the same way, except that the sum of the average ranks is
used in place of Ny.

Soms provided a FORTRAN computer program that carried out the Fisher–Pitman
and Wilcoxon two-sample rank-sum permutation tests for up to 10 distinct data
values. As Soms described the limitations of the program, if ˛ D 0:10, then in
order to have reasonable computer run times, the approximate restrictions on the
total sample size k1 C k2 are: for 10 distinct values, about 50; for 8 distinct values,
about 80; for 6 distinct values, about 150; and for 5 distinct values, about 250 [1296,
p. 664].50

4.18 Baker–Hubert and Ordering Theory

In 1977 Baker and Hubert published an article on inference procedures for ordering
theory [53]. Given N observations on a set of n dichotomously scored test items
representing certain skills or tasks, Baker and Hubert utilized ordering theory
to identify a hierarchical organization among the n items. A directed graph
representation of the n items motivated the ordering theory. Noting that it is
relatively easy to extract a directed graph representation for a set of items, they
emphasized that the problem remained as to how to assess whether this representa-
tion corresponds to the researcher’s a priori notions regarding the hierarchy.

Observing that nŠ possible enumerations of the n items is often too large for
a practical permutation test, Baker and Hubert considered two alternatives. First,
using formulae first given by Mantel [881] and Mantel and Valand [889], they
obtained the exact mean and variance of the nŠ possible enumerations of the n items

50In 1977 the CDC 6400 and the IBM System/370 were the dominant mainframe computers and
the IBM 5100 was introduced in 1975 as the first portable computer, although it weighed nearly 50
pounds. By today’s standards, these computers lacked both memory and speed, thereby severely
limiting the calculation of exact tests. It was an IBM 370, Model 168, at the University of Illinois
that Kenneth Appel and Wolfgang Haken used to solve the four-color map problem, which was
published in 1977 in Illinois Journal of Mathematics. The “Four-color Conjecture” had stood
unsolved for over 100 years and the proof that a flat map could be colored with just four colors so
that contiguous countries would have different colors took 1,200 h of dedicated computer time on
the University of Illinois IBM 370 mainframe.
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and calculated a probability value based on a normal approximation. For the second
alternative, they considered 1,000 random enumerations and used these to estimate
the exact mean and variance. It should be noted that Baker and Hubert chose not
to determine a resampling-approximation probability value directly from the 1,000
random enumerations, but used them to estimate a distribution. Unfortunately, a year
later in 1978, the approach based on the mean and variance by Mantel and Valand
was largely discredited [935]; see for example, two papers by Mielke in 1978 and
1979 [935, 936].

4.19 Green and Two Permutation Tests for Location

Also in 1977, Bert Green published an interactive FORTRAN computer program
for one- and two-sample permutation tests of location [548]. Noting that Fisher’s
permutation tests of location had been described by Bradley in 1968 as “stunningly
efficient” but “dismally impractical” [201], Green proposed a practical permutation
program that contained two heuristics that permitted most of the permutations to be
counted implicitly rather than explicitly. Both exact and resampling-approximation
procedures were provided in the program.

Consider the two-sample case where n1 and n2 denote the numbers in the
two samples with n1 � n2 and n1 C n2 D n, and let s1 and s2 denote the
sums of the values in the two samples, respectively. Green’s program used s1

as its test statistic as s1 is monotonic with the mean difference [548, p. 38].
Following Green, first the n values are ordered from least to greatest and the
combinations of values are examined in lexicographic order. For example, let
n1 D 3, n2 D 5, n D 8, and let fijkg signify xi Cxj Cxk . Then the order is f123g,
f1 2 4g, . . . , f1 2 8g, f1 3 4g, . . . , f1 7 8g, f2 3 4g, . . . , f6 7 8g. The program tracks
partial sums, where each sum is obtained by adding only one value to a partial sum.
For example, in examining f1 4 5g, f1 4 6g, f1 4 7g, and f1 4 8g, x1Cx4 is computed
only once, permitting the sequence of sums to be obtained with little effort.

Second, a simple heuristic permits the counting algorithm to skip many of the
larger sums. Consider again n1 D 3, n2 D 5, and n D 8. Suppose f1 5 7g > s1,
then since x8 > x7, f1 5 8g > f1 5 7g, so f1 5 8g > s1 and f1 5 8g need not be
computed. For another example, note that if f2 4 5g exceeds s1, then so will all
further triples beginning with 2, i.e., f2 4 6g, f2 4 7g, . . . , f2 7 8g. While this heuristic
eliminates combinations of large numbers, Green introduced a second heuristic to
eliminate combinations of small numbers. Suppose n1 D 5, n2 D 6, and n D 11;
the program starts its enumeration with f1 2 3 4 5g. Now, if f1 8 9 10 11g < s1,
then all

�
10
4

	 D 210 combinations of f1 � � � �g will be less than s1 and need not
be examined further. On the other hand, supposed that f2 8 9 10 11g � s1, then all
combinations beginning with 2 must be examined. But if f2 3 9 10 11g < s1, all of
the

�
8
3

	 D 56 combinations of f2 3 � ��gmust be less than s1, so the program jumps
to f2 4 � � �g. As Green concluded, putting the two heuristics together permitted a
very fast program and with n1 D n2 � 10, the amount of savings was over 90 % of
the counts.
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4.20 Agresti–Wackerly–Boyett and Approximate Tests

In 1979 Agresti, Wackerly, and Boyett suggested a new permutation procedure
for r � c contingency tables in which only a random sample of all possible
cell frequency configurations was analyzed [8]. The procedure was based on an
innovative resampling algorithm by Boyett [199] (q.v. page 271).

A. Agresti
Alan Agresti earned his B.A. degree in mathematics from the University of
Rochester in 1968 and his Ph.D. in statistics from the University of Wisconsin
in 1972. His first position was in the Department of Statistics at the University
of Florida in 1972 where he remained until his retirement in 2010. At the time
of this writing, Agresti is Distinguished Professor Emeritus at the University
of Florida. He has enjoyed visiting professor positions at Imperial College,
London, Harvard University, the London School of Economics, and shorter
visiting positions at the University of Florence and the University of Padova
in Italy, Hasselt University in Belgium, Université Paris Diderot (Paris VII),
Boston University, and Oregon State University.

D. Wackerly
Dennis Wackerly earned his B.S. degree from the University of Dayton in
mathematics and computer science in 1967 and his M.S. and Ph.D. degrees
in statistics from Florida State University in 1969 and 1973, respectively. His
first position was in the Department of Statistics at the University of Florida
at Gainesville where he remained for his entire career, retiring in 2007.

J.M. Boyett
James M. Boyett earned his B.S. degree in electrical engineering from the
Georgia Institute of Technology in Atlanta in 1966, his M.A. degree from
the University of Alabama at Huntsville in 1970, his M.S. degree from
Michigan State University in 1971, and his Ph.D. in statistics and probability
from Michigan State University in Lansing in 1974. Boyett served in many
positions during his career. He was appointed Assistant Professor in the
Department of Statistics at the University of Florida at Gainesville in 1974.
In 1980 he was an Associate Research Scientist at the University of Florida;
in 1986 he became Head of the Cancer Section, Department of Biostatistics
and Epidemiology, The Cleveland Clinic Foundation; and in 1992 Professor,

(continued)
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Department of Preventive Medicine, Division of Biostatistics and Epidemiol-
ogy, University of Tennessee at Memphis, and Director, Biostatistics Shared
Resource for the St. Jude Cancer Center.

In 1979 Agresti, Wackerly, and Boyett proposed a permutation procedure for
approximating attained significance levels of exact conditional tests for r � c

contingency tables [8]. They noted that in practice, contingency tables in which the
expected cell frequencies are too small to employ asymptotic sampling distributions
often occur. In these cases, they suggested an exact test of independence, such
as Fisher’s exact probability test, conditional on the observed marginal frequency
totals. However, they observed that the number of tables, given the fixed marginal
frequency totals, was often very large, making exact tests “infeasible.” They then
proposed to randomly generate a sufficient number of tables so that the attained
significance level of the test could be estimated as accurately as was practically
necessary.

Specifically, they suggested that a random sample of M distinct tables from all
possible tables, S , could be achieved by repeating a procedure to generate random
contingency tables M times. Then, after each table was generated, the desired test
statistic would be calculated and its value compared to the value of the statistic
for the observed table. As they explained, if the values of the statistics for X of
the sampled tables provided at least as much evidence in favor of the alternative
hypothesis as the value of the statistic for the observed table, then the estimated
exact conditional level, Ǫ , was simply X=M . They specified a procedure to estimate
˛ to within 0.01 with 99 % confidence as follows.

Since the number of test statistic values, X , in the tail of the distribution is
a binomially-distributed variable with M trials and success probability ˛, then
for large M , Ǫ D X=M is approximately normally-distributed with mean ˛ and
variance .1 � ˛/˛=M . Thus, to estimate ˛ within B units with .1 � ı/100 %
confidence requires

M
:D .Zı=2/

2

B2
.˛/.1 � ˛/ ;

where Zı denotes the .1 � ı/th quantile of the standard normal distribution. Since
˛.1 � ˛/ � 1

4
for all ˛,

M � 1

4
�
�
Zı=2

	2
B2

is sufficient for any ˛.
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For example, to estimate ˛ to within 0.01 with 99 % confidence,

M � 1

4
� .2:576/2

.0:01/2
D
�

2:576

.2/.0:01/

�2

D 16;589:44 :

Thus, Agresti, Wackerly, and Boyett showed that M D 17;000 was sufficient to
estimate ˛ to within 0.01 with 99 % confidence.51

4.21 Boyett and Random R by C Tables

In 1979 James M. Boyett (q.v. page 269) published an algorithm and associated
FORTRAN subroutine RCONT to generate random r � c contingency tables with
given fixed row and column marginal frequency totals [199].52 Consider an r � c

contingency table with fixed marginal frequency totals given by ai:, 1 � i � r and
a:j , 1 � j � c, and let

N D
rX

iD1

ai: D
cX

j D1

a:j :

First, employing a uniform pseudorandom number generator and a shuffling routine,
Boyett generated a random permutation of the first N integers, x1; x2; : : : ; xN , then
partitioned the permuted integers into r groups of the row variable with each group
Si containing ai: values, i D 1; : : : ; r . For the column variable, the first N integers
(not permuted) were partitioned into c groups with each group Tj containing a:j

values, j D 1; : : : ; c. Thus, S1 D fx1; : : : ; xa1:g, S2 D fxa1:C1; : : : ; xa1:Ca2:g, . . . ,
Sr D fxN �ar:C1; : : : ; xN g, and T1 D f1; : : : ; a:1g, T2 D a:1 C 1; : : : ; a:1 C a:2g, . . . ,
Tc D fN � a:c C 1; : : : ; N g.

Then, the number of Si values matching values in Tj yielded aij of one random
r �c contingency table for i D 1; : : : ; r and j D 1; : : : ; c. In this manner, a random
r � c contingency table was generated for each call of subroutine RCONT. However,
subroutine RCONT lacked efficiency as it required N 2 attempted matches to generate
the N cell frequencies for each random r � c contingency table.

For an example, consider a two-way contingency table in which both the row and
column variables have three levels, a1:, a2:, and a3:, and a:1, a:2, and a:3, respectively.
Finally, let the row marginal totals be a1: D 3, a2: D 4, a3: D 5, and let the column
marginal totals be a:1 D 2, a:2 D 4, a:3 D 6, for a total of N D 12 observations.
On the first call to subroutine RCONT, a random permutation of the first N D 12

integers for Si and the non-permuted first N integers for Tj might be:

51There is a mistake in the formula for M in Agresti, Wackerly, and Boyett [8, p. 78]. It has been
corrected here.
52This was the algorithm that was employed by Agresti, Wackerly, and Boyett in their 1979 article
on approximations of attained significance levels for r � c contingency tables [8].



272 4 1960–1979

Fig. 4.9 Random 3 � 3

contingency table from the
data in Si and Tj for
i; j D 1; 2; 3

S1 D f3; 6; 9g; S2 D f12; 2; 5; 8g; S3 D f11; 1; 4; 7; 10g ;

T1 D f1; 2g; T2 D f3; 4; 5; 6g; T3 D f7; 8; 9; 10; 11; 12g :

Then a11 D 0, as no values in S1 match values in T1; a12 D 2, as two values (3 and
6) in S1 match values in T2; a13 D 1, as only one value (9) in S1 matches a value in
T3; a21 D 1, as only one value (2) in S2 matches a value in T1; a22 D 1, as only one
value (5) in S2 matches a value in T2; a23 D 2, as two values (8 and 12) in S2 match
values in T3; a31 D 1, as only one value (1) in S3 matches a value in T1; a32 D 1,
as only one value (4) in S3 matches a value in T2; and a33 D 3, as three values (7,
10, and 11) in S3 match values in T3. The resulting random 3 � 3 contingency table
would therefore be as shown in Fig. 4.9. The procedure would be repeated as many
times as necessary with a random permutation of the first N integers partitioned into
Si , i D 1; : : : ; r , generated for each call to subroutine RCONT.

4.22 Looking Ahead

Early in the period from 1960 to 1979 non-computer methods were developed to
generate random permutation sequences using tables of random integers. As the
development of computers progressed, non-computer methods were superseded by
computer-intensive methods for the generation of permutation sequences, resulting
in vastly improved enumeration of permutation sequences. Random permutation
sequences based on Monte Carlo procedures for both univariate and multivariate
data structures soon followed. Thus, later in the period attention was largely
focused on designing permutation versions of existing statistics. However, in 1976
Mielke, Berry, and Johnson introduced multi-response permutation procedures,
which were designed specifically for data-dependent methods per se, in contrast
to permutation alternatives to existing tests [971]. All this was made possible by
the development and widespread availability of mainframe computers and user-
friendly programming languages such as BASIC and FORTRAN. The mass marketing
of personal computers was only just beginning in this period.

Permutation methods may be said to have “arrived” in the period from 1980 to
2000. While much of the permutation literature between 1960 and 1979 appeared in
computer science magazines and journals, there was a dramatic shift away from
computer science journals in the period from 1980 to 2000 and into statistical
journals, as well as into medicine, psychology, public health, environmental science,
biology, economics, ecology, and atmospheric science journals. A second shift was
away from the use of moment-approximation probability values by calculating
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the exact moments of known distributions, such as the beta and Pearson type
III distributions, to computing exact and resampling-approximation permutation
probability values. This movement was facilitated by greatly improved computer
speeds and the ready availability of desktop computers.

Of all the fields to embrace permutation methods in the 1960s and 1970s,
psychology perhaps stands out, due to the large number of articles published in
psychology journals on permutation methods in this period. Many early advances
in statistics were made by psychologists, and others writing for psychologists. As
Stephan Stigler wrote in an opening paragraph to a chapter on “Statistical Concepts
in Psychology” in Statistics on the Table: The History of Statistical Concepts and
Methods:

[s]tatistics and psychology have long enjoyed an unusually close relationship — indeed
more than just close, for they are inextricably bound together. That tie is of an unusual
nature, with historical roots in the nineteenth century, and an understanding of this peculiar
historical relationship can lead to a deeper understanding of contemporary applications
[1321, p. 189].53

The intellectual climate in psychology, especially in experimental psychology,
was amenable to the development and implementation of permutation methods for
three reasons. First, the contributions of Eugene S. Edgington at the University of
Calgary to permutation statistical methods in the period between 1960 and 1979
did much to promote permutation statistical methods in psychology. Psychologists
took to permutation methods in large part because of the publication of Edgington’s
book on Randomization Tests in 1980, followed by a second edition in 1987, a
third edition in 1995, and a fourth edition, co-authored with Patrick Onghena, in
2007. The initial book and subsequent editions were written by psychologists, for
psychologists, and contained explicit examples based on psychological research,
accompanied by associated computer routines.

Second, unlike other social sciences, such as political science, history, and
sociology, psychology had a long history of developing quantitative methods
especially attuned to its particular concepts and constructs; witness such illustrious
psychometricians as Bernard Babington Smith, Cyril Burt, Jacob Cohen, Clyde
Coombs, Leon Festinger, J. Paul Guilford, William Hays, Clark Hull, Everett
Lindquist, Quinn McNemar, Sidney Siegel, Charles Spearman, S. Smith Stevens,
Edward Thorndike, Louis Thurstone, and John W. Whitfield. In addition, psy-
chology provided numerous outlets for the publication of quantitative methods
with journals such as Psychometrika, Educational and Psychological Measure-
ment, Applied Psychological Measurement, Psychological Methods, Psychological

53The American Psychological Association has long had a division devoted to quantita-
tive/statistical psychology (Division 5—Evaluation, Measurement and Statistics), which was one
of the Charter Divisions of the APA, and in the spring of 2012 the American Statistical Association
announced a new section on Statistics and Measurement in Psychology and Education [715, p. 9].
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Table 4.6 Summary statistics Q1, Q2, and Q3 based on N studies for four surveys conducted in
1955, 1977, 1995, and 2006

Holmes Marszalek et al.

Statistic 1955 1977 1995 2006

N 448 507 527 690
Q1 25.50 18.13 14.00 18.00
Q2 59.95 48.40 32.00 40.00
Q3 131.30 94.00 87.50 136.00

Reports, British Journal of Mathematical and Statistical Psychology, and Behavior
Research Methods.54;55

Third, in general psychologists study small nonrandom samples, for which exact
permutation methods are ideally suited. In 1965, in a survey of eleven major
American psychology journals that published original research, Dukes reported that
between 1939 and 1963 there were 246 published experiments with only a single
subject [362],56 and Cochrane and Duffy, in a 1974 examination of two British
psychology journals, found that all the studies in those two journals used 25 or
fewer subjects [262].

Cooper Holmes and his co-authors have repeatedly investigated sample sizes
employed in psychological experiments [643–645,896]. A summary of his findings
and those of Marszalek, Barber, Kohlhart, and Holmes [896] are provided in
Table 4.6, where the findings are categorized by the lower quartile (Q1), the median
(Q2), and the upper quartile (Q3), of the number of subjects studied in 1955, 1977,
1995, and 2006. The results in Table 4.6 indicate not only that psychologists often
study small samples, but also that the use of small samples has changed very little
over the span of the 52 years surveyed.

Finally, in a study that examined journals in four sub-areas of psychology (abnor-
mal, developmental, applied, and experimental), Holmes found the experimental
area used the fewest number of subjects [644]. In a review of N D 161 studies in
experimental psychology journals in 1977, Holmes calculated Q1 to be 7.51, Q2 to
be 12.20, and Q3 to be only 31.68 [644].

54Behavior Research Methods was published as Behavior Research Methods & Instrumentation
from 1969 to 1983 and as Behavior Research Methods, Instruments, & Computers from 1984 to
2004.
55A historical account of the development of statistics in psychology between 1925 and 1950, with
an emphasis on the analysis of variance, is provided in a 1980 article by Rucci and Tweney [1205].
56For experimental studies based on only one subject, Edgington provides an interesting justifica-
tion in an article on “Statistical inference from N D 1 experiments” published in 1967 in Journal
of Psychology [389].
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The 1960s and 1970s witnessed a profusion of published algorithms and programs
designed to generate permutation sequences with speed and efficiency, beginning
with a non-computer procedure by C.R. Rao in 1961 that used a table of uniform
random numbers [1154], and the first explicit description of a computer algorithm
by Tompkins in 1956 [1364]. In addition, Ord-Smith [1068, 1069], Rabinowitz
and Berenson [1149], and Sedgewick [1242] provided extensive summaries of the
literature on the generation of permutation sequences in this period. As late as 1989,
Eric Noreen observed in reference to permutation methods:

[t]he next few years are likely to be an exciting period for those involved in testing
hypotheses. Recent dramatic decreases in the costs of computing now make revolutionary
methods for testing hypotheses available to any one with access to a personal computer.
These [permutation] methods are easy to understand, very general, and can often avoid
troublesome assumptions that are required with conventional methods [1041, p. 1].

Nonetheless, Noreen noted that “[s]ince exact randomization tests are seldom
feasible, this book will henceforth be concerned only with approximate randomiza-
tion [resampling-approximation] tests” [1041, p. 15].

Progress on the development of permutation methods continued unabated during
the 1980s and 1990s, paralleling advancements in high-speed computing and the
subsequent wide-spread availability of both university mainframes and, later in the
period, personal desktop computers. Also, a number of books were published in
this period that introduced permutation methods to a wide variety of audiences,
accompanied by a decided shift in the literature away from the computer science
journals that had focused on issues of efficiently calculating permutation sequences
and into discipline journals that were more focused on permutation statistical tests.
These progressions were accompanied by an increasing emphasis on statistical
applications of permutation methods, both exact and resampling, since efficient
computer-based permutation-sequence generators were widely available.

A brief overview of the development of permutation statistical methods in the
period from 1980 to 2000 introduces this chapter and is followed by an in-depth
treatment of selected contributions, both statistical and computational. The chapter
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concludes with a look ahead at the continuing development of permutation statistical
methods beyond the year 2000.

5.1 Overview of This Chapter

Permutation statistical methods arrived at a new level of maturity between 1980
and 2000, primarily as a result of two factors: (1) greatly improved computer
clock speeds and (2) widely-available desktop computers. Boardman, in a 1984
paper, for example, discussed the impact of smaller computers on statistical data
analysis at that time [174]. While interest continued in the study of linear rank-
order statistics [987], the same period witnessed a dramatic shift in sources of
permutation publications. In the previous period, from 1960 to 1979, nearly all
published papers on permutation methods appeared in computer journals, such
as Communications of the ACM, The Computer Bulletin, ACM Transactions on
Mathematical Software, and The Computer Journal. However, in the period 1980
to 2000 there was a shift away from computer journals and into statistical journals,
such as Biometrika, Journal of the American Statistical Association, The American
Statistician, Communications in Statistics, and Applied Statistics.1 An even more
dramatic change occurred in this period as an increasing number of published papers
on permutation statistical methods began appearing in discipline journals, such as
American Journal of Public Health, Educational and Psychological Measurement,
Psychometrika, Econometrica, Ecology, Behavior Research Methods, Instruments,
& Computers, Journal of Applied Meteorology, and Vegetatio.2

In addition, a number of books on permutation methods appeared in this period,
beginning with the first edition of Edgington’s Randomization Tests in 1980 [392],
a second edition seven years later in 1987 [393], and a third edition in 1995
[394]. Edgington’s book was quickly followed by Hubert’s Assignment Methods
in Combinatorial Data Analysis in 1987 [666]; Noreen’s Computer Intensive
Methods for Testing Hypotheses in 1989 [1041]; Westfall and Young’s Resampling-
based Multiple Testing in 1993 [1437]; Good’s Permutation Tests: A Practical
Guide to Resampling Methods for Testing Hypotheses [523] and Permutation,
Parametric and Bootstrap Tests of Hypotheses in 1994 [522]; Manly’s first edition
of Randomization and Monte Carlo Methods in Biology in 1991 [875], followed
by a second edition in 1997 [876]; Weerahandi’s Exact Statistical Methods for
Data Analysis in 1995 [1421]; Simon’s Resampling: The New Statistics in 1997
[1277]; Good’s Resampling Methods: A Practical Guide to Data Analysis in 1999
[524]; and Lunneborg’s Data Analysis by Resampling: Concepts and Applications
in 2000 [858].

1Continued by Journal of the Royal Statistical Society, Series C.
2Continued by Plant Ecology.
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5.2 Development of Computing

The Apple I personal computer (PC) was introduced in 1976 and consisted of a
limited production circuit board for electronic hobbyists; consequently, only 220
Apple I personal computers were sold.3 The Apple II personal computer was
introduced in 1977 and various models ending with the Apple IIc Plus followed
through 1993. In contrast to the Apple I, over six million Apple II computers were
sold. The Macintosh personal computer was introduced in 1984 and consisted of a
small screen, a keyboard, a mouse with one button, and a graphical user-interface
(GUI). It is estimated that through 2011 some 20 million Macintosh personal
computers were sold.

On 12 August 1981 the first IBM PC was introduced as model 5150. It ran on a
4.77 MHz Intel 8088 microprocessor and came with 16 kilobytes of memory and an
optional color monitor. In April of 1982 the GRiD Compass 1101 was introduced as
the first laptop computer; price: $8,150. It ran an Intel 8086 processor at 8 MHz, and
had 340 kilobytes of magnetic bubble memory. The GRiD Compass, designed by
William Grant Moggridge, had a clamshell case, roughly 15� 22 in., which opened
to reveal a luminous screen on top that folded over the keyboard on the bottom.
It was a GRiD Compass that was used by astronaut John Creighton on the Space
Shuttle Discovery in 1985. In 1983 Compaq Computer Corporation marketed the
first PC clone that was 100 % compatible with IBM’s PC; first year sales: $111
million. Also in 1983, the IBM 5160 (or simply, the IBM XT) personal computer
was released running an Intel 8088 processor at 4.77 MHz. It was quickly followed
by the IBM 286 XT in 1986 running an Intel 80286 processor at 6 MHz; the
IBM 386 SLC in 1991 with available Intel 80386 processors running at 16, 20,
and 25 MHz4; and the IBM 486 SLC in 1992 with available Intel 80486 processors
running at either 50 or 66 MHz.

In 1984 John Ashworth Nelder published a paper on the present position and
potential developments of statistical computing [1027]. As such, the paper provides
a window into statistical computing in the early 1980s. Nelder provided a brief
history of computing in statistics, from the Analytical Engine of Charles Babbage to
the electronic computers of the time. He then discussed the present state of statistical
computing with particular emphasis on computing algorithms, hardware, computing
languages, control languages, and operating systems. Nelder concluded the paper
by predicting that future developments in statistics over the next 150 years must
involve the computer [1027]. As Brian Edward Cooper noted, what Nelder neglected

3On 8 August 2013 a retired school psychologist from Sacramento, California, sold one of the few
remaining original Apple I computers (Serial Number 01-0025) that had been assembled by hand
by Steve Wozniak in Steve Jobs parents’ garage. It fetched $387,750 at Christie’s Auction House;
original price in 1976: $666.66. When the Apple II personal computer was introduced in 1977,
customers were allowed to trade in their Apple I computers, making surviving Apple I computers
very rare.
4The 386 SLC was known inside IBM at the Super Little Chip for its initials.
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to forecast was (1) the future importance of micro-computers, both as stand-alone
machines and as intelligent terminals within a network, and (2) the designing of
operating systems that catered to the naïve rather than the expert user [276].

Also in 1984, two economists living in Santa Monica, California, William W.
Gould and William H. Rogers initiated the development of Stata, a comprehen-
sive (eventually) statistical analysis package. Stata5 began as a small executable
module written in C, supplemented by a number of higher-level language programs
written in Stata’s proprietary language [618]. S is a statistical computing language
developed by John Chambers and Trevor Hastie, along with Richard A. Becker,
Alan Wilks, and William S. Cleveland, at Bell Laboratories around 1975–1976.
In 1990 an S clone called R was developed by Robert Gentleman and Ross Ihaka
at the University of Auckland, New Zealand, who were looking for a statistical
environment to use in their teaching laboratories. At the time, the laboratories
were populated with Macintosh computers and they knew of no suitable statistical
software available for the Macintosh environment [1422]. Initial versions of R were
provided to Carnegie Mellon University and the user feedback indicated a positive
reception for the new language. In June of 1995 R was released as freeware, about
the same time that Martin Mächler joined the development team, and in 2000 John
Chambers, one of the original developers of S, joined the core team of R. At present,
R is one of the most popular programming environments in use [618].

In 1986 Eddy, Huber, McClure, Moore, Stuetzle, and Thisted provided a snapshot
of the present and future needs of computer equipment and operating expenses for
computing facilities to support statistical research [373]. Their published article
was actually a report on a workshop on the “Use of Computers in Statistical
Research” held at Carnegie Mellon University in Pittsburgh, Pennsylvania, and
sponsored by a grant from the Mathematical Sciences Division of the Office of
Naval Research (ONR) to the Institute of Mathematical Statistics (IMS). The
comprehensive report surveyed 30 universities and painted a picture of computing
needs at major universities in the middle 1980s, ranging from hardware and software
to physical plants and support staff.

On 12 June 2005, a 50-year-old Steven Paul (Steve) Jobs spoke to a group of
students at Stanford University, recalling his campus days at a “lesser institution”—
Reed College in Portland, Oregon. Throughout the Reed College campus, he
remembered, every poster, every label on every drawer, was beautifully done in
hand calligraphy. Because Jobs had dropped out of Reed College and therefore had
no required classes, he elected to enroll in a calligraphy class. There he learned
about fonts, typefaces, kerning, tracking, leading, serifs, ligatures, and all that makes
typography interesting.6 Ten years later, Jobs designed the Macintosh personal
computer and introduced something unprecedented at the time—a wide variety of
computer fonts. These fonts included Times New Roman and Helvetica, but also

5Stata is a portmanteau of the words “statistics” and “data.”
6On this topic, see a wonderful little book published in 2011 by Simon Garfield titled Just My
Type: A Book About Fonts [495].
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several designed by Jobs, which he named after cities he loved, such as Chicago,
Toronto, Venice, and Los Angeles [495, pp. 1–2].

During this period, work also continued on improving the computational
efficiency of permutation tests, inspired by the ease of calculations due to dramatic
increases in computer speed and storage. Between 1980 and 1999 a number of
“algorithmic tricks” were developed that substantially reduced computing time
for many permutation statistical methods [489, 1397]. Early in the period, Berry
published a highly efficient algorithm to generate permutations of multi-sets in
Gray-code order [108]. Later in the period, Balmer [56] and Dallal [311] utilized
recursive routines to efficiently generate both statistics and probability values, and
Thakur, Berry, and Mielke [1349], Berry and Mielke [126, 131, 141], and Berry,
Mielke, and Helmericks [158, 159] enhanced the recursion procedure by coupling
recursive routines with the use of an arbitrary initial value to initiate the recursion.
A second algorithmic innovation was to recognize that only the variable portion of a
statistical formula needed to be computed for each permutation, thereby increasing
the efficiency of exact permutation tests. But, by far, the most important innovation
was the introduction of a highly efficient network algorithm by Mehta and Patel in
1980 and 1983 [919, 920].

At the beginning of this period in 1980, Cyrus Mehta and Nitin Patel [919]
introduced a network algorithm that proved to be a highly efficient method for
calculating exact permutation tests. Originally designed for computing exact tests
for 2�c contingency tables, the algorithm was quickly extended to the more general
problem of r � c contingency tables by Pagano and Taylor Halvorsen in 1981
[1081] and by Mehta and Patel in 1983 [920]. Interest continued in this period on
computational methods for both exact and resampling analyses of r �c contingency
tables with articles by Balmer [56]; Romesburg, Marshall, and Mauk [1191];
Phillips [1125]; Berry and Mielke [126, 129–131, 134]; Kannemann [709, 710]; Zar
[1486]; Pagano and Taylor Halvorsen [1081]; Patefield [1089]; Saunders [1223];
Mielke and Berry [947, 949]; and Baglivo, Olivier, and Pagano [45]. Extensions
to multidimensional (r-way) contingency tables were provided by Kreiner [771];
Mielke and Berry [948, 953, 955]; Berry and Mielke [136]; Mielke, Berry, and
Zelterman [983]; and Zelterman, Chan, and Mielke [1489].

In the period between 1980 and 2000, permutation tests branched out from
their home in statistics to include a variety of other disciplines, most notably in
psychology with articles by Berry and Mielke [121, 122, 127, 134] and Mielke
and Berry [946, 954, 955]; pharmacology and physiology with an important article
by Ludbrook [849]; biomedical sciences with articles by Ludbrook and Dudley
[856], Dallal [311], and Zimmerman [1495, 1496]; anthropology with articles by
Mielke, Berry, and Eighmy [970] and Berry, Mielke, and Kvamme [161]; ecology
with articles by Zimmerman, Goetz, and Mielke [1494] and Biondini, Mielke and
Berry [166]; wood science with an article by Pellicane, Potter, and Mielke [1116];
geoscience with an article by Romesburg [1190]; and atmospheric science with
articles by Mielke, Berry, and Brier [968], Gray, Landsea, Mielke, and Berry [547],
Mielke [938, 939], Mielke, Berry, and Medina [981], Wong, Chidambaram, and
Mielke [1468], Tucker, Mielke, and Reiter [1374], Lee, Pielke, and Mielke [809],
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Kelly, Vonder Haar, and Mielke [716], Cotton, Thompson, and Mielke [288], and
Mielke, Berry, Landsea, and Gray [979, 980].

While many of the contributions to the permutation literature during this period
concentrated on efficient means for calculating permutation versions of existing
statistics, advancements in computational efficiency allowed for the development of
a wider variety of statistical tests, tailored to the specific requirements of whatever
problem was under consideration at the time. Consequently, a few researchers
utilized permutation structures to develop new statistical measures and tests.

Permutation versions of existing statistics included Fisher’s exact probability
test by Verbeek and Kroonenberg [1397], Berry and Mielke [121, 127, 131], Mehta
and Patel [920–922], Mielke and Berry [949], Baglivo, Olivier, and Pagano [45],
Joe [688], and Zar [1486]; analysis of variance in its various forms by Manly and
Francis [878] and Routledge [1198]; the chi-squared test of independence by Mielke
and Berry [947], Baglivo, Olivier, and Pagano [45], and Romesburg, Marshall, and
Mauk [1191]; various goodness-of-fit tests by Baglivo, Olivier, and Pagano [45],
Mielke and Berry [950], and Tritchler [1370]; the Kolmogorov–Smirnov test by
Romesburg, Marshall, and Mauk [1191]; the Terpstra–Jonckheere test for ordered
alternatives by Berry and Mielke [145] and Mielke and Berry [960]; Hotelling’s
generalized T 2 statistic by Blair, Higgins, Karniski, and Kromrey [169] and Mielke,
Berry, and Neidt [982]; and the Wilcoxon signed-ranks test by Dallal [311] and
Zimmerman [1495].

Also, the Wilcoxon–Mann–Whitney two-sample rank-sum test by Dallal [311],
Zimmerman [1496], and Berry and Mielke [155]; the likelihood-ratio test by
Baglivo, Olivier, and Pagano [45]; one-way analysis of variance by Berry and
Mielke [121]; the odds-ratio by Vollset and Hirji [1399] and Vollset, Hirji, and
Elashoff [1400]; the Goodman–Kruskal �b measure of nominal contingency by
Berry and Mielke [126, 135]; Cohen’s kappa measure of agreement by Berry and
Mielke [133]; Cochran’s Q test by Mielke and Berry [952, 954] and Berry and
Mielke [143]; logistic regression by Hirji, Mehta, and Patel [631] and Tritchler
[1370]; partial regression coefficients by Anderson and Legendre [20]; various two-
sample tests by Zimmerman [1495,1496], Baker and Tilbury [54], Chen and Dunlap
[250], and Edgington and Khuller [395]; the McNemar test by Baker and Tilbury
[54]; survival analysis by Sun and Sherman [1335]; g-sample empirical coverage
tests by Mielke and Yao [989, 990]; and the Cochran–Armitage test for trend by
Mehta, Patel, and Senchaudhuri [924].

At the same time, Mielke and his collaborators focused their work on designing
permutation tests, such as MRPP (q.v. page 254), that were not simply permutation
versions of existing statistics. Conventional statistical tests and measures, both para-
metric and non-parametric, are based on squared Euclidean distances among data
points. Examples include two-sample t tests, various F tests, ordinary least-squares
(OLS) regression, and non-parametric tests such as the Wilcoxon–Mann–Whitney
two-sample rank-sum test, the Kruskal–Wallis analysis of variance rank test,
the Terpstra–Jonckheere test for ordered alternatives, and the Friedman two-way
analysis of variance for ranks.

A Euclidean-distance function based on absolute distances among data points
was incorporated into new permutation tests for matched-pairs designs by Mielke
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and Berry [946], Berry and Mielke [125,142], Brockwell and Mielke [219], Mielke
and Berry [945], and Mielke, Berry, and Neidt [982]; completely randomized
designs by Mielke, Berry, and Brier [968], Berry, Kvamme, and Mielke [118, 119],
Berry and Mielke [120, 123, 154], O’Reilly and Mielke [1070], Brockwell, Mielke,
and Robinson [220], Mielke [941, 943], Mielke, Berry, Brockwell, and Williams
[969], and Mielke and Berry [958]; and randomized block designs by Mielke [938],
Tucker, Mielke, and Reiter [1374], Brockwell and Mielke [219], Mielke and Berry
[945], Berry and Mielke [150], and Mielke and Iyer [984].

Also, contingency table analyses by Berry and Mielke [126, 130, 135, 136, 138,
139], Mielke [937], Mielke and Berry [948], and Zelterman, Chan, and Mielke
[1489]; goodness-of-fit tests by Mielke and Berry [950] and Berry and Mielke [140];
spatial analysis by Reich, Mielke, and Hawksworth [1159]; multiple regression
by Mielke and Berry [956, 957] and Berry and Mielke [149–151, 153, 154]; and
measures of agreement and consensus by Berry and Mielke [133,137–139,144,146].
In addition to emphasizing the congruence between a data space and an ordinary
Euclidean analysis space in three papers by Mielke [938, 939, 941], a number of
detailed examples in the latter two papers [939, 941] suggested a major improve-
ment in robustness for analyses based on ordinary Euclidean rather than squared
Euclidean distances (q.v. page 404).

5.3 Permutation Methods and Contingency Tables

The period between 1980 and 2000 witnessed a continuation of the work done on
contingency table analyses between 1960 and 1979.7 In 1981 Patefield published
an efficient method of generating random r � c contingency tables with fixed row
and column marginal frequency totals [1089]. The Patefield FORTRAN subroutine,
RCONT2, was designed to be an improvement over the previously published
algorithm of Boyett, RCONT (q.v. page 271).

As Patefield explained, under the null hypothesis of no association between row
and column categories, the joint probability distribution of a random table is given
by aij, i D 1; : : : ; r and j D 1; : : : ; c, conditional on the row and column totals, ai:,
1 � i � r and a:j , 1 � j � c. Patefield considered the conditional distribution of a
table entry alm given the table entries in previous rows, i.e., aij, i D 1; : : : ; l � 1 and
j D 1; : : : ; c, and the previous table entries in row l , i.e., alj, j D 1; : : : ; m � 1.

Assuming valid conditioning table entries, the range of the conditional distribu-
tion is from a minimum of

max

8<
:0; al: �

m�1X
j D1

2
4alj �

cX
j DmC1

 
a:j �

l�1X
iD1

aij

!35
9=
;

7For an excellent bibliography on contingency table analysis from 1900 to 1974, see a 1976 article
by Killion and Zahn in International Statistical Review [754].



282 5 1980–2000

to a maximum of

min
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The table entries arm, m D 1; : : : ; c, in the last row and alc, l D 1; : : : ; r , in the
last column of the table were obtained by Patefield from the previous .r � 1/ �
.c � 1/ table entries and the fixed row and column marginal frequency totals ai:,
i D 1; : : : ; r , and a:j , j D 1; : : : ; c.

Patefield compared subroutine RCONT2 with Boyett’s subroutine RCONT using
contingency tables of sizes 2�7, 3�4, 4�4, 5�5, and 6�6 with sample sizes of n D
10, 20, 30, 50, 100, 200, 500, and 1,000. The timings were based on 1,000 calls to the
subroutines and for all tables the row marginal frequency totals were approximately
equal to n=r and the column marginal frequency totals were approximately equal to
n=c. Patefield concluded that whereas the time required to generate random tables
using Boyett’s RCONT algorithm was approximately proportional to sample size,
subroutine RCONT2 was more dependent on the dimensions of the table [1089,
p. 94].

Previously, in 1954, Goodman and Kruskal had introduced statistic gamma (� )
for ordered r � c contingency tables [534]. In 1981 Gans and Robertson considered
the � statistic for 2 � 2 contingency tables with small and moderate sample sizes
[494].8 For comparison, they also looked at Pearson’s product-moment correlation
coefficient, �; Spearman’s rank-order correlation coefficient, �s ; and Kendall’s
measure of rank-order correlation, � . Based on exact analyses of nine sets of cell
probabilities, calculated for sample sizes of n D 10, 30, and 50, Gans and Robertson
concluded that convergence to normality was much slower for � than for � and,
further, that the distribution of � was much more irregular than for �.

In 1981 Romesburg, Marshall, and Mauk introduced FORTRAN program FITEST

for computing an exact chi-squared goodness-of-fit test between an observed and a
theoretical distribution [1191]. Echoing Radlow and Alf (q.v. page 249), they argued
that chi-squared goodness-of-fit tests should be based on the following definition:
a given table is as deviant or more deviant than the observed table if the calculated
value of its chi-squared statistic is equal to or larger than the calculated value of the
chi-squared statistic for the observed table [1191, p. 48].

Program FITEST was based on a more efficient enumeration algorithm than that
presented by Radlow and Alf in 1975 [1150]. In addition, for larger problems where
complete enumeration was not possible, program FITEST optionally provided for
an approximate probability value using Monte Carlo resampling methods. Unusual
for the time, Romesburg, Marshall, and Mauk also provided a complete listing of
program FITEST, written in FORTRAN IV [1191, pp. 53–58].

8When Goodman and Kruskal’s � statistic is restricted to 2 � 2 contingency tables, it reduces to
Yule’s Q statistic, introduced in 1912 [1480, 1481].
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In 1981 Pagano and Taylor Halvorsen presented an efficient algorithm for
calculating the exact permutation significance value for r � c contingency tables
[1081]. The primary feature of this new algorithm was a method to obtain exact
probability values for r � c contingency tables without complete enumeration.
In brief, they used a recursion routine beginning with the tail probability values of
the tail in which the observed table fell, but terminated when the probability value
of the observed table was reached. Then the other tail was examined, summing the
tail probability values until a table was found with a larger probability value than
the probability value of the observed table. They noted that further savings could
be effected if the researcher was interested only in whether the observed table was
or was not significant at some predetermined level, and not interested in the actual
probability value [1081, p. 933].

In 1982 Phillips presented a simplified, but accurate, algorithm for the
Fisher–Yates exact probability test for 2 � 2 contingency tables [1125]. Building
on the recursion approach of Feldman and Klinger [424] (q.v. page 220), Phillips
employed an arbitrary initial value for the recursion, summed all the resultant
recursion values to obtain a total, then divided each recursion value by the total to
obtain the probability values. The Phillips’ algorithm was identical to the general
recursion technique utilizing an arbitrary initial value described by Frank Yates in
1934 [1472, p. 219] (q.v. page 44).

In 1982 Kannemann published two articles in Biometrical Journal on the exact
evaluation of r � c contingency tables [709,710]. In these two articles he presented
an algorithm that permitted the exact evaluation of sparse r � c contingency tables
with fixed row and column marginal frequency totals, and further claimed that
he had solved the long-standing associated enumeration problem of the number
of possible tables containing integer arrays with fixed row and column marginal
frequency totals [710]. Kannemann was quickly challenged by Kroonenberg and
Verbeek as the claims of Kannemann lacked verisimilitude [774]. They pointed
out that the algorithm proposed by Kannemann had previously been introduced
by Hancock in 1975 [583], with suggested improvements by Howell and Gordon
in 1976 [657] and by Cantor in 1979 [241]. Additionally, they noted, even more
efficient algorithms by Boulton [185], Agresti and Wackerly [7], and Baker [55]
had previously been published in 1974 and 1977.

Kroonenberg and Verbeek questioned the claim by Kannemann that he could
analyze two-way contingency tables up to 50�50 and three-way contingency tables
by complete enumeration, noting that the smallest family of 50 � 50 contingency
tables with only n D 50 cases would require enumerating 50Š > 1064 tables9 and for
three-dimensional contingency tables, the smallest families would be larger than the
third power of families of two-dimensional contingency tables [774, pp. 719–720].
Finally, with respect to Kannemann’s claim of closed formulae for the number of
possible contingency tables given fixed row and column marginal frequency totals,

9Authors’ note: the actual number is 30,414,093,201,713,378,043,612,608,166,064,768,844,377,
641,568,960,512,000,000,000,000 contingency tables.



284 5 1980–2000

Fig. 5.1 Notation for a
standard 2 � 2 contingency
table

Kroonenberg and Verbeek simply stated “they still do not exist,” noting however that
good approximation formulae had been developed by Boulton and Wallace [187],
Good [518], and Gail and Mantel [490] (q.v. page 266).

In 1983 Berry and Mielke developed a rapid FORTRAN subroutine for the Fisher–
Yates exact probability test [122]. Subroutine FEP (Fisher Exact Probability) utilized
the hypergeometric distribution to calculate one- and two-sided exact probability
values for the Fisher–Yates exact probability test. The approach of Berry and Mielke
differed from the traditional approach exemplified by Robertson in 1960 [1174],
Gregory in 1973 [553], Tritchler and Pedrini in 1975 [1371], and Bedeian and Arme-
nakis in 1977 [91]. The conventional approach began with the premise that, since
the Fisher–Yates exact probability test is comprised of nine factorial expressions for
each table, it is time consuming and expensive to compute. Therefore, only those
probability values less than or equal to the observed probability value should be
calculated, as advocated by Howell and Gordon in 1976 [657], Fleishman in 1977
[466], and Romesburg, Marshall, and Mauk in 1981 [1191].

Subroutine FEP operated under a different premise. Consider a standard 2 � 2

contingency table, such as depicted in Fig. 5.1, consisting of n cases, with x

denoting the observed frequency of any cell, and with r and c representing the row
and column marginal frequency totals, respectively, of x. Then, the point-probability
(P ) value of any x is given by

P.xjn; r; c/ D

 
c

x

! 
n � c

r � x

!
 

n

r

! :

Solving the recursive relation P.xC1jn; r; c/ D P.xjn; r; c/�f .x/ for f .x/ yields

f .x/ D .r � x/.c � x/

.x C 1/.n� r � c C x C 1/
;

which may be employed to enumerate the complete distribution of P.xjn; r; c/,
v � x � w, where v D max.0; r C c � n/ and w D min.r; c/. The one-sided (P1)
and two-sided (P2) probability values are then given by

P1.xjn; r; c/ D
wX

kDv

IkJkP.kjn; r; c/
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and

P2.xjn; r; c/ D
wX

kDv

JkP.kjn; r; c/;

respectively, where

Ik D
8<
: 1 if sgn.kn � rc/ D sgn.xn� rc/;

0 otherwise,

and

Jk D
8<
: 1 if jkn� rcj � jxn� rcj;

0 otherwise,

for k D v; : : : ; w. Thus, the procedure enumerated all possible probability values
using recursion for v � x � w, discarding those greater than the observed
probability value, and summing the remaining probability values. Any recursion
process requires an initial starting value. In this case Berry and Mielke used

P.vjn; r; c/ D exp
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where the natural logarithms of the combinations were approximated by an expan-
sion of Stirling’s formula (q.v. page 227) to approximate factorial expressions
given by

nŠ
:D p2
n

n

e

�n

:

Berry and Mielke demonstrated that this recursion approach over the entire permu-
tation distribution was much more efficient than the conventional approach.

