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Preface

This book has emerged from lectures given to physics students at the Uni-
versity of Copenhagen and the University of Southern Denmark in Odense.
Part of the material was first compiled in connection with lectures at interna-
tional summer schools in Predeal (Romania), Split (Croatia), Porto Vecchio
(Corsica), Haifa (Israel), Viana do Castelo (Portugal) and Alicante (Spain).

The book addresses mainly two different groups of readers. Chapters 1–5 of
this volume serve as the main text of a standard course for graduate students
in physics. Here I have tried to focus on general-physics aspects which should
be of interest even to someone who never gets in touch with a charged-particle
beam. General principles are introduced ab initio, and important physical ar-
guments and mathematical derivations are presented in extenso. Consultation
of the original literature should only rarely be necessary during the first read-
ing, but pertinent references have been supplied generously on all major items
for the reader who wants to dig deeper.

The second group of prospective readers is scientists, engineers and medical
doctors who apply charged-particle beams, in particular ion beams, in a wide
variety of contexts and who need an introduction to the underlying physical
principles in order to understand and quantify some of their activities. Many of
those readers are not physicists and have typically only a minor background –
if any at all – in collision theory. Therefore also this readership may appreciate
a reasonably self-contained introduction into the field. On the other hand,
those readers, as well as students specializing in the field, need to go further.
Chapters 6–9 are intended to guide them up to the level of current research
in the area.

I shall assume the reader to be familiar with classical dynamics of one- and
two-particle systems and elements of electromagnetic theory. Special relativity
will enter in numerous instances, but the reader uninterested in relativistic
beam energies will be able to jump over those passages without loss of essential
information for what follows. Quantal concepts enter throughout the book,
but mainly in the common Schrödinger picture. Yet quantal collision theory,
which is frequently omitted from introductory courses in quantum theory, will
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be introduced ab initio. Some experience with elements of probability theory
will be beneficial. A generous amount of supporting material that is – more or
less – standard in a physics curriculum but not necessarily familiar to a reader
with a different background has been collected in an appendix.

The main text contains passages which a novice in the field might prefer
to jump over in a first reading. I have tried to mark such passages by a star
(�), even though there might be an occasional reference to such passages in
unstarred sections.

Problems added to all chapters are intended to serve four purposes,

– to provide order-of-magnitude estimates of important experimental pa-
rameters,

– to illustrate the significance of a general result by adopting specific input,
– to train the student in casting a physics question into a form tractable by

quantitative calculation, and
– to complete formal derivations quoted in the text where appropriate. This

type of problem is dominating in the second half of the volume.

Some help has been provided whenever judged necessary, although I do not
by any means want to discourage the reader from trying to take a different
and, possibly, more efficient route.

A first draft of this book was written at IBM Watson Research Laboratory
many years ago. That version focused on energy loss of ion beams and did not
get finished because I noticed a lack of knowledge on key features of the theory.
I could, in principle, have published a status report, but instead I initiated
research programs addressing topics that I felt needed attention. This process
continued over the years, interrupted by an extended period of administrative
duties but compensated by a sabbatical at Argonne National Laboratory,
short visiting appointments at Université Paris-Sud, École Polytechnique and
the University of Pretoria, and a month at San Cataldo monastery. While the
style of the book is still very much like that of the first draft, I find that the
subject matter, or at least my personal grasp of it, has developed to the point
that this book can serve a useful purpose.

This first volume presents general concepts and, moreover, focuses on the
stopping of swift point charges. The first part provides an overview of the field
and its application areas, a chapter on elementary penetration theory inspired
by the ‘Danish school’ of Bohr and Lindhard, and elements of classical and
quantal scattering theory as far as needed in context. Chapters 4 and 5 out-
line classical and quantal theory of electronic stopping of swift point charges.
Taken together, Chapters 1–5 provide ample material for a semester course in
particle penetration. Of the remaining four chapters, only a fraction is likely
to be found suitable for presentation in a university course, but I hope that
they will be useful to those who want to specialize in the field.

A second volume is planned to extend the treatment to heavy ions, includ-
ing molecule and cluster ions, stopping at lower velocities, as well as multiple



Preface IX

scattering, ion ranges and channeling. Associated radiation effects are planned
to be treated in a third volume.

My own introduction to the field has been inspired indirectly by the late
Niels Bohr whom I never got a chance to meet or listen to, and more directly
by his close collaborator, the late Jens Lindhard whose lectures and papers
as well as numerous discussions greatly stimulated my approach to the field.

This book would never have come along without the excellent working
conditions provided by the University of Southern Denmark, as well as my
hosts at various sabbatical stays, most notably J.F. Ziegler at IBM, D.S.
Gemmell and H.G. Berry at Argonne, Y. Lebeyec at Orsay, Y. Quéré and
Annie Dunlop at Palaiseau, and E. Friedland and J.B. Malherbe in Pretoria.

Numerous colleagues, junior and senior ones, have contributed to develop
my knowledge of and insight into the field over the years. In connection with
the present volume I like to mention in particular H.H. Andersen, J.U. Ander-
sen, N.R. Arista, G. Basbas, A. Belkaçem, F. Besenbacher, E. Bonderup, H.
Esbensen, D.J. Fu, L.G. Glazov, A. Gras-Mart́ı, U. Haagerup, P. Hvelplund,
M. Inokuti, J. Jensen, K. Johannessen, H. Knudsen, E. Merzbacher, H.H. Mik-
kelsen, E.H. Mortensen, S.P. Møller, J. Oddershede, H. Paul, R.H. Ritchie, A.
Schinner, A.H. Sørensen, A. Tofterup, S.M. Tougaard, K.B. Winterbon, and
J.F. Ziegler.

Drafts of the first five chapters have been read by numerous students who
returned useful corrections, comments and questions. Lev Glazov and Nestor
Arista have spent much time, care and thought in reading the whole volume
and have provided invaluable feedback. Nevertheless, the blame for any serious
omissions and errors is the author’s and not theirs.

Financial support has been received from the Danish Natural Science Re-
search Council (FNU) which has enabled the author to travel, to conduct an
extensive visitors’ program, and to support research students and postdoc-
toral fellows. Support has also been received from NORDITA, the Carlsberg
Foundation, the Ib Henriksen Foundation, the NATO Collaborative Research
Programme, the IBM World Trade Program and the Institution San Cataldo.
It was a particular honor to spend a year at Argonne National Laboratory as
an Argonne Fellow.

Odense, October 2005 Peter Sigmund
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General Notations

– Sections marked by a star (�) can be jumped over in a first reading.
– Problems marked by a star (�) are considerably more difficult and/or time-

consuming than average.
– Notations < · · · > or · · · are utilized synonymously to indicate averages,

dependent on readability.
– The symbol (T, dT ) indicates the interval limited by T and T + dT . Simi-

larly, (Ω, d2Ω) indicates a solid angle d2Ω around the unit vector Ω, and
(r, d3r) indicates a volume element d3r = dxdydz located at a vector
distance r from the origin.

a screening radius
a0 Bohr radius, 0.529177 Å
aad adiabatic radius, v/ω
aTF Thomas-Fermi radius, 0.8853a0Z−1/3

a0, b0 oscillation amplitudes in Bohr theory
A1 mass number of projectile ion
An Fourier coefficient
Ai(z) Airy function
A(r, t) vector potential
arg(z) phase of complex number, φ in z = Aeiφ

Å Ångström, 0.1 nm
α fine structure constant, 1/137.0360
α0 shifted resonance frequency,

√
ω2

0 + ω2
P

α, α multiple-scattering angle, vectorial, polar

b barn, 10−28 m2

b collision diameter, 2e1e2/m0v
2

b projection of molecular axis on impact plane
B Bethe parameter, 2mv2/�ω

continued on next page
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B′ Barkas-Andersen parameter, Z1e
2ω/mv3

B(r, t) magnetic field
β v/c

c speed of light, 2.99792·108 m/s
cj(t) expansion coefficient in wave function
c(ν) atomic fraction, Nν/N
χ parameter in Lindhard-Scharff model
χ(k, ω) electric susceptibility,

(
εl(k, ω) − 1

)
/4π

C coefficient in Bohr stopping formula, 2 exp(−γ) = 1.1229

−dE/dx stopping force, stopping power
dσ(T ) differential energy-loss cross section,

(
dσ(T )/dT

)
dT

d2Ω element of solid angle
d3r volume element
δ� phase shift
δ(ξ) Dirac function
δj� Kronecker symbol, 1 for j = , 0 for j �= 
∆E total energy loss
〈∆E〉 mean energy loss
∆Ep most probable energy loss
〈∆E〉e mean electronic energy loss
〈∆E〉n mean nuclear energy loss
∆x penetration depth or pathlength element

e elementary charge, 1.602176 · 10−19 Coulomb
e1 projectile charge, Z1e or ±e
e2 target charge, Z2e or −e
esu electrostatic unit
eV electron volt, 1.602176·10−19 J
E,E′ kinetic energy
E+, E− energies in Dirac theory
Ei, Etot particle energy (relativistic)
Ek relativistic energy,

√
(�kc)2 + (mc2)2

En(z) exponential integral,
∫∞
1

e−zt/tndt
E total energy
E(r, t) electric field
ε Lindhard dimensionless energy, M2Ea/

[
(M1 +M2)Z1Z2e

2
]

ε0 vacuum permittivity, 8.85419·10−12 C/(Vm)
εl(k, ω) longitudinal dielectric function
εt(k, ω) transverse dielectric function
εF Fermi energy
εj energy level

continued on next page
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f(Ω) scattering amplitude
f(v)d3v orbital velocity spectrum
fdist(p), fclose(p) factors entering energy loss vs. p in Bohr theory
fj0 dipole oscillator strength
fj0(Q) generalized oscillator strength
fν oscillator strength of shell or subshell
F force
F (∆E, x) energy-loss spectrum at pathlength x
F (E,E′, x) energy spectrum at pathlength x
Fj� transition matrix element, 〈j|∑ν eik·rν |〉

g2(r) pair distribution function
g2(r) − 1 pair correlation function
G(x, x′) Green function
γ Euler’s constant, 0.577216
γ energy transfer factor, 4m1m2/(m1 +m2)2

γv, γi relativistic mass factor, 1/
√

1 − v2/c2, 1/√1 − v2i /c2,
Γ infinitesimal damping constant

h Planck’s constant, 6.62607·10−34 J·s
� h/2π, 6.58212·10−16 eV s
H,Hν Hamiltonian

i imaginary unit
I ‘I-value’, mean logarithmic excitation energy
I1 I-value for straggling
Im imaginary part

j type of event
j� spherical Bessel function
|j〉 state vector in Hilbert space
J0 Bessel function
J , J particle current density
Je electric current density

k absorption coefficient
keV 103 eV
k,k′, k, k′ wave vector, wave number
k± kx ± iky

kF Fermi wave number
K0,K1 modified Bessel functions
K(φ) differential scattering cross section, dσ(φ)/(2πφdφ)

continued on next page
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κ Bohr kappa parameter, 2|e1e2|/�v
κ angular-momentum quantum number in Dirac theory

L stopping number
L1 Z3

1 correction to stopping number
Le electronic stopping number
Ln nuclear stopping number
λ de Broglie wavelength, h/mv
λ̄ λ/2π, �/mv
Λ scaled energy loss in Landau theory

m electron mass, 9.10938·10−31 kg
m0 reduced mass, m1m2/(m1 +m2)
m1 projectile mass, M1 or m
m2 target mass, M2 or m
M particle mass
M1 mass of projectile ion
M2 mass of target atom
Mp proton mass, 1.672621·10−27kg
M(1, x, y) Kummer’s function
M Runge-Lenz vector, v × L
MeV 106 eV
µm micro meter, 10−6 m

n, nj number of events
n number of electrons per volume, NZ2

n index of refraction
nk0 occupation number number of electrons/state
nm nanometer 10−9 m
N number of atoms per volume
NA Avogadro’s number, 6.02214·1023/mol
N total number of electrons
∇ nabla operator, (∂/∂x, ∂/∂y, ∂/∂z)

ω angular frequency
ωP plasma frequency,

√
4πne2/m

ω, ω0, ωj0 resonance frequency, (εj − ε0)/�
ωk �k2/2m
Ω unit vector
Ω2 energy loss straggling,

〈
(∆E − 〈∆E〉)2

〉
Ω2

R range straggling

continued on next page
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p, p impact parameter, vectorial or scalar
P ,P i,P

′
i momentum

P Cauchy principal value
Pn probability for n events
Pj transition probability
PJ ionic charge fraction
P� Legendre polynomial
Pµ

� associated Legendre polynomial
φ, φ1 single-scattering angle, laboratory system
φ2 recoil angle, laboratory system
φ0(x) screening function of neutral Thomas-Fermi atom
Φ electric potential
Φ(r/a) screening function
ϕ azimuthal angle
ψ(r), Ψ(r, t) wave function
ψ(x) digamma function, d lnΓ (x)/dx

q electric charge
q wave vector
〈q1〉 mean ionic charge number
qJ ionic charge state
Q �

2q2/2m
Qν νth moment over energy-loss cross section,

∫
T νdσ(T )

r position vector of classical electron
r0(t) orbital motion in Bohr theory
r, rν position operator for electron(s)
rm distance of closest approach
rs Wigner-Seitz radius, (3/4πna30)

1/3

r0 classical electron radius, 2.81794·10−15 m
R path length or range
R Rydberg energy
R(r), R�(r) radial wave function
R position vector, projectile or center of mass
Re real part
ρm mass density, mass/volume
ρe charge density, charge/volume
ρ Lindhard dimensionless pathlength variable, Nπa2γx

S stopping cross section,
∑

j Tjσj or
∫
Tdσ(T )

S0 stopping cross section in rest frame of target
Se electronic stopping cross section
Sn nuclear stopping cross section

continued on next page
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σ cross section
σx, σy, σz Pauli spin matrices
σj excitation cross section
σ(1), σ(2) transport cross sections
σl, σt longitudinal and transverse conductivity
σ(k), σ1(k), σ2(k) transport cross sections

t time
T, Tj energy transfer per collision, continuum or discrete
Tmax maximum energy transfer
τ collision time
θ polar angle
Θ center-of-mass scattering angle

u atomic mass unit, 1.660538·10−27 kg
ui,u

′
i relative velocity

u(ν)(k) Dirac spinor
U ionization or binding energy

v volume
v0 Bohr velocity, e2/4πε0� = c/137.0360
v,vi, v, vi velocity, speed
ve orbital electron velocity
vF Fermi speed
vM Møller speed
vTF Thomas-Fermi velocity
V center-of-mass velocity
V volume
V(r) potential energy

we relative electron velocity
W straggling parameter,

∑
j T

2
j σj or

∫
T 2dσ(T )

WB Bohr straggling parameter, 4πZ2
1Z2e

4

x depth or pathlength
ξ mv3/Z1e

2ω, Bohr parameter

y� spherical Bessel function
Y�µ(Ω) spherical harmonic

Z1 atomic number of projectile nucleus
Z2 atomic number of target nucleus
ζ scaled impact parameter, ωp/v
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Introduction

1.1 Brief Historical Survey

1.1.1 Particle Penetration

Research in the field of interaction of charged particles with matter has its
roots in two distinctly different disciplines.

Early experimental observations were made around 1850 in gas-discharge
tubes. Most spectacular was the light emitted from a discharge which provided
much of the stimulation behind the development of atomic spectroscopy. More-
over, solid cathode material was observed to erode, a phenomenon now called
sputtering. The atomistic nature of the processes going on in a discharge was
largely unknown at the time, and only gradually did it become clear that the
current in a tube was carried by electrons and positive ions. Now we know
that light emitted from a discharge tube originates in the excitation of gas
atoms and ions by electrons accelerated to sufficient energy to cause inelastic
collisions. Similarly we know that sputtering of cathode material is caused by
disruptive collisions between accelerated gas ions and metal atoms in a shallow
layer of the cathode surface.

Beams of electrons (‘cathode rays’) and positive ions (‘canal rays’) were
identified by Thomson in 1897 and Goldstein in 1902, respectively, and rapid
progress was achieved in the extraction and manipulation of such beams. Ex-
periments under reasonably controlled conditions became eventually possible.
Numerous phenomena were observed early in the previous century such as
reflection of impinging beam particles, emission of secondary electrons or ions
and of light from the target material, as well as various kinds of surface mod-
ification. An important step in the development of atomic physics, involving
the interaction of electrons with a gaseous target, was the famous Franck &
Hertz experiment in 1913 which demonstrated a relation between the excita-
tion levels of gas atoms in a discharge tube and the acceleration voltage for
the electron current.

The second important source of information on particle penetration be-
came available with the discovery of radioactivity. With the identification of
alpha and beta rays as being made up of heavy and light charged particles,
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respectively, well-defined beams became available with energies several orders
of magnitude higher than what was achievable in gas discharges. This implied
greater penetration depth and, therefore, more well-defined quantitative mea-
surements. A key experiment addressed the range of alpha particles in a cloud
chamber (Fig. 1.1). It is seen that at atmospheric pressure, the range is of the
order of a few centimeters and therefore measurable with good accuracy.

Fig. 1.1. Tracks of alpha particles in
a Wilson cloud chamber. The scale is
about 1:2. From Meitner and Freitag
(1926)

A most important set of measurements addressed the scattering of a beam
of alpha particles in gaseous and solid matter (Rutherford et al., 1910). This
prompted a famous analysis (Rutherford, 1911) which established the struc-
ture of the atom as being made up of a heavy nucleus surrounded by electrons.
At the same time, this analysis established the scattering cross section as a key
concept in the statistical description of the interaction of fast particles with
matter. Only after this concept had become available was it feasible to de-
velop a theory of particle penetration from first principles. Central papers by
Thomson (1912) and Bohr (1913, 1915) appeared almost immediately and
were followed by numerous others in rapid sequence. Early studies had to be
based entirely on classical-mechanics concepts, augmented by relativistic ex-
tensions when appropriate. Gradually quantal concepts were incorporated as
they developed. A key step here was the appearance of first-order perturbation
theory of quantal scattering by Born (1926) and the theory of charged-particle
stopping based on this approximation (Bethe, 1930). Another important step
was the statistical theory of multiple collisions (Bothe, 1921b). Although the
principles underlying this theory were rediscovered repeatedly, we now know
that Bothe provided a universally applicable tool in the statistical theory of
particle penetration.

Subsequent research brought about a widening of the energy range acces-
sible to experiments. With the discovery of cosmic rays, penetration proper-



1.1 Brief Historical Survey 5

ties of particle beams in the extreme relativistic regime became of interest.
The trajectories of such particles are characterized by wide tracks, i.e., large
numbers of target atoms interacting simultaneously with a penetrating beam
particle. As a consequence, macroscopic polarization phenomena had to be
expected (Fermi, 1940), and collective effects like Cherenkov radiation were
observed and interpreted (Cherenkov, 1934).

With the appearance (Cockcroft and Walton, 1932) and gradual devel-
opment of high-energy accelerators, detection devices were developed such
as photographic emulsion, bubble chambers, and many more. All aspects of
particle penetration became key input into the development of this instru-
mentation.
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Fig. 1.2. Penetration of keV xenon ions into crystalline tungsten. Plotted is the
integrated range profile, i.e., the amount of xenon still buried in the target after
a quantity of material corresponding to the value of the abscissa has been etched
away. Etching was performed by anodic oxidation and subsequent dissolution. Im-
plantation was performed with a radioactive beam. This enabled the amount of
xenon buried in the target material to be determined by monitoring the beta activ-
ity. See also problem 1.3. From Kornelsen et al. (1964)

The discovery of nuclear fission in 1938 brought about a substantial ex-
tension of the range of accessible particle masses. Beams of fission fragments
provided the main source of medium-mass fast particles in the MeV energy
range until the 1960s when such beams could finally be generated in tandem
van de Graaf accelerators. Swift heavy ions are typically not point charges,
and even though theoretical studies were initiated immediately (Bohr, 1940,
1941), the understanding of penetration phenomena involving these beams,
in particular in solids and liquids, still poses challenges (Sigmund, 2004).

Precision measurements of the ranges of products of nuclear reactions were
a major tool in the development of nuclear and particle physics since such
measurements provide an estimate of the energy liberated during a reaction.
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A very wide range of particles and energies was of interest, covering recoiling
nuclei with energies in the keV range at the one end and mesons and other light
particles with much higher energies at the other. This technique has proved
very successful in high-energy physics, but ingenious ideas were conceived also
to get it to work in low-energy nuclear reaction physics (Davies et al., 1960).

A comparatively recent development is the option of generating high-
energy molecular beams. While beams of small molecules like H+

2 and low
hydrocarbons have long been available, present-day technology allows to ac-
celerate metal clusters or fullerene (C60) ions up to energies in the MeV range
(Della-Negra et al., 1993). This has opened up another exciting period of
exploration of hitherto unknown collision and penetration phenomena.

Once experimental techniques were at hand that allowed penetration
depths in the submicron regime to be measured accurately (Fig. 1.2), quanti-
tative studies became finally possible of phenomena that had been discovered
in gas discharges more than a hundred years earlier. A major stimulus around
1965 was the desire to produce integrated electronic circuits by means of
ion implantation, i.e., controlled doping of semiconducting materials by ion
beams. Several steps in this highly successful development will be described
in detail in Volumes II and III.

Fig. 1.3. Channeling: Reflection of a channeled ion from a string or plane of atoms
in a crystal by a sequence of soft collisions

Early theoretical research on particle penetration was directed at gaseous
scattering media, i.e., media composed of random scatterers. Even for crys-
talline solids, the regular structure was thought to be of minor significance
since free paths for significant scattering events frequently exceed interatomic
distances in solid matter by several orders of magnitude. After the discovery
of electron diffraction by Davisson and Germer (1927), this argument was no
longer tenable for the elastic interaction between electrons and the ionic cores
of a penetrated crystal. However, random penetration theory was still consid-
ered approximately valid for inelastic interactions with the electron gas and
has been successful in many applications such as the quantitative interpreta-
tion of electron microscope images.

De Broglie wavelengths of heavy charged particles in the energy range
from a few eV upward are small enough to discourage the consideration of
diffraction effects during passage through crystalline matter. It came, there-
fore, as a genuine surprise to the scientific community that even the classical
trajectory of a particle through a regular crystal may be strongly governed by
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Fig. 1.4. Channeling: Rutherford scattering yield of 480 keV protons reflected under
a wide angle from a tungsten monocrystal. Because of the dominance of the process
shown in Figure 1.3, the yield is reduced dramatically at angles of incidence around
a channeling direction. From Andersen (1967)

crystal structure. Two simple prototype cases were identified here. A particle
moving at a small angle to a string or plane of crystal atoms may undergo
a sequence of weak scattering events, with the individual momentum trans-
fers all directed into one direction (Fig. 1.3). As a result, the particle will be
reflected almost specularly from the string or plane. This differs drastically
from random multiple scattering, which would result in a broadened direc-
tional profile, roughly gaussian and centered around the direction of incidence.
More important, the chance for wide-angle deflection is reduced dramatically
(Fig. 1.4). First indications of this effect were extracted from computer sim-
ulations of particle penetration through crystals (Robinson and Oen, 1963).
Experimental evidence was found in the form of deeply penetrating tails in
the range profiles of ions in single crystals by Piercy et al. (1963), as you have
seen in Fig. 1.2, and a comprehensive theory outlining numerous consequences
appeared shortly after (Lindhard, 1965).

Another effect, predicted theoretically and discovered in independent ex-
periments, was found to be complementary to channeling. If an atom located
at a regular crystal site is set in motion by some process such as a recoil from
a nuclear reaction or decay, its motion will be ‘blocked’ in certain directions
by the presence of rows and planes of lattice atoms (Fig. 1.5). As a result the
angular distribution of moving atoms – which may be observed as an emis-
sion pattern from a surface – may be anisotropic with pronounced minima
near close-packed crystal directions and planes. No such anisotropies would
be expected if the crystal acted as a random scattering medium.
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C

(a) Blocking, schematically

(b) Experimental blocking pattern. From Barrett et al.
(1968)

Fig. 1.5. Blocking: a) Blocking effect on the trajectory of a particle set in motion
from a regular lattice site in a crystal: Particles moving initially in the direction
marked C will be steered away by nuclei located along a string. b) Experimental
blocking pattern of 100 keV protons backscattered from cobalt single crystal

The discovery of channeling and blocking generated renewed interest in
the interaction of charged particles with solids and surfaces and caused much
rethinking on phenomena that had been seemingly well understood. Most
important was the classification of directions of motion into ‘random’ and
‘channeling’ directions and the splitting of an incident beam into a channeled
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and a random beam, where the latter is supposed to follow the statistical laws
of random penetration theory.

1.1.2 Radiation Effects

Intimately connected to the fate of penetrating particles are the radiation
effects caused by them. Indeed, within conventional terminology, penetration
properties can roughly be grouped into scattering (i.e., angular deflection) and
stopping (i.e., loss of kinetic energy). A scattering event leading to a significant
change in momentum of a penetrating particle will leave kinetic energy to the

Photo-cathode Anode
- +

hν

(a) Photo-multiplier (b) Ionization cascade

(c) Defect cascade (d) Electron-photon cascade.
From Finkelnburg (1964)

Fig. 1.6. Cascade processes: a) Amplification in photo-multiplier; b) Ionization
cascade in a gas; c) Defect cascade in a crystal; d) Electron-photon cascade
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collision partner which is typically a recoiling atom of the medium. Similarly,
energy lost to the medium by a penetrating particle must leave the medium
in an excited state. Subsequent relaxation processes will typically end up
with the medium being in a metastable state characterized by electronic and
structural defects and with energy being emitted in the form of photons,
electrons, atomic particles, heat, and possibly sound.

Early studies of radiation effects addressed ionization phenomena in gas
and scintillation counters, photo-multipliers, radiation shields and the like.
The study of structural defects, ‘radiation damage’, came into focus with
the development of nuclear reactors in the Manhattan Project during World
War II. While primary particles in that context were neutrons, it was evident
that both fast and slow neutrons could generate fast recoil atoms, the former
by elastic collisions and the latter by nuclear reactions. Therefore the field of
neutron-generated radiation damage has been closely connected to the field of
charged-particle penetration since the early work of Seitz and Koehler (1956).

A universal feature of radiation effects induced by high-energy particles is
the possibility of cascade processes, i.e., sequences of events involving several
generations of secondary particles. Cascade processes may be field-enhanced
like in a photo-multiplier (Fig. 1.6a) but may also develop in the absence of an
external field if sufficient energy is available. Figure 1.6b shows an ionization
cascade initiated by an electron with an energy a few orders of magnitude
above the ionization threshold of the atoms in the penetrated medium. This
is relevant to gas or semiconductor counters for all kinds of ionizing radiation.
Figure 1.6c shows a defect cascade initiated by a heavy particle with a kinetic
energy a few orders of magnitude above the minimum energy for formation
of a defect in a crystal lattice. This is relevant to radiation effects caused
by fast recoil atoms in e.g., fission and fusion reactor materials. Figure 1.6d
shows a cascade shower generated by a relativistic charged particle, involving
photons generated by bremsstrahlung and electron-positron pairs generated
by those photons.

Radiation effects in inorganic and organic including living matter have
been studied intensely since the end of World War II. Virtually all sources of
high-energy radiation cause damage to matter, sometimes desired, frequently
not, as will be discussed in Sect. 1.2. Special interest is attached to those radi-
ation effects which may serve as radiation detectors such as heat development,
light emission, electric signals and others.

1.2 Applications

The potential for applications of charged-particle beams seems truly unlim-
ited. Conferences on applications of accelerators in research and industry col-
lect easily over a thousand active participants. Not all of those applications
offer themselves for detailed analysis in terms of fundamental physics, but
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almost everywhere, knowledge of some basic physical facts is required. The
present survey is by no means complete. In particular, the number of applica-
tions of ion beams mentioned here exceeds by far that of electron or neutron
irradiation. This is at least partly caused by the author’s horizon which is
biased toward ion-beam physics.

1.2.1 Fundamental Physics Research

It has already been mentioned that penetration properties of recoil atoms in
the keV and MeV range are of interest in the analysis of nuclear reactions.
Penetration depths serve as a measure of reaction energies. Measurement of
the Doppler shift of gamma rays emitted from a short-lived nucleus set in
motion by a nuclear reaction may provide information on nuclear lifetimes
if the rate of energy loss is known. Nuclear lifetimes may also be extracted
from blocking patterns in crystals: If a nucleus recoiling from a crystal lattice
site decays while still near its origin, the angular distribution of the reaction
products will exhibit a blocking pattern. This will not be the case if the
lifetime is long enough to allow the recoil to move into an interstitial site.
Fast ions moving in a dense medium may create transient magnetic fields
which, in turn, may affect the magnetic moment of the moving nucleus and
thus provide insight into the latter.

Penetration properties form basic input into all aspects of high-energy
physics instrumentation such as ion sources, beam handling, beam interaction
with residual gas and the walls of accelerator tubes, slits and apertures, de-
tectors, radiation shields as well as environmental aspects. Similar statements
may be made about modern atomic-collision physics, with the pertinent en-
ergy range being typically six orders of magnitude lower. An interesting, fairly
new aspect is the growing field of research involving highly charged ions.

1.2.2 Astrophysics and Space Science

In addition to cosmic rays, other types of slow and fast particles penetrate
inner and outer space. Prominent representatives in our solar system are the
solar wind and solar flare consisting of keV protons and MeV helium ions,
respectively. These particles interact with planetary atmospheres where those
exist, and with planetary or lunar surfaces where not. Polar light is presumably
the most well-known radiation effect caused by these particles. The analysis of
meteorites and lunar samples provides evidence on truly high-dose exposure
of materials to radiation and allows modelling of solar wind and intergalactic
radiation. Exposure of space vehicles to local radiation fields may severely
affect materials properties of a spacecraft, the function of the instruments
carried including computers, and the health and well-being of astronauts.
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1.2.3 Plasma Physics and Fusion Research

Space and laboratory plasmas have much in common except for pertinent
length scales. Plasmas of interest in fusion research contain isotopes of hy-
drogen with energies of tens of keV. The interaction between a fusion plasma
and its environment, in particular the walls of the reactor vessel, is an aspect
of primary importance in all fusion research, whether based on magnetic or
inertial confinement. Moreover, neutrons are the prime reaction product and
carry the energy which is to be converted into electricity in one way or an-
other. Therefore, radiation effects caused by neutrons in any accessible part
of a fusion reactor such as superconducting magnets, first wall, converter or
blanket as well as diagnostic tools need to come under control.

Fusion plasmas may be fed by neutral-beam injection of hydrogen or by
injection of pellets of solid hydrogen. In either case it is the interaction between
the plasma particles and the neutral gas or solid that determines whether or
not the injected fuel ends up in an ionized state at the right position in a fusion
plasma.

One of the concepts studied in inertial-confinement fusion involves the fact
that a dense ion beam efficiently deposits energy into a dense medium and
thus rapidly may heat a plasma to temperatures sufficient to trigger fusion.
Beams of light and heavy ions are considered as relevant although for different
reasons, and even beams of large clusters have come into consideration. In all
cases the stopping of an ion beam in a dense (solid or gaseous) hydrogen target
is an issue of prime importance.

Finally one may mention the field of muon-catalyzed fusion, where the
rate of spontaneous fusion events in a material containing hydrogen isotopes is
enhanced by the capture of a muon into an atomic orbit. The time dependence
and the process of slowing-down and capture of a muon is a typical problem
of charged-particle penetration.

1.2.4 Materials Research and Engineering

Analysis by Ion and Electron Beams

Beams of light and heavy charged particles are playing an ever increasing role
in materials analysis. Well-known examples are the electron microscope and
the electron microprobe. Understanding the imaging properties of a micro-
scope is in part a penetration problem as far as elastic and inelastic scattering
of electrons is concerned. Conversely, imaging in a microprobe is frequently
done on the basis of emitted x-rays or secondary electrons, i.e., a radiation
effect is utilized as the signal.

The penetration properties of low- to medium-energy electrons (∼100 eV
to a few keV) are of primary interest in surface analysis by Auger and x-ray
photoelectron spectroscopy. It is the mean free path for inelastic scattering
that determines the information depth of these and other surface-sensitive
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techniques, and it is the significance of multiple elastic scattering events that
determines their respective ranges of applicability.

A variety of techniques exists for application of positron beams in ma-
terials analysis. Knowledge of the penetration properties of these beams is
a prerequisite for any quantitative interpretation.
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Fig. 1.7. Ion beam analysis by Rutherford backscattering: See text. From Camp-
isano et al. (1973)

Materials analysis by ion beams – briefly although somewhat misleading:
‘ion beam analysis’ – has developed into a powerful tool based on a variety of
physical principles. Several techniques are built on binary-collision dynamics:
Conservation laws of momentum and energy determine uniquely the energy of
an ion scattered into a given angle from a particular scatterer. Measurement of
that energy, therefore, delivers the mass of the scatterer. Hence, measuring an
energy spectrum of ions scattered at a definite angle provides information on
the composition of the scattering medium (Fig. 1.7). The information depth
depends on the energy of the incident beam.
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Rutherford Backscattering (RBS) utilizes hydrogen or helium ions in the
upper-keV or lower-MeV range or heavier ions at even higher energies. Char-
acteristic depths range from a few nm to ∼ 1µm. Depth resolutions down
to a monolayer can be achieved. Figure 1.7 shows the spectrum of He+ ions
backscattered at a fixed angle to the incident beam from a target consist-
ing of a gold layer evaporated onto a copper film. The high-energy branch of
the spectrum represents ions reflected from gold atoms. Gold is heavier than
copper and therefore takes up less recoil momentum from He during scatter-
ing. The area under this part of the spectrum is a measure of the amount
of gold per unit area. The left portion of the spectrum shows ions scattered
on Cu atoms. Those particles with the highest energies were scattered at the
interface. Their energy is lower than what would be expected from

a consideration of the recoil energy given to a copper atom because these
ions also lose energy while travelling through the gold film. A second curve,
found after heat treatment, shows that the two components have interpene-
trated each other by diffusion.

Ion-surface scattering (ISS) utilizes light ions (noble-gas or alkali) in the
upper-eV or lower-keV range for analysis of one to two top surface monolay-
ers. Numerous modifications of these prototypes exist. Recoiling target atoms
may be analysed instead of scattered beam particles such as in elastic-recoil
detection analysis (called ERDA at MeV energies). Photons may be the signal
instead of atomic particles such as in proton-induced x-ray emission (PIXE) or
surface composition analysis by ion-induced radiation (SCANIIR). Signals of
high sensitivity and resolution may be gained by charged-particle-induced nu-
clear reaction analysis (NRA). Finally, high-sensitivity surface analytic tech-
niques may utilize atoms or ions emitted by sputter processes as a signal such
as secondary-ion or secondary-neutral mass spectrometry (SIMS, SNMS).

A particular role is being played by ion beams in the analysis of crys-
tal lattice structure and the spatial configuration of lattice defects and im-
planted atoms. Rutherford backscattering patterns observed on crystalline
targets show direct evidence of channeling (Fig. 1.4 on page 7) and/or block-
ing (Fig. 1.5). Since the signal is sensitive to the target mass it is possible to
record separate patterns for each species present. If one species occupies reg-
ular lattice positions and another one is located interstitially, the respective
emission patterns will be radically different. Therefore, RBS and equivalent
signals provide information on the defect state of a crystal and the lattice
location of dopant atoms both before and after annealing treatment. This is
very important in the analysis of the behavior of dopants in micro and nano
electronics.

Ion-Beam Modification of Materials

Unlike ion beam analysis which is to be conducted at low beam intensities,
ion-beam modification of materials may involve very large implant doses.
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Ion implantation is a technique to produce dilute alloys with good control
of the composition: The integrated beam intensity determines the number
of implanted ions and the beam energy determines the implant depth. The
combination of these two independent experimental parameters makes ion im-
plantation superior to competing techniques such as diffusion doping where
density and penetration depth are not independent of each other. Dilute alloys
are of great interest in microelectronics: In fact, ion implantation is a crucial
step in the industrial production of microprocessors. Moreover, surface prop-
erties like corrosion resistance or compatibility of medical implants with living
tissue can be controlled by ion implantation doping. An important feature of
ion implantation is the option to produce alloys that are thermodynamically
metastable and therefore cannot be generated by equilibrium processes.

Another technique, called ion beam mixing, is used to produce non-dilute
metastable alloys. Here the starting point is a material containing layers of
different pure materials. Bombardment with an ion beam generates cascades
of atomic collisions as a result of which atoms from one layer recoil into
a neighboring layer. The result resembles very much that of an interdiffusion,
but in view of the high energies involved the process also takes place if the
resulting alloy is metastable just as in ion implantation.

Several techniques utilize ion beams as tools in thin-film deposition. It
was recognized almost 150 years ago that the flux of atoms sputtered from
an ion-bombarded sample could be collected on a substrate where a smooth
film would form. Simultaneous bombardment of different materials generates
sputtered fluxes which, when collected on one substrate, may form alloy films
of reasonably controlled composition. This is now one of the standard tech-
niques to produce high-Tc superconducting films. Films may also be formed by
collection of the fluxes of (low-energy) ion beams themselves on a substrate.
In ‘ion-assisted film deposition’, ion bombardment serves as an energizer to
stabilize a film that is produced by a more conventional technique such as
evaporation.

It follows from the above that ion beams are prime tools in ‘surface engi-
neering’: In addition to ion implantation, mixing, and deposition, that term
comprises etching and polishing as well as roughening. By proper use of masks
and/or focused beams, one-, two-, and three-dimensional structures may be
generated on a submicron scale and utilized in numerous contexts.

Radiation Damage

Radiation effects on a larger scale may more readily be generated by neutron
or high-energy light-ion irradiation. The penetration depth of a fast-neutron
beam may be up to ∼ 1 m. Therefore, changes brought about in a material
by atoms recoiling from collisions with fast neutrons tend to be distributed
homogeneously throughout a macroscopic sample. This dilution in space im-
plies, on the other hand, fairly high minimum irradiation doses for radiation
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effects to be visible at all. Typical irradiations in ion implantation may last
seconds or minutes while equivalent effects in a fission reactor may need weeks
or months.

Neutron-generated radiation effects have been studied for more than half
a century. Radiation damage in fission-reactor materials such as uranium,
graphite, light and heavy water, cadmium and many others is of prime inter-
est from the point of view of safety, stability of supply, and lifetime. Similar
concerns exist with regard to radiation effects in fusion-reactor materials such
as refractory metals, various ceramics, stainless steel, magnetic and supercon-
ducting materials and the like. To this adds the item of radiation effects in
materials pertinent to nuclear-waste treatment and deposition, i.e., rock salt
and minerals.

While damage effects to superconductors may be detrimental to the func-
tion of a fusion reactor it has long been recognized that defects generated by
irradiation may affect the function of a superconductor also in a positive direc-
tion, in particular by raising the transition temperature. Indeed, introduction
of defects may turn a ‘soft’ superconductor into a ‘hard’ one by introduction
of trapping centers for flux lines.

1.2.5 Analytical Chemistry

Several analytic techniques mentioned above have enhanced the arsenal of
available tools in analytical chemistry. Desorption techniques in conjunction
with mass spectrometry are of prime importance here. Ion beams serve in two
distinct functions,

– as a tool to promote intact molecules from the liquid or solid phase into
the gas phase by desorption, and

– to enable an adequate fraction of the desorbed molecules to appear ion-
ized and, therefore, identifiable by time-of-flight or conventional mass spec-
trometry.

The fact that ion beams with energies far in excess of what is needed to break
a molecule into pieces can desorb even very big intact molecules at all was
one of the great surprises in ion beam physics. Considerable attention will be
paid to pertinent physical processes in Volume III.

While the SIMS technique mentioned above has been used successfully to
mass-analyse large molecules like proteins and insulin, several modifications of
the technique have proved even more efficient. In one technique, called ‘liquid
SIMS’ or ‘fast atom bombardment’ (FAB), the clue is to embed the sample to
be analyzed into a liquid matrix like glycerol or nitrocellulose: This seems to
enhance both the desorption yield and the ionization probability of emitted
molecules, thus allowing for high counting rates at low bombardment doses. It
was found that desorption processes may be ascribable both to ionization and
collision cascades (Fig. 1.6 on page 9). Thus, analytical techniques may be
based not only on low-energy beams (SIMS) but also on beams in the fission
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fragment regime. In the latter case the somewhat confusing notion of ‘plasma
desorption mass spectrometry’ (PDMS) has become common.

An important technique, called ‘accelerator mass spectrometry’ (AMS),
serves to determine isotopic compositions of materials, e.g., with the aim of
determining the age of archeologic or geologic samples. The sample is inserted
as a sputter source into a tandem accelerator, the beam optics of which is
utilized as a mass spectrometer. The high beam energy allows single-atom
detection. This leads to great sensitivity and thus allows determination of
very small percentages of the isotope in question. In this manner the age
regime covered by 14C dating has been extended significantly beyond what is
achievable by radioactivity measurements.

1.2.6 Biomedical Research

As in materials research, charged-particle beams serve two distinct purposes
in biomedical research: They may be utilized for analysis and diagnostics on
the one hand and for tailoring materials properties and for therapy on the
other. Undesired radiation effects on living tissue have been a prime issue in
radiation research ever since the discovery of x rays and radioactivity, and
this research has been intensified after the events generated by atomic bomb
explosions during and after World War II.

Radiation protection and dosimetry and the development of standards
involves measurements with charged-particle beams at all stages, and highly
advanced theoretical calculations enter here. Indeed, laboratories involved in
this type of research usually carry out a certain amount of basic atomic-physics
research because it is found necessary to base radiation standards on the best
available theoretical foundation.

Numerous applications of high-energy electron beams include radiation
sterilization of medical tools, radiation chemistry, and radiation treatment of
plants. Amongst more recent applications of charged-particle beams, diagnos-
tics by proton and heavy-charged particle beams as well as charged-particle
therapy need to be mentioned. In diagnostics the energy loss is utilized as
an indicator: A beam particle penetrating a tumor may suffer another energy
loss than one penetrating healthy tissue. Heavy-particle beams suffer little
angular scattering and are detected easily. Therefore efficient diagnostics can
be performed at low irradiation doses.

Much more in use is charged-particle therapy, which is based on the fact
that the rate of energy loss of swift charged particles increases with decreas-
ing beam energy (for details cf. Chapter 2). Therefore a properly chosen beam
will deposit its energy efficiently in a given depth range where a tumor has
been located, and comparatively little damage will be generated in the overly-
ing healthy tissue. This is very different from conventional radiation therapy
involving x or gamma rays where the density of energy deposition decreases
with increasing depth. Charged-particle therapy is being carried out both with
electrons, mesons, protons, and heavy ions. The variety of tumors that can be
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treated successfully by this technique is continuously increasing. It is a major
challenge to construct reasonably priced machines that can be made available
to general health care.

1.3 Measurements and Experimental Tools

This section brings nothing new to a routined experimentalist but is intended
to serve as a rough orientation on experimental options for students of theo-
retical physics.

Pressure Vessel Stripper

Negative-ion
source

Fig. 1.8. Principle of a Tandem electrostatic accelerator. The point at the highest
potential is located near the middle of the acceleration line. At the left end, negative
ions are injected at ground potential. These ions are accelerated toward the high-
voltage terminal; at this point they pass through a thin foil or a gas cell where they
get stripped off some of their electrons and, consequently, get positively charged. In
continuing their motion toward the right, they get accelerated further until arriving
at ground potential again. From Andersen (1991)

1.3.1 Sources of Energetic Charged Particles

Not all experimentation with charged-particle beams requires a big acceler-
ator. Radioactive alpha emitters provide beams of well-defined energy, and
by proper use of apertures a reasonably collimated beam may be obtained.
Beta emitters may be utilized similarly but are less attractive because of the
wide spread of the kinetic energies of emitted electrons. Substances undergo-
ing spontaneous fission such as the californium isotope 252Cf are ideally suited
as sources of heavy-ion beams in a small laboratory, provided that a certain
spread in projectile mass and energy is tolerable.

Nuclear reactions induced by neutrons or fast particles may serve as a sup-
ply of a variety of light and heavy charged particles with more or less well
defined energies. Moreover, elastic recoils from alpha-particle bombardment
form an internal source as discussed in Sect. 1.2.
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Beams of charged particles in the energy range up to a few keV require
only modest investments in high-voltage equipment regardless of whether the
interest is in ions or electrons. For positrons, mesons, antiprotons and other
exotic particles, the situation is different since those particles are generated
at rather high energies. Here an additional investment may have to be made
to decelerate particles to some well-defined energy if the initial energy is too
high.

Electrons of well defined energy can be generated by ultraviolet or x-
ray photoemission with the primary radiation coming from an x-ray tube or
a synchrotron.

A very wide arsenal of accelerators is available. These may be classified
into electrostatic machines with acceleration voltages from a few volts up
to 10-20 million volts. In the upper voltage range many machines work on
the basis of the tandem principle (Fig. 1.8). Accelerators for higher energies
utilize various types of electromagnetic fields. The well-known cyclotron em-
ploys a static magnetic field to force the particles into circular orbits, and
acceleration is achieved by alternating electric fields. All other high-energy
accelerators, whether circular or linear, require time-dependent fields and pro-
vide bunched beams. These machines used to be developed with electrons or
protons in mind. Subsequently heavy-ion beams were generated, and several
dedicated heavy-ion accelerators as well as storage rings have been constructed
during the past quarter of a century.

Next to the acceleration stage an important part of any accelerator is the
source of particles. Electrons are conventionally generated by heating of a fil-
ament. Ion sources may be constructed on the basis of a variety of principles.
Gas ions are conveniently generated in a discharge. Metal ions may be gen-
erated either directly by heating and evaporation, by evaporation of suitable
compounds, or by exposing the metal to an ion or laser beam and extract-
ing sputtered positive or negative ions. While sputtered atoms are typically
neutral, suitable surface treatment of the target may enhance the emission of
either positive or negative ions.

By and large, experimental techniques have developed to the point where
ions of any element may be generated in any stable charge state and accel-
erated to almost any energy. Ion optics is well developed to a stage where
beams of lateral dimensions in the micron and submicron regime have be-
come available. In addition, a large variety of molecular beams has become
available.

1.3.2 Targets and Detecting Devices

Targets to be exposed to particle bombardment include potentially all inor-
ganic and organic solids, crystalline or not, liquids and gases including plas-
mas over a wide range of temperatures. Control of target parameters ensuring
target homogeneity and stability is crucial and quite often more difficult to
achieve than a high-quality beam. Experimenters tell of painful experiences
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with thin foils carrying invisible holes or polycrystalline materials with pro-
nounced texture. If the existence of such features is not expected from the
beginning, peculiar experimental results will inevitably be found and much
time is spent on finding exotic explanations of seemingly new effects.

Enormous progress has been achieved in the area of radiation detection.
Sophisticated techniques in high-energy physics were gradually extended down
into the MeV and keV range. It is now possible to simultaneously record the
positions of a large number of particles with a very high space and time res-
olution. I do not wish to provide numbers here since whatever I write will
be obsolete by the time this book appears in print, but this development is
truly astonishing. Keywords are wire detectors, charge-coupled devices and
channel plates but numerous other principles may be applied. Conventional
electrostatic or magnetic analysers are still excellent tools in precision mea-
surements of particle energies, but semiconductor detectors and time-of-flight
techniques are more convenient for many purposes. Almost unlimited options
are available for performing coincidence measurements involving several par-
ticles including photons.

Finally, almost any material property may be employed as an indicator
of radiation effects. Most frequent are heat, light, and sound emission, but
changes in electrical or thermal conductivity, mass density, or specific heat
may serve just as well. Direct observation of radiation effects by electron or
ion microscopy, by scanning tunneling microscopy or other surface analytic
techniques is helpful, as are chemical analysis including ion beam analysis
and all kinds of spectroscopy.

1.4 General-Physics and Related Aspects

While the selection of items covered in this book is highly topic-oriented,
i.e., dominated entirely by the needs of scientists and engineers working with
charged particles in basic and applied research, this does not preclude that
many of the topics covered have a much broader significance. For example,
the statistical theory of particle penetration is a specific application area of
the theory of stochastic processes in physics. In the opinion of the author,
experiments involving beams of charged particles constitute one of the most
beautiful illustrations of the theory of stochastic processes, even though this
feature is not generally appreciated in the statistical-physics community.

The theory of individual scattering processes plays a major role in parti-
cle penetration. This does not only refer to the classical or quantal theory of
two-body scattering but, even more important, to inelastic collisions involving
excitation and ionization of the projectile or target particle and, finally, rear-
rangement processes like electron capture from a target atom or molecule by
a projectile ion. While the theory of such processes belongs under the heading
of electronic and atomic collisions, it is prime input and as such needs to be
treated in a monograph of the present character.
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Due to the wide variety of available experimental tools and techniques as
well as a large number of experienced research teams there is a well-established
tradition for close cooperation between experimentalists and theorists in the
field. This may be a very refreshing aspect for a student of either theoretical
or experimental physics, dependent on the local curriculum.

Numerous computer simulation codes have been developed that allow ex-
perimentalists to make their own theoretical explorations in connection with
experimental studies. Studying the trajectories of fast particles and their reac-
tion products on a computer screen offers the fascination of computer games
to those with an appreciation of this type of entertainment. Making science
out of this, however, requires a critical attitude and great caution with regard
to the pitfalls of statistics.

1.5 Literature

A comprehensive treatment with the present scope has not appeared in print
since the monograph of Bohr (1948) more than half a century ago. That
work treated all aspects of particle penetration from a basic-physics point of
view, focusing on qualitative understanding but making full reference to the
theoretical literature available at the time. Applied aspects as well as explicit
treatments of radiation effects were suppressed.

The general standard of this field has very much been set by Lindhard
and his lecture course at Aarhus University which has been followed by many
workers in the field at one time or another. Lindhard never published his
course, but an extract has been written up by Bonderup (1981).

Amongst a few treatments covering narrower topics I like to mention an
article on light-ion stopping by Fano (1963) which generated a considerable
stimulus to both experimentalists and theorists through its admirable rigor
both in the general presentation and the formulation of unsolved problems.
More recent surveys of ion stopping and ranges are due to Kumakhov and Ko-
marov (1981) and the present author (Sigmund, 2004). Several international
summer schools have been held that covered aspects of charged-particle pene-
tration and radiation effects. Closest to the scope of the present book is the one
held in Alicante, Spain (Gras-Marti et al., 1991), but some important items
were not covered and several central topics treated in the oral presentations
did not make it into the monograph.

Several monographs are available on radiation effects in solids, although
most of them fairly old (Dienes and Vineyard, 1957, Billington and Crawford,
1961, Strumane et al., 1964, Leibfried, 1965, Dupuy, 1975, Lehmann, 1977,
Thompson, 1969), and quite a few books on ion implantation and ion-beam
processing have appeared more recently (Mayer et al., 1970, Williams and
Poate, 1984, Nastasi et al., 1996).
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Summaries on electron interaction with matter may be found in conjunc-
tion with medical radiation physics (Inokuti, 1983) as well as surface analysis
by electron spectroscopy (Tougaard, 1988).

1.6 Nomenclature

A general problem faced by any textbook author is the limited number of
symbols in the alphabet. I have tried to use the same symbol for the same type
of quantity and to add indices only when this was found absolutely necessary.
Thus, E denotes consistently the kinetic energy of a moving particle, and if
there is more than one type of projectile the energies have been called E, E′,
E′′ and the like. An electric field, on the other hand, has been denoted by E
but its magnitude is called |E| rather than E to minimize confusion.

In general I have tried to minimize the number of indices in order to keep
mathematical equations readable. This, however, implies that the symbol F ,
which consistently denotes a statistical distribution function, may have very
different physical meanings in different chapters and sections: Not only may
the number of statistical variables in the function be different from case to
case. The function may also refer to penetrating projectiles in one case and
recoiling target atoms in another.

For the convenience of the reader a list of general notations has been
compiled on page XIX–XXIV which covers symbols and abbreviations which
occur at several places in the book.

Problems

1.1. Projectile speeds are conveniently expressed in terms of the Bohr velocity
v0 = e2/4πε0� = c/137, where c = 3 · 108 m/s is the speed of light in vacuum.
Determine the kinetic energy (in electron volts) of an electron, a proton, an
alpha particle, and a uranium nucleus, respectively, moving a) at speed v0, b)
at speed 10 v0.

1.2. Projectile speeds are frequently expressed in terms of kinetic energy per
atomic mass unit u, where u = 1.66054 ×10−27 kg is close to the proton mass.
Find the velocity in multiples of the Bohr velocity v0 of a projectile moving
with a) 100 keV/u and b) 100 MeV/u and determine the kinetic energy if the
particle is a proton or a uranium nucleus, respectively.

1.3. Penetration depths are frequently expressed in terms of weight per area.
Find conversion formulas between thickness and weight per area, utilizing the
mass density ρm of the respective material, expressing length in nm or µm
and weight per area either in µg/cm2 or mg/cm2, respectively.
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1.4. Determine the thickness of a layer of

– 1 mg/cm2 helium gas at atmospheric pressure,
– 1 mg/cm2 aluminium foil and
– 1 mg/cm2 gold foil.

1.5. For a face-centered cubic crystal lattice you may define a monolayer of
material as a slab of thickness d/2 with a density of 2/d2 atoms/area, where
d is the cubic lattice constant. Look up or determine values of d for alu-
minium and gold and determine the weight/area (in µg/c2) for a monolayer
of aluminium and gold, respectively.

1.6. Determine the De Broglie wavelength λ̄ = �/Mv for

a) an electron with energy 13.6 eV and 100 keV, respectively,
b) a neutron with energy 0.025 eV (‘thermal’), 1 eV (‘epithermal’), and 1

MeV (‘fast’), respectively, and
c) an argon ion at 1 keV and 1 MeV, respectively.

Discuss relevant application areas of the cases mentioned.

1.7. Consider a simple model for the slowing-down of a fast neutron in solid
matter: Assume a scattering cross section σ = 1 · 10−24 cm2 (= 1 b) for
interaction with the nuclei in the material which are assumed distributed
uniformly at a number density N = 0.05/Å3. The neutron is assumed in the
average to lose half its instantaneous energy per collision. Derive an expression
for the average energy loss per travelled pathlength, dE/dR, and estimate the
total penetration depth of a neutron from an initial energy 1 MeV down to
thermal energy. Compare the penetration depth with the mean free path for
a scattering event.

1.8. Consider the following, heavily oversimplified model for the slowing down
of an alpha particle in solid matter: Assume a cross section σ = 1 Å2 for
electronic excitation of target atoms and an average energy loss 〈T 〉 = 20 eV
in every collision. Target atoms are assumed to be distributed uniformly at a
number density N = 0.05/Å3. Find an expression for the average energy loss
per pathlength, dE/dR, and estimate the total penetration depth of an alpha
particle with initial energy 1 MeV. Compare the total penetration depth with
the mean free path for a scattering event. Try to locate several major errors
in this model. Make a comparison with the model discussed in problem 1.7.

1.9. Assume that you are allowed to treat a penetration problem on the basis
of nonrelativistic mechanics as long as the kinetic energy of a projectile with
mass M does not exceed 0.1Mc2. Evaluate the limiting acceleration voltages
for a) an electron, b) a proton, c) an Ar+ ion, d) an Ar18+ ion, and e) a U90+

ion.
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2

Elementary Penetration Theory

2.1 Introductory Comments

This chapter is intended to provide a qualitative understanding of the stop-
ping and scattering of charged particles in matter and to acquaint the reader
with some of the problems to be solved and suitable tools for their solution.
Most of the actual estimates given for specific quantities will be improved
or generalized in later chapters. This should not keep the novice from going
rather carefully through the material.

The ideas described here have been developed early in the past century
to describe the penetration of alpha and beta particles through matter. They
have since then been applied to a much wider variety of particles at higher and
lower energies than those accessible with the products of natural radioactive
decay.

In order to appreciate the validity of the approach taken, have a look at
a classical cloud-chamber photograph of the trajectories of alpha particles in
air, Fig. 1.1 on page 4. The trajectories are essentially straight lines of almost
equal length, of the order of a few centimeters in a gas at atmospheric pressure.
Once in a while a trajectory is observed to be bent. Although the process of
stopping and scattering is the result of the interaction of the alpha particle
with a great number of atoms and therefore must be a statistical process,
statistical fluctuations seem to be small and angular deflections rare in the
case depicted in Fig. 1.1.

In this chapter, unless otherwise stated, general theoretical considerations
are illustrated on an alpha particle moving through a layer of gas that is much
thinner than the total length of the trajectory, essentially along a straight line
and with very small variation in velocity. Basic concepts introduced include
cross section, stopping force and straggling, range, single and multiple scat-
tering, and others. Estimates of these quantities will be based on classical
mechanics, much in the way performed in early studies in this field (Ruther-
ford, 1911, Thomson, 1912, Darwin, 1912, Bohr, 1913, 1915).
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2.2 Collision Statistics

2.2.1 Definition of Cross Section

The concept of a cross section is of paramount importance in all penetration
theory. It is appropriate, therefore, to spend some time on ways of defining
and determining this parameter.

Macroscopically the cross section of a target is the area within which it
can be hit by some bullet. For example, a spherical target with a radius a
offers a cross section πa2 to a point projectile.

Microscopically we have to come to an agreement on what to mean by say-
ing that a target has been hit by a projectile. In view of the great variety of
possible projectiles and targets it is desirable to find a broad definition. Let us
say that a target has been hit if the interaction of the projectile with the tar-
get has had some specific measurable effect. This means that the magnitude
of a given cross section does not only depend on the target, the projectile, and
their relative velocity, but also on the physical effect that we decided to mon-
itor. Consequently we talk about scattering cross sections, absorption cross
sections, energy-loss cross sections, ionization cross sections, cross sections for
specific nuclear reactions, and many others.

Most often in penetration phenomena, the target is an atom or a molecule.
In the present chapter we shall also refer to nuclei and/or electrons when
talking about targets.

MICROSCOPIC
TARGET

MACROSCOPIC
TARGET

BEAM

s

x

Fig. 2.1. Statistical definition of a cross section: One microscopic target bombarded
by a beam

For fundamental and practical reasons there is no way of experimentally
determining microscopic cross sections by bombarding one atom with one
projectile only. Instead we utilize the statistical information extracted from
a large number of bombardments. In that context, we talk about the stopping
medium and the beam. A stopping medium consists of a macroscopic number
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of target particles in some arbitrary configuration, such as a random assem-
bly of molecules in an ideal gas or a regular structure of atoms in a crystal.
A beam consists of a large number of projectiles. Ideally, all projectiles have
the same initial state and velocity, but this is not a necessary requirement. We
may also talk about a beam when dealing with alpha or beta particles emitted
isotropically from a radioactive source. More important is the initial require-
ment that individual projectiles only interact with the stopping medium and
not with each other ; this can be achieved by letting individual bombardments
be well separated in time. In other words, we consider penetration phenomena
in the limit of low beam current here.

Let some microscopic target be bombarded by a beam of projectiles spread
homogeneously over an area S (Fig. 2.1). If σA is the cross section for some
process A – such as ionization of the projectile particle – then, σA/S is the
fraction of all projectiles that undergo the process A by interacting with the
target particle, provided that the number of projectiles is large enough to
make statistical fluctuations vanishingly small.

If the beam has a current density J [projectiles/time/area], then

JS × σA

S
= JσA (2.1)

is the number of events A induced by the beam per unit time.

S

V

x

σA

v

Fig. 2.2. Macroscopic target consisting of randomly placed microscopic targets at
number density N , bombarded by a beam
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Consider next a stopping medium with a number density N [targets per
volume] within a volume V = Sx (Fig. 2.2). According to (2.1) the number of
events A induced per unit time by the beam is given by

N × Sx× JσA = JS ×NxσA. (2.2)

Here, JS is the number of projectiles per unit time; hence, NxσA is the mean
number of events per projectile. If the target is thin enough so thatNxσA � 1,
that number becomes identical with the probability PA for a projectile to
undergo an event A while interacting with the stopping medium, i.e.,

PA = NxσA for NxσA � 1. (2.3)

Thus, cross sections are measured most conveniently with gas targets or thin
foils where either N or x is small, respectively.

Eqs. (2.1–2.3) are roughly equivalent, and each of them serves an important
purpose. Eq. (2.1) is the most basic one, dealing with one target particle only;
it will be employed in theoretical determinations of cross sections from the
equations of motion. Eq. (2.2) is most closely related to measurable quantities
and is therefore utilized when cross sections are determined experimentally.
Eq. (2.3) applies to probability statements about what happens to a projectile
during passage through some small path element x; it serves as the starting
point of penetration theory.

We shall encounter situations where (2.2) and (2.3) are not valid: It has
been assumed in the step from from (2.1) to (2.2) that a scattering event is
not influenced by the presence of other target particles. That assumption need
not be fulfilled.

There is one major difference between the conventional macroscopic con-
cept of a cross section and the present, statistical one. When you fire a bullet
at some macroscopic target you will usually hit it if you have aimed at the
right area and you won’t if you have not. This is not so in the microscopic
world governed by quantum effects. When defining a microscopic cross section
as above you may be dealing with a product of some geometric cross section
σg and a probability pA,

σA = σg × pA. (2.4)

The problem with (2.4) is that it may be hard to obtain independent infor-
mation on σg and pA. All you obtain from (2.2) is the product of the two
quantities, and σg may not even be defined. If you have an idea about the
magnitude of σg, you may, however, determine pA from (2.4), and that way
you get some understanding of whether or not σA corresponds to a well-defined
area within which the projectile has to aim in order to initiate an event A
with a reasonable degree of certainty.

There is a wide range of penetration phenomena where we do not need
independent information on either σg or pA. In cases where such information
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is important, a more precise separation of the geometric factor than in (2.4)
needs to be made. This point will come up in particular in Chapter 8.

2.2.2 Multiple Collisions; Poisson’s Formula

In the preceding paragraph the probability for a collision event during a pas-
sage was assumed to be small. In penetration phenomena we deal most often
with projectiles undergoing many collisions in an individual passage. There-
fore we need some statistical information on the number of events in case PA

as given by (2.3) is not small.
Let us illustrate the situation geometrically (Fig. 2.2) by associating a

‘black area’ σA to each target particle. The number of events A is equal to
the number of times a projectile hits such a black area. Then, (2.3) can be
written in the form

PA =
NSx× σA

S
=

total black area
total area

(2.5)

provided that PA � 1 and that the target particles do not shadow each other
systematically as, e.g., in a crystal. If the number of target particles NSx
increases, e.g., due to increasing thickness x at constant number densityN , the
total black area will increase to the point where individual black areas overlap
appreciably; ultimately, for NxσA � 1, the entire area appears black. This
implies that the probability for a projectile to undergo at least one event A is
essentially equal to 1, but the actual number of events may be substantially
larger.

Let us ask for the probability Pn for the projectile to initiate precisely n
events A during its passage through the medium. In our geometrical picture
this is the same as asking for the probability for n individual black areas to
overlap with the trajectory of a given beam particle. Alternatively, we may
associate a cylindrical volume

v = xσA (2.6)

with each trajectory and try to find the probability for n target particles to
be located within one such volume. The latter question is a standard problem
in kinetic gas theory: Given an ideal gas of average density N , what is the
probability to find precisely n gas molecules within some specified volume v
at any instant of time? The answer is given by the Poisson distribution,

Pn =
(Nv)n

n!
e−Nv. n = 0, 1, 2 . . . (2.7)

If you are unfamiliar with Poisson’s formula you may wish to consult Appendix
A.2.1 for an elementary derivation. The main assumptions entering into (2.7)
are the following:
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– the positions of any two or more gas molecules are uncorrelated, and
– the sample volume v must be small compared with the total volume filled

with gas.

The latter assumption allows to consider the number of available atoms as
practically unlimited; then one easily verifies the relationships:

∞∑
n=0

Pn = 1 (2.8)

and
∞∑

n=0

nPn = 〈n〉 = Nv, (2.9)

the brackets indicating an average. For the variance one finds1

(n− 〈n〉)2 = 〈n〉. (2.10)

Eq. (2.10) is a central property of the Poisson distribution. It implies that the
relative fluctuation

(n− 〈n〉)2
〈n〉2 =

1
〈n〉 (2.11)

goes to zero in the limit of large 〈n〉.
Let us now go back to the statistics of collision events. In order that

(2.7) be applicable we must require that the positions of target particles be
uncorrelated, i.e., that target particles act as if they were the constituents of
an ideal gas. This may be an essential restriction; we shall come back to this
point in Chapter 8. The requirement that v be small compared with the size
of the container implies that σA � S, cf. (2.6); this is generously satisfied in
case of a macroscopic area S.

By combining (2.6) with (2.9) we find the average number of events A to
be given by

〈n〉 = NxσA (2.12)

and, from (2.10), the fluctuation

(n− 〈n〉)2 = 〈n〉 = NxσA. (2.13)

Eq. (2.12) generalizes (2.2) to the case where 〈n〉 is not small. As an additional
benefit we also have found an expression for the fluctuation in the number of
events, (2.13).

1 Notations < · · · > or · · · are utilized synonymously to indicate averages, depen-
dent on readability.
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The probability P0 for no event at all follows from (2.7) and (2.12) for
n = 0,

P0 = e−NxσA . (2.14)

This is called Lambert & Beer’s law and governs absorption phenomena.
In case of NxσA � 1 we find that

Pn �
⎧⎨
⎩

1 −NxσA for n = 0
NxσA for n = 1
0 for n ≥ 2

(2.15)

up to first order in NxσA. Thus (2.7) goes over into (2.3) in the limit where
the probability for double events is vanishingly small, cf. (A.19) and (A.20)
in Appendix A.2.1.

The Poisson distribution is discussed in mathematical terms in standard
texts on probability theory (Feller, 1968). Its significance to kinetic gas theory
was pointed out by v. Smoluchowski (1904), and the connection to penetration
theory was drawn by Bohr (1915).

2.2.3 Energy Loss

Consider now specifically the process of energy loss by a charged particle
moving through a stopping medium; in order to be sure that the collision
events be distributed according to Poisson’s formula, assume the medium to
be a gas for the time being.

On account of the conclusions drawn from Fig. 1.1, ignore initially all
angular scattering of the projectile. In colliding with the atoms or molecules
of the gas a projectile may transfer part of its kinetic energy to those atoms
and thus suffer a decrease in velocity. The observation of nearly equal track
lengths (Fig. 1.1) indicates that the typical energy lost in a single encounter
is small compared with the projectile energy.

Assume that the projectile can lose energy in discrete bits of Tj, with
j = 1, 2 . . ., and that Tj � E for all j, where E is the projectile energy. Tj

might represent the excitation levels above the ground state of a target atom
or molecule.

While penetrating a layer of thickness ∆x which is assumed small com-
pared with the total penetration depth, a projectile loses an amount of energy
∆E given by

∆E =
∑

j

njTj , (2.16)

where nj is the number of collisions of type j, each leading to an energy
transfer Tj.

In order to find the average energy loss 〈∆E〉 and its fluctuation for a great
number of projectiles, let us employ the statistical arguments outlined in the
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previous section with the one addition that we now deal with a spectrum of
energy transfers Tj rather than one single possible event A.

For the average energy loss 〈∆E〉 we find from (2.16) that

〈∆E〉 =
∑

j

〈nj〉Tj . (2.17)

Introducing the energy-loss cross section σj for a quantum Tj according to
(2.1) we find from (2.12)

〈nj〉 = N∆xσj (2.18)

and hence,

〈∆E〉 = N∆x
∑

j

Tjσj . (2.19)

Here,

S =
∑

j

Tjσj (2.20)

is the stopping cross section, and the ratio

〈∆E〉
∆x

= NS = N
∑

j

Tjσj (2.21)

is called the stopping force or stopping power2. While the stopping force is
a property of the stopping medium, the stopping cross section is a microscopic
quantity. In the literature one frequently finds the symbol S used for the
stopping force rather than the stopping cross section. This should cause little
confusion since the former has the dimension of [energy/length] while the
latter is an [energy×area].

As defined by (2.21) the stopping force is a positive quantity. This is not
a universal convention in the literature but reasonable to the extent that
energy loss rather than gain is in focus. However, the function dE/dx to be
introduced below in (2.34) must be taken negative whenever the projectile
energy decreases with time or pathlength.

