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1

Introduction

From its inception, random matrix theory has been heavily influenced
by its applications in physics, statistics and engineering. The landmark
contributions to the theory of random matrices of Wishart (1928) [311],
Wigner (1955) [303], and Marcenko and Pastur (1967) [170] were moti-
vated to a large extent by practical experimental problems. Nowadays,
random matrices find applications in fields as diverse as the Riemann
hypothesis, stochastic differential equations, condensed matter physics,
statistical physics, chaotic systems, numerical linear algebra, neural
networks, multivariate statistics, information theory, signal processing,
and small-world networks. Despite the widespread applicability of the
tools and results in random matrix theory, there is no tutorial reference
that gives an accessible overview of the classical theory as well as the
recent results, many of which have been obtained under the umbrella
of free probability theory.

In the last few years, a considerable body of work has emerged in the
communications and information theory literature on the fundamental
limits of communication channels that makes substantial use of results
in random matrix theory.

The purpose of this monograph is to give a tutorial overview of ran-
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dom matrix theory with particular emphasis on asymptotic theorems
on the distribution of eigenvalues and singular values under various as-
sumptions on the joint distribution of the random matrix entries. While
results for matrices with fixed dimensions are often cumbersome and
offer limited insight, as the matrices grow large with a given aspect
ratio (number of columns to number of rows), a number of powerful
and appealing theorems ensure convergence of the empirical eigenvalue
distributions to deterministic functions.

The organization of this monograph is the following. Section 1.1
introduces the general class of vector channels of interest in wireless
communications. These channels are characterized by random matrices
that admit various statistical descriptions depending on the actual ap-
plication. Section 1.2 motivates interest in large random matrix theory
by focusing on two performance measures of engineering interest: Shan-
non capacity and linear minimum mean-square error, which are deter-
mined by the distribution of the singular values of the channel matrix.
The power of random matrix results in the derivation of asymptotic
closed-form expressions is illustrated for channels whose matrices have
the simplest statistical structure: independent identically distributed
(i.i.d.) entries. Section 1.3 gives a brief historical tour of the main re-
sults in random matrix theory, from the work of Wishart on Gaus-
sian matrices with fixed dimension, to the recent results on asymptotic
spectra. Chapter 2 gives a tutorial account of random matrix theory.
Section 2.1 focuses on the major types of random matrices considered
in the literature, as well on the main fixed-dimension theorems. Sec-
tion 2.2 gives an account of the Stieltjes, 1, Shannon, Mellin, R- and
S-transforms. These transforms play key roles in describing the spec-
tra of random matrices. Motivated by the intuition drawn from various
applications in communications, the 17 and Shannon transforms turn
out to be quite helpful at clarifying the exposition as well as the state-
ment of many results. Considerable emphasis is placed on examples
and closed-form expressions. Section 2.3 uses the transforms defined in
Section 2.2 to state the main asymptotic distribution theorems. Section
2.4 presents an overview of the application of Voiculescu’s free proba-
bility theory to random matrices. Recent results on the speed of con-
vergence to the asymptotic limits are reviewed in Section 2.5. Chapter
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3 applies the results in Chapter 2 to the fundamental limits of wire-
less communication channels described by random matrices. Section 3.1
deals with direct-sequence code-division multiple-access (DS-CDMA),
with and without fading (both frequency-flat and frequency-selective)
and with single and multiple receive antennas. Section 3.2 deals with
multi-carrier code-division multiple access (MC-CDMA), which is the
time-frequency dual of the model considered in Section 3.1. Channels
with multiple receive and transmit antennas are reviewed in Section
3.3 using models that incorporate nonideal effects such as antenna cor-
relation, polarization, and line-of-sight components.

1.1 Wireless Channels

The last decade has witnessed a renaissance in the information theory
of wireless communication channels. Two prime reasons for the strong
level of activity in this field can be identified. The first is the grow-
ing importance of the efficient use of bandwidth and power in view
of the ever-increasing demand for wireless services. The second is the
fact that some of the main challenges in the study of the capacity of
wireless channels have only been successfully tackled recently. Fading,
wideband, multiuser and multi-antenna are some of the key features
that characterize wireless channels of contemporary interest. Most of
the information theoretic literature that studies the effect of those fea-
tures on channel capacity deals with linear vector memoryless channels
of the form

y=Hx-+n (1.1)

where x is the K-dimensional input vector, y is the N-dimensional
output vector, and the N-dimensional vector n models the additive
circularly symmetric Gaussian noise. All these quantities are, in gen-
eral, complex-valued. In addition to input constraints, and the degree
of knowledge of the channel at receiver and transmitter, (II]) is char-
acterized by the distribution of the N x K random channel matriz H
whose entries are also complex-valued.

The nature of the K and N dimensions depends on the actual ap-
plication. For example, in the single-user narrowband channel with nr
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and ni antennas at transmitter and receiver, respectively, we identify
K = nt and N = ng; in the DS-CDMA channel, K is the number of
users and N is the spreading gain.

In the multi-antenna case, H models the propagation coefficients
between each pair of transmit-receive antennas. In the synchronous DS-
CDMA channel, in contrast, the entries of H depend on the received
signature vectors (usually pseudo-noise sequences) and the fading coef-
ficients seen by each user. For a channel with J users each transmitting
with nT antennas using spread-spectrum with spreading gain G and a
receiver with ng antennas, K = ntJ and N = ngrG.

Naturally, the simplest example is the one where H has i.i.d. entries,
which constitutes the canonical model for the single-user narrowband
multi-antenna channel. The same model applies to the randomly spread
DS-CDMA channel not subject to fading. However, as we will see, in
many cases of interest in wireless communications the entries of H are
not i.i.d.

1.2 The Role of the Singular Values

Assuming that the channel matrix H is completely known at the re-
ceiver, the capacity of (ILT]) under input power constraints depends on
the distribution of the singular values of H. We focus in the simplest
setting to illustrate this point as crisply as possible: suppose that the
entries of the input vector x are i.i.d. For example, this is the case
in a synchronous DS-CDMA multiaccess channel or for a single-user
multi-antenna channel where the transmitter cannot track the channel.
The empirical cumulative distribution function of the eigenvalues
(also referred to as the spectrum or empirical distribution) of an n x n
Hermitian matrix A is denoted by F; defined ad]
1 n
Fa(e) = - D 1{A(A) < o}, (12)
i=1
where A\ (A),..., A\, (A) are the eigenvalues of A and 1{-} is the indi-
cator function.

11f FA converges as n — oo, then the corresponding limit (asymptotic empirical distribution
or asymptotic spectrum) is simply denoted by Fa ().
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Now, consider an arbitrary N x K matrix H. Since the nonzero
singular values of H and H' are identical, we can write

NFYgi (2) — Nu(z) = KFiyig(2) — Ku(z) (1.3)

where u(x) is the unit-step function (u(x) =0, z < 0; u(x) = 1, x > 0).
With an i.i.d. Gaussian input, the normalized input-output mutual

information of (L.I]) conditioned on H i

1

N

| N
= — log(1+snrN;(HHY)
S )

1
~I(x;yH) =

.i.
N log det (I + sk HH ) (1.4)

- /000 log (1 + snrx) dFﬁHT (x) (1.5)

with the transmitted signal-to-noise ratio (SNR)

_ NE[Ix|1%
KE[|n|P)

SNR (1.6)
and with \;(HHT) equal to the ith squared singular value of H.

If the channel is known at the receiver and its variation over time
is stationary and ergodic, then the expectation of (L4 over the dis-
tribution of H is the channel capacity (normalized to the number of
receive antennas or the number of degrees of freedom per symbol in
the CDMA channel). More generally, the distribution of the random
variable (L4]) determines the outage capacity (e.g. [22]).

Another important performance measure for (II]) is the minimum
mean-square-error (MMSE) achieved by a linear receiver, which deter-
mines the maximum achievable output signal-to-interference-and-noise

2The celebrated log-det formula has a long history: In 1964, Pinsker [204] gave a general
log-det formula for the mutual information between jointly Gaussian random vectors but
did not particularize it to the linear model (IT)). Verdu [270] in 1986 gave the explicit form
([@T4) as the capacity of the synchronous DS-CDMA channel as a function of the signature
vectors. The 1991 textbook by Cover and Thomas [47] gives the log-det formula for the
capacity of the power constrained vector Gaussian channel with arbitrary noise covariance
matrix. In the mid 1990s, Foschini [77] and Telatar [250] gave (I4) for the multi-antenna
channel with i.i.d. Gaussian entries. Even prior to those works, the conventional analyses
of Gaussian channels with memory via vector channels (e.g. [260 [3I]) used the fact that
the capacity can be expressed as the sum of the capacities of independent channels whose
signal-to-noise ratios are governed by the singular values of the channel matrix.
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ratio (SINR). For an i.i.d. input, the arithmetic mean over the users (or
transmit antennas) of the MMSE is given, as function of H, by [271]

©omin B[l Myl?] = trd (1 swEH) (1.7)
KMEI-Iél}I(lxN X Yy = KI‘ SNR .

1
1+ snr A\ (HIH)

(1.8)
1

1
K i
° 1
= ——dFL
/0 1+ snrRz miu(@)
N
K

o 1 N-K
——dFY¥ -

/0 1+snry HH (=) K
(1.9)

where the expectation in (L) is over x and n while (L9) follows from
([L3)). Note, incidentally, that both performance measures as a function
of snr are coupled through

SNR

— log, det (I + SNRHHT) — K —tr { (I + SNRHTH) 1} :
As we see in (L) and (L.9]), both fundamental performance measures
(capacity and MMSE) are dictated by the distribution of the empirical
(squared) singular value distribution of the random channel matrix.
In the simplest case of H having i.i.d. Gaussian entries, the density
function corresponding to the expected value of FﬁHT can be expressed
explicitly in terms of the Laguerre polynomials. Although the integrals
in (I35) and (L9) with respect to such a probability density function
(p.d.f.) lead to explicit solutions, limited insight can be drawn from
either the solutions or their numerical evaluation. Fortunately, much
deeper insights can be obtained using the tools provided by asymptotic
random matrix theory. Indeed, a rich body of results exists analyzing
the asymptotic spectrum of H as the number of columns and rows goes
to infinity while the aspect ratio of the matrix is kept constant.
Before introducing the asymptotic spectrum results, some justifica-
tion for their relevance to wireless communication problems is in order.
In CDMA, channels with K and N between 32 and 64 would be fairly
typical. In multi-antenna systems, arrays of 8 to 16 antennas would be
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at the forefront of what is envisioned to be feasible in the foreseeable fu-
ture. Surprisingly, even quite smaller system sizes are large enough for
the asymptotic limit to be an excellent approximation. Furthermore,
not only do the averages of (L4)) and (L9]) converge to their limits
surprisingly fast, but the randomness in those functionals due to the
random outcome of H disappears extremely quickly. Naturally, such
robustness has welcome consequences for the operational significance
of the resulting formulas.

2
\

1.8 b

Fig. 1.1 The Margenko-Pastur density function (LI0) for 8 = 1,0.5,0.2.

As we will see in Chapter[2] a central result in random matrix theory
states that when the entries of H are zero-mean i.i.d. with variance %,
the empirical distribution of the eigenvalues of HTH converges almost
surely, as K, N — oo with % — [, to the so-called Marcenko-Pastur
law whose density function is

+ r —a — X
£5(z) = (1_%) 5y + YL 271;;” ) (1.10)

where (z)T = max (0, 2) and

a=(1-+/B)> b= (14++/p)% (1.11)
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Fig. 1.2 The Maréenko-Pastur density function (LI2)) for 8 = 10,1,0.5,0.2. Note that the
mass points at 0, present in some of them, are not shown.

Analogously, the empirical distribution of the eigenvalues of HH
converges almost surely to a nonrandom limit whose density function

is (cf. Fig. [L.2)
fo(z) = (1-P)d(z)+ Bfs()

(1= 8 o)+ Y

—a)T(b—a)*
2mx ’
Using the asymptotic spectrum, the following closed-form expres-

sions for the limits of (L) [275] and (L.7) [271] can be obtained:

(1.13)

(1.12)

1 b
N log det (I + SNR HHT) — B/ log(1 + snr x)fg(z) da
1
= Qlog (1 + sNR — Zf(SNR,ﬂ)>

+ log <1 +snR 3 — i}_(SNRvﬁO

loge
4 sNR

F (snr, B) (1.14)
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%tr{(IJFSNRHTH)_l} . /ab;fﬁ(x)dx (1.15)

1+ snrR
F(snr, 3)
1-— 1.1
4 3 snr (1.16)

with

Flz,2) = <\/x(1 +VE? 41—\ Ja(l— Va2 + 1>2. (1.17)

4 4
3 3
2 2
1 1
00 2 4 6 8 10 O0 2 4 6 8 10
4 4
3 3
2 2
1 1
00 2 4 6 8 10 00 2 4 6 8 10
N= 15 SNR N = 50 SNR

Fig. 1.3 Several realizations of the left-hand side of (I.I3)) are compared to the asymptotic
limit in the right-hand side of (LI3) in the case of 3 =1 for sizes: N = 3,5, 15, 50.

The convergence of the singular values of H exhibits several key
features with engineering significance:

® [nsensitivity of the asymptotic eigenvalue distribution to
the shape of the p.d.f. of the random matrix entries. This
property implies, for example, that in the case of a single-
user multi-antenna link, the results obtained asymptotically
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hold for any type of fading statistics. It also implies that
restricting the CDMA waveforms to be binary-valued incurs
no loss in capacity asymptotically

e [Ergodic behavior: it suffices to observe a single matrix realiza-
tion in order to obtain convergence to a deterministic limit.
In other words, the eigenvalue histogram of any matrix re-
alization converges almost surely to the average asymptotic
eigenvalue distribution. This “hardening” of the singular val-
ues lends operational significance to the capacity formulas
even in cases where the random channel parameters do not
vary ergodically within the span of a codeword.

e [ast convergence of the empirical singular-value distribution
to its asymptotic limit. Asymptotic analysis is especially use-
ful when the convergence is so fast that, even for small values
of the parameters, the asymptotic results come close to the
finite-size results (cf. Fig.[[.3]). Recent works have shown that
the convergence rate is of the order of the reciprocal of the
number of entries in the random matrix [8, [110].

It is crucial for the explicit expressions of asymptotic capacity and
MMSE shown in (I.14)) and (I.16]), respectively, that the channel matrix
entries be i.i.d. Outside that model, explicit expressions for the asymp-
totic singular value distribution such as ([I0) are exceedingly rare.
Fortunately, in other random matrix models, the asymptotic singular
value distribution can indeed be characterized, albeit not in explicit
form, in ways that enable the analysis of capacity and MMSE through
the numerical solution of nonlinear equations.

The first applications of random matrix theory to wireless commu-
nications were the works of Foschini [77] and Telatar [250] on narrow-
band multi-antenna capacity; Verdu [271] and Tse-Hanly [256] on the
optimum SINR achievable by linear multiuser detectors for CDMA;
Verdd [271] on optimum near-far resistance; Grant-Alexander [100],

3 The spacing between consecutive eigenvalues, when properly normalized, was conjectured
in [65] [66] to converge in distribution to a limit that does not depend on the shape of the
p.d.f. of the entries. The universality of the level spacing distribution and other microscopic
(local) spectral characteristics has been extensively discussed in recent theoretical physics
and mathematical literature [I74] 106} 200 521 54].
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Verdd-Shamai [275], 217], Rapajic-Popescu [206], and Miiller [I85] on
the capacity of CDMA. Subsequently, a number of works, surveyed in
Chapter B, have successfully applied random matrix theory to a vari-
ety of problems in the design and analysis of wireless communication
systems.

Not every result of interest in the asymptotic analysis of channels of
the form (L.I]) has made use of the asymptotic eigenvalue tools that are
of central interest in this paper. For example, the analysis of single-user
matched filter receivers [275] and the analysis of the optimum asymp-
totic multiuser efficiency [258] have used various versions of the central-
limit theorem; the analysis of the asymptotic uncoded error probability
as well as the rates achievable with suboptimal constellations have used
tools from statistical physics such as the replica method [249] 103].

1.3 Random Matrices: A Brief Historical Account

In this subsection, we provide a brief introduction to the main devel-
opments in the theory of random matrices. A more detailed account
of the theory itself, with particular emphasis on the results that are
relevant for wireless communications, is given in Chapter 2

Random matrices have been a part of advanced multivariate statis-
tical analysis since the end of the 1920s with the work of Wishart [311]
on fixed-size matrices with Gaussian entries. The first asymptotic re-
sults on the limiting spectrum of large random matrices were obtained
by Wigner in the 1950s in a series of papers [303], 305, [306] motivated by
nuclear physics. Replacing the self-adjoint Hamiltonian operator in an
infinite-dimensional Hilbert space by an ensemble of very large Hermi-
tian matrices, Wigner was able to bypass the Schrodinger equation and
explain the statistics of experimentally measured atomic energy levels
in terms of the limiting spectrum of those random matrices. Since then,
research on the limiting spectral analysis of large-dimensional random
matrices has continued to attract interest in probability, statistics and
physics.

Wigner [303] initially dealt with an nxn symmetric matrix A whose
diagonal entries are 0 and whose upper-triangle entries are independent
and take the values +1 with equal probability. Through a combinatorial
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Fig. 1.4 The semicircle law density function ([LI8) compared with the histogram of the
average of 100 empirical density functions for a Wigner matrix of size n = 100.

derivation of the asymptotic eigenvalue moments involving the Cata-
lan numbers, Wigner showed that, as n — oo, the averaged empirical
distribution of the eigenvalues of ﬁA converges to the semicircle law

whose density is

VA 22 if |z <2
Later, Wigner [305] realized that the same result would be obtained if
the random selection was sampled from a zero-mean (real or complex)
Gaussian distribution. In that case, it is even possible to find an exact
formula for the joint distribution of the eigenvalues as a function of
n [I76]. The matrices treated in [303] and [305] are special cases of
Wigner matrices, defined as Hermitian matrices whose upper-triangle
entries are zero-mean and independent. In [306], Wigner showed that
the asymptotic distribution of any Wigner matrix is the semicircle law
(LI8) even if only a unit second-moment condition is placed on its
entries.

Figure [[.4] compares the semicircle law density function (LI8]) with
the average of 100 empirical density functions of the eigenvalues of a
10 x 10 Wigner matrix whose diagonal entries are 0 and whose upper-
triangle entries are independent and take the values +1 with equal
probability.

If no attempt is made to symmetrize the square matrix A and all

its entries are chosen to be i.i.d., then the eigenvalues of ﬁA are
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asymptotically uniformly distributed on the unit circle of the complex
plane. This is commonly referred to as Girko’s full-circle law, which is
exemplified in Figure It has been proved in various degrees of rigor
and generality in [173, 197, 85], 68, 9]. If the off-diagonal entries A4; ; and
Aj; are Gaussian and pairwise correlated with correlation coefficient
p, then [238] shows that the eigenvalues of ﬁA are asymptotically
uniformly distributed on an ellipse in the complex plane whose axes
coincide with the real and imaginary axes and have radius 1 + p and
1 — p, respectively. When p = 1, the projection on the real axis of such
elliptic law is equal to the semicircle law.

15
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Fig. 1.5 The full-circle law and the eigenvalues of a realization of a matrix of size n = 500.

Most of the results surveyed above pertain to the eigenvalues of
square matrices with independent entries. However, as we saw in Sec-
tion [[.2] key problems in wireless communications involve the singular
values of rectangular matrices H; even if those matrices have indepen-
dent entries, the matrices HH' whose eigenvalues are of interest do not
have independent entries.
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When the entries of H are zero-mean i.i.d. Gaussian, HH' is com-
monly referred to as a Wishart matrix. The analysis of the joint dis-
tribution of the entries of Wishart matrices is as old as random matrix
theory itself [311]. The joint distribution of the eigenvalues of such ma-
trices is known as the Fisher-Hsu-Roy distribution and was discovered
simultaneously and independently by Fisher [75], Hsu [120], Girshick
[89] and Roy [210]. The corresponding marginal distributions can be
expressed in terms of the Laguerre polynomials [125].

The asymptotic theory of singular values of rectangular matrices
has concentrated on the case where the matrix aspect ratio converges
to a constant

K
v 0 (1.19)

as the size of the matrix grows.

The first success in the quest for the limiting empirical singular
value distribution of rectangular random matrices is due to Marcéenko
and Pastur [170] in 1967. This landmark paper considers matrices of
the form

W = W, + HTH'! (1.20)

where T is a real diagonal matrix independent of H, Wy, is a determin-
istic Hermitian matrix, and the columns of the N x K matrix H are
i.i.d. random vectors whose distribution satisfies a certain symmetry
condition (encompassing the cases of independent entries and uniform
distribution on the unit sphere). In the special case where Wy = 0,
T =1, and H has i.i.d. entries with variance %, the limiting spectrum
of W found in [I70] is the density in (I.I0). In the special case of square
H, the asymptotic density function of the singular values, correspond-
ing to the square root of the random variable whose p.d.f. is (IL.I0) with
6 =1, is equal to the quarter circle law:

1
glz) = =v4d—22, 0<z<2 (1.21)

™

As we will see in Chapter 2], in general (W # 0 or T # I) no closed-
form expression is known for the limiting spectrum. Rather, [170] char-
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acterized it indirectly through its Stieltjes transformﬂ which uniquely
determines the distribution function. Since [170], this transform, which
can be viewed as an iterated Laplace transform, has played a funda-
mental role in the theory of random matrices.

0.7

M ml ’T;'n = i
0.6 ..,.5.; a
\;‘
a1l M™NNg
0.5 \! -
N,
™
\,
N
0.4 N\ i
,‘\
\
\
03 \ i
0.2 B
0.1 b
0
0 0.5 1 15 2 25

Fig. 1.6 The quarter circle law compared a histogram of the average of 100 empirical sin-
gular value density functions of a matrix of size 100 x 100.

Figure compares the quarter circle law density function (L2I])
with the average of 100 empirical singular value density functions of

a 100 x 100 square matrix H with independent zero-mean complex

1
m.
Despite the ground-breaking nature of Marcenko and Pastur’s con-

Gaussian entries with variance

tribution, it remained in obscurity for quite some time. For example, in
1977 Grenander and Silverstein [101] rediscovered (LI0) motivated by
a neural network problem where the entries of H take only two values.
Also unaware of the in-probability convergence result of [I70], in 1978
Wachter [296] arrived at the same solution but in the stronger sense of
almost sure convergence under the condition that the entries of H have

4 The Stieltjes transform is defined in Section 22211 The Dutch mathematician T. J. Stieltjes
(1856-1894) provided the first inversion formula for this transform in [246].
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uniformly bounded central moments of order higher than 2 as well as
the same means and variances within a row. The almost sure conver-
gence for the model (I.20)) considered in [I70] was shown in [227]. Even
as late as 1991, rediscoveries of the Marc¢enko-Pastur law can be found
in the Physics literature [50].

The case where W = 0 in (L.20), T is not necessarily diagonal but
Hermitian and H has i.i.d. entries was solved by Silverstein [226] also
in terms of the Stieltjes transform.

The special case of (L.20) where Wy = 0, H has zero-mean i.i.d.
Gaussian entries and

T=(YYNH!

where the K x m matrix Y has also zero-mean i.i.d. Gaussian entries
with variance =, independent of H, is called a (central) multivariate
F-matrix. Because of the statistical applications of such matrix, its
asymptotic spectrum has received considerable attention culminating
in the explicit expression found by Silverstein [223] in 1985.

The speed of convergence to the limiting spectrum is studied in
[8]. For our applications it is more important, however, to assess the
speed of convergence of the performance measures (e.g. capacity and
MMSE) to their asymptotic limits. Note that the sums in the right
side of (L4]) involve dependent terms. Thanks to that dependence, the
convergence in (I3 and (I3 is quite remarkable: the deviations
from the respective limits multiplied by N converge to Gaussian random
variables with fixed mean? and variance. This has been established
for general continuous functions, not just the logarithmic and rational
functions of (LI3]) and (LI5), in [I5] (see also [131]).

The matrix of eigenvectors of Wishart matrices is known to be
uniformly distributed on the manifold of unitary matrices (the so-
called Haar measure) (e.g. [125, 67]). In the case of HH' where H
has i.i.d. non-Gaussian entries, much less success has been reported in
the asymptotic characterization of the eigenvectors [153, 224] 225].

For matrices whose entries are Gaussian and correlated according
to a Toeplitz structure, an integral equation is known for the Stielt-

5The mean is zero in the interesting special case where H has i.i.d. complex Gaussian
entries [I5].
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jes transform of the asymptotic spectrum as a function of the Fourier
transform of the correlation function [147, 198, 55]. Other results on
random matrices with correlated and weakly dependent entries can be
found in [170, 196, 146], 53, 199], 145]. Reference [191], in turn, consid-
ers a special class of random matrices with dependent entries that falls
outside the Marcenko-Pastur framework and that arises in the context
of the statistical physics of disordered systems.

Incidentally, another application of the Stieltjes transform approach
is the generalization of Wigner’s semicircle law to the sum of a Wigner
matrix and a deterministic Hermitian matrix. Provided Lindeberg-type
conditions are satisfied by the entries of the random component, [147]
obtained the deformed semicircle law, which is only known in closed-
form in the Stieltjes transform domain.

Sometimes, an alternative to the characterization of asymptotic
spectra through the Stieltjes transform is used, based on the proof
of convergence and evaluation of moments such as %tr{(HHT)k}. For
most cases of practical interest, the limiting spectrum has bounded
support. Thus, the moment convergence theorem can be applied
to obtain results on the limiting spectrum through its moments
[297, 314, 315, 313].

An important recent development in asymptotic random matrix
analysis has been the realization that the non-commutative free prob-
ability theory introduced by Voiculescu [283], 285] in the mid-1980s is
applicable to random matrices. In free probability, the classical notion
of independence of random variables is replaced by that of “freeness”
or “free independence”.

The power of the concept of free random matrices is best illustrated
by the following setting. In general, we cannot find the eigenvalues of
the sums of random matrices from the eigenvalues of the individual
matrices (unless they have the same eigenvectors), and therefore the
asymptotic spectrum of the sum cannot be obtained from the indi-
vidual asymptotic spectra. An obvious exception is the case of inde-
pendent diagonal matrices in which case the spectrum of the sum is
simply the convolution of the spectra. When the random matrices are
asymptotically free [287], the asymptotic spectrum of the sum is also
obtainable from the individual asymptotic spectra. Instead of convolu-
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tion (or equivalently, summing the logarithms of the individual Fourier
transforms), the “free convolution” is obtained through the sum of
the so-called R-transforms introduced by Voiculescu [285]. Examples
of asymptotically free random matrices include independent Gaussian
random matrices, and A and UBU* where A and B are Hermitian
and U is uniformly distributed on the manifold of unitary matrices
and independent of A and B.

In free probability, the role of the Gaussian distribution in classical
probability is taken by the semicircle law (LIf]) in the sense of the free
analog of the central limit theorem [284]: the spectrum of the normal-
ized sum of free random matrices (with given spectrum) converges to
the semicircle law (LI8]). Analogously, the spectrum of the normalized
sum of free random matrices with unit rank converges to the Marcenko-
Pastur law (LI0), which then emerges as the free counterpart of the
Poisson distribution [239] 295]. In the general context of free random
variables, Voiculescu has found an elegant definition of free-entropy
[288, 2891 291], 292] 293]. A number of structural properties have been
shown for free-entropy in the context of non-commutative probabil-
ity theory (including the counterpart of the entropy-power inequality
[248]). The free counterpart to Fisher’s information has been investi-
gated in [289]. However, a free counterpart to the divergence between
two distributions is yet to be discovered.

A connection between random matrices and information theory was
made by Balian [I7] in 1968 considering the inverse problem in which
the distribution of the entries of the matrix must be determined while
being consistent with certain constraints. Taking a maximum entropy
method, the ensemble of Gaussian matrices is the solution to the prob-
lem where only a constraint on the energy of the singular values is
placed.
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Random Matrix Theory

In this chapter, we review a wide range of existing mathematical results
that are relevant to the analysis of the statistics of random matrices
arising in wireless communications. We also include some new results on
random matrices that were inspired by problems of engineering interest.

Throughout the monograph, complex Gaussian random variables
are always circularly symmetric, i.e., with uncorrelated real and imagi-
nary parts, and complex Gaussian vectors are always proper complex

2.1 Types of Matrices and Non-Asymptotic Results

We start by providing definitions for the most important classes of
random matrices: Gaussian, Wigner, Wishart and Haar matrices. We
also collect a number of results that hold for arbitrary (non-asymptotic)
matrix sizes.

2.1.1 Gaussian Matrices
IIn the terminology introduced in [I88], a random vector with real and imaginary compo-

nents x and y, respectively, is proper complex if E [(x —E[x])(y — ]E[y])T] =0.