5.4 Yates and 2 � 2 Contingency Tables

Frank Yates (q.v. page 37) presented a paper before the Royal Statistical Society on
“Tests of significance for 2� 2 contingency tables” in 1984, the golden anniversary
of his classic 1934 article on “Contingency tables involving small numbers and the
�2 test” published in Journal of the Royal Statistical Society, Series A in the same
year [1476]. The continuity correction for chi-squared, first proposed by Yates in
1934, had received considerable attention over the intervening 50 years; see for
example, articles by Plackett in 1964 [1135], Mantel and Greenhouse in 1968 [886],
Conover in 1974 [271], Miettinen in 1974 [991], Haber in 1980 [564], Haviland in
1990 [599], Peritz in 1992 [1117], Martín Andrés, Herranz Tejedor, and Luna del
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Castillo in 1992 [898], and Martín Andrés, Sánchez Quevedo, Tapia García, and
Silva Mato in 2005 [903]. Although much of the 1984 paper, like the 1934 article,
addressed the role of the continuity correction in analyzing 2� 2 contingency tables
and had little to do with permutation methods per se, Section 15 of the 1984 paper
considered exact two-sided probability values for tests of 2� 2 contingency tables.

The proper method for calculating two-sided probability values for the
Fisher–Yates exact probability test has long been controversial, and is still being
debated; see for example, articles by Cormack in 1986 [280] and Mantel in
1990 [885]. The debate began in 1941 when Edwin Wilson published 2 � 2

contingency table data on the potency of two viruses in the journal Science [1461]
and R.A. Fisher responded with a letter to Science in which he provided a one-
tailed test for Wilson’s virus data [456].10 David Finney (q.v. page 159), noticing
that Wilson’s original statement of the problem required a two-tailed test, wrote
to Fisher and inquired as how to test the null hypothesis with a two-tailed test,
adding that he would be “grateful for your [Fisher’s] views.” Fisher replied that he
felt he could defend “the simple solution of doubling the total probability.”11 Yates
took the position that “the rule for determining the two-sided probability, if this is
required, should be to double the observed one-tail probability. This is invariant
under transformation, whereas basing two-sided probabilities on equal but opposite
deviations is not” [1476, p. 442].12

In this same article Yates also took Haber [564] to task for his investigation of
corrected and uncorrected chi-squared statistics. In 1980, in a comprehensive anal-
ysis of 2� 2 contingency tables, Haber had compared several corrected chi-squared
tests, including that of Yates’, with the uncorrected chi-squared test. Haber found
that in two-sided tests with 2 � 2 contingency tables, Yates’ corrected chi-squared
test yielded probability values that were too high. Haber had defined exact two-sided
probability values for chi-squared in 2�2 contingency tables as the sum of the prob-
abilities of all values with deviations equal to or greater than that of the observed
deviation, rather than simply doubling the exact one-tail probability value as Yates
had recommended [564]. In his conclusion, Yates argued that the Fisher–Yates exact
probability test for 2�2 contingency tables was the “only rational test, whether both,
one, or neither of the margins are determined in advance” [1476, p. 446], making the
Fisher–Yates exact probability test the gold standard for 2 � 2 contingency tables.
Here, Yates was trying to determine what application of a chi-squared-type test
could best approximate the results from an exact test.13 Finally, Yates concluded

10In 1941 Edwin B. Wilson published a short note on “The controlled experiment and the four-
fold table” in Science in which he explored the use of the chi-squared test statistic, chi-squared
with Yates’ correction, and Fisher’s exact probability test. The analyses were based on data on the
potency of two viruses injected into a small sample of six mice.
11Fisher, quoted in Yates [1476, p. 444].
12Emphasis in the original.
13This was in contrast to Starmer, Grizzle, and Sen who stated in 1974 “[t]here seems to be no
good reason to use the exact test as the standard of comparison for competing tests” of association,
instead suggesting as a gold standard a randomized version of the exact test [1315, p. 377].
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that for the Fisher–Yates exact probability test, one-tail probability values should be
used, but if a two-sided probability value is required, the “best convention to adopt
is to double the observed one-tail probability [value]” [1476, p. 446].

In the discussion that followed, Jagger disagreed with the suggestion by Yates
of doubling the one-tail probability value [678], as did Healy [604]. Cormack sup-
ported the doubling rule, but with reservations, stating that “support for the doubling
rule must be faute de mieux”14 [279, p. 455]; see also a 1986 article by Cormack
on this topic [280]. Mantel also disagreed strongly with the recommendation by
Yates of doubling the one-tail exact probability value to obtain a two-tailed exact
test [884]; however, in a notable contretemps Mantel was to change his mind in
1990 and embraced the doubling rule [885]. Finally, Plackett observed that Fisher’s
argument for defining a two-tail probability value as twice the one-tail probability
value was based on the practice of using nominal significance levels, now considered
defective [1139, p. 458]. An alternative definition, Plackett noted, was introduced
by Jerzy Neyman and Egon Pearson who arranged events in order of decreasing
probability and calculated the total probability in the tail.

5.5 Mehta–Patel and a Network Algorithm

In 1983 Cyrus Mehta and Nitin Patel created an innovative network algorithm
for the Fisher–Yates exact probability test for r � c contingency tables. The
Mehta–Patel network algorithm eliminated the need to completely enumerate all
possible contingency tables in the appropriate reference set.

C.R. Mehta
Cyrus Rustam Mehta earned his B.Tech. degree in civil engineering from
the Indian Institute of Technology in 1967, his S.M. degree in management
science from the Massachusetts Institute of Technology in 1970, and his
Ph.D. in operations research from the Massachusetts Institute of Technology
in 1973. In 1973 he was appointed Assistant Professor at the University
of Pittsburgh. In 1977 Mehta left the University of Pittsburgh, accepting a
Postdoctoral Fellowship with the Dana–Farber Cancer Institute in Boston,
Massachusetts. In 1979 he joined the faculty at Harvard University as an
Assistant Professor of Biostatistics. In 1984 he was promoted to Associate
Professor and in 2000 he was promoted to Professor. In 1987, together
with Nitin R. Patel, Mehta founded Cytel Software Corporation, where he
is currently President.

14Loosely, “for lack of an alternative.”
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N.R. Patel
Nitin Ratilal Patel is a recognized expert on the development of fast and
accurate computer algorithms to implement computationally-intensive sta-
tistical methods. Patel earned his Ph.D. in operations research from the
Massachusetts Institute of Technology in 1973. He has been a visiting
professor at the Massachusetts Institute of Technology since 1995. Previously,
he was CMC Chair Professor at the Indian Institute of Management and has
held visiting positions at Harvard University, the University of Michigan,
the University of Montreal, and the University of Pittsburgh. In 1987 he co-
founded Cytel Software Corporation with Cyrus Mehta, where he is presently
Chairman and Chief Technology Officer. At Cytel, Patel played a leading role
in the development of StatXact and LogXact, widely used software for exact
non-parametric inference.

In 1983 Mehta and Patel developed a network algorithm for the Fisher–Yates
exact probability test for unordered r � c contingency tables [920]. Unlike earlier
algorithms by Freeman and Halton [480], March [890], and Baker [55] that were
based on an exhaustive enumeration of all possible r � c contingency tables with
fixed marginal frequency totals, the network algorithm proposed by Mehta and
Patel circumvented the need to explicitly enumerate all the tables in the appropriate
reference set. Earlier, in 1980, Mehta and Patel had presented a network algorithm
for the exact treatment of 2� c contingency tables [919]. This 1983 paper extended
the network algorithm presented in the 1980 paper to r � c contingency tables and
was followed by a series of papers detailing the network algorithm and providing
applications; see for example, a paper by Mehta, Patel, and Gray in 1985 [923] and
two papers by Mehta and Patel in 1986 [921, 922].

A Network Algorithm
A network algorithm combines the best of combinatorics and graph theory.
Originally, the purpose of a network algorithm was to select a path in a
network along which to send network traffic (packets), such as a telephone
network or a transportation network. Routing directs packets forward from a
source to the ultimate destination, optimizing speed by selecting the shortest
path through a series of intermediate nodes in the network. A network
algorithm in a statistical context is similar, yet different.

Consider a reference set for an observed r�c contingency table comprised
of all r � c contingency tables with the observed row and column marginal
frequency totals. A network algorithm is a directed non-cyclic network
consisting of nodes in a sequence of stages, corresponding to the reference

(continued)
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set of r � c contingency tables. Distances between the nodes, called arcs, are
defined so that the total distance of a path through the network corresponds
to the value of the test statistic. At each intermediary node, the network
algorithm computes the longest and shortest path for all paths passing through
that node. The value of the test statistic is compared with the longest and
shortest paths to determine (1) if all paths through the node contribute to the
probability value, (2) if none of the paths through the node contributes to the
probability value, or (3) if neither of these situations occurs.

If all paths through the node contribute to the probability value, the
probability value is incremented and these paths are eliminated from further
consideration. If none of the paths contributes to the probability value, they are
also eliminated. Otherwise, the network algorithm continues and is concluded
when all nodes have either been accounted for or have been eliminated [1342].

Following the notation of Mehta and Patel [921, 922], consider an r � c

contingency table, X, with non-negative entries xij, let Ri and Cj denote the row and
column marginal frequency totals, respectively, for i D 1; : : : ; r and j D 1; : : : ; c,
and define the reference set of all possible r � c contingency tables to be �fYg,
where Y is r � c,

Pc
j D1 yij D Ri , and

Pr
iD1 yij D Cj . Under the null hypothesis of

row and column independence, the hypergeometric probability of any Y 2 � can
be expressed as a product of multinomial coefficients

p.Y/ D D�1

cY
j D1

Cj Š

y1j Š; : : : ; yrjŠ
;

where

D D N Š

R1Š; : : : ; Rr Š

and N D Pr
iD1 Ri D Pc

j D1 Cj . The probability value based on the Fisher–Yates
exact test is defined as the sum of the hypergeometric probabilities for all
contingency tables in � that are no more likely than the observed r � c contingency
table X. Specifically,

P D
X
Y2!

p.Y/;

where ! D fYW Y 2 � and p.Y/ � p.X/g [920].
As Mehta and Patel described the network algorithm, the set � can be repre-

sented as a network of nodes and arcs, wherein each path through the network
represents one and only one contingency table Y 2 � and the length of the path
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Fig. 5.2 An example of an
observed 3 � 3 contingency
table for network analysis

Fig. 5.3 Nodes and arcs of a
single path for the observed
data in Fig. 5.2

is Dh.Y/. The problem then is to identify and sum the lengths of all paths that are
no longer than Dh.X/. The network is a directed graph with universal source S

representing an empty table and universal sink U representing any filled table. The
graph contains no cycles. All paths start in sink S , end in sink T , and have the same
length, i.e., number of columns. The network is constructed in cC 1 stages, labeled
successively c; c � 1; : : : ; 0 [921]. At any stage there exists a set of nodes, each
labeled by a unique vector .k; Rk/, where Rk 	 .R1k; R2k; : : : ; Rrk/. Arcs emanate
from each node at stage k and every arc is directed to exactly one node at stage
k � 1. The network is defined recursively by specifying all the nodes of the form
.k � 1; Rk�1/ that succeed node .k; Rk/ and are connected to it by arcs. There is
only one node at stage c, the initial or starting node S , which is labeled .c; Rc/,
where Rc 	 .R1; R2; : : : ; Rr/. The result of the recursion is exactly one node at
stage 0, the terminal node T .

An example analysis, although abbreviated, will clarify the process. Consider the
observed 3 � 3 contingency table in Fig. 5.2 [cf. 1397]. The nodes and connecting
arcs for a single path are successively displayed in Fig. 5.3 for the observed 3 � 3

contingency table in Fig. 5.2, where the first node f1 3 6g represents the marginal
frequency row totals (R1; R2; R3) of the 3 � 3 contingency table in Fig. 5.2; the
second node f1 2 4g represents the marginal frequency row totals of the table in
Fig. 5.2 with the xi1; i D 1; : : : ; 3; values in column 1 f0 1 2g removed; the third
node f0 0 2g represents the marginal frequency row totals of the table in Fig. 5.2
with the xi1 and xi2; i D 1; : : : ; 3; values in columns 1 f0 1 2g and 2 f1 2 2g
removed; and the last node containing f0 0 0g represents an empty table with the
xi1, xi2, and xi3; i D 1; : : : ; 3; values in columns 1, 2, and 3 removed, i.e., f0 1 2g,
f1 2 2g, and f0 0 2g.

The length of the first arc, the horizontal line between the first and second nodes,
is given by the multinomial coefficient, C1Š=.x11Š x21Š x31Š/, based on the values of
the difference between the first and second nodes,

0
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1
A �

0
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1
A D

0
@0

1

2

1
A H) 3Š

0Š 1Š 2Š
D 3 I
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the length of the second arc between the second and third nodes is given by the
multinomial coefficient, C2Š=.x12Š x22Š x32Š/, based on the values of the difference
between the second and third nodes,

0
@1

2

4

1
A �

0
@0

0

2

1
A D

0
@1

2

2

1
A H) 5Š

1Š 2Š 2Š
D 30 I

and the length of the third arc between the third and last nodes is given by the
multinomial coefficient, C3Š=.x13Š x23Š x33Š/, based on the values of the difference
between the third and last nodes,

0
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1
A �

0
@0

0

0

1
A D

0
@0

0
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1
A H) 2Š

0Š 0Š 2Š
D 1:

The length of the path is the product of the three multinomial values,

Dh.X/ D
cY

j D1

Cj Š

x1j Š x2j Š x3j Š
D 3 � 30 � 1 D 90:

Then, the probability of the observed path p.X/ is the length of the path divided by
the multinomial probability value based on the row marginal frequency totals of the
full 3 � 3 contingency table in Fig. 5.2:

N Š

R1Š R2Š R3Š
D 10Š

1Š 3Š 6Š
D 840:

Thus, 90=840 D 0:1071 is the Fisher exact hypergeometric point-probability value
of the observed 3 � 3 contingency table in Fig. 5.2. This can be confirmed by
calculating the exact point-probability value of the 3 � 3 contingency table in
Fig. 5.2:

P.X/ D

rY
iD1

Ri Š

cY
j D1

Cj Š

N Š

rY
iD1

cY
j D1

xijŠ

D 1Š 3Š 6Š 3Š 5Š 2Š

10Š 0Š 1Š 0Š 1Š 2Š 0Š 2Š 2Š 2Š
D 54

504
D 0:1071:

The full network diagram is depicted in Fig. 5.4 and contains a total of 14 nodes
and 24 paths with each path corresponding to one of the possible 3� 3 contingency
tables in the reference set �fYg, given the fixed row and column marginal frequency
totals of fR1; R2; R3g D f1; 3; 6g and fC1; C2; C3g D f3; 5; 2g, respectively. The
exact hypergeometric probability of the observed table, denoted by the broken line
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Fig. 5.4 Representation of the isomarginal family from Fig. 5.2 as an enumeration network. Each
of the 24 contingency tables is represented by a path, denoted by a solid line, from node S to node
T, and each of the 14 nodes represents a sum of columns. The path for the observed contingency
table is denoted by a broken line

in Fig. 5.4, is the sum of all the paths with lengths less than or equal to 90, divided
by 840; in this case there are 23 paths with lengths less than or equal to Dh.X/ D 90

and the exact two-tailed probability value is the sum of the 23 lengths that are less
than or equal to Dh.X/ D 90, divided by 840, yielding 0.8571. At the heart of
the logic of the network algorithm is the stage-wise simultaneous processing of all
stage c nodes before proceeding to stage c � 1.15 If the path length is greater than
Dh.X/ it cannot contribute to the probability value and that path is dropped from
further consideration. Thus, explicit enumeration of all paths is unnecessary and,
consequently, the network algorithm of Mehta and Patel is extremely efficient.

In 1988 Joe published an improvement to the network algorithm of Mehta and
Patel [920] for computing the probability value of the Fisher–Yates exact test for

15Hirji and Johnson showed in 1996 that stage-wise processing is a very memory-intensive
approach [630, p. 420].
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unordered r � c contingency tables [688]. Mehta and Patel relied on upper and
lower bounds, Qmax and Qmin, respectively, to determine whether a path should be
eliminated. Joe was able to refine the definitions of Qmax and Qmin, resulting in more
arcs being deleted earlier in the process. Joe found that the amount of computing
time could be substantially decreased compared with the program of Mehta and
Patel [921] and that the reduction was greatest when the column marginal frequency
totals were quite different. In 1994, Valz and Thompson made further improvements
to Mehta and Patel’s original implementation of the network algorithm to further
enhance its computational performance [1388].

In 1984 Saunders published FORTRAN subroutine ENUM to enumerate r � c

contingency tables with repeated row totals [1223]. Saunders’ subroutine demon-
strated considerable savings in time when there was a duplication of row marginal
frequency totals.

In 1985 Verbeek and Kroonenberg surveyed algorithms for testing independence
in r � c contingency tables with fixed marginal frequency totals utilizing discrete
methods [1397]. They noted that the three main approaches were complete enumera-
tion, short-cuts avoiding enumeration of certain tables not in the critical region, and
generation of a Monte Carlo sample from all possible tables with fixed marginal
frequency totals, i.e., the isomarginal family.

Verbeek and Kroonenberg defined two basic structures of the available
algorithms: (1) given a pair of marginal frequency distributions and a statistic
S , find the distribution of S under the hypergeometric probability distribution of
the contingency table, and (2) given a pair of marginal frequency distributions, a
statistic S , and an observed value of S , So, find po D p.S � So/ under the null
distribution [1397, p. 162]. They then described a basic enumeration algorithm for
(1) and three enumeration algorithms for (2); viz., a basic enumeration algorithm,
a Monte Carlo algorithm, and a characteristic function algorithm. The rest of this
lengthy article consists of a survey of existing algorithms for exact distributions of
test statistics in r � c contingency tables with fixed marginal frequency totals and
an extensive bibliography.

In 1985 Berry and Mielke developed two FORTRAN subroutines for an exact chi-
squared test and the Fisher–Yates exact probability test, ECST (Exact Chi-Squared
Test) and FEPT (Fisher Exact Probability Test), both for 2�2 contingency tables with
fixed marginal frequency totals [127]. The procedures yielded the exact one- and
two-tail probability values for each test. However, the Fisher–Yates exact probability
test accumulated probability values for those 2 � 2 contingency tables with proba-
bility values equal to or less than the observed probability value, whereas the exact
chi-squared test accumulated probability values for those 2 � 2 contingency tables
with chi-squared values equal to or greater than the observed chi-squared value.

Given a 2 � 2 contingency table of n cases, with x denoting the observed
frequency of any cell, and with r and c representing the row and column marginal
frequency totals, respectively, of x, the minimum and maximum values of x are
given by v D max.0; r C c � n/ and w D min.r; c/, respectively. The recursion
over v � x � w differed substantially from the recursion procedure described in the
1983 paper by Berry and Mielke [122] (q.v. page 284). The initial probability value
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for the recursion procedure in 1983 was obtained using Stirling’s approximation
for the required factorial expressions (q.v. page 227). In the 1985 paper the initial
probability was assigned an arbitrary value qv, a running total of the resulting qi

values was kept for i D v; : : : ; w, and at the end of the recursion each qi value was
divided by the total, yielding the desired exact probability values. This approach
completely eliminated the calculation of the initial probability value (q.v. page 44).

In 1987 Berry and Mielke extended the capabilities of subroutines ECST and
FEPT to 3 � 2 contingency tables with fixed marginal frequency totals [131], and
in 1992 they presented high-speed recursion algorithms incorporating an arbitrary
initial value for Fisher’s exact probability test for 2 � 2, 2 � 3, 2 � 4, 2 � 5, 2 �
6, and 3 � 3 contingency tables with fixed marginal frequency totals, i.e., up to
five degrees of freedom [949]. In 1994 Mielke, Berry, and Zelterman developed
FORTRAN subroutine FEP222 based on a recursion algorithm with an arbitrary initial
value for Fisher’s exact probability test for 2 � 2 � 2 contingency tables with fixed
marginal frequency totals [983], and in 1995 Zelterman, Chan, and Mielke provided
algorithms to generate all possible 2�2�2 and 2�2�2�2 contingency tables with
fixed marginal frequency totals [1489]. Finally, in 1996 Mielke and Berry presented
FORTRAN subroutine EI222, based on a recursion algorithm with an arbitrary initial
value for the first- and second-order interactions in 2�2�2 contingency tables with
fixed marginal frequency totals [953].

In 1985 Berry and Mielke developed non-asymptotic permutation tests for
Goodman and Kruskal’s �a and �b statistics [534]. The algorithm was based
on the exact mean, variance, and skewness under the conditional permutation
distribution, which then employed the Pearson type III probability distribution
to obtain approximate probability values [126]. They found the non-asymptotic
approach to be superior to the conventional asymptotic method for small samples
and for unbalanced marginal frequency distributions. The 1985 article was followed
by a 1986 article that provided FORTRAN subroutine TAU for calculating the
Goodman and Kruskal coefficients �b (row variable dependent), �a (column variable
dependent), and the non-asymptotic probability value of coefficients as or more
extreme than the observed values [130].

In 1985 Thakur, Berry, and Mielke provided a FORTRAN program for testing
linear trend and homogeneity in proportions [1349]. Trend was evaluated by
the Cochran–Armitage method as well as by multiple pairwise comparisons by
the Fisher–Yates exact probability method. Again, a recursion technique with an
arbitrary initial value was employed, yielding exact two-tailed probability values
based on all permutations of cell frequencies with fixed marginal frequency totals.

In 1985 Mielke and Berry utilized a non-asymptotic permutation procedure based
on the chi-squared statistic for an analysis of r � c contingency tables [947].
The method provided improved analyses for those cases where the conventional
asymptotic approach was questionable, e.g., small expected cell frequencies. The
non-asymptotic permutation approach was based on an algorithm that obtained the
exact mean, variance, and skewness under the conditional permutation distribution,
which was then utilized for inferences in conjunction with the Pearson type III
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probability distribution.16 In 1986 Berry and Mielke developed FORTRAN subrou-
tine CHI2 for analyzing r � c contingency tables with either highly disproportionate
marginal frequency totals or relatively small marginal frequency totals, resulting in
small expected cell frequencies [129].

In 1987 Zar presented a fast and efficient algorithm for the Fisher–Yates exact
probability test for 2 � 2 contingency tables with fixed marginal frequency totals
[1486]. The resulting program was written in BASIC and employed an initial
probability value obtained with Stirling’s factorial approximation (q.v. page 227)
with subsequent probability values generated by recursion, as suggested previously
by Feldman and Klinger [424] (q.v. page 220).

In 1988 Baglivo, Olivier, and Pagano proposed a new hybrid method for the
analysis of r � c contingency tables with large and small cell frequencies [45].
The hybrid method consisted of two parts. The first part was done exactly and the
remaining part was done with a normal density approximation. Given an R � C

contingency table with observed cell frequencies xij, row marginal frequency totals
ri , column marginal frequency totals cj and table total N , they partitioned the
hypergeometric probability function for the entire R � C contingency table,

P.X/ D

RY
iD1

ri Š

CY
j D1

cj Š

N Š

RY
iD1

CY
j D1

xijŠ

;

into products of conditional hypergeometric functions for 2 � 2 contingency tables
as described by Pagano and Taylor Halvorsen in 1981 [1081] and Plackett in
1981 [1138] using a recursion method to subdivide P.X/. After factoring P.X/

as a product of two probability functions, they approximated the second of the
two probability functions by a normal density function. Algorithms were included
for the likelihood-ratio test, the Fisher–Yates exact probability test, and Pearson’s
chi-squared test of independence. In addition, Baglivo et al. extended the procedure
to multidimensional contingency tables and illustrated the procedure with log-linear
models.

Also in 1988, Balmer provided an algorithm for the recursive enumeration of
r � c contingency tables with fixed row and column marginal frequency totals [56].
Simultaneously, the algorithm calculated the conditional probabilities given by row
and column marginal frequency totals, according to both a hypergeometric and a
multinomial model, evaluating the likelihood for the multinomial model across the
complete family of tables [56, p. 290].

16See in this regard, a 1994 paper by Kulinskaya on “Large sample results for permutation tests of
association” published in Communications in Statistics—Theory and Methods [780].
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In 1988 Berry and Mielke revisited the non-asymptotic chi-squared test that they
had previously developed in 1985 [134] (q.v. page 293). They employed extensive
Monte Carlo procedures to compare asymptotic chi-squared and likelihood-ratio
tests with the non-asymptotic chi-squared test for sparse r � c contingency tables.
Monte Carlo comparisons of five contingency table tests under the null hypothesis
were considered:
1. A non-asymptotic chi-squared test.
2. An asymptotic chi-squared test with a normal distribution.
3. An asymptotic chi-squared test with a chi-squared distribution.
4. An asymptotic likelihood-ratio test with a normal distribution.
5. An asymptotic likelihood-ratio test with a chi-squared distribution.

They made a total of 270 comparisons involving the five tests, three contingency
table sizes (2�2, 2�4, and 3�4), three sample sizes (20, 40, and 80), three marginal
configurations (one equal and two unequal), and two models (independence and
homogeneity). A total of 540,000 contingency tables were examined. All probability
values were based on 10,000 randomly generated contingency tables [134].

Berry and Mielke concluded that, for sparse contingency tables with small
degrees of freedom, the asymptotic chi-squared test with a normal distribution and
the likelihood-ratio test with a normal distribution had “no utility,” the chi-squared
test with a chi-squared distribution and the likelihood-ratio test with a chi-squared
distribution were “not very satisfactory” and “poor,” respectively, while the non-
asymptotic chi-squared test was clearly superior to the other four tests for sparse
r � c contingency tables [134, p. 259].

In 1990 Agresti, Mehta, and Patel extended the network algorithm of Mehta and
Patel [920] to r � c contingency tables with ordered categories [6]. In 1991 Vollset
and Hirji presented a microcomputer program for calculating exact and asymptotic
tests and confidence intervals for a binomial proportion and the common odds-ratio
for both a single and a series of 2 � 2 contingency tables [1399]. The program was
written in GAUSS and the authors demonstrated that it was considerably faster than
previously published programs, including the Mehta and Patel algorithm contained
in StatXact.

Also in 1991, Vollset, Hirji, and Elashoff continued the work of Vollset and Hirji
[1399], proposing three modifications of the network algorithm of Mehta, Patel, and
Gray [923] that enhanced computational efficiency exceeding an order of magnitude
[1400]. They also compared the modified method with the fast Fourier transform
algorithm of Pagano and Tritchler (q.v. page 338) [1082, 1083], noting that the fast
Fourier transform algorithm was not as efficient or reliable as the network algorithm,
and concluded that “we will not recommend its use” [1400, p. 408].

In 1992 Mielke and Berry provided algorithms and associated FORTRAN sub-
routines for the Fisher exact probability test for r � c contingency tables up to five
degrees of freedom: 2� 2, 2� 3, 2� 4, 2� 5, 2� 6, 3� 3 and 2� 2� 2 [949]. The
same general algorithm was used for each of the seven subroutines, which was based
on a recursion technique developed by Adolphe Quetelet in 1846 for calculating
binomial probability values [1147, p. 260].
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L.A.J. Quetelet
Lambert Adolphe Jacques Quetelet, born 22 February 1795 in Ghent, was a
Belgium astronomer and mathematician, one of the founders of the Royal
Statistical Society, tutor to Queen Victoria’s husband, Prince Albert [738,
p. 198], and a forerunner in demonstrating the importance of statistics to
social science [289]. Among those who influenced Quetelet were Thomas
Malthus, Joseph Fourier, and Pierre-Simon Laplace [805, p. 280]. Quetelet
is considered the father of quantitative social science with his concepts
of “l’homme moyen” (the average man) introduced in his 1835 essay Sur
l’homme et le développement de ses facultés, ou Essai de physique sociale
or “On Man and the Development of his Faculties, or Essays on Social
Physics” in which he described his concept of the average man characterized
by the mean values of measured variables that followed a normal distribution
[289,428,1321, pp. 51–65]. Quetelet was convinced that knowledge of causes
influenced the course of human affairs, rather than the generally accepted
“hand of God“ in the early 1800s.

In “Essays on Social Physics” Quetelet calculated the average height and
weight of subjects and cross-tabulated these with sex, age, occupation, and
geographical region. In combination, these average values produced what
Quetelet called “the average man,” believing that if the average man could
be ascertained for one nation, he could represent that nation [289]. Quetelet
felt that no individual was free from the “laws” that governed him. By laws
Quetelet meant counting repetitions of a frequently occurring social act, such
as, for example, suicide. Florence Nightingale identified the laws of Quetelet
as an answer to the amelioration of social life and in her eulogy she considered
Quetelet as “the founder of the most important science in the whole world”
[912, p. 190]. Lambert Adolphe Jacques Quetelet died just 5 days short of his
79th birthday on 17 February 1874 in Brussels.

Beginning with an arbitrarily chosen initial value (in this case, 1), a recursion
procedure generated relative frequency values for all possible contingency tables
with the observed row and column marginal frequency totals (q.v. page 44).
The required probability value was obtained by summing the relative frequency
values equal to or less than the observed relative frequency value and dividing
by the unrestricted relative frequency total. Consequently, no factorial expressions,
logarithms, or log-factorial values were required.

In 1993 Baglivo, Olivier, and Pagano published a lengthy article on the analysis
of discrete data in which they advocated rerandomization (resampling) permutation
methods for a number of models and tests, including multinomial testing and
goodness of fit of log-linear models for contingency tables [47]. They presented
algorithms that were different from other proposed methods in that they showed
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how to calculate the permutation distributions of commonly-used statistics, rather
than simply calculating probability values for exact tests [47, p. 175].

In 1996 Hirji and Johnson compared the speed and accuracy of the network
algorithm of Mehta and Patel [920] with the fast Fourier transform algorithm of
Baglivo, Olivier, and Pagano [46] for unordered 2 � c contingency tables, showing
that the two algorithms rest on the same foundation: a recursive polynomial relation
[630]. However, the network algorithm is equivalent to a stage-wise implementation
of the recursion [630, p. 424], while the fast Fourier transform algorithm is based
on performing the recursion at complex roots of unity [630, pp. 424–425]. In an
examination of three 2�3, four 2�6, one 2�7, and four 2�9 contingency tables with
varying marginal frequency totals, they showed that for the Pearson chi-squared,
likelihood-ratio, and Freeman–Halton statistics the network algorithm of Mehta and
Patel [920] was more efficient and accurate than the fast Fourier transform algorithm
of Baglivo, Olivier, and Pagano [46].

In 1997 Shao proposed an efficient algorithm for computing the Fisher–Yates
exact probability test for unordered 2 � c contingency tables [1255]. When all
or some of the column marginal frequency totals were identical, the improved
algorithm substantially reduced the computational effort needed to obtain an exact
probability value. Shao noted that his new algorithm was applicable to exact Pearson
chi-squared and exact likelihood-ratio tests of independence and Shao provided
several numerical examples with which to compare the computing time of the
improved algorithm and the original network algorithm of Mehta and Patel [920].

5.5.1 Multi-Way Contingency Tables

Increasingly in this period, interest developed in analyzing r-way contingency
tables. In 1988 Mielke and Berry [948] developed methods for analyzing inde-
pendence in r-way contingency tables based on the exact first three cumulants of
both the classical Pearson chi-squared statistic and a modification of the chi-squared
statistic by Zelterman [1488]. Mielke and Berry presented methods to analyze n1 �
� � � � nr contingency tables and goodness-of-fit frequency data based on the hyper-
geometric probability distribution conditioned on fixed marginal frequency totals.

Consider an r-way contingency table consisting of n1 �n2 � � � � �nr cells where
the observed frequency of the .j1; : : : ; jr /th cell is denoted by oj1;:::; jr , the marginal
frequency total associated with subscript ji of category i is denoted by

hiiji D
X
�jji

oj1;:::; jr

for ji D 1; : : : ; ni , i D 1; : : : ; r , and
P

�jji
is the partial sum over all cells with

subscript ji fixed. Then, the frequency total of the entire r-way contingency table is
given by
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N D
niX

ji D1

hiiji

for i D 1; : : : ; r . If pj1;:::; jr � 0 is the probability that any of the N total events
occurs in the .ji ; : : : ; jr /th cell, then the multinomial probability is given by

P
�
oj1;:::; jr

	 D
0
@N Š

,
rY

iD1

niY
ji D1

oj1;:::; jr Š

1
A
0
@ rY

iD1

niY
ji D1

pj1;:::; jr

oj1;:::; jr

1
A ;

where 00 D 1. The assumed positive marginal probability associated with subscript
ji is given by

Œ i ji D
X
�jji

pj1;:::; jr

for ji D 1; : : : ; ni , i D 1; : : : ; r , and

niX
ji D1

Œ i ji D 1

for i D 1; : : : ; r . Then, the marginal multinomial probability associated with
category i is given by

P
�hiiji

	 D �N Š

,
niY

ji D1

hiiji Š

�� niY
ji D1

Œ i 
hiiji
ji

�

for i D 1; : : : ; r . The null hypothesis that the r categories are independent
specifies that

pj1;:::; jr D
rY

iD1

Œ i ji
> 0

and the conditional distribution function of the r-way contingency table under the
null hypothesis, H0, is given by

P
�
oj1;:::; jr j h1ij1; : : : ; hrijr ; H0

	 D P
�
oj1;:::; jr jH0

	
rY

iD1

P
�hiiji

	 :

Algebraic manipulation then yields the hypergeometric distribution function
given by
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P
�
oj1;:::; jr j h1ij1; : : : ; hrijr ; H0

	 D
rY

iD1

niY
ji D1

hiiji Š

�
N Š
	r�1

rY
iD1

niY
ji D1

oj1;:::; jr Š

;

which is independent of any unknown probabilities under the null hypothesis
[948].17 Thus, the marginal frequency totals, hiiji , are sufficient statistics for the
marginal multinomial probabilities, Œ i ji , under the null hypothesis. This hyper-
geometric distribution function provided the basis for testing the independence of
categories for any r-way contingency table. In 1989 Berry and Mielke [136] released
FORTRAN subroutine RWAY for testing independence in r-way contingency tables
using the non-asymptotic moment-approximation described in Mielke and Berry
[948], and in 1994 Berry and Mielke released FORTRAN subroutine GOF which used
the methods of Mielke and Berry [948] to test for goodness of fit between observed
category frequencies and the a priori category probabilities [140]. Subsequently, a
resampling-approximation probability procedure for r-way contingency tables with
fixed marginal frequency totals was developed by Mielke, Berry, and Johnston in
2007 [975].

5.5.2 Additional Contingency Table Analyses

In 1991 Cormack and Mantel investigated the Fisher–Yates exact probability test
for 2�2 contingency tables [281]. Employing extensive computer simulations, they
attempted to resolve the long-standing controversy as to whether the row and col-
umn marginal frequency distributions should be considered as both fixed, one fixed
and the other random, or both random. They concluded that both marginal frequency
distributions should be considered as fixed, lending credence to some 55 years of
published work on permutation methods based on fixed marginal frequency totals.

As Cormack and Mantel noted, a second problem with the Fisher–Yates exact
probability test was that of defining the second-tail probability value in asymmetric
cases; see for example, articles by Cormack in 1986 [280] and Mantel in 1990 [885].
The second-tail problem, as it is known, is whether to double the tail-probability
value of the tail in which the observed table configuration lies (doubling rule) or
to sum the probability values in the second tail that are equal to or less than the
probability value of the observed table and add that sum to the first-tail probability
value (Irwin’s rule). When the distribution is symmetric (i.e., all four marginal
frequency totals are identical) both rules yield the same result. In this exploration of

17For a rigorous proof of the exact contingency formula, see a 1969 article by John Halton in
Mathematical Proceedings of the Cambridge Philosophical Society [578].
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the Fisher–Yates exact probability test, Cormack and Mantel “deliberately bypassed
the problem of the second tail” by looking only at symmetric cases [281, p. 33].18

In 1992 Berry and Mielke introduced a new multivariate measure of association
for a nominal independent variable and nominal, ordinal, or interval dependent
variables [138]. The measure of association, A, was a chance-corrected multi-
variate measure and was applicable to a nominal independent variable and any
combination of nominal, ordinal, and interval dependent variables. Because the
dependent variables may possess different units of measurement, they must be made
commensurate. Berry and Mielke chose Euclidean commensuration.

Commensuration
Often when variables possess different units of measurement, they need to be
made commensurate, i.e., standardized to a common unit of measurement.
For a simple example, consider two disparate variables: direction measured in
radians and denoted by w1, and speed measured in miles per hour and denoted
by w2. To make a proper comparison of the two variables, w1 and w2 must be
made commensurate, otherwise the large units of w2 (mph) would completely
overwhelm the smaller units of w1 (rads). Two types of commensuration are
commonly used: Euclidean commensuration and Hotelling commensuration.

Euclidean Commensuration. Let y0
I D Œy1I ; : : : ; yrI, I D 1; : : : ; N , denote

N non-commensurate r-dimensional values for r � 2. The corresponding
N Euclidean-commensurate r-dimensional values of x0

I D Œx1I ; : : : ; xrI for
I D 1; : : : ; N are given by xjI D yjI=�j , where

�j D
"X

I<J

ˇ̌
yjI � yjJ

ˇ̌v#1=v

:

As defined, the Euclidean commensurated data have the property that

X
I<J

ˇ̌
xjI � xjJ

ˇ̌v D 1

for j D 1; : : : ; r and any v > 0. Usually, Euclidean commensuration is
associated with v D 1 [138]. This commensuration procedure is based on
the distance between the r response measurements of subjects !I and !J and
is given by the distance function

(continued)

18Nathan Mantel long held to Irwin’s rule, e.g., [883, p. 379], but recanted in 1990 to support
doubling the observed one-tail probability value [885, p. 369].
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	I;J D
2
4 rX

j D1

�
xjI � xjJ

	235
v=2

;

where v > 0.

Hotelling Commensuration. An alternative commensuration, termed
Hotelling commensuration, is based on the distance function

	I;J D
h

.yI � yJ /0 S�1 .yI � yJ /
iv=2

;

where S is the r � r variance-covariance matrix given by

S D

2
66666664

1

N

NX
ID1

.y1I � Ny1/2 � � � 1

N

NX
ID1

.y1I � Ny1/ .yrI � Nyr/

:::
:::

1

N

NX
ID1

.yrI � Nyr/ .y1I � Ny1/ � � � 1

N

NX
ID1

.yrI � Nyr/
2

3
77777775

;

v > 0, and

Nyj D 1

N

NX
ID1

yjI

for j D 1; : : : ; r [943,951]. Usually, Hotelling commensuration is associated
with v D 2.

As Berry and Mielke noted, Euclidean commensuration ensured that the resulting
inferences were independent of the units of the individual response measurements,
and invariant to linear transformations of the response measurements [138, p. 43].
The exact probability value for A was the proportion of all possible values of A

equal to or greater than the observed value of A. For larger samples, Berry and
Mielke recommended a moment-approximation permutation procedure based on the
first three exact moments of the Pearson type III distribution. Later, in 1992, Berry
and Mielke provided FORTRAN subroutines EMAP (Exact Multivariate Association
Procedure) and AMAP (Approximate Multivariate Association Procedure), which
calculated the chance-corrected measure of association, A, and its associated exact
and approximate probability values [139].
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In 1993 Mielke and Berry presented algorithms and associated FORTRAN

subroutines for exact goodness-of-fit probability tests [950]. The exact subroutines
were conditional and utilized a recursion procedure with an arbitrary initial value to
generate relative frequency values for all possible configurations of N objects in k

categories. The required probability values were obtained by summing the relative
frequency values equal to or less than the observed relative frequency value and
dividing by the unrestricted frequency total (q.v. page 44).

5.6 MRPP and the Pearson Type III Distribution

As P.K. Sen noted in 1965, although permutation tests are quite easy to define and
have many desirable properties, the main difficulty with all permutation methods is
the labor of numerical computation involved in generating the permutation distribu-
tion of the statistic in question, especially with large samples. Thus, as Sen noted,
some simple approximations to these discrete permutation distributions are more or
less essential [1247, p. 106]. Consequently, the computation of exact permutation
probability values early on was necessarily limited to small samples—often very
small samples. For larger samples, researchers often relied on approximating the
discrete permutation distribution with the beta distribution, typically utilizing two,
three, or four moments; see for example, a 1938 article by Pitman [1131] (q.v.
page 81). The popularity of the beta distribution was most likely due to its strong
relationship to the distribution of Student’s t statistic and to the distribution of
Fisher’s variance-ratio z statistic, and subsequently to the distribution of Snedecor’s
F statistic [1430, p. 353].

The use of the beta distribution required standardization of the permutation test
statistic to ensure that the statistic varied between 0 and 1. For example, both Pitman
in 1937 and Welch in 1937 defined

W D SSError

SSError C SSTreatment
;

instead of t or z, as W was constructed to vary between 0 and 1 [1129, 1428].
In 1943 Scheffé had been sharply critical of the use of moments to approximate

discrete permutation distributions, stating that in his opinion the justification of
moment approximations was never satisfactory from a mathematical point of view
[1230, p. 311]. Although Scheffé does not mention the beta distribution specifically,
it was so widely used at that time that it can be assumed with some confidence that
Scheffé included the beta distribution in his criticism. Moreover, some test statistics
are not amenable to moment-approximations because of their intractable structure,
e.g., double ratios [969].
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In 1981 Mielke, Berry, and Brier replaced the beta distribution with the Pearson
type III distribution19 in applications of MRPP (q.v. page 254), due to the difficulty
of making simple associations between the parameters of the beta distribution and
the moments of the permutation distribution, even after reparameterization [934,
968]. The Pearson type III distribution, as a three-parameter gamma distribution,
had the advantage of being totally characterized by the exact mean, variance, and
skewness, in the same manner that the normal distribution, as a two-parameter
distribution, is fully characterized by the exact mean and variance—a property that
does not hold for the beta distribution.20 An added advantage of the Pearson type III
distribution is that when the skewness parameter is zero, the distribution is normal.
In describing the Pearson type III distribution, Pearson noted “[t]his generalized
probability curve fits with a high degree of accuracy a number of measurements
and observations hitherto not reduced to theoretical treatment” [1104, p. 331]. An
SPSS implementation of MRPP utilizing the Pearson type III distribution was later
published by Cai in 2006 [236] and a SAS/IML procedure for MRPP was published
somewhat earlier by Johnson and Mercante in 1993 [694].

The Pearson type III approximation depends on the exact mean, variance, and
skewness of ı (q.v. page 255) under the null hypothesis given by

�ı D 1

M

MX
ID1

ıI ;

�2
ı D

1

M

MX
ID1

.ıI � �ı/
2;

and

�ı D
"

1

M

MX
ID1

.ıI � �ı/
3

#

�3

ı ;

respectively. In particular, the standardized statistic given by

T D ı � �ı

�ı

19The Pearson type III distribution was one of four distributions introduced by Karl Pearson in
1895 [1106], although the type III distribution had previously been presented without discussion by
Pearson in 1893 [1104, p. 331]. The type V distribution introduced by Pearson in 1895 was simply
the normal distribution and the Pearson type I distribution was a generalized beta distribution.
20Mielke, Berry, and Brier were, of course, not the first to use the Pearson type III distribution
to approximate a discrete permutation distribution. B.L. Welch utilized the Pearson type III
distribution in a paper on the specification of rules for rejecting too variable a product [1427,
p. 47] and used it again in a paper on testing the significance of differences between the means of
two independent samples when the population variances were unequal [1430, p. 352].
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is presumed to follow the Pearson type III distribution with density function given by

f .y/ D .�2=�ı/
4=�2

ı

�
�
4=�2

ı

	 � � .2C y�ı/=�ı

�.4��2
ı /=�2

ı exp.�2.2C y�ı/=�2
ı /

when �1 < y < �2=�ı and �ı < 0, or

f .y/ D .2=�ı/
4=�2

ı

�
�
4=�2

ı

	 �.2C y�ı/=�ı

�.4��2
ı /=�2

ı exp.�2.2C y�ı/=�2
ı /

when �2=�ı < y <1 and �ı > 0, or

f .y/ D .2
/�1=2 exp.�y2=2/

when �ı D 0, i.e., the standard normal distribution. If ıo and

To D ıo � �ı

�ı

;

are the observed ı and T values, then

P.ı � ıo jH0/
:D
Z To

�1
f .y/ dy

and

P.ı � ıo jH0/
:D
Z 1

To

f .y/ dy

denote approximate probability values, which are evaluated numerically over an
appropriate finite interval. The Pearson type III distribution is used to approximate
the permutation distribution of T because it is completely specified by �ı and
includes the normal and chi-squared distributions as special cases. This approxi-
mation allows for the substantial negative skewness often encountered under the
null hypothesis [935, 936]. Thus, these distributions are asymptotic limits of the
permutation distribution for some situations.

5.7 MRPP and Commensuration

Whenever there are two or more responses for each object, the response
measurements may be expressed in different units. It is then necessary to standardize
the response variables to a common unit of measurement prior to statistical analysis;
a process termed commensuration (q.v. page 301). In 1991 Mielke established
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Fig. 5.5 A bivariate location shift parallel to the major axes, on the left, favoring Euclidean
commensuration, and a bivariate location shift parallel to the minor axes, on the right, favoring
Hotelling commensuration

that with v D 2, both the Hotelling T 2 [652] and the Bartlett–Nanda–Pillai
trace statistics [79, 1020, 1128] are but special cases of MRPP with Hotelling
commensuration [943, 965, Sect. 2.10, pp. 53–57]. In 1994 Mielke and Berry
showed that, for multivariate tests, both Euclidean commensuration and Hotelling
commensuration were far more robust with v D 1 than with v D 2 [951]
(q.v. page 400).