2.2.4 Energy-Loss Straggling

Consider now the mean-square fluctuation Ω2 in energy loss ∆E. According
to (2.16) and (2.17) we have
2 Evidently, the term ‘stopping force’ is in agreement with common nomenclature,

while ‘stopping power’ would be the correct term for the energy loss per unit
time. Nevertheless, the latter term has been in use for almost a century and is
only slowly disappearing from the literature. Cf. Sigmund (2000).
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∆E − 〈∆E〉 =
∑

j

(nj − 〈nj〉)Tj (2.22)

and therefore

Ω2 = (∆E − 〈∆E〉)2 =
∑
j,l

(nj − 〈nj〉)(nl − 〈nl〉)TjTl; (2.23)

Now take the terms j = l and j �= l separately. For j = l,

(nj − 〈nj〉)2 = 〈nj〉 = N∆xσj (2.24)

when the Poisson relation (2.13) applies and (2.18) is inserted. For j �= l, split
the average of the product into the product of averages

(nj − 〈nj〉)(nl − 〈nl〉) = nj − 〈nj〉 × nl − 〈nl〉 (2.25)

because of the statistical independence of different types of collision events;
since nj − 〈nj〉 = 0, drop all terms with j �= l in (2.23) and find

Ω2 =
∑

j

〈nj〉T 2
j = N∆x

∑
j

T 2
j σj . (2.26)

In analogy with the stopping cross section, introduce the straggling parameter

W =
∑

j

T 2
j σj , (2.27)

which has the dimension of [energy2×area]. Just as the stopping cross section
it is a microscopic property.

A word of caution is indicated with respect to the validity of the relations
(2.19) and (2.26). Although these expressions are formally similar, (2.19) is
much more general than (2.26). Little can go wrong with the derivation of
(2.19); we shall see later that the stopping force is to some extent independent
of the structure of the stopping medium. Conversely, not only was explicit
use made of the Poisson relationship (2.13) in the derivation of (2.26), but
also were collisions leading to different energy transfers Tj and Tl assumed
statistically independent. The latter assumption is readily justified in a dilute
stopping medium provided that the ion has no memory, i.e., does not undergo
changes in state that may influence the stopping cross section. On the other
hand, if the medium were closely packed like a solid or a liquid, there would
be a more or less pronounced anticorrelation between collisions leading to
different energy transfers; such effects will be analyzed in Chapter 8 and it
will be found that straggling is sensitive to the structure of the stopping
medium.
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2.2.5 Differential Cross Section

Let us finally go over to the case of a continuous spectrum of energy loss in
individual encounters; such a spectrum applies, e.g., to ionizing collisions with
an atom, collisions with a molecule leading to dissociation, etc. You may then
apply the present description in a heuristic sense, i.e., make the replacement

σj → dσ
dT

∆Tj (2.28)

and let the interval size ∆Tj be sufficiently small to replace the sums in (2.20)
and (2.27) by integrals. In short-hand notation this yields

S =
∫
Tdσ, (2.29)

W =
∫
T 2dσ, (2.30)

where

dσ =
dσ(T )

dT
dT (2.31)

is called the differential energy-loss cross section and the integrations extend
over the spectrum of possible energy transfers. According to (2.3) the quantity

dP = Nxdσ (2.32)

is the probability for a projectile to undergo a collision with energy loss3

(T, dT ) when interacting with the stopping medium under single-collision con-
ditions, i.e., sufficiently small N and/or x.

2.2.6 Range

Up till now the layer thickness was assumed small compared with the pene-
tration depth of the projectile. This made it possible to assume the projectile
energy E to be essentially constant. In general the differential cross section
and hence the microscopic parameters S and W will depend on energy. This
energy dependence is essential for the understanding of the stopping of a pro-
jectile down to zero energy.

Consider first the case where the fluctuation in energy loss is negligibly
small, as appears to be the case in Fig. 1.1. This implies that the projectile
energy is a well-defined function of the penetration depth x,

3 The symbol (T, dT ) indicates the interval limited by T and T + dT . Similarly,
(Ω, d2Ω) indicates a solid angle d2Ω around the unit vector Ω, and (r, d3r) in-
dicates a volume element d3r = dxdydz located at a vector distance r from the
origin.
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E = E(x) (2.33)

which obeys the differential equation

dE
dx

= −NS(E) (2.34)

that follows from (2.21). The minus sign accounts for the decrease in projectile
energy. Equation (2.34) has the solution

x =
∫ E0

E(x)

dE′

NS(E′)
(2.35)

in implicit form, where E0 = E(0) is the initial energy. In particular, the total
path length or range R is found by setting E(x) = 0, i.e.,

R =
∫ E0

0

dE′

NS(E′)
. (2.36)

This estimate of the range, based on the continuous-slowing-down-approxima-
tion (csda) (2.34), is valid only in the case of negligible straggling; (2.36) is not
strictly identical with the average range when statistical fluctuations become
significant.

An estimate of the fluctuation Ω2
R in range – valid for small Ω2

R – can
be found as follows. When slowing down from E to some energy E − ∆E,
the projectile travels a path length ∆x � ∆E/NS(E) on the average; the
corresponding fluctuation is of the order of Ω2

x � Ω2/(dE/dx)2; this follows
most easily by dimensional arguments. Insertion of Ω2 from (2.26) and (2.27)
as well as (2.34) and Ωx yields

Ω2
x � NW (E)∆E[

NS(E)
]3 (2.37)

for the fluctuation in projectile path length during slowing down from E to E−
∆E. Consequently, the fluctuation in total range Ω2

R is found by integration
down to zero energy,

Ω2
R �

∫ E0

0

dE′ NW (E′)[
NS(E′)

]3 . (2.38)

If a precise meaning is to be assigned to (2.38) some detailed information on
the shape of the statistical distributions of energy loss and range is needed.
This point will be considered in Chapter 8 and Volume II.

There is little in the substance of the present section that cannot be
found in the review by Bohr (1948). Historically, the most important step
was the experience that alpha and beta rays, unlike gamma rays, lose energy
gradually rather than getting absorbed. That observation appears to date
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back to Sklodowska-Curie (1900), while the notion of stopping power may be
found with Bragg and Kleeman (1905). At the same time and independently,
Leithäuser (1904) demonstrated that cathode rays lose energy in penetrating
thin metal foils. The first attempt to relate the stopping force to an atomic
stopping cross section dates back to Thomson (1912). Extensive range calcu-
lations were made by Darwin (1912). The treatment of fluctuations in energy
loss and range dates back to Bohr (1915).

2.3 Electronic and Nuclear Stopping

2.3.1 General Considerations

The present section serves as a first qualitative orientation on the dominating
mechanisms of energy loss. This problem will have to be treated again and
again as we dig deeper into the field.

Let us keep to the case of a charged particle penetrating through a gaseous
stopping medium. At moderate velocities a projectile may experience a change
in speed in a collision with an individual gas atom or molecule by means of
the following processes:

– excitation or ionization of target particles,
– transfer of energy to center-of-mass motion of target atoms,
– changes in the internal state of the projectile, and
– emission of radiation.

In a rough manner the first process may be characterized as a loss of
projectile energy into kinetic and potential energy of target electrons while
the second process deals essentially with energy transfer to target nuclei; note
that the mass, and therefore the kinetic energy of target atoms or molecules,
is essentially contained in the nuclei. Therefore the first process is usually
called ‘electronic energy loss’ and the second ‘nuclear energy loss’. One may
also refer to electronic energy loss as the transfer of internal energy to the
target particle as opposed to nuclear energy loss as the transfer of center-
of-mass energy. Therefore one may find the notions of inelastic and elastic
energy loss, although the reader may be inclined to assign a different meaning
to those concepts, depending on background. Those familiar with neutron or
photon scattering may call a scattering event elastic if the incident particle
does not suffer energy loss; the present notion of elastic collisions implies
only that energy is not transferred into internal degrees of freedom of the
target or projectile. Moreover, one may be inclined to call a collision event
inelastic whenever it is not elastic, and consequently split the collision cross
section into an elastic and an inelastic contribution. That is certainly a most
reasonable concept. Nevertheless, in the stopping literature, many authors
tend to split the energy loss in an individual event into an elastic and an
inelastic contribution, thereby calling the nuclear energy loss elastic and the
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electronic one inelastic, but it may take some time to realize that this is what
those authors do. In order to minimize confusion I shall avoid the notion of
an inelastic collision as much as possible and most often talk about nuclear
and electronic energy loss or stopping.

Coming back to the above classification of energy-loss processes, ignore
changes in the projectile state for the time being. The estimates put forward
presently refer to a penetrating point charge. Emission of radiation, espe-
cially bremsstrahlung, is a rather different process which becomes important
at projectile speeds approaching the velocity of light.

In principle, various processes at the nuclear or subnuclear level would
have to be incorporated into the above classification scheme. Whether or
not this is important does not only depend on the velocity range and the
projectile-target combination in question but also on the reader’s motivation
to study penetration phenomena: If the interest is in nuclear or high-energy
physics, this book may be consulted for information on atomic phenomena
that influence penetration properties important in the analysis of nuclear or
high-energy processes. If, on the other hand, the interest is in atomic, solid-
state, or biological phenomena, nuclear processes may have to be included as
an energy sink (or source) if important, along with all other pertinent effects.
Initially we shall concentrate on electronic and nuclear energy loss.

In case of doubt, you may do well by defining energy loss of a charged
particle as the loss in kinetic energy of its center-of-mass in the laboratory
frame of reference. For an ion carrying electrons, you may, alternatively, op-
erate with the loss of kinetic energy of the nucleus. The difference between
the two definitions is less than 0.1 %, i.e., below the accuracy of available
experimental techniques.

p

∆P

∆P

Fig. 2.3. A ‘soft’ scattering event with momentum transfer P⊥ perpendicular to
the beam direction

2.3.2 Momentum and Energy Transfer in Free-Coulomb Collision

For a first qualitative orientation, oversimplify a gaseous stopping medium and
treat it as an ideal-gas mixture of free nuclei and electrons. The elementary
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collision event is, then, the interaction of the projectile, i.e., a point charge e1
with mass m1 moving with velocity v, with a target particle of mass m2 and
charge e2; the target particle can be either a nucleus or an electron. m2 will
turn into a capital M2 for a nucleon and into m for an electron.

In accordance with Fig. 1.1 on page 4, ignore events leading to a substantial
change in projectile velocity; the projectile will be considered to cause an
external force that imparts momentum to a target particle that is initially at
rest. The collision event is sketched in Fig. 2.3. If the target particle receives
only a small momentum it can be considered stationary for the duration of
the collision and the momentum transfer is given by

∆P =
∫ ∞

−∞
dtF(t), (2.39)

where F(t) is the Coulomb force4

F (t) =
e1e2

p2 + (vt)2
(2.40)

between the two point charges as a function of time t. Splitting the force into
components parallel and normal to the projectile velocity v (Figure 2.4) we
find

∆P‖ = e1e2
∫ ∞

−∞
dt

vt

(p2 + v2t2)3/2
= 0 (2.41)

and

∆P⊥ = e1e2
∫ ∞

−∞
dt

p

(p2 + v2t2)3/2
=

2|e1e2|
pv

, (2.42)

where p, the impact parameter, is the distance between the straight-line trajec-
tory and the initial position of the target. It has been assumed for convenience
that this distance is reached at time t = 0.

Equations (2.41) and (2.42) constitute a special case of the momentum
approximation in classical scattering theory. It can be understood as the first
term in a perturbation expansion in powers of the interaction between two par-
ticles5. Because of the symmetry of the Coulomb interaction the longitudinal
momentum transfer ∆P‖ vanishes to first order, cf. (2.41). Hence momentum
is only transferred normal to the projectile velocity in that approximation.

We may find an estimate for the effective collision time τ from the expres-
sion

∆P⊥ � Fmax τ (2.43)

4 From now on electromagnetic quantities will be taken in Gaussian units. Pertinent
relationships have been collected in Appendix A.1.1.

5 This expansion will be discussed in more detail in Appendix A.3.1.
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Fig. 2.4. Time dependence of the force parallel and perpendicular to the beam
direction according to (2.41) and (2.42)

where Fmax is the force at closest approach (t = 0) and directed normal to
the initial velocity. With Fmax = |e1e2|/p2 and by comparison to (2.42) one
finds

τ � 2p
v
, (2.44)

i.e., the two particles interact effectively over a length � 2p of the incoming
trajectory. This has been indicated by the stipled lines in Fig. 2.3. Note that
the Coulomb force has half its maximum value at a distance p

√
2.

dp

v
→

p

Fig. 2.5. Differential cross section
and impact parameter
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From (2.42) follows

T =
∆P 2

⊥
2m2

� 2e21e
2
2

m2v2p2
(2.45)

for the energy T lost to particle 2 as a function of impact parameter p. In
order that such a collision lead to an energy transfer in an interval (T, dT ),
the projectile must aim at a cross-sectional area

dσ = 2πpdp = |d(πp2)
dT

|dT (2.46)

around the target (Fig. 2.5). By differentiation of (2.45) one finds

dσ � 2π
e21e

2
2

m2v2
dT
T 2
. (2.47)

Eq. (2.47) is more accurate than (2.45) from which it was derived. In fact it is
an exact version of Rutherford’s cross section for Coulomb scattering except
for the fact that no upper limit for T is specified by (2.45). A more rigorous
derivation of Rutherford’s law for classical nonrelativistic scattering will be
given in Chapter 3; at present, remember that for a head-on collision (p = 0)
between a projectile of initial velocity v and a target of initial velocity zero,
the conservation laws of energy and momentum, applied to one-dimensional
motion, require the final velocity of the target to be

vmax =
2m1

m1 +m2
v. (2.48)

This yields a maximum energy transfer

Tmax = m2v
2
max/2 = γE (2.49)

with

γ =
4m1m2

(m1 +m2)2
, (2.50)

where E = m1v
2/2.

2.3.3 Stopping and Straggling: Preliminary Estimates

When (2.47) is inserted into (2.29) and (2.30) on p. 36 one finds

S � 2π
e21e

2
2

m2v2
ln
Tmax

Tmin
; (2.51)

W � 2π
e21e

2
2

m2v2
(Tmax − Tmin). (2.52)
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A lower integration limit corresponding to a truncation of the interaction
(2.45) at large impact parameters p was introduced in order to remove an
apparent divergence from the stopping cross section. Ways of specifying such
a cutoff will be discussed in sections 2.3.4 and 2.3.7.

Let us first consider a situation where all energy loss to electrons is ignored.
Take N to be the number density of nuclei of charge e2 = Z2e and mass
m2 = M2. e is the elementary charge and Z2 the atomic number. Then,
according to (2.19) and (2.26),

〈∆E〉n � N∆x× 4πe21Z
2
2e

2

M2v2
Ln, (2.53)

〈(∆E − 〈∆E〉)2〉n � N∆x× 4πe21Z2
2e

2m2
1

(m1 +M2)2
, (2.54)

where the subscript ‘n’ indicates nuclear energy loss. In (2.53), the abbrevia-
tion

Ln =
1
2

ln
(
Tmax

Tmin

)
n

(2.55)

has been introduced while in (2.54), Tmin has been dropped.
Next, consider the opposite case where all energy loss to nuclei is ignored.

With a number density NZ2 of electrons (mass m, charge −e) one finds cor-
respondingly

〈∆E〉e � N∆x× 4πe21e2Z2

mv2
Le, (2.56)

〈(∆E − 〈∆E〉)2〉e � N∆x× 4πe21e
2Z2m

2
1

(m1 +m)2
, (2.57)

where the subscript ‘e’ indicates electronic energy loss.
Finally, take the ratios of equivalent quantities for nuclear and electronic

stopping,

〈∆E〉n
〈∆E〉e � m

M2
Z2
Ln

Le
, (2.58)

〈(∆E − 〈∆E〉)2〉n
〈(∆E − 〈∆E〉)2〉e � (

m1 +m
m1 +M2

)2Z2. (2.59)

The ratio of the mean energy losses, (2.58), is obviously dominated by the
factor mZ2/M2 which is less than 10−3. Regardless of the accurate values
of Tmax and Tmin the ratio of logarithms will not compensate for this large
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difference unless Le is close to zero. That case will show up only at low pro-
jectile velocities where target electrons cannot be considered free.

Thus, under the present somewhat oversimplified assumptions, the mean
energy loss is heavily dominated by the electronic contribution for both light
and heavy point charges, despite the fact that the maximum energy transfer
from a heavy projectile to a nucleus is many times larger than that to an
electron. In order to appreciate the physical origin of this very central conclu-
sion, note that the mean energy loss receives a substantial contribution from
rather gentle collisions of the type sketched in Fig. 2.3 on page 39. While the
average momentum transferred to target electrons does not differ dramatically
from the average momentum transferred to target nuclei because forces are
comparable, a pronounced difference occurs in transferred energy, cf. (2.45),
where the mass enters into the denominator.

Next, consider the ratio of fluctuations, (2.59). If the projectile is an elec-
tron (m1 = m), that ratio becomes 4Z2(m/M2)2 which is ∼ 10−7 or less.
Thus, electronic processes dominate even more strongly than in case of the
mean energy loss. For a heavy projectile on the other hand, m1 = M1, the
ratio is less than 1 for M1 �M2 but may exceed 1 for M1 ≥M2.

The physical reason for the significance of nuclear energy losses in strag-
gling is to be found in the high-energy-loss tail of the Rutherford spectrum
(2.47). Evidently that tail is more important in the integral

∫
T 2dσ than in∫

Tdσ. The presence of this tail makes it a rather delicate task to estimate
the actual shape of an energy loss profile. Substantial effort will be devoted
to this task in Chapter 9.

The dominating role of the electronic stopping force in the penetration of
alpha and beta rays was recognized in the earliest investigations into the field
and became the basis of Thomson’s stopping model where stopping and ion-
ization were treated essentially synonymously (Thomson, 1912). With regard
to stopping force and straggling, the present discussion does not go beyond
what can be found in the monographs by Bohr (1948) and especially Bonderup
(1981).

2.3.4 Adiabatic Limit to Electronic Stopping

According to (2.58) the stopping force on a point charge is essentially elec-
tronic. From (2.56) we obtain the electronic stopping cross section

Se =
4πZ2e

2
1e

2

mv2
Le (2.60)

where Le = 1
2 ln(Tmax/Tmin)e. A quantity L defined by (2.60) is called a stop-

ping number. Consequently, Le denotes the electronic stopping number. For
a heavy projectile, m1 � m, (2.49) and (2.50) yield

(Tmax)e = 2mv2. (2.61)
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In this section an estimate of the lower limit Tmin of energy transfer will be
derived.

Note first that Tmin is strictly zero in the case of a free, isolated target
electron. Thus, the long-range Coulomb interaction causes a logarithmic di-
vergence of the stopping cross section. There are two most obvious ways of
removing this artifact, taking into account the binding of electrons to the
atoms or molecules in a neutral stopping medium, or to consider screening of
the Coulomb interaction. Let us consider binding here.

Offhand one might be inclined to incorporate electronic binding forces by
merely inserting the lowest electronic excitation energy of a target atom or
molecule for (Tmin)e or, as suggested by Thomson (1912), the lowest ionization
energy. While this is justified for a qualitative estimate, it turned out that the
argument of Bohr (1913, 1915), based on the simple picture of a spring force
between electron and nucleus does not only lead to a different quantitative
result but also has a very close quantal analog.

Bohr treated the individual target electron as a classical harmonic oscil-
lator with a resonance angular frequency of, say, ω0. When an external force
F acts on such an oscillator during a limited period of time τ , the exchange
of momentum depends essentially on the magnitude of τ compared with the
oscillation period 2π/ω0. For τ � 2π/ω0, the oscillator takes up an impulse
∼ F × τ just as if it were a free particle; this effect may be experienced by
giving a push with a hammer to the steel ball of a pendulum. Conversely, for
τ � 2π/ω0, the oscillator tends to respond adiabatically to the external force
and it will tend to calm down as the disturbance vanishes even in the absence
of damping forces. Thus, the takeup of momentum will be much smaller than
that experienced by an otherwise equivalent free particle.

The duration of the force acting on a target electron from a moving pro-
jectile is given approximately by (2.44) for a soft collision; hence an effective
adiabatic cutoff occurs at an impact parameter where 2p/v � 2π/ω0, i.e.,
pmax will be of the order of

pmax ∼ v

ω0
(2.62)

apart from a numerical constant that has to be determined by a more accurate
calculation. Eq. (2.62) specifies Bohr’s adiabatic radius.

Combining (2.62) with (2.45) we obtain6

Tmin ∼ 2e21e
2ω2

0

mv4
(2.63)

or

L =
1
2

ln
Tmax

Tmin
= ln

Cmv3

|e1e|ω0
(2.64)

6 The subscript ‘e’ will be dropped when there is no doubt that we deal with
electronic stopping.
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with a yet undetermined constant C which is ∼ 1 but will be evaluated in
Sect. 4.5.1.

2.3.5 Relativistic Extension

While relativistic effects play a role in particle penetration on all levels, most
of the phenomena discussed in this book are observable equally well at non-
relativistic and relativistic velocities. Hence, relativity may affect quantitative
details but – with very few exceptions – is not the essential aspect. Therefore
the strategy will be followed to present nonrelativistic treatments and add
pertinent relativistic corrections where appropriate.

The present section serves the purpose to extend the simple treatment of
Coulomb scattering discussed in Sect. 2.3.2 to relativistic velocities. Appendix
A.3.2 recapitulates pertinent formulas from special relativity.

On the basis of the Lorentz transformation for electromagnetic fields (cf.
Appendix A.3.2) one finds the following relativistic extensions of (2.41) and
(2.42)7,

∆P‖ = e1e2
∫ ∞

−∞
dt

γvvt

(p2 + (γvvt)2)3/2
= 0 (2.65)

and

∆P⊥ = e1e2
∫ ∞

−∞
dt

γvp

(p2 + (γvvt)2)3/2
=

2|e1e2|
pv

, (2.66)

where

γv =
1√

1 − v2/c2 . (2.67)

It is seen that there is no change in the momentum transfer at a given impact
parameter, even though the maximum force has been enhanced by a factor
γv. This implies that the collision time in (2.43) has become smaller by the
same factor, i.e.,

τ � 2p
γvv

(2.68)

instead of (2.44). This leads to a change in the adiabatic radius (2.62)

pmax ∼ γvv

ω0
(2.69)

7 An attempt has been made to use a notation that should prevent the reader from
mixing up the symbol γv in (2.65 – 2.67) with the quantity γ defined in eq. (2.50).
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which in turn affects the minimum energy transfer (2.63) in an electronic
collision,

Tmin ∼ 2e21e
2ω2

0

mγ2
vv

4
. (2.70)

In order to find the maximum energy transfer in a binary collision between
a heavy particle and an electron, look at a central collision in a reference frame
in which the projectile is at rest. Here the electron moves with a velocity −v
before and v after the collision. This implies a momentum P ′ = mγvv and
a total energy E′

tot = mγvc
2. Lorentz transformation into the laboratory

system yields the energy in the laboratory frame,

Etot = γv(E′
tot + vP ′) (2.71)

and, hence, an energy transfer

Tmax = Etot −mc2 = 2mγ2
vv

2. (2.72)

This results in a stopping number

L =
1
2

ln
Tmax

Tmin
= ln

Cmγ2
1v

3

|e1e|ω0
(2.73)

instead of (2.64). It is a preliminary estimate which will be modified in
Sect. 4.2.3.

2.3.6 Validity of Classical-Orbit Picture

So far, moving particles have been assigned classical orbits, and the limitations
imposed by quantum mechanics were barely mentioned. The tacit justification
of this procedure lies in the fact that we have been dealing with Coulomb
interaction only; indeed, the differential cross section for scattering of two
point charges on each other is known to be identical with Rutherford’s law
when calculated on the basis of nonrelativistic quantum mechanics (Gordon,
1928). This will be shown in Chapter 3. Hence, even though the actual state of
motion will differ from classical Kepler orbits, the difference may be argued to
be immaterial since the energy-loss spectrum in an individual collision event
is unaffected by quantal corrections.

This simplifying feature need no longer be true

– when the force between the particles is not Coulomb-like,
– in the presence of binding forces, and
– at relativistic velocities.

Any of these three situations may occur in penetration phenomena. In addi-
tion we shall also need to consider spatial correlations in collision problems.
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For all these reasons an estimate of the range of validity of the classical-orbit
picture is needed.

From the point of view of penetration theory for swift charged particles
it is most often the gentle collisions leading to small energy transfers that
are considered most representative. Not only are those events by far the most
frequent ones – as is seen from (2.47) – they also offer a number of challenges
due to their long-range nature that suggests the possibility of collective effects
in dense stopping media. Nevertheless close collisions, although rare, do occur
and are not insignificant as is evidenced by the occurrence of Tmax in the
expressions for stopping force and straggling.

In the present context gentle collisions are considered mainly since we
know already that binding corrections play a role in the determination of the
lower limit Tmin of the energy-loss spectrum in (2.60), and hence that the
assumption of free-Coulomb scattering becomes invalid in that limit.

Go back once again to Fig. 2.5 on page 41. In order to estimate the limi-
tations of a classical orbit we may try to find the lateral spreading of a wave
packet centered around the straight projectile path depicted there.

According to Williams (1945) and Bohr (1948) the physical situation is as
follows. One may try to pin down an impact parameter p with an uncertainty
δp by constructing a Gaussian wave packet with a lateral spread δp, thereby
introducing a transverse momentum δP1 of the order of

δP1 ∼ �

2δp
(2.74)

according to the Heisenberg uncertainty principle8. At the same time an un-
certainty in the impact parameter results in an uncertainty in momentum
transfer, δP2 according to (2.42),

δP2 ∼ δp |d(∆P⊥)
dp

| =
2|e1e2|
p2v

× δp, (2.75)

where ∆P⊥ follows from (2.42). The uncertainty principle implies that these
two uncertainties are uncorrelated. We may estimate the total uncertainty
from the sum of squares,

δP 2 ∼ δP 2
1 + δP 2

2 . (2.76)

This quantity takes on its minimum value when δp2 is chosen to be

δp2min =
�p2v

4|e1e2| (2.77)

and δPmin becomes, then,

δPmin ∼
√

2|e1e2|�
p2v

. (2.78)

8 Appendix A.4.1 reviews Gaussian wave packets for the interested reader.
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In order that the momentum transfer at a given impact parameter p± δpmin

be well-defined we have to require that

δPmin

∆P⊥
∼
√

�v

2|e1e2| � 1 (2.79)

In the notation of Bohr (1948) this reads

κ =
2|e1e2|

�v
� 1 (2.80)

or

v � 2v0
∣∣∣e1e2
e2

∣∣∣ , (2.81)

where the Bohr velocity v0 = e2/� = c/137 is the orbital speed of an electron
in the ground state of a hydrogen atom, c being the speed of light in vacuum
(Appendix A.1.2).

If the target particle is an electron, (2.81) reads

v � 2Z1v0. (2.82)

For low charge numbers Z1 the limit imposed by (2.82) is rather severe. For
alpha particles it lies at 1.6 MeV.

Now, the whole description of a projectile interacting with a target electron
at rest can only be meaningful provided that

v � v0, (2.83)

i.e., if the projectile speed substantially exceeds some characteristic orbital
velocity of the target electrons which has been set to be the Bohr velocity
v0. For low charge numbers, (2.82) is in direct conflict with (2.83). We may
therefore conclude that the theory of electronic stopping for electrons and
positrons is intrinsically quantal. Conversely, for heavier particles, and in par-
ticular for heavy ions with e1 � e, (2.82) specifies a velocity range within
which the assumptions underlying Bohr’s classical stopping formula (2.64)
are approximately valid.

2.3.7 Screening in Nuclear Stopping

There were good reasons to ignore nuclear stopping for a while. After all,
electronic energy loss appears to dominate the stopping force on point charges
by more than three orders of magnitude. This estimate, however, is based on
the assumption that the nuclear stopping force does not diverge, i.e., that
some mechanism is going to limit the Coulomb interaction between projectile
and target nucleus to a finite range.
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The keyword is screening. Indeed, if the stopping medium consists of neu-
tral atoms or molecules, the Coulomb force between a point charge and a nu-
cleus comes into action only when the point charge penetrates the electron
shells. Thus, an effective maximum impact parameter (pmax)n for nuclear col-
lisions is equivalent to a representative radius a of the atomic or molecular
electron cloud. Let us be satisfied for the moment with the statement that a
is of the order of or less than the Bohr radius a0 (cf. Appendix A.1.2).

Why don’t we use Bohr’s adiabaticity limit to find (pmax)n as was done in
electronic stopping? After all, nuclei are bound to each other in molecules and
solids, approximately by oscillator forces. Well, in order that such an adiabatic
limit be significant, it has to be smaller than a0, or

v ≤ a0ω = v0
�ω

2R
(2.84)

according to (2.62), where ω is an effective binding frequency. Here, R is
the Rydberg energy, R = 13.6 eV. (Appendix A.1.2). For typical vibrational
frequencies of atoms in molecules, �ω lies in the range around or below 0.1
eV; hence, nuclear collisions become adiabatic at projectile speeds that are
at least two orders of magnitude lower than what we considered so far. Note
that an alpha particle at a velocity v = v0 carries a kinetic energy of about
100 keV (cf. problem 1.1 on page 22).

Incidentally, for nuclear stopping the condition for validity of the classical-
orbit picture, (2.81) reads

v � 2Z1Z2v0. (2.85)

This is less stringent than (2.82) because of the occurrence of Z2 ≥ 1. We may
conclude that nuclear collisions may follow the laws of classical mechanics over
a considerably wider range of projectiles and speeds than what was found for
electronic collisions.

Let us get back to screening and insert (pmax)n = a into (2.45). This yields
an effective minimum energy loss in nuclear collisions,

(Tmin)n =
2

M2v2
e21Z

2
2e

2

a2
(2.86)

or

Ln =
1
2

ln
(
Tmax

Tmin

)
n

� ln 2ε, (2.87)

where

ε =
M2

M1 +M2

Ea

e1Z2e
(2.88)
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and M2 is the nuclear mass. ε is a dimensionless measure of the projectile
energy that is of central significance in nuclear stopping (Lindhard et al.,
1968).

2.4 Multiple Scattering

2.4.1 Small-Angle Approximation

Stopping and scattering are closely related phenomena in particle penetra-
tion. Strictly speaking you cannot deal with one and ignore the other. From
a formal point of view it might look appealing to treat both phenomena at
the same time, representing longitudinal and transverse changes in velocity,
respectively. Yet the dominating processes will turn out to differ in the two
cases. This discourages a joint treatment from a physical point of view. In-
stead one may come a long way by treating the change in projectile speed as
independent of the changes in direction of motion.

Switch over to scattering and ignore all energy loss for a while. As in
the case of stopping we normally deal with a sequence of events in particle
penetration. Thus, the equivalent of stopping theory is the theory of multiple
scattering. The formal treatment will largely turn out to be a generalization
of the statistical theory of stopping into two dimensions.

Let us again take our starting point at the experimental fact demonstrated
in Fig. 1.1 on page 4 that the trajectories of alpha particles are essentially
straight lines. This means that small-angle scattering events appear to domi-
nate.

One may at different stages ascribe different meanings to the notion of a
‘small’ angle. The term small-angle approximation, however, will consistently
imply that the respective angle, say, θ, is small in an absolute sense so that
the relations

sin θ � θ; cos θ � 1 (2.89)

hold within some prescribed accuracy.
Let us then have a look at the trajectory of an alpha particle, sketched

schematically in Fig. 2.6. If all energy loss is ignored, the motion under a series
of small-angle scattering events can be characterized by the projection on
a plane perpendicular to the initial direction of motion. Introducing spherical
polar coordinates v, α and χ and applying the small-angle approximation we
find the expression

v = (v cosα, v sinα cosχ, v sinα sinχ)
≈ v(1, α cosχ, α sinχ) (2.90)

for the velocity vector of the projectile if the initial direction of motion is
directed along the x-axis. Thus, pertinent information on the direction of
motion is contained in a two-dimensional vector α,
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φ

α

∆x

Fig. 2.6. Trajectory of an alpha particle during multiple scattering (schematically).
α denotes the angle between the scattered particle and the initial beam direction
and φ the scattering angle in an individual event

α = (α cosχ, α sinχ) (2.91)

which represents the lateral component of a unit vector pointing in the in-
stantaneous direction of motion of the projectile.

2.4.2 Statistics

Now let the projectile be able to undergo a discrete spectrum of scatterings at
such vectorial angles φj , j = 1, 2 . . ., and let the cross sections for these events
be σj . If, during an individual passage, the projectile undergoes nj deflections
at angle φj , the final direction of motion is determined by the vector

α =
∑

j

njφj (2.92)

perpendicular to the initial velocity. This relation is a two-dimensional analog
of (2.16). Consequently, averages can be found in the same way as in the
treatment of energy loss.

In particular, the average deflection follows by analogy with (2.19),

〈α〉 = N∆x
∑

j

φjσj . (2.93)

This quantity will most often be zero, namely whenever the scattering centers
look azimuthally symmetric to the projectile; then σj will be independent
of the azimuth of the scattering angle φj , and the sum (or integral) (2.93)
vanishes according to (2.91) since

∫ 2π

0 dχ cosχ =
∫ 2π

0 dχ sinχ = 0.
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Next, the mean-square deflection angle follows by analogy to (2.23) and
(2.26),

(α − 〈α〉)2 = N∆x
∑

i

φ2
iσi = 〈α2〉, (2.94)

and this quantity is nonzero if only one σi �= 0. Here the first identity is
general while the second implies azimuthal symmetry.

As in Sect. 2.2.3 we go over to continuum notation and write (2.94) in the
form

〈α2〉 = N∆x
∫
φ2dσ (2.95)

where dσ as given by

dσ = K(φ)d2φ (2.96)

is the differential cross section for scattering into the solid angle (φ, d2φ). In
the considered case of azimuthal symmetry we have K(φ) ≡ K(φ), where φ
is the polar scattering angle.

While the overall number of scattering events undergone by a projectile
during a passage is typically a large number, the situation becomes different
when attention is limited to large scattering angles. Indeed, take the proba-
bility

P (α∗) = Nx
∫

φ>α∗
dσ (2.97)

for a scattering event by an angle exceeding some lower limit α∗; (2.97) is
a straight application of (2.3). Figure 1.1 on page 4 indicates that for alpha
particles, P (α∗) must be a small number (� 1) if α∗ exceeds a few degrees.
Therefore, in situations like this the distribution F (α)× 2παdα of projectiles
after passage through a layer ∆x must approach the single-event limit

F (α) ⇒ N∆xK(α) (2.98)

for α � α∗. A rough estimate of the limiting angle α∗ is given by the angle
which makes the probability (2.97) equal to unity, i.e.,

N∆x
∫

φ>α∗
dσ = 1. (2.99)

This may be taken to set a limit between single and multiple scattering; it is
seen that α∗ as given by (2.99) depends on the thickness ∆x: The larger ∆x
the larger α∗.

As a first approximation the following qualitative shape (Fig. 2.7) arises
for the multiple-scattering distribution F(α). At angles α� α∗, where many
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Fig. 2.7. Multiple scattering distribution for heavy projectiles in the model of
Williams (1940). Units refer to a quantitative model to be discussed in Volume II.
See text

individual deflections contribute to the final value of F(α), one may assume
a Gaussian profile with a width given by (2.95)

〈α2〉 = N∆x
∫

φ<α∗
φ2dσ; (2.100)

in the opposite end, at angles α� α∗, (2.98) holds.
The above treatment which dates back to Williams (1940) gives a first

qualitative orientation. It is often quite reliable. However, a more comprehen-
sive treatment is available and will be discussed in Volume II.

2.4.3 Nuclear and Electronic Scattering

The present section serves the purpose of providing a qualitative estimate of
the relative significance of nuclear and electronic collisions in multiple scat-
tering. The treatment will follow that of energy loss in Sect. 2.2.3 on page 33.

The angle of deflection φ at impact parameter p follows from the momen-
tum transfer

φ ∼ ∆P⊥
m1v

=
√
m2T

m1E
(2.101)

by means of (2.45). Therefore (2.95) reads

〈α2〉 = N∆x
∫
m2T

m1E
dσ =

m2

m1E
〈∆E〉, (2.102)
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where 〈∆E〉 is given by (2.19), or 〈∆E〉 = N∆xS. Equation (2.102) holds for
one target species at a time, i.e., the nuclear and electronic contributions read

〈α2〉n =
M2

m1E
〈∆E〉n (2.103)

and

〈α2〉e =
m

m1E
〈∆E〉e, (2.104)

respectively. These rough estimates – which ignore the upper limit α∗ that was
introduced in (2.97) – show that the ratio of nuclear to electronic multiple-
scattering widths is of the order of

〈α2〉n
〈α2〉e ∼ Z2

Ln

Le
(2.105)

by means of (2.58).
For heavy target atoms where Z2 � 1, the nuclear contribution dominates

clearly. Moreover, the nuclear stopping number Ln normally exceeds the elec-
tronic one when the projectile is an ion or another heavy particle – because
of the large difference between (Tmax)n and (Tmax)e. This results in a pre-
dominantly nuclear multiple-scattering distribution even when the target is
light.

The situation is even clearer in the limit of single collisions, α� α∗. Since
the momentum transferred to an electron in a single collision cannot exceed
2mv a heavy projectile can be scattered from an electron at most by an angle
∼ 2m/M1. This angle – less than 0.1 degree – is frequently within the multiple-
scattering limit α∗. Hence, single scattering of heavy projectiles (m1 � m)
is determined by nuclear contributions with the exception of extremely small
scattering angles. Another exception is the case of channeling (Fig. 1.3 on
page 6) where nuclear scattering events are suppressed.

Let us finally write down the scattering cross section in the small-angle
approximation. According to (2.42) and (2.91) we have

φ ∼ |e1e2|
pE

(2.106)

and therefore

dσ ∼
∣∣∣∣d(πp2)

dφ

∣∣∣∣ ∼ e21e
2
2

E2

2πφdφ
φ4

. (2.107)

In the single-collision limit the probability for a scattering event (α, dα) is
then determined by (2.98), i.e.,

F (α1) 2παdα � N∆x 2π
e21e

2

E2
Z2

2

dα
α3

(2.108)
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for 2m/m1 ≤ α� 1, where Z2e is the nuclear charge. For α ≤ 2m/M1, target
electrons contribute to the scattering cross section. In that case the factor Z2

2

due to the target charge is to be replaced by Z2 since there are Z2 electrons
per nucleus. Hence, the effective scattering cross section due to both nuclei
and electrons reads

dσ � e21e
2Z2(Z2 + 1)
E2

2πφdφ
φ4

(2.109)

for α < 2m/m1.
The treatment presented here applies to the nonrelativistic regime as it

stands. Extension to the relativistic regime is straightforward since the central
quantity, the transverse momentum transfer (2.42) is unaffected by relativity.
Therefore, the only noticeable change at this level is the replacement of the
projectile momentum m1v in (2.101) by m1γvv, i.e.,

m1 → γvm1 (2.110)

in all relations on small-angle multiple scattering.

2.5 Estimates

2.5.1 Alpha Particles

Now let us interpret the qualitative features of the cloud-chamber photograph
shown in Fig. 1.1 on page 4. Within the spirit of this chapter we do not aim
at high accuracy but rather try to find simple order-of-magnitude estimates.

Start with the range. It is found by insertion of the electronic stopping
cross section (2.60) into (2.36) and integrating. This yields very roughly

R ∼ mE2

M1 4πNZ2e21e
2

{
1
Le

}
, (2.111)

where the brackets indicate an average over the trajectory. Note that Le varies
rather slowly with E.

Next get an order-of-magnitude estimate of the range straggling from
(2.38) which reads

Ω2
R

R2
∼ 2m
M1

{L−3
e }

{L−1
e }2

; (2.112)

This shows that ΩR/R ∼ 10−2 for alpha particles, a result that is consistent
with Fig. 1.1 and shows that the continuous-slowing-down-approximation is
quite accurate in this case.

Next get an order-of-magnitude estimate of the multiple-scattering angle
by setting ∆x = R in (2.103), i.e., look at the angular spread of an initially
well-collimated beam over the entire trajectory,
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〈α2〉 =
mZ2

2M1

{
Ln

Le

}
. (2.113)

It is seen that whatever the accurate value of the weighted average {Ln/Le},
the factor mZ2/2M1 ∼ Z2/15000 will make sure that 〈α2〉 is a small quantity
for an alpha particle. This explains why visible portions of the particle tracks
in Fig. 1.1 are essentially straight lines.

Finally, according to (2.108) for ∆x = R, the probability for a large-angle
scattering event over the entire trajectory is of the order of

NR
πe21e

2Z2
2

E2
∼ mZ2

16M1

{
1
Le

}
. (2.114)

This shows that even for heavy target nuclei only a minute fraction, less than
10−2 of the alpha particles, will undergo a major deflection over the main part
of their range.

2.5.2 Preview: Energy and Z1 dependence

Figure 2.8 gives you an impression of what we have learned so far and where
we are going. Theoretical stopping cross sections for H, Ar and U ions in Si,
found from reliable sources, have been plotted over a wide range of beam
energies. All stopping cross sections show the characteristic v−2 dependence,
modified by the logarithmic variation of the stopping number at high but
nonrelativistic energies. In that energy regime, Sn lies more than three orders
of magnitude below Se.

However, both Se and Sn go through maxima at lower energies and then
decrease according to some power-law dependence on the beam energy. Ev-
idently, such maxima must exist, because a particle cannot lose more than
its total kinetic energy, but their locations differ dramatically, and no easy
estimate of their location and height emerges from what we have learned up
till now.

For both Ar and U, there is a low-energy regime where Sn dominates,
while this is not expected for hydrogen ions. The height of the maximum in
Se varies over almost three orders of magnitude from H to U, but note that
the factor is signifcantly smaller than 922, the ratio of the respective values
of Z2

1 .
Also, note that Se starts to increase again at relativistic energies, ∼ 1

GeV. The importance of relativistic collision kinematics was recognized right
from the beginning (Bohr, 1915).

Finally, experimental data from ∼ 25 different sources have been included
in case of H-Si, a comparatively well-studied ion-target combination. You may
note that at energies above the peak position there is excellent agreement
both between different sets of experimental data and between experiment and
theory. Discrepancies occur at lower speeds.
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Fig. 2.8. Electronic and nuclear
stopping cross sections for H in Si,
Ar in Si and U in Si versus beam
energy per nucleon. Sn evalu-
ated according to Lindhard et al.
(1968). Se from ICRU (1993) for
H-Si, from ICRU (2005) for Ar-Si
and for U-Si computed from bi-
nary theory (Sigmund and Schin-
ner, 2002). Experimental data
from numerous sources compiled
by Paul (2005). Note the different
abscissa scales

2.6 Electron and Positron Penetration

Several of the explicit results quoted above for stopping and scattering pa-
rameters have been derived for projectile masses exceeding the electron mass,
i.e., for ions, mesons etc. This implies that the maximum energy transfer to
a target electron is close to 2mv2 according to (2.61). This does not apply to
a positron where the maximum energy transfer is

Tmax =
m

2
v2. (2.115)

However, it does not make much sense to insert this into (2.64), because the
classical scheme has a very limited range of validity. Instead, we just note that
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the stopping force on a positron is smaller than that on a proton at the same
projectile speed.

Fig. 2.9. Trajectories of beta particles.
From Gentner et al. (1954)

For penetrating electrons a further complication is caused by the indistin-
guishability of a scattered projectile electron from an ejected target electron
in case of substantial energy transfer. In applications of particle penetration
theory it is then necessary to consider the possible effects of both electrons
emerging from a collision. The stopping force is, then, no longer defined in
a strict sense. On a less rigorous basis, one may define the mean energy loss
as the difference between the initial electron energy and the mean energy of
an electron emerging with energy greater than E/2 = mv2/4 from an inter-
action, i.e.,

S =
∫ E/2

Tmin

Tdσ(T ) +
∫ E

E/2

(E − T )dσ(T ). (2.116)

This may be rewritten in the form

S =
∫ E

Tmin

Tdσ(T ) +
∫ E

E/2

(E − 2T )dσ(T ) (2.117)

or, for Coulomb scattering,

Selectron =
4πZ2e

4

mv2

(
Lpositron +

1
2
− ln 2

)
(2.118)

Electrons and positrons behave dramatically differently from heavy parti-
cles with regard to angular deflection. This is most easily seen from (2.113)
and (2.114) where replacement of the heavy projectile mass M1 by m in the
denominators implies an increase by a factor of � 2000 in both 〈α2〉 and the
mean number of large-angle scattering events over the length R of the trajec-
tory. This means that the slowing down of electrons and positrons is much
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like a diffusive motion. This is illustrated in Fig. 2.9 which differs qualita-
tively from Fig. 1.1 on page 4. The origin of this difference is the long range
of an electron or positron compared with that of a heavy particle at the same
energy, while the scattering probabilities over a given track length are compa-
rable. If this appears puzzling, it might help to note that the stopping force
depends on the projectile speed while the cross section for angular deflection
depends on the energy.

Finally, note that collisions with electrons may give rise to substantial
angular deflection, unlike what was found for heavy projectiles. Therefore
the expression (2.109), valid only at very small scattering angles for heavy
projectiles, has a much wider range of validity for electrons or positrons. It is,
however, still a small-angle formula.

2.7 Discussion and Outlook

It may be appropriate at this stage to summarize points where the theory as
outlined up till now needs improvement.

Most of all, the arguments presented in Sects. 2.3.4 and 2.3.6 indicate
that an evaluation of the electronic stopping force on the basis of a classical
electron theory is questionable, at least at high velocities and for low-charge
projectiles. Bethe’s theory, which will be discussed in Chapter 4, avoids several
oversimplifications that entered the estimates discussed above. In particular
the incorporation of electronic binding, discrete electron states, zero-point
motion of electrons, and the interaction between electrons within a target
atom or molecule are all effects that at least in principle are taken fully and
properly into account in a quantum theory of the interaction between a moving
point charge and an atom or molecule.

Next, from the treatment in Sect. 2.3.4 it follows that a penetrating
charged particle effectively interacts with target electrons up to a distance
equal to Bohr’s adiabatic radius, (2.62). Thus, in condensed matter, even at
moderately high speed, the projectile may simultaneously interact with a large
number of electrons, i.e., the medium may experience substantial polarization.
It is to be expected that a proper theory of charged-particle stopping has to
account for collective excitations, in particular so for high-speed particles and
in dense matter such as solids and liquids.

With increasing projectile speed various relativistic effects cannot be ig-
nored. Although the basic theory is a straight extension of what has been
described in Sects. 2.3.3 and 2.3.4 (Bohr, 1915), the topic has been postponed
to Chapters 5 and 6 for stopping and Volume II for scattering.

More complex are those effects that originate in the fact that moving parti-
cles need not be point charges, especially ions at moderate and low velocities.
Indeed, ions with high atomic numbers are usually not fully stripped, and the
interaction of an ion carrying an electron cloud with the atoms of the stopping
medium can be quite complex, in particular at velocities near or below the
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orbital velocities of target electrons. The quantum state of a moving ion may
undergo changes during a passage, and electron capture and loss processes
add to the complexity of the problem. An attempt to discuss some of these
problems will be postponed to Volume II when a number of prerequisites will
be available.

Nuclear collisions have been treated in a very rough manner in this chapter
and mainly from the point of view of its implications to multiple scattering.
The reader may have recognized from the discussion in Sect. 2.3.7 that the
truncation of nuclear stopping becomes effective at velocities far below those
where electronic stopping drops off. This indicates that nuclear stopping dom-
inates at the lowest velocities, but even an order-of-magnitude estimate of this
effect requires a more careful discussion of atomic screening. Nuclear scatter-
ing and stopping will be studied in Volume II.

Some of the statistical aspects of particle penetration need clarification
and specification. The practical limits to Poisson statistics are not clear at
this point. In particular it is not obvious to what extent a disordered solid
or a liquid can be regarded as a gas at high pressure with respect to the
stopping and scattering of ions. Information is needed on the shape of energy-
loss and multiple-scattering distributions, and some statistical information on
the combined effect of stopping and scattering is desirable. The conditions for
separation of electronic from nuclear stopping and scattering are not clear.
Finally, the statistics of ion ranges needs to be discussed.

Problems

2.1. The mean number 〈n〉 of ionizations produced by an alpha particle slow-
ing down to rest from an initial energy E is given with good accuracy by the
expression9 〈n〉 = E/W , where W is a measure of the energy spent in the
creation of an ion pair, i.e., a free electron and a positive ion. W is always
greater than the first ionization potential (why?). For atmospheric air, it is
empirically given as W = 29.6 eV (ICRU, 1979). Find 〈n〉 = E/W for the
case depicted in Fig. 1.1 on page 4 and give a rough estimate of the number
of ions produced per micrometer travelled pathlength.

2.2. Repeat the derivation of (2.1–2.3) in the reverse order by starting at
(2.3).

2.3. Consult your favored textbooks in classical and quantum mechanics on
how they define cross sections and try to reconcile this with the arguments that
lead to (2.1–2.3). Most discussions in textbooks refer to particular processes
and lead to only one of the three relations.

2.4. Verify the validity of (2.8–2.10) and derive corresponding relations for
the cumulants (n− 〈n〉)ν for ν = 3, 4, 5.
9 This formula will be derived in Volume III.
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2.5. The expression

〈
(n− 〈n〉)2〉1/2

〈n〉 (2.119)

is sometimes called the relative width of a distribution. The ratio〈
(n− 〈n〉)3〉

〈(n− 〈n〉)2〉3/2
(2.120)

is called the skewness, and the ratio〈
(n− 〈n〉)4〉

〈(n− 〈n〉)2〉2 (2.121)

is called the curtosis. Determine all three quantities for the Poisson distribu-
tion.

2.6. Apply a graphics program to generate plots of the Poisson distribution for
0.01 < 〈n〉 < 100 at reasonable intervals. Also include gaussian distributions
with mean value and variance both given by 〈n〉 and draw conclusions from
the degree of agreement.

2.7. Try to estimate the variance in the number of ionizations made by an
alpha particle, referring to Fig. 1.1 and Problem 2.1, assuming Poisson-like
distribution. Your result overestimates the fluctuation. We shall see in volume
III that the distribution is non-poissonian and that the variance is reduced by
a numerical factor, the ‘Fano factor’.

2.8. Extract an order-of-magnitude estimate for the stopping cross section of
an alpha particle from Fig. 1.1 by assuming S to be energy-independent.

2.9. Use (2.36) in conjunction with Fig. 1.1 to estimate the range of an alpha
particle in liquid air.

2.10. Extract an order-of-magnitude estimate of Ω2
R from Fig. 1.1, use the re-

sult of problem 2.9 to extract an order-of-magnitude value ofW , and compare
your result with the appropriate predictions given in Sect. 2.3.3.

2.11. Determine values of the following quantities in gaussian units,

– an electric field of 1 V/m,
– a voltage of 1 V,
– a magnetic field of 1 T,
– a charge of 1 C and
– a current of 1 A,

2.12. Write down Rutherford’s law for the scattering of two point charges on
each other in
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– SI units,
– gaussian units and
– atomic units.

2.13. Derive a criterion for the range of validity of (2.42) by estimating the
pathlength travelled by the hit particle during the collision time τ , assuming
constant acceleration in accordance with Fmax. Require that pathlength to be
small compared to the impact parameter.

2.14. You will most likely be unable to find (2.47) in your classical-mechanics
text10. Instead of the energy transfer T , the running variable is usually the
center-of-mass scattering angle Θ. Find the relation between the two variables
and the relation between the two corresponding differential cross sections11.

2.15. Equation (2.45) is an approximate form of an exact relation which, in
terms of the center-of-mass scattering angle Θ instead of T , is derived in
standard textbooks of classical mechanics. Locate the exact relation in your
favored text and use the result of problem 2.14 to transform it into T = T (p).
Find out which quantity you have to assume small in order to arrive at (2.45)
as a limit, and verify that this is consistent with what has been assumed in
the derivation of (2.45).

2.16. Derive (2.47) from the exact relation T = T (p) which you found in
problem 2.15 and identify the reason why both the approximate and the exact
relation lead to the same differential cross section.

2.17. Verify the validity of each of (2.48 - 2.50) either by consulting a classical-
mechanics text or by writing down conservation laws of energy and momentum
for a linear collision.

2.18. Referring to Fig. 2.4, try to analyse how the projectile can slow down,
i.e., lose momentum in the beam direction, despite the fact that momentum
is transferred to the target electron perpendicular to its velocity.

2.19. Make a model to illustrate the adiabatic limit by explicitly evaluating
the energy transferred to a linear classical harmonic oscillator by a force F (t)
of some adopted shape. Try a) a simple pulse with F = const over some time
interval τ , b) a triangular pulse, c) a lorentzian, and d) a gaussian. Use the
Green function of the classical harmonic oscillator. If you are unfamiliar with
this concept, consult Appendix A.2.5 first or check (4.6) in chapter 4. Express
all results in terms of the transferred momentum

∫∞
−∞ F (t)dt to a free electron,

define appropriate effective collision times, and compare the results.

10 A notable exception is the book of Landau and Lifshitz (1960).
11 The reader who has difficulties solving problems 2.14–2.17 may wish to study

Chapter 3 first.
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2.20. Go carefully through the various steps leading to (2.79). Try to general-
ize the estimate by adopting an arbitrary relation between the scattering angle
φ(p) of the projectile in the laboratory system and the impact parameter.

2.21. Use three-dimensional graphics to illustrate (2.80). Include the limit
expressed by (2.83).

2.22. Check a few texts on quantum theory and atomic physics for what they
write about screening. Find expressions for the electron density as a function
of the distance from the nucleus. If necessary, take an average over the angular
variables. Extract representative values of the screening radius a.

2.23. Devise a simple estimate showing that �ω0 for typical vibrational fre-
quencies in molecules lies in the range around or below 0.1 eV, as mentioned
in the beginning of Sect. 2.3.7.

2.24. Derive (2.85) from the results of Sect. 2.3.6.

2.25. Go explicitly through the steps leading to (2.93) and (2.94) and make
sure that no other complications arise from the vectorial nature of the scat-
tering angles than those mentioned in the text.

2.26. The cross sections listed in the end of Sect. 2.4.3 are all divergent at
small angles. Verify that these divergencies are equivalent with the 1/T 2 di-
vergence of the Rutherford cross section expressed as a function of energy
transfer. What is it that causes an integral like (2.100) to converge at small
angles?

2.27. Verify (2.115).

2.28. Discuss qualitatively possible differences between electrons and positrons
regarding scattering and stopping.
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3

Elastic Scattering

3.1 Introductory Comments

The present chapter serves to summarize some essentials of the theory of
binary elastic scattering. Much of this is standard material in courses and
textbooks on classical (Goldstein, 1953, Landau and Lifshitz, 1960a, Symon,
1960) and quantum (Schiff, 1981, Merzbacher, 1970, Bransden and Joachain,
2000) mechanics. Therefore the presentation is kept brief but, hopefully, self-
contained apart from some mathematical tools. A sizable fraction of the ma-
terial will not be utilized until much later1. The chapter has been placed here
because the quantum theory of elastic scattering forms a useful introduction
to the treatment of electronic stopping which is to follow in Chapter 4. Also,
the theory of elastic scattering is well developed because of its importance in
several branches of physics and related fields. A particularly attractive feature
is the option to present descriptions in terms of classical and quantal concepts
in parallel.

The treatment of scattering and energy loss in the previous chapter was
kept simple via the underlying assumption that all interactions between parti-
cles were weak. This made it possible to determine the momentum transferred
from a projectile to a target particle by time-integrating the force between
a projectile in uniform motion and a target particle at rest. This scheme,
when valid, allows for a correct description of the simultaneous interaction
between a projectile and a number of target particles, i.e., it incorporates
features of a many-body treatment.

The scheme breaks down when a projectile interacts strongly with a target
particle, e.g., in a wide-angle scattering event of an alpha particle hitting
a nucleus, or in an ionization event where an electron is ejected with high
kinetic energy. Such violent collisions are typically close encounters. They are
comparatively rare because of the small pertinent area (cross section) and
therefore do not typically involve more than two particles at a time. This
justifies a description in terms of binary collisions.

1 Sections marked with an asterisk (�) can be jumped over during a first reading.
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In the absence of forces from other particles the two-body problem may be
decomposed into the relative motion of the particles and the motion of their
common center of mass, the latter being uniform. Since this decomposition
rests on the conservation law of momentum it is equally valid in classical and
quantum mechanics. Therefore the relations between relative and center-of-
mass velocities on the one hand and velocities in the laboratory system on the
other are likewise valid in both classical and quantum mechanics. Conversely,
the cross section for a scattering event is governed by the interaction force
between the collision partners. Here quantum theory may lead to different
predictions.

The question remains whether forces from other particles – which are al-
ways present in particle penetration – may be neglected because of lacking
significance. A qualitative answer may frequently be found from a consid-
eration of characteristic impact parameters. Another option is a systematic
comparison between predictions of binary-scattering theory and either a more
comprehensive theory or experimental findings. If the effect of forces due to
other particles is not negligible but small, incorporation of their action via per-
turbation theory may be justified. When such forces cannot be expected to be
either negligible or small, numerical simulation is often the most constructive
way of theoretical attack.

3.2 Conservation Laws

3.2.1 Laboratory and Center-of-Mass Variables:
Nonrelativistic Regime

In elastic scattering the identity of the collision partners and their total kinetic
energy is conserved during interaction. For binary scattering the interaction
is characterized by a conservative force which vanishes in the limit of infi-
nite distance between the collision partners. This force can be expressed by
a potential energy V .

Let two particles with masses m1,m2 collide with initial velocities v1,v2.
It is convenient to describe the interaction in a reference frame moving with
the center-of-mass velocity

V =
m1

m1 +m2
v1 +

m2

m1 +m2
v2. (3.1)

In this frame the collision partners move with individual velocities

u1 = v1 − V =
m2

m1 +m2
v (3.2a)

u2 = v2 − V = − m1

m1 +m2
v, (3.2b)

where v = v1 − v2 is the relative velocity; their momenta are given by ±m0v
where

m0 =
m1m2

m1 +m2
(3.3)
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is the reduced mass. If the potential energy depends only on the (vectorial or
scalar) interparticle distance, i.e., if V = V(r) where r = r1 − r2, the relative
motion is equivalent with the motion of one particle with mass m0 in a fixed
force field V(r).

As a consequence of an elastic scattering event the momentum m0v may
change in direction but its initial and final magnitude must equal each other.
Therefore also the velocities u1,u2 of the collision partners in the moving
reference frame can only change direction but not magnitude.

V

V

u1 '

u1

v1 '

v1

Θ

φ 1

(a) Projectile

V

u2 '

Θ φ 2

v2 '

u2= -V

(b) Recoiling particle

Fig. 3.1. Relation between scattering angles in laboratory and center-of-mass sys-
tem for target particle initially at rest. For notation see text.

One Collision Partner Initially at Rest

Figure 3.1(a) shows the velocities of particle 1 for the specific case where
particle 2 is at rest initially, v2 = 0. A scattering event is characterized by
some angle Θ in the center-of-mass frame; in other words, Θ, the center-of-
mass scattering angle, is the angle between the velocities u1 and u′

1 before and
after the collision, respectively. The corresponding velocities in the laboratory
frame are given by v1 = u1 + V and v′

1 = u′
1 + V , respectively. The angle

between v1 and v′
1 is φ1, the scattering angle of particle 1 in the laboratory

frame. Figure 3.1(a) shows that

tanφ1 =
u1 sinΘ

u1 cosΘ + V
, (3.4)

which reduces to

tanφ1 =
sinΘ

cosΘ +m1/m2
(3.5)
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Fig. 3.2. Laboratory scattering angle φ1 versus center-of-mass scattering angle Θ.
Projectile/target mass ratio m1/m2 varying from 0.1 to 1.5 in steps of 0.1. The
remaining three curves refer to mass ratios 2, 4, and 10

after insertion of v1 and V . This relation is illustrated in Fig. 3.2.
It is seen that in the limit of m1 � m2 the difference between laboratory

and center-of-mass scattering angle becomes small, φ1 � Θ, while for equal
masses, m1 = m2, we get φ1 = Θ/2. For m1 > m2 the scattering angle φ1 has
a maximum at cosΘ = −m2/m1 given by

sinφ1,max =
m2

m1
. (3.6)

For φ1 < φ1,max two values of Θ belong to every value of φ1.
Figure 3.1(b) shows the corresponding situation for particle 2. Since u2 =

V , the two triangles are equilateral and hence 2φ2 +Θ = π or

φ2 =
π −Θ

2
, (3.7)

where the recoil angle φ2 is the angle between the recoil velocity v′
2 and the

initial velocity of particle 1.
From Fig. 3.1(b) one deduces that v′2/2 = V sin(Θ/2) or

E′
2 ≡ T =

m2

2
v′2

2 = γE sin2 Θ

2
(3.8)

where γ = 4m1m2/(m1 +m2)2 has been introduced in (2.50).
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Laboratory scattering angles can be expressed by the recoil energy T ac-
cording to

cosφ2 =

√
T

γE
(3.9)

and

cosφ1 =
(

1 − T
E

)−1/2(
1 − m1 +m2

2m1

T

E

)
(3.10)

or

cosφ1 =
(

1 − T
E

)1/2

+
1
2

(
1 − m2

m1

)
T

E

(
1 − T

E

)−1/2

. (3.11)

Non-Negligible Target Motion (�)

When the initial motion of the target particle is not negligible, other scattering
angles may become of interest such as the angle between the initial and final
motion of a target particle and the like. Frequently in this book, the most
interesting quantity is the energy transfer T , i.e., the energy lost by particle
1 and gained by particle 2. This can be expressed in terms of transformed
velocities,

T =
1
2
m1(v21 − v′12) = m1V · (u1 − u′

1) = m2V · (u′
2 − u2), (3.12)

from which (3.8) may be recovered for v2 = 0.

3.2.2 Laboratory and Center-of-Mass Variables:
Relativistic Regime

When the velocity of at least one of the collision partners is not small compared
to the speed of light it is necessary to generalize the above relationships such
as to make them conform with relativistic kinematics. It is then advisable
to describe the motion of individual particles in terms of their momenta and
energies,

P i = miγivi (3.13a)
Ei = miγic

2, (i = 1, 2) (3.13b)

where

γi =
1√

1 − v2i /c2
. (3.14)
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For elastic collisions the sum of the energies and the vector sum of the mo-
menta are conserved.

Momentum and energy of a particle form a four-vector. This implies that
the transformation to a reference frame moving with a velocity V obeys the
Lorentz-transformation

P̄x = Γ
(
Px − V E

c2

)
(3.15a)

P̄y = Py (3.15b)
P̄z = Pz (3.15c)
Ē = Γ (E − V Px) , (3.15d)

where it has been assumed that V is directed along the x-axis and

Γ =
1√

1 − V 2/c2
. (3.16)

This transformation applies to either collision partner.

y

x

P '1

θ

P '2

P2P1

Fig. 3.3. Elastic scattering viewed in
the center-of-mass system

One Collision Partner Initially at Rest

Consider now a projectile with rest massm1 and velocity v1 = (v1, 0, 0) hitting
a target particle with rest mass m2 and v2 = 0. The center-of-mass velocity
is determined by the requirement that the sum of the transformed momenta,
P̄x1 + P̄x2 be vanishing. This yields

V =
P1c

2

E1 + E2
. (3.17)
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After an elastic scattering event the momenta P̄xi and energies Ēi in the
center-of-mass frame have not changed in magnitude but the momenta may
have changed direction (Fig. 3.3). Let the scattering plane coincide with the
x− y plane and denote post-collision parameters by a prime. Then

P̄ ′
x1 = P̄x1 cosΘ ; P̄ ′

y1 = P̄x1 sinΘ ; Ē′
1 = Ē1 (3.18)

and

P̄ ′
x2 = −P̄x1 cosΘ ; P̄ ′

y2 = −P̄x1 sinΘ ; Ē′
2 = Ē2, (3.19)

where Θ is the center-of-mass scattering angle defined in Sect. 3.2.1.
In order to arrive at final velocities in the laboratory frame we need to

apply the inverse Lorentz transformation, i.e., (3.15a) with V replaced by
−V . This yields momenta P ′

x, P
′
x and an energy E′ of the scattered particle

from which we find the kinetic energy of the recoiling particle

T = E′
2 − E2 =

2Γ 2P 2
1 c

2m2c
2

(E1 + E2)2
sin2 Θ

2
(3.20)

as the relativistic extension of (3.8). After elimination of V this reduces to

T = Tmax sin2 Θ

2
. (3.21)

with

Tmax =
2m2

1γ
2
1m2v

2
1

m2
1 +m2

2 + 2m1γ1m2
≡ 2(γ1 + 1)m1m2Ekin,1

m2
1 +m2

2 + 2γ1m1m2
. (3.22)

In the limit of v1 � c, this approaches the nonrelativistic limit (2.49), while
for v1 ∼ c we find Tmax ∼ m1γ1c

2.
The scattering angles may be written in the form

tanφ1 =
P ′

y1

P ′
x1

=
sinΘ
Γ

/(
cosΘ +

m1

m2

m1 +m2γ1
m1γ1 +m2

)
(3.23)

and

tanφ2 =
|P ′

y2|
P ′

x2

=
1
Γ

tan
(
π −Θ

2

)
(3.24)

which are relativistic extensions of (3.5) and (3.7). After elimination of V the
factor Γ eq. (3.16) reads

Γ =
m1γ1 +m2√

m2
1 +m2

2 + 2m1m2γ1
. (3.25)
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It is seen that Γ becomes large for large γ1, i.e., v1 approaching c, and hence
both φ1 and φ2 tend to become small in absolute terms at a given center-of-
mass scattering angle Θ. This is a characteristic feature of relativistic kine-
matics.

We shall frequently deal with the case of m1 � m2 where 1 denotes an
ion and 2 an electron. Unless γ1 comes close to or exceeds m1/m2, the energy
transfer (3.20) reads

T = Tmax sin2 Θ

2
(3.26)

with

Tmax =
2mv21

1 − v21/c2
. (3.27)

Non-Negligible Target Motion (�)

In case of non-negligible target motion the Lorentz transformation (3.15a)
needs to be written in vector form,

P̄ = Γ
(

P − V E

c2

)
; Ē = Γ (E − V · P ) (3.28)

with the center-of-mass velocity

V =
c2(P 1 + P 2)
E1 + E2

, (3.29)

and the energy transfer reads

T = E′
2 − E2 = ΓV · (P̄ ′

2 − P̄ 2), (3.30)

which is the relativistic extension of eq. (3.12).

3.3 Classical Scattering Theory for Central Force

3.3.1 The Scattering Integral

Figure 3.4(a) shows a classical orbit in the center-of-mass frame for the case of
repulsive interaction. For a central-force potential V(r) the angular momentum
L = m0r × v is conserved. The magnitude of L is determined by the initial
configuration, |L| = m0pv, where v is the initial speed and p the impact
parameter. L is directed into the drawing plane. It follows from angular-
momentum conservation that the straight line going through the center of
force and the point of closest approach (cf. Fig. 3.4(b)) must be a symmetry
axis. That line (or the associated vector) is commonly called the ‘apsis’.
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m0,  v Θ

ϕ

p

p r

(a) Definition of variables

v

∆ϕ
r m

(b) Distance of closest approach

Fig. 3.4. Classical scattering orbit in center-of-mass system for repulsive interaction
(central force)

Introduce polar coordinates r(t), ϕ(t) as functions of time, where r is the
distance from the origin (the force center) and ϕ the angle between the position
vector of the moving particle and the initial direction of motion (Fig. 3.4(a)).
Then the scattering angleΘ is given by Θ = ϕ(∞). In terms of these variables,
energy conservation reads

m0

2

[(
dr
dt

)2

+ r2
(

dϕ
dt

)2
]

+ V(r) =
m0

2
v2 ≡ Er (3.31)

where m0 has been defined in (3.3) and Er, the relative energy, is the initial
kinetic energy of the relative motion. Angular momentum conservation reads

m0r
2 dϕ

dt
= −m0pv. (3.32)
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After insertion of dϕ/dt into (3.31) and isolation of dr/dt one finds

dϕ
dr

=
dϕ/dt
dr/dt

= ± p
r2

(
1 − V(r)

Er
− p

2

r2

)−1/2

. (3.33)

The sign can be determined by inspection of Fig. 3.4(a): Initially we have
r = ∞, dϕ/dt < 0 and dr/dt < 0 and hence dr/dϕ > 0, i.e., the positive sign,
but after passage of the apsis the sign of dr/dt changes and hence dr/dϕ < 0.
This holds for both repulsive and attractive interaction. Integration yields the
angle ∆ϕ indicated in Fig. 3.4(b),

∆ϕ =
∫ ∞

rm

dr
p

r2

(
1 − V(r)

Er
− p

2

r2

)−1/2

, (3.34)

where rm, the distance of closest approach, is determined by the zero of the
square root, i.e., the point where the radial velocity dr/dt vanishes. This yields
the scattering angle

Θ = π − 2∆ϕ (3.35)

in the center-of-mass system.
The integral in (3.34) can be evaluated analytically for a number of simple

potential functions including the Coulomb interaction. For the latter, however,
a more elegant derivation of the scattering law is possible which is given in the
next section. In general (3.34) is evaluated numerically for a given potential.
Printed tabulations exist (Robinson, 1970), and subroutines evaluating this
scattering integral are built into computer codes simulating sequences of bi-
nary collisions (Robinson and Torrens, 1974). Approximation methods for an-
alytical evaluation have been summarized by Leibfried (1965). A particularly
elegant treatment of scaling relations in scattering from screened-Coulomb
potentials was given by Lindhard et al. (1968), to be described in Volume II.