19
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Definition 2.1. A standard real/complex Gaussian m x n matrix H
has i.i.d. real/complex zero-mean Gaussian entries with identical vari-

ance 02 = % The p.d.f. of a complex Gaussian matrix with i.i.d.
zero-mean Gaussian entries with variance o2 is
tr{ HH'
(ma?) ™™ exp [—%] . (2.1)
o

The following result is the complex counterpart of those given in [I8]
78, 27, 245] and [182, Thm. 3.2.14]:

Lemma 2.1. [104] Let H be an m x n standard complex Gaussian
matrix with n > m. Denote its QR-decomposition by H = QR. The
upper triangular matrix R is independent of Q, which is uniformly
distributed over the manifold@ of complex m X n matrices such that
QQ' = I. The entries of R are independent and its diagonal entries,
Rii for i € {1,...,m}, are such that 2mRZ27Z- are 2 random variables
with 2(n — i+ 1) degrees of freedom while the off-diagonal entries, R; ;

for ¢ < j, are independent zero-mean complex Gaussian with variance
1

m

The proof of Lemma 2.1] uses the expression of the p.d.f. of H given
in (2I)) and [67, Theorem 3.1].

The p.d.f. of the eigenvalues of standard Gaussian matrices is stud-
ied in [32,[68]. If the n x n matrix coefficients are real, [69] gives an exact
expression for the expected number of real eigenvalues which grows as

\V2n /.

2.1.2 Wigner Matrices

2This is called the Stiefel manifold and it is a subspace of dimension 2mn — m? with total

volume 2m7™n = 53m(m—1) [T (n—)!
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Definition 2.2. An nxn Hermitian matrix W is a Wigner matrix if its
upper-triangular entries are independent zero-mean random variables
with identical variance. If the variance is %, then W is a standard
Wigner matrix.

Theorem 2.2. Let W be an n x n complex Wigner matrix whose
(diagonal and upper-triangle) entries are i.i.d. zero-mean Gaussian with
unit VarianceEI Then, its p.d.f. is

2
27212 oy [—@} (2.2)

while the joint p.d.f. of its ordered eigenvalues Ay > ... > A, is

1
Gy H T (23

=1 ! 1<J

Theorem 2.3. [307] Let W be an n x n complex Gaussian Wigner
matrix defined as in Theorem 2.2 The marginal p.d.f. of the unordered
eigenvalues is

% g ﬁ <6J“2Hz‘($)> 2 (2.4)

with H;(-) the ith Hermite polynomial [IJ.

As shown in [304] [172], BT [175], the spacing between adjacent eigen-
values of a Wigner matrix exhibits an interesting behavior. With the
eigenvalues of a Gaussian Wigner matrix sorted in ascending order, de-
note by L the spacing between adjacent eigenvalues relative to the mean

3Such matrices are often referred to as simply Gaussian Wigner matrices.
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eigenvalue spacing. The density of L in the large-dimensional limit is
accurately approximated b

™

fL(s) = 5 se”

s (2.5)
For small values of s, (Z3) approaches zero implying that very
small spacings are unlikely and that the eigenvalues somehow repel

each other.

2.1.3 Wishart Matrices

Definition 2.3. The m x m random matrix A = HH' is a (central)
real/complex Wishart matrix with n degrees of freedom and covariance
matrix 3, (A ~ Wp(n, X)), if the columns of the m x n matrix H are
zero-mean independent real/complex Gaussian vectors with covariance
matrix S The p.d.f. of a complex Wishart matrix A ~ W,,(n,X) for

n>mis 244, p. 84], [182, 1250
W—m(m—l)/2

~ detxn [T (n =)

fa(B) exp [—tr {E7'B}] detB"".  (2.6)

2.1.4 Haar Matrices

Definition 2.4. A square matrix U is unitary if

Uuuf=Uulu=1L

4 Wigner postulated (Z35) in [304] by assuming that the energy levels of a nucleus behave
like a modified Poisson process. Starting from the joint p.d.f. of the eigenvalues of a
Gaussian Wigner matrix, (2.5) has been proved in [81} [I75] where its exact expression has
been derived. Later, Dyson conjectured that (Z5) may also hold for more general random
matrices [65} [66]. This conjecture has been proved by [129] for a certain subclass of not
necessarily Gaussian Wigner matrices.

51f the entries of H have nonzero mean, HHT is a non-central Wishart matrix.

6 The case n < m is studied in [267].
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Definition 2.5. [107] An n x n random matrix U is a Haar matrix] if
it is uniformly distributed on the set, U(n), of n X n unitary matricesﬁ
Its density function on U(n) is given by [107, [67]

n

R e § (! (2.7)
i=1
Lemma 2.4. [I07] The eigenvalues, ¢; for i € {1,...,n}, of an n x n
Haar matrix lie on the unit circle, i.e., ; = €?%, and their joint p.d.f. is
1
ol | SRl (238)

i<l

Lemma 2.5. (e.g. [110]) If 1 < 4,5,k ¢ <n,i#k, j# ¢, and U is an
n x n (complex) Haar matrix, then

B[U Y =
BIUIY = s
E[JUi[* Uk "] = E[[Ug*|Usel*] = ﬁ
E[|U; 2| Ukel?] = ﬁ
E[Ui;UreU5Ug5] = _ﬁ'

A way to generate a Haar matrix is the following: let H be an n xn stan-
dard complex Gaussian matrix and let R be the upper triangular mat-
rix obtained from the QR decomposition of H chosen such that all its
diagonal entries are nonnegative. Then, as a consequence of Lemma[2.T]
HR ! is a Haar matrix [245].

7 Also called isotropic in the multi-antenna literature [I71].
8 A real Haar matrix is uniformly distributed on the set of real orthogonal matrices.
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2.1.5 Unitarily Invariant Matrices

Definition 2.6. A Hermitian random matrix W is called unitarily in-
variant if the joint distribution of its entries equals that of VW VT for
any unitary matrix V independent of W.

Example 2.1. A Haar matrix is unitarily invariant.

Example 2.2. A Gaussian Wigner matrix is unitarily invariant.

Example 2.3. A central Wishart matrix W ~ W,,(n,I) is unitarily
invariant.

Lemma 2.6. (e.g [111]) If W is unitarily invariant, then it can be
decomposed as
W = UAU".

with U a Haar matrix independent of the diagonal matrix A.

Lemma 2.7. [110, 111] If W is unitarily invariant and f(-) is a real
continuous function defined on the real line, then f(W), given via the
functional calculus, is also unitarily invariant.

Definition 2.7. A rectangular random matrix H is called bi-unitarily
invariant if the joint distribution of its entries equals that of UHVT
for any unitary matrices U and V independent of H.
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Example 2.4. A standard Gaussian random matrix is bi-unitarily in-
variant.

Lemma 2.8. [I11] If H is a bi-unitarily invariant square random mat-
rix, then it admits a polar decomposition H = UC where U is a Haar
matrix independent of the unitarily-invariant nonnegative definite ran-
dom matrix C.

In the case of a rectangular m x n matrix H, with m < n, Lemma
2.8 also applies with C an n x n unitarily-invariant nonnegative definite
random matrix and with U uniformly distributed over the manifold of
complex m x n matrices such that UU' = 1.

2.1.6 Properties of Wishart Matrices

In this subsection we collect a number of properties of central and non-
central Wishart matrices and, in some cases, their inverses. We begin
by considering the first and second order moments of a central Wishart
matrix and its inverse.

Lemma 2.9. [164] 96] For a central Wishart matrix W ~ W,,(n,I),

E[ftr{W}] = mn
Eltr{W?}] = mn(m+n)
E[tr*{W}] = mn(mn+1).

Lemma 2.10. [164], 96](see also [I33]) For a central Wishart matrix
W ~ Wy, (n,I) with n > m,

E[tr {W=1}] = 7

(2.9)

T h—m
while, for n > m + 1,

E [ {W2}] = L

(n—m)? — (n—m)

EWNW”H:=n?m<m_%LJ+nT;iJ'
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For higher order moments of Wishart and generalized inverse Wishart
matrices, see [96].

From Lemma 2.1 we can derive several formulas on the determinant
and log-determinant of a Wishart matrix.

Theorem 2.11. [182] 131]@ A central complex Wishart matrix W ~
Win(n,I), with n > m, satisfies

[deth} - ni_[ %Z)k) (2.10)

and hence the moment-generating function of log, detW for ¢ > 0 is

E |:6< log, detW] Ti_[ n—{ + C) (211)

with I'(+) denoting the Gamma function [97]

I'(a) :/ t*te~tat
0

which, for integer arguments, satisfies I'(n 4+ 1) = n! From (2.I1]),

m—1

E[log, detW] = P(n (2.12)
£=0
m—1

Var[log, detW] = I (2.13)
=0

where (+) is Euler’s digamma function [97], which for natural argu-
ments can be expressed as

(m) Z
/=1

— 1)+ — (2.14)

%\IH
3
|
[—

9 Note that [I82][131] derive the real counterpart of Theorem ELT1] from which the complex
case follows immediately.
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with —t(1) = 0.577215... the Euler-Mascheroni constant. The deriva-
tive of ¢(+), in turn, can be expressed as

b(m 4 1) = g(m) — (2.15)

m?2

2

with (1) = .

If 3 and ® are positive definite deterministic matrices and H is
an n X n complex Gaussian matrix with independent zero-mean unit-

variance entries, then W = SH®H! satisfies (using (Z10))

—{+k-1)!
(n—¢—1)!

E [detwk} = det(S®)* H (2.16)

(=0
The generalization of (216l for rectangular H is derived in [165], 219].

Analogous relationships for the non-central Wishart matrix are derived
in [5].

Theorem 2.12. [166] Let H be an n x m complex Gaussian matrix
with zero-mean unit-variance entries and let W be a complex Wishart
matrix W ~ W, (p,I), with m < n < p. Then, for ( € (—1,1),

m—1
t(HW-TH | — I‘m+p—n—§ OHT(n+(¢—19)
E[det(H'WTH)] 11 Ry ———
m—1
E[log det(H'W~1H)] = (Y(n—L0) —p(m+p—n—1)).
£=0

Additional results on quadratic functions of central and non-central
Wishart matrices can be found in [141l 142} 144] and the references
therein.

Some results on the p.d.f. of complex pseudo-Wishart matrice@
and their corresponding eigenvalues can be found in [58| [59] [168].

10W = HH is a pseudo-Wishart matrix if H is a mxn Gaussian matrix and the correlation
matrix of the columns of H has a rank strictly larger than n [244] 267] 94] [58] 59].
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Next, we turn our attention to the determinant and log-determinant
of matrices that can be expressed as a multiple of the identity plus
a Wishart matrix, a familiar form in the expressions of the channel
capacity.

Theorem 2.13. A complex Wishart matrix W ~ W,,(n,I), with n >
m, satisfies

E[det(I +yW)] g( >n_z At (2.17)

Theorem 2.14. [38, 299] Let W be a central Wishart matrix W ~
Win(n,I) and let ¢ = min{n,m} and r = max{n,m}. The moment-
generating function of log, det(I +yW) is

E [ECIOge det(I—i-’YW)] — 1_[?‘#(0)' (218)
i=1\r—1)

with G(¢) a t x t Hankel matrix whose (7, k)th entry is
Gip = / (14N A te A
0
s <’y‘d (d—-1)

R (d1+d+¢ 1)

I'(=¢)sin(r(d —1+¢)) \I'(1 +d + )
¢ _
- 711(71 _F(d —OC) 151 (—C,l—d—(, %)) (2.19)

with 1 Fj(-) the confluent hypergeometric function [97] and with d =
r—t+i+k+1.

For a non-central Wishart matrix with covariance matrix equal to
the identity, a series expression for E[log det(I + vW)] has been com-
puted in [3] while the moment-generating function (2.18)) has been com-
puted in [134] in terms of the integral of hypergeometric functions.
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For a central Wishart matrix W ~ W,,(n,X) where X is posi-
tive definite with distinct eigenvalues, the moment-generating function
(2.I8)) has been computed in [234] and [135]

Theorem 2.15. [192] If H is an m X m zero-mean unit-variance com-
plex Gaussian matrix and 3 and Y are positive definite matrices having
distinct eigenvalues a; and ¢;, respectively, then for ¢ <0

E[det (I+EHTHT)C] = LFy(—Cm| —=,7)  (2.20)

where the hypergeometric function with matrix arguments [192] is

det ({oFo(—=¢ —m + 1,1] — a;¢;)})
Pt (=C = k) TI (6 — 6) TITS (a5 — as)

with 9 Fy(+,-|) denoting the scalar hypergeometric function [I]

QFO(_C7m| - 27T) =

For ¥ =1 (resp. ¥ = I), (2:20)) still holds but with 2 Fy(s,m| — %,1)
(resp. 2Fp(—¢,m|I,—7X)) replaced by [192]
et ({9 “Fy(—C— i+ 1lm—it1 |9j)})

F ,m|O) n
2Fo(=Cm| [1i<;(6: = 6;)

(2.21)
with @ = =3 (resp. ® = —Y).

The counterpart of Theorem 217 for a rectangular matrix H is as
follows.

Theorem 2.16. [148, 150] Let H be an m x n complex Gaussian mat-
rix with zero-mean unit-variance entries with m < n and define

M(C) —E |:6C10gdet(1+’yEHTHT)]

11 Reference [234] evaluates ([2I8) in terms of Gamma functions for m > n while reference
[135] evaluates it for arbitrary m and m, in terms of confluent hypergeometric functions
of the second kind [97].

121n the remainder, det({f(i,j)}) denotes the determinant of a matrix whose (i, j)th entry

is f(i, 7).
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with 3 and Y positive definite matrices having distinct eigenvalues a;
and ¢;, respectively. Then for ¢ <0

m

—d n—1 n
? J

(_1)d(d2—1) (—’Y) n(n2—1) Pl (C log % _ Z)z i a; — aj

1<j
with d = n —m and with G(¢) an n x n matrix whose (i, j)th entry is

te{l,...,m}

1 _ e
2Fp (Clog 2 —n+1, 1| —v¢ja;) je{l,...,n}

Gi,j (C) =

i em i € {m+1,...,
(=) "t"™ [Clog 2 —n+1], | ;e{{?..wn} "

where [b], = Fg)(Jg)k ) indicates the Pochhammer Symbol

An alternative expression for the moment-generating function in
Theorem [2.16] can be found in [231].

To conclude the exposition on properties of Wishart matrices, we
summarize several results on the non-asymptotic distribution of their
eigenvalues.

Theorem 2.17. [75, 120,89, 210] Let the entries of H be i.i.d. complex
Gaussian with zero mean and unit variance. The joint p.d.f. of the
ordered strictly positive eigenvalues of the Wishart matrix HH, A\; >
... > A, equals

=]l m [IO =27 (2.22)
=1

1<j

where ¢t and r are the minimum and maximum of the dimensions of H.
The marginal p.d.f. of the unordered eigenvalues i (e.g. [32])

-
|

1

m (L) 2 \r—te=A (2.23)

1
gre(N) =5 hxr =1

B
Il

0

I3Tf b is an integer, [b]y =b(b+1)...(b— 1+ k).
14 An alternative expression for (Z23) can be found in [I83] B.7].
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Fig. 2.1 Joint p.d.f. of the unordered positive eigenvalues of the Wishart matrix HH! with
r =3 and t = 2. (Scaled version of ([2:22]).)

where the Laguerre polynomials are

A

e

LN = 1w o

d (e—)\)\n+k) '

(2.24)

Figure 2Tl depicts the joint p.d.f. of the unordered positive eigenval-
ues of the Wishart matrix HH, A\; > 0,...,\; > 0, which is obtained
by dividing the joint p.d.f. of the ordered positive eigenvalues by t!

Theorem 2.18. Let W be a central complex Wishart matrix W ~
Win(n,X) with n > m, where the eigenvalues of 3 are distinct and

their ordered values are a1 > ...

> a, > 0. The joint p.d.f.

ordered positive eigenvalues of W, Ay > ... > A\, equals [125)]

det({e™™/% ) S A7™ L A — e

Qy Q.

detX”

.y (n—2)!

of the

(2.25)
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The marginal p.d.f. of the unordered eigenvalues is [2]

ZZD(Z?]) )\n—m—i-j—l e—)\/ai
i=1 j=1
qm,n(>\) — ! ™

mdet=" [[(n - 0) H(ale - é)

(=1 k<t

(2.26)

where D(i, 7) is the (4, j)th cofactor of the matrix D with entries

n—m+k—1)!
Doy = ( ) (2.27)
’ —n+m—~k
ay

1 ]
08 g
06 g
04 ]
0.2 g

0 il [T

0 5 10 15

Fig. 2.2 Marginal p.d.f. of the unordered eigenvalues of W ~ Wy, (n,X) with n = 3, m = 2

and ¥; ; = e_O'Q(i_j)z, compared to an histogram obtained via Monte Carlo simulation.

Figure contrasts a histogram obtained via Monte Carlo simu-
lation with the marginal p.d.f. of the unordered eigenvalues of W ~
W (n,X) with n = 3 and m = 2 and with the correlation matrix ¥
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chosen such tha
Y, = e 02—, (2.28)

5]

Theorem 2.19. Let W be a central complex Wishart matrix W ~
Wi (n,X) with m > n, where the eigenvalues of 3 are distinct and
their ordered values are a; > ... > a,, > 0. The joint p.d.f. of the

unordered strictly positive eigenvalues of W, A1, ..., \,, equals [80]
det@E) [ [ 7 ] —— J] (e — M) (2.29)
0! (ag — ag)
=1" k<t k<t
with

M _An

1 a1 ... aT_”_l ag’l_”_le ar aT_”_le a1

1 o .1 L

1 am ... a2 ™ am" T le am L. @ e am

The marginal p.d.f. of the unordered eigenvalues is given in [2].

Let H be an m X m zero-mean unit-variance complex Gaussian
matrix and 3 and Y be nonnegative definite matrices. Then the joint
p.d.f. of the eigenvalues of SHYHT is computed in [209] while the
marginal p.d.f. has been computed in [230].

The distributions of the largest and smallest eigenvalues of a central
and non-central Wishart matrix W ~ W,,,(n,I) are given in [67] and
[140] 143] 136]. The counterpart for a central Wishart matrix W ~
Win(n,X) with n > m can be found in [208].

2.1.7 Rank Results

Lemma 2.20. For any N x K matrices A, B,
rank(A + B) < rank(A) + rank(B).

Moreover, the rank of A is less than or equal to the number of nonzero
entries of A.

15 The correlation in ([Z28) is typical of a base station in a wireless cellular system.
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Lemma 2.21. For any Hermitian N x N matrices A and B,

N
Z (Mi(A) = XNi(B))® < tr (A — B)*.
i1

Lemma 2.22. [313] [10] For any N x K matrices A and B,

N sup |FXAT (z) — FgBT(x” < rank(A — B). (2.30)
x>0

Lemma 2.23. [313,10] For any N x N Hermitian matrices A and B,

N sup |[FX (z) — FR (x)| < rank(A — B). (2.31)
x>0

2.1.8 Karhunen-Loéve Expansion

As will be illustrated in Chapter [B], this transformation, widely used in
image processing, is a very convenient tool that facilitates the applica-
tion of certain random matrix results to channels of practical interest.

Definition 2.8. Let A be an N x K random matrix. Denote the cor-
relation between the (4, j)th and (¢, j')th entries of A by

ra(i,j;7',5) = E[AijAS ] (2.32)

A
5]

The Karhunen-Loeéve expansion of A yields an N x K image random
matrix A whose entries are

. N K
Are = DD Aij viali,j)
i=1 j=1

where the so-called expansion kernel {4, ¢(,j)} is a set of complete
orthonormal discrete basis functions formed by the eigenfunctions of
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the correlation function of A, i. e., this kernel must satisfy for all k£ €
{1,...,N}and £ € {1,... K}

N K
DD ralidid 3 e, 5') = Aeelra) dn (i, 5) (2.33)

i'=1j'=1

where we indicate the eigenvalues of ra by Mg ¢(ra).

Lemma 2.24. The entries of a Karhunen-Loeve image are, by con-
struction, uncorrelated and with variances given by the eigenvalues of
the correlation of the original matrix, i.e.,

. Mee(ra) if k=jand £ =1,
E A, Ar] =7 2.34
{ 7 } {0 otherwise. ( )

Lemma 2.25. If the expansion kernel can be factored as

Vre (i, 7) = uk (@) ve(d), (2.35)
then
A =UAV'!
with Uy ;=uy (i) and V,,=v;(j), which renders the matrices U and V
unitary. As a consequence, A and its Karhunen-Loéve image, A, have
the same singular values.

Thus, with the Karhunen-Loeve expansion we can map the singular
values of a matrix with correlated Gaussian entries and factorable ker-
nel to those of another Gaussian matrix whose entries are independent.

Definition 2.9. The correlation of a random matrix A is said to

be separable if ra(i,j;4',7’) can be expressed as the product of two
marginal correlation that are functions, respectively, of (i,j) and

(i',4")-

16 Equivalently, the correlation matrix of the vector obtained by stacking up the columns
of A can be expressed as the Kronecker product of two separate matrices that describe,
respectively, the correlation between the rows and between the columns of A.
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If the correlation of A is separable, then the kernel is automatically
factorabl and, furthermore, Ay ¢(ra)=AyA¢ where A\, and \; are, re-
spectively, the kth and ¢th eigenvalues of the two marginal correlations
whose product equals ra.

2.1.9 Regular Matrices

Definition 2.10. An N x K matrix P is asymptotically row-reqular if

K

. 1
Am Z; {P;; <a}
‘]:

is independent of 7 for all o € R, as the aspect ratio % converges to

a constant. A matrix whose transpose is asymptotically row-regular is
called asymptotically column-regular. A matrix that is both asymptot-
ically row-regular and asymptotically column-regular is called asymp-
totically doubly-regular and satisfies

1 1
lim —) P = Jim > Py (2.36)

If (2.30) is equal to 1, then P is standard asymptotically doubly-regular.

Example 2.5. An N x K rectangular Toeplitz matrix
Pij = @i —J)

with K > N is an asymptotically row-regular matrix. If either the func-
tion ¢ is periodic or N = K, then the Toeplitz matrix is asymptotically
doubly-regular.

17 Another relevant example of a factorable kernel occurs with shift-invariant correlation
functions such as ra (3, 7;4,5') = ra(t —¢,5 — j'), for which the Karhunen-Lo&ve image
is equivalent to a two-dimensional Fourier transform.
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2.1.10 Cauchy-Binet Theorem

The result reported below, which is the continuous analog of the
Cauchy-Binet formula [121], has been applied in several contributions
[39, 166, 2, 231, 219] in order to compute the capacity of multi-antenna
channels and the marginal distributions of the singular values of ma-
trices with correlated Gaussian entries.

Theorem 2.26. [144](see also [6]) Let F and G be nxn matrices

parametrized by a real n-vector (wi,...,wy):
Fij = [fi(w) (2.37)
Gi,j = gj(wi) (238)
where f; and g;, j = 1,...,n, are real-valued functions defined on the

real line. Then, for 0 < a < b,
b b
/ / detF detG dwn, ..., dw, = n!detA
a a
where A is another nxn matrix whose (i,7)-th entry is

b
A= [ fwg(w)de,

Note that, in [144], the factor n! does not appear because the variables
wi,...,w, are ordered.

2.1.11 Lyapunov Exponent

The celebrated result in this subsection, although outside the main fo-
cus of this monograph, has been used in several engineering applications
[114, 122 83].

As n — oo, the growth of the maximum singular value of the prod-
uct of n random matrices is exponential with a rate of increase given
by the following result.

Theorem 2.27. [79, 193, 29, [44] Denote the maximum singular value
of A (spectral norm of A) by p(A). Let Aj,...,A,,... be a stationary
ergodic sequence of random matrices for which

E[log(max{p(A,),1}) < oo.
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Then, there exists a deterministic constant A (the so-called Lyapunov
exponent) such that almost surel

1 n
lim —1 A = 2.39

2.2 Transforms

As mentioned in Section [[.3] it is often the case that the solution for the
limiting spectrum is obtained in terms of a transform of its distribution.
In this section, we review the most useful transforms including the
Shannon transform and the n-transform which, suggested by problems
of interest in communications, are introduced in this monograph.

For notational convenience, we refer to the transform of a random
variable and the transform of its cumulative distribution or density
function interchangeably. If the distribution of such variable equals
the asymptotic spectrum of a random matrix, then we refer to the
transform of the matrix and the transform of its asymptotic spectrum
interchangeably.

2.2.1 Stieltjes Transform

Let X be a real-valued random variable with distribution Fx(-). Its
Stieltjes transform is defined for complex arguments a;

SX(z):E[Xl_Z] :/OO )\izdFX()\). (2.40)

—0o0

Although (2:40]) is an analytic function on the complement of the sup-
port of Fix(-) on the complex plane, it is customary to further restrict
the domain of Sx(z) to arguments having positive imaginary parts.
According to the definition, the signs of the imaginary parts of z and
Sx(z) coincide. In the following examples, the sign of the square root
should be chosen so that this property is satisfied.

18 This property is satisfied by any conventional norm.

19The Stieltjes transform is also known as the Cauchy transform and it is equal to —m
times the Hilbert transform when defined on the real line. As with the Fourier transform
there is no universal agreement on its definition, as sometimes the Stieltjes transform is
defined as Sx (—z) or —Sx ().
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Example 2.6. The Stieltjes transform of the semi-circular law w(-) in

ID) is

1 [2V4-X2 1
Sw(Z)—%/;27)\_Z d)\—§

— 222 - 4] . (2.41)

Example 2.7. The Stieltjes transform of the Marcenko-Pastur law

f3() in (LID) is
Si,(2) = /—fﬁ ) d\

I - 2 _ —_1)2
_ 1 222 -2(B+1)z+ (B 1)‘ (2.42)
206z
Example 2.8. The Stieltjes transform of f5(-) in (LI2) is
by
S0 = [ smzfan
_ _ 2 _ _ 1)2
_ 1+ Bk 2:(5+1)z+(5 1)? (2.43)

Example 2.9. The Stieltjes transform of the averaged empirical eigen-
value distribution of the unit-rank matrix ss' is equal to

S(z) = %sp(z) - (1 - %) E (2.44)

z

where N is the dimension of s and Sp is the Stieltjes transform of the
random variable [s||%.
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Given Sx(-), the inversion formula that yields the p.d.f. of X is
[246), 222]

1
fx(A) = lim —Im [SX()\ —l—jw)} . (2.45)
w—0t T

Assuming F'x(-) has compact support, we can expand Sx(-) in a
Laurent series involving the moments of X. Expanding ﬁ with re-
spect to z, exchanging summation and integration and using analytical
extension, (2.40) can be written as
[e.e]
E[Xx*
> [zk I (2.46)
k=0

Sx(z) =—

| =

If the distribution of X is the averaged empirical eigenvalue distri-
bution of an N x N random matrix A, then E[X*] can be regarded
as the kth moment E [%tr{Ak}]. As a consequence, Sx(+) can be re-
garded as a generating function for the moments of the random matrix
whose averaged empirical eigenvalue distribution is Fx.

As indicated at the onset of Section 2.2] we often denote the Stielt-
jes transform of the asymptotic empirical distribution of a matrix A
by Sa(:). However, as in Examples 2.6] 2.7] and 2.8] it is sometimes
convenient to subscript S(-) by its corresponding asymptotic empirical
distribution or density function. Similar notational conventions will be
applied to the transforms to be defined in the sequel.

2.2.2 p-transform

In the applications of interest, it is advantageous to consider a trans-
form that carries some engineering intuition, while at the same time is
closely related to the Stieltjes transform.

Interestingly, this transform, which has not been used so far in the
random matrix literature, simplifies many derivations and statements
of results

Definition 2.11. The n-transform of a nonnegative random variable

20 The n-transform was first used in [273].
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X is

nx(y) =E [1 +17X} (2.47)

where 7 is a nonnegative real number and thus 0 < nx(y) < 1.

The rationale for introducing this quantity can be succinctly ex-
plained by considering a hypothetical situation where the sum of three
components is observed (for example, at the output of a linear re-
ceiver): “desired signal” with strength ~, “background noise” with unit
strength, and “multiuser interference” with strength vX. The reason
the multiuser interference strength is scaled by + is reminiscent of the
fact that, in many systems, the power of the users either is equal (per-
fect power control) or scales linearly. The expected SINR divided by
the single-user (i.e. X = 0) signal-to-noise ratio is given by (2.47).
Since this notion is reminiscent of the multiuser efficiency [271], we
have chosen the notation 7 standard in multiuser detection.

Either with analytic continuation or including the negative real line
in the domain of definition of the Stieltjes transform, we obtain the
simple relationship with the n-transform:

B Sx(=1)
=—"

Given the n-transform, ([2.48]) gives the Stieltjes transform by ana-
lytic continuation in the whole positive upper complex half-plane, and
then the distribution of X through the inversion formula (2.45]).

From (2.40) and (2:48), the n-transform can be written in terms of
the moments of X:

nx () (2.48)

nx(7) = ) (—1)*EX", (2.49)
k=0

whenever the moments of X exist and the series in (Z49]) converges.
From (L8) it follows that the MMSE considered in Section is
equal to the n-transform of the empirical distribution of the eigenvalues
of H'H.
Simple properties of the n-transform that prove useful are:



42  Random Matrix Theory

® 7x () is strictly monotonically decreasing with v > 0 from 1
to P[X = 0].

® ynx () is strictly monotonically increasing with v > 0 from
0 to E[+].