In 1999 Mielke and Berry demonstrated that when analyzing correlated bivari-
ate data, Euclidean commensuration yielded more powerful tests than Hotelling
commensuration when the bivariate location shift was parallel to the major axes
[958]. On the other hand, Hotelling commensuration yielded a more powerful test
than Euclidean commensuration when the bivariate location shift was parallel to
the minor axes. Figure 5.5 illustrates a bivariate location shift that is parallel to the
major axes on the left and a bivariate location shift that is parallel to the minor axes
on the right; see also a 1999 article by Pellicane and Mielke in Wood Science and
Technology [1115].

5.8 Tukey and Rerandomization

In June of 1988 John Tukey (q.v. page 232) read a paper at the Ciminera Symposium
in honor of Joseph L. Ciminera held in Philadelphia, Pennsylvania. The paper
was titled “Randomization and rerandomization: The wave of the past in the
future” [1382]. Although Tukey mentioned that the paper had been submitted for
publication, it apparently was never published. However, copies of this important
paper have survived.21

21Authors’ note: special thanks to Charles Greifenstein, Manuscript Librarian at the Library of the
American Philosophical Society in Philadelphia, for retrieving this manuscript from their extensive
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Tukey began the paper by redefining the “three R’s” as Randomization,
Robustness, and Rerandomization. When Tukey wrote “randomization,” he meant
a controlled randomized design wherein treatments were randomly assigned
to subjects in an effort to eliminate bias and to nearly balance whatever is
important [1382, p. 17]. When Tukey wrote “robustness,” he meant to ensure high
stringency, high efficiency, and high power over a wide range of probability models
[1382, p. 17]. And when Tukey wrote “rerandomization,” he meant analysis of
randomized comparative experiments by means of permutation methods to confine
the probabilities to those we have ourselves made [1382, p. 17].

Tukey distinguished among three types of rerandomization. First, complete
rerandomization, i.e., exact permutation analysis; second, sampled rerandomization,
i.e., resampling permutation analysis; and third, subset rerandomization, e.g., double
permutation analysis. Long an advocate of permutation methods [216], it is in
this paper that Tukey refers to rerandomization as the “[p]latinum [s]tandard” of
significance tests. After critically denouncing techniques such as the bootstrap and
the jackknife, Tukey concluded the paper by arguing that when an experiment
can be randomized, it should be. Then, the preferred analysis method should be
based on rerandomization. In an important affirmation of permutation methods,
he stated that “[n]o other class of approach provides significance information of
comparable quality” [1382, p. 18]. This is consistent with a statement by Efron and
Tibshirani, promoters of the bootstrap, writing in 1993: “[w]hen there is something
to permute . . . it is a good idea to do so, even if other methods like the bootstrap are
brought to bear” [402, p. 218].22

The Jackknife
The jackknife (and the bootstrap) are often considered as alternatives to
permutation procedures (q.v. page 8). It is interesting that Tukey decried the
use of the jackknife as he is often given credit for promoting its use and for
providing the term “jackknife” to identify the procedure.

The jackknife procedure is a cross-validation technique first developed by
Maurice Quenouille to estimate the bias of an estimator [1145, 1146]. John
Tukey expanded the use of the jackknife to include variance estimation and
coined the term “jackknife” because like a jack-knife—such as a Swiss Army
knife or a Boy Scout pocket knife—this technique has wide applicability
to many different problems, but is inferior for those problems for which
special tools have been designed [1, 211]. The idea underlying the jackknife
is simply to divide a sample of observations into many subsamples and

(continued)

collection of papers, articles, and books by John W. Tukey, which was donated to the American
Philosophical Society by the estate of John Wilder Tukey in 2002.
22Emphasis in the original.
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compute a statistic of interest for each subsample. Each statistic then provides
information about the distribution of the parameter of interest [1176, p. 82].
The most popular of the jackknife procedures is the “drop-one jackknife,”
wherein n subsamples of size n � 1 are generated and examined.

Tukey is most often cited as providing the original suggestion for variance
estimation, but the citation is to a brief piece of only seven sentences published
in The Annals of Mathematical Statistics in 1958 consisting primarily of a
report presented at a 3–5 April 1958 meeting of the Institute of Mathematical
Statistics in Ames, Iowa. Robinson and Hamann [1176, p. 84] reported that
the earliest explicit reference to the term “jackknife” in a peer-reviewed
publication was either David Brillinger [211] or Rupert Miller [994] in 1964.
H.A. David gave credit to Miller as being the first [323]. It should be noted
that Brillinger attributed the first use of the term jackknife to Tukey in a
1959 unpublished manuscript [1377], while Miller attributes first use to Tukey
in a 1962 unpublished manuscript [1380]. For the origins of the jackknife
procedure see especially discussions by Robinson and Hamann [1176, pp.
83–84], Miller [994, 995], Brillinger [211], and Abdi and Williams [1].

5.9 Matched-Pairs Permutation Analysis

In 1982 Mielke and Berry again utilized the Pearson type III probability distribution
in a presentation of a class of permutation methods for matched pairs based on
distances between each pair of signed observed values [945]. Let xi D dizi

denote the usual matched-pairs model for i D 1; : : : ; n, where di is a fixed
positive score, zi is either C1 or �1, and the null hypothesis specifies that
P fzi D 1g D P fzi D �1g D 1=2. Mielke and Berry considered the test statistic
given by

ı D
 

n

2

!�1X
i<j

ˇ̌
xi � xj

ˇ̌v
;

where v > 0 and the sum is over all
�

n

2

	
combinations of the integers from 1 to n.

Under the null hypothesis, the mean, variance, and skewness of ı are given by

�ı D A

n.n � 1/
;

�2
ı D

B

Œn.n � 1/2
;
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and

�ı D �6C

B3=2
;

respectively, where

A D
X
i<j

�
aij C bij

	
;

B D
X
i<j

�
aij � bij

	2
;

C D
X

i<j <k

�
aij � bij

	
.aik � bik/

�
ajk � bjk

	
;

aij D
ˇ̌
di C dj

ˇ̌v
, bij D

ˇ̌
di � dj

ˇ̌v
, and the sums for A, B , and C are over all

�
n
2

	
and

�
n
3

	
combinations of the integers from 1 to n, respectively. The critical regions

of these tests correspond to small values of ı and the probability associated with a
realized value of ı, ıo, is approximated by

P fı � ıog :D
Z To

�1
f .u/du;

where

To D ıo � �ı

�ı

and f .u/ is the density function of the Pearson type III distribution (q.v. page 305).
Mielke and Berry observed that the scores, di for i D 1; : : : ; n, associated

with these tests may be the observed values of matched-pairs differences or
transformations of the observed values such as power or rank transformations [945].
Thus, if di D 1=2 for i D 1; : : : ; n, then

�ı D 1

2
;

�2
ı D

1

2n.n � 1/
;

�ı D �4.n� 2/

Œ2n.n � 1/1=2
;

and the test of ı is equivalent to the two-sided version of the sign test.
If v D 2 and di D ri for i D 1; : : : ; n, where the ri are the rank-order statistics

from below and there are no ties, then
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;

and the test of ı is equivalent to the two-sided version of the Wilcoxon signed-ranks
test. In addition, if RC and R� are the absolute sums of the positive and negative
signed ranks, respectively, then the identity relating ı, RC, and R� is given by

ı D n
�
nC 1

	 �
2nC 1

	
3
�
n � 1

	 � 2
�
RC � R�	2
n
�
n � 1

	 :

Also, the matched-pairs t test statistic given by t D n Nx=sx, where

Nx D 1

n

nX
iD1

xi

and

s2
x D

1

n � 1

nX
iD1

.xi � Nx/2 ;

is a special case of ı when v D 2. The identities specifying the association between
ı and t are given by

ı D 2

t2 C n � 1

nX
iD1

x2
i and t2 D 2

ı

nX
iD1

x2
i � nC 1:

The remainder of the article was devoted to power comparisons of v D 1 and
v D 2 based on n D 20 and n D 80 for five distributions: double exponential,
logistic, normal, uniform, and a U-shaped distribution. Mielke and Berry concluded
that ı statistics based on v D 1 showed statistical advantages over those based on
v D 2, especially for a wide variety of heavy- and light-tailed distributions. Like
MRPP (q.v. page 254), it is demonstrated in Sect. 6.16 of Chap. 6 that using raw
measurements with v D 1 may be equally robust to outliers as using rank-order
statistics with v D 2.
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Table 5.1 Permutation generated subscripts for N D 12 with n1 D 3, n2 D 4, and n3 D 5

Number n1 n2 n3

1 1 2 3 4 5 6 7 8 9 10 11 12
2 1 2 3 4 5 6 8 7 9 10 11 12
3 1 2 3 4 5 7 8 6 9 10 11 12
4 1 2 3 4 6 7 8 5 9 10 11 12
5 1 2 3 5 6 7 8 4 9 10 11 12
6 1 2 3 4 5 6 9 7 8 10 11 12
7 1 2 3 4 5 7 9 6 8 10 11 12
8 1 2 3 4 6 7 9 5 8 10 11 12
9 1 2 3 5 6 7 9 4 8 10 11 12
10 1 2 3 4 5 8 9 6 7 10 11 12
:
:
:

:
:
:

:
:
:

:
:
:

27,719 10 11 12 5 7 8 9 1 2 3 4 6
27,720 10 11 12 6 7 8 9 1 2 3 4 5

5.10 Subroutine PERMUT

In 1982 Berry published algorithm and non-recursive FORTRAN subroutine
PERMUT to generate all permutations of multi-sets with fixed repetition numbers
in Gray-code order [108]. Gray codes are a well-developed part of combinatorial
algorithms, where they constitute systematic processes for complete enumeration
of procedures such as the bootstrap and permutation tests [348]. Gray codes allow a
listing of a set of combinatorial objects while making minimal changes at each step.
Specifically, subroutine PERMUT enumerated the complete set of all permutations
of N objects considered n1; n2; : : : ; ng at a time, i.e.,

 
N

n1 n2 � � �ng

!
D N Š

n1Š n2Š � � �ngŠ
;

where N was partitioned into g unordered objects within each of the g groups,
N D n1Cn2C� � �Cng , and n1; n2; : : : ; ng were fixed for all permutations. If g D 2,
then all combinations were enumerated, and also if g D N and each ni D 1, then
all N Š values were enumerated [108].

Unlike other permutation routines, subroutine PERMUT enumerated the actual
marks, rather than pointers to the marks (q.v. page 218), as was common at the time
[247, 248, 783]. In addition, subroutine PERMUT converted the marks to integers,
ready to be used as permuted subscripts to the observed values. This was an essential
feature for implementation of exact permutation tests associated with g-sample
procedures, such as MRPP (q.v. page 254). Table 5.1 illustrates a permutation
structure generated by subroutine PERMUT for N D 12 observations with g D 3,
n1 D 3, n2 D 4, and n3 D 5, and where 12Š=.3Š 4Š 5Š/ D 27;720. In 1987 Berry
published a version of subroutine PERMUT written in APL [109].
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Fig. 5.6 Example data set
for the F , randomization,
Monte Carlo tests, and the
moment-approximation
procedure

5.11 Moment Approximations and the F Test

In 1983 Berry and Mielke released an algorithm and FORTRAN program for
computing the three exact finite population moments and the Pearson type III
moment-approximation probability values for MRPP (qq.v. pages 254–265) [120].
A driver program read in the raw data and called the appropriate subroutines to (1)
calculate the distance functions, (2) compute the exact values of �ı , �2

ı , and �ı,
and (3) calculate the moment-approximation probability value based on the Pearson
type III probability distribution [120].

Also in 1983, Berry and Mielke considered a moment-approximation
permutation procedure as an alternative to the F test in a completely randomized
analysis of variance design [121]. They noted that three alternatives to the traditional
F test were often advocated when the requirements of equal variances or normally-
distributed populations were questionable: (1) rely on the robustness of the F

test when deviations from the assumptions were not severe, (2) substitute a
Fisher–Pitman exact permutation test for the F test, or (3) employ a Monte Carlo
resampling procedure. A fourth approach considered in this article was that of
moment-approximation permutation procedures based on the Pearson type III
probability distribution. Not considered in the article was any transformation of the
original data, such as reduction of the raw data to ranks with its attendant loss of
information.

An example analysis illustrated the moment-approximation approach. Consider
N D 13 objects, randomly assigned to g D 3 experimental treatments (S1; S2; S3)
with n1 D 3, n2 D 4, and n3 D 6, where S1 D {43.75, 50.50, 43.75}, S2 D {46.00,
61.75, 46.00, 52.75}, and S3 D {50.50, 68.50, 64.00, 68.50, 50.50, 66.25}, as given
in Fig. 5.6.

For these data, a conventional F test yielded an F D 4:70 and, with two and ten
degrees of freedom, an approximate probability value of 0.0364. An exact F test
based on  

N Š

n1Š n2Š n3Š

!
D 13Š

3Š 4Š 6Š
D 60;060

permutations of the observed data yielded 2,470 of the 60,060 possible permutations
possessing F -ratios greater than or equal to the realized F value of 4.70. Thus, the
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exact probability value computed from subroutine PERMUT was 2;470=60;060 D
0:0411. A Monte Carlo test based on L D 1;000 resamplings yielded 31 F -ratios
greater than or equal to the realized F value and an approximate probability value of
31=1;000 D 0:0310. The moment-approximation procedure, based on the Pearson
type III distribution, yielded ı D 113:231, �ı D 1;045:56, and �ı D �1:3043, with
a moment-approximation probability value of 0.0377.

5.11.1 Additional Applications of MRPP

Along with the applications of MRPP discussed previously, a variety of other func-
tions for MRPP have been developed. Specific examples of these data-dependent
techniques include (1) the detection of autoregressive patterns; (2) analyses of
asymmetric two-way contingency tables; (3) various measures of agreement for
different types of data; (4) analyses of cyclic data, including circular and spherical
data; and (5) both conventional and generalized runs test analyses [965, Chap. 3].

5.12 Mielke–Iyer andMRBP

In 1982 Paul Mielke and Hari Iyer published a class of procedures for randomized
block analysis of variance designs that included the analysis of multivariate data
[984].

H.K. Iyer
Hariharan (Hari) Kalahasty Iyer received his B.Sc. degree in mathematics
from the University of Bombay (Mumbai) in 1970. Subsequently, he earned
his M.S. and Ph.D. degrees in mathematics from Notre Dame University
in 1972 and 1975, respectively. He was an instructor of mathematics at
the University of Utah from 1975 to 1977, at which time he moved to
Colorado State University to study experimental design with Professor Raj
Chandra Bose. He received his second Ph.D., this time in statistics, from
Colorado State University in 1980 and immediately accepted a position in
the Department of Statistics at Colorado State University where he remained
until his retirement in 2011.

In 1982 Mielke (q.v. page 249) and Iyer presented a class of permutation
techniques for randomized block analysis of variance designs [984]. The class was
specifically devised for analyses involving multivariate data. As Mielke and Iyer
noted, many well-known techniques are special cases of this class, including (1) the
permutation version of the classical univariate technique based on the F statistic
for randomized blocks, (2) the Cochran Q test and the McNemar test, (3) the
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Pearson product-moment correlation coefficient, (4) the matched-pairs t test, (5) the
Friedman two-way analysis of variance for ranks test, and (6) the Spearman rank-
order correlation and footrule measures.

Let x0
ij D .x1ij ; : : : ; xrij/ denote a vector of r commensurate response measure-

ments associated with the i th treatment and j th block in a multivariate randomized
block analysis of variance design. Then, the multi-response randomized block
permutation procedures (MRBP) statistic is given by

ı D
"

g

 
b

2

!#�1 gX
iD1

X
j <k

	.xij; xik/;

where
P

j <k is the sum over all j and k such that 1 � j < k � b and
	.x; y/ is the symmetric distance function value of the two r-dimensional vectors
x0 D .x1; : : : ; xr / and y0 D .y1; : : : ; yr / in the r-dimensional Euclidean space. The
choice of symmetric distance functions is given by

	.x; y/ D
"

rX
iD1

.xi � yi /
2

#v=2

;

where v > 0. The null hypothesis .H0/ states that the distribution of ı assigns an
equal probability to each of the

M D .gŠ/b

possible allocations of the g r-dimensional response measurements to the g

treatment positions within each of the b blocks. Consequently, the collection of
r response measurements within each block yields g r-dimensional exchangeable
random variables under H0 (q.v. page 4). The ı statistic compares the within-
group clustering of response measurements against the model specified by random
allocation under H0.

The exact MRBP probability values are analogous to the exact MRPP probability
values described in Chap. 4. Like MRPP, the calculation of exact MRBP probability
values becomes unreasonable when M exceeds, say, 109. Thus, resampling and
Pearson type III moment-approximations are just as essential for MRBP as they are
for MRPP. A resampling-approximation permutation test is based on L independent
realizations of ı. Since each realization of ı requires a constant multiple of gb2

operations, a resampling-approximation probability value requires a constant mul-
tiple of Lgb2 operations. Alternatively, a Pearson type III moment-approximation
depends on the exact mean, variance, and skewness of ı under H0. If

	.i; sI j; t/ D 	
�
xis; xjt

	



5.12 Mielke–Iyer and MRBP 315

and

D.i; sI j; t/ D 	.i; sI j; t/ � g�1

gX
mD1

	.m; sI j; t/

� g�1

gX
nD1

	.i; sIn; t/C g�2

gX
mD1

gX
nD1

	.m; sIn; t/;

then �ı, �2
ı , and �ı are expressed as

�ı D
"

g2

 
b

2

!#�1X
s<t

gX
iD1

gX
j D1

	.i; sI j; t/;

�2
ı D

"
g

 
b

2

!#�2
1

g � 1

X
s<t

gX
iD1

gX
j D1

�
D.i; sI j; t/

�2
;

and

�ı D �3

�3
ı

;

using the definition of �3 given by

�3 D
"

g

 
b

2

!#�3
1

g � 1

�
H.g/C L.b/

�
;

where g � 2; b � 2, and wherein, first, H.g/ D 0 if g D 2, and

H.g/ D g

g � 2

X
s<t

gX
iD1

gX
j D1

�
D.i; sI j; t/

�3

if g � 3, and, secondly, L.b/ D 0 if g D 2, and

L.b/ D 6

g � 1

X
s<t<u

gX
iD1

gX
j D1

gX
kD1

D.i; sI j; t/D.i; sI k; u/D.j; t I k; u/

if b � 3. Here,
P

s<t<u denotes the sum over all s; t , and u such that 1 � s < t <

u � b. Therefore, a Pearson type III probability value requires a constant multiple
of g3b3 operations. The resampling and Pearson type III moment-approximations
comparison described in Chap. 4 for MRPP also pertain to MRBP. Here, the
execution time of a Pearson type III moment-approximation is roughly g2b=L

that of a resampling-approximation. In 1983, Iyer, Mielke, and Berry published
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a computer program for computing finite population parameters and approximate
probability values for MRBP using the Pearson type III distribution [676]. In 1991
Tracey and Khan provided the fourth exact moment of the test statistic in an
effort to obtain a better approximating function [1367] and, in a separate article
simplified the 35 symmetric functions required for the fourth moment. In this second
article, Tracey and Khan also evaluated the power of MRBP tests with v D 1 and
v D 2 using both three and four moments for the Laplace, Cauchy, and normal
distributions [1368].

5.13 Relationships of MRBP to Other Tests

MRBP are related to a number of conventional tests and measures. If v D 2 and
r D 1, then the functional relationships between the randomized-block F -ratio test
statistic and ı are given by

F D .b � 1/Œ2SST � g.b � 1/ı

g.b � 1/ı � 2SSB
and ı D 2SSB C .b � 1/SST

.b � 1/g.F C b � 1/
;

where SST , the corrected total sum of squares, is given by

SST D
gX

iD1

bX
j D1

x2
ij � SSM;

the block sum of squares, SSB, is given by

SSB D
8<
:

bX
j D1

"�Pg
iD1 xij

	2
g

#9=
; � SSM;

and SSM, the correction factor, is given by

SSM D

0
@ gX

iD1

bX
j D1

xij

1
A

2

bg
:

Thus, F and ı are equivalent under the null hypothesis since both SST and SSB are
invariant relative to the .gŠ/b permutations of the response measurements.

If r D 1, b D 2, and each xij is either 0 or 1, ı is equivalent to McNemar’s
test for change [916], and if r D 1, b > 2, and each xij is either 0 or 1, then ı is
equivalent to Cochran’s Q test statistic [259].
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If g D 2, r D 1, x1j D �x2j D xj and jxj j > 0 for j D 1; : : : ; b, then
the test based on ı is equivalent to an extended class of permutation techniques for
matched-pairs data [945].

If v D 2, r D 1, and the response measurements for each block are replaced
by their corresponding ranks, then the test based on ı is equivalent to the Friedman
two-way analysis of variance for ranks, the Kendall coefficient of concordance, and
the Wallis correlation ratio for ranked data [485, 486, 734, 739, 1411].

If v D 2, r D 1, b D 2, and the response measurements for each block are
replaced by their corresponding ranks, then 1 � ı=�ı is Spearman’s rank-order
correlation coefficient [1300], where �ı D .g2 � 1/=6. And, if v D r D 1,
b D 2, and the response measurements for each block are again replaced by their
corresponding ranks, then the test based on ı given by 1 � ı=�ı is the Spearman
footrule statistic where �ı D .g2 � 1/=.3g/ [1301].23

If v D 2, b D 2, and r D 1, then the functional relationship between ı and the
Pearson product-moment correlation coefficient, R, is given by

R D �ı � ı

2S1S2

and ı D �ı � 2RS1S2;

where

R D

gX
iD1

.xi1 � Nx1/ .xi2 � Nx2/

gS1S2
;

�ı D S2
1 C S2

2 C . Nx1 � Nx2/
2 ;

Nxj D 1
g

gX
iD1

xij;

and

S2
j D

gX
iD1

�
xij � Nxj

	2
g

for j D 1 and 2. R and ı are equivalent under the null hypothesis since Nx1, Nx2, S1,
and S2 are invariant relative to the .gŠ/2 permutations of the response measurements.

23As noted by John W. Whitfield in 1950 [1444], Spearman argued that the process of squaring the
deviations, i.e., v D 2, increased the error of the correlation measure and repeated this argument in
various publications; see especially three articles by Pitman in 1904, 1906, and 1910 [1300–1302].
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5.14 Kappa and theMeasurement of Agreement

A number of statistical problems require the measurement of agreement, rather than
association or correlation, between two or more independent raters [15].24 One of
the most popular indices of agreement is Cohen’s kappa (�) introduced in 1960 as
an index of inter-rater agreement for categorical (nominal level) variables [263].

J. Cohen
Jacob Cohen was a New Yorker. He was born in New York City, educated in
New York City, worked in New York City, and died in New York City. Cohen
entered City College of New York (CCNY) at the age of 15 and put in a stint
with Army Intelligence in France before graduating from CCNY in 1947. He
went on to earn an M.A. and Ph.D. in clinical psychology from New York
University (NYU) in 1948 and 1950, respectively. In 1949 he was appointed
as an Instructor at New York University and promoted to Professor 10 years
later.

As Kevin Murphy wrote in 1998, Cohen made three major contributions
to quantitative methods. First, Cohen’s kappa was cited in his Distinguished
Lifetime Contribution Award as “the gold standard for the measurement of
agreement between categorical judgments”; second, Cohen championed the
use of multiple regression as a general data-analytic framework; and third,
Cohen’s work on statistical power analysis changed the way researchers think
about tests of significance and measures of effect size [1015]. Jacob Cohen
retired from New York University in 1993 after 44 years of service and passed
away on 20 January 1998 at the age of 74 after a lengthy illness.

As developed by Cohen, kappa was a chance-corrected measure of agreement
between two independent raters, each rating n observations on a nominal level
scale of measurement with c categories. More specifically, kappa was proposed
as a chance-corrected measure of agreement to discount the proportion of agree-
ment by the expected level of agreement, given the observed marginal frequency
distributions of the raters’ responses and the assumption that the rater reports are
statistically independent [60, p. 4]. Kappa is equal to 1 when perfect agreement
between two independent raters occurs, 0 when agreement is equal to that expected
under independence, and negative when agreement is less than that expected by
chance. Writing in 2008, von Eye and von Eye would be more precise, describing
kappa as a measure of the degree to which the agreement cells on the principal
diagonal contain more cases than expected under the model of rater independence
and noting that kappa only attains a value of 1 when the marginal frequency totals

24“Raters” are variously termed “judges” or “observers” in the agreement literature.
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Table 5.2 Example 5 � 5 cross-classification table with cell proportions

Column

Row 1 2 3 4 5 Row total

1 p11 p12 p13 p14 p15 p1:

2 p21 p22 p23 p24 p25 p2:

3 p31 p32 p33 p34 p35 p3:

4 p41 p42 p43 p44 p45 p4:

5 p51 p52 p53 p54 p55 p5:

Column total p:1 p:2 p:3 p:4 p:5 p::

are the same [1401, p. 313]. In 1988 Berry and Mielke generalized Cohen’s kappa
to ordinal and interval levels of measurement, as well as to multiple raters [133].

Consider two independent raters who classify each of n observations into one of
c a priori nominal categories. The resulting classifications can be displayed in a c�c

cross-classification (agreement) table, such as that in Table 5.2, with proportions for
cell entries. In the notation of Table 5.2, Cohen’s kappa is given by

� D Po � Pe

1 � Pe
; (5.1)

where

Po D
cX

iD1

pii and Pe D
cX

iD1

pi:p:i :

In this formulation, Po is the observed proportion of observations on which the
raters agree, Pe is the proportion of observations for which agreement is expected
by chance, Po � Pe is the proportion of agreement beyond what is expected by
chance, 1 � Pe is the maximum possible proportion of agreement beyond what is
expected by chance, and the kappa coefficient, �, is the proportion of agreement
between the two independent raters after chance agreement has been removed.

Alternatively, let ı D 1 � Po represent the observed proportion of disagreement
and �ı D 1 � Pe represent the expected proportion of disagreement. Then,
substitution into Eq. (5.1) and simplification yields

� D 1 � ı

�ı

: (5.2)

Thus, Cohen’s kappa may be interpreted as a ratio of measures of distance, or
disagreement, between the two raters, where the distance between the raters is
measured by counting up a series of zeroes and ones [825]. In this form, kappa
is a measure of agreement based on the proximity of the classifications, which
is measured by the Euclidean distance between the classifications of the two
independent raters [133].
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Table 5.3 Alternative representation of Table 5.2

Observation

Block 1 2 3 4 5 	 	 	 n

1 x11 x12 x13 x14 x15 	 	 	 x1n

2 x21 x22 x23 x24 x25 	 	 	 x2n

An alternative representation of Table 5.2 was given by Berry and Mielke, which
lends itself to analysis by Eq. (5.2) and is presented in Table 5.3. The depiction
in Table 5.3 is constructed in the context of a multivariate randomized block design
with n observations, two blocks corresponding to the two raters, and the polytomous
variable of Table 5.2 represented by a c � 1 vector x where the i th element,
corresponding to the i th of the c categories, is set to 2�1=2, and where the remaining
c � 1 elements of x are set to zero. The choice of the constant 2�1=2 is simply to
ensure that the distance between any two vectors will be zero if the classifications
agree, and one if the classifications disagree [133].

In this second formulation, ı is given by

ı D 1

n

nX
iD1

	 .x1i ; x2i / ; (5.3)

where

	 .x1i ; x2i / D
"

cX
kD1

.x1ik � x2ik/
2

#1=2

;

and xrik denotes the kth element of vector xri with r D 1; 2 for blocks 1 and 2, and
i D 1; : : : ; n for observations 1 through n. Then �ı is the expected proportion of
disagreement, which is defined as

�ı D 1

n2

nX
iD1

nX
j D1

	 .x1i ; x2i / ; (5.4)

where

	
�
x1i ; x2j

	 D
"

cX
kD1

�
x1ik � x2jk

	2#1=2

:

The two representations of � in Eqs. (5.1) and (5.2) are equivalent mathematical
formulations of the same structure. The advantage of the second representation of �

given in Eq. (5.2) is that it simplifies extension and generalization to multiple raters
and to higher levels of measurement [133].



5.14 Kappa and the Measurement of Agreement 321

Given the multivariate randomized block representation in Table 5.3 and Eqs.
(5.3) and (5.4), Berry and Mielke proposed two extensions of Cohen’s kappa. First,
they showed that kappa could easily be extended to levels of measurement other
than the nominal level and, second, kappa could readily be expanded to more than
two raters.

5.14.1 Extensions to Interval and Ordinal Data

The construction of 	 .x1i ; x2i / makes an extension of kappa to interval measure-
ments straightforward. For interval data, x is simply a vector of 1 to c measurements.
Instead of a rater assigning each observation to one of c categories, the rater assigns
a score, or a vector of c scores in the multivariate case, to each observation. In this
case, kappa measures the degree to which the two raters agree on their scoring,
above and beyond what is expected by chance. For ordinal data, x is a vector of 1 to
c ranks, where a rater assigns a rank, or a vector of c ranks in the multivariate case,
to each observation.

Although the formulae for ı and �ı given in Eqs. (5.3) and (5.4) are unaffected
by ordinal or interval measurements, the extension of Cohen’s kappa to higher levels
of measurement is sufficiently general to require a distinguishing symbol. Berry and
Mielke proposed

< D 1 � ı

�ı

(5.5)

for any level of measurement, where < is equivalent to Cohen’s kappa coefficient
as defined in Eq. (5.1) with measurements made at the nominal level of measure-
ment [133].

5.14.2 Extension of Kappa toMultiple Raters

A simple modification to the computation of ı and �ı given in Eqs. (5.3) and (5.4)
generalizes <, as given in Eq. (5.5), to measure agreement among multiple raters.
Thus, ı as given in Eq. (5.3) was redefined by Berry and Mielke [133] for multiple
raters as

ı D
"

n

 
b

2

!#�1 nX
iD1

X
r<s

	 .xri; xsi/ ; (5.6)

where

	 .xri; xsi/ D
"

cX
kD1

.xrik � xsik/
2

#1=2

;



322 5 1980–2000

b is the number of blocks (i.e., raters), and
P

r<s is the sum over all r and s such
that 1 � r < s � b. The reformulation of �ı was given by

�ı D
"

n2

 
b

2

!#�1 nX
iD1

nX
j D1

X
r<s

	
�
xri; xsj

	
; (5.7)

where

	
�
xri; xsj

	 D
"

cX
kD1

�
xrik � xsjk

	2#1=2

:

If b D 2, Eqs. (5.6) and (5.7) reduce to Eqs. (5.3) and (5.4), respectively.
Since < is simply a linear transformation of ı, the test of significance for <

is the test of significance for ı. As the b blocks are specified, the randomization
associated with a randomized block design is confined to all permutations of the
n observations within each block. Under the null hypothesis, each of the M D
.nŠ/b permutations has an equal probability of occurrence; viz., 1=M . Berry and
Mielke utilized a moment-approximation approach based on the Pearson type III
distribution as follows: if ıj denotes the j th value among the M possible values of
ı, then the exact mean, variance, and skewness of ı, under the null hypothesis, are
given by

�ı D 1

M

MX
j D1

ıj ;

�2
ı D

1

M

MX
j D1

ı2
j � �2

ı ;

and

�ı D
0
@ 1

M

MX
j D1

ı3
j � 3�ı�

2
ı � �3

ı

1
A
�3

ı ;

respectively. If ıo denotes the observed value of ı, then the approximate probability
value based on the Pearson type III distribution is given by

P.ı � ıo jH0/
:D
Z To

�1
f .y/ dy;

where

To D ıo � �ı

�ı

:
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5.14.3 Limitations of Kappa

Kappa is well known as a marginal-dependent measure of agreement and is often
criticized on this basis; see for example, articles by Brennan and Prediger in 1981
[210], Maclure and Willett in 1987 [864], Thompson and Walter in 1988 [1359],
Zwick in 1988 [1498], Guggenmoos-Holzmann in 1993 and 1995 [560, 561], May
in 1994 [909], and Agresti in 2002 [4]. The problem is that there are two sources
of disagreement, differences in thresholds and differences in construction of the
underlying continuous scale, and it is inherently impossible to represent them by
a single number, as noted by Brennan and Hays in 1992 [209] and Hutchinson in
1993 [671]. It shares this characteristic with Pearson’s chi-squared statistic and the
product-moment correlation coefficient for cross classifications. Thus, kappa cannot
approximate its maximum value of 1.00 when the marginal frequency distributions
in an agreement classification table are not uniform, as noted by von Eye and von
Eye in 2008 [1401]. However, kappa will attain its maximum value of 1.00 when
the probability for all disagreement cells is zero; consequently, kappa shows no
marginal dependency under conditions of perfect agreement [1401]. As Brennan
and Prediger noted in 1981: “[i]t is evident that indiscriminate use of coefficient
kappa without modification may lead to dramatically incorrect conclusions about the
proportion of maximum possible agreement evident in a set of data” [210, p. 698].25

Cohen’s kappa is considered the gold standard among agreement coefficients and
is interpreted as the proportionate increase in rater agreement above and beyond
what can be expected by chance alone, where chance is defined as the level of
agreement expected if the raters had a known base rate for the objects under
study and randomly assigned cases corresponding to the base rate; see also a 1997
article on the assessment of reliability by Meyer [929]. This definition of chance
has been referred to by Brennan and Prediger [210] and Umesh, Peterson, and
Sauber [1384] as the “fixed marginals” model because the marginal distributions of
category assignment are assumed to be known a priori. The problem with the fixed-
marginals approach is that it does not give the raters credit for assignments that
are independently agreed upon and reflected in the marginal distributions. Thus, as
noted by Brennan and Prediger [210], Hanley [584], and Zwick [1498], Cohen’s
kappa statistic penalizes the raters by using the base rate to define the chance
agreement level the raters must surpass. For example, consider two raters and two
categories, A and B . If the two raters both feel that the base rate in the population
for category A is 0.10 and each judge randomly assigns 10 % of the cases to
category A, then by chance alone the percentage agreement between the two raters
is .0:10/.0:10/C.0:90/.0:90/D 0:82, and the observed agreement between the two
raters must exceed 0.82 for the computed value of kappa to be greater than zero.

Cohen’s kappa is extremely sensitive to the base-rate phenomenon. Because
the maximum value that kappa can attain is constrained by differences between
the marginal distributions of the two raters, as the base rate moves away from

25Emphasis in the original.
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Fig. 5.7 Classification of
n D 10 objects into c D 4

categories by b D 2 raters

Fig. 5.8 An agreement
classification table for the
ratings of the n D 10 objects
listed in Fig. 5.7

the point of maximum variability a small disagreement between the raters can
cause the kappa value to decline dramatically, as noted by Meyer in 1997 [929].
On the other hand, some researchers have argued that this is appropriate as kappa
is a true reliability statistic; see for example, articles by Cohen in 1960 [263],
Shrout, Spitzer, and Fleiss in 1987 [1270], and Bartko in 1991 [77]. That is to
say, as true score variability in the group becomes more restricted, a fixed amount
of disagreement plays an increasingly larger role in observed score variability,
so calculated reliability coefficients decline in value. In 1960 Cohen noted that it
is perfectly reasonable and, in fact, desirable to use a summary agreement measure
that is sensitive to both aspects of agreement: item-by-item agreement as reflected
in the main diagonal of the agreement matrix, and symmetry between the marginal
distributions [263]. Also, Spitznagel and Helzer protested against even providing
base-rate information, arguing that it defeats the purpose of a single measure of
reliability [1311].

That the magnitude of kappa is conditional on the marginal frequency distribu-
tions can easily be demonstrated. Consider n D 10 objects classified into c D 4 a
priori, mutually-exclusive, nominal categories fA; B; C; Dg by b D 2 independent
raters. Also, for simplicity, assume that both raters classified all ten objects into just
two of the four categories, A and B , as illustrated in Fig. 5.7. The classification
data in Fig. 5.7 have been cross-classified into an agreement classification table
in Fig. 5.8. It is readily apparent from even a casual visual inspection of Figs. 5.7
and 5.8 that the raters are in perfect agreement and kappa should therefore be equal
to 1.00, given that the marginal frequency distributions are uniform, i.e., f9; 1; 0; 0g
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Fig. 5.9 Second
classification of n D 10

objects into c D 4 categories
by b D 2 raters

and f9; 1; 0; 0g. Thus, for the data in Fig. 5.7 the observed proportion of agreement
on the principal diagonal is
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the expected proportion of agreement on the principal diagonal is
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D 0:81C 0:01C 0:00C 0:00 D 0:82;

and following Eq. (5.1),

� D 1:00 � 0:82

1 � 0:82
D 0:18

0:18
D 1:00:

Also note that the percentage agreement is Po.100/ D 1:00.100/ D 100 %, i.e.,
both raters agreed on the classification of all ten objects.

Next, consider the same n D 10 objects classified into the same c D 4 a priori,
mutually-exclusive, nominal categories by the same b D 2 independent raters. As
before, assume that both raters classified all ten objects into just two of the four
categories, A and B , as illustrated in Fig. 5.9.

The classification data listed in Fig. 5.9 have been cross-classified into an
agreement classification table in Fig. 5.10. Here the two raters are in perfect
agreement except for the classification of Object 10, where Rater I classified Object
10 into Category A and Rater II classified Object 10 into Category B . Note that in
this case the marginal frequency distributions in Fig. 5.10 are no longer uniform,
i.e., f10; 0; 0; 0g and f9; 1; 0; 0g, and the magnitude of kappa will therefore be
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Fig. 5.10 An agreement
classification table for the
ratings of the n D 10 objects
listed in Fig. 5.9

restricted by the nonuniform marginal frequency distributions. For the classified
data in Fig. 5.10, the observed proportion of agreement on the principal diagonal is

Po D 9

10
C 0

10
C 0

10
C 0

10
D 9

10
D 0:90;

the expected proportion of agreement on the principal diagonal is
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D 0:90C 0:00C 0:00C 0:00 D 0:90;

and following Eq. (5.1),

� D 0:90 � 0:90

1 � 0:90
D 0:00:

However, the percentage agreement is Po D 0:90.100/ D 90 %, i.e., the two raters
agreed on 90 % (nine of ten) of the classifications of the ten objects.

In these carefully constructed examples, a single small shift in the classification
of one object from a B to an A by one rater resulted in a dramatic change,
dropping the magnitude of kappa from � D 1:00 down to � D 0:00, all due to the
restriction on kappa imposed by the nonuniform marginals. Although in this extreme
example the simple percentage of agreement appears preferable, many researchers
acknowledge that chance-corrected measures, such as kappa, are an improvement
over non-chance-corrected measures of agreement, as the latter do not adjust for the
fact that a certain amount of agreement could have occurred due to chance alone;
see for example, articles by Cicchetti and Feinstein in 1990 [256], Feinstein and
Cicchetti in 1990 [423], Byrt in 1992 [231], Byrt, Bishop, and Carlin in 1993 [232],
and Graham in 1995 [543].

Finally, it should be noted that while the two examples are based on unweighted
kappa with two raters, the same marginal restraints on the magnitude of kappa
hold for multiple raters (b > 2) and for weighted kappa with either linear or
quadratic weighting. In general, the problem with Cohen’s kappa is referred to as the
“base-rate” problem. For further discussions of the base-rate problem, see articles
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by Carey and Gottesman in 1978 [242]; Brennan and Prediger in 1981 [210], Soeken
and Prescott in 1986 [1291]; Thompson and Walter in 1988 [1359]; Zwick in 1988
[1498], Ker in 1991 [750]; Seigel, Padgor, and Remaley in 1992 [1244]; Hutchinson
in 1993 [671]; Agresti and Ghosh in 1995 [5]; Meyer in 1997 [929]; Banerjee,
Capozzoli, McSweeney, and Sinha in 1999 [60]; Nelson and Pepe in 2000 [1029];
Hsu and Field in 2003 [660]; Kundel and Polansky in 2003 [781]; Martín Andrés
and Marzo in 2004 and 2005 [901, 902]; and de Mast in 2007 [333].

5.14.4 Relationships Between < and ExistingMeasures

Relationships between<, as given in Eq. (5.5), and existing measures were detailed
by Berry and Mielke in 1988 [133]. They explained that the generalization of
Cohen’s kappa to multiple raters for nominal-level data is the special case of <
when the distance space is restricted to a c-dimensional simplex, i.e., a distance
space consisting of c distinct points where the distance between any two points
is unity and the distance between any two coincident points at any one of the c

positions is zero [133]. In this context, Berry and Mielke noted that Cohen’s kappa
[263] is the special case of< when b D 2, the measure of agreement corresponding
to Cochran’s Q statistic [259] is the special case of< when c D 2, and the measure
of agreement corresponding to McNemar’s test for change [916] is the special case
of < when b D c D 2 [941].

When the distance space is a one-dimensional Euclidean space and the observa-
tions are rank-order statistics of the n observations associated with each of the b

raters, then the measure of agreement corresponding to Spearman’s footrule, R, is a
special case of < when b D 2 [938].

C.E. Spearman
The life of Charles Edward Spearman spanned an interesting era of techno-
logical innovation. He was born on 10 September 1863, 13 years before the
telephone was invented in March of 1876 by Alexander Graham Bell and
16 years before the carbon electric light bulb was invented in October of
1879 by Thomas Alva Edison. Charles Edward Spearman F.R.S. came to an
untimely death on 17 September 1945 at age 82 after falling from a window
of his hospital room in London just two months after the detonation of the
atomic device at the Trinity site near Alamogordo, New Mexico, ushered
in the Atomic Age on 16 July 1945. A historical note for classical music
buffs: Pietro Mascagni, best known for his one-act opera Cavalleria Rusticana
(Rustic Chivalry) was also born in 1863 (7 December) and died in 1945 (2
August).

(continued)
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At age 19, Spearman graduated from Leamington College and his family
secured a commission for him in the British Army with the Royal Munster
Fusiliers. He served for 11 years with the 2nd Battalion in India and 2 years
in Burma (now, Myanmar). In December 1896, while in the British Army he
completed a 2-year course at the Army Staff College in Camberley, Surrey,
from which he gained the coveted qualification of “Passed Staff College”
[847]. At age 32 Spearman resigned his commission as a Major in the British
Army and entered the University of Leipzig to study experimental psychology
with Wilhelm Wundt. Four years later, Spearman was recalled to the British
Army as Staff Officer for Guernsey during the Boer War in Africa. At the
age of 40 he retired from the British Army for a second time and returned to
Leipzig where he earned his Ph.D. in experimental psychology in 1906 at the
age of 43 under the direction of Wundt [246, 684, 1119, 1303].26

In his autobiography, Spearman reflected upon his years in the British
military:

I committed the mistake of my life. Having no vocational advisor to assist me, I gave
myself up to the youthful delusion that life is long. The problems which were now
baffling me might perhaps, I thought, succumb to ripened experience. Following
the illustrious example of René Descartes—not to mention Socrates and Plato—I
decided to turn to a short spell of military service. This diversion of activity was, for
one reason and another, allowed to spin out far longer than originally anticipated; it
lasted until 1897. And for these almost wasted years I have since mourned as bitterly
as ever Tiberius did for his lost legions [1303, p. 300].

After further study in Germany under Oswald Külpe at the University of
Würzburg and George Elias Müller at the University of Göttingen, where he
also attended the lectures of Edmund Husserl, Spearman returned to England
in 1907 to a post at University College, London, where he remained until
his retirement in 1931, having been appointed Grote Professor of Mind and
Logic, and served as head of the Department of Psychology and President of
the British Psychological Society [1303]. Spearman was elected Fellow of the
Royal Society in 1924. Other than the 1904 and 1906 articles on rank-order
correlation, Spearman is best remembered today as the father of testing theory,
for the identification of a general factor of individual differences in mental
abilities, and for his early work on factor analysis [230, 845, 846, 1459, 1497,
pp. 243–245].

Spearman [1300,1301] offered several coefficients for measuring the correlation
between sets of ranked data, and it has been stated that it is not readily apparent

26Wilhelm Maximilian Wundt is known as “the founding father of experimental psychology” and
many psychologists trace their academic legacy to Wundt, perhaps because he produced 186 Ph.D.
students during his long career at the University of Leipzig. [755, 1497, pp. 141–143]
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exactly which coefficient he meant to be associated with the term “footrule” [352,
844, 1109]. However,

R D 1 �
3

nX
iD1

ˇ̌
xi � yi

ˇ̌
n2 � 1

; (5.8)

where xi and yi for i D 1; : : : ; n denote n paired ranks, is widely accepted as
the formula for Spearman’s footrule measure [347, 477, 736, 1217, 1327, 1387].
In addition, Spearman is explicit in his 1910 publication on “Correlation calculated
from faulty data” that Eq. (5.8) is the formula for the footrule.27 Spearman
introduced the footrule as an easy but precise method of measuring the correlation
between two rankings in 1906 [1300,1301]. More specifically, referring to Pearson’s
product-moment correlation coefficient as r , Spearman wrote that he had

[e]xpressly entitled [sic] the measure as ‘footrule’ as lying half-way between the r method
with its complications (which I likened to an ‘elaborate micrometer’ and judgment without
mathematical method as all (which I compared to a ‘mere glance of the eye’). . . . R’s chief
mission is merely to gain quickly an approximate valuation of r [1302, p. 286].

Unlike other measures of rank-order correlation, the footrule does not norm
properly between the limits of �1 andC1. The footrule attains a maximum value of
C1 when each xi is identical to yi for i D 1; : : : ; n and no ties are present. However,
if yi D n � xi C 1, then R D �0:5 when n is odd and

R D �0:5

�
1C 3

n2 � 1

�

when n is even [736]. Consequently, R does not attain a minimum value of �1

except for the trivial case when n D 2. Karl Pearson criticized the footrule on this
basis in 1907 [1109] and Maurice Kendall explicitly pointed to this apparent lack of
proper norming as a defect in the footrule as late as 1962 [736, p. 33]. Spearman,
recognizing that negative values of R did not represent inverse correlation, actually
suggested that “it is better to treat every correlation as positive” [1300, pp. 87–88],
and writing later in 1910 he dismissed the problem entirely, stating that in all cases
the negative correlation is less than its own probable error [1302, p. 285].