3.3.2 Runge-Lenz Vector and Rutherford’s Law

For the specific case of Coulomb interaction (Kepler motion and Rutherford
scattering) there exists one more constant of motion in addition to energy and
angular momentum. The Runge-Lenz vector2 M is defined by the relation

M = v × L + e1e2
r

r
. (3.36)

2 The vector defined by (3.36) is commonly called the Runge-Lenz or Laplace vec-
tor. It appears clear that neither Runge nor Lenz claimed any priority on this
particular invariant, the history of which has been exposed in two illuminating
notes by Goldstein (1975, 1976). The present derivation of Rutherford’s law has
been published by Basano and Bianchi (1980) but became known to the author
already in a lecture by G. Leibfried in 1960.
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Its time derivative reads

dM

dt
=

dv

dt
× L + e1e2

v

r
− e1e2rdr/dt

r2
(3.37)

since dL/dt = 0. Insertion of the force equation, dv/dt = (1/m0)e1e2r/r3

and execution of the triple vector product

dv

dt
× L =

dv

dt
× (m0r × v) =

e1e2
r3

[
(r · v)r − r2v] (3.38)

leads to

dM

dt
= 0, (3.39)

i.e., the Runge-Lenz vector is a constant of motion.
In order to utilize this property in Coulomb scattering consider the point

of closest approach where

v × L = m0v × (r × v) = m0

(
v2r − (v · r)v

)
. (3.40)

The second term in the parentheses vanishes since v ·r = 0 at closest approach
(Fig. 3.4(b)). It follows that the two terms making up M in (3.36) both point
in the direction of r which, at closest approach, points in the direction of
the apsis. Since M is a constant of motion, this implies that the Runge-Lenz
vector must be directed along the apsis at all times. Thus, knowledge of the
direction of M is synonymous with knowing the direction of the apsis and,
hence, the scattering angle.

In order to find M for a given initial condition we note that at t = −∞ the
two terms in (3.36) have components M⊥ and M‖ perpendicular and parallel
to v, respectively. Their magnitudes are

M⊥ = m0v
2p; M‖ = −e1e2. (3.41)

From this we find the scattering angle utilizing (3.35),

tan
Θ

2
=

−M‖
M⊥

=
b

2p
, (3.42)

where

b = 2e1e2/m0v
2 (3.43)

is the ‘collision diameter’. For repulsive interaction, b is the distance of closest
approach in a central collision, as follows from energy conservation, e1e2/b =
m0v

2/2.
Equation (3.42) expresses the functional relation between scattering angle

and impact parameter for Coulomb scattering. This relation could also have
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been found from (3.35) and (3.34) by insertion of the Coulomb potential and
integration (cf. problem 3.6).

Inversion of (3.42), p2 = (b/2)2/ tan2(Θ/2), and differentiation yields

dσ = |πdp2| =
(
b

4

)2 2π sinΘ dΘ
sin4(Θ/2)

, (3.44)

where 2π sinΘ dΘ ≡ dΩ is a circular element of solid angle. Because of az-
imuthal symmetry we may write instead

dσ =
(
b

4

)2 d2Ω

sin4(Θ/2)
, (3.45)

where d2Ω is an arbitrary element of solid angle. This is Rutherford’s scat-
tering law in its standard form.
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Fig. 3.5. Energy dependence of differential cross section for Coulomb scattering,
(3.47). Arbitrary units. For γE = 1000, 100, 10 (right to left)

An alternative version, important for stopping problems and radiation
effects, may be obtained by introduction of the recoil energy. From (3.8) and
(3.42) one arrives at Thomson’s formula3

T =
γE

1 + (2p/b)2
. (3.46)

3 In relativity the symbol γ is the standard notation for the Lorentz factor
1/
√

1 − v2/c2, and in nonrelativistic scattering theory it denotes the energy trans-
fer efficiency 4m1m2/(m1 + m2)

2, (2.50). To minimize confusion, the Lorentz
factor is here denoted by γi, cf. (3.14).
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Inversion and differentiation yield

dσ = π
(
b

2

)2

γE
dT
T 2

= 2π
e21e

2
2

m2v2
dT
T 2
, 0 < T ≤ γE (3.47)

in complete agreement with (2.47). Note that the derivation of (2.47) assumed
the scattering angle to be small. That limitation has now evaporated. Figure
3.5 illustrates one of the main features of Rutherford’s law: The magnitude of
the cross section decreases with increasing beam energy, while the maximun
energy transfer increases.

The most outstanding features of Rutherford’s law are the strong singular-
ity at small angles (or energy transfers) and the small magnitude of the cross
section for violent events such as scattering at an angle Θ > π/2 or energy
loss T > γE/2. This is in pronounced contrast to, e.g., the scattering on an
impenetrable sphere of radius a (problem 3.6) where

dσ =
(a

2

)2

d2Ω = πa2dT/γE. (3.48)

3.3.3 Scaling Relations

According to the Bohr criterion, (2.80), classical scattering theory is an appro-
priate tool in the description of the scattering of heavy particles (ions and/or
atoms) on each other. Such particles will typically be taken to interact via
some screened-Coulomb potential of the form

V(r) =
Z1Z2e

2

r
Φ(
r

a
), (3.49)

where Φ(r/a) is a function of the internuclear distance r and a some screening
radius. Ways of determining Φ and a will be discussed in Volume II. Here some
useful scaling properties will be mentioned, following Lindhard et al. (1968).

Insertion of (3.49) into (3.34) leads to

Θ = π − 2p
∫ ∞

rm

dr
r2

[
1 − Z1Z2e

2

rEr
Φ
( r
a

)
− p

2

r2

]−1/2

. (3.50)

This can be expressed in terms of the two dimensionless variables p/a and
ε = aEr/Z1Z2e

2,

Θ = Θ(ε, p/a). (3.51)

Eq. (3.51) represents a scaling relation for the scattering angle. Note that the
parameter ε is identical with the one introduced in (2.88). Inversion of (3.51)
in conjunction with (3.8) shows that p/a is a function of T/γE and ε, and
hence
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dσ = π|d p2| = πa2g
(
T

γE
, ε

)
d
(
T

γE

)
. (3.52)

With this we find the following scaling relationships for the stopping cross
section and straggling parameter for elastic scattering by screened-Coulomb
interaction,

S =
∫
Tdσ = πa2γE gS(ε) (3.53)

and

W =
∫
T 2dσ = πa2(γE)2 gW (ε) (3.54)

where the dimensionless functions gS(ε) and gW (ε) are determined by the
functional behavior of Φ(r/a).

From (3.53) we find the stopping force dE/dx = NxS(E) which may be
written in the form

dε
dρ

= εgS(ε) (3.55)

with the dimensionless length variable

ρ = Nπa2γx. (3.56)

3.3.4 Time Integral (�)

The transformations derived in Sect. 3.2.1 provide all information necessary
to relate velocity vectors in the center-of mass frame of reference to those
in the lab frame. In some applications of scattering theory the need occurs
to reconstruct a classical trajectory in the laboratory system. This requires
coordination of the clocks governing relative and center-of-mass motion, since
the relation between time and pathlength is different in the two reference
frames. The center of mass moves uniformly. Complications arise from the
relative motion where the velocity does not only change direction but also its
magnitude during the interaction.

From (3.31) and (3.32) on page 75 one finds

vdt = ± dr√
1 − V(r)/Er − p2/r2

(3.57)
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or, after integration,

v(tf − ti) =
(∫ ri

rm

+
∫ rf

rm

)
dr√

1 − V(r)/Er − p2/r2
, (3.58)

where ri is the distance between the colliding particles at some time ti before,
and rf at some time tf after the interaction, and rm the distance of clos-
est approach, determined by the zero of the radicand. If rf and ri are both
large enough so that V(rf ) and V(ri) are effectively zero, the relation may be
rewritten in the form

v(tf − ti) = 2
∫ ∞

rm

dr

(
1√

1 − V(r)/Er − p2/r2
− 1√

1 − p2/r2

)

+

(
2
∫ ∞

rm

−
∫ ∞

ri

−
∫ ∞

rf

)
dr√

1 − p2/r2
(3.59)

or, after integration,

rf + ri = v(tf − ti) + 2τ (3.60)

where

τ =
√
r2m − p2

−
∫ ∞

rm

dr

⎛
⎝ 1√

1 − V(r)/Er − p2/r2
− 1√

1 − p2/r2

⎞
⎠ (3.61)

is called the time integral.

p

p

x

y

Θ

Θ
Fig. 3.6. Asymptotic orbits in center-
of-mass frame

Now, let the initial motion (for t = −∞) be given by

x = vt (3.62a)
y = p. (3.62b)
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Trajectory 1

θ/2

p

τ

p

Center of mass

Trajectory 2

m1
m

m1
m

Fig. 3.7. Geometrical significance of the time integral. From Robinson (1970)

Then, (3.60) reduces to

r = vt+ 2τ (3.63)

if both tf = t and ti are far outside the interaction region, so the final trajec-
tory may be written in the form

x = (vt+ 2τ) cosΘ − p sinΘ (3.64a)
y = (vt+ 2τ) sinΘ + p cosΘ. (3.64b)

Here, the terms containing p enter because the orbit must comply with
angular-momentum conservation (Fig. 3.6, problem 3.9). With this, as well
as the transformation (3.2a) trajectories may be located in the laboratory
system, cf. problem 3.10.

Figure 3.7 illustrates the two trajectories, the positions of the particles
being taken at closest approach, i.e., at the time tm = −τ/v.

3.3.5 Relativistic Scattering Integral (�)

The relativistic extension of the treatment presented in Sect. 3.3.1 starts from
the law of energy conservation√

P 2c2 + (mc2)2 + V(r) = E, (3.65)

where E and m denote the total energy and rest mass of a projectile inter-
acting with an infinitely heavy target particle. Introduction of planar polar
coordinates leads to
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L = mγ1r2
dϕ
dt

= −mγ1pv = constant (3.66)

and

P 2 =
(
mγ1

dr
dt

)2

+
L2

r2
(3.67)

so that

mγ1
dr
dt

= ±
√

1
c2

[E − V(r)]2 − (mc)2 − L2/r2. (3.68)

Combination of (3.66) with (3.68) yields

dϕ
dr

= ± L

r2
√

1
c2 [E − V(r)]2 − (mc)2 − L2/r2

, (3.69)

which leads to (3.35) with

∆ϕ = L
∫ ∞

rm

dr
r2
√

[E − V(r)]2/c2 − (mc)2 − L2/r2
. (3.70)

The integral can be carried out for Coulomb scattering, V(r) = e1e2/r with
the result (Landau and Lifshitz, 1971)

Θ = π − 2Lc√
L2c2 − e21e22

arctan
v
√
L2c2 − e21e22
e1e2c

. (3.71)

Such a classical calculation can only be expected to be meaningful for
L� �, i.e., for

L2c2

e21e
2
2

�
(

137e2

e1e2

)2

. (3.72)

Unless both collision partners have high charges, the square root in eq. (3.71)
will be close to Lc and, hence,

Θ � π − 2 arctan
vL

e1e2
= π − 2 arctan

2p
b

(3.73)

with

b =
2e1e2
γ1mv2

. (3.74)

Following the procedure for evaluating (3.42) in Sect. 3.3.2, you readily red-
erive (3.45) with the sole change that the collision diameter b now is defined
by eq. (3.74). Thus, the dependence on scattering angle of the Rutherford
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Fig. 3.8. Relativistic Coulomb scattering for v/c = 0.2, 0.5, 0.9, 0.99, according to
(3.71)

spectrum is not changed by relativistic dynamics, except for deviations at
small impact parameters, where the classical calculation cannot be expected
to be valid. Figure 3.8 shows a graph for v/c ranging from 0.2 to 0.99. Curves
for v/c < 0.2 coincide within the resolution of the graph.

In the special case of m1 � m2, you can easily verify (problem 3.13) that

dσ(T ) =
2πe21e

2
2

mv2
dT
T 2

; T ≤ Tmax (3.75)

with Tmax given by (3.27).

3.3.6 Perturbation Theory (�)

The principle of classical perturbation theory has been illustrated in Sect.
2.3.2: Solve the equation of motion in the absence of the perturbation, evaluate
the force resulting from the perturbation, assuming unperturbed motion, and
find the momentum transfer as a function of time. This scheme, which provides
a first-order estimate of the effect of a perturbing force, is applicable to a wide
variety of single- and many-body systems. In scattering theory it goes under
the name of impulse or momentum approximation.

The scheme can be extended to higher orders by iteration. This is not
attractive in general, since such iteration needs to be done numerically, in
which case a straight numerical solution of the problem is to be preferred.
However, a higher-order estimate may be desirable in attempts to determine
the range of validity of first-order perturbation theory. Such a scheme was
developed for binary scattering by Lehmann and Leibfried (1963). Starting
from the scattering integral (3.35) and (3.34) one finds
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Θ = − 1
pEr

∫ ∞

p

dr√
1 − p2/r2

d
dr

[rV(r)]

− 1
4pE2

r

∫ ∞

p

rdr√
r2 − p2

d2

dr2
r2V(r)2 . . . . (3.76)

You may find the derivation in Appendix A.3.1, where also the perturbation
expansion of the time integral is described.

k

k '

Fig. 3.9. Elastic scattering of an
incident plane wave

3.4 Quantum Theory of Elastic Scattering

In quantum mechanics we cannot at the same time operate with a well-defined
impact parameter and a well collimated particle current. While a well-defined
impact parameter implies the position perpendicular to the beam to be accu-
rately defined, a good collimation implies negligible momentum in the trans-
verse direction. Combining the two requirements must generate a conflict with
the uncertainty principle which may be tolerable so long as the Bohr param-
eter κ, (2.80) is � 1. If that condition is not satisfied, a classical trajectory
will not be a valid starting point in general.

Since the particle current is measurable while the impact parameter is
usually not, it is tempting not to introduce an impact parameter at all and
instead to operate with an incident plane wave. This ensures a well-defined
energy and direction of incidence (Fig. 3.9).

3.4.1 Laboratory and Center-of-Mass Variables

Only the relative motion will be considered in the following sections. The
transformation to laboratory variables is achieved by the relations

r1 = R +
m2

m
r, r2 = R − m1

m
r (3.77)

and
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p1 =
m1

m
P + p, p2 =

m2

m
P − p, (3.78)

where R and P denote center-of-mass position and momentum operator, re-
spectively, and r and p characterize the relative motion. If the potential de-
pends only on the relative coordinate r, Schrödinger’s equation can be sep-
arated in these variables because the splitting of the initial kinetic energy
according to

p2
1

2m1
+

p2
2

2m1
=

P 2

2m
+

p2

2m0
, (3.79)

is equally valid for classical momenta and quantal momentum operators.

3.4.2 Scattering Amplitude and Differential Cross Section

From now on we address the relative motion. The pertinent energy is Er =
m0v

2/2, where v is the initial relative speed, just as in the classical case
discussed in Sect. 3.3.1.

With a well-defined incident energy, quantal scattering may be treated as
a stationary problem, i.e., the time-dependent factor in the wave function,
exp(−iErt/�), need not be written up explicitly. An incident plane wave is
then described by the spatial part of the wave function,

ψ(0)(r) = Aeik·r ≡ Aeikx (3.80)

in a coordinate system where the x-axis coincides with the direction of the
incident beam. This represents an incident density of particle current J (in) =
|A|2�k/m0, and the beam energy per particle is given by Er = �

2k2/2m0.
The problem is, then, to construct a solution of Schrödinger’s equation for

a given potential with the boundary condition that at x = −∞ that solution
should coincide with the incident plane wave (Fig. 3.9). The behavior of that
solution in an arbitrary direction and far away from the scattering center
will then reflect the scattered intensity and thus allow determination of the
scattering cross section.

A general solution of Schrödinger’s equation representing the scattering of
a beam from a potential is presented in Appendix A.2.5 on page 394. Following
(A.104) we write it in the form

ψ(r) = ψ(0)(r) − m0

2π�2

∫
d3r′ e

±ik|r − r′|
|r − r′| V(r′)ψ(r′). (3.81)

This is often called the Lippmann-Schwinger equation. Assume the scattering
potential V(r) to be vanishing outside some sphere of radius R around the
center of force, and consider (3.81) in the limit of r � R, i.e., r � r′. Then,
in that region, we may expand
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|r − r′| � r − r · r′

r
(3.82)

and obtain

ψ(r) = ψ(0)(r) − m0

2π�2

e±ikr

r

∫
d3r′e∓ikΩ · r′V(r′)ψ(r′), (3.83)

to the leading order, where Ω = r/r is a unit vector pointing in the direction
of observation. Details of this expansion may be studied in problem 3.15.

For clarity include the time dependence for a moment which was omitted
above. Then (3.83) may be written in the form

ψ(r, t) = Aei(kx−Ert/�) +Af(Ω)
ei(±kr−Ert/�)

r
(3.84)

The second term represents a quasi-spherical wave with an amplitude Af(Ω)
dependent on direction,

Af(Ω) = − m0

2π�2

∫
d3r′e∓ik′ · r′V(r′)ψ(r′), (3.85)

where k′ = kΩ. In conjunction with the time dependence it is seen that
the upper sign represents an outgoing wave in accordance with the physical
situation, while the lower sign describes a quasi-spherical wave incoming from
all directions. That solution must be rejected in the present context.

The outgoing current density in a direction Ω is then determined by
J (out) = |Af(Ω)/r|2�kΩ/m0. The cross section for scattering of particles
into an angular interval (Ω, d2Ω) emerges then from

dσ(Ω) =
J (out)r2d2Ω

J (in)
= |f(Ω)|2d2Ω (3.86)

according to (2.1).
This specifies the main task in quantal scattering for elastic collisions:

Find a solution of Schrödinger’s equation for the potential under consideration
and make sure that the asymptotic behavior at large distances contains the
incoming plane wave. Then the asymptotic behavior should also show an
outgoing wave of quasi-spherical form. Write the asymptotic wave function
in the form of (3.84) and extract the function f(Ω) which determines the
differential cross section according to (3.86).

There are some open ends here: Firstly, the particle current following from
(3.81) contains three terms, namely J (in), J (out), and an interference term.
Secondly, any real scattering experiment deals with a beam of finite dimen-
sion and finite duration. The first problem evaporates if the second is solved.
Indeed, if an incident plane wave is replaced by a beam of finite width, the
outgoing wave at any nonvanishing angle, however small, can be observed
sufficiently far out so there is no interference with the incoming wave. The
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second problem finds its solution in a suitable wave packet treatment. The
interested reader is referred to Merzbacher (1970) Chapter 11 for a compre-
hensive solution.

A third problem concerns the assumption made above that the scattering
potential vanishes outside some radius R. This restriction turns out to be too
strong in the important case of Coulomb interaction which, therefore, needs
separate attention.

3.4.3 Born Approximation

The Born approximation has been designed to describe scattering under con-
ditions of ‘weak interaction’. Its basis is a series expansion of the wave function
in powers of the scattering potential V(r),

ψ(r) = ψ(0)(r) + ψ(1)(r) + ψ(2)(r) . . . , (3.87)

where ψ(0)(r) characterizes the incident wave which would be present also in
the absence of a scattering potential, and ψ(ν)(r) is of ν’th order in V , i.e.,
∝ (e1e2)ν in case of Coulomb interaction. In the theory of elastic scattering
the ‘Born series’ (3.87) is rarely carried on beyond the first or perhaps the
second term.

The expansion (3.87) may be inserted into the integrated version (3.83) of
the wave equation. Collection of terms linear in the scattering potential yields

ψ(1)(r) = − m0

2π�2

eikr

r

∫
d3r′e−ikΩ · r′V(r′)ψ(0)(r′), (3.88)

where the important point is the replacement of the unknown function ψ(r′)
by the incident wave ψ(0)(r′) in the integrand. At large distances r � R > r′,
this may be written in the form of (3.84) with

f(Ω) = − m0

2π�2
〈k′|V|k〉 (3.89)

and

〈k′|V|k〉 =
∫

d3r′e−ik′ · r′V(r′)eik · r′
(3.90)

in Dirac notation, where k′ = kΩ is a wave vector at some chosen direction
of observation.

Eq. (3.89) represents the elastic-scattering amplitude in the first Born
approximation. In this derivation the scattering potential does not need to be
spherically symmetric for the approximation to work.
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k′

k

K

θ/2

θ/2

Fig. 3.10. Relation between incoming and
outgoing wave vectors k, k′ and scattering an-
gle Θ, eq. (3.93)

Screened and Unscreened Coulomb Interaction

The scattering amplitude (3.89) can be evaluated for a potential

V(r) =
e1e2
r

e−r/a, (3.91)

which approaches the Coulomb interaction in the limit of a = ∞. This poten-
tial keeps coming up under various names in physics, such as Debye, Yukawa,
or Bohr potential. The exponential accounts qualitatively for the screening of
the nuclear charge by electrons surrounding the nucleus.

After insertion of (3.91), integration of (3.90) in spherical coordinates
yields

f(Ω) = − m0

2π�2

4πe1e2
K2 + 1/a2

, (3.92)

where

K2 = |k′ − k|2 ≡ 4k2 sin2Θ/2. (3.93)

Eq. (3.93) follows from the fact that k and k′ form an equilateral triangle.
The scattering angle Θ is, by definition, the angle between the incident and
outgoing wave vector (Fig. 3.10). Eq. (3.86) yields the differential cross section

dσ(Ω) =
(

2m0e1e2
�2

)2 d2Ω[
4k2 sin2(Θ/2) + 1/a2

]2
≡
(
b

4

)2 d2Ω[
sin2(Θ/2) + (λ̄/2a)2

]2 , (3.94)

where λ̄ = �/m0v is the de Broglie wavelength and b = 2e1e2/m0v
2.
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Fig. 3.11. Differential cross section (4/b)2dσ/d2Ω for screened Coulomb interaction
according to (3.94). Numbers indicate the value of λ̄/2a

In the limit of unscreened Coulomb interaction, a = ∞, the cross section
(3.90) becomes identical with Rutherford’s law, (3.45). As will be seen in
Sect. 3.5.2, that form of the cross section remains even valid beyond the limit of
weak interaction. This, however, does not imply that the Born approximation
characterizes Coulomb scattering rigorously already in the first order. Indeed,
when carried on to second-order the scheme delivers divergent results as the
reader may verify in problem 3.24. It will be seen in Sect. 3.5.2 that this
feature is related to the behavior of the phase of the Coulomb wave function
at large distances. It is the introduction of a finite interaction radius R in
connection with (3.83) which becomes problematic for Coulomb scattering.

For a finite value of the screening radius a these limitations become less
severe. The fact that the cross section does not diverge at small angles lends
credibility to the assumption of weak interaction. Integration over the angular
variables yields the total cross section

σtot =
∫

dσ(Ω) =
πa2κ2

1 + (λ̄/2a)2
, (3.95)

where κ = 2e1e2/�v is the Bohr parameter. For high-speed projectiles we have
λ̄/2a � 1. Hence, σtot will be small if the Bohr parameter κ is small. Thus,
the condition of weak interaction is equivalent with

κ� 1, (3.96)
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i.e., a condition complementary to that for the classical-orbit picture to
be valid. This is commonly called the Sommerfeld criterion4. Conversely,
at low speed when λ̄/2a � 1, the total cross section approaches σtot �
16πa4(e1e2m0/�

2)2. If this is to be consistent with the assumption of weak
interaction, the ratio σtot/πa

2 should be � 1, or

2e1e2a� �
2

2m0
. (3.97)

You may look more closely into this in problem 3.22
Another way of looking at (3.94) is the deviation from classical Coulomb

scattering which occurs at small angles, Θ � λ̄/a or, in terms of a classical
impact parameter p = b/Θ, at p � κa, where again κ is the Bohr parameter.
The finding in Chapter 2 that for κ > 1 the essential part of the scattering
is described well by the classical-trajectory picture, is thus well confirmed.
It is also seen that for κ < 1 substantial changes may occur as soon as the
interaction is not pure-Coulomb like (Fig. 3.11).

Potential Well or Barrier

Fig. 3.12. Differential cross section for potential well or barrier in the Born approx-
imation (3.99). Numbers indicate the value of ka

Classical scattering on a perfectly rigid sphere was found to differ drasti-
cally from Coulomb scattering, cf. (3.48) and problem 3.6. A quantum analog
would be a scattering potential
4 In the literature, the Sommerfeld criterion is commonly written in the form

e1e2/�v � 1, i.e., it differs from the form above by a factor of 2.
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V(r) =

⎧⎨
⎩

V0

0
for

r < a

r > a
(3.98)

with a constant V0 > Er. In the Born approximation, (3.89) yields the differ-
ential cross section

dσ(Ω) =
(V0λ̄

8Er

)2( sin ξ − ξ cos ξ
sin3(Θ/2)

)2

d2Ω (3.99)

with ξ = 2ka sin(Θ/2).
The most striking feature of this result is the smooth dependence of dσ on

the height V0 of the potential barrier: There is no discontinuity at Er = V0

as in the classical case. Nor is there evidence for a transition from straight
transmission to quantal tunneling. Not even the sign of the interaction enters.
Part of this may be an essential difference between the scattering of a wave
and a particle, but energy conservation also holds in quantum mechanics: At
kinetic energies far below the barrier, the probability density inside the sphere
ought to become very small. We are thus justified in suspecting that the Born
approximation fails to describe some essentials of scattering at low energies.
This need not be a surprise in the light of the initial assumption of weak
interaction.

Figure 3.12 shows the angular part of (3.99) for various values of ka. Scat-
tering is weak in general for large wavelengths, while diffraction is observed
when λ̄ approaches the radius a.

Relativistic Extension

The Born approximation can be applied also to the Dirac equation, and a cross
section can be calculated according to the same principles as in the non-
relativistic case. The procedure outlined above involves the Green function
for the Dirac equation, often called the Feynman propagator. A derivation
for Coulomb interaction will actually emerge in a somewhat indirect way in
Sect. 5.6. Therefore, only the result will be given here,

dσ(Θ) =
e21e

2
2

(2mv2)2

(
1 − v

2

c2

)(
1 − v

2

c2
sin2 Θ

2

)
d2Ω

sin4(Θ/2)
, (3.100)

which approaches Rutherford’s law for v/c� 1.

3.4.4 Partial-Wave Expansion

A solution of the central-force scattering problem in closed form may be
found by the partial-wave method which is described in many standard
texts on quantum mechanics. It represents an expansion in terms of angular-
momentum eigenfunctions that may be familiar to the reader from bound-
state problems. An incoming wave, (3.80), can be expressed in the form
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ψ(0)(r) = Aeikr cos Θ ≡ A
∞∑

�=0

(2+ 1)i�j�(kr)P�(cosΘ) (3.101)

according to Abramowitz and Stegun (1964), (10.1.47), where the P�(cosΘ)
are Legendre polynomials and the j�(kr) spherical Bessel functions.

A general solution of Schrödinger’s equation at a fixed energy Er may be
written in the form (Schiff, 1981)

ψ(r) =
∞∑

�=0

�∑
µ=−�

R�µ(r)Y�µ(Θ, φ), (3.102)

where the Y�µ(Θ, φ) are spherical harmonics and R�µ(r) solutions of the radial
wave equation. Since the incoming wave (3.101) exhibits cylindrical symme-
try around the beam direction, we may restrict our attention to azimuthally
symmetric solutions which have an azimuthal quantum number µ = 0,

ψ(r) =
∞∑

�=0

(2+ 1)i�R�(r)P�(cosΘ), (3.103)

where the function R�(r) has to be determined from the Schrödinger equation.
Numerical coefficients (2+ 1)i� have been chosen for convenience, suggested
by the form (3.101) of the incoming wave.

A scattering calculation then reduces to finding a solution of Schrödinger’s
equation satisfying all boundary conditions with the incoming wave being
described by (3.101).

Scattering Amplitude

Since both the wave equation and the incoming wave have been separated
according to angular-momentum quantum number, also the scattering ampli-
tude can be split according to

f(cosΘ) =
∞∑

�=0

(2+ 1) i�f� P�(cosΘ). (3.104)

Therefore, comparing with eq. (3.84), the elementary scattering event is now
characterized by an ‘incoming wave’ j�(kr)P�(cosΘ) and an outgoing wave
of the form f�P�(cosΘ)eikr/r, both emerging from the respective limiting
behavior of a wave function R�(r)P�(cosΘ).

The quantitative behavior of the radial wave function is governed by the
scattering potential V(r). Its general form may, however, be extracted from
the free-particle wave equation if a region can be identified at large distances r
where the scattering potential is vanishing or at least insignificant. For V = 0
the radial wave equation has the solution
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R�(r) = a� j�(kr) + b� y�(kr), (3.105)

where both y� and j� are modified spherical Bessel functions in the notation of
Abramowitz and Stegun (1964), Chapter 10. These functions make up a com-
plete set of solutions for Er = �

2k2/2m0 and angular momentum quantum
number . Both sets characterize damped oscillations and differ from each
other most drastically near the origin where j� is regular while y� is singular.
We may express the arbitrary constants a�, b� in terms of an amplitude A�

and a phase δ�

a� = A� cos δ�; b� = −A� sin δ�, (3.106)

so that

R�(r) = A�

(
cos δ� j�(kr) − sin δ� y�(kr)

)
. (3.107)

Then the difference between the ’th radial wave function and the incoming
-wave can be written in the form

ψ� − ψ(0)
� =

{[
A� cos δ� − 1

]
j�(kr) −A� sin δ� y�(kr)

}
P�(cosΘ). (3.108)

In view of the occurrence of −ψ(0)
� on the left-hand side, the function ψ�−ψ(0)

�

must satisfy the physical requirement that it cannot contain an incoming wave.
Incoming and outgoing waves may be identified from the asymptotic behavior
which is given by Abramowitz and Stegun (1964)

j�(kr) ∼ cos(kr − α�)
kr

; y�(kr) ∼ sin(kr − α�)
kr

(3.109)

with α� = ( + 1)π/2. These expressions may be inserted into (3.108), and
the harmonic functions may be decomposed into terms ∝ e±ikr representing
outgoing and incoming waves, respectively. The requirement that the latter
vanish yields

A� cos δ� − 1 − iA� sin δ� = 0, (3.110)

i.e., A� = eiδ� , and the sum of the two outgoing waves reduces to

f� =
1
2k
(
e2iδ� − 1

)
(−i)�+1 (3.111)

after elimination of A�. Thus, (3.104) reads

f(cosΘ) =
1

2ik

∞∑
�=0

(2+ 1)
(
e2iδ� − 1

)
P�(cosΘ). (3.112)

In this way the scattering amplitude has been expressed by a set of phase
shifts δ�. While this representation is compact in general it is most suitable
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in practice when only a small number of angular-momentum components un-
dergo substantial scattering. One speaks of s-wave and p-wave scattering when
the scattering amplitude is dominated by the terms from  = 0 and 1, respec-
tively, and correspondingly for higher components. For s-wave scattering the
differential cross section is isotropic while for p-wave scattering it has broad
maxima in the forward as well as the backward direction. Practical phase-shift
analysis requires most often a major computational effort.

Total Cross Section

From (3.86) and (3.112) follows the total cross section by integration,

σtot =
4π
k2

∑
�

(2+ 1) sin2 δ�, (3.113)

where use has been made of the orthogonality of Legendre polynomials,∫ 1

−1

d cosΘP�(cosΘ)P�′ (cosΘ) = 0 for  �= ′ (3.114)

and the normalizing integral,∫ 1

−1

d cosΘ
(
P�(cosΘ)

)2 =
2

2+ 1
. (3.115)

Incidentally, by comparison with (3.112), the term on the right-hand side of
(3.113) can be written in the form

σtot =
4π
k

Imf(cosΘ)
∣∣∣∣
Θ=0

, (3.116)

where Im indicates the imaginary part. This is the famous optical theorem,
here for elastic scattering on a spherically symmetric potential. It relates the
loss of particle flux in the forward direction to the scattered intensity.

Stopping Cross Section and Straggling Parameter

The stopping cross section S and the straggling parameter W can be de-
termined similarly from (2.29) and (2.30). In addition to (3.115) also the
recursion relation (Abramowitz and Stegun, 1964)

(2+ 1) cosΘP�(cosΘ) = (+ 1)P�+1(cosΘ) + P�−1(cosΘ) (3.117)

is needed. This yields useful connections

S =
γE

2
σ(1) W =

(
γE

2

)2

σ(2) (3.118)
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to the transport cross sections

σ(1) =
∫

(1 − cosΘ)dσ(Θ) =
4π
k2

∑
�

(+ 1) sin2(δ� − δ�+1) (3.119)

and

σ(2) =
∫

(1 − cosΘ)2dσ(Θ)

=
4π
k2

∑
�

(+ 1)
[
2 sin2(δ� − δ�+1) − + 2

2+ 3
sin2(δ� − δ�+2)

]
, (3.120)

which you may verify by solving problem 3.28. These relations are well-known
in gas dynamics but have also proven useful in the theory of electronic stopping
(Lindhard and Sørensen, 1996). They will be employed in Chapters. 6 and 8.

Impenetrable Sphere (�)

Phase shifts may be determined rigorously for scattering on a perfectly rigid
sphere where the wave function obeys the free-particle wave equation for r > a.
Since the wave function must vanish inside the sphere and at the same time
must be continuous everywhere we must have

R�(r) = 0 for r = a and all . (3.121)

Hence, from (3.107), cos δ� j�(ka) − sin δ� y�(ka) = 0, or

tan δ� =
j�(ka)
y�(ka)

. (3.122)

This determines all phase shifts and hence both the differential and total cross
section at any velocity. A particularly simple analytical result is obtained in
the low-speed limit ka� 1 where

j�(z) ∼ z�

(2+ 1)!!
; y�(z) ∼ − (2− 1)!!

z�+1
(3.123)

with (2+ 1)!! = (2+ 1)(2− 1) · · · 3 · 1. Then

tan δ� � δ� � − 2+ 1(
(2+ 1)!!

)2 (ka)2�+1, (3.124)

i.e., s-wave scattering dominates with δ0 ∼ −ka. This produces a scattering
amplitude f(Ω) � −a and a total cross section

σtot � 4πa2. (3.125)
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The reader who is astonished at this result, which is four times the classical
cross section following from (3.48) for an impenetrable sphere, might recall
that the limit ka� 1 reflects the scattering of a wave with a wavelength sig-
nificantly greater than the radius of the sphere, i.e., a situation that resembles
more the diffraction of a wave on a small sphere than the geometric-optical
scattering of a ray on a large sphere.

3.5 Coulomb Scattering

3.5.1 Phase Shifts

For Coulomb interaction,

V(r) =
e1e2
r
, (3.126)

the radial wave equation can be written in the form

d2u�(ρ)
dρ2

+
[
1 − κ

ρ
− (+ 1)

ρ2

]
u�(ρ) = 0, (3.127)

where the radial wave function has been set to

R�(r) =
u�(ρ)
ρ
, (3.128)

with ρ = kr. Here, k is the initial wave number defined by the kinetic energy,

E =
�

2k2

2m0
(3.129)

and

κ =
2e1e2

�v
(3.130)

is the Bohr parameter, with v = �k/m the relative speed.
Properties of this important differential equation have been compiled by

Abramowitz and Stegun (1964). Solutions can be expressed in terms of con-
fluent hypergeometric functions, of which there exist two classes, one regular
and one singular in the origin. It is the regular solution that is of interest here,
which can be expressed in the form (Abramowitz and Stegun (1964), 14.5.1
and subsequent equations),

u�(ρ) ∼ g(ρ) cosΘ� + f(ρ) sinΘ�, (3.131)

where f(ρ) and g(ρ) are real-valued functions,

Θ� = ρ− κ
2

ln(2ρ) − π
2

+ σ� (3.132)



98 3 Elastic Scattering

with

σ� = argΓ
(
+ 1 + i

κ

2

)
, (3.133)

and arg denotes the argument5. Asymptotically, for large ρ = kr, f(ρ) ∼ 1
while g(ρ) ∼ 1/ρ and hence,

u�(ρ) ∼ sin
(
ρ− κ

2
ln(2ρ) − π

2
+ σ�

)
(3.134)

This can be compared with with (3.107) and (3.109), from which we find

R�(ρ) ∼ 1
ρ

cos (ρ− α� + δ�) , (3.135)

and hence,

δ� = σ� − κ2 ln(2ρ). (3.136)

An important feature of this relationship is that the second term, although
dependent on ρ = kr, is independent of . Applications in stopping and strag-
gling, cf. (3.53) and (3.54), involve differences between two phase shifts. Hence,
we may safely operate with

δ� = argΓ
(
+ 1 + i

κ

2

)
(3.137)

as the Coulomb phase shift.
This relation will become useful in Sect. 6.3.2. It could also be utilized to

evaluate the Rutherford cross section. For that, a more direct procedure is
available which will be discussed now.

3.5.2 Cross Section (�)

The long range of the Coulomb force makes the separation of the incoming
from the outgoing wave a bit more delicate a task. However, as in the classical
case, an exact way of solution can be found. The derivation given here follows
standard texts on quantum mechanics (Schiff, 1981, Merzbacher, 1970).

Schrödinger’s equation is separated in parabolic coordinates,

ξ = r − x; η = r + x; φ = arctan
z

y
, (3.138)

in which the Laplacian takes on the form

∇2 =
4

η + ξ

(
∂

∂ξ
ξ
∂

∂ξ
+
∂

∂η
η
∂

∂η

)
+

1
ηξ

∂2

∂φ2
. (3.139)

5 For a complex number z = x + iy the argument φ is given by tanφ = y/x.
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In these variables an incoming plane wave reads eikx = eik(η−ξ)/2. This implies
that all dependence on the azimuth φ may be ignored from the beginning. An
outgoing wave should look like

eikr

r
∼ eik(η+ξ)/2

r
(3.140)

asymptotically. The factor eikη is common to both the incoming and the out-
going wave: One might suspect that it is common even to the exact solution.
This suspicion is strengthened by the observation that the other variable, ex-
pressed in spherical coordinates, ξ = r(1−cosΘ) = 2r sin2(Θ/2), contains the
essential angular variation that occurs in Rutherford’s law (3.45).

A reasonably straight route toward a tabulated function goes over the
ansatz

ψ(r) = ψ(ξ, η, φ) = eik(η−ξ)/2f(ξ), (3.141)

where the unknown function f(ξ) has to be determined. Then Schrödinger’s
equation reduces to

ξ
d2f

dξ2
+ (1 − ikξ)

df
dξ

− m0e1e2
�2

f = 0, (3.142)

where, as in previous instances, the energy has been replaced by Er =
�

2k2/2m0.
Eq. (3.142) is equivalent with Kummer’s equation for confluent hyper-

geometric functions (Abramowitz and Stegun (1964), 13.1.1) which has two
solutions (Kummer’s functions) M(a, b, z) and U(a, b, z) with z = ikξ, a =
−im0e1e2/�

2k ≡ −iκ/2 and b = 1, where κ is the Bohr parameter. The M -
function is regular for all finite ξ and has the asymptotic behavior

M ∼ eiπa

zaΓ (1 − a)
(

1 − a
2

z

)
+

ezza−1

Γ (a)
(3.143)

up to terms ∼ ξ−1. With this and (3.141), the wave function takes on the
asymptotic form

ψ(r) = eik(η−ξ)/2M(−iκ/2, 1, ikξ)

∼ eπκ/4

Γ (1 + iκ/2)

[
eikx+(iκ/2) ln

[
k(r−x)

] (
1 +

κ2

4ik(r − x)
)

+
Γ (1 + iκ/2)
Γ (−iκ/2)

1
2ik sin2(Θ/2)

eikr−(iκ/2) ln
[
k(r−x)

]
r

]
. (3.144)
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Here the first factor in the brackets describes an incident plane wave, apart
from a phase factor and a term that vanishes at large distances. This justi-
fies the extraction of a scattering amplitude by collection of those factors in
the second term, the outgoing wave, that determine the magnitude and the
directional dependence of the phase,

f(Ω) =
Γ (1 + iκ/2)
iΓ (−iκ/2)

1
2k sin2(Θ/2)

exp
{
−iκ ln sin

(
Θ

2

)}

≡ − κ

4k sin2(Θ/2)
exp

{
−iκ ln sin

(
Θ

2

)
+ iχ

}
, (3.145)

where eiχ = Γ (1 + iκ/2)/Γ (1− iκ/2).
With this one obtains the differential cross section

dσ(Ω) = |f |2d2Ω =
( κ

4k

)2 1
sin4(Θ/2)

d2Ω =
(
b

4

)2 d2Ω

sin4(Θ/2)
(3.146)

in complete agreement with the classical result, (3.45).
Eq. (3.144) demonstrates a problem connected with the Born series ap-

plied to Rutherford scattering. Indeed, to leading order in the perturbation
– i.e., the parameter κ/2 – (3.145) goes over into the first-order perturbation
solution (3.92). In higher orders, terms depending logarithmically on distance
enter into both the incident and the scattered wave. This makes it essen-
tially impossible to extract a scattering amplitude. Since this situation is not
foreseen in the formalism it manifests itself in divergent terms.

3.5.3 Relativistic Extension

The relativistic theory of elastic scattering of electrons on nuclei has been an
area of considerable activity and controversy. Even for a central potential,
the theory is a complex issue since it is the total angular momentum rather
than orbital angular momentum that is conserved in Dirac theory (Bransden
and Joachain, 2000). As a consequence, scattering in a central field becomes
spin-dependent even in the absence of a spin-dependent force.

Exact calculations by Mott (1929, 1932) are complex, but unlike various
approximate evaluations, their validity has apparently not been questioned.
Subsequent studies were based on Born-type expansions. A detailed survey
was given by Dalitz (1951). An approximation by McKinley and Feshbach
(1948) is frequently used in the literature, which makes the replacement

1 − v
2

c2
sin2 Θ

2
→ 1 − v

2

c2
sin2 Θ

2
+ π

Z

137
v

c
sin
Θ

2

(
1 − sin

Θ

2

)
(3.147)

in eq. (3.100). Here, the last term represents a higher-order term in the Born
series.

Phase shifts for relativistic Coulomb scattering may be found in the book
by Berestetskii et al. (1971).
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3.6 Discussion and Outlook

Two important assumptions need to be kept in mind. The assumption of
binary elastic collisions has been essential in the derivation of practically all
relations discussed in this chapter, in particular the transformation between
laboratory and center-of-mass velocities, and central-force motion. This is
true for both nonrelativistic and relativistic, classical and quantal mechanics.
Secondly, relations derived here governing laboratory parameters mostly rely
on the assumption of a projectile hitting a target particle initially at rest, with
the exception of (3.12) in Sect. 3.2.1 and (3.30) in Sect. 3.2.2. Although this
simplification is relevant in particle penetration, it is by no means universally
justified.

Physical arguments of the type discussed in the introduction, Sect. 3.1,
may be employed to justify the results derived in this chapter also in situations
where the underlying assumptions are not rigorously fulfilled. Examples will
be discussed in several chapters to come as well as in problems 3.4 and 3.5 in
the end of the present chapter.

In contrast to the presentation in Chapter 2 the emphasis was laid in this
chapter on results with a considerable degree of rigor. Applications to the im-
portant and comparatively transparent case of Coulomb scattering have been
discussed but played a less dominating role. The case of screened-Coulomb
scattering – which is especially important for scattering between heavy par-
ticles like ions on atoms – has been mentioned only very briefly and will be
discussed in detail in volume II. Quantal scattering has been discussed mainly
as a prerequisite for the theory of electronic stopping which is going to be the
main topic of the following chapter.

Problems

3.1. Derive (3.9) and (3.11) from (3.5) and (3.7).

3.2. Determine the maximum angle for scattering of a proton from a free
electron.

3.3. Derive (3.8) from (3.12).

3.4. Derive formulas corresponding to (3.5), (3.7) for an inelastic collision in
which momentum is conserved but an energy Q is missing after the collision.
Show that this is a reasonable model to describe the scattering between heavy
ions when some energy is lost by ejection of electrons from inner shells.

3.5. Devise a strategy to determine the inelastic energy loss Q mentioned in
problem 3.4 from measurements of the kinetic energy of an emerging parti-
cle at a given angle, or from measurements of the two scattering angles in
coincidence.
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3.6. Evaluate the scattering integral (3.34) for a) Coulomb interaction,
b) V(r) = Ar−2, and c) an impenetrable sphere of radius a. Determine the
corresponding differential cross sections.

3.7. Evaluate the cross section for wide-angle Rutherford scattering by defin-
ing wide-angle scattering by center-of-mass scattering angles π/2 < Θ < π.
Demonstrate that the probability for wide-angle scattering over the total range
is much larger for electrons and positrons than for heavier projectiles at the
same initial energy.

3.8. Evaluate the scattering integral in the small-angle limit for a Yukawa
potential

V(r) =
e1e2
r
e−r/a, (3.148)

where a is a constant. [Hint: You will arrive at a Bessel function.]

3.9. Derive (3.64a). Find the equation for the asymptotic straight-line orbit
y(x) at large t by inspecting Fig. 3.6. Express r =

√
x2 + [y(x)]2 as a function

of x, linearize for large x and find x(t) by comparison with (3.63). Then find
y(t).

3.10. Construct asymptotic orbits in the laboratory frame of reference by
means of the time integral. Assume particle 2 initially at rest in the origin and
secribe the motion of particle 1 by x1 = vt; y1 = p. Determine (x1(t), y1(t))
and (x2(t), y2(t)) for t� 0 outside the collision region. The result is

x1 =
m1

m
vt+

m2

m
(vt+ 2τ) cosΘ − m2

m
p sinΘ (3.149a)

y1 =
m1

m
p+

m2

m
(vt+ 2τ) sinΘ +

m2

m
cosΘ (3.149b)

x2 =
m1

m
vt− m1

m
(vt+ 2τ) cosΘ +

m1

m
p sinΘ (3.149c)

y2 =
m1

m
p− m1

m
(vt+ 2τ) sinΘ − m1

m
p cosΘ, (3.149d)

where m = m1 +m2.

3.11. Show that the time integral does not exist for Coulomb interaction.

3.12. Evaluate the time integral for V(r) = Ar−2.

3.13. Prove (3.75).

3.14. Show that in relativistic Coulomb scattering as described in section 3.3.5
a projectile may ‘fall’ into the force center. Discuss the motion as a function
of impact parameter.

3.15. Go carefully through the expansion leading from (3.81) to (3.83). Make
sure to know why you have to go one order higher in the expansion in terms
of r′/r in the exponent than in the denominator.
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3.16. Your quantum mechanics text quotes a definition of a particle current
that differs from the classical one, density × velocity. Convince yourself that
the proper quantal definition is consistent with the classical one for i) a plane
wave, ii) a spherical wave, iii) a quasi-spherical wave f(cosΘ)eikr/r.

3.17. Go carefully through the evaluation of the integral∫ ∞

−∞
dω

eiωt

ω2 + ω2
0

(3.150)

in the complex plane, and make sure not to miss a nonvanishing contribution.

3.18. Find the Green function for a particle of mass m moving in one dimen-
sion, acted upon by a friction force fc = −bdx/dt and an arbitrary force f(t).
Apply the result to a particle in a constant gravitational field.

3.19. Solve problem 3.18 for the corresponding three-dimensional model with
a friction force fc = −bdr/dt.
3.20. Define and write down Green functions for the electrostatic potential
and the electrostatic field on the basis of what you know about electrostatics.

3.21. Find the cross section within the Born approximation for scattering on
a potential V(r) = C12δ(r) where C12 is a constant. This model may describe
the interaction of a particle with a long wavelength on a scatterer with very
small spatial dimensions, such as the interaction of a thermal neutron with
a nucleus.

3.22. Landau and Lifshitz (1960b) mention the following criteria for the va-
lidity of the Born approximation:

|V(r)| � �
2

m0r2
(3.151)

or

|V(r)| � �v

r
. (3.152)

Discuss (3.95) in the light of these criteria.

3.23. Evaluate the contribution from the second term in the Born series to
the scattering amplitude. Try to go as far as possible without specifying the
interaction potential. Start with the exact expression (3.81) and be sure to
take the asymptotic solution (3.83) only when this is justified.

3.24. The result of problem 3.23 can be expressed in the form

f (2)(Ω) = const ×
∫
d3k′′V∗(k′′ − k)V(k′′ − k′)

k′′2 − k2
, (3.153)
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where V(k) is the Fourier transform of the potential. Show that f (2)(Ω)
and, hence, the differential cross section diverges in this order in the case
of Coulomb interaction, but that the divergence is removed by adoption of
a finite screening radius.

3.25. Use a computer algebra program to determine the differential and total
cross section for an impenetrable sphere for an arbitrary value of ka. Check
your result against the analytical finding for the case of ka� 1.

3.26. (�)6 Consider the scattering on a potential barrier of the form of (3.98).
Utilize both types of spherical Bessel functions outside the barrier and make
use of the requirement that the wave function should be continuous every-
where. Derive equations that determine the phase shifts.

3.27. Derive the relations (3.118).

3.28. Derive (3.119) and (3.120). [Hint: Make use of symmetry considera-
tions.]

3.29. Determine the stopping cross section for an impenetrable sphere of ra-
dius a from quantal scattering theory, making use of (3.118) and (3.119).
Compare with the classical result.

3.30. Perform the same calculation as in problem 3.29 for the straggling pa-
rameter W , making use of (3.120).

3.31. (�) Try to set up a theoretical scheme for treating the scattering of
a plane wave on a body with cylindrical symmetry with the cylinder axis
perpendicular to the incident wave vector.

3.32. Find a proper form of the Runge-Lenz vector for the quantal Coulomb-
Kepler problem from the requirement that M must commute with the hamil-
tonian. [Hint: Replace v by P/m, where P is the momentum operator and
symmetrize as far as neccessary.]

3.33. (�) Use computer algebra combined with a graphics program to illus-
trate the difference between the electron densities for Coulomb scattering,
calculated either from the exact solution or from the first Born approximation.
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Stopping



4

Stopping of Swift Point Charge I:

Bohr and Bethe Theory

4.1 Introductory Comments

The present chapter is devoted to inelastic collisions between a swift point
charge (speed v � v0) and an isolated atom or molecule. Calculations aim at
the electronic stopping cross section, but concepts introduced, tools utilized
and insight gained on the way are central goals to be kept in mind.

Three approaches will be presented separately. Comparisons between them
show interesting similarities and differences. The classical theory outlined by
Bohr (1913) contains most of the clues. The quantum stopping theory devel-
oped by Bethe (1930) and Bloch (1933b) is built upon similar concepts and
the results are not dramatically different. However, each approach has its mer-
its, and the overall result should be a rather firm grasp around an important
item in atomic physics.

Central to the treatments in this chapter is the use of perturbation theory,
either for the entire theoretical scheme or at least parts of it. The expansion
parameter is the projectile charge, i.e., the atomic number Z1. First a classi-
cal and a semiclassical treatment are presented which express the electronic
energy loss as a function of an impact parameter p, from which the stopping
cross section is found by integration,

S =
∫
T (p) 2πpdp , (4.1)

in accordance with (2.46) on page 42. An important finding is the fact that es-
sential features of the T (p) dependence predicted from classical theory survive
in the semiclassical calculation. A fully quantal calculation reproduces inelas-
tic cross sections predicted semiclassically for heavy projectiles, but provides
an important modification for light projectiles such as electrons and positrons.

In view of Bohr’s kappa criterion, (2.80), the velocity regime v < 2e1e/�
has the distinguishing feature that classical scattering theory provides a rea-
sonably accurate picture of both elastic and inelastic scattering on electrons.
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This implies that for ions with atomic numbers Z1 � 1, where e1e/� � v0, the
Bohr velocity, classical scattering theory will be able to provide quite accurate
estimates of stopping forces and straggling parameters. Hence, studying Bohr
stopping theory is not only of historic and didactic interest but also highly
relevant from a quantitative point of view.

Unless stated differently, the impact parameter p will in this chapter be
defined relative to the nucleus of a target atom rather than to an individual
target electron. The latter option was heavily used in Chapter 2, but the
validity of the underlying physical picture for electronic collisions is limited by
the Bohr criterion. This limitation is much less severe for nuclear interactions.
In fact, since the impact parameter to the nucleus is directly related to the
scattering angle of the projectile, knowledge of T (p) provides information on
electronic energy loss as a function of scattering angle.

4.2 Classical Perturbation Theory

4.2.1 Energy Transfer to Harmonic Oscillator

As mentioned in Sect. 2.3.4, Bohr treated target electrons as being bound
harmonically to their atomic sites. Each electron is characterized by a single
resonance frequency, say ω0. For a classical electron bound to the origin by
a force −kr = −mω2

0r, the nonrelativistic equation of motion is

d2r

dt2
+ ω2

0r = − e
m

E(r, t), (4.2)

where E(r, t) is the electric field generated by the projectile.
Note that the position vector r = r(t) occurs in the field on the right-

hand side. This implies that (4.2) will not be a linear equation unless some
simplification is made. Ignoring this feature for a moment we may write the
field as a function of time,

E(r, t) = E(r(t), t) ≡ E(t) (4.3)

and, in Fourier space1

E(t) =
∫ ∞

−∞
dωE(ω) e−iωt (4.4)

E(ω) =
1
2π

∫ ∞

−∞
dtE(t) eiωt. (4.5)

Here a common physicist’s notation has been employed: The two quantities
E(t) and E(ω) have evidently different functional forms and dimensions. It is
the arguments, time t and angular frequency ω, that distinguish the field and
its Fourier transform from each other.
1 A brief introduction into Fourier series and Fourier transforms is given in Ap-

pendix A.2.2.
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A particular solution of (4.2) reads

r(t) = − e

mω0

∫ t

−∞
dt′ E(t′) sinω0(t− t′), (4.6)

as is easily verified by differentiation2. Eq. (4.6) represents a retarded solution
with the property that r(−∞) = 0. This is reasonable when there is no field
at t = −∞. If the oscillator had been in motion prior to the action of the
field, a solution to the homogeneous equation, i.e., an undisturbed harmonic
oscillation at a frequency ω0 would have to be added.

The time-dependent electromagnetic field acting on the electron is char-
acterized by a gradual increase from zero to a maximum at closest approach
of the projectile, and a subsequent decrease toward zero. Therefore we may
be able to find some time t1 after which the action of the field on the target
electron has a negligible effect. Then, for t > t1, (4.6) can be rewritten in the
form

r(t) = − e

mω0
(C sinω0t− S cosω0t) (4.7)

with

C =
∫ ∞

−∞
dt′ E(t′) cosω0t

′ (4.8a)

S =
∫ ∞

−∞
dt′ E(t′) sinω0t

′, (4.8b)

since the contributions to the integrals from the interval t1 < t′ < ∞ are
negligible.

Eq. (4.7) demonstrates that in the absence of damping the electronic mo-
tion must be strictly harmonic after the external force has died away. (4.8a)
shows that only field components E(ω) with ω = ±ω0 contribute to the energy
transfer. This is a general property of the harmonic oscillator: When offered
a white excitation spectrum it picks only the part that oscillates at the reso-
nant frequency. It is this property that causes the empty G string of a violin
to have the pitch of a G, regardless of whether it is plucked or bowed. The
speed of the bow has no influence on the pitch. The phenomenon of resonant
excitation is an important feature not only of the classical oscillator model of
the atom. It comes again in the quantal description.

In order to find the energy taken up from the field by the oscillator, de-
termine first the velocity of the electron by differentiation of (4.7),

v = − e
m

(C cosω0t+ S sinω0t) . (4.9)

2 For the interested reader who is not familiar with (4.6) a derivation has been
given in Appendix A.2.5. The calculational tools utilized there will be applied
frequently throughout this book.
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Then the energy reads

T =
e2

2m
(
C2 + S2

)
(4.10)

or

T =
1

2m

∣∣∣∣
∫ ∞

−∞
dt (−eE(t)) eiω0t

∣∣∣∣
2

(4.11)

which clarifies the transition from sudden to adiabatic behavior, i.e., small
to large ω0, respectively. Note that for ω0 = 0, the energy transfer reduces
to ∆P 2/2m, where ∆P is the momentum transfer. However, keep in mind
that (4.11) still contains the unknown function r(t) on the right-hand side via

4.2.2 Distant Collisions: Dipole Approximation

Consider now the Coulomb field generated by a fast charged particle in uni-
form motion,

E(r, t) = −∇Φ(r, t) (4.12)

with the potential

Φ(r, t) =
e1

|r − R(t)| (4.13)

and the trajectory of the projectile

R(t) = p + vt, (4.14)

where p is the vectorial impact parameter, i.e., the shortest vector connecting
the force center 0 to the trajectory (Fig. 4.1). Note that p · v = 0.

p

Fig. 4.1. Vectorial impact parameter

Throughout this book we shall need the Fourier transform of the Coulomb
potential. It is determined by the relation

1
r

=
1

2π2

∫
d3q

1
q2

eiq · r, (4.15)

with the integration going over infinite q-space. A proof is given in Appendix
A.2.2.

E(t) ≡ E (r(t), t).
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Combination of (4.12–4.15) yields

E(r, t) = − ie1
2π2

∫
d3q

q

q2
eiq · (r − p − vt). (4.16)

Equation (4.16) contains r(t) in the exponent. For small displacements from
equilibrium, Taylor expansion yields

ei q · r(t) = 1 + i q · r . . . � 1. (4.17)

In the second step, all variation of the electric field over a distance of the
order of the oscillation amplitude of the target electron has been ignored.
This assumption implies ‘weak’ interaction and, more important, small q or
large wavelength. This is the limit that is of interest in classical dispersion
theory. Thus, (4.17) can only apply to the interaction at large distances. For
close interactions another approach needs to be taken.

Equation (4.17) represents what is called the dipole approximation. It is
equivalent with expanding the potential up to first order in r and consistent
with the perturbation approach in classical scattering theory discussed in Sect.
3.3.6. In a perturbation treatment the transferred momentum is calculated on
the basis of unperturbed trajectories throughout the collision, i.e., uniform
trajectory of the projectile and target electron at rest. The same procedure
was already applied in Sect. 2.3.2 on page 39.

Once r(t) has been dropped from the exponent in (4.16) by application
of (4.17), the Fourier transform of E(r, t) emerges from (4.5) and (4.16) and
reads

E(ω) = − ie1
2π2

∫
d3q

q

q2
e−i q · p δ(ω − q · v), (4.18)

where δ(. . . ) is the Dirac function. If you are unfamiliar with the Dirac func-
tion, have a look at Appendix A.2.4.

The integral is conveniently carried out in cylindrical coordinates with the
x-axis chosen along the projectile velocity v and the y-axis along the vectorial
impact parameter p. With the notation q = (ω/v, q⊥), where q⊥ is a vector
in the yz plane, one finds

E(ω) =
e1

2π2v

(
−i
ω

v
,
∂

∂p
, 0
)∫

d2q⊥
1

q2⊥ + ω2/v2
e−i q⊥ · p. (4.19)

The remaining integral is a modified Bessel function, as follows from

∫
d2q⊥

1
q2⊥ + ω2/v2

e−i q⊥ · p =
∫ ∞

0

q⊥ dq⊥
q2⊥ + ω2/v2

∫ 2π

0

dφ e−i q⊥p cosφ

=
∫ ∞

0

q⊥ dq⊥
q2⊥ + ω2/v2

2πJ0(q⊥p) = 2πK0

(ωp
v

)
, (4.20)
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according to Abramowitz and Stegun (1964), p. 488, and hence

E(ω) = −e1ω
πv2

(
iK0

(ωp
v

)
,K1

(ωp
v

)
, 0
)
, (4.21)

so that (4.11) reads

T = T (p) =
2e21e

2

mv2p2
f(p) (4.22)

with

f(p) = fdist(p) =
[ω0p

v
K0

(ω0p

v

)]2
+
[ω0p

v
K1

(ω0p

v

)]2
. (4.23)

It follows from (4.21) that the first and second term in the parentheses in
(4.23) reflect momentum transferred parallel and perpendicular to the beam
direction, respectively.

Both Bessel functions drop off exponentially for ω0p/v � 1, in agreement
with Bohr’s adiabatic limit (2.62) discussed on page 45. In the opposite limit
we have (Abramowitz and Stegun, 1964)

K0

(ω0p

v

)
∼ ln

v

ω0p
; K1

(ω0p

v

)
∼ v

ω0p
for
ω0p

v
� 1 (4.24)

and hence

fdist(p) � 1 for
ω0p

v
� 1. (4.25)

This represents the low-p limit of the high-p approximation applied to the
Coulomb interaction, in agreement with the qualitative picture arrived at in
Sect. 2.3.4.

A convenient analytical representation of this function was found by
Grande and Schiwietz (1998),

fdist(p) �
(
1 − 0.174

√
ζ + πζ

)
e−2ζ , ζ =

ω0p

v
(4.26)

the error of which is � 1 % for 0.01 < ζ < 10.

4.2.3 Relativistic Extension

The relativistic version of (4.21) may be found on the basis of (2.65) and
(2.66)3,
3 As in Sect. 2 the magnetic interaction is ignored. This is justified in the present

perturbational scheme because the Lorentz force, being the product of electron
speed and magnetic field which are both proportional to e1, contributes to terms
neglected in the lowest order of the perturbation series.
Another word of caution is indicated if the orbital motion of the target electron
is non-negligible. In that case the Lorentz force contributes to the leading term in
the perturbation expansion. This may be important for electrons with velocities
not too far below the speed of light. However, such effects are most naturally
taken into account in relativistic quantum theory.
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E(ω) = − e1ω

πγ1v2

(
i
γ1
K0

(
ωp

γ1v

)
,K1

(
ωp

γ1v

)
, 0
)

(4.27)

where γ1 = 1/
√

1 − v2/c2. From this one recovers (4.22) with a relativistic
version of (4.23),

f(p) = fdist(p) =
1
γ2
1

[
ω0p

γ1v
K0

(
ω0p

γ1v

)]2
+
[
ω0p

γ1v
K1

(
ω0p

γ1v

)]2
. (4.28)

Before drawing more quantitative conclusions we need to have a look at
changes brought about by quantum theory.

4.3 Semiclassical Theory

4.3.1 General Considerations

Conventionally a ‘semiclassical theory’ treats the motion of nuclei by classical
mechanics and that of orbiting electrons quantally. In the present context this
implies that the physical picture resembles that of the Bohr theory with the
sole modification that electrons are no longer treated as classical oscillators but
occupy quantum states in a target atom. Fig. 4.1 still specifies the geometry.

In the classical treatment the energy transfer T (p) was uniquely related to
the impact parameter by (4.22). In a semiclassical theory we obtain an exci-
tation probability Pj(p) for each excitation level j of the target, corresponding
to a resonance frequency ωj0, and the quantity to be compared with T (p)
from the classical theory is the average energy transfer

Tav(p) =
∑

j

Pj(p)�ωj0. (4.29)

The stopping cross section following from (4.1) and (4.29) reads

S =
∑

j

�ωj0

∫
2πp dpPj(p), (4.30)

and comparison with (2.20) on page 34 shows that

σj =
∫

2πp dpPj(p). (4.31)

This defines the excitation cross section to level j. This important relation –
which could have been derived more directly – quantifies the considerations
made in the end of Sect. 2.2, in particular the somewhat cryptic relation
(2.4): Instead of a ‘black area’, an atom is viewed by the projectile as a region
of varying degrees of ‘grey color’ expressed by an excitation probability which
is typically � 1 within the range of validity of first-order perturbation theory.
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4.3.2 Time-Dependent Perturbation Theory

Consider a target atom or molecule containing Z2 electrons. It can occupy
stationary states |j〉 with energies εj, where j stands for a complete set of
quantum numbers and j = 0 denotes the ground state. Thus, the resonance
frequencies for an atom in its ground state are given by

�ωj0 = εj − ε0. (4.32)

Instead of Newton’s second law (4.2), electron motion is governed by Schrödinger’s
equation

(H + V)Ψ(r, t) = i�
∂Ψ(r, t)
∂t

, (4.33)

where H is the hamiltonian of an isolated target atom or molecule. The po-
tential energy describing the interaction with the projectile is now given by

V(r, t) =
Z2∑

ν=1

(−e)Φ(rν , t) =
Z2∑

ν=1

−e1e
|rν − R(t)| , (4.34)

where the vector r stands for (r1, . . . , rZ2), rν is the position operator of the
ν’th electron and R(t) = p + vt the trajectory of the projectile.

The time-dependent wave function Ψ(r, t) may be expanded in terms of
stationary states,

Ψ(r, t) =
∑

j

cj(t) e−iεjt/� |j〉 (4.35)

with coefficients cj(t) to be determined from (4.33). In first-order perturbation
theory the cj(t) are expanded in powers of the perturbing potential V . From
texts on introductory quantum mechanics or from Appendix A.4.2 you may
extract that

cj(t) = δj0 + c(1)j (t) + . . . (4.36)

with

c
(1)
j (t) =

1
i�

∫ t

−∞
dt′ eiωj0t

′〈j|V(r, t′)|0〉 (4.37)

up to first order in V(r, t). Here δj0 is a Kronecker symbol

δij =
{

1 for i = j
0 for i �= j. (4.38)

It is implied in (4.37) that the target atom is in its ground state at t = −∞.
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In the classical case, Sect. 4.2.2, only the asymptotic motion at t = ∞ was
of interest. The same is true here. The coefficients c(1)j (∞) represent ‘transition
amplitudes’ which can be evaluated by insertion of (4.34), again expressed as
a Fourier transform (4.15). Integration over t′ yields

c
(1)
j (∞) = − e1e

iπ�

∫
d3q

e−iq · p
q2

Fj0(q) δ(ωj0 − q · v), (4.39)

where

Fj0(q) =

〈
j

∣∣∣∣∣
Z2∑

ν=1

ei q · rν

∣∣∣∣∣ 0
〉
. (4.40)

The expectation value of the energy of the oscillator at time t = ∞ is given
by

〈Ψ(r, t)|H |Ψ(r, t)〉t=∞ =
∑

j

|cj(∞)|2εj, (4.41)

Insertion of (4.36), understood as a series expansion in powers of the ion
charge e1, yields the energy taken up by the atom due to the interaction,

Tav(p) =
〈
Ψ(r, t)

∣∣H∣∣Ψ(r, t)
〉

t=∞ − 〈Ψ(r, t)
∣∣H∣∣Ψ(r, t)

〉
t=−∞

=
∑

j

∣∣∣c(1)j (∞)
∣∣∣2 (εj − ε0). (4.42)

This is an explicit version of (4.29). The transition probabilities are given by

Pj(p) =
∣∣∣c(1)j (∞)

∣∣∣2 (4.43)

in first-order perturbation theory.

4.3.3 Distant Collisions

Consider (4.39) at large p, i.e., for distant collisions. In the classical calculation
the dipole approximation (4.17) was introduced. After application of the same
approximation to (4.40), Fj0(q) in (4.39) reduces to

Fj0(q) � iq ·
〈
j

∣∣∣∣∣
Z2∑

ν=1

rν

∣∣∣∣∣ 0
〉

(4.44)

to the lowest order in q. The remaining integral in (4.39) is identical with the
one in (4.18) and thus leads to
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c
(1)
j (∞) = −2e1eωj0

i�v2

〈
j

∣∣∣∣∣
Z2∑
ν

rν

∣∣∣∣∣ 0
〉

·
(

iK0

(ωj0p

v

)
,K1

(ωj0p

v

)
, 0
)
, (4.45)

where the plane of incidence has again been assumed to be the xy-plane. With
this, the transition probability (4.43) reads

Pj(p) =
2e21e

2Z2

mv2p2�ωj0
fj0

×
{[ωj0p

v
K0

(ωj0p

v

)]2
+
[ωj0p

v
K1

(ωj0p

v

)]2}
, (4.46)

where the dipole oscillator strengths

fj0 =
2m

3�2Z2
(εj − ε0)

∣∣∣∣∣
〈
j

∣∣∣∣∣
Z2∑
ν

rν

∣∣∣∣∣ 0
〉∣∣∣∣∣

2

(4.47)

have been introduced. These quantities are familiar from the theory of optical
dispersion. Pertinent results have been compiled in Appendix A.5.

The Thomas-Reiche-Kuhn sum rule∑
j

fj0 = 1, (4.48)

which is proven there, is of prime importance in the present context.
From (4.29) and (4.46) we find the average energy transfer per target

electron to be given by (4.22) with

fdist(p) =
∑

j

fj0

{[ωj0p

v
K0

(ωj0p

v

)]2
+
[ωj0p

v
K1

(ωj0p

v

)]2}
. (4.49)

Eq. (4.49) was first derived by Bloch (1933b). The similarity to (4.23) is strik-
ing. In particular, if there is only one allowed transition, then (4.49) agrees
exactly with Bohr’s result for a classical harmonic oscillator. The message
emerges that in distant interactions the quantum mechanical response of an
atom or molecule to the perturbation induced by the projectile is identi-
cal with the classical response of an ensemble of harmonic oscillators with
the transition frequencies ωj0, weighted by the respective dipole oscillator
strengths fj0.

