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All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, mechanical, photocopying, recording or otherwise, without prior
written permission of the publishers.

now Publishers Inc. has an exclusive license to publish this mate-
rial worldwide. Permission to use this content must be obtained from
the copyright license holder. Please apply to now Publishers, PO Box
179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com



Contents

1 Introduction 1

1.1 Wireless Channels 3

1.2 The Role of the Singular Values 4

1.3 Random Matrices: A Brief Historical Account 11

2 Random Matrix Theory 19

2.1 Types of Matrices and Non-Asymptotic Results 19

2.2 Transforms 38

2.3 Asymptotic Spectrum Theorems 54

2.4 Free Probability 77

2.5 Convergence Rates and Asymptotic Normality 95

3 Applications to Wireless Communications 101

3.1 Direct-Sequence CDMA 101

3.2 Multi-Carrier CDMA 122

3.3 Single-User Multi-Antenna Channels 134

3.4 Other Applications 158

v



vi Contents

4 Appendices 159

4.1 Proof of Theorem 2.39 159

4.2 Proof of Theorem 2.42 160

4.3 Proof of Theorem 2.44 162

4.4 Proof of Theorem 2.49 164

4.5 Proof of Theorem 2.53 165

References 171



1

Introduction

From its inception, random matrix theory has been heavily influenced

by its applications in physics, statistics and engineering. The landmark

contributions to the theory of random matrices of Wishart (1928) [311],

Wigner (1955) [303], and Marc̆enko and Pastur (1967) [170] were moti-

vated to a large extent by practical experimental problems. Nowadays,

random matrices find applications in fields as diverse as the Riemann

hypothesis, stochastic differential equations, condensed matter physics,

statistical physics, chaotic systems, numerical linear algebra, neural

networks, multivariate statistics, information theory, signal processing,

and small-world networks. Despite the widespread applicability of the

tools and results in random matrix theory, there is no tutorial reference

that gives an accessible overview of the classical theory as well as the

recent results, many of which have been obtained under the umbrella

of free probability theory.

In the last few years, a considerable body of work has emerged in the

communications and information theory literature on the fundamental

limits of communication channels that makes substantial use of results

in random matrix theory.

The purpose of this monograph is to give a tutorial overview of ran-
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2 Introduction

dom matrix theory with particular emphasis on asymptotic theorems

on the distribution of eigenvalues and singular values under various as-

sumptions on the joint distribution of the random matrix entries. While

results for matrices with fixed dimensions are often cumbersome and

offer limited insight, as the matrices grow large with a given aspect

ratio (number of columns to number of rows), a number of powerful

and appealing theorems ensure convergence of the empirical eigenvalue

distributions to deterministic functions.

The organization of this monograph is the following. Section 1.1

introduces the general class of vector channels of interest in wireless

communications. These channels are characterized by random matrices

that admit various statistical descriptions depending on the actual ap-

plication. Section 1.2 motivates interest in large random matrix theory

by focusing on two performance measures of engineering interest: Shan-

non capacity and linear minimum mean-square error, which are deter-

mined by the distribution of the singular values of the channel matrix.

The power of random matrix results in the derivation of asymptotic

closed-form expressions is illustrated for channels whose matrices have

the simplest statistical structure: independent identically distributed

(i.i.d.) entries. Section 1.3 gives a brief historical tour of the main re-

sults in random matrix theory, from the work of Wishart on Gaus-

sian matrices with fixed dimension, to the recent results on asymptotic

spectra. Chapter 2 gives a tutorial account of random matrix theory.

Section 2.1 focuses on the major types of random matrices considered

in the literature, as well on the main fixed-dimension theorems. Sec-

tion 2.2 gives an account of the Stieltjes, η, Shannon, Mellin, R- and

S-transforms. These transforms play key roles in describing the spec-

tra of random matrices. Motivated by the intuition drawn from various

applications in communications, the η and Shannon transforms turn

out to be quite helpful at clarifying the exposition as well as the state-

ment of many results. Considerable emphasis is placed on examples

and closed-form expressions. Section 2.3 uses the transforms defined in

Section 2.2 to state the main asymptotic distribution theorems. Section

2.4 presents an overview of the application of Voiculescu’s free proba-

bility theory to random matrices. Recent results on the speed of con-

vergence to the asymptotic limits are reviewed in Section 2.5. Chapter
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3 applies the results in Chapter 2 to the fundamental limits of wire-

less communication channels described by random matrices. Section 3.1

deals with direct-sequence code-division multiple-access (DS-CDMA),

with and without fading (both frequency-flat and frequency-selective)

and with single and multiple receive antennas. Section 3.2 deals with

multi-carrier code-division multiple access (MC-CDMA), which is the

time-frequency dual of the model considered in Section 3.1. Channels

with multiple receive and transmit antennas are reviewed in Section

3.3 using models that incorporate nonideal effects such as antenna cor-

relation, polarization, and line-of-sight components.

1.1 Wireless Channels

The last decade has witnessed a renaissance in the information theory

of wireless communication channels. Two prime reasons for the strong

level of activity in this field can be identified. The first is the grow-

ing importance of the efficient use of bandwidth and power in view

of the ever-increasing demand for wireless services. The second is the

fact that some of the main challenges in the study of the capacity of

wireless channels have only been successfully tackled recently. Fading,

wideband, multiuser and multi-antenna are some of the key features

that characterize wireless channels of contemporary interest. Most of

the information theoretic literature that studies the effect of those fea-

tures on channel capacity deals with linear vector memoryless channels

of the form

y = Hx + n (1.1)

where x is the K-dimensional input vector, y is the N -dimensional

output vector, and the N -dimensional vector n models the additive

circularly symmetric Gaussian noise. All these quantities are, in gen-

eral, complex-valued. In addition to input constraints, and the degree

of knowledge of the channel at receiver and transmitter, (1.1) is char-

acterized by the distribution of the N × K random channel matrix H

whose entries are also complex-valued.

The nature of the K and N dimensions depends on the actual ap-

plication. For example, in the single-user narrowband channel with nT
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and nR antennas at transmitter and receiver, respectively, we identify

K = nT and N = nR; in the DS-CDMA channel, K is the number of

users and N is the spreading gain.

In the multi-antenna case, H models the propagation coefficients

between each pair of transmit-receive antennas. In the synchronous DS-

CDMA channel, in contrast, the entries of H depend on the received

signature vectors (usually pseudo-noise sequences) and the fading coef-

ficients seen by each user. For a channel with J users each transmitting

with nT antennas using spread-spectrum with spreading gain G and a

receiver with nR antennas, K = nTJ and N = nRG.

Naturally, the simplest example is the one where H has i.i.d. entries,

which constitutes the canonical model for the single-user narrowband

multi-antenna channel. The same model applies to the randomly spread

DS-CDMA channel not subject to fading. However, as we will see, in

many cases of interest in wireless communications the entries of H are

not i.i.d.

1.2 The Role of the Singular Values

Assuming that the channel matrix H is completely known at the re-

ceiver, the capacity of (1.1) under input power constraints depends on

the distribution of the singular values of H. We focus in the simplest

setting to illustrate this point as crisply as possible: suppose that the

entries of the input vector x are i.i.d. For example, this is the case

in a synchronous DS-CDMA multiaccess channel or for a single-user

multi-antenna channel where the transmitter cannot track the channel.

The empirical cumulative distribution function of the eigenvalues

(also referred to as the spectrum or empirical distribution) of an n× n

Hermitian matrix A is denoted by Fn
A defined as1

Fn
A(x) =

1

n

n
∑

i=1

1{λi(A) ≤ x}, (1.2)

where λ1(A), . . . , λn(A) are the eigenvalues of A and 1{·} is the indi-

cator function.

1 If Fn
A

converges as n → ∞, then the corresponding limit (asymptotic empirical distribution
or asymptotic spectrum) is simply denoted by FA(x).
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Now, consider an arbitrary N × K matrix H. Since the nonzero

singular values of H and H† are identical, we can write

NFN
HH†(x) − Nu(x) = KFK

H†H(x) − Ku(x) (1.3)

where u(x) is the unit-step function (u(x) = 0, x ≤ 0; u(x) = 1, x > 0).

With an i.i.d. Gaussian input, the normalized input-output mutual

information of (1.1) conditioned on H is2

1

N
I(x;y|H) =

1

N
log det

(

I + SNR HH†
)

(1.4)

=
1

N

N
∑

i=1

log
(

1 + SNR λi(HH†)
)

=

∫ ∞

0
log (1 + SNR x) dFN

HH†(x) (1.5)

with the transmitted signal-to-noise ratio (SNR)

SNR =
NE[||x||2]
KE[||n||2] , (1.6)

and with λi(HH†) equal to the ith squared singular value of H.

If the channel is known at the receiver and its variation over time

is stationary and ergodic, then the expectation of (1.4) over the dis-

tribution of H is the channel capacity (normalized to the number of

receive antennas or the number of degrees of freedom per symbol in

the CDMA channel). More generally, the distribution of the random

variable (1.4) determines the outage capacity (e.g. [22]).

Another important performance measure for (1.1) is the minimum

mean-square-error (MMSE) achieved by a linear receiver, which deter-

mines the maximum achievable output signal-to-interference-and-noise

2The celebrated log-det formula has a long history: In 1964, Pinsker [204] gave a general
log-det formula for the mutual information between jointly Gaussian random vectors but
did not particularize it to the linear model (1.1). Verdú [270] in 1986 gave the explicit form
(1.4) as the capacity of the synchronous DS-CDMA channel as a function of the signature
vectors. The 1991 textbook by Cover and Thomas [47] gives the log-det formula for the

capacity of the power constrained vector Gaussian channel with arbitrary noise covariance
matrix. In the mid 1990s, Foschini [77] and Telatar [250] gave (1.4) for the multi-antenna
channel with i.i.d. Gaussian entries. Even prior to those works, the conventional analyses
of Gaussian channels with memory via vector channels (e.g. [260, 31]) used the fact that
the capacity can be expressed as the sum of the capacities of independent channels whose
signal-to-noise ratios are governed by the singular values of the channel matrix.
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ratio (SINR). For an i.i.d. input, the arithmetic mean over the users (or

transmit antennas) of the MMSE is given, as function of H, by [271]

1

K
min

M∈C
K×N

E
[

||x − My||2
]

=
1

K
tr

{

(

I + SNR H†H
)−1

}

(1.7)

=
1

K

K
∑

i=1

1

1 + SNR λi(H†H)
(1.8)

=

∫ ∞

0

1

1 + SNR x
dFK

H†H(x)

=
N

K

∫ ∞

0

1

1 + SNR x
dFN

HH†(x) − N − K

K

(1.9)

where the expectation in (1.7) is over x and n while (1.9) follows from

(1.3). Note, incidentally, that both performance measures as a function

of SNR are coupled through

SNR
d

dSNR
loge det

(

I + SNR HH†
)

= K − tr

{

(

I + SNR H†H
)−1

}

.

As we see in (1.5) and (1.9), both fundamental performance measures

(capacity and MMSE) are dictated by the distribution of the empirical

(squared) singular value distribution of the random channel matrix.

In the simplest case of H having i.i.d. Gaussian entries, the density

function corresponding to the expected value of FN
HH† can be expressed

explicitly in terms of the Laguerre polynomials. Although the integrals

in (1.5) and (1.9) with respect to such a probability density function

(p.d.f.) lead to explicit solutions, limited insight can be drawn from

either the solutions or their numerical evaluation. Fortunately, much

deeper insights can be obtained using the tools provided by asymptotic

random matrix theory. Indeed, a rich body of results exists analyzing

the asymptotic spectrum of H as the number of columns and rows goes

to infinity while the aspect ratio of the matrix is kept constant.

Before introducing the asymptotic spectrum results, some justifica-

tion for their relevance to wireless communication problems is in order.

In CDMA, channels with K and N between 32 and 64 would be fairly

typical. In multi-antenna systems, arrays of 8 to 16 antennas would be
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at the forefront of what is envisioned to be feasible in the foreseeable fu-

ture. Surprisingly, even quite smaller system sizes are large enough for

the asymptotic limit to be an excellent approximation. Furthermore,

not only do the averages of (1.4) and (1.9) converge to their limits

surprisingly fast, but the randomness in those functionals due to the

random outcome of H disappears extremely quickly. Naturally, such

robustness has welcome consequences for the operational significance

of the resulting formulas.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

β=

0.2

0.5

1

Fig. 1.1 The Marc̆enko-Pastur density function (1.10) for β = 1, 0.5, 0.2.

As we will see in Chapter 2, a central result in random matrix theory

states that when the entries of H are zero-mean i.i.d. with variance 1
N ,

the empirical distribution of the eigenvalues of H†H converges almost

surely, as K,N → ∞ with K
N → β, to the so-called Marc̆enko-Pastur

law whose density function is

fβ(x) =

(

1 − 1

β

)+

δ(x) +

√

(x − a)+(b − x)+

2πβx
(1.10)

where (z)+ = max (0, z) and

a = (1 −
√

β)2 b = (1 +
√

β)2. (1.11)
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Fig. 1.2 The Marc̆enko-Pastur density function (1.12) for β = 10, 1, 0.5, 0.2. Note that the
mass points at 0, present in some of them, are not shown.

Analogously, the empirical distribution of the eigenvalues of HH†

converges almost surely to a nonrandom limit whose density function

is (cf. Fig. 1.2)

f̃β(x) = (1 − β) δ(x) + β fβ(x)

= (1 − β)+ δ(x) +

√

(x − a)+(b − x)+

2πx
. (1.12)

Using the asymptotic spectrum, the following closed-form expres-

sions for the limits of (1.4) [275] and (1.7) [271] can be obtained:

(1.13)

1

N
log det

(

I + SNR HH†
)

→ β

∫ b

a
log(1 + SNR x)fβ(x) dx

= β log

(

1 + SNR − 1

4
F (SNR , β)

)

+ log

(

1 + SNR β − 1

4
F (SNR , β)

)

− log e

4 SNR
F (SNR , β) (1.14)
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1

K
tr

{

(

I + SNR H†H
)−1

}

→
∫ b

a

1

1 + SNR x
fβ(x) dx (1.15)

= 1 − F(SNR , β)

4β SNR
(1.16)

with

F(x, z) =

(

√

x(1 +
√

z)2 + 1 −
√

x(1 −
√

z)2 + 1

)2

. (1.17)

N = 50

SNR SNR

SNRSNR

N = 3 N = 5

N = 15

0 2 4 6 8 10
0

1

2

3

4

0 2 4 6 8 10
0

1

2

3

4

0 2 4 6 8 10
0

1

2

3

4

0 2 4 6 8 10
0

1

2

3

4

Fig. 1.3 Several realizations of the left-hand side of (1.13) are compared to the asymptotic
limit in the right-hand side of (1.13) in the case of β = 1 for sizes: N = 3, 5, 15, 50.

The convergence of the singular values of H exhibits several key

features with engineering significance:

• Insensitivity of the asymptotic eigenvalue distribution to

the shape of the p.d.f. of the random matrix entries. This

property implies, for example, that in the case of a single-

user multi-antenna link, the results obtained asymptotically
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hold for any type of fading statistics. It also implies that

restricting the CDMA waveforms to be binary-valued incurs

no loss in capacity asymptotically.3

• Ergodic behavior: it suffices to observe a single matrix realiza-

tion in order to obtain convergence to a deterministic limit.

In other words, the eigenvalue histogram of any matrix re-

alization converges almost surely to the average asymptotic

eigenvalue distribution. This “hardening” of the singular val-

ues lends operational significance to the capacity formulas

even in cases where the random channel parameters do not

vary ergodically within the span of a codeword.
• Fast convergence of the empirical singular-value distribution

to its asymptotic limit. Asymptotic analysis is especially use-

ful when the convergence is so fast that, even for small values

of the parameters, the asymptotic results come close to the

finite-size results (cf. Fig. 1.3). Recent works have shown that

the convergence rate is of the order of the reciprocal of the

number of entries in the random matrix [8, 110].

It is crucial for the explicit expressions of asymptotic capacity and

MMSE shown in (1.14) and (1.16), respectively, that the channel matrix

entries be i.i.d. Outside that model, explicit expressions for the asymp-

totic singular value distribution such as (1.10) are exceedingly rare.

Fortunately, in other random matrix models, the asymptotic singular

value distribution can indeed be characterized, albeit not in explicit

form, in ways that enable the analysis of capacity and MMSE through

the numerical solution of nonlinear equations.

The first applications of random matrix theory to wireless commu-

nications were the works of Foschini [77] and Telatar [250] on narrow-

band multi-antenna capacity; Verdú [271] and Tse-Hanly [256] on the

optimum SINR achievable by linear multiuser detectors for CDMA;

Verdú [271] on optimum near-far resistance; Grant-Alexander [100],

3The spacing between consecutive eigenvalues, when properly normalized, was conjectured
in [65, 66] to converge in distribution to a limit that does not depend on the shape of the
p.d.f. of the entries. The universality of the level spacing distribution and other microscopic
(local) spectral characteristics has been extensively discussed in recent theoretical physics
and mathematical literature [174, 106, 200, 52, 54].
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Verdú-Shamai [275, 217], Rapajic-Popescu [206], and Müller [185] on

the capacity of CDMA. Subsequently, a number of works, surveyed in

Chapter 3, have successfully applied random matrix theory to a vari-

ety of problems in the design and analysis of wireless communication

systems.

Not every result of interest in the asymptotic analysis of channels of

the form (1.1) has made use of the asymptotic eigenvalue tools that are

of central interest in this paper. For example, the analysis of single-user

matched filter receivers [275] and the analysis of the optimum asymp-

totic multiuser efficiency [258] have used various versions of the central-

limit theorem; the analysis of the asymptotic uncoded error probability

as well as the rates achievable with suboptimal constellations have used

tools from statistical physics such as the replica method [249, 103].

1.3 Random Matrices: A Brief Historical Account

In this subsection, we provide a brief introduction to the main devel-

opments in the theory of random matrices. A more detailed account

of the theory itself, with particular emphasis on the results that are

relevant for wireless communications, is given in Chapter 2.

Random matrices have been a part of advanced multivariate statis-

tical analysis since the end of the 1920s with the work of Wishart [311]

on fixed-size matrices with Gaussian entries. The first asymptotic re-

sults on the limiting spectrum of large random matrices were obtained

by Wigner in the 1950s in a series of papers [303, 305, 306] motivated by

nuclear physics. Replacing the self-adjoint Hamiltonian operator in an

infinite-dimensional Hilbert space by an ensemble of very large Hermi-

tian matrices, Wigner was able to bypass the Schrödinger equation and

explain the statistics of experimentally measured atomic energy levels

in terms of the limiting spectrum of those random matrices. Since then,

research on the limiting spectral analysis of large-dimensional random

matrices has continued to attract interest in probability, statistics and

physics.

Wigner [303] initially dealt with an n×n symmetric matrix A whose

diagonal entries are 0 and whose upper-triangle entries are independent

and take the values ±1 with equal probability. Through a combinatorial
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Fig. 1.4 The semicircle law density function (1.18) compared with the histogram of the
average of 100 empirical density functions for a Wigner matrix of size n = 100.

derivation of the asymptotic eigenvalue moments involving the Cata-

lan numbers, Wigner showed that, as n → ∞, the averaged empirical

distribution of the eigenvalues of 1√
n
A converges to the semicircle law

whose density is

w(x) =

{

1
2π

√
4 − x2 if |x| ≤ 2

0 if |x| > 2
(1.18)

Later, Wigner [305] realized that the same result would be obtained if

the random selection was sampled from a zero-mean (real or complex)

Gaussian distribution. In that case, it is even possible to find an exact

formula for the joint distribution of the eigenvalues as a function of

n [176]. The matrices treated in [303] and [305] are special cases of

Wigner matrices, defined as Hermitian matrices whose upper-triangle

entries are zero-mean and independent. In [306], Wigner showed that

the asymptotic distribution of any Wigner matrix is the semicircle law

(1.18) even if only a unit second-moment condition is placed on its

entries.

Figure 1.4 compares the semicircle law density function (1.18) with

the average of 100 empirical density functions of the eigenvalues of a

10 × 10 Wigner matrix whose diagonal entries are 0 and whose upper-

triangle entries are independent and take the values ±1 with equal

probability.

If no attempt is made to symmetrize the square matrix A and all

its entries are chosen to be i.i.d., then the eigenvalues of 1√
n
A are
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asymptotically uniformly distributed on the unit circle of the complex

plane. This is commonly referred to as Girko’s full-circle law, which is

exemplified in Figure 1.5. It has been proved in various degrees of rigor

and generality in [173, 197, 85, 68, 9]. If the off-diagonal entries Ai,j and

Aj,i are Gaussian and pairwise correlated with correlation coefficient

ρ, then [238] shows that the eigenvalues of 1√
n
A are asymptotically

uniformly distributed on an ellipse in the complex plane whose axes

coincide with the real and imaginary axes and have radius 1 + ρ and

1− ρ, respectively. When ρ = 1, the projection on the real axis of such

elliptic law is equal to the semicircle law.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 1.5 The full-circle law and the eigenvalues of a realization of a matrix of size n = 500.

Most of the results surveyed above pertain to the eigenvalues of

square matrices with independent entries. However, as we saw in Sec-

tion 1.2, key problems in wireless communications involve the singular

values of rectangular matrices H; even if those matrices have indepen-

dent entries, the matrices HH† whose eigenvalues are of interest do not

have independent entries.
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When the entries of H are zero-mean i.i.d. Gaussian, HH† is com-

monly referred to as a Wishart matrix. The analysis of the joint dis-

tribution of the entries of Wishart matrices is as old as random matrix

theory itself [311]. The joint distribution of the eigenvalues of such ma-

trices is known as the Fisher-Hsu-Roy distribution and was discovered

simultaneously and independently by Fisher [75], Hsu [120], Girshick

[89] and Roy [210]. The corresponding marginal distributions can be

expressed in terms of the Laguerre polynomials [125].

The asymptotic theory of singular values of rectangular matrices

has concentrated on the case where the matrix aspect ratio converges

to a constant

K

N
→ β (1.19)

as the size of the matrix grows.

The first success in the quest for the limiting empirical singular

value distribution of rectangular random matrices is due to Marc̆enko

and Pastur [170] in 1967. This landmark paper considers matrices of

the form

W = W0 + HTH† (1.20)

where T is a real diagonal matrix independent of H, W0 is a determin-

istic Hermitian matrix, and the columns of the N × K matrix H are

i.i.d. random vectors whose distribution satisfies a certain symmetry

condition (encompassing the cases of independent entries and uniform

distribution on the unit sphere). In the special case where W0 = 0,

T = I, and H has i.i.d. entries with variance 1
N , the limiting spectrum

of W found in [170] is the density in (1.10). In the special case of square

H, the asymptotic density function of the singular values, correspond-

ing to the square root of the random variable whose p.d.f. is (1.10) with

β = 1, is equal to the quarter circle law:

q(x) =
1

π

√

4 − x2, 0 ≤ x ≤ 2. (1.21)

As we will see in Chapter 2, in general (W0 �= 0 or T �= I) no closed-

form expression is known for the limiting spectrum. Rather, [170] char-
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acterized it indirectly through its Stieltjes transform,4 which uniquely

determines the distribution function. Since [170], this transform, which

can be viewed as an iterated Laplace transform, has played a funda-

mental role in the theory of random matrices.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 1.6 The quarter circle law compared a histogram of the average of 100 empirical sin-
gular value density functions of a matrix of size 100 × 100.

Figure 1.6 compares the quarter circle law density function (1.21)

with the average of 100 empirical singular value density functions of

a 100 × 100 square matrix H with independent zero-mean complex

Gaussian entries with variance 1
100 .

Despite the ground-breaking nature of Marc̆enko and Pastur’s con-

tribution, it remained in obscurity for quite some time. For example, in

1977 Grenander and Silverstein [101] rediscovered (1.10) motivated by

a neural network problem where the entries of H take only two values.

Also unaware of the in-probability convergence result of [170], in 1978

Wachter [296] arrived at the same solution but in the stronger sense of

almost sure convergence under the condition that the entries of H have

4The Stieltjes transform is defined in Section 2.2.1. The Dutch mathematician T. J. Stieltjes
(1856-1894) provided the first inversion formula for this transform in [246].
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uniformly bounded central moments of order higher than 2 as well as

the same means and variances within a row. The almost sure conver-

gence for the model (1.20) considered in [170] was shown in [227]. Even

as late as 1991, rediscoveries of the Marc̆enko-Pastur law can be found

in the Physics literature [50].

The case where W = 0 in (1.20), T is not necessarily diagonal but

Hermitian and H has i.i.d. entries was solved by Silverstein [226] also

in terms of the Stieltjes transform.

The special case of (1.20) where W0 = 0, H has zero-mean i.i.d.

Gaussian entries and

T = (YY†)−1

where the K × m matrix Y has also zero-mean i.i.d. Gaussian entries

with variance 1
m , independent of H, is called a (central) multivariate

F -matrix. Because of the statistical applications of such matrix, its

asymptotic spectrum has received considerable attention culminating

in the explicit expression found by Silverstein [223] in 1985.

The speed of convergence to the limiting spectrum is studied in

[8]. For our applications it is more important, however, to assess the

speed of convergence of the performance measures (e.g. capacity and

MMSE) to their asymptotic limits. Note that the sums in the right

side of (1.4) involve dependent terms. Thanks to that dependence, the

convergence in (1.13) and (1.15) is quite remarkable: the deviations

from the respective limits multiplied by N converge to Gaussian random

variables with fixed mean5 and variance. This has been established

for general continuous functions, not just the logarithmic and rational

functions of (1.13) and (1.15), in [15] (see also [131]).

The matrix of eigenvectors of Wishart matrices is known to be

uniformly distributed on the manifold of unitary matrices (the so-

called Haar measure) (e.g. [125, 67]). In the case of HH† where H

has i.i.d. non-Gaussian entries, much less success has been reported in

the asymptotic characterization of the eigenvectors [153, 224, 225].

For matrices whose entries are Gaussian and correlated according

to a Toeplitz structure, an integral equation is known for the Stielt-

5The mean is zero in the interesting special case where H has i.i.d. complex Gaussian
entries [15].
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jes transform of the asymptotic spectrum as a function of the Fourier

transform of the correlation function [147, 198, 55]. Other results on

random matrices with correlated and weakly dependent entries can be

found in [170, 196, 146, 53, 199, 145]. Reference [191], in turn, consid-

ers a special class of random matrices with dependent entries that falls

outside the Marc̆enko-Pastur framework and that arises in the context

of the statistical physics of disordered systems.

Incidentally, another application of the Stieltjes transform approach

is the generalization of Wigner’s semicircle law to the sum of a Wigner

matrix and a deterministic Hermitian matrix. Provided Lindeberg-type

conditions are satisfied by the entries of the random component, [147]

obtained the deformed semicircle law, which is only known in closed-

form in the Stieltjes transform domain.

Sometimes, an alternative to the characterization of asymptotic

spectra through the Stieltjes transform is used, based on the proof

of convergence and evaluation of moments such as 1
N tr{(HH†)k}. For

most cases of practical interest, the limiting spectrum has bounded

support. Thus, the moment convergence theorem can be applied

to obtain results on the limiting spectrum through its moments

[297, 314, 315, 313].

An important recent development in asymptotic random matrix

analysis has been the realization that the non-commutative free prob-

ability theory introduced by Voiculescu [283, 285] in the mid-1980s is

applicable to random matrices. In free probability, the classical notion

of independence of random variables is replaced by that of “freeness”

or “free independence”.

The power of the concept of free random matrices is best illustrated

by the following setting. In general, we cannot find the eigenvalues of

the sums of random matrices from the eigenvalues of the individual

matrices (unless they have the same eigenvectors), and therefore the

asymptotic spectrum of the sum cannot be obtained from the indi-

vidual asymptotic spectra. An obvious exception is the case of inde-

pendent diagonal matrices in which case the spectrum of the sum is

simply the convolution of the spectra. When the random matrices are

asymptotically free [287], the asymptotic spectrum of the sum is also

obtainable from the individual asymptotic spectra. Instead of convolu-
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tion (or equivalently, summing the logarithms of the individual Fourier

transforms), the “free convolution” is obtained through the sum of

the so-called R-transforms introduced by Voiculescu [285]. Examples

of asymptotically free random matrices include independent Gaussian

random matrices, and A and UBU∗ where A and B are Hermitian

and U is uniformly distributed on the manifold of unitary matrices

and independent of A and B.

In free probability, the role of the Gaussian distribution in classical

probability is taken by the semicircle law (1.18) in the sense of the free

analog of the central limit theorem [284]: the spectrum of the normal-

ized sum of free random matrices (with given spectrum) converges to

the semicircle law (1.18). Analogously, the spectrum of the normalized

sum of free random matrices with unit rank converges to the Marc̆enko-

Pastur law (1.10), which then emerges as the free counterpart of the

Poisson distribution [239, 295]. In the general context of free random

variables, Voiculescu has found an elegant definition of free-entropy

[288, 289, 291, 292, 293]. A number of structural properties have been

shown for free-entropy in the context of non-commutative probabil-

ity theory (including the counterpart of the entropy-power inequality

[248]). The free counterpart to Fisher’s information has been investi-

gated in [289]. However, a free counterpart to the divergence between

two distributions is yet to be discovered.

A connection between random matrices and information theory was

made by Balian [17] in 1968 considering the inverse problem in which

the distribution of the entries of the matrix must be determined while

being consistent with certain constraints. Taking a maximum entropy

method, the ensemble of Gaussian matrices is the solution to the prob-

lem where only a constraint on the energy of the singular values is

placed.
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Random Matrix Theory

In this chapter, we review a wide range of existing mathematical results

that are relevant to the analysis of the statistics of random matrices

arising in wireless communications. We also include some new results on

random matrices that were inspired by problems of engineering interest.

Throughout the monograph, complex Gaussian random variables

are always circularly symmetric, i.e., with uncorrelated real and imagi-

nary parts, and complex Gaussian vectors are always proper complex.1

2.1 Types of Matrices and Non-Asymptotic Results

We start by providing definitions for the most important classes of

random matrices: Gaussian, Wigner, Wishart and Haar matrices. We

also collect a number of results that hold for arbitrary (non-asymptotic)

matrix sizes.

2.1.1 Gaussian Matrices

1 In the terminology introduced in [188], a random vector with real and imaginary compo-

nents x and y, respectively, is proper complex if E

h

(x− E[x]) (y − E[y])T
i

= 0 .

19
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Definition 2.1. A standard real/complex Gaussian m × n matrix H

has i.i.d. real/complex zero-mean Gaussian entries with identical vari-

ance σ2 = 1
m . The p.d.f. of a complex Gaussian matrix with i.i.d.

zero-mean Gaussian entries with variance σ2 is

(πσ2)−mn exp

[

−tr{HH†}
σ2

]

. (2.1)

The following result is the complex counterpart of those given in [18,

78, 27, 245] and [182, Thm. 3.2.14]:

Lemma 2.1. [104] Let H be an m × n standard complex Gaussian

matrix with n ≥ m. Denote its QR-decomposition by H = QR. The

upper triangular matrix R is independent of Q, which is uniformly

distributed over the manifold2 of complex m × n matrices such that

QQ† = I. The entries of R are independent and its diagonal entries,

Ri,i for i ∈ {1, . . . ,m}, are such that 2mR2
i,i are χ2 random variables

with 2(n− i + 1) degrees of freedom while the off-diagonal entries, Ri,j

for i < j, are independent zero-mean complex Gaussian with variance
1
m .

The proof of Lemma 2.1 uses the expression of the p.d.f. of H given

in (2.1) and [67, Theorem 3.1].

The p.d.f. of the eigenvalues of standard Gaussian matrices is stud-

ied in [32, 68]. If the n×n matrix coefficients are real, [69] gives an exact

expression for the expected number of real eigenvalues which grows as
√

2n/π.

2.1.2 Wigner Matrices

2This is called the Stiefel manifold and it is a subspace of dimension 2mn − m2 with total

volume 2mπmn− 1

2
m(m−1) Qm

i=1
1

(n−i)!
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Definition 2.2. An n×n Hermitian matrix W is a Wigner matrix if its

upper-triangular entries are independent zero-mean random variables

with identical variance. If the variance is 1
n , then W is a standard

Wigner matrix.

Theorem 2.2. Let W be an n × n complex Wigner matrix whose

(diagonal and upper-triangle) entries are i.i.d. zero-mean Gaussian with

unit variance.3 Then, its p.d.f. is

2−n/2π−n2/2 exp

[

−tr{W2}
2

]

(2.2)

while the joint p.d.f. of its ordered eigenvalues λ1 ≥ . . . ≥ λn is

1

(2π)n/2
e−

1
2

Pn
i=1 λ2

i

n−1
∏

i=1

1

i!

n
∏

i<j

(λi − λj)
2. (2.3)

Theorem 2.3. [307] Let W be an n × n complex Gaussian Wigner

matrix defined as in Theorem 2.2. The marginal p.d.f. of the unordered

eigenvalues is

1

n

n−1
∑

i=0

1

2i i!
√

2π

(

e−
x2

4 Hi(x)

)2

(2.4)

with Hi(·) the ith Hermite polynomial [1].