Thus, the asymptotic fraction of zero eigenvalues of A is

Jim na(y) (2.50)
while
1
lim Etr{A_l} = lim yna (7). (2.51)
n—00 ~y—00

Example 2.10. [271} p. 303] The n-transform of the Maréenko-Pastur
law given in (LI0) is

ny) =1- FOuh) (2.52)

48~

Example 2.11. The n-transform of the averaged empirical eigenvalue
distribution of the unit-rank matrix ss' is equal to

1) =1~ 1 (1 = 7p() (253)

where N is the dimension of s, and np is the n-transform of the random
variable [|s||%.

Example 2.12. The 7n-transform of the exponential distribution with
unit mean is
1

”) = =S Bi(=) (2.54)

21 Note from (ZZT) that it is easy (and, it will turn out, sometimes useful) to extend the
definition of the n-transform to (generalized or defective) distributions that put some
nonzero mass at +oo. In this case, nx (0) = P[X < o]
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nw)

Fig. 2.3 n-transform of the Marcenko-Pastur law (II0) evaluated for 8 = 0.1,0.5,1, 2, 10.

with E;(-) denoting the exponential integral

oo ,—t
Ei(z)——/ ert.

—z

Example 2.13. Let Q be a N x K matrix uniformly distributed over
the manifold of N x K complex matrices such that Q'Q = I. Then
g

=1- ——
nqqt(v) ﬂ+1+7

Lemma 2.28. For any N x K matrix A and K x N matrix B such
that AB is nonnegative definite,

N (1= g, () = K (1= e, () (2.55)
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Consequently, for K, N — oo with % — (3, if the spectra converge,

naB(y) =1— 3+ Bnsa(y). (2.56)

Lemma 2.29.

(a) Let the components of the N-dimensional vector x be zero-mean
and uncorrelated with second-order moment % Then, for any
N x N deterministic nonnegative definite matrix A,

E |x' (I+’YA)_1X] = ey (7).

(b) [13] Let the components of the N-dimensional vector x be zero-
mean and independent with variance % For any N x N nonneg-
ative definite random matrix B independent of x whose spec-
trum converges almost surely,

A}im xI(I++B) 'x=ng(y) as. (2.57)
]\}im xI(B—21)"'x=38g(z) as. (2.58)

2.2.3 Shannon Transform

Another transform motivated by applications is the following

Definition 2.12. The Shannon transform of a nonnegative random
variable X is defined as

Vx (7) = E[log(1 +~7.X)] (2.59)

where v is a nonnegative real number.

22 The Shannon transform was first introduced in [272] 273].
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The Shannon transform is intimately related to the Stieltjes and
n-transforms:

= 1—nx(7) (2.61)

Since Vx (0) = 0, Vx () can be obtained for all v > 0 by integrating
the derivative obtained in (2.60). The Shannon transform contains the
same information as the distribution of X, either through the inversion
of the Stieltjes transform or from the fact that all the moments of X
are obtainable from Vx (7).

As we saw in Section [.2] the Shannon transform of the empirical
distribution of the eigenvalues of HH' gives the capacity of various
communication channels of interest.

Example 2.14. [275] The Shannon transform of the Marcenko-Pastur
law fg(-) in (ILI0) is
1 1 1
V) = tog (147 37 (0u8)) + Sog (1495 - 17 (1.9))

_loge
43~

F (v, 5). (2.62)

Example 2.15. [I31] Denoting by V(7) the Shannon transform of the
Marcenko-Pastur law fg(-) in (II0) with 5 <1,

Tim (logy — V(7)) = ! gﬂ log(1 — 8) + loge. (2.63)

Example 2.16. The Shannon transform of the averaged empirical
eigenvalue distribution of the unit-rank matrix ss’ equals

V(v) = %Vp(’y) (2.64)

where NV is the dimension of s and Vp is the Shannon transform of the
random variable [s||%.
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3.5

Vv 01
1 05

25 q

v 10
0.5F —

0 1 2 3 4 5 6 7 8 9 10

Y

Fig. 2.4 Shannon transform of the Maréenko-Pastur law (II0) for 3 = 0.1,0.5, 1, 2, 10.

Example 2.17. [6I] The Shannon transform of g,.(-) in (223 if23

LINLEN" (k+r—t(=1)%2L o r4(7)
V(y) = Z ‘ <€1> (k— ) (r —t+£1)\(r —+t—|t€2)!€2!

An analytical expression for the Shannon transform of the marginal
distribution, g, ,(-) in (2.26]), of the eigenvalues of a central complex
Wishart matrix W ~ W,,,(n,3) with n > m can be found in [2, [135].
For the converse case, n < m, defined in Theorem [2.19] the correspond-
ing Shannon transform can be found in [2], 234, [135].

23 Related expressions in terms of the exponential integral function [97] and the Gamma
function can be found in [219] and [126], respectively.
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Example 2.18. [148] The Shannon transform of the asymptotic eigen-
value distribution of SH®HT as defined in Theorem .16 is

_ loge[i5 & <[ ‘ D
V(’Y) - 1 d(d ) n(n 1) H¢z ¢] Haz_a] z::det

(_ ) 1<J 1<j

where X, is a m x n matrix whose (7, j)th entry, for i € {1...,m} and
je{l...,n},is

(vo )" ¢ 1 ;
— 117 ¥ (= =
(n—1)! o e7?i® EZ< p~ j%) 1=/

X i = n-1 ./ 1.aA
Kehia =9 & et 200 (1~ i

k=n—m @
and Y is an (n —m) X n matrix whose (¢, j)th entry, for j € {1...,n}
andie€ {l...,n—m},is

(Y)m' = [1 — n]i—l(—’}’(bj)i_l

Example 2.19. The Shannon transform of the exponential distribu-
tion plays an important role in the capacity of fading channels and can
be written in terms of its n-transform given in (2.54)):

V() = (7). (2.66)

2.2.4 Mellin Transform

The Mellin transform has been used in the non-asymptotic theory of
random matrices. As we will see, it is related to the Shannon transform
and can be used to find the capacity of multi-antenna channels with
finite number of antennas in closed form.

Definition 2.13. The Mellin transform of a positive random variable
X is given by

Mx(z) = E[X*71] (2.67)
where z belongs to a strip of the complex plane where the expectation
is finite.
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The inverse Mellin transform of Q(z) is given by

) 1 c+ioco
Mg (t) = — t7*Q(2)dz. 2.68
O M L (2.68)
Notice that
Mk (@) = fix(2)

with fx(-) denoting the p.d.f. of X.

Another interesting property of the Mellin transform is that the
Mellin transform of the product of two independent random variables
is equal to the product of the Mellin transforms:

Mxy = MxMy. (2.69)

Example 2.20. If X is exponentially distributed with mean %, then

Mx(z) = pt 77T (2).

Example 2.21. If X is Nakagami distributed with parameter v,

fu(r) = 132’:) r2=le=vr then for 1 — z < v

1—z

I'(v)

Mx2(2) = Fv+z—1).

Example 2.22. [126] The Mellin transform of g, ,(-) in ([2:23) is
r1 — (1 —z+mn) T I'(z+9)

(n!)? — 0!

Mgr,r(l - Z) =
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Example 2.23. The Mellin transform of gy, ,(-) in [2.26) is

m

m™ r o apap < D, )T (z+n—m+j—1)
MQ'm,n( ) n rr; z—n—
detX Hak—ag ;; al J+1H€ [(n—0)!

with D(-,-) given in (2:27)).

Theorem 2.30. [126]
Vx(7) = My'(7) (2.70)
where M?l is the inverse Mellin transform of

T(z) =2z 'T(2)I(1 — 2)Mx (1 - 2). (2.71)

Using Theorem 2.30], an explicit expression for the Shannon trans-
form of g, ,(-) in (Z23) has been derived in [126].

2.2.5 R-transform

Another handy transform, on which we elaborate next, is the R-
transform. In particular, as we shall see in detail in Section 2.4l once the
concept of asymptotic freeness has been introduced, the R-transform
enables the characterization of the asymptotic spectrum of a sum of
suitable matrices (such as independent unitarily invariant matrices)
from their individual asymptotic spectra.

Definition 2.14. [285] Let Sy'(z) denote the inverse (with respect
to the composition of functions) of the Stieltjes transform of X, i. e.,
z = Sy' (Sx(2)). The R-transform of X is defined as the complex-
valued function of complex argument

Rx(z) =Sy (—2) — ~ (2.72)
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As a consequence of (272]), a direct relationship between the R-
transform and the Stieltjes transform exists, namely
1

TR -

S

where for notational simplicity we used s = Sx(z). For positive random
variables, letting z = —% in ([2.73]), we obtain from (2.48)) the following
relationship between the R-transform and the n-transform:
B 1
1Ry (=ymx (7))

A consequence of ([2.74]) is that the R-transform (restricted to the
negative real axis) can be equivalently defined as

nx(7) (2.74)

Rﬂ@zﬂg%;i (2.75)

with v and ¢ satisfying

o =—ynx(7) (2.76)

Example 2.24. The R-transform of a unit mass at a is

R(z) = a. (2.77)

Example 2.25. The R-transform of the semicircle law is

R(z) = . (2.78)

Example 2.26. The R-transform of the Marcenko-Pastur law fﬁ(') in
(LI0) is

B 1
1-pz

R(z) (2.79)
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Example 2.27. The R-transform of fg(-) in (LI2) is

R(2) = - f - (2.80)

Example 2.28. The R-transform of the averaged empirical eigenvalue
distribution of the N-dimensional unit-rank matrix ss’ such that ||s||?
has n-transform 7np, satisfies the implicit equation

(G- e

In the special case where the norm is deterministic, ||s||? = ¢,

1
 1+9c

ne(7v)

and an explicit expression for the R-transform can be obtained from

@ED) as

—1+cz+ /22 + (1 —cz)?

R(z) =

2z
= — % _ 4o (2.82)
(1—c2)N ' '
Theorem 2.31. For any a > 0,
Rux(2) = aRx(az). (2.83)

We now outline how to obtain the moments of X from Rx(z). When
the random variable X is compactly supported, the R-transform can be
represented as a series (for those values in the region of convergence):

Rx(z) = chzk_l (2.84)
k=1
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where the coefficients cg, called the free cumulants of X, play a role
akin to that of the classical cumulants. As in the classical case, the
coefficients ¢, are polynomial functions of the moments E[XP] with
0 < p < k. Given the free cumulants c¢g, the moments of X can be
obtained by the so-called free cumulant formula [241]

m

EX™ =) ¢ > E[X™ . .E[X™ ] (2.85)
k=1 mi+-+mp=m
Note that ¢; = E[X], co = Var(X), and Rx(0) = E[X].

As hinted at the beginning of this section, the main usefulness of the
R-transform stems from Theorem 2.192] stating that, for an important
class of random matrices, the R-transform of the asymptotic spectrum
of the sum is the sum of R-transforms of the individual spectra.

2.2.6 S-transform

Definition 2.15. The S-transform of a nonnegative random variable
X i

Sx(r) = - 2% LU+ o), (2.86)

which maps (—1,0) onto the positive real line.

Example 2.29. The S-transform of the Marcenko-Pastur law fs(-) in

IO is

S(z) = . (2.87)

24 A less compact definition of the S-transform on the complex plane is given in the literature
(since the n-transform had not been used before) for arbitrary random variables with
nonzero mean. Note that the restriction to nonnegative random variables stems from the
definition of the n-transform.
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Example 2.30. The S-transform of 1?5() in (LI2) is

S(z) = . (2.88)

Example 2.31. The S-transform of the averaged empirical eigen-

value distribution of the N-dimensional unit-rank matrix ss™ such that

|s||?> = ¢ is equal to

1+x
) =

PEESYE (2.89)

The S-transform was introduced by Voiculescu [286] in 1987. As we
will see, its main usefulness lies in the fact that the S-transform of the
product of certain random matrices is the product of the corresponding
S-transforms in the limit.

From (2.56)), we obtain

nas(Y) = 1BA (% + 1> (2.90)

and hence the S-transform counterpart to (2.50):

Theorem 2.32. For any N x K matrix A and K x N matrix B such
that, as K, N — oo with % — (3, the spectra converge while AB is
nonnegative definite,

Sap(z) = %EBA (%) . (2.91)

Example 2.32. Let Q be a N x K matrix uniformly distributed over
the manifold of N x K complex matrices such that QTQ = I. Then

1+
B+

Sqqi (@) = . (2.92)
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2.3 Asymptotic Spectrum Theorems

In this section, we give the main results on the limit of the empirical
distributions of the eigenvalues of various random matrices of inter-
est. For pedagogical purposes we will give results in increasing level of
generality.

2.3.1 The Semicircle Law

Theorem 2.33. [308,[305] Consider an N x N standard Wigner matrix

W such that, for some constant x, and sufficiently large N

max K [|W,;|'] < -

e NZ (2.93)

Then, the empirical distribution of W converges almost surely to the
semicircle law whose density is

w(z) = %\/ 4 — z? (2.94)

with |z] < 2.

Wigner’s original proof [305] of the convergence to the semicircle law
consisted of showing convergence of the empirical moments %tr {Wzk}
to the even moments of the semicircle law, namely, the Catalan num-
bers:

. ol _ [ o
lim Ntr{W } = / " w(x) dx

N—oo -2

_ %—1—1 <2:> (2.95)

The zero-mean assumption in the definition of a Wigner matrix can be
relaxed to an identical-mean condition using Lemma 223l In fact, it
suffices that the rank of the mean matrix does not grow linearly with
N for Theorem [2.33] to hold.

Assuming for simplicity that the diagonal elements of the Wigner
matrix are zero, we can give a simple sketch of the proof of Theorem

[2.33] based on the matrix inversion lemma:
1
A Y= ——— (2.96)
Ai,i — ajAl 1a2-
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with a; representing the ith column of A excluding the i-element and
A; indicating the (n — 1)x(n — 1) submatrix obtained by eliminating
from A the ith column and the ith row. Thus
1 1 &
—tr{(—2I+ W) 1l = —
(I W) T = ;

1
—z— W;-r (—2I4+ W) twy
Moreover, W; is independent of w;, whose entries are independent

with identical variance % Then, taking the limit of (2.97)) and applying
([258) to the right-hand side, we obtain the quadratic equation

Swl) = 5w

which admits the closed-form solution given in (2:41]).

(2.97)

Condition (Z93) on the entries of v/N W can be replaced by the
Lindeberg-type condition on the whole matrix [10, Thm. 2.4]:

1
~ D E (Wi 1{{Wiy] > 6}] — 0 (2.98)
,J
for any 6 > 0.

2.3.2 The Full-Circle Law

Theorem 2.34. [173] 197, [85] [68, O] Let H be an N x N complex
random matrix whose entries are independent random variables with
identical mean, variance % and finite kth moments for £ > 4. Assume
that the joint distributions of the real and imaginary parts of the entries
have uniformly bounded densities. Then, the asymptotic spectrum of
H converges almost surely to the circular law, namely the uniform
distribution over the unit disk on the complex plane {¢ € C : |(| < 1}
whose density is given by

fe(¢) = % (] < 1. (2.99)

Theorem 2.34] also holds for real matrices replacing the assumption
on the joint distribution of real and imaginary parts with the one-
dimensional distribution of the real-valued entries.
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2.3.3 The Maréenko-Pastur Law and its Generalizations

Theorem 2.35. [170 296 131], T0] Consider an N x K matrix H whose
entries are independent zero-mean complex (or real) random variables
with variance + and fourth moments of order O(ﬁ) As K,N — o0
with % — 3, the empirical distribution of H'H converges almost surely

to a nonrandom limiting distribution with density

I S Y O M Ol
fy(x) = (1 ﬁ> 5(z) + ol (2.100)

where

a=(1-/B) b=(1+ VB>

The above limiting distribution is the Marcenko-Pastur law with ratio
index (. Using Lemma 2.22] the zero-mean condition can be relaxed
to having identical mean. The condition on the fourth moments can be
relaxed [I0, Thm. 2.8] to a Lindeberg-type condition:

1
T D E[Hiy* 1{|Hij| > 6}] —0 (2.101)
i

for any 6 > 0.

Using (IL3) and @I00), the empirical distribution of HH', with H
as in Theorem [Z.35] converges almost surely to a nonrandom limiting
distribution with density (I.I12]) whose moments are given by

/ab Mg (x) da g % <I;> <z ]j 1> 3 (2.102)

1
—  lim — {HHM} 2.1
Jim ot ( ) (2.103)

Furthermore, from Lemma 2.10] it follows straightforwardly that the
first and second order asymptotic moments of (HH)™! with 3 > 1
converge to

. 1 _ 1
1 - p
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The convergence in (ZI03)-(2I05) is almost surely. If H is square,
then the empirical distribution of its singular values converges almost
surely to the quarter circle law with density ¢(-) given in (L2I]). The
even moments of the quarter circle law coincide with the corresponding
moments of the semicircle law. Unlike those of the semicircle law, the
odd moments of the quarter circle law do not vanish. For all positive
integers k the moments of the quarter circle law are given by

2k _ 2k T(HY)
/0 xq(z)dr = N R g) (2.106)

In the important special case of square H with independent Gaus-
sian entries, the speed at which the minimum singular value vanishes
(and consequently the growth of the condition number) is characterized
by the following result.

Theorem 2.36. [67, Thm. 5.1],[218] Consider an N x N standard com-
plex Gaussian matrix H. The minimum singular value of H, opy,, sat-
isfies

lim P[Nowyin > z] = e~ T2, (2.107)

N—oo

A summary of related results for both the minimum and maximum
singular values of H can be found in [67, [10].

The following theorem establishes a link between asymptotic ran-
dom matrix theory and recent results on the asymptotic distribution
of the zeros of classical orthogonal polynomials.

Theorem 2.37. [57] Let A; < ... < Ax denote the ordered eigen-
values of H'H with H an N x K standard complex Gaussian matrix

and let 1 < ... < xx denote the zeros of the Laguerre polynomial
L%_K-H(Nx). If K, N — oo with % — (3 € (0,00), then almost surely

K

1

EZW —z? 0. (2.108)
/=1
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Moreover, if d; < ds < ... < dg denote the ordered differences |\; —x;/,
then

dpyre] 230 (2.109)

for all y € (0,1). For the smallest and largest eigenvalues of H'H, and
for the smallest and largest zero of the polynomial L%‘K t(Nz), we
have that almost surely

lim zy = lim A = (1- VB3)? (2.110)
Jim g = lim A= (1+ V3)? (2.111)

for § <1 while, for 8 > 1,

lim zr_np1= lim Ag_ng1 = (1—+/8)% (2.112)
K—o0 K—o00

Theorem [2.37] in conjunction with recent results on the asymptotic
distribution of the zeros of scaled generalized Laguerre polynomials,
L%_K TL(Nx), also provides an alternative proof of the semicircle and
Marcenko-Pastur laws.

In [57], using results on the asymptotics of classical orthogonal poly-
nomials, results analogous to Theorem [2.3T are also derived for centered
sample covariance matrices

% (HTH - /4;I> (2.113)
with £ = max {1, %} For such matrices, it is proved that if K, N — oo
with % — 00 or with % — 0, the extremal eigenvalues converge almost
surely to 2 and —2, while the corresponding eigenvalue distribution
converges to the semicircle law (cf. Example 2.50]).

Theorem 2.38. [170, 227] Let H be an N x K matrix whose entries
are i.i.d. complex random variables with zero-mean and variance % Let
T be a K x K real diagonal random matrix whose empirical eigenvalue
distribution converges almost surely to the distribution of a random
variable T. Let Wy be an N x N Hermitian complex random matrix
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with empirical eigenvalue distribution converging almost surely to a
nonrandom distribution whose Stieltjes transform is Sp. If H, T, and
Wy are independent, the empirical eigenvalue distribution of

W = W, + HTH'! (2.114)

converges, as K, N — oo with % — (3, almost surely to a nonrandom
limiting distribution whose Stieltjes transform S(-) satisfies

so-s(-mm[mnl). @

The case Wy = 0 merits particular attention. Using the more con-
venient 7-transform and Shannon transform, we derive the following
result from [226]. (The proof is given in Appendix [4.]] under stronger
assumptions on T.)

Theorem 2.39. Let H be an N x K matrix whose entries are i.i.d.
complex random variables with variance % Let T be a K x K Her-
mitian nonnegative random matrix, independent of H, whose empir-
ical eigenvalue distribution converges almost surely to a nonrandom
limit. The empirical eigenvalue distribution of HTHT converges almost
surely, as K, N — oo with % — [, to a distribution whose n-transform
satisfies

L—n

~ 1-nr(ym) (2:116)

where for notational simplicity we have abbreviated ngrei (7) = 7.
The corresponding Shannon transform satisﬁe

1
Varai (v) = V() + log; +(n—1)loge. (2.117)

The condition of i.i.d. entries can be relaxed to independent entries
with common mean and variance % satisfying the Lindeberg-type con-
dition (ZI0T)). The mth moment of the empirical distribution of HTHT

25 The derivation of ZI17) from (ZII0) is given in Section B2
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converges almost surely to [313, [116] [158]:

m i m! - -
;ﬁm1+';ni—m(m —i+ Df(ma, ... ml)E[T J.. E[T™] (2.118)

where T is a random variable with distribution equal to the asymptotic
spectrum of T and, V1 < /¢ < m,

flir,.oyie) = fils - fin! (2.119)

with f; the number of entries of the vector [iy,...,is] equal to z'
Figure 2.5 depicts the Shannon transform of HTH' given in (ZI17)
for 8 = % and T exponentially distributed.

1:: pe
1.4+ / i
1.2F / N

o f

ol /) |

021 q

0 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Fig. 2.5 Shannon transform of the asymptotic spectrum of HTHT for g = % and T expo-
nentially distributed. The stars indicate the Shannon transform, obtained via Monte Carlo
simulation, of the averaged empirical distribution of the eigenvalues of HTHT where H is
3 X 2.

If T =1, then nr(y) = ﬁ, and (ZII6]) becomes

g
L+9m

n=1-p8+ (2.120)

26 For example, f(1,1,4,2,1,2) =3!.2! .1
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whose explicit solution is the n-transform of the Marcenko-Pastur dis-
tribution, fg(-), in (LI2)):
F(v,8)
=1-—". 2.121
10) = (2121)
Equation (ZI16]) admits an explicit solution in a few other cases, one
of which is illustrated by the result that follows.

Theorem 2.40. [223] If, in Theorem 239, T = (YYT)~! with Y a
K xm (K < m) Gaussian random matrix whose entries have zero-
mean and variance %, then, using (|2:|'_2:|])

gl L~

nr(y) = —=F (—ﬂ) 2.122

v(0) = 257 (5 2122

where % — f3. Thus, solving (ZI16) we find that the asymptotic spec-

trum of W = H(YYT)"1HT is given by

(1-B/(@ - a2yt (52 — )"
onx(xf + 3)

o () = (1 - %>+5(m) 4

(2.123)

with

11-0-p0-B) L 1ey1-0-p0-d)
o 13 B 15

Using (2.56]) and (2.116)), we can give an equivalent expression for
the n-transform of the asymptotic spectrum of TV2HTHT!/2:

nr(v(1—B+8n) =n (2.124)
where 17 = Dp1/2gpigri/2 (7). Note that, as 5 — 0,

nremraTy2 (7) = () (2.125)
and thus the spectrum of TV/2HTHT!/2 converges to that of T.

27 Although [223] obtained ([EI23) with the condition that Y be Gaussian, it follows from
I2I) and Theorem that this condition is not required for (2122) and (Z123) to
hold.
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Theorem 2.41. [I78] Let ¥ be a positive definite matrix whose
asymptotic spectrum has the p.d.f.

Fn(\) = %—;v\/<% - 1> (1 - %) (2.126)

with o1 < X <09 and

o= M. (2.127)
40109
If His an NV x K standard complex Gaussian matrix, then, as K, N —
oo with £ — 3, the asymptotic spectrum of W = Z1/2HHT®1/2 has
the p.d.f@

VA—a)tb-N*

fw(\) = (1= 8)T6(\) + 27 A(1 + Ap)

(2.128)

with

a = 1+8+2u8-2V/3V1+m)(1+pub)  (2129)
b = 14 8+2ub+2VBV 1+ w1+ ub). (2.130)
The Shannon transform of (2.128)) is

Vw(y) = 10g(7w1(%ﬁ,u))+i10g|1—AM(%B,N)I

—(8 = 1)log |ws(v, 8, )| (2.131)
with
oy gy = HAFBOW 30 +6) + o] = 2060y — )
1(7,8,1) = 2691+ (1 + B)p + Bu?]
B+(L+B) — ou + 295
wa(7, B, 1) 291+ (1 + B)u + Bu?]
1+ A=y +2uf - yor
ws(y, B, 1) = 2587_/0 e
e __(A+98) if ~ =
1+ (1+8)y T
wi = (1+(1+B)7)? —4B8y(y — p).

28 Theorem [2:39] indicates that (2128) holds even without the Gaussian condition on H.
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Returning to the setting of Theorem [2.38 but interchanging the as-
sumptions on Wy and T, i.e., with W diagonal and T Hermitian, the
result that follows (proved in Appendix[4.2]) states that the asymptotic
spectrum in Theorem [2.38] still holds under the condition that W and
T be nonnegative definite. Consistent with our emphasis, this result is
formulated in terms of the n-transform rather than the Stieltjes trans-
form used in Theorem

Theorem 2.42. Let H be an N x K matrix whose entries are i.i.d.
complex random variables with zero-mean and variance % Let T be
a K x K positive definite random matrix whose empirical eigenvalue
distribution converges almost surely to a nonrandom limit. Let W be
an N x N nonnegative definite diagonal random matrix with empirical
eigenvalue distribution converging almost surely to a nonrandom limit.
Assuming that H, T, and Wy are independent, the empirical eigenvalue
distribution of

W = W, + HTH'! (2.132)

converges almost surely, as K, N — oo with % — (3, to a nonrandom
limiting distribution whose n-transform is the solution of the following
pair of equations:

yn=¢no(p) (2.133)

n=mno () — B —nrlyn) (2.134)
with 7o and nt the n-transforms of Wy and T respectively.

Notice that the function 7(y) can be immediately evaluated from
2I33) and (2I34]) since every ¢ € (0,00) determines a pair of values
(v,n(7)) € (0,00) x [0,1]: the product (yn) is obtained from (2I33)
(which is strictly monotonically increasing in ¢), then 7 is obtained
from (2.134) and, finally, v = %

Figure shows the n-transform of W = HTH' where the asymp-
totic spectrum of T converges almost surely to an exponential distri-
bution.
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0.9F | 4

075} \ R
07} \ |
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0

Fig. 2.6 n-transform of HTH' with 8 = % and nT given by (254). The stars indicate the
n-transform of the averaged empirical spectrum of HTHT for a 3 x 2 matrix H.

Theorem 2.43. [86, 55, [159] Define H = CSA where S is an N X
K matrix whose entries are independent complex random variables
(arbitrarily distributed) satisfying the Lindeberg condition (2.107]) with
identical means and variance % Let C and A be, respectively, N x N
and K x K random matrices such that the asymptotic spectra of D =
CC' and T = AAT converge almost surely to compactly supported
measures If C, A and S are independent, as K, N — oo with % — 0,
the n-transform of HHY is

namt (7) = E[Taat (D, 7) ] (2.135)

where gyt (d, ) satisfies

Pupi(d, ) = (2.136)

N
l+vfBdE 147 TE[D T'ygy7 (D,7)]

29In the case that C and A are diagonal deterministic matrices, Theorem 243]is a special
case of Theorem [2.50]
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with D and T independent random variables whose distributions are the
asymptotic spectra of D and T respectively. The asymptotic fraction
of zero eigenvalues of HH' equals

L g (v) = 1 — min {SP[T # 0], P[D # 0]}

The following result, proved in Appendix [4.3] finds the Shannon
transform of HHT in terms of the Shannon transforms of D and T.

Theorem 2.44. Let H be an N x K matrix as defined in Theorem
243l The Shannon transform of HHT is given by:
YdVt

Vaut (7) = Vp(B7a) + BVr(n) — B S log e (2.137)
where
%f;h =1-—nr(1) ﬁ%fy% =1—np(Bya)- (2.138)

From (2.I38)), an alternative expression for nggpt(v) with H as in
Theorem 2.43] can be obtained as

mamt (7) = 1o (87a(7)) (2.139)
where 74(7) is the solution to (2.I38]).

Theorem 2.45. [262] 165] Let H be an N x K matrix defined as in
Theorem [2.43] Defining

,_ LP[T#0]
7 PEp o)
. Vau: (7) _
tim (1080 9) ~ e bp ) ~ e (MO
with
“E [log Dol - v g >1
Loo={ -E [1og TD'| F=1 (2141
~Elog™™ | - 2V (L) g <1
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with o and T'y,, respectively, solutions to

1 1
(o) =1——= =] =1-74" 2.142
m@=1-5.  w(g)=1-0 (2142
and with D’ and T’ the restrictions of D and T to the events D # 0 and
T#0.

Corollary 2.1. As v — oo, we have that

E[3]a, B >1and PD>0]=1

ylingofynHHT () = { 00, otherwise

with « solution to (2Z.142)).

Theorem 2.46. [262] Let H be an N x K matrix defined as in
Theorem [2.43] Further define
-1
hi [I+49> hhf| by with Z2<y< i,
o+

1
FM(y,~) = THE

As K, N — oo, F N)(y,~) converges almost surely to

FM(y,y) =5 JIE([WD)] y € [0,1]

with () satisfying (2.138]).