It can easily be shown that the footrule is a chance-corrected measure of
agreement and not a measure of correlation28 since it takes the classic form of a
chance-corrected measure of agreement,

27Spearman’s test statistic, R, is based on the absolute differences between xi and yi , i D 1; : : : ; n.
Thus, the absolute distance between two rank vectors is often referred to as the “footrule distance.”
When the variables are quantitative, the absolute distance is known as a “city-block metric” or
“Manhattan distance.”
28It is not generally recognized that under special conditions Spearman’s rank-order correlation
coefficient is also a chance-corrected measure of agreement. When x and y consist of ranks from
1 to n with no ties, or x includes tied ranks and y is a permutation of x, then Spearman’s rank-
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agreement D 1 � observed agreement

expected agreement

[772, p. 140] where, with no tied ranks, the expected agreement is given by
.n2 � 1/=3. As a chance-corrected measure of agreement, R is zero under chance
conditions, unity when agreement is perfect, and negative under conditions of
disagreement. The fact that the footrule does not norm to �1 with complete
inversion of the rankings is therefore recast as a previously undocumented attribute
of the footrule rather than a defect, placing the footrule firmly into the family of
chance-corrected measures of agreement; see a 1997 paper on this topic by Berry
and Mielke in Psychological Reports [147].

As originally formulated, Spearman’s footrule was limited to fully ranked data
and did not accommodate tied ranks. As Berry and Mielke [147] explained in
1997, let

ı D 1

n

nX
iD1

ˇ̌
xi � yi

ˇ̌
;

�ı D 1

n2

nX
iD1

nX
j D1

ˇ̌
xi � yj

ˇ̌
;

and let

< D 1 � ı

�ı

denote the general measure of the relationship between two sets of ranks that is not
limited to untied ranks. If no ties exist in either xi or yj for i; j D 1; : : : ; n, then
Spearman’s footrule is given by

R D 1 � 3nı

n2 � 1
:

In this way, the footrule is generalized to include tied ranks on x and y, and R

is shown to be a special case of < when no ties are present [147]. <, like R, is a
chance-corrected measure of agreement since EŒı D �ı .

When both x and y consist entirely of untied ranks from 1 to n and y is a
permutation of x, then it is possible to determine the probability of an observed
R under the null hypothesis that all of the nŠ orderings of either the x or y values
are equally likely. If

order correlation coefficient is both a measure of correlation and a chance-corrected measure of
agreement [772, p. 144].
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D D
nX

iD1

ˇ̌
xi � yi

ˇ̌ D nı;

then since R is a linear transformation of D, the probability of an observed value
of D is the probability of an observed value of R [147, p. 842]. Tables of the exact
cumulative distribution function (cdf) of D were published by Ury and Kleinecke
for 2 � n � 10; in addition, approximate results based on Monte Carlo methods
were provided for 11 � n � 15 [1387]. Franklin [477] reported the exact cdf of D

for 11 � n � 18, and both Franklin [477] and Ury and Kleinecke [1387] discussed
the rate of convergence to an approximating normal distribution and the use of a
continuity correction to be applied to the cdf of D. Salama and Quade [1217] used
Markov chain properties to obtain the exact cdf of D for 4 � n � 40, corrected
some tabled values in Franklin [477], and further investigated the adequacy of
approximations to the distribution of D.

In 1998 Berry and Mielke generalized Spearman’s footrule to encompass b � 2

sets of ranks [148]. Let

ı D
"

n

 
b

2

!#�1 X
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denote an average distance function based on all
�

b
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possible paired absolute

differences among values of the b rankings, and let

�ı D
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b
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!#�1X
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nX
iD1

nX
j D1

ˇ̌
xri � xsj

ˇ̌

denote the expected value of ı, where b is the number of rankings, n is the number
of objects, and

P
r<s is the sum over all r and s such that 1 � r < s � b. Then

< D 1 � ı

�ı

(5.9)

is a chance-corrected measure of the agreement among the b rankings which is not
limited to untied ranks. Note that in the case where b D 2 and there are no tied
ranks, Eq. (5.9) reduces to Eq. (5.8), i.e., Spearman’s footrule.

Also, if the distance space is comprised of squared Euclidean distances where

	
�
xri; xsj

	 D cX
kD1

�
xrik � xsjk

	2
;

then if the number of nominal categories, c, is equal to one and the n observations
are rank-order statistics associated with each of the b raters, Spearman’s rank-order
correlation coefficient [1300] given by
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�s D 1 �
6

nX
iD1

.xi � yi /
2

n.n2 � 1/

is identical to < when b D 2. Similarly, Spearman’s rank-order correlation coeffi-
cient is the measure of association corresponding to Friedman’s analysis of variance
for ranks test [485], Kendall’s coefficient of concordance [739], and Wallis’s
correlation ratio for ranked data [1411] when b D 2 [938]. If the restriction of rank-
order statistics is removed and interval measurements are used with c D 1, then the
permutation version of the Pearson product-moment correlation coefficient [1107]
is a special case of<when b D 2 [938]. In addition, the b-rater extension of the per-
mutation version of Pearson’s product-moment correlation coefficient is the measure
of association corresponding to a randomized blocks analysis of variance [938].

In 1990 Berry and Mielke provided FORTRAN subroutine AGREE that calculated
the generalized measure of agreement < and its associated Pearson type III
approximate probability value [137]. Subroutine AGREE was constructed for 2 �
n � 20, 2 � b � 10, and 1 � c � 5.

5.14.5 Agreement with Two Groups and a Standard

Building on their 1988 article on a generalized measure of agreement, <, in 1997
Berry and Mielke published two more articles on measures of agreement. In the first
article an index of agreement was developed to compare two independent groups of
raters [144] and in the second article an index of agreement was developed for the
joint agreement between multiple raters and a standard set of responses [146].

Agreement Between Two Independent Groups of Raters
It is often of interest to evaluate the difference between measures of agreement
obtained from two independent groups of raters. For example, if written essays
are scored by a group of professional educators on a set of criteria and are scored
independently by a group of graduate students on the same criteria, it might
be of interest to know the difference in agreement between the two groups of
raters. To this end, Berry and Mielke developed a test of difference between two
independent measures of agreement and provided an associated probability value
[144].

Let <1 (<2) denote the measure of agreement for Group 1 (Group 2) and let �1

(�2), �2
1 (�2

2 ), and �1 (�2) denote the mean, variance, and skewness, respectively, for
Group 1 (Group 2). If D D <1 � <2, then Berry and Mielke showed that the exact
mean, variance, and skewness of D under the null hypothesis were given by

�D D 0;

�2
D D

�2
1�2

2 C �2
2�2

1

�2
1�2

2

;
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and

�D D �3
1�

3
2 �2 � �3

2�3
1 �1

�3
1�3

2�
3
D

;

respectively. Calculation of the exact mean, variance, and skewness of the permu-
tation distribution of D permitted utilization of the Pearson type III probability
distribution to generate a moment-approximation probability value for an observed
value of D. FORTRAN subroutine DIFFER was provided by the authors in 1997 to
test for the difference between two independent groups of raters [146].

Joint Agreement BetweenMultiple Raters and a Standard
Noting that a number of research problems require the measurement of agreement
between multiple raters and a standard (correct) set of responses, in 1997 Berry and
Mielke proposed a chance-corrected index that measured the agreement of multiple
raters with a standard set of responses [146]. The index was general enough to be
used with any level of measurement and with multivariate responses.

If r denotes the number of responses for each of n objects scored by m raters,
and the index of the standard set is denoted by s, then the measure of agreement <
between the m raters and the standard set is given by

< D 1 � ı

�ı

;

where

ı D 1

n

mX
iD1

nX
j D1

"
rX

kD1

�
xsjk � xijk

	2#1=2

;

and �ı is the expected value of ı under the null hypothesis. If m D 1, r D 1,
and the responses are categorical,< reduces to Cohen’s kappa statistic [263]. Berry
and Mielke calculated the exact mean, variance, and skewness of the permutation
distribution of ı and utilized the Pearson type III probability distribution to generate
a moment-approximation probability value for an observed value of <. FORTRAN

subroutine ASAND was provided by the authors in 1997 to test for the difference
between multiple raters and a standard set of responses [146].

5.15 Basu and the Fisher Randomization Test

In 1980 Debabrata Basu published a highly controversial article on the Fisher
randomization test in Journal of the American Statistical Association [86]. The pub-
lished article was based on an invited talk given at the Southern Regional Education
Board (SREB) Summer Research Conference in Statistics at Arkadelphia, Arkansas,
on 15 June 1978. Basu examined the Fisher randomization test with respect to



334 5 1980–2000

sufficiency, common sense, and Fisher’s apparent abandonment of randomization
tests later in his career. Basu considered permutation tests in comparison to analyses
drawing on, for example, normal theory and Bayesian statistics. After comparing
the techniques, Basu concluded that permutation tests are deficient because their
focus is only on randomization and that that focus disregards important information
about controllable and uncontrollable factors. He further wrote that “the Fisher
randomization test is not logically viable” [86, p. 575], i.e., the logic of the
randomization test procedure is not viable [87, p. 593]. Naturally, this prompted
a good deal of debate, most notably by Oscar Kempthorne [723], David Lane [797],
Dennis Lindley [828], Donald Rubin [1202], and David Hinkley [627], most of
whom defended the Fisher randomization test and disagreed with Basu’s contention
that the test was illogical. See also a discussion of this debate in a 1994 article by
Stephen Senn [1250].

5.16 Still–White and Permutation Analysis of Variance

In 1981 Still and White published an important paper on permutation tests as
alternatives to F tests for a variety of analyses of variance designs [1324].
They observed that in experimental psychology it is usually difficult to show
(1) that sampled populations meet the normality and homogeneity assumptions
for conventional F or t tests, or (2) that sampled populations are similar to those
populations sampled in Monte Carlo experiments designed to demonstrate the
robustness of conventional F or t tests. They then argued that a test that makes
weaker assumptions without sacrificing power or versatility would be preferable.
They suggested the use of approximate-randomization (resampling) permutation
tests utilizing a Monte Carlo test procedure wherein a random sample of all possible
permutations of the observed data was generated and compared with the observed
data with respect to a suitable test statistic [1324].

Perhaps anticipating criticism of an approximate randomization test, Still and
White noted that the approximate randomization test had few advocates as many
researchers believed that different investigators might obtain somewhat different
results on the same set of data, even if they used the same subjects, the same test
statistic, and the same pseudorandom number generator, due to the use of a different
seed; see in this regard, a 1991 article by Spino and Pagano [1308, p. 350].29 Still
and White argued that this was not a valid criticism of Monte Carlo permutation
methods and countered with the fact that one may say of any experiment that a
different investigator is likely to obtain a different result even if the same subjects
are used, as the random assignments of treatments to subjects is likely to be different
[1324, p. 246].

Still and White carried out Monte Carlo experiments on four designs: (1) a one-
way randomized analysis of variance with three levels and five observations at each

29This criticism is largely moot today with fast permutation generators and the selection of
1,000,000 or more random permutations of the observed data being quite common.
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level and with varying degrees of separation among the levels; (2) a 2�2 randomized
factorial analysis of variance with five observations at each of the four combinations
of levels and with varying degrees of separation between the levels; and (3) and
(4) the same as (1) and (2) only with blocking introduced to give a repeated-
measures design with five subjects. On the basis of these simulated experiments
they concluded that, where the sampled population distribution was unknown, the
approximate randomization test was preferable to a conventional F test in all four
cases [1324].

Six years later, in 1987, Bradbury corrected some errors in the methodology
of Still and White [200], observing that the simulations in Still and White were
based on the use of an incorrect value of �x for non-normal data (1,000 instead
of 2,706) and the use of insufficiently large degrees of separation for main and
interaction effects for both normal and non-normal data types [200, p. 178].
Bradbury repeated the analyses in Still and White with the errors corrected. Some
efficiency was gained by removal of the permutation invariant components of the
test statistics, where possible. As in Still and White, four designs were considered:
(1) a completely randomized design with five different subjects in each of three
treatments, (2) a randomized block design with three treatments and five subjects
as blocks, (3) a 2 � 2 factorial design with five different subjects per treatment,
and (4) a three-way design given by replicating the 2 � 2 factorial design over five
subjects [200, p. 178].

Bradbury concluded, in contrast to Still and White, that approximate randomiza-
tion tests tended to have slightly higher power for lower levels of effect, whereas
conventional F tests tended to have slightly higher power for higher levels of effect.
Finally, Bradbury strongly recommended the use of correctly-formulated random-
ization and approximate randomization tests whenever computational facilities were
available [200, p. 187].

5.17 Walters and the Utility of Resampling Methods

In 1981 Walters published an article that demonstrated the usefulness of resampling
methods for estimating probability values in two types of permutation tests, with
examples: an analysis of r � c contingency tables and an analysis of randomized
blocks analysis of variance [1413]. Noting that an alternative to complete enumer-
ation is to take a random sample from the permutation distribution to provide an
estimate of the significance probability, Walters first considered an r�c contingency
table with fixed marginal frequency totals. Utilizing an example analysis of a 2 � 4

contingency table, he computed �2 D 6:04 with a probability value of 0.110 based
on three degrees of freedom; Walters’ 2 � 4 data table is listed in Fig. 5.11. The
result of the chi-squared analysis was then compared with an exact permutation
test of 804 arrangements of the n D 40 observations, yielding an exact probability
value of 0.144 and a resampling-approximation probability value of 0.139, based on
5,000 random arrangements of the cell frequencies with fixed marginal frequency
totals [1413].
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Fig. 5.11 Walters’ 2 � 4

contingency table with
n D 40 observations [1413,
p. 292]

Fig. 5.12 Walters’ 4 � 3

contingency table with
n D 48 observations [1413,
p. 292]

Unfortunately, Walters erred in summing the hypergeometric probability values
less than or equal to the hypergeometric probability value of the observed contin-
gency table (p D 0:0018) instead of summing the probability values associated
with the chi-squared values greater than or equal to the observed chi-squared value
(�2 D 6:04). The correct method had previously been detailed by Radlow and Alf
in 1975: order terms by their discrepancies from the null hypothesis instead of by
their probability values (q.v. page 249) [1150]. As Walters explained:

[t]he significance probability in the exact test is the sum of all probabilities less than or equal
to [the observed probability value], arising from various configurations of cell frequencies
[1413, p. 290].

Walters committed the same error in the resampling-approximation analysis
of the example data. Fortunately, the two methods, summing the hypergeometric
probability values and summing the hypergeometric probability values associated
with the test statistic values, coincidentally yielded the same probability value of
0.144 for the example data analyzed. Walters was less fortunate with his second
example analysis based on a 4 � 3 contingency table, which is reproduced in
Fig. 5.12. Here he found �2 D 12:044 with a probability value of 0.061 based on
six degrees of freedom. An exact permutation test of 171,512 arrangements of the
n D 48 observations yielded an exact probability value of 0.066 and a resampling-
approximation probability value of 0.066, based on 5,000 random arrangements of
the cell frequencies with fixed marginal frequency totals.30 These probability values
were based on the sum of the hypergeometric probability values less than or equal
to the hypergeometric probability value associated with the observed contingency
table, i.e., Fisher’s exact probability test. The correct exact probability value based
on the sum of the hypergeometric probability values associated with the chi-squared
values greater than or equal to the observed chi-squared value is 0.059.

In the randomized block analysis, Walters analyzed the data correctly:

[t]he significance probability is the proportion of permutations returning a test statistic
[value] as extreme as the observed [test statistic] value [1413, p. 293].

30Walters reported an exact probability value of 0.066, but the correct value should be 0.067 as the
exact probability value is actually 0.066628.
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For an example analysis of t D 4 treatments on b D 8 blocks, Walters found a
probability value for the conventional F statistic of 0.035 and a resampling proba-
bility value of 0.017, based on an undisclosed number of random permutations.31

Walters then log transformed the original data and reran the randomized block
analysis, finding an F test probability value of 0.055 and a resampling probability
value of 0.057, ignoring the fact that all permutation tests are distribution-free and,
therefore, any transformation of the data was unnecessary.

5.18 Conover–Iman and Rank Transformations

Harking back to the heyday of rank tests in the 1930s and 1940s, in 1981 William
Conover and Ronald Iman published an article on rank transformations as a bridge
between parametric and non-parametric statistics [273]. The motivation for the
article was to increase the visibility and usability of non-parametric techniques. In
this brief article of only six pages they called attention to three potential uses of the
method of rank transformations: (1) as a pedagogical technique for incorporating
non-parametric statistics into introductory courses in statistics, (2) as a method
for using existing statistical packages for computing non-parametric statistics,
and (3) as a useful tool for developing new non-parametric methods in situations
where satisfactory parametric procedures already exist. Comments provided by
Michael Fligner and Gottfried Noether in 1981 largely agreed with the suggestions
proposed by Conover and Iman [471, 1040]. What is notable about this article and
the exchanges is that, at this late date of 1981, no mention was made of permutation
tests.

5.19 Green and Randomization Tests

In 1981 Bert Green wrote a lukewarm review of Edgington’s newly published book
(1980) on Randomization Tests that revealed that rank tests were not dead and
that permutation (randomization) tests were still not widely accepted [549]. In this
review, Green pointed out that, based on his own extensive Monte Carlo studies of
robustness, randomization tests were too much like t tests, and shared all the flaws
of t tests [549, p. 495]. Green noted that when the t test is non-robust, so is the
randomization test, the reason being that both tests use the raw data, rather than
some transformation of the data, such as ranks. Thus extreme differences, such as
created by outliers, overpower small differences from the mean due to squaring of
the differences.

31Resampling was required in this case as an exact test would have required generating .t Š/b D
.4Š/8 D 110;075;314;176 F values.
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5.20 Gabriel–Hall and Rerandomization Inference

In 1983 K. Rubin Gabriel and William J. Hall provided computationally-efficient
resampling methods for hypothesis testing, estimation via confidence intervals, and
power evaluation for a class of experiments without assuming random sampling
from a population [489]. Contained within this article was a plea for wider use of
permutation methods based on the authors’ “conviction that this methodology has a
much greater role to play in scientific inference than has been assigned to it in the
past” [489, p. 833]. Gabriel and Hall noted in 1978 that Tukey, Brillinger, and Jones
had stated:

[t]he device of judging the strength of evidence offered by an apparent result against the
background of the distribution of such results obtained by replacing the actual random-
ization by randomizations that might have happened seems to us definitely more secure
than its presumed competitors, that depend upon specific assumptions about distribution
shapes or about independence. . . . On balance, we recommend using a re-randomization
analysis . . . [216, p. D1].

In addition, Gabriel and Hall acknowledged their general agreement with
Kempthorne’s observation in 1955 that “when one considers the whole problem of
experimental inference . . . there seems little point in the present state of knowledge
in using [a] method of inference other than randomization analysis” (Kempthorne,
quoted in Gabriel and Hall) [719, p. 966].

5.21 Pagano–Tritchler and Polynomial-Time Algorithms

In 1983 Pagano and Tritchler noted that the exact permutation test of greatest
power is based on all permutations of the observed data [1083]. They argued
that the power loss incurred by observing a random sample of all permutations
was not great enough to warrant the computational burden of complete
enumeration. Consequently, the preferred exact statistical method was usually not
employed. Additionally, they observed that an unappealing feature of resampling-
approximation permutation tests is the possibility of different researchers obtaining
different results with the same data [1083, p. 435]; see also a 1991 paper on this
topic by Spino and Pagano [1308, p. 350], and a refutation of this argument by Still
and White in 1981 [1324].

To this end, Pagano and Tritchler presented polynomial-time algorithms for
finding the permutation distribution of any statistic that was a linear combination
of some function of either the original observations or the ranks of the observations
[1083, p. 83]. The algorithms required polynomial time as contrasted with complete
enumeration, which required exponential time. The savings in time was effected by
first calculating and then inverting the characteristic function of the statistic.32

32For a lucid and cogent description of the Pagano–Tritchler algorithm, see a 1998 article by
Gebhard and Schmitz in Statistical Papers [503].
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5.22 Welch and aMedian Permutation Test

In 1987 William Welch proposed a permutation test using the median instead of
the mean in matched-pairs designs [1431]. The motivation for this approach was
consideration of data sets in which outliers are anticipated. Noting that the sample
mean is a poor estimator of location for heavy-tailed distributions, Welch advocated
the use of either medians or trimmed means; see also a 1983 paper on this topic
by Rosenberger and Gasko [1194]. Employing a randomization procedure, Welch
developed resampling probability values and confidence intervals for the sample
median and trimmed means.

A comparison of the randomized means test, the randomized median test, and
a conventional t test for a matched-pairs example data set with and without a
single outlier pair revealed that both the randomized means test and the t test
showed “extreme sensitivity” to the exclusion of the outlier pair [1431, p. 613].
Welch concluded that while much of the research in permutation inference had
concentrated on test statistics suggested by classical parametric techniques, the
permutation approach applied equally well to robust statistics, such as the median
and trimmed mean; see also in this regard, a 1985 paper by Diane Lambert in The
Annals of Statistics [791].

5.23 Boik and the Fisher–Pitman Permutation Test

Also in 1987, Robert Boik published an article on the Fisher–Pitman permutation
test in which he investigated the robustness of the test as an alternative to the con-
ventional analysis of variance F test when the variances were heterogeneous [175].
Boik argued that while the permutation test is very attractive as a test of the equality
of distributions because it retains its stated test size without any distributional
assumptions, it is not as attractive as a test of the equality of location parameters as it
retains its stated test size only under equality of all nuisance parameters [175, p. 27].

Boik compared the size of the Fisher–Pitman permutation test of equality of
means to the size of the conventional F test in small samples when the variances
were unequal. He utilized the first two moments of the beta distribution to
approximate the permutation distribution of five sets of three treatments with very
small samples with values of f1; 1; 7g, f2; 2; 5g, f2; 3; 4g, f2; 3; 5g, and f2; 4; 5g, and
also of four sets of four treatments with sample values of f2; 2; 2; 10g, f2; 3; 3; 8g,
f2; 3; 4; 7g, and f4; 4; 4; 4g. Based on computer simulations of 1,000 replications
drawn from normally-distributed populations having equal means but unequal
variances, he concluded that (1) the normal-theory F test can be very sensitive to
variance heterogeneity, and (2) typically, the difference between the normal theory
and the permutation test sizes was negligible. Consequently, neither test was found
to be robust to variance heterogeneity [175, pp. 36–37].
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5.24 Mielke–Yao Empirical Coverage Tests

A class of multi-sample tests that immediately extends to g � 2 samples is the
collection of g-sample empirical coverage tests [965, pp. 335–337]. The g-sample
empirical coverage tests described by Mielke and Yao in 1988 and 1990 are direct
extensions of goodness-of-fit coverage tests [989, 990]. Following the notation of
Mielke and Yao, if x1; : : : ; xn is a random sample from an unknown distribution
function F , and F0 is a specified continuous distribution function, the goodness-of-
fit coverage test is given by

Av D
nC1X
iD1

ˇ̌̌
Ci � .nC 1/�1

ˇ̌̌v
;

where v > 0, Ci D F0.xi;n/� F0.xi�1;n/ for i D 1; : : : ; nC 1 are called coverages
or spacings, x1;n < � � � < xn;n are the order statistics of x1; : : : ; xn, x0;n D �1,
and xnC1;n D C1. While Major Greenwood introduced A2 in 1946 [552, 965,
pp. 275–277], Maurice Kendall suggested that A1 should also be considered [732].
A goodness-of-fit coverage test corresponds to a two-sample empirical coverage
test in the same manner that the Kolmogorov goodness-of-fit test [766, 965, p. 274]
corresponds to the two-sample Kolmogorov–Smirnov test [965,1283, pp. 334–335].
However, the extension from two samples to g-samples (g � 2) is straightforward
for empirical coverage tests.

As Mielke and Yao described the g-sample empirical coverage tests, let
x1ji < � � � < xni ji be the ni order statistics associated with the i th sample,
i D 1; : : : ; g,

N D
gX

iD1

ni ;

FN .x/ D number of observed values among the N pooled values � x

N C 1
;

and FN .x/ D 1 if x is greater than or equal to the least upper-bound of the domain
of x. As defined, FN .x/ differs slightly from the empirical distribution function of
the pooled samples. The ni C1 empirical coverages associated with the ni observed
values of the i th sample are denoted by

Cj ji D FN .Xj ji /� FN .j � 1ji/ for j D 1; : : : ; ni C 1;

where FN .x0ji / D 0, FN .xni C1ji / D 1, and x0ji and xni C1ji are the greatest-lower
and least-upper bound values of the unknown population domain of x under the null
hypothesis (H0), respectively. Thus,

ni C1X
j D1

Cj ji D 1 for i D 1; : : : ; g:
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For a simple example to illustrate an empirical coverage test, let g D 2, n1 D 2,
n2 D 3, and x1j2 < x2j2 < x1j1 < x3j2 < x2j1 be the sample order statistics. Then
the empirical coverages for this example are

C1j1 D 1=2; C2j1 D C3j2 D C4j2 D 1=3; and C3j1 D C1j2 D C2j2 D 1=6:

The null hypothesis specifies that the g samples come from a common continuous
distribution and the expected value of Cj ji under H0 is .ni C 1/�1. The g-sample
empirical coverage test statistic is then given by

Bv D
gX

iD1

a
ni

N

� ni C1X
j D1

ˇ̌̌
Cj ji � .ni C 1/�1

ˇ̌̌v
;

where v > 0 and a.�/ is a positive weighting function. In 1981 Rao and Murthy
proposed a statistic that is equivalent to B2 with g D 2 and a.�/ D 1 [1156].
Under H0 and given a condition conjectured to hold in general, but verified only
for v D g D 2, the distribution of Bv is asymptotically normal as N ! 1 when
v > 1=2 [989]. Provided the g samples are sufficiently large, the test is able to detect
any nontrivial alternative to H0. Since the total number of equally-likely events is

M D N Š
gY

iD1

ni Š

;

the exact probability (P ) value is given by

P D number of the M events in which Bv � Bvo

M
;

where Bvo is the observed value of Bv. When M is large, approximate resampling
or Pearson type III probability methods are essential. The exact mean of Bv under
H0 is given by

�v D
gX

iD1

�
ni C 1

	 N �ni C1X
j D1

ˇ̌̌
j.N C 1/�1 � .ni C 1/�1

ˇ̌̌v N � j

ni � 1

!, 
N

ni

!
;

where v > 0 and a.�/ D 1. To obtain a Pearson type III P value given by
P.Bv � BvojH0/, the exact variance and skewness of Bv under H0 (i.e., �2

v and �v)
are required. However, the calculation of �2

v and �v is exceedingly time-consuming,
even for moderate sample sizes, due to the multiple looping structures involved.
Consequently, a Pearson type III algorithm initially contains �v and then, based on
L independent simulations of Bv denoted by Bv1; : : : ; BvL, evaluates estimators of
�2

v and �v given by



342 5 1980–2000

Q�2
v D

1

L

LX
iD1

�
Bvi � �v

	2

and

Q�v D

1

L

LX
iD1

�
Bvi � �v

	3
Q�3

v

:

Furthermore, a resampling-approximation probability (P ) value is given by

P D number of the L events in which Bv � Bvo

L
:

Simulated moment results suggested that v D a.�/ D 1 constituted reasonably
good choices for Bv [990]. Thus, the probability value of the observed B1 with
a.�/ D 1 was based on the exact mean of B1, an estimated variance of B1 involving
4,000 random simulations, and the normal distribution approximation. Because of
the vastly increased speed of modern-day computers, the same probability value
would today be estimated using an approximate resampling estimate with perhaps
L D 1;000;000 simulations of B1. The latter resampling estimate of the observed B1

probability value would avoid the obvious problem associated with the assumption
of the normal distribution.

5.25 Randomization in Clinical Trials

In 1988 a series of six articles appeared in the journal Controlled Clinical Trials
that stemmed from a workshop on randomization for the 1986 annual meeting of
the Society for Clinical Trials organized by John Lachin of George Washington
University. The six articles, all published in the same issue, consisted of a foreword
on “Properties of randomization in clinical trials”by Lachin [785], “Statistical
properties of randomization in clinical trials” by Lachin [787], “Properties of simple
randomization in clinical trials” by Lachin [786], “Properties of permuted-block
randomization in clinical trials” by Matts and Lachin [906], “Properties of the urn
randomization in clinical trials” by Wei and Lachin [1423], and “Randomization in
clinical trials: Conclusions and recommendations” by Lachin, Matts, and Wei [788].
In addition, a response by Leslie Kalish followed 2 years later in 1990 [706].

Altogether, the 6 articles comprised 88 journal pages and only a brief summary
can be attempted here. Differences between a population and a permutation model
as bases for statistical tests were reviewed (q.v. page 3), and it was argued that
the Neyman–Pearson population model can only be invoked in clinical trials as an
untestable assumption, rather than being formally based on sampling at random
from a defined population. On the other hand, the authors noted that the Fisher
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permutation model based on the randomization of treatments to subjects required
no assumptions regarding the origin of the samples of patients studied. The large-
sample permutation distribution of the family of linear rank tests was described
as a basis for easily conducting a variety of permutation tests. Stratified analyses,
analyses when some data are missing, and regression model analyses were also
discussed. The articles concluded with 15 recommendations regarding the use of
permutation tests in controlled clinical trials. See also a 1994 article on “Fisher’s
game with the devil” by Stephen Senn in Statistics in Medicine [1250].

5.26 The Period from 1990 to 2000

The period in and around 1990–2000 witnessed an explosion of journal articles on
permutation methods in a wide variety of disciplines and research areas, e.g., animal
behavior [1013], archaeology [970], atmospheric science [959, 1285], biology and
biometrics [14, 227, 706, 785–788, 891, 906, 1335, 1338, 1396, 1423], biostatistics
[850, 854, 855], chemistry [827, 1395, 1490], clinical trials [99, 411, 1381], dental
research [266, 803, 1207, 1208], earth science [943, 1086], ecology [1143, 1293],
engineering [16], forest research [1159], geology [541,1071,1072], human genetics
[1414], medicine and environmental health [170, 235, 648, 1051], pharmacology
and physiology [849], psychology and education [141, 950], toxicology and envi-
ronmental safety [1134], wood science [1114, 1115], and zoology and taxonomy
[416–418, 1373].

This period was also characterized by the publication of a number of articles and
tutorials that attempted to introduce or promote permutation methods to a variety
of audiences, such as psychologists [88, 908], econometricians [748], high-school
mathematics teachers [61], chemists [1395], researchers in biomedicine and clinical
trials [99, 648, 850, 854–856], and even statisticians [1432].

Earlier undertakings on the development of permutation methods, coupled with
high-speed computers and efficient algorithms, provided a solid foundation for
permutation methods in the 1990s. While much of the focus in this period was
on applying permutation methods to specific research problems, work continued
unabated on the development of permutation methods for new research areas and
the incorporation of permutation algorithms into various statistical packages [250].
There were so many articles published in this period, with over 100 journal articles
appearing each calendar year, that it is not possible to summarize all of them. Thus,
it is necessary to carefully select those that are most representative and those with
the greatest impact, scope, and importance.

5.27 Algorithms and Programs

In 1991 Oden published an article on the allocation of effort in Monte Carlo
simulations of permutation tests in which he determined the optimal choice for the
inner (of two) loops in exact permutation tests. In 1992 Kromrey, Chason, and Blair
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announced the availability of SAS algorithm PERMUT that provided approximate
permutation tests for one- and two-sample analyses [773]. Although not explicitly
stated, the algorithm apparently utilized resampling-approximation permutation
methods rather than exact permutation methods. Also in 1992, Edgington and
Khuller published a FORTRAN computer program for trends in repeated-measures
(blocked) data [395]. As they explained, the permuting of data for a repeated-
measures test of trend with k levels of a treatment and n subjects rearranges the
order of the measurements over the k treatment levels for each of the n subjects.
For efficiency, the program permuted the data randomly, providing a random
sample (resampling) of the .kŠ/n possible arrangements of the data.33 The program
produced two probability values: one- and two-tailed. As Edgington and Khuller
explained, the one-tailed probability value is the proportion of data arrangements
providing Pearson product-moment correlation coefficients as large as or larger than
the Pearson product-moment correlation coefficient for the obtained data. The two-
tailed probability value is the proportion of data arrangements providing Pearson
product-moment correlation coefficients with absolute values as large or larger
than the correlation coefficient for the obtained data [395]. Finally in 1992, Ko
and Ruskey developed recursive algorithm GENBAG to generate permutations by
implementing on both constant amortized time and the interchange property, where
constant amortized time is linear in the number of permutations and the interchange
property is such that successive permutations differ only by the interchange of two
elements [764].

In 1993 Chen and Dunlap contributed to the growing list of papers on
permutation tests by providing SAS programs for testing hypotheses using a
resampling-approximation permutation test. The article included SAS code listings
for testing the equality of two means, testing the significance of a Pearson product-
moment correlation coefficient, and testing the equality of more than two means
[250]. In 1995 Onghena and May noted some problems with the SAS program of
Chen and Dunlap and set about identifying the problems and correcting the SAS
code [1063]. The Onghena and May paper is important in that it identified a number
of problems with Monte Carlo resampling procedures that had plagued permutation
methods since the introduction of high-speed computers.

First, Onghena and May argued that the original statistic must be among the
resampled statistics; that is, the probability value can never be smaller than one
over the number of resampled values. Chen and Dunlap’s program drew 1,000
resampled values and compared each of them to the original value of the statistic.
Onghena and May modified the program to draw 999 resampled values, then added
the original value to the 999 to provide 1,000 values, guaranteeing that the original
value was included [1063]. This was a long-standing controversy in the early days
of resampling permutation methods, but is less consequential now that the number
of resampled values is usually much greater than 1,000.

33Edgington and Khuller cite .n/kŠ possible arrangements of the data, but this is obviously
incorrect.
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Second, Onghena and May felt that 1,000 resampled values were not enough
to provide sufficient accuracy with Chen and Dunlap’s use of ˛ D 0:01 and
recommended 5,000–10,000 resampled values. Third, Onghena and May argued
that the SAS program of Chen and Dunlap was inefficient in that it unnecessarily
stored all the resampled values. Fourth, Onghena and May recommended exact
permutation methods whenever the number of resampled values was greater than
the number of permutations of the original data, i.e., oversampling.

In 1994 Hilton, Mehta, and Patel presented an algorithm for computing exact
Smirnov tests in continuous or categorical data with balanced or unbalanced samples
[623]. In 1996 Richards and Byrd published FORTRAN subroutine FISHER for
computing the exact probability value of the Fisher–Pitman permutation test for two
independent samples [1169]. Noting that the Wilcoxon and Mann–Whitney two-
sample rank-sum tests are actually the Fisher–Pitman permutation test applied to
the ranks of the original observations, they explained that the subroutine generated
exact probability values for those tests when ranks were substituted for the raw
score measurements. They also observed that the problem of treating ties with the
Wilcoxon or Mann–Whitney two-sample rank-sum tests was automatically solved
by using the Fisher–Pitman algorithm. Also in 1996, Hayes published an article in
which he provided permutation tests for the Macintosh computer [600], and in 1997
Tracey provided a FORTRAN computer program for computing a randomization test
of hypothesized order relations [1369].

It is abundantly evident that permutation methods, both exact and resampling-
approximation, depend on high-speed computing and also that resampling-
approximation permutation methods, where a large random sample of all possible
permutations of the data is examined, depend on computer-based uniform
pseudorandom number generators (q.v. page 211). In 1996 Yadolah Dodge of
the Statistics Group at the University of Neuchâtel, Switzerland, surveyed existing
computer-based pseudorandom number generators, noting deficiencies in length
of cycles, repeatability, speed, and approximation to a uniform distribution [355].
In addition, he observed that a uniform pseudorandom number generator should
produce a distribution that is “normal,” explaining that a distribution is considered
to be normal in base 10 if all digits 0; 1; : : : ; 9 appear with equal frequency in its
decimal expansion, as well as all blocks of digits of the same length [355, p. 342].

Dodge proposed that the decimal expansion of 
 was a natural source of a
uniform random-number generator, explaining that such a uniform random-number
generator lacked cycles of any length, was widely available, had an excellent
approximation to the uniform distribution, and was normal, just as all irrational
numbers are normal.34 Dodge concluded that “[t]he probability that 
 is normal is
hence equal to one” and “[a] random sequence formed by the digits of 
 will satisfy
all statistical tests of randomness with probability one” [355, p. 342].

34In 1996 
 had been calculated to 3 � 231 D 6;442;450;938 decimal digits. On 22 October 2011
Alexander Yee and Shigeru Kondo announced that 
 had been calculated to 10 trillion digits on a
dedicated desktop computer; the execution time was 371 days.
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In 1998 Gebhard and Schmitz published two articles on permutation methods
[502, 503]. In the first article they showed that permutation methods had optimum
properties for both continuous and discrete distributions. A variety of examples
illustrated permutation tests for the continuous distributions: normal, gamma,
exponential, chi-squared, and Weibull; and for the discrete distributions: Poisson,
binomial, and negative binomial. In the second article they formulated an efficient
computer algorithm for computing the critical region. The algorithm was based on
earlier work by Pagano and Tritchler that utilized a fast Fourier transform (q.v. page
338) [502, p. 83]. In 1998 Berry and Mielke developed a FORTRAN program for
permutation covariate analyses of residuals based on Euclidean distances [149].

5.28 Page–Brin and Google

No account detailing the development of computing in this period would be
complete without mention of Larry Page and Sergey Brin, the Stanford graduate
students who co-founded Google, Incorporated in 1998 and which is now the
Internet’s most-visited Web site.

L. Page
Lawrence (Larry) Page was born in 26 March 1973 in East Lansing, Michigan,
where both his father and mother were professors of computer science at
Michigan State University. Page’s father was a pioneer in computer science
and artificial intelligence and his mother taught computer programming. Page
earned a B.S. degree in engineering from the University of Michigan in
1995 and entered Stanford University the same year as a graduate student
in computer engineering, where he earned his master’s degree. It was while
Page was at Stanford that he met Sergey Brin, who was assigned to show Page
around the computer science department when Page first entered Stanford
[217, 1084].

S.M. Brin
Sergey Mikhaylovich Brin was born on 21 August 1973 in Moscow, Russia.
His parents immigrated to the United States when Brin was 6 years old. Like
Larry Page, Brin’s early education was at a Montessori school. In 1990 Brin
enrolled at the University of Maryland, where his father was professor of
mathematics, studying computer science and earning his B.A. degree in 1993.
Brin then entered Stanford University in 1993 as a graduate student, where he
earned his master’s degree in computer science in 1995 [218].



5.29 Spino–Pagano and Trimmed/Winsorized Means 347

Google
As a research project at Stanford University, Brin and Page created a search
engine that listed results according to the popularity of the pages. They call
the search engine Google as a play on the mathematical term “Googol,” which
is a 1 followed by 100 zeroes. After raising $1 million from family, friends,
and other investors, Brin and Page launched Google in 1998 in the garage
of a friend, Susan Wojcicki, at 232 Santa Margarita, Menlo Park, California,
which they rented for $1,700 a month.35 Page ran Google as co-president
along with Brin until 2001, when they hired Eric Schmidt as Chairman and
CEO of Google. In 2004 Google went public, raising $1.67 billion in an
initial public offering. Today, Google is the Internet’s most visited Web site,
employing more than a million servers around the world to process over a
billion search requests every day, accessing an index of trillions of Web pages.
At the time of this writing, Larry Page is CEO of Google, Eric Schmidt is
Executive Chairman, and Sergey Brin is President of Special Projects. Both
Page and Brin receive an annual salary of one dollar [217, 540].

5.29 Spino–Pagano and Trimmed/Winsorized Means

In 1991 Spino and Pagano published two articles on the efficient calculation of the
permutation distribution for robust two-sample statistics using either trimmed or
Winsorized means [1308, 1309].

Trimming and Winsorizing
Given a sample of n observations, trimming involves removing k of the
highest and l of the lowest values, then computing the desired statistic on the
remaining n � k � l values. For example, consider n D 9 observed ordered
values f3; 9; 12; 14; 14; 15; 19; 23; 37g and let k D l D 2. The trimmed
sample of n�k� l D 9�2�2 D 5 values would then be f12; 14; 14; 15; 19g,
where the two highest values (23 and 37) and the two lowest values (3 and 9)
have been removed.

Winsorizing, on the other hand, involves substituting the k highest values
with the k � 1 value and substituting the l lowest values with the l C 1 value,
then computing the desired statistic on the n values. For example, as before,

(continued)

35Sergey Brin married Anne Wojcicki, Susan’s younger sister, in May 2007.



348 5 1980–2000

consider n D 9 observed ordered values f3; 9; 12; 14; 14; 15; 19; 23; 37g and
let k D l D 2. The Winsorized sample of n D 9 values would then be
f12; 12; 12; 14; 14; 15; 19; 19; 19g, where the underlined values are the l C
k D 2C 2 D 4 substituted values.36

Conventionally, in both trimming and Winsorizing, k is set equal to
l . Typically, trimming is used with means and Winsorizing with standard
deviations and variances.

In both papers they argued that conventional statistical tests were not sufficiently
robust in the presence of violations of distributional assumptions, and that the
problem was especially acute with small samples and with the existence of outliers,
noting that Hampel, Ronchetti, Rousseeuw, and Stahel had previously pointed out
in 1986 that permutation tests based on the sample mean generally have very little
power when outliers are present [582].

Spino and Pagano sought to improve the efficiency of permutation tests by using
a more robust statistic; viz., the trimmed or Winsorized mean. This was an approach
advocated by Lambert for two-sample tests [791] and by Welch and Gutierrez for
the trimmed mean [1433]. To this end they utilized an efficient polynomial-time
algorithm previously developed by Pagano and Tritchler [1083] that calculated the
characteristic function of the data using a recursive difference equation and then
inverted the characteristic function using a fast Fourier transform (q.v. page 338).
Although Spino and Pagano recommended an algorithm that provided a computa-
tionally simple procedure for calculating the permutation distribution of the trimmed
or Winsorized mean in small sample research situations, they raised an interesting,
but unanswered, question near the end of their first article [1308]. Since the Pagano
and Tritchler algorithm utilized Monte Carlo randomization (i.e., resampling) of
trimmed or Winsorized means when comparing two samples, the question was:
should the trimming or Winsorizing be done to each randomization of the data
prior to, or after, dividing the randomized data into the two samples. Thus, the
difference between the two randomization scenarios hinges upon the order in which
the random assignment mechanism is invoked—before or after the observations
have been trimmed or Winsorized.

Specifically, the first scenario involves trimming or Winsorizing the combined
samples by removing or replacing k of the largest observations and l of the smallest
observations, then randomly dividing the randomized data into the two samples,

36Winsorizing, or Winsorization, is named for the physiologist-turned-biostatistician Charles
P. Winsor [1380, p. 18]. It was Charles Winsor who convinced John Tukey to convert from
mathematics to statistics while both were at Princeton University’s Fire Control Research Office in
the 1940s [814, p. 194]. As Tukey noted in his foreword to Volume VI of The Collected Works of
John W. Tukey, “[i]t was Charlie, and the experience of working on the analysis of real data, that
converted me to statistics. By the end of late 1945, I was a statistician rather than a topologist . . . ”
[871, p. xlviii].
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as suggested by Lambert [791]. The second scenario randomizes the observations
into two samples, then trims or Winsorizes each sample separately by removing or
replacing k1 of the largest and l1 of the smallest observations from Sample 1 and
k2 of the largest and l2 of the smallest observations from Sample 2, as suggested by
Randles and Wolfe [1153].

Incidentally, of interest is that the most extreme case of either trimming or
Winsorizing when half of the ordered data on both sides is trimmed or Winsorized
yields the median. Thus, this extreme case is associated with the robust form
of MRPP (q.v. page 254) when the data and analysis spaces are congruent
[938, 939, 941, 943, 959]. Specifically, when trimming with ordered observations
where the number of observations, n > 1, is an odd number, .n � 1/=2 of the
observations are eliminated from both the left and right tails, leaving the observation
occupying the .n C 1/=2 position, counting from either tail, which is the middle
observation or the median. Trimming with an even number of ordered observations,
n > 2, involves eliminating n=2 � 1 observations from both the left and right tails,
leaving any value in the interval of median values from the n=2 to n=2C 1 ordered
observations, where the n=2 and n=2 C 1 ordered values are typically averaged
to determine the median. Winsorizing a set of n ordered observations is similar to
trimming a set of ordered observations, except that observations from both the left
and right tails are not eliminated, but instead converted from their original values to
the nearest adjacent value (q.v. page 347).37

5.30 May–Hunter and Advantages of Permutation Tests

In 1993 Richard B. May and Michael A. Hunter, two Canadian psychologists,
published a short article on “Some advantages of permutation tests,” thereby
joining the ranks of those promoting the use of permutation methods for testing
of hypotheses such as Eugene Edgington, Alvan Feinstein, Bryan Manly, Oscar
Kempthorne, and John Tukey [908]. They laid out in an elementary and very
readable fashion the rationale and advantages of permutation tests, illustrating
permutation methods with a two-sample test for means. Their description of the
permutation model is so concise and captures the essence of permutation tests so
well, it is worth quoting, in part:

[a]s early as 1937, Pitman pointed out that the permutation model approaches significance
testing in a fashion backwards to the normal model. With the normal model you must first
know something about a theoretical parent distribution . . . and evaluate the data in light of
this. The permutation model starts with the data and generates a set of outcomes to which
the obtained outcome is compared. The reference distribution, or permutation distribution,
is derived from all possible arrangements of the data [908, p. 402].

37Trimming has long been advocated by the psychologist Rand Wilcox. His extensive writings on
the subject have provided a modern impetus to the procedure of trimming and, to a lesser extent,
Winsorizing [1448–1452].
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It should be noted that in their comparison of permutation and normal-theory
models, they gave the null hypothesis as H0W Nx1 D Nx2 and H0W�1 D �2, respectively,
thereby reinforcing the fact that permutation tests are non-parametric and do not
necessarily make inferences about populations, only the observed samples.

5.31 Mielke–Berry and Tests for Common Locations

In 1994 Mielke and Berry presented permutation tests for common locations
among g samples with unequal variances [951]. As they explained, in completely
randomized experimental designs where population variances are equal under the
null hypothesis, it is not uncommon to have multiplicative treatment effects that
produce unequal variances under the alternative hypothesis. Mielke and Berry
presented permutation procedures to test for (1) median location and scale shifts,
(2) scale shifts only, and (3) mean location shifts only. In addition, corresponding
multivariate extensions were provided.

Consider a completely randomized experiment where � D f!1; : : : ; !N g
denotes a finite sample of N subjects obtained from some super population and the
sample is exhaustively partitioned into g disjoint groups denoted by S1; : : : ; Sg . Let
xI denote a response measurement for subject !I (I D 1; : : : ; N ) and let nk � 2 be
the a priori number of subjects randomly assigned to treatment Sk (k D 1; : : : ; g).
Also, let

	I;J D
ˇ̌
xI � xJ

ˇ̌v
denote the distance between the univariate response measurements of subjects !I

and !J (xI and xJ ), where v > 0. If v D 1, then 	I;J is the ordinary Euclidean
distance between response measurements and if v D 2, 	I;J is the squared
Euclidean distance between response measurements.