As shown in [304, 172, 81, 175], the spacing between adjacent eigen-

values of a Wigner matrix exhibits an interesting behavior. With the

eigenvalues of a Gaussian Wigner matrix sorted in ascending order, de-

note by L the spacing between adjacent eigenvalues relative to the mean

3Such matrices are often referred to as simply Gaussian Wigner matrices.
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eigenvalue spacing. The density of L in the large-dimensional limit is

accurately approximated by4

fL(s) ≈
π

2
s e−

π
4
s2

(2.5)

For small values of s, (2.5) approaches zero implying that very

small spacings are unlikely and that the eigenvalues somehow repel

each other.

2.1.3 Wishart Matrices

Definition 2.3. The m × m random matrix A = HH† is a (central)

real/complex Wishart matrix with n degrees of freedom and covariance

matrix Σ, (A ∼ Wm(n,Σ)), if the columns of the m× n matrix H are

zero-mean independent real/complex Gaussian vectors with covariance

matrix Σ.5 The p.d.f. of a complex Wishart matrix A ∼ Wm(n,Σ) for

n ≥ m is [244, p. 84], [182, 125]6

fA(B) =
π−m(m−1)/2

detΣn
∏m

i=1(n − i)!
exp

[

−tr
{

Σ−1B
}]

detBn−m. (2.6)

2.1.4 Haar Matrices

Definition 2.4. A square matrix U is unitary if

UU† = U†U = I.

4 Wigner postulated (2.5) in [304] by assuming that the energy levels of a nucleus behave
like a modified Poisson process. Starting from the joint p.d.f. of the eigenvalues of a
Gaussian Wigner matrix, (2.5) has been proved in [81, 175] where its exact expression has
been derived. Later, Dyson conjectured that (2.5) may also hold for more general random
matrices [65, 66]. This conjecture has been proved by [129] for a certain subclass of not
necessarily Gaussian Wigner matrices.

5 If the entries of H have nonzero mean, HH† is a non-central Wishart matrix.
6The case n < m is studied in [267].
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Definition 2.5. [107] An n×n random matrix U is a Haar matrix7 if

it is uniformly distributed on the set, U(n), of n×n unitary matrices.8

Its density function on U(n) is given by [107, 67]

2−nπ− 1
2
n(n+1)

n
∏

i=1

(n − i)! (2.7)

Lemma 2.4. [107] The eigenvalues, ζi for i ∈ {1, . . . , n}, of an n × n

Haar matrix lie on the unit circle, i.e., ζi = ejθi , and their joint p.d.f. is

1

n!

∏

i<ℓ

|ζi − ζℓ|2. (2.8)

Lemma 2.5. (e.g. [110]) If 1 ≤ i, j, k, ℓ ≤ n, i �= k, j �= ℓ, and U is an

n × n (complex) Haar matrix, then

E[|Uij |2] =
1

n

E[|Uij |4] =
2

n(n + 1)

E[|Uij|2|Ukj|2] = E[|Uij|2|Uiℓ|2] =
1

n(n + 1)

E[|Uij |2|Ukℓ|2] =
1

n2 − 1

E[UijUkℓU
∗
iℓU

∗
kj] = − 1

n(n2 − 1)
.

A way to generate a Haar matrix is the following: let H be an n×n stan-

dard complex Gaussian matrix and let R be the upper triangular mat-

rix obtained from the QR decomposition of H chosen such that all its

diagonal entries are nonnegative. Then, as a consequence of Lemma 2.1,

HR−1 is a Haar matrix [245].

7Also called isotropic in the multi-antenna literature [171].
8A real Haar matrix is uniformly distributed on the set of real orthogonal matrices.
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2.1.5 Unitarily Invariant Matrices

Definition 2.6. A Hermitian random matrix W is called unitarily in-

variant if the joint distribution of its entries equals that of VWV† for

any unitary matrix V independent of W.

Example 2.1. A Haar matrix is unitarily invariant.

Example 2.2. A Gaussian Wigner matrix is unitarily invariant.

Example 2.3. A central Wishart matrix W ∼ Wm(n, I) is unitarily

invariant.

Lemma 2.6. (e.g [111]) If W is unitarily invariant, then it can be

decomposed as

W = UΛU†.

with U a Haar matrix independent of the diagonal matrix Λ.

Lemma 2.7. [110, 111] If W is unitarily invariant and f(·) is a real

continuous function defined on the real line, then f(W), given via the

functional calculus, is also unitarily invariant.

Definition 2.7. A rectangular random matrix H is called bi-unitarily

invariant if the joint distribution of its entries equals that of UHV†

for any unitary matrices U and V independent of H.
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Example 2.4. A standard Gaussian random matrix is bi-unitarily in-

variant.

Lemma 2.8. [111] If H is a bi-unitarily invariant square random mat-

rix, then it admits a polar decomposition H = UC where U is a Haar

matrix independent of the unitarily-invariant nonnegative definite ran-

dom matrix C.

In the case of a rectangular m × n matrix H, with m ≤ n, Lemma

2.8 also applies with C an n×n unitarily-invariant nonnegative definite

random matrix and with U uniformly distributed over the manifold of

complex m × n matrices such that UU† = I.

2.1.6 Properties of Wishart Matrices

In this subsection we collect a number of properties of central and non-

central Wishart matrices and, in some cases, their inverses. We begin

by considering the first and second order moments of a central Wishart

matrix and its inverse.

Lemma 2.9. [164, 96] For a central Wishart matrix W ∼ Wm(n, I),

E[tr{W}] = mn

E[tr{W2}] = mn (m + n)

E[tr2{W}] = mn (mn + 1).

Lemma 2.10. [164, 96](see also [133]) For a central Wishart matrix

W ∼ Wm(n, I) with n > m,

E
[

tr
{

W−1
}]

=
m

n − m
(2.9)

while, for n > m + 1,

E
[

tr
{

W−2
}]

=
m n

(n − m)3 − (n − m)

E
[

tr2
{

W−1
}]

=
m

n − m

(

n

(n − m)2 − 1
+

m − 1

n − m + 1

)

.
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For higher order moments of Wishart and generalized inverse Wishart

matrices, see [96].

From Lemma 2.1, we can derive several formulas on the determinant

and log-determinant of a Wishart matrix.

Theorem 2.11. [182, 131]9 A central complex Wishart matrix W ∼
Wm(n, I), with n ≥ m, satisfies

E

[

detWk
]

=

m−1
∏

ℓ=0

Γ(n − ℓ + k)

Γ(n − ℓ)
(2.10)

and hence the moment-generating function of loge detW for ζ ≥ 0 is

E

[

eζ loge detW
]

=

m−1
∏

ℓ=0

Γ(n − ℓ + ζ)

Γ(n − ℓ)
(2.11)

with Γ(·) denoting the Gamma function [97]

Γ(a) =

∫ ∞

0
ta−1e−tdt

which, for integer arguments, satisfies Γ(n + 1) = n! From (2.11),

E[loge detW] =

m−1
∑

ℓ=0

ψ(n − ℓ) (2.12)

Var[loge detW] =

m−1
∑

ℓ=0

ψ̇(n − ℓ) (2.13)

where ψ(·) is Euler’s digamma function [97], which for natural argu-

ments can be expressed as

ψ(m) = ψ(1) +
m−1
∑

ℓ=1

1

ℓ
= ψ(m − 1) +

1

m − 1
(2.14)

9Note that [182, 131] derive the real counterpart of Theorem 2.11, from which the complex
case follows immediately.
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with −ψ(1) = 0.577215... the Euler-Mascheroni constant. The deriva-

tive of ψ(·), in turn, can be expressed as

ψ̇(m + 1) = ψ̇(m) − 1

m2
(2.15)

with ψ̇(1) = π2

6 .

If Σ and Φ are positive definite deterministic matrices and H is

an n × n complex Gaussian matrix with independent zero-mean unit-

variance entries, then W = ΣHΦH† satisfies (using (2.10))

E

[

detWk
]

= det(ΣΦ)k
n−1
∏

ℓ=0

(n − ℓ + k − 1)!

(n − ℓ − 1)!
(2.16)

The generalization of (2.16) for rectangular H is derived in [165, 219].

Analogous relationships for the non-central Wishart matrix are derived

in [5].

Theorem 2.12. [166] Let H be an n × m complex Gaussian matrix

with zero-mean unit-variance entries and let W be a complex Wishart

matrix W ∼ Wn(p, I), with m ≤ n ≤ p. Then, for ζ ∈ (−1, 1),

E[det(H†W−1H)ζ ] =
m−1
∏

ℓ=0

Γ(m + p − n − ζ − ℓ) Γ(n + ζ − ℓ)

Γ(n − ℓ) Γ(m + p − n − ℓ)

E[log det(H†W−1H)] =
m−1
∑

ℓ=0

(ψ(n − ℓ) − ψ(m + p − n − ℓ)) .

Additional results on quadratic functions of central and non-central

Wishart matrices can be found in [141, 142, 144] and the references

therein.

Some results on the p.d.f. of complex pseudo-Wishart matrices10

and their corresponding eigenvalues can be found in [58, 59, 168].

10W = HH† is a pseudo-Wishart matrix if H is a m×n Gaussian matrix and the correlation
matrix of the columns of H has a rank strictly larger than n [244, 267, 94, 58, 59].
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Next, we turn our attention to the determinant and log-determinant

of matrices that can be expressed as a multiple of the identity plus

a Wishart matrix, a familiar form in the expressions of the channel

capacity.

Theorem 2.13. A complex Wishart matrix W ∼ Wm(n, I), with n ≥
m, satisfies

E[det(I + γW)] =

m
∑

i=0

(

m

i

)

n!

(n − i)!
γi. (2.17)

Theorem 2.14. [38, 299] Let W be a central Wishart matrix W ∼
Wm(n, I) and let t = min{n,m} and r = max{n,m}. The moment-

generating function of loge det(I + γW) is

E

[

eζ loge det(I+γW)
]

=
detG(ζ)

∏t
i=1(r − i)!

(2.18)

with G(ζ) a t × t Hankel matrix whose (i, k)th entry is

Gi,k =

∫ ∞

0
(1 + γλ)ζ λd−1e−λdλ

=
π

Γ(−ζ) sin(π(d − 1 + ζ))

(

γ−d (d − 1)!

Γ(1 + d + ζ)
1F1

(

d, 1 + d + ζ, 1
γ

)

− γζ Γ(−ζ)

Γ(1 − d − ζ)
1F1

(

−ζ, 1 − d − ζ, 1
γ

)

)

(2.19)

with 1F1(·) the confluent hypergeometric function [97] and with d =

r − t + i + k + 1.

For a non-central Wishart matrix with covariance matrix equal to

the identity, a series expression for E[log det(I + γW)] has been com-

puted in [3] while the moment-generating function (2.18) has been com-

puted in [134] in terms of the integral of hypergeometric functions.
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For a central Wishart matrix W ∼ Wm(n,Σ) where Σ is posi-

tive definite with distinct eigenvalues, the moment-generating function

(2.18) has been computed in [234] and [135].11

Theorem 2.15. [192] If H is an m×m zero-mean unit-variance com-

plex Gaussian matrix and Σ and Υ are positive definite matrices having

distinct eigenvalues ai and φi, respectively, then for ζ ≤ 0

E

[

det
(

I + ΣHΥH†
)ζ
]

= 2F0(−ζ,m | − Σ,Υ) (2.20)

where the hypergeometric function with matrix arguments [192] is

2F0(−ζ,m | − Σ,Υ) =
det ({2F0(−ζ − m + 1, 1| − aiφj)})

∏m−1
k=1 (−ζ − k)k

∏m
i<j(φi − φj)

∏m
i<j(aj − ai)

with 2F0(·, ·|·) denoting the scalar hypergeometric function [1].12

For Υ = I (resp. Σ = I), (2.20) still holds but with 2F0(s,m | − Σ, I)

(resp. 2F0(−ζ,m | I,−Υ)) replaced by [192]

2F0(−ζ,m |Θ) =
det

({

θm−i
j 2F0(−ζ − i + 1,m − i + 1 |θj)

})

∏n
i<j(θi − θj)

(2.21)

with Θ = −Σ (resp. Θ = −Υ).

The counterpart of Theorem 2.15 for a rectangular matrix H is as

follows.

Theorem 2.16. [148, 150] Let H be an m×n complex Gaussian mat-

rix with zero-mean unit-variance entries with m ≤ n and define

M(ζ) = E

[

eζ log det(I+γΣHΥH†)
]

11 Reference [234] evaluates (2.18) in terms of Gamma functions for m > n while reference
[135] evaluates it for arbitrary m and n, in terms of confluent hypergeometric functions
of the second kind [97].

12 In the remainder, det({f(i, j)}) denotes the determinant of a matrix whose (i, j)th entry
is f(i, j).
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with Σ and Υ positive definite matrices having distinct eigenvalues ai

and φi, respectively. Then for ζ ≤ 0

M(ζ) =
detG(ζ) detΣ−d

(−1)
d(d−1)

2 (−γ)
n(n−1)

2

n−1
∏

i=0

1

(ζ log 1
e − i)i

n
∏

i<j

1

φi − φj

m
∏

i<j

1

ai − aj

with d = n−m and with G(ζ) an n× n matrix whose (i, j)th entry is

Gi,j(ζ)=

⎧

⎪

⎨

⎪

⎩

2F0

`

ζ log 1
e
− n + 1, 1 | − γφjai

´ i ∈ {1, . . . , m}
j ∈ {1, . . . , n}

(−γφj)
i−1−m

ˆ

ζ log 1
e
− n + 1

˜

i−1−m

i ∈ {m+1, . . . , n}
j ∈ {1 . . . , n}

where [b]k = Γ(b+k)
Γ(b) indicates the Pochhammer symbol.13

An alternative expression for the moment-generating function in

Theorem 2.16 can be found in [231].

To conclude the exposition on properties of Wishart matrices, we

summarize several results on the non-asymptotic distribution of their

eigenvalues.

Theorem 2.17. [75, 120, 89, 210] Let the entries of H be i.i.d. complex

Gaussian with zero mean and unit variance. The joint p.d.f. of the

ordered strictly positive eigenvalues of the Wishart matrix HH†, λ1 ≥
. . . ≥ λt, equals

e−
Pt

i=1 λi

t
∏

i=1

λr−t
i

(t − i)! (r − i)!

t
∏

i<j

(λi − λj)
2 (2.22)

where t and r are the minimum and maximum of the dimensions of H.

The marginal p.d.f. of the unordered eigenvalues is14 (e.g. [32])

gr,t(λ) =
1

t

t−1
∑

k=0

k!

(k + r − t)!

[

Lr−t
k (λ)

]2
λr−te−λ (2.23)

13 If b is an integer, [b]k = b(b + 1) . . . (b − 1 + k).
14 An alternative expression for (2.23) can be found in [183, B.7].
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Fig. 2.1 Joint p.d.f. of the unordered positive eigenvalues of the Wishart matrix HH† with
r = 3 and t = 2. (Scaled version of (2.22).)

where the Laguerre polynomials are

Ln
k(λ) =

eλ

k!λn

dk

dλk

(

e−λλn+k
)

. (2.24)

Figure 2.1 depicts the joint p.d.f. of the unordered positive eigenval-

ues of the Wishart matrix HH†, λ1 > 0, . . . , λt > 0, which is obtained

by dividing the joint p.d.f. of the ordered positive eigenvalues by t!

Theorem 2.18. Let W be a central complex Wishart matrix W ∼
Wm(n,Σ) with n ≥ m, where the eigenvalues of Σ are distinct and

their ordered values are a1 > . . . > am > 0. The joint p.d.f. of the

ordered positive eigenvalues of W, λ1 ≥ . . . ≥ λm, equals [125]

det({e−λj/ai})
detΣn

m
∏

ℓ=1

λn−m
ℓ

(n − ℓ)!

m
∏

k<ℓ

λk − λℓ

ak − aℓ
aℓ ak. (2.25)
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The marginal p.d.f. of the unordered eigenvalues is [2]

qm,n(λ) =

m
∑

i=1

m
∑

j=1

D(i, j)λn−m+j−1 e−λ/ai

m detΣn
m
∏

ℓ=1

(n − ℓ)!

m
∏

k<ℓ

(
1

aℓ
− 1

ak
)

(2.26)

where D(i, j) is the (i, j)th cofactor of the matrix D with entries

Dℓ,k =
(n − m + k − 1)!

a−n+m−k
ℓ

. (2.27)

0 5 10 15
0
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0.4

0.6

0.8

1

Fig. 2.2 Marginal p.d.f. of the unordered eigenvalues of W ∼ Wm(n, Σ) with n = 3, m = 2

and Σi,j = e−0.2(i−j)2 , compared to an histogram obtained via Monte Carlo simulation.

Figure 2.2 contrasts a histogram obtained via Monte Carlo simu-

lation with the marginal p.d.f. of the unordered eigenvalues of W ∼
Wm(n,Σ) with n = 3 and m = 2 and with the correlation matrix Σ
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chosen such that15

Σi,j = e−0.2(i−j)2 . (2.28)

Theorem 2.19. Let W be a central complex Wishart matrix W ∼
Wm(n,Σ) with m > n, where the eigenvalues of Σ are distinct and

their ordered values are a1 > . . . > am > 0. The joint p.d.f. of the

unordered strictly positive eigenvalues of W, λ1, . . . , λn, equals [80]

det(Ξ)
n
∏

ℓ=1

1

ℓ!

m
∏

k<ℓ

1

(aℓ − ak)

n
∏

k<ℓ

(λℓ − λk) (2.29)

with

Ξ =

⎡

⎢

⎢

⎢

⎢

⎣

1 a1 . . . am−n−1
1 am−n−1

1 e
−λ1

a1 . . . am−n−1
1 e

−λn
a1

. . . . . . . . . . .

. . . . . . . . . . .

1 am . . . am−n−1
m am−n−1

m e−
λ1
am . . . am−n−1

m e−
λn
am

⎤

⎥

⎥

⎥

⎥

⎦

.

The marginal p.d.f. of the unordered eigenvalues is given in [2].

Let H be an m × m zero-mean unit-variance complex Gaussian

matrix and Σ and Υ be nonnegative definite matrices. Then the joint

p.d.f. of the eigenvalues of ΣHΥH† is computed in [209] while the

marginal p.d.f. has been computed in [230].

The distributions of the largest and smallest eigenvalues of a central

and non-central Wishart matrix W ∼ Wm(n, I) are given in [67] and

[140, 143, 136]. The counterpart for a central Wishart matrix W ∼
Wm(n,Σ) with n ≥ m can be found in [208].

2.1.7 Rank Results

Lemma 2.20. For any N × K matrices A, B,

rank(A + B) ≤ rank(A) + rank(B).

Moreover, the rank of A is less than or equal to the number of nonzero

entries of A.

15 The correlation in (2.28) is typical of a base station in a wireless cellular system.
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Lemma 2.21. For any Hermitian N × N matrices A and B,

N
∑

i=1

(λi(A) − λi(B))2 ≤ tr (A− B)2 .

Lemma 2.22. [313, 10] For any N × K matrices A and B,

N sup
x≥0

|FN
AA†(x) − FN

BB†(x)| ≤ rank(A −B). (2.30)

Lemma 2.23. [313, 10] For any N ×N Hermitian matrices A and B,

N sup
x≥0

|FN
A(x) − FN

B(x)| ≤ rank(A − B). (2.31)

2.1.8 Karhunen-Loève Expansion

As will be illustrated in Chapter 3, this transformation, widely used in

image processing, is a very convenient tool that facilitates the applica-

tion of certain random matrix results to channels of practical interest.

Definition 2.8. Let A be an N ×K random matrix. Denote the cor-

relation between the (i, j)th and (i′, j′)th entries of A by

rA(i, j; i′, j′) = E
[

Ai,jA
∗
i′,j′

]

. (2.32)

The Karhunen-Loève expansion of A yields an N × K image random

matrix Ã whose entries are

Ãk,ℓ =

N
∑

i=1

K
∑

j=1

Ai,j ψ∗
k,ℓ(i, j)

where the so-called expansion kernel {ψk,ℓ(i, j)} is a set of complete

orthonormal discrete basis functions formed by the eigenfunctions of
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the correlation function of A, i. e., this kernel must satisfy for all k ∈
{1, . . . , N} and ℓ ∈ {1, . . . ,K}

N
∑

i′=1

K
∑

j′=1

rA(i, j; i′, j′)ψk,ℓ(i
′, j′) = λk,ℓ(rA)ψk,ℓ(i, j) (2.33)

where we indicate the eigenvalues of rA by λk,ℓ(rA).

Lemma 2.24. The entries of a Karhunen-Loève image are, by con-

struction, uncorrelated and with variances given by the eigenvalues of

the correlation of the original matrix, i.e.,

E

[

Ãk,ℓÃ
∗
j,i

]

=

{

λk,ℓ(rA) if k = j and ℓ = i,

0 otherwise.
(2.34)

Lemma 2.25. If the expansion kernel can be factored as

ψk,ℓ(i, j) = uk(i) vℓ(j), (2.35)

then

A = UÃV†

with Uk,i=uk(i) and Vj,ℓ=v∗ℓ (j), which renders the matrices U and V

unitary. As a consequence, A and its Karhunen-Loève image, Ã, have

the same singular values.

Thus, with the Karhunen-Loève expansion we can map the singular

values of a matrix with correlated Gaussian entries and factorable ker-

nel to those of another Gaussian matrix whose entries are independent.

Definition 2.9. The correlation of a random matrix A is said to

be separable if rA(i, j; i′, j′) can be expressed as the product of two

marginal correlations16 that are functions, respectively, of (i,j) and

(i′,j′).

16 Equivalently, the correlation matrix of the vector obtained by stacking up the columns
of A can be expressed as the Kronecker product of two separate matrices that describe,
respectively, the correlation between the rows and between the columns of A.
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If the correlation of A is separable, then the kernel is automatically

factorable17 and, furthermore, λk,ℓ(rA)=λkλℓ where λk and λℓ are, re-

spectively, the kth and ℓth eigenvalues of the two marginal correlations

whose product equals rA.

2.1.9 Regular Matrices

Definition 2.10. An N ×K matrix P is asymptotically row-regular if

lim
K→∞

1

K

K
∑

j=1

1{Pi,j ≤ α}

is independent of i for all α ∈ R, as the aspect ratio K
N converges to

a constant. A matrix whose transpose is asymptotically row-regular is

called asymptotically column-regular. A matrix that is both asymptot-

ically row-regular and asymptotically column-regular is called asymp-

totically doubly-regular and satisfies

lim
N→∞

1

N

N
∑

i=1

Pi,j = lim
K→∞

1

K

K
∑

j=1

Pi,j. (2.36)

If (2.36) is equal to 1, then P is standard asymptotically doubly-regular.

Example 2.5. An N × K rectangular Toeplitz matrix

Pi,j = ϕ(i − j)

with K ≥ N is an asymptotically row-regular matrix. If either the func-

tion ϕ is periodic or N = K, then the Toeplitz matrix is asymptotically

doubly-regular.

17 Another relevant example of a factorable kernel occurs with shift-invariant correlation
functions such as rA(i, j; i′, j′) = rA(i − i′, j − j′), for which the Karhunen-Loève image
is equivalent to a two-dimensional Fourier transform.
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2.1.10 Cauchy-Binet Theorem

The result reported below, which is the continuous analog of the

Cauchy-Binet formula [121], has been applied in several contributions

[39, 166, 2, 231, 219] in order to compute the capacity of multi-antenna

channels and the marginal distributions of the singular values of ma-

trices with correlated Gaussian entries.

Theorem 2.26. [144](see also [6]) Let F and G be n×n matrices

parametrized by a real n-vector (w1, . . . , wn):

Fi,j = fj(wi) (2.37)

Gi,j = gj(wi) (2.38)

where fj and gj , j = 1, . . . , n, are real-valued functions defined on the

real line. Then, for 0 < a < b,
∫ b

a
. . .

∫ b

a
detF detG dw1, . . . , dwn = n! detA

where A is another n×n matrix whose (i,j)-th entry is

A =

∫ b

a
fi(w)gj(w) dw.

Note that, in [144], the factor n! does not appear because the variables

w1, . . . , wn are ordered.

2.1.11 Lyapunov Exponent

The celebrated result in this subsection, although outside the main fo-

cus of this monograph, has been used in several engineering applications

[114, 122, 83].

As n → ∞, the growth of the maximum singular value of the prod-

uct of n random matrices is exponential with a rate of increase given

by the following result.

Theorem 2.27. [79, 193, 29, 44] Denote the maximum singular value

of A (spectral norm of A) by ρ(A). Let A1, . . . ,An, . . . be a stationary

ergodic sequence of random matrices for which

E[log(max{ρ(An), 1}) < ∞.
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Then, there exists a deterministic constant λ (the so-called Lyapunov

exponent) such that almost surely18

lim
n→∞

1

n
log ρ

(

n
∏

i=1

Ai

)

= λ. (2.39)

2.2 Transforms

As mentioned in Section 1.3, it is often the case that the solution for the

limiting spectrum is obtained in terms of a transform of its distribution.

In this section, we review the most useful transforms including the

Shannon transform and the η-transform which, suggested by problems

of interest in communications, are introduced in this monograph.

For notational convenience, we refer to the transform of a random

variable and the transform of its cumulative distribution or density

function interchangeably. If the distribution of such variable equals

the asymptotic spectrum of a random matrix, then we refer to the

transform of the matrix and the transform of its asymptotic spectrum

interchangeably.

2.2.1 Stieltjes Transform

Let X be a real-valued random variable with distribution FX(·). Its

Stieltjes transform is defined for complex arguments as19

SX(z) = E

[

1

X − z

]

=

∫ ∞

−∞

1

λ − z
dFX(λ). (2.40)

Although (2.40) is an analytic function on the complement of the sup-

port of FX(·) on the complex plane, it is customary to further restrict

the domain of SX(z) to arguments having positive imaginary parts.

According to the definition, the signs of the imaginary parts of z and

SX(z) coincide. In the following examples, the sign of the square root

should be chosen so that this property is satisfied.

18 This property is satisfied by any conventional norm.
19 The Stieltjes transform is also known as the Cauchy transform and it is equal to −π

times the Hilbert transform when defined on the real line. As with the Fourier transform
there is no universal agreement on its definition, as sometimes the Stieltjes transform is
defined as SX(−z) or −SX(z).
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Example 2.6. The Stieltjes transform of the semi-circular law w(·) in

(1.18) is

Sw(z) =
1

2π

∫ 2

−2

√
4 − λ2

λ − z
dλ =

1

2

[

− z ±
√

z2 − 4

]

. (2.41)

Example 2.7. The Stieltjes transform of the Marc̆enko-Pastur law

fβ(·) in (1.10) is

Sfβ(z) =

∫ b

a

1

λ − z
fβ(λ) dλ

=
1 − β − z ±

√

z2 − 2(β + 1)z + (β − 1)2

2βz
. (2.42)

Example 2.8. The Stieltjes transform of f̃β(·) in (1.12) is

S
f̃β

(z) =

∫ b

a

1

λ − z
f̃β(λ) dλ

=
−1 + β − z ±

√

z2 − 2(β + 1)z + (β − 1)2

2z
. (2.43)

Example 2.9. The Stieltjes transform of the averaged empirical eigen-

value distribution of the unit-rank matrix ss† is equal to

S(z) =
1

N
SP (z) −

(

1 − 1

N

)

1

z
(2.44)

where N is the dimension of s and SP is the Stieltjes transform of the

random variable ‖s‖2.
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Given SX(·), the inversion formula that yields the p.d.f. of X is

[246, 222]

fX(λ) = lim
ω→0+

1

π
Im

[

SX(λ + jω)

]

. (2.45)

Assuming FX(·) has compact support, we can expand SX(·) in a

Laurent series involving the moments of X. Expanding 1
λ−z with re-

spect to z, exchanging summation and integration and using analytical

extension, (2.40) can be written as

SX(z) = −1

z

∞
∑

k=0

E[Xk]

zk
. (2.46)

If the distribution of X is the averaged empirical eigenvalue distri-

bution of an N × N random matrix A, then E[Xk] can be regarded

as the kth moment E
[

1
N tr{Ak}

]

. As a consequence, SX(·) can be re-

garded as a generating function for the moments of the random matrix

whose averaged empirical eigenvalue distribution is FX .

As indicated at the onset of Section 2.2, we often denote the Stielt-

jes transform of the asymptotic empirical distribution of a matrix A

by SA(·). However, as in Examples 2.6, 2.7 and 2.8, it is sometimes

convenient to subscript S(·) by its corresponding asymptotic empirical

distribution or density function. Similar notational conventions will be

applied to the transforms to be defined in the sequel.

2.2.2 η-transform

In the applications of interest, it is advantageous to consider a trans-

form that carries some engineering intuition, while at the same time is

closely related to the Stieltjes transform.

Interestingly, this transform, which has not been used so far in the

random matrix literature, simplifies many derivations and statements

of results.20

Definition 2.11. The η-transform of a nonnegative random variable

20 The η-transform was first used in [273].
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X is

ηX(γ) = E

[

1

1 + γX

]

(2.47)

where γ is a nonnegative real number and thus 0 < ηX(γ) ≤ 1.

The rationale for introducing this quantity can be succinctly ex-

plained by considering a hypothetical situation where the sum of three

components is observed (for example, at the output of a linear re-

ceiver): “desired signal” with strength γ, “background noise” with unit

strength, and “multiuser interference” with strength γX. The reason

the multiuser interference strength is scaled by γ is reminiscent of the

fact that, in many systems, the power of the users either is equal (per-

fect power control) or scales linearly. The expected SINR divided by

the single-user (i.e. X = 0) signal-to-noise ratio is given by (2.47).

Since this notion is reminiscent of the multiuser efficiency [271], we

have chosen the notation η standard in multiuser detection.

Either with analytic continuation or including the negative real line

in the domain of definition of the Stieltjes transform, we obtain the

simple relationship with the η-transform:

ηX(γ) =
SX(− 1

γ )

γ
. (2.48)

Given the η-transform, (2.48) gives the Stieltjes transform by ana-

lytic continuation in the whole positive upper complex half-plane, and

then the distribution of X through the inversion formula (2.45).

From (2.46) and (2.48), the η-transform can be written in terms of

the moments of X:

ηX(γ) =

∞
∑

k=0

(−γ)kE[Xk], (2.49)

whenever the moments of X exist and the series in (2.49) converges.

From (1.8) it follows that the MMSE considered in Section 1.2 is

equal to the η-transform of the empirical distribution of the eigenvalues

of H†H.

Simple properties of the η-transform that prove useful are:
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• ηX(γ) is strictly monotonically decreasing with γ ≥ 0 from 1

to P[X = 0]. 21

• γηX(γ) is strictly monotonically increasing with γ ≥ 0 from

0 to E[ 1
X ].

Thus, the asymptotic fraction of zero eigenvalues of A is

lim
γ→∞

ηA(γ) (2.50)

while

lim
n→∞

1

n
tr{A−1} = lim

γ→∞
γηA(γ). (2.51)

Example 2.10. [271, p. 303] The η-transform of the Marc̆enko-Pastur

law given in (1.10) is

η(γ) = 1 − F(γ, β)

4β γ
. (2.52)

Example 2.11. The η-transform of the averaged empirical eigenvalue

distribution of the unit-rank matrix ss† is equal to

η(γ) = 1 − 1

N
(1 − ηP (γ)) (2.53)

where N is the dimension of s, and ηP is the η-transform of the random

variable ‖s‖2.

Example 2.12. The η-transform of the exponential distribution with

unit mean is

η(γ) = −e
1
γ

γ
Ei(− 1

γ ) (2.54)

21 Note from (2.47) that it is easy (and, it will turn out, sometimes useful) to extend the
definition of the η-transform to (generalized or defective) distributions that put some
nonzero mass at +∞. In this case, ηX (0) = P[X < ∞]



2.2. Transforms 43

0.5

γ

η(γ)

1

2

10

0.1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2.3 η-transform of the Marc̆enko-Pastur law (1.10) evaluated for β = 0.1, 0.5, 1, 2, 10.

with Ei(·) denoting the exponential integral

Ei(z) = −
∫ ∞

−z

e−t

t
dt.

Example 2.13. Let Q be a N ×K matrix uniformly distributed over

the manifold of N × K complex matrices such that Q†Q = I. Then

ηQQ†(γ) = 1 − β +
β

1 + γ
.

Lemma 2.28. For any N × K matrix A and K × N matrix B such

that AB is nonnegative definite,

N
(

1 − ηFN
AB

(γ)
)

= K
(

1 − ηFK
BA

(γ)
)

. (2.55)
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Consequently, for K,N → ∞ with K
N → β, if the spectra converge,

ηAB(γ) = 1 − β + βηBA(γ). (2.56)

Lemma 2.29.