This result is more generally true and well-established in the theory of op-
tical dispersion and absorption. The derivation for that case has been sketched
in Appendix A.5.
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4.3.4 Excitation Cross Section

From (4.39), (4.43) and (4.31) we find

σj =
e21e

2

π2�2

∫
d3q

q2

∫
d3q′

q′2
F ∗

j0(q)Fj0(q′)

× δ (ωj0 − q · v) δ (ωj0 − q′ · v)
∫

d2p ei(q − q′) · p, (4.50)

where an asterisk indicates the complex conjugate. The reduction

δ (ωj0 − q · v) δ (ωj0 − q′ · v)
∫

d2p ei(q − q′) · p

=
(2π)2

v
δ(q − q′) δ (ωj0 − q · v) (4.51)

emerges in the following way: The integral over d2p yields a two-dimensional
Dirac function in q⊥ − q′

⊥, i.e., the components of q and q′ perpendicular
to the velocity. The two Dirac functions on the left-hand side taken together
imply that q · v = q′ · v. Thus, the components of q and q′ parallel to the
velocity must also be equal. The combined effect is a three-dimensional Dirac
function in q − q′, and the factor 1/v arises from (A.70) in Appendix A.2.4.

With this we arrive at

σj =
4e21e

2

�2v

∫
d3q

q4
|Fj0(q)|2 δ (ωj0 − q · v) . (4.52)

This represents a general expression for the excitation cross section in the first
Born approximation, derived in the semiclassical approximation under the
assumption of uniform motion of a projectile much heavier than an electron.
It will turn out in Sect. 4.4 that a very similar result emerges from the fully
quantal calculation.

Frequently it is of interest to take the orientational average over (4.52).
This is appropriate whenever target atoms or molecules are randomly oriented.
In practice it is more convenient to average over incoming beam directions,
i.e., the angular part of the incident velocity v,

〈δ (ωj0 − q · v)〉 =

⎧⎪⎨
⎪⎩

1
2qv

ωj0 < qv

for
0 otherwise.

(4.53)

This is easily verified by introduction of spherical coordinates for v with q
taken as the polar axis. With this, any explicit orientation dependence of
|Fj0(q)|2 caused by degenerate states must have dropped out. Therefore the
angular integration in (4.52) can be carried out. By introduction of the quan-
tity
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Q =
�

2q2

2m
(4.54)

one obtains

σj =
2πe21e2

mv2

∫
dQ
Q2

|Fj0(q)|2 (4.55)

with the boundary condition

2mv2Q > (εj − ε0)2 (4.56)

which follows from (4.53).
The derivation presented here is quite direct but has the major weakness

that no physical meaning has been attached to the Fourier variables q and Q.
In Sect. 4.4, �q will be identified as the transferred momentum.

4.4 Plane-Wave Born Approximation

4.4.1 General Considerations

In (4.31) the excitation cross section was defined as an integral over the impact
parameter. The statistical definition of a cross section outlined in Sect. 2.2 did
not invoke an impact parameter at all. Therefore, a proper quantal calculation
ought to determine σj more directly. This requires abandoning the semiclas-
sical picture. Instead, the calculation will be based on the picture underlying
the fundamental definition (2.1), where a target particle is exposed to a uni-
form density J of particle current and σj emerges as the mean number of
excitations per unit time divided by J . A uniform incident particle current
is described as a plane wave, just as in Sect. 3.4 on elastic scattering. The
presentation will follow that of the quantum theory of elastic scattering as
closely as possible, both in the general outline and in the perturbation expan-
sion (Born approximation). This involves stationary perturbation theory and
may be found less elegant than a procedure based on time-dependent pertur-
bation theory, but it illuminates physical processes and is quite explicit. The
reader who is familiar with Fermi’s golden rule may jump over most of the
next section and go directly to (4.77).

4.4.2 Stationary Perturbation Theory

While keeping target definitions as in Sect. 4.3 we now characterize the in-
coming beam by a plane wave as in (3.80),

Aeik·R (4.57)

with a momentum �k and an amplitude A. The symbol R, which denoted the
classical trajectory of the projectile in the previous sections, now turns into
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the position operator of the projectile while r is still reserved to electron coor-
dinates4. The interaction with target electrons is characterized by a potential
energy V = V(R, r) similar to (4.34).

For a stationary current the system obeys the time-independent Schrödin-
ger equation,(

P 2

2m1
+H + V(R, r) − E

)
Ψ(R, r) = 0, (4.58)

where P = −i�∇R is the momentum operator of the projectile, E the initial
energy of the system,

E = �
2k2/2m1 + ε0 (4.59)

and m1 the projectile mass.
We may expand the wave function Ψ in terms of the eigenstates of the

target,

Ψ(R, r) =
∑

�

u�(R)|〉, (4.60)

where the u�(R) are unknown functions of R.
After insertion of (4.60) into (4.58), noting that H |〉 = ε�|〉, and multipli-

cation by 〈j|, you find the following system of differential equations governing
uj(R),

(∇2
R + k2

j

)
uj(R) =

2m1

�2

∑
�

Vj�(R)u�(R) (4.61)

with

Vj�(R) = 〈j|V(R, r)|〉 (4.62)

and a constant kj defined by

k2
j =

2m1

�2

(E − εj
)
. (4.63)

At this point it is convenient to apply a perturbation expansion, i.e., to expand
the uj in powers of the interaction potential V ,

uj(R) = u(0)
j (R) + u(1)

j (R) + u(2)
j (R) + · · · , (4.64)

where u(ν)
j (R) is proportional to Vν , i.e., to eν1 . Separating (4.61) according

to equal powers of e1 one finds
4 It is emphasized that the meaning of the symbols R and r in this chapter is

distinctly different from that in Chapter 3.
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(∇2
R + k2

j

)
u

(ν+1)
j (R) =

2m1

�2

∑
�

Vj�(R)u(ν)
� (R). (4.65)

The zero-order wave function represents a free projectile with the target in
the ground state,

u
(0)
j (R) = δj0Aeik·R. (4.66)

Starting from there one may write down solutions of (4.65) in closed form to
arbitrarily high order ν.

Equation (4.65) has the form that was considered in the theory of elastic
scattering. Therefore its solution is analogous to (3.81),

u
(ν+1)
j (R) = − m1

2π�2

∫
d3R′ e±ikj|R−R′ |

|R − R′|
∑

�

Vj�(R′)u(ν)
� (R′). (4.67)

as follows from (A.108) in Appendix A.2.5. In principle, a free-particle wave
could be added to (4.67), but that aspect is taken care of by (4.66). The ± sign
in (4.67) indicates outgoing and incoming waves. Since there is no incoming
wave except the one characterized by eq. (4.66), only the + sign provides
a physically valid solution. Here we focus on the lowest order ν = 0. At large
distances R from the scattering center that contribution reads

u
(1)
j (R) = − m1

2π�2
A

eikjR

R

∫
d3R′ e−ikj ·R′ Vj0(R′) eik·R′

(4.68)

with

kj = kj
R

R
. (4.69)

Combination of (4.60) and (4.68) yields

Ψ (1)(R, r) = − m1

2π�2
A
∑

j

eikjR

R
|j〉〈j,kj |V|0,k〉, (4.70)

where

〈j,kj |V|0,k〉 =
∫

d3R e−ikj ·R Vj0(R) eik·R (4.71)

is the matrix element of the interaction V between the initial and final states
of the system.

4.4.3 Excitation Cross Section

In counting the mean number of events per unit time, an ‘event’ is the ex-
citation of the target from the ground state |0〉 to some state |j〉 and the
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simultaneous deflection of a primary particle from its original direction k/k
into some final direction R/R.

The coefficient of |j〉 in (4.70) determines the outgoing transition ampli-
tude and the associated current density is

Jj =
�kj

m1

( m1

2π�2

)2 |A|2
R2

∣∣〈j,kj |V|0,k〉
∣∣2. (4.72)

Now, the number of projectiles passing per unit time through an area at
distance R and solid angle d2Ω is

Jj · kj

kj
R2d2Ω , (4.73)

cf. the corresponding discussion in Chapter 3. Dividing this by the incoming
current density |A|2�k/m1 and integrating over all directions of the outgoing
projectile we obtain the cross section σj for excitation to level j according to
(2.1),

σj =
kj

k

( m1

2π�2

)2
∫

d2Ω|〈j,kj |V|0,k〉|2. (4.74)

It is convenient to convert the integration over outgoing directions Ω into an
integration over the outgoing wave vector. This may be achieved by combining
(4.59) and (4.63) into

E =
�

2k2
j

2m1
+ εj =

�
2k2

2m1
+ ε0. (4.75)

This reflects energy conservation: If the target has been excited to εj , the
quantity �

2k2
j /2m1 is the energy left to the projectile. �kj is the magnitude

of the associated momentum, and hence �kj = �kjR/R is the momentum
vector of a scattered projectile when the target has been excited to level j.
The equality (4.75) may be incorporated into (4.74) by treating kj as a variable
and multiplying the integrand by

δ

(
�

2k2
j

2m1
+ εj − �

2k2

2m1
− ε0

)
d

(
�

2k2
j

2m1

)
. (4.76)

This leads to

σj =
1

(2π)2�v

∫
d3k′δ

(
�

2k′2

2m1
+ εj − �

2k2

2m1
− ε0

)∣∣〈j,k′|V|0,k〉∣∣2, (4.77)

where kj has been called k′ since it has become an integration variable.
Eq. (4.77) is a version of Fermi’s golden rule which in general determines

the transition rate per unit time to first order of a perturbed system with
a quasi-continuous excitation spectrum (Schiff, 1981).
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4.4.4 Coulomb Interaction

Now assume Coulomb interaction between the projectile and the target par-
ticles. By use of (4.34) and (4.15), (4.71) reduces to

〈j,k′|V|0,k〉 = − 4πe1e
(k − k′)2

Fj0(k − k′), (4.78)

where Fj0 is defined by (4.40). Noting that k′−k is the change in wave vector
of the projectile we may identify �k− �k′ as the momentum transferred from
the projectile to the target. Denoting this vector by �q, we find from (4.77)
and (4.78) that

σj =
4e21e

2

�v

∫
d3q

q4
∣∣Fj0(q)

∣∣2δ(εj − ε0 − �q · v + �
2q2/2m1). (4.79)

The similarity of this expression to (4.52) is striking. The only significant
change is the occurrence of a new term �

2q2/2m1 in the argument of the Dirac
function. Evidently this term ensures energy conservation. It is essential if the
projectile is an electron or positron. For heavy projectiles the term is smaller
than the preceding one by a factor of �q/2m1v, i.e., negligible.

Eq. (4.79) can again be brought into a more handy form under the as-
sumption that the target atom or molecule has no preferred orientation. Then
the procedure described in connection with (4.53) yields

σj =
2e21e

2

�2v2

∫
d3q

q5
|Fj0(q)|2, (4.80)

where the integral is bounded by

�qv > εj − ε0 + �
2q2/2m1. (4.81)

With the variable Q defined by (4.54) one finally arrives at

σj =
2πe21e2

mv2

∫
dQ
Q2

|Fj0(q)|2 (4.82)

with

2mv2Q > (εj − ε0 +mQ/m1)2. (4.83)

4.5 The Stopping Cross Section

4.5.1 Bohr Stopping Formula

Before arriving at a stopping cross section by integration of T (p) over the im-
pact parameter following (4.1), we need to remove the logarithmic divergence
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Fig. 4.2. Energy-loss functions Tdist and Tclose versus impact parameter p. In the
chosen units, Tdist (solid line) is a universal curve while Tclose depends on projectile
speed through the parameter 0.1 < mv3/Z1e

2ω0 < 10. The crossover defines the
limiting impact parameter p0 (Neufeld, 1954). From Sigmund (1996)

of (4.22) at small p which follows from (4.23). Bohr achieved this by adopting
Rutherford’s law (3.46) of free-Coulomb scattering for close collisions, which
may be cast into the form (4.22) with

f(p) = fclose(p) =
1

1 + (b/2p)2
, (4.84)

where b = 2Z1e
2/mv2. The two functions fclose(p) and fdist(p) have been plot-

ted in Fig. 4.2. With the chosen abscissa variable, fdist(p) becomes a universal
function while fclose(p) becomes dependent on the parameter5

ξ =
2v

|b|ω0
=

mv3

Z1e2ω0
. (4.85)

Figure 4.2 suggests to split the integration into two parts at the intersection
point p0. It is seen that for large enough values of ξ the result must be insensi-
tive to the actual choice of p0 since both functions are � 1 over a comfortable
interval.

5 Within the context of the Bohr theory we may safely replace e1 = Z1e, since this
theory does not apply to electrons.
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With this one finds

Sclose =
∫ p0

0

2πp dp Tclose(p) =
2πe21e2

mv2
ln
(

1 +
4p20
b2

)
(4.86)

or, for large velocities,

Sclose � 4πe21e
2

mv2
ln

2p0
b
. (4.87)

In the contribution from distant collisions, note that K1(ζ) = −dK0(ζ)/dζ.
By partial integration,

Sdist =
∫ ∞

p0

2πp dp Tdist(p) =
4πZ2

1e
4

mv2
×(∫ ∞

ζ0

dζK0(ζ)
[
ζK0(ζ) +

d

dζ
{ζK1(ζ)}

]
− ζK0(ζ)K1(ζ)

∣∣∣∣
∞

ζ0

)
, (4.88)

where ζ0 = ω0p0/v. The function in the square brackets is zero (Abramowitz
and Stegun (1964), p. 376) and hence,

Sdist =
4πe21e

2

mv2
ζ0K0(ζ0)K1(ζ0). (4.89)

In the range where the curve depicted in Fig. 4.2 is flat, the Bessel functions
can be represented by their expansions for small arguments,

ζ0K0(ζ0)K1(ζ0) = ln(2/ζ0) − γ +O{ζ20}, (4.90)

where γ = 0.5772 is Euler’s constant. Hence,

Sdist � 4πe21e
2

mv2
ln

2ve−γ

ω0p0
(4.91)

in the limit of high speed. Addition of (4.91) to (4.87) yields

S = Sclose + Sdist =
4πe21e2

mv2
ln

2Cv
bω0

, (4.92)

after insertion of b, where C = 2 exp(−γ) = 1.1229. It is seen that p0 has
dropped out as expected. Thus we have found Bohr’s famous formula

S =
4πe21e

2

mv2
ln
Cmv3

|e1e|ω0
with C = 1.1229 (4.93)

for the stopping cross section of an electron bound by a harmonic force hit by
uniformly moving point charges. This is identical with (2.64) on page 45, yet
the constant C has now been assigned a definite numerical value.
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Fig. 4.3. Stopping number L, defined by (2.56), versus Bohr parameter ξ =
mv3/Z1e

2ω. Thick solid line: Straight evaluation of (4.94); contributions from close
and distant collisions included separately; thin solid line: Bohr logarithm (4.93);
dot-dashed line: Limiting impact parameter p0 in dimensionless units

Eqs. (4.87) and (4.91) are accurate for sufficiently high projectile speeds.
Now try to evaluate S without utilizing the asymptotic relations, i.e.,

S =
4πe21e

2

mv2

{
1
2

ln

[
1 +

(
2vζ0
bω0

)2
]

+ ζ0K0(ζ0)K1(ζ0)

}
(4.94)

with ζ0 denoting the intersection. The resulting expression,

S =
4πe21e

2

mv2
L

(
2v
ω0b

)
=

4πe21e
2

mv2
L

(
mv3

e1eω0

)
(4.95)

is shown in Fig. 4.3 together with Bohr’s asymptotic expression (4.93). As
was to be expected there is a systematic deviation at low projectile speeds,
but otherwise the two curves agree very well.

Basko (2005), in a recent numerical and analytical study, has demonstrated
a more complex behavior in the close-collision region. At low projectile speed,
when the Coulomb attraction by the projectile competes with the harmonic
binding force, the electron may be temporarily bound to the projectile6, with
drastic deviations from Rutherford-like scattering as a direct consequence.
6 In reality, a target electron may actually be captured by the projectile. Such

processes are important at sufficiently low projectile speed and will be discussed
in considerable detail in Volume II. In the present model, where electrons are
bound harmonically to their target sites, such permanent capture is precluded.
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This shows up as pronounced oscillations primarily in the energy loss versus
impact parameter but is also observed as a deviation from smooth behavior
of the stopping cross section as a function of projectile speed. Note, however,
that such singular behavior is tied to the neglect of the orbital motion of
target electrons. This simplification breaks down at low projectile speeds and
needs to be repaired by the shell correction which will be discussed in detail
in Sect. 6.6.

Relativistic Extension

Evaluation of the distant contribution to the stopping cross section from (4.28)
instead of (4.23) yields

Sdist =
4πe21e

2

mv2

(
ln
Cv

ω0p0
− ln

√
1 − v

2

c2
− v2

2c2

)
. (4.96)

This result, however, only accounts for the longitudinal (Coulomb) interaction.
At relativistic speeds also transverse interactions need to be accounted for.
This will be done in the context of quantum theory in Sect. 5.6.

From (3.27) we obtain the maximum energy transfer

Tmax = 2γ2
1mv

2 =
2mv2

1 − v2/c2 . (4.97)

The energy-loss function in the limit of negligible binding is identical with the
nonrelativistic expression when written in the form

T (p) =
2e21e

2

mv2p2
. (4.98)

This may be used to extract an effective lower limit for the impact parameter
p0 by requiring T (p0) = Tmax or

p0 =
e1e

γ1mv2
. (4.99)

After insertion into (4.96) one finds

S =
4πe21e

2

mv2

[
ln
Cmv3

e1eω0
− ln

(
1 − v

2

c2

)
− v2

2c2

]
. (4.100)

Comparison with (2.73) reveals the occurrence of a term −v2/2c2 from distant
interactions7.
7 Bohr (1948) quotes twice the value of this term from a classical calculation. While

this is in agreement with the quantal result (cf. below) the actual derivation in
Bohr (1915) discusses only the limit of distant collisions. The present result is
identical with the one quoted by Jackson (1975).
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4.5.2 Semiclassical Theory: Harmonic Oscillator

The range of validity of the semiclassical picture is not restricted to distant
collisions. Therefore, Tav(p) can be evaluated and integrated for all impact
parameters for any system for which the matrix elements Fj0(q) occurring in
(4.39) are available. While this is the case for atomic hydrogen (Bethe, 1930),
an even simpler system will be presented, the quantal harmonic oscillator,
which contains the essentials. We have seen that this system is highly relevant
in the limit of distant collisions. In the opposite limit, where details of atomic
binding are not expected to be of prime importance, this system incorporates
an amount of zero-point motion as well as the wave nature of a target electron.

Stationary states of a three-dimensional spherical harmonic oscillator are
readily evaluated in cartesian coordinates, where they factorize into one-
dimensional states so that |j〉 = |jx, jy, jz〉 = |jx〉|jy〉|jz〉. Therefore Fj0(q)
can be represented as a product of three factors of the form

〈jx|eiqxx|0〉 =
1√
jx!

⎛
⎝i

√
�q2x

2mω0

⎞
⎠
jx

e−�q2x/4mω0 . (4.101)

A derivation of this relation has been sketched in Appendix A.4.3. Eq. (4.101)
supplies the necessary input for an evaluation of T (p) on the basis of (4.39) and
(4.42). The results quoted here (Mikkelsen and Sigmund, 1987) were found
in practice by an alternate scheme, where the Fourier transform (4.15) of the
Coulomb potential has been replaced by another integral representation,

1
r

=
1√
π

∫ ∞

0

dη√
η

e−ηr2 (4.102)

which ensures rapid convergence of numerical integrations.
Figure 4.4 shows T (p) evaluated in this manner, compared with the clas-

sical result in the dipole limit (4.23), which is valid in the limit of large p.
Results are given for a wide range of velocities, expressed in terms of the
‘Bethe parameter’ 2mv2/�ω0. The two sets of curves agree well with each
other for βp � 1, i.e., at impact parameters exceeding the oscillator radius
1/β =

√
�/mω0. At smaller impact parameters an increasing fraction of elec-

tronic collisions must be close encounters which are not well characterized
by the dipole approximation. At the same time, electrons are distributed in
space and have a nonvanishing orbital speed. Specifically, for p = 0, Fig. 4.4
suggests a scaling behavior like

T (0) =
e21e

2ω0

�v2
g

(
2mv2

�ω0

)
, (4.103)

where g is an increasing function of the Bethe parameter. Regardless of the
detailed form of g, this scaling relationship does not predict the classical result
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Fig. 4.4. Impact-parameter dependence of mean energy transfer from a projectile
in uniform motion to a three-dimensional, spherical harmonic oscillator. Solid lines:
First Born approximation. Dashed lines: Classical limit, dipole approximation. La-
bels indicate the value of the Bethe parameter 2mv2/�ω0. The abscissa unit is the
oscillator radius (�/mω0)

1/2. From Mikkelsen and Sigmund (1987)

T (0) = 2mv2 for head-on collisions. On the other hand, the functional depen-
dence on impact parameter looks very much like that for classical Coulomb
scattering, (4.84). This suggests a behavior like

T (p) � 2e21e
2

mv2
1

p2 + (b′)2/4
(4.104)

near p = 0, which differs from the classical expression (4.84) only in the re-
placement of the collision diameter b by some parameter b′ which is to be
specified. If the product (�v2/e21e

2ω0)T (0) depends only on the Bethe param-
eter, then b′ must scale as �/mv, i.e., as the de Broglie wavelength λ̄. This is
reasonable, since for close collisions an impact parameter cannot be defined
to better than some length of the order of the de Broglie wavelength.

Replacement of b in (4.92) by b′ yields

S � 4πe21e
2

mv2
ln

2mv2

�ω0
(4.105)

as a rough approximation. This is Bethe’s formula, derived here for a harmonic
oscillator and as an estimate with rough numbers but correct scaling variables.
Such a derivation was sketched by Fermi (1950).
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4.5.3 Plane-Wave Born Approximation

Generalized Oscillator Strength

Consider the quantity Q defined by (4.54). If target electrons were free and
at rest initially, and if all momentum transfer in a collision were to go into
one target electron, then Q would be the electron energy after the collision
and could be compared with the classical energy transfer T in sect. 2. It
is illuminating to write the stopping cross section of an atom in the Born
approximation in the form

S =
∫
QdσR(Q)

∑
j

fj0(Q), (4.106)

where dσR(Q) is the free-Coulomb cross section for energy transfer Q. Sum-
mation and integration are limited subject to (4.83), and the functions

fj0(Q) =
1
Z2

εj − ε0
Q

∣∣Fj0(q)
∣∣2 (4.107)

are called ‘generalized oscillator strengths’. In the limit of small q these quan-
tities reduce to

fj0(Q)
∣∣∣∣
Q=0

= fj0 , (4.108)

where fj0 is a dipole oscillator strength as specified in (4.47). According to
(4.106) the generalized oscillator strengths account for quantum effects on the
stopping cross section.

Harmonic Oscillator

As in Sect. 4.5.2 a one-electron atom modelled by a harmonically bound elec-
tron will serve as an illustration of more general behavior. From (4.101) or
Appendix A.4.3 one finds the oscillator strengths

fj0(Q) =
1

(j − 1)!

(
Q

�ω0

)j−1

e−Q/�ω0 (4.109)

for j = 1, 2, . . .. This represents a Poisson distribution.
Figure 4.5 shows a three-dimensional plot of this distribution. It is seen

that in the limit of Q � �ω0 it is nonvanishing only on a very thin strip
surrounding the straight line Q = j�ω0, indicating that in hard collisions
the energy transfer becomes identical with the free-electron value Q and the
binding of the target electron becomes insignificant. The qualitative aspect of
this behavior cannot be unique for the oscillator potential: On the contrary,
the oscillator potential overestimates binding forces acting on a target electron
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Fig. 4.5. Generalized oscillator strengths for harmonic oscillator; j is the excitation
energy in multiples of �ω; q = Q/�ω.

at large momentum transfers. It may, therefore, safely be assumed that this
narrowing-in of the oscillator-strength spectrum at high momentum transfers,
called the ‘Bethe ridge’, is a general feature of all target atoms and molecules.
In the opposite limit of small Q, the oscillator strength is distributed over
a broad range of values of excitation levels j.

Insertion of (4.109) into (4.106) yields

S =
2πe21e2

mv2

∞∑
j=1

1
(j − 1)!

∫ ∞

j2/B

dt tj−2e−t, (4.110)

where B = 2mv2/�ω0 is the Bethe parameter. Eq. (4.110) has been evaluated
by numerical integration (Sigmund and Haagerup, 1986). Figure 4.6 shows the
stopping number L, defined in accordance with (2.56) for Z2 = 1 in a semilog-
arithmic plot versus the Bethe parameter. This graph can be compared to the
classical result shown in Fig. 4.3.

4.5.4 Bethe Stopping Formula

A general evaluation of (4.106) was presented by Bethe (1930) for a high-
speed projectile. The basic idea is very similar to Bohr’s classification into
close and distant interactions, but now the classification is done in momentum
rather than configuration space. Hence distant interactions correspond to low
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Fig. 4.6. Stopping number for quan-
tal harmonic oscillator in the first
Born approximation. Solid line: Exact
result; dashed line: Bethe logarithm.
From Sigmund and Haagerup (1986)

momentum transfers �q < �q0 and vice versa. For q < q0 or Q < Q0 the
dipole approximation is assumed to be valid.

The stopping integral then again splits into two parts. The low-Q contri-
bution reduces to

Sdist =
∑

j

fj0

∫ Q0

(εj−ε0)2/2mv2
Q dσR(Q), (4.111)

where the lower limit of integration stems from (4.83) for a heavy projectile.
For close interactions, on the other hand, Fig. 4.5 shows that fj0(Q) is

nonvanishing only around Q � εj − ε0. Insertion of Q = εj − ε0 into (4.83) for
m1 � m delivers an upper integration limit

Q < 2mv2 (4.112)

in agreement with the maximum energy transferrable to a free target electron
at rest. Hence,

Sclose =
∫ 2mv2

Q0

Q dσR(Q)
∑

j

fj0(Q). (4.113)

Unlike in (4.111) the summation over j is unlimited here. Therefore, ‘Bethe’s
sum rule’∑

j

fj0(Q) = 1, (4.114)

which is a straight generalization of the Thomas-Reiche-Kuhn sum rule (4.48)
can be applied. A proof of this important relationship is reproduced in Ap-
pendix A.4.4.

With this, (4.113) reduces to

Sclose =
∫ 2mv2

Q0

Q dσR(Q) ≡
∑

j

fj0

∫ 2mv2

Q0

Q dσR(Q), (4.115)
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where the last step involves (4.48) and has been performed to bring Sclose into
a form compatible with Sdist. The two then combine to

S = Sclose + Sdist =
∑

j

fj0

∫ 2mv2

(εj−ε0)2/2mv2
Q dσR(Q), (4.116)

where Q0 has dropped out.
Insertion of (2.47) for the free-Coulomb scattering cross section dσR(T )

yields

S =
4πe21e

2

mv2
Z2

∑
j

fj0 ln
2mv2

εj − ε0 , (4.117)

or

S =
4πe21e

2

mv2
Z2 ln

2mv2

I
(4.118)

for m1 � m, with the mean logarithmic excitation energy I defined by

ln I =
∑

j

fj0 ln(εj − ε0). (4.119)

Eq. (4.118) is commonly called the ‘Bethe stopping formula’, here in the ver-
sion for an ion or other projectile much heavier than an electron. Try to
recollect the assumptions entering this appealing relationship. It was assumed
that an interaction at Q = Q0 is distant enough so that the dipole approxima-
tion applies. For a harmonic oscillator this implies that Q0 must be � �ω0

according to (4.109). In addition, for the splitting of the integral to make
sense, Q0 must lie between the upper and lower bound on the integration,
(�ω0)2/2mv2 < Q0 < 2mv2. For the two conditions to be fulfilled simultane-
ously we must have

2mv2 � �ω0. (4.120)

This indicates that Bethe’s stopping formula is valid in the limit of high
projectile speeds compared to the electron speed in the target. Note that
the ion charge does not enter here. Therefore, the condition (4.120) can be
only indirectly related to the more fundamental requirement that first-order
perturbation theory be valid.

Electrons and Positrons

Equation (4.118) has been derived for a heavy projectile, i.e., form1 � m, the
electron mass. Consider now the case of m1 = m, i.e., a positron or electron
as a projectile. Disregarding exchange for a moment, go back to (4.83) which,
for m1 = m and εj − ε0 � mv2 reads
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(εj − ε0)2
2mv2

= Qmin < Q < 2mv2. (4.121)

Here, the lower limit is identical with the one for m1 � m. Moreover, recall
that according to Fig. 4.5, Q � εj − ε0 for large values of Q. Insertion of this
relation into (4.83) yields

Q <
1
2
mv2 = Qmax, (4.122)

i.e., the familiar result for the maximum energy transfer between equal masses.
This is more restrictive than the upper limit emerging from (4.121).

With this, we find∫ Qmax

Qmin

dQ
Q

= ln
(mv2)2

(εj − ε0)2 = 2 ln
mv2

εj − ε0 (4.123)

or

S =
4πe4

mv2
Z2 ln

mv2

I
. (4.124)

This applies for a positron. If the projectile is an electron, further modification
is necessary, cf. Sect. 2.6.

4.5.5 Mean Logarithmic Excitation Energy

Figure 4.7 shows a plot of I/Z2 for elements versus atomic number. Data
have been compiled on the basis of stopping measurements and from several
types of calculation. They represent the state of the art at the time of ap-
pearance of ICRU (1993). Extracting accurate I-values from measurements
involves several significant corrections to the Bethe formula (4.118), which will
be discussed in Chapter 6. Most useful is the observation that the quantity
I/Z2 � 10 eV is roughly constant over the periodic table. Such a scaling re-
lationship was predicted by Bloch (1933a) on the basis of the Thomas-Fermi
model of the atom which will be discussed in Chapter 7.

4.6 Discussion and Outlook

Three procedures have been employed in this chapter to estimate the stopping
cross section of an atom or molecule for a swift penetrating point charge.
Two of these procedures are based on a quantal description of the target
atom and differ only in the characterization of projectile motion by means
of a classical trajectory or an incident plane wave, respectively. They yield
very similar expressions for the stopping cross section8, and the quantitative
8 This feature is consistent with a more general observation made by Mott (1931).
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Fig. 4.7. Mean excitation energy of elements versus atomic number Z2. Recom-
mended values from ICRU (1993). Points and error bars based on experimental
data. Line based on interpolated values

difference is significant only when the projectile mass is not large compared to
the electron mass, i.e., most of all for penetrating electrons or positrons. Even
though Bohr’s purely classical formula (4.93) differs from Bethe’s, (4.118),
there are several similar features. Most of all, the energy-loss function at large
impact parameters reflects the behavior of an ensemble of classical harmonic
oscillators, cf. (4.23) and (4.49), a feature familiar from and related to the
theory of optical dispersion and absorption which is to be discussed in the
following chapter and Appendix A.5.

The most visible difference between Bohr’s and Bethe’s expressions is in
the arguments of the respective logarithms. It may be instructive to rewrite
them in the form

LBohr = ln
Cmv3

e1eω0
= ln

pmax

pmin
(4.125)

and

LBethe = ln
2mv2

�ω0
= ln

qmax

qmin
. (4.126)

Remembering that the two treatments coincide at large impact parameters p
or small momentum transfers �q we may identify

pmax � v

ω0
and qmin � ω0

v
. (4.127)

From this follows that
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pmin � e1e

mv2
=
b

2
and �qmax � 2mv . (4.128)

In Chapter 6 we shall have a look at the theory of Bloch (1933b) which
combines the two approaches.

A feature common to all treatments is the competition between contribu-
tions from close and distant interactions to the stopping force. The logarithmic
dependence indicates that neither regime can be neglected in the considered
velocity regime, regardless of the quantitative details. In Bethe’s estimate,
a most notable feature are two occurrences of 2mv2 under the logarithm, one
from the upper limit Qmax and one from the lower limit Qmin = (εj−ε0)/2mv2
in the Q-integration. This suggests the existence of some sort of equipartition
in momentum space which can be formulated more quantitatively, as is to
be discussed in Chapter 5. Conversely, Fig. 4.3 indicates a tendency for close
collisions to be increasingly dominating in the Bohr model with increasing
speed.

We may recall that two major approximations were applied in this chap-
ter, both of which geared toward high projectile speeds. One was first-order
perturbation theory: The Bethe theory is entirely perturbational, while (clas-
sical) perturbation theory was only applied to distant interactions in the Bohr
theory. Limitations of this model as well as necessary corrections form one of
the subjects of Chapter 6. In addition, the internal motion of target electrons
was ignored in the detailed evaluation, even though it is fully allowed for in
the expressions like (4.77) or (4.82) and was not ignored in the explicit evalu-
ation of the harmonic oscillator, Fig. 4.6. Deviations from the simple picture
are most pronounced for the most rapidly moving electrons, i.e., inner-shell
electrons. Necessary shell corrections will form another subject of Chapter 6.

The theory has so far addressed the interaction between a point charge
and an isolated target atom. To the extent that the range of interaction as ex-
pressed by the adiabatic radius (2.62) may amount to many atomic diameters,
corrections to this picture must be expected for dense (solid or liquid) matter
and for partially stripped ions. Such effects will be considered in Chapter 5
and Volume II, respectively.

Problems

4.1. From the Bohr theory for distant collisions, extract the momentum trans-
ferred parallel and perpendicular to the beam direction, and show that af-
ter the projectile has passed by, the electron moves on an elliptic trajectory
around the force center of the oscillator. Determine the principal axes of this
ellipse, the direction of rotation and the angular momentum of the electron.

4.2. In the Bohr model, the motion of the target electron during interaction
with and initiated by the projectile is ignored in distant collisions. Devise a
simple model to estimate the limitations of this assumption. From the final
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momentum transfer, determine the distance travelled by the electron during
the collision time by assuming uniform acceleration. [Hint: Assume constant
acceleration].

4.3. Make a plot of Bohr’s stopping formula (4.93) and determine expressions
for the position and value of the maximum of this curve.

4.4. Consider the distant interaction between a swift point charge and a clas-
sical electron which is bound anisotropically in a potential V (r) = m{ω2

0x
2 +

ω2
1(y

2+z2)}/2 with ω0 > ω1. Estimate the difference in the energy transferred
to the target electron when the projectile travels in the x and y direction, re-
spectively, but at the same impact parameter.

4.5. Consult a database accessible from your library for current tabulations
of atomic dipole oscillator strengths. Make a plot over a wide energy range
and identify the absorption edges of the K shell as well as other inner shells,
as far as available.

4.6. (�)9 Evaluate analytical expressions for the dipole oscillator strengths of
atomic hydrogen from the ground state to all excited discrete and continuum
states.

4.7. (�) Evaluate analytical expressions for the generalized oscillator strengths
between the ground state of atomic hydrogen and the 2s and the 2p level.
Check the limiting values in the dipole limit.

4.8. Derive (4.77) by means of time-dependent perturbation theory based on
the hamiltonian governing (4.58).

4.9. Repeat problem 4.3 replacing Bohr’s formula by Bethe’s formula (4.118).

4.10. (�) Try to evaluate the Thomas-Reiche-Kuhn sum rule on (4.48) the
basis of the Dirac equation instead of the Schrödinger equation. You will find
out that the result is 0 instead of 1. Try to identify the origin of the problem.
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5

Dielectric Stopping Theory

5.1 Introductory Comments

The theory presented so far considered the interaction between a projectile
and an isolated target atom or molecule as the elementary event. The outcome
of a sequence of individual events was assumed to be governed by Poisson
statistics. This appears appropriate for a dilute stopping medium such as
a neutral gas. In a dense medium such as a solid or liquid where target particles
interact with each other, complications occur. Firstly, the electric field acting
on the electrons in the medium may be affected by the presence of other
atoms, i.e., polarization effects may be significant. Secondly, the distribution
in space and time of distinct collision events may not follow Poisson statistics.
The present chapter addresses the first aspect.

For rough orientation consider the adiabatic radius aad = v/ω0 which
defines the range of interaction in electronic collisions and which increases
with increasing beam velocity and decreasing ω0. Thus one expects collective
effects to show up most pronouncedly for outer-shell electrons, in particular
for conduction electrons in metals. In atomic units we have

aad
a0

=
v

ω0a0
=
v

v0

e2/a0
�ω0

, (5.1)

where (e2/a0)/(�ω0) is of the order of ∼ 1 for outer electrons. A rough measure
of the internuclear distance in condensed matter is ∼ 2.5 Å∼ 5a0. Hence, for
v � v0, collective effects must be expected. This was first recognized by Swann
(1938).

A most dramatic manifestation of a collective effect in fast-particle pene-
tration is the Cherenkov radiation emitted by electrons moving with a velocity
exceeding the speed of light in the stopping medium. After its discovery by
Cherenkov (1934) the phenomenon was explained as resulting from electric
polarization of the medium by Frank and Tamm (1937) and Tamm (1939).
The connection to stopping theory was established by Fermi (1939, 1940) and
clarified by A. Bohr (1948), Halpern and Hall (1948) and others.

Although the intimate connection between optical dispersion and particle
stopping has been evident ever since the early studies by Bohr (1913, 1915),
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treating particle stopping as a polarization phenomenon in terms of Maxwell’s
equations was a genuinely new development in 1940, and precautions were
taken to limit this view to distant interactions where the dipole approximation
underlying all dispersion theory was valid.

An even more radical step in the same direction was taken by Lindhard
(1954) who demonstrated that all collisional stopping could be described
in terms of the electromagnetic field equations. The above precaution was
avoided by a suitable generalization of the dielectric constant which allowed
for fields varying rapidly not only in time but also in space. This involved
the introduction of a dielectric function ε(k, ω) depending on both wave num-
ber and frequency, whereas the classical Drude-Lorentz theory, designed to
describe the interaction of optical radiation with matter, only allowed for
frequency dependence1.

One purpose of this chapter is to reformulate stopping theory in terms of
this important concept and to explore some consequences. These include the
nonrelativistic and the relativistic density correction to the stopping force on
swift particles. As a byproduct we also obtain the relativistic extension of the
Bethe theory for a dilute medium. Other consequences, such as Cherenkov
radiation and wake effects, will be discussed in Volumes II and III.

In metals, due to the low binding forces on conduction electrons, collec-
tive phenomena must be expected to be noticeable even at moderate projectile
speeds. In fact, the term Lindhard function denotes the dielectric function of
a free-electron gas (Fermi gas). This function has found widespread applica-
tion as a tool in the description of the response of electrons to an external
perturbance (Smith, 1983). It is heavily used in particle stopping, and its use
is by no means restricted to metallic conduction electrons.

5.2 Electrodynamics

As long as we are not concerned with fluctuation phenomena, classical electro-
magnetic theory is an adequate tool to describe phenomena in dense media.

5.2.1 Field Equations in Vacuum

Let us start with Maxwell’s equations in vacuum. In gaussian units they
read

1 The notion of a dielectric function or a related quantity, dependent not only on
frequency but also on wave number, was developed at several places at the same
time. Lifshitz and Pitaevskii (1981) do not mention Lindhard but quote Klimon-
tovich and Silin (1952) for work that could well have resulted in the Lindhard
function and its application to stopping theory, if that had been one of the goals
of their work.
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∇ · E = 4πρe (5.2a)

∇ × E = −1
c

∂B

∂t
(5.2b)

∇ · B = 0 (5.2c)

∇ × B =
1
c

∂E

∂t
+

4π
c

Je, (5.2d)

cf. Jackson (1975), where ρe(r, t) and Je(r, t) denote charge and current den-
sity, respectively, which satisfy the continuity equation

∇ · Je +
∂ρe
∂t

= 0. (5.3)

If we express the fields in terms of electromagnetic potentials A and Φ,

E(r, t) = −∇Φ(r, t) − 1
c

∂A(r, t)
∂t

(5.4a)

B(r, t) = ∇ × A(r, t) (5.4b)

and adopt the Coulomb gauge

∇ · A = 0, (5.5)

the field equations reduce to

∇2Φ = −4πρe (5.6a)

∇2A − 1
c2
∂2A

∂t2
− 1
c
∇∂Φ
∂t

= −4π
c

Je. (5.6b)

We may write

ρe(r, t) =
∫

d3k

∫
dω ρe(k, ω) ei(k · r − ωt), (5.7)

and similarly for Je(r, t) and the fields. This yields field equations in Fourier
space

k2Φ(k, ω) = 4πρe(k, ω) (5.8a)(
k2 − ω

2

c2

)
A(k, ω) +

ω

c
kΦ(k, ω) =

4π
c

Je(k, ω). (5.8b)

We may split the current density Je(k, ω) into a longitudinal part Je,l parallel
to k and a transverse part Je,t perpendicular to k. Noting that k ·A(k, ω) =
0 in view of (5.5), we may split (5.8b) into its longitudinal and transverse
components,

ω

c
kΦ(k, ω) =

4π
c

Je,l(k, ω) (5.9a)(
k2 − ω

2

c2

)
A(k, ω) =

4π
c

Je,t(k, ω), (5.9b)
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while the continuity equation (5.3) reduces to

k · Je,l(k, ω) − ωρe(k, ω) = 0. (5.10)

5.2.2 Linear Response

In a material medium we may split charge and current densities into external
and induced contributions,

ρe = ρe,ext + ρe,ind (5.11a)
Je = Je,ext + Je,ind, (5.11b)

where ρe,ind and Je,ind reflect the response of the medium to the field. As-
suming linear response we may adopt Ohm’s law and write

Jeind,l(k, ω) = σl(k, ω)El = −ikσl(k, ω)Φ(k, ω) (5.12a)

Jeind,t(k, ω) = σt(k, ω)Et = i
ω

c
σt(k, ω)A(k, ω), (5.12b)

where σl(k, ω) and σt(k, ω) reflect complex conductivities depending on wave
number and frequency, assuming the medium to be isotropic, infinite and
homogeneous2.

From (5.9b) and (5.12b) we find

ω

c
k

(
1 +

4πiσl(k, ω)
ω

)
Φ(k, ω) =

4π
c

Jeext,l(k, ω) (5.13a)[
k2 − ω

2

c2

(
1 +

4πiσt(k, ω)
ω

)]
A(k, ω) =

4π
c

Jeext,t(k, ω) (5.13b)

Multiplying (5.13a) by k and making use of the continuity equation for exter-
nal charge and current,

k · Jeext,l − ωρe,ext = 0, (5.14)

we may rewrite (5.13a) in the form

k2

(
1 +

4πiσl(k, ω)
ω

)
Φ(k, ω) = 4πρeext(k, ω). (5.15)

After introduction of the dielectric function

εl(k, ω) = 1 +
4πiσl(k, ω)

ω
(5.16)

2 The case of anisotropic media, which is of importance in plasma physics, has been
discussed in detail by Alexandrov et al. (1984).
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this reduces to

k2Φ(k, ω) = 4π
(
ρeext(k, ω) − (εl(k, ω) − 1)

k2

4π
Φ(k, ω)

)
. (5.17)

This relation must be identical with (5.8a). Hence, the second quantity in the
brackets must be the induced charge density,

ρeind(k, ω) = − k
2

4π
[εl(k, ω) − 1]Φ(k, ω), (5.18)

at the same time as (5.8a) takes on the familiar form

k2εl(k, ω)Φ(k, ω) = 4πρeext(k, ω). (5.19)

In order to unify the notation, also a transverse dielectric function εt(k, ω) is
introduced,

εt(k, ω) = 1 +
4πiσt(k, ω)

ω
. (5.20)

With this, (5.13b) reads(
k2 − ω

2

c2
εt(k, ω)

)
A(k, ω) =

4π
c

Jeext,t(k, ω). (5.21)

5.2.3 Connection to Stopping Force

Consider a point charge e1 in uniform motion with a velocity v so that

ρe,ext(r, t) = e1δ(r − vt). (5.22)

In Fourier space this reads

ρe,ext(k, ω) =
e1

(2π)3
δ(ω − k · v) (5.23)

and, correspondingly,

Je,ext(k, ω) =
e1

(2π)3
v δ(ω − k · v). (5.24)

We may then determine

Jeext,t = Je,ext − k

k

(
k

k
· Je,ext

)
. (5.25)

The electric field is given by

E(r, t) =
∫

d3k

∫
dωei(k·r−ωt)

(
−ik · Φ(k, ω) + i

ω

c
A(k, ω)

)
. (5.26)
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The force on the projectile reads

F = e1E(vt, t). (5.27)

In a homogeneous, isotropic and infinite medium, the stopping force is directed
opposite to the velocity v. Hence, the energy-loss function must be given by

−dE
dx

= −e1
v

v · E(v, t). (5.28)

Insertion of the potentials (5.19) and (5.21) and, subsequently, (5.23) and
(5.25) yields

− dE
dx

=
ie21

2π2v

∫
d3k

k2
(k · v)

(
1

εl(k, ω)

−v
2

c2
k2 − (k · v)2/v2

k2 − εt(k, ω)(k · v)2/c2

)
. (5.29)

The integration is conveniently performed in terms of spherical coordinates.
Setting ω = kv cos θ (θ being the polar angle) one finds

− dE
dx

=
ie21
πv2

∫ ∞

0

dk
k

∫ kv

−kv

dω ω
(

1
εl(k, ω)

−v
2

c2
k2 − ω2/v2

k2 − εt(k, ω)ω2/c2

)
. (5.30)

Evidently, the second term in the parentheses, which originates in the vector
potential, i.e., transverse interaction, becomes significant only at relativistic
velocities.

In the special case where εt = εl ≡ ε, the longitudinal and transverse terms
add up to

−dE
dx

=
ie21
πv2

∫ ∞

0

k dk
∫ kv

−kv

ωdω
1/ε− v2/c2
k2 − εω2/c2

. (5.31)

5.3 Gaseous Medium

In the present section we shall establish a link between Bethe stopping theory
and the dielectric description outlined in the previous section. As a by-product
we shall also arrive at the relativistic extension of the Bethe theory.

The stopping material will be considered as being made up by individual
atoms whose electron clouds do not overlap significantly. Nevertheless, charges
induced by the projectile may cause the local field to deviate from the external
Coulomb field and hence modify the stopping force.
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5.3.1 Dielectric Function

Consider an atom with a nucleus located in a fixed point R such that its
electronic states |j〉 can be characterized by wave functions ψj(r − R). We
shall need the matrix elements

〈j|eik·r|0〉 =
∫

d3rψ�
j (r − R) eik·r ψ0(r − R) = eik·RFj0(k), (5.32)

where

Fj0(k) =
∫

d3rψ�
j (r) eik·r ψ0(r). (5.33)

The effect of an arbitrary electric field, specified by a potential Φ(k, ω), on
an individual electron may be treated within first-order perturbation theory,
(4.35-4.37) with

〈j|V(r, t)|0〉 = −e
∫

d3k

∫
dω Φ(k, ω)eik·RFj0(k)e−iωt (5.34)

so that

c(1) =
e

�

∫
d3k

∫
dω Φ(k, ω) eik·RFj0(k)

ei(ωj0−ω)t

ωj0 − ω − iΓ
. (5.35)

Here an infinitesimal positive damping constant Γ has been introduced in
order to ensure causality or, in other words, to define the behavior near the
singularities in the complex ω plane. In principle, this step reflects the physical
requirement that the electron be in its ground state at time t = −∞. As
discussed in Appendix A.5.1 such a requirement may be imposed either on
the electronic states or on the field. In the latter case the interaction potential
is amended by a factor exp(Γt).

The electron density |Ψ |2 may be found from (4.35). We then obtain the
induced charge density

ρe,ind(r, t) = −e
(
ψ(0)�(r, t)ψ(1)(r, t) + ψ(0)(r, t)ψ(1)�(r, t)

)
(5.36)

to first order in Φ, or

ρe,ind(r, t) = −e
2

�

∑
j

(
ψ�

0(r − R)ψj(r − R)
∫

d3k

∫
dω Φ(k, ω)

eik·R Fj0(k)
e−iωt

ωj0 − ω − iΓ
+ complex conjugate

)
(5.37)

for a single electron.
Consider now a medium with N one-electron atoms per volume distributed

randomly in space. There will then be a density of polarization charge
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ρepol(r, t) = N
∫

d3R ρe,ind(r, t). (5.38)

Noting that∫
d3Rψ�

0(r − R)ψj(r − R) eik·R = eik·r F0j(−k) (5.39)

similar to (5.32) we find

ρepol(k, ω) = −Ne
2

�
Φ(k, ω)

∑
j

F0j(−k)Fj0(k)
ωj0 − ω − iΓ

− Ne
2

�
Φ(k, ω)

∑
j

F0j(k)Fj0(−k)
ωj0 + ω + iΓ

, (5.40)

where use has been made of the relation

Φ�(k, ω) = Φ(−k,−ω), (5.41)

which ensures that the potential Φ(r, t) be real.
For an isotropic medium any explicit directional dependence of |F0j(k)|2

drops out upon summation over j. Then (5.18) leads to

εl(k, ω) = 1 +
mω2

P

�k2

∑
j

∣∣Fj0(k)
∣∣2

×
(

1
ωj0 − ω − iΓ

+
1

ωj0 + ω + iΓ

)
, (5.42)

where

ωP =

√
4πNe2

m
(5.43)

is the plasma frequency for a system with N electrons per volume.

5.3.2 Bethe Stopping Formula

The atomic model employed in the above derivation is identical with the one
adopted in Bethe theory in Sect. 4.5.4. Therefore, Bethe stopping theory must
emerge from the present description in the limit of low target density, i.e., in
the limit of low plasma frequency ωP.

At nonrelativistic velocities the second term in (5.30) may be disregarded.
Expansion of 1/εl(k, ω) up to first order in N yields

1
εl(k, ω)

� 1 − mω
2
P

�k2

∑
j

|Fj0(k)|2

×
(

1
ωj0 − ω − iΓ

+
1

ωj0 + ω + iΓ

)
. (5.44)
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The integrations can be evaluated by means of the following useful formula,
valid for real x,

1
x− a+ iΓ

∣∣∣∣
Γ→0

= P
1

x− a − iπδ(x− a), (5.45)

which the reader may verify by solving problem 5.3. Here, P indicates the
Cauchy principal value. According to (5.30) only the imaginary part is of
interest in the present connection since −dE/dxmust be real. Hence, insertion
of (5.45) into (5.44) yields

Re
(

i
εl(k, ω)

)
=
πmω2

P

�k2

∑
j

|Fj0(k)|2 [δ(ω − ωj0) − δ(ω + ωj0)] (5.46)

and, after insertion into (5.30) and integration over ω,

dE
dx

= −2e21mω
2
P

�v2

∑
j

ωj0

∫
kv>ωj0

dk
k3

∣∣Fj0(k)
∣∣2. (5.47)

Substitution of

Q = �
2k2/2m (5.48)

yields

−dE
dx

=
2πe21e

2N

mv2

∑
j

�ωj0

∫
Q>(�ωj0)2/2mv2

dQ
Q2

∣∣Fj0(k)
∣∣2, (5.49)

in agreement with (4.55) and (4.56).
It is left to the reader to get convinced of the equivalence of the physical

input in the two derivations of the Bethe formula (problem 5.2). Note in
particular that the present derivation did not invoke cross sections.

Eq. (5.47) suggests �ω to represent the energy transfer in an individual
event, but this requires, strictly speaking, a mapping of the integration interval
in (5.30) on the interval 0 < ω < kv. It also follows from the occurrence of
|Fj0(k)|2 in (5.44) that �k must represent the associated momentum transfer.

5.3.3 Nonrelativistic Density Effect

We may introduce an electric susceptibility χ(k, ω) in accordance with the
common definition

εl(k, ω) = 1 + 4πχ(k, ω) (5.50)
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in gaussian units. In the previous section we have approximated

1
εl(k, ω)

� 1 − 4πχ(k, ω). (5.51)

The difference between the exact expression and the expression for a dilute
medium,

1
εl(k, ω)

− 1
εl(k, ω)

∣∣∣∣
dilute

=
(4πχ(k, ω))2

1 + 4πχ(k, ω)
≡ (εl(k, ω) − 1)2

εl(k, ω)
(5.52)

yields the density correction

∆
(

dE
dx

)
density

=
e21
πv2

i
∫ ∞

0

dk
k

∫ kv

−kv

dω ω
(εl(k, ω) − 1)2

εl(k, ω)
. (5.53)

We may expect that close collisions are not affected noticeably by the density
correction. Therefore, (5.53) should be insensitive to the behavior of the dielec-
tric function at large wave numbers. As a simple example take the standard
Drude function for a single resonance frequency ω0 (Jackson, 1975),

εl(ω) = 1 +
ω2

P

ω2
0 − ω2 − iωΓ

. (5.54)

We now find

i
(

1
εl(0, ω)

− 1
)

= −i
ω2

P

ω2
0 + ω2

P − (ω + iΓ )2

= −πω
2
P

2α0

[
δ(ω − α0) − δ(ω + α0)

]
(5.55)

with

α2
0 = ω2

0 + ω2
P (5.56)

we may carry out the integrations in (5.53), imposing some upper limit kmax

in the k-integral. The result is

∆
(
−dE

dx

)
= −e

2
1ω

2
P

v2
ln

√
ω2

0 + ω2
P

ωP
=

4πe21e
2Z2N

mv2
ln

ωP√
ω2

0 + ω2
P

, (5.57)

where the electron density now has been set to n = Z2N , allowing for Z2

electrons per target atom3.
3 In this and the following chapter, the reader will notice an occasional swith be-

tween n = N and n = Z2N electrons per volume, dependent on whether a cal-
culation is performed for an electron gas, a medium with one-electron atoms or
a medium with Z2-electron atoms. Ambiguities because of this can be avoided by
remembering

– that the stopping number L always refers to a single target electron, and
– that the factor in front of the stopping number always refers to the actual number

of electrons per volume, n = NZ2.
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This is a very plausible result: It implies that ω0 in the Bohr or Bethe
logarithm needs to be replaced by the shifted resonance frequency α0 =√
ω2

0 + ω2
P.

5.4 Static Electron Gas

A particularly instructive example is a static electron gas, i.e., a system of
independent Hartree electrons within a periodicity volume V. The Pauli prin-
ciple being ignored, the ground state of the system is a state for which all
electrons are at rest.

5.4.1 Dielectric Function

With the wave functions4

|j〉 =
1√
V

eikjr (5.58)

(5.33) reduces to

Fj0(k) = δkjk, (5.59)

where the right-hand side represents a three-dimensional Kronecker symbol
and the wave vectors kj form a discrete set determined by the boundaries of
the electron gas enclosed into a volume V. Then, (5.42) reads

εl(k, ω) = 1 +
mω2

P

�k2

(
1

ωk − ω − iΓ
+

1
ωk + ω + iΓ

)

= 1 +
ω2

P

ω2
k − (ω + iΓ )2

, (5.60)

where

ωk =
�k2

2m
. (5.61)

This particularly useful model function was first derived by Lindhard (1954).
The difference to the well-known Drude-Lorentz function for a harmonic os-
cillator (Jackson, 1975) is the replacement of the resonance frequency ω0 of
the oscillator by the single-particle excitation frequency ωk.

4 The use of this particular form of free-electron wave functions will be motivated
in sect. 5.7.1.
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5.4.2 Relativistic Extension (�)

In the relativistic regime, scalar wave functions need to be replaced by spinors.
A brief summary of Dirac theory is presented in appendix A.4.5.

Instead of (5.58), a plane wave representing an electron with a momentum
�k may be represented by one of four spinors,

|jν〉 =
1√
V

eikjru(ν)(kj), ν = 1 . . . 4 (5.62)

with

u(1)(k) = Bk

⎛
⎜⎜⎝

1
0
kzbk
k+bk

⎞
⎟⎟⎠ ;u(2)(k) = Bk

⎛
⎜⎜⎝

0
1
k−bk
−kzbk

⎞
⎟⎟⎠ ; (5.63a)

u(3)(k) = Bk

⎛
⎜⎜⎝

−kzbk
−k+bk

1
0

⎞
⎟⎟⎠ ;u(4)(k) = Bk

⎛
⎜⎜⎝

−k−bk
kzbk

0
1

⎞
⎟⎟⎠ , (5.63b)

where

k± = kx ± iky, (5.64)

bk =
�c

Ek +mc2
, (5.65)

Ek =
√

(�kc)2 + (mc2)2, (5.66)

and

Bk =

√
Ek +mc2

2Ek
. (5.67)

With the choice

|0〉 =
1√
V
u(1)(0) (5.68)

we find the following generalization of (5.59),

Fjν0(k) = δkjν kBkc
(ν), (5.69)

where

c(1) = 1; c(2) = 0; c(3) = −bkkz; c(4) = −bkk−. (5.70)
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The remaining calculation proceeds in complete analogy to the nonrelativistic
case and yields

εl(k, ω) = 1 +
mω2

P

�k2
B2

k

(
1

ω+
k − ω − iΓ

+
1

ω+
k + ω + iΓ

+
(bkk)2

ω−
k − ω − iΓ

+
(bkk)2

ω−
k + ω + iΓ

)
(5.71)

as the extension of (5.60), where

�ω+
k = Ek −mc2; �ω−

k = −Ek −mc2. (5.72)

This notation indicates that �ω+
k represents the excitation energy of a positive-

energy state and approaches �ωk, (5.61), in the nonrelativistic limit, while �ω−
k

represents excitation of a negative-energy state. The two terms containing �ω−
k

vanish in the nonrelativistic limit.
Equation (5.71) can be compacted to

εl(k, ω) = 1+

+
ω2

P

ω2
k − (1 + �ωk/mc2)(ω + iΓ )2 + �2(ω + iΓ )4/(2mc2)2

. (5.73)

In this form it was given by Lindhard (1954), who also found the same ex-
pression for the transverse dielectric function εt(k, ω).

5.4.3 Stopping Force

In order to appreciate the content of (5.60) consider the expression entering
the first part of (5.30),

Re
(

i
1

εl(k, ω)

)
= −Re

(
i

ω2
P

ω2
k + ω2

P − (ω + iΓ )2

)

= −πω
2
P

2αk

[
δ(ω − αk) − δ(ω + αk)

]
(5.74)

with

α2
k = ω2

k + ω2
P, (5.75)

where the relation (5.45) has been utilized.
The occurrence of the Dirac functions in (5.74) implies that energy is trans-

ferred in resonant processes. Indeed, it reveals a unique relationship between
energy and momentum transfer,

(�ω)2 = (�ωP)2 +
(

(�k)2

2m

)2

. (5.76)
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This dispersion relation (Fig. 5.1) reflects properties of the medium inde-
pendent of the external penetrating charge. In the limit of large momentum
transfers �k it reduces to the dispersion relation for individual free electrons,
�ω = �

2k2/2m. In the opposite limit of small k one finds �ω � �ωP, corre-
sponding to a collective excitation similar to a standing wave oscillating with
the classical plasma frequency ωP.

Fig. 5.1. Dispersion for static electron gas, (5.76). Dotted and dot-dashed lines
represent the limiting behavior at small and large wave numbers, respectively. The
horizontal line represents the minimum phase velocity

(
ω/k

)
min

=
√

�ωP/m . The
vertical line separates collective from single-particle-like excitations

Integration of (5.30) yields

dE
dx

= −e
2
1ω

2
P

v2

∫
αk<kv

dk
k

= −e
2
1ω

2
P

2v2

∫
ω2

k+ω2
P<2mv2ωk/�

dωk

ωk

= −e
2
1ω

2
P

2v2
ln

(
ζ +

√
ζ2 − 1

ζ −
√
ζ2 − 1

)
= −4πNe21e

2

mv2
cosh−1 ζ (5.77)

where

ζ =
mv2

�ωP
. (5.78)

For ζ � 1 we have cosh−1 ζ ∼ ln 2ζ = ln(2mv2/�ωP). Thus Bethe’s asymp-
totic formula is retained with �ωP taking the role of the mean excitation
energy (Kramers, 1947, Lindhard, 1954).
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From the asymptotic expansion of the inverse hyperbolic cosine for large
arguments (Abramowitz and Stegun, 1964) one finds

dE
dx

= −4πNe21e
2

mv2

[
ln
(

2mv2

�ωP

)
−
(

�ωP

2mv2

)2

− 3
2

(
�ωP

2mv2

)4

. . .

]
(5.79)

for 2mv2 � �ωP. We shall meet expansions of this type again in Chapter 6.

Relativistic Extension (�)

As is obvious from (5.73), the relativistic treatment of the static electron gas
lacks the analytical convenience of the nonrelativistic version (5.60).

For the longitudinal interaction, the integrations can be carried out in
closed form, but the result is not particularly enlightening and will not be
quoted here. However, it will usually make sense to assume that

�ωP

2mc2
� 1, (5.80)

so that a Taylor expansion in terms of this parameter becomes meaningful.
When this is done, the longitudinal contribution reduces to

dE
dx

= −4πNe21e
2

mv2
ln
(

2mv2

�ωP

)
, (5.81)

consistent with (5.79).
For the transverse interaction, the denominator in the integrand becomes

a third-order polynomial in ω2, i.e., approximative steps become necessary al-
ready in the beginning. One may then treat long- and short-range interactions
separately. Results of such a treatment will emerge in more general form in
Sect. 5.6.

5.4.4 Oscillator Strength, Equipartition Rule
and Differential Cross Section

The integral in (5.77) has the bounds

ωk,min < ωk < ωk,max (5.82)

with

ωk,max,min =
mv2

�
±
√(

mv2

�

)2

− ω2
P. (5.83)

You may verify, by splitting the integration leading to (5.77) into two intervals
(ωk,min, ωP) and (ωP, ωk,max), that these two intervals contribute equally to
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the integral. At the same time, the point ωk = ωP corresponds to the mini-
mum in the dispersion curve shown in Fig. 5.1. Thus, the stopping force of
the static electron gas receives exactly equal contributions from the left and
right branches of the dispersion curve shown in the figure, representing col-
lective and single-electron-like excitations, respectively. This is a special case
of a more general equipartition theorem (Lindhard and Winther, 1964).

Noting the equivalence5 of �ω with the excitation energy εj − ε0 in the
Bethe theory, we may compare the stopping cross section in the Bethe theory
with (5.30) to find the quantity equivalent with the generalized oscillator
strength defined in (4.107),

∑
j

fj(Q) · · · → 1
2

∫
dω [δ(ω − αk) + δ(ω + αk)] . . . . (5.84)

This shows that the curve depicted in Fig. 5.1 represents the region in k, ω
space where the generalized oscillator strength is nonvanishing. Evidently,
Bethe’s sum rule

∑
j fj(Q) = 1 is satisfied.

Go back for a moment to the evaluation of the stopping force, (5.30) for
the dielectric function of the static electron gas, (5.60), but interchange the
order of integrations. This can be accomplished by insertion of (5.74) and
substitution of αk for k. The result may be written in the form

dE
dx

= −e
2
1ω

2
P

2v2

∫ ωmax

ωmin

d(�ω)(�ω)
1

(�ω)2 − (�ωP)2
(5.85)

with

(�ωmax,min)
2 = (�ωP)2 +

(
mv2 ±

√
(mv2)2 − (�ωP)2

)2

. (5.86)

While the integration over ω leads back to (5.77) as it should, we also have
the option of interpreting (5.85) as an integral over a differential cross section
equivalent with (2.29), so that

dσ(T ) =
2πe21e2

mv2
dT

T 2 − (�ωP)2
(5.87)

for �ωmin < T < �ωmax. This interpretation is evidently not unique since no
assumptions about statistics have entered the theory here. However, dσ(T )
is seen to reduce to Rutherford’s law in the limit of ωP = 0. For nonvanish-
ing density N , energy is transferred only if the projectile speed exceeds the
threshold defined by mv2 ≥ �ωp. In the limit of high speed the excitation
spectrum is limited by �ωP < T < 2mv2.

5 Regarding the sign of ω see the remark on page 149.
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5.4.5 Plasmon-Pole Approximation (�)

In the plasmon-pole approximation (Lundqvist, 1967b,a), equation (5.60) is
generalized to

εl(k, ω) = 1 +
ω2

P

ω2
k + 2ω1ωk − (ω + iΓ )2

, (5.88)

where ω1 is a free parameter that can be chosen to match deviations from the
free-electron picture due to band structure or the like.

Evaluation of the stopping force proceeds as in Sect. 5.4.3 and reproduces
(5.77), but now with

ζ =
mv2 − �ω1

�ωP
. (5.89)

5.5 Assembly of Harmonic Oscillators (�)

As another example of limited complexity consider a dense gas of ‘harmonic-
oscillator atoms’ characterized by a resonance frequency ω0. This is a specific
application of Sect. 5.3. Therefore, keep in mind that possible overlap between
individual oscillators has been ignored.

5.5.1 Dielectric Function

Matrix elements may be determined from (4.101), and sums over directionally
degenerate states may be carried out by use of the binomial theorem. Then,
(5.42) reduces to

εl(k, ω) = 1 +
mω2

P

�k2
e−ωk/ω0

∞∑
j=1

1
j!

(
ωk

ω0

)j

×
(

1
jω0 − ω − iΓ

+
1

jω0 + ω + iΓ

)
(5.90)

or, in terms of Kummer’s function (Abramowitz and Stegun, 1964, p. 504),

εl(k, ω) = 1 +
mω2

P

�k2

1
ω + iΓ

×
{
M

(
1, 1 +

ω + iΓ
ω0

,−ωk

ω0

)
−M

(
1, 1 − ω + iΓ

ω0
,−ωk

ω0

)}
. (5.91)

These results were derived by Belkacem and Sigmund (1990). It is readily
verified that εl(k, ω) approaches the free-electron expression (5.60) in the limit
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of ω0 = 0 and the classical Drude-Lorentz expression (A.215) in the limit of
� = 0 or k = 0.

It is seen from (5.90) that the dielectric function has simple poles at ω =
±jω0. This implies that ε must vanish at some point in each interval νω0 <
ω < (ν+1)ω0 with ν = −∞ . . .∞, the accurate position depending on density
N and wave number k.

Fig. 5.2. Differential energy loss cross section for gas of harmonic-oscillator atoms.
ω2

P/ω2
0 = 10 and 2mv2/�α0 = 10, with α0 = (ω2

0 + ω2
P)1/2. From Belkacem and

Sigmund (1990)

5.5.2 Excitation Spectrum

Following the argument that led to the differential cross section (5.87) above,
we may again extract a differential cross section for energy transfer �ωj0 in
a single event. Negative values of �ω need to be mapped on the positive axis
by a simple symmetry transformation. This yields

dσ(�ω)
d(�ω)

=
ie21

π�2nv2

∫ ∞

ω/v

dk
k

(
1

εl(k, ω)
− 1
εl(k,−ω)

)
, (5.92)

leaving out the transverse contribution.
Figure 5.2 shows the differential cross section following from (5.91) and

(5.92) for an oscillator gas of fairly high density, ω2
P/ω

2
0 = 10 at a moderately

high projectile speed, 2mv2/�
√
ω2

0 + ω2
P = 10. At low density n, the cross

section would have sharp maxima at integer values of ω/ω0. It is seen that
the excitation levels get somewhat smeared, but despite high electron density
the discrete structure of the excitations is still clearly visible. It is also seen
that the integral over the broadened oscillator levels ω � νω0, ν = 1, 2, . . .
reaches a maximum at ν = 3 corresponding to ω ∼ ωP and decreases for large
excitation levels ν.
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Fig. 5.3. Stopping number for static electron gas (thin line) and harmonic-oscillator
gas at three densities corresponding to ω2

P/ω2
0 = 0.05, 0.5, 5. From Belkacem and

Sigmund (1990)

5.5.3 Stopping Force

Figure 5.3 shows stopping numbers, defined by (2.56), computed from this
model for three densities, compared with the prediction for the static elec-
tron gas (5.77). Classical dispersion theory predicts a resonance frequency√
ω2

0 + ω2
P, cf. (5.56). Therefore this frequency has been inserted as the per-

tinent resonance frequency in the expression of the Bethe parameter defining
the abscissa variable. The result shows satisfactory scaling for three finite val-
ues of ω2

P/ω
2
0. The case of a free static electron gas where ω2

P/ω
2
0 = ∞ does

not obey this scaling property.

5.6 Relativistic Bethe Stopping Theory (�)

We are now well equipped to extend the Bethe stopping formula, derived first
in Sect. 4.5.4 and rederived in Sect. 5.3.2, into the relativistic regime.

5.6.1 Regimes of Momentum Transfer

Two major features deserve attention,

– The transverse contribution to the stopping force (5.30) cannot be ne-
glected, and

– Relativistic expressions are to be used for the dielectric function when the
momentum transfer reaches the relativistic regime.