For clarification, consider the pairwise sum given byX
I<J

ˇ̌
xI � xJ

ˇ̌v
;

where x1; : : : ; xN are univariate response values and
P

I<J is the sum over I and J

such that 1 � I < J � N . Let x1;N � � � � � xN;N be the order statistics associated
with x1; : : : ; xN . If v D 1, then the inequality given byX

I<J

ˇ̌
xI � xJ

ˇ̌ � ˇ̌N � 2i C 1
ˇ̌ˇ̌

xi;N � �
ˇ̌

holds for all � , and equality holds if � is the median of x1; : : : ; xN . If v D 2, then
the inequality given by
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X
I<J

�
xI � xJ

	2 � NX
iD1

�
xi � �

	2

holds for all � , and equality holds if � is the mean of x1; : : : ; xN [951].
Location-shift power comparisons among the parametric Bartlett–Nanda–Pillai

trace test, a permutation test with Euclidean commensuration, a permutation
test with Hotelling commensuration with v D 1, and a permutation test with
Hotelling commensuration with v D 2 were conducted using alpha levels of
0.05 and 0.01 for five bivariate distributions: normal, uniform, exponential, log-
normal, and Cauchy. They found that the Hotelling commensuration permutation
test with v D 2 and the Bartlett–Nanda–Pillai trace test performed very well for
both the bivariate normal and bivariate uniform distributions. For the bivariate
exponential, bivariate log-normal, and bivariate Cauchy distributions, the Euclidean
commensuration permutation test and the Hotelling commensuration permutation
test with v D 1 performed much better than either test based on v D 2. Finally,
the Euclidean commensuration permutation test performed better than the Hotelling
commensuration permutation test with v D 1 for all distributions.

5.32 Kennedy–Cade andMultiple Regression

In 1996 Peter Kennedy and Brian Cade published an article on permutation tests for
multiple regression [749]. In this defining article they compared and evaluated four
generic methods of conducting a permutation test in the context of linear multiple
regression, conceding that a universally-accepted application of the permutation test
procedure for linear regression with a single predictor already existed. Using the
classical linear regression model given by

y D Xˇ C Z� C ";

where ˇ and � are parameter vectors and X and Z are corresponding matrices of
observations on explanatory variables, they sought to test � D 0.

The first method they evaluated to test � D 0 they called the “shuffle Z” method.
In this method the F statistic for testing � D 0 is calculated and compared to
F statistics produced by shuffling the Z variables as a group. This is a method
employed by Oja [1052], Collins [269], and Manly [875], although both Welch
[1432] and ter Braak [1345] expressed concerns about the method.

The second method they called the “shuffle y” method. In this method, advocated
by Manly [875, pp. 91–111], the F statistic for testing � D 0 is calculated and
compared to F statistics produced by shuffling the y variable.

The third method they called the “residualized y” method. They noted that
Levin and Robbins [822] and Gail, Tan, and Piantadosi [491] suggested this method
whereby they residualized y for X and then treated residualized y as the dependent
variable in a regression on Z. In this method the F statistic for testing � D 0 is



352 5 1980–2000

calculated and compared to F statistics produced by shuffling Z on the residualized
y variable.

The fourth method was called the “residualize both y and Z” method. In this
method both y and Z are residualized for X and then shuffled residualized y is
regressed on residualized Z. Kennedy and Cade explained that Beaton [89] and
Freedman and Lane [478] suggested regressing y on X, shuffling the residuals from
this regression and adding them to the predicted y to form a new y vector which
is then regressed on X and Z. They noted that this method is identical to the fourth
method in which both y and Z are residualized.

The four generic methods of conducting a permutation test in the context of
multiple regression were evaluated using Monte Carlo studies based on 1,000
replications. Kennedy and Cade recommended the residualize y and Z method as it
alone had desirable repeated-sample properties [749].

5.33 Blair et al. and Hotelling’s T 2 Test

In 1994 Blair, Higgins, Karniski, and Kromrey described multivariate permutation
tests that could be substituted for Hotelling’s generalized T 2 test [169]. They listed
four major limitations of Hotelling’s T 2 test:
1. The assumption of population multivariate normality.
2. The need for more subjects than variables.
3. The potential lack of power to detect specific alternatives.
4. The lack of an easily-obtained one-sided testing procedure.

Following the notation of Blair et al., let xi D .xi1; : : : ; xip/ and yi D .yi1;

: : : ; yip/ be p-dimensional vectors denoting observations taken on the i th subject
under control and treatment conditions, respectively, let di D .xi1 � yi1; : : : ; xip �
yip/ denote the p-dimensional difference vector that represents the change in
response from control to treatment, and let �di denote the negative vector of di .

The significance of statistic t is computed as follows. Let to denote the value
of the test statistic computed on the observed data, and for each of the 2n possible
assignments to the n vectors of di , compute the value of the test statistic t . Count
the number, N.to/, for which t is equal to or greater than to, then the exact one-sided
probability value of the test is given by

p D N.to/=2n:

Alternatively, define an approximate permutation test as

p D N.to/=M;

where M is the number of resampled random permutations.
Blair et al. then defined three test statistics. The first test statistic, tsum, was

defined as
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tsum D
pX

j D1

tj ;

where tj denoted the usual one-sample t statistic computed on the j th element of
d. The second test statistic, tjsumj, was defined as

tjsumj D
pX

j D1

ˇ̌
tj
ˇ̌
:

The final test statistic, tmax, was defined as

tmax D t 0
j ;

where t 0
j was equal to the tj that was greatest in value. Blair et al. then conducted

a Monte Carlo study based on 1,000 random permutations to compare the power of
the three test statistics to that of Hotelling’s generalized T 2 test under a variety of
treatment-effect models [169].

5.34 Mielke–Berry–Neidt and Hotelling’s T 2 Test

In 1996 Mielke, Berry, and Neidt published a new permutation procedure for
Hotelling’s multivariate matched-pairs T 2 test [982]. They explained that since
Hotelling’s T 2 test obtains a vector of measurements on each subject in each of two
time periods, the test is applicable in two different analyses. Consider n subjects
and c raters. It is possible to block on the n subjects and examine the multivariate
difference among the c raters at the two time periods; alternatively, it is possible to
block on the c raters and examine the multivariate difference among the n subjects
at the two time periods.

In the first analysis Hotelling’s T 2 test statistic is distributed under the null
hypothesis (H0) as an F distribution with c and n � c degrees of freedom in the
numerator and denominator, respectively. In the second analysis Hotelling’s T 2 test
statistic is distributed under H0 as an F distribution with n and c � n degrees
of freedom in the numerator and denominator, respectively. Consequently, one of
the two analyses will yield a df in the denominator that is less than or equal to
zero. Moreover, when n D c neither scenario is possible. Mielke et al. developed
a multivariate extension of a univariate permutation test for matched pairs that
eliminated the problem and was shown to be more discriminating than the Hotelling
T 2 test [982].

Following the notation of Mielke et al., let n subjects be associated with a
multivariate pre-treatment and post-treatment matched-pairs permutation test and
let fx11r ; : : : ; xc1r g and fx12r ; : : : ; xc2r g denote c-dimensional row vectors with
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elements comprised of the c measurements on the r th subject from the pre- and
post-treatments, respectively, where r D 1; : : : ; n [982]. Also let

d1r D

2
64

d11r

:::

dc1r

3
75 ;

where dh1r D xh1r �xh2r for h D 1; : : : ; c, denote the c-dimensional column vector
of differences between the pre- and post-treatment measurements for the r th of n

subjects, and let d2r D �d1r denote the c-dimensional origin reflection of d1r for
r D 1; : : : ; n. The probability (P ) under the null hypothesis of the matched-pairs
experiment is P.d1r / D P.d2r / D 0:5 for r D 1; : : : ; n. Now consider the test
statistic given by

ı D
 

n

2

!�1 X
r<s

	 .d1r ; d1s/ ;

where

	 .d1r ; d1s/ D
�

.d1r � d1s/
0 .d1r � d1s/

�1=2

is the c-dimensional Euclidean distance between the r th and sth subjects’ differ-
ences, and the sum

P
r<s is over all r and s such that 1 � r < s � n.

If the c measurements are in different units, then the measurements must be made
commensurate, i.e., standardized to a common unit of measurement (q.v. page 301).
The replacement of dhir with d �

hir D dhir=ˆh, where

ˆh D
X
r<s

��dh1r

ˇ̌ � ˇ̌dh1s

��
for h D 1; : : : ; c, ensures that each measurement makes a similar contribution in the
c-dimensional space since

X
r<s

��d�
h1r

ˇ̌� ˇ̌d�
h1s

�� D 1

for h D 1; : : : ; c. This commensuration is invariant relative to any permutation
under the null hypothesis and is termed Euclidean commensuration (q.v. page 301).

If the observed value of ı is denoted by ıo, then the exact probability (P ) value
is given by P .ı � ıo jH0/, i.e., the proportion of the 2n possible ı values that are
less than or equal to ıo under H0. If the observed value of Hotelling’s T 2 is denoted
by T 2

o , then the analogous exact P value is given by P
�
T 2 � T 2

o jH0

	
, i.e., the

proportion of the 2n possible T 2 values that are greater than or equal to T 2
o under H0.
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5.35 Cade–Richards and Tests for LAD Regression

In 1996 Brian Cade and Jon Richards developed a permutation test based on
proportionate-reduction-in-sums of absolute deviations when passing from reduced-
to full-parameter models for testing hypotheses about least absolute deviation

(LAD) estimates of conditional medians in linear regression models [233]. Follow-
ing the notation of Cade and Richards, in the regression model y D Xˇ C ", where
y is an n � 1 vector of observed responses, ˇ is a .p C 1/ � 1 vector of unknown
regression parameters, X is an n � .p C 1/ matrix of predictors, and " is an n � 1

vector of random errors, the .pC1/�1 LAD regression estimate of ˇ, b, minimizes

nX
iD1

ˇ̌
yi �

pX
j D0

bj xij

ˇ̌
:

For the test statistic, partition X D .X1; X2/, where X1 is n � .p C 1/ and X2 is
n � q, and partition ˇ D .ˇ1; ˇ2/, where ˇ1 is a .p C 1/ � 1 vector of nuisance
parameters and ˇ2 is a q � 1 vector of parameters tested by the null hypothesis
H0Wˇ2 D 0 for the model y D X1ˇ1 C X2ˇ2 C ". The statistic proposed by Cade
and Richards for testing this null hypothesis compares the proportionate-reduction-
in-sums of absolute deviations between estimates for reduced- and full-parameter
models. Thus, the observed test statistic for H0Wˇ2 D 0 is

To D SAR � SAF

SAF
;

where

SAR D min
nX

iD1

ˇ̌
yi �

pX
j D0

bj xij

ˇ̌

and

SAF D min
nX

iD1

ˇ̌
yi D

pCqX
j D0

bj xij

ˇ̌
:

Large values of the observed statistic To are evidence against the null hypothesis.
Based on power simulations of 5,000 resamplings, Cade and Richards demon-

strated that the permutation test using full-model LAD estimates had greater
relative power than normal-theory tests employing least-squares estimates for
asymmetric, chi-squared error distributions, and symmetric, double-exponential
error distributions for models with one (n D 35 and n D 63) and three (n D 63)
independent variables. The power simulations demonstrated the low sensitivity of
LAD estimates and permutation tests to outlier contamination and heteroscedasticity
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that was a linear function of X and increased sensitivity to heteroscedasticity
that was a function of X2 for simple regression models [233]. Three permutation
procedures for testing partial models in multiple regression were compared by
Cade and Richards: (1) permuting residuals from the reduced model, (2) permuting
residuals from the full model, and (3) permuting the dependent variable. They
found that permuting residuals from the reduced model maintained nominal error
rates best under the null hypothesis for all error distributions and for correlated and
uncorrelated independent variables [233].

5.36 Walker–Loftis–Mielke and Spatial Dependence

In 1997 Walker, Loftis, and Mielke developed a class of multivariate permutation
procedures for spatial dependence, Multivariate Sequential Permutation Analyses
(MSPA), and applied the procedures to test for correlation in a geostatistical analysis
[1408]; see also a 1991 article by Mielke on this topic [943]. As with most
permutation tests, given a finite set of objects an observed spatial pattern of objects
is compared against all possible permutations of spatial patterns to determine the
exact probability value of the observed spatial pattern. As such, MSPA is closely
related to the multi-response permutation procedures (MRPP) discussed in Chap. 4
(qq.v. pages 254–265).

Following the notation of Walker et al., consider a finite set of N objects
f!1; : : : ; !N g where fx1I ; : : : ; xrIg denotes r response measurements on object !I ,
I D 1; : : : ; N . If the sequence of the objects denotes the observed sequence, then
the null hypothesis of MSPA dictates that any one of the N Š possible realizations of
the observed sequence occurs with equal chance. Thus, under the null hypothesis,
the probability of the observed sequence is 1=N Š. The MSPA test statistic is given by

ı D 1

N � 1

NX
ID2

	I�1; I ;

where

	I; J D
"

rX
hD1

.xhI � xhJ/2

#v=2

is a distance measure between adjacent objects !I and !J . As with MRPP, if v D 1,
then 	I;J is an r-dimensional Euclidean distance, whereas values of 	I;J for v > 0

and v 6D 1 represent complex distance functions, where the data and analysis spaces
are not congruent.

If the observed value of ı, ıo, is small relative to the N Š possible values of ı, then
a first-order autoregressive spatial pattern is suggested. The exact probability (P )
value associated with the observed sequence is given by
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P D number of ı values � ıo

N Š
:

For situations when N Š is very large, Walker et al. presented procedures for obtain-
ing resampling-approximation probability values and also for fitting a standardized
statistic to the Pearson type III distribution (q.v. page 261).

5.37 Frick on Process-Based Testing

In 1998 Frick published an article that challenged the standard textbook treatment
of conventional statistical tests based on random sampling from an infinite pop-
ulation [482]. He termed this treatment the “population-based” interpretation of
statistical testing (q.v. page 3), and noted three problems with the population-based
treatment:
1. Researchers rarely make any attempt to randomly sample from a defined

population.38

2. Even if random sampling actually occurred, conventional statistical tests do not
precisely describe the population.

3. Researchers do not generally use statistical testing to generalize to a population.
Against the population-based interpretation Frick proposed what he called a

“process-based” interpretation, arguing that random sampling is a process, not the
outcome of a process; in this regard, see also a 1992 article by Sohn [1292]. To this
end, Frick recommended consideration of permutation methods.

To illustrate the process interpretation, Frick explained that R.A. Fisher, in
discussing his experiment of the lady tasting tea (q.v. page 58) in which the lady
claimed that she could determine which ingredient (tea or milk) was added first,
wrote that “the judgments given are in no way influenced by the order in which the
ingredients have been added” [461, pp. 15–16]. This, Frick explained, was a claim
about process, not populations.

5.38 Ludbrook–Dudley and Biomedical Research

In 1998 John Ludbrook and Hugh Dudley published an influential article titled
“Why permutation tests are superior to t and F tests in biomedical research” [856].
The article, appearing as it did in The American Statistician attracted a great deal
of attention and elicited comments by Douglas Langbehn [798], Vance Berger
[98], James Higgins [614], and Colin Mallows [872], as well as a rejoinder by

38This reiterated the position held, for example, by Altman and Bland [15], Bradbury [200],
Edgington [389], Feinstein [421], LaFleur and Greevy [789], Ludbrook [850], Ludbrook and
Dudley [856], and Still and White [1324], that assuming a random sample from an infinite
population was untenable in many disciplines.
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Ludbrook and Dudley [857]. Ludbrook and Dudley attempted, in this review article,
to draw attention to a serious misunderstanding between statisticians and biomedical
scientists.39 They noted that statisticians believe that biomedical researchers conduct
most experiments by taking random samples and therefore recommend statistical
procedures that are valid under the population model of inference (q.v. page 3).
Given that biomedical researchers do not usually employ random sampling, but
instead rely on randomization of a nonrandom sample, Ludbrook and Dudley argued
that the population model did not apply and strongly recommended statistical
procedures based on data-dependent permutations of the observations.

Contained within this article are concise, but thorough, synopses of the two
models of statistical inference: the Neyman–Pearson population model and the
Fisher permutation model (q.v. page 3), followed by a comparison of the two models
illustrated with analyses of the differences between the means of two independent
samples. They concluded the article with a quote from Oscar Kempthorne that they
felt summarized the substance of the review:

[w]hen one considers the whole problem of statistical inference, that is of tests of
significance, estimation of treatment differences and estimation of the errors of estimated
differences, there seems little point in the present state of knowledge in using [a] method of
inference other than randomization analysis (Kempthorne, quoted in Ludbrook and Dudley)
[719, p. 966].

5.39 The FisherZ Transformation

Chapter 5 concludes with an illustration of the utility of permutation methods
in a revealing application that could only be accomplished through the use of
Monte Carlo (resampling-approximation) permutation methods. In 2000 Berry
and Mielke utilized Monte Carlo permutation methods to investigate the Fisher
Z transformation of the sample Pearson bivariate product-moment correlation
coefficient between variables x and y, rxy [156]. They also investigated two related
techniques introduced by Gayen in 1951 [499] and Jeyaratnam in 1992 [685].
In 1915 and 1921 R.A. Fisher obtained the basic distribution of rxy and showed
that, when bivariate normality is assumed, a logarithmic transformation of rxy,

Z D 1

2
ln

�
1C rxy

1 � rxy

�
D tanh�1.rxy/;

becomes normally distributed with a mean of approximately

1

2
ln

�
1C �xy

1� �xy

�
D tanh�1.�xy/

39John Ludbrook is Professional Research Fellow in the University of Melbourne, Department of
Surgery, Royal Melbourne Hospital and Hugh Dudley is Professor Emeritus at the University of
London, Department of Surgery, St. Mary’s Hospital Medical School.
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and a standard error that approaches

1p
n � 3

as n becomes increasingly large [442, 444].
The 1915 paper by R.A. Fisher on “Frequency distribution of the values of the

correlation coefficient in samples from an indefinitely large population,” published
in Metron, contained the formula for Z, but it appears almost as an afterthought
in the last sentence of the 15 page paper [442, p. 521]. The 1921 paper “On
the ‘probable’ error of a coefficient of correlation deduced from a small sample,”
published in Biometrika, was the second of three papers dealing with the sampling
errors of correlation coefficients, and is more extensive than the first [444].40 The
third paper in the series on “The distribution of the partial correlation coefficient”
dealt only with partial correlation coefficients and was published in Metron in
1924 [447].

Berry and Mielke utilized Monte Carlo permutation methods to compare combi-
nations of sample sizes and population parameters for seven bivariate distributions.
Both confidence intervals and hypothesis testing were examined for robustness
to non-normality [156]. The seven distributions utilized for the Monte Carlo
simulations were the normal distribution, N.0; 1/, given by

f .x/ D .2
/�1=2 exp.�x2=2/ I

the generalized logistic distribution, GL, given by

f .x/ D .exp.�x/=�/1=� .1C exp.�x/=�/�.�C1/=�

with � D 1:0, 0.1, and 0.01; and the symmetric kappa distribution, SK, given by

f .x/ D 0:5��1=�
�
1C jxj�=�

	�.�C1/=�

with � D 2, 3, and 25. The seven distributions ranged from the normal distribution,
N.0; 1/, the logistic distribution, GL.1:0/, positively skewed distributions, GL.0:1/

and GL.0:01/, heavy-tailed distributions, SK.2/ and SK.3/, to a uniform-like
distribution with light tails, SK.25/.

For the analyses of confidence intervals, the Monte Carlo analyses were based
on L D 1;000;000 random samples of size n generating simulated probability
values for the seven bivariate distributions, N.0; 1/, GL.1:0/, GL.0:1/, GL.0:01/,
SK.2/, SK.3/, and SK.25/, with nominal values of 1 � ˛ D 0:90, 0.95, and 0.99,

40It should be noted that the second paper was written in response to a stinging criticism of the
1915 paper by H.E. Soper, A.W. Young, B.M. Cave, A. Lee, and K. Pearson that had appeared
in Biometrika in 1916 and was titled “On the distribution of the correlation coefficient in small
samples” [1297].
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population parameter �xy D 0:0, 0.4, 0.6, and 0.8, and sample size n D 10, 20,
40, and 80.41 A common seed ensured valid comparisons. Two confidence interval
analyses were conducted. The first considered confidence intervals based on the
Fisher Z transformation and the second considered confidence intervals based on
an alternative method proposed by Jeyaratnam in 1992 [685].

For the analyses of hypothesis testing, the Monte Carlo tests of hypotheses
were based on the same seven distributions, N.0; 1/, GL.1/, GL.0:1/, GL.0:01/,
SK.2/, SK.3/, and SK.25/. Each simulation was based on L D 1;000;000 bivariate
random samples of sizes n D 20 and 80, for �xy D 0:0 and 0.6, and compared
to nominal upper-tail probability values of ˛ D 0:99, 0.90, 0.75, 0.50, 0.25, 0.10,
and 0.01. A common seed ensured valid comparisons. Two tests of �xy 6D 0:0 were
conducted. The first test of hypothesis was based on the Fisher Z transformation
and the second test of hypothesis was based on a transformation proposed by Gayen
in 1951 [499].

Based on extensive Monte Carlo simulations, Berry and Mielke concluded that
considerable caution should be exercised when using the Fisher Z transform, or
related techniques such as those proposed by Gayen and Jeyaratnam, as these
methods clearly are not robust to deviations from normality when j�xyj 6D 0:0

[156, p. 1113]. Most surprisingly, for the heavy-tailed distributions, SK.2/ and
SK.3/, and the skewed distributions, GL.0:1/ and GL.0:01/, small samples, e.g.,
n D 10, provided better estimates than large samples, e.g., n D 80 [156,
p. 1112]. The authors explained that larger samples obviously have a greater
chance of selecting extreme values than small samples. Consequently, the Monte
Carlo containment probabilities became worse with increasing sample size when
heavy-tailed distributions were encountered [156, p. 1113].42

Fisher originally stipulated that the Z transform was appropriate only when
either �xy D 0:0 or the underlying population distribution was bivariate normal, a
requirement that has been consistently ignored by contemporary researchers. Berry
and Mielke confirmed that Fisher’s statement was absolutely correct [156]. Table 5.4
contains upper-tail Monte Carlo probability values based on L D 1;000;000 for the
bivariate N.0; 1/ distribution with specified nominal values of P D 0:99, 0.90, 0.10,
and 0.01, �xy D 0:0 and 0.6, and n D 20 and 80 for the Fisher Z transformation.
Inspection of Table 5.4 confirms the close agreement between the probability values

41As a testament to computing power in 2000, the authors computed three different confidence
intervals at three confidence levels on four values of the population parameter 1,000,000 times
with four different sample sizes of 10, 20, 40, and 80; a feat that was inconceivable just a decade
earlier.
42Authors’ note: one of the authors often advises his students regarding the Fisher Z transform:
1. Do not use the Fisher Z transformation.
2. If you do use it, don’t believe it.
3. If you do believe it, don’t publish it.
4. If you do publish it, don’t be the first author.
Adapted from a description of a tiltmeter in Volcano Cowboys by Dick Thompson [1357, p. 258].
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Table 5.4 Upper-tail probability values compared with nominal values (P ) for a bivariate N.0; 1/

distribution with Fisher’s Z transform on tests of hypotheses for �xy D 0:0 and �xy D 0:6 with
n D 20 and n D 80

n D 20 n D 80

P �xy D 0:0 �xy D 0:60 �xy D 0:0 �xy D 0:6

0.99 0.9894 0.9915 0.9898 0.9908
0.90 0.9016 0.9147 0.9009 0.9065
0.10 0.0983 0.1098 0.0999 0.1054
0.01 0.0108 0.0126 0.0102 0.0110

Note: Table 5.4 adapted from Berry and Mielke [156, p. 1108]

based on the Fisher Z transform and the nominal values for both n D 20 and
n D 80.

5.40 Looking Ahead

Although the chronicle of the development of permutation methods in this volume
concludes with the year 2000, the authors would be remiss not to mention some
significant developments after 2000. While permutation methods may be said to
have “arrived” in the period from 1980 to 2000, they may be said to have “erupted”
in the next decade. Advances in computing, including increased speed, enlarged
memory and capacity, canned statistical packages that included permutation add-
ons or modules, and the development of a new computer language, R, enabled a
virtual explosion of new permutation methods and applications.

After 2000, permutation methods continued to be introduced into, spread to,
or expanded in a number of different fields and disciplines, most notably in
medicine, psychology, clinical trials, biology, ecology, environmental science, earth
science, and atmospheric science. Along with a proliferation of journal articles, a
multitude of books on permutation methods appeared. Having all the information
collected and organized in one compact source instead of scattered among the
many journals in myriad disciplines, made it easier for the user to learn about new
and existing permutation methods. Included among these books were volumes by
Good [525, 526] in 2000; Good [527], Mielke and Berry [961], and Pesarin [1120]
in 2001; Lahiri [790] in 2003; Good [531] in 2005; Good [532] and Hirji [629] in
2006; Edgington and Onghena [396], Manly [877], and Mielke and Berry [965] in
2007; and Pesarin and Salmaso [1122] in 2010.

By 2000, a number of the leading statistics programs in the United States had
incorporated permutation methods into their curricula. Many of the permutation
methods courses are taught at the graduate level, but the relative simplicity of
the permutation approach makes it amenable to students who have little back-
ground in statistics or probability theory. Consider that among the top twenty
statistics programs in the United States, as identified by the National Research
Council (NRC) in 2000, six programs had at least one course that was devoted to
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permutation methods (Harvard University; the University of Wisconsin, Madison;
Texas A&M University; the University of Washington; Stanford University; and
the University of California, Los Angeles) and seven programs had at least one
course that included permutation statistical approaches as part of the course (Cornell
University; University of Chicago; the University of North Carolina, Chapel Hill;
Iowa State University; the Pennsylvania State University; Rutgers University;
and the University of Washington). Finally, some university-level textbooks in
statistics have included sections or chapters on permutation methods, e.g., Howell
[656, Chap. 18]. Statistical areas of special interest after 2000 included multiple
regression, analysis of variance, measures of agreement and concordance with
both linear and quadratic weighting, discriminant analysis, matched pairs, survival
analysis, ridit analysis, analysis of trend, robustness and outliers, and multi-way
contingency tables.

Three features of permutation methods were especially prominent in the period
after 2000. The first entailed an increasing criticism of rank-order statistical
procedures with their attendant loss of information due to the substitution of rank-
order statistics for numerical values. In lieu of rank-order statistical procedures,
many researchers advocated the use of permutation methods that utilized the
original numerical values and did not depend on an assumption of normality. The
second feature was a criticism of permutation methods based on squared Euclidean
distances that gave artificial weight to extreme scores and implied a geometry of the
analysis space that differed from the geometry of the ordinary Euclidean data space
in question. An alternative was to develop permutation tests and measures based
on ordinary Euclidean distances that proved to be very robust relative to outliers,
extreme values, and highly skewed distributions. The third feature in this period
was a heavy reliance on resampling-approximation permutation methods instead
of approximate permutation methods based on the exact first three moments of
a continuous distribution that approximated the underlying discrete permutation
distribution (i.e., mean, variance, and skewness). Resampling with a large number of
replications yielded results arbitrarily close to exact results; moreover, in many cases
resampling proved to be more efficient, especially in the analysis of contingency
tables.
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This chapter is included simply to document significant contributions to permutation
statistical methods following calendar year 2000. By 2001, permutation methods
had come of age and advances were comprised more of applications and expansion
into new fields and disciplines than the development of new permutation methods
that had characterized earlier years, although there were some notable exceptions.
While articles on statistical permutation methods continued to be published in the
usual fields of statistics, medicine, psychology, public health, environmental sci-
ence, biology, economics, ecology, and atmospheric science, permutation methods
branched out after 2000 into journals in animal research, bioinformatics, business,
chemistry, clinical trials, industrial engineering, management, operations research,
physiology, and veterinary medicine.

6.1 Overview of This Chapter

By 2001 computing was sufficiently powerful, fast, and available, that permutation
methods, for the first time, were both feasible and practical. Moreover, many
readily-available statistical packages such as StatXact, SPSS, and Stata had incorpo-
rated modules designed to execute a variety of permutation tests. Between 2001 and
2010 more than a dozen books were published on permutation statistical methods,
including both exact and resampling-approximation methods. In addition, several
1000 articles were published on permutation methods in a broad array of disciplines.
Also by 2001, problems with non-normality were widely recognized and new
techniques based on Euclidean-distance measures were introduced and promoted
to counter the deleterious effects of outliers and heavy-tailed distributions [978]. In
many cases the solution to non-normality of substituting ranks for numerical values
was eclipsed by the use of permutation methods that retained the original numerical
values and, like rank tests, did not assume normality.

Because of the vast number of articles and books on permutation statistical
methods and the scope of interests in this period, it is not possible to do justice
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to all the literature. Among the areas of classical statistics explored in this chapter
are the analysis of variance, including one-way, factorial, blocked, and cross-over
designs, as well as multiple comparison of means analyses; linear regression and
correlation, both simple bivariate and multiple, plus quantile, canonical, and tetra-
choric correlation; clinical trials analysis; measures of concordance and agreement,
including weighted and unweighted measures, and extensions to multiple judges;
rank tests, ridit analysis, and power; and Bayesian hierarchical analysis. However,
the permutation statistical literature after 2000 was clearly dominated by four
interest areas: multiple linear regression, the analysis of variance, measures of
agreement and concordance, and contingency table analysis.

This chapter begins with a description of computing after 2000 and concludes
with two views of the literature in this period. The first view provides a brief
description of representative articles organized by year of publication and the second
view provides a more detailed description of selected articles with greater import.

6.2 Computing After Year 2000

One has only to observe the hordes of the digitally distracted trying to navigate a
crowded sidewalk with their various smart-phones, pads, pods, and tablets to realize
that computing power, speed, and accessibility have finally arrived. As Martin
Hilbert documented, in 1986 just 1 % of the world’s capacity to store information
was in digital format, but by year 2000 digital represented 25 % of the total world’s
memory [619]. The year 2002 marked the start of the digital age, as 2002 was the
year that humankind first stored more information in digital than in analog form. By
2007 over 97 % of the world’s storage capacity was digital [619, p. 9]. Moreover,
it was estimated in 2012 that 90 % of the data stored in the world had been created
in just the previous 2 years. Prior to 2001, data storage was measured in bytes,
kilobytes (103), and occasionally in megabytes (106); now data storage is measured
in gigabytes (109), terabytes (1012), petabytes (1015), exabytes (1018), zettabytes
(1021), and even yottabytes (1024).

In 2000, the Intel Pentium processor contained 42 million transistors and ran at
1.5 GHz. In the spring of 2010, Intel released the Itanium processor, code-named
Tukwila after a town in Washington, containing 1.4 billion transistors and running
at 2.53 GHz. On 4 June 2013 Intel announced the Haswell processor, named after
a small town of 65 people in southeastern Colorado with 1.4 billion 3-D chips
and running at 3.50 GHz [1403]. While not widely available to researchers, by
2010 mainframe computers were measuring computing speeds in teraflops. To
emphasize the progress of computing, in 1951 the Remington Rand Corporation
introduced the UNIVAC computer running at 1,905 flops, which with ten mercury
delay line memory tanks could store 20,000 bytes of information; in 2008 the
IBM Corporation supercomputer, code-named Roadrunner, reached a sustained
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performance of one petaflops1; in 2010 the Cray Jaguar was named the world’s
fastest computer performing at a sustained speed of 1.75 petaflops with 360
terabytes of memory; and in November of 2010 China exceeded the computing
speed of the Cray Jaguar by 57 % with the introduction of China’s Tianhe-1A
supercomputer performing at 2.67 petaflops [861].

In October of 2011, China broke the petaflops barrier again with the introduction
of the Sunway Bluelight MPP [62]. In late 2011 the IBM Yellowstone super-
computer was installed at the National Center for Atmospheric Research (NCAR)
Wyoming Supercomputer Center in Cheyenne, Wyoming. After months of testing,
the Wyoming Supercomputer Center officially opened on Monday, 15 October 2012.
Yellowstone was a 1.6 petaflops machine with 149.2 terabytes of memory and
74,592 processor cores and replaced an IBM Bluefire supercomputer installed in
2008 that had a peak speed of 76 teraflops. Also in late 2011, IBM unveiled the Blue
GenenP and nQ supercomputing processing systems that can achieve 20 petaflops.
At the same time, IBM filed a patent for a massive supercomputing system capable
of 107 petaflops.

From a more general perspective, in 1977 the Tandy Corporation released the
TRS-80, the first fully assembled personal computer, distributed through Radio
Shack stores. The TRS-80 had 4MB of RAM and ran at 1.78 MHz. By way of
comparison, in 2010 the Apple iPhone had 131,072 times the memory of the TRS-
80 and was about 2,000 times faster, running at one GHz. In 2012, Sequoia, an
IBM Blue Gene/Q supercomputer was installed at Lawrence Livermore National
Laboratory (LLNL) in Livermore, California. In June of 2012 Sequoia officially
became the most powerful supercomputer in the world. Sequoia is capable of 16.32
petaflops—more than 16 quadrillion calculations a second—which is 55 % faster
than Japan’s K supercomputer, ranked number 2, and more than five times faster
than China’s Tianhe-1A, which was the fastest supercomputer in the world in 2010.

MareNostrum
To document the rapid advancement of computing speed in the twenty-first
century, consider the MareNostrum (Latin for “our sea”) supercomputer in
the Barcelona Supercomputing Center, the second most powerful computer in
Spain and one of the seven supercomputers of the Spanish Supercomputing
Network (SSN). The MareNostrum supercomputer is enscounced in the
deconsecrated Chapel Torre Girona at the Polytechnic University of Catalonia
in Barcelona. MareNostrum weighs 44 tons, has 10,240 central processing
units, 20 terabytes of RAM, 280 terabytes of disk storage, and runs at a peak
performance speed of 94.21 teraflops while working on models of climate

(continued)

1One petaflops indicates a quadrillion operations per second, or a 1 with 15 zeroes following it.
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change and other scientific projects. At the time of its construction in 2004 it
was considered the fourth most powerful computer in the world, but a short 8
years later its speed had been eclipsed by over 100 new supercomputers and
it then ranked as only the 118th most powerful computer in the world in 2012
[1299, 1365].

The future of high-speed computing looks to be very promising for permuta-
tion statistical methods. Looking ahead, computer engineers have set their sights
extremely high and are designing machines that work in exoscale, i.e., three orders
of magnitude above the current frontier.2 In 2011 Richard Murphy, computer
architect at Sandia National Laboratories (SNL) in Albuquerque, New Mexico,
headed up a team to produce an energy efficient computer for the Defense Advanced
Research Projects Agency (DARPA) called X-caliber [1282]. The approach was
based on a distributed architecture where multiprocessors had dedicated sets of
memory chips. At the same time, Intel’s new project, called Runnemede, uses an
innovative technique whereby power is selectively turned on and off to individual
components; graphics chip maker NVIDIA leads a research team called Echelon
in which the graphics chips execute simultaneous operations, rather than just one
operation at a time; and the Angstrom project based at the Massachusetts Institute
of Technology is creating a computer that optimizes settings, such as the number
of processors in use [1282]. Today’s desktop computers rival the supercomputers of
the late 1980s and, given the pace of innovation, it is predicted that by 2020, laptops
will outperform China’s Tianhe-1A supercomputer that presently performs at 2.67
quadrillion operations per second [1282].

In early 2012 two results were announced that promise to bring quantum
computers closer to reality. The world’s thinnest silicon wire, just one atom high
and four atoms wide, was created by a team of researchers from the University of
New South Wales, the University of Melbourne, and Purdue University. The silicon
wire has the same current-carrying capacity as a copper wire. Michelle Simmons,
director of the Centre of Excellence for Quantum Computation and Communication
Technology at the University of New South Wales and the project’s principal
investigator, asserted that the goal of the research was to develop future quantum
computers in which single atoms are used for computation. “We are on the threshold
of making transistors out of individual atoms,” Simmons said [1420]. Indeed,
just 6 weeks later in February 2012 another breakthrough in quantum computing
was made when a team based at the University of New South Wales, the Korea
Institute of Science and Technology, the University of Sydney, and the University of
Melbourne announced that a single-atom transistor had been placed by positioning a
phosphorus atom between metallic electrodes, also made of phosphorus, on a silicon
surface [488].

2One exoflops indicates a quintillion floating operations per second, or a 1 with 18 zeroes after it.



6.2 Computing After Year 2000 367

On 23 April 2012 Intel unveiled new core processors, code-named Ivy Bridge.
These new generation chips for personal computers and hand-held devices were the
first to be made with a three-dimensional (3-D) structure, permitting Intel to pack
more components into the same space as a two-dimensional (2-D) structure. Based
on Intel’s 22-nm tri-gate manufacturing process, the new Intel central processing
unit (CPU) contained 1.4 billion transistors in a scant 160 mm2 area (0.25 in.2). On
4 June 2013 Intel announced a new 4th generation desktop processor code-named
Haswell, after a small town in Colorado, with 1.4 billion transistors, 6 MB of cache,
and running at 3.50 GHz. The Haswell processor was also based on Intel’s 22-
nm, tri-gate manufacturing process and incorporated, for the first time, a voltage
regulator inside the chip. The Haswell processor provided 50 % longer battery life,
three times the amount of standby battery life, and 15 % improved performance
when compared to Ivy Bridge. To put this into perspective, the transistors are so
small that 100 million of them would fit on the head of a pin, whereas the original
transistor built by Bell Laboratories in 1947 was large enough to be pieced together
by hand [244, 1151, 1253].

By 2010, computing power was finally sufficient to accommodate the needs of
computational statisticians utilizing permutation tests. Keller-McNulty and Higgins
concluded on the basis of Monte Carlo results that there was little reason to conduct
exact permutation tests, recommending that researchers use only 1,600 random
samples [714]. Bailer [48], Kim, Nelson, and Startz [756], and McQueen [917]
used only 1,000 random permutations in their studies, and Edgington [391] in
1969 claimed that 999 random permutations of the data (plus the original data
arrangement) were sufficient. Dwass [368] in 1967 argued that 10,000 random
permutations provided results nearly as powerful as complete enumeration, and
Edgington and Khuller [395] concurred. Manly [875, pp. 32–36] and Noreen [1041,
p. 15] argued that for testing at the 0.05 level of significance, 1,000 random
permutations was sufficient. On the other hand, Fitzmaurice, Lipsitz, and Ibrahim
concluded that 200 permutations resulted in a test with a correct type I error rate
[464, p. 944]. Because of increasing computing power, however, by 2010 probability
values based on exact enumeration sometimes exceeded 10,000,000 permutations
and resampling probability values based on 1,000,000 random permutations were
not only recommended [696], but common [965].

Increased computational efficiency paved the way for the introduction of a
number of software statistical packagesfor permutation tests, now widely available
to computational statisticians. Among the most available and popular software
packages for permutation tests are Box Sampler (Microsoft Corp., Redmond,
Washington), S-PLUS (MathSoft, Inc., Seattle, Washington), Statistica (StatSoft,
Inc., Tulsa, Oklahoma), SPSS (SPSS, Inc., Chicago, Illinois), SAS (SAS Institute,
Inc., Cary, North Carolina), Stata (StataCorp LP, College Station, Texas), Blossom
Statistical Software (Fort Collins Ecological Science Center, Fort Collins, Col-
orado), Resampling Stats (Resampling Stats, Inc., Arlington, Virginia), Statistical
Calculator (StatPac, Bloomington, Minnesota), StatXact (Cytel Software Corp.,
Cambridge, Massachusetts), Systat (Systat Software, Inc., Chicago, Illinois), and
Testimate (Institute for Data Analysis and Study Planning, Munich, Germany).
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6.3 Books on Permutation Methods

In addition to permutation statistical software, the period after 2000 saw the
publication of a number of books on permutation methods, including volumes on
Data Analysis by Resampling: Concepts and Applications by Clifford Lunneborg in
2000 [858]; a second edition of Permutation Tests: A Practical Guide to Resampling
Methods for Testing Hypotheses by Phillip Good in 2000 [526]; a second edition
of Permutation, Parametric and Bootstrap Tests of Hypotheses by Phillip Good
in 2000 [525]; a second edition of Resampling Methods: A Practical Guide to
Data Analysis by Phillip Good in 2000 [527]; Permutation Methods: A Distance
Function Approach by Paul Mielke and Kenneth Berry in 2001 [961]; Multivariate
Permutation Tests: With Applications in Biostatistics by Fortunato Pesarin in 2001
[1120]; Resampling Methods for Dependent Data by Soumendra Lahiri in 2003
[790]; a third edition of Permutation Tests: A Practical Guide to Resampling
Methods for Testing Hypotheses, retitled Permutation, Parametric and Bootstrap
Tests of Hypotheses to focus more on parametric and bootstrap procedures by Phillip
Good in 2005 [531]; a third edition of Resampling Methods: A Practical Guide
to Data Analysis by Phillip Good in 2006 [532]; Exact Analysis of Discrete Data
by Karim Hirji in 2006 [629]; a fourth edition of Randomization Tests by Eugene
Edgington and Patrick Onghena in 2007 [396]; a third edition of Randomization,
Bootstrap and Monte Carlo Methods in Biology by Bryan Manly in 2007 [877];
a second edition of Permutation Methods: A Distance Function Approach by
Paul Mielke and Kenneth Berry in 2007 [965]; a second edition of Multivariate
Permutation Tests: With Applications in Biostatistics, retitled Permutation Tests
for Complex Data, by Fortunato Pesarin and Luigi Salmaso in 2010 [1122];
and Mathematical Statistics with Resampling and R by Laura Chihara and Tim
Hesterberg in 2011 [253].

The journal articles on permutation methods published between 2001 and 2010
are too numerous to be summarized in any detail. A search of The Web of Science R�
for “permutation” lists 9,259 journal articles and 73,960 citations for this period,
with steady increases for each year. For example, in 2000 there were 1,619 citations,
in 2005 there were 5,862 citations, and in 2010 there were 15,612 citations. The
journal articles may be conveniently divided into two areas: fields of research and
research methods.

A cursory examination of the fields of research in which articles using permuta-
tion methods were published includes atmospheric science, bioinformatics, biology,
chemistry, clinical trials, cognition, computer science, conservation, ecology, envi-
ronmental research, epidemiology, forestry, genetics, geology, history, industrial
engineering, medicine, molecular biology, operations research, physiology, public
health, statistics, and veterinary medicine.

The research methods for which permutation tests were published in this period
included, but were not limited to, multiple regression, analysis of variance, canon-
ical correlation, quantile regression, the Wilcoxon and Mann–Whitney two-sample
rank-sum tests, the Jonckheere–Terpstra test, trend analysis, matched pairs, analysis
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of multivariate data, partitions, Cohen’s kappa measure of agreement, categorical
variation, ordered and unordered contingency tables, qualitative variation, survival
analysis, Cronbach’s alpha, tetrachoric correlation, ridit analysis, discriminant
analysis, and robustness.

Finally, it should be mentioned that the computer language, R, first released
in 1995, became immensely popular among statisticians in this period. R is an
open-source programming language designed especially for statistical computing
and graphics, and was first developed by Ross Ihaka and Robert Gentleman at the
University of Auckland, New Zealand. R is more than a programming language and
is best described as an interactive environment for doing statistics. Thus, because
R provides a wide variety of statistical procedures, including linear and nonlinear
modeling, classical statistical tests, time-series analysis, and others, R quickly
became the language of choice after 2000 for many researchers. Moreover, R is
highly extensible and is easy to program for both exact and resampling permutation
methods.

6.4 A Summary of Contributions by Publication Year

In this section a brief description of representative articles published after 2000 is
provided, organized by year of publication. While the number of articles published
in this period is too large to summarize completely, a sample of articles will convey
the flavor of the times. The articles on permutation methods published between
2001 and 2010 are heavily concentrated in four general areas: linear correlation
and regression, analysis of variance, measures of agreement and concordance, and
contingency table analysis.

Linear Correlation and Regression. On this topic are articles by Huh and Jhun
[669] and Anderson and Robinson [21] in 2001; Mielke and Berry [963] and Sakaori
[1215] in 2002; O’Gorman [1050] in 2005; Yamada and Sugiyama [1471] and Cade
and Richards [234] in 2006; Long, Berry, and Mielke [840] in 2007; Önder [1062]
in 2008; and Long, Berry, and Mielke [841] in 2009.

Analysis of Variance. In the general area of analysis of variance are articles by
Weinberg and Lagakos [1425] in 2001; Pesarin and Salmaso [1121] in 2002; Jin and
Robinson [687], Graves, Reese, and Fitzgerald [546], and Anderson and ter Braak
[19] in 2003; Ernst [413] in 2004; Raab and Butcher [1148] and Good [531] in
2005; Jung, Jhun, and Song [703], Corain and Salmaso [277], Wheldon, Anderson,
and Johnson [1440], Kaiser [705], and Önder [1061] in 2007; Good and Xie [533]
and Fraker and Peacor [476] in 2008; Finch and Davenport [433] and Zhang [1491]
in 2009; Reiss, Stevens, Shehzad, Petkova, and Milham [1163] and Mewhort, Johns,
and Kelly [928] in 2010; and Berry, Johnston, and Mielke [117] in 2011.

Agreement and Concordance. On the topic of agreement and concordance are
articles by Berry and Mielke [157] in 2001; Legendre [810] and Berry, Johnston,
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and Mielke [112] in 2005; Norman and Scott [1043] in 2007; Brusco, Stahl, and
Steinley [226] and Mielke, Berry, and Johnston [976] in 2008.

Contingency Table Analysis. In the general area of contingency table analysis are
articles by Agresti [3] in 2001; Cryan and Dyer [299] in 2003; Borkowf [183] in
2004; Berry, Johnston, and Mielke [113] in 2006; Campbell [239] in 2007; Long,
Berry, and Mielke [841], Hitchcock [633], and Mielke, Long, Berry, and Johnston
[986] in 2009.