(a) Let the components of the N -dimensional vector x be zero-mean

and uncorrelated with second-order moment 1
N . Then, for any

N × N deterministic nonnegative definite matrix A,

E

[

x† (I + γA)−1 x
]

= ηFN
A

(γ).

(b) [13] Let the components of the N -dimensional vector x be zero-

mean and independent with variance 1
N . For any N×N nonneg-

ative definite random matrix B independent of x whose spec-

trum converges almost surely,

lim
N→∞

x† (I + γB)−1 x = ηB(γ) a.s. (2.57)

lim
N→∞

x† (B − zI)−1 x = SB(z) a.s. (2.58)

2.2.3 Shannon Transform

Another transform motivated by applications is the following.22

Definition 2.12. The Shannon transform of a nonnegative random

variable X is defined as

VX(γ) = E[log(1 + γX)] (2.59)

where γ is a nonnegative real number.

22 The Shannon transform was first introduced in [272, 273].
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The Shannon transform is intimately related to the Stieltjes and

η-transforms:

γ

log e

d

dγ
VX(γ) = 1 − 1

γ
SX

(

−1

γ

)

(2.60)

= 1 − ηX(γ). (2.61)

Since VX(0) = 0, VX(γ) can be obtained for all γ > 0 by integrating

the derivative obtained in (2.60). The Shannon transform contains the

same information as the distribution of X, either through the inversion

of the Stieltjes transform or from the fact that all the moments of X

are obtainable from VX(γ).

As we saw in Section 1.2, the Shannon transform of the empirical

distribution of the eigenvalues of HH† gives the capacity of various

communication channels of interest.

Example 2.14. [275] The Shannon transform of the Marc̆enko-Pastur

law fβ(·) in (1.10) is

V(γ) = log

(

1 + γ − 1

4
F (γ, β)

)

+
1

β
log

(

1 + γβ − 1

4
F (γ, β)

)

− log e

4β γ
F (γ, β) . (2.62)

Example 2.15. [131] Denoting by V(γ) the Shannon transform of the

Marc̆enko-Pastur law fβ(·) in (1.10) with β ≤ 1,

lim
γ→∞

(log γ − V(γ)) =
1 − β

β
log(1 − β) + log e. (2.63)

Example 2.16. The Shannon transform of the averaged empirical

eigenvalue distribution of the unit-rank matrix ss† equals

V(γ) =
1

N
VP (γ) (2.64)

where N is the dimension of s and VP is the Shannon transform of the

random variable ‖s‖2.
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Fig. 2.4 Shannon transform of the Marc̆enko-Pastur law (1.10) for β = 0.1, 0.5, 1, 2, 10.

Example 2.17. [61] The Shannon transform of grt(·) in (2.23) is23

V(γ) =
t−1
∑

k=0

k
∑

ℓ1=0

k
∑

ℓ2=0

(

k

ℓ1

)

(k + r − t)!(−1)ℓ1+ℓ2Iℓ1+ℓ2+r−t(γ)

(k − ℓ2)!(r − t + ℓ1)!(r − t + ℓ2)!ℓ2!

with I0(γ) = −e
1
γ Ei(− 1

γ ) while

In(γ) = nIn−1(γ) + (−γ)−n

(

I0(γ) +

n
∑

k=1

(k − 1)! (−γ)k

)

. (2.65)

An analytical expression for the Shannon transform of the marginal

distribution, qm,n(·) in (2.26), of the eigenvalues of a central complex

Wishart matrix W ∼ Wm(n,Σ) with n ≥ m can be found in [2, 135].

For the converse case, n ≤ m, defined in Theorem 2.19, the correspond-

ing Shannon transform can be found in [2, 234, 135].

23 Related expressions in terms of the exponential integral function [97] and the Gamma
function can be found in [219] and [126], respectively.
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Example 2.18. [148] The Shannon transform of the asymptotic eigen-

value distribution of ΣHΦH† as defined in Theorem 2.16 is

V(γ) =
log e

∏n−1
i=1

i!
in

(−1)
d(d−1)

2 γ
n(n−1)

2

n
∏

i<j

1

φi − φj

m
∏

i<j

1

ai − aj

m
∑

ℓ=1

det

([

Xℓ

Y

])

where Xℓ is a m×n matrix whose (i, j)th entry, for i ∈ {1 . . . ,m} and

j ∈ {1 . . . , n}, is

(Xℓ)i,j =

⎧

⎪

⎨

⎪

⎩

−(n − 1)!
(γφj )n−1

a1−m
i

e
1

γφjai Ei

“

− 1
γφjai

”

i = ℓ

n−1
X

k=n−m

(−γφjai)
k

an−m
i

[1 − n]k i 	= ℓ

and Y is an (n − m)× n matrix whose (i, j)th entry, for j ∈ {1 . . . , n}
and i ∈ {1 . . . , n − m}, is

(Y)i,j = [1 − n]i−1(−γφj)
i−1.

Example 2.19. The Shannon transform of the exponential distribu-

tion plays an important role in the capacity of fading channels and can

be written in terms of its η-transform given in (2.54):

V(γ) = γη(γ). (2.66)

2.2.4 Mellin Transform

The Mellin transform has been used in the non-asymptotic theory of

random matrices. As we will see, it is related to the Shannon transform

and can be used to find the capacity of multi-antenna channels with

finite number of antennas in closed form.

Definition 2.13. The Mellin transform of a positive random variable

X is given by

MX(z) = E[Xz−1] (2.67)

where z belongs to a strip of the complex plane where the expectation

is finite.
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The inverse Mellin transform of Ω(z) is given by

M−1
Ω (t) =

1

2πi

∫ c+i∞

c−i∞
t−zΩ(z)dz. (2.68)

Notice that

M−1
MX

(x) = fX(x)

with fX(·) denoting the p.d.f. of X.

Another interesting property of the Mellin transform is that the

Mellin transform of the product of two independent random variables

is equal to the product of the Mellin transforms:

MXY = MXMY . (2.69)

Example 2.20. If X is exponentially distributed with mean 1
µ , then

MX(z) = µ1−zΓ(z).

Example 2.21. If X is Nakagami distributed with parameter ν,

fν(r) = 2νν

Γ(ν)r
2ν−1e−νr2

, then for 1 − z < ν

MX2(z) =
ν1−z

Γ(ν)
Γ(ν + z − 1).

Example 2.22. [126] The Mellin transform of gr,r(·) in (2.23) is

Mgr,r(1 − z) =
r−1

Γ(z) Γ(1 − z)

r−1
∑

n=0

Γ2(1 − z + n)

(n!)2

r−1−n
∑

ℓ=0

Γ(z + ℓ)

ℓ!
.
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Example 2.23. The Mellin transform of qm,n(·) in (2.26) is

Mqm,n(z) =
m−1

detΣn

m
∏

k<ℓ

akaℓ

ak − aℓ

m
∑

i=1

m
∑

j=1

D(i, j) Γ(z + n − m + j − 1)

am−z−n−j+1
i

∏m
ℓ=1(n − ℓ)!

with D(·, ·) given in (2.27).

Theorem 2.30. [126]

VX(γ) = M−1
Υ (γ) (2.70)

where M−1
Υ is the inverse Mellin transform of

Υ(z) = z−1Γ(z)Γ(1 − z)MX(1 − z). (2.71)

Using Theorem 2.30, an explicit expression for the Shannon trans-

form of gr,r(·) in (2.23) has been derived in [126].

2.2.5 R-transform

Another handy transform, on which we elaborate next, is the R-

transform. In particular, as we shall see in detail in Section 2.4 once the

concept of asymptotic freeness has been introduced, the R-transform

enables the characterization of the asymptotic spectrum of a sum of

suitable matrices (such as independent unitarily invariant matrices)

from their individual asymptotic spectra.

Definition 2.14. [285] Let S−1
X (z) denote the inverse (with respect

to the composition of functions) of the Stieltjes transform of X, i. e.,

z = S−1
X (SX(z)). The R-transform of X is defined as the complex-

valued function of complex argument

RX(z) = S−1
X (−z) − 1

z
. (2.72)
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As a consequence of (2.72), a direct relationship between the R-

transform and the Stieltjes transform exists, namely

s =
1

RX(−s) − z
(2.73)

where for notational simplicity we used s = SX(z). For positive random

variables, letting z = − 1
γ in (2.73), we obtain from (2.48) the following

relationship between the R-transform and the η-transform:

ηX(γ) =
1

1 + γ RX(−γ ηX(γ))
. (2.74)

A consequence of (2.74) is that the R-transform (restricted to the

negative real axis) can be equivalently defined as

RX(ϕ) =
ηX(γ) − 1

ϕ
(2.75)

with γ and ϕ satisfying

ϕ = −γ ηX(γ). (2.76)

Example 2.24. The R-transform of a unit mass at a is

R(z) = a. (2.77)

Example 2.25. The R-transform of the semicircle law is

R(z) = z. (2.78)

Example 2.26. The R-transform of the Marc̆enko-Pastur law fβ(·) in

(1.10) is

R(z) =
1

1 − βz
. (2.79)
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Example 2.27. The R-transform of f̃β(·) in (1.12) is

R(z) =
β

1 − z
. (2.80)

Example 2.28. The R-transform of the averaged empirical eigenvalue

distribution of the N -dimensional unit-rank matrix ss† such that ‖s‖2

has η-transform ηP , satisfies the implicit equation

R
( γ

N
− γ

N
ηP (γ) − γ

)

=
1

γ

1 − ηP (γ)

N − 1 + ηP (γ)
. (2.81)

In the special case where the norm is deterministic, ‖s‖2 = c,

ηP (γ) =
1

1 + γc
,

and an explicit expression for the R-transform can be obtained from

(2.81) as

R(z) =
−1 + cz +

√

4cz
N + (1 − cz)2

2z

=
c

(1 − cz)N
+ O(N−2). (2.82)

Theorem 2.31. For any a > 0,

RaX(z) = aRX(az). (2.83)

We now outline how to obtain the moments of X from RX(z). When

the random variable X is compactly supported, the R-transform can be

represented as a series (for those values in the region of convergence):

RX(z) =
∞
∑

k=1

ckz
k−1 (2.84)
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where the coefficients ck, called the free cumulants of X, play a role

akin to that of the classical cumulants. As in the classical case, the

coefficients ck are polynomial functions of the moments E[Xp] with

0 ≤ p ≤ k. Given the free cumulants ck, the moments of X can be

obtained by the so-called free cumulant formula [241]

E[Xm] =

m
∑

k=1

ck

∑

m1+···+mk=m

E
[

Xm1−1
]

· · ·E
[

Xmk−1
]

. (2.85)

Note that c1 = E[X], c2 = Var(X), and RX(0) = E[X].

As hinted at the beginning of this section, the main usefulness of the

R-transform stems from Theorem 2.192 stating that, for an important

class of random matrices, the R-transform of the asymptotic spectrum

of the sum is the sum of R-transforms of the individual spectra.

2.2.6 S-transform

Definition 2.15. The S-transform of a nonnegative random variable

X is24

ΣX(x) = −x + 1

x
η−1

X (1 + x), (2.86)

which maps (−1, 0) onto the positive real line.

Example 2.29. The S-transform of the Marc̆enko-Pastur law fβ(·) in

(1.10) is

Σ(x) =
1

1 + βx
. (2.87)

24 A less compact definition of the S-transform on the complex plane is given in the literature
(since the η-transform had not been used before) for arbitrary random variables with
nonzero mean. Note that the restriction to nonnegative random variables stems from the
definition of the η-transform.
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Example 2.30. The S-transform of f̃β(·) in (1.12) is

Σ(x) =
1

β + x
. (2.88)

Example 2.31. The S-transform of the averaged empirical eigen-

value distribution of the N -dimensional unit-rank matrix ss† such that

‖s‖2 = c is equal to

Σ(x) =
1 + x

c (x + 1/N)
. (2.89)

The S-transform was introduced by Voiculescu [286] in 1987. As we

will see, its main usefulness lies in the fact that the S-transform of the

product of certain random matrices is the product of the corresponding

S-transforms in the limit.

From (2.56), we obtain

η−1
AB(γ) = η−1

BA

(

γ − 1

β
+ 1

)

(2.90)

and hence the S-transform counterpart to (2.56):

Theorem 2.32. For any N ×K matrix A and K ×N matrix B such

that, as K,N → ∞ with K
N → β, the spectra converge while AB is

nonnegative definite,

ΣAB(x) =
x + 1

x + β
ΣBA

(

x

β

)

. (2.91)

Example 2.32. Let Q be a N ×K matrix uniformly distributed over

the manifold of N × K complex matrices such that Q†Q = I. Then

ΣQQ†(x) =
1 + x

β + x
. (2.92)
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2.3 Asymptotic Spectrum Theorems

In this section, we give the main results on the limit of the empirical

distributions of the eigenvalues of various random matrices of inter-

est. For pedagogical purposes we will give results in increasing level of

generality.

2.3.1 The Semicircle Law

Theorem 2.33. [308, 305] Consider an N×N standard Wigner matrix

W such that, for some constant κ, and sufficiently large N

max
1≤i≤j≤N

E
[

|Wi,j|4
]

≤ κ

N2
. (2.93)

Then, the empirical distribution of W converges almost surely to the

semicircle law whose density is

w(x) =
1

2π

√

4 − x2 (2.94)

with |x| ≤ 2.

Wigner’s original proof [305] of the convergence to the semicircle law

consisted of showing convergence of the empirical moments 1
N tr

{

W2k
}

to the even moments of the semicircle law, namely, the Catalan num-

bers:

lim
N→∞

1

N
tr
{

W2k
}

=

∫ 2

−2
x2kw(x) dx

=
1

k + 1

(

2k

k

)

. (2.95)

The zero-mean assumption in the definition of a Wigner matrix can be

relaxed to an identical-mean condition using Lemma 2.23. In fact, it

suffices that the rank of the mean matrix does not grow linearly with

N for Theorem 2.33 to hold.

Assuming for simplicity that the diagonal elements of the Wigner

matrix are zero, we can give a simple sketch of the proof of Theorem

2.33 based on the matrix inversion lemma:

(A−1)i,i =
1

Ai,i − a†
iA

−1
i ai

(2.96)
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with ai representing the ith column of A excluding the i-element and

Ai indicating the (n − 1)×(n − 1) submatrix obtained by eliminating

from A the ith column and the ith row. Thus

1

N
tr
{

(−zI + W)−1
}

=
1

N

N
∑

i=1

1

−z − w†
i (−zI + Wi)

−1 wi

. (2.97)

Moreover, Wi is independent of wi, whose entries are independent

with identical variance 1
n . Then, taking the limit of (2.97) and applying

(2.58) to the right-hand side, we obtain the quadratic equation

SW(z) =
1

−z − SW(z)

which admits the closed-form solution given in (2.41).

Condition (2.93) on the entries of
√

N W can be replaced by the

Lindeberg-type condition on the whole matrix [10, Thm. 2.4]:

1

N

∑

i,j

E
[

|Wi,j|2 1 {|Wi,j| ≥ δ}
]

→ 0 (2.98)

for any δ > 0.

2.3.2 The Full-Circle Law

Theorem 2.34. [173, 197, 85, 68, 9] Let H be an N × N complex

random matrix whose entries are independent random variables with

identical mean, variance 1
N and finite kth moments for k ≥ 4. Assume

that the joint distributions of the real and imaginary parts of the entries

have uniformly bounded densities. Then, the asymptotic spectrum of

H converges almost surely to the circular law, namely the uniform

distribution over the unit disk on the complex plane {ζ ∈ C : |ζ| ≤ 1}
whose density is given by

fc(ζ) =
1

π
|ζ| ≤ 1. (2.99)

Theorem 2.34 also holds for real matrices replacing the assumption

on the joint distribution of real and imaginary parts with the one-

dimensional distribution of the real-valued entries.
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2.3.3 The Marc̆enko-Pastur Law and its Generalizations

Theorem 2.35. [170, 296, 131, 10] Consider an N×K matrix H whose

entries are independent zero-mean complex (or real) random variables

with variance 1
N and fourth moments of order O( 1

N2 ). As K,N → ∞
with K

N → β, the empirical distribution of H†H converges almost surely

to a nonrandom limiting distribution with density

fβ(x) =

(

1 − 1

β

)+

δ(x) +

√

(x − a)+(b − x)+

2πβx
(2.100)

where

a = (1 −
√

β)2 b = (1 +
√

β)2.

The above limiting distribution is the Marc̆enko-Pastur law with ratio

index β. Using Lemma 2.22, the zero-mean condition can be relaxed

to having identical mean. The condition on the fourth moments can be

relaxed [10, Thm. 2.8] to a Lindeberg-type condition:

1

K

∑

i,j

E
[

|Hi,j |2 1 {|Hi,j | ≥ δ}
]

→ 0 (2.101)

for any δ > 0.

Using (1.3) and (2.100), the empirical distribution of HH†, with H

as in Theorem 2.35, converges almost surely to a nonrandom limiting

distribution with density (1.12) whose moments are given by

∫ b

a
xk f̃β(x) dx =

k
∑

i=1

1

k

(

k

i

)(

k

i − 1

)

βi (2.102)

= lim
N→∞

1

N
tr
{

(HH†)k
}

. (2.103)

Furthermore, from Lemma 2.10, it follows straightforwardly that the

first and second order asymptotic moments of (HH†)−1 with β > 1

converge to

lim
N→∞

1

N
tr
{

(HH†)−1
}

=
1

β − 1
(2.104)

lim
N→∞

1

N
tr
{

(HH†)−2
}

=
β

(β − 1)3
. (2.105)
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The convergence in (2.103)–(2.105) is almost surely. If H is square,

then the empirical distribution of its singular values converges almost

surely to the quarter circle law with density q(·) given in (1.21). The

even moments of the quarter circle law coincide with the corresponding

moments of the semicircle law. Unlike those of the semicircle law, the

odd moments of the quarter circle law do not vanish. For all positive

integers k the moments of the quarter circle law are given by

∫ 2

0
xkq(x)dx =

2k

√
π

Γ(1+k
2 )

Γ(2 + k
2 )

. (2.106)

In the important special case of square H with independent Gaus-

sian entries, the speed at which the minimum singular value vanishes

(and consequently the growth of the condition number) is characterized

by the following result.

Theorem 2.36. [67, Thm. 5.1],[218] Consider an N×N standard com-

plex Gaussian matrix H. The minimum singular value of H, σmin, sat-

isfies

lim
N→∞

P [Nσmin ≥ x] = e−x−x2/2. (2.107)

A summary of related results for both the minimum and maximum

singular values of H can be found in [67, 10].

The following theorem establishes a link between asymptotic ran-

dom matrix theory and recent results on the asymptotic distribution

of the zeros of classical orthogonal polynomials.

Theorem 2.37. [57] Let λ1 ≤ . . . ≤ λK denote the ordered eigen-

values of H†H with H an N × K standard complex Gaussian matrix

and let x1 ≤ . . . ≤ xK denote the zeros of the Laguerre polynomial

LN−K+1
K (Nx). If K,N → ∞ with K

N → β ∈ (0,∞), then almost surely

1

K

K
∑

ℓ=1

|λℓ − xℓ|2 a.s→ 0. (2.108)
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Moreover, if d1 ≤ d2 ≤ . . . ≤ dK denote the ordered differences |λi−xi|,
then

d⌊yK⌋
a.s→ 0 (2.109)

for all y ∈ (0, 1). For the smallest and largest eigenvalues of H†H, and

for the smallest and largest zero of the polynomial LN−K+1
K (Nx), we

have that almost surely

lim
K→∞

x1 = lim
K→∞

λ1 = (1 −
√

β)2 (2.110)

lim
K→∞

xK = lim
K→∞

λK = (1 +
√

β)2 (2.111)

for β ≤ 1 while, for β > 1,

lim
K→∞

xK−N+1 = lim
K→∞

λK−N+1 = (1 −
√

β)2. (2.112)

Theorem 2.37 in conjunction with recent results on the asymptotic

distribution of the zeros of scaled generalized Laguerre polynomials,

LN−K+1
K (Nx), also provides an alternative proof of the semicircle and

Marc̆enko-Pastur laws.

In [57], using results on the asymptotics of classical orthogonal poly-

nomials, results analogous to Theorem 2.37 are also derived for centered

sample covariance matrices
√

N

K

(

H†H − κI
)

(2.113)

with κ = max
{

1, K
N

}

. For such matrices, it is proved that if K,N → ∞
with K

N → ∞ or with K
N → 0, the extremal eigenvalues converge almost

surely to 2 and −2, while the corresponding eigenvalue distribution

converges to the semicircle law (cf. Example 2.50).

Theorem 2.38. [170, 227] Let H be an N × K matrix whose entries

are i.i.d. complex random variables with zero-mean and variance 1
N . Let

T be a K×K real diagonal random matrix whose empirical eigenvalue

distribution converges almost surely to the distribution of a random

variable T. Let W0 be an N × N Hermitian complex random matrix
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with empirical eigenvalue distribution converging almost surely to a

nonrandom distribution whose Stieltjes transform is S0. If H, T, and

W0 are independent, the empirical eigenvalue distribution of

W = W0 + HTH† (2.114)

converges, as K,N → ∞ with K
N → β, almost surely to a nonrandom

limiting distribution whose Stieltjes transform S(·) satisfies

S(z) = S0

(

z − β E

[

T

1 + TS(z)

])

. (2.115)

The case W0 = 0 merits particular attention. Using the more con-

venient η-transform and Shannon transform, we derive the following

result from [226]. (The proof is given in Appendix 4.1 under stronger

assumptions on T.)

Theorem 2.39. Let H be an N × K matrix whose entries are i.i.d.

complex random variables with variance 1
N . Let T be a K × K Her-

mitian nonnegative random matrix, independent of H, whose empir-

ical eigenvalue distribution converges almost surely to a nonrandom

limit. The empirical eigenvalue distribution of HTH† converges almost

surely, as K,N → ∞ with K
N → β, to a distribution whose η-transform

satisfies

β =
1 − η

1 − ηT(γη)
(2.116)

where for notational simplicity we have abbreviated ηHTH†(γ) = η.

The corresponding Shannon transform satisfies25

VHTH†(γ) = βVT(ηγ) + log
1

η
+ (η − 1) log e. (2.117)

The condition of i.i.d. entries can be relaxed to independent entries

with common mean and variance 1
N satisfying the Lindeberg-type con-

dition (2.101). The mth moment of the empirical distribution of HTH†

25 The derivation of (2.117) from (2.116) is given in Section 3.1.2.
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converges almost surely to [313, 116, 158]:

m
∑

i=1

βi
∑

m1+···+mi=m
m1≤···≤mi

m!

(m − i + 1)!f(m1, . . . mi)
E[Tm1 ] . . . E[Tmi ] (2.118)

where T is a random variable with distribution equal to the asymptotic

spectrum of T and, ∀ 1 ≤ ℓ ≤ m,

f(i1, . . . , iℓ) = f1! · · · fm! (2.119)

with fi the number of entries of the vector [i1, . . . , iℓ] equal to i.26

Figure 2.5 depicts the Shannon transform of HTH† given in (2.117)

for β = 2
3 and T exponentially distributed.
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Fig. 2.5 Shannon transform of the asymptotic spectrum of HTH† for β = 2
3

and T expo-
nentially distributed. The stars indicate the Shannon transform, obtained via Monte Carlo
simulation, of the averaged empirical distribution of the eigenvalues of HTH† where H is
3 × 2.

If T = I, then ηT(γ) = 1
1+γ , and (2.116) becomes

η = 1 − β +
β

1 + γη
(2.120)

26 For example, f(1, 1, 4, 2, 1, 2) = 3! · 2! · 1!.
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whose explicit solution is the η-transform of the Marc̆enko-Pastur dis-

tribution, f̃β(·), in (1.12):

η(γ) = 1 − F(γ, β)

4 γ
. (2.121)

Equation (2.116) admits an explicit solution in a few other cases, one

of which is illustrated by the result that follows.

Theorem 2.40. [223] If, in Theorem 2.39, T = (YY†)−1 with Y a

K × m (K ≤ m) Gaussian random matrix whose entries have zero-

mean and variance 1
m , then, using (2.121),27

ηT(γ) =
γ

4 β̃
F
(

1

γ
, β̃

)

(2.122)

where K
m → β̃. Thus, solving (2.116) we find that the asymptotic spec-

trum of W = H(YY†)−1H† is given by

fW(x) =

(

1 − 1

β

)+

δ(x) +
(1 − β̃)

√

(x − a2)+ (b2 − x)+

2πx(xβ̃ + β)
(2.123)

with

a =
1 −

√

1 − (1 − β)(1 − β̃)

1 − β̃
b =

1 +
√

1 − (1 − β)(1 − β̃)

1 − β̃
.

Using (2.56) and (2.116), we can give an equivalent expression for

the η-transform of the asymptotic spectrum of T1/2H†HT1/2:

ηT(γ(1 − β + βη)) = η (2.124)

where η = ηT1/2H†HT1/2(γ). Note that, as β → 0,

ηT1/2H†HT1/2(γ) → ηT(γ) (2.125)

and thus the spectrum of T1/2H†HT1/2 converges to that of T.

27 Although [223] obtained (2.123) with the condition that Y be Gaussian, it follows from
(2.121) and Theorem 2.39 that this condition is not required for (2.122) and (2.123) to
hold.
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Theorem 2.41. [178] Let Σ be a positive definite matrix whose

asymptotic spectrum has the p.d.f.

fΣ(λ) =
1

2πµλ2

√

(

λ

σ1
− 1

)(

1 − λ

σ2

)

(2.126)

with σ1 ≤ λ ≤ σ2 and

µ =
(
√

σ2 −
√

σ1)
2

4σ1σ2
. (2.127)

If H is an N ×K standard complex Gaussian matrix, then, as K,N →
∞ with K

N → β, the asymptotic spectrum of W = Σ1/2HH†Σ1/2 has

the p.d.f.28

fW(λ) = (1 − β)+δ(λ) +

√

(λ − a)+(b − λ)+

2πλ(1 + λµ)
(2.128)

with

a = 1 + β + 2µβ − 2
√

β
√

(1 + µ)(1 + µβ) (2.129)

b = 1 + β + 2µβ + 2
√

β
√

(1 + µ)(1 + µβ). (2.130)

The Shannon transform of (2.128) is

VW(γ) = log(γω1(γ, β, µ)) +
1

µ
log |1 − µω2(γ, β, µ)|

−(β − 1) log |ω3(γ, β, µ)| (2.131)

with

ω1(γ, β, µ) =
(1 + (1 + β)µ)[1 + γ(1 + β) +

√
ω4] − 2µβ(γ − µ)

2βγ[1 + (1 + β)µ + βµ2]

ω2(γ, β, µ) =
β + γ(1 + β) −√

ω4 + 2γβµ

2γ[1 + (1 + β)µ + βµ2]

ω3(γ, β, µ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 + (1 − β)γ + 2µβ −√
ω4

2β(γ − µ)
if γ �= µ,

− (1 + γβ)

1 + (1 + β)γ
if γ = µ

ω4 = (1 + (1 + β)γ)2 − 4βγ(γ − µ).

28 Theorem 2.39 indicates that (2.128) holds even without the Gaussian condition on H.
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Returning to the setting of Theorem 2.38 but interchanging the as-

sumptions on W0 and T, i.e., with W0 diagonal and T Hermitian, the

result that follows (proved in Appendix 4.2) states that the asymptotic

spectrum in Theorem 2.38 still holds under the condition that W0 and

T be nonnegative definite. Consistent with our emphasis, this result is

formulated in terms of the η-transform rather than the Stieltjes trans-

form used in Theorem 2.38.

Theorem 2.42. Let H be an N × K matrix whose entries are i.i.d.

complex random variables with zero-mean and variance 1
N . Let T be

a K × K positive definite random matrix whose empirical eigenvalue

distribution converges almost surely to a nonrandom limit. Let W0 be

an N ×N nonnegative definite diagonal random matrix with empirical

eigenvalue distribution converging almost surely to a nonrandom limit.

Assuming that H, T, and W0 are independent, the empirical eigenvalue

distribution of

W = W0 + HTH† (2.132)

converges almost surely, as K,N → ∞ with K
N → β, to a nonrandom

limiting distribution whose η-transform is the solution of the following

pair of equations:

γ η = ϕη0 (ϕ) (2.133)

η = η0 (ϕ) − β (1 − ηT(γ η)) (2.134)

with η0 and ηT the η-transforms of W0 and T respectively.

Notice that the function η(γ) can be immediately evaluated from

(2.133) and (2.134) since every ϕ ∈ (0,∞) determines a pair of values

(γ, η(γ)) ∈ (0,∞) × [0, 1]: the product (γ η) is obtained from (2.133)

(which is strictly monotonically increasing in ϕ), then η is obtained

from (2.134) and, finally, γ = (γ η)
η .

Figure 2.6 shows the η-transform of W = HTH† where the asymp-

totic spectrum of T converges almost surely to an exponential distri-

bution.
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Fig. 2.6 η-transform of HTH† with β = 2
3

and ηT given by (2.54). The stars indicate the

η-transform of the averaged empirical spectrum of HTH† for a 3 × 2 matrix H.

Theorem 2.43. [86, 55, 159] Define H = CSA where S is an N ×
K matrix whose entries are independent complex random variables

(arbitrarily distributed) satisfying the Lindeberg condition (2.101) with

identical means and variance 1
N . Let C and A be, respectively, N ×N

and K ×K random matrices such that the asymptotic spectra of D =

CC† and T = AA† converge almost surely to compactly supported

measures.29 If C, A and S are independent, as K,N → ∞ with K
N → β,

the η-transform of HH† is

ηHH†(γ) = E [ ΓHH†(D, γ) ] (2.135)

where ΓHH†(d, γ) satisfies

ΓHH†(d, γ) =
1

1 + γ β d E

[

T

1+γ T E[D Γ
HH† (D,γ)]

] (2.136)

29 In the case that C and A are diagonal deterministic matrices, Theorem 2.43 is a special
case of Theorem 2.50.
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with D and T independent random variables whose distributions are the

asymptotic spectra of D and T respectively. The asymptotic fraction

of zero eigenvalues of HH† equals

lim
γ→∞

ηHH†(γ) = 1 − min {β P[T �= 0], P[D �= 0]}

The following result, proved in Appendix 4.3, finds the Shannon

transform of HH† in terms of the Shannon transforms of D and T.

Theorem 2.44. Let H be an N × K matrix as defined in Theorem

2.43. The Shannon transform of HH† is given by:

VHH†(γ) = VD(βγd) + βVT(γt) − β
γdγt

γ
log e (2.137)

where
γdγt

γ
= 1 − ηT(γt) β

γdγt

γ
= 1 − ηD(βγd). (2.138)

From (2.138), an alternative expression for ηHH†(γ) with H as in

Theorem 2.43, can be obtained as

ηHH†(γ) = ηD(β γd(γ)) (2.139)

where γd(γ) is the solution to (2.138).

Theorem 2.45. [262, 165] Let H be an N × K matrix defined as in

Theorem 2.43. Defining

β′ = β
P[T �= 0]

P[D �= 0]
,

lim
γ→∞

(

log(γ β) − VHH†(γ)

min {β P[T �= 0], P[D �= 0]}

)

= L∞ (2.140)

with

L∞ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−E

[

log D′

αβ′e

]

− β′VT′(α) β′ > 1

−E

[

log T′D′

e

]

β′ = 1

−E

[

logΓ∞T′

e

]

− 1
β′VD′

(

1
Γ∞

)

β′ < 1

(2.141)
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with α and Γ∞, respectively, solutions to

ηT′(α) = 1 − 1

β′ , ηD′

(

1

Γ∞

)

= 1 − β′. (2.142)

and with D′ and T′ the restrictions of D and T to the events D �= 0 and

T �= 0.

Corollary 2.1. As γ → ∞, we have that

lim
γ→∞

γ ηHH†(γ) =

{

E
[

1
D

]

α, β′ > 1 and P[D > 0] = 1

∞, otherwise

with α solution to (2.142).

Theorem 2.46. [262] Let H be an N × K matrix defined as in

Theorem 2.43. Further define

̥(N)(y, γ) =
1

‖hj‖2
h†

j

⎛

⎝I + γ
∑

ℓ 	=j

hℓh
†
ℓ

⎞

⎠

−1

hj with j−1
K ≤ y < j

K .

As K,N → ∞, ̥(N)(y, γ) converges almost surely to

̥(N)(y, γ)
a.s.→ γt(γ)

γE[D]
y ∈ [0, 1]

with γt(γ) satisfying (2.138).