Corollary 2.2. As v — oo, we have that
lim @ = BP[T > 0] s (2.143)
y—00

where v;(7) is the solution to (ZI38]) while 'y, is the solution to (2.142)
for 3 < 1 and 0 otherwise.
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Theorem 2.47. [159] Let H be an N x K matrix defined as in
Theorem 243l The mth moment of the empirical eigenvalue distri-
bution of HHT converges almost surely to

m
Zﬁk Z Z B(ml,...,mk,nl,...,nm_,_l_k)-
k=1

my+-Fmp=m ”1+"'+"m+1—k:m
mp<eSmy n < Sngp g

E[T™] ... E[T™]E[D™] - - - E[D"m+1-+].
(2.144)

with D and T defined as in Theorem [Z43] f(i1,...,i,) defined as in
(2119), whild]

m(m — k)!(k — 1)!
B(mla"'7mk7n17”'7nm+1—k) = ( )( )

fma,...omi) - f(ng, oo nmy1—k)

Equation (2.144]) is obtained in [I59] using combinatorial tools. An
alternative derivation can be obtained using Theorem 2.55] from which
the nth moment of HH' given by (2144 is also seen to equal E[r, (D)]
with m,, admitting the following recursive re-formulation:

n
n(d) = c(d) Y Mny1(d). i, 1(d) (2.145)
=1 ni+ng+---+ne=n
with
cor1(d) = BAE[TE[D .

Theorem 2.48. [159] Let H be an N x K matrix defined as in
Theorem [2.43] whose jth column is h;. Further define

n

5 (y) = ||h B h! thhT h; with Il<y<4 (2.146)

30 Note that B(mi,...,mg,n1,...,Mpm41—k) can be interpreted as the number of non-
crossing partitions (cf. Section 244) w on {1,...,m} satisfying the conditions:
(i) the cardinalities of the subsets in @, in increasing order, are my, ..., mg,
(ii) the cardinalities of the subsets in the complementation map (cf. Section 2.44) of w
are, in increasing order, ni,...,Nym41—k-
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then, as K, N — oo with % — 3, almost surely

a.s. E[Dmn(D)] . fn
WS TEp D)

(2.147)

where &, can be computed through the following recursive equation

&=BY E[D*mea(D)] Y E[TH &uoi- &
(=1

ny+-+n;=n—~¢
1<i<n—¢

with

ma(d) =B me-y(d) Y E[TH] &1 & (2.148)
(=1

ny+--+n;=n—~L
1<i<n—¢

Moreover, E[m,,(D)] yields yet another way to compute the nth moment
of the asymptotic spectrum of HHT.

Under mild assumptions on the distribution of the independent en-
tries of H, the following convergence result is shown in Appendix (4.4l

Theorem 2.49. Define an N x K complex random matrix H whose
entries are independent complex random variables (arbitrarily dis-
tributed) satisfying the Lindeberg condition (2I01]) and with identical
means. Let their variances be

Pij
N
with P an IV x K deterministic standard asymptotically doubly-regular

Var [Hi,j] = (2149)

matrix whose entries are uniformly bounded for any N. The asymptotic
empirical eigenvalue distribution of HTH converges almost surely to the
Maréenko-Pastur distribution whose density is given by (2.100).

Using Lemma [2.22] Theorem [2.49 can be extended to matrices
whose mean has rank r where r > 1 but such that
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Definition 2.16. Consider an N x K random matrix H whose entries
have variances

P. .
Var[H; ;] = WJ (2.150)
with P an N x K deterministic matrix whose entries are uniformly

bounded. For each N, let
oV 1 [0,1) x [0,1) = R
be the variance profile function given by

o (z,y) = Py H<r <k, % <y< % (2.151)

Whenever v (z,y) converges uniformly to a limiting bounded measur-
able function, v(x,y), we define this limit as the asymptotic variance

profile of H.

Theorem 2.50. [86, 102 221] Let H be an N x K random matrix
whose entries are independent zero-mean complex random variables
(arbitrarily distributed) satisfying the Lindeberg condition (2.I0T]) and
with variances

P,
E [|Hi,?] = WJ (2.152)

where P is an N x K deterministic matrix whose entries are uniformly
bounded and from which the asymptotic variance profile of H, denoted
v(z,y), can be obtained as per Definition 216l As K, N — oo with

K _, 3, the empirical eigenvalue distribution of HH' converges almost

N
surely to a limiting distribution whose n-transform is
nunt (7) = E [P (X, 7)] (2.153)
with I'ggt (2, ) satisfying the equations,
1
Il'gmi(z,y) = 2.154
(00 R e T o] Y
1
Taat(y,7) (2.155)

1+ Efu(X, )l am (X, 7))
where X and Y are independent random variables uniform on [0, 1].
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The zero-mean hypothesis in Theorem can be relaxed using
Lemma 2221 Specifically, if the rank of E[H] is o(N), then Theorem
still holds.

The asymptotic fraction of zero eigenvalues of HHY is equal to

lim negeri (7) = 1 — min {BPE[0(X, Y)[Y] # 0], PE[(X, Y)|X] # 0]}.

Yoo

Lemma 2.51. [86] Let H be an N x K complex random matrix defined
as in Theorem 2500 For each a,b € [0,1], a < b

LN
~ 2

b
(yHH' +I);i1—>/ Cyprt (z,7)d. (2.156)
i=|aN | a

Theorem 2.52. [262] Let H be an N x K matrix defined as in
Theorem Further define

-1

1 .
F™(y,7) = —hl [T+ hhl | hy, l<y<
£5

k.:|u.

IRV

As K, N — oo, F ) converges almost surely to %, with £ (y,7)
solution to the fixed-point equation

v(X,y)
14+~3E [71 XY) 1y

F(y,v)=E y € [0,1]. (2.157)

+y F(Y,)

The transform of the asymptotic spectrum of HH' is given by the
following result proved in Appendix [£.5]

Theorem 2.53. Let H be an N x K complex random matrix defined as
in Theorem 2.50l The Shannon transform of the asymptotic spectrum
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of HH' is
Vaui(v) = BE[log(l +vE[u(X,Y)Tgar (X, 7)[Y])]
+E [log(1 + v BE[v(X,Y)Tggi (Y, 7)X])]
=y BE [o(X,Y)Tggt (X, 7) Yagt (Y, 7)] log e
(2.158)

with Tggt (¢, ) and Ygpe (¢, -) satisfying (2.154]) and 2.155).

Theorem 2.54. [262] Let H be an N x K complex random matrix
defined as in Theorem 2500 Then, denoting

5 _ GPERXY)IY] 0]
PIE[0(X,Y)X] £ 0]’

we have that

. 3 Van:(7) _
i, <1°g<75) min{ﬂ]P’[E[v(X,Y)W]#0]7P[E[U(X7Y)|X]7&O]}> =

with

E :log (gE [fﬁg',)) |x']>] ~BE[log(1+a(Y))] A >1
Loo 3 { —E :log W] B =1
| —E Jlog =00 — LB [log (1+E [ x| )] g <1

with X" and Y’ the restrictions of X and Y to the events E[v(X, Y)|X]z£0
and E[v(X,Y)|Y]#£0, respectively. The function a(-) is the solution, for
3'>1, of

1 v(X', y)
aly) = ZE [v,,] (2.159)
7]

whereas I'o(+) is the solution, for 3'<1, of

1

E —1-4. (2.160)
WX Y (o,
L +E [F(W(Y';Xﬂ
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Corollary 2.3. As v — oo, if #/ > 1 and P[E[v(X,Y)|x] > 0]] = 1,
then

1 1

WILH;O’YT]HHT () = BPE[X,Y)|Y] # O]E 2 [fser(zi)) |X/]

(2.161)

with «a(+) solution to (2.159]). Otherwise the limit in ([2Z.I61]) diverges.

Corollary 2.4. As v — oo, we have that
Tim 7 (g,7) = BEER(X.Y)V] £ 0T oc(y) (2.162)

where I'oo(y) is the solution to (2.I60) for #" < 1 and 0 otherwise while
F (y,7) is the solution to (2.I57).

Theorem 2.55. [159] Let H be an N x K matrix defined as in
Theorem [2.50l The nth moment of the empirical eigenvalue distribution
of HH' converges almost surely to

lim %tr{(HHT)"} — Elmn(X)] (2.163)

N—oo

with my,(x) satisfying the recursive equation

ma(z) = BY_ me1(@)Elo(,Y)> EuX,Y)ma, 1(X)|Y]
/=1 n1+~~~ﬂ—<nrz~7:;—l

CE (X, YY), 1 (X)]Y] ] (2.164)

where mg(z) = 1 and where, in the second summation, the ng’s with
ke {1,...,i} are strictly positive integers. In turn, X and Y are inde-
pendent random variables uniform on [0,1].
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Theorem 2.56. [159] Consider an N x K matrix H defined as in
Theorem [2.50] whose jth column is h;. As K, N — oo, the quadratic
form

n

1 b | by l<y< 4 (2.165)
t#j

converges almost surely to a function d,(y) given by
Elmn,(X)v(X,9)] _ &n(y)
Elo(X,y)] Ef[v(X,y)]

where X is a random variable uniform on [0,1] and m,(x) is given by

(2164) in Theorem [2.55]

on(y)= (2.166)

From Theorems 2.55] and 2.56] it follows that:

Corollary 2.5. The relationships between the moments, E[m,(X)],
and &, (y) are:

X)N=8Y E[& (Y)Y &ua(Y)...&ua(Y)| (2.167)
/=1

ny+-+n;=n—~L
1<i<n—¢

with &§,(y) = E[m,(X)v(X, y)].

In the case that v(z,y) factors as v(x,y) = vx(x)vy (y), then (2.164])
becomes

mzmg 1(r) Y E[D"E[Cmy, —1(C)] - E[Crmyp,—1(C)]

ny+-+n;=n—~L
1<i<n—4

where C and D are independent random variables whose distribution
equals the distributions of vx(X) and vy (Y), respectively, with X and
Y uniform on [0, 1]. From the above recursive formula, the closed-form
expression given in (2.I44]) can be found by resorting to techniques of
non-crossing partitions and the complementation map.
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Remark 2.3.1. If v(z,y) factors, Theorems admit simpler
formulations. The Shannon transform, n-transform, F (y,7) and mo-
ments of the asymptotic spectrum of HHf, with H defined as in
Theorem 250, coincide with those of Theorems in this case
D and T represent independent random variables whose distributions
are given by the distributions of vx(X) and vy (Y), respectively.

An example of v(x,y) that factors is when the N x K matrix of
variances, P, introduced in (2.I52]), is the outer product of two vectors

P =dt’. (2.168)

where the N-vector d and the K-vector t have nonnegative determin-
istic entries.

Definition 2.17. Let B be an N x K random matrix with indepen-
dent columns. Denoting by || the closest smaller integer, B behaves
ergodically if, for a given = € [0, 1), the empirical distribution of

‘(B)\_INJJP? SRR |(B)|_xNJ,K|2
converges almost surely to a nonrandom limit F,(-) and, for a given
y € [0,1), the empirical distribution of

|(B)1,LyKJ |27 SRR |(B)N,LyKJ |2

converges almost surely to a nonrandom limit F,(-).

Definition 2.18. Let B be a random matrix that behaves ergodically
in the sense of Definition 217l Assuming that F,(-) and Fy(-) have all
their moments bounded, the two-dimensional channel profile of B is
defined as the function p(z,y) : [0,1]> — R such that, if X is uniform
on [0, 1], the distribution of p(X, y) equals F,(-) whereas, if Y is uniform
on [0,1], then the distribution of p(z,Y) equals F(-).

Analogously, the one-dimensional channel profile of B for a given k
is the function pg(x) : [0,1] — R such that, if X is uniform on [0, 1],
the distribution of pg(X) equals the nonrandom asymptotic empirical
distribution of [(B)1x[%,...,|(B)ykl*
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Theorem 2.57. [159, [160] Consider an N x K matrix H = SoB with
o denoting the Hadamard (element-wise) product and with S and B
independent N x K random matrices. The entries of S are zero-mean
i.i.d. complex random variables arbitrarily distributed with variance %
while B is as in Definition I8 with F,(-) and Fy(-) having all their
moments bounded. Denoting by pg(x,y) the channel profile of B, then,
as K, N — oo with % — (3, the empirical eigenvalue distribution of
HH' converges almost surely to a nonrandom limit whose 7-transform,
Shannon transform and moments are given by (2.I53]), (2.I58) and

[2I6342.164) respectively with v(x,y) replaced by pg(z,y). Analogous
considerations hold for the functions F (y,7) and d,(y).

Theorem 2.58. [262] Consider an N x K matrix H whose entries
are zero-mean correlated Gaussian random variables with correlation
function rg (4, j; i, /) whose eigenvalues are \; j(rg), for 1 < < N and
1 < j < K (cf. Definition 2.8) and whose kernel factors as in (2.35]).
Assume that N, j(ra) are uniformly bounded for any N. Theorems
hold by redefining v(x,y) as the asymptotic variance profile
of the Karhunen-Loeve image of H, which corresponds to the limit for
N — oo of

N (@, y) = Niy(rm) o<y T<y<ik

Therefore, the asymptotic spectrum of H is fully characterized by the
variances of the entries of its Karhunen-Loéve image.

A special case of Theorem [2.58 is illustrated in [55] for ri (7, ;4. 5") =
f@i—4',5—4"), in which case H is termed a band matriz.

Theorem 2.59. [159] Consider the N x K random matrix

H-= [Alsl,...,AKSK]A (2.169)

where S = [s;...sk] is an N x K matrix with zero-mean i.i.d. entries
with variance %, A is a deterministic diagonal matrix and Ay k €
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{1,..., K} are either finite order or infinite order absolutely summable
N x N Toeplitz independent matrices, independent of S. Let p(z,y)
be the two-dimensional channel profile of the N x K matrix A whose
(,4)th entry i

Nii = A2 Ni(A) (2.170)

with A;(A;) the ith eigenvalue of AjA;r-. As K, N — oo with % — 0,
the empirical eigenvalue distribution of HH' converges almost surely
to a nonrandom limiting distribution whose n-transform is [159]

mamt (V) = E [T (X,7)] (2.171)
where gyt (¢, +) satisfies the equations

1

1+ ByE[p(z, Y) Ygm: (Y, 7)]
1

1+ vyE[p(X, y)Tgpt (X, 7)]

with X and Y independent random variables uniform on [0, 1].

Lyni(z,7) (2.172)

Tant (Y,7) (2.173)

Consequently, Theorems 2.49H2.56] still hold with the function v(z,y)
replaced by p(z,y).

Define
1 * *
R(N, m) - N Z Hil,ijilyjl cte Him,jmleime’ (2174)
where the summation ranges over all 2m-tuples i1,...,%mn, J1,---,Jm

satisfying 1 < iy < N and 1 < j, < K, such that the cardinality of
the set of distinct values of iy plus the cardinality of the set of distinct
values of j, equals k + 1, and such that there is one-to-one pairing of
the unconjugate and the conjugate terms in the products.

31 The existence of p(z,y) implies that A is a matrix that behaves ergodically in the sense
of Definition 2171
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Lemma 2.60. [296] Let H be an N x K real or complex random matrix
whose entries are independent with

Hi
E[Hi ;] = —=

=

regardless of j and with
2
oo 24| o
E ['HW \/N‘ ] < N1+6/2
for some § > 0 and x > 0. The empirical eigenvalue distribution of HH'

converges almost surely to a nonrandom limit Fyygi(-) if and only if,
for each m, E[R(N,m)] in (2.I74)) converges as N — oo. Furthermore,

/ A"dFggi(\) = lim AN AFN 4 (V) (2.175)
= lim E[R(N,m)] (2.176)

2.4 Free Probability

In the last few years, a large fraction of the new results on the asymp-
totic convergence of the eigenvalues of random matrices has been ob-
tained using the tools of free probability. This is a discipline founded
by Voiculescu [283] in the 1980s that spawned from his work on opera-
tor algebras. Unlike classical scalar random variables, random matrices
are noncommutative objects whose large-dimension asymptotics have
provided the major applications of the theory of free probability.

Knowing the eigenvalues of two matrices is, in general, not enough
to find the eigenvalues of the sum of the two matrices (unless they
commute). However, it turns out that free probability identifies a cer-
tain sufficient condition (called asymptotic freeness) under which the
asymptotic spectrum of the sum can be obtained from the individual
asymptotic spectra without involving the structure of the eigenvectors
of the matrices.

When two matrices are asymptotically free, there exists a rule to
compute any asymptotic moment of the sum of the matrices (and thus
the asymptotic spectrum) as a function of the individual moments.
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The combinatorics of the rule are succinctly described by recourse to
the R-transform. Indeed, the central result in the application of free
probability to random matrices is that the R-transform of the asymp-
totic spectrum of the sum of asymptotically free matrices is equal to the
sum of the individual R-transforms. Analogously, the S-transform of the
product of asymptotically free random matrices is equal to the prod-
uct of the individual S-transforms. Computation of the R-transform,
S-transform and the mixed moments of random matrices is often aided
by a certain combinatorial construct based on noncrossing partitions
due to Speicher [240], 241, 242].

The power of free probability is evident, not only in the new results
on random matrices it unveils, but on the fresh view it provides on
established results. For example, it shows that the semicircle law and
the Marcenko-Pastur laws are the free counterparts of the Gaussian
and Poisson distributions, respectively, in classical probability. Fur-
thermore, using the central R-transform result it is possible to provide
different proof techniques for the major results reviewed in Section 2.3]

2.4.1 Asymptotic Freeness

For notational convenience, we define the following functional for se-
quences of Hermitian matrices:

H(A) = Jim %E[trA]. (2.177)

Note that the expected asymptotic pth moment of A is ¢(AP) and
o(1) = 1.

Definition 2.19. [287] The Hermitian random matrices A and B are
asymptotically free if for all ¢ and for all polynomials p;(-) and ¢;(-)
with 1 <7 < /¢ such tha

¢(pi(A)) = ¢(¢i(B)) = 0, (2.178)

we have

P(p1(A) q1(B)...pe(A) qe(B)) = 0. (2.179)

32 This includes polynomials with constant (zero-order) terms.
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Definition generalizes to several random matrices as follows.

Definition 2.20. The Hermitian random matrices Aq,...,A,, are
asymptotically free if, for all £ € N and all polynomials py(-),...,pe(+),
o (pl(Aj(l)) p2a(Ajg)) - 'pE(Aj(Z))) =0 (2.180)

whenever
¢ (pi(Ajp)) =0  Vi=1,..¢ (2.181)

where j(i) # j(i + 1) (i.e., consecutive indices are distinct, but non-
neighboring indices are allowed to be equal).

It is also of interest to define asymptotic freeness between pairs of
Hermitian random matrices.

Definition 2.21. [287] The pairs of Hermitian matrices {A1, Ay} and
{B1,Bs} are asymptotically free if, for all ¢ and for all polynomials
pi(+) and ¢(-) in two noncommuting indeterminates with 1 < i < /¢
such that

d(pi(A1, Az)) = ¢(q:(B1,B2)) = 0, (2.182)

we have

d(p1(A1,A2)q1(B1,B2)...pi(A1,Az) ¢(B1,Bg)) = 0. (2.183)

As a shorthand, when {A;, A2} and {B1, B2} are asymptotically free,
we will say that ({A1, Az}, {B1,Bs}) are asymptotically free.

Let us now incorporate, in the definition of asymptotic freeness, the
class of non-Hermitian matrices. If H; and Hs are rectangular non-
Hermitian matrices, we say that {Hl,HJ{} and {Hg,HE} are asymp-
totically free, or equivalently that H; and Hy are asymptotically *-free,
if the relations given in Definition 2211 apply with pi(Hl,HD and
qi(Ha, H;) polynomials of two noncommuting variables.

The definition of asymptotic freeness is somewhat reminiscent of
the concept of independent random variables. However, as the follow-
ing example shows, statistical independence does not imply asymptotic
freeness.
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Example 2.33. Suppose that X; and Xs are independent zero-mean
random variables with nonzero variance. Then, X;I and X5I are not
asymptotically free. More generally, if two matrices are asymptotically
free and they commute, then one of them is necessarily deterministic.

An alternative to the foregoing definitions is obtained by dropping
the expectation from the definition of the operator ¢ in (2.I77) and
assuming that the spectra of the matrices converge almost surely to
a nonrandom limit. This notion is known as almost surely asymptotic
freeness [110, 111]. As will be pointed out, some of properties and
examples discussed in the sequel for asymptotic freeness also hold for
almost surely asymptotic freeness.

To illustrate the usefulness of the definition of asymptotic freeness,
we will start by computing various mixed moments of random matrices.
If Aq,...,A; are asymptotically free random matrices, a number of
useful relationships can be obtained by particularizing the following
identity:

o (Al = o(A1)D - (AR — 6(AS)D) - (A} — 6(Af)D) =0
(2.184)
which is obtained from (2.I80) by considering the ¢ polynomials
pi(Ai) = A — (A7)

which obviously satisfy ¢(p;(A;)) = 0.
Applying (2.I84]), we can easily obtain the following relationships
for asymptotically free A and B:

$(AFBY) = ¢(A")¢(B") (2.185)
#(ABAB) = ¢*(B)g(A?) + ¢*(A)p(B?) — ¢*(A)¢*(B).
(2.186)

As mentioned, one approach to characterize the asymptotic spec-
trum of a random matrix is to obtain its moments of all orders. Fre-
quent applications of the concept of asymptotic freeness stem from the
fact that the moments of a noncommutative polynomial p(A, B) of two
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asymptotically free random matrices can be computed from the indi-
vidual moments of A and B. Thus, if p(A,B), A, B are Hermitian,
the asymptotic spectrum of p(A,B) depends only on those of A and
B even if they do not have the same eigenvectors. To illustrate this
point, when p(A,B) = A + B we can use (2.I84]) to obtain the first
few moments:

P(A+B) = ¢(A)+¢(B) (2.187)
O((A+B)?) = ¢(A?)+¢(B?) +26(A)p(B)  (2.188)
¢((A+B)’) = ¢(A) $(B?) + 3¢(A)p(B?)

+ 30(B)¢(A?) (2.189)
S(A+B)Y) = ¢(A") +6(B*) +46(A)¢(B?)

+ 49(B)p(A?) + 207 (B)g(A?)

+ 20°(A)p(B?) +26(B%)¢(A%).  (2.190)

_|_
_|_

All other higher moments can be computed analogously. As we will
see below, the R-transform defined in Section circumvents the in-
creasingly cumbersome derivations required to derive other moments

Next, we compile a list of some of the most useful instances of
asymptotic freeness that have been shown so far. In order to ease the
exposition, we state them without including all the technical sufficient
conditions (usually on the higher order moments of the matrix entries)
under which they have been proved so far. For the exact technical
conditions, the reader can refer to the pertinent citations.

Example 2.34. Any random matrix and the identity are asymptoti-
cally free.

Example 2.35. [287] Independent Gaussian standard Wigner matri-
ces are asymptotically free.

33 Notice that the first three moments of A 4+ B can be obtained from formulas identical
to those pertaining to classical independent random variables. A difference appears from
the fourth moment (2I90) on
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Example 2.36. [287] Let X and Y be independent standard Gaussian
matrices. Then {X, X'} and {Y, YT} are asymptotically free.

Historically, Examples 2.35] and 2.36] are the first results on the
freeness of random matrices.

Example 2.37. [63] Independent standard Wigner matrices are
asymptotically free.

Example 2.38. [63] A standard Wigner matrix and a diagonal deter-
ministic matrix (or a block diagonal deterministic matrix with bounded
block size) are asymptotically free.

Example 2.39. [211] Let X and Y be independent square matrices
whose entries are zero-mean independent random variables (arbitrarily
distributed), with variance vanishing inversely proportionally to the
size. Then, ({X,X},{Y,YT}) are asymptotically free. Furthermore,
these matrices and block diagonal deterministic matrices with bounded
block size are also asymptotically free.

Example 2.40. Suppose that the N-vectors h;, i € {1,... ¢}, are
independent and have independent entries with variances equal to %
and identical means. Furthermore, let Xi,... Xy be independent ran-
dom variables with finite moments of all order and also independent of

the random vectors. Then,
Xihih!, Xohohl, ... X/hyh)

are asymptotically free.
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Example 2.41. [287] If U and V are independent Haar matrices, then
({U, U}, {V,VT}) are asymptotically free.

Example 2.42. [287] If U is a Haar matrix and D is a deterministic
matrix with bounded eigenvalues, then ({U, U}, {D,Df}) are asymp-
totically free.

Example 2.43. [294] Let X be a standard Gaussian matrix and
let D be a deterministic matrix with bounded eigenvalues. Then
({X, X}, {D,Df}) are asymptotically free.

Example 2.44. [240] UAUT and B are asymptotically free if A and
B are Hermitian matrices whose asymptotic averaged empirical eigen-
value distributions are compactly supported and U is a Haar matrix
independent of A and B.

Example 2.45. [240] A unitarily invariant matrix with compactly
supported asymptotic spectrum and a deterministic matrix with
bounded eigenvalues are asymptotically free.

Example 2.46. [295] Independent unitarily invariant matrices with
compactly supported asymptotic spectra are asymptotically free.

Example 2.47. [295] Let A and B be N x K independent bi-
unitarily invariant random matrices whose asymptotic averaged em-
pirical singular value distributions are compactly supported. Then,
({A, AT}, {B,Bf}, {D,D}) are asymptotically free for any determin-
istic N x K matrix D with bounded eigenvalues.
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Example 2.48. Let H; and Hs be independent standard Gaussian
matrices and let T be a random Hermitian matrix independent of
H; and H, with compactly supported asymptotic averaged empirical
eigenvalue distribution. Then it follows from Lemma 2.7 and Examples
that (f1(H;TH!), fo(HoTHY), {D,D1}) are asymptotically
free for any real continuous functions f1(-) and fa(+), defined on the real
line, and any deterministic square matrix D with bounded asymptotic
spectrum.

Examples 2.4TH2.48] are not only instances of asymptotic freeness,
but also of almost surely asymptotic freeness [I11]. In particular, for
Example[2.48]the almost surely convergence holds if the asymptotic em-
pirical eigenvalue distribution of T converges almost surely to a com-
pactly supported probability measure. Note also that Examples
and are special cases of Example and 2471 respectively.

Theorem 2.61. [64] Let (A,{P1,Vy,...,Ps, Vi}) be asymptotically
free. If

foralli € {1,...,¢} and i # j, then P1AVy,... P;AV, are asymptot-
ically free.

Example 2.49. [73] Let P, be the permutation matrix corresponding
to a cyclic shift by £ — 1 entries, and S be a complex standard Gaussian
matrix. Notice that PgPZ =TI and that, for £ # 1(modN), tr{P,} = 0.

Consequently, for N — oo
tr{P;PI} — tr{P;_;} = 6, ;. (2.191)

Since SST and {Pl,PJ{,...,PL,PTL} are asymptotically free (e.g. Ex-
ample [245]), it follows from Theorem 2.61] that
P,Ss'Pl,... p,ssTPl

are asymptotically free. Let Sq,...,Sy be independent complex stan-
dard Gaussian matrices. The foregoing asymptotic freeness together
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with the fact that the asymptotic distribution of the asymptoti-
cally free matrices PESZSZP} does not depend on ¢, implies that the
asymptotic averaged empirical distributions of Zle PgSSTPZ and of
Z£:1 PZSZSZPZ are the same.

Theorem 2.62. [290, 190] Let (P,{W3,..., Wy}) be asymptotically
free Hermitian random matrices. PW; P, ... PW/,P are asymptoti-
cally free if P is idempotent.

We note that, under the condition that P, and V, are unitary Haar
matrices, Theorems 2.61] and 2.62] hold not only in terms of asymptotic
freeness but also in terms of almost surely asymptotic freeness.

Theorem 2.63. [290, 190] Let W be a random matrix whose aver-
aged spectrum converges to the circular law ([2.99). Let Py,..., P, be
a family of Hermitian random matrices asymptotically free of W such
that P,P; = P;P; = , ;P;, then WP,WT ... WP,WT are asymp-
totically free. This result also holds if the spectrum of W converges to
the quarter circle law (LZI]) or to the semicircle law (2.94]), in which
case the spectrum of WPjWT converges to the Marcenko-Pastur law.

2.4.2 Sums of Asymptotically Free Random Matrices

Much of the practical usefulness of free probability stems from the
following result.