This suggests a division of the transferred-momentum space into three instead
of only two intervals,
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1. A low-Q regime, 0 < Q < Q0, in which the dipole approximation is
expected to apply, just as in Sect. 4.5.4,

2. An intermediate-Q regime, Q0 < Q < Q1, within which nonrelativistic
dynamics remains valid, and

3. A high-Q regime, Q > Q1, where electrons are excited into the relativistic
regime6.

It is emphasized that the fundamental relation (5.30), which follows from
Maxwell’s equations and the definitions of charge and current density in the
laboratory frame of reference, remains valid. This immediately implies that
the contribution of the longitudinal field to the stopping force, presented in
section 5.3.2, remains valid as far as regions 1 and 2 are concerned. The only
modification here is the replacement of the upper limit Qmax by Q1. What
remains to be done, then, is

– To evaluate the contribution from the transverse field for 0 < Q < Q1 and
– To evaluate both the longitudinal and the transverse contribution for Q >
Q1.

5.6.2 Transverse Field: Low Momentum Transfers

To compute the contribution from transverse excitations to the stopping force
(5.30), the procedure applied in Sect. 5.3.2 yields

−dE
dx

∣∣∣∣
trans

=
2πe21e

2n

mv2

∑
j

�ωj0

∫
Q>(�ωj0)2/2mv2

dQ
Q2

× ∣∣Fj0(k)
∣∣2 2mv2Q/(�ωj0)2 − 1

[2mc2Q/(�ωj0)2 − 1]2
. (5.93)

Figure 5.4 shows the weight factor

wtrans =
2mv2Q/(�ωj0)2 − 1

(2mc2Q/(�ωj0)2 − 1)2
(5.94)

determining the contribution of the transverse field under the stopping integral
with the corresponding factor wlong ≡ 1 in the longitudinal contribution. It
is seen that up to β = v/c = 0.4, wtrans/wlong < 0.01 for all values of Q.
Even for β = v/c = 0.9, wtrans < wlong everywhere, but for higher speeds, the
transverse contribution becomes exceedingly important.

Now, substituting

fj0(Q) =
1
Z2

�ωj0

Q
|Fj0(k)|2 (5.95)

6 We shall here keep to the definition (4.54) or (5.48) for Q. This notation differs
from Fano (1963) who defines Q as the kinetic energy of a free electron.
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Fig. 5.4. Weight factor wtrans, (5.94) entering the transverse contribution to the
stopping force, compared to the corresponding quantity wlong ≡ 1 in the longitu-
dinal contribution. Curves for v/c approaching 1 are drawn for illustration only.
Relativistic expressions need to be used there

in accordance with (4.107), we find

− dE
dx

∣∣∣∣
trans,Q<Q1

=
2πe21e

2Z2N

mv2

∑
j

∫ Q1

(�ωj0)2/2mv2

dQ
Q
fj0(Q)

× 2mv2Q/(�ωj0)2 − 1
[2mc2Q/(�ωj0)2 − 1]2

(5.96)

from (5.49) and (5.93).
Consider first the low-Q case,

(�ωj0)2

2mv2
< Q < Q0, (5.97)

where the dipole approximation is taken to be valid. We may then take
fj0(Q) � fj0(0) ≡ fj0 out of the integral. Introducing the integration variable

ηj =
2mv2

(�ωj0)2
Q (5.98)

we find

− dE
dx

∣∣∣∣
trans,Q<Q0

=
2πe21e2Z2N

mv2

∑
j

fj0

∫ η0j

1

dηj
ηj

ηj − 1
[ηjc2/v2 − 1]2

, (5.99)
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where

η0j =
2mv2

(�ωj0)2
Q0. (5.100)

The integral can be carried out and leads to

− dE
dx

∣∣∣∣
trans,Q<Q0

=
2πe21e

2Z2N

mv2

∑
j

fj0

[
− ln(1 − β2) − β2

+ ln
(

1 − β2

η0j

)
+
β2(1 − β2)
η0j − β2

]
. (5.101)

Now, making use of the initial assumption that

Q0 � (�ωj0)2

2mv2
, (5.102)

i.e.,

η0j � 1, (5.103)

and applying the sum rule (4.114) reduces this to

− dE
dx

∣∣∣∣
trans,Q<Q0

=
2πe21e

2Z2N

mv2

[
− ln(1 − v

2

c2
) − v

2

c2

]
. (5.104)

Consider next the contribution from the intermediate-Q regime

Q0 < Q < Q1. (5.105)

Going back to (5.93) we first note that the quantities 2mv2Q/(�ωj0)2 and
2mc2Q/(�ωj0)2 both are large compared to 1. The dominating part of the
integral can, therefore, be written as

−dE
dx

∣∣∣∣
trans

=
2πe21e

2n

2(mc2)2
∑

j

(�ωj0)3
∫ Q1

Q0

dQ
Q3

∣∣Fj0(k)
∣∣2. (5.106)

The assumption that Q1 lies in the nonrelativistic regime implies that integra-
tion over Q and summation over j leads to an energy � mc2. This, together
with one of the two factors 1/mc2 in front of the sum, implies that this integral
is negligible compared to (5.104).

Now, from (5.49) we obtain the longitudinal contribution, carrying out the
intagration only up to Q1. Adding this to (5.104) we find

− dE
dx

∣∣∣∣
Q<Q1

=
2πe21e2Z2N

mv2

×
∑

j

fj0

[
ln

2mv2Q1

(�ωj0)2
− ln(1 − v

2

c2
) − v

2

c2

]
. (5.107)
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5.6.3 High Momentum Transfers

For the high-Q regime, Q > Q1 we go back to (5.30) and avoid separation
into longitudinal and transverse components, because εl = εt ≡ ε(k, ω) in this
case. Setting

ε(k, ω) = 1 + δε(k, ω), (5.108)

and noting that the stopping force must be real, we may expand the integrand
up to the first order in δε(k, ω) to obtain

1
ε(k, ω)

− v
2

c2
k2 − ω2/v2

k2 − εt(k, ω)ω2/c2

→ −δε(k, ω)
[
1 +

ω2

k2c2 − ω2
−
(

1 − v
2

c2

)
k2c2ω2

(k2c2 − ω2)2

]
. (5.109)

Here, use has been made of the fact that for free independent electrons,
εt(k, ω) ≡ ε(k, ω) in the relativistic regime (Lindhard, 1954).

For δε(k, ω) we use the expression following from (5.71). Of the four poles
in the denominator, only the two with ω = ±ω+

k fall within the limits of
integration for ω. Making use of (5.45) again and integrating over ω we then
obtain

−dE
dx

∣∣∣∣
Q>Q1

=
2πe21e

2NZ2

mv2

∫ Qmax

Q1

dQ√
1 + 2Q/mc2

× Q− �
2ω+

k

2
/mc2 + �

2ω+
k

2
β2/2mc2

(Q− �2ω+
k

2
/2mc2)2

. (5.110)

Here, the maximum value

Qmax =
2mv2

(1 − v2/c2)2 (5.111)

follows directly from the limit of the ω-integration,

ω+
k

2
< k2v2. (5.112)

The integration becomes elementary by introduction of the variable

ζ =

√
1 +

2Q
mc2

, (5.113)

−dE
dx

∣∣∣∣
Q>Q1

=
2πe21e

2NZ2

mv2

∫ ζmax

ζ1

dζ
[

1
ζ − 1

− 1
2
(1 − β2)

]
(5.114)
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or

−dE
dx

∣∣∣∣
Q>Q1

=
2πe21e

2NZ2

mv2

[
ln
ζmax − 1
ζ1 − 1

− 1
2
(1 − β2)(ζmax − ζ1)

]
,

(5.115)

where ζmax = ζ(Qmax) and ζ1 = ζ(Q1).
Up to this point the calculation is exact. Now, remind that Q1 was chosen

to lie in the nonrelativistic regime, i.e., Q1/mc
2 � 1 or

ζ1 � 1 +
Q1

mc2
, (5.116)

higher-order terms being negligible. With this, and

ζmax =
1 + β2

1 − β2
(5.117)

you find

−dE
dx

∣∣∣∣
Q>Q1

=
2πe21e

2NZ2

mv2

[
ln

2mv2

Q1
− ln

(
1 − v

2

c2

)
− v

2

c2

]
(5.118)

and, after addition of the low-Q contribution (5.104),

−dE
dx

=
4πe21e

2Z2N

mv2

∑
j

fj0

[
ln

2mv2

�ωj0
− ln

(
1 − v

2

c2

)
− v

2

c2

]
, (5.119)

which is the relativistic Bethe formula for a heavy projectile (Bethe, 1932,
Fano, 1963).

Comparison with the relativistic Bohr formula (4.100) shows that with
regard to the relativistic corrections, the two expressions differ only by a term
−v2/2c2 in (5.119) which arises from close collisions, i.e., from the Dirac equa-
tion. Note in particular that the term − ln(1− v2/c2) in (5.118), which enters
via Qmax, already emerged from the Bohr theory.

5.6.4 Relativistic Density Effect

The existence of a substantial density effect on the stopping force at relativistic
speeds was pointed out by Fermi (1940), who also provided the first quanti-
tative estimate based on the flow of energy through a cylinder surrounding
a trajectory at a suitably large distance. Clearly, such an effect must stem from
the transverse interaction. Indeed, no sudden change can be expected from
the term 1/ε(k, ω) in (5.30) once the projectile speed approaches the speed of
light, in contrast to the transverse term with its denominator k2 − εω2/c2.
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Let us rewrite the transverse term in the form(
−dE

dx

)
trans

=
e21
πc2

Im
∫ ∞

−∞
ωdω

∫ kmax

|ω/v|

dk
k

k2 − ω2/v2

k2 − εω2/c2
, (5.120)

where kmax is large but real.
The relativistic density effect originates in interactions over a large distance

due to the circumstance that the adiabatic radius becomes very large. Hence,
only small values of k are of interest in the present context, and ε(k, ω) can
be replaced by ε(0, ω), mostly abbreviated as ε in the rest of this section. The
integration over k can then be carried out first (Fano, 1956) and yields

(
−dE

dx

)
trans,dist

=
e21

2πv2
Im
∫ ∞

−∞
ωdω

{
1
ε

[
ln

k2
max

k2
max − εω2/c2

+ ln
(

1 − εv
2

c2

)]
+
v2

c2
ln
v2k2

max/ω
2 − εv2/c2

1 − εv2/c2
}
, (5.121)

where the subscript ‘trans,dist’ indicates that we only deal with the distant
part of the interaction.

For k2
max � εω2/c2, and noticing that only the imaginary part is of interest,

this reduces to (Halpern and Hall, 1948, Fano, 1956)(
−dE

dx

)
trans,dist

=
e21

2πv2
Im
∫ ∞

−∞
ωdω

(
1
ε
− v

2

c2

)
ln
(

1 − εv
2

c2

)
. (5.122)

You may insert (5.42) for the dielectric function, go to the low-k limit and
expand up to the first order in the electron density in accordance with (5.44).
Then you obtain(

−dE
dx

)
trans,dist,linear

= −2πe21NZ2e
2

mv2

[
v2

c2
+ ln

(
1 − v

2

c2

)]
, (5.123)

as it must be according to (5.104). The difference between (5.122) and (5.123)
represents the density correction. However, if you proceed to the next order
in the electron density, you arrive at a vanishing contribution. Indeed, the
density effect has a threshold velocity, as will be seen now.

Following Fano (1956), let us first assume the argument of the logarithm
in (5.122) to be positive for all ω,

1 − β2ε(0, ω) > 0; β =
v

c
. (5.124)

Then, singularities occur in the poles of ε which all lie in the lower half of
the complex ω-plane, albeit close to the real axis. We may then deform the
integration path to a large semi-circle,

ω = Ωeiφ; φ = π . . . 0. (5.125)
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With this we have

ε ∼ 1 − ω
2
P

ω2
,

1
ε
∼ 1 +

ω2
P

ω2
, (5.126)

provided that Ω � ων for all resonances. Then, (5.122) reduces to
(
−dE

dx

)
trans,dist

=
e21

2πv2
Im
{∫

ωdω(1 − β2) ln(1 − β2)

+ω2
P

∫
dω
ω

[
ln(1 − β2) + β2

]}
, (5.127)

while terms of higher order in 1/ω vanish for Ω → ∞. Here the first integral
is real and does not contribute. The second integral is easily carried out by
making the substitution (5.125), leading to(

−dE
dx

)
trans,dist

= −e
2
1ω

2
P

2v2
[
ln(1 − β2) + β2

]
, (5.128)

i.e., the low-density limit (5.123). This explains why it did not help to go
beyond the leading term in a Taylor expansion in ε.

Next, consider the case where

1 − β2ε(0, ω) < 0 (5.129)

for some range of ω. This is relevant when that range extends into the positive-
imaginary half plane. As an example, take the harmonic oscillator

ε = 1 +
ω2

P

ω2
0 − ω2

, (5.130)

for which 1 − β2ε = 0 at

ω2
1 = ω2

0 − β2

1 − β2
ω2

P. (5.131)

Evidently, ω1 is real for β = 0 but turns imaginary above a certain value of
β = v/c. Let us consider the latter case, denote ω1 = i with  > 0 and go
back again to a general dielectric function ε.

We can cope with the multi-valued character of the logarithm in (5.122)
by introducing a cut for Imω < . Then, in order to compensate for having
pulled the path of integration across the cut we need to add a term containing
an integral around the cut,

∆

(
−dE

dx

)
trans

=
e21

2πv2
Im

(∫ i�

0+

−
∫ i�

0−

)
(iy)d(iy)

(
1

ε(0, iy)
− β2

)
ln
[
1 − β2ε(0, iy)

]
, (5.132)
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where we have set ω = iy. Since 1/ε(0, iy) − β2 is real, only the imaginary
part of the logarithm contributes to the imaginary part of the integral. The
two logarithms contribute a factor −2πi, and hence,

∆

(
−dE

dx

)
trans

= − e
2
1

v2

∫ �

0

ydy
(
β2 − 1

ε(0, iy)

)
(5.133)

in accordance with Fano (1956).
Now, consider an insulating medium so that ε(0, ω) is given by (A.222),

ε(ω) = 1 + ω2
P

∑
j

fj
ω2

j − ω2
, (5.134)

a standard relation from electromagnetic theory7. This function has singular-
ities at ωj , j = 1, 2, . . . and zeros at ω̃j, where

ωj < ω̃j < ωj+1; j = 1, 2, . . . , (5.135)

assuming ωj+1 > ωj for all j. With this, you can write the reciprocal in the
form

1
ε(ω)

= 1 + ω2
P

∑
j

f̃j

ω2 − ω̃j
2 , (5.136)

where the constants ω̃j , f̃j are uniquely related to ωj , fj .
The integrations in (5.133) are elementary in that case and lead to

∆

(
−dE

dx

)
trans

= −e
2
1ω

2
P

2v2

⎡
⎣(1 − β2)

ω2
1

ω2
P

+
∑

j

f̃j ln(ω̃2
j − ω2

1)

⎤
⎦ . (5.137)

Now, consider again the specific case of a harmonic oscillator with ε given by
(5.130). Here,

1
ε

= 1 +
ω2

P

ω2 − ω̃2
0

(5.138)

with

ω̃2
0 = ω2

0 + ω2
P (5.139)

and hence

ω2
1 = ω2

0 − ω2
P

β2

1 − β2
, (5.140)

7 Damping constants have been dropped. This is justified here as long as they are
small.
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Fig. 5.5. Illustrating the density correction on a single-resonance spectrum (5.130).
Contributions to stopping number from transverse excitations (distant part) for
dilute medium (thin line) and including density correction for ωP/ω0 = 0.1, 1.0 and
10 (top to bottom)

so that

∆

(
−dE

dx

)
trans

= −e
2
1ω

2
P

2v2
[− ln(1 − β2) − β2

+(1 − β2)
ω2

0

ω2
P

− ln
(

1 +
ω2

0

ω2
P

)]
. (5.141)

Combined with (5.128) this yields

(
−dE

dx

)
trans,dist

= −2πe21NZ2e
2

mv2

×
[
(1 − β2)

ω2
0

ω2
P

− ln
(

1 +
ω2

0

ω2
P

)]
(5.142)

for a single resonance frequency.
Figure 5.5 demonstrates that the notion of a density effect is well justified:

Indeed, the stopping number is sensitive to the density. However, the density
correction is also sensitive to ω0 and, hence, to the dispersive properties of
the medium. Therefore, a single oscillator frequency cannot be expected to
describe the phenomenon in a quantitative way.

The influence of the oscillator-strength spectrum on the density effect
was analysed by several authors, in particular by Halpern and Hall (1948),
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Fig. 5.6. Percentage correction to stopping force due to relativistic density effect
according to Sternheimer et al. (1984)

A. Bohr (1948) and Sternheimer (1952). The step from (5.134) to (5.136)
may be computationally intensive, dependent on how many frequencies are
involved. More serious is the fact that knowledge of the spectrum was scarce
in the 1950s and is still by no means complete. Therefore, a long series of pa-
pers appeared with tabulations for different materials as well as revised tables
based on revised oscillator strengths, mainly by Sternheimer. A recent version
of such data was published by Sternheimer et al. (1984)8. Figure 5.6 gives an
impression of the significance of the effect for protons as a function of beam
energy.

The relativistic density effect is intimately connected to the phenomenon of
Cherenkov radiation, which will be discussed along with other radiation effects
in Volume III. At this point it is emphasized that energy losses to Cherenkov
radiation are fully accounted for in the general treatment presented in this
section.

This entire complex has received much attention in the older literature
because of its significance in particle physics. Comprehensive reviews may be
found in articles by Uehling (1954) and Crispin and Fowler (1970).

8 Sternheimer’s notation differs from Fano’s, which has been used in the above
derivation. In particular, Sternheimer did not make use of (5.136). More impor-
tantly, the spectrum (5.134) is taken to be the real spectrum of the solid material,
whereas Sternheimer (1952) makes reference to atomic excitation spectra to which
a correction is applied. Therefore, the pertinent equations look different from the
present ones. However, with the proper choice of parameters, Sternheimer’s for-
mulation can be shown to be equivalent with Fano’s.
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5.7 Fermi Gas

The models discussed up till now owe their relative simplicity to the neglect of
the Pauli exclusion principle. Ignoring this important requirement in a many-
electron system is by no means generally justified. The present section serves
to provide a description incorporating the Pauli principle for the special case
of a free-electron gas following Lindhard (1954), and various consequences
on particle stopping. In that case it is comparatively easy to generate a set
of orthogonal single-electron wave functions. A similar treatment for bound
particles must invoke assumptions on the structure of the medium.

5.7.1 Electronic States

Consider electronic states in a one-dimensional box of length L. Eigenstates
are characterized by wave functions sin kx with k = νπ/L, ν = 1, 2, . . . and
energies εk = �

2k2/2m. The quantization of k arises from the requirement
that the wave function vanish at x = 0 and L. Wave functions belonging to
different values of k are orthogonal. The Pauli principle requires that no more
than two electrons occupy one k-state, corresponding to spin up and down,
respectively.

For a system containing many electrons it is convenient to replace the
boundary condition on the wave function by a periodicity requirement such
that wave functions are forced to be periodic with a period L. This allows to
use wave functions of the form exp(ikx) with k = ν2π/L and ν = ±1,±2, . . ..
This means that the distance between adjacent k-levels doubles. Instead, there
are two independent states for each allowed value of |k|, and including spin
a maximum of four electrons may occupy a given energy level εk. This dif-
ference is significant for low-lying states but may be ignored in a system
containing many electrons (cf. problem 5.9).

This argument is readily extended into three dimensions. Here, individual
levels may be characterized by wave functions

ψk =
1√
V

eik·r (5.143)

with k = (νx, νy, νz)2π/L and V = L3. These wave functions are orthonor-
malized,∫

V

d3rψ�
k ψk′ = δkk′ , (5.144)

and the density of states, i.e., the maximum number of electrons per unit
volume in k-space including spin, is 2V/(2π)3.

In a degenerate Fermi gas all states with energies up to the Fermi energy
εF = �

2k2
F/2m are occupied, and all states with higher energies are empty.
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The wave vectors of these states all lie within a sphere of radius kF, the Fermi
wave number. For a total of N electrons per volume V this yields the relation

N = 2
∑

|k|<kF

= 2
V

(2π)3

∫
k<kF

d3k =
Vk3

F

3π2
(5.145)

or

k3
F = 3π2n, (5.146)

where n is the number of electrons per volume in real space. Thus, k3
F is a mea-

sure of the electron density. Equivalent parameters are the Fermi momentum
�kF, the Fermi speed vF = �kF/m, or the Fermi energy εF.

A similar estimate yields the mean kinetic energy per electron,

εk =
2
N

∑
|k|<kF

�
2k2

2m
=

3
5
εF (5.147)

for the degenerate Fermi gas.

5.7.2 Lindhard Function

Consider now a Fermi gas occupying a volume V at a uniform density of
n electrons per volume and try to evaluate the response of this system to
a perturbing field Φ(k, ω). The total hamiltonian

N∑
ν=1

[
Hν − eΦ(rν , t)

]
(5.148)

is symmetric in the electron coordinates. The initial state of the system (at
t = −∞) is given by a Slater determinant of single-electron wave functions
ψk0(rν). This ensures satisfaction of the Pauli principle which requires the
wave function to be antisymmetric in the electron coordinates. Moreover, since
the hamiltonian is symmetric in these coordinates, the wave function remains
antisymmetric at all times. Thus the Pauli principle is satisfied automatically.

This allows us to evaluate the response of a Fermi gas to a perturbing
potential Φ(k, ω) for one electron at a time. The sole difference between the
present situation and the one discussed in Sect. 5.3 is the initial state which
now is characterized by a nonvanishing wave vector k0. Thus, |0〉 is replaced
by ψk0 . Since the electrons are free, the origin R of the binding force loses
its physical significance. In principle it enters into a phase factor exp(−ik0 ·
R). The assumption of R being distributed at random is replaced by the
requirement that free-electron wave functions carry a random phase factor.
This explains the notion of ‘random phase approximation’ (Pines, 1964) for
this approximation scheme.
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For the matrix element (5.39) entering (5.42) we find

Fj0(k) = δkj ,k+k0 . (5.149)

Moreover, the total polarization charge adds up linearly from the individual
contributions of electrons characterized by different wave vectors k0. Thus,
(5.42) is replaced by

εl(k, ω) = 1 +
mω2

P

�k2

×
∑
k0

nk0

N

(
1

ωkk0 − ω − iΓ
+

1
ωkk0 + ω + iΓ

)
, (5.150)

where

ωkk0 = ω|k0+k| − ωk0 = ωk +
�

m
k · k0 (5.151)

and nk0 is the occupation number (0, 1, or 2) for state k0. For a system
containing many electrons we may replace the ratio nk0/N by an occupation
probability fk0 obeying the normalization

∑
fk0 = 1.

5.7.3 Degenerate Fermi Gas

For the specific case of the fully degenerate Fermi gas we may replace the
summation in (5.150) by an integration over the Fermi sphere,
∑
k0

nk0

N
→ 3

4πk3
F

∫
k0<kF

d3k0, (5.152)

This integration can be carried out in closed form for infinitesimal Γ . The
calculation, which is not trivial, has been written up in appendix A.5.4. With
the variables

u =
ω

kvF
and z =

k

2kF
(5.153)

it takes on the form given by Lindhard (1954),

εl(z, u) = 1 +
χ2

z2

[
f1(z, u) + if2(z, u)

]
(5.154)

with

f1(z, u) =
1
2

+
1
8z
[
1 − (z − u)2] ln ∣∣∣∣z − u+ 1

z − u− 1

∣∣∣∣

+
1
8z
[
1 − (z + u)2

]
ln
∣∣∣∣z + u+ 1
z + u− 1

∣∣∣∣ (5.155)
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Fig. 5.7. Distribution of generalized oscillator strength in ω − k space, see text.
From Lindhard and Winther (1964)

and

f2(z, u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π
2 u z + u < 1

π
8z
[
1 − (z − u)2] for |z − u| < 1 < z + u

0 |z − u| > 1

, (5.156)

where

χ2 =
e2

π�vF
(5.157)

is a measure of the electron density. An alternative measure of the electron
density is the Wigner-Seitz radius rs defined by

4π
3

(rsa0)3n = 1, (5.158)

The connection between the two measures reads.

χ2 = (4/9π4)1/3rs. (5.159)
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Fig. 5.7 shows the analog of the generalized oscillator strength, cf. (4.106),

f(�ω)d(�ω) =
iωdω
πω2

P

(
1

ε(k, ω)
− 1
ε(k,−ω)

)
(5.160)

in dimensionless units, ignoring the transverse contribution. This graph may
be compared to Fig. 5.1. You may identify two distinct regions, a resonance
line in the low-z end where there is a unique dispersion relation ω(k), similar
to the left part of the curve shown in Fig. 5.1. This plasma line represents
collective excitations, or plasmon excitations with an energy � �ωP. The re-
mainder of the oscillator strength is distributed over a diagonal area

�
2k2

2m
− �kvF ≤ �ω ≤ �

2k2

2m
+ �kvF. (5.161)

This reflects single-particle excitations of electrons with initial velocities dis-
tributed over the Fermi sphere.

We have seen in Sect. 5.4.4 that the two portions of the dispersion curve
in Fig. 5.1 yield equal contributions to the stopping force of the medium.
Lindhard and Winther (1964) showed that a related property holds for the
two regimes that we just identified in Fig. 5.7. This is called equipartition rule.
Here it does not involve the stopping cross section but the stopping number,
and it does not apply to the absolute values of Lclose versus Ldist but to
the respective increments as the projectile speed increases. This is important
since Fig. 5.7 shows that unlike in Fig. 5.1, where single-particle and plasma
excitations set in at the same threshold velocity, single-particle excitations
take place down to the lowest projectile speeds, while plasma resonances set
in at a threshold speed. This implies that equipartition in the stopping cross
section is only fulfilled asymptotically at high speed.

5.7.4 Stopping Force at High Projectile Speed

Eq. (5.79) on page 155 indicates that in the limit of high projectile speed
the stopping number of a static electron gas is given by the Bethe logarithm
augmented by an asymptotic series in inverse powers of v. The present section
serves to demonstrate that such an expansion can also be found when the
internal motion of the electrons in the medium is taken into account. We
consider the limit of v � vF and try to establish a series expansion in terms
of the small parameter vF/v.

Taylor expansion of one of the fractions in (5.150) yields

∑
k0

fk0

ωkk0 − ω − iΓ
=

1
ωk − ω − iΓ

−
∑

k0
fk0(�k · k0/m)

(ωk − ω − iΓ )2

+

∑
k0
fk0(�k · k0/m)2

(ωk − ω − iΓ )3
. . . . (5.162)
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For an isotropic distribution of electron velocities the linear average disappears
so that

εl(k, ω) = εstat(k, ω)

+
mv2eω

2
P

3�

(
1

(ωk − ω − iΓ )3
+

1
(ωk + ω + iΓ )3

)
. . . , (5.163)

where εstat(k, ω) is the dielectric function of the static electron gas, (5.60) and
v2e the mean-square electron speed in the medium.

From (5.45) we may deduce that

lim
Γ=0

i
1

(ωk − ω − iΓ )3
=
π

2
d2

dω2
δ(ωk − ω), (5.164)

and with this, the integral (5.30) can be evaluated by partial integration, with
the result

dE
dx

= −4πe21e
2

mv2
N

(
ln

2mv2

�ωP
− 3

5
v2F
v2
. . .

)
, (5.165)

a result first derived by Lindhard and Winther (1964). The present derivation
was found by Sigmund and Fu (1982). The next term in the expansion can
be shown (Lindhard and Winther, 1964, Sigmund and Fu, 1982) to have the
form −3v4F/14v4.

Equation (5.165) shows a correction term to the Bethe logarithm which
becomes significant when the projectile speed approaches the Fermi velocity.
Indeed, for the degenerate electron gas, 3v2F/5 = v2e . This term represents
Doppler broadening due to the zero-point motion of the target electrons (Sig-
mund, 1982). At a given projectile speed, the term is evidently greatest for
inner target electrons and, therefore, is usually called a shell correction.

Figure 5.8 shows stopping numbers L calculated numerically for two densi-
ties compared with a straight Bethe logarithm. Dashed lines represent low- and
high-speed approximations. The low-speed approximation – where L ∝ v3 –
will be discussed in Volume II. The high-speed approximation takes into ac-
count the correction term shown in (5.165). Figure 5.9 shows a numerical
evaluation of the stopping force for r2 = 2, showing that there is a threshold
velocity for resonance excitations.

Figure 5.10 shows velocity spectra of electrons excited by a penetrating
particle, normalized to the Rutherford cross section according to Brice and
Sigmund (1980). The region where dσ goes to zero, 2v−vF < v1 < v+vF, has
been ignored in this graph. Apart from that, differences from straight Ruther-
ford scattering are seen in the velocity region up to ∼ vF, where a sharp peak
is formed. While the Pauli principle forbids excitations within a fully occupied
Fermi sphere, there is not even a singularity at small momentum transfers:
Only electrons within a thin shell below the Fermi surface can be excited, and
the number of such electrons goes to zero with decreasing momentum change.
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Fig. 5.8. Stopping in Fermi gas according to Lindhard and Winther (1964). Stop-
ping number, defined by (2.56); y = 2mv2/�ωP; χ2 = v0/πvF. Dashed lines: Low-
and high-speed asymptotic expansions. From Lindhard and Winther (1964).
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Fig. 5.9. Stopping in Fermi gas according to Lindhard and Winther (1964). Total
stopping force for rs = 2 or χ2 = 0.332 , and contributions from single-particle and
collective excitations

5.8 Discussion and Outlook

All results derived in this chapter are based on Maxwell’s equations. Quantum
theory, where appropriate, enters through the dielectric functions εl(k, ω) and
εt(k, ω). It was Fermi (1940) – based on a suggestion by Swann (1938) – who
first pointed at the usefulness of conventional electrodynamics in the context
of stopping in condensed matter at relativistic velocities, and it was Lindhard
(1954) who laid the ground for dielectric theory as a universal tool.



5.8 Discussion and Outlook 177

Fig. 5.10. Velocity spectrum of electrons excited in Fermi gas. v1 denotes the veloc-
ity of an excited electron, vF the Fermi speed, and dσR the free-Coulomb spectrum.
Numbers denote the density parameter χ2 = v0/πvF. From Brice and Sigmund
(1980)

Although Lindhard’s paper refers to the free electron gas in its title, the
basic formalism is much more comprehensive. This should be clear from a large
number of applications discussed in this chapter. In fact, in contrast to many
existing surveys9, the free electron gas has been given relatively little attention
here.

At the time of writing of this monograph, the literature on stopping of
charged particles increases at a pace of about 200 theoretical papers per year.
Amongst those, calculations for the Fermi gas based on the Lindhard function
or more simplified forms are by far dominating. More than anything else,
this expresses a general experience in theoretical physics, that ‘what can be
calculated will be calculated’.

The dielectric function plays a central role in solid-state theory (Pines,
1964, Smith, 1983). Consequently, numerous modifications of the Lindhard
function have been proposed over the years, many of which are improvements
incorporating features that are important for electron dynamics. As an exam-
ple, the plasmon-pole approximation has been mentioned above. You should
keep in mind, however, that the majority of those modifications was not mo-
tivated by the needs of stopping theory.

Aspects not discussed in the present section are the use of the electron-gas
model in practical stopping calculations in conjunction with the Thomas-

9 The Fermi gas is one of the most popular playgrounds in theoretical physics,
in particular in many-body theory. For a review of particle penetration through
an electron gas from a rather different point of view, the reader is referred to
Echenique et al. (1990). In addition, the author is preparing a monograph on
stopping of light ions, together with N. R. Arista, where much attention will be
given to aspects of particle penetration in the Fermi gas.
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Fermi method, which will be discussed in Chapter 7, and the very central role
it plays in low-velocity stopping, an aspect postponed to Volume II.

Problems

5.1. Derive the transverse dielectric function εt(k, ω) for the system discussed
in Sect. 5.3.1. Hint: Instead of ρe,ind, determine the induced current from the
standard quantal expression for a particle current.

5.2. Discuss in detail the physical assumptions entering the derivations of the
Bethe formula presented in sections 4.3 and 5.3.2 and convince yourself that
the same result must emerge from either approach.

5.3. Verify (5.45) by writing the expression on the left-hand side as a Lorentzian
with an infinitesimal width.

5.4. Derive the transverse dielectric function εt(k, ω) for a static electron gas
by making use of the result of problem 5.1.

5.5. Verify that εt(k, ω) is given by eq. (5.73) under the assumptions made in
Sect. 5.4.2.

5.6. Verify eq. (5.84).

5.7. Make a plot of (5.119) with and without the relativistic correction.

5.8. (�) Try to evaluate eq. (5.133) for a material characterized by two reso-
nance frequencies ω1, ω2 and dipole oscillator strengths f1, f2.

5.9. Show explicitly the equivalence of periodic boundary conditions to de-
scribe particles in a one-dimensional box and point out possible differences.

5.10. Assume two wave functions ψ1(r, t) and ψ2(r, t) to be governed by the
same hamiltonian H, and consider the integral

I12(t) =
∫
d3rψ�

1(r, t)ψ2(r, t). (5.166)

Show that I12(t) = 0 for all t > 0 if I12(0) = 0.

5.11. Go explicitly through all steps leading to the conclusion arrived at in
section 5.7.2 that the Pauli principle is satisfied automatically in Lindhard’s
procedure. Utilize the result of problem 5.10.

5.12. Try to reproduce Fig. 5.8 by numerical integration using (5.154).
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6

Stopping of Swift Point Charge II: Extensions

6.1 Introductory Comments

The theory laid out in Chapters 4 and 5 provides a powerful basis for the
theoretical treatment of the stopping of point charges, but the range of ap-
plicability of explicit expressions given so far turns out to be quite limited.
This is particularly true for beam energies in the keV/u range, but important
corrections are also necessary in the relativistic regime.

An illustrative example is given in Fig. 6.1 taken from a pioneering paper
by Lindhard and Scharff (1953). Shown is the stopping number L defined by1

S =
4πZ2

1Z2e
4

mv2
L (6.1)

as a function of the parameter

x =
v2

Z2v20
. (6.2)

Eq. (4.118) in conjunction with Fig. 4.7 suggests that in such a plot, exper-
imental results for different materials and ions should lie on a single curve,
and that this curve should be a straight line in a semilogarithmic plot.

The expected scaling property appears to be quite well fulfilled, but devi-
ations from the predicted logarithmic shape are substantial. You may already
have expected this from inspection of Fig. 4.6.

From a theoretical point of view we have to realize

– that the use of perturbation theory must restrict the range of projectile
charges for which the theory can be valid. This must be true for both
classical and quantal stopping theory, but most pronouncedly so for the
quantal scheme, where perturbation theory has been applied to both close
and distant interactions.

1 With very few exceptions this chapter addresses heavy charged particles. To em-
phasize this feature, the projectile charge will be denoted as Z1e instead of e1,
the notation used previously.
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Fig. 6.1. Stopping number versus beam velocity extracted from measured stopping
forces on protons. From Lindhard and Scharff (1953)

– that neglecting the intrinsic motion of target electrons must set a lower
limit on projectile velocity: Electron motion has been ignored from the
beginning in the classical theory; although in quantal perturbation theory
the effect has been incorporated initially, it was thrown away when sum
rules were applied.

– Penetrating ions are not necessarily point charges but may carry electrons
in bound states. This has a variety of implications which will be discussed
in detail in Volume II.

– We need to be aware of two separate velocity regimes, a classical and
a Born regime. This division depends on the atomic number of the projec-
tile according to the Bohr criterion (2.80). Ambiguities must arise in the
transition regime which need to be overcome.

An interesting practical aspect is the experimental determination of I-
values which come mostly from stopping data (ICRU, 1984). Accurate stop-
ping measurements have been performed mainly in the velocity range where
the stopping number deviates from the logarithmic behavior predicted by the
simple Bethe formula. Clearly, these deviations need to be under control in
a reliable data analysis. Some aspects of this will be discussed in Chapter 7.

Extensions of the Bethe stopping theory have become a research field at-
tracting considerable interest. As a result, the literature is very extensive2.
The present survey is selective, yet an attempt has been made to provide

2 According to the Web of Knowledge, the original paper of Bethe (1930) has been
quoted 60 times just in 2004.
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one explicit derivation for every main effect. While such derivations still are
intended to be reasonably self-contained, references to the original literature
will nevertheless be more frequent than in the preceding chapters. Consulting
those references is not meant to be a prerequisite for going through the re-
mainder of this book but should assist you in broadening and deepening your
knowledge of the field.

Straight numerical simulation has become a standard tool in modern
physics to overcome complexities in a theoretical description. In the present
context, this implies numerical solution of the time-dependent Schrödinger or
Dirac equation for the projectile-target interaction, where the target could be
an atom, a molecule or cluster, an electron gas or a slab of solid matter. Such
simulations have become possible for simple systems containing few electrons
and may serve as reference standards for more approximate calculations. The
necessary computational effort is substantial even for very small systems, es-
pecially since computations need to be made for a grid of impact parameters
and projectile speeds. Considering the number of ion-target combinations as
well as the number of electrons involved in the majority of collision systems
of interest, it seems unlikely that stopping theory can become obsolete in the
near future.

6.2 Bare and Dressed Projectiles

Before going any further, we need to specify conditions to be fulfilled in or-
der that we may treat a projectile as a point charge. This is not a problem
for energetic electrons, antiprotons or other negatively-charged elementary
particles except in the exotic situation where such particles move through
antimatter. It is a problem, on the other hand, for an ion which will be able
to lose or capture electrons in collisions with the target atoms. In that way
a dynamic equilibrium tends to be established which may be characterized by
a mean equilibrium charge 〈q1〉 or, even better, by equilibrium charge fractions
PJ which represent the probability for an ion to be found in a charge state
qJ . These parameters are governed by cross sections for capture and loss of
electrons and, hence, depend on speed and ion-target combination.

All explicit expressions for electronic stopping cross sections derived so far
in this book assume a purely Coulombic interaction between the projectile and
the target electrons. Electrons carried by the projectile give rise to screening of
the Coulomb interaction. It is important, therefore, to identify an approximate
velocity range where screening can be neglected.

6.2.1 Bohr Screening Criterion

The equilibrium charge state of an ion can be determined roughly from a fa-
mous argument by Bohr (1948). Consider an ion with an atomic number Z1

moving through a stopping medium at a speed v. Seen from the reference
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frame of the ion there is a stream of target particles with speed v which may
knock out electrons from the ion. This process is efficient as long as v exceeds
the orbital speed ve of a target electron. At lower beam velocities collisions
tend to become adiabatic. Bohr actually expected ionization (and stopping)
cross sections to rapidly drop to zero below this adiabaticity limit. We now
know that the decrease is slow, but nevertheless, those cross sections have
their maximum values around v � ve.

Disregarding complications like capture and the specific nature of the tar-
get, Bohr’s argument implies that projectile electrons with orbital velocities
below v tend to be stripped. Detailed implications of this as well as alterna-
tive arguments will be discussed in Volume II. According to this criterion, the
projectile may be expected to behave like a point charge if its speed exceeds
the orbital velocity of the K shell,

v > Z1v0 (6.3)

or E > Z2
1 ·25 keV/u, where u is the atomic mass unit. This criterion is easily

fulfilled for protons and alpha particles. However, already for neon ions, the
lower limit is 50 MeV.

Even if an ion is not completely stripped, one may ask whether it acts like
a point charge as far as penetration properties are concerned. Much confusion
exists about this point in the literature. The topic has been discussed exten-
sively in a recent monograph (Sigmund, 2004) and will be taken up again
in Volume II. The brief answer is as follows: For weakly screened ions, when
the majority of the projectile electrons are stripped, the error you make in
replacing the nuclear charge by the ion charge, will be tolerable. In all other
cases you may have to expect more or less pronounced errors.

6.3 Bloch Theory

6.3.1 Bloch Formula

From now on we shall frequently deal with stopping numbers instead of stop-
ping cross sections. The former are related to the latter by (6.1).

Bloch (1933) derived a stopping formula on the basis of the semiclassical
treatment discussed in Sect. 4.3 which may be written in the form

LBloch = LBethe + ψ(1) − Reψ
(

1 + i
Z1e

2

�v

)
, (6.4)

where LBethe is taken from (4.118),

ψ(x) =
d
dx

lnΓ (x) (6.5)

denotes the digamma function, and Re the real part. A derivation of this
formula will be presented in the following section. Here let us have a look at
its implications.
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The following useful expansions for small and large arguments for the
function appearing in (6.4) are listed in Abramowitz and Stegun (1964), 6.3.17
and 6.3.19,

Reψ(1 + iy) = −γ + y2
∞∑

n=1

1
n(n2 + y2)

(6.6a)

Reψ(1 + iy) = ln y +
1

12y2
+

1
120y4

. . . , (6.6b)

where γ = −ψ(1) = 0.5772 is Euler’s constant. With this we find

LBloch = LBethe −
(
Z1v0
v

)2 ∞∑
n=1

1
n(n2 + (Z1v0/v)2)

(6.7)

or

LBloch = LBethe + ln
v

eγZ1v0
− v2

12Z2
1v

2
0

. . . . (6.8)

Eq. (6.7) reduces, for high velocity v and/or low charge Z1e, to

LBloch � LBethe − 1.202
(
Z1v0
v

)2

, (6.9)

while (6.8) reduces to

LBloch � ln
Cmv3

Z1e2ω0
− 1

12

(
v

Z1v0

)2

. . . (6.10)

with C = 2/eγ = 1.1229.
Eq. (6.9) shows a correction to the Bethe formula which goes to zero for

κ = 2Z1v0/v going to zero. This is in agreement with (2.80), according to
which κ is a measure of deviations from the Born approximation.

Conversely, (6.10) reflects the Bohr formula (4.93) and a correction which
decreases as the velocity reaches the Bohr regime.

Figure 6.2 shows the prediction of the Bloch formula for the stopping num-
ber L, (6.4), compared with the Bethe and the Bohr logarithm as well as the
expression (6.9). Since the Bloch correction only depends on the Bohr param-
eter κ, the velocity variable was chosen to v/Z1v0. The remaining constants
have been absorbed into the ordinate variable.

It is seen that the transition from the Bohr to the Bethe logarithm, al-
though smooth, is characterized by quite a narrow transition region. The thin
line, representing the Bethe logarithm plus a term ∝ Z4

1 in the stopping force,
(6.9), is useful at high projectile speed where the Bloch correction is small.
Extension of this approximation into the classical regime would evidently lead
to absurd results.
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Fig. 6.2. Bloch formula (6.4), Bethe and Bohr logarithm, and high-velocity expan-
sion (6.9). From Sigmund (1997)

6.3.2 Derivation

We have seen in Chapter 3 that the Born approximation delivers a correct
prediction of Rutherford’s law. On the other hand, the second Born approx-
imation led to a divergence. It follows that this scheme cannot represent a rig-
orous description of Coulomb scattering. Problem 3.24 in Chapter 3 (page 103)
shows that unlike the divergence in Rutherford’s law, the divergence in the
second Born approximation does not just affect small energy transfers or scat-
tering angles.

In Chapter 4 the Born approximation was applied to the interaction with
bound electrons. The effect of binding must be most pronounced in distant in-
teractions. If there is a problem in close collisions between free collision part-
ners, that problem is not going to evaporate merely by allowing for a binding
force.

The Bloch theory represents a successful attempt to repair the shortcom-
ings of the Born approximation in the description of close collisions. The
basic idea is identical with the one underlying the Bohr theory, i.e., binding
is unimportant for close collisions.

The following derivation of (6.4) is due to Lindhard and Sørensen (1996).
The strategy of this calculation is to determine the difference in the stopping
cross sections between free-Coulomb scattering and the Born approximation
applied to free-Coulomb scattering,

∆S = SfreeCoulomb − SfreeCoulomb,Born. (6.11)

Both quantities on the right-hand side have a divergence originating in small
energy transfers, but since the Born approximation is accurate at small en-
ergy transfers, this divergence is expected to drop out in the difference. If
the effect of binding, being pronounced in distant interactions, is assumed to
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be incorporated adequately in the Born approximation, one may obtain an
improved stopping formula by setting

S = SBethe + ∆S. (6.12)

The starting point of the calculation is (3.118) which expresses the stop-
ping cross section for free binary collisions by phase shifts. For a heavy pro-
jectile colliding with an electron we have

S = mv2σ(1), (6.13)

with σ(1) being given by (3.119) and �k = mv.
Phase shifts for free-Coulomb scattering are given by (3.137). The first

term diverges, but since it is independent of  it drops out in the difference,

δ� − δ�+1 = arg (+ 1 + iκ/2) = arctan
κ/2
+ 1

, (6.14)

since the argument of a product is the sum of the arguments. From this we
find

sin2 (δ� − δ�+1) =
(κ/2)2

(+ 1)2 + (κ/2)2
(6.15)

and hence

SfreeCoulomb =
4πZ2

1e
4

mv2

∞∑
�=0

+ 1
(+ 1)2 + κ2/4

(6.16)

for free-Coulomb interaction between a heavy projectile and an electron.
This expression diverges at large values of . Now,  represents an angular

momentum quantum number. In classical scattering, the angular momentum
is given by L = pmv. Evidently,  is a measure of the impact parameter
p. Hence, the divergence of (6.16) at large  is nothing but the wellknown
logarithmic divergence of the stopping number at large impact parameters or
small energy transfers. Note that unlike the simple estimate in Sect. 2.3.3 the
present estimate does not show a divergence at small .

Now, the Born approximation to (6.16) requires expansion in powers of Z1

up to second order. In view of the factor Z2
1 in the front, this implies that the

term κ2/4 in the denominator needs to be dropped. This yields

SfreeCoulomb,Born =
4πZ2

1e
4

mv2

∞∑
�=0

1
+ 1

, (6.17)

which again shows a logarithmic divergence at large . However, the difference

∆S = SfreeCoulomb − SfreeCoulomb,Born

=
4πZ2

1e
4

mv2

∞∑
�=0

−κ2/4
(+ 1) [(+ 1)2 + κ2/4]

(6.18)
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is convergent and easily seen to reduce to (6.7).
de Ferrariis and Arista (1984) presented a simple approximation formula

for (6.4),

LBloch � ln
2mv2/�ω0√
1 + (κ/C)2

, (6.19)

which is seen to reduce to the Bethe and Bohr logarithm for κ� 1 and κ� 1,
respectively.

6.3.3 Inverse-Bloch Correction

According to (6.4) the Bloch correction

∆LBloch = ψ(1) − Reψ
(

1 + i
Z1e

2

�v

)
(6.20)

extends the range of validity of the Bethe formula into the classical regime.
Indeed, according to (6.8) it ensures that the stopping force approaches the
Bohr expression at low speed.

One may also turn around the argument: According to (6.10) we may write
LBloch as a sum of the Bohr stopping number plus a correction which decreases
with decreasing velocity. Adding and subtracting a term −ψ(1) + ln(Z1v0/v)
to LBloch is easily seen to reduce (6.4) to

LBloch = LBohr + ln
Z1v0
v

− Reψ
(

1 +
Z1v0
v

)
, (6.21)

which defines the inverse-Bloch correction

∆LinvBloch = ln
Z1v0
v

− Reψ
(

1 +
Z1v0
v

)
, (6.22)

and thereby allows to extend the range of validity of the classical into the
Born regime (de Ferrariis and Arista, 1984, Sigmund, 1996).

6.3.4 Impact-Parameter Dependence

It is of interest to study the impact-parameter dependence underlying the
Bloch formula. While Bloch (1933) derived his formula over the impact-
parameter picture, a simpler procedure is to start at the Bohr theory, (4.22)
and (4.23), and apply suitable modifications (Sigmund, 1997).

Note first that (4.22) diverges at p = 0. In accordance with free-Coulomb
scattering, we may remove this divergence by replacing

p2 → p2 + p20 (6.23)
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Fig. 6.3. Energy loss versus impact parameter in approximate Bloch model. Curves
labelled by parameter ζ0 defined in (6.27)

in the Coulomb factor 2Z2
1e

4/mv2p2. The parameter p0 is left open for a mo-
ment, although we know from problem 3.6 that it must be of the order of the
collision diameter b given in (3.43).

In Chapter 4, impact-parameter dependencies were characterized by func-
tions f(p) defined by (4.22). Since f(p) differs from 1 only at impact pa-
rameters approaching the adiabatic radius, it must be justified to make the
substitution (6.23) also in f(p). With this we obtain the stopping cross section

S =
4πZ2

1e
4

mv2

∫ ∞

0

ζ dζ

{[
K0

(√
ζ2 + ζ20

)]2

+
[
K1

(√
ζ2 + ζ20

)]2}
, (6.24)

where ζ0 = ω0p0/v. Introducing
√
ζ2 + ζ20 as a new variable you may carry

out the integration, and the resulting stopping number reads

Lapprox = ζ0K0(ζ0)K1(ζ0). (6.25)

For ζ0 � 1 this reduces to

Lapprox ∼ ln
1
ζ0
. (6.26)

Requiring this to be identical with (6.19) we then find

ζ0 =

√
1 + (κ/C)2

2mv2/�ω0
(6.27)
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or

p0 =
1
2

√
λ̄2 + (b/C)2, (6.28)

where λ̄ = �/mv and b = 2Z1e
2/mv2. Figure 6.3 shows the energy-loss func-

tion underlying (6.24) with ζ0 given by (6.27) versus impact parameter in
Bohr units as a function of ω0p/v. It is seen that all curves coincide at large
distances, while major differences are found for close collisions.

Note that the present treatment addresses a stationary, classical target
electron initially at rest in the position of the nucleus. Grande and Schiwietz
(1998) and Schiwietz and Grande (1999) have provided a similar scheme but
allowing for the spatial distribution of the electron cloud. This is achieved by
convoluting the Thomson equation (4.84) with the electron density. This is
important when the relevant impact parameter is the one between the colliding
nuclei such as in channeling.

In connection with integrated cross sections such as the stopping cross
section and the straggling parameter, this effect averages out, while the related
effect of orbital motion prevails, gives rise to shell corrections and needs to be
considered whenever orbital speeds are not small compared to the projectile
speed.

6.4 Barkas-Andersen Effect

6.4.1 Overview

According to the Bethe formula (4.118), the stopping force on a point charge is
proportional to the square of the charge. Smith et al. (1953) found a minute
difference between ranges in emulsion of positive and negative pions which
they ascribed to either a difference in mass or in stopping between the particle
and its antiparticle. Subsequent experiments by the same group (Barkas et al.,
1963) ruled out the first option, and the difference in stopping was ascribed to
higher-order contributions to the Born series underlying Bethe’s treatment.

Fig. 6.4. Barkas-Andersen effect in
aluminium. See text. From Andersen
et al. (1969)
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Related observations were made by Andersen et al. (1969) who found the
stopping cross section for MeV alpha particles to exceed four times that for
protons and deuterons. Their result for aluminium is shown in Fig. 6.4. It is
seen that the deviation amounts to less than 1.5 pct, yet it is clearly outside
experimental error and increases with decreasing projectile speed. These au-
thors described their results in terms of a Z3

1 -correction to the Bethe stopping
cross section.

A theoretical analysis by Ashley et al. (1972), carrying the classical Bohr
model described in Chapter 4 to the next order in Z1 and to be sketched
below, led to a correction term governed by the dimensionless parameter

B′ =
Z1e

2ω0

mv3
. (6.29)

Lindhard (1976) derived the Barkas-Andersen factor B′ from a dimensional
argument and pointed out that a term proportional to Z4

1 (shown in Fig. 6.2)
cannot be neglected in the analysis of such experimental data. This was veri-
fied in subsequent measurements with hydrogen, helium and lithium ions by
Andersen et al. (1977).
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Fig. 6.5. Barkas effect in silicon. Proton data from ICRU (1993); antiproton data
from Møller et al. (1997); curve labelled Bethe-Bloch calculated from binary theory
to be described in Sect. 6.4.5 by taking the average between protons and antiprotons

More recent experiments at CERN (Møller, 1990, Møller et al., 1997) at
lower velocities revealed very large differences between the stopping of protons
and antiprotons (Fig. 6.5). These results were shown to be in rough agreement
with theoretical predictions on the basis of classical and quantal perturbation
theory (Mikkelsen et al., 1990).
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Let us try to verify the sign of the correction. If the assertion of a higher-
order term in the Born series is correct, we deal with a polarization effect: The
penetrating projectile introduces a dipole moment in the target atom, i.e., the
target electron moves towards a positively charged projectile. This decreases
the effective interaction distance and hence increases the stopping force. The
reverse is true for a negatively-charged projectile.

Figure 6.5 indicates that the relative magnitude of the Barkas effect might
well keep on increasing with decreasing velocity. This is not only a compli-
cation at low projectile speed but more generally so for higher Z1, a regime
which we have barely touched upon so far.

6.4.2 Dimensional Arguments

An important hint toward a solution of the problem was given by Lindhard
(1976) who observed that the Barkas parameter B′ is the inverse of the pa-
rameter entering Bohr’s stopping formula (4.93).

Moreover, Lindhard derived a useful scaling property from a dimensional
argument. Consider Bohr’s stopping model, i.e., a point charge Z1e moving
uniformly at a speed v and interacting with a classical electron bound harmon-
ically with a resonance frequency ω0. Coulomb’s law tells us that Z1 enters
via the combination Z1e

2. The only additional parameter that can enter the
stopping cross section is the electron mass m. Other variables like time t, dis-
tance r from the force center and impact parameter p are integration variables
that do not enter the final result.

Let us try to construct a general expression for the stopping cross section
from these four quantities. By convention, the right dimension is ensured by
pulling out the ratio 4πZ2

1e
4/mv2, which has the dimension of energy×area.

This may be multiplied by an unknown function of all dimensionless parame-
ters that can be constructed from the four quantities. It is easy to verify that
there is only one such variable, the Bohr parameter

ξBohr =
mv3

Z1e2ω0
. (6.30)

This implies that the stopping number in the Bohr model must obey the
scaling relation

L = L(ξBohr). (6.31)

This is evidently obeyed by Bohr’s original result, L = ln(CξBohr). More
important is the observation that within the range of validity of this model,
the Barkas-Andersen effect is the same for all ions and targets when viewed
in terms of the variable ξBohr.

Going over from the classical to the quantum oscillator we dispose over �

as an additional dimensional parameter. This introduces
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ξBethe =
2mv2

�ω0
(6.32)

as a second, independent dimensionless variable. Note that the ratio between
the two,

ξBethe

ξBohr
=

2Z1e
2

�v
(6.33)

is Bohr’s kappa parameter. Therefore, the interaction of a uniformly-moving
point charge with a harmonic oscillator must deliver a stopping number that
can be written in one of two general forms,

L = L‘Bohr′(ξBohr, κ), (6.34a)

L = L‘Bethe′(ξBethe, κ). (6.34b)

Here, LBohr and LBethe are unspecified functions of two variables which only
asymptotically approach the logarithmic forms derived previously. We shall
investigate in Sect. 6.4.5 how far these scaling rules survive the adoption of
more realistic models for the stopping process.

There is a notable difference between the two forms in that an expansion
in powers of Z1 appears feasible in case of Bethe scaling, (6.34b), while this
cannot be expected in case of Bohr scaling.

On the other hand, since the Barkas-Andersen effect increases with de-
creasing projectile speed, it must be most pronounced in the classical regime.

6.4.3 Binding and Screening

A simple but illuminating estimate of the Barkas-Andersen effect was pre-
sented by Lindhard (1976). The starting point is a reformulation of the Bohr
theory. Indeed, Bohr’s result for the stopping cross section can be derived from
Rutherford’s law for the scattering between a moving projectile and an ini-
tially stationary electron, if the range of interaction is limited to a maximum
impact parameter close to the adiabatic radius v/ω0, as was demonstrated
in Sect. 2.3.4, (2.64). This limitation is caused by the binding of the target
electron.

Lindhard suggested to reformulate this limitation by replacing the Cou-
lomb potential by a screened potential with the screening radius being iden-
tified with the adiabatic radius so that

V(r) = −Z1e
2

r
Φ
(ω0r

v

)
. (6.35)

One of several feasible choices for the screening function Φ is the Yukawa
potential, i.e., a straight exponential.

Now, compare scattering on a screened and an unscreened Coulomb po-
tential. Viewing the process from a reference frame moving with the projectile
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speed we find a target electron approaching the projectile, being accelerated
and scattered and, after having passed the apsis, slowing down again and ul-
timately moving away at its initial speed. In the presence of screening, the
electron will not accelerate until having reached the region limited by the adi-
abatic radius and hence move more slowly across the scattering potential than
in the absence of screening. As a consequence, the collision time will increase
and hence result in a greater scattering effect.

If an exponential screening function is chosen, the potential inside the
screening radius may be approximated by

V(r) � −Z1e
2

r

(
1 − ω0r

v

)
= −Z1e

2

r
+
Z1e

2ω0

v
, (6.36)

i.e., a shifted Coulomb potential. Since the shift is independent of the impact
parameter, it is equivalent with a shifted collision energy,

E′ � m

2
v2 − Z1e

2ω0

v
, (6.37)

i.e.,

1
E′ �

2
mv2

(
1 +

2Z1e
2ω0

mv3

)
(6.38)

up to first order in Z1. The collision energy enters the stopping cross section
primarily via the quantity mv2 in the denominator. Hence, a rough estimate
of the stopping cross section including the Barkas-Andersen effect reads

S � 4πZ2
1e

4

mv2

(
1 +

2Z1e
2ω0

mv3

)
ln

2mv2

�ω0
(6.39)

applied to the Bethe formula. This confirms the dominating role of the Barkas-
Andersen parameter, (6.29) which determines both the magnitude of the effect
and its scaling properties. However, as it stands, the correction blows up at
low velocities.

6.4.4 Higher-Order Perturbation Theory

It would be desirable to study some system that would allow a complete an-
alytical treatment at least up to the third order in Z1. Unfortunately, such
a system has not yet been identified. Efforts by numerous authors have fo-
cused on the harmonic oscillator and the Fermi gas, but even for those ide-
alized cases, numerical tools had to be invoked. More seriously, evaluation
of stopping cross sections often required additional, unsupported physical as-
sumptions. This has resulted in lively discussions in the literature for two
decades starting 1972. The material presented in the following three subsec-
tions has been included with the main purpose to provide a reference standard
for more comprehensive calculations.
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Classical Oscillator (�)

The theory of Ashley et al. (1972) represents a straight extension of the classi-
cal Bohr theory to the next order in Z1 as far as the contribution from distant
collisions is concerned. Close collisions were not treated theoretically but were
assumed to be described adequately by Rutherford’s law of free-Coulomb scat-
tering. The calculation described here is equivalent with that of Ashley et al.
(1972), but the detailed formulation follows Schinner and Sigmund (2000).

Starting at (4.11) in Sect. 4.2 we aim at an expression for the energy
transfer T (p) going up to the third power in Z1. This implies that the second
term in (4.17), which is ∝ Z1 to leading order, cannot be neglected.

With the notation

P (p) =
∫ ∞

−∞
dtF (t)eiω0t = P (1) + P (2) . . . (6.40)

indicating expansion in powers of Z1 we have, according to (4.11),

T =
1

2m

(
|P (1)|2 + 2 Re P (1)�P (2) . . .

)
(6.41)

up to third order, where P (1) has been evaluated in Sect. 4.2.1 and reads

P (1) =
2Z1e

2ω0

v2

(
iK0

(ω0p

v

)
,
p

p
K1

(ω0p

v

))
(6.42)

according to (4.21). The notation has been changed slightly relative to
Sect. (4.2.2). In particular, the impact parameter p has not been specified
to point in the direction of the y-axis, although the beam direction still is
adopted as the x-axis.

In order to evaluate P (2) we need to write r(t) in a form that allows con-
venient integration. This is achieved with the Green function of the harmonic
oscillator, (A.97) in Appendix A.2.5,

r(t) =
∫

dω
(−eE(ω)

)
G(ω)e−iωt, (6.43)

which is to be inserted into

P (2)(p) =
Z1e

2

2π2

∫
d3q

∫
dt eiω0t iq

q2
e−iq·(p+vt) iq · r(t). (6.44)

This leads to

P (2)(p) =
Z2

1e
4

2π3

∫ ∞

−∞
dω
∫

d3q

∫
d3q′δ(ω − q′ · v) δ(ω0 − q · v − ω)

× iq e−i(q+q′)·p G(ω)
iq
q2

· iq′

q′2
. (6.45)
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We now split the q-vectors into longitudinal and transverse components,

q = (κ, q⊥) ; q′ = (κ′, q′
⊥) . (6.46)

Before integrating over the transverse components we perform the replace-
ments

q⊥ = i∇p; q′
⊥ = i∇p′ . (6.47)

At the same time we replace

e−iq′·p = e−iq′·p′
∣∣∣
p′=p

(6.48)

with the intention that the substitution p′ = p be performed after the gradient
operations.

Fig. 6.6. Barkas-Andersen effect for the Bohr oscillator, distant collisions. Plotted
is the energy transfer T (2)(p) resulting from the Bohr theory in units of 2mv2/ξ2,
whereas the result from second-order classical perturbation theory, T (3)(p), is plotted
in units of 2mv2/ξ3. From Sigmund and Schinner (2000)

We then obtain

P (2)(p) = −2iZ2
1e

4

π

∫ ∞

−∞
dωG(ω)

∫ ∞

−∞
dκ
∫ ∞

−∞
dκ′ (κ, i∇p) (κκ′

−∇p · ∇p′) δ(ω0 − κv − κ′v)δ(ω − κ′v)K0 (κp)K0 (κ′p′)
∣∣∣
p′=p

(6.49)
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or, after carrying out the integrations over κ and κ′,

P (2)(p) = −2iZ2
1e

4

πv2

∫ ∞

−∞
dωG(ω)

(
ω0 − ω
v

, i∇p

)
(

(ω0 − ω)ω
v2

−∇p∇p′

)
K0

(
(ω0 − ω)p

v

)
K0

(
ωp′

v

)∣∣∣∣
p′=p

. (6.50)

The integration over ω has not so far been carried out analytically.
Figure 6.6 shows the result from a numerical evaluation of (6.50), compared

with the result from the Bohr theory. Both results are nominally independent
of the projectile speed but apply only to distant collisions. The two results can
be compared directly, since the Barkas-Andersen factor 1/ξ has been taken
out from the third-order term. It is seen that the two functions have similar
shape and magnitude, although T (3)(p) falls off slightly faster than T (2)(p).

This similarity has been known early on and led to the frequently-adopted
assumption that the Barkas-Andersen term in the resulting stopping cross
section should show a similar scaling property as the leading term (Ashley
et al., 1972, Jackson and McCarthy, 1972). Quantitative details, however,
hinge on the limitations of Fig. 6.6 toward small impact parameters and the
behavior of the energy-loss function below that limit. This problem did not
find a solution until much later.

Quantal Oscillator

The first complete calculation of a Z3
1 correction to both T (p) and the stop-

ping cross section was presented by Mikkelsen and Sigmund (1989). This cal-
culation is based on a harmonically-bound target electron, i.e., it carries the
calculation described in Sect. 4.5.2 to the next order. The computation of
T (p) invokes two numerical integrations and a nontrivial summation over two
quantum numbers. Stopping cross sections were determined by yet another
numerical integration. In order to ensure rapid convergence of the infinite
series, the Coulomb potential was represented by

V (r) = −Z1e
2

√
π

∫ ∞

0

dη√
η
e−ηr2

(6.51)

instead of its Fourier transform (4.15).
Figure 6.7 shows T (p) in a plot that can be compared with Fig. 4.4. As

in the the second-order term T (2), the classical dipole approximation agrees
with the quantal result at large impact parameters. The validity of this finding
has been shown not to be limited to the harmonic-oscillator model by Hill
and Merzbacher (1974). Pronounced discrepancies occur at impact parameters
below the oscillator radius, but the qualitative behavior is very similar in the
two graphs.
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Fig. 6.7. Impact-parameter dependence of Z3
1 correction to energy loss versus im-

pact parameter for three-dimensional, spherical harmonic oscillator. The abscissa
unit is the oscillator radius β−1 =

√
�/mω0. Solid lines: Quantum harmonic os-

cillator. Dashed lines: Classical oscillator, dipole limit (Ashley et al., 1972). From
Mikkelsen and Sigmund (1989)

Figure 6.8 shows stopping numbers for the two leading orders defined by

S =
4πZ2

1e
4

mv2

(
L0 +

Z1e
2ω0

mv3
L1 . . .

)
(6.52)

It is seen that (6.39) agrees reasonably well in magnitude – although not in
slope – with the computed result in the important range of 5 < 2mv2/�ω0 <
10. However, it is also seen that L1 becomes negative for 2mv2/�ω0 < 4. This
is easily seen to give rise to negative values of L at low velocities. While this
indicates a failure of the perturbation expansion, we note that the domain of
the Born expansion is the range 2mv2/�ω0 > 2mZ2

1v
2
0/(Z2×10eV) � 5Z2

1/Z2,
which does not include those low velocities.

Figure 6.9 shows three approximations to the stopping cross section of
a harmonic oscillator for protons. While the result from the first Born approx-
imation has a realistic behavior, the stopping cross section becomes negative
below 2 keV when the Z3

1 term is included, and negative below 3 keV when
also the Z4

1 term is allowed for. This phenomenon was already evident from
Fig. 6.2. The Born series is a high-velocity expansion which breaks down at
low speed.

Mikkelsen (1991) went one step further in the Born series and evaluated
the term of fourth order in Z1 for the spherical harmonic oscillator. For the
energy loss versus impact parameter in the semiclassical model, the following
scaling property was found for the Z4

1 -contribution,

T (4)(p) =
(
Z1e

2

�v

)4

�ω0 g

(
2mv2

�ω0
, βp

)
, (6.53)
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Fig. 6.8. Stopping numbers L0 and L1 for quantal harmonic oscillator according
to Sigmund and Haagerup (1986) and Mikkelsen and Sigmund (1989), respectively.
ξBethe = 2mv2/�ω0. See text. The two graphs represent different intervals oof the
abscissa variable

where β =
√
mω0/�. You may derive the scaling law for the stopping number

from this in problem 6.3.

Electron Gas (�)

The Z3
1 correction for a homogeneous electron gas has received much interest

in the literature, both in the static approximation and taking into account the



200 6 Swift Point Charges II

Fig. 6.9. Stopping cross section of atomic hydrogen for protons. The target atom is
approximated by a spherical harmonic oscillator with I = 15.0 eV. Dashed line: Born
approximation (Sigmund and Haagerup, 1986). Dot-dashed line: Including Z3

1 term
of Mikkelsen and Sigmund (1989). Solid line: Including Z4

1 term. From Mikkelsen
(1991)

Fermi motion. Pioneering work was done by Esbensen (1976) who extended
the formalism of Lindhard (1954) to the next order in Z1. Esbensen’s evalua-
tion of the Z3

1 correction to the stopping force focused on the static electron
gas.

This work reached the open literature only more than a decade later (Es-
bensen and Sigmund, 1990), together with several extensions, in particular
an evaluation of the Z3

1 -correction to a dense gas of oscillators that was men-
tioned in Sect. 5.5. In the meantime, a study by Sung and Ritchie (1983) had
appeared which seriously questioned the validity of Esbensen’s results. This
gave rise to further activity, in particular work by Hu and Zaremba (1988)
and Pitarke et al. (1993a, 1995).

A key point in the discussion was the question of whether or not close
collisions contribute substantially to the Barkas-Andersen correction. Lind-
hard’s point had received strong support from Arista (1982), who argued on
the basis of wellknown differences between electron-atom and positron-atom
scattering. A more explicit result is seen in Fig. 6.7. Nevertheless, arriving at
a conclusion in the electron-gas picture turned out to be more complex be-
cause of difficulties in the evaluation of the stopping force near the maximum
energy loss.
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6.4.5 Beyond Perturbation Theory

The two preceding sections have demonstrated that higher-order Z1 correc-
tions to the Bethe stopping theory fall into two categories, the Bloch correction
characterized by the Bohr parameter κ = 2Z1v0/v and the Barkas-Andersen
correction characterized by the parameter Z1e

2ω0/mv
3 = 1/ξ. These two pa-

rameters become large as the speed becomes small. Hence, series expansions
in powers of Z1 must break down at small projectile speeds. For the Bloch
correction this has already been seen in Fig. 6.2. The occurrence of the fac-
tor v3 implies that an even more pronounced effect must be expected for
the Barkas-Andersen correction. A nonperturbational approach appears nec-
essary to estimate these corrections in the velocity regime where they cannot
be expected to be small. The Bloch correction has been formulated nonpertur-
batively from the beginning. For the Barkas-Andersen effect, such approaches
have become available during the past decade.

Much activity has been devoted to the regime of slow ions, i.e., ions in the
velocity range v � v0, where even protons can no longer be treated as point
charges. Approaches for this regime will be discussed in Volume II.