Corollary 2.2. As γ → ∞, we have that

lim
γ→∞

γt(γ)

γ
= β P[T > 0] Γ∞ (2.143)

where γt(γ) is the solution to (2.138) while Γ∞ is the solution to (2.142)

for β′ < 1 and 0 otherwise.
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Theorem 2.47. [159] Let H be an N × K matrix defined as in

Theorem 2.43. The mth moment of the empirical eigenvalue distri-

bution of HH† converges almost surely to

m
∑

k=1

βk
∑

m1+···+mk=m
m1≤···≤mk

∑

n1+···+nm+1−k=m

n1≤···≤nm+1−k

B(m1, . . . ,mk, n1, . . . , nm+1−k) ·

E[Tm1 ] · · ·E[Tmk ]E[Dn1] · · ·E[Dnm+1−k ].

(2.144)

with D and T defined as in Theorem 2.43, f(i1, . . . , iℓ) defined as in

(2.119), while30

B(m1, . . . ,mk, n1, . . . , nm+1−k) =
m(m − k)!(k − 1)!

f(m1, . . . ,mk) · f(n1, . . . , nm+1−k)
.

Equation (2.144) is obtained in [159] using combinatorial tools. An

alternative derivation can be obtained using Theorem 2.55, from which

the nth moment of HH† given by (2.144) is also seen to equal E[m̃n(D)]

with m̃n admitting the following recursive re-formulation:

m̃n(d) =

n
∑

ℓ=1

cℓ(d)
∑

n1+n2+···+nℓ=n

m̃n1−1(d) . . . m̃nℓ−1(d) (2.145)

with

cℓ+1(d) = β d E[Tℓ+1]E[D]ℓ.

Theorem 2.48. [159] Let H be an N × K matrix defined as in

Theorem 2.43 whose jth column is hj . Further define

δ(N)
n (y) =

1

‖hj‖2
h†

j

⎛

⎝

∑

ℓ 	=j

hℓh
†
ℓ

⎞

⎠

n

hj with j−1
K ≤ y < j

K (2.146)

30 Note that B(m1, . . . , mk, n1, . . . , nm+1−k) can be interpreted as the number of non-
crossing partitions (cf. Section 2.4.4) ̟ on {1, . . . , m} satisfying the conditions:
(i) the cardinalities of the subsets in ̟, in increasing order, are m1, . . . , mk ,
(ii) the cardinalities of the subsets in the complementation map (cf. Section 2.4.4) of ̟

are, in increasing order, n1, . . . , nm+1−k .
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then, as K,N → ∞ with K
N → β, almost surely

δ(N)
n (y)

a.s.→ E[Dmn(D)]

E[D]
=

ξn

E[D]
(2.147)

where ξn can be computed through the following recursive equation

ξn = β

n
∑

ℓ=1

E
[

D2 mℓ−1(D)
]

∑

n1+···+ni=n−ℓ
1≤i≤n−ℓ

E
[

Ti+1
]

ξn1−1 . . . ξni−1

with

mn(d) = βd
n
∑

ℓ=1

mℓ−1(d)
∑

n1+···+ni=n−ℓ
1≤i≤n−ℓ

E
[

Ti+1
]

ξn1−1 . . . ξni−1. (2.148)

Moreover, E[mn(D)] yields yet another way to compute the nth moment

of the asymptotic spectrum of HH†.
Under mild assumptions on the distribution of the independent en-

tries of H, the following convergence result is shown in Appendix 4.4.

Theorem 2.49. Define an N × K complex random matrix H whose

entries are independent complex random variables (arbitrarily dis-

tributed) satisfying the Lindeberg condition (2.101) and with identical

means. Let their variances be

Var [Hi,j ] =
Pi,j

N
(2.149)

with P an N×K deterministic standard asymptotically doubly-regular

matrix whose entries are uniformly bounded for any N . The asymptotic

empirical eigenvalue distribution of H†H converges almost surely to the

Marc̆enko-Pastur distribution whose density is given by (2.100).

Using Lemma 2.22, Theorem 2.49 can be extended to matrices

whose mean has rank r where r > 1 but such that

lim
N→∞

r

N
= 0.
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Definition 2.16. Consider an N ×K random matrix H whose entries

have variances

Var[Hi,j ] =
Pi,j

N
(2.150)

with P an N × K deterministic matrix whose entries are uniformly

bounded. For each N , let

vN : [0, 1) × [0, 1) → R

be the variance profile function given by

vN (x, y) = Pi,j
i−1
N ≤ x < i

N , j−1
K ≤ y < j

K . (2.151)

Whenever vN (x, y) converges uniformly to a limiting bounded measur-

able function, v(x, y), we define this limit as the asymptotic variance

profile of H.

Theorem 2.50. [86, 102, 221] Let H be an N × K random matrix

whose entries are independent zero-mean complex random variables

(arbitrarily distributed) satisfying the Lindeberg condition (2.101) and

with variances

E
[

|Hi,j|2
]

=
Pi,j

N
(2.152)

where P is an N ×K deterministic matrix whose entries are uniformly

bounded and from which the asymptotic variance profile of H, denoted

v(x, y), can be obtained as per Definition 2.16. As K,N → ∞ with
K
N → β, the empirical eigenvalue distribution of HH† converges almost

surely to a limiting distribution whose η-transform is

ηHH†(γ) = E [ ΓHH†(X, γ) ] (2.153)

with ΓHH†(x, γ) satisfying the equations,

ΓHH†(x, γ) =
1

1 + β γE[v(x,Y)ΥHH†(Y, γ)]
(2.154)

ΥHH†(y, γ) =
1

1 + γ E[v(X, y)ΓHH†(X, γ)]
(2.155)

where X and Y are independent random variables uniform on [0, 1].
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The zero-mean hypothesis in Theorem 2.50 can be relaxed using

Lemma 2.22. Specifically, if the rank of E[H] is o(N), then Theorem

2.50 still holds.

The asymptotic fraction of zero eigenvalues of HH† is equal to

lim
γ→∞

ηHH†(γ) = 1 − min {β P[E[v(X,Y)|Y] �= 0], P[E[v(X,Y)|X] �= 0]}.

Lemma 2.51. [86] Let H be an N×K complex random matrix defined

as in Theorem 2.50. For each a, b ∈ [0, 1], a < b

1

N

⌊bN⌋
∑

i=⌊aN⌋
(γHH† + I)−1

i,i →
∫ b

a
ΓHH†(x, γ)dx. (2.156)

Theorem 2.52. [262] Let H be an N × K matrix defined as in

Theorem 2.50. Further define

̥(N)(y, γ) =
1

‖hj‖2
h†

j

⎛

⎝I + γ
∑

ℓ 	=j

hℓh
†
ℓ

⎞

⎠

−1

hj,
j−1
K ≤ y < j

K .

As K,N → ∞, ̥(N) converges almost surely to (̥y,γ)
E[v(X,y)] , with ̥(y, γ)

solution to the fixed-point equation

̥(y, γ) = E

⎡

⎣

v(X, y)

1 + γ β E

[

v(X,Y)
1+γ (̥Y,γ) |X

]

⎤

⎦ y ∈ [0, 1]. (2.157)

The transform of the asymptotic spectrum of HH† is given by the

following result proved in Appendix 4.5.

Theorem 2.53. Let H be an N×K complex random matrix defined as

in Theorem 2.50. The Shannon transform of the asymptotic spectrum
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of HH† is

VHH†(γ) = β E [log(1 + γ E[v(X,Y)ΓHH†(X, γ)|Y])]

+E [log(1 + γ β E[v(X,Y)ΥHH†(Y, γ)|X])]

−γ β E [v(X,Y)ΓHH†(X, γ)ΥHH†(Y, γ)] log e

(2.158)

with ΓHH†(·, ·) and ΥHH†(·, ·) satisfying (2.154) and (2.155).

Theorem 2.54. [262] Let H be an N × K complex random matrix

defined as in Theorem 2.50. Then, denoting

β′ = β
P[E[v(X,Y)|Y] �= 0]

P[E[v(X,Y)|X] �= 0]
,

we have that

lim
γ→∞

(

log(γβ) − VHH†(γ)

min{βP[E[v(X,Y)|Y] �=0], P[E[v(X,Y)|X] �=0]}

)

= L∞

with

L∞
a.s.→

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−E

[

log
(

1
eE

[

v(X′,Y′)
1+α(Y′) |X′

])]

− β′E [log (1 + α(Y′))] β′ > 1

−E

[

log v(X′,Y′)
e

]

β′ = 1

−E

[

log Γ∞(Y′)
e

]

− 1
β′ E

[

log
(

1 + E

[

v(X′,Y′)
Γ∞(Y′) |X′

])]

β′ < 1

with X′ and Y′ the restrictions of X and Y to the events E[v(X,Y)|X]�=0

and E[v(X,Y)|Y]�=0, respectively. The function α(·) is the solution, for

β′>1, of

α(y) =
1

β′E

⎡

⎣

v(X′, y)

E

[

v(R′,Y′)
1+α(Y′) |X′

]

⎤

⎦ (2.159)

whereas Γ∞(·) is the solution, for β′<1, of

E

⎡

⎣

1

1 + E

[

v(X′,Y′)
Γ∞(Y′) |X′

]

⎤

⎦ = 1 − β′. (2.160)
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Corollary 2.3. As γ → ∞, if β′ > 1 and P[E[v(X,Y)|X] > 0]] = 1,

then

lim
γ→∞

γ ηHH†(γ) =
1

β P[E[v(X,Y)|Y] �= 0]
E

⎡

⎣

1

E

[

v(X′,Y′)
1+α(Y′) |X′

]

⎤

⎦ (2.161)

with α(·) solution to (2.159). Otherwise the limit in (2.161) diverges.

Corollary 2.4. As γ → ∞, we have that

lim
γ→∞

̥(y, γ) = β P[E[v(X,Y)|Y] �= 0]Γ∞(y) (2.162)

where Γ∞(y) is the solution to (2.160) for β′ < 1 and 0 otherwise while

̥(y, γ) is the solution to (2.157).

Theorem 2.55. [159] Let H be an N × K matrix defined as in

Theorem 2.50. The nth moment of the empirical eigenvalue distribution

of HH† converges almost surely to

lim
N→∞

1

N
tr
{

(HH†)n
}

= E[mn(X)] (2.163)

with mn(x) satisfying the recursive equation

mn(x) = β

n
∑

ℓ=1

mℓ−1(x) E[ v(x,Y)
∑

n1+···+ni=n−ℓ
1≤i≤n−ℓ

E [v(X,Y)mn1−1(X)|Y]

. . . E [v(X,Y)mni−1(X)|Y] ] (2.164)

where m0(x) = 1 and where, in the second summation, the nk’s with

k ∈ {1, . . . , i} are strictly positive integers. In turn, X and Y are inde-

pendent random variables uniform on [0,1].
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Theorem 2.56. [159] Consider an N × K matrix H defined as in

Theorem 2.50 whose jth column is hj. As K,N → ∞, the quadratic

form

δ(N)
n (y) =

1

‖hj‖2
h†

j

⎛

⎝

∑

ℓ 	=j

hℓh
†
ℓ

⎞

⎠

n

hj
j−1
K ≤ y < j

K (2.165)

converges almost surely to a function δn(y) given by

δn(y)=
E[mn(X)v(X, y)]

E[v(X, y)]
=

ξn(y)

E[v(X, y)]
(2.166)

where X is a random variable uniform on [0,1] and mn(x) is given by

(2.164) in Theorem 2.55.

From Theorems 2.55 and 2.56 it follows that:

Corollary 2.5. The relationships between the moments, E[mn(X)],

and ξn(y) are:

E[mn(X)] = β

n
∑

ℓ=1

E

⎡

⎢

⎣
ξℓ−1(Y)

∑

n1+···+ni=n−ℓ
1≤i≤n−ℓ

ξn1−1(Y) . . . ξni−1(Y)

⎤

⎥

⎦
(2.167)

with ξn(y) = E[mn(X)v(X, y)].

In the case that v(x, y) factors as v(x, y) = vX(x)vY(y), then (2.164)

becomes

mn(r)=β r
n
∑

ℓ=1

mℓ−1(r)
∑

n1+···+ni=n−ℓ
1≤i≤n−ℓ

E[Di+1] E[Cmn1−1(C)] · ·E[Cmni−1(C)]

where C and D are independent random variables whose distribution

equals the distributions of vX(X) and vY(Y), respectively, with X and

Y uniform on [0, 1]. From the above recursive formula, the closed-form

expression given in (2.144) can be found by resorting to techniques of

non-crossing partitions and the complementation map.
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Remark 2.3.1. If v(x, y) factors, Theorems 2.50-2.56 admit simpler

formulations. The Shannon transform, η-transform, ̥(y, γ) and mo-

ments of the asymptotic spectrum of HH†, with H defined as in

Theorem 2.50, coincide with those of Theorems 2.43-2.48: in this case

D and T represent independent random variables whose distributions

are given by the distributions of vX(X) and vY(Y), respectively.

An example of v(x, y) that factors is when the N × K matrix of

variances, P, introduced in (2.152), is the outer product of two vectors

P = dtT . (2.168)

where the N -vector d and the K-vector t have nonnegative determin-

istic entries.

Definition 2.17. Let B be an N × K random matrix with indepen-

dent columns. Denoting by ⌊·⌋ the closest smaller integer, B behaves

ergodically if, for a given x ∈ [0, 1), the empirical distribution of

|(B)⌊xN⌋,1|2, . . . , |(B)⌊xN⌋,K |2

converges almost surely to a nonrandom limit Fx(·) and, for a given

y ∈ [0, 1), the empirical distribution of

|(B)1,⌊yK⌋|2, . . . , |(B)N,⌊yK⌋|2

converges almost surely to a nonrandom limit Fy(·).

Definition 2.18. Let B be a random matrix that behaves ergodically

in the sense of Definition 2.17. Assuming that Fx(·) and Fy(·) have all

their moments bounded, the two-dimensional channel profile of B is

defined as the function ρ(x, y) : [0, 1]2 → R such that, if X is uniform

on [0, 1], the distribution of ρ(X, y) equals Fy(·) whereas, if Y is uniform

on [0, 1], then the distribution of ρ(x,Y) equals Fx(·).
Analogously, the one-dimensional channel profile of B for a given k

is the function ρk(x) : [0, 1] → R such that, if X is uniform on [0, 1],

the distribution of ρk(X) equals the nonrandom asymptotic empirical

distribution of |(B)1,k|2, . . . , |(B)N,k|2.
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Theorem 2.57. [159, 160] Consider an N ×K matrix H = S◦B with

◦ denoting the Hadamard (element-wise) product and with S and B

independent N × K random matrices. The entries of S are zero-mean

i.i.d. complex random variables arbitrarily distributed with variance 1
N

while B is as in Definition 2.18 with Fx(·) and Fy(·) having all their

moments bounded. Denoting by ρB(x, y) the channel profile of B, then,

as K,N → ∞ with K
N → β, the empirical eigenvalue distribution of

HH† converges almost surely to a nonrandom limit whose η-transform,

Shannon transform and moments are given by (2.153), (2.158) and

(2.163-2.164) respectively with v(x, y) replaced by ρB(x, y). Analogous

considerations hold for the functions ̥(y, γ) and δn(y).

Theorem 2.58. [262] Consider an N × K matrix H whose entries

are zero-mean correlated Gaussian random variables with correlation

function rH(i, j; i′, j′) whose eigenvalues are λi,j(rH), for 1 ≤ i ≤ N and

1 ≤ j ≤ K (cf. Definition 2.8) and whose kernel factors as in (2.35).

Assume that Nλi,j(rA) are uniformly bounded for any N . Theorems

2.49-2.56 hold by redefining v(x, y) as the asymptotic variance profile

of the Karhunen-Loève image of H, which corresponds to the limit for

N → ∞ of

vN (x, y) = Nλi,j(rH) i−1
N ≤ x < i

N , j−1
K ≤ y < j

K .

Therefore, the asymptotic spectrum of H is fully characterized by the

variances of the entries of its Karhunen-Loève image.

A special case of Theorem 2.58 is illustrated in [55] for rH(i, j; i′, j′) =

f(i − i′, j − j′), in which case H is termed a band matrix.

Theorem 2.59. [159] Consider the N × K random matrix

H = [A1s1, . . . ,AKsK ]Ā (2.169)

where S = [s1 . . . sK ] is an N × K matrix with zero-mean i.i.d. entries

with variance 1
N , Ā is a deterministic diagonal matrix and Ak k ∈
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{1, . . . ,K} are either finite order or infinite order absolutely summable

N × N Toeplitz independent matrices, independent of S. Let ρ(x, y)

be the two-dimensional channel profile of the N × K matrix Λ whose

(i, j)th entry is31

Λi,j = |Āj |2 λi(Aj) (2.170)

with λi(Aj) the ith eigenvalue of AjA
†
j. As K,N → ∞ with K

N → β,

the empirical eigenvalue distribution of HH† converges almost surely

to a nonrandom limiting distribution whose η-transform is [159]

ηHH†(γ) = E [ ΓHH†(X, γ) ] (2.171)

where ΓHH†(·, ·) satisfies the equations

ΓHH†(x, γ) =
1

1 + β γE[ρ(x,Y)ΥHH†(Y, γ)]
(2.172)

ΥHH†(y, γ) =
1

1 + γ E[ρ(X, y)ΓHH†(X, γ)]
(2.173)

with X and Y independent random variables uniform on [0, 1].

Consequently, Theorems 2.49-2.56 still hold with the function v(x, y)

replaced by ρ(x, y).

Define

R(N,m) =
1

N

∑

H∗
i1,jm

Hi1,j1 · · ·H∗
im,jm−1

Him,jm, (2.174)

where the summation ranges over all 2m-tuples i1, . . . , im, j1, . . . , jm

satisfying 1 ≤ iℓ ≤ N and 1 ≤ jℓ ≤ K, such that the cardinality of

the set of distinct values of iℓ plus the cardinality of the set of distinct

values of jℓ equals k + 1, and such that there is one-to-one pairing of

the unconjugate and the conjugate terms in the products.

31 The existence of ρ(x, y) implies that Λ is a matrix that behaves ergodically in the sense
of Definition 2.17.
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Lemma 2.60. [296] Let H be an N×K real or complex random matrix

whose entries are independent with

E[Hi,j] =
µi√
N

regardless of j and with

E

[

|Hi,j − µi√
N
|2+δ

]

<
κ2

N1+δ/2

for some δ > 0 and κ > 0. The empirical eigenvalue distribution of HH†

converges almost surely to a nonrandom limit FHH†(·) if and only if,

for each m, E[R(N,m)] in (2.174) converges as N → ∞. Furthermore,
∫

λmdFHH†(λ) = lim
N→∞

∫

λmdFN
HH†(λ) (2.175)

= lim
N→∞

E[R(N,m)]. (2.176)

2.4 Free Probability

In the last few years, a large fraction of the new results on the asymp-

totic convergence of the eigenvalues of random matrices has been ob-

tained using the tools of free probability. This is a discipline founded

by Voiculescu [283] in the 1980s that spawned from his work on opera-

tor algebras. Unlike classical scalar random variables, random matrices

are noncommutative objects whose large-dimension asymptotics have

provided the major applications of the theory of free probability.

Knowing the eigenvalues of two matrices is, in general, not enough

to find the eigenvalues of the sum of the two matrices (unless they

commute). However, it turns out that free probability identifies a cer-

tain sufficient condition (called asymptotic freeness) under which the

asymptotic spectrum of the sum can be obtained from the individual

asymptotic spectra without involving the structure of the eigenvectors

of the matrices.

When two matrices are asymptotically free, there exists a rule to

compute any asymptotic moment of the sum of the matrices (and thus

the asymptotic spectrum) as a function of the individual moments.
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The combinatorics of the rule are succinctly described by recourse to

the R-transform. Indeed, the central result in the application of free

probability to random matrices is that the R-transform of the asymp-

totic spectrum of the sum of asymptotically free matrices is equal to the

sum of the individual R-transforms. Analogously, the S-transform of the

product of asymptotically free random matrices is equal to the prod-

uct of the individual S-transforms. Computation of the R-transform,

S-transform and the mixed moments of random matrices is often aided

by a certain combinatorial construct based on noncrossing partitions

due to Speicher [240, 241, 242].

The power of free probability is evident, not only in the new results

on random matrices it unveils, but on the fresh view it provides on

established results. For example, it shows that the semicircle law and

the Marc̆enko-Pastur laws are the free counterparts of the Gaussian

and Poisson distributions, respectively, in classical probability. Fur-

thermore, using the central R-transform result it is possible to provide

different proof techniques for the major results reviewed in Section 2.3.

2.4.1 Asymptotic Freeness

For notational convenience, we define the following functional for se-

quences of Hermitian matrices:

φ(A) = lim
N→∞

1

N
E[trA]. (2.177)

Note that the expected asymptotic pth moment of A is φ(Ap) and

φ(I) = 1.

Definition 2.19. [287] The Hermitian random matrices A and B are

asymptotically free if for all ℓ and for all polynomials pi(·) and qi(·)
with 1 ≤ i ≤ ℓ such that32

φ(pi(A)) = φ(qi(B)) = 0, (2.178)

we have

φ(p1(A) q1(B) . . . pℓ(A) qℓ(B)) = 0. (2.179)

32 This includes polynomials with constant (zero-order) terms.
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Definition 2.19 generalizes to several random matrices as follows.

Definition 2.20. The Hermitian random matrices A1, . . . ,Am are

asymptotically free if, for all ℓ ∈ N and all polynomials p1( · ), . . . , pℓ( · ),
φ
(

p1(Aj(1)) · p2(Aj(2)) · · · pℓ(Aj(ℓ))
)

= 0 (2.180)

whenever

φ
(

pi(Aj(i))
)

= 0 ∀i = 1, . . . , ℓ (2.181)

where j(i) �= j(i + 1) (i.e., consecutive indices are distinct, but non-

neighboring indices are allowed to be equal).

It is also of interest to define asymptotic freeness between pairs of

Hermitian random matrices.

Definition 2.21. [287] The pairs of Hermitian matrices {A1,A2} and

{B1,B2} are asymptotically free if, for all ℓ and for all polynomials

pi(·) and qi(·) in two noncommuting indeterminates with 1 ≤ i ≤ ℓ

such that

φ(pi(A1,A2)) = φ(qi(B1,B2)) = 0, (2.182)

we have

φ(p1(A1,A2) q1(B1,B2) . . . pℓ(A1,A2) qℓ(B1,B2)) = 0. (2.183)

As a shorthand, when {A1,A2} and {B1,B2} are asymptotically free,

we will say that ({A1,A2}, {B1,B2}) are asymptotically free.

Let us now incorporate, in the definition of asymptotic freeness, the

class of non-Hermitian matrices. If H1 and H2 are rectangular non-

Hermitian matrices, we say that {H1,H
†
1} and {H2,H

†
2} are asymp-

totically free, or equivalently that H1 and H2 are asymptotically *-free,

if the relations given in Definition 2.21 apply with pi(H1,H
†
1) and

qi(H2,H
†
2) polynomials of two noncommuting variables.

The definition of asymptotic freeness is somewhat reminiscent of

the concept of independent random variables. However, as the follow-

ing example shows, statistical independence does not imply asymptotic

freeness.
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Example 2.33. Suppose that X1 and X2 are independent zero-mean

random variables with nonzero variance. Then, X1I and X2I are not

asymptotically free. More generally, if two matrices are asymptotically

free and they commute, then one of them is necessarily deterministic.

An alternative to the foregoing definitions is obtained by dropping

the expectation from the definition of the operator φ in (2.177) and

assuming that the spectra of the matrices converge almost surely to

a nonrandom limit. This notion is known as almost surely asymptotic

freeness [110, 111]. As will be pointed out, some of properties and

examples discussed in the sequel for asymptotic freeness also hold for

almost surely asymptotic freeness.

To illustrate the usefulness of the definition of asymptotic freeness,

we will start by computing various mixed moments of random matrices.

If A1, . . . ,Aℓ are asymptotically free random matrices, a number of

useful relationships can be obtained by particularizing the following

identity:

φ
(

(Ak1
1 − φ(Ak1

1 )I) · (Ak2
2 − φ(Ak2

2 )I) · · · (Akℓ
ℓ − φ(Akℓ

ℓ )I)
)

= 0

(2.184)

which is obtained from (2.180) by considering the ℓ polynomials

pi(Ai) = Aki
i − φ(Aki

i )I

which obviously satisfy φ(pi(Ai)) = 0.

Applying (2.184), we can easily obtain the following relationships

for asymptotically free A and B:

φ(AkBℓ) = φ(Ak)φ(Bℓ) (2.185)

φ(ABAB) = φ2(B)φ(A2) + φ2(A)φ(B2) − φ2(A)φ2(B).

(2.186)

As mentioned, one approach to characterize the asymptotic spec-

trum of a random matrix is to obtain its moments of all orders. Fre-

quent applications of the concept of asymptotic freeness stem from the

fact that the moments of a noncommutative polynomial p(A,B) of two
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asymptotically free random matrices can be computed from the indi-

vidual moments of A and B. Thus, if p(A,B), A, B are Hermitian,

the asymptotic spectrum of p(A,B) depends only on those of A and

B even if they do not have the same eigenvectors. To illustrate this

point, when p(A,B) = A + B we can use (2.184) to obtain the first

few moments:

φ(A + B) = φ(A) + φ(B) (2.187)

φ((A + B)2) = φ(A2) + φ(B2) + 2φ(A)φ(B) (2.188)

φ((A + B)3) = φ(A)3 + φ(B3) + 3φ(A)φ(B2)

+ 3φ(B)φ(A2) (2.189)

φ((A + B)4) = φ(A4) + φ(B4) + 4φ(A)φ(B3)

+ 4φ(B)φ(A3) + 2φ2(B)φ(A2)

+ 2φ2(A)φ(B2) + 2φ(B2)φ(A2). (2.190)

All other higher moments can be computed analogously. As we will

see below, the R-transform defined in Section 2.2.5 circumvents the in-

creasingly cumbersome derivations required to derive other moments.33

Next, we compile a list of some of the most useful instances of

asymptotic freeness that have been shown so far. In order to ease the

exposition, we state them without including all the technical sufficient

conditions (usually on the higher order moments of the matrix entries)

under which they have been proved so far. For the exact technical

conditions, the reader can refer to the pertinent citations.

Example 2.34. Any random matrix and the identity are asymptoti-

cally free.

Example 2.35. [287] Independent Gaussian standard Wigner matri-

ces are asymptotically free.

33 Notice that the first three moments of A + B can be obtained from formulas identical
to those pertaining to classical independent random variables. A difference appears from
the fourth moment (2.190) on.
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Example 2.36. [287] Let X and Y be independent standard Gaussian

matrices. Then {X,X†} and {Y,Y†} are asymptotically free.

Historically, Examples 2.35 and 2.36 are the first results on the

freeness of random matrices.

Example 2.37. [63] Independent standard Wigner matrices are

asymptotically free.

Example 2.38. [63] A standard Wigner matrix and a diagonal deter-

ministic matrix (or a block diagonal deterministic matrix with bounded

block size) are asymptotically free.

Example 2.39. [211] Let X and Y be independent square matrices

whose entries are zero-mean independent random variables (arbitrarily

distributed), with variance vanishing inversely proportionally to the

size. Then, ({X,X†}, {Y,Y†}) are asymptotically free. Furthermore,

these matrices and block diagonal deterministic matrices with bounded

block size are also asymptotically free.

Example 2.40. Suppose that the N -vectors hi, i ∈ {1, . . . , ℓ}, are

independent and have independent entries with variances equal to 1
N

and identical means. Furthermore, let X1, . . . Xℓ be independent ran-

dom variables with finite moments of all order and also independent of

the random vectors. Then,

X1h1h
†
1,X2h2h

†
2, . . . , Xℓhℓh

†
ℓ

are asymptotically free.
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Example 2.41. [287] If U and V are independent Haar matrices, then

({U,U†}, {V,V†}) are asymptotically free.

Example 2.42. [287] If U is a Haar matrix and D is a deterministic

matrix with bounded eigenvalues, then ({U,U†}, {D,D†}) are asymp-

totically free.

Example 2.43. [294] Let X be a standard Gaussian matrix and

let D be a deterministic matrix with bounded eigenvalues. Then

({X,X†}, {D,D†}) are asymptotically free.

Example 2.44. [240] UAU† and B are asymptotically free if A and

B are Hermitian matrices whose asymptotic averaged empirical eigen-

value distributions are compactly supported and U is a Haar matrix

independent of A and B.

Example 2.45. [240] A unitarily invariant matrix with compactly

supported asymptotic spectrum and a deterministic matrix with

bounded eigenvalues are asymptotically free.

Example 2.46. [295] Independent unitarily invariant matrices with

compactly supported asymptotic spectra are asymptotically free.

Example 2.47. [295] Let A and B be N × K independent bi-

unitarily invariant random matrices whose asymptotic averaged em-

pirical singular value distributions are compactly supported. Then,

({A,A†}, {B,B†}, {D,D†}) are asymptotically free for any determin-

istic N × K matrix D with bounded eigenvalues.
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Example 2.48. Let H1 and H2 be independent standard Gaussian

matrices and let T be a random Hermitian matrix independent of

H1 and H2 with compactly supported asymptotic averaged empirical

eigenvalue distribution. Then it follows from Lemma 2.7 and Examples

2.45–2.46 that (f1(H1TH†
1), f2(H2TH†

2), {D,D†}) are asymptotically

free for any real continuous functions f1(·) and f2(·), defined on the real

line, and any deterministic square matrix D with bounded asymptotic

spectrum.

Examples 2.41–2.48 are not only instances of asymptotic freeness,

but also of almost surely asymptotic freeness [111]. In particular, for

Example 2.48 the almost surely convergence holds if the asymptotic em-

pirical eigenvalue distribution of T converges almost surely to a com-

pactly supported probability measure. Note also that Examples 2.35

and 2.36 are special cases of Example 2.46 and 2.47, respectively.

Theorem 2.61. [64] Let (A, {P1,V1, . . . ,Pℓ,Vℓ}) be asymptotically

free. If

PiVi = ViPi = I and φ(PiVj) = 0

for all i ∈ {1, . . . , ℓ} and i �= j, then P1AV1, . . . ,PℓAVℓ are asymptot-

ically free.

Example 2.49. [73] Let Pℓ be the permutation matrix corresponding

to a cyclic shift by ℓ−1 entries, and S be a complex standard Gaussian

matrix. Notice that PℓP
†
ℓ = I and that, for ℓ �= 1(modN), tr{Pℓ} = 0.

Consequently, for N → ∞

tr{PiP
†
j} − tr{Pi−j} = δi,j . (2.191)

Since SS† and {P1,P
†
1, . . . ,PL,P†

L} are asymptotically free (e.g. Ex-

ample 2.45), it follows from Theorem 2.61 that

P1SS†P†
1, . . . ,PLSS†P†

L

are asymptotically free. Let S1, . . . ,SL be independent complex stan-

dard Gaussian matrices. The foregoing asymptotic freeness together
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with the fact that the asymptotic distribution of the asymptoti-

cally free matrices PℓSℓS
†
ℓP

†
ℓ does not depend on ℓ, implies that the

asymptotic averaged empirical distributions of
∑L

ℓ=1 PℓSS†P†
ℓ and of

∑L
ℓ=1 PℓSℓS

†
ℓPℓ are the same.

Theorem 2.62. [290, 190] Let (P, {W1, . . . ,Wℓ}) be asymptotically

free Hermitian random matrices. PW1P, . . . ,PWℓP are asymptoti-

cally free if P is idempotent.

We note that, under the condition that Pℓ and Vℓ are unitary Haar

matrices, Theorems 2.61 and 2.62 hold not only in terms of asymptotic

freeness but also in terms of almost surely asymptotic freeness.

Theorem 2.63. [290, 190] Let W be a random matrix whose aver-

aged spectrum converges to the circular law (2.99). Let P1, . . . ,Pℓ be

a family of Hermitian random matrices asymptotically free of W such

that PiPj = PjPi = δi,jPi, then WP1W
†, . . . ,WPℓW

† are asymp-

totically free. This result also holds if the spectrum of W converges to

the quarter circle law (1.21) or to the semicircle law (2.94), in which

case the spectrum of WPjW
† converges to the Marc̆enko-Pastur law.

2.4.2 Sums of Asymptotically Free Random Matrices

Much of the practical usefulness of free probability stems from the

following result.

Theorem 2.64. [285] If A and B are asymptotically free random ma-

trices, then the R-transform of their sum satisfies

RA+B(z) = RA(z) + RB(z). (2.192)

As a simple application of this important result, and in view of Example

2.24, we can verify the translation property

RA+γI(z) = RA(z) + RγI(z) = RA(z) + γ. (2.193)
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Using Theorem 2.64 and the relationship between the R-transform

and the η-transform (2.75)–(2.76) we can obtain:

Theorem 2.65. The η-transform of the sum of asymptotically free

random matrices is

ηA+B(γ) = ηA(γa) + ηB(γb) − 1 (2.194)

with γa, γb and γ satisfying the following pair of equations:

γa ηA(γa) = γ ηA+B(γ) = γb ηB(γb). (2.195)

As a simple application of Theorem 2.64, let us sketch a heuristic

argument for the key characterization (2.116) of the η-transform of the

asymptotic spectrum of HTH†. Let us assume that H is an N × K

matrix whose entries are independent random variables with common

variance 1
N , while T is a deterministic positive real diagonal matrix.