Theorem 2.64. [285] If A and B are asymptotically free random ma-
trices, then the R-transform of their sum satisfies

Ra+B(2) = Ra(z) + Re(2). (2.192)

As a simple application of this important result, and in view of Example
2241 we can verify the translation property

Ra+41(2) = Ra(2) + Ry(2) = Ra(z) + - (2.193)
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Using Theorem [2.64] and the relationship between the R-transform
and the n-transform (Z.70)—(2.76) we can obtain:

Theorem 2.65. The n-transform of the sum of asymptotically free
random matrices is

na+B(7) = 1a(va) + 1B (W) — 1 (2.194)

with 4, 75 and ~ satisfying the following pair of equations:

Ya A (Va) = Y na+B(Y) = Y% 1B (75)- (2.195)

As a simple application of Theorem [2.64] let us sketch a heuristic
argument for the key characterization (ZI16]) of the n-transform of the
asymptotic spectrum of HTH'. Let us assume that H is an N x K
matrix whose entries are independent random variables with common
variance %, while T is a deterministic positive real diagonal matrix.
According to Example 40, we can write HTH' as the sum of asymp-
totically free matrices

K
HTH' = Tjh;h]. (2.196)
k=1
Thus, with ¢ > 0
K
Rarat (—¢) = Kh_I}lOOZ RTkhkhL(_o (2.197)
=1
K
. B Ty
= A kz::l 1+ TiC (2.198)
1 _
g ZT(C ) (2.199)

where ([2I98) follows from (282]) whereas ([2.199) follows from the
law of large numbers. Finally, using the relationship between the 7-
transform and the R-transform in (2774) we obtain (2116 letting

¢ = ynarat(7), ie.

narat(Y) =1 =81 =91 (yngra: (7)) - (2.200)
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Note that (2.I97) has not been rigorously justified above, since it
involves both the limit in the size of the matrices which is the basis for
the claim of asymptotic freeness and a limit in the number of matrices.

The more general result (2.I33)-(2.134) can be readily obtained
from (2.194), (Z195) and (2:200]).

For T = I, we recover the n-transform in (ZI21]) of the Marcenko-
Pastur law. It is interesting to note that, in this special case, we are
summing unit-rank matrices whose spectra consist of a 1 — % mass
at 0 and a % mass at a location that converges to 1. If we were to
take the Nth classical convolution (inverting the sum of log-moment
generating functions) of those distributions we would obtain asymptot-
ically the Poisson distribution; however, the distribution we obtain by
taking the Nth free convolution (inverting the sum of R-transforms)
is the Marcenko-Pastur law. Thus, we can justifiably claim that the
Marcenko-Pastur law is the free analog of the classical Poisson law.

The free analog of the Gaussian law is the semicircle law according
to the celebrated free probability central limit theorem:

Theorem 2.66. [284] Let A, A,,... be a sequence of N x N asymp-
totically free random matrices. Assume that ¢(A;) = 0 and ¢(A?) = 1.
Further assume that sup; |[¢(A¥)| < oo for all k. Then, as m, N — oo,
the asymptotic spectrum of

1
(ALt Azt Ay) (2.201)

converges in distribution to the semicircle law, that is, for every k,

0 k odd

... k
¢<(A1+A2+k +A,) >_> 1 k .
m?2 @ % even.

A simple sketch of the main idea behind the proof of this result
can be given in the case of asymptotically free matrices identically
distributed. In this case, Theorem [2.64] implies that the R-transform of
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(2201) equals
z 2 - z k=1
VIRa, (i) = Vims(An) + 20(A1) + vy a () (2202

k=3
- 2 (2.203)

which is the R-transform of the semicircle law (Example [2.25]). Note
that (2.202)) follows from (2.84]) while (2.203]) follows from the fact that
the free cumulants are bounded because of the assumption in Theorem
A similar approach can be followed to prove that the spectra of
Gaussian Wigner matrices converges to the semicircle law. The key idea
is that a Gaussian standard Wigner matrix can be written as the sum
of two independent rescaled Gaussian standard Wigner matrices
1

V2
Since the two matrices in the right side of ([2.204]) are asymptotically
free, the R-transforms satisfy

Rw(Z) = Rx

W = —(X; +X»). (2.204)

(2)
= V2Rw (

which admits the solution (cf. Example [2.25)])
Rw(z) = 2. (2.206)

(2)
> (2.205)

+
X
EY

S

Sl

Example 2.50. Let H be an N x m random matrix whose entries are
1
vm N
denote %\/m = ¢. Using Example 2.46] Theorem 2.66] and the fact

that we can represent

zero-mean i.i.d. Gaussian random variables with variance and

Jm

with s; an N-dimensional vector whose entries are zero-mean i.i.d. with
variance ﬁ, it can be shown that as N,m — oo with % — 0, the
asymptotic spectrum of the matrix

HH' — ¢ VNI

m
= =Y s
7
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is the semicircle law. This result was also found using the moment ap-
proach, based on combinatorial tools, in [16] (without invoking Gaus-
sianity) and in [57] using results on the asymptotic distribution of the
zeros of Laguerre polynomials L7 (v Nmz +m + N).

2.4.3 Products of Asymptotically Free Matrices

The S-transform plays an analogous role to the R-transform for prod-
ucts (instead of sums) of asymptotically free matrices, as the following
theorem shows

Theorem 2.67. Let A and B be nonnegative asymptotically free ran-
dom matrices. The S-transform of their product satisfies

YaB(z) = Xa(z)EB(2). (2:207)

Because of ([2.69)), it follows straightforwardly that the S-transform is
the free analog of the Mellin transform in classical probability theory,
whereas recall that the R-transform is the free analog of the log-moment
generating function in classical probability theory.

Theorem [2.67] together with (2.86]) yields

Theorem 2.68. Let A and B be nonnegative asymptotically free ran-
dom matrices, then for 0 < v < 1,

Tan () = 7 xt (0) 7' (3): (2:208)

In addition, the following implicit relation is also useful:

. Y
14B(7) = I <2B(77AB(’Y) - 1)) ' (2.209)

34 Given the definition of the S-transform, we shall consider only nonnegative random ma-
trices whose trace does not vanish asymptotically.
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As an application of (2.209]), we can obtain the key relation (2.116])
from the S-transform of the Marc¢enko-Pastur law in (2.87)
- 1
148z
provided that T and H'H are asymptotically free. According to (2.209)

Yurua(z)

neaua(Y) = nr(y(1 =B+ Bnrau(y)))

= 0t (Ynarai (7)) (2.210)
where ([2.210) follows from (Z.56]). Applying ([2.56) again,
narat () =1 =64 691 (Y ntara: (7)) - (2.211)

From (2:209]), Examples 2.13] [2.32] and 2.45 we obtain the following
result.

Example 2.51. Let Q be a N x K matrix uniformly distributed over
the manifold of N x K complex matrices such that Q'Q = I and let
A be an N x N nonnegative Hermitian random matrix independent of
Q whose empirical eigenvalue distribution converges almost surely to
a compactly supported measure. Then

_ f-1
nqqia(y) =na <7 + 77QQTA(’7)> (2.212)

with % — f.

Example 2.52. Define two N x N independent random matrices,
H; and Hj, each having zero-mean i.i.d. entries with variance %
and higher order moments of order o(1/N). From Example [2.39]
({Hy, HJ{}, {Ho, H;}) are asymptotically free and, consequently, we can
compute the S-transform of Ay = HngHgHI by simply applying Ex-

ample 2.29] and Theorems 2.67] and [2.32]

1

Ya,(7) = m

(2.213)
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from which it follows that the n-transform of Ay, na,(7), is the solution
of the fixed-point equation

n(l +n?) = 1. (2.214)

Example .52] can be extended as follows.

Example 2.53. [I84] Let H and T be as in Theorem 239 Then,

Sunts) = Z-sn(5) 3 (3) e
1 T
Y Xr <5> (2.216)

where (2.216) follows from Example 2.29

Example 2.53] follows from the fact that, if H in Theorem is a
standard complex Gaussian matrix, then ({H, HT}, T) are asymptoti-
cally free (cf. Example[2.43)) and thus it follows from Theorem 2.67] that
the S-transform of HTHT is given by (Z:2I6]). On the other hand, since
the validity of Theorem depends on the distribution of H only
through the first and second order moments, every matrix HTHT de-
fined as in Theorem 2.39with H arbitrarily distributed admits the same
asymptotic spectrum and the same R- and S-transforms and hence Ex-
ample[2.53] follows straightforwardly. Analogous considerations hold for
Theorems 2.38] and [2.43]l More precisely, the hypotheses in those
theorems are sufficient to guarantee the additivity of the R-transforms
and factorability of the S-transforms therein. Note, however, that the
factorability of the S-transforms in (2.216]) and the additivity of the R-
transforms in Theorem 238 do not imply, in general, that ({H, H'}, T)
are asymptotically free.

2.4.4 Freeness and Non-Crossing Partitions

The combinatorial description of the freeness developed by Speicher in
[241], 243] and in some of his joint works with A. Nica [189] has suc-
ceeded in obtaining a number of new results in free probability theory.
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It is well known that there exists a combinatorial description of the
classical cumulants that is related to the partition theory of sets. In
the same way, a noncommutative analogue to the classical cumulants,
the so-called free cumulants, can be also described combinatorially. The
key difference with the classical case is that one has to replace the par-
titions by so-called non-crossing partitions [241], 243].

Definition 2.22. Consider the set {1,...,n} and let w be a partition
of this set,

w={Vi,...,Vi},

where each Vj is called a block of w. A partition w is called non-crossing
if the following does not occur: there exist 1 < p; < ¢1 < py < g9 such
that p; and po belong to the same block, ¢; and g2 belong to the same
block, but ¢; and py do not belong to the same block.

Example 2.54. Consider the set {1,2,3,4} and the non-crossing par-
tition w = {{1, 3}, {2}, {4}}. Definition is interpreted graphically
in Figure 2.7(a) by connecting elements in the same block with a line.
The fact that these lines do not cross evidences the non-crossing nature
of the partition. In contrast, the crossing partition @ = {{1,3},{2,4}}
of the same set is also shown in Figure 2.7(b).

(@) (b)

Fig. 2.7 Figures (a) and (b) depict a non-crossing and a crossing partition respectively.
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Example 2.55. Consider the set {1,2,...,7}. Let V4, V5 and V3 be a
partition of {1,2,...,7} with V4 = {1,5,7}, Vo = {2,3,4}, and V5 =
{6}. Then {V;, V5, V3} is a non-crossing partition.

11223344556677

Fig. 2.8 The non-crossing partition @ = {{1,5,7},{2, 3,4}, {6}} and the complementation
map K(w) = {{1, 4}, {2}, {3}, {5, 6}, {7}} obtained with the repeated integers.

Every non-crossing partition w, can be associated to a complemen-
tation map [154], denoted by K (w). Figure[Z8 depicts the non-crossing
partition @ = {{1,5,7},{2,3,4},{6}} and the corresponding comple-
mentation map K(w) = {{1,4},{2}, {3}, {5,6},{7}}. The complemen-
tation map K(w) can be found graphically as follows: duplicate the
elements of the set placing them between the elements of the old set;
then connect with a line as many elements of the new set as possible
without crossing the lines of the original partition.

The number of non-crossing partitions of the set {1,2,...,n} into
i blocks equal
1/n n
a-20)(0)
n\t/\s—1
Moreover, the number of non-crossing partitions of {1,2,...,n} equals

the nth Catalan number. This follows straightforwardly from the fact
that

= 1 (2n

yo=ma()

35 Note that >, Q8" equals the n-th moment of f5(-) given in (CIZ).
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The following result gives a general expression of the joint moments
of asymptotically free random matrices.

Theorem 2.69. [20, 21] Consider matrices Aj,..., A, whose size is
such that the product Ay ... A, is defined. Some of these matrices are
allowed to be identical. Omitting repetitions, assume that the matrices
are asymptotically free Let o be the partition of {1,...,¢} deter-
mined by the equivalence relation®! j = k if i; = 4. For each partition
wof {1,...,¢}, let

bw= [ oA .. A

{J177JT}ew
n<...<jgr

There exist universal coefficients ¢(w, ¢) such that
S(A1...Ag) =) c(w,0)0
w<e

where w < p indicates that w is finer [°Y than o.

Finding an explicit formula for the coefficients ¢(zo, g) is a nontrivial
combinatorial problem which has been solved by Speicher [241], 243].
From Theorem it follows that ¢(A;...Ay) is completely deter-
mined by the moments of the individual matrices.

It is useful to highlight a special case of Theorem [2.691

Theorem 2.70. [IT1] Assume that A and B are asymptotically free
random matrices. Then, the moments of A 4+ B are expressed by the
free cumulants of A and B as

o(A+B)") =[] (cvi(A) +¢v(B)) (2.217)

w Vew

36 For example, (A1,...,A4) = (B,C,C,B) with B and C asymptotically free.

37If an equivalence relation is given on the set €, then the set of all equivalence classes
forms a partition of 2. Conversely, if a partition w; is given on €2, we can define an
equivalence relation on €2 by writing x = y if and only if there exists a member of w
which contains both x and y. The notions of “equivalence relation” and “partition” are
thus essentially equivalent.

38 Given two partitions wo; and wsa of a given set €2, we say that wo is finer than ws if it
splits the set €2 into smaller blocks, i.e., if every element of wo; is a subset of an element
of 2. In that case, one writes w; < wa.
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where the summation is over all non-crossing partitions of {1,...,n},
ce(A) denotes the ¢th free cumulant of A (cf. Section Z25]) and |V|
denotes the cardinality of V.

Theorem 2.70] is based on the fact that, if A and B are asymp-
totically free random matrices, the free cumulants of the sum satisfy
Cg(A + B) = Cg(A) + Cg(B).

The counterpart of Theorem 2.70] for the product of two asymptoti-
cally free random matrices A and B is given by the following theorem.

Theorem 2.71. [I11I] Assume that A and B are asymptotically free
random matrices. Then the moments of AB are expressed by the free
cumulants of A and B as follows:

o(AB)") = > [ eqwyA) I ewa®) (2.218)
w1,w2 Vi E€wy Va€Ewo

where the summation is over all non-crossing partitions of {1,...,n}.

2.5 Convergence Rates and Asymptotic Normality

Most of the literature on large random matrices has focused on the
existence of the limiting spectral distributions employing the moment
convergence theorem, i.e., verifying the convergence of the kth moments
of the N x N random matrix to the moments of the target distribution
either almost surely or in probability. While this method guarantees
convergence, it gives no information on the speed of convergence. Loose
bounds on the convergence rate to the semicircle law were put forth in
1998 by Girko [88]. A sharper result, but probably not the final word
on the matter, was obtained recently:

Theorem 2.72. [95] Let W be an N x N Gaussian standard Wigner
matrix. The maximal absolute difference between the expected empir-
ical eigenvalue distribution of W and the semicircle law, F,,, whose
density is given in (2.94]), vanishes as

IE[F%] — Full < &N72/3 (2.219)



96 Random Matrix Theory

with x a positive constant and with || f — g|| = sup,, | f(z) — g(x)|.

For an arbitrary deterministic sequence ay, the notation
Ev = Oplan) (2.220)
mean@ that, for any e, there exists an ¢ > 0 such that
sxfp Pll¢n| > san] < e. (2.221)

Similarly, the notation
Ev =olan) a.s. (2.222)

means that a]_\,lﬁ N — 0 almost surely.

Theorem 2.73. [11] Let W be an N x N standard Wigner matrix such
that sup; ; n E[|[VN W, ;|®] < oo and that, for any positive constant 4,

> E “\/Nwm-

8
Wiy > 5}] — o(N?) (2.223)

Then,
IF = Full = Op(N %), (2.224)

If we further assume that all entries of vV NW have finite moments of
all orders, then for any 1 > 0, the empirical distribution of the Wigner
matrix tends to the semicircle law as

IF — Full = o(N72/5Tm) s, (2.225)

If we relax the assumption on the entries of vV NW to simply finite
fourth-order moments, then the convergence rates for Fi, and E[FL]
have been proved in [§] to reduce to

IE[F{] — Full = OO~/ (2.226)
IFy — Full = Op(N"Y4). (2.227)

In the context of random matrices of the form HH' the following
results have been obtained.

391t is common in the literature to say that a sequence of random variables is tight if it is

Op(1).
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Theorem 2.74. [12] Let H be an N x K matrix whose entries are
mutually independent with zero mean and variance % Assume that

sup E [|\/N Hi,jﬂ < 00 (2.228)
Z"j7N

and for any positive constant §

ZE U\/NHM : K{[H; ;] = 5}] = o(N?). (2.229)

Then, the maximal absolute difference between the expected empiri-
cal eigenvalue distribution of H'H and the Marcenko-Pastur law, Fs,
whose density is given in (I.I0]), vanishes as

1
N~ 19+2
IE[Fiin) — Fsll = O ——— (2:230)
1—+/B+ N 50+
and
N 539 N 153
+ +
HF%H—FQH = 0, | max — —
L=VB+NT57 1—/p+ N 5
(2.231)
with
—2log(1— %) . K )
f £ <(1-N
0= logN+4log(1—\/%) toN = ( 8) ’ (2232)

% otherwise.

Summarizing, if 5 < 1 then § ~ ¢/log N and hence the convergence
rates in (2230) and @231) are O(N~'/2) and O,(N~2/5), respectively.
When 3 > 1, § =  and the rates are O(N~Y#) and O,(N~1/8),
respectively. For 8 = 1, the exact speed at which % — 1 matters as far
as Theorem is concerned.



98 Random Matrix Theory

Theorem 2.75. [87, 15] Let H be an N x K complex matrix whose
entries are i.i.d. zero-mean random variables with variance % such that
E[|V'NH; ;|*] = 2. Define the random variable

b
Ay = logdet(HTH)—K/ log(z) fg(z)dx (2.233)

= logdet(H'H) + K < b log(1 — 3) + log e>

with fg(-) the density of the Marcenko-Pastur law in (LI0). As K, N —

oo with % — B <1, Ay converges to a Gaussian random variable with
zero mean and variance
1

E[lA]%] = logm. (2.234)

The counterpart of Theorem for real H was first derived by Jon-
sson in [I31] for a real zero-mean matrix with Gaussian i.i.d. entries
and an analogous result has been found by Girko in [87] for real (pos-
sible nonzero-mean) matrix with i.i.d. entries and variance % In the
special case of Gaussian entries, Theorem can be easily obtained
following [131] using the expression of the moment-generating function
of logdet(H'H) in (ZII). In the general case, Theorem can be
easily verified using the result given in [15].

Theorem 2.76. [15] Let H be an N x K complex matrix whose en-
tries are i.i.d. zero-mean random variables with variance % such that
E[|H; ;Y] = % Denote by Vs(7) the Shannon transform of fg(-) (Ex-
ample 2.117)). As K, N — oo with % — [, the random variable

b
Ay = logdet(I—l—vHHT)—N/ log(1 + vz) fg(x) dx

= logdet(I+~HH') — NVs(7) (2.235)
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is asymptotically Gaussian with zero mean and variance

E[A%] = —log (1 _ (= 7am (7))2)

B
_ 1 (F(,0)\
Notice that
lim F(.5) = min{1, §} (2.237)
y—oo 4y

and Theorem can be obtained as special case.

Theorem 2.77. [15] Let H be an N x K complex matrix defined as in
Theorem 276l Let T be an Hermitian random matrix independent of H
with bounded spectral norm and whose asymptotic spectrum converges
almost surely to a nonrandom limit. Denote by Vigrgi () the Shannon
transform of HTH'. As K, N — oo with % — (3, the random variable

Ay = logdet(I+yHTH') — NVt (7) (2.238)

is asymptotically zero-mean Gaussian with variance

E[A?] = — log (1 (1 ngrm W) | (2.230)

g

More general results (for functions other than log(1+~x)) are given
in [15].

Theorem 2.78. [15] Let H be an N x K complex matrix defined as
in Theorem Let T be a K x K nonnegative definite deterministic
matrix defined as in Theorem 277l Let g(-) be a continuous function
on the real line with bounded and continuous derivatives, analytic on
a open set containing the interva

limNinf pnmax?{0,1 — /B}, limsup ¢1 (1 + 1/3)?| .
N
(2.240)

401n [14} [13} [T70} [222] this interval contains the spectral support of HHT.
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where ¢1 > ... > ¢n are the eigenvalues of T. Denoting by A; the ith
eigenvalue of HTH, the random variable

N
Ay=Y g0 - N / o(2) dF gy (2.241)
=1

converges, as K, N — oo with % — (3, to a zero-mean Gaussian random

Variable

41 See [15] for an expression of the variance of the limit.
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Applications to Wireless Communications

In this chapter, we detail some of the more representative problems
described by (L.I]) that capture various features of interest in wireless
communications and we show how random matrix results have been
used to characterize the fundamental limits of the various channels
that arise in wireless communications.

Unless otherwise stated, the analysis applies to coherent reception
and thus it is presumed that the state of the channel is perfectly tracked
by the receiver. The degree of channel knowledge at the transmitter,
on the other hand, is specified for each individual setting.

3.1 Direct-Sequence CDMA

The analysis of randomly-spread DS-CDMA in the asymptotic regime
of number of users, K, and spreading gain, N, going to infinity with
% — (8 provides valuable insight into the behavior of multiuser re-
ceivers for large DS-CDMA systems employing pseudo-noise spreading
sequences (e.g. [167, 275] 256] 100, 217), B30]).

The standard random signature model [271) Sec. 2.3.5] assumes
that the entries of the matrix S, whose columns are the spreading

101
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sequences, are chosen independently and equiprobably on {\;—%, \/—lﬁ}
A motivation for this is the use of “long sequences” in commercial
CDMA systems, where the period of the pseudo-random sequence spans
many symbols. Another motivation is to provide a baseline of compar-
ison for systems that use signature waveform families with low cross-
correlations. Sometimes (particularly when the random sequence set-
ting is used to model to some extent nonideal effects such as asynchro-
nism and the frequency selectivity of the channel) the signatures are as-
sumed to be uniformly distributed on the unit Euclidean N-dimensional
sphere (a case for which the Marcenko-Pastur law also applies). In the
analysis that follows, the only condition on the signature sequences is
that their entries be i.i.d. zero-mean with variance %

Specializing the general model in (LI]) to DS-CDMA, the vector x
contains the symbols transmitted by the K users, which have zero-mean
and equal variance. The entries of x correspond to different users and
are therefore independent. (Unequal-power users will be accommodated
by pre-multiplying x by an additional diagonal matrix of amplitudes.)

3.1.1 TUnfaded Equal-Power DS-CDMA

With equal-power transmission at every user and no fading, the multi-
access channel model becomes [271], Sec. 2.9.2]

y =Sx+n, (3.1)

where the energy per symbol transmitted from each user divided by

the noise variance per chip is denoted by snr, i.e.,
E 2
e = Ell)
~E[||n[?]

Asymptotic analyses have been reported in the literature for various
receivers, including:

e Single-user matched filter
® Decorrelator
e MMSE

¢ Optimum

[ ]

Iterative nonlinear.
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The asymptotic analysis of the single-user matched filter (both un-
coded error probability and capacity) has relied on the central limit
theorem rather than on random matrix techniques [275]. The asymp-
totic analysis of the uncoded error probability has not used random
matrix techniques either: [258] used large-deviation techniques to ob-
tain the asymptotic efficiency and [249] used the replica method of
statistical physics to find an expression for the uncoded bit error rate
(see also [103]). The optimum near-far resistance and the MMSE were
obtained in [271] using the Marcenko-Pastur law (Theorem 2.35]). Re-
call, from (L.I2)), that the asymptotic fraction of zero eigenvalues of
HH' is given by (1 — 8)T. Then, for § < 1, using (Z57), the decorre-
lator achieves an output SINR that converges asymptotically to [271],
(4.111)]

(1 — ) snr. (3.2)

When ( > 1, the Moore-Penrose generalized-inverse decorrelator [271]

Sec. 5.1] is shown in [70] (also using the Marcenko-Pastur law) to attain
an asymptotic SINR ratio equal to
g—1

(B—1)2+3/snr

Using (2.57) and (2.121]), the maximum SINR (achieved by the MMSE

linear receiver) converges to [271], (6.59)]

(3.3)

SNR — W (3.4)
with F(-,-) defined in (IL.I7) while the MMSE converges to
F (snr, )
l1——————=. .
4snR 3 (3:5)

Incidentally, note that, as sne — oo, [B.3) and ([B.4]) converge to the
same quantity if § > 1.

The total capacity (sum-rate) of the multiaccess channel (B8.1]) was
obtained in [275] for the linear receivers listed above and the optimum
receiver also using the Marcenko-Pastur law. These expressions for the
decorrelator and MMSE receiver are

C*(B,snR) = Blog (1 +snr(1— ), 0<p<1 (3.6)
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and
C™™¢(B3,snr) = Blog <1 -+ SNR — W) (3.7)
while the capacity achieved with the optimum receiver is (.14
C®(B,snr) = [log <1 + SNR — M)
+log 1+ snrf — F(snr, B)) _ F(snr, 6) log e.
4 4sNR
(3.8)

Spectral Efficiency
6Bits/s/Hz

No Spreading

51

Decorrelator

\ Matched Filter

0.5 1 15 2

Fig. 3.1 Capacity of CDMA without fading for ]}\E,—g = 10dB.

Figure B (from [275]) compares (3.6), (B.7) and (38) as a func-

tion of the number of users to spreading gain 3, choosing snr so that
BsNr /C(B,sNR ) = % = 10.
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3.1.2 DS-CDMA with Frequency-Flat Fading

When the users are affected by different attenuations which may vary
from symbol to symbol, it is convenient to model the channel gains
seen by each user as random quantities {|A{|%,...,|Ax|?} whose em-
pirical distribution converges almost surely to a nonrandom limit as
the number of users goes to infinity. In this case, the channel matrix
H can be written as the product of the N x K matrix S containing
the spreading sequences with a K x K diagonal matrix A of complex
fading coefficients such that the linear model in (I.I]) becomes

y = SAx +n. (3.9)

Here, the role of the received signal-to-noise ratio of the kth user is
taken by |Ag|?snR.

The n-transform is intimately related to the performance of MMSE
multiuser detection of (B.I). The arithmetic mean of the MMSEs for
the K users satisfies [271], (6.27)]

K
1 1 -1
— ) MMsg, =  —tr { I+swkATSTSA } (3.10)
S~ raenssn)

—  Natsisa(SNR) (3.11)

whereas the multiuser efficiency of the kth user (output SINR relative
to the single-user signal-to-noise ratio) achieved by the MMSE receiver,
(s ), i)

-1

n;gnmse(SNR) — S% I+ ZSNR |Ai|2sis;r Sk (312)
itk
—  Ngaatst(SNR) (3.13)

where the limit follows from (Z2.57). According to Theorem [2.39] the
MMSE multiuser efficiency, abbreviated as

n = Ngaatst(SNR), (3.14)

I The conventional notation for multiuser efficiency is n [271]; the relationship in &I3) is
the motivation for the choice of the n-transform terminology introduced in Section [2.2.2]
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is the solution to the fixed-point equation

l-n=p(1- 77|A‘2(SNR’I’])) , (3.15)

where 752 is the n-transform of the asymptotic empirical distribution
of {|A1|%,...,|AKk|?}. A fixed-point equation equivalent to ([B.I5) was
given in [256] and its generalization to systems with symbol-level asyn-
chronism (but still chip-synchronous) is studied in [152].

The distribution of the output SINR is asymptotically Gaussian
[257], in the sense of Theorem [278] and its variance decreases as %
The same holds for the decorrelator. Closed-form expressions for the
asymptotic mean are snNR g atgt for the MMSE receiver and snr (1 —
BP[|A| > 0]) for the decorrelator with 5 < 1 while the variance, for
both receivers, is obtained in [257]

In [217), the spectral efficiencies achieved by the MMSE receiver

and the decorrelator are given respectively by

C™™¢(B3,snR) = BE [log (1 + |A*snR1iga atst (SNR))] (3.16)
and, for 8 <1,

C*(B,snR) = BE [log (1 + |Asnr (1 — SP[|A| > 0]))] (3.17)

where the distribution of |A|? is given by the asymptotic empirical dis-
tribution of AAT and (BI7) follows from Corollary using the fact
that the multiuser efficiency of the kth user achieved by the decorrela-
tor, 7%, equals that of the MMSE as the noise vanishes [271].

Also in [217], the capacity of the optimum receiver is characterized
in terms of the MMSE spectral efficiency: E

CP(B,sNR) = C™*(B,sNR) + log —————
( ) ( ) & NsAAtst (SNR)

+(ngaaist (snR) — 1) loge. (3.18)

2 Although most fading distributions of practical interest do not have any point masses
at zero, we express various results without making such an assumption on the fading
distribution. For example, the inactivity of certain users or groups of users can be modelled
by nonzero point masses in the fading distribution.