Binary Stopping Theory

A comparatively simple theoretical scheme is the binary stopping theory (Sig-
mund and Schinner, 2000). The underlying physical model is identical with
Bohr’s, but series expansion in powers of Z1 is avoided. This has been achieved
by making use of the approximate equivalence between binding and screening
discussed in Sect. 6.4.3. Let us tentatively adopt a screened potential (6.35)
in Yukawa form,

V(r) = −Z1e
2

r
e−ω0r/v, (6.54)

following Lindhard (1976) and neglect binding. We could allow for an ad-
justable parameter in the exponent, but that will turn out not to be necessary
in a moment.

Binary scattering governed by a spherically-symmetric potential has an
exact solution which can be expressed by (3.34). Before making this step,
let us try whether we can reproduce Bohr’s results to the leading order in
Z1. This is achieved by the momentum approximation of classical scattering
theory discussed in Appendix A.3.1. Specifically, for the potential (6.54), you
arrive at the center-of-mass scattering angle

Θ = −2Z1e
2ω0

mv3
K1

(ω0p

v

)
. (6.55)

by solving problem 3.8. From this we find the energy transfer

T = 2mv2 sin2 Θ

2
=

2Z2
1e

4ω2
0

mv4

[
K1

(ω0p

v

)]2
(6.56)
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for small scattering angles. Comparison with (4.23) shows that the second
contribution in Bohr’s result is reproduced rigorously. With this pleasant sur-
prise in mind, one may ask whether there is a way also to arrive at the first
term in (4.23) from binary scattering theory.

r
0

p P

P

v

Fig. 6.10. Elliptic orbit of an excited
target electron in the Bohr model.
From Sigmund and Schinner (2000)

In binary scattering between free particles, at small scattering angles, the
recoiling particle moves normally to the beam direction. In the Bohr model,
where the recoiling particle (the electron) is bound, momentum is transferred
both parallel and perpendicular to the beam direction. Equation (6.42) con-
firms that (6.56) indeed describes the momentum transfer normal to the beam
direction.

Momentum transfer also in the direction parallel to the beam has the
consequence that after the collision, the electron moves along an elliptic orbit
around its binding site (Fig. 6.10). While this must be true for both close and
distant collisions, (6.42) determines the axes in the limit of distant collisions,

2|Z1|e2
mv2

K0

(ωp
v

)
and

2|Z1|e2
mv2

K1

(ωp
v

)
, (6.57)

as follows immediately from energy conservation. Now, at the marked point,
where the electron moves perpendicular to the beam direction, its kinetic
energy is determined entirely by (6.56), but in addition it also has a potential
energy

Epot = mω2
0r

2
0/2 (6.58)

with

r0 =
2|Z1|e2
mv2

K0

(ωp
v

)
. (6.59)
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You can easily verify that (6.58) and (6.59) yield the first term in (4.21). Thus,
in order to reproduce Bohr’s result from binary scattering theory we need to
find a way to determine r0 without invoking a binding force.

Note first that the momentum transfer P⊥ perpendicular to v determines
the angular momentum transferred to the electron,

Jbound = r0P⊥. (6.60)

r
eff

p

v

θ

Fig. 6.11. Orbit of target electron
in binary-scattering model. From Sig-
mund and Schinner (2000)

Now, in our binary-scattering problem, angular momentum is conserved
in the center-of-mass frame, but in the laboratory frame we have

Jfree = reffP, (6.61)

where reff is indicated in Fig. 6.11 and P is the final momentum of the electron
in the laboratory system. For a distant collision we have

P → P⊥ and reff → r0. (6.62)

While the relation for P has been utilized repeatedly from Chapter 1 on, the
relation for reff is nontrivial:

The location of asymptotic trajectories in space involves the time integral
discussed in Sect. 3.3.4. Comparison of Figs. 3.7 and 6.11 leads to

reff = 2τ cos
Θ

2
− 2p sin

Θ

2
→ 2τ − pΘ, (6.63)

where the limiting transition refers to large impact parameters p.
A perturbation expansion of the time integral in terms of Z1 is given in

Appendix A.3.1. Insertion of (A.133) and (6.62) into (6.63) yields

reff =
2|Z1|e2
mv2

K0

(
p

aad

)
. (6.64)

This proves (6.62).
We may now conclude that the distant-collision part of Bohr’s result can

be reproduced by adopting binary scattering on the Yukawa potential (6.35).
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Fig. 6.12. Energy loss versus impact parameter: Comparison between Bohr,
perturbed-Bohr and binary theory. ξ = mv3/Z1e

2ω0 = 1

Conversely, close collisions are described properly by the same model to the
extent that screening becomes insignificant. However, there is a wide inter-
mediate regime, where the predictions of binary scattering differ from those
of both the Bohr model and free-Coulomb scattering. In order to test the
validity of those predictions, Sigmund and Schinner (2000) made comparisons
with estimates of the Z3

1 effect discussed in Sect. 6.4.4.
Figure 6.12 shows a comparison between energy-loss functions T (p) for

protons predicted from the Bohr and the binary theory. Plotted is the dimen-
sionless quantity ξ2T/2mv2 versus ω0p/v. Excellent agreement is found be-
tween the prediction of the binary theory and the Bohr model for ω0p/v � 2.5
and for the Z3

1 -corrected Bohr model for ω0p/v � 1.
Unlike Fig. 6.7, the binary theory predicts the Barkas-Andersen correction

to approach zero toward p = 0. This is an inherent feature of the theory caused
by the adoption of the screened-Coulomb potential (6.35): If the distance of
closest approach is well below the adiabatic radius, free-Coulomb scattering is
approached, and hence, the Barkas-Andersen correction must approach zero.
Note, however, that at ξ = 1, it has its maximum slightly below ω0p/v = 1
or p � b/2, where b is the collision diameter, i.e., at a very small impact
parameter.

Figure 6.13 shows predictions for the stopping number versus Bohr pa-
rameter ξ = mv3/Z1e

2ω0. Excellent agreement is found between the curve
labelled ‘average’ and the Bohr theory. That curve was determined as the
average between the predictions for protons and antiprotons, i.e., eliminating
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Fig. 6.13. Stopping number L versus velocity in terms of Bohr parameter ξ =
mv3/Z1e

2ω0

the Barkas-Andersen correction. The curve labelled ‘Bohr’ does not make use
of the high-speed expansion that leads to the Bohr logarithm.

Figure 6.13 also shows estimates of the Barkas-Andersen correction ∆L(ξ).
The prediction of the binary theory (∆L: binary) indicates a broad maximum
around ξ � 3. Also shown is a curve ξ∆L(ξ) which indicates the remaining
dependence after separating off the Barkas-Andersen factor ξ−1. This function
has frequently been asserted to have logarithmic dependence on v (Ashley
et al., 1972, Jackson and McCarthy, 1972, Lindhard, 1976). Such behavior is
observed only over very limited ranges of projectile speed.

Electron Gas

The Fermi gas is a favored playground in many-body theory. The stopping
of a heavy particle is an example of a practical application of new or well-
established theoretical tools to treat such many-body problems. In fact, it is
presumably one of the best available examples, since the relation to exper-
iment is close. The reader interested and experienced in many-body theory
is kindly referred to papers by Hu and Zaremba (1988) and Pitarke et al.
(1993b), Bergara et al. (1996), where further references may be found.

The key point in the application of Fermi-gas physics in stopping theory,
in the author’s opinion, is the basic simplicity of the model. Only few metals
are genuinely free-electron metals for which the model provides an adequate
description of the conduction electrons, and several of those, such as the al-
kalis, are not of particular relevance in particle stopping. We shall see in the
following chapter that the free-electron model also may be applied to describe
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stopping in insulators, but it is not obvious, then, to what degree the accuracy
of such a description can be improved by applying many-body descriptions
instead of the mean-field theory described above.

6.5 Stopping Medium in Internal Motion

Shell corrections to the stopping force account for the orbital motion of tar-
get electrons. This effect has been ignored in Bohr theory. It is inherent in
the general formulation of Bethe theory but has been eliminated in the fi-
nal derivation of the stopping formula (4.118). These shortcomings will be
repaired in Sect. 6.6. Here, as a preliminary exercise, we study stopping of
a swift particle in a medium made up by independently-moving electrons.
Early work in this area is due to Gryzinski (1957, 1965) and Gerjuoy (1966)
who focused on classical Coulomb interaction from the beginning.

The treatment presented here makes use of conservation laws for elastic
scattering and is equally valid in classical and quantum mechanics. Collisions
are assumed elastic, and the interaction potential is taken to be spherically
symmetric.

6.5.1 Nonrelativistic Regime

Consider an ion moving with a velocity v through a medium made up by elec-
trons distributed uniformly in space at a density n, all moving with a velocity
ve. In the rest frame of the projectile – which, in practice, is the center-of-mass
frame for M1 � m – the projectile is hit by electrons moving with a velocity

we = ve − v (6.65)

and a uniform current density J ′ = nwe.
The mean number of collision events in a time interval dt leading to scat-

tering of a target electron into an angular interval d2Ω is given by

J ′ dt dσ(we, Θ), (6.66)

where dσ(we, Θ) is the differential cross section and Θ the center-of-mass
scattering angle. Electrons deflected on the ion by a polar angle Θ transfer an
average momentum

∆P = mwe(1 − cosΘ) (6.67)

to the ion. Only the component parallel to we matters, since the transverse
components cancel for a uniform current density.

This determines the total force on the ion,

F =
dP

dt
= nmwewe

∫
(1 − cosΘ) dσ(we, Θ). (6.68)
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Now, assume a distribution g(ve) of electron velocities ve in the laboratory
frame of reference. We then find

F = nm
〈
wewe

∫
(1 − cosΘ) dσ(we, Θ)

〉
ve

, (6.69)

where 〈. . . 〉ve
=
∫

d3ve g(ve)(. . . ). If the velocity distribution is isotropic, F
can only have a component along v which is the negative stopping force

−dE
dx

= −v

v
· F = nS (6.70)

with the stopping cross section per target electron

S = m
〈 |ve − v|

v
v · (v − ve)σ(1)(|ve − v|)

〉
ve

. (6.71)

Here,

σ(1)(v) =
∫

(1 − cosΘ) dσ(v,Θ) (6.72)

is a transport cross section per target electron.
These arguments stem from kinetic gas theory. The derivations here are

slight generalizations of the one presented in Lindhard’s lectures. Eq. (6.71)
has been common knowledge for many years. The earliest published reference
that I am aware of is Trubnikov and Yavlinskii (1965).

6.5.2 Relativistic Extension (�)

In order to extend (6.68) into the relativistic regime, assume the projectile
velocity to be directed along the x-axis in the laboratory frame of reference
S. Then, in the rest frame S′ of the projectile, the electron velocity has com-
ponents

we,x =
ve,x − v

1 − vve,x/c2
(6.73a)

we,y =
ve,y

γv(1 − vve,x/c2)
(6.73b)

we,z =
ve,z

γv(1 − vve,x/c2)
, (6.73c)

γv =
1√

1 − v2/c2 (6.73d)

according to the addition theorem of velocities (cf. Appendix A.3.2). Then
(6.66) reads

J ′dt′dσ(we, Θ), (6.74)

where dt′ is a time interval in S′.
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Since the current density is a four-vector we obtain

J ′
x = nγv(ve,x − v); J ′

y = nve,y; J ′
z = nve,z . (6.75)

This yields

J ′ =
√
J ′

x
2 + J ′

y
2 + J ′

z
2 = nγvvM, (6.76)

where γv = 1/
√

1 − v2/c2 and

vM =

√
(v − ve)2 − v

2v2e − (v · ve)2

c2
(6.77)

is called the Møller speed (Møller, 1972).
The relativistic extension of (6.67) now reads

∆P ′ = mγwewe(1 − cosΘ), (6.78)

where

γwe =
1√

1 − w2
e/c

2
= γvγve(1 − v · ve/c

2), (6.79)

and

γve =
1√

1 − v2e/c2
(6.80)

(cf. problem 6.4), and the force equation becomes

F ′ =
dP ′

dt′
= nmγvvMγweweσ

(1)(we). (6.81)

It has been assumed here that the relativistic projectile mass is large compared
to the relativistic electron mass, i.e.,

γvM1 � γvem. (6.82)

For relativistic ions, violation of this assumption requires excessively hot tar-
gets. A derivation of a more general expression that does not imply this sim-
plifying assumption was given by Tofterup (1983).

The relativistic extension of (6.71) reads

S = mγv

〈
γwe

vM
v

v · (v − ve)
1 − v · ve/c2

σ(1)(we)
〉

ve

(6.83)

or, in the form given by Tofterup (1983),

S = mγ2
v

〈
γve

vM
v

v · (v − ve)σ(1)(we)
〉

ve

, (6.84)

where

we =
vM

1 − v · ve/c2
. (6.85)
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6.5.3 A Useful Transformation

For ve � v, (6.71) reduces to

S0 = mv2σ(1)(v), (6.86)

whereas the relativistic version (6.83) carries an additional factor γ2
v .

We may use this relation to eliminate the transport cross sections (Sig-
mund, 1982). Solving (6.86) for σ(1)(v) and inserting it into (6.71) yields

S(v) =
〈

v · (v − ve)
v|v − ve| S0(|v − ve|)

〉
ve

. (6.87)

This expresses the stopping cross section of a medium in motion by the equiv-
alent quantity of a medium at rest. The relation is exact for binary elastic
collisions at nonrelativistic velocities, but it also allows to estimate the effect
of target motion under less restrictive conditions (Sigmund, 1982).

The extension into the relativistic regime reads (Tofterup, 1983)

S(v) =
〈
γv

γwe

v · (v − ve)
vwe

S0(we)
〉

ve

=
〈

v · (v − ve)
vvMγve

S0(we)
〉

ve

(6.88)

6.5.4 High-Speed Expansion: Nonrelativistic

Let us consider (6.87) in the limit where ve � v and apply Taylor expansion
in powers of ve up to second order. Then,

|v − ve| = v
(

1 − v · ve

v2
+

1
2
v2v2e − (v · ve)2

v4
. . .

)
. (6.89)

Insertion into (6.87), retaining all terms up to second order and assuming an
isotropic velocity distribution,

g(ve) ≡ g(ve), (6.90)

you find (problem 6.5)

S(v) � S0(v) +
〈v2e〉
v2

(
−1

3
S0(v) +

1
3
vS′

0(v) +
1
6
v2S′′

0 (v)
)
. . . , (6.91)

where S′
0(v) = dS0(v)/dv. The corresponding term of fourth order in ve was

found by Sigmund (1982), where also the general case of arbitrary mass ratios
M1/m has been treated.

The conclusion emerges that motion of target electrons, as long as it is
significant but not dominating, introduces correction terms of the order of
〈v2e〉/v2. Such terms are categorized under the label shell corrections. We keep
in mind, however, that all relations in this section have been derived under
the assumption of binary elastic collisions and hence do not necessarily hold
strictly for bound electrons.
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6.5.5 Relativistic Orbital Speed (�)

An expansion in powers of ve/v has little meaning when ve approaches the
speed of light. However, the two cases v0 � v � ve � c and v, ve � c are of
interest.

In the first case we have

vM � ve − vη (6.92a)
we � ve − vη/γ2

ve
(6.92b)

η = cos(v,ve), (6.92c)

up to first order in v/ve and hence

S(v) � v

3γve

〈
2
v
S0(ve) +

1
γ2

ve

S′(ve)
〉

for v0 � v � ve. (6.93)

The nonrelativistic version of this formula was found long ago (Sigmund,
1982).

In the second case, when both v and ve come close to c, you easily find
that

vM � c(1 − η) (6.94a)
we � c (6.94b)

so that (6.88) reduces to

S(v) �
〈

1
γve

S0(we)
〉

ve

, (6.95)

where we has been kept in S0(we) since the expression otherwise may diverge
for v → c according to (5.119).

6.6 Shell Correction

6.6.1 Introduction

As mentioned previously, stopping formulae discussed so far, with the excep-
tion of the quantal-oscillator model in Sect. 4.5.3 and Fermi-gas theory in
Sect. 5.7.4, ignore the orbital motion of the electrons in the material. While
this must be justified at projectile speeds substantially above orbital speeds,
that condition is barely fulfilled in measurements, in particular on heavy ma-
terials where inner electrons have velocities approaching the speed of light.

The explicit or implicit presence of a shell correction is a necessary ingre-
dient in any stopping theory that is to describe stopping at projectile speeds
that are not large compared to the velocities of all target electrons. Never-
theless, a precise definition of the shell correction is difficult because of the
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simultaneous presence of the Bloch and the Barkas correction3 and because
other approximations may have been made that break down at lower projectile
speed.

According to (5.165), a high-velocity expansion of the stopping number
receives additions ∝ v−2 and v−4 to the leading logarithmic term. This feature
is common to all evaluations in the literature of the shell correction when
a series expansion is made. You may note that the reference velocity is the
Fermi velocity vF in both terms. A term ∝ �ωP /mv

2 could have been expected
but does not appear in the leading term. Such a term would imply a binding
correction, while v2F /v

2 is a purely kinematic term. This is a strong indicator
that the shell correction is primarily a kinematic correction.

6.6.2 Bohr Theory

Bohr stopping theory as outlined in Sect. 4.2 assumes the target electron ini-
tially at rest. This is unproblematic in a classical calculation. Hence, determin-
ing a shell correction implies inclusion of some initial motion. In a harmonic-
oscillator potential, this is a Lissajou-type motion in three dimensions,

r0(t) = a0 cosω0t+ b0 sinω0t, (6.96)

with amplitude vectors a0, b0 directed at random such that

〈a0〉 = 〈b0〉 = 〈a0 · b0〉 = 0 (6.97)

and distributed in magnitude such that

〈
a2

0

〉
=
〈
b2
0

〉
=

〈v2e〉
ω2

0

, (6.98)

where v2e is the mean square orbital velocity of the target electron.
One may then define the shell correction as a correction to the stopping

number,

∆L = LBohr,ve − LBohr,ve=0. (6.99)

Such a calculation has become available recently (Sigmund, 2000), but only the
first term in the expansion in terms of 〈v2e〉/v2 was evaluated. The calculation

3 In addition to the substance there is also some ambiguity about the name. The
frequently-used terminology ‘inner-shell correction’ dates from a time when pro-
jectile speeds in typical stopping experiments were far above those of valence and
conduction electrons, so that the correction was only of interest for the innermost
target shells. On the other hand, on a relative scale, the magnitude of the shell
correction is very similar for all shells, and only their location on the velocity
scale varies. Terms like ‘kinematic correction’ or ‘Doppler broadening’ are more
descriptive but are only applicable as long as nothing else is corrected for.
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is lengthy, and care is indicated with regard to the transition from distant
to close interactions. Nevertheless, full documentation may be found in the
original paper for the reader who wants to go through this exercise.

The main conclusion emerging from that work is that the dominating con-
tribution to the shell correction stems from close collisions where the harmonic
binding force can be neglected.

6.6.3 Bethe Theory

Unlike the Bohr theory, the Bethe scheme takes full account of the orbital
motion from the beginning, and (4.106) represents an exact result within the
leading term in the Born series. Therefore, within this scheme it is appropriate
to define the shell correction via

∆L = LBorn − ln
2mv2

I
, (6.100)

where

LBorn =
1
2

∑
j

∫ ∞

(�ωj0)2/2mv2

dQ
Q
fj0(Q); �ωj0 = εj − ε0. (6.101)

This definition does not explicitly make reference to orbital motion. After
all, assuming negligible orbital motion would be in conflict with the quantum
mechanics of a bound electron.

Splitting the integration in (6.101) at Q = 2mv2 you may write ∆L in the
form

∆L =
1
2

∑
j

(∫ ∞

2mv2

dQ
Q
fj0(Q)

+
∫ 2mv2

(�ωj0)2/2mv2

dQ
Q

[fj0(Q) − fj0(0)]

)
, (6.102)

making use of the definition (4.119) for I. This may be rewritten as

∆L =
1
2

∑
j

(∫ ∞

2mv2

dQ
Q
fj0(Q)

−
∫ (�ωj0)2/2mv2

0

dQ
Q

[fj0(Q) − fj0(0)]

)
, (6.103)

since
∑

j

∫ 2mv2

0 (dQ/Q) [fj0(Q) − fj0(0)] = 0 because of the sum rule (4.114).
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Fano-Turner Expansion

Eq. (6.103), which is due to Walske (1952), indicates that the shell correction
vanishes as v becomes large. This suggests asymptotic expansion in powers of
1/v (Brown, 1950, Walske, 1952, 1956, Fano and Turner, 1964). The calcula-
tion makes use of sum rules, and care needs to be taken to include all terms
up to the chosen order in 1/v.

For a one-electron atom, Fano (1963) obtained

∆L = −〈v2e〉
v2

− 〈v4e〉
2v4

− 5π
3

(v0
v

)4

a30ρe(0), (6.104)

where ρe(r) = |ψ(r)|2 is the electron density.
It is seen that the leading correction (∝ 1/v2) is exclusively determined by

the motion of the target electron and formally independent of its binding, irre-
spective of the fact that the two quantities are intimately related by quantum
mechanics. Conversely, the second term (∝ 1/v4) does contain an additional
contribution which is not generally expressible in terms of the electron speed
ve. Furthermore, for a multi-electron atom, Fano (1963) also mentions terms
involving pairwise correlation of target electrons.

We may conclude that in the Bethe theory, the first shell correction
−〈v2e〉/v2 reflects orbital motion, while the second term is more complex and
depends on specific properties of the target atom.

Moreover, the fact that 〈v6e〉 diverges for a hydrogen atom indicates that
the asymptotic expansion cannot be extended in general to higher than fourth
order terms in 1/v.

Harmonic Oscillator

A rigorous evaluation of the Bethe theory has been performed for the spherical
harmonic oscillator, cf. Fig. 4.6. Also an asymptotic expansion was found
(Sigmund and Haagerup, 1986), which reads

L = ln
2mv2

�ω0
− 3

�ω0

2mv2
− 25

2

(
�ω0

2mv2

)2

. . . (6.105)

Unlike in the hydrogen atom, momentum spectra for a harmonic oscillator are
gaussian-like and hence allow evaluation of 〈vν

e 〉 for arbitrarily high values of
ν. Therefore, (6.105) is an infinite series, although its practical significance is
limited to fairly large values of 2mv2/�ω0.

In order to compare (6.105) with (6.104), note that for a three-dimensional
harmonic oscillator,

1
2
m〈v2e〉 =

1
2
ε0 =

3
4

�ω0, (6.106)

where ε0 is the ground-state energy, and hence
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−3
�ω0

2mv2
= −〈v2e〉

v2
, (6.107)

in agreement with the general result (6.104).
For the fourth moment you find in problem 6.7 that

〈v4e〉 =
15
4

(
�ω0

m

)2

, (6.108)

and hence

−25
2

(
�ω0

2mv2

)2

= −5
6
〈v4e〉
v4
. (6.109)

This result appears to be specific for the harmonic oscillator.

Fermi Gas

The stopping force of a Fermi gas was evaluated in Sect. 5.7.4. Those results
can be compared with the present findings.

Note first that here,

〈v2e〉 =
3
5
v2F (6.110)

according to (5.147). With this, (5.165) becomes identical with the leading
term in (6.104), as it should. Moreover,

〈v4e〉 =
3
7
v4F (6.111)

and hence,

− 3
14
v4F
v4

= −〈v4e〉
2v4

, (6.112)

which is in agreement with the kinetic term in (6.104).

Atomic Wave Functions

Equation (6.103) has been evaluated numerically with hydrogenic wave func-
tions for K and L electrons by Walske (1952, 1956) and for M electrons by
Khandelwal and Merzbacher (1966). Early literature has been reviewed by
Fano (1963). Numerous computations have been performed more recently on
excitation cross sections for point projectiles within the first Born approx-
imation. Amongst those addressing stopping forces, the work of Inokuti et al.
(1981), McGuire (1983) and Bichsel (2002) may be mentioned.
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6.6.4 Kinetic Theory

According to the previous section, a common feature of the Bethe theory is the
first shell correction, −〈v2e〉/v2 which confirms the dominance of the orbital
motion of the target electron. Now, orbital motion was ignored not only in the
Bohr theory and in the approximation underlying the Bethe logarithm, but
also in the Bloch theory and in several estimates discussed above of the Barkas-
Andersen correction. It is desirable, therefore, to have available a general
scheme, albeit approximate, to incorporate shell corrections into a theory
that neglects orbital motion. A scheme that is suitable for this purpose is the
transformation (6.87) discussed in Sect. 6.5. This transformation is rigorous
for free target particles. Errors must be expected in the presence of binding,
but their magnitude can be estimated by means of comparisons with reliable
direct estimates of shell corrections in specific cases.

High-Speed Expansion

Let us explore the high-speed expansion (6.91), and introduce the stopping
number L0(v) representing the system ignoring target motion via

S0(v) =
4πZ2

1Z2e
4

mv2
L0(v). (6.113)

Then, (6.91) reduces to

∆L =
〈v2e〉
v2

(
−1

3
v
dL0

dv
+

1
6
v2

d2L0

dv2

)
. . . (6.114)

It is easily seen that for L0 = ln(2mv2/I) you obtain ∆L = −〈v2e〉/v2, i.e.,
the correct first shell correction in the Born approximation.

This result is actually more general. In Sect. 6.3.4 a stopping formula was
derived which approximates the Bloch formula. Setting

L0(v) = ζ0K0(ζ0)K1(ζ0) (6.115)

with

ζ0 =
�ω0

2mv2

√
1 +

(
2Z1v0
Cv

)2

, (6.116)

you may evaluate (6.91) (problem 6.9) and obtain

∆L =
〈v2e〉
v2
ζ20

{
−
[
7
3

+
2

1 + C2/κ2
+

1
6

1
(1 + C2/κ2)2

]
[K0(ζ0)]

2

−
[
1 +

2
3

1
1 + C2/κ2

− 1
6

1
(1 + C2/κ2)2

]
[K1(ζ0)]

2

+
2
3

[
2 +

1
1 + C2/κ2

]2
ζ0K0(ζ0)K1(ζ0)

}
(6.117)
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For large v, i.e., small ζ0 and small κ, the leading term is ∝ [K1(ζ0)]2. With
ζ0K1(ζ0) → 1 and 1/κ→ ∞ you obtain

∆L = −〈v2e〉
v2
. . . (6.118)

to leading order for the approximate Bloch formula, which agrees with (6.104).
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Fig. 6.14. Stopping number of a quantum oscillator with I = 100 eV for proton.
Solid line: First Born approximation (exact) according to Sigmund and Haagerup
(1986). Points: Calculated from binary theory, average between result for proton
and antiproton. Also included is the Bethe logarithm. From Sigmund and Schinner
(2006)

In view of this, we may tentatively redefine the shell correction ∆L as

∆L = L− Lstatic, (6.119)

where Lstatic ignores the orbital motion of target electrons. It is clear that
there is no way to measure a shell correction defined in this manner. However,
an advantage of this definition, compared to (6.11), is the inclusion of all
competing effects such as Bloch and Barkas correction.

6.6.5 Is the Shell Correction Purely Kinematic?

Figure 6.14 shows the stopping number of a quantum oscillator with I =
�ω0 = 100 eV for protons. In addition to the Bethe logarithm you see the
exact result within the Born approximation (Sigmund and Haagerup, 1986)
and a prediction from binary theory averaged between the predictions for
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protons and antiprotons. Excellent agreement is found within the Born regime
(E � 100 keV). In other words, the Born approximation can be well simulated
by classical theory plus shell and inverse-Bloch correction. We note that the
applied shell correction is purely kinematic. Thus, from a physical point of
view we may safely accept the notion of the shell correction being of a purely
kinematic nature.

The traditional definition of the shell correction makes reference to the
Bethe logarithm as the reference (Fano, 1963). Within that notion, the shell
correction is composed of a kinematic correction as well as a mathematical
correction for an asymptotic expansion at high speed (Sigmund and Schinner,
2006).

6.7 Relativistic Projectile Speed

We have seen in Sect. 3.5.3 that the interaction between a relativistic electron
and a point charge deviates from Rutherford’s law. In fact, the cross section
depends on the sign and magnitude of the charge, and on spin. These features
were first studied by Mott (1929), but in view of the success of the Bethe
theory, they were considered insignificant for the stopping of charged particles.
Indeed, deviations from Rutherford’s formula increase with increasing charge
and, hence, become important mainly for high-Z1 projectiles.

6.7.1 General Observations

Relativistic corrections were considered in connection with the Barkas-Andersen
effect by Jackson and McCarthy (1972) who referred to unpublished work by
Fermi. They were, however, discarded as a main contributor in view of clear
experimental evidence in favor of a low-velocity effect.

A clear need for higher-order relativistic corrections became evident in
experimental work on ranges of relativistic heavy ions in matter by Tarlé and
Solarz (1978) with 600 MeV/u Fe and Ahlen and Tarlé (1983) with 955 MeV/u
U ions. Figure 6.15 shows a 6 % deviation of the energy loss for U ions from
the calculated value. It is also evident that the deviation is systematic for the
four ions involved. Nevertheless, these measurements were indirect, involving
ranges in more than one target material, but direct stopping measurements
by Scheidenberger et al. (1994) and Datz et al. (1996) confirmed and extended
this evidence.

Incorporation of the Mott cross section into Bethe theory by Ahlen
(1978) substantially improved the agreement between calculated and mea-
sured ranges (cf. Fig. 6.15). Similar conclusions emerge from the measure-
ments by Scheidenberger et al. (1994).

However, although the Bloch correction discussed in Sect. 6.3.1 becomes
small at high velocities, this does not imply that this trend survives into the
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Fig. 6.15. Relative deviation (%) in energy loss of heavy ions (Ne, Ar, Fe, U) in Cu
from predictions of the relativivistic Bethe formula. From Ahlen and Tarlé (1983)

relativistic regime. This aspect was studied by Ahlen (1982). The range of
validity of Ahlen’s calculation is restricted to moderately heavy projectiles
such as Ne and Ar, while noticeable errors were expected already for Fe ions.

6.7.2 Lindhard-Sørensen Theory (�)

A more comprehensive theory incorporating the above effects as well as devia-
tions from straight Coulomb interaction due to the structure of the projectile
nucleus has been presented by Lindhard and Sørensen (1996). The basic strat-
egy of this theory has been discussed already in Sect. 6.3.2, where the correc-
tion to the Bethe formula was identified with the difference in free-Coulomb
scattering between an exact evaluation and the first Born approximation. That
calculation, based on nonrelativistic quantum mechanics, was then generalized
to Dirac theory.

As a first step, the transport cross section for scattering of Dirac particles
on an arbitrary spherically symmetric potential is evaluated. In the notation
of Sect. 3.5.3 it may be written in the form

σ(1) = 4πλ̄2
∑

κ

|κ|
[

κ − 1
2κ − 1

sin2 (δκ − δκ−1)

+
1/2

4κ2 − 1
sin2 (δκ − δ−κ)

]
(6.120)

instead of (6.16), where λ̄ = �/γmv and the sum over κ includes all nonzero
integer values of κ.
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Next, phase shifts for Coulomb scattering quoted in Sect. 3.5.3 are inserted
into (6.120), and the perturbation limit is determined and subtracted. This
yields a correction to the relativistic Bethe stopping number of the form

∆L =
∑
κ �=0

[ |κ|
η2

κ − 1
2κ − 1

sin2 (δκ − δκ−1) − 1
2|κ|

]

+
1
γ2

v

∞∑
κ=1

κ

4κ2 − 1
1

κ2 + (η/γv)2
+
v2

2c2
(6.121)

instead of (6.18). This expression was evaluated numerically.

∆
L
−

∆
B

lo
ch

,n
o
n
re

l

γv − 1

Fig. 6.16. Deviation of the Lindhard-Sørensen correction ∆L to the relativis-
tic Bethe formula from the nonrelativistic Bloch correction (6.20) for Z1 =
1, 10, 18, 36, 54, 92 (bottom to top) versus γv−1 = 1/

√
1 − v2/c2−1. From Lindhard

and Sørensen (1996)

Figure 6.16 shows the quantity

∆L− ∆LNR = Lrel − LBethe,rel − ∆LBloch,nonrel (6.122)

for several values of Z1. It is seen that the correction is small for light ions
(� 0.1 for Ne). The correction saturates at γv = 1/

√
1 − v2/c2 � 2, and the

magnitude of the saturation value is approximately proportional to Z1.
As a final step, phase shifts are obtained for the potential of a uniformly

charged sphere with a standard-size nuclear radius R = 1.18A1/3
1 , where A1 is

the mass number of the projectile, following a procedure outlined by Bhalla
and Rose (1962).
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∆
L

γv − 1

Fig. 6.17. Lindhard-Sørensen correction for projectile nucleus modelled as a uni-
formly charged sphere for Z1 = 1, 10, 18, 36, 54, 66, 79, 92, 109. Horizontal lines for
Z1 = 10, 36, 92 refer to point nuclei. From Lindhard and Sørensen (1996)

Figure 6.17 shows the quantity ∆L for this case. Unlike in Fig. 6.16 the
nonrelativistic Bloch correction has not been subtracted. It is seen that instead
of saturating at high values of γv, the correction starts decreasing at γv � 10
and eventually becomes negative.

A particularly appealing result was dervied for the stopping number at
ultrarelativistic velocities,

L→ ln
1.64c
RωP

, (6.123)

where R is the radius of the projectile nucleus and ωP the plasma frequency
for all target electrons. This expression includes a density correction.
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6.7.3 Additional Effects

Other effects contributing to energy loss need to be considered in the rela-
tivistic regime, in particular for heavy projectiles.

While energy loss going into Cherenkov radiation has not been consid-
ered explicitly, it has been fully acounted for in the evaluation of the den-
sity effect in Sect. 5.6.4. Another radiative contribution, energy going into
Bremsstrahlung, needs to be accounted for separately. Bremsstrahlung is the
leading stopping mechanism for high-energy electrons. However, for heavier
projectiles, the larger mass reduces dramatically the significance of angular
deflections of the projectile. In fact, Sørensen (2005) demonstrated that the
leading additional contribution to target excitation is electron-positron pair
production at high projectile speed.

The heaviest ions may capture target electrons also at velocities in the rela-
tivistic regime. Hence, screening by projectile electrons needs to be considered
in the analysis of precision measurements (Weick et al., 2002).

6.8 Discussion and Outlook

The exposition of the Bohr-Bethe theory in Chapter 4 left open several prob-
lems. Collective effects in the stopping medium were discussed in Chapter 5
which, as a by-product, also delivered a relativistic extension of the Bethe
formula for an individual target atom, yet still within the first Born approx-
imation. The present chapter may roughly be categorized into three parts,

– The Bloch theory providing the link between the classical Bohr theory and
Bethe’s theory based on the Born approximation,

– Shell and Barkas-Andersen corrections which become significant at low
projectile speeds, and

– Relativistic corrections.

The most prominent omissions concern

1. Stopping of ions below the Bohr velocity,
2. Stopping of ions carrying electrons,
3. Stopping of light particles, in particular electrons.

While the third topic is outside the scope of this monograph as far as detailed
quantitative estimates are concerned, the first two topics will play key roles
in Volume II.

In view of the neglect of projectile screening, stopping theory as outlined
so far is applicable to light ions, in particular protons and antiprotons, and
to heavier ions at increasingly high projectile speeds. For those particles, the
relativistic Bethe formula amended by the density correction is the universal
reference standard for comparisons with experiment. Examples will be seen
in the following chapter. At projectile speeds approaching orbital speeds of
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target electrons, the shell correction causes a gradual decrease in the stopping
force below the value following from the straight Bethe formula. On the other
hand, with a properly incorporated shell correction, the drop-off to zero at
2mv2 = I changes into a smooth decrease of the stopping force into friction-
like behavior.

The Barkas-Andersen correction acts, by and large, in the same velocity
regime as the shell correction. For protons and other positively charged pro-
jectiles it opposes the shell correction, while it enhances the effect of the latter
for antiprotons. An estimate of the relative significance of Barkas-Andersen
effect and shell correction will be given in the following chapter.

Finally, I like to mention a development which has been going on for
some time but, in the author’s opinion, has not yet led to a final satisfactory
result. You may remind that in Sect. 5.6, the stopping cross section was
evaluated for three regimes of momentum transfer delimited by Q0 and Q1.
While the evaluation forQ0 < Q < Q1 was based on sum rules, explicit matrix
elements calculated from the Dirac equation for plane waves were employed
for Q > Q1. This was necessitated by the breakdown of the Bethe sum rule
in the relativistic regime.

Problems with relativistic sum rules have been discussed extensively in
the literature, most recently so by Cohen (2004). As it turns out, meaning-
ful results can be obtained only by eliminating the effect of negative-energy
states. Various schemes have been designed to do this in a justifiable manner
which would not contradict basic principles in quantum mechanics. Results
for practical use are, however, on the way (Cohen, 2003).

Problems

6.1. Make a plot of Bohr’s kappa parameter and Bohr’s screening criterion in
suitable variables and identify the regimes of Bohr and Bethe stopping theory
as well as the regime where projectile screening may not be neglected.

6.2. Make a plot of the Bloch correction as a function of Bohr’s κ parameter
and compare it with successive approximations based on partial sums of the
expansions (6.6a).

6.3. Determine a scaling law for the Z4
1 -contribution to the stopping cross

section of a harmonic oscillator by the pertinent integral over eq. (6.53), and
show that the stopping number can be written as

L(4) =
(
Z1e

2

�v

)2

g

(
2mv2

�ω

)
. (6.124)

6.4. Give a proof of (6.79).

6.5. Derive (6.91) by the indicated procedure.
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6.6. Derive (6.103).

6.7. Derive (6.108). Hint: Use the relation

(
p2

2m

)2

=
(
H − 1

2
mω2r2

)2

. (6.125)

6.8. Compare (6.105) with Fig. 6.1 and explain why an expansion like (6.105)
can only provide a realistic estimate at moderately high speed. At low speed,
the stopping force is often assumed to be proportional to v, i.e., , L ∝ v3. A
simple procedure to produce a realistic stopping curve is based on the ansatz
(Varelas and Biersack, 1970, Andersen and Ziegler, 1977)

1
L

=
1
Llow

+
1

Lhigh
, (6.126)

where Llow and Lhigh denote the approximate L-values at low and high speed,
respectively. Make a plot of (6.126) by selecting a plausible factor in Llow =
const × v3 and include Lhigh and Llow.

6.9. Derive eq. (6.117). Make use of the relations

dK0(ζ0
dζ0

= −K1(ζ0);
d

dζ0
(ζ0K1(ζ0)) = −ζ0K0(ζ0), (6.127)

which you may find in Abramowitz and Stegun (1964).
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Arriving at Numbers

7.1 Introductory Comments

Common to all theoretical schemes presented in Chapters 4–6 is the need
for numerical input characterizing the physical properties of the stopping
material. Only one single parameter, the I-value, enters Bohr’s and Bethe’s
asymptotic stopping formulae. Following a wide-spread tradition in physics
and chemistry, this single parameter has most often been determined by com-
parison with measurements. At Bohr’s and Bethe’s time only range data were
available, while direct measurements of stopping forces on thin targets became
common in the second half of the past century.

Deviations from the velocity dependence predicted by the Bethe formula
were found long ago. Frequently, such deviations were described in terms of
a dependence of the I-value on projectile speed. This is obviously an unsatis-
factory interpretation of a material property.

The significance of the shell correction was realized in the early 1950s, and
expressions ready to use in the analysis of experiments became available in
the 1960s. The importance of the Barkas-Andersen correction was recognized
only gradually in the 1970s. Again, numerical coefficients entering theoretical
expressions were frequently determined by fitting to measured stopping forces.

This chapter provides a survey of methods to determine input parameters
by

– Fitting theoretical expressions to measured stopping forces,
– Utilizing pertinent parameters extracted from optical measurements or

other data unrelated to particle stopping, or
– Utilizing theoretical input,

and to provide comparisons with experimental stopping data.
Scaling properties play an important role in all three procedures. The em-

phasis will be on the second and third method. Fitting to stopping data is
still popular and may well lead to more accurate fits for practical applica-
tions than the other two methods. Those, however, are more attractive from
the point of view of understanding the physics and whenever extrapolation is
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necessary. Moreover, empirical stopping data are available only for a compar-
atively small fraction of ion-target combinations. The coverage with experi-
mental data varies drastically over the periodic table. Interpolation becomes
questionable in areas of poor coverage.

The chapter concludes with a survey of existing data compilations of stop-
ping forces as well as pertinent computer codes.

7.2 Stopping Models I: Statistical Method

Stopping data are needed for a large number of elemental and compound
target materials. It is highly desirable, therefore, to have scaling relations
allowing to predict stopping parameters by interpolation between elements or
compounds where reliable experimental or theoretical data are available. The
statistical model of Thomas (1926) and Fermi (1927, 1928) provides such an
opportunity on the basis of the atomic number(s) of the atoms making up the
target material.

7.2.1 Thomas-Fermi Model of the Atom

The Thomas-Fermi model of the atom considers the electron cloud as a Fermi
gas with a position-dependent density. This is called a local-density approx-
imation. The density profile is determined by minimizing the total energy of
the atom which is made up of a kinetic and a potential contribution. While
potential energy is assumed identical with the classical Coulomb energy of
a continuous charge distribution in the field of the nucleus, quantum theory
enters into the kinetic energy via the relation between electron density n and
Fermi wave number kF, cf. (5.146),

n =
k3
F

3π2
. (7.1)

This model is suitable to describe the global behavior of atomic parameters
that depend primarily on the atomic number. Variations over a smaller scale,
such as over a row of the periodic table, are only accounted for if special
precautions are taken.

7.2.2 Scaling Properties

To illustrate the general principle, approximate a neutral atom with Z elec-
trons by a point nucleus surrounded by a homogeneously charged sphere of
radius a with a potential energy, composed of the self-energy of the electron
cloud and the potential energy of the electron cloud in the field of the nucleus,

Epot = − 9
10
Z2e2

a
, (7.2)
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and a kinetic energy

Ekin = Z
3
5

�
2k2

F

2m
. (7.3)

With (7.1) and n = 3Z/4πa3 we find Ekin ∝ �
2Z5/3/ma2. The total energy

Ekin + Epot of this model atom has a minimum at

aTF = const
a0
Z1/3

, (7.4)

where a0 = �
2/me2 is the Bohr radius, with a numerical constant of the order

of 1 which, in general, is related to the adopted charge distribution.
With this, both the potential, the kinetic and the total energy of the atom

scale as

E ∼ Z7/3e2

a0
. (7.5)

From the energy per electron, ∼ Z4/3e2/a0, we then extract the electron
velocity

vTF = Z2/3v0, (7.6)

where v0 = e2/� is the Bohr velocity. Finally, for the angular frequency we
obtain

ω ∼ vTF

aTF
∼ Z v0

a0
. (7.7)

From (7.7) we find the scaling rule predicted by Bloch (1933) for the I-value,

I = �ω = Z2I0 (7.8)

with a constant I0 that was determined empirically to lie around 10 eV (Lind-
hard and Scharff, 1953). It is important to note that even though I has the
dimension of an energy it does not scale as either Z4/3

2 or Z7/3
2 . Indeed, I has

the character of a frequency both in classical and quantum theory.
Similarly, we may find a scaling property of the first shell correction fol-

lowing (6.104),

−〈v2e〉
v2

∼ −Z
4/3
2 v20
v2

, (7.9)

which indicates a fairly rapid increase with the atomic number of the stopping
material.

Finally, for the Barkas-Andersen parameter (6.29) we find

B =
Z1e

2ω

mv3
∼ Z1Z2

I0
mv20

(v0
v

)3

. (7.10)

Such relations are very helpful in assessments of the relative importance of
various effects, as well as for interpolation.
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Fig. 7.1. Screening function φ0(r/a)
and electron density n(r/a) of a neu-
tral atom according to the Thomas-
Fermi model. Numerical evaluation
by Bush and Caldwell (1931). The
graphs differ in scale

7.2.3 Charge and Velocity Distributions

A more quantitative picture is found by minimizing the total energy on the
basis of an arbitrary electron distribution n(r) normalized to the number of
electrons in the atom. This yields the fundamental Thomas-Fermi equation
(Gombas, 1956)

∇2(Φ− Φ0) = 4πσ0e(Φ− Φ0)3/2, (7.11)

where

σ0 =
23/2

3π2

1
(ea0)3/2

. (7.12)

Here, Φ0 is a Lagrange multiplier ensuring proper normalization of the electron
density.

Equation (7.11) has been solved numerically for both neutral atoms and
ions. Tabulations of Φ(r) and its derivative as well as analytical approximation
formulas were compiled by Gombas (1956). The electron distribution is related
to the potential by Poisson’s law, i.e.,

n(r) = σ0 (Φ− Φ0)
3/2 (7.13)

in view of (7.11).
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The potential of a neutral atom may be written in the form

Φ(r) =
Ze

r
φ0

(
r

aTF

)
, (7.14)

where

aTF =
1

(4πσ0)2/3eZ1/3
=

0.8853a0
Z1/3

, (7.15)

Φ0 = 0, and φ0 a screening function shown in Fig. 7.1. Power-like behavior is
found at large distances, φ0(x) � 144/x3. At small distances, φ0 reminds of
an exponential.

The density reads

n(r) = σ0

[
Ze

r
φ0

(
r

aTF

)]3/2

=
32Z2

9π3a30

[
aTF

r
φ0

(
r

aTF

)]3/2

(7.16)

according to (7.13). It is also shown in Fig. 7.1.
The velocity distribution in an atom may be found as follows. For an

inhomogeneous electron gas, the electron density in real and velocity space is
given by

F (r, v) =

3n(r)
4πv3F(r)

for v < vF(r),

0 for v > vF(r),

(7.17)

where 3n(r)/4πvF(r)3 = m3/4π3
�

3 is constant. Integration over the spatial
variable yields the velocity spectrum normalized to 1,

f(v)d3v =
m3

4π3�3

1
Z

d3v

∫
vF(r)>v

d3r (7.18)

or

f(v) =
1

3π2Z

(mr1
�

)3

, (7.19)

where r1 is defined by

n(r1) =
1

3π2

(mv
�

)3

. (7.20)

In dimensionless units

x =
r1
aTF

; y =
maTFv

�Z1/3
, (7.21)

this reads
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Fig. 7.2. Velocity distribution calculated from Thomas-Fermi electron distribution.
v in Thomas-Fermi units according to (7.21)

f(v)d3v =
x3

3π2
d3y → 4

3π
x3y2dy (7.22)

with

y2 = 1.7706
φ0(x)
x
. (7.23)

The function f(v)4πv2 is shown in Fig. 7.2; the plot has been constructed
using the approximation of Sommerfeld (1932).

φ0(x) �
[
1 +

(
x3

144

)λ/3
]−3/λ

; λ = 0.8034. (7.24)

7.2.4 The Lindhard-Scharff Model and its Implementation

Following the spirit of the Thomas-Fermi model of the atom, Lindhard and
Scharff (1953) proposed to evaluate the stopping cross section of an atom from
the energy-loss function of a free-electron gas,

S =
∫

d3r
4πZ2

1e
4n(r)

mv2
L

(
2mv2

χ�ωP (r)

)
, (7.25)

where n(r) is the electron density of a target atom, and ωP (r) the ‘local
plasma frequency’

ωP (r) =

√
4πn(r)e2

m
. (7.26)
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A factor χ has been inserted in (7.25) that will be discussed below.
Since the electron density is high for inner shells, (7.25) implies high I-

values for those shells, and vice versa. The procedure determines an effective
I-value given by

ln I =
∫

d3r
n(r)
Z2

ln
[
χ�ωP (r)

]
. (7.27)

According to Lindhard and Scharff (1953), replacing ωP (r) in (7.27) by
χωP (r) with a numerical coefficient χ > 1, should account for electron bind-
ing. The value χ =

√
2 was adopted for not too light atoms.

In order to rationalize this adjustment, consider a Thomas-Fermi atom
with a characteristic electron density

n � Z/2
4πa3TF/3

� 3Z2

8πa30
, (7.28)

assuming that about half of the electrons are located inside the Thomas-Fermi
radius. This implies a characteristic plasma frequency

ωP =

√
4πne2

m
�
√

3
2
Z
v0
a0
. (7.29)

The characteristic revolution frequency of an electron in a Thomas-Fermi
atom, on the other hand, is given by

ωrev � vTF

aTF
� Z v0

a0
, (7.30)

i.e., very close to ωP .
Employing a simplified atomic model, Lindhard and Scharff (1953) arrived

at the result that ωP � ωrev even from shell to shell. We have seen already
in (5.57) and Fig. 5.3 that the effective resonance frequency is determined by
the square sum, as is known from classical electrodynamics. Hence,

ωeff � √
2ωP . (7.31)

One may be tempted to evaluate the mean excitation potential from (7.27) by
insertion of the Thomas-Fermi density of the atom. This route was taken by
Bonderup (1967) who, however, concluded that uncertainties in the procedure
would show up primarily in the calculated I-value, while shell corrections
calculated in a similar manner would be more reliable.

On the other hand, Chu and Powers (1972a), employing Hartree-Fock
electronic charge densities rather than Thomas-Fermi densities, found quite
reasonable agreement with I-values deduced from measured stopping forces,
as is seen in Fig. 7.3.
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Fig. 7.3. I-values calculated from (7.27) utilizing atomic Hartree-Fock electron
densities according to Herman and Skillman (1963). From Chu and Powers (1972a)

A similar adjustment is not necessary for the first shell correction,

〈v2e〉 =
1
Z

∫
d3r

∫
d3v v2F (r, v) = 1.3554 v2TF

∫ ∞

0

dx√
x

[φ0(x)]
5/2 (7.32)

(cf. problem 7.2), since this correction is purely kinematic, cf. (6.104) and
similar relationships in Sect. 6.6.

Figure 7.4 shows calculated stopping cross sections for alpha particles.
Agreement with a large number of experimental data – mostly at 1.0 MeV/u
– is quite good.

Figures 7.3 and 7.4 show a nonmonotonic dependence of the I-value as
well as the stopping cross section on Z2. This important phenomenon, called
Z2 structure or Z2 oscillations, will be discussed in some detail in Sect. 7.5.3.

A derivation of Eq. (7.25) from first principles has never been presented,
even though it has been looked for (Johnson and Inokuti, 1983). Evidently, the
model seeks to replace an average in oscillator-strength space by an average
in real space, i.e., it determines an oscillator-strength spectrum f(ω) from the
relation

f(ω)dω = n(r)4πr2dr (7.33)
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Fig. 7.4. Stopping cross section for alpha particles in a large number of stop-
ping media. Beam energies ranging from 0.2 to 5.0 MeV/u. Calculations based on
(7.25) allowing for shell correction expansion according to Lindhard and Winther
(1964) but excluding Barkas-Andersen correction. Experimental data from numer-
ous sources. From Chu and Powers (1972b)

with

ω =

√
4πn(r)e2

m
. (7.34)

Figure 7.5 compares this function, assuming the Thomas-Fermi density of
a neutral atom, with currently available data for aluminium. The statistical
approximation is found to reflect the average behavior above ∼ 70 eV, while
major discrepancies are found at lower energies.

A hint on its range of validity may be found in the underlying dependence
on impact parameter. Assume, for a moment, that all energy loss in an electron
gas be local, i.e., energy transfer only to electrons in the immediate vicinity
of the trajectory of the penetrating ion. Then, the mean energy transfer T (p)
to an atom at an impact parameter p to the target nucleus is given by

T (p) =
∫ ∞

−∞
dx′

4πZ2
1e

4n(x′,p)
mv2

L

(
2mv2

χ�ωP (n(x′,p))

)
, (7.35)
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Fig. 7.5. Optical excitation spectrum of metallic aluminium according to Palik
(2000) (data taken from Smith et al. (1985)) and Henke et al. (1993). The curve la-
belled ‘dielectric’ reflects the Lindhard-Scharff model assuming Thomas-Fermi elec-
tron density of a neutral atom using (7.34)

where p is the vectorial impact parameter and x′ a coordinate along the
trajectory. For a random medium one then obtains the stopping force

−dE
dx

= N
∫

d2pT (p), (7.36)

N being the number of atoms per volume. With r = (x′,p), (7.36) readily
reduces to (7.25).

Now, we know that energy transfer is not local, and the higher the pro-
jectile speed, the larger the difference between the true interaction range –
given by the adiabatic radius which increases with projectile speed – and the
spatial extension of the electron cloud of the target atom. Conversely, while
the local-density approach should be more reliable at low projectile speed,
the validity of Bethe stopping theory is limited downward, as discussed in the
previous section.

A direct comparison between an ‘exact’ result and the local-density ap-
proximation is shown in Fig. 7.6 on the example of the quantal harmonic
oscillator. The local-density approximation overestimates the energy loss in
close collisions by about a factor of two but drops to zero much faster
than the exact result at large impact parameters. In the case in question,
with 2mv2/�ω = 100, the adiabatic radius is equal to 10 Bohr radii for
�ω = 13.6 eV.

Even though the local-density approximation appears highly questionable
as far as the prediction of impact-parameter-dependent energy loss is con-
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Fig. 7.6. Mean energy loss versus im-
pact parameter T (p) for a spherical har-
monic oscillator: Comparison between
semiclassical calculation in Born approx-
imation and local-density approximation
based on the stopping function of Lind-
hard and Winther (1964). β =

√
mω/�.

ε−1 = 2mv2/�ω. From Mikkelsen and
Sigmund (1987)

cerned, stopping cross sections found from (7.25) tend to show reasonable
agreement with experiment. Indeed, in view of the simplicity of the model,
numerous calculations have been performed and still are being performed for
stopping materials where reliable electron densities are available.

While the proposal by Lindhard and Scharff (1953) provided a way to ar-
rive at absolute predictions of stopping parameters at a time when feasible
alternatives were unavailable, use of this approximation in the 21st century
would appear to warrant more of a theoretical foundation than what is avail-
able here and now.

7.2.5 Generalizations

A large number of modifications of (7.25) has been explored in the literature.
Most frequently, the Lindhard function ε(k, ω) governing stopping in a Fermi
gas has been replaced by an alternative expression. This does usually not give
rise to major changes (Pathak and Yussouff, 1972) but may facilitate analyt-
ical or numerical evaluations. The plasmon pole approximation discussed in
Sect. 5.4.5 is a frequently applied example. An expression proposed by Mer-
min (1970) is thought to provide a more realistic account of plasmon damping
than the Lindhard function with infinitesimal damping.
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Substantial progress has been made by the application of density functional
theory (Echenique et al., 1981) which takes into account the influence of the
electron gas on the electronic structure of a target atom. This has a substantial
affect on outer target electrons and hence is most significant in low-velocity
stopping, to be discussed in Volume II.

The local density picture can be avoided altogether by considering an inho-
mogeneous electron gas from the beginning. A simple example was discussed
in Sect. 5.5. The reader interested in the recent development in this area is
referred to Pitarke and Campillo (2000).

7.3 Stopping Models II

7.3.1 Shell and Subshell Splitting

It is tempting to determine the stopping number of a multi-electron atom as

Z2L(v) =
∑

ν

ZνLν(v), (7.37)

where Lν(v) is the stopping number of the νth electron, characterized by
a single resonance frequency ων and the number Zν of such electrons in the
atom. This has been common practice ever since deviations from the univer-
sal Bethe logarithm in the stopping number became apparent (Brown, 1950,
Walske, 1952, 1956, Khandelwal and Merzbacher, 1966). In practice, the ων

denote a characteristic resonance frequency of a principal shell or, perhaps,
a subshell of the target atom.

A scheme of this type has been proposed by Sternheimer et al. (1982) to
compute the Fermi density effect discussed in Sect. 5.6.4. The scheme also
offers a unique procedure to relate the frequency ων to the ionization energy
of the respective shell.

This type of shell summation is well defined and transparent, even though
it is approximate in several respects: A single resonance frequency per shell
may not be adequate; excitations of individual electrons are assumed to be
uncorrelated; collective excitations are ignored.

Equation (4.117) suggests a generalization of (7.37) so that

L(v) =
∑

j

fjL(v, ωj), (7.38)

where L(v, ωj) is the contribution to the stopping number from an electron
characterized by a resonance frequency ωj , taking into account pertinent ef-
fects such as shell and Barkas-Andersen corrections. Equation (7.38) is exact
within the first Born approximation disregarding shell corrections. Inclusion
of shell and Barkas-Andersen corrections appears tempting and perhaps rea-
sonable, but this is not rigorously justified. In particular, shell corrections
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draw heavily on large energy transfers which are not weighted accurately by
dipole oscillator strengths.

Figure 7.5 shows the optical excitation spectrum of metallic aluminium.
The absorption edges of the K shell at �ωK = 1559 eV and the L shell at
�ωL = 72.59 eV are clearly visible. Integration from the K absorption edge
upward yields1∑

ωj0≥ωK

Zfj = 1.70, (7.39)

i.e., less than 2.0, the number of electrons in the K shell. This is a general
feature: The dipole oscillator strength has a slight preference for outer-shell
electrons.

Spectra of the type shown in figure 7.5 are available for numerous elements
and compounds, although few have been studied in as much detail as that
of aluminium. Pertinent tabulations, based on a variety of experiments and
calculations were published by Henke et al. (1993), Palik (1985, 1991, 1996),
followed up by an electronic version (Palik, 2000), and Berkowitz (1979, 2002).

Such data can be used to evaluate the Bethe stopping formula (4.117).
This is equivalent with determining the I-value.

In general, prior inspection of such data is necessary. More or less pro-
nounced deviations from the sum rule (4.114) are common, and uncritical
evaluation of I-values may lead to erroneous results.

Although (7.38) can be evaluated for a spectrum like the one in Fig. 7.5
after an appropriate expression for L(v, ωj) has been chosen, splitting up and
bunching the spectrum into contributions from principal shells or subshells
is advisable for computational reasons and, most often, not a cause of major
error compared with more basic uncertainties. Evidently, bunching must be
performed in a way to preserve sum rule and I-value. This can be achieved
by the following definitions of fν and ων ,

fν =
∑

ω0ν≤ωj≤ω1ν

fj (7.40a)

lnων =

∑
ω0ν≤ωj≤ω1ν

fj lnωj

∑
ω0ν≤ωj≤ω1ν

fj
, (7.40b)

where ω0ν and ω1ν limit the frequency interval assigned to the νth shell or
subshell. In practice, the sums turn into integrals in energy space.

1 In the literature, dipole oscillator strengths are found normalized either to 1, as
is done in this monograph, or to Z. The latter notation allows the interpretation
of fj as the number of j-electrons in an atom, even though it is typically not an
integer. In the present notation, this quantity reads Zfj , as e.g., in (7.39).
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The use of experimentally determined or accurately calculated oscilla-
tor strengths ensures a considerable degree of reliability of the material de-
pendence of calculated stopping cross sections. Errors may be caused by
inaccuracies of the shell stopping numbers employed in the evaluation of
L(v) =

∑
ν fνL(v, ων).

If the stopping material contains free electrons, one of the shells is typically
treated as a homogeneous Fermi gas, and its contribution to the total stopping
force is represented by a pertinent expression such as the one by Lindhard and
Winther (1964).

As mentioned already, weighting contributions from target resonances by
the spectrum of dipole oscillator strengths is justified within the range of
validity of the first Born approximation. The fact that the Bohr theory delivers
the same dependence of the energy loss at high impact parameters as the Bethe
theory suggests to also apply this weighting to calculations based on classical
theory (Sigmund and Schinner, 2002a). However, dipole oscillator strengths
have no place in close, classical Coulomb collisions. Applying (7.38) in the
Bohr regime can at most be approximate.

Fig. 7.7. Shell correction for aluminium. Curves A and B: evaluated from ki-
netic theory (see text) for two different sets of input parameters ωj , fj . Single I :
Same without shell splitting. Bonderup: Calculated from Lindhard-Scharff dielec-
tric theory (Bonderup, 1967). Expt: Extracted from measurements by Andersen
et al. (1977). From Sabin and Oddershede (1982)
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7.3.2 Kinetic Theory

Kinetic theory (Sigmund, 1982) is primarily a procedure to determine shell
corrections. A high-speed expansion was discussed in Sect. 6.6.4, but a more
rigorous description may be found from the transformation (6.87) or, if nec-
essary, its relativistic extension (6.88).

Equation (6.87) has been explored in connection with the asymptotic
Bethe formula by Sabin and Oddershede (1982), Oddershede and Sabin (1984)
and in later work by the same group. Here, a simple Bethe-type stopping cross
section Sj0(v) was assigned to every target subshell with the stopping number

Lj0(v) =

⎧⎪⎪⎨
⎪⎪⎩

ln
(

2mv2
�ωj

)
for 2mv2 > �ωj ,

0 for 2mv2 < �ωj .

(7.41)

For an isotropic velocity distribution of the target atoms, the average over ve

reduces to a double integral which was evaluated numerically, using Hartree-
Fock velocity spectra according to Herman and Skillman (1963). An example
is shown in Fig. 7.7.

More recently, (6.87) has been adopted by Sigmund and Schinner (2002a)
as the standard procedure to determine shell corrections in binary stopping
theory introduced in Sect. 6.4.5. Results will be presented below.

7.3.3 Harmonic-Oscillator Model

In the harmonic-oscillator model (Sigmund and Haagerup, 1986), the mean
energy loss to an atom versus impact parameter is represented as

T (p, v) =
∑

j

Z2fjTosc (p, v, ωj) , (7.42)

and the atomic stopping cross section as

S(v) =
∑

j

Z2fjSosc (v, ωj) , (7.43)

where T (v, ω) and S(v, ω) refer to a spherical quantal harmonic oscillator with
a resonance frequency ω.

Equation (7.42) is asymptotically exact at large impact parameters as
follows from the Bloch theory, cf. (4.49). Also (7.43) has a considerable amount
of rigor. Indeed, according to (6.105), this relation represents the correct Bethe
logarithm as well as the first shell correction, as follows from (6.107).

The stopping cross section for atomic hydrogen predicted by (7.42) has
been compared with alternative predictions by Sigmund and Haagerup (1986)
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Fig. 7.8. Stopping cross section of atomic hydrogen calculated from harmonic-
oscillator model, compared to alternative approaches. All calculations within the
first Born approximation. Solid line: Direct integration; short-dashed line: Lindhard-
Scharff model, uncorrected (χ = 1); long-dashed line: Lindhard-Scharff model, cor-
rected (χ =

√
2); dotted line: kinetic theory; dash-dotted line: harmonic-oscillator

model. R = 13.6 eV. From Mikkelsen et al. (1992)

and Mikkelsen et al. (1992). Results are shown in Fig. 7.8. It is seen that
within the first Born approximation, rather good agreement is obtained over
the velocity range covered between a rigorous numerical evaluation and the
oscillator model. All approaches represent the high-velocity regime very well,
while both dielectric and kinetic theory produce discrepancies around and
below the stopping maximum.

Figure 7.9 shows similar results for straggling. Serious discrepancies are
found mostly for predictions of the kinetic theory at rather low beam energies,
(� 10 keV/u). Similar conclusions emerge from higher moments up to fifth
order.

Note that higher moments are determined mostly by close collisions.
Therefore, we may conclude that the harmonic-oscillator model, even though
derived and justified initially for distant collisions, incorporates essential fea-
tures also for close interactions. This appears reasonable in view of the fact
that binding forces have little significance in close interactions, as argued al-
ready by Bohr (1913).

On the background of these findings, the oscillator model has been ap-
plied also to situations where theoretical justification is less comprehensive,
first of all target atoms containing more than one electron, and, moreover,
calculations going beyond the first Born approximation.
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Fig. 7.9. Same as Fig. 7.8 for relative straggling parameter. From Mikkelsen et al.
(1992)
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Fig. 7.10. Measured stopping force on antiprotons in Si (points) and comparison
to calculations by dielectric theory (Sørensen, 1990) (dashed line) and harmonic-
oscillator model (Mikkelsen and Sigmund, 1989). The solid line represents proton
stopping according to ICRU (1993). Extracted from Møller et al. (1997)
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Figure 7.10 shows stopping forces on antiprotons in Si measured by Møller
et al. (1997) compared with calculations from dielectric theory by Sørensen
(1990) and the oscillator model of Mikkelsen and Sigmund (1989). Good agree-
ment is found over a wide range of beam energies.

Finally, the harmonic-oscillator model, as expressed in particular by (7.42),
is a very useful tool for calculating impact-parameter-dependent energy losses.
Insertion of results like those depicted in Fig. 4.4 yields asymptotically ex-
act results at large impact parameters. Practical results were reported by
Mortensen et al. (1991). Addition of third-order contributions like those shown
in Fig. 6.7 extends the range of validity toward lower impact parameters.

7.3.4 Binary-Collision Models

We have seen in Chapter 4 that close collisions obey the laws of Coulomb
binary scattering, in particular in the classical regime where Bohr’s kappa
parameter κ = 2Z1v0/v > 1. It is tempting, therefore, to employ this feature
in stopping theory. This, however, requires careful consideration of distant
collisions which, at not loo low projectile speeds, contribute substantially to
the stopping force.

Following the example of Darwin (1912), it has been assumed frequently
that energy transfers lower than the ionization energy – or, after the devel-
opment of atomic theory, the first excitation potential – are forbidden and
hence do not contribute to stopping. This leads to a stopping cross section
per target electron of the form

S =
2πZ2

1e
4

mv2
ln

2mv2

U
, (7.44)

where U is the pertinent binding energy. Here, the Coulomb factor in the front
has half the magnitude of the one appearing in Bohr’s and Bethe’s stopping
formulae.

You may find Darwin’s argument appealing and wonder what could be
wrong. Well, first of all we have seen that for distant collisions, i.e., soft inter-
actions, classical and quantum mechanics yield results that agree asymptot-
ically at large impact parameters. Clearly, if you go to large enough impact
parameters, T (p) will be less than the lowest excitation level. The point is
that we talk about a mean energy transfer, which is governed by excitation
probabilities which may become much smaller than unity.

Thus, energy transfers below the ionization energy do contribute to stop-
ping: In classical theory, an electron can evidently start an oscillatory motion
without being kicked off. In quantum theory, a mean energy transfer below the
lowest excitation level just signals an excitation probability less than unity.

With this in mind, the range of validity of conventional binary-collision
models for stopping (Gryzinski, 1965, Harberger et al., 1974b,a, Kührt and
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Wedell, 1983, Kührt et al., 1985) must be limited to the velocity range around
and below the stopping maximum, where the adiabatic radius is of the order
of atomic dimensions.

This limitation has been overcome in the binary stopping theory of Sig-
mund and Schinner (2000), where electron binding has been taken into account
via screening of the Coulomb interaction, as described in Sect. 6.4.5. As men-
tioned already, this scheme incorporates a Barkas-Andersen correction, and
shell corrections are allowed for via kinetic theory. Although the theory is in-
trinsically classical, its range of validity can be extended into the Born regime
via the inverse-Bloch correction (6.22) discussed in Sect. 6.3.3.

Other options concern static screening of dressed projectiles, i.e., projec-
tiles carrying electrons as well as excitation and ionization of the projectile.
Such projectile processes will be discussed in detail in Volume II.
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Fig. 7.11. Stopping of antiprotons in Si. Measurements from Møller et al. (1997).
Calculations by Sørensen (1990), Arista and Lifschitz (1999), Arbó et al. (2000),
Sigmund and Schinner (2001). From Sigmund and Schinner (2001)

Figure 7.11 shows stopping forces on antiprotons in Si compared with re-
sults from several calculational schemes. Agreement with the binary theory is
nearly perfect. Antiproton stopping is a most appropriate standard of refer-
ence, since unlike protons, antiprotons do not carry electrons during passage
through matter at any speed.

Binary stopping theory has been developed primarily for applications in-
volving ions heavier than helium. However, allowing routinely for the inverse-
Bloch correction, it is a powerful scheme to treat stopping of light ions at
projectile speeds around and above the stopping maximum, as discussed by
Sigmund and Schinner (2002b).
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Fig. 7.12. Ratio of antiproton/proton stopping cross section in helium: Experimen-
tal data (solid line) extracted from measurements on antiprotons from Agnello et al.
(1995) and protons from Golser and Semrad (1991). Theoretical ratios extracted
from calculations for antiprotons from Schiwietz et al. (1996) and for protons from
Grande and Schiwietz (1993) (AO) and Olivera et al. (1994) (DW). From Schiwietz
et al. (1996)

7.3.5 Numerical Simulations

Unlike in other areas of physics research, numerical simulation is a compar-
atively slowly developing tool in the theory of charged-particle stopping. In
contrast to atomic-collision physics, where a specific scattering geometry tends
to limit the parameter space for which calculations are required, determining
stopping forces tends to be computationally intensive. Considering the amount
of brain power invested in genuine theory, it is not a trivial task to make sim-
ulation competitive.

Simulations have been carried out by numerically solving Newton’s second
law or the Schrödinger equation.