According to Example 2.40, we can write HTH† as the sum of asymp-

totically free matrices

HTH† =
K
∑

k=1

Tkhkh
†
k. (2.196)

Thus, with ζ ≥ 0

RHTH†(−ζ) = lim
K→∞

K
∑

k=1

R
Tkhkh

†
k
(−ζ) (2.197)

= lim
K→∞

β

K

K
∑

k=1

Tk

1 + Tkζ
(2.198)

= β
1 − ηT(ζ)

ζ
(2.199)

where (2.198) follows from (2.82) whereas (2.199) follows from the

law of large numbers. Finally, using the relationship between the η-

transform and the R-transform in (2.74) we obtain (2.116) letting

ζ = γηHTH†(γ), i.e.

ηHTH†(γ) = 1 − β (1 − ηT(γ ηHTH†(γ))) . (2.200)
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Note that (2.197) has not been rigorously justified above, since it

involves both the limit in the size of the matrices which is the basis for

the claim of asymptotic freeness and a limit in the number of matrices.

The more general result (2.133)–(2.134) can be readily obtained

from (2.194), (2.195) and (2.200).

For T = I, we recover the η-transform in (2.121) of the Marc̆enko-

Pastur law. It is interesting to note that, in this special case, we are

summing unit-rank matrices whose spectra consist of a 1 − 1
N mass

at 0 and a 1
N mass at a location that converges to 1. If we were to

take the Nth classical convolution (inverting the sum of log-moment

generating functions) of those distributions we would obtain asymptot-

ically the Poisson distribution; however, the distribution we obtain by

taking the Nth free convolution (inverting the sum of R-transforms)

is the Marc̆enko-Pastur law. Thus, we can justifiably claim that the

Marc̆enko-Pastur law is the free analog of the classical Poisson law.

The free analog of the Gaussian law is the semicircle law according

to the celebrated free probability central limit theorem:

Theorem 2.66. [284] Let A1,A2, . . . be a sequence of N ×N asymp-

totically free random matrices. Assume that φ(Ai) = 0 and φ(A2
i ) = 1.

Further assume that supi |φ(Ak
i )| < ∞ for all k. Then, as m,N → ∞,

the asymptotic spectrum of

1√
m

(A1 + A2 + · · ·Am) (2.201)

converges in distribution to the semicircle law, that is, for every k,

φ

(

(A1 + A2 + · · · + Am)k

m
k
2

)

→

⎧

⎨

⎩

0 k odd
1

1 + k
2

(

k
k
2

)

k even.

A simple sketch of the main idea behind the proof of this result

can be given in the case of asymptotically free matrices identically

distributed. In this case, Theorem 2.64 implies that the R-transform of
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(2.201) equals

√
m RA1

(

z√
m

)

=
√

mφ(A1) + zφ(A2
1) +

√
m

∞
∑

k=3

ck

(

z√
m

)k−1
(2.202)

→ z (2.203)

which is the R-transform of the semicircle law (Example 2.25). Note

that (2.202) follows from (2.84) while (2.203) follows from the fact that

the free cumulants are bounded because of the assumption in Theorem

2.66. A similar approach can be followed to prove that the spectra of

Gaussian Wigner matrices converges to the semicircle law. The key idea

is that a Gaussian standard Wigner matrix can be written as the sum

of two independent rescaled Gaussian standard Wigner matrices

W =
1√
2
(X1 + X2). (2.204)

Since the two matrices in the right side of (2.204) are asymptotically

free, the R-transforms satisfy

RW(z) = RX1√
2

(z) + RX2√
2

(z)

=
√

2 RW

(

z√
2

)

(2.205)

which admits the solution (cf. Example 2.25)

RW(z) = z. (2.206)

Example 2.50. Let H be an N ×m random matrix whose entries are

zero-mean i.i.d. Gaussian random variables with variance 1√
m N

and

denote 1
N

√
m = ς. Using Example 2.46, Theorem 2.66, and the fact

that we can represent

HH† =
1√
m

m
∑

i

sis
†
i

with si an N -dimensional vector whose entries are zero-mean i.i.d. with

variance 1√
N

, it can be shown that as N,m → ∞ with N
m → 0, the

asymptotic spectrum of the matrix

HH† − ς
√

NI
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is the semicircle law. This result was also found using the moment ap-

proach, based on combinatorial tools, in [16] (without invoking Gaus-

sianity) and in [57] using results on the asymptotic distribution of the

zeros of Laguerre polynomials Lm
N (

√
Nmx + m + N).

2.4.3 Products of Asymptotically Free Matrices

The S-transform plays an analogous role to the R-transform for prod-

ucts (instead of sums) of asymptotically free matrices, as the following

theorem shows:34

Theorem 2.67. Let A and B be nonnegative asymptotically free ran-

dom matrices. The S-transform of their product satisfies

ΣAB(x) = ΣA(x)ΣB(x). (2.207)

Because of (2.69), it follows straightforwardly that the S-transform is

the free analog of the Mellin transform in classical probability theory,

whereas recall that the R-transform is the free analog of the log-moment

generating function in classical probability theory.

Theorem 2.67 together with (2.86) yields

Theorem 2.68. Let A and B be nonnegative asymptotically free ran-

dom matrices, then for 0 < γ < 1,

η−1
AB(γ) =

γ

1 − γ
η−1
A (γ) η−1

B (γ). (2.208)

In addition, the following implicit relation is also useful:

ηAB(γ) = ηA

(

γ

ΣB(ηAB(γ) − 1)

)

. (2.209)

34 Given the definition of the S-transform, we shall consider only nonnegative random ma-
trices whose trace does not vanish asymptotically.
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As an application of (2.209), we can obtain the key relation (2.116)

from the S-transform of the Marc̆enko-Pastur law in (2.87)

ΣH†H(x) =
1

1 + β x

provided that T and H†H are asymptotically free. According to (2.209)

ηTH†H(γ) = ηT (γ (1 − β + βηTH†H(γ)))

= ηT (γ ηHTH†(γ)) (2.210)

where (2.210) follows from (2.56). Applying (2.56) again,

ηHTH†(γ) = 1 − β + β ηT (γ ηHTH†(γ)) . (2.211)

From (2.209), Examples 2.13, 2.32 and 2.45 we obtain the following

result.

Example 2.51. Let Q be a N ×K matrix uniformly distributed over

the manifold of N × K complex matrices such that Q†Q = I and let

A be an N ×N nonnegative Hermitian random matrix independent of

Q whose empirical eigenvalue distribution converges almost surely to

a compactly supported measure. Then

ηQQ†A(γ) = ηA

(

γ + γ
β − 1

ηQQ†A(γ)

)

(2.212)

with K
N → β.

Example 2.52. Define two N × N independent random matrices,

H1 and H2, each having zero-mean i.i.d. entries with variance 1
N

and higher order moments of order o(1/N). From Example 2.39,

({H1,H
†
1}, {H2,H

†
2}) are asymptotically free and, consequently, we can

compute the S-transform of A2 = H1H2H
†
2H

†
1 by simply applying Ex-

ample 2.29 and Theorems 2.67 and 2.32:

ΣA2(x) =
1

(x + 1)2
(2.213)
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from which it follows that the η-transform of A2, ηA2(γ), is the solution

of the fixed-point equation

η(1 + γη2) = 1. (2.214)

Example 2.52 can be extended as follows.

Example 2.53. [184] Let H and T be as in Theorem 2.39. Then,

ΣHTH†(x) =
x + 1

x + β
ΣH†H

(

x

β

)

ΣT

(

x

β

)

(2.215)

=
1

x + β
ΣT

(

x

β

)

(2.216)

where (2.216) follows from Example 2.29.

Example 2.53 follows from the fact that, if H in Theorem 2.39 is a

standard complex Gaussian matrix, then ({H,H†},T) are asymptoti-

cally free (cf. Example 2.43) and thus it follows from Theorem 2.67 that

the S-transform of HTH† is given by (2.216). On the other hand, since

the validity of Theorem 2.39 depends on the distribution of H only

through the first and second order moments, every matrix HTH† de-

fined as in Theorem 2.39 with H arbitrarily distributed admits the same

asymptotic spectrum and the same R- and S-transforms and hence Ex-

ample 2.53 follows straightforwardly. Analogous considerations hold for

Theorems 2.38, 2.42 and 2.43. More precisely, the hypotheses in those

theorems are sufficient to guarantee the additivity of the R-transforms

and factorability of the S-transforms therein. Note, however, that the

factorability of the S-transforms in (2.216) and the additivity of the R-

transforms in Theorem 2.38 do not imply, in general, that ({H,H†},T)

are asymptotically free.

2.4.4 Freeness and Non-Crossing Partitions

The combinatorial description of the freeness developed by Speicher in

[241, 243] and in some of his joint works with A. Nica [189] has suc-

ceeded in obtaining a number of new results in free probability theory.
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It is well known that there exists a combinatorial description of the

classical cumulants that is related to the partition theory of sets. In

the same way, a noncommutative analogue to the classical cumulants,

the so-called free cumulants, can be also described combinatorially. The

key difference with the classical case is that one has to replace the par-

titions by so-called non-crossing partitions [241, 243].

Definition 2.22. Consider the set {1, . . . , n} and let ̟ be a partition

of this set,

̟ = {V1, . . . , Vk},

where each Vi is called a block of ̟. A partition ̟ is called non-crossing

if the following does not occur: there exist 1 ≤ p1 ≤ q1 ≤ p2 ≤ q2 such

that p1 and p2 belong to the same block, q1 and q2 belong to the same

block, but q1 and p2 do not belong to the same block.

Example 2.54. Consider the set {1, 2, 3, 4} and the non-crossing par-

tition ̟ = {{1, 3}, {2}, {4}}. Definition 2.22 is interpreted graphically

in Figure 2.7(a) by connecting elements in the same block with a line.

The fact that these lines do not cross evidences the non-crossing nature

of the partition. In contrast, the crossing partition ̟ = {{1, 3}, {2, 4}}
of the same set is also shown in Figure 2.7(b).

1 2

(a)

3 4 3 41 2

(b)

Fig. 2.7 Figures (a) and (b) depict a non-crossing and a crossing partition respectively.
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Example 2.55. Consider the set {1, 2, . . . , 7}. Let V1, V2 and V3 be a

partition of {1, 2, . . . , 7} with V1 = {1, 5, 7}, V2 = {2, 3, 4}, and V3 =

{6}. Then {V1, V2, V3} is a non-crossing partition.

1 2 2 3 3 4 4 5 5 6 6 7 71

Fig. 2.8 The non-crossing partition ̟ = {{1, 5, 7}, {2, 3, 4}, {6}} and the complementation
map K(̟) = {{1, 4}, {2}, {3}, {5, 6}, {7}} obtained with the repeated integers.

Every non-crossing partition ̟, can be associated to a complemen-

tation map [154], denoted by K(̟). Figure 2.8 depicts the non-crossing

partition ̟ = {{1, 5, 7}, {2, 3, 4}, {6}} and the corresponding comple-

mentation map K(̟) = {{1, 4}, {2}, {3}, {5, 6}, {7}}. The complemen-

tation map K(̟) can be found graphically as follows: duplicate the

elements of the set placing them between the elements of the old set;

then connect with a line as many elements of the new set as possible

without crossing the lines of the original partition.

The number of non-crossing partitions of the set {1, 2, . . . , n} into

i blocks equals35

Qi =
1

n

(

n

i

)(

n

i − 1

)

.

Moreover, the number of non-crossing partitions of {1, 2, . . . , n} equals

the nth Catalan number. This follows straightforwardly from the fact

that
n
∑

i=1

Qi =
1

n + 1

(

2n

n

)

.

35 Note that
Pn

i=1 Qiβ
i equals the n-th moment of f̃β(·) given in (1.12).
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The following result gives a general expression of the joint moments

of asymptotically free random matrices.

Theorem 2.69. [20, 21] Consider matrices A1, . . . ,Aℓ whose size is

such that the product A1 . . .Aℓ is defined. Some of these matrices are

allowed to be identical. Omitting repetitions, assume that the matrices

are asymptotically free.36 Let ̺ be the partition of {1, . . . , ℓ} deter-

mined by the equivalence relation37 j ≡ k if ij = ik. For each partition

̟ of {1, . . . , ℓ}, let

φ̟ =
∏

{j1, . . . , jr} ∈ ̟

j1 < . . . < jr

φ(Aj1 . . . Ajr).

There exist universal coefficients c(̟, ̺) such that

φ(A1 . . .Aℓ) =
∑

̟≤̺

c(̟, ̺)φ̟

where ̟ ≤ ̺ indicates that ̟ is finer 38 than ̺.

Finding an explicit formula for the coefficients c(̟, ̺) is a nontrivial

combinatorial problem which has been solved by Speicher [241, 243].

From Theorem 2.69 it follows that φ(A1 . . .Aℓ) is completely deter-

mined by the moments of the individual matrices.

It is useful to highlight a special case of Theorem 2.69.

Theorem 2.70. [111] Assume that A and B are asymptotically free

random matrices. Then, the moments of A + B are expressed by the

free cumulants of A and B as

φ((A + B)n) =
∑

̟

∏

V ∈̟

(c|V |(A) + c|V |(B)) (2.217)

36 For example, (A1, . . . ,A4) = (B,C,C, B) with B and C asymptotically free.
37 If an equivalence relation is given on the set Ω, then the set of all equivalence classes

forms a partition of Ω. Conversely, if a partition ̟1 is given on Ω, we can define an
equivalence relation on Ω by writing x ≡ y if and only if there exists a member of ̟1

which contains both x and y. The notions of “equivalence relation” and “partition” are
thus essentially equivalent.

38 Given two partitions ̟1 and ̟2 of a given set Ω, we say that ̟1 is finer than ̟2 if it
splits the set Ω into smaller blocks, i.e., if every element of ̟1 is a subset of an element
of ̟2. In that case, one writes ̟1 ≤ ̟2.
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where the summation is over all non-crossing partitions of {1, . . . , n},
cℓ(A) denotes the ℓth free cumulant of A (cf. Section 2.2.5) and |V |
denotes the cardinality of V .

Theorem 2.70 is based on the fact that, if A and B are asymp-

totically free random matrices, the free cumulants of the sum satisfy

cℓ(A + B) = cℓ(A) + cℓ(B).

The counterpart of Theorem 2.70 for the product of two asymptoti-

cally free random matrices A and B is given by the following theorem.

Theorem 2.71. [111] Assume that A and B are asymptotically free

random matrices. Then the moments of AB are expressed by the free

cumulants of A and B as follows:

φ((AB)n) =
∑

̟1,̟2

∏

V1∈̟1

c|V1|(A)
∏

V2∈̟2

c|V2|(B) (2.218)

where the summation is over all non-crossing partitions of {1, . . . , n}.

2.5 Convergence Rates and Asymptotic Normality

Most of the literature on large random matrices has focused on the

existence of the limiting spectral distributions employing the moment

convergence theorem, i.e., verifying the convergence of the kth moments

of the N ×N random matrix to the moments of the target distribution

either almost surely or in probability. While this method guarantees

convergence, it gives no information on the speed of convergence. Loose

bounds on the convergence rate to the semicircle law were put forth in

1998 by Girko [88]. A sharper result, but probably not the final word

on the matter, was obtained recently:

Theorem 2.72. [95] Let W be an N × N Gaussian standard Wigner

matrix. The maximal absolute difference between the expected empir-

ical eigenvalue distribution of W and the semicircle law, Fw, whose

density is given in (2.94), vanishes as

‖E[FN
W] − Fw‖ ≤ κN−2/3 (2.219)
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with κ a positive constant and with ‖f − g‖ = supx |f(x) − g(x)|.

For an arbitrary deterministic sequence aN , the notation

ξN = Op(aN ) (2.220)

means39 that, for any ǫ, there exists an ς > 0 such that

sup
N

P [|ξN | ≥ ςaN ] < ǫ. (2.221)

Similarly, the notation

ξN = o(aN ) a. s. (2.222)

means that a−1
N ξN → 0 almost surely.

Theorem 2.73. [11] Let W be an N×N standard Wigner matrix such

that supi,j,N E[|
√

N Wi,j|8] < ∞ and that, for any positive constant δ,

∑

i,j

E

[

∣

∣

∣

√
N Wi,j

∣

∣

∣

8
1{|Wi,j | ≥ δ}

]

= o(N2). (2.223)

Then,

‖FN
W − Fw‖ = Op(N

−2/5). (2.224)

If we further assume that all entries of
√

NW have finite moments of

all orders, then for any η > 0, the empirical distribution of the Wigner

matrix tends to the semicircle law as

‖FN
W − Fw‖ = o(N−2/5+η) a. s. (2.225)

If we relax the assumption on the entries of
√

NW to simply finite

fourth-order moments, then the convergence rates for FN
W and E[FN

W]

have been proved in [8] to reduce to

‖E[FN
W] − Fw‖ = O(N−1/4) (2.226)

‖FN
W − Fw‖ = Op(N

−1/4). (2.227)

In the context of random matrices of the form HH† the following

results have been obtained.

39 It is common in the literature to say that a sequence of random variables is tight if it is
Op(1).
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Theorem 2.74. [12] Let H be an N × K matrix whose entries are

mutually independent with zero mean and variance 1
N . Assume that

sup
i,j,N

E

[

|
√

N Hi,j|8
]

< ∞ (2.228)

and for any positive constant δ

∑

i,j

E

[

∣

∣

∣

√
N Hi,j

∣

∣

∣

8
1{|Hi,j | ≥ δ}

]

= o(N2). (2.229)

Then, the maximal absolute difference between the expected empiri-

cal eigenvalue distribution of H†H and the Marc̆enko-Pastur law, Fβ,

whose density is given in (1.10), vanishes as

‖E[FN
H†H] − Fβ‖ = O

(

N− 1
4θ+2

1 −
√

β + N− 1
8θ+4

)

(2.230)

and

‖FN
H†H − Fβ‖ = Op

(

max

{

N− 2
5+θ

1 −
√

β + N− 1
5+θ

,
N− 1

4θ+2

1 −
√

β + N− 1
8θ+4

})

(2.231)

with

θ =

⎧

⎪

⎨

⎪

⎩

−2 log(1−
q

K
N

)

log N+4 log(1−
q

K
N

)
if K

N ≤ (1 − N
1
8 )2,

1
2 otherwise.

(2.232)

Summarizing, if β < 1 then θ ∼ c/ log N and hence the convergence

rates in (2.230) and (2.231) are O(N−1/2) and Op(N
−2/5), respectively.

When β > 1, θ = 1
2 and the rates are O(N−1/8) and Op(N

−1/8),

respectively. For β = 1, the exact speed at which K
N → 1 matters as far

as Theorem 2.74 is concerned.
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Theorem 2.75. [87, 15] Let H be an N × K complex matrix whose

entries are i.i.d. zero-mean random variables with variance 1
N such that

E[|
√

NHi,j|4] = 2. Define the random variable

∆N = log det(H†H) − K

∫ b

a
log(x) fβ(x)dx (2.233)

= log det(H†H) + K

(

1 − β

β
log(1 − β) + log e

)

with fβ(·) the density of the Marc̆enko-Pastur law in (1.10). As K,N →
∞ with K

N → β ≤ 1, ∆N converges to a Gaussian random variable with

zero mean and variance

E
[

|∆|2
]

= log
1

1 − β
. (2.234)

The counterpart of Theorem 2.75 for real H was first derived by Jon-

sson in [131] for a real zero-mean matrix with Gaussian i.i.d. entries

and an analogous result has been found by Girko in [87] for real (pos-

sible nonzero-mean) matrix with i.i.d. entries and variance 1
N . In the

special case of Gaussian entries, Theorem 2.75 can be easily obtained

following [131] using the expression of the moment-generating function

of log det(H†H) in (2.11). In the general case, Theorem 2.75 can be

easily verified using the result given in [15].

Theorem 2.76. [15] Let H be an N × K complex matrix whose en-

tries are i.i.d. zero-mean random variables with variance 1
N such that

E[|Hi,j|4] = 2
N2 . Denote by Vβ(γ) the Shannon transform of f̃β(·) (Ex-

ample 2.117). As K,N → ∞ with K
N → β, the random variable

∆N = log det(I + γHH†) − N

∫ b

a
log(1 + γx) f̃β(x) dx

= log det(I + γHH†) − NVβ(γ) (2.235)
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is asymptotically Gaussian with zero mean and variance

E
[

∆2
]

= − log

(

1 − (1 − ηHH†(γ))2

β

)

= − log

(

1 − 1

β

(F (γ, β)

4 γ

)2
)

. (2.236)

Notice that

lim
γ→∞

F (γ, β)

4γ
= min{1, β} (2.237)

and Theorem 2.75 can be obtained as special case.

Theorem 2.77. [15] Let H be an N ×K complex matrix defined as in

Theorem 2.76. Let T be an Hermitian random matrix independent of H

with bounded spectral norm and whose asymptotic spectrum converges

almost surely to a nonrandom limit. Denote by VHTH†(γ) the Shannon

transform of HTH†. As K,N → ∞ with K
N → β, the random variable

∆N = log det(I + γHTH†) − NVHTH†(γ) (2.238)

is asymptotically zero-mean Gaussian with variance

E[∆2] = − log

(

1 − (1 − ηHTH†(γ))2

β

)

. (2.239)

More general results (for functions other than log(1+γx)) are given

in [15].

Theorem 2.78. [15] Let H be an N × K complex matrix defined as

in Theorem 2.76. Let T be a K ×K nonnegative definite deterministic

matrix defined as in Theorem 2.77. Let g(·) be a continuous function

on the real line with bounded and continuous derivatives, analytic on

a open set containing the interval40
[

lim inf
N

φNmax2{0, 1 −
√

β}, lim sup
N

φ1(1 +
√

β)2
]

.

(2.240)

40 In [14, 13, 170, 222] this interval contains the spectral support of H†HT.
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where φ1 ≥ . . . ≥ φN are the eigenvalues of T. Denoting by λi the ith

eigenvalue of HTH†, the random variable

∆N =
N
∑

i=1

g(λi) − N

∫

g(x) dFHTH† (2.241)

converges, as K,N → ∞ with K
N → β, to a zero-mean Gaussian random

variable.41

41 See [15] for an expression of the variance of the limit.
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Applications to Wireless Communications

In this chapter, we detail some of the more representative problems

described by (1.1) that capture various features of interest in wireless

communications and we show how random matrix results have been

used to characterize the fundamental limits of the various channels

that arise in wireless communications.

Unless otherwise stated, the analysis applies to coherent reception

and thus it is presumed that the state of the channel is perfectly tracked

by the receiver. The degree of channel knowledge at the transmitter,

on the other hand, is specified for each individual setting.

3.1 Direct-Sequence CDMA

The analysis of randomly-spread DS-CDMA in the asymptotic regime

of number of users, K, and spreading gain, N , going to infinity with
K
N → β provides valuable insight into the behavior of multiuser re-

ceivers for large DS-CDMA systems employing pseudo-noise spreading

sequences (e.g. [167, 275, 256, 100, 217, 30]).

The standard random signature model [271, Sec. 2.3.5] assumes

that the entries of the matrix S, whose columns are the spreading

101
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sequences, are chosen independently and equiprobably on { −1√
N

, 1√
N
}.

A motivation for this is the use of “long sequences” in commercial

CDMA systems, where the period of the pseudo-random sequence spans

many symbols. Another motivation is to provide a baseline of compar-

ison for systems that use signature waveform families with low cross-

correlations. Sometimes (particularly when the random sequence set-

ting is used to model to some extent nonideal effects such as asynchro-

nism and the frequency selectivity of the channel) the signatures are as-

sumed to be uniformly distributed on the unit Euclidean N -dimensional

sphere (a case for which the Marcenko-Pastur law also applies). In the

analysis that follows, the only condition on the signature sequences is

that their entries be i.i.d. zero-mean with variance 1
N .

Specializing the general model in (1.1) to DS-CDMA, the vector x

contains the symbols transmitted by the K users, which have zero-mean

and equal variance. The entries of x correspond to different users and

are therefore independent. (Unequal-power users will be accommodated

by pre-multiplying x by an additional diagonal matrix of amplitudes.)

3.1.1 Unfaded Equal-Power DS-CDMA

With equal-power transmission at every user and no fading, the multi-

access channel model becomes [271, Sec. 2.9.2]

y = Sx + n, (3.1)

where the energy per symbol transmitted from each user divided by

the noise variance per chip is denoted by SNR , i.e.,

SNR =
E[‖x‖2]
1
N E[‖n‖2]

.

Asymptotic analyses have been reported in the literature for various

receivers, including:

• Single-user matched filter
• Decorrelator
• MMSE
• Optimum
• Iterative nonlinear.
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The asymptotic analysis of the single-user matched filter (both un-

coded error probability and capacity) has relied on the central limit

theorem rather than on random matrix techniques [275]. The asymp-

totic analysis of the uncoded error probability has not used random

matrix techniques either: [258] used large-deviation techniques to ob-

tain the asymptotic efficiency and [249] used the replica method of

statistical physics to find an expression for the uncoded bit error rate

(see also [103]). The optimum near-far resistance and the MMSE were

obtained in [271] using the Marc̆enko-Pastur law (Theorem 2.35). Re-

call, from (1.12), that the asymptotic fraction of zero eigenvalues of

HH† is given by (1 − β)+. Then, for β ≤ 1, using (2.57), the decorre-

lator achieves an output SINR that converges asymptotically to [271,

(4.111)]

(1 − β) SNR . (3.2)

When β > 1, the Moore-Penrose generalized-inverse decorrelator [271,

Sec. 5.1] is shown in [70] (also using the Marc̆enko-Pastur law) to attain

an asymptotic SINR ratio equal to

β − 1

(β − 1)2 + β/SNR
. (3.3)

Using (2.57) and (2.121), the maximum SINR (achieved by the MMSE

linear receiver) converges to [271, (6.59)]

SNR − F (SNR , β)

4
(3.4)

with F(·, ·) defined in (1.17) while the MMSE converges to

1 − F (SNR , β)

4 SNR β
. (3.5)

Incidentally, note that, as SNR → ∞, (3.3) and (3.4) converge to the

same quantity if β > 1.

The total capacity (sum-rate) of the multiaccess channel (3.1) was

obtained in [275] for the linear receivers listed above and the optimum

receiver also using the Marc̆enko-Pastur law. These expressions for the

decorrelator and MMSE receiver are

Cdec(β, SNR ) = β log (1 + SNR (1 − β)) , 0 ≤ β ≤ 1 (3.6)
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and

Cmmse(β, SNR ) = β log

(

1 + SNR − F (SNR , β)

4

)

(3.7)

while the capacity achieved with the optimum receiver is (1.14)

Copt(β, SNR ) = β log

(

1 + SNR − F (SNR , β)

4

)

+ log

(

1 + SNR β − F (SNR , β)

4

)

− F (SNR , β)

4SNR
log e.

(3.8)

Decorrelator

Spectral Efficiency

Matched Filter

No Spreading

Optimal 

Bits/s/Hz

MMSE

β

0.5 1 1.5 2

1

2

3

4

5

6

Fig. 3.1 Capacity of CDMA without fading for Eb
N0

= 10dB.

Figure 3.1 (from [275]) compares (3.6), (3.7) and (3.8) as a func-

tion of the number of users to spreading gain β, choosing SNR so that

βSNR /C(β, SNR ) = Eb
N0

= 10.



3.1. Direct-Sequence CDMA 105

3.1.2 DS-CDMA with Frequency-Flat Fading

When the users are affected by different attenuations which may vary

from symbol to symbol, it is convenient to model the channel gains

seen by each user as random quantities {|A1|2, . . . , |AK |2} whose em-

pirical distribution converges almost surely to a nonrandom limit as

the number of users goes to infinity. In this case, the channel matrix

H can be written as the product of the N × K matrix S containing

the spreading sequences with a K × K diagonal matrix A of complex

fading coefficients such that the linear model in (1.1) becomes

y = SAx + n. (3.9)

Here, the role of the received signal-to-noise ratio of the kth user is

taken by |Ak|2SNR .

The η-transform is intimately related to the performance of MMSE

multiuser detection of (3.1). The arithmetic mean of the MMSEs for

the K users satisfies [271, (6.27)]

1

K

K
∑

k=1

MMSEk =
1

K
tr

{

(

I + SNR A†S†SA
)−1

}

(3.10)

→ ηA†S†SA(SNR ) (3.11)

whereas the multiuser efficiency of the kth user (output SINR relative

to the single-user signal-to-noise ratio) achieved by the MMSE receiver,

ηmmse
k (SNR ), is1

ηmmse
k (SNR ) = sT

k

⎛

⎝I +
∑

i	=k

SNR |Ai|2sis
T
i

⎞

⎠

−1

sk (3.12)

→ ηSAA†S†(SNR ) (3.13)

where the limit follows from (2.57). According to Theorem 2.39, the

MMSE multiuser efficiency, abbreviated as

η = ηSAA†S†(SNR ), (3.14)

1The conventional notation for multiuser efficiency is η [271]; the relationship in (3.13) is
the motivation for the choice of the η-transform terminology introduced in Section 2.2.2.
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is the solution to the fixed-point equation

1 − η = β
(

1 − η|A|2(SNR η)
)

, (3.15)

where η|A|2 is the η-transform of the asymptotic empirical distribution

of {|A1|2, . . . , |AK |2}. A fixed-point equation equivalent to (3.15) was

given in [256] and its generalization to systems with symbol-level asyn-

chronism (but still chip-synchronous) is studied in [152].

The distribution of the output SINR is asymptotically Gaussian

[257], in the sense of Theorem 2.78, and its variance decreases as 1
N .

The same holds for the decorrelator. Closed-form expressions for the

asymptotic mean are SNR ηSAA†S† for the MMSE receiver and SNR (1 −
βP[|A| > 0]) for the decorrelator with β < 1 while the variance, for

both receivers, is obtained in [257].2

In [217], the spectral efficiencies achieved by the MMSE receiver

and the decorrelator are given respectively by

Cmmse(β, SNR ) = β E
[

log
(

1 + |A|2SNR ηSAA†S†(SNR )
)]

(3.16)

and, for β ≤ 1,

Cdec(β, SNR ) = β E
[

log
(

1 + |A|2SNR (1 − βP[|A| > 0])
)]

(3.17)

where the distribution of |A|2 is given by the asymptotic empirical dis-

tribution of AA† and (3.17) follows from Corollary 2.2 using the fact

that the multiuser efficiency of the kth user achieved by the decorrela-

tor, ηdec
k , equals that of the MMSE as the noise vanishes [271].

Also in [217], the capacity of the optimum receiver is characterized

in terms of the MMSE spectral efficiency: 3

Copt(β, SNR ) = Cmmse(β, SNR ) + log
1

ηSAA†S†(SNR )

+(ηSAA†S†(SNR ) − 1) log e. (3.18)

2Although most fading distributions of practical interest do not have any point masses
at zero, we express various results without making such an assumption on the fading
distribution. For example, the inactivity of certain users or groups of users can be modelled
by nonzero point masses in the fading distribution.

3Equation (3.18) also holds for the capacity with non-Gaussian inputs, as shown in [186]
and [103] using statistical-physics methods.
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This result can be immediately obtained by specializing Theorem 2.44

to the case where T = AA† and D = I. Here we give the derivation

in [217], which illustrates the usefulness of the interplay between the η

and Shannon transforms. From the definition of Shannon transform, the

capacity of the optimum receiver coincides with the Shannon transform

of the matrix evaluated at SNR , i.e.,

Copt(β, SNR ) = VSAA†S†(SNR ). (3.19)

Furthermore, also from the definition of Shannon transform and (3.16),

it follows that

Cmmse(β, SNR ) = β VAA† (SNR ηSAA†S†(SNR )) (3.20)

and we know from (2.61) that

γ

log e

d

dγ
VX(γ) = 1 − ηX(γ). (3.21)

Thus, using the shorthand in (3.14),

d

dSNR
Cmmse(SNR , β) = β

1 − ηAA†(SNR η)

SNR

(

1 +
SNR η̇

η

)

log e

=
1 − η

SNR

(

1 +
SNR η̇

η

)

log e (3.22)

where we used (3.15) to write (3.22). The derivative of (3.19) yields

d

dSNR
Copt(β, SNR ) =

1 − η

SNR
log e. (3.23)

Subtracting the right-hand sides of (3.22) and (3.23),

d

dSNR
Copt(β, SNR ) − d

dSNR
Cmmse(SNR , β) = η̇

(

1 − 1

η

)

log e, (3.24)

which is equivalent to (3.18) since, at SNR = 0, both functions equal 0.

Random matrix methods have also been used to optimize power

control laws in DS-CDMA, as the number of users goes to infinity,

for various receivers: matched filter, decorrelator, MMSE and optimum

receiver [217, 281].