3 Equation (BI3) also holds for the capacity with non-Gaussian inputs, as shown in [186]
and [I03] using statistical-physics methods.
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This result can be immediately obtained by specializing Theorem [2.44]
to the case where T = AA' and D = I. Here we give the derivation
in [2I7], which illustrates the usefulness of the interplay between the n
and Shannon transforms. From the definition of Shannon transform, the
capacity of the optimum receiver coincides with the Shannon transform
of the matrix evaluated at snr, i.e.,

C®P(B,sNR) = Vgaaigt (SNR). (3.19)

Furthermore, also from the definition of Shannon transform and (3.16)),
it follows that

C™™¢(B,sNR) = BVa At (SNRT)gA ATt (SNR)) (3.20)
and we know from (2Z.61]) that

———Vx(7) =1-nx (7). (3.21)

Thus, using the shorthand in (3.14]),

d 1-— ]
Cmmse(SNR,ﬂ) — /8 TTAAT (SNRT}) <1 + SN;”) lOg@

dsnr SNR
_ 1= (1 n SNR") log e (3.22)
SNR n
where we used (3.15]) to write (3.22]). The derivative of (3.19)) yields
d 1—n
Cort = log e. 2
dSNRC (B,sNR) o loge (3.23)
Subtracting the right-hand sides of ([3.22)) and (3.23)),
d d 1
opt _ mmse — 1 _ l 24
e (o) - e (o) = (1= 2 ) loge, (320

which is equivalent to (BI8]) since, at snk = 0, both functions equal 0.
Random matrix methods have also been used to optimize power
control laws in DS-CDMA, as the number of users goes to infinity,
for various receivers: matched filter, decorrelator, MMSE and optimum
receiver [217, 281].
Departing from the usual setup where the channel and spreading
sequences are known by the receiver, the performance of blind and
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group-blind linear multiuser receivers that have access only to the re-
ceived spreading sequence of the user of interest is carried out via ran-
dom matrix techniques in [318]. The asymptotic SINR at the output
of direct matrix inversion blind MMSE, subspace blind MMSE and
group-blind MMSE receivers with binary random spreading is inves-
tigated and an interesting saturation phenomenon is observed. This
indicates that the performance of blind linear multiuser receivers is not
only limited by interference, but by estimation errors as well. The out-
put residual interference is shown to be zero-mean and Gaussian with
variance depending on the type of receiver.

3.1.3 DS-CDMA with Flat Fading and Antenna Diversity

Let us now study the impact of having, in addition to frequency-flat
fading, L receive antennas at the base station. The channel matrix is
now the NL x K array

SA;
H=| ... (3.25)
SAp
where
Ag = diag{Al,g,...,AK@}, = 1,...L (3.26)

and {Aj(} indicates the i.i.d. fading coefficients of the kth user at the
fth antenna.

Assuming that the fading coefficients are boundedE using Lemma
[2.60, [108] shows that the asymptotic averaged empirical singular value
distribution of ([3.23)) is the same as that of

S1Aq

SLAp
where Sy, for k € {1,..., L} are i.i.d. matrices. Consequently, Theorem
2.50] leads to the conclusion that

U gz = 2 (1 e (v ) (3.27)

4This assumption is dropped in [I60].
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where np is the n-transform of the asymptotic empirical distribution
of Pp,...,Px with P, = Z£:1 |Ak|%. This result admits the pleasing
engineering interpretation that the effective spreading gain is equal to
the CDMA spreading gain times the number of receive antennas (but,
of course, the bandwidth only grows with the CDMA spreading gain).

From the above result it follows that the expected arithmetic mean
of the MMSE’s for the K users converges to

%ZK:E[MMSE]{;] - %E |:tr{<I+SNRHTH)_1}:| (3.28)

k=1

mmse

Moreover, the MMSE multiuser efficiency, 7]
probability as K, N — oo to [108]

(sNR), converges in

mmse

N (SNR ) — Nprert (3.30)

while the asymptotic multiuser efficiency is given by

lim 7p™¢(snrR) =1 — min {%P[P # 0], 1} (3.31)

SNR —o0

where P is a random variable distributed according to the asymptotic
empirical distribution of Py, ..., Px. The spectral efficiency for MMSE
and decorrelator and the capacity of the optimum receiver are

C™™¢(B,sNrR) = [ Vp (SNRNgpert (SNR))
= [E[log (1 + snrR P ngpepi (SnR))] (3.32)

and, using Corollary 2.2] for 8 < 1
Ce(B,snr ) = BE [log (1 + snR P (1 — %P[P > 0]>>] (3.33)

while

opt _ mmse 1
CP(B,snR) = C (B,sNR) + log T (SNR)
+ (gt (sNR) — 1) log e. (3.34)

Note the parallel between (3.32H3.34]) and (B.16H3.18).
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3.1.4 DS-CDMA with Frequency-Selective Fading

Let us consider a synchronous DS-CDMA uplink with K active users
employing random spreading codes and operating over a frequency-
selective fading channel. The base station is equipped with a single
receive antenna.

Assuming that the symbol duration (T =~ % with W, the chip-
bandwidth) is much larger than the delay spread, we can disregard
the intersymbol interference. In this case, the channel matrix in (L)
particularizes to

H=[Cisy, ..., Cxskl]A (3.35)

where A is a K x K deterministic diagonal matrix containing the am-
plitudes of the users and Cj, is an N x N Toeplitz matrix defined as

(Ch)iyj = WLCCk (ZV;] > (3.36)

with ¢ () the impulse response of the channel for the kth user inde-

pendent across users.
Let A be an N x K matrix whose (7, j)th entry is
2
Nij = Xi(Cj)lA;]

with A;(C;) the ith eigenvalue of CjC;r-. Assuming that A behaves
ergodically (cf. Definition 217, from Theorem [2.59]it follows that the
arithmetic mean of the MMSE’s satisfies

! i L {<I+ HTH)_l} (3.37)
— MMSE[ = —r SNR .
K & K
— Nt (SNR) (3.38)
- - % + %E Ty (Kosnr)] (3.39)

where in (3:39) we have used (2.56]). The function T'gggyi (-, <), in turn,
satisfies the fixed-point equation

p(x, Y)L'ypi (%, 58R)
r E =1
HHi (T, SNR) + B'SNR 1+ snr E[p(X, Y) Tt (X, snr)|Y]

(3.40)
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where X and Y are independent random variables uniform on [0, 1] and
p(+,-) is the channel profile of A (cf. Definition 2I])). Note that the
received signal-to-noise ratio of the kth user is snr||hg||? with

. 1
Il = A Jim Sor(ClCu)
= Elpe(X)]. (3.41)
with E[pg(X)] representing the one-dimensional channel profile (cf. Def-

inition 2.I8)) of A. The multiuser efficiency of the kth user achieved by
the MMSE receiver is [159]

SINR}

mmse — 42
Mk (SNR) SNR ”hk”2 (3 )
~1

Bl (T+sw 3, hibl)  hy

= ; (3.43)
[[hay |
F (y,snR)

— 3.44
Elpe(X)] (349

with % <y< % and F (-,-) defined as the solution to the fixed-point

equation (cf. (2.I57))

p(X,y)

pX,Y)
L+ snr BE | axg F(Y,5NR) X

F(y,snv) =E (3.45)

Let the ratio between the effective number of users and the effective
processing gain be defined as

[E [p(X, Y)[Y] > 0]
[E [p(X, Y)IX] > 0]

Using Corollary 2.4 we obtain that the asymptotic MMSE multiuser
efficiency admits the following expression for 4’ < 1:

;P
B = 51@ (3.46)

dec 1 mmse
n = m 7 SNR
k SNR k ( )

BPE[p(X,Y)|Y] # 0]l (y)
E[pr(X)]

where ' (+) satisfies (2.142)) with the role of v(z,y) played by p(x,y).

(3.47)
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Specializing ([3:39) to the case that the signal transmitted by each
user propagates through L discrete i.i.d. chip-spaced paths (where L
does not grow with N), the n-transform of the asymptotic averaged
eigenvalue distribution of HHY, Nerext > satisfies the fixed-point equation
[159]

L —ngat =B (1 —1p (SNR 7grprt) ) (3.48)

where np is the n-transform of the almost sure asymptotic empirical

0 AN
c1 | =— c .
"\ aw. o,
Using this result, [I59] concludes that, asymptotically as N — oo, each
multipath interferer with a fixed number of resolvable paths acts like

a single path interferer with received power equal to the total received
power from all the paths of that user. From this it follows that, in the

distribution o

A2 &
W2

¢ =1

2 Ar]? &
RS

¢ =1

special case of a fixed number of i.i.d. resolvable paths, the expressions
obtained for the SINR at the output of the decorrelator and MMSE
receiver in a frequency-selective channel are equivalent to those for a
flat fading channel. This result has been found also in [73] under the
assumption that the spreading sequences are either independent across
users and paths or independent across users and cyclically shifted across
the paths (cf. Section B.1.5]).

In the downlink, every user experiences the same frequency-selective
fading, i.e., C; = C Vk, where the empirical distribution of CC' con-
verges almost surely to a nonrandom limit Fjcj2. Consequently, (3.33])
particularizes to

H = CSA. (3.49)

Using Theorem 2.46] and with the aid of an auxiliary function x(snr),
abbreviated as x, we obtain that the MMSE multiuser efficiency of the

5Whenever we refer to an almost sure asymptotic empirical distribution, we are implic-
itly assuming that the corresponding empirical distribution converges almost surely to a
nonrandom limit.
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kth user, abbreviated as n = n™™¢(snr ), is the solution to

L—ncp(Bx)
Bnx TEC (3.50)
1-— 2 (snrRE[|C|?
o nAIE(qu]H *In) (3.51)

where |C|? and |A|? are independent random variables with distribu-
tions given by the asymptotic spectra of CC! and AAT, respectively,
while 7cj2(-) and njaj2(-) represent their respective n-transforms. Note
that, instead of (B51]) and [B50), we may write [37) [159]

1 C”

n= (3.52)
E[|C|? |A[2
ICPT |1 4 Bsnr ICI*E | 17eng ICTTTATS
From Corollary we have that, for
P[|A| > 0]
7 <,
& P[|C| >0 —
n,‘iec converges almost surely to the solution to
C]? ]
1=E . 3.53
T SRS O (3:33)

Note that both the MMSE and the decorrelator multiuser efficiencies
are asymptotically the same for every user.
From Theorem [2.43] the downlink counterpart of (3.39) is [159]

1 & 1 ~1
— Z MMSE, = —tr { (I + SNR HTH) }
K — K

= =gt () (54

with x(-) solution to (8.51) and (B.50). The special case of ([3.52]) for
equal-power users was given in [50].

For the sake of brevity, we will not explicitly extend the analysis to
the case in which both frequency selectivity and multiple receive anten-
nas are present. This can be done by blending the results obtained in
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Sections B.1.3] and B.1.4l Moreover, multiple transmit antennas can be
further incorporated as done explicitly in [169], where analytical tools
already leveraged in Sections are applied to the asymptotic
characterization of the single-user matched filter and MMSE detectors.
It is found that DS-CDMA, even with single-user decoding, can out-
perform orthogonal multiaccess with multiple antennas provided the
number of receive antennas is sufficiently large.

In most of the literature, the DS-CDMA channel spans only the
users within a particular system cell with the users in other cells re-
garded as a collective source of additive white Gaussian noise. While it
is reasonable to preclude certain forms of multiuser detection of users
in other cells, on the basis that their codebooks may be unknown, the
structure in the signals of those other-cell users can be exploited even
without access to their codebooks. This, however, requires more re-
fined models that incorporate this structure explicitly within the noise.
For some simple such models, the performance of various receivers has
been evaluated asymptotically in [317), 237]. Since the expression for
the capacity of a DS-CDMA channel with colored noise parallels that
of the corresponding multi-antenna channel, we defer the details to

Section B.3.8]

3.1.5 Channel Estimation for DS-CDMA

Reference [73] applies the concept of asymptotic freeness to the same
setup of Section B.I.4] (linear DS-CDMA receivers and a fading channel
with L discrete chip-spaced paths), but departing from the usual as-
sumption that the receiver has perfect side information about the state
of the channel. Incorporating channel estimation, the receiver consists
of two distinct parts:

® The channel estimator, which provides linear MMSE joint
estimates of the channel gains for every path of every user.

e The data estimator, which uses those channel estimates to
detect the transmitted data using a one-shot linear receiver.

In order to render the problem analytically tractable, the delay spread
is considered small relative to the symbol time and, more importantly,
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the time delays of the resolvable paths of all users are assumed known.
Thus, the channel estimation encompasses only the path gains and it is
further conditioned on the data (hypothesis that is valid during training
or with error-free data detection). The joint estimation of the channel
path gains for all the users is performed over an estimation window
of () symbols, presumed small relative to the channel coherence time.
For the ith symbol within this window, the output of the chip matched
filter is

K L
YD) = > Cresre(i)(x(i))x + n(i) (3.55)
k=1 (=1
where Cj, o represents the channel fading coefficient for path ¢ of user
k such that E[|Cy,¢|?] = 7, sg(¢) is the spreading sequence for the (th
path of the kth user for the ith symbol interval, n(7) is the additive
Gaussian noise in the ith symbol interval, and (x(7))x represents the
ith symbol of the kth user.

With long (i.e., changing from symbol to symbol) random spread-
ing sequences independent across users and paths, [73] shows using
Theorem that, as K, N — oo with % — (3, the mean-square error
of the estimation of every path gain coeflicient converges to

&= (SNRQ QBL t5 +\/NR27(Q _fL)z + SNR L%—i—%)

This result, in fact, holds under alternative conditions as well:

e [f the spreading sequences are independent across users and
paths but they repeat from symbol to symbol, i.e., sj ¢(i) =
Sk,¢ Vi (this can be proved using Theorem [2.6T]).

e The sequences received over the L paths are cyclically shifted
versions of each other but independent across users, i.e.,
ske(t) is a cyclically shifted replica of sy 1(i) by ¢ — 1 chips
(this can be proved using Example 2.49]).

The linear receiver performing data estimation operates under the belief
that the estimate of the fth path gain of the kth user has mean Ck’g
and variance 5,%. These estimates are further assumed uncorrelated and



116  Applications to Wireless Communications

with equal variance for all paths of each user. (When the channel is
perfectly known, Cp, = Ck,g and {,375 = 0 and the results reduce to
their counterparts in Section[3.1.4l) The linear receiver is designed with
all expectations being conditional on the spreading sequences and the
mean and variance supplied by the channel estimator.

From Theorem [2.46], the output SINR for user k converges asymp-
totically in probability to

L
1 _
S E Crol? 3.56
1+ f,%sn\an — (Chel smirg ( )

where sinrg is the corresponding output SINR without the effect of
other-user channel estimation errors. Implicit expressions for sinrg, de-
pending on the type of linear receiver, are

1
— +BLE |————| MMSE
SNR 1+ Psingrg
! = L + 1 8 decorrelator (3.57)
SINRq S’\iR sNR 1 — GL
o + BLE[P] single-user matched filter

with expectation over P, whose distribution equals the asymptotic em-
pirical eigenvalue distribution of the matrix E[diag(czcg, . ,cKcJ}()]
(assumed to converge to a nonrandom limit) with ¢, = [Cg ... Ck7L]T.
The main finding of the analysis in [73] is that, provided the channel es-
timation window (in symbols) exceeds the number of resolvable paths,
the resulting estimates enable near-optimal performance of the linear
data estimator.

In [46], the impact of channel estimator errors on the performance
of the linear MMSE multistage receiver (cf. Section B.I.0) for large
multiuser systems with random spreading sequences is analyzed.

3.1.6 Reduced-Rank Receivers for DS-CDMA

Both the MMSE and the decorrelator receivers need to invert a mat-
rix whose dimensionality is equal to either the number of users or the
spreading gain. In large-dimensional systems, this is a computationally
intensive operation. It is therefore of interest to pursue receiver struc-
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tures that approach the performance of these linear receivers at a lower
computational cost.

Invoking the Cayley-Hamilton TheoremE the MMSE receiver can
be synthesized as a polynomial expansion that yields the soft estimate
of the kth user symbol in (LI]) as

D—1
i =hl > w,R™y (3.58)

m=0
where R = HH and D = N (the rank or the number of stages of the
receiver). Since the coefficients w,,, m € {0,...,D — 1} must be ob-

tained from the characteristic polynomial of the matrix whose inverse is
being expanded, this expansion by itself does not reduce the computa-
tional complexity. It does, however, enable the possibility of a flexible
tradeoff between performance and complexity controlled through D.
The first proposal for a reduced-complexity receiver built around this
idea came in [I79], where it was suggested approximating (B.58]) with
D < N and with the coefficients w,,, computed using as cost function
the mean-square error between Z; obtained with the chosen D and the
actual T obtained with a true MMSE receiver. Then, the w,,’s be-
come a function of the first D moments of the empirical distribution
of R. With D < N, the linear receiver in (3.58]) projects the received
vector on the subspace (of the signal space) spanned by the vectors
{h;,Rhy, ..., RP~1h;}[1 Reduced-rank receivers have been put forth
for numerous signal processing applications such as array processing,
radar, model order reduction (e.g. [214] 215 [130]), where the signal is
effectively projected onto a lower-dimensional subspace and the filter
optimization then occurs within that subspace. This subspace can be
chosen using a variety of criteria:

Principal components. The projection occurs onto an estimate of
the lower-dimensional signal subspace with the largest energy

6The Cayley-Hamilton Theorem ensures that the inverse of a K x K nonsingular matrix
can always expressed as a (K — 1)th order polynomial [I17].

7These vectors are also known as a Krylov sequence [II7]. For a given matrix A and vector
x, the sequence of vectors x, Ax, A%x, ... or a truncated portion of this sequence is known
as the Krylov sequence of A. The subspace spanned by a Krylov sequence is called Krylov
space of A.
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[298], 115] [247].

Cross-spectral method. The eigenvector basis which minimizes the
mean-square error is chosen [34, 92] based on an eigenvalue
decomposition of the correlation matrix.

Partial despreading. The lower dimensional subspace of the reduced
rank receiver is spanned by non-overlapping segments of the
matched filter [232].

Reduced-rank multistage Wiener filter. The multi-stage Wiener
(MSW) filter and its reduced-rank version were proposed in
[911, 93].

These various techniques have been analyzed asymptotically, in
terms of SINR, in [116]. In particular, it is shown in [I16] for the MSW
filter with equal-power users that, as K, N — oo, the output SINR
converges in probability to a nonrandom limit

SNR

SINRD4] = ——evm— (3.59)
1 + 5 +SS'\|II\TRD
for D > 0, where siNrg = 0 and siNrRy = Hﬁﬁ is the SINR at the out-

put of the matched filter. The analysis for unequal-power users can be
found in [253], 255]. A generalization of the analysis in [116] and [253]
can be found in [I62] where a connection between the asymptotic be-
havior of the SINR at the output of the reduced rank Wiener filter and
the theory of orthogonal polynomials for the so-called power moments
is established. It is further demonstrated in [116] and [162], numerically
and analytically respectively, that the number of stages D needed in
the reduced-rank MSW filter to achieve a desired output SINR does not
scale with the dimensionality; in fact, a few stages are usually sufficient
to achieve near-full-rank output SINR regardless of the dimension of the
signal space. However, the weights of the reduced-rank receiver do de-
pend on the spreading sequences. Therefore, in long-sequence CDMA
they have to be reevaluated from symbol to symbol, which hampers
real-time implementation.

To lift the burden of computing the weights from the spreading se-
quences for every symbol interval, [I87, [265], [159] proposed the asymp-
totic reduced-rank MMSE receiver, which replaces the weights in ([3.58))
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with their limiting values in the asymptotic regime. Following this ap-
proach, various scenarios described by (1)) have been evaluated in
[45, 105, 158, 159, 187, 265]@ For all these different scenarios it has
been proved that, in contrast with the exact weights, the asymptotic
weights do not depend on the realization of H and hence they do not
need to be updated from symbol to symbol. The asymptotic weights are
determined only by the number of users per chip and by the asymptotic
moments of HHT and thus, in order to compute these weights explic-
itly, it is only necessary to obtain explicit expressions for the asymptotic
eigenvalue moments of the interference autocorrelation matrix. Numer-
ical results show that the asymptotic weights work well for even modest
dimensionalities.

Alternative low-complexity implementations of both the decorrela-
tor and the MMSE receiver can be realized using the concepts of itera-
tive linear interference cancellation [84] 124, [33] 207, [71], [72], which rely
on well-known iterative methods for the solution of systems of linear
equations (and consequently for matrix inversion) [7]. This connection
has been recently established in [99, 251] [72]. In particular, parallel
interference cancellation receivers are an example of application of the
Jacobi method, first- and second-order stationary methods and Cheby-
shev methods, while serial interference cancellation receivers are an
example of application of Gauss-Seidel and successive relaxation meth-
ods. For all these linear (parallel and serial) interference cancellation
receivers, the convergence properties to the true decorrelator or MMSE
solution have been studied in [99] for large systems. For equal-power
users, the asymptotic convergence of the output SINR of the linear
multistage parallel interference cancellation receiver (based on the first

81n [I87], DS-CDMA with equal-power users and no fading is studied. In turn, [I58| con-
siders the more general scenario of DS-CDMA with unequal-power users and flat-fading.
Related results in the context of the reduced-rank MSW and of the receiver originally pro-
posed by [179] were reported in [45]. In [I58] [159], the analysis is extended to multi-antenna
receivers and further extended to include frequency selectivity in [I05] [I59]. Specifically,
the frequency-selective CDMA downlink is studied in [105] with the restriction that the
signature matrix be unitarily invariant with i.i.d. entries. In [I59], in contrast, the analysis
with frequency-selectivity is general enough to encompass uplink and downlink as well as
signature matrices whose entries are independent with common mean and variance but
otherwise arbitrarily distributed. The case of frequency-selective CDMA downlink with
orthogonal signatures has been treated in [105].
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and second-order stationary linear iterative method) to a nonrandom
limit has been analyzed in [252] 254].

We now summarize some of the results on linear polynomial MMSE
receivers for DS-CDMA. The linear expansion of the MMSE receiver
is built using a finite-order Krylov sequence of the matrix HkHl +0%1
and the coefficients of the expansion are chosen to minimize MSE. The
soft estimate of the kth user symbol is given by (B.58]) with R replaced
by

> hih + 0T = HyH] + 0”1 (3.60)
ik
where Hj, indicates the matrix H with the kth column removed. The
weights that minimize the mean-squared error are

Hi+HoHo - Hp+Hp1Ho T M

W — . .. : :

Hp+Hp-1Ho -+ Hop-1+Hp-1Hp-1 Hp-1
(3.61)

where the (7, j)th entry of the above matrix is H;4j—1 +H;—1H;j—1 with

Hyn = bf, (HH] +0%1) "y (3.62)
Denoting the asymptotic value of H,, as
Heo = lim Hyp, (3.63)
K—o0

the asymptotic weights are given by (B.61]) where each H,, is replaced
by its asymptotic counterpart, H;o. The calculation of these asymptotic
weights is closely related to the evaluation of the asymptotic eigenvalue
moments of HH, which can be done using the results laid down in
Section 23l In the following, all the hypotheses made in the previous
sections dealing with DS-CDMA are upheld.

In the case of unfaded equal power DS-CDMA, with H = S as in
Section B.I.1] using (2.102]) we have that [187, [158]

HE = Em: <7:> g2 zn: (?) (Z " 1) % (3.64)
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In the case of faded DS-CDMA with a single receive antenna, where
H = SA as in Section 3.1.2]

m

o m m—zn
M = <n>02 20 Al (3.65)

n=0

with gy, from (2.I18]), given by

n

o= 2SS o AP E AP (366)

oyl !
i=1 v

where |A] is a random variable whose distribution equals the asymptotic
empirical singular value distribution of A and the inner sum is over all

i-tuples of nonnegative integers (my,...,m;) such that [158] [45]
i
dmg = n—i+1 (3.67)
(=1

> tmy = (3.68)
/=1

A similar result holds for the faded DS-CDMA with antenna diver-
sity described in Section B3] with |A| now equal to the square root
of the random variable whose distribution is given by the asymptotic
empirical distribution of Py, ..., Pk as defined in Section B.1.3]

For the frequency-selective faded downlink, applying Theorem [2.48]
to the model in Section B.1.4] we have [159]

m

Hy = Z(Z)azm”"\Ak\?E[|C\2mn<|q2>] (3.69)

n=0

where

ma(r) = BrY mea(r) Y E[APP?E[|CPma, -1 (IC17)]
(=1

ny+-+n;=n—~L
1<i<n—¢

L E[|CPma, 1 (IC1)] (3.70)

with |C|? as in Section 3.4l and with |A| representing a random vari-
able, independent of |C|2, whose distribution equals the asymptotic



122 Applications to Wireless Communications

empirical singular value distribution of A. The counterpart of (3.69)
for orthogonal Haar distributed spreading signatures and for unitarily
invariant i.i.d. spreading sequences has been analyzed in [105], where
the asymptotic weights are calculated using free probability.

In the frequency-selective faded uplink, in turn, H is given by (3.35])
and straight application of Theorem yields

H% — zm: <TZ> 0_2m—2n5n7k

n=0
B Z<:>U2m_2”E[p(X,k)]E[mn(X)pk(X)] (3.71)
n=0

with p(,-) and pg(-) as in Section B.I.4] and with m,(-) obtained
through the recursive equation given by (2.164]) in Theorem 2.55]

3.2 Multi-Carrier CDMA

Multi-Carrier CDMA (MC-CDMA) is the frequency dual of DS-
CDMA. Hence, a MC-CDMA transmitter uses a given spreading se-
quence to spread the original signal in the frequency domain. In other
words, each fraction of the symbol corresponding to a chip of the
spreading code is transmitted through a different subcarrier. It is es-
sential that the sub-band corresponding to each subcarrier be narrow
enough for its fading to be frequency non-selective. The basic transmit-
ter structure of MC-CDMA is similar to that of OFDM [109], with the
main difference being that the MC-CDMA scheme transmits the same
symbol in parallel through the various subcarrier whereas an OFDM
scheme transmits different symbols. The spreading gain N is equal to
the number of frequency subcarriers. Each symbol of the data stream
generated by user k is replicated into N parallel copies. Each copy is
then multiplied by a chip from the corresponding spreading sequence.
Finally, an inverse discrete Fourier transform (IDFT) is used to convert
those N parallel copies back into serial form for transmission. A cyclic
or empty prefix is appended to facilitate demodulation, at the expense
of some loss in efficiency. A possible receiver front-end consists of N
matched filters, one for each subcarrier.

Since in the case of frequency-flat fading the analysis of MC-CDMA
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is mathematically equivalent to that of its DS-CDMA counterpart (see
Section B.I.2]), we proceed directly to consider the more general case of
frequency-selective fading.

3.2.1 MC-CDMA Uplink

In synchronous MC-CDMA with K active users and frequency-selective
fading, the vector x contains the signals transmitted by each of the users
and the kth column of H is

h, = B, 6T (3.72)

where
h = ApCops?, (3.73)
with s, = [s](fl), ey SI(CN)]T denoting the unit-energy transmitted spread-

ing sequence of the kth user, Ay indicating the received amplitude of
that kth user, which accounts for its average path loss, and with Cy,
denoting the fading for the ¢th subcarrier of the kth user, independent
across the users. In this subsection we refer to hy as the received sig-
nature of the kth user. Notice that H incorporates both the spreading
and the frequency-selective fading. More precisely, denoting by C the
N x K matrix whose (¢,k)th entry is C;j, we can write the received
signature matrix H as

H=CoSA (3.74)

with o denoting element-wise (Hadamard) product and

A = diag(A4,...,Ax) (3.75)

S = [si1]| ... ]sk] (3.76)

C = [c1] ... |cx] (3.77)
where the entries of S are i.i.d. zero-mean with variance % and thus
the general model becomes

y = (CoSA)x +n. (3.78)

Each user experiences independent fading and hence the columns of
C are independent. The relationship between the fading at different
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subcarriers of any given user, in turn, is dictated by the power-delay
response of the channel. More precisely, we can define a frequency co-
variance matrix of the kth user as

M, = Elccl). (3.79)

The (p, q)th entry of My, is given by the correlation between the channel
response at subcarriers p and ¢, separated by frequency (p —q)Ay, i.e.,

(Mo = [ T k(e IO g — By (p— )Ap)  (3.80)

with ¢ and ®j the power-delay response and the frequency correlation
function of the kth user channel, respectively.

The received energy at the ¢th subcarrier, ¢ € {1,..., N}, for the
kth user, k € {1,..., K}, is |Cox Axl?

Let B be the N x K matrix whose (7, j)th element is

and let v(-,-) be the two-dimensional channel profile of B assumed to
behave ergodically (cf. Definition [2I7]). Then, the SINR at the output
of the MMSE receiver is

-1
SINRT™® = snR |Ag|? (cp o sp) (I + SNR HkHD (ck o sg)

where, recall from the DS-CDMA analysis, H; indicates the matrix
H with the kth column removed. Using Theorems 2.57] and 252, the
multiuser efficiency is given by the following result.

Theorem 3.1. [160] For 0 < y < 1, the multiuser efficiency of the
MMSE receiver for the |y K |th user converges almost surely, as K, N —
oo with % — 0, to

: mmse _ lll(y7SNR)
where ¥(-,-) is a positive function solution to
X
U(y,sne) =E X, y) (3.83)

v(X,Y
1+ snr BE [Wﬁ({smﬂx]
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where the expectations are with respect to independent random vari-
ables X and Y both uniform on [0,1].