In view of the Bohr criterion, classical-trajectory simulations (Olson, 1989,
1996, Grüner et al., 2004) have been geared toward heavy ions. The crucial
task is establishing an atomic model allowing for meaningful calculations on
the basis of classical mechanics (Olson, 1996). A given scattering event is ini-
tiated by assigning initial positions and velocities to all target electrons in
accordance with tabulated orbital densities and velocities. To these stochas-
tic parameters adds the starting time of the projectile, whereas the impact
parameter can be varied systematically.

Numerical solution of collision problems on the basis of the Schrödinger
equation has been possible for a long time. An extensive effort directed at stop-
ping problems is due to Schiwietz (1990), Grande and Schiwietz (1991) and
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Schiwietz et al. (1996). More recently, the electron-nuclear-dynamics scheme
developed by Deumens et al. (1994) has been applied to a number of stopping
problems (Cabrera-Trujillo et al., 2004).

Figure 7.12 shows experimental and theoretical data on the Barkas-
Andersen effect in helium gas. The results are seen to be sensitive to the
method employed for calculating proton stopping cross sections. As doc-
umented by Schiwietz (1990), Grande and Schiwietz (1991), this quantity
hinges on a proper treatment of electron capture at moderately low projectile
speed. You may note that the stopping force on antiprotons may exceed that
on protons at projectile speeds less ∼ 0.5v0 and below. This reflects the fact
that in contrast to the antiproton, the proton is essentially neutral in this
velocity range.

As a rule of thumb, the strength of numerical simulation in this area lies
in the low-speed regime, where only a limited number of excitation levels
contributes to the stopping cross section. Therefore, more attention will be
given to this topic in connection with low-velocity stopping in Volume II.

7.4 Remarks on Stopping Measurements

It is a well-established tradition for theoreticians in the field of particle pen-
etration to keep informed about experimental developments and to commu-
nicate with experimentalists. This, however, does not imply an ability for
a theoretician to give a comprehensive account of experimental techniques
and their strengths and limitations. In fact, excellent accounts are available
which are warmly recommended to the interested reader (Andersen, 1991,
ICRU, 1993, Geissel et al., 2002, ICRU, 2005). The present account will be
very brief and focus on some problems and pitfalls which need to be kept in
mind in the analysis of stopping measurements.

7.4.1 Energy-Loss Spectra in Transmission

Most common are measurements on thin foils, in which an incoming (almost)
monoenergetic beam loses a small fraction of its energy. The energy distribu-
tion of the emerging beam is then measured by an energy-sensitive detector,
or by some other detecting device combined with electrostatic or magnetic
deflection, or by time of flight.

As far as energy-sensitive detectors are employed, calibration problems
have frequently given rise to serious discussions about the analysis of such
measurements.

Foil thickness is a crucial aspect of this technique. First of all, it needs
to be known with a resonable precision, and it should not vary too much
across the beam area. Moreover, for small beam energies it may be difficult
to produce thin enough foils to prevent excessive energy loss.
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Foil thicknesses can be measured by a variety of techniques. It is an ad-
vantage in the present context to use accelerator-based techniques, such as
energy loss by a beam of a species and energy for which reliable stopping
data exist, or by Rutherford scattering of a transmitted beam. In this way,
it is the product Nx, i.e., the mass per area that is measured. This makes it
possible to determine the main atomic parameter, the stopping cross section,
irrespective of possible uncertainties about the density of the target.

The quantity to be compared with theory described so far is the mean
energy loss, i.e., the mean value over the energy-loss spectrum. Experimentally
it may in fact be easier to determine the peak of the energy-loss spectrum. The
two quantities are identical for a gaussian spectrum, but this is not the case
when the spectrum becomes skew. This aspect will be discussed in Chapter 9.

7.4.2 Other Measurements on Thin Foils

Instead of measuring the energy lost by the projectile one may determine
the energy deposited in the target. This is the principle of the calorimetric
method pioneered by Andersen et al. (1966). In the original setup, the target
was kept at liquid-helium temperature in order to maximize sensitivity of
the measurement of temperature increase, but alternative solutions have been
developed in particular in connection with very-high-energy beams (Geissel
et al., 2002).

This technique avoids ambiguities related to the difference between peak
and mean energy loss. However, not all energy lost by the projectile goes
into heating the target, so that corrections for nuclear and chemical reactions,
electron, photon and atom or molecule emission as well as structural changes
by radiation damage need to be estimated.

7.4.3 Reflection Geometry

It may be difficult or impossible to provide self-supporting films of adequate
quality at sufficiently low thickness to make meaningful stopping measure-
ments, in particular at low beam energy. In that case, films of a light target
material evaporated on a heavy substrate may be the solution. The edge of
the Rutherford spectrum (cf. Fig. 1.7) of projectiles reflected at a given, well-
defined scattering angle then defines the minimum energy loss. Careful data
analysis is still required, and homogeneity of the evaporated film is crucial.
Nevertheless, numerous measurements especially with 1–2 MeV alpha par-
ticles have been performed with this geometry.

Several alternatives are available such as replacing the substrate by an
implanted layer of heavy material. Even the spectrum of ions reflected from
a homogeneous sample contains information about the stopping force of the
material.



7.5 Extraction of Input Parameters 251

7.4.4 Doppler-Shift Attenuation

Consider an atom recoiling with a definite energy from some nuclear reaction.
That atom may undergo gamma decay at a certain time, following an expo-
nential decay law governed by the lifetime of the nucleus. If the recoil is still
in motion during the decay, the emitted photon will be Doppler-shifted when
observed in the laboratory frame of reference. If the slowing-down behavior
of the nucleus is known, one may determine the lifetime from the observed
gamma spectrum. If the lifetime is known, one may determine the slowing-
down behavior in the stopping medium.

Unlike other techniques, this method determines the energy loss per unit
time. Hence, the target density needs to be known for a reliable determination
of the stopping cross section

7.4.5 Pitfalls

Apart from a possible difference between mean and peak energy loss, to be
discussed in Chapter 9, a crucial point in the analysis of a stopping measure-
ment is the role of elastic scattering and nuclear stopping. It was shown in
Chapter 2 that in the Bethe regime, nuclear stopping makes up less than 0.1
% of the energy loss. This is normally without interest in the determination
of stopping forces. However, at lower energies, when shell corrections close
several excitation channels, the effect may become significant and needs to be
considered. Moreover, elastic scattering may give rise to significant angular
deflection and hence to increased pathlength through at a given foil thickness.

7.4.6 Range Measurements

Initially, stopping forces were extracted from range measurements. Clearly, if

R(E) =
∫ E

0

dE′

NS(E′)
(7.45)

is known for several values of the initial beam energy E, one may extract the
stopping force NS(E) for a certain energy interval. This technique is only in
use for very special situations now.

7.5 Extraction of Input Parameters
from Stopping Measurements

Extracting input parameters from experimental data requires high-precision
measurements with an accuracy of ∼ 1 % or better. Typically, experimental



252 7 Arriving at Numbers

data taken at a particular setup will cover no more than one order of magni-
tude in beam energy. It is advisable to analyze the stopping number, i.e., to di-
vide measured stopping cross sections by the Coulomb factor 4πZ2

1Z2e
4/mv2.

This leaves a slowly varying function L(v) of the form

L(v) � ln
2mv2

I
+ relativistic correction + Fermi density correction

+ Bloch correction + shell correction
+ Barkas-Andersen correction. (7.46)

Remind that the projectile is assumed to be a point charge throughout this
book, i.e., the Bohr screening criterion (6.3) has to be fulfilled. This implies
measurements in the upper keV/u and MeV/u energy range, i.e., at cyclotrons
and van de Graaf accelerators, where the second and third term represent
small and well-known relativistic corrections, while the remaining three get
more and more significant the lower the beam energy.

7.5.1 I-Values and Shell Correction

I-values may be found in principle by performing measurements at high pro-
ton velocities, applying relativistic corrections and determining the slope of
the Bethe logarithm in a semi-logarithmic plot. In practice, shell corrections
are negligible only for the lightest materials, although they may be well ap-
proximated by the asymptotic expression −〈v2e〉/v2. I-values determined in
this manner long ago by Andersen et al. (1969) are still competitive and very
close to present-day standard (ICRU, 1993).

On the other hand, for heavy target atoms, the stopping number – cor-
rected for relativistic effects – cannot be expected ever to reach the asymptotic
Bethe logarithm. Indeed, for the K shell of a heavy atom, the quantity Z2v20/v

2

will not be � 1 at any speed.
One may, in fact, argue that the total I-value is of little interest for heavy

elements: If the stopping number is split into contributions from different
target shells, those from inner shells cannot be characterized by asymptotic
expansions. Hence, the Bethe-type logarithm containing the I-value of the
respective shell does not occur, and with this, the total I-value defined by
(4.119) does not enter explicitly into the stopping cross section.

Note that the absolute value of the shell correction needs to be known in
order that I can be determined: Variation of I just introduces an additive
constant into the stopping number. It is impossible to empirically determine
both I-values and shell correction from the same set of experimental data.

7.5.2 Barkas-Andersen and Bloch Correction

According to Thomas-Fermi scaling laws, the shell correction becomes sig-
nificant when the projectile speed is not large compared to Z2/3

2 v0. The
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Barkas-Andersen correction becomes significant when the parameter B =
Z1e

2ω/mv3 is not � 1, i.e., when the projectile speed is not large compared
to (Z1Z2)1/3v0. The Bloch correction becomes significant when the parame-
ter κ = 2Z1v0/v approaches 1. Finally, a projectile may carry electrons if its
speed is not large compared to the orbital speed Z2/3

1 v0. Thus, for protons,
the above sequence happens to be the order in which various corrections to
the asymptotic Bethe logarithm become significant for the stopping number
as we lower the projectile speed.

Andersen et al. (1977) carried out an analysis of stopping data for H, He
and Li ions on aluminium and gold, allowing for shell, Barkas-Andersen and
Bloch corrections but disregarding projectile screening. Adopting shell cor-
rections from Bonderup (1967), Barkas-Andersen corrections were extracted
under different assumptions regarding the Bloch correction. A main goal of
that study was an experimental test of the prediction of Lindhard (1976) that
the Barkas-Andersen correction was about twice as large as predicted by Ash-
ley et al. (1972) due to the contribution from close collisions. A definite answer
was not reached because of doubts on the accuracy of the Bloch correction.

In an official report on stopping of protons and alpha particles (ICRU,
1993), I-values were taken over from earlier work, and adopting theoreti-
cal shell corrections as well as the Bloch correction, the authors determined
a constant in the Barkas-Andersen correction by fitting to experimental data.
This is not fully consistent: At least part of the I-values entering the descrip-
tion were determined by analysis of experimental data either neglecting the
Barkas-Andersen correction or adopting a definite value.

In a long series of papers (e.g., Porter and Jeppesen (1983)), stopping data
mainly for alpha particles were fitted to what is called the modified Bethe-
Bloch theory. This scheme suffers from inconsistencies:

1. The Barkas-Andersen correction of Ashley et al. (1972) is adopted, delib-
erately ignoring the generally accepted fact that it is too small by about
a factor of two, cf. especially Porter (2004),

2. Projectile screening is incorporated via an ‘effective charge’, i.e., the pro-
jectile charge Z1e is replaced by a velocity-dependent quantity q1(v)e in
order to account for the presence of electrons on the projectile. However,
the Coulomb factor preceding the stopping number has been derived for
unscreened Coulomb interaction, and the same is true for the quantity κ
entering the Bloch term.

Since screening by projectile electrons is indeed a problem in the extraction
of input parameters – albeit more so for alpha particles than for protons – the
best way to escape the problem is to use an antiproton beam. With reliable
Barkas-Andersen and shell corrections available, and reassured of the validity
of the Bloch correction by the work of Lindhard and Sørensen (1996), a new
attack on determining I-values should promise considerable success.
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7.5.3 Z2 Structure

According to the Thomas-Fermi estimate of the frequency mentioned in
Sect. 7.2.2, the mean excitation energy should vary as I � Z2I0 with some
universal constant I0. Figure 7.3 demonstrates that this behavior, predicted
by Bloch (1933), is well confirmed as a first approximation. However, super-
imposed on this monotonic increase with Z2 is an oscillatory behavior, ‘Z2

structure’, which was found long ago by Burkig and MacKenzie (1957) and
studied in considerable detail by Andersen et al. (1969) and others (ICRU,
1984, 1993).

Figure 7.4 shows the resulting structure in the stopping cross section versus
atomic number at constant velocity. As one would expect from (4.118), the
amplitude of observable oscillations in the stopping cross section is seen to
increase with decreasing velocity. As a matter of fact,

– The effect of a variation of I with Z2 becomes the more pronounced the
smaller the numerator 2mv2 in the Bethe logarithm,

– Variations must be most pronounced in outer target shells. Since inner-
shell excitation channels close one by one with decreasing projectile speed,
only those shells contribute at low velocity which produce the most pro-
nounced oscillations.

– Shell corrections tend to enhance Z2-structure caused by the variation of
ωj with Z2: A low value of ωj is accompanied by a low orbital velocity
and hence by a low shell (negative) correction, and vice versa (Oddershede
et al., 1983).

7.6 Input Parameters from Other Sources

7.6.1 Theory

Dipole oscillator-strength spectra for a large number of elements have been es-
timated theoretically on the basis of Hartee-Slater orbitals by (Dehmer et al.,
1975), Inokuti et al. (1978) and Inokuti et al. (1981). Results are reported in
the form of moments over the distribution of the form∫

dωωµf(ω) or
∫

dωωµf(ω) lnω; µ = −2,−1 . . . (7.47)

in suitable atomic units. I-values obtained by this procedure are shown in
Fig. 7.13.

On the basis of the full spectra – which are not publicly available – Odders-
hede and Sabin (1984) extracted I-values for individual subshells and associ-
ated oscillator strengths by bunching according to (7.40a) for 1 ≤ Z2 ≤ 36.
These tables are unreliable, in particular with regard to inner shells where
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Fig. 7.13. I-values for elemental targets versus atomic number. Solid line: Cal-
culated from Hartree orbitals (Inokuti et al., 1981). Dashed line: Dielectric theory
involving Hartree-Fock densities (Chu and Powers, 1972a). Dot-dashed line: Empir-
ical values (Andersen and Ziegler, 1977). From Inokuti et al. (1981)
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Fig. 7.14. I-value and ionization energy U for K-shell of selected elements according
to Oddershede and Sabin (1984) and ICRU (2005)

tabulated resonance frequencies tend to be too low. Figure 7.14 shows a com-
parison of I-values for the K shell, given by Oddershede and Sabin (1984)



256 7 Arriving at Numbers

and in a recent ICRU report (ICRU, 2005). Increasing discrepancies, going
to more than a factor of two, are seen with increasing atomic number. For
argon and heavier elements, the IK as given by Oddershede and Sabin (1984)
happens to lie even below the ionization energy UK .

7.6.2 Optical and X-Ray Data

A large amount of information is available on oscillator-strength spectra ex-
tracted from empirical data such as photoabsorption cross sections, optical
dispersion and x-ray absorption.

The spectrum of dipole oscillator strengths f(ω) is related to the long-
wavelength dielectric function ε(ω) through

f(ω) = − m

2π2nee2
ω Im

1
ε(ω)

(7.48)

where Im denotes the imaginary part. and ne = nZ2 the number of electrons
per volume. Since ε(ω) can be expressed by the complex refractive index
n(ω)+ ik(ω), the oscillator strength spectrum may also be written in the form

f(�ω) = 1.5331× 10−3 A2

Z2ρ

�ω nk

(n2 + k2)2
(7.49)

�ω in eV; f(�ω) in eV−1.

Optical constants for numerous solids including covalent and ionic compounds
have been tabulated over a wide frequency range (Palik, 1985, 1991, 1996,
2000). Equivalent information may be extracted from a compilation of x-ray
scattering and absorption data (Henke et al., 1993) and from photoabsorption
and photoelectron spectroscopy (Berkowitz, 1979, 2002).

Table 7.1 shows input data for 25 elements determined from oscillator-
strength spectra by bundling according to (7.40a) and (7.40b). Notation is
explained in the caption2.

7.7 Compound Materials and Bragg Additivity

Before discussing stopping in chemical compounds, consider first a mixture
of noble gas atoms at low pressure. Then, from the fundamental statistical
considerations discussed in Sect. 2.2.3 you will realize that (2.19) is generalized

2 A special remark is indicated regarding I-values: I-values listed in table 7.1 are
those listed in ICRU (1993) and are not consistent with values listed for different
shells. The difference is seen in table 7.2. The reason for this seeming inconsistency
is that I-values from ICRU (1993) are a widely accepted standard and are used in
the PASS code as a unit to compute the Bohr parameter ξ = mv3/Z1e

2ω. Actual
calculations hinge on I-values for individual shells, while the total I-value drops
out again when results are plotted as a function of velocity instead of ξ.
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Table 7.1. The first row in a block shows atomic number Z, atomic weight A, I-
value [eV] according to ICRU Report 49 and the mass density [g/cm3]. Subsequent
rows in a block show principal quantum number n, azimuthal quantum number �,
subshell occupation Zfj , subshell I-value �ωj and subshell binding energy Uj . From
ICRU (2005)

1 1.00794 19.2 0.00008988
1 0 1.000 19.2 15.42

2 4.0026 41.8 0.0001785
1 0 2.000 41.8 24.588

4 9.0122 63.7 1.848
1 0 1.930 209.11 114.3
0 0 2.070 21.68 9.32

6 12.0111 81.0 1.90
1 0 1.992 486.2 288.2
2 0 1.841 60.95 16.59
2 1 2.167 23.43 11.26

7 14.0067 82.0 .001250
1 0 1.741 732.61 403.8
2 0 1.680 100.646 20.33
2 1 3.579 23.550 14.534

8 15.9994 95.0 .001429
1 0 1.802 965.1 538.2
2 0 1.849 129.85 28.7
2 1 4.349 31.60 13.618

10 20.180 137.0 0.0008999
1 0 1.788 1525.9 869.5
2 0 2.028 234.9 47.7
2 1 6.184 56.18 21.564

13 26.9815 166. 2.699
1 0 1.623 2701. 1564.1
2 0 2.147 476.5 121.5
2 1 6.259 150.42 76.75
0 1 2.971 16.89 9.08

14 28.086 173. 2.329
1 0 1.631 3206.1 1844.1
2 0 2.094 586.4 154.04
2 1 6.588 186.8 103.71
3 0 2.041 23.52 13.46
3 1 1.646 14.91 8.1517

18 39.948 188. .0017837
1 0 1.535 5551.6 3206.2
2 1 8.655 472.43 266.85
3 0 1.706 124.85 29.24
3 1 6.104 22.332 15.937

22 47.88 233. 4.508
1 0 1.581 8554.6 4969.9
2 1 8.358 850.58 487.5
3 1 8.183 93.47 44.37
3 2 2.000 39.19 8.1
0 0 1.878 19.46 6.8282

26 55.847 286. 7.873
1 0 1.516 12254.7 7112.
2 1 8.325 1279.29 750.8
3 1 8.461 200.35 68.85
3 2 6.579 49.19 9.34
0 0 1.119 17.66 7.90

28 58.7 311. 8.907
1 0 1.422 14346.9 8337.8
2 1 7.81 1532.28 903.01
3 1 8.385 262.71 84.88
3 2 8.216 74.37 10.213
0 0 2.167 23.03 7.6398

29 63.546 322. 8.933
1 0 1.458 15438.5 8983.9
2 1 8.049 1667.96 984.3
3 1 8.79 294.1 92.0
3 2 9.695 70.69 10.62
0 0 1.008 16.447 7.7264

32 72.59 350. 5.323
1 0 1.442 19022.1 11105.
2 1 7.791 2150.79 1276.7
3 1 7.837 455.79 140.37
3 2 10.122 179.87 31.82
4 0 2.463 57.89 14.3
4 1 2.345 20.95 7.9

36 83.80 352. .003743
1 0 1.645 24643. 14328.
2 1 7.765 2906.4 1753.2
3 1 19.192 366.85 157.25
4 1 7.398 22.24 17.38

42 95.94 424. 10.22
1 0 1.313 34394. 20003.
2 1 6.409 4365.3 2639.0
3 1 19.229 589.36 321.46
4 1 8.633 129.42 47.98
4 2 5.036 35.59 8.56
0 0 1.380 18.42 7.09

47 107.868 470. 10.500
1 0 1.295 43664.3 25518.
2 1 6.219 5824.91 3513.9
3 1 18.751 909.79 484.5
4 1 8.748 175.47 73.71
4 2 10.184 54.89 10.4
0 0 1.803 19.63 7.576

50 118.69 488. 7.285
1 0 1.277 49948. 29203.
2 1 6.099 6818.2 4123.9
3 1 20.386 1036.1 616.19
4 1 8.011 172.65 104.44
4 2 10.007 70.89 28.12
5 0 2.272 33.87 12.
0 1 1.948 14.54 7.34

54 131.3 482. .005895
1 0 1.563 58987. 34563.
2 1 6.312 8159. 5032.2
3 1 21.868 1296.6 831.38
4 1 5.762 356.75 168.77
4 2 11.245 101.03 68.15
5 1 7.250 16.52 15.27

74 183.85 727. 19.254
1 0 1.202 115025.9 69525.
2 1 5.582 17827.44 11181.625
3 2 19.527 3214.36 2125.98
4 2 18.741 750.41 354.33
5 1 8.411 305.21 49.6875
4 3 14.387 105.50 32.5
5 2 4.042 38.09 9.0
6 0 2.108 21.25 7.89

78 195.09 790. 21.45
1 0 1.159 128342. 78395.
2 1 5.467 20254. 12570.
3 1 18.802 3601.8 2488.
4 2 33.905 608.1 280.9
5 1 8.300 115.0 69.0
5 2 9.342 42.75 9.6
0 0 1.025 17.04 9.

79 196.9665 790. 19.291
1 0 1.124 131872. 80725.
2 1 5.331 20903. 12981.
3 1 18.078 3757.4 2585.7
4 2 34.604 682.1 300.8
5 1 8.127 105.2 74.30
5 2 10.414 44.89 11.66
0 0 1.322 17.575 9.226

82 207.2 823. 11.343
1 0 2.000 154449. 88005.
2 1 8.000 25067. 14283.
3 2 18.000 5105.0 2908.78
4 2 18.000 987.44 562.49
4 3 14.000 247.59 140.59
5 1 8.000 188.1 106.8098
5 2 10.000 40.61 20.904
6 0 2.000 19.2 10.
0 1 2.000 15.17 7.4167

92 238.0289 890. 19.05
1 0 2.000 167282. 115606.
2 1 8.000 27868. 19259.5
3 2 18.000 6022.7 4162.13
4 3 32.000 1020.4 704.71
5 2 18.000 244.81 164.15
6 1 8.000 51.33 33.
7 0 2.000 13. 6.1941
6 2 1.000 11.06 6.1
0 3 3.000 14.43 6.
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Table 7.2. Selected I-values calculated from oscillator-strength spectra (Palik, 1985,
1991, Henke et al., 1993) compared with recommended values from ICRU (1993).
Brackets indicate estimated values

Element ICRU (2005) ICRU (1993) Element ICRU (2005) ICRU (1993)

Li 50.0 40.0 Cl 189.8 188.
Be 64.7 63.7 Ar 189.8 188.
B 75.4 76.0 K 179.6 (190)
C 86.0 81.0 Ca 209.4 191.
N 79.5 82.0 Sc 217.7 191.
O 94.6 95.0 Ti 238.6 233.
F 114.3 115.0 V 236.6 245
Ne 135.5 137.0 Cr 242.6 257.
Na 141.6 (149) Mn 255.2 272.
Mg 144.6 (156) Fe 291.1 286.
Al 158.3 166. Co 290.2 297.
Si 169.5 173. Ni 301.3 311.
P 165.0 173. Cu 326.3 322.
S 168.9 180.

into

〈∆E〉 = ∆x
∑
Nν

∑
j

Tjσνj , (7.50)

where Nν is the number of ν-atoms per volume and σνj the cross section for
energy transfer Tj of a ν-atom.

We may express this relation by an effective stopping cross section per
atom,

Seff =
∑

ν

Nν

N
Sν =

∑
ν

cνSν , (7.51)

where Sν =
∑

j Tjσνj and

cν =
Nν

N
(7.52)

is the relative abundance of species ν.
Now, (7.51) is not only applied to gas mixtures but also to metallic alloys

and chemical compounds, both gaseous and solid. It is then called ‘Bragg’s
additivity rule’. This can only be an approximate relationship, since the elec-
tronic excitation spectrum of a molecule differs from that of a dilute mixture
of the constituent atoms. However, deviations from this relationship are fre-
quently quite small.
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Fig. 7.15. Excitation spectrum of LiF compared with spectra for Li metal and
fluorine. Data extracted from Palik (2000)

0.5

1

2

5

10

20

0.01 0.1 1 10

Bragg
LiF
F
Li

Stopping of antiprotons

E [MeV]

S
 [1

0-1
5 eV

cm
2 ]

Fig. 7.16. Predicted stopping forces for LiF, metallic lithium and fluorine, including
the prediction of Bragg’s rule. From Sharma et al. (2004)

Let us start with a few qualitative considerations (Sigmund et al., 2005):

– At high velocity, where the stopping number is governed by the Bethe
logarithm, valence structure effects enter logarithmically through changes
in the total I-value. For heavy target atoms, the contribution of the va-
lence shell to the I-value is small. Significant valence effects can mainly be
expected for atoms of the first and second row of the periodic table.

– The valence contribution makes up a fixed fraction of the I-value. With in-
creasing speed, its relative contribution to the Bethe logarithm ln(2mv2/I)
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decreases. Hence, significant valence effects should be looked for in the re-
gion where L � 1.

– Shell corrections tend to close inner-shell excitation channels one by one
with decreasing projectile speed. Clearly, valence effects must be most
important in the velocity range where the stopping force is dominated by
valence electrons.

– Also the shell and the Barkas-Andersen correction must be influenced by
valence effects. As a general rule, increased binding implies increased elec-
tron velocity and increased I-value. Therefore, both corrections tend to
increase in magnitude with decreasing velocity. However, for positive ions
they act in opposite directions. Therefore, the sign of the joint effect de-
pends on their relative significance.

– For negative particles, such as antiprotons, all three effects act in the
direction of decreasing stopping cross section from the isolated atom to
the compound3.

– The magnitude of valence effects should be greatest for strongly bound
compounds such as alkali halides.

Figure 7.15 shows oscillator-strength spectra for LiF as well as for Li and
F. Pronounced deviations from Bragg additivity are seen around and below
the bandgap of LiF.

Figure 7.16 shows stopping forces on antiprotons calculated for LiF by
means of the binary theory (Sharma et al., 2004). Pronounced deviations
from Bragg additivity are found from around 100 keV downward. However,
there is hardly any ion-target combination for which greater valence effects
can be expected: LiF has light constituents, the electronic structure deviates
drastically from those of the constituent atoms, the velocity range covered
extends far down, and for antiproton bombardment the effects of shell and
Barkas-Andersen correction add up.

7.8 Data Compilations and Codes

The experimental literature on proton and alpha-particle stopping is enor-
mous. On the basis of experimental results available until 1977, Andersen and
Ziegler (1977) established a set of proton stopping data for all elements by
cautious inter- and extrapolation which is still useful today. Extensive tables
covering a wide velocity range and numerous elements and compounds were
published by Janni (1982a,b). More recently, experimental data have been
compiled by Ziegler and Paul. Ziegler’s data are underlying the SRIM code
(Ziegler, 2005), which is freely available on the internet, while Paul’s data can
be downloaded freely in the form of graphs or Origin files (Paul, 2005).

3 Empirical corrections for deviations from Bragg additivity are not always neg-
ative: Positive corrections can occur when the standard of comparison is the
stopping cross section of a solid monoatomic medium.
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Certified data on proton and alpha-particle stopping were published by
the International Commission on Radiation Units and Measurements (ICRU,
1993), following up on a similar tabulation for electrons (ICRU, 1984). These
data were produced by the codes Pstar, Astar and Estar (for protons, alphas
and electrons, respectively), which implement the Bethe theory, employing
empirical input for I-values and Barkas-Andersen corrections. These codes
are freely available on the internet (Berger et al., 2005).

Figures 7.17–7.20 show comparisons between measured and calculated
stopping forces on protons and alpha particles for solid and gaseous ma-
terials, respectively. Also included are theoretical curves generated by the
PASS code which implements binary stopping theory (Sigmund and Schinner,
2002a) and which is planned to become freely available on the internet. Only
the energy range from 25 keV upward is covered, i.e., ions with v > v0, the
Bohr velocity, because other stopping mechanisms in addition to Coulomb
excitation become significant at lower velocities, as to be discussed in Vol-
ume II.

Binary theory is essentially classical, quantum theory entering via the
inverse-Bloch correction, and hence geared toward heavier ions. Neverthe-
less, differences from Pstar/Astar are minor and, in most cases, less than the
scatter between different experimental data. On the other hand, these cal-
culations do not involve fitting to stopping measurements, unlike SRIM and
Pstar/Astar.

A useful code that is also freely available on the internet is the CasP
code implementing the unitary convolution approximation by Grande and
Schiwietz (1998, 2002, 2004). A code by Arista and Lifschitz (1999), Arista
(2002) has likewise proved useful but is not yet publicly available.

7.9 Discussion and Outlook

The reader who needs reliable values of stopping cross sections for a given
system over a given velocity range has a number of options that range be-
tween purely empirical and purely theoretical solutions. As a rule of thumb,
the domain of theory is at the high-speed end, while empirical solutions tend
to be increasingly useful the lower the projectile speed. At the high-velocity
end, measurements are rare and conceptionally difficult, and theory is at least
conceptionally simple because of well-established physical principles, even
though there may be technical difficulties, as has been seen in the discus-
sion in Sect. 6.7.2.

The regime of low-velocity stopping, for projectile speeds below the Bohr
velocity v0, has been reserved for Volume II, but it may suffice to mention at
this point that the mechanism of Coulomb excitation of the target, underlying
most of the theoretical treatment in this monograph, is generally believed to
lose significance with decreasing projectile speed, while other processes, obey-
ing quite different scaling relations, get dominant. But even at intermediate
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projectile speeds, around the stopping maximum, deviations from straight
Bethe or Bohr behavior get pronounced. Even though theoretical treatments
for these effects are available, a variety of material parameters enter that may
or may not be well known.

Full ab initio treatments of particle stopping are possible at low projectile
speeds, where only the lowest excitation levels of target and projectile are
relevant. However, accurate treatments of this type are feasible mostly for the
lightest ion-target combinations and, hence, serve mostly as benchmarks for
comparison with more approximate schemes.

Amongst approximate theoretical schemes, the one by Lindhard and
Scharff (1953) has been by far dominating for several decades and is still
very popular, although it has not been utilized as a basis for current tabula-
tions such as Andersen and Ziegler (1977), ICRU (1993), Ziegler et al. (1985)
or codes (Ziegler, 2005, Grande and Schiwietz, 2004). While Andersen and
Ziegler (1977) and Ziegler (2005) essentially rely on measurements as far as
protons are concerned, ICRU (1993) is based on a shellwise implementation of
the Bethe formula, making use of modified hydrogenic wave functions in the
compution of shell corrections and a somewhat questionable Barkas-Andersen
correction, as explained in Sect. 7.5.2.

Evidently, the reliability of empirical interpolations must vary substan-
tially over the periodic table, dependent on the amount and quality of avail-
able experimental data. Extrapolation into velocity regimes where data are
scarce or nonexistent evidently requires theoretical support.

Simple and theoretically well-supported approaches such as the harmonic-
oscillator model have been useful for gaining qualitative insight but have only
rarely been utilized for tabulation of stopping data for a wide class of mate-
rials. Binary theory, developed primarily for stopping of heavy ions, has been
explored also for antiprotons and protons with considerable success. A Win-
dows version of the PASS code implementing this theory is expected to be
publicly available shortly.
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Problems

7.1. Calculate an approximate I-value for atomic hydrogen from (7.27) mak-
ing use of the electron density |ψ(r)|2 of the ground state of the hydrogen
atom.

7.2. Derive (7.32) making use of (7.17).

7.3. Why does the curve labelled BA in Fig. 7.6 not have the value 2mv2 at
p = 0?

7.4. Try to identify at least one of the techniques described in this chapter for
measuring stopping cross sections which does not require precise knowledge
of the density N of the stopping medium (atoms per volume). Also point out
at least one technique that does require such knowledge.

7.5. Determine the I-value of an aluminium atom by the procedure of Stern-
heimer et al. (1982) described on page 240 and compare the result with the
standard value of 166 eV for metallic aluminium. [Hint: Find a tabulation of
subshell ionization energies.]

7.6. Derive the expression

S(v) =
π

v2

∫ ∞

0

f(ve)ve dve
∫ v+ve

|v−ve|
dv′ S0(v′)(v2 − v2e + v′2) (7.53)

from (6.87), assuming an isotropic velocity distribution f(ve).

7.7. Derive (7.51) for a gas mixture.

7.8. Find the numerical table of stopping cross sections for a harmonic oscil-
lator, computed in the first Born approximation by Sigmund and Haagerup
(1986) and use data from Table 7.1 to compute stopping cross sections for
protons in aluminium and argon by means of (7.42) for 25 keV< E <10 MeV.

7.9. Download the CasP code from www.hmi.de/people/schiwietz/casp.html,
calculate stopping forces for some of the systems listed in Figs. 7.17–7.20 and
compare them with experimental results and the other codes.

7.10. Develop a strategy for determing the I-value of a material from mea-
surements of the stopping cross section S for protons over a certain energy
interval:

1. Get tabulated values of S from ICRU (1993) or an equivalent source and
treat them as ‘experimental’ data.

2. Extract the stopping number L from S and subtract the relativistic cor-
rection (which is independent of the material).

3. In a semilogarithmic plot you will find a straight line at high velocities,
from which you may determine the I-value.
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7.11. In continuation of problem 7.10,

1. try to extract a shell correction from the difference between the ‘experi-
mental’ L(v) curve and the Bethe logarithm.

2. Show that its onset is consistent with its presumed origin in the K shell.
3. Estimate the magnitude of the Barkas correction around the onset of the

K-shell correction.
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Part III

Straggling



8

Energy-Loss Straggling:

Variance and Higher Cumulants

8.1 Introductory Comments

Energy-loss straggling denotes the development of the width and shape of the
energy spectrum of an initially monochromatic beam as a function of time or
pathlength.

Straggling is an inherent feature of stopping measurements which cannot
be reduced indefinitely by making more measurements.

In many applications, information on the scatter of data is just as impor-
tant as mean values.

Fig. 8.1. The number of collisions
and the distribution of impact param-
eters fluctuates from trajectory to tra-
jectory

Fluctuations in energy loss were introduced in Sect. 2.2.4. There they were
ascribed to the fact that penetrating particles have different trajectories (cf.
Fig. 8.1. This implies that the number of atoms met during passage as well
as the strength of individual encounters – governed by the impact parameter
– differs from projectile to projectile. While such fluctuations do not vanish
in the limit of an infinite number of beam particles, the relative fluctuation
must decrease with an increasing number of interactions per projectile, i.e.,
increasing pathlength. That decrease, however, cannot go on indefinitely since
the projectile slows down and eventually comes to rest.
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There are other potential origins of straggling. Quantum mechanics causes
the energy loss to fluctuate from one collision event to another even at one
and the same impact parameter. For composite projectiles such as heavy ions
carrying electrons, the charge and excitation state may vary over a trajectory,
and since the energy loss typically depends on the projectile state, additional
fluctuations arise.

In analysing measured energy spectra one also needs to consider initial
beam spread, angular deflection, and target nonuniformities such as surface
roughness, pinholes and inhomogeneous chemical composition. These effects
are not categorized as straggling but may be difficult to separate experimen-
tally from straggling effects.

Energy-loss straggling has atomistic and statistical aspects which will be
discussed in this and the following chapter. On the atomistic side, a careful
study of (2.30) is needed along the same line as the discussion of (2.29) in
Chapters 4–6. After all, the fundamental relation (2.57) is based on Ruther-
ford’s law, disregarding binding of target particles which results in shell and
Barkas-Andersen corrections. These effects need to be considered along with
quantum mechanics and relativity.

On the statistical side, information is needed on the shape of the energy-
loss profile. The profile is not necessarily gaussian, and hence the relation
between mean and peak energy loss needs to be studied. It is often the latter
one that is actually measured. A similar statement is true for the relation
between standard deviation and half-width. Moreover, attention needs to be
paid to limitations of Poisson statistics that entered as an essential ingredient
into the treatment in Sect. 2.2.4.

Several results presented in this chapter can be derived by procedures dis-
cussed in Chapters 4–6. Therefore, some of the calculations are less explicitly
presented here than in previous chapters. However, problems in the end of the
chapter will encourage you to go through important derivations on your own,
supported by references to the pertinent literature.

8.2 Classical versus Quantum Theory

The width of an energy-loss profile is determined primarily by the straggling
parameter

W =
∑

j

T 2
j σj =

∫
T 2 dσ(T ), (8.1)

which is related to the variance of the energy-loss profile by〈
(∆E − 〈∆E〉)2

〉
= NxW (8.2)
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according to (2.26) and (2.30). This may be written in the form

W =
∫ 〈
T 2(p)

〉
d2p, (8.3)

where p is an impact parameter either to a target electron (in classical theory)
or a target nucleus (in semiclassical theory).

In classical theory, the energy loss at a given impact parameter is uniquely
defined if the electron is at rest initially. In semiclassical theory, the energy
loss is a fluctuating quantity even at a given impact parameter. However, for
a uniform distribution of impact parameters that fluctuation is immaterial
after integration according to (8.3).

In case of the stopping force we have seen in chapter 4 that Bohr’s kappa
criterion (2.80) provided a clear separation between the classical and the
Born regime. This distinction must be expected to also affect straggling. The
link between the two regimes is provided by Bloch theory as presented in
Sect. 6.3.1.

Lindhard and Sørensen (1996) evaluated the Bloch correction to the strag-
gling parameter using the formalism described in Sect. 6.3.2 and found that it
vanishes in the nonrelativistic regime. This implies that the regime of appli-
cability of classical scattering theory in straggling is not limited by the Bohr
criterion. This is a central result. Therefore, the calculation will be reproduced
explicitly here.

Notation and general procedure follow Sect. 6.3.2 closely. Starting at
(3.118) and (3.120) we need to evaluate

W = (mv2)2
4π
k2

∑
�

(+ 1)

×
[
2 sin2(δ� − δ�+1) − + 2

2+ 3
sin2(δ� − δ�+2)

]
. (8.4)

Now, according to (3.137),

δ� − δ�+2 = arg
([
+ 1 + iκ/2

][
+ 2 + iκ/2

])
= arctan

κ/2
+ 1

+ arctan
κ/2
+ 2

, (8.5)

and hence,

sin2 (δ� − δ�+2) =
(2+ 3)2κ2/4[

(+ 1)2 + κ2/4
][

(+ 2)2 + κ2/4
] . (8.6)

Insertion of this as well as (6.15) into (8.4) leads to

W =
(
mv2

)2 4π
k2

κ2

4

∑
�

(+ 1)(+ 2 + κ2/2)[
(+ 1)2 + κ2/4

][
(+ 2)2 + κ2/4

] . (8.7)
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Unlike (6.16), this series converges. It is, therefore, unnecessary to subtract
the Born limit.

You may easily verify – by separating the above fraction into two – that
(8.7) is equivalent with

W = 4πZ2
1e

4
∑

�

(
+ 1 + κ2/4

(+ 1)2 + κ2/4
− + 2 + κ2/4

(+ 2)2 + κ2/4

)
. (8.8)

Here, terms cancel pairwise, and only the first term in the parentheses for
 = 0 remains. This yields

W = 4πZ2
1e

4 (8.9)

for the straggling parameter per target electron. Since there is evidently no
Bloch correction to W , Bohr and Bethe theory must be expected to lead
to equivalent or identical results within the degree of accuracy of the Bloch
theory. In other words, the choice of theoretical scheme to treat straggling is
much less influenced – if at all – by Bohr’s kappa criterion than the description
of the mean energy loss.

The above argument does not invoke shell corrections and other significant
effects. It will, therefore, still be necessary to evaluate straggling separately in
the Bohr and the Bethe scheme with various extensions. However, the absence
of a Bloch correction strongly encourages an emphasis on classical theory.

8.3 Bohr Theory

The evaluation of the straggling parameter in the Bohr model1 follows that
of the stopping cross section presented in Sect. 4.5.1. Recall that in the Bohr
stopping model, a target electron is initially at rest, bound harmonically to
a fixed position in space, and hit at an impact parameter p by a heavy point
charge moving uniformly with a velocity v. The range of impact parameters
is divided up into a close- and a distant-collision regime. The limiting impact
parameter p0 separating the two regimes introduced in Sect. 4.5.1 remains
unchanged. However, the factor T 2 under the integral indicates a dominance
of large energy transfers and, hence, close collisions.

In the notation of Sect. 4.5.1 you find (problem 8.1)

W =
∫ ∞

0

2πp dp T 2(p) =
WB

ξ2

∫ ∞

0

2dζ
ζ3

[f(ζ)]2 , (8.10)

1 Although the calculation presented in this section is thought to strictly follow the
model outlined by Bohr (1913), Bohr himself in his study of straggling (Bohr,
1915) did not go so far and only evaluated straggling for binary Coulomb scat-
tering. This was perfectly adequate for the range of applications that Bohr had
in mind. To avoid confusion, a distinction will be made in the following between
‘Bohr straggling’ and ‘straggling in the Bohr model’.
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where f(ζ) is a function of ζ = ω0p/v introduced in (4.22) on page 114,
ξ = mv3/Z1e

2ω0 and WB is given by

WB = 4πZ2
1e

4 (8.11)

for a projectile ion with atomic number Z1 hitting a one-electron atom.
From (4.84) and (8.10) you find the following contribution from close col-

lisions,

Wclose =
WB

1 + (b/2p0)2
(8.12)

by straight integration from 0 to ζ0 = ω0p0/v (problem 8.1), while the contri-
bution from distant interactions,

Wdist =
WB

ξ2
2
∫ ∞

ζ0

ζ dζ
(
[K1(ζ)]

2 + [K0(ζ)]
2
)2

, (8.13)

is conveniently evaluated numerically.

Fig. 8.2. Straggling in Bohr model. Ratio W/WB for close and distant interactions
and the sum

Figure 8.2 shows the ratio Ω2/Ω2
Bohr =W/WB as a function of the dimen-

sionless variable ξ = mv3/Z1e
2ω0. Inclusion of binding in the determination

of straggling is seen to result in a decrease of the straggling parameter toward
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Fig. 8.3. Straggling and stopping in Bohr model. Dashed line: Relative straggling
W/WB; dotted line: stopping number L; solid line: ratio W/(mv2S) = W/(LWB)

low energies. The underlying reason is the fact that the single-collision spec-
trum gets narrower. In contrast to the corresponding results for the stopping
number shown in Fig. 4.3, the contribution from distant interactions is at
least an order of magnitude smaller than that from close interactions, even at
low projectile speed. This is a direct manifestation of the significance of the
factor T 2 in the integrand.

The simple expressionWB appears to accurately representW from ξ � 10
upward, except for corrections that are not allowed for in the original Bohr
model and that will be discussed in the following sections. In that velocity
regime, the straggling parameter of an atom with Z2 electrons becomes

WB = 4πZ2
1Z2e

4, (8.14)

leading to the variance

Ω2
Bohr = NxWB = 4πZ2

1Z2e
4Nx. (8.15)

This quantity is conventionally called Bohr straggling after Bohr (1915). How-
ever, Fig. 8.2 demonstrates that the Bohr model of stopping, when applied
to straggling, delivers a result that only at high projectile speeds approaches
Bohr straggling.

Figure 8.3 shows that the ratio between relative straggling and stopping
number according to the curves labelled ‘total’ in Figs. 4.3 and 8.2 varies fairly
slowly with projectile speed.

You will see in Sect. 8.10 that Bohr straggling (8.15), despite the sim-
plicity of the underlying model, describes straggling experiments reasonably
well. Nevertheless, a number of effects needs to be considered which cannot
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generally be ignored in the stopping cross section, in particular orbital motion
(shell correction), Barkas-Andersen effect, relativity, and density effect.

Moreover, for atoms containing more than a single electron, correlations
between target electrons need to be taken into account.

Finally, effects of electron promotion and charge exchange, which often
can be ignored in the stopping cross section, may become more pronounced in
straggling because of the higher significance of large energy transfers. A dis-
cussion of this last group of effects, as well as others associated with electrons
accompanying the projectile, will be postponed to Volume II.

8.4 Born Approximation

Just as the calculation of straggling on the basis of the Bohr model, also the
corresponding step in the Born approximation follows the same procedure as
the evaluation of the stopping cross section. Recall that two different proce-
dures led to the excitation cross section σj (4.82) which also forms the starting
point for a straggling calculation.

8.4.1 Harmonic oscillator

Consider first the particularly simple case of a spherical harmonic oscillator.
The calculation leading to (4.110) may be generalized to straggling (problem
8.2). The main change is the addition of a factor εj − ε0 = j�ω0 under the
sum. This leads to

W

WB
=

1
B

∞∑
j=1

j

(j − 1)!

∫ ∞

j2/B

dt tj−2e−t, (8.16)

where

B =
2mv2

�ω0
(8.17)

is the Bethe parameter.
Figure 8.4 shows this function, evaluated numerically by Sigmund and

Haagerup (1986). Apart from the different abscissa variables, the qualitative
behavior is similar to that in Fig. 8.2, but unlike there, we now observe a slight
overshoot above the Bohr value between B � 10 and 100. This effect, which
will be shown to arise from the shell correction, was first found by Livingston
and Bethe (1937).

8.4.2 Bethe Approximation

Next, consider the case of a general target atom but apply the Bethe approx-
imation presented in Sect. 4.5.4.
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W
/

W
B

2mv2/h̄ω0

Fig. 8.4. Relative straggling W/WB for quantal harmonic oscillator. Dotted line:
Only the first excited level taken into account. From Sigmund and Haagerup (1986)

Addition of a factor εj − ε0 to (4.106) leads to

W

WB
=

1
2mv2

∑
j

(εj − ε0)
∫ ∞

(εj−ε0)2/2mv2

dQ
Q
fj0(Q), (8.18)

which is exact within the Born approximation. Now, splitting the integral
into a close- and a distant-interaction portion at some boundary Q0, the
approximations made in Sect. 4.5.4 lead to

(
W

WB

)
close

=
1

2mv2

∫ 2mv2

Q0

dQ
Q

∑
j

(εj − ε0)fj0(Q) (8.19)

and(
W

WB

)
dist

=
1

2mv2
∑

j

(εj − ε0)fj0 ln
2mv2Q0

(εj − ε0)2

=
1

2mv2

⎛
⎝∑

j

(εj − ε0)fj0
⎞
⎠ ln

2mv2Q0

I21
, (8.20)

where the quantity I1 is defined via∑
j

(εj − ε0) fj ln I1 =
∑

j

(εj − ε0) fj ln (εj − ε0) . (8.21)

For a one-electron atom, the following sum rule holds rigorously (problem
8.3),

∑
j

(εj − ε0) fj0(Q) = Q+
2

3m
〈
0
∣∣p2∣∣ 0〉 ≡ Q+

2
3
mv2e , (8.22)
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where

v2e =
〈

0
∣∣∣∣ p2m2

∣∣∣∣ 0
〉

(8.23)

is the mean square velocity of an electron in the ground state.
Equation (8.22) enters in both (8.19) and (8.20), and after integration you

find(
W

WB

)
= 1 +

2
3
v2e
v2

ln
2mv2

I1
− Q0

2mv2
. (8.24)

It is seen that Q0 again drops out under the logarithm. In view of the intial
assumption that Q0 � Qmax = 2mv2, the last term needs to be dropped.

As expected from the absence of a Bloch correction, (8.24) approaches
Bohr straggling at high speed.

100

101

102

103

104

105

1 10 100

straggling
stopping

Z
2

I [
eV

]

Fig. 8.5. Values of I1 for selected elements calculated from data listed in Table 7.1,
compared with I-values from ICRU (2005) which were calculated with equivalent
input

Note that the quantity I1 entering into (8.24) and defined by (8.21) differs
from the I-value entering the Bethe logarithm in the stopping cross section,
cf. (4.119). Figure 8.5 shows values for specific elements, based on realistic
oscillator-strength spectra. Also included are I-values evaluated from the same
source, i.e., Table 7.1. It is seen that I1 increases approximately like Z5/3

2 and
that, for large Z2 it may exceed I by more than an order of magnitude.

The leading correction term in (8.24) is governed by the orbital speed of
the target electrons and, hence, has to be interpreted as a shell correction. It
has a maximum at 2mv2/I1 = 2.718, i.e., it produces a shoulder, often called
the Bethe-Livingston correction.
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It is of interest to identify the reason why straggling can exceed the Bohr
value. When orbital motion of target electrons is taken into account, the
energy-loss spectrum for individual collisions extends over a broader interval.
In case of the stopping cross section, this results in a decrease at high speed
but an increase at low speed. In case of straggling, with the dominance of high
energy transfers, an increase is found at intermediate energies due to the fact
that energy transfers exceeding the kinematic limit 2mv2 become possible.
This becomes insignificant at velocities much higher than orbital velocities.
The result is the Bethe-Livingston shoulder.

Although the energy loss fluctuates in a quantum system even at a fixed
impact parameter2, that fluctuation is immaterial for a homogeneous beam
after integration over all impact parameters, as mentioned in Sect. 8.2. Equa-
tion (8.24) shows that the main quantal effect giving rise to fluctuations in the
Bethe scheme is the orbital motion of the target electrons. This phenomenon
is enforced by the uncertainty principle.

8.4.3 Relativistic Extension (�)

The relativistic extension can be achieved in straight analogy to Sect. 5.6.
Consider again three regimes in the Q-integration, separated by values Q0 �
(�ωj0)2/2mv2 and Q1 � mc2.

For Q < Q0, the longitudinal interaction yields

W

WBohr

∣∣∣∣
long,Q<Q0

=
v2e
3v2

ln
2mv2Q0

I21
(8.25)

as a slight modification of the expression derived in the previous section. While
this is a noticeable correction at nonrelativistic projectile speeds v � c, it
becomes small in the relativistic regime, except for inner shells in heavy target
atoms.

Similarly, for Q0 < Q < Q1 the longitudinal interaction yields

W

WBohr

∣∣∣∣
long,Q0<Q<Q1

=
Q1 −Q0

2mv2
+
v2e
3v2

ln
Q1

Q0
. (8.26)

The evaluation of the contribution from the transverse interaction follows
closely that for the stopping force in Sect. 5.6. All that is needed is the
addition of a factor �ωj0 in the integrand of the stopping integral.

2 When talking about an impact parameter in quantum collision theory we imply
the semiclassical scheme so that the pertinent quantity is the impact parameter
to the target nucleus. Bohr theory deals with the impact parameter to a target
electron, but as long as orbital motion is not allowed for, the two quantities are
identical.
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For the low-Q regime you find

W

WBohr

∣∣∣∣
trans,Q<Q0

=
1

2mv2
∑

j

�ωj0fj0

[
− ln(1 − β2) − β2

+ ln
(

1 − β2

η0j

)
+
β2(1 − β2)
η0j − β2

]
, (8.27)

where η0j = 2mv2Q0/(�ωj0)2 was introduced by (5.100) in Sect. 5.6.2. Making
use of the fact that η0j � 1, the two last terms become small of order Q0/mc

2

in comparison with the two first terms and will thus be neglected. This results
in

W

WBohr

∣∣∣∣
trans,Q<Q0

=
v2e
3v2

[− ln(1 − β2) − β2
]

(8.28)

by means of the sum rule (8.22). From the intermediate regime, already the
contribution to the stopping force was negligible. In the present case it is small
of order (Q1/mc

2)2 and will thus be neglected.
For high momentum transfers, contributions from longitudinal and trans-

verse excitations are not treated separately. Multiply the integrand in (5.114)
by a factor3 �ω+

k . Integration leads to

W

WBohr

∣∣∣∣
Q>Q1

=
1

2mv2
mc2

[
ζ − 1

4
(1 − β2)(ζ − 1)2

]ζmax

ζ1

. (8.29)

Making use again of the fact that Q1 � mc2 you find

W

WBohr

∣∣∣∣
Q>Q1

=
1 − β2/2
1 − β2

− Q1

2mv2
. (8.30)

Here, the term ∝ Q1 cancels against the corresponding term from the
intermediate-Q regime. Summing all contributions we arrive at

W

WBohr
=

1 − β2/2
1 − β2

− Q0

2mv2

+
v2e
3v2

[
ln

2mv2Q1

I21
− ln(1 − β2) − β2

]
. (8.31)

While the uncompensated term Q0/2mv2 can be dropped because it is small
(Q0 � Q1 � 2mv2), the absence of a high-Q term compensating for lnQ1,
corresponding to what was found for the stopping cross section, warrants
attention.

The origin of this deficiency is the use of free-particle Dirac functions which
evidently fail to reproduce the term containing v2e in the sum rule (8.22).
3 Recall that the expressions �ωj0 and εj − ε0 denote the same quantity and will

be used synonymously.
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Straight extensions of Bethe-type sum rules do not exist, although numer-
ous authors have shown interest in the problem. For a recent survey the reader
is referred to Cohen (2004). Apart from the single-particle nature of the Dirac
equation, a major obstacle is the existence of negative-energy states which
prevents meaningful application of the closure property of a set of complete
of single-particle states.

The range of validity of sum rules like (8.22) can be extended into the
relativistic regime by series expansion in powers of 1/c2. The first relativistic
correction term to (8.22) has been evaluated by Cohen and Leung (1998),
although no numerical results were given. More elaborate calculations for the
Bethe sum rule indicate corrections up to 1 pct. (Cohen, 2005).

We note that at relativistic speeds, a term ∝ v2e/v2 is a small correction
except for inner shells of heavy target atoms. Allowing for a minor inaccuracy
we may, therefore, adopt the sum rule (8.22) also for the relativistic regime.
This is equivalent with setting

Q1 → Qmax =
2mv2

(1 − β2)2
(8.32)

according to (5.111) and leads to

W

WBohr
=

1 − β2/2
1 − β2

+
v2e
v2

[
2
3

ln
2mv2

I1
− ln(1 − β2) − β

2

3

]
. (8.33)

This result is identical with the one derived by Fano (1963) as far as the
main term is concerned. Fano explicitly neglected relativistic corrections to
the second term.

8.4.4 Density Effect

A relativistic density correction in the stopping force was determined in
Sect. 5.6.4. That correction originated exclusively in the zero-k limit of the
dielectric function, i.e., in very distant interactions. Such interactions do not
contribute significantly to straggling. The density correction in straggling has,
therefore, always been neglected (Sternheimer, 1960, Fano, 1963).

Since the relativistic density correction in the stopping force is a threshold
effect, one might even wonder whether such a threshold also exists in strag-
gling, or whether there is no corresponding correction in straggling at all.

8.5 Fermi Gas (�)

8.5.1 Expression for Straggling

As an analog to (5.30) one may, according to Lindhard (1954), write the
following expression for straggling for a medium characterized by a dielectric
function ε(k, ω),
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dΩ2

dx
= − e21

πv2
Im
∫ ∞

0

dk
k

∫ kv

0

dω 2�ω2

(
1

ε(k, ω)
− 1
)
. (8.34)

Superficially, the two expressions differ by a factor 2�ω, where �ω represents an
individual energy transfer and the factor 2 accounts for a change in integration
limit.

Just as the transition from (2.29) to (2.30), the physics behind this
innocently-looking generalization is by no means trivial. In Sect. 2.2.4, the
central assumption was the mutual independence of individual collision events
which allowed the application of Poisson statistics. Similarly, (8.34) requires
individual energy transfers �ω, whether being collective or not, to be mutu-
ally independent. This assumption also enters into the argument of Lindhard
(1954) which rests on the quantization of the electromagnetic field. A simpler,
although less rigorous procedure is to show that (8.34) leads to the standard
expression in the limit of a dilute medium (problem 8.5).

The limitations of (8.34) are not clear. We shall see in Sect. 8.9 that
correlations between individual atomic collisions produce corrections to (2.30).
Similar effects must exist in other systems, in particular in the Fermi gas.

8.5.2 Static Electron Gas

Following Sect. 5.4.3, let us consider the static electron gas as an example.
With the dielectric function (5.60) one finds

Im
(

1
ε(k, ω)

− 1
)

= −πω
2
P

2αk

[
δ(ω − αk) − δ(ω + αk)

]
(8.35)

according to (5.74), with

α2
k = ω2

k + ω2
P. (8.36)

Fig. 8.6. Relative straggling in static electron gas. Solid line: Exact evaluation (cf.
problem 8.8. Dashed line: equation (8.38)
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This leads to the straggling parameter

W

WB
=

�

mv2

∫
kv>αk

αk

k
dk. (8.37)

This integral is elementary (problem 8.8), and the result has been plotted in
Fig. 8.6. However, the static electron gas can only be a reasonable approx-
imation to a Fermi gas as long as the projectile speed is high compared with
the Fermi velocity. Hence, following Sigmund and Fu (1982), we also make
a Taylor expansion for small values of the dimensionless parameter �ωP/mv

2,
and go only up to the linear term. This yields (problem 8.6)

W

WB
= 1 +

�ωP

2mv2

(
ln

4mv2

�ωP
− 1
)
, (8.38)

which also has been included in Fig. 8.6. It is seen that the approach to
asymptotic behavior is fairly slow.

Equation (8.38) may be compared to (8.24). You may notice the term
−�ωP/2mv2 which, unlike the term −Q0/2mv2 in (8.24), is well-defined here.
The logarithmic correction term, on the other hand, being proportional to
ωP , is density-dependent, while the logarithmic term in (8.24) hinges on the
orbital velocity which is ignored in the present estimate.

8.5.3 Degenerate Fermi Gas: High Projectile Speed

In Sect. 5.7.4 the dielectric function was expanded in powers of v2F, thus en-
abling a shell-correction expansion of the stopping force. The same method
may also be applied to straggling. Series expansion of (8.34) in terms of
�ω/mv2 and v2F/v

2, both up to first order, yields

W

WB
= 1 +

(
�ωP

2mv2
+
v2F
5v2

)
ln

4mv2

�ωP
−
(

�ωP

2mv2
+

21
40
v2F
v2

)
+ . . . (8.39)

according to Sigmund and Fu (1982) (problem 8.6)4. This function exhibits
a maximum (problem 8.7) which lies at

4mv2

�ωP

∣∣∣∣
max

= 7.39 (8.40)

for a dilute target. The number on the right-hand side increases only slowly
with increasing density of the medium.

4 A somewhat different formula was found earlier by Bonderup and Hvelplund
(1971) by expansion of ε(k, ω) for large k. That approximation was not meant to
be an expansion in powers of 1/v2 but nevertheless led to the same coefficients of
logarithmic terms as those in (8.39).
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It is of interest to identify the origin of the two logarithmic terms in (8.39).
The first of the two is present already in (8.38) for the static electron gas and
is evidently associated with the plasma resonance. Let us, for a moment,
consider a projectile that loses energy exclusively to plasma resonances, so
that

dσ′(T ) =
S′

�ωP
δ(T − �ωP )dT, (8.41)

where S′ is the stopping cross section. This leads to a straggling parameter

W ′ = �ωPS
′. (8.42)

If we disregard a numerical factor ln 2 − 1, this is equivalent with the term
∝ �ωP in (8.38), if S′ is identified with half the stopping cross section S. Thus,
(8.38) accounts for the fact that in comparison to binary Coulomb scattering,
small energy losses have been rearranged and bunched into a sharp plasma
resonance.

Ω
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/
Ω

2 B
o
h
r

v/vF

Fig. 8.7. Relative straggling in Fermi gas for different electron densities. χ =√
v0/πvF. From Bonderup and Hvelplund (1971)

The second logarithmic term in (8.39) is evidently a shell correction. Its
significance becomes evident by writing

v2F
5v2

=
1
3
〈v2e〉
v2
. (8.43)

The main difference from the second term in (8.24) is again a factor 1/2.
This is consistent with equipartition discussed on page 174, i.e., for a static
electron gas at high speed, half of the energy transfers goes into excitation of
individual electrons.

Figure 8.7 shows relative straggling as a function of projectile speed accord-
ing to Bonderup and Hvelplund (1971), determined by numerical evaluation.
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8.6 Shell Correction: Kinetic Theory (�)

The treatment of shell corrections by kinetic theory, based on the assumption
that shell corrections are due to the orbital motion of target electrons, can be
readily extended to straggling on the basis of the discussion in Sect. 6.5.

Note first that by dividing (6.66) by nvdt you get an effective cross section
in the laboratory frame of reference,

dσeff =
we

v
dσ(we, θ). (8.44)

The energy transfer from the projectile to a target electron is given by

T = mv · (w′
e − we) , (8.45)

according to (3.30) in Sect. 3.2.2, where we and w′
e are the electron velocities

in the center-of-mass frame before and after interaction.
Now, choose a coordinate frame such that

we = we(0, 0, 1) (8.46a)
w′

e = we(sin θ cosψ, sin θ sinψ, cos θ) (8.46b)
v = v(sinφ, 0, cosφ). (8.46c)

This yields the straggling parameter per target electron (problem 8.9),

W =
∫
T 2dσeff(v, θ)

=

〈
m2 |v − ve|

v

{[
(v2 − v · ve)2 − 1

2
(
v2v2e − (v · ve)2

)]
σ(2)(|v − ve|)

+
[
v2v2e − (v · ve)2

]
σ(1)(|v − ve|)

}〉
ve

, (8.47)

where

σ(2)(v) =
∫

(1 − cos θ)2dσ(v, θ) (8.48)

is a higher-order transport cross section. A more general relation was derived
by Sigmund (1982) for arbitrary mass ratioM1/m. For ve � v, (8.47) reduces
to a well-known result (3.118),

W0 = (mv2)2σ(2)(v). (8.49)

The transport cross sections can be eliminated by means of (6.86) and (8.49),

W (v) =

〈
(v2 − v · ve)2 − 1

2 (v2v2e − (v · ve)2)

v |v − ve|3
W0 (|v − ve|)

+m
v2v2e − (v · ve)2

v |v − ve| S0 (|v − ve|)
〉

ve

. (8.50)
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8.6.1 High-Speed Expansion

You may then perform a series expansion in powers of 〈v2e〉 in analogy to
(6.91), leading to

W (v) �W0(v) +
〈v2e〉
v2

(
−W0(v) +

1
6
v2W ′′

0 (v) +
2
3
mv2S0(v)

)
. . . . (8.51)

This relation will be used shortly.

8.6.2 Relativistic Extension

A relativistic version of (8.50) has been derived by Tofterup (1983),

W (v) =

〈
γ2

v(v2 − v · ve)2 − 1
2 (v2v2e − (v · ve)2)

γ2
vγ

2
ve
vv3M

W0 (we)

+m
v2v2e − (v · ve)2

vvM
S0 (we)

〉
ve

, (8.52)

in the notation of Sect. 6.5.2.
As in Sect. 6.5.5, we may try an expansion for v0 � v � ve, which yields

W (v) � 2
3
mv 〈veS0(ve)〉ve

(8.53)

and is identical with the nonrelativistic relation derived by Sigmund (1982).
For v, ve � c, the occurrence of the Møller speed in the denominators precludes
the simple approximation made in case of the stopping cross section.

8.6.3 Bohr Theory

For the specific case of the Bohr model, where W0 and mv2S0 depend on
ξ = mv3/Z1e

2ω, (8.51) reads

W

W
=
W0

WB
+

〈v2e〉
v2

[(
−1 + ξ

d
dξ

+
3
2
ξ2

d2

dξ2

)
W0

WB
+

2
3
L0

]
(8.54)

Straight insertion of the Bohr straggling parameter WB (8.11) into (8.51)
yields

W

WB
= 1 +

〈v2e〉
v2

(
2
3

ln(Cξ) − 1
)
. . . (8.55)

A more accurate estimate could in principle be found by insertingW/WB and
L0 from Fig. 8.3. However, a Thomas-Fermi estimate of the range of validity
of this expansion (problem 8.11) leads to

ξ � 2
Z2

Z1
. (8.56)

As long as we deal with light ions, where Z1 ≤ Z2, this implies that (8.55) is
accurate enough within the range of validity of (8.54).



294 8 Variance and Higher Cumulants

8.6.4 Bethe Theory

The corresponding relation to (8.55) for the Bethe theory is found by inserting
L0 = ln(2mv2/I) into (8.50), yielding

W

WB
= 1 +

〈v2e〉
v2

(
2
3

ln
2mv2

I
− 1
)
. . . , (8.57)

which differs from (8.24) only in the constant under the logarithm.

8.6.5 Quantum Oscillator

For the spherical quantal oscillator, Sigmund and Haagerup (1986) derived
the shell correction expansion directly without going over kinetic theory and
found

W

WB
= 1 +

�ω0

mv2

(
ln

2mv2

�ω0
− 3

4

)
. . . . (8.58)

With

1
2
m〈v2e〉 =

3
2

�ω0, (8.59)

this goes over into

W

WB
= 1 +

〈v2e〉
v2

(
2
3

ln
2mv2

�ω0
− 1
)
. . . (8.60)

in exact agreement with (8.57). This provides strong support for the use of
kinetic theory in straggling calculations.

8.6.6 Bloch Theory

We have seen in Sect. 8.2 that there is no Bloch correction to the straggling
parameter. However, that calculation did not include a shell correction. Equa-
tion (8.51), on the other hand, contains the stopping cross section which does
have a Bloch correction. Hence, the shell correction receives a Bloch term

∆
(
W

WB

)
=

2
3
〈v2e〉
v2

[
ψ(1) − Reψ

(
1 + i

Z1e
2

�v

)]
. (8.61)

This result, mentioned by Sigmund (1982), recovers the result of a direct
evaluation by Titeica (1937) of the Bloch correction to straggling.
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8.6.7 Fermi Gas

Application of (8.50) to the Fermi gas is easily seen to lead to an incorrect
result. Indeed, since L0 has the form of a Bethe logarithm according to (5.79),
the first shell correction would lead to a term

2
3
v2e
v2

ln
4mv2

�ωP
=

2
5
v2F
v2

ln
4mv2

�ωP
(8.62)

according to (8.24), i.e., twice the result from a direct expansion, (8.39). The
reason for this discrepancy is the fact that no account is taken in this estimate
of the rearrangement of the Coulomb cross section at low energy transfers, as
discussed in Sect. 8.5. This discrepancy can be removed by proper considera-
tion of the Pauli principle (Sigmund, 1982).

8.6.8 Full Integration

Equation (8.51) can be evaluated without recourse to series expansion for any
system where adequate expressions for W0 and S0 covering a velocity range
from zero up to v + ve are available. However, no systematic effort has been
reported in this area.

Let us see what happens within the Bohr theory. Although the results
emerging from Sect. 8.3 could be utilized, an operationally simpler procedure
is based on binary stopping theory described in Sect. 6.4.5. Unlike Bohr the-
ory, that scheme incorporates the Barkas-Andersen effect which we want to
disregard for the moment. In order to eliminate that effect, an average is taken
between the predictions for a positive point charge and the equivalent negative
charge. This will be denoted as modified Bohr theory in the following.

Figure 8.8 shows a comparison between straggling parameters calculated
from the genuine Bohr model and modified Bohr theory. Agreement is not per-
fect but reasonable for the purpose in mind. After all, binary theory contains
corrections to all orders in Z1, and taking the particle-antiparticle average
eliminates only contributions from uneven orders, while even terms of order
Z4

1 and higher remain.
Figure 8.9 shows the effect of shell correction. Compared are the prediction

of modified Bohr theory with and without shell correction and the expansion
(8.24). Excellent agreement is found between the high-speed expansion and
modified-Bohr theory well above the Bethe-Livingston shoulder, but a sig-
nificant discrepancy is found around the maximum and below. However, in
the absence of a Barkas-Andersen correction, the question of what is right or
wrong is not necessarily meaningful.

8.7 Barkas-Andersen Correction (�)

We have seen in Chapter 6 that the velocity domains of significant shell correc-
tion and significant Barkas-Andersen correction overlap. While it is of interest
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Fig. 8.8. Comparison of relative straggling calculated from Bohr model, Fig. 8.2,
and modified Bohr theory (see text). Shell correction ignored

Fig. 8.9. Predicted straggling for H+ in H. Dashed line: Equation (8.24) excluding
the last term (Fano, 1963). Dot-dashed line: Modified Bohr theory without shell
correction; dotted line: Modified Bohr theory with shell correction

to separately study the two phenomena, valid predictions allowing comparison
with experiment need to incorporate the two effects combined. The problem
has not received much attention in the literature. The present survey is based
upon studies by Wang and Pitarke (1998) on the free-electron gas and by
Sigmund and Schinner (2002) who employed binary stopping theory.