Departing from the usual setup where the channel and spreading

sequences are known by the receiver, the performance of blind and
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group-blind linear multiuser receivers that have access only to the re-

ceived spreading sequence of the user of interest is carried out via ran-

dom matrix techniques in [318]. The asymptotic SINR at the output

of direct matrix inversion blind MMSE, subspace blind MMSE and

group-blind MMSE receivers with binary random spreading is inves-

tigated and an interesting saturation phenomenon is observed. This

indicates that the performance of blind linear multiuser receivers is not

only limited by interference, but by estimation errors as well. The out-

put residual interference is shown to be zero-mean and Gaussian with

variance depending on the type of receiver.

3.1.3 DS-CDMA with Flat Fading and Antenna Diversity

Let us now study the impact of having, in addition to frequency-flat

fading, L receive antennas at the base station. The channel matrix is

now the NL × K array

H =

⎡

⎣

SA1

· · ·
SAL

⎤

⎦ (3.25)

where

Aℓ = diag{A1,ℓ, . . . ,AK,ℓ}, ℓ = 1, . . . L (3.26)

and {Ak,ℓ} indicates the i.i.d. fading coefficients of the kth user at the

ℓth antenna.

Assuming that the fading coefficients are bounded,4 using Lemma

2.60, [108] shows that the asymptotic averaged empirical singular value

distribution of (3.25) is the same as that of
⎡

⎣

S1A1

· · ·
SLAL

⎤

⎦

where Sk for k ∈ {1, . . . , L} are i.i.d. matrices. Consequently, Theorem

2.50 leads to the conclusion that

1 − ηHH† =
β

L
( 1 − ηP ( SNR ηHH†) ) , (3.27)

4This assumption is dropped in [160].
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where ηP is the η-transform of the asymptotic empirical distribution

of P1, . . . , PK with Pk =
∑L

ℓ=1 |Ak,ℓ|2. This result admits the pleasing

engineering interpretation that the effective spreading gain is equal to

the CDMA spreading gain times the number of receive antennas (but,

of course, the bandwidth only grows with the CDMA spreading gain).

From the above result it follows that the expected arithmetic mean

of the MMSE’s for the K users converges to

1

K

K
∑

k=1

E[MMSEk] =
1

K
E

[

tr

{

(

I + SNR H†H
)−1

}]

(3.28)

→ ηH†H(SNR ). (3.29)

Moreover, the MMSE multiuser efficiency, ηmmse
k (SNR ), converges in

probability as K,N → ∞ to [108]

ηmmse
k (SNR ) → ηHH† (3.30)

while the asymptotic multiuser efficiency is given by

lim
SNR→∞

ηmmse
k (SNR ) = 1 − min

{

β

L
P[P �= 0], 1

}

(3.31)

where P is a random variable distributed according to the asymptotic

empirical distribution of P1, . . . , PK . The spectral efficiency for MMSE

and decorrelator and the capacity of the optimum receiver are

Cmmse(β, SNR ) = β VP (SNR ηHH†(SNR ))

= β E [log (1 + SNR P ηHH†(SNR ))] (3.32)

and, using Corollary 2.2, for β ≤ 1

Cdec(β, SNR ) = β E

[

log

(

1 + SNR P

(

1 − β

L
P[P > 0]

))]

(3.33)

while

Copt(β, SNR ) = Cmmse(β, SNR ) + log 1
η
HH† (SNR )

+(ηHH†(SNR ) − 1) log e. (3.34)

Note the parallel between (3.32–3.34) and (3.16–3.18).
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3.1.4 DS-CDMA with Frequency-Selective Fading

Let us consider a synchronous DS-CDMA uplink with K active users

employing random spreading codes and operating over a frequency-

selective fading channel. The base station is equipped with a single

receive antenna.

Assuming that the symbol duration (Ts ≈ N
Wc

with Wc the chip-

bandwidth) is much larger than the delay spread, we can disregard

the intersymbol interference. In this case, the channel matrix in (1.1)

particularizes to

H = [C1 s1 , . . . , CK sK ]A (3.35)

where A is a K ×K deterministic diagonal matrix containing the am-

plitudes of the users and Ck is an N × N Toeplitz matrix defined as

(Ck)i,j =
1

Wc
ck

(

i − j

Wc

)

(3.36)

with ck(·) the impulse response of the channel for the kth user inde-

pendent across users.

Let Λ be an N × K matrix whose (i, j)th entry is

Λi,j = λi(Cj)|Aj |2

with λi(Cj) the ith eigenvalue of CjC
†
j. Assuming that Λ behaves

ergodically (cf. Definition 2.17), from Theorem 2.59 it follows that the

arithmetic mean of the MMSE’s satisfies

1

K

K
∑

k=1

MMSEk =
1

K
tr

{

(

I + SNR H†H
)−1

}

(3.37)

→ ηH†H(SNR ) (3.38)

= 1 − 1

β
+

1

β
E [ ΓHH†(X, SNR ) ] (3.39)

where in (3.39) we have used (2.56). The function ΓHH†(·, ·), in turn,

satisfies the fixed-point equation

ΓHH†(x, SNR ) + β SNR E

[

ρ(x,Y)ΓHH†(x, SNR )

1 + SNR E[ρ(X,Y)ΓHH†(X, SNR )|Y]

]

= 1

(3.40)
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where X and Y are independent random variables uniform on [0, 1] and

ρ(·, ·) is the channel profile of Λ (cf. Definition 2.18). Note that the

received signal-to-noise ratio of the kth user is SNR ‖hk‖2 with

‖hk‖2 → |Ak|2 lim
N→∞

1

N
tr{C†

kCk}

= E[ρk(X)]. (3.41)

with E[ρk(X)] representing the one-dimensional channel profile (cf. Def-

inition 2.18) of Λ. The multiuser efficiency of the kth user achieved by

the MMSE receiver is [159]

ηmmse
k (SNR ) =

SINRk

SNR ‖hk‖2
(3.42)

=
h†

k

(

I + SNR

∑

i	=k hih
†
i

)−1
hk

‖hk‖2
(3.43)

→ ̥(y, SNR )

E[ρk(X)]
(3.44)

with k−1
K ≤ y < k

K and ̥(·, ·) defined as the solution to the fixed-point

equation (cf. (2.157))

̥(y, SNR ) = E

⎡

⎣

ρ(X, y)

1 + SNR β E

[

ρ(X,Y)
1+SNR (̥Y,SNR ) |X

]

⎤

⎦ . (3.45)

Let the ratio between the effective number of users and the effective

processing gain be defined as

β′ = β
P[E [ρ(X,Y)|Y] > 0]

P[E [ρ(X,Y)|X] > 0]
. (3.46)

Using Corollary 2.4, we obtain that the asymptotic MMSE multiuser

efficiency admits the following expression for β′ < 1:

ηdec
k = lim

SNR→∞
ηmmse

k (SNR )

=
β P[E[ρ(X,Y)|Y] �= 0]Γ∞(y)

E[ρk(X)]
(3.47)

where Γ∞(·) satisfies (2.142) with the role of v(x, y) played by ρ(x, y).
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Specializing (3.39) to the case that the signal transmitted by each

user propagates through L discrete i.i.d. chip-spaced paths (where L

does not grow with N), the η-transform of the asymptotic averaged

eigenvalue distribution of HH†, ηHH† , satisfies the fixed-point equation

[159]

1 − ηHH† = β ( 1 − ηP ( SNR ηHH†) ) (3.48)

where ηP is the η-transform of the almost sure asymptotic empirical

distribution of5

{

|A1|2
W 2

c

L
∑

ℓ=1

∣

∣

∣

∣

c1

(

ℓ

2Wc

)∣

∣

∣

∣

2

, . . . ,
|AK |2
W 2

c

L
∑

ℓ=1

∣

∣

∣

∣

cK

(

ℓ

2Wc

)∣

∣

∣

∣

2
}

.

Using this result, [159] concludes that, asymptotically as N → ∞, each

multipath interferer with a fixed number of resolvable paths acts like

a single path interferer with received power equal to the total received

power from all the paths of that user. From this it follows that, in the

special case of a fixed number of i.i.d. resolvable paths, the expressions

obtained for the SINR at the output of the decorrelator and MMSE

receiver in a frequency-selective channel are equivalent to those for a

flat fading channel. This result has been found also in [73] under the

assumption that the spreading sequences are either independent across

users and paths or independent across users and cyclically shifted across

the paths (cf. Section 3.1.5).

In the downlink, every user experiences the same frequency-selective

fading, i.e., Ck = C ∀k, where the empirical distribution of CC† con-

verges almost surely to a nonrandom limit F|C|2. Consequently, (3.35)

particularizes to

H = CSA. (3.49)

Using Theorem 2.46 and with the aid of an auxiliary function χ(SNR ),

abbreviated as χ, we obtain that the MMSE multiuser efficiency of the

5Whenever we refer to an almost sure asymptotic empirical distribution, we are implic-
itly assuming that the corresponding empirical distribution converges almost surely to a
nonrandom limit.
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kth user, abbreviated as η = ηmmse(SNR ), is the solution to

β η χ =
1 − η|C|2(β χ)

E[|C|2] (3.50)

η χ =
1 − η|A|2(SNR E[|C|2]η)

E[|C|2] (3.51)

where |C|2 and |A|2 are independent random variables with distribu-

tions given by the asymptotic spectra of CC† and AA†, respectively,

while η|C|2(·) and η|A|2(·) represent their respective η-transforms. Note

that, instead of (3.51) and (3.50), we may write [37, 159]

η =
1

E[|C|2]E

⎡

⎣

|C|2

1 + β SNR |C|2E

[

|A|2
1+SNR E[|C|2] |A|2η

]

⎤

⎦ . (3.52)

From Corollary 2.2 we have that, for

β
P[|A| > 0]

P[|C| > 0
≤ 1,

ηdec
k converges almost surely to the solution to

1 = E

[ |C|2
ηdec E[|C|2] + β P[|A| > 0] |C|2

]

. (3.53)

Note that both the MMSE and the decorrelator multiuser efficiencies

are asymptotically the same for every user.

From Theorem 2.43, the downlink counterpart of (3.39) is [159]

1

K

K
∑

k=1

MMSEk =
1

K
tr

{

(

I + SNR H†H
)−1

}

= 1 − 1

β
+

1

β
η|C|2 (βχ(SNR )) (3.54)

with χ(·) solution to (3.51) and (3.50). The special case of (3.52) for

equal-power users was given in [56].

For the sake of brevity, we will not explicitly extend the analysis to

the case in which both frequency selectivity and multiple receive anten-

nas are present. This can be done by blending the results obtained in
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Sections 3.1.3 and 3.1.4. Moreover, multiple transmit antennas can be

further incorporated as done explicitly in [169], where analytical tools

already leveraged in Sections 3.1.2-3.1.3 are applied to the asymptotic

characterization of the single-user matched filter and MMSE detectors.

It is found that DS-CDMA, even with single-user decoding, can out-

perform orthogonal multiaccess with multiple antennas provided the

number of receive antennas is sufficiently large.

In most of the literature, the DS-CDMA channel spans only the

users within a particular system cell with the users in other cells re-

garded as a collective source of additive white Gaussian noise. While it

is reasonable to preclude certain forms of multiuser detection of users

in other cells, on the basis that their codebooks may be unknown, the

structure in the signals of those other-cell users can be exploited even

without access to their codebooks. This, however, requires more re-

fined models that incorporate this structure explicitly within the noise.

For some simple such models, the performance of various receivers has

been evaluated asymptotically in [317, 237]. Since the expression for

the capacity of a DS-CDMA channel with colored noise parallels that

of the corresponding multi-antenna channel, we defer the details to

Section 3.3.8.

3.1.5 Channel Estimation for DS-CDMA

Reference [73] applies the concept of asymptotic freeness to the same

setup of Section 3.1.4 (linear DS-CDMA receivers and a fading channel

with L discrete chip-spaced paths), but departing from the usual as-

sumption that the receiver has perfect side information about the state

of the channel. Incorporating channel estimation, the receiver consists

of two distinct parts:

• The channel estimator, which provides linear MMSE joint

estimates of the channel gains for every path of every user.
• The data estimator, which uses those channel estimates to

detect the transmitted data using a one-shot linear receiver.

In order to render the problem analytically tractable, the delay spread

is considered small relative to the symbol time and, more importantly,
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the time delays of the resolvable paths of all users are assumed known.

Thus, the channel estimation encompasses only the path gains and it is

further conditioned on the data (hypothesis that is valid during training

or with error-free data detection). The joint estimation of the channel

path gains for all the users is performed over an estimation window

of Q symbols, presumed small relative to the channel coherence time.

For the ith symbol within this window, the output of the chip matched

filter is

y(i) =
K
∑

k=1

L
∑

ℓ=1

Ck,ℓ sk,ℓ(i)(x(i))k + n(i) (3.55)

where Ck,ℓ represents the channel fading coefficient for path ℓ of user

k such that E[|Ck,ℓ|2] = 1
L , sk,ℓ(i) is the spreading sequence for the ℓth

path of the kth user for the ith symbol interval, n(i) is the additive

Gaussian noise in the ith symbol interval, and (x(i))k represents the

ith symbol of the kth user.

With long (i.e., changing from symbol to symbol) random spread-

ing sequences independent across users and paths, [73] shows using

Theorem 2.38 that, as K,N → ∞ with K
N → β, the mean-square error

of the estimation of every path gain coefficient converges to

ξ2 =

(

SNR
Q − βL

2
+

L

2
+

√

SNR 2
(Q − βL)2

4
+ SNR L

Q + β

2
+

L2

4

)−1

.

This result, in fact, holds under alternative conditions as well:

• If the spreading sequences are independent across users and

paths but they repeat from symbol to symbol, i.e., sk,ℓ(i) =

sk,ℓ ∀i (this can be proved using Theorem 2.61).
• The sequences received over the L paths are cyclically shifted

versions of each other but independent across users, i.e.,

sk,ℓ(i) is a cyclically shifted replica of sk,1(i) by ℓ − 1 chips

(this can be proved using Example 2.49).

The linear receiver performing data estimation operates under the belief

that the estimate of the ℓth path gain of the kth user has mean C̄k,ℓ

and variance ξ2
k. These estimates are further assumed uncorrelated and
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with equal variance for all paths of each user. (When the channel is

perfectly known, Ck,ℓ = C̄k,ℓ and ξ2
k,ℓ = 0 and the results reduce to

their counterparts in Section 3.1.4.) The linear receiver is designed with

all expectations being conditional on the spreading sequences and the

mean and variance supplied by the channel estimator.

From Theorem 2.46, the output SINR for user k converges asymp-

totically in probability to

1

1 + ξ2
kSINRd

L
∑

ℓ=1

|C̄k,ℓ|2SINRd (3.56)

where SINRd is the corresponding output SINR without the effect of

other-user channel estimation errors. Implicit expressions for SINRd, de-

pending on the type of linear receiver, are

1

SINRd
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1

SNR
+ βLE

[

P

1 + P SINRd

]

MMSE

1

SNR
+

1

SNR

βL

1 − βL
decorrelator

1

SNR
+ βLE[P] single-user matched filter

(3.57)

with expectation over P, whose distribution equals the asymptotic em-

pirical eigenvalue distribution of the matrix E[diag(c2c
†
2, . . . , cKc†K)]

(assumed to converge to a nonrandom limit) with ck = [Ck,1 . . . Ck,L]T .

The main finding of the analysis in [73] is that, provided the channel es-

timation window (in symbols) exceeds the number of resolvable paths,

the resulting estimates enable near-optimal performance of the linear

data estimator.

In [46], the impact of channel estimator errors on the performance

of the linear MMSE multistage receiver (cf. Section 3.1.6) for large

multiuser systems with random spreading sequences is analyzed.

3.1.6 Reduced-Rank Receivers for DS-CDMA

Both the MMSE and the decorrelator receivers need to invert a mat-

rix whose dimensionality is equal to either the number of users or the

spreading gain. In large-dimensional systems, this is a computationally

intensive operation. It is therefore of interest to pursue receiver struc-
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tures that approach the performance of these linear receivers at a lower

computational cost.

Invoking the Cayley-Hamilton Theorem,6 the MMSE receiver can

be synthesized as a polynomial expansion that yields the soft estimate

of the kth user symbol in (1.1) as

x̂k = h†
k

D−1
∑

m=0

wmRmy (3.58)

where R = HH† and D = N (the rank or the number of stages of the

receiver). Since the coefficients wm, m ∈ {0, . . . ,D − 1} must be ob-

tained from the characteristic polynomial of the matrix whose inverse is

being expanded, this expansion by itself does not reduce the computa-

tional complexity. It does, however, enable the possibility of a flexible

tradeoff between performance and complexity controlled through D.

The first proposal for a reduced-complexity receiver built around this

idea came in [179], where it was suggested approximating (3.58) with

D < N and with the coefficients wm computed using as cost function

the mean-square error between x̂k obtained with the chosen D and the

actual x̂k obtained with a true MMSE receiver. Then, the wm’s be-

come a function of the first D moments of the empirical distribution

of R. With D < N , the linear receiver in (3.58) projects the received

vector on the subspace (of the signal space) spanned by the vectors

{hk,Rhk, . . . ,RD−1hk}.7 Reduced-rank receivers have been put forth

for numerous signal processing applications such as array processing,

radar, model order reduction (e.g. [214, 215, 130]), where the signal is

effectively projected onto a lower-dimensional subspace and the filter

optimization then occurs within that subspace. This subspace can be

chosen using a variety of criteria:

Principal components. The projection occurs onto an estimate of

the lower-dimensional signal subspace with the largest energy

6The Cayley-Hamilton Theorem ensures that the inverse of a K × K nonsingular matrix
can always expressed as a (K − 1)th order polynomial [117].

7These vectors are also known as a Krylov sequence [117]. For a given matrix A and vector
x, the sequence of vectors x,Ax, A2x, . . . or a truncated portion of this sequence is known
as the Krylov sequence of A. The subspace spanned by a Krylov sequence is called Krylov
space of A.



118 Applications to Wireless Communications

[298, 115, 247].

Cross-spectral method. The eigenvector basis which minimizes the

mean-square error is chosen [34, 92] based on an eigenvalue

decomposition of the correlation matrix.

Partial despreading. The lower dimensional subspace of the reduced

rank receiver is spanned by non-overlapping segments of the

matched filter [232].

Reduced-rank multistage Wiener filter. The multi-stage Wiener

(MSW) filter and its reduced-rank version were proposed in

[91, 93].

These various techniques have been analyzed asymptotically, in

terms of SINR, in [116]. In particular, it is shown in [116] for the MSW

filter with equal-power users that, as K,N → ∞, the output SINR

converges in probability to a nonrandom limit

SINRD+1 =
SNR

1 + β SNR

1+SINRD

(3.59)

for D ≥ 0, where SINR0 = 0 and SINR1 = P
1+β SNR

is the SINR at the out-

put of the matched filter. The analysis for unequal-power users can be

found in [253, 255]. A generalization of the analysis in [116] and [253]

can be found in [162] where a connection between the asymptotic be-

havior of the SINR at the output of the reduced rank Wiener filter and

the theory of orthogonal polynomials for the so-called power moments

is established. It is further demonstrated in [116] and [162], numerically

and analytically respectively, that the number of stages D needed in

the reduced-rank MSW filter to achieve a desired output SINR does not

scale with the dimensionality; in fact, a few stages are usually sufficient

to achieve near-full-rank output SINR regardless of the dimension of the

signal space. However, the weights of the reduced-rank receiver do de-

pend on the spreading sequences. Therefore, in long-sequence CDMA

they have to be reevaluated from symbol to symbol, which hampers

real-time implementation.

To lift the burden of computing the weights from the spreading se-

quences for every symbol interval, [187, 265, 159] proposed the asymp-

totic reduced-rank MMSE receiver, which replaces the weights in (3.58)
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with their limiting values in the asymptotic regime. Following this ap-

proach, various scenarios described by (1.1) have been evaluated in

[45, 105, 158, 159, 187, 265].8 For all these different scenarios it has

been proved that, in contrast with the exact weights, the asymptotic

weights do not depend on the realization of H and hence they do not

need to be updated from symbol to symbol. The asymptotic weights are

determined only by the number of users per chip and by the asymptotic

moments of HH† and thus, in order to compute these weights explic-

itly, it is only necessary to obtain explicit expressions for the asymptotic

eigenvalue moments of the interference autocorrelation matrix. Numer-

ical results show that the asymptotic weights work well for even modest

dimensionalities.

Alternative low-complexity implementations of both the decorrela-

tor and the MMSE receiver can be realized using the concepts of itera-

tive linear interference cancellation [84, 124, 33, 207, 71, 72], which rely

on well-known iterative methods for the solution of systems of linear

equations (and consequently for matrix inversion) [7]. This connection

has been recently established in [99, 251, 72]. In particular, parallel

interference cancellation receivers are an example of application of the

Jacobi method, first- and second-order stationary methods and Cheby-

shev methods, while serial interference cancellation receivers are an

example of application of Gauss-Seidel and successive relaxation meth-

ods. For all these linear (parallel and serial) interference cancellation

receivers, the convergence properties to the true decorrelator or MMSE

solution have been studied in [99] for large systems. For equal-power

users, the asymptotic convergence of the output SINR of the linear

multistage parallel interference cancellation receiver (based on the first

8 In [187], DS-CDMA with equal-power users and no fading is studied. In turn, [158] con-
siders the more general scenario of DS-CDMA with unequal-power users and flat-fading.
Related results in the context of the reduced-rank MSW and of the receiver originally pro-
posed by [179] were reported in [45]. In [158, 159], the analysis is extended to multi-antenna
receivers and further extended to include frequency selectivity in [105, 159]. Specifically,

the frequency-selective CDMA downlink is studied in [105] with the restriction that the
signature matrix be unitarily invariant with i.i.d. entries. In [159], in contrast, the analysis
with frequency-selectivity is general enough to encompass uplink and downlink as well as
signature matrices whose entries are independent with common mean and variance but
otherwise arbitrarily distributed. The case of frequency-selective CDMA downlink with
orthogonal signatures has been treated in [105].
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and second-order stationary linear iterative method) to a nonrandom

limit has been analyzed in [252, 254].

We now summarize some of the results on linear polynomial MMSE

receivers for DS-CDMA. The linear expansion of the MMSE receiver

is built using a finite-order Krylov sequence of the matrix HkH
†
k + σ2I

and the coefficients of the expansion are chosen to minimize MSE. The

soft estimate of the kth user symbol is given by (3.58) with R replaced

by
∑

i	=k

hih
†
i + σ2I = HkH

†
k + σ2I (3.60)

where Hk indicates the matrix H with the kth column removed. The

weights that minimize the mean-squared error are

w =

⎡

⎢

⎣

H1 + H0H0 · · · HD + HD−1H0
...

. . .
...

HD + HD−1H0 · · · H2D−1 + HD−1HD−1

⎤

⎥

⎦

−1 ⎡

⎢

⎣

H0
...

HD−1

⎤

⎥

⎦

(3.61)

where the (i, j)th entry of the above matrix is Hi+j−1+Hi−1Hj−1 with

Hm = h†
k

(

HkH
†
k + σ2I

)m
hk. (3.62)

Denoting the asymptotic value of Hm as

H∞
m = lim

K→∞
Hm, (3.63)

the asymptotic weights are given by (3.61) where each Hm is replaced

by its asymptotic counterpart, H∞
m . The calculation of these asymptotic

weights is closely related to the evaluation of the asymptotic eigenvalue

moments of HH†, which can be done using the results laid down in

Section 2.3. In the following, all the hypotheses made in the previous

sections dealing with DS-CDMA are upheld.

In the case of unfaded equal power DS-CDMA, with H = S as in

Section 3.1.1, using (2.102) we have that [187, 158]

H∞
m =

m
∑

n=0

(

m

n

)

σ2m−2n
n
∑

i=1

(

n

i

)(

n

i − 1

)

βi

n
. (3.64)
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In the case of faded DS-CDMA with a single receive antenna, where

H = SA as in Section 3.1.2,

H∞
m =

m
∑

n=0

(

m

n

)

σ2m−2n|Ak|2µn (3.65)

with µn, from (2.118), given by

µn =
n
∑

i=1

βn−i
∑ n!

m1! . . . mi! i!
E
[

|A|2m1
]

. . . E
[

|A|2mi
]

. (3.66)

where |A| is a random variable whose distribution equals the asymptotic

empirical singular value distribution of A and the inner sum is over all

i-tuples of nonnegative integers (m1, . . . ,mi) such that [158, 45]

i
∑

ℓ=1

mℓ = n − i + 1 (3.67)

i
∑

ℓ=1

ℓmℓ = n, (3.68)

A similar result holds for the faded DS-CDMA with antenna diver-

sity described in Section 3.1.3 with |A| now equal to the square root

of the random variable whose distribution is given by the asymptotic

empirical distribution of P1, . . . , PK as defined in Section 3.1.3.

For the frequency-selective faded downlink, applying Theorem 2.48

to the model in Section 3.1.4 we have [159]

H∞
m =

m
∑

n=0

(

m

n

)

σ2m−2n|Ak|2E
[

|C|2mn(|C|2)
]

(3.69)

where

mn(r) = β r

n
∑

ℓ=1

mℓ−1(r)
∑

n1+···+ni=n−ℓ
1≤i≤n−ℓ

E
[

|A|2i+2
]

E
[

|C|2mn1−1(|C|2)
]

. . . E
[

|C|2mni−1(|C|2)
]

(3.70)

with |C|2 as in Section 3.1.4 and with |A| representing a random vari-

able, independent of |C|2, whose distribution equals the asymptotic
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empirical singular value distribution of A. The counterpart of (3.69)

for orthogonal Haar distributed spreading signatures and for unitarily

invariant i.i.d. spreading sequences has been analyzed in [105], where

the asymptotic weights are calculated using free probability.

In the frequency-selective faded uplink, in turn, H is given by (3.35)

and straight application of Theorem 2.59 yields

H∞
m =

m
∑

n=0

(

m

n

)

σ2m−2nδn,k

=

m
∑

n=0

(

m

n

)

σ2m−2nE[ρ(X, k)]E[mn(X)ρk(X)] (3.71)

with ρ(·, ·) and ρk(·) as in Section 3.1.4 and with mn(·) obtained

through the recursive equation given by (2.164) in Theorem 2.55.

3.2 Multi-Carrier CDMA

Multi-Carrier CDMA (MC-CDMA) is the frequency dual of DS-

CDMA. Hence, a MC-CDMA transmitter uses a given spreading se-

quence to spread the original signal in the frequency domain. In other

words, each fraction of the symbol corresponding to a chip of the

spreading code is transmitted through a different subcarrier. It is es-

sential that the sub-band corresponding to each subcarrier be narrow

enough for its fading to be frequency non-selective. The basic transmit-

ter structure of MC-CDMA is similar to that of OFDM [109], with the

main difference being that the MC-CDMA scheme transmits the same

symbol in parallel through the various subcarrier whereas an OFDM

scheme transmits different symbols. The spreading gain N is equal to

the number of frequency subcarriers. Each symbol of the data stream

generated by user k is replicated into N parallel copies. Each copy is

then multiplied by a chip from the corresponding spreading sequence.

Finally, an inverse discrete Fourier transform (IDFT) is used to convert

those N parallel copies back into serial form for transmission. A cyclic

or empty prefix is appended to facilitate demodulation, at the expense

of some loss in efficiency. A possible receiver front-end consists of N

matched filters, one for each subcarrier.

Since in the case of frequency-flat fading the analysis of MC-CDMA
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is mathematically equivalent to that of its DS-CDMA counterpart (see

Section 3.1.2), we proceed directly to consider the more general case of

frequency-selective fading.

3.2.1 MC-CDMA Uplink

In synchronous MC-CDMA with K active users and frequency-selective

fading, the vector x contains the signals transmitted by each of the users

and the kth column of H is

hk = [h
(1)
k , . . . , h

(N)
k ]T (3.72)

where

h
(ℓ)
k = AkCℓ,ks

(ℓ)
k , (3.73)

with sk = [s
(1)
k , . . . , s

(N)
k ]T denoting the unit-energy transmitted spread-

ing sequence of the kth user, Ak indicating the received amplitude of

that kth user, which accounts for its average path loss, and with Cℓ,k

denoting the fading for the ℓth subcarrier of the kth user, independent

across the users. In this subsection we refer to hk as the received sig-

nature of the kth user. Notice that H incorporates both the spreading

and the frequency-selective fading. More precisely, denoting by C the

N × K matrix whose (ℓ,k)th entry is Cℓ,k, we can write the received

signature matrix H as

H = C ◦ SA (3.74)

with ◦ denoting element-wise (Hadamard) product and

A = diag(A1, . . . ,AK) (3.75)

S = [ s1 | . . . | sK ] (3.76)

C = [ c1 | . . . | cK ] (3.77)

where the entries of S are i.i.d. zero-mean with variance 1
N and thus

the general model becomes

y = (C ◦ SA)x + n. (3.78)

Each user experiences independent fading and hence the columns of

C are independent. The relationship between the fading at different
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subcarriers of any given user, in turn, is dictated by the power-delay

response of the channel. More precisely, we can define a frequency co-

variance matrix of the kth user as

Mk = E[ckc
†
k]. (3.79)

The (p, q)th entry of Mk is given by the correlation between the channel

response at subcarriers p and q, separated by frequency (p− q)∆f , i.e.,

(Mk)p,q =

∫ ∞

−∞
φk(τ)e−j2π(p−q)τ∆f dτ = Φk ((p − q)∆f ) (3.80)

with φk and Φk the power-delay response and the frequency correlation

function of the kth user channel, respectively.

The received energy at the ℓth subcarrier, ℓ ∈ {1, . . . , N}, for the

kth user, k ∈ {1, . . . ,K}, is |Cℓ,k Ak|2.
Let B be the N × K matrix whose (i, j)th element is

Bi,j = Ci,j Aj (3.81)

and let v(·, ·) be the two-dimensional channel profile of B assumed to

behave ergodically (cf. Definition 2.17). Then, the SINR at the output

of the MMSE receiver is

SINR
mmse
k = SNR |Ak|2 (ck ◦ sk)

†
(

I + SNR HkH
†
k

)−1
(ck ◦ sk)

where, recall from the DS-CDMA analysis, Hk indicates the matrix

H with the kth column removed. Using Theorems 2.57 and 2.52, the

multiuser efficiency is given by the following result.

Theorem 3.1. [160] For 0 ≤ y ≤ 1, the multiuser efficiency of the

MMSE receiver for the ⌊yK⌋th user converges almost surely, as K,N →
∞ with K

N → β, to

lim
K→∞

ηmmse
⌊yK⌋ (SNR ) =

Ψ(y, SNR )

E [υ(X, y)]
(3.82)

where Ψ(·, ·) is a positive function solution to

Ψ(y, SNR ) = E

⎡

⎣

υ(X, y)

1 + SNR βE

[

υ(X,Y)
1+SNR Ψ(Y,SNR ) |X

]

⎤

⎦ (3.83)
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where the expectations are with respect to independent random vari-

ables X and Y both uniform on [0,1].

Most quantities of interest such as the multiuser efficiency and the

capacity approach their asymptotic behaviors very rapidly as K and

N grow large. Hence, we can get an extremely accurate approximation

of the multiuser efficiency and consequently of the capacity with an

arbitrary number of users, K, and a finite processing gain, N , simply

by resorting to their asymptotic approximation with υ(x, y) replaced

in Theorem 3.1 by

υ(x, y) ≈ |Ak|2 |Cℓ,k|2
ℓ − 1

N
≤ x <

ℓ

N

k − 1

K
≤ y <

k

K
.

Thus, we have that the multiuser efficiency of uplink MC-CDMA is

closely approximated by

ηmmse
k (SNR ) ≈ ΦN

k (SNR )
1
N

∑N
ℓ=1 |Cℓ,k|2

(3.84)

with

ΦN
k (SNR ) =

1

N

N
∑

ℓ=1

|Cℓ,k|2

1 + SNR
β
K

∑K
j=1

|Aj |2 |Cℓ,j |2
1+SNR |Aj |2 ΦN

j (SNR )

. (3.85)

From Theorem 3.1, the MMSE spectral efficiency converges, as

K,N → ∞, to

Cmmse(β, SNR ) = β E [log (1 + SNR Ψ(Y, SNR ))] (3.86)

where the function Ψ(·, ·) is the solution of (3.83).

Let the ratio between the effective number of users and the effective

processing gain be defined as

β′ = β
P[E [υ(X,Y)|Y] > 0]

P[E [υ(X,Y)|X] > 0]
(3.87)

where only the contribution of users and subcarriers that are active

and not completely faded is accounted for. For all y if β′ < 1, as SNR

goes to infinity, the solution to (3.83), Ψ(y, SNR ), converges to Ψ∞(·),
which is the solution to the fixed-point equation
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Ψ∞(y) = E

⎡

⎣

υ(X, y)

1 + β E

[

υ(X,Y)
Ψ∞(Y) |X

]

⎤

⎦ . (3.88)

If β′ < 1, the spectral efficiency of the decorrelator is

Cdec(β, SNR ) = β E [log (1 + SNR Ψ∞(Y))] . (3.89)

As an application of Theorem 2.53, the following generalization of

(3.18) to the multicarrier CDMA channel is obtained.