Most quantities of interest such as the multiuser efficiency and the
capacity approach their asymptotic behaviors very rapidly as K and
N grow large. Hence, we can get an extremely accurate approximation
of the multiuser efficiency and consequently of the capacity with an
arbitrary number of users, K, and a finite processing gain, N, simply
by resorting to their asymptotic approximation with v(z,y) replaced
in Theorem [B1] by

o)~ APICP T <r< Play<
Thus, we have that the multiuser efficiency of uplink MC-CDMA is
closely approximated by

ON (snr
e (sNR ) A 1]§v(—)2 (3.84)
with
N
1 |Conl?
N )
O (snR) Z Are o (389)

=1 L+snRy Z] 1 1+sNR[A; 2 @V (SNR)

From Theorem B, the MMSE spectral efficiency converges, as
K,N — oo, to

C™™¢(B,snr) = BE [log (1 4+ sne ¥ (Y, snR))] (3.86)

where the function ¥(-,-) is the solution of (3.83]).
Let the ratio between the effective number of users and the effective
processing gain be defined as

PE [v(X,Y)[Y] > 0]
P[E [v(X,Y)|X] > 0]

8= (3.87)
where only the contribution of users and subcarriers that are active
and not completely faded is accounted for. For all y if 3’ < 1, as snr
goes to infinity, the solution to (B:83]), ¥(y,snr), converges to oo (-),
which is the solution to the fixed-point equation
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v(X,y)
1+ BE [ $53} ]
If 3’ < 1, the spectral efficiency of the decorrelator is
C%*(B,sNR) = BE [log (1 + snr W (Y))] . (3.89)

As an application of Theorem [2.53] the following generalization of
(3I8) to the multicarrier CDMA channel is obtained.

Theorem 3.2. [160] The capacity of the optimum receiver is

C®(B,snr) = CT™(B,5nR)
+E [log(1 4 snr SE [v(X, Y)Y (Y, snr)|X]]
—OBsnr E[P(Y,snr)Y(Y,snRr)]loge (3.90)

with W(-,-) and Y(-,-) satisfying the coupled fixed-point equations

_ v(X,y)
Viy,sne) = E 1+ BsnRE[v(X, Y)Y (Y, snr)[X] (3:91)

1
Tly,snr) = 1+ snrR U(y,snR) (3:92)

where X and Y are independent random variables uniform on [0, 1].

As an alternative to (3.90]), the asymptotic capacity per dimension
can also be expressed as

C®(B,snR) = C™™¢(B,snR) + E [log <m>}

+(E[D(X,snR)] — 1) loge (3.93)
with D(-,-) the solution to
1

v(x,Y
L+ s O E | g IE[DO((,SN)R)U(X,Y)\Y]

D(x,sNR) =

(3.94)
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This alternative expression can be easily derived from (3.90) by virtue
of the fact that ¥(-,-) and D(-,-) relate through

U(y,snr) = E[u(X,y)D(X, snr)].

Although (B.90) and ([B.93)) are equivalent, they admit different inter-
pretations. The latter is a generalization of the capacity given in (B.I8]).
The former, on the other hand, appears as function of quantities with
immediate engineering meaning. More precisely, snr U(y, snr ) is easily
recognized from Theorem [B] as the SINR exhibited by the |yK |th
user at the output of a linear MMSE receiver. In turn Y (y, snr) is the
corresponding mean-square error.

An alternative characterization of the capacity (inspired by the op-
timality by successive cancellation with MMSE protection against un-
cancelled users) is given by

C®(B,snr) = SE[log(1 + snr3(Y, shR))] (3.95)

where

'U(va)
v(X,Z
1+ snrB(1 —y)E [W(z),sm)m]

J(y,snr) =E (3.96)

where X, and Z are independent random variables uniform on [0, 1] and
[y, 1], respectively.

A slight variation of the standard uplink MC-CDMA setup, namely
a multicode version where users are allowed to signal using several si-
multaneous spreading signatures, is treated in [201I]. The asymptotic
output SINR of the linear MMSE receiver and the corresponding spec-
tral efficiency with both i.i.d. and orthogonal signatures are computed
accounting also for frequency selectivity in the channel. The deriva-
tions rely on approximating the user covariance matrices with suit-
able asymptotically free independent unitarily invariant matrices hav-
ing compactly supported asymptotic spectra (cf. Example [2.46]). The
accuracy of this approximation is verified through simulation.
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3.2.2 MC-CDMA Downlink

We now turn our attention to the MC-CDMA downlink, where the
results take simpler forms.

For the downlink, the structure of the transmitted MC-CDMA sig-
nal is identical to that of the uplink, but the difference with [B.74) is
that every user experiences the same channel and thus c; = c for all
1 <k < K. As aresult, the use of easily detectable orthogonal spread-
ing sequences becomes enticing. We shall thus consider, in addition to
sequences with i.i.d. entries, a scenario where the transmitted spreading
matrix S is an N x K isotropic unitary matrix Q and thus

H = CQA. (3.97)

with C = diag(c).

The role of the received signal-to-noise ratio of the kth user is, in this
scenario, taken by |Ag|2snR E[|C|?] where |C| is a random variable whose
distribution equals the asymptotic empirical singular value distribution
of C.

In our asymptotic analysis, we assume that the empirical singular
value distribution of A and C converge almost surely to respective
nonrandom limiting distributions Fja| and Fic|.

3.2.2.1 Sequences with i.i.d. Entries
It follows from Remark 2.3.1] that the results for the downlink can be

obtained as special cases of those derived for the uplink in Section

B.2.1).
Application of Theorems 2.43] and yields the following:

Theorem 3.3. The multiuser efficiency, n;"™*, of the MMSE receiver
for the kth user converges almost surely to the solution, n™™*¢(snr ), of
the fixed-point equation

1 2
mmse __ E ‘C|

= 2 A2
E HC| ] 14 snr 5|C‘2E T+AP SNRI IE‘HC\Z} nmmse]

(3.98)
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In the equal-power case, [202] arrived at (3.98]) for a specific choice of
the distribution of |C|.

Unlike in the uplink, in the downlink the asymptotic multiuser effi-
ciency is the same for every user. This means that, asymptotically, all
the users are equivalent. The asymptotic Gaussianity of the multiaccess
interference at the output of the MMSE transformation [275] leads to
the following asymptotic spectral efficiency for the MMSE receiver:

C™™=(B,snr) = BE [log (1 + |A*snr E [|C[2] n™™(snr))] . (3.99)
Let ' be the ratio between the effective number of users and the
effective processing gain:
;S PlA[> 0]
& _ﬂPHq > 0]
The asymptotic spectral efficiency of the decorrelator for 5/ <1 is
C% = BE [log (1 + snr no|A[?)] (3.100)
where 79 is the decorrelator multiuser efficiency, positive solution to
(cf. Corollary 2.2])
. cP
E[|C?]mo + BP[IA[ > 0]/C[?

Applying Theorem 2.44] we obtain the central characterization of the
capacity of downlink MC-CDMA.

=1. (3.101)

Theorem 3.4. In the MC-CDMA downlink, the capacity of the opti-
mum receiver admits the expression

Co(G,5m) = C™(5,snk ) + E [log(1 + BICI%0)] — B0 ploge

where
Op = 1—nap2(snrO) (3.102)
BOp = 1—mncp(ph). (3.103)

Note that 6(snr) = E [|C[2] p™™(snr).
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3.2.2.2 Orthogonal Sequences

In this setting we assume that K < N and the channel matrix H can
be written as the product of the N x N diagonal matrix C = diag(c),
an N x K matrix Q containing the spreading sequences and the K x K
diagonal matrix A of complex fading coefficients:

y = CQAx + n. (3.104)

Here, Q is independent of C and of A and uniformly distributed over
the manifold@ of complex N x K matrices such that Q'Q = I.
The arithmetic mean of the MMSE’s for the K users satisfies

K
1 1 -1
il - ToTot
e kz_:l MMSE}; Ktr { (I +snRATQTC CQA) } (3.105)
2 narqrercqa (ShR) (3.106)
1
= 1- B(l — NcQAaAtQict (SNR)) (3.107)

where (BI07) comes from (2.56]). For equal-power users (A =1I), from
Example [Z.51] we have that

-1+ 770QQT0T>
Ncqqtct (SNR) = oot <SNR : (3.108)
cQQicC cC —— (SNR)
From
K K
1 1 1
K = 2T o 3.109
K Z . K Z 1 + siNRry, ( )
k=1 k=1
it follows that, as K, N — oo,
1 K 1 1
a.s.
K ; Tromm, L~ 5~ cqarior (k). (3.110)

For equal-power users, the unitary invariance of Q results in each user
admitting the same limiting MMSE and, from mmsg; = m, the
same limiting SINR:

1 a.s. 1

- a8 )
1 + sINRg 1+ sinr

(3.111)

9 This is called the Stiefel manifold (cf. Chapter B] Footnote ().
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Consequently, (3.110]) implies that
SINR
1+ sinr

=1 —1ncqqict(snr)

which, in conjunction with (3.108]), means that sinr is the solution to

MRy b (3.112)
=1- SNR——————— .
1+ sinR ficct 1+ sinr(1 — )

whereas the multiuser efficiency of the kth user achieved by the MMSE

mmse

receiver, n"™*(sNR ), converges almost surely to

n]r:mse(SNR) N nmmse (SNRE [|C|2])

where the right side is the solution to the following equation at the
point 7 = snrE [|C/?]
mmse ‘6‘2

" —E _ (3.113)
1 + 7-fr,mmse BT‘C|2 + 1 + (1 _ 5)T77mmse

~ 2
with |C|2 = %. A fixed-point equation equivalent to (B.I13) was

derived in [56].
For equal-power users, the spectral efficiencies achieved by the
MMSE receiver and the decorrelator are

C™™(B,sNR ) = [ log (1 + snrRE UC|2] 7™ (sNR )) (3.114)
and, for 0 < <1,
c(B,snr ) = Blog (1 + snrE [|C)2] (1 - B)). (3.115)

In parallel with [217, Eqn. (141)], the capacity of the optimum receiver
is characterized in terms of the n-transform of HH' = CQQ'CT

SNR 1

CoM (B, nR) = /O (1 - nogqici (@) dz  (3.116)

T
with ncqqret (+) satisfying (B.I08). An alternative characterization of

the capacity (inspired by the optimality by successive cancellation with
MMSE protection against uncancelled users) is given by

C®(B,snr) = BE[log (1 +3(Y,snRr))] (3.117)
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with
I(y,snr) snr |C|?

T+ 3(y,sne) . Bysnr|Cl24+ 1+ (1—By)A(y,snr) (3.118)

where Y is a random variable uniform on [0, 1].
The case of unequal-power users has been analyzed in [37] with the

restrictive setup of a finite number of user classes where the power
is allowed to vary across classes but not over users within each class.
Reference [37] shows that the SINR of the kth user at the output of
the MMSE receiver, sinrg, and consequently 7™*(snR), converge al-
most surely to nonrandom limits. Specifically, the multiuser efficiency
converges to the solution 7 of

ICP?
BICI2 (1= nai2(tn)) +n (1 = B+ Byai2(Tn))

with 7 = snrE[|C|?]. From the multiuser efficiency, the capacity can be

=1 (3.119)

readily obtained using the optimality of successive interference cancel-
lation as done in (B.117).
3.2.2.3 Orthogonal Sequences vs i.i.d. Sequences

The multiuser efficiency achieved by the MMSE receiver where i.i.d.
spreading sequences are utilized, given in ([8.98)), can be rewritten as

mmse 12
U - [ €] ] (3.120)

1 + Tpmmse B7|C|2 + 1 4 ymmse

with 7 = s\RE[|C|?]. A comparison of B.120) and (B.IL3) reveals that,
for a fixed 8 > 0, the SINR in the i.i.d. case is always less than in
the orthogonal case. Moreover, the performance gain induced by the
use of orthogonal instead of i.i.d. spreading sequences grows when (3
approaches 1. If 8 ~ 0, then the output SINR in the two cases is
basically equal. Moreover, from (3.98]) and (3.113]) it follows respectively
that

CP?

1 IC|2
T + BH—SINRHd

SINRjj 4 = E (3.121)
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and

C>
L1 o) + Sredies
Notice, by comparing (B.121]) and ([BI122), that in the latter the term

% = WHCIQ] is multiplied by (1 — ﬂ{%), which is less than 1.

Accordingly, for a given SINR the required snr is reduced with respect

SINRgrih = B (3.122)

to the one required with i.i.d sequences.

3.2.3 Reduced Rank Receiver for MC-CDMA

In the downlink, the fading experienced by the IV subcarriers is common
to all users. The asymptotic weights of the rank-D MMSE receiver for
the downlink can be easily derived from

i m
How = [Al* <n>02m‘2”£n (3.123)
n=0

where, in the case of i.i.d. spreading sequences,

fn = 5ZE [mé—l(‘qQ) ‘C|4] Z E [‘A‘2i+2] fm—l . "gnz‘—l

=1 R e i
1<i<n—¢

(3.124)

and

mp(r) = ﬁerg_l(r) Z E [|A|2i+2] Enp—1---&n;—1 (3.125)
=1

ny+-tn;=n—~L
1<i<n—¢

with |C| and |A| random variables whose distributions equal the asymp-
totic empirical distributions of the singular values of C and A, respec-
tively. In the case of orthogonal sequences, the counterparts of (B.124))

and (3.125]) can be found in [105].
For the uplink, the binomial expansion (3.62]) becomes

(o] - m m—zn
Hye =Y <n>a2 2k (3.126)

n=0
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where
En.ke = E[my (X)vg (X)] (3.127)

with my(+) solution to the recursive equation

mp(z) = B8Y me1(2)E[v(z,Y) > EuX,Y)mu,_1(X)|Y]
/=1 n1+~~~ﬂ—<nrz~7:;—z

E (X, Y)m,—1(X)]Y] ] (3.128)

where v(-,-) is the two-dimensional channel profile of B as defined in

Section [3.2.11

3.3 Single-User Multi-Antenna Channels

Let us now consider the problem of a single-user channel where the
transmitter has nt antennas while the receiver has ny antennas. (See
[250}, [76] for the initial contributions on this topic and [60), 90, [82, [24], 23]
for recent articles of tutorial nature.)

3.3.1 Preliminaries

With reference to the general model in (I.1]), x contains the symbols
transmitted from the nt transmit antennas and y the symbols received
by the ny receive antennas with Z—; — (6 when nt and ng grow large.
The entries of H represent the fading coefficients between each transmit
and each receive antenna normalized such tha

E [tr {HHT }] = nR (3.129)
while
_ E[|x]]
SNR = m. (3.130)

In contrast with the multiaccess scenarios, in this case the signals trans-
mitted by different antennas can be advantageously correlated and thus

10 Although, in most of the multi-antenna literature, E [tr {HHJr }] = nng, for consistency

with the rest of the paper we use the normalization in (3:129). In the case that the entries

of H are identically distributed, the resulting variance of each entry is %
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the covariance of x becomes relevant. Normalized by its energy per di-
mension, the input covariance is denoted by

E[xx]
= 0 (3.131)
e Elllx]?]
where the normalization ensures that E[tr{®}] = ny. It is useful to

decompose this input covariance in its eigenvectors and eigenvalues,
® = VPV, Each eigenvalue represents the (normalized) power allo-
cated to the corresponding signalling eigenvector. Associated with P,
we define an input power profile
P(”R)(t,SNR) =Pj; % <t< Jnil

supported on ¢t € (0,/]. This profile specifies the power allocation at
each snr. As the number of antennas is driven to infinity, P("®) (¢, snR)
converges uniformly to a nonrandom function, P(t,snr ), which we term
asymptotic power profile.

In order to achieve capacity, the input covariance ® must be prop-
erly determined depending on the channel-state information (CSI)
available to the transmitter. In this respect, there are three main
regimes of interest:

e The transmitter has full CSI, i.e., access to H instanta-
neously. In this case, ® can be made a function of H. This
operational regime applies, for example, to fixed wireless ac-
cess systems where transmitter and receiver are stationary
(backhaul, local loop, broadband residential) and to low-
mobility systems (local-area networks, pedestrians). It is par-
ticularly appealing whenever uplink and downlink are recip-
rocal (time-duplexed systems) [48].

e The transmitter has only statistical CSI, i.e., access to the
distribution of H but not to its realization. In this case,
® cannot depend on H. This is the usual regime in high-
mobility and wide-area systems, especially if link reciprocity
does not hold.

® The transmitter has no CSI whatsoever.
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For all these scenarios, the capacity per receive antenna is given
by the maximum over ® of the Shannon transform of the averaged
empirical distribution of H®HT, i.e.

C(snr) = @glq?ichVHéHf(st). (3.132)

If full CSI is available at the transmitter, then V should coincide
with the eigenvector matrix of H'H and P should be obtained through
a waterfill process on the eigenvalues of HIH [260, 47, 250, 205]. The
resulting jth diagonal entry of P is

1 +
ij = <I/ — 7)
’ snr A (HTH)

where v is such that tr{P} = np. Then, substituting in (3.132)),

(3.133)

1
C(snr) = — log det(I 4 sne PA) (3.134)
R
= g / (log(snrvA)) FdF L (N) (3.135)
with A equal to the diagonal eigenvalue matrix of HIH.

If, instead, only statistical CSI is available, then V should be set, for
all the channels that we will consider, to coincide with the eigenvectors
of E[HTH] while the capacity-achieving power allocation, P, can be
found iteratively [264].

With no CSI, the most reasonable strategy is to transmit an
isotropic signal (® = I) [195] [300]. In fact, because of its simplicity
and because many space-time coding schemes conform to it, this strat-
egy may be appealing even if some degree of CSI is available.

3.3.2 Canonical Model

The pioneering analyses that ignited research on this topic [250] [76]
started with H having i.i.d. zero-mean complex Gaussian random en-
tries (all antennas implicitly assumed identical and uncorrelated).
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For this canonical channel, the capacity with full CSI converges
asymptotically to [43], O8] 177, 212]

b
C(snR) = B /m aX{Wl}log <”;NRA> fa(\)d\  (3.136)

where v satisfies

/b (,, __p >+fﬁ(A) dr =1 (3.137)

max{a,v—1} SNR A

with a, b and fg(-) given in (LI0I).

Ifv> SN’%, then the integrals in ([.136) and (8.137) admit closed-
form expressions. Since, with full CSI at the transmitter, the capacity
is reciprocal in terms of the roles played by transmitter and receiver

[250], we have that

C(B, snr) = fBC (%, SNR) (3.138)

and thus we need only solve the integrals for § < 1. Applying Example
2.15 to (B:136]) and Theorem 2.101to (BI37) and exploiting (3.138]), the

following result is obtained.

Theorem 3.5. [263] For

2min{1, 532}
3.139
R T [ 1

the capacity of the canonical channel with full CSI at the transmitter

converges almost surely to

Blog (L& + 113) + (1-B)log Ly — Bloge A< 1

C(snr) =
log (ﬂsm—l—%)—k(ﬂ—l)log%—bge 8> 1.

Theorem is illustrated in Figure for various numbers of an-
tennas. The solid lines indicate the asymptotic solutions, with the role
of 8 played by Z—;, while the circles show the outcome of corresponding
Monte-Carlo simulations. Notice the power of the asymptotic analysis

for snr levels satisfying (B139]).



138  Applications to Wireless Communications

20 T

—— analytical
aeo simulation

Capacity (bits/s/Hz)

SNR (dB)

Fig. 3.2 Capacity of a canonical channel with various numbers of transmit and receive
antennas. The arrows indicate the SNR above which ([B139) is satisfied.

For 8 = 1, the asymptotic capacity with full CSI is known only
for sNR — 00, in which case it coincides with the mutual information
achieved by an isotropic input, presented later in this section [43].

Non-asymptotically in the number of antennas, the capacity with
full transmit CSI is studied in [4,127]. In [127], in particular, an explicit
expression is given although as function of a parameter that must be
solved for numerically.

With statistical CSI, it was shown in [250] that capacity is achieved
with @ = I. For fixed number of antennas, [250] gave an integral ex-
pression (integrating log(1 -+ snr A) with respect to the p.d.f. in (Z23]))
for the expected capacity as a function of the signal-to-noise ratio and
the number of transmit and receive antennas. This integral involving
the Laguerre polynomials lends itself to an explicit expression. This has
been accomplished in [219, (61}, [126]. In particular, [126] uses the Mellin
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transform and Theorem to arrive at a closed-form expression, and
[61] gives the expression in Example 217

Asymptotically, as the numbers of transmit and receive antennas
grow with ratio (3, the capacity per receive antenna converges almost
surely to [275] 206]

3 5

loge
(32 i (.0

(3.140)

C(B,snR) = Blog(l—km—i]—'(SNR B>>
1

with F (-, -) given in (ILIT). Notice that this capacity coincides, except
for a signal-to-noise scaling, with that of an unfaded equal-power DS-
CDMA channel

If 8 = 1, the asymptotic capacity per receive antenna with statisti-
cal CSI at the transmitter is equal to

C(B,snr) = 2log <1+ 12+ 4SNR> _ loge (V1+4snr — 1)2

4 sNR

evidencing the linear growth with the number of antennas originally
observed in [250, [76]. Further insight can be drawn, for arbitrary g,
from the high-snk behavior of the capacity (cf. Example 2.15):

log SNTR — (8- )log Ly o(1) 6>1
C(snr) =< log MR 4+ o(1) B=1
e — (1= p)log(1 — B) +o(1) B<1

Besides asymptotically in the number of antennas, the high-snr
capacity can be characterized for fixed nt and ng via (ZI2) in

11In addition to its role in the analysis of multiaccess and single-user multi-antenna, chan-
nels, (3I40) also plays a role in the analysis of the total capacity of the Gaussian
broadcast channel with multiple antennas at the transmitter [112] 282]. As shown in
[351 316], 276, 280}, [128] 259] 278] [36] 277, 302], in various degrees of generality, the multi-
antenna broadcast channel capacity region is equal to the union of capacity regions of the
dual multiaccess channel, where the union is taken over all individual power constraints
that sum to the averaged power constraint.
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Theorem 211l Also in this case, the capacity is seen to scale linearly
with the number of antennas, more precisely with min(nr,ngr). While
this scaling makes multi-antenna communication highly appealing, it
hinges on the validity of the idealized canonical channel model. Much of
the research that has ensued, surveyed in the remainder of this section,
is geared precisely at accounting for various nonidealities (correlation,
deterministic channel components, etc) that have the potential of com-
promising this linear scaling.

3.3.3 Separable Correlation Model

The most immediate effect that results from locating various antennas
in close proximity is that their signals tend to be, to some extent,
correlated. In its full generality, the correlation between the (7, ;) and
(7', 4') entries of H is given by

rH(iailvja ],) =K [Hz,]H;k/JI] . (3141)

In a number of interesting cases, however, correlation turns out to
be a strictly local phenomenon that can be modeled in a simplified
manner. To that end, the so-called separable (also termed Kronecker
or product) correlation model was proposed by several authors [220], 40,
203]. According to this model, an ng x nt matrix H,,, whose entries
are i.i.d. zero-mean with variance %, is pre- and post-multiplied by
the square root of deterministic matrices, @1 and ©g, whose entries
represent, respectively, the correlation between the transmit antennas

and between the receive antennas:
H-0,°H,0)". (3.142)

Implied by this model is that the correlation between two transmit
antennas is the same regardless of the receive antenna at which the
observation is made and viceversa. As confirmed experimentally in [41],
this condition is often satisfied in outdoor environments if the arrays are
composed by antennas with similar polarization and radiation patterns.

When (3.142) holds, the correlation in (3.141]) can be expressed (cf.
Definition 2.9]) as

(®Rr)i,i'(O1),,

ru(i, i, 5,5') = - : (3.143)
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Results on the asymptotic capacity and mutual information, with vari-
ous levels of transmitter information, of channels that obey this model
can be found in [I81, 262, [43], 263] 178]. Analytical non-asymptotic
expressions have also been reported: in [208] 209, 2], the capacity of
one-sided correlated channels is obtained starting from the joint dis-
tribution of the eigenvalues of a Wishart matrix ~ W,,(n,3) given in
Theorem 218 and (219). References [135] 234] 149, 39] compute the
moment generating function of the mutual information of a one-sided
correlated MIMO channel, constraining the eigenvalues of the correla-
tion matrix to be distinct. The two-sided correlated MIMO channel is
analyzed in [148| 231, [149] also through the moment generating func-
tion of the mutual information (cf. (2.16])).

With full CSI at the transmitter, the asymptotic capacity is [43]

C(snr) = ﬁ/ooo(log(SNRy)\))erG()\) (3.144)

/000 <” o )\>+ dG(A) =1 (3.145)

with G(-) the asymptotic spectrum of HIH whose n-transform can be
derived using Theorem 2.43] and Lemma 228 Invoking Theorem [2.45],
the capacity in (3.144]) can be evaluated as follows.

where v satisfies

Theorem 3.6. [263] Let Ag and At be independent random variables
whose distributions are the asymptotic spectra of the full-rank matrices
O and O respectively. Further define

A <1 AN <1
A = Ay = 3.146
! {/\R B>1 2 {/\T B>1 (3.146)

and let k be the infimum (excluding any mass point at zero) of the
support of the asymptotic spectrum of HTH. For

SNR > % —JE [Ail] (3.147)
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with § satisfying

nA,(0) =1 — min{}, %},
the asymptotic capacity of a channel with separable correlations and
full CSI at the transmitter is

ﬁE[log’e\—H + Va, () + Blog (SNR + ﬁE[/\l—T]) <1

Clonr) = E [log %] + BV (@) + log (SNR + aBlzg ) =1

with o and ¢ the solutions to

(@) =1=5 () =15

As for the canonical channel, no asymptotic characterization of the
capacity with full CSI at the transmitter is known for 6 = 1 and arbi-
trary snr.

When the correlation is present only at either the transmit or re-
ceive ends of the link, the solutions in Theorem sometimes become
explicit:

Corollary 3.1. With correlation at the end of the link with the fewest
antennas, the capacity per antenna with full CSI at the transmitter
converges to

_ <1
ﬁE[logA—g} + log ﬁ + Blog (SNR % + E[/\LT]) Ag =1
C =
B B>1
E[log A—GR} — Blog % + log (SNR (B-1)+ E[ALR]) A = 1.

With statistical CSI at the transmitter, achieving capacity requires
that the eigenvectors of the input covariance, ®, coincide with those
of © [279, 123]. Consequently, denoting by At and Agr the diagonal
eigenvalue matrices of @1 and Og, respectively, we have that

1
C(5,swr ) = ~ log det (1 + sNR A§/2HwA1T/2PA1T/2HLA§/2)

where P is the capacity-achieving power allocation [264]. Applying
Theorem [2.44] we obtain:



3.3. Single-User Multi-Antenna Channels 143

Theorem 3.7. [262] The capacity of a Rayleigh-faded channel with
separable transmit and receive correlation matrices @1 and ©r and
statistical CSI at the transmitter converges to

C(B,snr) = BE [log(1l + snr A'(snR )] + E [log(1 4 snR AR T (sNR )]

—Bsnr I'(snr) T (shr ) log e (3.148)
where
1 Ar
I(snk) = BE [1 +SNR/\RT(SNR):| (3.149)

A
T = F 3.150

(suR) [1 + SNR /\F(SNR):| ( )
with expectation over A and Ar whose distributions are given by the
asymptotic empirical eigenvalue distributions of ATP and ©Og, respec-
tively.

If the input is isotropic, the achievable mutual information is easily
found from the foregoing result.

Corollary 3.2. [266] Consider a channel defined as in Theorem [B.7]
and an isotropic input. Expression (3.I48]) yields the mutual infor-
mation with the distribution of A given by the asymptotic empirical
eigenvalue distribution of @.

This corollary is illustrated in Fig. B3] which depicts the mutual
information (bits/s/Hz) achieved by an isotropic input for a wide range
of snr. The channel is Rayleigh-faded with nt = 4 correlated antennas
and ng = 2 uncorrelated antennas. The correlation between the ith
and jth transmit antennas is

(O);; = e 007 (3.151)

which corresponds to a uniform linear array with antenna separation d
(wavelengths) exposed to a broadside Gaussian azimuth angular spec-
trum with a 2° root-mean-square spread [42]. Such angular spread is
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Fig. 3.3 Mutual information achieved by an isotropic input on a Rayleigh-faded channel
with n = 4 and ng = 2. The transmitter is a uniform linear array whose antenna corre-
lation is given by ([BI51) where d is the spacing (wavelengths) between adjacent antennas.
The receive antennas are uncorrelated.

typical of an elevated base station in rural or suburban areas. The solid
lines depict the analytical solution obtained by applying Theorem [B3.7]
with P = I and ®r = I and with the expectations over A replaced
with arithmetic averages over the eigenvalues of @r. The circles, in
turn, show the result of Monte-Carlo simulations. Notice the excellent
agreement even for such small numbers of antennas.

The high-snr behaviors of the capacity with statistical CSI and of
the mutual information achieved by an isotropic input can be charac-
terized, asymptotically in the number of antennas, using Theorem [2.45]
For arbitrary np and ng, such characterizations can be found in [165].
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3.3.4 Non-Separable Correlations

While the separable correlation model is relatively simple and analyt-
ically appealing, it also has clear limitations, particularly in terms of
representing indoor propagation environments [194]. Also, it does not
accommodate diversity mechanisms such as polarizatio and radia-
tion pattern diversity’d that are becoming increasingly popular as they
enable more compact arrays. The use of different polarizations and/or
radiation patterns creates correlation structures that cannot be repre-
sented through the separable model.

In order to encompass a broader range of correlations, we model the
channel as

H = UgHU}, (3.152)

where Uy and Uy are unitary while the entries of H are independent
zero-mean Gaussian. This model is advocated and experimentally sup-
ported in [301] and its capacity is characterized asymptotically in [262].
For the more restrictive case where Ur and Ut are Fourier matrices,
the model (B.I52) was proposed earlier in [213].