PermutationMethods in 2001

A number of notable articles on permutation methods were published in 2001.
Agresti published an influential overview article in Statistics in Medicine on exact
inferences for categorical data with special attention to the interval estimation of a
proportion and the odds-ratio statistic [3]. Huh and Jhun developed an alternative
random-permutation testing method for multiple linear regression [669]. They
claimed in this article that the new method was an improvement over the methods
previously proposed by Freedman and Lane in 1983 [478] and by Kennedy in
1995 [748]. Anderson and Robinson observed that there was general agreement
concerning an appropriate method for exact tests of hypotheses in simple linear
regression [21]. However, this was not the case, they noted, for partial tests in multi-
ple regression, citing papers on the topic by Brown and Maritz [224], Freedman and
Lane [478], Collins [269], Gail, Tan, and Piantadosi [491], Kennedy [748], Manly
[876], Oja [1052], ter Braak [1346], and Welch [1432]. Anderson and Robinson
compared the distributions of test statistics under various permutation methods
proposed via simulation [21]. Two articles in 2001 on permutation tests for multiple
linear regression by Huh and Jhun [669] and by Anderson and Robinson [21] were
harbingers of the many articles on this topic in the next 10 years. Finally in 2001,
Weinberg and Lagakos compared rank and permutation tests based on summary
statistics computed from repeated-measures (blocked) data [1425]. They used recent
theoretical results for the non-null behavior of rank and permutation tests to examine
the asymptotic relative efficiencies of several popular summary statistics.

PermutationMethods in 2002

In 2002 extensions of multiple regression permutation analyses to applications
involving multivariate dependent values were considered by Mielke and Berry
[963]; see also [964]. The extensions were prompted by a multivariate multiple
regression algorithm developed by Kaufman, Taylor, Mielke, and Berry in 2002
[711]. Sakaori investigated permutation tests for equality of correlation coefficients
between two independent populations [1215]. He demonstrated how to apply a
permutation test to the problem and discussed its asymptotic suitability. Finally in
2002, Pesarin and Salmaso published an article exploring exact permutation testing
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of effects in unreplicated two-level multifactorial designs [1121]. The approach
provided by Pesarin and Salmaso preserved the exchangeability of error components
for testing up to k effects in 2k designs (q.v. page 4). They further discussed
the advantages and limitations of exact permutation procedures and executed a
simulation study utilizing the Iris data of Fisher based on a paired-permutation
strategy.3

PermutationMethods in 2003

In 2003 Cryan and Dyer developed a polynomial-time algorithm to approximate the
number of possible arrangements of cell frequencies in a contingency table when
the number of rows is constant [299]. Also in 2003, Jin and Robinson published
an article on robust permutation tests for one sample [687]. Specifically, they
considered robust permutation tests based on an estimating equation comparing test
statistics based on the score function with those based on the M estimator. Graves,
Reese, and Fitzgerald proposed a new class of models for permutations based on
a Bayesian hierarchical framework, which permited hierarchical specification and
fully hierarchical estimation of interaction terms [546]. Janssen and Pauls published
a lengthy article in The Annals of Statistics titled “How do bootstrap and permutation
tests work?” [680]. This was an ambitious paper of 40 pages that considered a
comprehensive and unified approach for the conditional and unconditional analysis
of linear resampling permutation statistics. Finally in 2003, Anderson and ter Braak
published an article that provided guidelines for constructing an exact permutation
strategy, where possible, for any individual term in any analysis of variance design
(e.g., fixed, mixed, random, or nested) [19]. In addition, Anderson and ter Braak
provided results of Monte Carlo simulations to compare the level of accuracy and
power of different permutation strategies in two-way analysis of variance designs,
including mixed models, nested hierarchies, and tests of interaction [19].

PermutationMethods in 2004

In 2004 Ernst published a review article in Statistical Science on permutation
methods as a basis for exact inference [413]. This comprehensive overview article
provided an extensive introduction to permutation methods and included exact infer-
ence procedures, hypothesis tests, confidence intervals, both the permutation and
population models (q.v. page 3), two-group permutation tests, one-way analysis of
variance, and multiple comparisons of means tests. Borkowf presented an algorithm
for generating two-way contingency tables with fixed marginal frequency totals and

3The Fisher Iris data is a multivariate data set analyzed by Fisher in 1936 to illustrate discriminate
analysis [454]. The data were collected and originally published by Edgar Anderson in 1935 and
1936 [17, 18].
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arbitrary mean proportions [183]. As Borkowf noted, such tables have exactly the
multivariate extended hypergeometric (MXH) distribution and have many important
applications. Finally in 2004, Good wrote a letter to the editor of Statistics in
Medicine in an attempt to clarify some confusion about the nature of permutation
tests, as suggested by the titles and contents of some recent articles published in
Statistics in Medicine [529].4 In this letter Good promoted permutation tests over
rank tests, observing that the great value of permutation tests in medical research
lies in their power, robustness, and ability to provide exact probability values.

PermutationMethods in 2005

In this period there was sustained interest in developing and enhancing measures
of agreement and concordance;permutation versions of various agreement measures
accompanied this interest. Thus, many publications appeared dealing with measures
of agreement and concordance.In 2005 Legendre published an interesting article on
Kendall’s measure of concordance[810] and Berry, Johnston, and Mielke expanded
on their previously-published work on Cohen’s kappa measure of agreement, both
unweighted and weighted, expanding kappa to measure agreement among multiple
raters [112,114,115]. Raab and Butcher discussed the choice of randomization tests
for inference from cluster-randomized trials that have been designed to ensure a
balanced allocation of clusters to treatments [1148]. Two cluster-randomized trials
with balanced designs were used to illustrate the possible choices in selecting a ran-
domization test, and methods for obtaining confidence intervals for treatment effects
were illustrated. One cluster-randomized trial conducted in the Lothian and Tayside
regions of southeast Scotland evaluated whether a specially developed teacher-
led sex education program delivered in Scottish schools had any effect on unsafe
sexual behaviors, unwanted sexual outcomes, and the quality of sexual relationships.
The second cluster-randomized trial conducted in the Northern and Yorkshire
regions of England investigated whether a dietician-led training program in obesity
management for primary care teams resulted in changes in weights of patients.

O’Gorman evaluated the performance of randomization tests that use per-
mutations of independent variables for a subset of regression coefficients in a
linear model [1050]. O’Gorman showed that permuting the independent variables
maintained the level of significance and possessed power that approximated the
power of randomization tests based on permutation of residuals from a reduced
regression model. In 2005 Good wrote another letter to the editor of Statis-
tics in Medicine regarding the “efficiency comparisons of rank and permutation

4Although there are no references in the letter by Good, it is readily apparent that Good was basing
his criticisms on an article by Weinberg and Lagakos titled “Efficiency comparisons of rank and
permutation tests based on summary statistics computed from repeated-measures data,” which was
published in Statistics in Medicine in 2001 [1425].
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tests” [530].5 In this second letter, like the first, Good made a case for the use of
rank tests in two situations: when outliers are a concern or when combining results
with different precision. Specifically, Good observed that as a test based on ranks,
the Wilcoxon two-sample rank-sum test does not use all the available information,
in contrast to the Fisher–Pitman permutation test. However, Good argued the
Wilcoxon two-sample rank-sum test could be more powerful for asymmetrical and
heavy-tailed distributions. In support of this position, Good cited earlier works
by Keller-McNulty and Higgins in 1987 [714] and van den Brink and van den
Brink in 1989 [1389]. Good concluded that the Wilcoxon two-sample rank-sum test
can be much more powerful than the Fisher–Pitman permutation test under non-
normality. In fact, he contended that the Fisher–Pitman permutation test achieved
only a modest power advantage over the Wilcoxon two-sample rank-sum test for the
normal distribution. Finally, Good argued that the Wilcoxon two-sample rank-sum
test is a good choice when the underlying distribution function is a priori unknown
[529, 530].6

PermutationMethods in 2006

In 2006 Yamada and Sugiyama developed a permutation test statistic for canonical
correlation analysis, establishing that the permutation test possessed more power
than the conventional asymptotic test [1471]. Also in 2006, Cade and Richards
published a permutation test for quantile regression [234]. They observed that
estimating the quantiles of a response variable conditioned on a set of covariates
in a linear model has many applications in the biological and ecological sciences, as
quantile regression models allow the entire conditional distribution of a response
variable y to be related to some covariates X, providing a richer description of
functional changes than is possible by focusing on just the mean or other central
statistics [234, p. 106].

PermutationMethods in 2007

In 2007 Campbell added to the protracted examination and re-examination of the
Pearson chi-squared and Fisher–Irwin exact tests for 2 � 2 contingency tables
[239]. Also in 2007, a long-standing problem was solved when an efficient
resampling algorithm was developed for multi-way contingency tables, thereby
enabling multidimensional permutation analyses of various problems, including

5The first letter was published in Statistics in Medicine in 2004 [529].
6It should be noted that Good took a position on the use of rank tests in stark contrast to other
researchers of the time, many of whom were abandoning rank tests in favor of permutation tests
using the original raw score measurements instead of converting raw scores to rank-order statistics
(q.v. page 402).
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Cohen’s kappa measure of agreement with multiple raters [975, 976]. Jung, Jhun,
and Song developed an exact permutation method for testing both interaction and
main effects in two-way analysis of variance models that they concluded was an
improvement over previous methods such as presented by Still and White in 1981
[1324] and ter Braak in 1982 [703]. Gill showed that the exact probability values
of permutation and bootstrap hypothesis tests of differences among groups could
be written as an infinite series whose terms could be rapidly computed [513]. This
same technique was later to be used by Mewhort, Johns, and Kelly in an analysis
of factorial designs in 2010 [928]. Corain and Salmaso published a critical review
and comparative study regarding conditional permutation tests for the two-way
analysis of variance [277], and Norman and Scott demonstrated the adverse effects
of serially-observed data sequences containing transient events on the calculation
of Cohen’s index of inter-rater agreement [1043]. They developed a Monte Carlo
permutation procedure to produce an empirical distribution of Cohen’s kappa in the
presence of serial dependence.

Wheldon, Anderson, and Johnson proposed a new procedure for the analysis
of the large, multi-dimensional data arrays produced by electroencephalographic
(EEG) measurements of human brain function [1440]. They proposed a three-step
approach whereby they (1) summed univariate statistics across variables, (2) used
permutation tests for treatment effects at each point in time, and (3) adjusted for
multiple comparisons using permutation distributions to control for family-wise
error. Kaiser derived Monte Carlo simulations for the Fisher–Pitman permutation
tests for paired replicates and independent samples [705], developing algorithms
and providing Stata implementations for both tests. Finally in 2007, Önder used
permutation tests to reduce type I and type II errors in small ruminant research
[1061].7 He concluded on the basis of several analyses that “permutation tests
should be preferred to t and F tests to avoid type I and II errors” [1061, p. 72].

PermutationMethods in 2008

In 2008 Brusco, Stahl, and Steinley developed an implicit enumeration algorithm
for an exact test of weighted kappa [226]. Also in 2008, H.A. David, writing in The
American Statistician, provided a concise history of the early beginnings of per-
mutation methods [326]. Good and Xie analyzed a balanced crossover design with
permutation rather than parametric methods in order to obtain exact distribution-
free significance levels that were independent of the underlying distribution, thus
controlling type I error and increasing power [533]. They then showed how the
permutation method could be extended to any number of treatment sequences
and treatments in a balanced crossover design. Önder published a comparative
study of permutation tests with Euclidean and Bray–Curtis distances for common
agricultural distributions in regression [1062]. He examined normal, Poisson,

7The small ruminants studied by Önder were purebred Ile de France sheep and crossbred Chios
and Awassi sheep.
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chi-squared, and Cauchy distributions, concluding that permutation of the raw data
with Euclidean distance was to be recommended when the sample size was less than
15 and permutation of the residuals under the full model with Euclidean distance
was preferred with samples larger than 15 for all distributions, except the normal
distribution. Önder found that Bray–Curtis distances were simply not suitable for
the four distributions examined.8 Jiang and Kalbfleisch published a paper on permu-
tation methods in relative-risk regression models, a new application for permutation
methods [686]. In this paper they developed a weighted permutation method to
construct confidence intervals for regression parameters in relative-risk regression
models. A simulation study established that the weighted permutation method
typically improved accuracy over conventional asymptotic confidence intervals.

Finally in 2008, Fraker and Peacor compared permutation tests and the con-
ventional analysis of variance in testing for biological interactions [476]. Noting
that interaction terms from statistical tests are often used to make inferences about
biological processes, they argued that it is critical that the statistical method that
is used tests a model that corresponds to a realistic biological null hypothesis. As
examples of biological interactions, they offered, first, when a predator interacts
with a consumer to affect resource density via predator-induced changes in con-
sumer behavior (behaviorally mediated trophic cascades) and, second, when the
probability of certain species of plants becoming established in new areas depends
on the presence of other species (facilitative interactions) [476]. Fraker and Peacor
provided two simulated experiments of species interactions. With some caveats,
they concluded that permutation tests provide an advantage over the conventional
analysis of variance in their ability to test a wider range of models and should be
used to make inferences concerning biological interactions [476].

PermutationMethods in 2009

In 2009 Long, Berry, and Mielke developed a permutation alternative to tetrachoric
correlation [841], and Mielke, Long, Berry, and Johnston extended the classical
two-treatment ridit analysis first introduced by Bross in 1958 to g � 2 treatments
utilizing a resampling-approximation permutation procedure to obtain approximate
upper-tail probability values [986]. Also in 2009, Hitchcock published a compre-
hensive review of Frank Yates and his work on contingency tables, with special
attention to the controversial 1934 correction for continuity [633]. Knijnenburg,
Wessels, Reinders, and Shmulevich developed a method for computing approximate
permutation probability values by using a generalized Pareto distribution [761].

LaFleur and Greevy wrote a methodological article in Journal of Clinical Child
& Adolescent Psychology that introduced exact and resampling-approximation per-
mutation methods to that discipline [789]. They used an application-based approach

8Technically, Bray–Curtis is a dissimilarity measure, not a distance measure, as it does not satisfy
the triangle inequality (q.v. page 255).
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to provide a tutorial on permutation testing, presenting some historical perspectives,
describing how permutation tests are formulated, providing examples of research
situations under which permutation methods are useful, and demonstrating the
utility of permutation methods to clinical and adolescent psychologists [789].

Finch and Davenport, writing in Methodology, explored the performance of
Monte Carlo permutation and approximate tests for multivariate means compar-
isons with small sample sizes when parametric assumptions are violated [433].
A simulation study compared the performance of four standard multivariate analysis
of variance (MANOVA) test statistics (Wilks’ likelihood-ratio test, the Bartlett–
Nanda–Pillai Trace, the Lawley–Hotelling Trace, and Roy’s Maximum Root) with
their Monte Carlo permutation-based counterparts under a variety of conditions with
small samples, including conditions when the assumptions underlying MANOVA
were met and when the assumptions were not met [965, pp. 53–57]. They concluded
that under conditions similar to those presented in the paper, the four approximate
F tests and Monte Carlo permutation versions of the tests used in MANOVA
performed similarly across a variety of conditions. Finally, they noted that Roy’s
Maximum Root provided a dramatic improvement over the F approximation
obtained from a standard MANOVA analysis and suggested that researchers should
consider using it in practice [433, p. 68]. Huang, Jin, and Robinson considered
robust permutation tests for a location shift in the two-sample case based on
estimating equations and compared the results with those of test statistics based
on a score function and an M estimator [662].

Arboretti Gianchristofaro, Bonnini, and Pesarin developed a permutation
approach for testing heterogeneity in two-sample categorical variables, wherein
the problem is one of establishing whether the distribution of a categorical variable
is more concentrated—less heterogeneous—in one or the other of two populations
[29]. Yu, Kepner, and Iyer, writing in Biometrical Journal, proposed an exact
permutation method with respect to testing cytostatic cancer treatment using
correlated bivariate binomial random variables to simultaneously assess two primary
outcomes: for advanced Hepatocellular carcinoma measures of therapy efficiency in
terms of disease control rate and no progression rate at six months [1479]. Finally
in 2009, Zhang proposed a new type of permutation procedure for testing the
difference between two population means: split-sample permutation t tests that do
not require the exchangeability assumption (q.v. page 4), are asymptotically exact,
and can easily be extended to testing hypotheses about a single population [1491].

PermutationMethods in 2010

In 2010 Mewhort, Johns, and Kelly [928] noting that permutation tests are seldom
applied to factorial designs because of the computational load they impose, pro-
posed two methods to limit the computational burden. First, they showed that using
orthogonal contrasts greatly reduced the number of computations required and sec-
ond, that when combined with a new algorithm by Gill [513], a permutation test for
factorial designs was both practical and efficient [928]. Also in 2010, Reiss, Stevens,
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Shehzad, Petkova, and Milham compared pseudo-F tests and multi-response
permutation procedures (MRPP) in assessing multivariate observations [938, 965,
1163]. They further showed under what conditions the two procedures were
identical.

6.5 Agresti and Exact Inference for Categorical Data

In 2001 Alan Agresti published a lengthy article in Statistics in Medicine on
recent advances and continuing controversies associated with exact inference for
categorical data [3]. This article was, in part, an overview article, but also one
that examined and summarized some of the criticisms of exact methods, e.g., the
conservative nature of exact methods because of the inherent discreteness of the
permutation distribution.

Agresti began his article with a formal introduction to the exact conditional
approach for categorical data arranged in a r � c contingency table. Next, he
discussed the exact unconditional approach for categorical data, beginning with the
comparison of binomial parameters for two independent samples.9 Agresti noted in
this section of his paper that statisticians have been critical of both exact conditional
and exact unconditional approaches, a theme that appeared and reappeared in the
past and is still not settled. Critics of the exact conditional approach disagree with
analyzing sample spaces consisting only of contingency tables with exactly the
same marginal frequency totals as the observed contingency table. Proponents of
the exact conditional approach, however, respond that it is unnatural to consider
samples that differ from the marginal distributions of the observed contingency
table. Still other statisticians have argued that the exact unconditional approach is
artificial as it averages what happened in the observed sample with hypothetical
response distributions [3, pp. 2712–2713]. In this regard, Agresti cited previous
articles on the topic by Suissa and Shuster [1333, 1334], Little [836], Routledge
[1197], Greenland [551], Upton [1386], Martín Andrés [899], Reid [1161], Howard
[655], Cormack and Mantel [281], and Yates [1476].10 Agresti concluded that much
of the disagreement is due to the quite different results that the two approaches can
yield when the distribution is highly discrete, e.g., when the sample size is small.

Agresti devoted two sections of the paper to complications from discreteness,
illustrating the problem with numerous examples involving samples with small
sample sizes. He explained that in the real world it is rarely possible to achieve an
arbitrary critical value such as ˛ D 0:05 with randomization, noting that some argue
that fixing an unachievable ˛ level is artificial and that one should merely report

9Agresti’s “exact conditional approach” corresponds to marginal frequency totals that are fixed,
while his “exact unconditional approach” corresponds to marginal frequency totals that are not
fixed.
10See also an informative 2011 article by Yung-Pin Chen comparing the chi-squared and Fisher’s
exact probability tests in The American Statistician [251].
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the probability value. However, he countered, it is more important in constructing
confidence intervals, as one knows only that the actual confidence level is at least as
high as, say, 95 %; one does not know the actual level, since one does not know the
true parameter value [3, p. 2715].

Finally, Agresti offered a compromise: use adjustments of exact methods based
on the mid-P value, as advocated by Lancaster [794].11 The mid-P procedure
uses one-half the probability of the observed contingency table, plus the probability
values of those contingency tables that are less than that of the observed contingency
table. Agresti argued that inference based on the mid-P method appears to be a
sensible accommodation between the conservativeness of exact methods and the
uncertainty of large-sample methods. The article concluded with an extensive listing
of 98 references that is invaluable for researchers interested in this topic.

6.6 The Unweighted KappaMeasure of Agreement

In 2001 Berry and Mielke compared two popular measures of agreement: Cohen’s
�c [263] and Brennan and Prediger’s �n [210], using exact and resampling-
approximation permutation methods [157].12 Consider an r � r agreement matrix.
Then, Cohen’s test statistic is given by

�c D

rX
iD1

pii �
rX

iD1

pi:p:i

1 �
rX

iD1

pi:p:i

;

where i denotes the i th of r categories, pii indicates the observed proportion of
agreements in row i and column i , and pi: (p:i ) is the proportion of objects assigned
to category i by Judge 1 (2). In contrast, Brennan and Prediger’s test statistic is
given by

�n D

rX
iD1

pii � 1

r

1 � 1

r

:

In 1988 Zwick [1498] observed that Brennan and Prediger’s proposed measure was
not new and had previously been termed the S coefficient by Bennett, Alpert, and
Goldstein in 1954 [95], the C coefficient by Janson and Vegelius in 1979 [679], and

11See also a comprehensive review of the use of the mid-P procedure by Berry and Armitage in
The Statistician, published in 1995 [107].
12In this section, Cohen’s kappa is indicated by �c to distinguish it from the �n of Brennan and
Prediger.
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Fig. 6.1 Data on n D 38

observations classified into
r D 3 categories by two
independent raters

in the case of r D 2, the G index by Holley and Guilford in 1964 [642], as well as
the random error (RE) coefficient by Maxwell in 1977 [907].

Obviously, the two measures, �c and �n, provide different interpretations of
agreement between two judges. Cohen’s �c measure corrects the raw proportion of
agreement,

Pr
iD1 pii, for chance agreement by

Pr
iD1 pi:p:i , whereby the marginal

distributions are taken into consideration. On the other hand, Brennan and Prediger’s
�n measure corrects the raw proportion of agreement by 1=r , which is the average
value of

Pr
iD1 pii for all possible r � r agreement matrices given the sample size,

n, and ignoring the marginal distributions.
As noted by Berry and Mielke, it is relatively straightforward to compute an exact

probability value for �n [157]. Because 1=r is a known constant, the distribution of
�n is equivalent to the distribution of

Pr
iD1 pii. If

y D n

rX
iD1

pii;

then y follows a binomial distribution and the probability (P ) value for �n is
given by

P.�n/ D
nX

iDy

 
n

i

!�
1

r

�i �
1 � 1

r

�n�i

:

It is considerably more difficult to obtain a probability value for �c . Berry and
Mielke took a unique approach, converting the raw data to a randomized block
design with n observers, two blocks, and the r categories represented by an r � 1

binary vector, where the i th element, corresponding to the i th of r categories was
set to 1 and the remaining r � 1 elements were set to zero. They then relied on a
resampling-approximation algorithm whereby a sample of L random permutations
was extracted from the .nŠ/2 possible permutations and the desired probability value
was the proportion of the L values of �c equal to or greater then the observed value
of �c [157].

To illustrate the block-design approach, consider an example of n D 38

observations, each classified into one of r D 3 mutually exclusive categories
(A–C ) by two independent judges, as depicted in Fig. 6.1. The results for the
data listed in Fig. 6.1 are quite different: �n D C0:4868 with an upper-tail
binomial probability value of 0:4330 � 10�4, and �c D C0:1767 with an upper-tail
resampling-approximation probability value of 0:7218 � 10�1, based on L D
1;000;000 random permutations.
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6.7 Mielke et al. and Combining Probability Values

Exact permutation tests are based on all possible arrangements of observed data
sets; consequently, exact permutation tests yield probability values obtained from
discrete probability distributions. In 2004 Mielke, Johnston, and Berry introduced
an exact nondirectional method to combine independent probability values that
obey discrete probability distributions [985]. A nondirectional method developed
by R.A. Fisher in 1925 is known to possess excellent asymptotic properties for
combining independent probability values from continuous uniform distributions
[448]; see also two articles on this topic by Littell and Folks in Journal of
the American Statistical Association in 1971 and 1973 [834, 835]. The purpose
of the paper by Mielke et al. was to introduce a discrete analog of Fisher’s
classical method to combine independent probability values from permutation
tests, a necessary component for conducting meta-analyses of research based on
permutation methods.

Fisher’s 1925 method for combining k independent probability values
(P1; : : : ; Pk) from continuous probability distributions is based on the statistic

T D �2 ln

 
kY

iD1

Pi

!
D �2

kX
iD1

ln.Pi /;

which is distributed as chi-squared with 2k degrees of freedom, under the null
hypothesis that P1; : : : ; Pk are independent uniform random variables between 0
and 1. If To denotes the observed value of T , then Fisher’s combined probability
value is P.T � TojH0/. Consequently, Fisher’s classical method is not appropriate
for independent probability values obeying discrete probability distributions where
only a limited number of different events are possible [985, p. 450]; see also articles
on this topic by H.O. Lancaster in 1949 [792] and E.S. Pearson in 1950 [1096].

The method proposed by Mielke et al. is conceptually applicable to obtaining
exact combined probability values for a multitude of independent tests, including
the Fisher exact probability test, exact chi-squared and exact likelihood-ratio tests,
the Fisher–Pitman permutation test, and rank tests such as the Ansari–Bradley test
[26], Mood’s median test [1001], the Taha test [1339], and the Wilcoxon–Mann–
Whitney two-sample rank-sum test [880, 1453]. The method is applied here to the
Fisher exact probability test.

Following the notation of Mielke et al., let pij > 0 denote the point-probability
value for the i th of k specified discrete probability distributions to be combined and
the j th of mi events associated with the i th discrete probability distribution; thus,
i D 1; : : : ; k and j D 1; : : : ; mi . Also let pio denote the observed probability value
of pij. Under H0, the exact combined probability value of the k discrete probability
distributions for Fisher’s exact probability test is given by

m1X
j1D1

� � �
mkX

jkD1

˛j1 ; : : : ;jk

kY
iD1

piji ;
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where

˛j1 ; : : : ;jk
D

8̂̂<
ˆ̂:

1 if
kY

iD1

piji �
kY

iD1

pio,

0 otherwise.

Example analyses of a variety of sparse 3 � 4 contingency tables demon-
strated that Fisher’s continuous method was not appropriate for discrete probability
distributions from sparse data tables. Mielke et al. further established that the
inclusion of even a single discrete probability distribution could have a substantial
negative effect on Fisher’s continuous method to combine probability values [985,
p. 456]. In 2005 Mielke, Berry, and Johnston extended the method for combining
independent probability values from discrete distributions to combining probability
values associated with the permutation version of the matched-pairs t test [972].

6.8 Legendre and Kendall’s Coefficient of Concordance

In 2005 Legendre published an article on the Kendall coefficient of concordance
(W ), with application to species association [810]. Specifically, Legendre utilized
a permutation version of Kendall’s coefficient of concordance to identify groups
of significantly associated species of oribatid (beetle) mites in the peat blanket
surrounding a bog lake.13 He noted that p.n � 1/W is asymptotically distributed
as chi-squared with n � 1 degrees of freedom, where p and n denote the number
of species and number of sites, respectively.14 However, the distribution of species
across sites was highly skewed, exacerbated by a high frequency of zero values.
Therefore, while the classical chi-squared test would be overly conservative, a
permutation test would have the correct type I error [810, p. 226].

Legendre permuted the sites 10,000 times and calculated the rate of rejection
of the null hypothesis (the p species produced independent rankings of the sites),
together with 95 % confidence intervals. Legendre assessed the contribution of
individual species by a modified permutation test, noting that in a permutation
framework a post hoc test of the contribution of each species to the overall W

concordance statistic is possible, which is not the case in the classical testing
framework [810, p. 226].

Prior to the concordance analysis, the abundance data on the oribatid mites were
transformed using a Hellinger transformation. The Hellinger transformation consists
of two steps: (1) express each abundance value as a proportion with respect to
the total sum of animals collected at a site, and (2) take the square root of that

13The oribatid mite is considered to be the world’s strongest animal, able to support 1,180 times its
weight. By contrast, the strongest human can support approximately three times its weight.
14Here, the number of species (p) is the number of judges or raters in the usual implementation of
Kendall’s coefficient of concordance.



382 6 Beyond 2000

proportion [810, p. 228]. As Legendre explained, such a transformation ensures that
the Euclidean distance computed among sites for the transformed data is equal to
the Hellinger distance for the untransformed data.15

Based on extensive simulation, Legendre observed that when the null hypothesis
was true, permutation testing lead to correct type I error in tests of significance of the
Kendall coefficient of concordance. Moreover, in the classical chi-squared test, type
I error was too low when the number of species (judges) was less than 20, leading to
tests that were overly conservative with reduced power. Finally, Legendre concluded
that because in most real-life applications the number of species is small “permuta-
tion tests should be routinely used to test Kendall’s W statistic” [810, p. 243].

6.9 TheWeighted KappaMeasure of Agreement

In 2005 Berry, Johnston, and Mielke turned attention to Cohen’s weighted kappa
statistic, utilizing exact and resampling-approximation procedures [112]. Weighted
kappa differs from unweighted kappa in that weights are assigned to cells and
progress outward from the agreement diagonal in an r � r cross-classification table
[264]. Thus, disagreements among judges can be weighted or scaled, providing
greater weights for more serious disagreements. Two weighting schemes are widely
used in weighted kappa: quadratic weighting where the weights are given by
wij D .i � j /2 for i; j D 1; : : : ; r , and linear weighting where wij D ji � j j
for i; j D 1; : : : ; r . For unweighted kappa, the weights are given by

wij D
8<
:

0 if i D j ,

1 otherwise.

For detailed discussions regarding choices of weights, see articles by Maclure and
Willett in 1987 [864]; Graham and Jackson in 1993 [544]; Banerjee, Capozzoli,
McSweeney, and Sinha in 1999 [60]; Kundel and Polansky in 2003 [781]; and,
especially, Schuster and Smith in 2005 [1240].

J.E. Johnston
Janis E. Johnston received B.S. degrees in mathematics and natural science
from the University of Wyoming in 1994, her M.A. in sociology from the
University of Wyoming in 1999, and her Ph.D. in sociology from Colorado
State University in 2006. From 2007 to 2009 she was a Science & Technology
Policy Fellow with the American Association for the Advancement of Science
(AAAS), where she worked with the Environmental Protection Agency

(continued)

15For more on the Hellinger and other transformations of species data, see a 2001 article by
Legendre and Gallagher [811].
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(EPA), National Homeland Security Research Center (NHSRC). She has
been a Social Science Policy Analyst with the United States government in
Washington, DC since 2010.

Assume that two independent judges have assigned each of n objects to one of
an exhaustive set of r mutually exclusive categories. The ratings of the two judges
are cross-classified into an r � r contingency (agreement) table where nij denotes
the frequencies with which two judges assigned objects to the ith and jth categories,
respectively, for i; j D 1; : : : ; r . Let ni: denote the total number of objects assigned
to the ith category, n:j denote the total number of objects assigned to the jth category
by the first and second judge, and n denote the total number of objects, respectively.
Then, Cohen’s weighted kappa test statistic is given by

O� D 1 � S

Se

;

where

S D
rX

iD1

rX
j D1

wijpij

is the proportion of weighted disagreement between the two judges,

Se D
rX

iD1

rX
j D1

wijpi:p:j

is the proportion of disagreements expected by chance under the null hypothesis,
pij D nij=n, pi: D ni:=n, p:j D n:j =n are the observed cell and marginal
proportions, wij denotes the disagreement weights, and the null hypothesis specifies
pij D pi:p:j for i; j D 1; : : : ; r . Thus, Se is the expected value of S under the null
hypothesis [112].

In the context of an r � r contingency table with n objects cross-classified by the
ratings of two independent judges, an exact permutation test requires enumeration
of all possible arrangements of objects to the r2 cells, while preserving the marginal
frequency totals. For each arrangement of cell frequencies, the weighted kappa test
statistic, O�, and the exact hypergeometric probability, P.nijjni:n:j /, are calculated,
where

P.nijjni:n:j / D

 
rY

iD1

ni:Š

!0@ rY
j D1

n:j Š

1
A

nŠ

rY
iD1

rY
j D1

nijŠ

:
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If O�o denotes the value of the observed weighted kappa test statistic, the exact
one-sided upper- and lower-tail probability values of O�o are the sums of the
P.nijjni:n:j / values associated with those O� values equal to or greater than O�o

and equal to or less than O�o, respectively. Small upper-tail probability values
usually imply agreement, whereas small lower-tail probability values usually imply
disagreement [112, p. 246]. Note that the hypergeometric probability values,
P.nijjni:n:j /, are accumulated with respect to the ordered weighted kappa values
[511, 650, 1150].

When the number of possible arrangements of cell frequencies is very large, exact
permutation tests are impractical and permutation tests based on resampling become
necessary. Berry, Johnston, and Mielke utilized a resampling algorithm to generate
random arrangements of cell frequencies from a two-way contingency table, given
fixed marginal frequency totals, as described by Patefield [1089] (q.v. page 281).
The resampling one-sided upper- and lower-tail probability values of O�o were simply
the proportions of the resampled O� values equal to or greater than O�o and equal to
or less than O�o, respectively.16 Finally, Berry et al. noted that when testing the null
hypothesis that the population value of weighted kappa is zero, then

Z D O�
�O�

is approximately distributed as N.0; 1/ and the asymptotic one-sided upper- and
lower-tail probability values are given by P.Z � O�o=�O�/ and P.Z � O�o=�O�/,
respectively, where �O� was calculated using an exact variance algorithm first
described by Everitt in 1968 [415] and reformulated into a form favorable to
computation by Mielke, Berry, and Johnston in 2005 [973] (q.v. page 394).

6.10 Berry et al. andMeasures of Ordinal Association

In 2006 Berry, Johnston, and Mielke introduced efficient permutation procedures
for exact and resampling one-sided probability values for six popular measures of
association between two ordered variables: Kendall’s �a and �b [736], Stuart’s �c

[1326], Goodman and Kruskal’s � , [534], and Somers’ dyx and dxy [1294].
Following the notation of Berry et al., consider two ordinal variables, X and Y ,

cross-classified into an r � c contingency table, where r and c denote the number of
rows and columns, respectively. Let nij denote the number of objects in the ijth cell,
i D 1; : : : ; r and j D 1; : : : ; c, and let n denote the total number of objects in the
r � c table, i.e.,

16Note that, in contrast to an exact permutation test, a resampling-approximation permutation test
does not require calculation of a hypergeometric probability value for each possible arrangement
of cell frequencies.
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n D
rX

iD1

cX
j D1

nij:

If X and Y represent the row and column variables, respectively, there are n.n �
1/=2 pairs of objects in the table that can be partitioned into five mutually exclusive
exhaustive types: concordant pairs, discordant pairs, pairs tied on variable X but
differing on variable Y , pairs tied on variable Y but differing on variable X , and
pairs tied on both variable X and variable Y .

Concordant pairs (C ) are pairs of objects that are ranked in the same order on
both variable X and variable Y , given by

C D
r�1X
iD1

c�1X
j D1

nij

0
@ rX

kDiC1

cX
lDj C1

nkl

1
A I

discordant pairs (D) are pairs of objects that are ranked in one order on variable X

and the reverse order on variable Y , given by

D D
r�1X
iD1

c�1X
j D1

ni;c�j C1

 
rX

kDiC1

c�jX
lD1

nkl

!
I

pairs of objects tied on variable X but differing on variable Y (Tx) are given by

Tx D
rX

iD1

c�1X
j D1

nij

0
@ cX

kDj C1

nik

1
A I

pairs of objects tied on variable Y but differing on variable X (Ty) are given by

Ty D
cX

j D1

r�1X
iD1

nij

 
rX

kDiC1

nkj

!
I

and pairs of objects tied on both variable X and variable Y are given by

Txy D 1

2

rX
iD1

cX
j D1

nij
�

nij � 1
	

:

Given C , D, Tx, Ty , and n, then

�a D 2.C �D/

n.n � 1/
;

�b D C �Dq
.C CD C Tx/.C CD C Ty/

;
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�c D .2m/.C �D/

n2.m � 1/
;

where m D min.r; c/,

� D C �D

C CD
;

dyx D C �D

C CD C Ty

;

and

dxy D C �D

C CD C Tx

:

Berry et al. illustrated exact and resampling-approximation permutation tests for
�a, �b , �c , � , dyx, and dxy with a variety of sparse data sets. The difference between
the exact permutation tests and the resampling-approximation permutation tests is
important to note. In the case of an exact permutation test of an r � c contingency
table, it is necessary to calculate the selected measure of ordinal association for
the observed cell frequencies and exhaustively enumerate all possible arrangements
of the n objects in the rc cells, given fixed marginal frequency totals. Then,
for each arrangement of cell frequencies, the measure of ordinal association,
T D �a; �b; �c; �; dyx; or dxy, and the exact hypergeometric probability under the
null hypothesis, p.nijjni:; n:j /, are calculated, where the hypergeometric probability
value is given by

p.nijjni:; n:j / D

 
rY

iD1

ni:Š

!0@ cY
j D1

n:j Š

1
A

nŠ

rY
iD1

cY
j D1

nijŠ

;

ni: is the i th of r row marginal frequency totals, and n:j is the j th of c column
marginal frequency totals. If To denotes the value of the observed test statistic,
the exact one-sided upper- and lower-tail probability values of To are the sums of
the p.nijjni:; n:j / values associated with the T values computed on all possible
arrangements of cell frequencies that are equal to or greater than To when To is
positive, and equal to or less than To when To is negative, respectively.

By comparison, when the number of possible arrangements of cell frequencies
is very large, exact permutation tests are impractical and resampling-approximation
permutation methods become necessary, wherein a random sample of all possible
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arrangements of cell frequencies, drawn with replacement with fixed marginal
frequency totals, is examined. The resampling-approximation one-sided upper- and
lower-tail probability values of To are the proportions of the T values computed
on the resampled arrangements of cell frequencies that are equal to or greater
than To when To is positive and equal to or less than To when To is negative,
respectively. It is readily apparent why resampling-approximation permutation
methods are so efficient. First, only a random sample of all possible arrangements of
cell frequencies needs to be examined. Second, and most importantly, resampling-
approximation probability values are based simply on counting the number of T

values equal to or more extreme than To, while exact permutation probability values
require computation of the hypergeometric probability value, p.nijjni:; n:j /, for
each arrangement of cell frequencies.

Comparisons of asymptotic, exact, and resampling-approximation one-sided
probability values, where the resampling-approximation probability values were
based on 1,000,000 random arrangements of the cell frequencies, demonstrated the
advantages of exact and resampling permutation methods over asymptotic methods
for the six statistics computed on sparse r � c contingency tables. Berry et al.
concluded that the permutation methods utilized could be easily adapted to other
measures of ordered association, non-sparse contingency tables, and two-sided
probability values.

6.11 Resampling for Multi-Way Contingency Tables

Boyett in 1979 [199] and Patefield in 1981 [1089] developed resampling algorithms
for r �c contingency tables (qq.v. pages 271 and 281). Both algorithms enumerated
a subset of all possible two-way contingency tables from an observed contingency
table with fixed marginal frequency totals. In 2002 Mielke and Berry published an
article on testing for categorical independence in large sparse r-way contingency
tables [962] and in 2007 Mielke, Berry, and Johnston presented a resampling
algorithm for the enumeration of a subset of all possible r-way contingency tables
with fixed marginal frequency totals [975]. To simplify presentation, the description
here is restricted to a three-way contingency table and the example to a two-
way contingency table, but the original algorithm provided corresponding analyses
for any r-way contingency table with an integral value of r � 2. A moment-
approximation permutation procedure based on the hypergeometric distribution for
m-way contingency tables (q.v. page 298) was published in 1988 by Mielke and
Berry [948]; see also [965, Sects. 7.1 and 7.3].

6.11.1 Description

Consider an r � c � s contingency table with row marginals Ri , i D 1; : : : ; r ,
column marginals Cj , j D 1; : : : ; c, slice marginals Sk, k D 1; : : : ; s, and let the
total number of objects classified be given by
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N D
rX

iD1

Ri D
cX

j D1

Cj D
sX

kD1

Sk:

In addition, set cell frequencies nijk equal to zero for i D 1; : : : ; r , j D 1; : : : ; c, and
k D 1; : : : ; s, and set row, column, and slice counters, I , J , and K , respectively,
equal to zero. Also note that all marginal frequency totals, Ri , i D 1; : : : ; r , Cj ,
j D 1; : : : ; c, Sk, k D 1; : : : ; s, and N are obtained from the observed contingency
table and are fixed for all resamplings.

Calculate the cumulative row, column, and slice marginal proportions, PRi , PCj ,
and PSk , respectively, for i D 1; : : : ; r , j D 1; : : : ; c, and k D 1; : : : ; s, where

PR1 D R1=N; PRi D PRi�1 CRi =N; for i D 2; : : : ; r;

PC1 D C1=N; PCj D PCj �1 C Cj =N; for j D 2; : : : ; c;

and

PS1 D S1=N; PSk D PSk�1 C Sk=N; for k D 2; : : : ; s:

Generate uniform pseudorandom numbers Ur , Uc , and Us over Œ 0; 1/ for the
rows, columns, and slices, respectively, and set row, column, and slice indices i D
j D k D 1, respectively. If Ur � PRi , row counter I D i and row marginal
frequency total Ri D Ri � 1; if Uc � PCj , column counter J D j and column
marginal frequency total Cj D Cj � 1; and if Us � PSk , slice counter K D k and
slice marginal frequency total Sk D Sk�1. Finally, N D N�1 and nIJK D nIJKC1.
The process is continued with new values of Ur , Uc , and Us and terminated when
N D 0.

6.11.2 An Example Analysis

For an example, consider a two-way contingency table with r D c D 3 as illustrated
in Subtable A on the left side of Table 6.1. Subtable A has row marginal frequency
totals of R1 D 7, R2 D 6, and R3 D 3; column marginal frequency totals of C1 D 3,
C2 D 5, and C3 D 8; a total frequency of N D 16; and cell frequencies of nij D 0

for i; j D 1; : : : ; 3. The cumulative row proportions are PR1 D 7=16 D 0:44,
PR2 D .7C 6/=16 D 0:81, and PR3 D .7C 6C 3/=16D 1:00, and the cumulative
column proportions are PC1 D 3=16 D 0:19, PC2 D .3 C 5/=16 D 0:50, and
PC3 D .3C 5C 8/=16 D 1:00.

Suppose that the row pseudorandom number is Ur D 0:86, which is greater than
PR1 D 0:44 and PR2 D 0:81, but is less than or equal to PR3 D 1:00. Thus,
I D i D 3. Correspondingly, suppose that the column pseudorandom number is
Uc D 0:04, which is less than or equal to PC1 D 0:19. Thus, J D j D 1. Then
nIJ D n3;1 C 1 D 0 C 1 D 1 as illustrated in Subtable B on the right side of
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Table 6.1 Example data set with r D c D 3, N D 16, and nij D 0 for i; j D 1; : : : ; 3 with
marginal frequency totals Ri , i D 1; : : : ; 3 and Cj , j D 1; : : : ; 3 based on the fixed marginal
frequency totals of an observed 3 � 3 contingency table

Table A Ri PRi Table B Ri PRi

0 0 0 7 0.44 0 0 0 7 0.47
0 0 0 6 0.81 0 0 0 6 0.87
0 0 0 3 1.00 1 0 0 2 1.00

Cj 3 5 8 16 2 5 8 15
PCj 0.19 0.50 1.00 0.13 0.47 1.00

Table 6.1. Subsequently, the row and column marginals R3 and C1 are decreased by
1, i.e., R3 � 1 D 3 � 1 D 2 and C1 � 1 D 3 � 1 D 2. The total frequency N is
also decreased by 1, i.e., N � 1 D 16 � 1 D 15. New row and column cumulative
proportions are then calculated, in this case resulting in the PRi and PCj values in
Subtable B, i; j D 1; : : : ; 3: PR1 D 7=15 D 0:47, PR2 D .7 C 6/=15 D 0:87,
PR3 D .7C 6C 2/=15 D 1:00, PC1 D 2=15 D 0:13, PC2 D .2C 5/=15 D 0:47,
and PC3 D .2 C 5 C 8/=15 D 1:00. Next, two new pseudorandom numbers are
generated and the process repeated until N D 0.

6.12 Mielke–Berry and aMultivariate Similarity Test

In many areas of research it is often necessary to assess the similarity between multi-
variate measurements of corresponding unordered categories from two populations.
In 2007 Mielke and Berry published a multivariate permutation test of similarity
between two populations with corresponding unordered disjoint categories [966].

Following the notation of Mielke and Berry, consider two samples consisting of
M and N objects in g unordered disjoint categories in which mi > 0 and ni > 0

are the number of objects in the i th of the g categories, for i D 1; : : : ; g; thus,

M D
gX

iD1

mi and N D
gX

iD1

ni :

Also consider that r distinct multivariate measurements may be associated with each
object. Let xI D .xI1; : : : ; xIr/ denote the row vector of r measurements for the I th
of M objects in Sample 1, let yJ D .yJ1; : : : ; yJr/ denote the row vector of r

measurements for the J th of N objects in Sample 2, and assume that the observed
M and N objects in Samples 1 and 2, respectively, are ordered so that the objects
occur in the g categories according to the respective ordered category size structures
.m1; : : : ; mg/ and .n1; : : : ; ng/ [966].
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Let

si D
iX

j D1

mj and ti D
iX

j D1

nj

for i D 1; : : : ; g. Also, let s0 D t0 D 0 and note that sg D M and tg D N . If 	I;J is
the r-dimensional Euclidean distance between the I th and J th objects in Samples
1 and 2, respectively, then

	I;J D
"

rX
kD1

�
xIk � yJk

	2#1=2

:

The average Euclidean distance between Sample 1 and Sample 2 objects in the i th
category is given by

di D 1

mi ni

siX
IDsi�1C1

tiX
J Dti�1C1

	I;J

for i D 1; : : : ; g. Then the two-sample multivariate permutation similarity compar-
ison statistic is given by

W D
gX

iD1

Cidi ;

where

Ci D .mini /
1=2

gX
j D1

.mj nj /1=2

:

As Mielke and Berry explained, the null hypothesis (H0) posits that each of the
M ŠN Š possible orderings of the M and N objects in Samples 1 and 2 is equally
likely to occur. Thus, if Samples 1 and 2 are similar, the anticipated observed value
of W will be smaller than expected under H0. If Wo is the observed value of W ,
then the exact P value under H0 is given by

P.W � Wo/:

If a random sample of L values of W is denoted by W1; : : : ; WL, then the
approximate resampling P value associated with Wo is given by

P D 1

L

LX
iD1

‰i ;
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where

‰i D
8<
:

1 if Wi � Wo,

0 otherwise.

Finally, Mielke and Berry provided an alternative asymptotic approximate
normal P value given by P.Z � Zo/, where

Zo D Wo � EŒW 

O�W

;

the exact mean of W under H0 is given by

EŒW  D 1

MN

MX
ID1

NX
J D1

	I;J ;

an estimate of the standard deviation of W , �W , obtained from the resampling of the
L values of W under H0 is given by

O�W D
"

1

L

LX
iD1


Wi � EŒW 

�2

#1=2

;

and Z is a N.0; 1/ random variable.