Theorem 3.2. [160] The capacity of the optimum receiver is

Copt(β, SNR ) = Cmmse(β, SNR )

+E [log(1 + SNR β E [υ(X,Y)Υ(Y, SNR )|X]]

−β SNR E [Ψ(Y, SNR )Υ(Y, SNR )] log e (3.90)

with Ψ(·, ·) and Υ(·, ·) satisfying the coupled fixed-point equations

Ψ(y, SNR ) = E

[

υ(X, y)

1 + β SNR E[υ(X,Y)Υ(Y, SNR )|X]

]

(3.91)

Υ(y, SNR ) =
1

1 + SNR Ψ(y, SNR )
(3.92)

where X and Y are independent random variables uniform on [0, 1].

As an alternative to (3.90), the asymptotic capacity per dimension

can also be expressed as

Copt(β, SNR ) = Cmmse(β, SNR ) + E

[

log

(

1

D(X, SNR )

)]

+(E [D(X, SNR )] − 1) log e (3.93)

with D(·, ·) the solution to

D(x, SNR ) =
1

1 + SNR β E
[

υ(x,Y)
1+SNR E[D(X,SNR )υ(X,Y)|Y]

] . (3.94)
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This alternative expression can be easily derived from (3.90) by virtue

of the fact that Ψ(·, ·) and D(·, ·) relate through

Ψ(y, SNR ) = E[υ(X, y)D(X, SNR )].

Although (3.90) and (3.93) are equivalent, they admit different inter-

pretations. The latter is a generalization of the capacity given in (3.18).

The former, on the other hand, appears as function of quantities with

immediate engineering meaning. More precisely, SNR Ψ(y, SNR ) is easily

recognized from Theorem 3.1 as the SINR exhibited by the ⌊yK⌋th
user at the output of a linear MMSE receiver. In turn Υ(y, SNR ) is the

corresponding mean-square error.

An alternative characterization of the capacity (inspired by the op-

timality by successive cancellation with MMSE protection against un-

cancelled users) is given by

Copt(β, SNR ) = βE [log(1 + SNR �(Y, SNR ))] (3.95)

where

�(y, SNR ) = E

⎡

⎣

υ(X, y)

1 + SNR β(1 − y)E
[

υ(X,Z)
1+SNR �(Z,SNR ) |X

]

⎤

⎦ (3.96)

where X, and Z are independent random variables uniform on [0, 1] and

[y, 1], respectively.

A slight variation of the standard uplink MC-CDMA setup, namely

a multicode version where users are allowed to signal using several si-

multaneous spreading signatures, is treated in [201]. The asymptotic

output SINR of the linear MMSE receiver and the corresponding spec-

tral efficiency with both i.i.d. and orthogonal signatures are computed

accounting also for frequency selectivity in the channel. The deriva-

tions rely on approximating the user covariance matrices with suit-

able asymptotically free independent unitarily invariant matrices hav-

ing compactly supported asymptotic spectra (cf. Example 2.46). The

accuracy of this approximation is verified through simulation.
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3.2.2 MC-CDMA Downlink

We now turn our attention to the MC-CDMA downlink, where the

results take simpler forms.

For the downlink, the structure of the transmitted MC-CDMA sig-

nal is identical to that of the uplink, but the difference with (3.74) is

that every user experiences the same channel and thus ck = c for all

1 ≤ k ≤ K. As a result, the use of easily detectable orthogonal spread-

ing sequences becomes enticing. We shall thus consider, in addition to

sequences with i.i.d. entries, a scenario where the transmitted spreading

matrix S is an N × K isotropic unitary matrix Q and thus

H = CQA. (3.97)

with C = diag(c).

The role of the received signal-to-noise ratio of the kth user is, in this

scenario, taken by |Ak|2SNR E[|C|2] where |C| is a random variable whose

distribution equals the asymptotic empirical singular value distribution

of C.

In our asymptotic analysis, we assume that the empirical singular

value distribution of A and C converge almost surely to respective

nonrandom limiting distributions F|A| and F|C|.

3.2.2.1 Sequences with i.i.d. Entries

It follows from Remark 2.3.1 that the results for the downlink can be

obtained as special cases of those derived for the uplink in Section

(3.2.1).

Application of Theorems 2.43 and 2.46 yields the following:

Theorem 3.3. The multiuser efficiency, ηmmse
k , of the MMSE receiver

for the kth user converges almost surely to the solution, ηmmse(SNR ), of

the fixed-point equation

ηmmse =
1

E [|C|2]E

⎡

⎣

|C|2

1 + SNR β|C|2E

[

|A|2
1+|A|2 SNR E[|C|2] ηmmse

]

⎤

⎦ . (3.98)
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In the equal-power case, [202] arrived at (3.98) for a specific choice of

the distribution of |C|.
Unlike in the uplink, in the downlink the asymptotic multiuser effi-

ciency is the same for every user. This means that, asymptotically, all

the users are equivalent. The asymptotic Gaussianity of the multiaccess

interference at the output of the MMSE transformation [275] leads to

the following asymptotic spectral efficiency for the MMSE receiver:

Cmmse(β, SNR ) = β E
[

log
(

1 + |A|2 SNR E
[

|C|2
]

ηmmse(SNR )
)]

. (3.99)

Let β′ be the ratio between the effective number of users and the

effective processing gain:

β′ = β
P[|A| > 0]

P[|C| > 0]
.

The asymptotic spectral efficiency of the decorrelator for β′ ≤ 1 is

Cdec = β E
[

log
(

1 + SNR η0|A|2
)]

(3.100)

where η0 is the decorrelator multiuser efficiency, positive solution to

(cf. Corollary 2.2)

E

[ |C|2
E[|C|2]η0 + β P[|A| > 0]|C|2

]

= 1. (3.101)

Applying Theorem 2.44, we obtain the central characterization of the

capacity of downlink MC-CDMA.

Theorem 3.4. In the MC-CDMA downlink, the capacity of the opti-

mum receiver admits the expression

Copt(β, SNR ) = Cmmse(β, SNR ) + E
[

log(1 + β|C|2ρ)
]

− β θ ρ log e

where

θ ρ = 1 − η|A|2(SNR θ) (3.102)

β θ ρ = 1 − η|C|2(ρβ). (3.103)

Note that θ(SNR ) = E
[

|C|2
]

ηmmse(SNR ).
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3.2.2.2 Orthogonal Sequences

In this setting we assume that K ≤ N and the channel matrix H can

be written as the product of the N × N diagonal matrix C = diag(c),

an N ×K matrix Q containing the spreading sequences and the K×K

diagonal matrix A of complex fading coefficients:

y = CQAx + n. (3.104)

Here, Q is independent of C and of A and uniformly distributed over

the manifold9 of complex N × K matrices such that Q†Q = I.

The arithmetic mean of the MMSE’s for the K users satisfies

1

K

K
∑

k=1

MMSEk =
1

K
tr

{

(

I + SNR A†Q†C†CQA
)−1

}

(3.105)

a.s.→ ηA†Q†C†CQA(SNR ) (3.106)

= 1 − 1

β
(1 − ηCQAA†Q†C†(SNR )) (3.107)

where (3.107) comes from (2.56). For equal-power users (A = I), from

Example 2.51 we have that

ηCQQ†C†(SNR ) = ηCC†

(

SNR

β − 1 + ηCQQ†C†

ηCQQ†C†(SNR )

)

. (3.108)

From

1

K

K
∑

k=1

MMSEk =
1

K

K
∑

k=1

1

1 + SINRk
(3.109)

it follows that, as K,N → ∞,

1

K

K
∑

k=1

1

1 + SINRk

a.s.→ 1 − 1

β
(1 − ηCQQ†C†(SNR )). (3.110)

For equal-power users, the unitary invariance of Q results in each user

admitting the same limiting MMSE and, from MMSEk = 1
1+SINRk

, the

same limiting SINR:

1

1 + SINRk

a.s.→ 1

1 + SINR
. (3.111)

9This is called the Stiefel manifold (cf. Chapter 2, Footnote 2).
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Consequently, (3.110) implies that

β
SINR

1 + SINR
= 1 − ηCQQ†C†(SNR )

which, in conjunction with (3.108), means that SINR is the solution to

β
SINR

1 + SINR
= 1 − ηCC†

(

SNR
β

1 + SINR(1 − β)

)

(3.112)

whereas the multiuser efficiency of the kth user achieved by the MMSE

receiver, ηmmse
k (SNR ), converges almost surely to

ηmmse
k (SNR ) → ηmmse

(

SNR E
[

|C|2
])

where the right side is the solution to the following equation at the

point τ = SNR E
[

|C|2
]

ηmmse

1 + τηmmse
= E

[

|C̃|2
βτ |C̃|2 + 1 + (1 − β)τηmmse

]

(3.113)

with |C̃|2 = |C|2
E[|C|2] . A fixed-point equation equivalent to (3.113) was

derived in [56].

For equal-power users, the spectral efficiencies achieved by the

MMSE receiver and the decorrelator are

Cmmse(β, SNR ) = β log
(

1 + SNR E
[

|C|2
]

ηmmse(SNR )
)

(3.114)

and, for 0 ≤ β ≤ 1,

Cdec(β, SNR ) = β log
(

1 + SNR E
[

|C|2
]

(1 − β)
)

. (3.115)

In parallel with [217, Eqn. (141)], the capacity of the optimum receiver

is characterized in terms of the η-transform of HH† = CQQ†C†

Copt(β, SNR ) =

∫ SNR

0

1

x
(1 − ηCQQ†C†(x)) dx (3.116)

with ηCQQ†C†(·) satisfying (3.108). An alternative characterization of

the capacity (inspired by the optimality by successive cancellation with

MMSE protection against uncancelled users) is given by

Copt(β, SNR ) = β E [log (1 + ,Y)ג SNR ))] (3.117)
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with

,y)ג SNR )

1 + ,y)ג SNR )
= E

[

SNR |C|2
β y SNR |C|2 + 1 + (1 − β y)ג(y, SNR )

]

(3.118)

where Y is a random variable uniform on [0, 1].

The case of unequal-power users has been analyzed in [37] with the

restrictive setup of a finite number of user classes where the power

is allowed to vary across classes but not over users within each class.

Reference [37] shows that the SINR of the kth user at the output of

the MMSE receiver, SINRk, and consequently ηmmse
k (SNR ), converge al-

most surely to nonrandom limits. Specifically, the multiuser efficiency

converges to the solution η of

E

[

|C̃|2
β|C̃|2

(

1 − η|A|2(τη)
)

+ η
(

1 − β + βη|A|2(τη)
)

]

= 1 (3.119)

with τ = SNR E[|C|2]. From the multiuser efficiency, the capacity can be

readily obtained using the optimality of successive interference cancel-

lation as done in (3.117).

3.2.2.3 Orthogonal Sequences vs i.i.d. Sequences

The multiuser efficiency achieved by the MMSE receiver where i.i.d.

spreading sequences are utilized, given in (3.98), can be rewritten as

ηmmse

1 + τηmmse
= E

[

|C̃|2
βτ |C̃|2 + 1 + τηmmse

]

(3.120)

with τ = SNR E[|C|2]. A comparison of (3.120) and (3.113) reveals that,

for a fixed β > 0, the SINR in the i.i.d. case is always less than in

the orthogonal case. Moreover, the performance gain induced by the

use of orthogonal instead of i.i.d. spreading sequences grows when β

approaches 1. If β ∼ 0, then the output SINR in the two cases is

basically equal. Moreover, from (3.98) and (3.113) it follows respectively

that

SINR i.i.d = E

⎡

⎣

|C̃|2
1
τ + β |C̃|2

1+SINR i.i.d

⎤

⎦ (3.121)
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and

SINR orth = E

⎡

⎣

|C̃|2
1
τ

(

1 − β SINR orth

1+SINR orth

)

+ β |C̃|2
1+SINR orth

⎤

⎦ . (3.122)

Notice, by comparing (3.121) and (3.122), that in the latter the term
1
τ = 1

SNR E[|C|2] is multiplied by
(

1 − β SINR orth

SINR orth+1

)

, which is less than 1.

Accordingly, for a given SINR the required SNR is reduced with respect

to the one required with i.i.d sequences.

3.2.3 Reduced Rank Receiver for MC-CDMA

In the downlink, the fading experienced by the N subcarriers is common

to all users. The asymptotic weights of the rank-D MMSE receiver for

the downlink can be easily derived from

H∞
m = |Ak|2

m
∑

n=0

(

m

n

)

σ2m−2nξn (3.123)

where, in the case of i.i.d. spreading sequences,

ξn = β

n
∑

ℓ=1

E
[

mℓ−1(|C|2) |C|4
]

∑

n1+···+ni=n−ℓ
1≤i≤n−ℓ

E
[

|A|2i+2
]

ξn1−1 . . . ξni−1

(3.124)

and

mn(r) = βr

n
∑

ℓ=1

mℓ−1(r)
∑

n1+···+ni=n−ℓ
1≤i≤n−ℓ

E
[

|A|2i+2
]

ξn1−1 . . . ξni−1 (3.125)

with |C| and |A| random variables whose distributions equal the asymp-

totic empirical distributions of the singular values of C and A, respec-

tively. In the case of orthogonal sequences, the counterparts of (3.124)

and (3.125) can be found in [105].

For the uplink, the binomial expansion (3.62) becomes

H∞
m =

m
∑

n=0

(

m

n

)

σ2m−2nξn,k (3.126)
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where

ξn,k = E[mn(X)vk(X)] (3.127)

with mn(·) solution to the recursive equation

mn(x) = β

n
∑

ℓ=1

mℓ−1(x) E[ v(x,Y)
∑

n1+···+ni=n−ℓ
1≤i≤n−ℓ

E [v(X,Y)mn1−1(X)|Y]

. . . E [v(X,Y)mni−1(X)|Y] ] (3.128)

where v(·, ·) is the two-dimensional channel profile of B as defined in

Section 3.2.1.

3.3 Single-User Multi-Antenna Channels

Let us now consider the problem of a single-user channel where the

transmitter has nT antennas while the receiver has nR antennas. (See

[250, 76] for the initial contributions on this topic and [60, 90, 82, 24, 23]

for recent articles of tutorial nature.)

3.3.1 Preliminaries

With reference to the general model in (1.1), x contains the symbols

transmitted from the nT transmit antennas and y the symbols received

by the nR receive antennas with nT
nR

→ β when nT and nR grow large.

The entries of H represent the fading coefficients between each transmit

and each receive antenna normalized such that10

E

[

tr
{

HH†
}]

= nR (3.129)

while

SNR =
E[‖x‖2]
1

nR
E[‖n‖2]

. (3.130)

In contrast with the multiaccess scenarios, in this case the signals trans-

mitted by different antennas can be advantageously correlated and thus

10 Although, in most of the multi-antenna literature, E
ˆ

tr
˘

HH†¯˜

= nTnR, for consistency
with the rest of the paper we use the normalization in (3.129). In the case that the entries
of H are identically distributed, the resulting variance of each entry is 1

nT

.
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the covariance of x becomes relevant. Normalized by its energy per di-

mension, the input covariance is denoted by

Φ =
E[xx†]

1
nT

E[‖x‖2]
(3.131)

where the normalization ensures that E[tr{Φ}] = nT. It is useful to

decompose this input covariance in its eigenvectors and eigenvalues,

Φ = VPV†. Each eigenvalue represents the (normalized) power allo-

cated to the corresponding signalling eigenvector. Associated with P,

we define an input power profile

P(nR)(t, SNR ) = Pj,j
j

nR
≤ t < j+1

nR

supported on t ∈ (0, β]. This profile specifies the power allocation at

each SNR . As the number of antennas is driven to infinity, P(nR)(t, SNR )

converges uniformly to a nonrandom function, P(t, SNR ), which we term

asymptotic power profile.

In order to achieve capacity, the input covariance Φ must be prop-

erly determined depending on the channel-state information (CSI)

available to the transmitter. In this respect, there are three main

regimes of interest:

• The transmitter has full CSI, i.e., access to H instanta-

neously. In this case, Φ can be made a function of H. This

operational regime applies, for example, to fixed wireless ac-

cess systems where transmitter and receiver are stationary

(backhaul, local loop, broadband residential) and to low-

mobility systems (local-area networks, pedestrians). It is par-

ticularly appealing whenever uplink and downlink are recip-

rocal (time-duplexed systems) [48].
• The transmitter has only statistical CSI, i.e., access to the

distribution of H but not to its realization. In this case,

Φ cannot depend on H. This is the usual regime in high-

mobility and wide-area systems, especially if link reciprocity

does not hold.
• The transmitter has no CSI whatsoever.
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For all these scenarios, the capacity per receive antenna is given

by the maximum over Φ of the Shannon transform of the averaged

empirical distribution of HΦH†, i.e.

C(SNR ) = max
Φ:trΦ=nT

VHΦH†(SNR ). (3.132)

If full CSI is available at the transmitter, then V should coincide

with the eigenvector matrix of H†H and P should be obtained through

a waterfill process on the eigenvalues of H†H [260, 47, 250, 205]. The

resulting jth diagonal entry of P is

Pj,j =

(

ν − 1

SNR λj(H†H)

)+

(3.133)

where ν is such that tr{P} = nT. Then, substituting in (3.132),

C(SNR ) =
1

nR
log det(I + SNR PΛ) (3.134)

= β

∫

(log(SNR νλ))+dF
nT

H†H
(λ) (3.135)

with Λ equal to the diagonal eigenvalue matrix of H†H.

If, instead, only statistical CSI is available, then V should be set, for

all the channels that we will consider, to coincide with the eigenvectors

of E[H†H] while the capacity-achieving power allocation, P, can be

found iteratively [264].

With no CSI, the most reasonable strategy is to transmit an

isotropic signal (Φ = I) [195, 300]. In fact, because of its simplicity

and because many space-time coding schemes conform to it, this strat-

egy may be appealing even if some degree of CSI is available.

3.3.2 Canonical Model

The pioneering analyses that ignited research on this topic [250, 76]

started with H having i.i.d. zero-mean complex Gaussian random en-

tries (all antennas implicitly assumed identical and uncorrelated).



3.3. Single-User Multi-Antenna Channels 137

For this canonical channel, the capacity with full CSI converges

asymptotically to [43, 98, 177, 212]

C(SNR ) = β

∫ b

max{a,ν−1}
log

(

ν SNR

β
λ

)

fβ(λ) dλ (3.136)

where ν satisfies
∫ b

max{a,ν−1}

(

ν − β

SNR λ

)+

fβ(λ) dλ = 1 (3.137)

with a, b and fβ(·) given in (1.10).

If ν ≥ β
SNR a , then the integrals in (3.136) and (3.137) admit closed-

form expressions. Since, with full CSI at the transmitter, the capacity

is reciprocal in terms of the roles played by transmitter and receiver

[250], we have that

C(β, SNR ) = β C
(

1
β , SNR

)

(3.138)

and thus we need only solve the integrals for β < 1. Applying Example

2.15 to (3.136) and Theorem 2.10 to (3.137) and exploiting (3.138), the

following result is obtained.

Theorem 3.5. [263] For

SNR ≥ 2min{1, β3/2}
|1 −

√
β||1 − β| (3.139)

the capacity of the canonical channel with full CSI at the transmitter

converges almost surely to

C(SNR ) =

⎧

⎨

⎩

β log
(

SNR

β + 1
1−β

)

+ (1−β) log 1
1−β − β log e β < 1

log
(

β SNR + β
β−1

)

+ (β−1) log β
β−1 − log e β > 1.

Theorem 3.5 is illustrated in Figure 3.2 for various numbers of an-

tennas. The solid lines indicate the asymptotic solutions, with the role

of β played by nT
nR

, while the circles show the outcome of corresponding

Monte-Carlo simulations. Notice the power of the asymptotic analysis

for SNR levels satisfying (3.139).
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Fig. 3.2 Capacity of a canonical channel with various numbers of transmit and receive
antennas. The arrows indicate the SNR above which (3.139) is satisfied.

For β = 1, the asymptotic capacity with full CSI is known only

for SNR → ∞, in which case it coincides with the mutual information

achieved by an isotropic input, presented later in this section [43].

Non-asymptotically in the number of antennas, the capacity with

full transmit CSI is studied in [4, 127]. In [127], in particular, an explicit

expression is given although as function of a parameter that must be

solved for numerically.

With statistical CSI, it was shown in [250] that capacity is achieved

with Φ = I. For fixed number of antennas, [250] gave an integral ex-

pression (integrating log(1 + SNR λ) with respect to the p.d.f. in (2.23))

for the expected capacity as a function of the signal-to-noise ratio and

the number of transmit and receive antennas. This integral involving

the Laguerre polynomials lends itself to an explicit expression. This has

been accomplished in [219, 61, 126]. In particular, [126] uses the Mellin
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transform and Theorem 2.30 to arrive at a closed-form expression, and

[61] gives the expression in Example 2.17.

Asymptotically, as the numbers of transmit and receive antennas

grow with ratio β, the capacity per receive antenna converges almost

surely to [275, 206]

C(β, SNR ) = β log

(

1 +
SNR

β
− 1

4
F
(

SNR

β
, β

))

+ log

(

1 + SNR − 1

4
F
(

SNR

β
, β

))

− β
log e

4 SNR
F
(

SNR

β
, β

)

(3.140)

with F (·, ·) given in (1.17). Notice that this capacity coincides, except

for a signal-to-noise scaling, with that of an unfaded equal-power DS-

CDMA channel.11

If β = 1, the asymptotic capacity per receive antenna with statisti-

cal CSI at the transmitter is equal to

C(β, SNR ) = 2 log

(

1 +
√

1 + 4SNR

2

)

− log e

4 SNR

(√
1 + 4 SNR − 1

)2

evidencing the linear growth with the number of antennas originally

observed in [250, 76]. Further insight can be drawn, for arbitrary β,

from the high-SNR behavior of the capacity (cf. Example 2.15):

C(SNR ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

log SNR

e − (β − 1) log β−1
β + o(1) β > 1

log SNR

e + o(1) β = 1

β log SNR

βe − (1 − β) log(1 − β) + o(1) β < 1.

Besides asymptotically in the number of antennas, the high-SNR

capacity can be characterized for fixed nT and nR via (2.12) in

11 In addition to its role in the analysis of multiaccess and single-user multi-antenna chan-

nels, (3.140) also plays a role in the analysis of the total capacity of the Gaussian
broadcast channel with multiple antennas at the transmitter [112, 282]. As shown in
[35, 316, 276, 280, 128, 259, 278, 36, 277, 302], in various degrees of generality, the multi-
antenna broadcast channel capacity region is equal to the union of capacity regions of the
dual multiaccess channel, where the union is taken over all individual power constraints
that sum to the averaged power constraint.
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Theorem 2.11. Also in this case, the capacity is seen to scale linearly

with the number of antennas, more precisely with min(nT, nR). While

this scaling makes multi-antenna communication highly appealing, it

hinges on the validity of the idealized canonical channel model. Much of

the research that has ensued, surveyed in the remainder of this section,

is geared precisely at accounting for various nonidealities (correlation,

deterministic channel components, etc) that have the potential of com-

promising this linear scaling.

3.3.3 Separable Correlation Model

The most immediate effect that results from locating various antennas

in close proximity is that their signals tend to be, to some extent,

correlated. In its full generality, the correlation between the (i, j) and

(i′, j′) entries of H is given by

rH(i, i′, j, j′) = E
[

Hi,jH
∗
i′,j′

]

. (3.141)

In a number of interesting cases, however, correlation turns out to

be a strictly local phenomenon that can be modeled in a simplified

manner. To that end, the so-called separable (also termed Kronecker

or product) correlation model was proposed by several authors [220, 40,

203]. According to this model, an nR × nT matrix Hw, whose entries

are i.i.d. zero-mean with variance 1
nT

, is pre- and post-multiplied by

the square root of deterministic matrices, ΘT and ΘR, whose entries

represent, respectively, the correlation between the transmit antennas

and between the receive antennas:

H = Θ
1/2
R HwΘ

1/2
T . (3.142)

Implied by this model is that the correlation between two transmit

antennas is the same regardless of the receive antenna at which the

observation is made and viceversa. As confirmed experimentally in [41],

this condition is often satisfied in outdoor environments if the arrays are

composed by antennas with similar polarization and radiation patterns.

When (3.142) holds, the correlation in (3.141) can be expressed (cf.

Definition 2.9) as

rH(i, i′, j, j′) =
(ΘR)i,i′(ΘT)j,j′

nT
. (3.143)
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Results on the asymptotic capacity and mutual information, with vari-

ous levels of transmitter information, of channels that obey this model

can be found in [181, 262, 43, 263, 178]. Analytical non-asymptotic

expressions have also been reported: in [208, 209, 2], the capacity of

one-sided correlated channels is obtained starting from the joint dis-

tribution of the eigenvalues of a Wishart matrix ∼ Wm(n,Σ) given in

Theorem 2.18 and (2.19). References [135, 234, 149, 39] compute the

moment generating function of the mutual information of a one-sided

correlated MIMO channel, constraining the eigenvalues of the correla-

tion matrix to be distinct. The two-sided correlated MIMO channel is

analyzed in [148, 231, 149] also through the moment generating func-

tion of the mutual information (cf. (2.16)).

With full CSI at the transmitter, the asymptotic capacity is [43]

C(SNR ) = β

∫ ∞

0
(log(SNR νλ))+dG(λ) (3.144)

where ν satisfies
∫ ∞

0

(

ν − 1

SNR λ

)+

dG(λ) = 1 (3.145)

with G(·) the asymptotic spectrum of H†H whose η-transform can be

derived using Theorem 2.43 and Lemma 2.28. Invoking Theorem 2.45,

the capacity in (3.144) can be evaluated as follows.

Theorem 3.6. [263] Let ΛR and ΛT be independent random variables

whose distributions are the asymptotic spectra of the full-rank matrices

ΘR and ΘT respectively. Further define

Λ1 =

{

ΛT β < 1

ΛR β > 1
Λ2 =

{

ΛR β < 1

ΛT β > 1
(3.146)

and let κ be the infimum (excluding any mass point at zero) of the

support of the asymptotic spectrum of H†H. For

SNR ≥ 1

κ
− δE

[

1

Λ1

]

(3.147)
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with δ satisfying

ηΛ2
(δ) = 1 − min{β, 1

β},
the asymptotic capacity of a channel with separable correlations and

full CSI at the transmitter is

C(SNR ) =

⎧

⎨

⎩

β E

[

logΛT

eϑ

]

+ VΛR
(ϑ) + β log

(

SNR + ϑE[ 1
ΛT

]
)

β < 1

E

[

log ΛR

αe

]

+ β VΛT
(α) + log

(

SNR + αE[ 1
ΛR

]
)

β > 1

with α and ϑ the solutions to

ηΛT
(α) = 1 − 1

β
ηΛR

(ϑ) = 1 − β.

As for the canonical channel, no asymptotic characterization of the

capacity with full CSI at the transmitter is known for β = 1 and arbi-

trary SNR .

When the correlation is present only at either the transmit or re-

ceive ends of the link, the solutions in Theorem 3.6 sometimes become

explicit:

Corollary 3.1. With correlation at the end of the link with the fewest

antennas, the capacity per antenna with full CSI at the transmitter

converges to

C =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

β E

[

logΛT

e

]

+ log 1
1−β + β log

(

SNR
1−β

β + E[ 1
ΛT

]
) β < 1

ΛR = 1

E
[

log ΛR

e

]

− β log β−1
β + log

(

SNR (β − 1) + E[ 1
ΛR

]
) β > 1

ΛT = 1.

With statistical CSI at the transmitter, achieving capacity requires

that the eigenvectors of the input covariance, Φ, coincide with those

of ΘT [279, 123]. Consequently, denoting by ΛT and ΛR the diagonal

eigenvalue matrices of ΘT and ΘR, respectively, we have that

C(β, SNR ) =
1

N
log det

(

I + SNR Λ
1/2
R HwΛ

1/2
T PΛ

1/2
T H†

wΛ
1/2
R

)

where P is the capacity-achieving power allocation [264]. Applying

Theorem 2.44, we obtain:
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Theorem 3.7. [262] The capacity of a Rayleigh-faded channel with

separable transmit and receive correlation matrices ΘT and ΘR and

statistical CSI at the transmitter converges to

C(β, SNR ) = βE [log(1 + SNR ΛΓ(SNR ))] + E [log(1 + SNR ΛRΥ(SNR )]

−β SNR Γ(SNR )Υ(SNR ) log e (3.148)

where

Γ(SNR ) =
1

β
E

[

ΛR

1 + SNR ΛRΥ(SNR )

]

(3.149)

Υ(SNR ) = E

[

Λ

1 + SNR ΛΓ(SNR )

]

(3.150)

with expectation over Λ and ΛR whose distributions are given by the

asymptotic empirical eigenvalue distributions of ΛTP and ΘR, respec-

tively.

If the input is isotropic, the achievable mutual information is easily

found from the foregoing result.

Corollary 3.2. [266] Consider a channel defined as in Theorem 3.7

and an isotropic input. Expression (3.148) yields the mutual infor-

mation with the distribution of Λ given by the asymptotic empirical

eigenvalue distribution of ΘT.

This corollary is illustrated in Fig. 3.3, which depicts the mutual

information (bits/s/Hz) achieved by an isotropic input for a wide range

of SNR . The channel is Rayleigh-faded with nT = 4 correlated antennas

and nR = 2 uncorrelated antennas. The correlation between the ith

and jth transmit antennas is

(ΘT)i,j = e−0.05d2(i−j)2 (3.151)

which corresponds to a uniform linear array with antenna separation d

(wavelengths) exposed to a broadside Gaussian azimuth angular spec-

trum with a 2◦ root-mean-square spread [42]. Such angular spread is
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Fig. 3.3 Mutual information achieved by an isotropic input on a Rayleigh-faded channel
with nT = 4 and nR = 2. The transmitter is a uniform linear array whose antenna corre-
lation is given by (3.151) where d is the spacing (wavelengths) between adjacent antennas.
The receive antennas are uncorrelated.

typical of an elevated base station in rural or suburban areas. The solid

lines depict the analytical solution obtained by applying Theorem 3.7

with P = I and ΘR = I and with the expectations over Λ replaced

with arithmetic averages over the eigenvalues of ΘT. The circles, in

turn, show the result of Monte-Carlo simulations. Notice the excellent

agreement even for such small numbers of antennas.

The high-SNR behaviors of the capacity with statistical CSI and of

the mutual information achieved by an isotropic input can be charac-

terized, asymptotically in the number of antennas, using Theorem 2.45.

For arbitrary nT and nR, such characterizations can be found in [165].
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3.3.4 Non-Separable Correlations

While the separable correlation model is relatively simple and analyt-

ically appealing, it also has clear limitations, particularly in terms of

representing indoor propagation environments [194]. Also, it does not

accommodate diversity mechanisms such as polarization12 and radia-

tion pattern diversity13 that are becoming increasingly popular as they

enable more compact arrays. The use of different polarizations and/or

radiation patterns creates correlation structures that cannot be repre-

sented through the separable model.

In order to encompass a broader range of correlations, we model the

channel as

H = URH̃U†
T (3.152)

where UR and UT are unitary while the entries of H̃ are independent

zero-mean Gaussian. This model is advocated and experimentally sup-

ported in [301] and its capacity is characterized asymptotically in [262].

For the more restrictive case where UR and UT are Fourier matrices,

the model (3.152) was proposed earlier in [213].

The matrices H and H̃ are directly related through the Karhunen-

Loève expansion (cf. Lemma 2.25) with the variances of the entries of

H̃ given by the eigenvalues of rH obtained by solving the system of

equations in (2.33). Furthermore, from Theorem 2.58, the asymptotic

spectrum of H is fully characterized by the variances of the entries of

H̃, which we assemble in a matrix G such that Gi,j = nTE[|H̃i,j |2] with
∑

ij

Gi,j = nTnR. (3.153)

Invoking Definition 2.16, we introduce the variance profile of H̃,

which maps the entries of G onto a two-dimensional piece-wise constant

function

G(nR)(r, t) = Gi,j
i

nR
≤ r < i+1

nR
, j

nT
≤ t < j+1

nT
(3.154)

12 Polarization diversity: Antennas with orthogonal polarizations are used to ensure low
levels of correlation with minimum or no antenna spacing [156, 236] and to make the
communication link robust to polarization rotations in the channel [19].

13 Pattern diversity: Antennas with different radiation patterns or with rotated versions of
the same pattern are used to discriminate different multipath components and reduce
correlation.
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supported on r, t ∈ [0, 1]. We can interpret r and t as normalized re-

ceive and transmit antenna indices. It is assumed that, as the number

of antennas grows, G(nR)(r, t) converges uniformly to the asymptotic

variance profile, G(r, t). The normalization condition in (3.153) implies

that

E[G(R,T)] = 1 (3.155)

with R and T independent random variables uniform on [0, 1].