The matrices H and H are directly related through the Karhunen-
Loeve expansion (cf. Lemma 2.25]) with the variances of the entries of
H given by the eigenvalues of rg obtained by solving the system of
equations in (233)). Furthermore, from Theorem [2.58], the asymptotic
spectrum of H is fully characterized by the variances of the entries of
H, which we assemble in a matrix G such that G; ; = ntE[|H, ;|?] with

Y Gy =nrng. (3.153)
ij

Invoking Definition 216, we introduce the wvariance profile of H,
which maps the entries of G onto a two-dimensional piece-wise constant
function

j i+1 j +1
G (r t) = Gy <r< % L<t< = (3.154)

12 Polarization diversity: Antennas with orthogonal polarizations are used to ensure low
levels of correlation with minimum or no antenna spacing [I56] 236] and to make the
communication link robust to polarization rotations in the channel [19].

13 Pattern diversity: Antennas with different radiation patterns or with rotated versions of
the same pattern are used to discriminate different multipath components and reduce
correlation.
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supported on r,t € [0,1]. We can interpret r and t as normalized re-
ceive and transmit antenna indices. It is assumed that, as the number
of antennas grows, g(”R)(r,t) converges uniformly to the asymptotic
variance profile, G(r,t). The normalization condition in (3.I53]) implies
that

E[GR,T) =1 (3.155)

with R and T independent random variables uniform on [0, 1].

With full CSI at the transmitter, the asymptotic capacity is given by
BI44) and ([B.145) with G(-) representing the asymptotic spectrum of
HH. Using Theorems and [2.54] an explicit expression for C(snRr)
can be obtained for sufficiently high snr.

With statistical CSI at the transmitter, the eigenvectors of the
capacity-achieving input covariance coincide with the columns of Up
in (3I52) [261] 268]. In order to characterize the capacity, we invoke
Theorem 2.53] to obtain the following.

Theorem 3.8. [262] Consider the channel H = URINIUjF where Ug

and Ur are unitary while the entries of H are zero-mean Gaussian and

independent. Denote by G(r,t) the asymptotic variance profile of H.

With statistical CSI at the transmitter, the asymptotic capacity is

C(B,snR) = PBElog(l+snr E[G(R, T)P(T,snr)I(R,snr)| T])]

+E [log(1 + E[G(R, T)P(T,snr )Y (T, snr)|R])]
—BE[G(R, T)P(T,snr)I'(R,snr )Y (T, snr )] loge

with expectation over the independent random variables R and T uni-

form on [0,1] and with

1

PLEs) = T RIG0 TYP(T, sve T (T, )
SNR

T(t,snr) =

1+ snr E[G(R,t)P(t,snr )T (R, snr )]

where P(t, snr ) is the asymptotic power profile of the capacity achieving
power allocation at each snr.
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Fig. 3.4 Mutual information achieved by an isotropic input on a Rayleigh-faded channel
with nT = 3 and ng = 2 for the variance matrix G in (BI56)).

Corollary 3.3. [266] Consider a channel defined as in Theorem 3.8 but
with an isotropic input. Theorem [3.8 yields the mutual information by
setting P(¢,snr) = 1.

This corollary is illustrated in Fig. 3.4l for a Rayleigh-faded channel
with nt = 3 and ng = 2 where H = URHUjF with the entries of H
being independent with zero-mean and variances given by

04 3.6 05
G= [ 03 1 02 } ' (3.156)

Despite the very small numbers of antennas, there is full agreement
between the analytical values (obtained by applying Theorem [B.8 with
P(t,snr) = 1 and with the expectations replaced by arithmetic averages
over the entries of G) and the outcome of corresponding Monte-Carlo
simulations.
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Asymptotic characterizations of the high-snr capacity with statis-
tical CSI and of the mutual information achieved by an isotropic input
can be obtained via Theorem 2541

Asymptotic spectrum results have also been used in [161] to charac-
terize the wideband capacity of correlated multi-antenna channel using
the tools of [274].

3.3.5 DPolarization Diversity

A particularly interesting channel is generated if antennas with mixed
polarizations are used and there is no correlation, in which case the
entries of H are independent but not identically distributed because of
the different power gain between co-polarized and differently polarized
antennas. In this case, the eigenvalues of ryy coincide with the variance
of the entries of H, which we can model as

H=AoH, (3.157)

where o indicates Hadamard (element-wise) multiplication, H,, is com-
posed of zero-mean i.i.d. Gaussian entries with variance % and A is
a deterministic matrix with nonnegative entries. Each |A; ;|* symbol-
izes the power gain between the jth transmit and ith receive antennas,
determined by their relative polarizations

The asymptotic capacity with full CSI at the transmitter can be
found, for sufficiently high snr, by invoking Theorems 2.58 and 2.541

Since the entries of H are independent, the input covariance that
achieves capacity with statistical CSI is diagonal [261], 268]. The cor-
responding asymptotic capacity per antenna equals the one given in
Theorem B.8 with G(r,t) the asymptotic variance profile of H. Corol-
lary B3] holds similarly. Furthermore, these solutions do not require
that the entries of H be Gaussian but only that their variances be
uniformly bounded.

A common structure for A, arising when the transmit and receive
arrays have an equal number of antennas on each polarization, is that

1471f all antennas are co-polar, then every entry of A equals 1.
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of a doubly-regular form (cf. Definition [2.10]). For such channels, the
capacity-achieving input is not only diagonal but isotropic and, apply-
ing Theorem 2.49] the capacity admits an explicit form.

Theorem 3.9. Consider a channel H = A o H,, where the entries of
A are deterministic and nonnegative while those of H,, are zero-mean
and independent, with variance % but not necessarily identically dis-
tributed. If A is doubly-regular (cf. Definition 2.10), the asymptotic
capacity per antenna, with full CSI or with statistical CSI at the trans-
mitter, coincides with that of the canonical channel, given in Theorem
and Eq. (8.140) respectively.

3.3.6 Progressive Scattering

Let us postulate the existence of L —1 clusters of scatterers each with n,
scattering objects, 1 < ¢ < L — 1, such that the signal propagates from
the transmit array to the first cluster, from there to the second cluster
and so on, until it is received from the (L — 1)th cluster by the receiver
array. This practically motivated model provides a nice application of
the S-transform.

The matrix H describing the communication link with progressive
scattering be written as the product of L independent random matrices
[184]

L
H=]][H (3.158)
(=1

where the ny X ny_q; matrix Hy, describes the subchannel between the
(¢ — 1)th and /fth clusters. (We conventionally denote as 1st and Lth
clusters the transmit and the receive arrays themselves.) If the matri-

ces Hy are mutually independent with zero-mean i.i.d. entries having
1

variance -,

and defining Gy = g—i, the S-transform of the matrix

L L 1
A, = |[H, (H Hg> (3.159)
(=1

/=1
— Hp A, H (3.160)
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can be computed using Example 2.53] as
1

T+ fr-1

which, applying Example 2.53] iteratively, yields

Yap(z) = Sar a1 (5) (3.161)

% 3.162
Al H T+ ﬁz 1 ( )
from which it follows that the n-transform of Ay is the solution to
AL (SNR) Be
SNR —————— = 3.163
1 —na, (SNR) HUAL (sNR)+ Bp1 — 17 ( )

(=1

3.3.7 Ricean Channel

Every zero-mean multi-antenna channel model analyzed thus far can be
made Ricean by incorporating an additional deterministic component
H [62] 74, 236). With proper weighting of the random and deterministic
components so that condition (B.129)) is preserved, the general model
then becomes

y = (/& H+ \/#H) x+n (3.164)

with the scalar Ricean factor K quantifying the ratio between the
Frobenius norm of the deterministic (unfaded) component and the ex-
pected Frobenius norm of the random (faded) component. Considered
individually, each (i, j)th channel entry has a Ricean factor given by

[Higl*
E[H; ;1]
Using Lemma [2.22] the next result follows straightforwardly.

K

Theorem 3.10. Consider a channel with a Ricean term whose rank
is finite. The asymptotic capacity per antenna, C"®(3,snr ), equals the
corresponding asymptotic capacity per antenna in the absence of the
Ricean component, C((3,snr), with a simple snr penalty:

Cree(B,snR ) = C(, (3.165)

K—i—l)
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Note that, while the value of the capacity depends on the degree of CSI
available at the transmitter, ([8.165)) holds regardless.

Further applications of random matrix methods to Ricean multi-
antenna channels in the non-asymptotic regime, can be found in [134]
137, 3, 118, [151], 269].

3.3.8 Interference-limited Channel

Since efficient bandwidth utilization requires aggressive frequency reuse
across adjacent cells and sectors, mature wireless systems tend to be, by
design, limited by out-of-cell interference rather than by thermal noise.
Unlike thermal noise, which is spatially and temporally white, interfer-
ence is in general spatially colored. The impact of colored interference
on the capacity has been studied asymptotically in [163] 181, [51], and
non-asymptotically in [28] [138].

Out-of-cell interference can be incorporated into the model (I.T]) by
representing the noise as

L

n=> Hpx;+ny (3.166)
/=1

where L is the number of interferers, x, the signal transmitted by the /-
th interferer, H, the channel from such interferer and ny;, the underlying
thermal noise. Thus, (L) becomes

L
y =Hx+ ) Hyx/+ny,. (3.167)
=1

In what follows, we consider a homogeneous system where the entries
of xg, £ € {1,..., L}, to be ii.d. zero-mean Gaussian and the number of
transmit antennas at each interferer to coincide with nr. Furthermore,
the channels H and Hy, ¢ € {1,..., L}, are modeled as canonical. We
define the signal-to-interference with respect to each interferer as
E[|x]]*]

SIRy =

= Bl P (3.168)
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and use sNrR to specify the signal-to-thermal-noise ratio. With that, the
overall sinr satisfies

L

1 1 1

—_— = — 3.169

SINR  SNR * ;_: SIR ¢ ( )

1

and the capacity can be expressed as

I —1
1
€= —F |logdet | 1+ HHI <§ o H/H + S’@—gl) (3.170)
R
=1

with expectation over the distributions of H and Hy, ¢ € {1,...,L}.
The impact of interference on the capacity essentially mirrors that of
receive correlations except for the fact that the interference is subject
to fading. Asymptotically, however, this becomes immaterial and hence
Theorem [2.44] can be applied to obtain:

Theorem 3.11. [163] 317] Consider a Rayleigh-faded channel with
i.i.d. zero-mean unit-variance entries exposed to L i.i.d. Gaussian in-
terferers whose channels are similarly distributed. Let the user of in-
terest and each interferer be equipped with nr transmit antennas. As
nt,ng — oo with 3 — X the capacity converges to

R?
L m
SIRy¢ + SNR 7 n
C (B,snr, {sIR¢}) = 5;10g (W) + [log(1 + snr E)
—i—log% + (m —n2)loge (3.171)
1
with 77 and 7y solutions to
SNR 1) L SNRT)
1 1
_— — =1 3.172
n1+SNR%+1+;st%+S|Rg ( )
L SNR
mty _ONRI2 g (3.173)

72
SNR -7 SIR
=1 5 TSR

15 Although the analysis in [317] considers multicell DS-CDMA, the expression for the
capacity maps exactly onto ([BIT0) except for a simple SNR scaling.
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Obtaining explicit expressions requires solving for 77 and 7 in equa-
tions of order L+2 and L+1, respectively. Hence, the complexity of the
solution is directly determined by the number of interferers. Nonethe-
less, solving for n; and 7, becomes trivial in some limiting cases [163]:

e For growing (3,

1

lim 7 = (3.174)
L 1
B—oo 1 + snr (1 + > SIRZ)
1
lim 7, = (3.175)
Jpess 14 snr Zé::l —Slle

which are function of only the relative powers of the desired
user, the interferers and the thermal noise. Plugging these
into (B.I7I]) yields an asymptotic capacity that is identical
to that which would be attained if the interference was re-
placed with white noise. Hence, as the total number of in-
terfering antennas grows much larger than the number of
receive antennas, the progressively fine color of the interfer-
ence cannot be discerned. The capacity depends only on the
total interference-plus-thermal power, irrespective of how it
breaks down.
¢ For diminishing 8 and finite L,

lim 7, = lim oy = 1 (3.176)
indicating that the capacity penalty due to a fixed number
of interfering antennas vanishes as the number of receive an-
tennas grows without bound. The performance becomes dic-
tated only by the underlying thermal noise, irrespective of
the existence of the interference [309] [310].

3.3.9 Outage Capacity

The ergodic capacity has operational meaning only if the distribution
of H is revealed by the realizations encountered by each codeword.
In some situations, however, H is held approximately constant during
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the transmission of a codeword, in which case a more suitable perfor-
mance measure is the outage capacity, which coincides with the classical
Shannon-theoretic notion of e-capacity [49], namely the maximal rate
for which block error probability € is attainable. Under certain condi-
tions, the outage capacity can be obtained through the probability that
the transmission rate R exceeds the input-output mutual information
(conditioned on the channel realization) [77), 250, 22]. Thus, given a
rate R an outage occurs when the random variable

7 = log det(I + s\e HOH')

whose distribution is induced by H, falls below R. Establishing the
input covariance that maximizes the rate supported at some chosen
outage level is a problem not easily tackled analytically. (Some results
on the eigenvectors of ® can be found in [229].) Hereafter ® is allowed
to be an arbitrary deterministic matrix except where otherwise noted.

The distribution of Z can be obtained via its moment-generating
function

M) =E [eﬂ (3.177)

which, for the canonical channel with ® = I, is given by (2.I])) as de-
rived in [38,299]. The corresponding function for one-sided correlation,
in the case of square channels, is for ( <0

M(¢) = 2Fo(Clog 2, m| —~©) (3.178)

where 9 Fy(+, - | -) is given by (2.21]) with ® = @Og if the correlation takes
place at the receiver whereas & = G)lT/ 2<I>(91T/ 2 if it takes place at the
transmitter. With both transmit and receive correlations, M (-) is given
by Theorem EI8 with ¥ = O and Y = /6.

For uncorrelated Ricean channels with @ = I, M(-) is provided in
[134] in terms of the integral of hypergeometric functions.

For ng = 1, the distribution of Z is found directly, bypassing the
moment-generating function, for correlated Rayleigh-faded channels in
[180], 132] and for uncorrelated Ricean channels in [I80, 233]

16 The input covariance is constrained to be ® = I in [233|, which also gives the corre-
sponding distribution of Z for min(nt,ng) = 2 and arbitrary max(n,ng) although in
the form of an involved integral expression.



An interesting property of the distribution of 7 is the fact that, for
many of the multi-antenna channels of interest, it can be approximated
as Gaussian as the number of antennas grows. A number of authors have
explored this property using two distinct approaches in the engineering
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literature:

(1)

The mean and variance of Z are obtained through the mo-
ment generating function (for fixed number of antennas). A
Gaussian distribution with such mean and variance is then
compared, through Monte Carlo simulation, to the empirical
distribution of Z. This approach is followed in [235] 299, [26]
for the canonical channel, in [234] for channels with one-sided
correlation, and in [235] for uncorrelated Ricean channels.
Although, in every case, the match is excellent, no proof of
asymptotic Gaussianity is provided. Only for s\k — oo with
® =T and with H being a real Gaussian matrix with i.i.d.
entries has it been shown that Z — E[Z] converges to a Gaus-
sian random variable [87].

The random variable

App = Z(sNrR) — nr Vet (SNR) (3.179)

is either shown or conjectured to converge to a zero-mean
Gaussian random variable as ng — oo. For Rayleigh-faded
channels with one-sided correlation (at either transmitter or
receiver), the asymptotic Gaussianity of A, follows from
Theorem 771171 The convergence rate to the Gaussian dis-
tribution is analyzed in [15]. With both transmit and receive
correlations, the asymptotic Gaussianity of A, is conjec-
tured in [216] [I81] by observing the behavior of the second-
and third-order moments obtained via the replica method.

The appeal of the Gaussian behavior, of course, is that its character-

ization entails finding only the mean and variance of Z. In how these
are found, and in some others respects, the differences between both

approaches are subtle but important:

17 The more restrictive case of a canonical channel at either low or high SNR is analyzed in

[113].
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® When approximating Z as a Gaussian random variable for
finite nT and ng, the first approach uses exact expressions
for its mean and variance. These expressions, which can be
obtained from the moment-generating function, tend to be
rather involved and are often not in closed form. The sec-
ond approach, on the other hand, relies on functionals of the
asymptotic spectrum. Although exact only in the limit, these
functionals are tight even for small values of nT and ng and
tend to have simpler and more insightful forms.

e [f the moment convergence theorem does not apply to the
asymptotic spectrum, as in the case of Ricean channels where
the rank of E[H] is o(ng), then the second approach results
in a bias that stems from the fact that E[H] is not reflected
in the asymptotic spectrum (cf. Lemma [2:22]).

Denoting A = limy,,— 00 Ay, E[A?] can be found by applying [15),
(1.17)]. For the canonical channel, this yields (cf. Theorem 2.76])

2
log (1 - (=m0 >

= e (1oL (FBN
— 1g<1 ﬁ< yee >> (3.180)

With Rayleigh fading and correlation at the transmitter, in turn,

E[AZ]

where T = G)lT/ 2<I>(91T/ ? with ® the capacity-achieving power allocation.

Figure compares the limiting Gaussian distribution of A with a
histogram of A, for nT =5 and nr = 10 with a transmit correlation
matrix T such that

(©r);; = e 8007, (3.182)

For channels with both transmit and receive correlation, the char-
acteristic function found through the replica method yields to the ex-
pression of E[A?] given in [I81].
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Fig. 3.5 Histogram of A,y for a Rayleigh-faded channel with nT = 5 and ng = 10. The
transmit antennas are correlated as per ([8:I82) while the receive antennas are uncorrelated.
Solid line indicates the corresponding limiting Gaussian distribution.

3.3.10 Space-Time Coding

Besides the characterizations of the capacity for the various channels
described throughout this section, random matrix theory (and specifi-
cally free probability) has also been used to obtain design criteria for
space-time codes [25]. In [25], the behavior of space-time codes is char-
acterized asymptotically in the number of antennas. Specifically, the
behavior of pairwise error probabilities is determined with three types
of receivers: maximum-likelihood (ML), decorrelator and linear MMSE,
It is shown that with ML or linear receivers the asymptotic performance
of space-time codes is determined by the Euclidean distances between
codewords. This holds for intermediate signal-to-noise ratios even when
the number of antennas is small. Simulations show how asymptotic re-
sults are quite accurate in the non-asymptotic regime. This has the
interesting implication that even for few antennas, off-the-shelf codes
may outperform special-purpose space-time codes.
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3.4 Other Applications

In addition to the foregoing recent applications of random matrix the-
ory in characterizing the fundamental limits of wireless communication
channels, several other applications of the results in Chapter [2 can be
found in the information theory, communications and signal processing
literature:

® Speed of convergence of iterative algorithms for multiuser

detection [312].

Direction of arrival estimation in sensor arrays [228§].

Learning and neural networks [50].

Capacity of ad hoc networks [157].

Data mining and multivariate time series modelling and anal-

ysis [155] 139].

Principal components analysis [119].

e Maximal entropy methods [17, 292].

e Information theory and free probability [288 289, 248], 292,
293].
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Appendices

4.1 Proof of Theorem

In this section we give a multiuser-detection argument for the proof
of Theorem in the special case where T is diagonal. To use the
standard notation in multiuser detection [271], we replace H with S
and let T = AAT,

An important non-asymptotic relationship between the eigenvalues
M, ..., An of the matrix STST and the signal-to-interference ratios
achieved by the MMSE detector siry,...sIR g is [256]

N

Z Ai _i SIR |, (1)
)\Z'—I—O'Q_ SR + 1 '

i=1 k=1

where o2 is the variance of the noise components in ([3.1). To show
(A1), we can write its right-hand side as

SR 2 N\ 7! gpgt
;Aﬁ(ﬂ - tr<<aI+STS> STS>

K
= tr <(021 + STST) - Z TksksL>

k=1

159
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which can be further elaborated into

N
i
2

K
-1
— T2
et = 3 Tus) <a I+ STST> S
k=1
K gR
= i - (4.2)
Pt SR +
where (£.2) follows from [271], (6.40)]
Denote for brevity

1 = NsTst (%) : (4.3)

From the the fact that the n-transform of STS' evaluated at ¢~2 is the

multiuser efficiency achieved by each of the users asymptotically,

we obtain

(4.4)

almost surely, by the law of large numbers and the definition of 7-
transform. Also by definition of 7-transform,

1L,
lim — L =1-

(4.6)

Equations (4.1]), (4.5) and (4.6]) lead to the sought-after relationship

(1) =10

(4.7)
4.2 Proof of Theorem [2.42

The first step in the proof is to convert the problem to one where T
is replaced by a diagonal matrix Dt of the same size and with the
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same limiting empirical eigenvalue distribution. To that end, denote
the diagonal matrix

Q =1 + ’}/Wo (4.8)
and note that

det (1 + v (W + HTHT)) — det (T) det (Q)
det (T—l + 7(HQ‘1HT)) . (4.9)

Using Theorem with Wy and T therein equal to T~ and Q!
(this is a valid choice since Q! is diagonal), it follows that the asymp-
totic spectrum of T~! +~(HQ'HT') depends on T~! only through its
asymptotic spectrum. Therefore, when we take % log of both sides of
([£9]) we are free to replace T by Dy. Thus,

1
Vw(y) = lim - logdet (I +v(Wo + HTHT)) (4.10)

N—oo

1
- — ; W T
= = ngn N log det (I +v(Wo + HDTH )) (4.11)

Vwo+HDHT (V) (4.12)

Since the Shannon transforms are identical, so are the n-transforms.
Using Theorem 2.38 and (2.48)), it follows that the n-transform of W+
HD1H' and consequently of W is

1
1 T
W0+;+ﬁE[W}

where T and Wy are independent random variables whose distributions
equal the asymptotic empirical eigenvalue distributions of T and Wy,

respectively. From (£.13]),

ny=E (4.13)

ny = ¢no(p) (4.14)
with
-
p = (4.15)
1+ B+E [ﬁ]
- 7 (4.16)

1+ 21 —no(my))
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from which

ne+eB (1 —nr(ny) = m (4.17)

4.3 Proof of Theorem 2.44]

From Theorem 2.43] and from Remark [2.3.1]it follows straightforwardly
that the n-transform of HH' with H = CSA equals the n-transform of
a matrix H whose entries are independent zero-mean random variables
with variance

PZ,]

N

T2
E[Hi ;"] =
and whose variance profile is

v(z,y) = vx(z) vy (y)

with vx(z) and vy (y) such that the distributions of vx(X) and vy (Y)
(with X and Y independent random variables uniform on [0, 1]) equal
the asymptotic empirical distributions of D and T respectively. In turn,
[2I37) can be proved as special case of (2I58) when the function
v(x,y) can be factored. In this case, the expressions of I'yygpt (z,y) and

Yot (¥,77) given by Equations (2.I54) and (ZI55) in Theorem 2501
become

1

1+ By vx(@)E[vy (Y) Yo (Y, 7)]

_ L (4.19)
L+ Byvx(z) Yamt (7)

I‘HHlL (1’, ’7)

where we have denoted

YHHT () = Eloy (Y)Y gg: (Y, 7))

For convenience, in the following we drop the subindices from I'pyyi,
Yamt, Yamt- Let us further denote

I'(7) = Efux(X)' (X, 7)].
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Using (2.154) we obtain

N T vx (X)

I'(v) = E 1 +ﬁ7vX(X)E[Uy(Y)T(Y77)]]
_ [ vx(X)
L1+ Byvx(X)

’Y)J

1= (87 T(7)) (4.20)

where we have indicated by Ap a nonnegative random variable whose
distribution is given by the asymptotic spectrum of D. Likewise, using
the definition of Y(y,~) in (2.I55) we obtain

- B vy (Y)
th) = B {1 +m<v>fw>}

- —’Yfl(’Y) (1-mGTG)) (4.21)

where we have denoted by At a nonnegative random variable whose
distribution is given by the asymptotic spectrum of the matrix T. No-
tice also that

log (1 +7E ([v(X, Y)L(X,9[Y]) = log (1 +vvy(Y)E[ux(X)I'(X,7)])
— log (1 +vvy(Y)f(7)) (4.22)

and thus
E [log (1 + 7E[(X, Y)T(X,7)[¥])] = E [log(1+ A T(7)]
= V(7 T'(v)). (4.23)
Likewise,
E [log(1 + v BE[LXY)T(Y, X)) = E [log(l +78Mp T(v))}

= Vp(vBY(). (4.24)
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Moreover,
JBEROCY TG YY) = 3 8B [ox(X) oy (VK. 3) LY, )]
= BT Y(). (4.25)
Defining
% =710 va=7T(), (4.26)

plugging ([@.20), (4.24]), (£23)) into (2.158]), and using (4.26]), (£.21]) and
(#20), the expression for Vgt in Theorem [2.44] is found.

4.4 Proof of Theorem [2.49
From (2.I53)) it follows that

nant (7) = El g (X, 7)]
with I'ggi(+, ) satisfying the equation

1

Phnt(z,7) = o) (4.27)

1+ BvE |:1+7E[U(X,Y)FHHT (X,W)IY}]

where X and Y are independent random variables uniformly dis-
tributed on [0, 1]. Again for convenience, in the following we abbreviate
Pyt () and Yyppe (-, ¢) as T'(+,+) and T(-, -).

From the definition of doubly-regular matrix, we have that
E [1{v(X,t) < x}] does not depend on ¢ and thus E[v(X, t)I'(X,v)] does
not depend on t. At the same time, from the definition of doubly-regular
E [1{v(r,Y) < z}], does not depend on r and thus the expectation

v(r,Y)
1+ ~E[u(X,Y)T(X,7)]Y]
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does not depend on r. Consequently, I'(r,v)=I(~) for all . Thus, we
can rewrite the fixed-point equation in ([@27]) as

L(y) = %)
”m[lﬂr SV
1+ 6~E [1+’yf }

B 1
E[v(z,Y)]
1+ﬁ71+vf(7)u
resulting in
I(y) = !
HﬁWH’YF(V)u

with p = E[v(X,y)] = E[v(z,Y)] = 1 since we have assumed P to be a
standard double-regular matrix. The above equation can be solved to
yield the n-transform of HH' as

F0.0)

namit (7) =1 - 15

Using (2.48) and the inverse Stieltjes formula, the claim is proved.

4.5 Proof of Theorem 253
From (Z353), the Shannon transform of HH' is given by

Vanui (V) = /log(l + YA dFgpi (A)

where Fgpi(c) represents the limiting distribution to which the em-
pirical eigenvalue distribution of HH converges almost surely. The
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derivative with respect to 7 is

. A
Vau:(7) = 10g€/1+7/\dFHHT(>\)

loge 1
= 1—— | dF A
/ y < 1+’M> wr ()

loge 1
= 1— | ——dF
v < /1+’Md HHT(A))

- 1°§€<1—E[FHHT<X,7>D (4.28)

where, in the last equality, we have invoked Theorem and where
Tt (¢, +) satisfies the equations given in ([ZI54) and (ZI55]), namely
Przer (7,7) S
T,y =
HH 1+ BrE[o(a,Y) Tugi (Y, 7)]
1
T Y, =
w07 = R ) e (X7

(4.29)

(4.30)

with X and Y independent random variables uniform on [0,1]. For
brevity, we drop the subindices from I'gyi and Yggi. Using (4.29)
we can write

1—-T(x,7) BE[v(z,Y)Y(Y,7)]

v 14 BE(z, Y)L(Y, )]
which, after adding and subtracting to the right-hand side

ByE[v(z, Y)Y (Y, )]
L+ ByE[v(z, Y)Y (Y, )]’

becomes

1 -T(z,7) BE[v(x, Y)Y (Y, )] + ByE[v(z, Y)T(Y,7)]
~ L+ ByE[v(z, Y)Y (Y,7)]
ByE[v(z, Y)Y (Y,7)]
1+ BvE[v(z, Y)Y (Y,7)]

- % In(1 + ByE[v(z, Y)Y (Y, 7))

 BE[v(a, Y)T(Y.7)
L+ BrE[u(z, Y)T(Y, V)

(4.31)
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where T(',V):%T(-,’y). From (4.28)) and ([@.29)) it follows that

Ve () = B |- log(1+ SERXY)T(Y, )
—BAE [v(x,v) (X, ) T(Y,y)] loge.  (4.32)
Notice that
7 [u(X,Y)T(X,7) T(Y,7)] =—% (E [0(X, Y) T(X,7) T (Y, )])
E [ 0(X, V)T (X, ) 7(Y, 7))
E[vX,Y)I'(X,7)Y(Y,v)] (4.33)

- 'U(X,Y) ’Yf‘(xﬂ/)""r(x””
B[00 Y) (70X, +T0) TOV.)] = B |“FREaRRa i)

B E[v(X,Y)(yD(X,9)+T(X,7))]Y]
T+ E[ G Y)TOK)Y]

from which integrating (£32]) with respect to v and using (£33]) we
have that

Vaut(v) = Ellog(1+ ByE[(X,Y)T(Y,7)])]
—BAE [v(X,Y)T(X,7) Y(Y,7)] loge
+BE [log(1 +~yE[u(X, V)L (X, M[YD] +
(4.34)

with x the integration constant which must be set to x = 0 so that
Vini (0) = 0.
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