6.13 Cohen’s Weighted Kappa with Multiple Raters

In 2008 Mielke, Berry, and Johnston utilized a resampling algorithm for r-way
contingency tables (q.v. page 387) to analyze Cohen’s weighted kappa with multiple
raters [976]. The analysis of agreement using weighted kappa for multiple raters
had long puzzled researchers. The usual procedure had been to examine all
possible pairs of raters, akin to multiple two-sample t tests instead of a one-way
analysis of variance F test; see for example, articles by Epstein, Dalinka, Kaplan,
Aronchick, Marinelli, and Kundel [412], Herman, Khan, Kallman, Rojas, Carmody,
and Bodenheimer [612], Kramer and Feinstein [769], Kundel and Polansky [781],
Schouten [1234–1236], and Taplin, Rutter, Elmore, Seger, White, and Brenner
[1340]. However, this approach made it impossible to provide an overall probability
value because the pairwise comparisons were not orthogonal [976,977]. To simplify
presentation, the description here is restricted to a three-way contingency table;
in 2009 Mielke, Berry, and Johnston provided an example analysis of a four-way
contingency table in International Journal of Management [977].

Consider m D 3 raters who independently classify n objects into r D 5 disjoint
ordered categories. Conceptualize the classification as an r � r � r contingency
table with r D 5 rows, r D 5 columns, and r D 5 slices. Let nijk, Ri , Cj , and
Sk denote the cell frequencies and the row, column, and slice marginal frequency
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totals for i; j; k D 1; : : : ; r , respectively, and let the frequency total for all r3 cells
be given by

N D
rX

iD1

rX
j D1

rX
kD1

nijk:

Then, Cohen’s weighted kappa test statistic for a three-way contingency table is
given by

O� D
N 2

rX
iD1

rX
j D1

rX
kD1

wijk nijk

rX
iD1

rX
j D1

rX
kD1

wijk Ri Cj Sk

;

where wijk are the weights assigned to each cell for i; j; k D 1; : : : ; r .
Employing the resampling algorithm for r-way contingency tables (q.v.

page 387), where each dimension of the table represents a rater, Mielke, Berry,
and Johnston generated r-way contingency tables with fixed marginal frequency
totals for L D 1;000;000 random resamplings in an example analysis. If O�o denotes
the observed value of O�, the resampling-approximation probability value for the
observed kappa is given by

OP . O�o/ D 1

L

LX
iD1

‰i . O�/ ;

where

‰i . O�/ D
8<
:

1 if O� � O�o,

0 otherwise.

The r-way resampling-approximation procedure yielded overall probability values
that were much superior to probability values obtained from pairwise comparisons
of raters [976].

In 2008, Berry, Johnston, and Mielke compared six procedures for unweighted
kappa, weighted kappa with linear weighting,17 and weighted kappa with quadratic
weighting: exact variance, r-way resampling, intraclass correlation, randomized

17Linear weighting was first suggested by Cicchetti and Allison [255]. In 2008 Vanbelle and Albert
demonstrated that weighted kappa for m D 2 independent raters and r � 3 ordered categories is
equivalent to deriving the weighted kappa coefficient from unweighted kappa values computed on
r � 1 embedded 2 � 2 classification tables, given linear weighting [1393]. In 2009 Mielke and
Berry generalized the results of Vanbelle and Albert to m � 2 independent raters [967].
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blocks, resampling blocks, and exact permutation analyses [115]. They concluded
that the r-way contingency table resampling procedure provided the best estimates
of the exact probabilities for symmetric unweighted, linear-weighted, and quadratic-
weighted kappa. In 2009 Mielke, Berry, and Johnston demonstrated that for small
samples, the r-way resampling-approximation procedure yielded more accurate
results than the exact variance procedure advocated by Everitt [415], but noted that
the advantage was mitigated with large samples as they both yielded unweighted
and weighted kappa statistics that were asymptotically distributed as N.0; 1/ under
the null hypothesis [977].

6.14 Exact Variance of Weighted Kappa

The determination of an accurate approximation to the exact variance of weighted
kappa was a long-standing problem for many years; see for example, two papers
by Hubert in 1977 and 1978 [667, 668]. Moreover, different weighting schemes
oftentimes required different approximations to the exact variance [264]. Everitt
had provided the exact variance of weighted kappa suitable for any weighting
scheme in 1968, but found the expression too complicated for routine use [469,
p. 323]. Consequently, a number of researchers attempted to provide estimates of
the exact variance; see for example, Cohen in 1968 [264]; Everitt in 1968 [415];
Fleiss, Cohen, and Everitt in 1969 [469]18; Cicchetti and Fleiss in 1977 [257]; Fleiss
and Cicchetti in 1978 [468]; Hubert in 1978 [668]; Fleiss in 1981 [467]; Kramer
and Feinstein in 1981 [769]; Banerjee, Capozzoli, McSweeney, and Sinha in 1999
[60]; Kingman in 2002 [757]; Ludbrook in 2002 [852]; Perkins and Becker in 2002
[1118]; Fleiss, Levin, and Paik in 2003 [470]; Kundel and Polansky in 2003 [781];
and Schuster in 2004 [1239].

As Hubert noted in 1978, in many cases, such as in articles by Fleiss, Cohen,
and Everitt in 1969 [469] and Cohen in 1972 [265], the large sample variance
of weighted kappa was derived under the assumption that only the total sample
size was fixed [668]. However, for many of the historically important applications
of an index of nominal-level agreement Hubert argued that it is more appropriate
to assume fixed marginal frequency totals [668, p. 184]. In 2005 Mielke, Berry,
and Johnston reformulated the exact variance formula presented by Everitt in 1968
into a form conducive to computation, and in 2007 they extended Everitt’s formula
for m D 2 raters to m � 2 raters and provided an efficient computer algorithm
[973,974]. Although the algorithm described by Mielke et al. is appropriate for any

18In 1972 Cohen admitted that the formulae for the approximate variance of weighted kappa given
by Cohen in 1968 [264] and by Everitt in 1968 [415] were both incorrect [265, p. 64], but that the
formula given by Fleiss, Cohen, and Everitt in 1969 [469] was, in fact, correct. This latter statement
turned out to be incorrect.
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number of raters, the discussion here is restricted to m D 3 raters for simplicity and
clarity.19

As described previously, for m D 3 raters and N objects cross-classified into an
r�r�r contingency table composed of an ordered categorical variable with r rows,
r columns, and r slices, let nijk, wijk, Ri , Cj , and Sk for i; j; k D 1; : : : ; r denote
the cell frequencies, cell weights, row marginal frequency totals, column marginal
frequency totals, and slice marginal frequency totals, respectively, where

Ri D
rX

j D1

rX
kD1

nijk; Cj D
rX

iD1

rX
kD1

nijk; and Sk D
rX

iD1

rX
j D1

nijk;

and the frequency total is given by

N D
rX

iD1

rX
j D1

rX
kD1

nijk:

Given fixed row, column, and slice marginal frequency totals, the weighted kappa
test statistic for m D 3 raters is defined as

O� D 1 �
N 2

rX
iD1

rX
j D1

rX
kD1

wijknijk

rX
iD1

rX
j D1

rX
kD1

wijkRi Cj Sk

and the exact mean and variance of O� under the null hypothesis are given by �O� D 0

and

�2
O� D

N 4 E

2
64
0
@ rX

iD1

rX
j D1

rX
kD1
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1
A

2
� 1;

respectively. The reformulation of the exact variance of O� is based on

�2
O� D

W N 2

G2.N � 1/2
� 1;

19In 2009 Mielke, Berry, and Johnston provided an example analysis based on m D 4 independent
raters for both unweighted and weighted kappa that was published in International Journal of
Management [977].
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where

G D
rX

iD1

rX
j D1

rX
kD1

wijkRi Cj Sk;

W D Y C Y1 C Y2 C Y3 C Y12 C Y13 C Y23 C Y123;

Y D
rX

iD1

rX
j D1

rX
kD1

w2
ijkRi Cj Sk

h
.Ri � 1/.Cj � 1/.Sk � 1/C .N � 1/2

i
;

Y1 D
rX

i 6Di 0

rX
j D1

rX
kD1

wijkwi0jkRiCj Sk.Cj � 1/.Sk � 1/Ri 0 ;

Y2 D
rX

iD1

rX
j 6Dj 0

rX
kD1

wijkwij0kRi Cj Sk.Ri � 1/.Sk � 1/Cj 0;

Y3 D
rX

iD1

rX
j D1

rX
k 6Dk0

wijkwijk0Ri Cj Sk.Ri � 1/.Cj � 1/Sk0;

Y12 D
rX

i 6Di 0

rX
j 6Dj 0

rX
kD1

wijkwi0 j0kRi Cj Sk.Sk � 1/Ri 0Cj 0;

Y13 D
rX

i 6Di 0

rX
j D1

rX
k 6Dk0

wijkwi0 jk0Ri Cj Sk.Cj � 1/Ri 0Sk0 ;

Y23 D
rX

iD1

rX
j 6Dj 0

rX
k 6Dk0

wijkwij0k0Ri Cj Sk.Ri � 1/Cj 0Sk0 ;

Y123 D
rX

i 6Di 0

rX
j 6Dj 0

rX
k 6Dk0

wijkwi0 j0k0Ri Cj SkRi 0Cj 0Sk0 ;

and
Pr

i 6Di 0
denotes the sum of all terms with i 6D i 0 for a specified category [974].

Then,

Z D O� � �O�
�O�

approaches the N.0; 1/ distribution as N ! 1 under the null hypothesis with

fixed positive marginal proportions. Let O�o denote the observed value of O�, then the
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Table 6.2 Eighty-five article reviews by m D 3 reviewers with r D 3 categories: reject, revise
and resubmit, and accept

Column

Slice Row Reject Revise Accept

Reject Reject 7 (0)a 4 (2) 0 (4)
Revise 5 (2) 2 (2) 1 (4)
Accept 1 (4) 3 (4) 2 (4)

Revise Reject 4 (2) 5 (2) 3 (4)
Revise 5 (2) 8 (0) 3 (2)
Accept 0 (4) 7 (2) 2 (2)

Accept Reject 3 (4) 4 (4) 4 (4)
Revise 3 (4) 2 (2) 2 (2)
Accept 1 (4) 2 (2) 2 (0)

a Numbers in parentheses are linear weights for the weighted kappa statistic

approximate probability (P ) value under the null hypothesis is given by P.Z �
Zo/, where Z is a N.0; 1/ random variable and

Zo D O�o

�O�
:

6.14.1 An Example Analysis

For an example analysis, consider m D 3 independent reviewers, each of which
has been presented with N D 85 articles to review for a scholarly journal over a
5-year period. Each reviewer submits one of three possible recommendations for
each article: reject, revise and resubmit, or accept. Table 6.2 contains the r3 D
27 cross-classified recommendations and the corresponding linear weights given in
parentheses, where

wijk D ji � j j C ji � kj C jj � kj

for i; j; k D 1; : : : ; r . For the observed data and associated linear weights in
Table 6.2, O�o D C0:1130, �2

O� D 0:2292 � 10�2, Zo D C2:3603, and the
approximate N.0; 1/ one-sided upper-tail probability value is 0:9131 � 10�2. For
comparison, a resampling analysis based on L D 1;000;000 random arrangements
of the cell frequencies in Table 6.2 yielded O�o D C0:1130 and an approximate
one-sided upper-tail probability value of 0:1474 � 10�1. In 1960 Cohen stated that,
although kappa can assume a negative value when the magnitude of agreement is
less than chance expectancy, negative values are to be interpreted as zero agreement
since they indicate a general lack of agreement among the m raters. Consequently,
only the right tail of the distribution is to be considered with a one-sided upper-tail
probability value [1261, p. 546].
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Table 6.3 Nine article reviews by m D 3 reviewers with r D 3 categories: reject, revise and
resubmit, and accept

Column

Slice Row Reject Revise Accept

Reject Reject 1 (0)a 0 (2) 0 (4)
Revise 1 (2) 0 (2) 0 (4)
Accept 0 (4) 0 (4) 0 (4)

Revise Reject 1 (2) 0 (2) 0 (4)
Revise 0 (2) 1 (0) 0 (2)
Accept 0 (4) 0 (2) 1 (2)

Accept Reject 0 (4) 0 (4) 1 (4)
Revise 0 (4) 1 (2) 0 (2)
Accept 0 (4) 0 (2) 2 (0)

a Numbers in parentheses are linear weights for the weighted kappa statistic

While the probability values based on the exact variance and the resampling
analysis are close to each other, i.e., 0:9131� 10�2 and 0:1474� 10�1, respectively,
this is due to the relatively large sample size of N D 85 and a relatively low
resampling skewness value of �O� D 0:1421. In contrast, consider a second example
with m D 3 independent reviewers presented with only N D 9 articles to
review. Table 6.3 contains the r3 D 27 cross-classified recommendations with
the corresponding linear weights given in parentheses. For the observed data and
associated linear weights in Table 6.3, O�o D C0:5091, �2

O� D 0:2583 � 10�1,
Zo D C3:1678, and the approximate N.0; 1/ one-sided upper-tail probability value
is 0:7679 � 10�3. For comparison, a resampling analysis based on L D 1;000;000

random arrangements of the data in Table 6.3 yielded O�o D C0:5091 and an
approximate one-sided upper-tail probability value of 0:4385 � 10�2. In this case,
with a small sample size of N D 9 and a relatively high resampling skewness of
�O� D 0:4435, the exact-variance and resampling probability values of 0:7679�10�3

and 0:4385�10�2, respectively, are quite different. While the resampling method is
preferred, the normal approximation based on the exact variance provides improved
results with increasing sample size due to the asymptotic normality.

6.15 Campbell and Two-by-Two Contingency Tables

In 2007 Campbell published a lengthy article in Statistics in Medicine on the chi-
squared and Fisher–Irwin tests of 2 � 2 contingency tables with small sample sizes
[239]. Campbell noted that this had been an issue of some interest for over 100 years
and dozens of research papers had been devoted to the topic [239, p. 3,662].
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Fig. 6.2 Notation for a 2 � 2

contingency table as used by
Campbell [239, p. 3662]

Given a 2 � 2 contingency table such as depicted in Fig. 6.2, Campbell
distinguished among three distinct research designs.20 In the first research
design, termed a comparative trial design, there are two populations and samples of
sizes, m and n, are taken from the first and second populations, respectively. In this
design, the research question is whether the proportions of B in the two populations
are the same and the row marginal frequency totals, m and n of variable A, are
assumed to be fixed. In the second research design, termed a cross-sectional design,
a single sample of size N is drawn from a population and each member of the
sample is classified according to two binary variables, A and B . In this design, the
row totals are not determined by the investigator and no marginal frequency totals
are assumed to be fixed. In the third research design, termed an independence trial
design, both sets of marginal frequency totals for variables A and B are assumed to
be fixed by the investigator.

Next, Campbell detailed three versions of the chi-squared test for 2 � 2 contin-
gency tables.21 He noted that in the original version of the chi-squared test, due to K.
Pearson in 1900 [1107] and R.A. Fisher in 1922 [446], the value of the expression

N .ad � bc/2

mnrs

is evaluated with the chi-squared distribution with one degree of freedom.22 In 1934
Yates (q.v. page 37) recommended an adjustment to the expression that came to be
known as the Yates’ continuity correction, where

N
�jad � bcj � N

2

	2
mnrs

is evaluated with the chi-squared distribution with one degree of freedom
[1472].23 In 1947 E.S. Pearson recommended a third version of the chi-squared

20The three research designs were first described by Barnard in an article in Biometrika in 1947
[67] (q.v. page 130).
21For an excellent discussion of the chi-squared test for 2�2 contingency tables, see a 1990 article
by John Richardson in British Journal of Mathematical and Statistical Psychology [1170].
22Karl Pearson had miscalculated the degrees of freedom in 1900 and it was corrected by Fisher in
1922, which did little to improve their antagonistic relationship.
23As Egon Pearson noted in 1947, the correction for continuity utilized by Yates in 1934 was not
new at the time, having been used by statisticians for many years prior when employing a normal
or skew curve to give the sum of terms of a binomial or hypergeometric series [1095, p. 147].
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test, where the expression

.N � 1/.ad � bc/2

mnrs

is evaluated with the chi-squared distribution with one degree of freedom
[1095].24 Consider the numbers of B and not-B in the two samples in Fig. 6.2
and consider the research question that the proportion of B in both samples is
the same, with the common proportion denoted by 
 . Then, as Campbell noted,
while an unbiased estimate of 
 is r=N , an unbiased estimate of 
.1 � 
/ is not
.r=N /.1� r=N /, but is instead .r=N /.1� r=N /N=.N �1/ [239, p. 3663]; see also
a discussion on this topic by Stuart, Ord, and Arnold in the sixth (1999) edition of
Kendall’s Advanced Theory of Statistics [1329, p. 17].

In the same manner as chi-squared, Campbell distinguished among four versions
of the Fisher–Irwin exact probability test for 2 � 2 contingency tables. Originally
developed by Fisher [446] and Irwin [674] as a one-sided test, the expression

mŠ nŠ rŠ sŠ

N Š aŠ bŠ cŠ d Š

provided the hypergeometric point-probability value of the observed table (q.v.
page 48). Campbell noted that there are four versions of the Fisher–Irwin exact two-
sided probability test.25 The first version, advocated by Fisher, is to double the one-
sided probability value, i.e., the doubling rule (q.v. page 51). The second version,
advanced by Irwin, calculates the total probability of tables in either tail that are as
likely as, or less likely than the observed probability value, i.e., Irwin’s rule (q.v.
page 51). The third version is a so-called “mid-P” test where only half the probabil-
ity value of the observed contingency table is included in the one-sided probability
value, then the one-sided probability value is doubled, as described by Berry and
Armitage [107]. The fourth version is a mid-P test where the two-sided probability
value is one-half the probability value of the observed contingency table plus the
probability values of those contingency tables in either tail that are less than that of
the observed contingency table, as described by Hirji, Tan, and Elashoff [632].

In a thorough examination and comparison of the three versions of the chi-
squared test and the four versions of the Fisher–Irwin exact probability test over
the three research designs (comparative, cross-sectional, and independence trials),
Campbell concluded:]
1. For designs when both marginals are fixed (independence trial), Yates’ correction

for continuity is appropriate, but not for comparative trials or cross-sectional
designs.

24On this topic, see articles by Barnard [65], Mielke and Berry [947,948], Richardson [1170,1171],
Berry and Mielke [136], Upton [1385], and Schouten, Molenaar, van Strik, and Boomsma [1237].
25Campbell, unfortunately, neglected to note that the test was also independently developed by
Yates in 1934 (q.v. page 43).
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2. Where all expected cell frequencies are at least 1, use the “N � 1” chi-squared
test recommended by E.S. Pearson.

3. Otherwise, analyze the data by the Fisher–Irwin exact probability test, with a
two-sided test carried out by Irwin’s rule.
In 2008 Martín Andrés commented on Campbell’s paper in the same journal

[897]. While the comments are interesting and informative, they focus on statistical
matters unrelated to permutation methods. On this topic, see also a 2005 article by
Martín Andrés, Sánchez Quevedo, Tapia García, and Silva Mato [903].

6.16 Permutation Tests and Robustness

Conventional statistical tests are hampered by a variety of assumptions that very
often are not realistic, e.g., normally distributed populations.26 As R.C. Geary
famously put it in 1947, “[n]ormality is a myth; there never has, and never will
be, a normal distribution” [501, p. 241]. The French physicist and Nobel laureate
in physics, Gabriel Lippmann, once wrote in a letter to Henri Poincaré à propos the
normal curve:

Les expérimentateurs s’imaginent que c’est un théorèm de mathématiques, et les mathé-
maticiens d’être un fait expérimental.
Experimentalists think that it is a mathematical theorem, while mathematicians believe it to
be an experimental effect.

(Lippman, quoted in D’Arcy Wentworth Thompson’s On Growth and Form
[1358, p. 121]). And in 1954 Bross pointed out that statistical methods “are based
on certain assumptions—assumptions which not only can be wrong, but in many
situations are wrong” [222, p. 815].27;28 Others have empirically demonstrated the
prevalence of highly-skewed and heavy-tailed distributions in a variety of academic
disciplines; see for example, discussions by Schmidt and Johnson [1233], Bradley
[202], Saal, Downey, and Lahey [1212], Bernardin and Beatty [104], Micceri [930],
and Murphy and Cleveland [1016], the best known of which is Micceri’s widely
quoted 1989 article on “The unicorn, the normal curve, and other improbable
creatures” in Psychological Bulletin [930].

For example, in 2012 O’Boyle and Aguinis published an article in Personnel
Psychology in which they studied 633,263 people in five broad areas of human
performance: 490,185 researchers who produced 943,224 publications across 54
academic disciplines between January 2000 and June 2009 with performance
measured by number of publications; 17,750 individuals in the entertainment
industry with performance measures based on the number of times an entertainer

26For reasons why the assumption of normality is critical in conventional statistical analyses, see a
2011 paper by Mordkoff [1006].
27Emphasis in the original.
28See also a short but comprehensive 2010 article on this topic by Tom Siegfried in Science News
[1274].



6.16 Permutation Tests and Robustness 401

Fig. 6.3 A typical Gaussian
curve.

Fig. 6.4 A typical Paretian
curve

received an award, nomination, or other indicator; 42,745 candidates running for
political office in Australia, Canada, Denmark, Estonia, Finland, Holland, Ireland,
New Zealand, the United Kingdom, and the United States, where performance was
based on the number of times the candidate had been elected to a political office;
25,283 athletes in a variety of collegiate and professional sports, where performance
was based on different positive performance criteria for different sports, e.g., home
runs for baseball, number of wins for tennis and golf, and goals or points for soccer
and hockey; and 57,300 athletes in a variety of collegiate and professional sports,
where negative performance was based on different criteria for different sports,
e.g., number of errors in baseball, incomplete passes in football, dropped passes
in football, yellow cards in soccer, and so on [1044].

Using a chi-squared goodness-of-fit test as a measure of misfit, O’Boyle and
Aguinis concluded that in all five studies the distribution of performance followed
a Paretian (Pareto) power distribution more closely then a Gaussian (normal)
distribution.29 For example, in their research on academic publications, they found
the average misfit for the Paretian distribution to be 23,888, while the misfit
of the normal distribution was 44,199,201,241,681—a difference in favor of the
Paretian distribution on the order of 1:1.9 billion [1044, p. 87]. Figure 6.3 depicts a
typical Gaussian curve and Fig. 6.4 depicts a typical Paretian curve, similar to those
described in O’Boyle and Aguinis [1044, p. 80].

29In 1907, the Italian economist and sociologist Vilfredo Pareto created a mathematical formula to
describe the unequal distribution of wealth in Italy, observing that 20 % of the people owned 80 %
of the wealth [1087]. This became known as the Pareto Principle or Pareto’s Law. In general, the
80/20 rule has come to mean that in anything, a few (20 %) are vital and many (80 %) are trivial.
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O’Boyle and Aguinis observed three important differences between the
Gaussian and Paretian distributions in assessing individual performance. First,
the Gaussian distributions underpredicted the likelihood of extreme events. Second,
the Gaussian distributions assume that the mean and standard deviation are stable.
However, if the underlying distribution is Paretian instead of Gaussian, means
and standard deviations are not stable and Gaussian-based point estimates and
confidence intervals are biased; see also a 2009 article by Andriani and McKelvey
on this topic in Organization Science [22]. Third, a key difference between Gaussian
and Paretian distributions is scale invariance, i.e., the extent to which a measurement
instrument generalizes across different cultures or populations. Scale invariance also
refers to the distribution remaining constant whether one is looking at the whole
population or only the top performers [1044]. O’Boyle and Aguinis found the
Paretian distribution to possess scale invariance, while the Gaussian distribution
did not.

O’Boyle and Aguinis noted that the assumption of normality, like random
sampling, belongs to the class of “received doctrines” that are

[t]aught in undergraduate and graduate classes, enforced by gatekeepers (e.g., grant panels,
reviewers, editors, dissertation committee members), discussed among colleagues, and
otherwise passed along among pliers of the trade far and wide and from generation to
generation [795, p. 281].

Finally, O’Boyle and Aguinis cautioned that “assuming normality . . . can lead to
misspecified theories and misleading practices” [1044, p. 116].

6.16.1 Robustness and Rank-Order Statistics

The inclusion of extreme values (outliers) in data sets, both experimental and non-
experimental, is common. This often necessitates an adjustment to the data to fit the
assumptions of the statistics employed. While truncation or trimming of extreme
values is not unusual, by far the most common methodological strategy is to convert
the original measurements to rank-order statistics. Writing in 1954, Bross labeled
rank-order statistics as “mutations” of conventional statistics [222, p. 815]. The
replacement of numerical variates with their corresponding rank-order statistics to
avoid the assumption of normality has a long history. Notable in this regard was
the work of Spearman in 1904, 1906, and 1910 [1300–1302], Karl Pearson in 1907
[1109], Hotelling and Pabst in 1936 [653], Friedman in 1937 [485], Kendall in 1938
[728], Wilcoxon in 1945 [1453], Mann and Whitney in 1947 [880], and Kendall
in 1948 [734]. Bross observed that rank transformations were first suggested by
Spearman in 1904, but were so criticized by mathematical statisticians that no
one dared to use them for 25 years [222]. Currently, many researchers consider
rank-order statistics to be passé and prefer permutation tests utilizing the original
numerical values over rank alternatives; see for example, a 2002 article by Berry,
Mielke, and Mielke in Psychological Reports [162].

Although the advantages of rank-order statistics are well known [779], it is
generally recognized that there is a loss of information when substituting numerical
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Fig. 6.5 World education
scores and rankings in
mathematics for 12 selected
countries

values with rank-order statistics; see for example, articles by Feinstein [421],
Friedman [485], Gebhard and Schmitz [502], Lehmann [815], Spearman [1301],
Wald and Wolfowitz [1406, p. 387], and Still and White [1324]. In addition, because
ranking methods are divorced from the original scale, they are not useful in the
problem of estimation, as noted by Bross in 1954 [222]. Finally, the conversion
of raw scores to ranks can make small differences between raw scores appear large
and, conversely, make large differences between raw scores appear small. Figure 6.5
illustrates the potential for misleading information when raw score measurements
are converted to rank-order statistics.

The data in Fig. 6.5 were extracted from the 2009 world education scores
and rankings in mathematics and provided by the Programme for International
Student Assessment (PISA) through the Organization for Economic Cooperation
and Development (OECD) [1260, 1366]. Shanghai–China (specifically, the city of
Shanghai in China) and the city-state of Singapore actually were ranked 1 and 2 in
the world in 2009, respectively, but the difference in raw scores was 600�562 D 38

points, which is a substantial difference considering that the range of scores for all
65 participating countries was only 270 points. Similarly, consider the raw-score and
rank differences between the Czech Republic and Panama where the difference in
raw scores in Fig. 6.5 was 493 � 360 D 133 points, but the difference in ranks
was only 12 � 11 D 1. On the other hand, the raw score difference between
Canada and the Czech Republic was 527 � 493 D 34 points, 4 points less than the
raw-score difference between Shanghai–China and Singapore, yet the difference in
rankings was 11 � 3 D 8 times the difference in ranks between Shanghai–China
and Singapore, i.e., 2 � 1 D 1. Thus, the conversion of raw-score measurements to
ranks can both minimize large raw-score differences and magnify small raw score
differences, with a consequent loss of information.

In this context, May and Hunter went so far as to label the practice of replacing
observations with rank numbers as a “degrading of the original data” [908, p. 404],
Arbuckle and Aiken bemoaned it as a “sacrifice of desirable qualities” [30, p.
381], Borgatta concluded that reality is distorted by assigning ranks and performing
arithmetic operations on a set of numbers that is not isomorphic with the arithmetic
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system [182], and in 2008 Ludbrook noted that rank-order tests are the poor man’s
substitute for computer-intensive measures, concluding “I see no merit in using this
class of test on interval-scale data” [853, p. 673]. As early as 1940 Kendall and
Babington Smith acknowledged that “the use of ranking . . . destroys what may be
valuable information” [741, p. 324], but also pointed out that the ranking method
suffers from a serious drawback when the quality considered is known not to be
representable by a linear variable [741, p. 324]. In a strongly worded statement in
2000 in reference to converting raw scores to ranks for the Wilcoxon two-sample
rank-sum test, Ludbrook and Dudley argued that “although the [Wilcoxon–Mann–
Whitney] test was a brilliant invention by Frank Wilcoxon in the pre-computer era as
a way of overcoming the computation difficulties of executing a permutation test for
equality of means, it should have little relevance today” [857, p. 87].30 F.N. David,
in a review of Kendall’s Rank Correlation Methods commented:

[i]t is interesting to note in the univariate case . . . that while many order statistics have been
proposed (all of which are easy to apply and interesting mathematically) . . . it is rare indeed
to find the need to use them in practice. It is customary to twist the observations about
and/or to make various assumptions in order that existing techniques may be applied. This,
the writer would suggest, is because of the instinctive feeling that tests based on ranks
cannot be very discriminating. If, on the other hand, we consider the bivariate case, the
order statistics proposed by Spearman and latterly by Kendall are used fairly frequently
with little thought of the undoubted loss of information which using them implies [319,
p. 190].

6.16.2 Mielke et al. and Robustness

Lehmann [816, p. 93], following Huber [665], defined robustness as when small
deviations from the model result in small changes in the performance of the
procedure, and conversely, when large deviations from the model result in large
changes in the performance of the procedure.

In 2011 Mielke, Berry, and Johnston considered the topic of robustness without
rank-order statistics in a permutation context [978]. In this article they considered
an alternative to conventional rank tests that was based on a Euclidean-distance
analysis space. Let a distance function between objects I and J be denoted by
	I;J . Then the distance function affiliated with classical tests such as Student’s two-
sample t test, the k-sample F test, and the Wilcoxon–Mann–Whitney two-sample
rank-sum test is the squared Euclidean distance function given by 	I;J D .yI �
yJ /2. They argued that if the parametric assumption of normality is removed, as
in a rank test, there is no theoretical justification for a distance function such as

30There is a counter argument, of course, that power may not be lost when converting raw scores
to ranks, and may even be increased, depending on which assumptions are violated and in which
manner; see for example articles by Blair and Higgins [168], Higgins and Blair [614], Good [530],
Hodges and Lehmann [635], Keller-McNulty and Higgins, [714], Lehmann [815], and van den
Brink and van den Brink [1389].
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Table 6.4 Raw-score observed values for g D 2 groups with n1 D n2 D 13 objects randomly
assigned to each group

Group 1 Group 2

264.3 264.9 265.2 263.4 264.0 264.3
264.6 264.9 265.5 263.7 264.0 264.6
264.6 264.9 265.5 263.7 264.3 w
264.6 265.2 263.7 264.3
264.9 265.2 264.0 264.3

	I;J D .yI � yJ /2. They then considered the general class of distance functions
given by 	I;J D jyI � yJ jv, concluding that only v D 1, i.e., Euclidean distance,
ensured that the analysis space corresponded to the data space; see also a 2010
article on this topic by Reiss, Stevens, Shehzad, Petkova, and Milham in Biometrics
[1163].

One of the early critics of squaring differences was Charles Spearman [1302].
In 1906, in the context of measures of correlation, Spearman wrote that “squaring
is . . . more likely to do harm than good” [1301, p. 100]. In 1910, writing about rank-
order correlation, and responding to harsh criticism by Karl Pearson [1108, 1109],
Spearman wrote that “squaring lays stress on the extreme discrepancies between the
series compared” [1302, p. 284]. Noting that squaring is based on the assumption of
a Gaussian distribution, Spearman observed:

[t]he Gaussian assumption is only a mathematical make-shift; we may often conveniently
enough reckon formulae from it; but in actual application, we should constantly bear in
mind its real limitations [1302, p. 285].

Examples given by Mielke et al. in 2011 were based on two-sample tests and
illustrated the advantages of utilizing a Euclidean-distance function (v D 1) over
a squared Euclidean-distance function (v D 2) [978]. Table 6.4 lists data for two
independent groups of sizes n1 D n2 D 13. While the n1 D 13 data points in Group
1 are fixed, one value in Group 2, designated by w, is allowed to vary in order to
determine its effect on the exact two-sided probability values. Table 6.5 lists ten
values for w ranging from a low value of w D 40 up to a high value of w D 988, the
exact two-sided probability values for the Fisher–Pitman two-sample permutation
test with v D 1 and v D 2, the exact two-sided probability values for the permutation
version of the Wilcoxon–Mann–Whitney two-sample rank-sum test that involves
	I;J with v D 2,31 and the two-sided probability values for the classical Student
two-sample t test, under the usual assumptions of normality and independence. Each
of the exact two-sided probability values in Table 6.5 is based on

31The exact Fisher–Pitman two-sample permutation tests with v D 1; 2 and the exact permutation
version of the Wilcoxon–Mann–Whitney two-sample rank-sum test are specific forms of MRPP
(q.v. page 249) with g D 2 and r D 1 (q.v. page 256).
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Table 6.5 Two-sided probability value comparisons for the exact Fisher–Pitman two-sample test
with v D 1 and v D 2, the exact two-sample Wilcoxon–Mann–Whitney (WMW) rank-sum test,
and the classical Student two-sample t test for the data listed in Table 6.4

Exact permutation test

Fisher–Pitman test WMW Student

w v D 1 v D 2 rank test t test

40 4:038 � 10�6 4:038 � 10�6 4:038 � 10�6 0:303

240 4:038 � 10�6 4:038 � 10�6 4:038 � 10�6 0:148

258 4:038 � 10�6 4:038 � 10�6 4:038 � 10�6 0:009

261 4:038 � 10�6 4:038 � 10�6 4:038 � 10�6 2:646 � 10�4

264 4:038 � 10�6 4:038 � 10�6 4:038 � 10�6 5:837 � 10�7

267 9:115 � 10�5 0:016 1:765 � 10�4 0:016

270 9:115 � 10�5 0:473 1:765 � 10�4 0:346

276 9:115 � 10�5 1:000 1:765 � 10�4 1:000

288 9:115 � 10�5 1:000 1:765 � 10�4 0:622

988 9:115 � 10�5 1:000 1:765 � 10�4 0:335

M D .n1 C n2/Š

n1Š n2Š
D .13C 13/Š

13Š 13Š
D 10;400;600

equally-likely arrangements of the 26 data values given in Table 6.4, with w
included. The two-sided probability values for the classical two-sample t test are
based on Student’s t distribution with n1 C n2 � 2 D 13C 13 � 2 D 24 degrees of
freedom.

As illustrated in Table 6.5, the exact two-sided probability values for the
Fisher–Pitman two-sample permutation test with v D 1 are stable, consistent,
and unaffected by the extreme values of w in either direction. Similar results are
achieved with the Wilcoxon–Mann–Whitney two-sample rank-sum test [880,1453].
In contrast, the exact two-sided probability values for the Fisher–Pitman two-sample
permutation test with v D 2 range from 4:038 � 10�6 for small values of w up to
1.000 for large values of w, relative to the fixed values.

Finally, the two-sided probability values for the classical two-sample t test
approach a common value as w becomes very small or very large, relative to the
fixed values, and the classical t test is unable to detect the obvious differences in
location between Groups 1 and 2. Mielke et al. concluded that the exact Fisher–
Pitman two-sample permutation test with v D 1 was robust to extreme values
without the use of rank-order statistics. In 2000 Mielke and Berry conducted similar
comparisons of univariate MRPP with v D 1 and v D 2 where the same conclusions
were reached, i.e., v D 1 was far more robust than v D 2 when extreme values were
included [959, pp. 13–15].

Another property to be considered is that MRPP are median-based procedures
when v D 1, whereas MRPP are mean-based procedures when v D 2 (q.v.
page 249). For clarification, consider the pairwise sum of univariate .r D 1/

symmetric distance functions given by
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X
i<j

	
�
xi ; xj

	 DX
i<j

ˇ̌
xi � xj

ˇ̌v
;

where x1; : : : ; xm are univariate response variables and
P

i<j is the sum over all i

and j such that 1 � i < j � m. Let x1;m � � � � � xm;m be the order statistics
associated with x1; : : : ; xm. If v D 1, then the inequality given by

mX
iD1

ˇ̌
m � 2i C 1

ˇ̌ˇ̌
xi;m � �

ˇ̌ �X
i<j

ˇ̌
xi � xj

ˇ̌
holds for all � , and equality holds if � is the median of x1; : : : ; xm. If v D 2, then
the inequality given by

m

mX
iD1

�
xi � �

	2 �X
i<j

�
xi � xj

	2
holds for all � , and equality holds if and only if � is the mean of x1; : : : ; xm. Since
most statistical tests are based on means [873, p. 434] and means can be severely
influenced by a relatively few extreme values, whereas medians are seldom similarly
affected, this property further explains why MRPP based on v D 1 are immensely
more robust than MRPP based on v D 2 (q.v. page 254). Specifically, v D 2 places
more emphasis on the extremes of a distribution than on the mass, while v D 1

places more emphasis on the mass than on the extremes. With the exception of
ordinal data, robustness with v D 1 is apparently as good as or better than using
rank-order statistics for the same purpose. Furthermore, the common use of rank-
order statistics with v D 2, e.g., the Wilcoxon–Mann–Whitney and Kruskal–Wallis
rank-sum tests, are also further improved when based on v D 1; see [978].

Consider a second example based on two matched groups (q.v. page 308).
Table 6.6 lists the data for the two groups, Control and Treatment, with n D 23

in each group. Again, the n D 23 data points in the Control group are fixed, and one
value, w, in the Treatment group is allowed to vary. Table 6.7 lists eleven values for
w ranging from a low value of w D 97 up to a high value of w D 497, the exact
two-sided probability values for the Fisher–Pitman matched-pairs permutation test
with v D 1 and v D 2, the exact two-sided probability values for the permutation
version of the Wilcoxon matched-pairs rank-sum test [1453],32 and the two-sided
probability values for the classical matched-pairs t test. Each of the exact two-sided
probability values in Table 6.7 is based on

M D 2n D 223 D 8;388;608

32The exact Fisher–Pitman matched-pairs permutation tests with v D 1; 2 and the exact
permutation version of the Wilcoxon matched-pairs rank-sum test are specific forms of MRBP
with g D 2 and r D 1 (qq.v. pages 310 and 317).
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Table 6.6 Raw-score observed values for matched-pairs control and treatment groups with n D
23 objects in each group

Control Treatment Control Treatment Control Treatment

287 288 269 275 290 293
270 273 294 298 281 285
287 291 273 276 274 276
283 284 289 286 294 295
271 269 291 296 267 271
291 294 267 268 283 278
280 281 285 287 294 w
290 292 267 272

Table 6.7 Two-sided probability value comparisons for the exact Fisher–Pitman matched-pairs
test with v D 1 and v D 2, the exact Wilcoxon matched-pairs rank-sum test, and the classical
matched-pairs t test

Permutation test Wilcoxon Classical

w v D 1 v D 2 rank test t test

97 0.00636 0.99909 0.01946 0.45984
197 0.00636 0.99909 0.01946 0.60982
247 0.00636 0.99961 0.01946 0.96883
272 0.00636 0.50154 0.01946 0.41245
287 0.00083 0.02746 0.01946 0.04000
297 0.00077 0.00183 0.00193 0.00707
307 0.00077 0.00154 0.00164 0.01038
322 0.00077 0.00154 0.00164 0.03623
347 0.00077 0.00154 0.00164 0.09660
397 0.00077 0.00154 0.00164 0.17852
497 0.00077 0.00154 0.00164 0.24619

equally-likely arrangements of the data given in Table 6.6. The two-sided probability
values for the classical matched-pairs t test are based on Student’s t distribution with
n� 1 D 23� 1 D 22 degrees of freedom, under the usual assumptions of normality
and independence.

As with the independent two-sample tests, the exact two-sided probability values
for the Fisher–Pitman matched-pairs permutation test with v D 1 are stable,
consistent, and are unaffected by the extreme values of w in either direction. Similar
results are achieved with the Wilcoxon matched-pairs rank-sum test. In contrast, the
exact two-sided probability values for the Fisher–Pitman matched-pairs permutation
test with v D 2 range from 0.99909 for small values of w down to 0.00154 for
large values of w, relative to the fixed values. The two-sided probability values
for the classical matched-pairs t test are inconsistent, with low probability values
associated with moderate values of w and higher probability values with both
low and high values of w. Again, with extreme values, the classical matched-
pairs t test is unable to detect the obvious differences in location between the
matched Control and Treatment groups. In conclusion, Mielke et al. explained that
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the examples clearly showed the advantages of (1) utilizing a Euclidean distance
function, (2) employing a permutation approach for data analysis [978, p. 212], and
(3) avoiding the loss of information associated with substituting rank-order statistics
for numerical measurements.

6.17 Advantages of theMedian for Analyzing Data

The median possesses certain advantages relative to the arithmetic, geometric, and
harmonic means for both describing and analyzing data. Let x1; : : : ; xn denote n

observed values in an ordinary Euclidean data space, where n is not exceedingly
small. Let S1, S2, S3, and S4 denote the median, arithmetic mean, geometric mean,
and harmonic mean, respectively, and let w denote a specified value that is arbitrarily
changed while the remaining n � 1 values remain fixed, as in Tables 6.4 and 6.6.
Finally, assume that (1) the interval of the observed values comprising S1 and S2

is �1 < xi < C1 for i D 1; : : : ; n, and (2) the interval of the observed values
comprising S3 and S4 is 0 < xi < C1 for i D 1; : : : ; n.

Specific formulae for S1, S2, S3, and S4 are:

S1 DM D median .x1; : : : ; xn/ ;

S2 D 1

n

nX
iD1

xi ;

S3 D
 

nY
iD1

xi

!1=n

;

and

S4 D n

 
nX

iD1

x�1
i

!�1

:

Then,

lim
w!C1 S1 D lim

w!�1 S1 D M; lim
w!C1 S2 D C1; lim

w!�1 S2 D �1;

lim
w!0

S3 D 0; lim
w!C1 S3 D C1; and lim

w!0
S4 D 0; lim

w!C1 S4 D V;

where V is the resulting value of S4 when w�1 D 0. Consequently, S1 is not
influenced by a few isolated extreme values, whereas S2, S3, and S4 can be
substantially influenced by even a few extreme values.

In addition, the statistical inferences associated with S1, S2, S3, and S4 behave in
a similar manner. The data space of observed values x1; : : : ; xn is again an ordinary
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Euclidean space that satisfies the three properties of a metric space. If 	.xi ; xj /

denotes the distance function between xi and xj , then:
1. 	.xi ; xj / � 0 and 	.xi ; xi / D 0.
2. 	.xi ; xj / D 	.xj ; xi /, termed “symmetry.”
3. 	.xi ; xj /C	.xj ; xk/ � 	.xi ; xk/, termed “the triangle inequality.”

The analysis space of S1 is also an ordinary Euclidean metric space with the
absolute distance function given by 	1.xi ; xj / D jxi � xj j and is congruent with
the Euclidean-data metric space consisting of x1; : : : ; xn [938, pp. 815 and 820].

However, the analysis space of S2 is a squared Euclidean space with the squared
Euclidean distance function given by 	2.xi ; xj / D .xi � xj /2 and is not congruent
with the ordinary Euclidean space since property (3) of a metric space is not
satisfied. For example, if x1 D 4, x2 D 5, and x3 D 6 of the squared Euclidean
space, then 	2.x1; x2/ D 	2.x2; x3/ D 1 and 	2.x1; x3/ D 4 demonstrates that the
triangle inequality of a metric space is not satisfied. Similarly, the distance functions
of S3 and S4 are 	3.xi ; xj / D .ln xi � ln xj /2 and 	4.xi ; xj / D .x�1

i � x�1
j /2,

respectively, are also associated with non-metric distance functions. If a value of
either xi or xj approaches 0, then both 	3.xi ; xj / and 	4.xi ; xj / approach 1.
Thus, only S1 has an analysis space that is congruent with the ordinary Euclidean
metric space of the observed values. Results of statistical inference procedures
involving data and analysis spaces that differ are naturally questionable regarding
any interpretation.

For these reasons, S1 appears to be a more natural choice in describing and
analyzing data than S2, S3, or S4. A disconcerting fact pertaining to this discussion
is that the most commonly-used statistical inference methods, such as the t and F

tests, are based on an ordinary Euclidean metric data space and a non-metric analysis
space associated with S2 and, consequently, are not congruent. When the geometries
of the data and analysis spaces of a statistical method are not congruent, the results
of such a statistical method are questionable since there is a lack of correspondence
between the data and analysis spaces [938, 965].

6.18 Consideration of Statistical Outliers

The subject of how to treat statistical outliers, extreme values, or as John Tukey
referred to them, “wild observations,” has been discussed in the statistical literature
for well over 100 years; see for example, two papers in 1960 by Anscombe [27] and
Daniel [312]. The problem is still serious as Higgins and Blair noted in 2000:

[w]hen observations are from heavier-tailed distributions, a few extreme observations can
diminish the power of a means-based statistic to detect differences between treatments. The
problem exists whether one assumes the population-sample model or the randomization
model [614, p. 86],

and Yadolah Dodge, writing on L1 estimators in 1987, wrote:

[w]hile the method of least squares (and its generalizations) have served statisticians
well for a good many years (mainly because of mathematical convenience and ease of



6.18 Consideration of Statistical Outliers 411

computation), and enjoys certain well known properties within strictly Gaussian parametric
models, it is recognized . . . that outliers, which arise from heavy-tailed distributions, have
an unusually large influence on estimates obtained by these methods. Indeed, one single
outlier can have an arbitrary [sic] large effect on the estimate [354, p. 3].

Of course, the subject of outliers has an even longer history in the astronomy
literature. Writing in 1777, the eighteenth century mathematician and physician,
Daniel Bernoulli directed this comment at astronomers:

[n]evertheless, I do not condemn in every case the principle of rejecting one or other of
the observations, indeed I approve it, whenever in the course of observation an accident
occurs which in itself raises an immediate scruple in the mind of the observer, before he
has considered the event and compared it with the other observations. If there is no such
reason for dissatisfaction I think each and every observation should be admitted whatever
its quality, as long as the observer is conscious that he has taken every care [105, 735]
(Bernoulli, quoted in Finney [438, p. 311]).