With full CSI at the transmitter, the asymptotic capacity is given by

(3.144) and (3.145) with G(·) representing the asymptotic spectrum of

H†H. Using Theorems 2.58 and 2.54, an explicit expression for C(SNR )

can be obtained for sufficiently high SNR .

With statistical CSI at the transmitter, the eigenvectors of the

capacity-achieving input covariance coincide with the columns of UT

in (3.152) [261, 268]. In order to characterize the capacity, we invoke

Theorem 2.53 to obtain the following.

Theorem 3.8. [262] Consider the channel H = URH̃U†
T where UR

and UT are unitary while the entries of H̃ are zero-mean Gaussian and

independent. Denote by G(r, t) the asymptotic variance profile of H̃.

With statistical CSI at the transmitter, the asymptotic capacity is

C(β, SNR ) = β E [log(1 + SNR E [G(R,T)P(T, SNR )Γ(R, SNR )|T])]

+E [log(1 + E[G(R,T)P(T, SNR )Υ(T, SNR )|R])]

−β E [G(R,T)P(T, SNR )Γ(R, SNR )Υ(T, SNR )] log e

with expectation over the independent random variables R and T uni-

form on [0, 1] and with

β Γ(r, SNR ) =
1

1 + E[G(r,T)P(T, SNR )Υ(T, SNR )]

Υ(t, SNR ) =
SNR

1 + SNR E [G(R, t)P(t, SNR )Γ(R, SNR )]

where P(t, SNR ) is the asymptotic power profile of the capacity achieving

power allocation at each SNR .
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Fig. 3.4 Mutual information achieved by an isotropic input on a Rayleigh-faded channel
with nT = 3 and nR = 2 for the variance matrix G in (3.156).

Corollary 3.3. [266] Consider a channel defined as in Theorem 3.8 but

with an isotropic input. Theorem 3.8 yields the mutual information by

setting P(t, SNR ) = 1.

This corollary is illustrated in Fig. 3.4 for a Rayleigh-faded channel

with nT = 3 and nR = 2 where H = URH̃U†
T with the entries of H̃

being independent with zero-mean and variances given by

G =

[

0.4 3.6 0.5

0.3 1 0.2

]

. (3.156)

Despite the very small numbers of antennas, there is full agreement

between the analytical values (obtained by applying Theorem 3.8 with

P(t, SNR ) = 1 and with the expectations replaced by arithmetic averages

over the entries of G) and the outcome of corresponding Monte-Carlo

simulations.



148 Applications to Wireless Communications

Asymptotic characterizations of the high-SNR capacity with statis-

tical CSI and of the mutual information achieved by an isotropic input

can be obtained via Theorem 2.54.

Asymptotic spectrum results have also been used in [161] to charac-

terize the wideband capacity of correlated multi-antenna channel using

the tools of [274].

3.3.5 Polarization Diversity

A particularly interesting channel is generated if antennas with mixed

polarizations are used and there is no correlation, in which case the

entries of H are independent but not identically distributed because of

the different power gain between co-polarized and differently polarized

antennas. In this case, the eigenvalues of rH coincide with the variance

of the entries of H, which we can model as

H = A ◦Hw (3.157)

where ◦ indicates Hadamard (element-wise) multiplication, Hw is com-

posed of zero-mean i.i.d. Gaussian entries with variance 1
nT

and A is

a deterministic matrix with nonnegative entries. Each |Ai,j|2 symbol-

izes the power gain between the jth transmit and ith receive antennas,

determined by their relative polarizations.14

The asymptotic capacity with full CSI at the transmitter can be

found, for sufficiently high SNR , by invoking Theorems 2.58 and 2.54.

Since the entries of H are independent, the input covariance that

achieves capacity with statistical CSI is diagonal [261, 268]. The cor-

responding asymptotic capacity per antenna equals the one given in

Theorem 3.8 with G(r, t) the asymptotic variance profile of H. Corol-

lary 3.3 holds similarly. Furthermore, these solutions do not require

that the entries of H be Gaussian but only that their variances be

uniformly bounded.

A common structure for A, arising when the transmit and receive

arrays have an equal number of antennas on each polarization, is that

14 If all antennas are co-polar, then every entry of A equals 1.
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of a doubly-regular form (cf. Definition 2.10). For such channels, the

capacity-achieving input is not only diagonal but isotropic and, apply-

ing Theorem 2.49, the capacity admits an explicit form.

Theorem 3.9. Consider a channel H = A ◦ Hw where the entries of

A are deterministic and nonnegative while those of Hw are zero-mean

and independent, with variance 1
nT

but not necessarily identically dis-

tributed. If A is doubly-regular (cf. Definition 2.10), the asymptotic

capacity per antenna, with full CSI or with statistical CSI at the trans-

mitter, coincides with that of the canonical channel, given in Theorem

3.5 and Eq. (3.140) respectively.

3.3.6 Progressive Scattering

Let us postulate the existence of L−1 clusters of scatterers each with nℓ

scattering objects, 1 ≤ ℓ ≤ L− 1, such that the signal propagates from

the transmit array to the first cluster, from there to the second cluster

and so on, until it is received from the (L− 1)th cluster by the receiver

array. This practically motivated model provides a nice application of

the S-transform.

The matrix H describing the communication link with progressive

scattering be written as the product of L independent random matrices

[184]

H =
L
∏

ℓ=1

Hℓ (3.158)

where the nℓ × nℓ−1 matrix Hℓ describes the subchannel between the

(ℓ − 1)th and ℓth clusters. (We conventionally denote as 1st and Lth

clusters the transmit and the receive arrays themselves.) If the matri-

ces Hℓ are mutually independent with zero-mean i.i.d. entries having

variance 1
nℓ

, and defining βℓ = nℓ
nL

, the S-transform of the matrix

AL =

L
∏

ℓ=1

Hℓ

(

L
∏

ℓ=1

Hℓ

)†

(3.159)

= HLAL−1H
†
L (3.160)
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can be computed using Example 2.53 as

ΣAL
(x) =

1

x + βL−1
ΣAL−1

( x
βL−1

) (3.161)

which, applying Example 2.53 iteratively, yields

ΣAL
(x) =

L
∏

ℓ=1

βℓ

x + βℓ−1
(3.162)

from which it follows that the η-transform of AL is the solution to

SNR
ηAL

(SNR )

1 − ηAL
(SNR )

=

L
∏

ℓ=1

βℓ

ηAL
(SNR ) + βℓ−1 − 1

. (3.163)

3.3.7 Ricean Channel

Every zero-mean multi-antenna channel model analyzed thus far can be

made Ricean by incorporating an additional deterministic component

H̄ [62, 74, 236]. With proper weighting of the random and deterministic

components so that condition (3.129) is preserved, the general model

then becomes

y =
(√

1
K+1H +

√

K
K+1H̄

)

x + n (3.164)

with the scalar Ricean factor K quantifying the ratio between the

Frobenius norm of the deterministic (unfaded) component and the ex-

pected Frobenius norm of the random (faded) component. Considered

individually, each (i, j)th channel entry has a Ricean factor given by

K
|H̄i,j|2

E[|Hi,j |2]
.

Using Lemma 2.22 the next result follows straightforwardly.

Theorem 3.10. Consider a channel with a Ricean term whose rank

is finite. The asymptotic capacity per antenna, Crice(β, SNR ), equals the

corresponding asymptotic capacity per antenna in the absence of the

Ricean component, C(β, SNR ), with a simple SNR penalty:

Crice(β, SNR ) = C(β,
SNR

K + 1
). (3.165)
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Note that, while the value of the capacity depends on the degree of CSI

available at the transmitter, (3.165) holds regardless.

Further applications of random matrix methods to Ricean multi-

antenna channels in the non-asymptotic regime, can be found in [134,

137, 3, 118, 151, 269].

3.3.8 Interference-limited Channel

Since efficient bandwidth utilization requires aggressive frequency reuse

across adjacent cells and sectors, mature wireless systems tend to be, by

design, limited by out-of-cell interference rather than by thermal noise.

Unlike thermal noise, which is spatially and temporally white, interfer-

ence is in general spatially colored. The impact of colored interference

on the capacity has been studied asymptotically in [163, 181, 51], and

non-asymptotically in [28, 138].

Out-of-cell interference can be incorporated into the model (1.1) by

representing the noise as

n =

L
∑

ℓ=1

Hℓxℓ + nth (3.166)

where L is the number of interferers, xℓ the signal transmitted by the ℓ-

th interferer, Hℓ the channel from such interferer and nth the underlying

thermal noise. Thus, (1.1) becomes

y = Hx +
L
∑

ℓ=1

Hℓxℓ + nth. (3.167)

In what follows, we consider a homogeneous system where the entries

of xℓ, ℓ ∈ {1, . . . , L}, to be i.i.d. zero-mean Gaussian and the number of

transmit antennas at each interferer to coincide with nT. Furthermore,

the channels H and Hℓ, ℓ ∈ {1, . . . , L}, are modeled as canonical. We

define the signal-to-interference with respect to each interferer as

SIR ℓ =
E[‖x‖2]

E[‖xℓ‖2]
(3.168)
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and use SNR to specify the signal-to-thermal-noise ratio. With that, the

overall SINR satisfies

1

SINR
=

1

SNR
+

L
∑

ℓ=1

1

SIR ℓ
(3.169)

and the capacity can be expressed as

C =
1

nR
E

⎡

⎣log det

⎛

⎝I + HH†
(

L
∑

ℓ=1

1
SIR ℓ

HℓH
†
ℓ + nT

SNR
I

)−1
⎞

⎠

⎤

⎦ (3.170)

with expectation over the distributions of H and Hℓ, ℓ ∈ {1, . . . , L}.
The impact of interference on the capacity essentially mirrors that of

receive correlations except for the fact that the interference is subject

to fading. Asymptotically, however, this becomes immaterial and hence

Theorem 2.44 can be applied to obtain:

Theorem 3.11. [163, 317]15 Consider a Rayleigh-faded channel with

i.i.d. zero-mean unit-variance entries exposed to L i.i.d. Gaussian in-

terferers whose channels are similarly distributed. Let the user of in-

terest and each interferer be equipped with nT transmit antennas. As

nT, nR → ∞ with β → nT
nR

, the capacity converges to

C (β, SNR , {SIR ℓ}) = β
L
∑

ℓ=1

log

(

SIR ℓ + SNR
η1

β

SIR ℓ + SNR
η2

β

)

+ β log(1 + SNR
η1

β
)

+ log
η2

η1
+ (η1 − η2) log e (3.171)

with η1 and η2 solutions to

η1 +
SNR η1

SNR
η1

β + 1
+

L
∑

ℓ=1

SNR η1

SNR
η1

β + SIR ℓ
= 1 (3.172)

η2 +

L
∑

ℓ=1

SNR η2

SNR
η2

β + SIR ℓ
= 1. (3.173)

15 Although the analysis in [317] considers multicell DS-CDMA, the expression for the
capacity maps exactly onto (3.170) except for a simple SNR scaling.
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Obtaining explicit expressions requires solving for η1 and η2 in equa-

tions of order L+2 and L+1, respectively. Hence, the complexity of the

solution is directly determined by the number of interferers. Nonethe-

less, solving for η1 and η2 becomes trivial in some limiting cases [163]:

• For growing β,

lim
β→∞

η1 =
1

1 + SNR

(

1 +
∑L

ℓ=1
1

SIR ℓ

) (3.174)

lim
β→∞

η2 =
1

1 + SNR

∑L
ℓ=1

1
SIR ℓ

(3.175)

which are function of only the relative powers of the desired

user, the interferers and the thermal noise. Plugging these

into (3.171) yields an asymptotic capacity that is identical

to that which would be attained if the interference was re-

placed with white noise. Hence, as the total number of in-

terfering antennas grows much larger than the number of

receive antennas, the progressively fine color of the interfer-

ence cannot be discerned. The capacity depends only on the

total interference-plus-thermal power, irrespective of how it

breaks down.
• For diminishing β and finite L,

lim
β→0

η1 = lim
β→0

η2 = 1 (3.176)

indicating that the capacity penalty due to a fixed number

of interfering antennas vanishes as the number of receive an-

tennas grows without bound. The performance becomes dic-

tated only by the underlying thermal noise, irrespective of

the existence of the interference [309, 310].

3.3.9 Outage Capacity

The ergodic capacity has operational meaning only if the distribution

of H is revealed by the realizations encountered by each codeword.

In some situations, however, H is held approximately constant during
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the transmission of a codeword, in which case a more suitable perfor-

mance measure is the outage capacity, which coincides with the classical

Shannon-theoretic notion of ǫ-capacity [49], namely the maximal rate

for which block error probability ǫ is attainable. Under certain condi-

tions, the outage capacity can be obtained through the probability that

the transmission rate R exceeds the input-output mutual information

(conditioned on the channel realization) [77, 250, 22]. Thus, given a

rate R an outage occurs when the random variable

I = log det(I + SNR HΦH†)

whose distribution is induced by H, falls below R. Establishing the

input covariance that maximizes the rate supported at some chosen

outage level is a problem not easily tackled analytically. (Some results

on the eigenvectors of Φ can be found in [229].) Hereafter Φ is allowed

to be an arbitrary deterministic matrix except where otherwise noted.

The distribution of I can be obtained via its moment-generating

function

M(ζ) = E

[

eζI
]

(3.177)

which, for the canonical channel with Φ = I, is given by (2.18) as de-

rived in [38, 299]. The corresponding function for one-sided correlation,

in the case of square channels, is for ζ ≤ 0

M(ζ) = 2F0(ζ log 1
e , m | − γΘ) (3.178)

where 2F0(·, · | ·) is given by (2.21) with Θ = ΘR if the correlation takes

place at the receiver whereas Θ = Θ
1/2
T ΦΘ

1/2
T if it takes place at the

transmitter. With both transmit and receive correlations, M(·) is given

by Theorem 2.16 with Σ = ΘR and Υ = Θ
1/2
T ΦΘ

1/2
T .

For uncorrelated Ricean channels with Φ = I, M(·) is provided in

[134] in terms of the integral of hypergeometric functions.

For nR = 1, the distribution of I is found directly, bypassing the

moment-generating function, for correlated Rayleigh-faded channels in

[180, 132] and for uncorrelated Ricean channels in [180, 233].16

16 The input covariance is constrained to be Φ = I in [233], which also gives the corre-
sponding distribution of I for min(nT, nR) = 2 and arbitrary max(nT, nR) although in
the form of an involved integral expression.
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An interesting property of the distribution of I is the fact that, for

many of the multi-antenna channels of interest, it can be approximated

as Gaussian as the number of antennas grows. A number of authors have

explored this property using two distinct approaches in the engineering

literature:

(1) The mean and variance of I are obtained through the mo-

ment generating function (for fixed number of antennas). A

Gaussian distribution with such mean and variance is then

compared, through Monte Carlo simulation, to the empirical

distribution of I. This approach is followed in [235, 299, 26]

for the canonical channel, in [234] for channels with one-sided

correlation, and in [235] for uncorrelated Ricean channels.

Although, in every case, the match is excellent, no proof of

asymptotic Gaussianity is provided. Only for SNR → ∞ with

Φ = I and with H being a real Gaussian matrix with i.i.d.

entries has it been shown that I −E[I] converges to a Gaus-

sian random variable [87].

(2) The random variable

∆nR
= I(SNR ) − nRVHΦH†(SNR ) (3.179)

is either shown or conjectured to converge to a zero-mean

Gaussian random variable as nR → ∞. For Rayleigh-faded

channels with one-sided correlation (at either transmitter or

receiver), the asymptotic Gaussianity of ∆nR
follows from

Theorem 2.77.17 The convergence rate to the Gaussian dis-

tribution is analyzed in [15]. With both transmit and receive

correlations, the asymptotic Gaussianity of ∆nR
is conjec-

tured in [216, 181] by observing the behavior of the second-

and third-order moments obtained via the replica method.

The appeal of the Gaussian behavior, of course, is that its character-

ization entails finding only the mean and variance of I. In how these

are found, and in some others respects, the differences between both

approaches are subtle but important:

17 The more restrictive case of a canonical channel at either low or high SNR is analyzed in
[113].
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• When approximating I as a Gaussian random variable for

finite nT and nR, the first approach uses exact expressions

for its mean and variance. These expressions, which can be

obtained from the moment-generating function, tend to be

rather involved and are often not in closed form. The sec-

ond approach, on the other hand, relies on functionals of the

asymptotic spectrum. Although exact only in the limit, these

functionals are tight even for small values of nT and nR and

tend to have simpler and more insightful forms.
• If the moment convergence theorem does not apply to the

asymptotic spectrum, as in the case of Ricean channels where

the rank of E[H] is o(nR), then the second approach results

in a bias that stems from the fact that E[H] is not reflected

in the asymptotic spectrum (cf. Lemma 2.22).

Denoting ∆ = limnR→∞ ∆nR
, E[∆2] can be found by applying [15,

(1.17)]. For the canonical channel, this yields (cf. Theorem 2.76)

E[∆2] = − log

(

1 − (1 − ηHH†(γ))2

β

)

= − log

(

1 − 1

β

(F (γ, β)

4 γ

)2
)

. (3.180)

With Rayleigh fading and correlation at the transmitter, in turn,

E[∆2] = − log

(

1 − (1 − ηHTH†(γ))2

β

)

(3.181)

where T = Θ
1/2
T ΦΘ

1/2
T with Φ the capacity-achieving power allocation.

Figure 3.5 compares the limiting Gaussian distribution of ∆ with a

histogram of ∆nR
for nT = 5 and nR = 10 with a transmit correlation

matrix ΘT such that

(ΘT)i,j = e−0.8(i−j)2 . (3.182)

For channels with both transmit and receive correlation, the char-

acteristic function found through the replica method yields to the ex-

pression of E[∆2] given in [181].
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Fig. 3.5 Histogram of ∆nR
for a Rayleigh-faded channel with nT = 5 and nR = 10. The

transmit antennas are correlated as per (3.182) while the receive antennas are uncorrelated.
Solid line indicates the corresponding limiting Gaussian distribution.

3.3.10 Space-Time Coding

Besides the characterizations of the capacity for the various channels

described throughout this section, random matrix theory (and specifi-

cally free probability) has also been used to obtain design criteria for

space-time codes [25]. In [25], the behavior of space-time codes is char-

acterized asymptotically in the number of antennas. Specifically, the

behavior of pairwise error probabilities is determined with three types

of receivers: maximum-likelihood (ML), decorrelator and linear MMSE,

It is shown that with ML or linear receivers the asymptotic performance

of space-time codes is determined by the Euclidean distances between

codewords. This holds for intermediate signal-to-noise ratios even when

the number of antennas is small. Simulations show how asymptotic re-

sults are quite accurate in the non-asymptotic regime. This has the

interesting implication that even for few antennas, off-the-shelf codes

may outperform special-purpose space-time codes.
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3.4 Other Applications

In addition to the foregoing recent applications of random matrix the-

ory in characterizing the fundamental limits of wireless communication

channels, several other applications of the results in Chapter 2 can be

found in the information theory, communications and signal processing

literature:

• Speed of convergence of iterative algorithms for multiuser

detection [312].
• Direction of arrival estimation in sensor arrays [228].
• Learning and neural networks [50].
• Capacity of ad hoc networks [157].
• Data mining and multivariate time series modelling and anal-

ysis [155, 139].
• Principal components analysis [119].
• Maximal entropy methods [17, 292].
• Information theory and free probability [288, 289, 248, 292,

293].
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Appendices

4.1 Proof of Theorem 2.39

In this section we give a multiuser-detection argument for the proof

of Theorem 2.39 in the special case where T is diagonal. To use the

standard notation in multiuser detection [271], we replace H with S

and let T = AA†.
An important non-asymptotic relationship between the eigenvalues

λ1, . . . , λN of the matrix STS† and the signal-to-interference ratios

achieved by the MMSE detector SIR 1, . . . SIR K is [256]

N
∑

i=1

λi

λi + σ2
=

K
∑

k=1

SIR k

SIR k + 1
(4.1)

where σ2 is the variance of the noise components in (3.1). To show

(4.1), we can write its right-hand side as

N
∑

i=1

λi

λi + σ2
= tr

(

(

σ2I + STS†
)−1

STS†
)

= tr

(

(

σ2I + STS†
)−1

K
∑

k=1

Tksks
†
k

)

159
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which can be further elaborated into

N
∑

i=1

λi

λi + σ2
=

K
∑

k=1

Tks
†
k

(

σ2I + STS†
)−1

sk

=

K
∑

k=1

SIR k

SIR k + 1
(4.2)

where (4.2) follows from [271, (6.40)].

Denote for brevity

η = ηSTS†

(

1

σ2

)

. (4.3)

From the the fact that the η-transform of STS† evaluated at σ−2 is the

multiuser efficiency achieved by each of the users asymptotically,

SIR k =
Tk

σ2
η (4.4)

we obtain

lim
K→∞

1

K

K
∑

k=1

SIR k

SIR k + 1
= 1 − lim

K→∞
1

K

K
∑

k=1

1
Tk
σ2 η + 1

= 1 − ηT

( η

σ2

)

(4.5)

almost surely, by the law of large numbers and the definition of η-

transform. Also by definition of η-transform,

lim
N→∞

1

N

N
∑

i=1

λi

λi + σ2
= 1 − η (4.6)

Equations (4.1), (4.5) and (4.6) lead to the sought-after relationship

β
(

1 − ηT

( η

σ2

))

= 1 − η. (4.7)

4.2 Proof of Theorem 2.42

The first step in the proof is to convert the problem to one where T

is replaced by a diagonal matrix DT of the same size and with the



4.2. Proof of Theorem 2.42 161

same limiting empirical eigenvalue distribution. To that end, denote

the diagonal matrix

Q = I + γW0 (4.8)

and note that

det
(

I + γ(W0 + HTH†)
)

= det (T) det (Q)

·det
(

T−1 + γ(HQ−1H†)
)

. (4.9)

Using Theorem 2.38 with W0 and T therein equal to T−1 and Q−1

(this is a valid choice since Q−1 is diagonal), it follows that the asymp-

totic spectrum of T−1 + γ(HQ−1H†) depends on T−1 only through its

asymptotic spectrum. Therefore, when we take 1
N log of both sides of

(4.9) we are free to replace T by DT. Thus,

VW(γ) = lim
N→∞

1

N
log det

(

I + γ(W0 + HTH†)
)

(4.10)

= = lim
N→∞

1

N
log det

(

I + γ(W0 + HDTH†)
)

(4.11)

= VW0+HDTH†(γ) (4.12)

Since the Shannon transforms are identical, so are the η-transforms.

Using Theorem 2.38 and (2.48), it follows that the η-transform of W0+

HDTH† and consequently of W is

ηγ = E

⎡

⎣

1

W0 + 1
γ + β E

[

T
1+Tηγ

]

⎤

⎦ (4.13)

where T and W0 are independent random variables whose distributions

equal the asymptotic empirical eigenvalue distributions of T and W0,

respectively. From (4.13),

ηγ = ϕη0(ϕ) (4.14)

with

ϕ =
γ

1 + β γ E

[

T
1+Tηγ

] (4.15)

=
γ

1 + β
η (1 − ηT(ηγ))

(4.16)
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from which

ηϕ + ϕβ (1 − ηT(ηγ)) = γη (4.17)

= ϕη0(ϕ). (4.18)

4.3 Proof of Theorem 2.44

From Theorem 2.43 and from Remark 2.3.1 it follows straightforwardly

that the η-transform of HH† with H = CSA equals the η-transform of

a matrix H̃ whose entries are independent zero-mean random variables

with variance

E[|H̃i,j |2] =
Pi,j

N

and whose variance profile is

v(x, y) = vX(x) vY(y)

with vX(x) and vY(y) such that the distributions of vX(X) and vY(Y)

(with X and Y independent random variables uniform on [0, 1]) equal

the asymptotic empirical distributions of D and T respectively. In turn,

(2.137) can be proved as special case of (2.158) when the function

v(x, y) can be factored. In this case, the expressions of ΓHH†(x, γ) and

ΥHH†(y, γ) given by Equations (2.154) and (2.155) in Theorem 2.50

become

ΓHH†(x, γ) =
1

1 + β γ vX(x)E[vY(Y)ΥHH†(Y, γ)]

=
1

1 + β γ vX(x) Υ̃HH†(γ)
(4.19)

where we have denoted

Υ̃HH†(γ) = E[vY(Y)ΥHH†(Y, γ)].

For convenience, in the following we drop the subindices from ΓHH† ,

ΥHH† , Υ̃HH† . Let us further denote

Γ̃(γ) = E[vX(X)Γ(X, γ)].
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Using (2.154) we obtain

Γ̃(γ) = E

[

vX(X)

1 + β γ vX(X) E[vY(Y)Υ(Y, γ)]

]

= E

[

vX(X)

1 + β γ vX(X) Υ̃(γ)]

]

= E

[

ΛD

1 + βγ ΛDΥ̃(γ)

]

=
1

β γ Υ̃(γ)

(

1 − ηD(β γ Υ̃(γ))
)

(4.20)

where we have indicated by ΛD a nonnegative random variable whose

distribution is given by the asymptotic spectrum of D. Likewise, using

the definition of Υ(y, γ) in (2.155) we obtain

Υ̃(γ) = E

[

vY(Y)

1 + γ vY(Y)Γ̃(γ)

]

= E

[

ΛT

1 + γ ΛT Γ̃(γ)

]

=
1

γ Γ̃(γ)

(

1 − ηT(γ Γ̃(γ))
)

(4.21)

where we have denoted by ΛT a nonnegative random variable whose

distribution is given by the asymptotic spectrum of the matrix T. No-

tice also that

log (1 + γE ([v(X,Y)Γ(X, γ)|Y]) = log (1 + γ vY(Y)E[vX(X)Γ(X, γ)])

= log
(

1 + γ vY(Y)Γ̃(γ)
)

(4.22)

and thus

E [log (1 + γE[v(X,Y)Γ(X, γ)|Y])] = E

[

log(1 + γ ΛT Γ̃(γ))
]

= VT(γΓ̃(γ)). (4.23)

Likewise,

E [log(1 + γ β E[v(X,Y)Υ(Y, γ)|X])] = E

[

log(1 + γ β ΛD Υ̃(γ))
]

= VD(γ β Υ̃(γ)). (4.24)
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Moreover,

γ β E[v(X,Y)Υ(X, γ)Υ(Y, γ)] = γ β E [vX(X) vY(Y)Γ(X, γ)Υ(Y, γ)]

= γ β Γ̃(γ) Υ̃(γ). (4.25)

Defining

γt = γ Γ̃(γ) γd = γ Υ̃(γ), (4.26)

plugging (4.25), (4.24), (4.23) into (2.158), and using (4.26), (4.21) and

(4.20), the expression for VHH† in Theorem 2.44 is found.

4.4 Proof of Theorem 2.49

From (2.153) it follows that

ηHH†(γ) = E[ΓHH†(X, γ)]

with ΓHH†(·, ·) satisfying the equation

ΓHH†(x, γ) =
1

1 + βγ E

[

v(x,Y)
1+γE[v(X,Y)Γ

HH† (X,γ)|Y]

] (4.27)

where X and Y are independent random variables uniformly dis-

tributed on [0, 1]. Again for convenience, in the following we abbreviate

ΓHH†(·, ·) and ΥHH†(·, ·) as Γ(·, ·) and Υ(·, ·).
From the definition of doubly-regular matrix, we have that

E [1{v(X, t) ≤ x}] does not depend on t and thus E[v(X, t)Γ(X, γ)] does

not depend on t. At the same time, from the definition of doubly-regular

E [1{v(r,Y) ≤ x}], does not depend on r and thus the expectation

E

[

v(r,Y)

1 + γE[v(X,Y)Γ(X, γ)|Y]

]
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does not depend on r. Consequently, Γ(r, γ)=Γ(γ) for all r. Thus, we

can rewrite the fixed-point equation in (4.27) as

Γ(γ) =
1

1 + βγE

[

v(x,Y)

1 + γ Γ(γ)E[v(X,Y)|Y]

]

=
1

1 + β γE

[

v(x,Y)

1 + γ Γ(γ)µ

]

=
1

1 + β γ
E [v(x,Y)]

1 + γ Γ(γ)µ

resulting in

Γ(γ) =
1

1 + βγµ
1

1 + γΓ(γ)µ

with µ = E [v(X, y)] = E [v(x,Y)] = 1 since we have assumed P to be a

standard double-regular matrix. The above equation can be solved to

yield the η-transform of HH† as

ηHH†(γ) = 1 − F(γ, β)

4βγ
.

Using (2.48) and the inverse Stieltjes formula, the claim is proved.

4.5 Proof of Theorem 2.53

From (2.59), the Shannon transform of HH† is given by

VHH†(γ) =

∫

log(1 + γλ)dFHH†(λ)

where FHH†(·) represents the limiting distribution to which the em-

pirical eigenvalue distribution of HH† converges almost surely. The
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derivative with respect to γ is

V̇HH†(γ) = log e

∫

λ

1 + γλ
dFHH†(λ)

=

∫

log e

γ

(

1 − 1

1 + γλ

)

dFHH†(λ)

=
log e

γ

(

1 −
∫

1

1 + γλ
dFHH†(λ)

)

=
log e

γ
(1 − E [ΓHH†(X, γ)]) (4.28)

where, in the last equality, we have invoked Theorem 2.50 and where

ΓHH†(·, ·) satisfies the equations given in (2.154) and (2.155), namely

ΓHH†(x, γ) =
1

1 + βγE[v(x,Y)ΥHH†(Y, γ)]
(4.29)

ΥHH†(y, γ) =
1

1 + γE[v(X, y)ΓHH†(X, γ)]
(4.30)

with X and Y independent random variables uniform on [0, 1]. For

brevity, we drop the subindices from ΓHH† and ΥHH† . Using (4.29)

we can write

1 − Γ(x, γ)

γ
=

βE[v(x,Y)Υ(Y, γ)]

1 + βγE[v(x,Y)Υ(Y, γ)]
,

which, after adding and subtracting to the right-hand side

βγE[v(x,Y)Υ̇(Y, γ)]

1 + βγE[v(x,Y)Υ(Y, γ)]
,

becomes

1 − Γ(x, γ)

γ
=

βE[v(x,Y)Υ(Y, γ)] + βγE[v(x,Y)Υ̇(Y, γ)]

1 + βγE[v(x,Y)Υ(Y, γ)]

− βγE[v(x,Y)Υ̇(Y, γ)]

1 + βγE[v(x,Y)Υ(Y, γ)]

=
d

dγ
ln(1 + βγE[v(x,Y)Υ(Y, γ)])

− βγE[v(x,Y)Υ̇(Y, γ)]

1 + βγE[v(x,Y)Υ(Y, γ)]
(4.31)
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where Υ̇(·, γ)= d
dγ Υ(·, γ). From (4.28) and (4.29) it follows that

V̇HH†(γ) = E

[

d

dγ
log(1 + βγE[v(X,Y)Υ(Y, γ)])

]

−β γE

[

v(X,Y) Γ(X, γ) Υ̇(Y, γ)
]

log e. (4.32)

Notice that

− γE

[

v(X,Y) Γ(X, γ) Υ̇(Y, γ)
]

=− d

dγ
(γE [v(X,Y) Γ(X, γ)Υ(Y, γ)])

+E

[

γ v(X,Y)Γ̇(X, γ)Υ(Y, γ)
]

+E [v(X,Y)Γ(X, γ)Υ(Y, γ)] (4.33)

with Γ̇(·, γ)= d
dγ Γ(·, γ). From (4.29),

E

[

v(X,Y)
(

γ Γ̇(X, γ) + Γ(X, γ)
)

Υ(Y, γ)
]

= E

[

v(X,Y)(γ Γ̇(X,γ)+Γ(X,γ))
1+γE[v(X,Y)Γ(X,γ)|Y]

]

= E

[

E[v(X,Y)(γ Γ̇(X,γ)+Γ(X,γ))|Y]
1+γE[v(X,Y)Γ(X,γ)|Y]

]

from which integrating (4.32) with respect to γ and using (4.33) we

have that

VHH†(γ) = E [log(1 + βγE[v(X,Y)Υ(Y, γ)])]

−β γE [v(X,Y) Γ(X, γ)Υ(Y, γ)] log e

+β E [log(1 + γE[v(X,Y)Γ(X, γ)|Y])] + κ

(4.34)

with κ the integration constant which must be set to κ = 0 so that

VHH†(0) = 0.
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of multi-antenna channels,” Bell Labs Technical Memorandum ITD-03-44786F
(also submitted to IEEE Trans. on Information Theory), Sep. 2003.

[263] A. M. Tulino, A. Lozano, and S. Verdú, “MIMO capacity with channel state
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