An Illustration
To illustrate the deletion of discordant values in astronomy, consider the work
of James Short [1268, 1269]; see also books on this topic by Lomb [839] and
Sheehan and Westfall [1257]. At about the same time that Daniel Bernoulli
was writing, James Short, Fellow of the Royal Society and maker of reflecting
telescopes, observed the 1761 transit of Venus from Savile House in Leicester
Square, London. He was there at the invitation of his Royal Highness, the
Duke of York, who was present for the transit with a number of members
of the royalty: his Royal Highnesses Prince William, Prince Henry, Prince
Frederick, and her Royal Highness Lady Augusta [1268, p. 180].

Short began his analysis with the timings of Venus leaving the disk of
the Sun (internal contact at egress) from a number of different locations,
comparing the timings of Mason and Dixon at the Cape of Good Hope
with that of 15 timings from Europe. His final value for the Sun–Earth
distance or parallax was the mean of these, leaving out a few outliers.
Based on the 15 observations, he found the mean value to be 800; 47. After
deleting the four observations that differed the most from the mean, he found
a corrected mean value to be 800; 52, which translates to 152.1 million km
(94.5 million miles), a value not far removed from the present-day value of
approximately 149.6 million km (92.9 million miles) [839, p. 75]. The four
observations Short deleted were from Shirburn Castle, Oxfordshire (800; 15);
Tornea, Finland (800; 07); Drontheim, Norway (800; 23); and Calmar (Kalmar),
Sweden (800; 86) [1269, p. 615]. James Short F.R.S. died in Newington Butts,
London, on 15 June 1768 at the age of 58.

An outlier, such as observation value w in Tables 6.4 and 6.6, may be defined
as a value which seems either too large or too small as compared to the rest of the
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observed values [563, p. 165].33;34 Yadolah Dodge, in The Oxford Dictionary of
Statistical Terms provides a more comprehensive definition:

[i]n a sample of n observations, it is possible for a limited number to be so far separated
in value from the remainder that they give rise to the question whether they are not from
a different population, or that the sampling technique is at fault. Such values are called
outliers. Tests are available to ascertain whether, under certain assumptions, they can be
accepted as homogeneous with the rest of the sample [356, p. 297] (also quoted in Finney
[438, p. 310]).

In 2002 Roy investigated the effects of heteroscedasticity and outliers on the
size and power of the permutation t test for small-sample problems [1200]. Roy
used sample sizes of 10, 25, and 50 and Cauchy, folded normal, log-normal, and
normal distributions with outliers in a computer simulation based on 10,000 Monte
Carlo samples. In general, Roy concluded that unless there is very high kurtosis,
an appreciable proportion of outliers, or very small samples, the permutation t test
performed very well in terms of size and power, even when heteroscedasticity was
present [1200, p. 26].

In general, the exclusion of outliers on a purely statistical basis has been,
and remains, a dangerous procedure [563]. Both John Tukey [1378] and William
Kruskal [777] suggested using mixtures of normal distributions with the same
mean but different variances, while myriad others have advocated non-parametric
approaches; Philip Good, for example, recommended the use of ranks when outliers
are a concern [529, 530]. Tukey also considered truncation and Winsorizing as
potential solutions [1378]. The problem exists in part, of course, because of the
use of mean-based statistical procedures in which outliers, and other values, are
weighted by the squares of their deviations from the mean, i.e., v D 2, thereby
increasing their influence proportional to their squared deviations from the mean;
see also a 1981 article by Bert Green in Journal of the American Statistical
Association [549] (q.v. page 337). A median-based statistical procedure with the
substitution of absolute deviations from the median, i.e., v D 1, mitigates the
problem as extreme values are no longer weighted by their squares.35

While the two example analyses in Tables 6.5 and 6.7, based on the data listed in
Tables 6.4 and 6.6, demonstrate that the Euclidean distance (v D 1) function tests
eliminate the need for replacing the observed raw data in question with rank-order
statistics to accommodate the existence of extreme events when v D 2, the two
examples also address an older question when squared Euclidean distance (v D 2)

33In 2008 Malcolm Gladwell published an entire book titled Outliers, in which he defines an outlier
as “a statistical observation that is markedly different in value from the others of the sample” [515,
p. 3].
34Two lucid discussions of outliers and how to treat them are contained in papers by David Finney
in 2006 [438] and John Ludbrook in 2008 [853].
35Kruskal suggested that only identified outliers be given a lesser weight, then proceeding as usual
[777]. Others who earlier suggested the weighting of outliers include S. Newcomb [1032] who
suggested that each observation be weighted by its residual, E.G. Stone [1325], and F.Y. Edgeworth
[380, 393].
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functions are used. The Fisher–Pitman permutation versions of the t tests may differ
substantially from the classical t tests based on normality in contrast with references
suggesting otherwise; see for example, an article by Boik in 1987 [175]. Since the
observed responses are perceived in a Euclidean data space, it is natural to have the
analysis space congruent with the Euclidean data space, i.e., v D 1 [938, 939, 941].

6.19 Multivariate Multiple Regression Analysis

In 2002 and 2003, extensions of multiple regression permutation analyses to
applications involving multivariate dependent values were considered by Mielke
and Berry [963, 964]. The extensions were prompted by a multivariate Least Sum
of Euclidean Distances (LSED) algorithm developed by Kaufman, Taylor, Mielke,
and Berry in 2002 [711]. Consider the multiple regression model given by

yIk D
mX

j D1

xIjˇjk C eIk (6.1)

for I D 1; : : : ; N and k D 1; : : : ; r , where yIk denotes the I th of N measurements
for the kth of r response variables, possibly affected by a treatment; xIk is the j th
of m covariates associated with the I th response, where xIj D 1 indicates that the
model includes an intercept; ˇjk denotes the j th of m regression parameters for the
kth of r response variables; and eIk designates the error associated with the I th of
N measurements for the kth of r response variables. If the estimates of ˇjk that
minimize

NX
ID1

 
rX

kD1

e2
Ik

!1=2

are denoted by Q̌jk for j D 1; : : : ; m and k D 1; : : : ; r , then the N r-dimensional
residuals of the multivariate multiple regression model based on LSED are given by

QeIk D yIk �
mX

j D1

xIj
Q̌
jk

for I D 1; : : : ; N and k D 1; : : : ; r . In comparison to multivariate multiple
regression models that minimize

NX
ID1

rX
kD1

jeIkj ;
NX

ID1

 
rX

kD1

jeIkj
!2

; or
NX

ID1

rX
kD1

e2
Ik;

only the multivariate multiple regression model based on LSED does not vary with
coordinate rotation and possesses the desired geometrical attributes of satisfying the
triangle inequality of a metric [711, 942].
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6.19.1 A Permutation Test

Mielke and Berry utilized multi-response permutation procedures (MRPP) to
analyze the residuals from a multivariate multiple regression analysis (q.v.
page 254). Let the N r-dimensional residuals, QeI1; : : : ; QeIr, for I D 1; : : : ; N

obtained from a multivariate multiple regression model based on LSED be
partitioned into g treatment groups of sizes n1; : : : ; ng , where ni � 2 for
i D 1; : : : ; g and

Pg
iD1 ni D N . The MRPP analysis of the multivariate residuals

depends on the statistic

ı D
gX

iD1

Ci �i ;

where Ci D ni =N is a positive weight for the i th of g treatment groups that
minimizes the variability of ı,

Pg
iD1 Ci D 1, and �i , the average pairwise Euclidean

distance among the ni r-dimensional residuals in the i th of g treatment groups, is
defined by

�i D
 

ni

2

!�1 N �1X
KD1

NX
LDKC1

2
4 rX

j D1

� QeKj � QeLj
	235

v=2

‰Ki‰Li;

where v > 0,

‰Ii D
8<
:

1 if QeI1; : : : ; QeIr is in the i th of g treatment groups,

0 otherwise,

and v D 1 yields Euclidean distance. The null hypothesis specifies that each of the

M D N Š
gY

iD1

ni Š

possible allocations of the N r-dimensional residuals to the g treatment groups is
equally likely. Under the null hypothesis, the permutation distribution of ı assigns
equal probabilities to the resulting M values of ı. Since small values of ı imply a
concentration of similar residuals within the g treatment groups, the null hypothesis
is rejected when the observed value of ı, ıo, is small. Thus, the exact MRPP
probability (P ) value associated with ıo is given by

P .ı � ıojH0/ D number of ı values � ıo

M
:

In addition, approximate MRPP probability values may be obtained from
either resampling-approximation or Pearson type III moment-approximation
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algorithms (q.v. page 303). Compared with classical parametric approaches, the
Euclidean-distance multivariate multiple regression method is exceedingly robust
with regard to extreme values and, being a permutation test, does not depend
on assumptions such as normality, homogeneity, and independence. Further, the
permutation approach allows for the choice of exact or approximate probability
values. Other applications of the multivariate multiple regression method include
various completely randomized and randomized block designs such as one-way,
Latin squares, factorial, nested, and split-plot designs, both with and without
covariates [965, Chap. 5]. Unlike parametric procedures, the only required
assumption is the random assignment of treatments to subjects.

Univariate multiple regression analyses based on LSED and MRPP were orig-
inally introduced in 1982 using rank-order transformations of the observed raw
residuals and in 1983 using the observed raw residuals, the preferred choice due
to the robustness of MRPP based on a Euclidean distance function [981, 1468].
More specifically, Mielke, Berry, and Medina analyzed wintertime orographic cloud
seeding experiments high in the Colorado mountains (Climax I and II), publishing
the results in Journal of Applied Meteorology [981]. The authors identified two
problems associated with the use of the classical linear model fitted by least squares
to analyze the data: (1) the residual data to be analyzed were highly skewed and
heavily dependent on only a few very large values, and (2) the complex non-
Euclidean geometry underlying the classical linear model. Consequently, Mielke
et al. utilized an alternative analysis procedure whereby they produced residual data
from a median (least absolute deviation or LAD) regression model and a subsequent
analysis based on rank tests associated with MRPP utilizing a Euclidean distance
function (i.e., v D 1) [981]. At the time the authors were unaware of the robustness
of MRPP with v D 1 and the artificial nature of rank-order statistics.

The following year, Wong, Chidambaram, and Mielke executed the identical
regression analysis on surface hail observations taken in 1975 and 1976 in Alberta,
Canada, publishing the results in Atmosphere–Ocean in 1983 [1468]. However, in
this case they utilized the observed (raw) residuals and did not convert the residuals
to ranks. Thus, Wong et al. were the first to present modern regression analyses
based on median (LAD) regression that was combined with MRPP applied to the
observed residual data and utilizing a Euclidean distance function (v D 1) [1468].

In 2005 Endler and Mielke utilized multivariate multiple regression to compare
entire color patterns as birds actually see them [410]. Noting that color patterns and
their visual backgrounds consist of a mosaic of patches that vary in color, brightness,
size, shape, and position, they used the LSED–MRPP method to compare entire
color patterns instead of comparing multiple pairs of patches as was customary in
previous studies. They observed that the LSED–MRPP method has two desirable
features: (1) it satisfies the congruence principle, i.e., that the metric Euclidean
distance analysis space is congruent with the observed metric Euclidean distance
data space, and (2) the Euclidean distance predicts perceived color distances [410,
p. 418]. They explained, this is in contrast to the classical t and F tests that are
based on non-metric squared Euclidean distance analysis spaces and do not satisfy



416 6 Beyond 2000

Table 6.8 Bivariate data on Scholastic Competence and Global Self-worth (y1; y2) for an
unbalanced randomized block design with N D 16 students

University

Academic year A B C

Freshman 155, 144 170, 128
156, 139 167, 131
187, 100 173, 121
152, 147 176, 121
161, 142

Senior 162, 133 177, 119 175, 122
157, 136 173, 123

184, 115
180, 118

the congruence principle, thus bearing no simple relationship to expected perceptual
differences.

6.19.2 An Example Analysis

To illustrate a residual permutation analysis, consider an unbalanced randomized
block experimental design, where scores were collected within three universities
(A, B, C) at two time periods (Freshman and Senior years) on two scales of a
standardized test (Scholastic Competence and Global Self-worth). The data are
summarized in Table 6.8 for a small sample of N D 16 students. Although the
residual permutation analysis can easily accommodate many dimensions, larger
numbers of subjects, and more complicated designs, the example is intentionally
kept simple to illustrate the procedures.

6.19.2.1 Analysis of Universities
The model under the null hypothesis for the analysis of universities is given by

yIk D xI1ˇ1k C xI2ˇ2k C eIk;

where I D 1; : : : ; 16 and k D 1; 2 correspond to Eq. (6.1). The values for the
X (dummy coded) and Y (data) matrices (xIj and yIk) are given in Table 6.9 where
xI1 D 1 for the intercept, xI2 D 1 (0) for the Freshman (Senior) academic years, and
yIk denotes the kth response of the I th student. If ıo denotes the observed value of ı,
then the exact permutation analysis based on M D 1;441;440 permutations yields
ıo D 12:8587 with an exact probability value of 6;676=1;441;440

:D 0:4631�10�2,
a resampling-approximation permutation procedure based on L D 1;000;000 yields
ıo D 12:8587 with an approximate resampling probability value of 0:4689 � 10�2,
and a Pearson type III moment-approximation permutation analysis (q.v. page 303)
yields ıo D 12:8587 with an approximate probability value of 0:4701� 10�2.
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Table 6.9 Data file
containing the X and Y
matrices for the analysis of
universities

University X matrix Y matrix

A 1 1 155 144
1 1 156 139
1 1 187 100
1 1 152 147
1 1 161 142
1 0 162 133
1 0 157 136

B 1 0 177 119
1 0 173 123
1 0 184 115
1 0 180 118

C 1 1 170 128
1 1 167 131
1 1 173 121
1 1 176 121
1 0 175 122

6.19.2.2 Analysis of Academic Years
The model under the null hypothesis for the analysis of academic years is given by

yIk D xI1ˇ1k C xI2ˇ2k C xI3ˇ3k C eIk;

where I D 1; : : : ; 16 and k D 1; 2 correspond to Eq. (6.1). The values of the X
(dummy coded) and Y (data) matrices (xIj and yIk) are given in Table 6.10 where
xI1 D 1 for the intercept, (xI2; xI3) is (1, 0), (0, 1), and (0, 0) for University A, B,
and C, respectively, and yIk denotes the kth response of the I th student. The exact
permutation analysis based on M D 11;440 permutations yields ıo D 12:0535 with
an exact probability value of 2;090=11;440

:D 0:1827, a resampling-approximation
permutation procedure based on L D 1;000;000 yields ıo D 12:0535 with an
approximate resampling probability value of 0.1826, and a Pearson type III moment-
approximation permutation analysis (q.v. page 303) yields ıo D 12:0535 with
an approximate probability value of 0.1901.

6.20 O’Gorman andMultiple Linear Regression

In 2005 O’Gorman evaluated the performance of randomization tests that use
permutations of independent variables in multiple linear regression models [1050].
In this paper O’Gorman introduced a new permutation method that he called the
permute-Z method. A little background is in order.

There has long existed a controversy over the appropriate permutation method for
analyzing multiple linear regression models. Consider the multiple linear regression
model given by

Y D ˇ0 C ˇ1XC ˇ2ZC "; (6.2)
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Table 6.10 Data file
containing the X and Y
matrices for the analysis of
academic years

Academic year X matrix Y matrix

Freshman 1 1 0 155 144
1 1 0 156 139
1 1 0 187 100
1 1 0 152 147
1 1 0 161 142
1 0 0 170 128
1 0 0 167 131
1 0 0 173 121
1 0 0 176 121

Senior 1 1 0 162 133
1 1 0 157 136
1 0 1 177 119
1 0 1 173 123
1 0 1 184 115
1 0 1 180 118
1 0 0 175 122

where Y is an n � 1 vector of dependent variables, X and Z are n � 1 vectors of
independent variables, and " is an n � 1 vector of errors. Also define a reduced
regression model given by

Y D ˇ0 C ˇ1XC "0: (6.3)

In 1983 Freedman and Lane proposed permuting the residuals obtained from the
reduced regression model in Eq. (6.3) [478]. The permuted residuals were then
added to the predicted values calculated from the reduced regression model to form
new dependent values, which were then subjected to the full regression model in
Eq. (6.2) to obtain the t statistic for testing H0Wˇ2 D 0. Eleven years later in 1992,
ter Braak proposed an alternative permutation procedure that was very similar to
that of Freedman and Lane, except that ter Braak computed the residuals from the
full regression model in Eq. (6.2) [1346].

Two years later in 1995, Kennedy proposed another method of permutation that
he claimed was identical to the permutation method of Freedman and Lane [748].
The Kennedy method correlated the residuals of the regression of Y and X with the
residuals of the regression of Z and X. The test is based on the idea that the partial
regression coefficient is equivalent to the simple regression coefficient of residuals
[21, p. 78].

In 1997 Manly proposed simply permuting the observed values of Y for the
test of partial correlation [876]. In 1999 Anderson and Legendre evaluated the
four permutation methods of Freedman and Lane, ter Braak, Kennedy, and Manly,
concluding that the reduced regression model of Freedman and Lane came closer
to maintaining the level of significance than the other three methods [20]. In
2001 Anderson and Robinson described the asymptotic properties of the four
methods [21].
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The permute-Z method advocated by O’Gorman was not new. As pointed out
by O’Gorman, the permute-Z method was first used to test H0Wˇ2 D 0 by Draper
and Stoneman in 1966 [360]. Also, O’Gorman noted that Kennedy and Cade had
used the permute-Z method in a small simulation study to demonstrate that the type
I error of the permute-Z method approximates the nominal value if a t statistic is
used as the permutation statistic [749]. Kennedy and Cade called it the “shuffle-Z”
method (q.v. page 351).

The permute-Z method advocated by O’Gorman is easy to describe and consists
of four parts [1050, p. 898]:
1. For the raw data, compute a conventional F test statistic for a subset of regression

coefficients from the regression of Y on X , and denote the result by F �.
2. For each permutation, permute the rows of Z and use the full model to obtain the

test statistic.
3. Generate R permutations of the rows of Z, and let E be the number of times that

the permutation test statistic exceeds F �.
4. Compute the probability value as p D .E C 1/=.RC 1/ and reject H0 if p � ˛.

O’Gorman evaluated the performance of the four methods using an extensive
simulation study. He showed that the permute-Z method maintained its level of
significance, except for extreme situations, and had power that approximated the
power of the reduced-model test proposed by Freedman and Lane. Furthermore, he
showed, by way of an example, that the permute-Z method can be more valuable
than the Freedman–Lane test in its ability to “downweight” outliers [1050].

6.21 Brusco–Stahl–Steinley andWeighted Kappa

In 2008 Brusco, Stahl, and Steinley presented an implicit enumeration method
for an exact permutation test of Cohen’s weighted kappa measure [226] (q.v.
page 382). Noting that complete enumeration of all possible agreement tables,
given fixed marginal frequency totals, is computationally unwieldy for modest
numbers of objects and categories, they proposed an implicit enumeration algorithm
for conducting an exact permutation test of Cohen’s weighted kappa, which was
applicable to agreement tables of non-trivial size.

The problem, they explained, is that when using resampling-approximation
permutation methods, the number of samples necessary to obtain a good probability
approximation must be quite large whenever the actual probability is small, which
often occurs when the computed value of the observed weighted kappa is high, e.g.,
� � 0:50. The suggested procedure was to examine partially filled sampled tables
and to “prune” those tables that could not produce a weighted kappa value greater
than the weighted kappa value of the observed table. The process is to place cell
frequencies into those cells with the smallest weights first, thereby quickly obtaining
partially constructed tables that cannot possibly achieve the value of the observed
weighted kappa. This appears at first reading to be similar to the network algorithm
of Mehta and Patel (q.v. page 287). However, the algorithm of Brusco et al. is not a
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Fig. 6.6 Multiple sclerosis
rater agreement panel for
N D 149 patients in
Winnipeg, Manitoba

network algorithm and is based on .k � 1/2 nested loops, where k is the number of
ordered categories for classifying n objects by each of the two judges.

An example will illustrate the process. Following Brusco et al., considered
the agreement table in Fig. 6.6, which was originally published by Landis and
Koch in Biometrics in 1977 [796] and is based on data originally collected by
Westlund and Kurland and published in American Journal of Hygiene in 1953
[1439].36 Two neurologists, one in Winnipeg, Manitoba, and one in New Orleans,
Louisiana, reviewed the records of n D 149 patients in Winnipeg and independently
placed them into one of k D 4 ordered diagnostic categories: (1) certain multiple
sclerosis, (2) probable multiple sclerosis, (3) possible multiple sclerosis, and (4)
(doubtful/unlikely/definitely not) multiple sclerosis. Based on a quadratic weighting
scheme, where wij denotes the weights given by

wij D 1 � .i � j /2

.k � 1/2
(6.4)

for i; j D 1; : : : ; k, they calculated the variable portion of the standard kappa
formula,

ŒWT D
kX

iD1

kX
j D1

wijxij;

where xij indicates an observed cell frequency, i; j D 1; : : : ; k.
Now consider the first random table generated with the same marginals, as

depicted in Fig. 6.7, in which just two cells have been filled, i.e., cells f1; 4g and
f4; 1g, where x1;4 D 8 and x4;1 D 11. The fundamental insight for the implicit
enumeration scheme stems from the fact that no completion of the remaining cells in
the rater agreement table in Fig. 6.7 can possibly produce a weighted kappa statistic
that equals or exceeds the observed statistic with ŒWT D 130:33 and � D 0:5246

[226, p. 444]. As noted by Brusco et al., although a large number of completed
tables satisfying the marginals can be realized by filling in the remaining cells of the
agreement table in Fig. 6.7, none of these will contribute to the probability value.

36Others have analyzed the Westlund and Kurland data, including Jolayemi in 1990 [698] and
Borkowf in 2004 [183].
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Fig. 6.7 Partially
constructed rater agreement
table for the multiple
sclerosis data

Therefore, the partially constructed rater-agreement table, and all complete tables
stemming from the partial table, can be eliminated from further consideration. In
this manner, Brusco et al. demonstrated that their enumeration algorithm provided
tremendous computational savings when the number of objects rated is relatively
small (n � 150) and the observed weighted kappa statistic is at least moderately
high (� � 0:50).37

The efficiency of the implicit enumeration algorithm of Brusco et al. stems from
the ordering of nested loops and the pruning rule. Application of the algorithm to the
data in Fig. 6.6 yielded the same exact probability value of 1:3467� 10�14 that was
found by complete enumeration, but took only about 2 % of the computing time. The
reason for the computational savings was that the implicit enumeration algorithm
required evaluation of only 46,980,632 (1.49 %) of the possible 3,146,622,222
tables with the same marginal frequency totals as the observed k � k contingency
table [226, p. 445].

6.22 Mielke et al. and Ridit Analysis

The classical two-treatment ridit analysis was first introduced by I.D.J. Bross in
1958 [223]. Ridit is an acronym for Relative to an Identified Distribution, where
the suffix “it” represents a type of data transformation similar to logit and probit.
The most common application of ridit analysis compares two independent treatment
groups in which ridit scores are calculated for the c ordered category frequencies
of the first treatment group and applied to the c ordered categories of the second
treatment group, and vice-versa. In this application, the two treatment groups are
considered to be independent finite samples.

In 2009 Mielke, Long, Berry, and Johnston extended the two-treatment ridit
analysis developed by Bross to g � 2 treatment groups [986]. Following Mielke
et al., consider a c � g cross-classification table with c ordered disjoint response
categories and g unordered treatment categories. Let mij denote the observed cell
frequency of the i th row and the j th column for i D 1; : : : ; c and j D 1; : : : ; g.

37Note that Brusco et al., in order to ensure an efficient procedure, began the process by filling in
those cells with the smallest weights; in this case, following Eq. (6.4), wij D w1;4 D 1 � .1 �
4/2=.4 � 1/2 D w4;1 D 1 � .4 � 1/2=.4 � 1/2 D 0.



422 6 Beyond 2000

Also, let

Mj D
cX

iD1

mij

denote the unordered treatment frequency totals for j D 1; : : : ; g, let

Li D
gX

j D1

mij

denote the ordered response frequency totals for i D 1; : : : ; c, and let

N D
cX

iD1

gX
j D1

mij

denote the table frequency total for the cg cells. The ridit scores of the j th observed
treatment group, j D 1; : : : ; g, are then given by

R1j D m1j =.2Mj /;

R2j D .m1j Cm2j =2/=Mj ;

:::
:::

Rcj D .m1j C � � � Cmc�1;j Cmcj =2/=Mj :

Finally, define a ridit test statistic, T , based on differences among all possible pairs
of treatment groups given by

T D
g�1X
iD1

gX
j DiC1

ˇ̌
xij � xji

ˇ̌
;

where

xij D
cX

kD1

Rkimkj

Mj

for i; j D 1; : : : ; g.
As noted by Mielke et al., ridit scores possess a probabilistic interpretation, i.e.,

the ridit score Rij for the i th of c ordered categories in the j th treatment group is
the proportion of observations in the categories below the i th category in the j th
treatment group, plus half the proportion of observations in the i th category of the
j th of g treatment groups. Thus, Rij is the probability that a randomly selected
observation falls below the midpoint of the i th category, conditioned on the j th
treatment [986, p. 225]. Figure 6.8 illustrates the calculation of ridit scores for one



6.22 Mielke et al. and Ridit Analysis 423

Fig. 6.8 Example
calculation of ridit scores
from c D 5 ordered
categories

treatment group and c D 5 ordered categories. In Fig. 6.8 , m1j D 2=.2/.38/ D
0:0263, m2j D .2 C 16=2/=38 D 0:2632, m3j D .2 C 16C 7=2/=38 D 0:5658,
and so on.

An exact permutation test is usually impractical for a ridit analysis, as among
the cN equally-likely assignment configurations under the null hypothesis that the g

treatments come from a common population and all possible outcomes of the ridit
analysis are equally likely, there are

W D
gY

j D1

 
Mj C c � 1

c � 1

!

distinguishable partitions of the cN configurations of the g treatment groups. Thus,
for c D 5, g D 4, and M1 DM2 D M3 D M4 D 15,

W D
 

15C 5 � 1

5 � 1

!4

D .3;876/4 D 225;701;826;437;376

and cN D 560 :D 8:67 � 1041, which is a very large number.38

A resampling-approximation permutation procedure generates L sets of N

random assignments selected from the cN assignment configurations of the g

treatment groups. A ridit test statistic T is then calculated for each of the L sets of N

random assignments of the ordered category frequencies. Given the resampled ridit
statistics T1; : : : ; TL, the resampling-approximation upper-tail probability value, P ,
of the observed value of T , To, under the null hypothesis is given by

P D 1

L

LX
iD1

ˆ.Ti /;

38Actually, 560 D 867;361;737;988;403;547;205;962;240;695;953;369;140;625.
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where

ˆ.Ti / D
8<
:

1 if Ti � To,

0 otherwise.

Mielke et al. concluded the article with an example analysis based on g D 4

opoids (Fentanyl, Codeine, Oxycodone, and Morphine), classified into c D 5

ordered evaluation categories (Excellent, Good, Adequate, Weak, and Poor), and
administered to N D 149 patients, each of whom had received a robotic-assisted
laparoscopic radical prostatectomy and was randomly assigned to one of the four
post-surgery treatment groups. Based on L D 1;000;000 resampled values, Mielke
et al. found To D 0:8420 with an upper-tail resampling-approximation probability
value of 0.0359.

6.23 Knijnenburg et al. and Probability Values

In 2009 Knijnenburg, Wessels, Reinders, and Shmulevich addressed the same
problem as Brusco, Stahl, and Steinley [226]; viz., resampling permutation methods
ultimately depend on the minimal obtainable probability value and the resolution of
the probability value to the number of permutations [761]. Put more succinctly, for
n random samples the resolution of obtainable resampling probability values is 1=n

and the smallest achievable probability value is 1=n. This means that a very large
number of permutations is required to accurately estimate a very small probability
value. To this end, Knijnenburg et al. developed a method of computing probability
values based on a tail approximation using a generalized Pareto distribution (GPD).
As described by Knijnenburg et al., the GPD has a cumulative distribution function
(cdf) given by

F.z/ D
8<
:

1� .1 � kz=a/1=k if k ¤ 0,

1� exp.�z=a/ if k D 0,

and probability density function given by

f .z/ D
8<
:

a�1.1 � kz=a/1=k�1 if k ¤ 0,

a�1 exp.�za/ if k D 0,

where a and k are the scale and shape parameters of the Pareto distribution,
respectively. The range of z is 0 � z < 1 for k � 0 and 0 � z � a=k for
k > 0. For shape parameters k D 0 and k D 1, the GPD becomes the exponential
and uniform distributions, respectively [761, p. i162].

Knijnenburg et al. examined seven distribution functions, ranging from light-
tailed to heavy-tailed: Poisson, normal, chi-squared, exponential, F , log-normal,
and Cauchy. They found in all cases, tail estimation using the GPD required fewer
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permutations than the standard empirical cumulative distribution function (ECDF).
For probability values that were not too small (e.g., 10�3 to 10�5) about 5 to 10
times fewer permutations were required with the GPD than with the ECDF. Finally,
for the GPD approximation they observed that heavy-tailed distributions converged
with fewer permutations than light-tailed distributions [761].

6.24 Reiss et al. andMultivariate Analysis of Variance

Multivariate permutation methods have found wide acceptance in ecological studies
as the type of data collected usually does not satisfy the multivariate normality
assumption of tests such as Pillai’s Trace, Wilks’ likelihood-ratio test (ƒ), or Roy’s
Maximum Root. In 2010 Reiss, Stevens, Shehzad, Petkova, and Milham compared
MRPP and pseudo-F tests in a multivariate analysis of variance context [1163]. The
two methods both begin as an n � n symmetric matrix D D .dij/ for 1 � i; j � n

representing non-negative distances among n observations. For MRPP, consider n

observations divided among g a priori groups G1; : : : ;Gg of sizes n1; : : : ; ng , then
the MRPP statistic is given by

ı D
gX

kD1

Ck

2

nk.nk � 1/

X
i<j; i;j 2G

	i;j ;

where 	i;j denotes a measure of dissimilarity between the i th and j th observations,
and

Ck D nk � 1

n � g
:

Following the notation of Reiss et al., for the pseudo-F test, let A D .� 1
2
d 2

ij / for
1 � i; j � n, and let

G D .I� 11T=n/A.I� 11T=n/;

where 1 is a vector of n 1s. Consider three partial design matrices, Xk for k D
0; 1; 2, where Xk is a n �mk matrix of rank mk. For k D 0; 1; 2, let

Hk D Xk.XT
k Xk/�1XT

k

be the hat matrix associated with Xk . The pseudo-F statistic is then given by

F � D trace .H2GH2/ =m2

trace Œ.I�H/G.I�H/ =.n �m/
:

Thus, the pseudo-F statistic is a generalization of the classical Snedecor F test
statistic that can be calculated directly from the distance matrix, whether or not
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the distance measurements are Euclidean. As Reiss et al. noted, this property
is especially helpful in the field of ecology, where analyses often employ non-
Euclidean distance measures such as that defined by Bray and Curtis in 1957 [208]:

d.x; y/ D

pX
kD1

ˇ̌
xk � yk

ˇ̌
pX

kD1

�
xk C yk

	 ;

where x and y are p-dimensional vectors of non-negative numbers.
Reiss et al. showed that a pseudo-F test with distance dij is equivalent to an

MRPP test with dissimilarity 	i;j D d 2
ij and weights Ck D .nk�1/=.n�g/, where

the relationship is given by

ı D

nX
iD1

nX
j D1

d 2
ij

n Œn � g C .g � 1/F �
:

Much of the remainder of the paper is a comparison and evaluation of distances
d 2

ij and dij, the second favored by Mielke for its congruence with the data space
[941]. Finally, Reiss et al. noted that there appears to be little recognition that
MRPP and pseudo-F are related, which contributes to a lack of understanding
across disciplines. The authors expressed hope that the equivalence presented in
the paper would help to reduce “this mutual incomprehension” [1163, p. 642].

6.25 A Permutation Analysis of Trend

In 2011 Berry, Johnston, and Mielke developed a permutation alternative to the
F test for the analysis of trend [116]. As Berry et al. explained, it is sometimes
necessary to compare the means of treatment groups when the independent variable
is quantitative. In such cases, it is more informative to consider the overall trend
among the treatment groups than simply to make specific comparisons among the
treatment means [116, p. 247].

The requisite F -ratios for an analysis of trend are obtained by polynomial
multiple regression, where a single independent variable is raised to successive
powers, i.e., 1; : : : ; k � 1. Let nj denote the number of subjects in the j th of k

treatments, j D 1; : : : ; k,

N D
kX

j D1

nj ;
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let yi , i D 1; : : : ; N , denote univariate measurements on the N subjects, and let
xi denote the quantitative values associated with the j th of k treatments for the i th
subject, i D 1; : : : ; N . Then,

R2
Linear D R2

y:x; R2
Quadratic D R2

y:x;x2 ; R2
Cubic D R2

y:x;x2;x3 ;

and so on. The F -ratio statistics are then given by

FLinear D
R2

y:x
1 � R2

y:x;x2;:::;xk�1

�.
N � k

� ; (6.5)

FQuadratic D
R2

y:x;x2
1 � R2

y:x;x2;:::;xk�1

�.
N � k

� ; (6.6)

FCubic D
R2

y:x;x2;x3
1 � R2

y:x;x2;:::;xk�1

�.
N � k

� ; (6.7)

and so on.
FLinear, FQuadratic, and FCubic in Eqs. (6.5)–(6.7) are simply tests of significance for

the appropriate squared semi-partial correlation coefficients in which the numerators
of Eqs. (6.5)–(6.7) are squared semi-partial correlation coefficients and the common
denominator in Eqs. (6.5)–(6.7) is the MSResidual. Under the null hypothesis, the
distribution of each F -ratio is Snedecor’s F distribution with 1 and N � k degrees
of freedom. As Berry et al. noted, tests of significance for squared semi-partial
correlation coefficients are especially sensitive to deviations from the assumptions
of normality and homogeneity; see for example, two articles by Algina, Keselman,
and Penfield in 2007 and 2010 [11, 12].

The permutation approach to the analysis of trend as developed by Berry et al.
followed the conventional approach up to, but not including, the determination of the
probability value. For data of this type, the determination of an exact permutation
probability value is unrealistic, as the number of permutations given by

M D N Š

kY
j D1

nj Š

is usually very large, precluding calculation of an exact probability value. Therefore,
an approximate two-sided resampling probability value was obtained by computing
an F -ratio on the observed data, randomly shuffling the N responses L times,
redistributing the shuffled responses to the k treatments with nj , j D 1; : : : ; k

held constant, computing L resampled values of F , and finding the proportion of
the L resampled F -ratio values equal to or greater than the observed F -ratio value.
In example analyses, Berry et al. set L D 1;000;000.
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In comparison analyses of the conventional F test for the analysis of trend
and the permutation alternative analysis of trend, Berry et al. found substantial
differences when extreme values were included in the data sets. They concluded
that, in these cases, the assumption of homogeneity of variance was not met and
the use of the conventional F test for the analysis of trend provided erroneous
results. They established that the permutation alternative to the conventional F test
for the analysis of trend provided probability values that were free of the restrictive
assumptions of normality and homogeneity underlying the use of the Snedecor F

distribution [116, p. 254].

6.26 Curran-Everett and Permutation Methods

In 2012 Douglas Curran-Everett published an overview article in Advances in
Physiology Education in an attempt to introduce permutation methods to researchers
and students in the field of physiology [307].39 Written in a conversational style,
Curran-Everett provided a brief history of permutation methods, an overview
comparing the Neyman–Pearson population and Fisher permutation models (q.v.
page 3), an example based on two independent samples, a second example based on
simple bivariate correlation, and a practical approach to permutation methods that
is worth summarizing for its succinctness and clarity [307, p. 185].
1. Define the problem—the null hypothesis—we care about.
2. Calculate a sample statistic that is relevant to the null hypothesis.
3. Rearrange the observations in ways that are consistent with the null hypothesis.
4. For each arrangement, calculate the sample statistic.
5. Compute the proportion of sample statistics in the permutation distribution that

are as or more extreme than the value of the observed sample statistic value.
Curran-Everett pointed out that when such notable researchers such as John

Tukey [1382], Bradley Efron and Rob Tibshirani [402], Michael Ernst [413],
Phillip Good [531], Oscar Kempthorne [719], and John Ludbrook and Hugh Dudley
[856] endorse permutation methods, it is incumbent on other researchers to pay
attention [307, p. 186]. In addition, he advised using permutation methods for the
actual statistical analysis whenever possible to assess whether a statistical inference
made from a more traditional hypothesis test is justified. Finally, Curran-Everett
concluded that if the conclusion from permutation methods matches the conclusion
from the traditional test of hypothesis, then one can be assured that the assumptions
for the traditional procedure have been reasonably well met, citing works by Eugene
Edgington and Patrick Onghena in 2007 [396], R.A. Fisher in 1960 [461], Phillip
Good in 2005 [531], and Bryan Manly in 2007 [877].

39This was the eighth article by Curran-Everett in a series published under the rubric “Explorations
in statistics” in Advances in Physiology Education; the previous articles in the series covered
standard deviations and standard errors, confidence intervals, hypothesis tests, the bootstrap,
correlation, power, and regression, and were published in 2008, 2009, 2010, and 2011 [300–306].
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Originally developed to test and confirm the robustness of classical statistical
tests and measures such as Student’s t test, bivariate correlation and regression,
analyses of variance for completely randomized and randomized block designs, and
chi-squared tests of independence and goodness-of-fit, permutation methods have
emerged as an area of statistical analysis in their own right. Presently permutation
tests constitute a gold standard against which conventional tests are often evaluated;
see for example, discussions by Scheffé in 1959 [1232, p. 82]; Kempthorne in
1966 and 1977 [720, 721]; Bradley in 1968 [201, p. 85]; Read and Cressie in 1988
[1157]; Bakeman, Robinson, and Quera in 1996 [50]; and Edgington and Onghena
in 2007 [396, p. 9]. From their inception, permutation tests were understood by
many researchers to be superior to conventional tests as permutation tests were data-
dependent, did not depend on the assumptions associated with classical tests, were
appropriate for use with either an entire population or a nonrandom sample, and
provided exact probability values.

The fact that permutation tests yield exact probability values is still extremely
important in validating conventional tests. For example, in 2000 Bergmann,
Ludbrook, and Spooren [100] investigated the efficacy of a variety of statistical
packages and calculated probability values for the Wilcoxon–Mann–Whitney two-
sample rank-sum test. Utilizing a single data set, the probability value of the
Wilcoxon–Mann–Whitney test was calculated using eleven standard statistical
packages, producing a variety of different probability values. Bergmann et al.
concluded that the only accurate form of the Wilcoxon–Mann–Whitney test was
“one in which the exact permutation null distribution [was] compiled for the actual
data” [100, p. 72] (q.v. page 171). The editor of The American Statistician at that
time, Joseph Hilbe, further noted that “it is a cause of considerable concern when
the results for a relatively simple test differ across [statistical] packages” [617,
p. 71].

The Fisher exact probability test is the iconic permutation test and is familiar
to most researchers. The test was introduced by Fisher in an invited paper on “The
logic of inductive inference” at the annual Christmas meeting of the Royal Statistical
Society on 18 December 1934, a paper that appeared in Journal of the Royal
Statistical Society the following year [452], although the origin of the Fisher exact
probability test is usually attributed to the celebrated “lady tasting tea” experiment
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Fig. 1 Notation for a 2 � 2

contingency table

at the Rothamsted Experimental Station in the 1920s (q.v. page 58). In this seminal
paper, Fisher analyzed a set of data from Johannes Lange on convictions of same-sex
twins of criminals (q.v. page 41). A search of the web in May 2013 for “Fisher exact
test” yielded 4,740,000 results. Thus, the Fisher exact probability test provides a
recognizable vehicle to summarize the attributes that distinguish permutation tests
from conventional tests in general. However, the test is not always used without
misrepresentation or controversy; see [855, 915, 1251].

To describe the Fisher exact probability test, consider a 2 � 2 contingency table
of n cases, where x denotes the frequency of any cell and r and c represent the
row and column marginal frequency totals, respectively, corresponding to x; such
as in Fig. 1. Given fixed marginal frequency totals, the point-probability value of x

is equivalent to the point-probability value of the observed table and Fisher’s exact
probability value is the hypergeometric point-probability of x given by

p.x j n; r; c/D

 
r

x

! 
n � r

c � x

!
 

n

c

! D rŠ cŠ .n� r/Š .n� c/Š

nŠ xŠ .r � x/Š .c � x/Š .n � r � c C x/Š
: (1)

This, of course, is exactly the formulation of the lady tasting tea experiment; see
discussions by Fisher [451, pp. 11–29], Box [195, pp. 134–135], Okamoto [1053],
Salsburg [1218, pp. 1–2], Senn [1250–1252], and Springate [1313].

The probability of the observed table or one more extreme requires the enumer-
ated permutation distribution of a � x � b, where a D max.0; r C c � n/ and
b D min.r; c/, in the notation of Fig. 1. If xo denotes the observed value of x,
the point-probability value of xo must first be determined, as in Eq. (1). The exact
hypergeometric cumulative-probability value is then given by

P.xojn; r; c/ D
bX

kDa

Gk p.kjn; r; c/ ; (2)

where

Gk D
8<
:

1 if p.kjn; r; c/ � p.xojn; r; c/ ;

0 otherwise ,

for a � xo � b.
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Table 1 Five possible arrangements of cell frequencies with n D 8 and identical marginal
frequency totals of 4, 4, 4, and 4

Table 1 Table 2 Table 3 Table 4 Table 5

0 4 1 3 2 2 3 1 4 0
4 0 3 1 2 2 1 3 0 4

The Fisher exact probability test can be illustrated by analyzing the data from the
lady tasting tea experiment. Recall that the experiment consisted of preparing eight
cups of tea with milk, four with the milk poured into the cup first and the tea infusion
added second, four with the tea infusion poured into the cup first and the milk added
second, and presenting them to the subject for judgment in random order (q.v. page
58). The subject was told in advance of what the test would consist; namely, she
would be asked to taste eight cups of tea, that these would be four of each kind,
and that the cups of tea would be presented to her in random order. Her task was to
divide the eight cups of tea into two sets of four each, agreeing, if possible, with the
treatments administered [451, Sect. 11].

For these data, r D c D 4, n D 8, a D max.0; rCc�n/ D max.0; 4C4�8/ D 0

and b D min.r; c/ D min.4; 4/ D 4. Thus, there are five possible arrangements
of the data wherein 0 � x � 4. Table 1 lists the five possible 2 � 2 tables with
n D 8 and identical marginal frequency totals of f4; 4g and f4; 4g. As in Eqs. (1)
and (2), let lower-case p denote the hypergeometric point-probability value and
upper-case P denote the hypergeometric cumulative-probability value of a given x.
Then, following Eq. (1), the point-probability values for x D 0; : : : ; 4 are given by

p.x D 0j8; 4; 4/ D 4Š 4Š .8 � 4/Š .8 � 4Š/

8Š 0Š .4 � 0/Š .4 � 0/Š .8 � 4 � 4C 0/Š
D 1

70
D 0:0143 ;

p.x D 1j8; 4; 4/ D 4Š 4Š .8 � 4/Š .8 � 4Š/

8Š 1Š .4 � 1/Š .4 � 1/Š .8 � 4 � 4C 1/Š
D 16

70
D 0:2286 ;

p.x D 2j8; 4; 4/ D 4Š 4Š .8 � 4/Š .8 � 4Š/

8Š 2Š .4 � 2/Š .4 � 2/Š .8 � 4 � 4C 2/Š
D 36

70
D 0:5153 ;

p.x D 3j8; 4; 4/ D 4Š 4Š .8 � 4/Š .8 � 4Š/

8Š 3Š .4 � 3/Š .4 � 3/Š .8 � 4 � 4C 3/Š
D 16

70
D 0:2286 ;

and

p.x D 4j8; 4; 4/ D 4Š 4Š .8 � 4/Š .8 � 4Š/

8Š 4Š .4 � 4/Š .4 � 4/Š .8 � 4 � 4C 4/Š
D 1

70
D 0:0143 :

Suppose, for example, that xo D 3. Then the hypergeometric cumulative probability
value is the sum of the probability values less than or equal to p.3j8; 4; 4/ D 0:2286,
i.e.,

P D 0:0143C 0:2286C 0:2286C 0:0143 D 0:4858 :
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Here, the exact cumulative probability value is calculated using Irwin’s rule, not
the doubling rule, which in this case would yield the same cumulative probability
value since the marginal distributions of f4; 4g and f4; 4g are identical and,
consequently, the discrete permutation distribution is symmetric. The controversy
over the two rules erupted primarily in the 1980s (q.v. page 51); however, the
argument over which rule is proper persists today. Recent articles by Dupont in 1986
and 1989 [364, 365], Lloyd in 1988 [838], Martín Andrés and Luna del Castillo in
1989 [900], and Neuhäuser in 2004 [1031] continue the controversy.

Obviously, the Fisher exact probability test is not included in the traditional
Neyman–Pearson [1035, 1036] population model of conditional assignment [663,
664, 855]. Indeed, the Fisher and Neyman–Pearson approaches represent two
different visions of science (q.v. page 3); see for example, a discussion by Goodman
in 1993 [539]. There is no testable null hypothesis for the Fisher permutation model
in the Neyman–Pearson sense of a posited population parameter, and no alternative
hypothesis. Also, the Fisher permutation model contains no probability of type I
error; no probability of type II error, and therefore no complement of the probability
of type II error, i.e., power; no point estimate of a population parameter; and,
consequently, no confidence limits. For Fisher, a computed probability value was
a measure of evidence in a single experiment; whereas for Neyman–Pearson, a
probability value was to be interpreted as a hypothetical frequency of error if the
experiment was to be repeated many times. Finally, the Fisher exact probability test
is completely data-dependent, makes no assumptions about a theoretical distribu-
tion, and does not require a random sample drawn from a specified population.

Early in their history, permutation methods were impractical and usually limited
to the verification of conventional statistical tests. It was the advent of high-speed
computing that allowed permutation methods to become practical. Permutation
methods have since supplanted conventional statistical methods for a variety of
research designs, and the field continues to expand as researchers design new
applications for permutation methods. Presently, it appears that computing speed
is sufficient for most applications of permutation methods. When combined with
resampling methods and innovative algorithms, permutation tests are preferred
alternatives to many conventional statistical tests.
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