The Barkas-Andersen effect has its origin in the binding of a target elec-
tron. Bohr straggling as given by (2.57) is an exact result for straight Coulomb
scattering, and the dominating contribution stems from close collisions which
are insensitive to binding. Hence, one might expect the Barkas-Andersen effect
in straggling to be less significant than in the stopping cross section.
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This expectation is strengthened by applying Lindhard’s procedure de-
scribed in Sect. 6.4.3 – where the Barkas effect is simulated as a change in
effective collision energy – to the Bohr straggling parameter WB. Indeed, as
WB does not depend on the projectile speed, the operation (6.37) has no effect.
However, Fig. 8.2 indicates that this simple result can only be true for ξ � 10,
whereas a Barkas-Andersen correction should be expected in the regime where
the straggling parameter starts declining below the Bohr value.

Fig. 8.10. Straggling for protons and antiprotons interacting with a classical Bohr
oscillator, evaluated by binary theory. Shell correction neglected

Figure 8.10 shows predictions for the Bohr oscillator evaluated by the bi-
nary theory described in Sect. 6.4.5, disregarding shell correction. The line
labelled ‘average’ denotes modified Bohr theory, and the line labelled ‘correc-
tion’ denotes the difference between the result for protons and the average.
As expected, the Barkas-Andersen correction decreases rapidly for ξ � 10.
Conversely, it is seen to reach almost 100 % for ξ � 1.

Figure 8.11 shows predictions of binary theory for protons in atomic hydro-
gen. The curve labelled ‘plain’ denotes modified Bohr theory, and the remain-
ing three curves incorporate shell correction and Barkas-Andersen correction,
respectively, as well as the combination. It is seen that the shoulders produced
by the two corrections do not strictly lie in the same energy interval (cf. prob-
lem 8.12). There is a high-speed regime where the Barkas-Andersen correction
is insignificant while the shell correction is still essential. Conversely, at veloc-
ities below the shoulder, the shell correction reduces the enhancement due to
the Barkas-Andersen correction.

Wang and Pitarke (1998) applied a second-order response function estab-
lished by Pitarke et al. (1995) to determine the straggling parameter of a Fermi
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Fig. 8.11. Straggling for protons in atomic hydrogen, calculated from binary theory

N
W

/
v

(a
.u

.)

v/v0

Fig. 8.12. Straggling parameter of a Fermi gas up to third order in Z1 according to
Wang and Pitarke (1998). Dashed line: Z2

1 term; solid line: Z3
1 term; dash-dot line:

Total for protons; dotted line: Total for antiprotons. rs=2. From Wang and Pitarke
(1998)

gas up to the third order in Z1. A typical result is shown in Fig. 8.125. It is
seen that the Z3

1 contribution is negligible for v � 2v0 but increases rapidly
at lower speed, reaching a maximum of � 60 % at v = 1.4v0.

5 The different shape is due to the factor 1/v in the plotted quantity. It is easily
verified that Bohr stopping is approached at the upper end of the velocity range.
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Fig. 8.13. Straggling in units of WBohr(1−β2/2)/(1−β2) in the relativistic regime
according to Lindhard and Sørensen (1996) for Z1 = 92, 79, 66, 54, 36, 18, 10, 2 and
1. All corrections, including finite nuclear size incorporated. γv = 1/

√
1 − v2/c2

8.8 Relativity: Lindhard-Sørensen Theory (�)

For Z1 � 1, a correction of the kind considered in Sect. 6.7.2 must be
expected to play a role, even though we have seen in Sect. 8.2 that unlike in
the stopping cross section it decreases toward zero with decreasing projectile
speed. The treatment of Lindhard and Sørensen (1996) includes straggling
and has been carried out in straight analogy to the one of the stopping cross
section. The result of this treatment is expressed in terms of the transport
cross section σ(2) defined in (3.120),

σ(2) = 2σ(1) − 4πλ̄2
∑
κ �=0

|κ|
[

(κ − 1)(κ − 2)
(2κ − 1)(2κ − 3)

sin2 (δκ − δκ−2)

+
κ − 1

(2κ − 3)(4κ2 − 1)
sin2 (δκ − δ−κ+1)

+
1
2

κ + 1
2κ + 1

(
1

4κ2 − 1
+

1
4(κ + 1)2 − 1

)
sin2 (δκ − δ−κ−1)

]
(8.63)

for a spherically symmetric potential, in the notation of Sect. 6.3.2.
Figure 8.13 shows results for Z1 = 1–92 taking into account the finite-

nuclear-size effect. The quantity plotted is the relative straggling parameter
(W/WBohr)(1−β2)/(1−β2/2), i.e., relative to the result from the high-speed
limit of the Born approximation (8.31). It is seen that for Z1 � 10, the Born
approximation is very accurate except for γv > 200, where the finite-nuclear-
size effect becomes important. However, for γv < 100, straggling becomes
significiantly larger than the Born result for heavy nuclei over a wide range
of beam energies.
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8.9 Bunching

Estimates of straggling presented above ignore all spatial correlation between
target electrons. This implies that the electron density only enters as a pro-
portionality factor. This is obvious in case of WB which assumes Coulomb
scattering on independent target electrons, but estimates based on the Bohr
model and its extensions still operate with one target electron per atom and
hence ignore the fact that electrons are bunched in atoms. Although the ex-
pression (8.18) based on the Born approximation fully takes into account all
correlations within an atom that give contributions to straggling ∝ Z2

1 , such
correlations are ignored in (8.24), as mentioned explicitly by Fano (1963).
Even in case of the Fermi gas, straggling comes out proportional to the elec-
tron density at high projectile speed, and low-speed corrections going as v2F or
ω2

P account for zero-point motion and effective binding but not for proximity
in space.

A simple model may illustrate the potential importance of correlation ef-
fects. Consider first an ideal gas of N atoms per volume, each containing 2
electrons which can be raised to an excitation level ε. Let the cross section
for exciting both electrons be σ, while excitation of just one electron is sup-
posed to have vanishing probability. Then the stopping force and straggling
are given by

−dE
dx

= Nx 2ε σ; Ω2 = Nx (2ε)2 σ. (8.64)

Compare this system to an ideal gas of 2N atoms per volume, each with one
electron and unchanged excitation energy and cross section. For this system
we have

−dE
dx

= 2N xε σ; Ω2 = 2N xε2 σ, (8.65)

i.e., the same stopping force but only half the straggling. Clearly, more colli-
sions and correspondingly less energy loss per collision reduce straggling.

This kind of effect was first studied as a pairing effect in diatomic molecules
(Sigmund, 1976a), but it must occur wherever the interelectronic distance
is comparable to or smaller than the effective maximum impact parameter
contributing to energy loss.

8.9.1 Classical Estimate

The bunching effect is most easily illustrated in a classical model where col-
lisions may be described in terms of an impact parameter to an individual
electron. In such a model the straggling parameter is given by

W =
∫

d2p

〈(
Z2∑
i=1

Ti(pi)

)2〉
=
∫

d2p

Z2∑
i,j

〈
Ti(pi)Tj(pj)

〉
(8.66)
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according to Sigmund and Schinner (2002), where Ti(pi) is the energy loss to
the ith target electron at an impact parameter pi, and p the impact parameter
with respect to the nucleus. The brackets indicate an average over the spatial
distribution of target electrons around the nucleus.

We may split the sum into two parts with i = j and i �= j, respectively,

W =
∫

d2p

Z2∑
i=1

〈
T 2

i (pi)
〉

+ ∆W, (8.67)

where

∆W =
∫

d2p

Z2∑
i�=j

〈
Ti(pi)Tj(pj)

〉
. (8.68)

The first term on the right-hand side of (8.67) reflects straggling due to spa-
tially uncorrelated electrons, while the correlation term ∆W is nonvanishing
whenever there is a range of impact parameters where both Ti(pi) and Tj(pj)
differ significantly from zero. Note that this term cannot become negative,
even in case of anticorrelation between target electrons as e.g. in the ground
state of a helium atom.

To further simplify the situation, take an independent-electron model of
the atom so that

∆W =
∫

d2p

Z2∑
i�=j

〈
Ti(pi)

〉〈
Tj(pj)

〉
(8.69)

or

∆W =
∫

d2p

(
Z2∑
i=1

〈
Ti(pi)

〉)2

−
∫

d2p

Z2∑
i=1

〈Ti(pi)〉2 . (8.70)

The key operation here is the spatial averaging

T ′
i (p) =

〈
Ti(pi)

〉
=
∫

d3ri ni(ri)Ti(p − ρi), (8.71)

where ni(ri) is the electron density and ρi the component of the electron
coordinate ri perpendicular to the projectile velocity. The difference between
Ti(pi) and T ′

i (p) is substantial: Ti depends on the impact parameter to a target
electron and hence approaches 2mv2 – or a shell-corrected maximum energy
transfer – at p = 0. Conversely, T ′

i (p) may well have a minimum at p = 0
because the chance of hitting a target electron head-on may be greater at
a nonvanishing distance from the nucleus.

With this we may write

∆W =
∫

d2pT ′(p)2 −
∫

d2p
∑

i

T ′
i (p)2. (8.72)
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Here, T ′(p) =
∑

i T
′
i (p) is the average energy transfer to the atom at an impact

parameter p to the nucleus.
Eq. (8.72) without the second term was stated by Besenbacher et al. (1980)

and applied to an electron-gas model. However, the second term is essential
at least for few-electron atoms since in its absence also a one-electron atom
would show correlation.

8.9.2 Bunching in Helium

As an example, consider straggling in helium in the modified-Bohr model,
where (8.67) and (8.72) reduce to

W = 2
∫

d2p
〈
T 2

1 (p)
〉

= 2W1. (8.73)

HereW1 represents the straggling parameter per electron ignoring correlation,
and

∆W = 2
∫

d2p 〈T1(p1)〉 〈T1(p2)〉 (8.74)

= 2
∫

d2p

∫
d3r1 n1(r1)

∫
d3r2 n1(r2)T1(p − ρ1)T1(p − ρ2). (8.75)

In the unmodified Bohr model, where the target electron is at rest in the
origin, we have p = p1 = p2, and hence ∆W becomes equal to 2W1, i.e.,
straggling would be doubled compared to the Bohr value. The correlation is
more or less reduced by the fact that the two electrons are likely to be apart.
It is even further reduced when anticorrelation caused by the Pauli principle
is taken into consideration.

Introducing two additional variables p1,p2,

∆W = 2
∫

d2p

∫
d3r1 n1(r1)

∫
d3r2 n1(r2)

×
∫

d2p1 T1(p1)δ(p1 − p + ρ1)
∫

d2p2 T1(p2)δ(p2 − p + ρ2), (8.76)

and inserting Fourier transforms of the Dirac functions, you identify Fourier
transforms of T1(p) and of n1(r). The integration over p can be carried out
directly, and as a result you arrive at

∆W =
1

2π2

∫
d2k |P1(k)|2 |T1(k)|2 , (8.77)

where

P1(k) =
∫

d3r n1(r)e−ik·ρ (8.78a)

T1(k) =
∫

d2pT1(p)e−ik·p. (8.78b)
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Since n1(r) is independent of orientation, further simplification is possible,

P1(k) =
∫ ∞

0

4πr2 dr n1(r)
sin kr
kr

. (8.79)

For a 1s state with ψ1(r) = exp(−r/a′)/√π(a′)3 we may set n1(r) = |ψ1(r)|2
and find

P1(k) =
1

(1 + a′2k2/4)2
. (8.80)

As an illustration let us assume an exponential dependence of the energy-loss
function T1(p) (Grande and Schiwietz, 1991),

T1(p) =
S1

2πa2
e−p/a, (8.81)

where S1 is the atomic stopping cross section and 1/a a suitably chosen slope.
This yields

T (k) =
S1

(1 + k2a2)3/2
(8.82)

and, hence,

∆W =
S2

2π2

∫ ∞

0

2πk dk
(1 + a2k2)3 (1 + a′2k2/4)4

(8.83)

or

∆W
2W1

= 2
∫ ∞

0

dη
(1 + η)3(1 + (a′/2a)2η)4

. (8.84)

Fig. 8.14. Relative correlation,
(8.84), for a simple model of a helium
atom

This ratio is shown in figure 8.14. As expected, correlation would cause a
100 % increase in straggling for a′ � a, i.e., if the interaction range of the
beam – as defined by (8.81) – were much greater than the radius of the atom.
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In order to appreciate the significance of this result, let us try to identify
the physical significance of the radius a introduced in (8.81). It would be
a mistake to identify it with the straight adiabatic radius, because what is
important is the behavior around impact parameter zero, where the slope
is governed rather by b/2, the classical collision radius according to (3.46),
or perhaps the de Broglie wavelength �/mv, whichever is larger. Unlike the
adiabatic radius, these quantities become large at low speed.

8.9.3 Molecular Gas

An illuminating case of bunching – allowing a fairly direct experimental test
– is that of a diatomic target molecule (Sigmund, 1976a). Assume energy
loss functions T1(p) and T2(p) for the two constituent atoms and ignore all
fluctuations at a given impact parameter. The energy loss may be electronic
or nuclear or a combination of the two. In an individual collision,

T (p) = T1(p1) + T2(p2), (8.85)

leading to a stopping cross section

S = S1 + S2 (8.86)

and a straggling parameter

W =W1 +W2 + ∆W (8.87)

with

∆W = 2
∫

d2pT1(p1)T2(p2). (8.88)

While this is very similar to (8.76), the evaluation of this integral is simplified
if we remember that the internuclear distance in a molecule is a well-defined
quantity. Disregarding molecular vibrations we may set

p1 − p2 = b, (8.89)

where b is the projection of the internuclear axis d on the impact plane, i.e.,
a plane perpendicular to the beam velocity v (Fig. 8.15). With this, (8.88)
may be rewritten as

∆W = 2
∫

d2p1

∫
d2p2 T1(p1)T2(p2)δ(p1 − p2 − b). (8.90)

Except for specially prepared systems, we may assume target molecules to
be randomly oriented, i.e., ∆W has to be averaged over all orientations of d.
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Moreover, we may assume the atomic energy-loss functions to be isotropic6.
Then, the only directionally-dependent quantity is the vector b, the projection
of d on the impact plane. Hence, rotational averaging only affects the Dirac
function in (8.90).

d
2
p

p
1

p
2

p

b

d

θ
1

2

Fig. 8.15. Geometry of ion-molecule interaction. From Sigmund (1976b)

Writing

b = (d sin θ cosψ, d sin θ sinψ, 0), (8.91)

you find (cf. problem 8.13) that

〈δ(p1 − p2 − b)〉orientation =
1
4π

∫ 2π

0

dψ
∫ π

0

sin θ dθ δ(p1 − p2 − b)

=
1

2πd2
√

1 − (p1 − p2)2/d2
(8.92)

and hence

〈∆W 〉orientation =
1
πd2

∫
d2p1

∫
d2p2

T1(p1)T2(p2)√
1 − (p1 − p2)2/d2

. (8.93)

As a rough approximation, valid if the effective range of interaction is less
than the internuclear distance, one may approximate the denominator in the
integrand by � 1 and obtain

〈∆W 〉orientation � S1S2

πd2
. (8.94)

6 Evidently, the only difference between a molecule and two independent atoms in
this model is the correlation in internuclear distance, while valence effects on the
electronic structure, called deviations from Bragg additivity and discussed briefly
in Sect. 7.7, are ignored.
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Even though this result may not be quantitatively accurate, it indicates that
the strength of correlation has its maximum in the energy regime around the
stopping maximum.

Fig. 8.16. Molecular-correlation effect according to (8.101) for exponential depen-
dence of the energy loss on impact parameter: Dependence on angle θ between the
molecular axis and the beam. g(ξ) = 9ξ2/2)K2(ξ)

Fig. 8.17. Molecular-correlation effect for exponential dependence of the energy
loss on impact parameter. Averaged over orientation

You can come further with a quantitative estimate for (8.90) by an alter-
native procedure. Replacing the Dirac function by its Fourier transform you
find
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∆W =
1

2π2

∫
d2k e−ik·b |T (k)|2 (8.95)

with

T (k) =
∫

d2pT (p)e−ik·p. (8.96)

The orientational average can then be carried out (cf. problem 8.14) and yields

〈
e−ik·p〉

orientation
=

sin kd
kd

. (8.97)

For an estimate, assume a model energy-loss function (Grande and Schiwietz,
1991)

T (p) ≡ T (p) =
S

2πa2
e−p/a, (8.98)

where S is the stopping cross section and a characterizes the slope of some
given energy-loss function. Then,

T (k) =
S

(1 + k2a2)3/2
(8.99)

and

∆W =
S2b2

8πa4
K2

(
b

a

)
(8.100)

or

∆W
2W

=
d2

2a2
sin2 θK2

(
d

a
sin θ

)
, (8.101)

where K2 is a modified Bessel function of the second kind. Figure 8.16 shows
the angular dependence for a number of values of d/a. It is seen that the
united-atom limit, where ∆W = 2W1, is reached essentially for d � a, while
for d� a, correlation is observed only when the molecule is nearly aligned to
the beam. Figure 8.17 shows the average over all orientations as a function of
the ratio d/a.

8.9.4 Dense Matter

In condensed matter, atoms are arranged in some densely packed structure.
Even in the presence of lattice vibrations, a penetrating particle moves most
often so fast that it will see a static structure of target nuclei. In crystalline
solids the regular structure may affect the trajectory, as mentioned in Chap-
ter 1, cf. Fig. 1.3. In amorphous and liquid matter, scattering processes may
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x

Fig. 8.18. Trajectory of a fast par-
ticle in a solid. Angular deflection
neglected. Redrawn after Dixmier
et al. (1982).

be expected to be irregular, so that a straight trajectory will be a most feasible
first approximation (Fig. 8.18). Then the target atoms hit by a penetrating
particle are those close enough to that trajectory, and their positions relative
to the trajectory are well defined once the impact point of the projectile has
been determined (Fig. 8.19). Statistical elements in such a model are

– The impact point on the entrance surface, denoted p in Fig. 8.19,
– Variations in static target configuration due to lattice vibrations, and
– Quantal fluctuations of individual energy losses at a given impact param-

eter.

There is no reason to a priori expect statistical independence of successive
collision events. Indeed, in a random medium there would be a possibility
of two atoms lying on top of each other. If the average interatomic distance
is large compared to the atomic radius, this is unlikely and hence of little

ν

A

x

xν

0
rν

ρ
ρ

ρ

ν

ν

Fig. 8.19. Definition of geometric quantities determining energy loss in solids
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concern. In the opposite case of a dense medium a noticeable error may be
expected when such a possibility is allowed for.

Once the fundamental equation (9.4) is no longer applicable, we need an-
other starting point for the discussion of energy loss and straggling where the
primary element of randomness is the impact point of the beam particle. The
scheme reported here was developed by the author (Sigmund, 1978).

Consider a solid target with z atoms in a slab of thickness x penetrated
by the beam. These atoms, ν = 1, 2, . . . z are located in positions rν , and
an individual trajectory is assumed to be a straight line defined by a lateral
position p (Fig. 8.19). The total energy loss in a given trajectory is given by

∆E =
∑

ν

T (p − pν), (8.102)

where pν is the lateral component of the position vector rν .
The average energy loss is found by randomizing the point of impact,

〈∆E〉 =
1
A

∫
d2p∆E, (8.103)

where A is the cross sectional area of the beam. If A is a macroscopic area,
it is much wider than the region where T (p) is nonvanishing. Therefore, it is
justified to extend the integration in (8.103) over the infinite plane, so that

〈∆E〉 =
1
A

∑
ν

S =
z

A
S = NxS (8.104)

for a monoatomic medium, where S is the atomic stopping cross section and
z = NxA. Evidently, the mean energy loss is unaffected by the structure of
the solid.

Consider now the mean-square energy loss,

〈
(∆E)2

〉
=

1
A

∫
d2p

∑
µ,ν

T (p− pµ)T (p − pν). (8.105)

You may replace the integration variable p by p + pµ in each individual term
in (8.105) and split the double sum into terms µ = ν and µ �= ν, respectively.
This yields

〈
(∆E)2

〉
=
z

A
W +

z

A

∑
ν

′ ∫
d2pT (p)T (p + bν), (8.106)

where bν indicates the lateral component of an internuclear distance vector,
and the apostrophe indicates omission of the vector pointing from one target
nucleus onto itself. W =

∫
d2pT 2(p) is the atomic straggling parameter.
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In the limiting case of a random medium, the sum over ν can be replaced
by

∑
ν

→ z

A

∫
d2b. (8.107)

Then, the second term on the right-hand side of (8.106) factorizes into

(zS/A)2 = (NxS)2 = 〈∆E〉2 , (8.108)

as it must be.
In a real solid, internuclear distances are distributed in accordance with

a pair distribution function g2(r), where Ng2(r) d3r is the probability to find
a target atom in a volume element d3r at a vector distance r from a given
target atom, averaged over all target atoms. We may then make the following
replacement,

∑
ν

′ → N

∫
d3r g2(r) = N

∫
d3r [g2(r) − 1] +N

∫
d3r, (8.109)

so that

〈(∆E)2〉 = NxW +N2x

∫
d3r

∫
d2pT (p)T (p + b) [g2(r) − 1]

+N2x

∫
d3r

∫
d2pT (p)T (p + b). (8.110)

In the last term on the right-hand side we may integrate successively over b
and p, noticing that b is the lateral component of r, whereafter that term re-
duces to (NxS)2 as above. In the second term we may introduce an additional
variable p′ = p + b so that, altogether,

Ω2 =
〈
(∆E − 〈∆E〉)2

〉
= NxW +N2x

∫
d2pT (p)

∫
d2p′ T (p′)∫

d3r [g2(r) − 1] δ(p′ − p − b). (8.111)

This expression reminds of (8.90). Indeed, assuming T (p) and g2(r) to be
directionally independent we may perform an angular average just as in (8.92)
and obtain, finally,

Ω2 = Nx(W + ∆W ) (8.112)

with

∆W = 2N
∫

d2pT (p)
∫

d2p′ T (p′)
∫

dr
g2(r) − 1√

1 − (p − p′)2/r2
(8.113)

for the variance in a monoatomic, isotropic, but nonrandom stopping medium.
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Before discussing implications of (8.113) for dense stopping materials, let
us briefly go back to the case of a dilute molecular gas. Here, the pair distri-
bution function has the form

g2(r) = 1 +
δ(r − d)
4πNd2

, (8.114)

as can be verified from the normalization. d is the internuclear distance in the
molecule and N the density of atoms. Then, insertion of (8.114) into (8.113)
yields (8.93), as it should.

1
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2

3

3

4 5 6
r(Å)

g2(r)-1 � � �
293oK

Fig. 8.20. Measured pair correlation function g2(r) − 1 for selenium according to
Hansen and Carneiro (1977)

For an amorphous solid, the pair correlation function g2(r) − 1 looks like
the one shown in Fig. 8.20. It can be considered as being composed mainly
of a region where g2(r) − 1 = −1 at small distances, a rather sharp peak at
the nearest-neighbor distance and a somewhat broader peak at the second-
nearest-neighbor distance, whereafter it remains close to zero. Evidently, the
most pronounced feature is a sphere around an atom where there are no other
atoms. Thus, we may expect that generally, ∆W will be negative in dense
matter. Indeed, while in a molecular gas, correlation forces atoms to pair at
a distance less than average, the opposite situation appears to prevail in dense
matter.

As in the case of the molecular gas, following (8.98) on page 307, a more
specific analytical estimate can be made by assuming an exponential depen-
dence of the energy-loss function on impact parameter. In that case you find

∆(Ω2)
Ω2

= N
∫

d3r [g2(r) − 1]
r2

2a2
sin2 θK2

( r
a

sin θ
)

(8.115)
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in the notation of (8.101). Since the correlation function does not depend on
orientation, we may perform the angular average and hence arrive at the func-
tion shown in Fig. 8.17, which may be approximated by exp(−0.15(r/a)3/2),
and hence,

∆(Ω2)
Ω2

� N
∫

4πr2 dr
[
g2(r) − 1

]
e−0.15(r/a)3/2

. (8.116)

The factor r2 in this integral is essential. It implies that the nearest-neighbor
peak in the correlation function may play a significant role.

8.10 Straggling Measurements

In comparisons between straggling measurements, it is vital to note what
actually has been measured. Calculations presented in this chapter address
the variance of an energy-loss spectrum, just as calculations presented in
Chapters 4–6 address the mean energy loss. Experimentalists, when having
to characterize a spectrum by two parameters, are tempted to quote peak
position and halfwidth. This is not only easier: Determining a genuine mean
value and variance may be impossible if there is a significant background in
the detecting system.

The connection between halfwidth and variance is elementary for a gauss-
ian profile but quite delicate for other spectral shapes. This aspect will be
discussed in the following chapter. At this point, we just recall that spectra
tend toward gaussian shape with increasing pathlength but tend to skew again
when particles have lost a sizable fraction of their energy.

The width of a measured energy spectrum is not only determined by strag-
gling: If a target foil has a nonuniform thickness, the mean energy loss may
still be measured reliably, while the scatter will appear increased in compar-
ison with what would be measured on a uniform foil of equal thickness in
terms of the number of atoms per foil area. This effect would be extreme (and
readily detectable) in the presence of pinholes, but separating it from true
straggling may in general require considerable care. Here, it may be wise to
recall the golden rule of straggling, quoted to the author many years ago by
John A. Davies,

If measured straggling is less than predicted theoretically, at least one
of the two is wrong.

8.10.1 Gas Targets

Extensive measurements of energy-loss straggling for protons and He ions
penetrating gases have been performed by Besenbacher et al. (1977, 1980).
These measurements provide supporting evidence for the existence of the
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Fig. 8.21. Straggling of H+ in H2. The horizontal line represents Bohr straggling
NxWBohr. Theoretical curves according to Bonderup and Hvelplund (1971) from
electron-gas model averaged over Thomas-Fermi atomic-charge distribution allowing
for two values of the Lindhard-Scharff parameter χ =

√
2 and 1, cf. (7.25). From

Besenbacher et al. (1981)

Fig. 8.22. Same experimental data as in Fig. 8.21 compared to calculations from
binary theory. From Sigmund and Schinner (2002)

Bethe-Livingston shoulder (Fig. 8.21). The theoretical curve is a high-speed
expansion by Bonderup and Hvelplund (1971) similar to (8.39), the validity
of which is evidently limited to reasonably high projectile speeds.

Figure 8.22 shows the same experimental data compared to calculations
by Sigmund and Schinner (2002). While the general behavior is described well
by the calculation, the measured shoulder appears more pronounced. This is
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Fig. 8.23. Molecular correlation (bunching) in straggling. Comparison between
straggling of He ions in N2 and Ne gas. From Besenbacher et al. (1981)
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Fig. 8.24. Straggling of H and He ions in argon (Besenbacher et al., 1981) compared
to predictions from binary theory

likely to be caused by molecular correlation (bunching), which has not been
included in the theoretical estimate7.

Independent experimental evidence of molecular correlation is shown in
Fig. 8.23. Electronic properties of atomic nitrogen and neon are sufficiently
similar to ascribe the pronounced enhancement near the maximum to molec-
ular correlation (Besenbacher et al., 1981).

7 For Z1 > 1 there is usually a contribution to straggling from charge exchange
which, like the bunching effect, has its peak around the stopping maximum and
hence may be difficult to isolate (Sigmund, 2004).
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Finally, Fig. 8.24 shows straggling of H and He ions in argon compared
with calculations by binary theory. Enhanced straggling below the Bethe-
Livingston maximum is thought to be caused by the atomic bunching effect
which has been ignored in the calculation.

This set of measurements, the major component of a m.sc. thesis (Be-
senbacher, 1977), represents a unique source of information on straggling.
Analysis of these data was performed on the basis of available knowledge by
Besenbacher et al. (1980) and taken up again recently (Sigmund and Schinner,
2002), but much more is to be done here.

Fig. 8.25. Straggling of protons and helium ions in germanium. Experimental data
from Malherbe and Albertz (1982a). Theoretical curves from Chu (1976) based on
Bonderup and Hvelplund (1971) and binary theory. From Sigmund and Schinner
(2002)

8.10.2 Solid Targets

The experimental literature on measurements of straggling in solids is exten-
sive. A large amount of data has been compiled and, to some extent, sys-
tematized by Yang et al. (1991). A general trend emerges from Fig. 8.25:
A shoulder is normally not observed, and Bohr straggling appears to describe
the data surprisingly well in the region where a shoulder would be expected.
This despite the fact that foil nonuniformities would generate seemingly en-
hanced straggling.

It has been mentioned by Sigmund and Schinner (2002) that experimental
geometry may affect the outcome of a straggling measurement more than a si-
multaneous measurement of the stopping force. Indeed, straggling is influenced
by close collisions, and close collisions also give rise to angular deflection.
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Fig. 8.26. Measured rms relative straggling
√

W/WB versus v2/Z2v
2
0 . Upper graph:

Hydrogen (filled symbols) and helium ions (empty symbols). Targets are C (squares),
Ni (circles), Cu (up-triangles), Se (stars), Ag (rhombs) and Au (down-triangles. The
line is a theoretical prediction of Lindhard and Scharff (1953). From Lombaard et al.
(1983). Lower graph: Data for H and He ions in five gas and eight solid materials.
From Malherbe and Albertz (1982b)

Another point of consideration is the correlation effect which, for solid
matter is predicted to give rise to decreased straggling, cf. Sect. 8.9.4. However,
exact compensation of the Bethe-Livingston shoulder against the correlation
effect, as indicated in Fig. 8.25, would seem to be an unlikely coincidence.

Figure 8.26 shows a large number of experimental straggling data for both
H and He ions in a number of solid materials (upper graph) and both gaseous
and solid materials (lower graph). The only systematical trend emerging from
the upper graph is a steeper increase of the He compared to H data. This
appears indicative of charge exchange straggling, to be discussed in Volume II.
The lower graph does not suggest any systematics within experimental scatter.
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Again, this is an area where a kean ph.d. student will find ample experi-
mental material and powerful theory that could be combined to a much more
comprehensive picture than available here and now.

8.11 Third- and Higher-Order Moments (�)

8.11.1 Moments and Cumulants

Interest in higher moments of an energy-loss spectrum is mainly motivated
theoretically. These quantities are increasingly governed by rare events with
large energy transfers. Therefore, measurements of higher moments tend to be
influenced by background noise. Conversely, calculations of higher moments
get easier because of the gradual disappearance of a number of complications
associated with the binding of target electrons. The main purpose of per-
forming calculations of higher moments is to test the validity of approximate
calculations of energy-loss profiles.

Although the method sketched in Sect. 2.2.4 to derive the connection be-
tween energy-loss straggling Ω2 and second moment over the energy-loss cross
section can be generalized to higher moments (problem 8.16), a more elegant
method will emerge in Chapter 9. In either case, you obtain the following
results for the cumulants of third to fifth order,〈

(∆E − 〈∆E〉)3
〉

= NxQ3, (8.117a)〈
(∆E − 〈∆E〉)4

〉
= NxQ4 + 3 (NxW )2 , (8.117b)〈

(∆E − 〈∆E〉)5
〉

= NxQ5 + 10 (NxW ) (NxQ3) , (8.117c)

where

Qν =
∑

j

T ν
j σj =

∫
T νdσ(T ) (8.118)

in discrete or continuous notation. From this follows the skewness〈
(∆E − 〈∆E〉)3

〉
〈
(∆E − 〈∆E〉)2

〉3/2
=

NxQ3

(NxW )3/2
, (8.119)

which evidently decreases toward zero with increasing pathlength, and the
curtosis〈

(∆E − 〈∆E〉)4
〉

〈
(∆E − 〈∆E〉)2

〉2 = 3 +
NxQ4

(NxW )2
, (8.120)
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which approaches 3 with increasing pathlength. This happens to be the value
characteristic of a gaussian profile. While this indicates that energy-loss pro-
files approach gaussian shape with increasing pathlength, nothing is said at
this point about the minimum pathlength to reach this limit.

8.11.2 Free-Coulomb Scattering

For nonrelativistic free-Coulomb scattering,

dσ(T ) =
2πZ2

1Z2e
4

mv2
dT
T 2

; 0 < T ≤ 2mv2 ≡ Tmax, (8.121)

you obtain

Qν =
4πZ2

1Z2e
4

ν − 1
T ν−2

max . (8.122)

From this follows the skewness〈
(∆E − 〈∆E〉)3

〉
〈
(∆E − 〈∆E〉)2

〉3/2
=

mv2√
NxWB

(8.123)

and the curtosis〈
(∆E − 〈∆E〉)4

〉
〈
(∆E − 〈∆E〉)2

〉2 = 3
[
1 +

T 2
max

9NxWB

]
. (8.124)

Thus, a necessary condition for gaussian behavior must be

2ΩBohr � Tmax (8.125)

to ensure small skewness, and

3ΩBohr � Tmax (8.126)

to ensure a curtosis close to the gaussian value 3. At the same time, 〈∆E〉
should be well below E. We shall turn back to these relations in Chapter 9.

8.11.3 Bohr Theory

You may repeat the calculation leading to Fig. 8.2 for the skewness. Fig-
ure 8.27 shows the result. Comparison of the two graphs shows that the range
of validity of the result found for straight Coulomb scattering is expanded
down to lower values of ξ, i.e., lower projectile speeds. This must be a general
trend that will be even more pronounced in higher moments: With increas-
ing order ν of the moments Qν, high energy transfers T become increasingly
important, causing effects due to atomic binding to become less and less sig-
nificant on a relative scale, even if there is little change on an absolute scale.
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Fig. 8.27. Skewness in Bohr model. No shell correction

8.11.4 Born Approximation

Calculations within the Born approximation have been performed by Bichsel
(1970) and by Mikkelsen et al. (1992). Fig. 8.28 shows numerical results for
atomic hydrogen. While the qualitative behavior is similar to that of Fig. 8.27,
a quantitative comparison makes little sense since Fig. 8.28, unlike Fig. 8.27,
incorporates a shell correction.

The dashed curve in Fig. 8.28 refers to the quantal oscillator discussed
in Sects. 4.5.2 and 8.4.1. The I-value has been chosen as 14.99 eV, i.e., the
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Fig. 8.28. Skewness evaluated in the first Born approximation. Solid line: Atomic
hydrogen. Dashed line: Harmonic oscillator with the resonance frequency of atomic
hydrogen. From Mikkelsen et al. (1992)
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value for atomic hydrogen. The two curves show surprisingly close agreement.
This was found to be a more general feature, predicted on theoretical grounds
by Sigmund and Haagerup (1986) and confirmed for moments up to the fifth
order by Mikkelsen et al. (1992) for the entire velocity range v � v0/2.

8.11.5 Relativistic Extension

The evaluation of higher moments within the relativistic Born approximation
follows the scheme described in Sects. 5.6 and 8.4.3, the only new feature
being the multiplication of the integrand by a factor (�ω)ν instead of �ω or
(�ω)2.

In the evaluation, sum rules are needed for the quantities

Sν =
∑

j

(εj − ε0)ν−1fj0(Q). (8.127)

Such sum rules have been evaluated by Fano and Turner (1964) and summa-
rized by Inokuti (1971).

Here is a brief summary for the third moment Q3:

– The longitudinal interaction delivers a low-Q contribution containing
a Bethe-type logarithm multiplied by a factor const/v4, where const lies in
the nonrelativistic regime. For v ∼ c, terms of order 1/c4 will be neglected.

– For intermediateQ, the longitudinal interaction delivers a term (Q1/2mv2)2

as well as a term of the same order but with a logarithmic factor ln(Q1/Q0).
Both terms are neglected for the same reason.

– The transverse interaction likewise delivers a term ∝ 1/v4 in the low-Q
regime.

– In the intermediate-Q regime, the transverse interaction yields a contribu-
tion ∝ 1/c6 for v ∼ c.

Thus, when terms ∝ 1/v4 and higher are neglected, the third moment is gov-
erned by the high-Q contribution, which is evaluated as indicated in the case
of straggling, without splitting into longitudinal and transverse components.
This reflects the increasing importance of large energy transfers in the integral
and clearly holds for all higher moments.

Following the procedure sketched above, all integrations become elemen-
tary for all ν and yield

Qν

Qν,Coulomb
=

1 − β2 (1 − 1/ν)
(1 − β2)ν−1

. (8.128)

This expression follows from (3.100) (problem 8.18). Indeed, for free-
Coulomb scattering, (3.100) describes scattering in a reference frame moving
with the ion, and the quantity called Z2 in (3.100) is actually the atomic
number of the ion, i.e., Z1 in the present context.
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8.11.6 Fermi Gas

Calculations for the Fermi gas along the scheme outlined in Sect. 8.5.3 have
been performed by Sigmund and Johannessen (1985) and led to

Q3

Q3,Coulomb
= 1 +

(
�ωP

mv2

)2(
ln

2mv2

�ωP
− 1

2

)
− 6

5
v2F
v2

(
�ωP

mv2

)2

(8.129a)

Q4

Q4,Coulomb
= 1 +

3
8

(
�ωP

mv2

)2

+
21
80

(
�ωP

mv2

)2
v2F
v2

(
ln

4mv2

�ωP
− 5

2

)
(8.129b)

Q5

Q5,Coulomb
= 1 +

4
15
v2F
v2

+
1
2

(
�ωP

mv2

)4 (
ln

2mv2

�ωP
− 3

4

)
(8.129c)

The kinetic correction was evaluated only up to the quadratic term in vF/v.
Since the Fermi energy mv2F/2 is typically of the order of the plasmon energy
�ωP, terms ∝ v−2 need to be treated on equal footing. This implies that up
to v−2,

Q3

Q3,Coulomb
= 1 + O

(
1
v4

)
(8.130a)

Q4

Q4,Coulomb
= 1 + O

(
1
v4

)
(8.130b)

Q5

Q5,Coulomb
= 1 +

4
15
v2F
v2

+ O
(

1
v4

)
. (8.130c)

This confirms the conclusion from section 8.11.3 that corrections due to bind-
ing – expressed by terms ∝ �ωP here – become insignificant for higher mo-
ments. However, while kinetic corrections do not contribute to the leading
order in the third and fourth moment, they do come in again for the fifth
moment. This was to be expected, cf. the discussion of the second moment in
Sect. 8.5.3.

8.11.7 Kinetic Theory

Calculations of higher moments within kinetic theory have been performed by
Sigmund and Johannessen (1985). First, a generalization of (8.50) to higher
moments Qν was found. Unlike (8.50), Qν for ν ≥ 3 was found not to con-
tain terms that diverge for straight Coulomb interaction. Therefore, electronic
binding was neglected from the beginning.

The results were applied to the Fermi gas and compared with those men-
tioned in Sect. 8.11.6. The absence of kinematic terms to leading order in
Q3 and Q4, (8.130a) and (8.130b) was confirmed, and Q5 was found to be in
quantitative agreement with (8.130c).

Comparisons were also reported of moments Qν up to ν = 10 with results
for hydrogen atoms evaluated in the Born approximation by Bichsel (1970).
Surprisingly good agreement was found for v2/〈v2e〉 > 0.1 and ν ≤ 6, while for
higher moments, discrepancies were observed at the smallest beam velocities.
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8.12 Discussion and Outlook

The first part of this chapter addressed straggling for independent target
electrons. Here we learned that

– Plain Coulomb scattering produces a constant straggling parameter WB,
– Relativity causes an increase above the nonrelativistic Bohr value when v

approaches the speed of light.
– Allowance for binding – disregarding higher-order-Z1 effects – reduces

straggling at low projectile speed,
– Allowance for orbital motion produces a shoulder in classical theory as

well as in the Born approximation,
– Allowance for a Barkas-Andersen effect produces a shoulder for protons
– but a dip for antiprotons,
– The magnitude of the Barkas-Andersen effect is reduced by the shell cor-

rection,
– Quantum theory enters straggling mainly via orbital motion of target elec-

trons.

Reliable estimates are possible of these effects. However, in the velocity range
where shell and Barkas corrections are significant, also a bunching correction
is necessary, which is much less studied in the literature but needs to be ac-
counted for in comparisons with experiment. Best studied is the molecular
correlation effect, which is always positive. The atomic bunching correction,
while much less studied, is also positive and difficult to separate experimen-
tally from other deviations from single-electron straggling. In solids, on the
other hand, the correlation effect may have either sign, and direct experimen-
tal evidence has not been provided so far.

In the final part of this chapter, higher moments have been studied. Here,
the dominating cause of deviations from binary-Coulomb interaction is the
shell correction which becomes increasingly important with increasing order
of the moment.

Problems

8.1. Derive (8.10) and (8.13) by following the procedure outlined in Sect. 4.5.1.

8.2. Derive (8.16) by following the procedure outlined in Sect. 4.5.2.

8.3. Derive (8.22) by the procedure outlined in Appendix A.4.4.

8.4. Generalize the calculation of problem 8.3 to a many-electron atom and
identify terms that have to be neglected in order to achieve the final result
(8.24).

8.5. Apply the procedure sketched in Sect. 5.3.2 to (8.34) to derive the ex-
pression (8.18) for straggling in the Bethe theory.
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8.6. Derive (8.37), (8.38) and (8.39) following the procedure outlined in Sect.
5.7.4.

8.7. Find the position of the Bethe-Livingston shoulder by determining the
maximum of the function given in (8.39).

8.8. Evaluate the integral (8.37) and try to reproduce Fig. 8.6.

8.9. Derive (8.47) following the procedure that led to the stopping cross sec-
tion via (6.71).

8.10. Derive (8.51).

8.11. The expansion (8.54) can only be meaningful for v2 � 〈v2e〉. Use this,
together with the Thomas-Fermi estimates �ω � Z2R and ve � Z

2/3
2 v0 to

derive a condition for ξ.

8.12. Use a Thomas-Fermi argument to estimate the locations of the shoulders
produced by the Barkas-Andersen effect and the shell correction, respectively.

8.13. Derive (8.92). Consult Appendix A.2.4 if necessary.

8.14. Derive the angular average (8.97), making use of spherical coordinates.

8.15. Somewhat schematic models to estimate the correlation effect may be
based on an atomic energy-loss function

T (p) = Ce−p2/a2
(8.131)

according to Sigmund (1991) or

T (p) = C′e−p/a′
(8.132)

according to Grande and Schiwietz (1991) with constants C, a or C′, a′ that
may be expressed by a stopping cross section S and a straggling parameter
W . This type of ansatz allows analytical evaluation of the integral in (8.90)
for a diatomic molecule as well as (8.106) for a solid. Perform the angular
orientational averages after those integrations, and try to find estimates of
the correlation terms ∆W in the two cases, if necessary by making use of
numerical integration. [Hint: Make use of Fourier transform.]

8.16. Derive (8.117a) by the method described in Sect. 2.2.4.

8.17. Derive (8.129a).

8.18. Derive (8.128) from (3.100).
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9

Energy-Loss Spectra

9.1 Introductory Comments

This chapter addresses the important question of the shape of an energy-loss
spectrum. All stopping theory described up to this point has addressed mean
energy loss, variance and, to a much lesser extent, higher moments. It has
already been mentioned that these quantities may be hard to measure. Ex-
perimentalists prefer to determine the peak position of an energy-loss profile
and, perhaps, the half width. Measuring mean values and higher-order aver-
ages may lead to problems with the tails of a profile which may be affected by
noise. However, with the exception of gaussian profiles, relating peak positions
and half widths to mean values and standard deviations is not a trivial task.

This chapter focuses on statistical tools available to compute spectra and
to extract expressions for peak energy loss and halfwidth1. Actual applications
of these tools in the literature frequently focus on straight Coulomb interaction
with as few modifications as possible. While this is a feasible strategy to
demonstrate the reliability of statistical methods, it may not be adequate for
comparison with measurements. Therefore, attention also needs to be given to
how various complicating effects which have been discussed in Chapters 4–6
and 8 enter computed energy spectra as well as peak positions and halfwidths.

9.2 General Aspects

Based on considerations by Bohr (1915, 1948) it will be convenient in the
following to distinguish between thin, moderately thick and very thick targets:

– In penetrating through a thin target, a projectile undergoes a very small
number of interactions such that the energy-loss spectrum remains similar
to the differential cross section for an individual encounter. That cross
section resembles Rutherford’s law, with a pronounced peak at fairly low

1 Part of the material presented in this chapter has been extracted, revised and
updated from a lecture series published previously (Sigmund, 1991).



328 9 Energy-Loss Spectra

energy transfers and a long tail extending to the maximum energy loss
permitted by conservation laws. The main difference between a thin-target
spectrum and the plain single-scattering cross section is that the former
must be integrable: A properly calculated energy-loss spectrum has to be
normalizable due to conservation of particles.

– In penetrating through a moderately thick target, a projectile undergoes
a large number of encounters. This implies an energy-loss spectrum grad-
ually approaching gaussian shape centered around the mean energy loss.
However, the fractional energy loss is required to be small enough so that
the dependence on beam energy of pertinent cross sections can be ne-
glected.

– The latter restriction does not apply to a very thick target, where the
relative energy loss is so large that cross sections may vary significantly
over the trajectory. This breaks the trend toward gaussian shape of the
energy-loss profile.

Hints on the range of validity of gaussian energy profiles were emerging from
(8.125) and (8.126). Bohr (1915, 1948) argued that the requirement of the
maximum energy loss in a single collision to be much smaller than the standard
deviation of the profile,

Tmax � Ω (9.1)

with

Ω2 = NxW (9.2)

actually must be a sufficient criterion for establishing a near-gaussian energy-
loss spectrum. This point will be studied in considerable detail.

Here, assume for a moment a beam with a gaussian energy-loss profile
at some path length x, characterized by a standard deviation Ω. Subsequent
collisions may lead to energy transfers anywhere between some minimum value
and Tmax. If (9.1) is fulfilled, the energy spectrum will shift and broaden
slightly but remain gaussian, yet if the opposite relation

Tmax � Ω (9.3)

is fulfilled, the spectrum may undergo a dramatic change. Clearly, (9.3) does
not go well along with a gaussian spectrum.

For an ion beam, where the maximum energy transfer to an electron is
much smaller than the ion energy, (9.1) may well be fulfilled at not too small
layer thicknesses x since Tmax � E, while penetrating electrons or positrons
may lose all their energy in one single event. This implies that energy spectra
of electrons and positrons tend to exhibit a significant inverse-power-like tail,
even when the peak region is close to gaussian.

In the older literature (Williams, 1929, Landau, 1944, Symon, 1948), the
straggling problem tends to be discussed in terms of the above extremes, (9.1)
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for ions and (9.3) for electrons. Subsequently, with increasing beam velocities
and/or decreasing layer thicknesses, (9.3) has become increasingly relevant
also for measurements with ion beams.

9.2.1 Bothe-Landau Formula

Go back for a moment to the rather general description outlined in Sect. 2.2
on page 28 where a collision was considered to be a detectable event involving
the projectile and one or more target particles. Collisions were categorized by
their outcome, such as excitation of the jth level of a target atom or molecule.
Assume Poisson statistics to apply, i.e., let a dilute beam interact with a dilute
and random target. The terminology utilized in the present discussion refers to
electronic energy loss by target excitation, but the formalism will be extended
in volume II to other processes such as energy loss accompanied by charge
exchange as well as multiple scattering.

Fig. 9.1. Energy loss in sandwich tar-
get. See text

Let F (∆E, x)d(∆E) be the probability distribution in energy loss ∆E dur-
ing a passage through a layer of thickness x, averaged over many projectiles.
A central equation to be satisfied by F (∆E, x) can be found by considering
a sandwich target with thicknesses y and x in series (Fig. 9.1). Let the energy
loss of a specific beam particle after passage through the first layer be ∆E′.
In order to exit with a total energy loss ∆E, the projectile must lose an en-
ergy ∆E−∆E′ in the second layer. Because of the statistical independence of
the collision events, the product of the two probabilities determines the joint
probability. Since ∆E′ is arbitrary, the resulting probabilities may be added
up. Therefore,

F (∆E, x+ y) =
∫ ∆E

0

d(∆E′)F (∆E′, y)F (∆E − ∆E′, x). (9.4)

This is known as the Chapman-Kolmogorov equation in statistical physics
(van Kampen, 1981).
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The occurrence of a convolution suggests to go over to Fourier space2,

F (∆E, x) =
1
2π

∫ ∞

−∞
dk eik∆E F (k, x) (9.5)

with3

F (k, x) =
∫ ∞

−∞
d(∆E)e−ik∆EF (∆E, x). (9.6)

Then (9.4) reduces to

F (k, x+ y) = F (k, y)F (k, x) (9.7)

with the exponential solution

F (k, x) = exC(k) (9.8)

and an arbitrary function C(k). You may give a proof by looking into prob-
lem 9.11.

The function C(x) is governed by the individual events happening during
the passage, which have not yet entered the description. Those are governed
by the cross sections σj for energy loss Tj according to Sect. 2.4.2. If x is so
small that the probability for two events is negligible, the energy-loss spectrum
after passage through x is given by

F (∆E, x) =

⎛
⎝1 −

∑
j

Pj

⎞
⎠ δ(∆E) +

∑
j

Pj δ(∆E − Tj), (9.9)

where Pj = Nxσj is the probability for a j-event according to (2.15). Here the
first term on the right-hand side expresses the probability that nothing hap-
pens, implying zero energy loss, while the second term collects all possibilities
for exactly one collision and the associated energy loss.

Using the Fourier transform of the Dirac function (A.68) we may write
(9.9) in Fourier space,

F (k, x) = 1 −Nx
∑

j

σj

(
1 − e−ikTj

)
. (9.10)

2 The reader is reminded of the adopted notation for Fourier transforms where
F (∆E,x) and F (k, x) may have very different functional forms, cf. the remark
on page 110.

3 For convenience the factor 1/2π has been placed differently in (9.5) and (9.6) from
the convention applied in Appendix A.2.2. This is justified and quite common,
cf. the remark on page 383.
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This may be compared with the small-x limit of (9.8),

F (k, x) = 1 + xC(k) . . . , (9.11)

where the unknown function C(k) now can be identified as

C(k) = −Nσ(k) (9.12)

with the transport cross section

σ(k) =
∑

j

σj

(
1 − e−ikTj

)
. (9.13)

From (9.5), (9.8), and (9.12) we finally obtain

F (∆E, x) =
1
2π

∫ ∞

−∞
dk eik∆E−Nxσ(k). (9.14)

This is the prototype of a Bothe-Landau equation which governs the statistics
of cumulative events in particle penetration phenomena. For a continuous
single-event spectrum, (9.13) needs to be rewritten in the form

σ(k) =
∫

dσ(T )
(
1 − e−ikT

)
, (9.15)

and for a mixture of components µ = 1, 2 . . . , the substitution

Nσ(k) →
∑

µ

Nµσµ(k) (9.16)

can be made, where Nµ is the number of µ-atoms per volume and

σµ(k) =
∑
jµ

σjµ

(
1 − e−ikTjµ

)
. (9.17)

Here, the running variable jµ labels the states of an atom of type µ.
The central assumption entering here, apart from statistical independence

of successive collision events (called Markov assumption in statistical physics),
is translational invariance of the collision probabilities. In other words, the
total energy loss needs to be small enough to justify the neglect of the variation
of pertinent collision cross sections with beam energy. This means that the
range of validity of (9.14) is limited to thin and moderately thick targets.

The argument utilized in the derivation of (9.14) is quite general and ap-
plies to sums of many kinds of independent statistical variables (van Kampen,
1981). Bothe (1921) recognized several important application areas such as the
statistical theory of errors, fluctuations in the local electric field in a dielectric,
and multiple scattering of ions and electrons. Landau (1944) derived the spe-
cific formula for the energy-loss spectrum of a charged particle, even though
his derivation had a more limited scope.
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Equation (9.14) has been written as a Fourier transform rather than
a Laplace transform, although the latter notation, introduced by Landau
(1944), is more common in the literature. The Fourier notation allows for
both positive and negative values of the energy loss. When the cross section
only allows for positive energy loss, the Fourier and Laplace formulation are
strictly equivalent. In other applications of the Bothe-Landau formula such as
multiple scattering, Laplace transforms are of little use.

9.2.2 Bunching

The Bothe-Landau formula rests on Poisson’s law, i.e., it assumes mutually
independent interactions with the collision partners. We have seen in Sect. 8.9
that this assumption may be violated. However, violations may refer to differ-
ent levels. Although we have the option to characterize bunching in atoms and
molecules as deviations from stochastic behavior, we may alternatively con-
sider the energy-loss spectrum to an atom or molecule as the basic quantity
entering the Bothe-Landau formula. This, in fact, is the normal procedure.

However, energy loss in dense media such as crystalline or amorphous solids
shows intrinsic deviations from random behavior which, when significant, are
not contained in the Bothe-Landau formula. For a quantitative determina-
tion of an energy-loss spectrum one would then go back to Fig. 8.19 and the
definition

F (∆E) =
1
A

∫
d2p δ

(
∆E −

∑
ν

T (p − pν)

)
(9.18)

in the notation of (8.103). Such a study has not been performed yet to the
author’s knowledge.

9.2.3 Moments and Cumulants to Arbitrary Order

It is useful to verify how the expressions for mean energy loss and straggling
derived in Sect. 2.2.3 may be recovered from (9.14). Multiplication of (9.14)
by some power of the energy loss and integration over ∆E yields

〈(∆E)n〉 =
∫

d(∆E)∆EnF (∆E, x)

=
1
2π

∫
d(∆E)

∫
dk e−Nxσ(k) (∆E)n eik∆E (9.19)

after rearrangement of the order of integrations and the factors making up
the integrand. Making use of

∂

∂k
eik∆E = i∆Eeik∆E (9.20)
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we may replace ∆En by (−i∂/∂k)n and carry out the integration over ∆E.
Repeated partial integration over k then yields∫ ∞

−∞
d(∆E) (∆E)n F (∆E, x) =

(
i

d
dk

)n

e−Nxσ(k)

∣∣∣∣
k=0

. (9.21)

You may reproduce this by looking into problem 9.2. For n = 0 the right-hand
side reduces to 1 by means of (9.15). This expresses the fact that F (∆E, x) is
normalized to 1 for all x. Obviously, the number of particles must be conserved
during penetration.

For n = 1, differentiation of (9.15) and taking the limit k = 0 according
to (9.21) yields the mean energy loss (2.19) on page 34. Similarly, for n = 2,
(2.26) is recovered for the energy loss straggling Ω2 (cf. problem 9.3).

You can derive higher cumulants (Symon, 1948) such as those listed in
(8.117a), (8.117b) and (8.117c). It is an advantage, however, to start from
a slightly rearranged form of (9.14),

F (∆E, x) =
1
2π

∫ ∞

−∞
dk eik(∆E−〈∆E〉)−Nxσ1(k), (9.22)

where

σ1(k) =
∫

dσ(T )
(
1 − ikT − e−ikT

)
, (9.23)

and to multiply by (∆E − 〈∆E〉)n directly instead of ∆En.

9.2.4 Diffusion Approximation

To provide a background for the discussion to follow, it is useful first to demon-
strate the connection between the gaussian approximation to the energy-loss
spectrum and the Bothe-Landau formula (9.14).

Eq. (2.26) predicts the energy loss spectrum to broaden with increasing
target thickness. Therefore the Fourier integral should receive an increasing
fraction of its contributions from small values of k. Expansion of (9.15) in
powers of k yields

σ(k) = −
∞∑

ν=1

(−ik)ν

ν!

∫
T νdσ(T ) = ikS +

1
2
k2W − 1

6
ik3Q3 . . . (9.24)

where

Q3 =
∑

j

T 3
j σj =

∫
T 3dσ(T ) (9.25)

is a skewness parameter discussed in Sect. 8.11.1.
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If the series (9.24) is truncated after the term of second order in k, the
integral (9.14) can be carried out and yields

F (∆E, x) =
1√

2πNxW
exp

(
− (∆E −NxS)2

2NxW

)
, (9.26)

i.e., a gaussian centered around the mean energy loss NxS with the standard
deviation

√
NxW . The procedure sketched here is called diffusion approxima-

tion since the profile is of the type known from diffusion or heat conduction
theory. One might expect that inclusion of higher-order terms could improve
the accuracy of this distribution. This is only partially true: Truncation of
the series (9.24) at any finite term beyond ν = 2 was shown by Lindhard and
Nielsen (1971) to lead to negative values of the probability density F (∆E, x)
at some interval of ∆E, regardless of the cross section. It is advisable, there-
fore, to base any improvements beyond the diffusion approximation upon the
complete expression, which can be written in one more alternative form

σ(k) = ikS +
1
2
k2W + σ2(k), (9.27)

with

σ2(k) =
∫

dσ(T )
(
1 − ikT − 1

2
k2T 2 − e−ikT

)
, (9.28)

where the correction term σ2(k) can be suitably approximated if necessary.

9.2.5 An Integrable Energy-Loss Spectrum

It is useful to study a straight analytic evaluation of the Bothe-Landau for-
mula. Lindhard and Nielsen (1971) have collected several cross sections allow-
ing analytical solution, of which we here discuss

dσ(T ) =
C

T 3/2
e−αT dT for 0 < T <∞, (9.29)

where C and α are constants. This resembles Rutherford’s law, (2.47) on page
42, although T−2 has been replaced by T−3/2 and the cutoff at Tmax has been
replaced by an exponential with a parameter α which could be chosen to be
T−1

max.
Eq. (9.15) and (9.29) yield the transport cross section

σ(k) = 2
√
πC
(√
α+ ik −√

α
)

(9.30)

by means of the integral representation of the gamma function (see problem
9.4). Insertion into (9.14) and integration yields (cf. problem 9.5)

F (∆E, x) =
NCx

∆E3/2
exp

[
− α

∆E
(∆E −NxS)2

]
, (9.31)
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where S is the stopping cross section

S =
∫ ∞

0

T dσ(T ) = C
√
π

α
(9.32)

according to (2.29). You may easily derive from (2.30) that

Ω2 =
〈
(∆E − 〈∆E〉)2〉 =

1
2α

〈∆E〉. (9.33)

Fig. 9.2. Energy-loss spectra calculated for model cross section (9.29). Curves
labelled by parameter 〈α∆E〉, which is equivalent to 〈∆E〉/Tmax. Thick lines: Exact
results, (9.31). Upper graph: Large thickness; thin lines: diffusion approximation,
(9.26); Lower graph: Small thickness; thin lines: single-event probability defined by
cross section 9.29

The upper graph in Fig. 9.2 shows calculated spectra for 〈α∆E〉 ≥ 1, i.e.,
moderately thick targets. The position of the mean energy loss on the abscissa



336 9 Energy-Loss Spectra

is identical with the label of the pertinent spectrum. While the spectra are seen
to approach gaussian shape with increasing thickness, noticeable deviations
are still present at α∆E = 10, i.e., Ω2 = 5T 2

max. The lower graph shows
that for thinner targets the spectra get increasingly skew and approach the
single-collision spectrum (9.29).
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Fig. 9.3. Ratio of peak to mean energy loss, ∆Emax/〈∆E〉 defined by (9.34) ver-
sus α〈∆E〉 which stands approximately for 〈∆E〉/Tmax. Solid line for cross section
(9.29). Dotted line: Asymptotic relation (9.35). Dash-dotted line: Low-thickness limit
∆Emax ∝ x2, (9.36)

The spectrum (9.31) has its maximum at an energy loss ∆Emax given by

∆Emax =

√
〈∆E〉2 +

(
3
4α

)2

− 3
4α

(9.34)

which, at large thicknesses, approaches

∆Emax � 〈∆E〉 − 3
4α
, (9.35)

while at small thicknesses we find

∆Emax � 2α
3
〈∆E〉. (9.36)

These relations are illustrated in Fig. 9.3. The x2 dependence of ∆Emax for
very thin targets shows up as a linear dependence of the peak-to-mean ratio
∆Emax/〈∆E〉 for x� 1. The asymptotic relation – which will come up again
more generally in the following – appears accurate as long as the deviation
from unity does not exceed ∼ 10 %.
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9.3 Thin Targets

This section reviews several approaches to thin-target spectra. The Bohr-
Williams approach, being applicable also to moderately thick targets, is ana-
lytically simple and quite flexible, but less quantitative than the others. Lan-
dau’s solution is a common reference standard in particular for high-speed
beams, but it has several limitations. Amongst several proposals to improve
the Landau theory, attention will be paid primarily to the work of Lindhard
(1985), whose approach allows for more realistic single-event spectra, and of
Glazov (2000, 2002) who relaxed the limitations on allowed target thicknesses
and in this way successfully bridged the gap between thin- and thick-target
approaches.

9.3.1 Bohr-Williams Approach

The Bohr-Williams approach (Bohr, 1915, Williams, 1929, Bohr, 1948) rep-
resents an attempt to bridge the gap between eqs. (9.1) and (9.3) by the
introduction of a limiting energy transfer T1, such that the energy-loss spec-
trum is taken to approach the single-collision limit given by the differential
cross section above some critical energy transfer T1, and gaussian shape for
T � T1. The choice of the parameter T1 – which must depend on target
thickness – is crucial for the success of this approach.

F
(∆

E
,x

)

∆E

Fig. 9.4. Construction of an energy-
loss spectrum according to Williams
(1929)

Imagine the beam divided up into two groups of particles (Fig. 9.4 that
have undergone an encounter with T > T1 and those that have not. Let us
assume T1 to be so large that the probability for more than one event with
T > T1 is small. Then, the energy-loss spectrum for the first group can be
approximated by the differential cross section,

F (∆E, x) � Nxdσ(∆E)
d(∆E)

; ∆E > T1. (9.37)

Projectiles in the second group are likely to have undergone more than one
interaction. One may be tempted to approximate that part of the spectrum
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Fig. 9.5. Energy-loss spectra determined by the Bohr-Williams scheme with T1

determined by (9.42) for model cross section (9.29)

by a gaussian,

F (∆E,∆x) =
1√

2πNxW1

e−(∆E−NxS1)
2/2NxW1 (9.38)
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centered around a mean value NxS1 with

S1 =
∫ T1

0

Tdσ(T ), (9.39)

and a variance Ω2
1 = NxW1 with

W1 =
∫ T1

0

T 2dσ(T ), (9.40)

following eqs. (2.29) and (2.30).

Fig. 9.6. Bohr-Williams parameter T1 separating single- from multiple-encounter
regime for cross section (9.29), determined by requiring the predicted peak energy
loss to coincide with the exact value. Dashed line: quadratic dependence

A simple way to determine T1 is the requirement that the probability for
an event with T > T1 be unity, i.e.,

Nx

∫
T≥T1

dσ(T ) = 1, (9.41)

Another, quite successful procedure is to require that

T 2
1 = Nx

∫ T1

0

T 2dσ(T ) (9.42)

according to Fastrup et al. (1966). Figure 9.5 shows three Bohr-Williams-type
spectra determined in this manner, compared with the exact result for the
model cross section (9.29). Only the multiple-collision portion of the Bohr-
Williams spectrum is indicated, because inspection of the exact spectrum
(9.31) reveals that the single-scattering limit is never reached for the relatively
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large pathlengths shown here. It is seen that for Ω2/T 2
max not too close to 1,

the region around the peak energy loss is reasonably well described. Major
discrepancies occur for thinner targets.

Another way of looking at the spectrum discussed in Sect. 9.2.5 is to fix
the parameter T1 by requiring the peak of the gaussian, NxS1, to coincide
with the exact value ∆Emax (problem 9.6). You then find that

NxS1 = NxS erf
√
αT1, (9.43)

and hence,

3
2αNxS

=
1

erf
√
αT1

− erf
√
αT1 (9.44)

This is illustrated in Fig. 9.6. It is seen that for thin targets, i.e. for α〈∆E〉 �
〈∆E〉/Tmax < 1, T1 is roughly proportional to the square of the target thick-
ness. Evidently, for thin targets, the overwhelming part of the spectrum fol-
lows the differential cross section. This behavior changes gradually for target
thicknesses where the average energy loss NxS exceeds T = 1/α.

9.3.2 Landau’s Solution

The scheme of Landau (1944) is directed toward the thin-target limit. It oper-
ates with a cross section that is mainly Rutherford-like. The behavior at low
energy transfers remains unspecified, but it is shown that it is insignificant
for the shape of the spectrum, although not for its position on the energy-loss
scale.

With this in mind we may, for clarity’s sake, operate with a cross section

dσ(T ) = C′ dT
T 2

; Tmin ≤ T ≤ Tmax, (9.45)

where

C′ =
WB

2mv2
and Tmax = 2mv2, (9.46)

and WB = 4πZ2
1Z2e

4 according to (8.11). The Bethe stopping cross section
(4.118) may be reproduced with the choice

Tmin =
I2

2mv2
. (9.47)

With this, integration of (9.15) yields

σ(k) =
C′

Tmin

(
1 − E2(ikTmin)

)
− C′

Tmax

(
1 − E2(Tmax)

)
, (9.48)

where E2(z) =
∫∞
1

dt e−zt/t2 is an exponential integral (Abramowitz and
Stegun, 1964). If the main portion of the energy loss spectrum lies in the
region where
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Tmin � ∆E � Tmax, (9.49)

the integration over (9.14) is determined by the range of k-values for which
kTmin � 1 and kTmax � 1. This allows Taylor expansions of the two terms
on the right-hand side of (9.48) in terms of kTmin and 1/kTmax, respectively.
The result is

σ(k) = C′ik
[
1 − γ − ln(ikTmin)

]
. . . , (9.50)

where γ = 0.5772 is Euler’s constant, and where all terms going to zero with
kTmin or 1/kTmax have been dropped.

With this, (9.14) reduces to

F (∆E, x)d(∆E) = gL(Λ)dΛ (9.51)

with

gL(Λ) =
1

2πi

∫ i∞

−i∞
du uu eΛu, (9.52)

where u = ikNxC′ and

Λ =
∆E
NxC′ − 1 + γ − ln

NxC′

Tmin
. (9.53)

Figure 9.7 shows a plot of the Landau function gL(Λ), which has a maximum
at Λmax = −0.2258, around which it has approximately gaussian shape. It
falls off steeply below the maximum and slowly, Coulomb-like, at large values
of Λ.

Fig. 9.7. Solid line: The Landau function g(Λ) (9.52) tabulated by Börsch-Supan
(1961). Dashed line: Single Coulomb scattering
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Although the Landau function is properly normalized, as you may verify
by direct integration or by applying (9.21), the mean energy loss and the
straggling parameter diverge. This is caused by the complete neglect of Tmax

in (9.50). We shall see below that this is a severe limitation to the range of
applicability of the Landau formula.

While the low-energy cutoff Tmin is very small and hence barely significant
for the spectrum, it does affect the position of the spectrum, i.e., the mean
energy loss, according to (9.53). On the other hand, the assumption of straight
Coulomb scattering down to energies far below atomic binding energies is
a more serious drawback, as is the neglect of shell and Barkas corrections.
Inclusion of these features requires a more general scheme which, at the same
time, ought to take into account the maximum energy transfer and hence
produce a distribution with the proper mean value and variance. Such schemes
will be described in the following two sections.

Let us finally consider scaling properties. With the peak of the Landau
function gL(Λ) at Λ = Λmax and the left and right half widths at Λ−1/2 and
Λ1/2, respectively, and Tmin = I2/2mv2, (9.53) determines the most probable
energy loss at

∆Emax =
4πZ2

1Z2e
4Nx

mv2
ln

√
4πZ2

1Z2e4NxCW

I
(9.54)

with

CW = eΛmax+1−γ = e0.2 � 1.22, (9.55)

while the right and the left halfwidth read

∣∣∆E±1/2 − ∆Emax

∣∣ =
4πZ2

1Z2e
4Nx

mv2

∣∣Λ±1/2 − Λmax

∣∣ (9.56)

with∣∣Λ−1/2 − Λmax

∣∣ = 1.3637;
∣∣Λ+1/2 − Λmax

∣∣ = 2.655. (9.57)

You may note that the factor in front of the logarithm in ∆Emax is the one we
know from the mean energy loss. Here, however, the logarithm is independent
of the projectile speed and dependent on thickness, while the opposite is the
case for the mean energy loss. Even though this is a striking difference, its
quantitative consequences need not be pronounced because of the logarith-
mic dependence on either variable. Conversely, the fact that the halfwidth is
proportional to the path length x, while the standard deviation is ∝ √

x is
dramatic.

9.3.3 Lindhard’s Solution (�)

Lindhard (1985) devised an elegant mathematical procedure to construct
Landau-like energy-loss profiles, taking into account deviations of the dif-
ferential cross section from the Landau spectrum (9.45). By introduction of
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suitable variables which incorporate the essential input from the cross section,
a high degree of universality was achieved. The evaluation delivers two levels
of accuracy, a first approximation offering a particularly simple scaling law
that is adequate for gaining insight. The second approximation ensures better
numerical accuracy but is less transparent.

0
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0.15

0.20

-4 0 4 8
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Lindhard (1)
Lindhard (2)

Λ

g(
Λ

)

Fig. 9.8. Comparison of Landau function and the two approximations of Lindhard
(1985)

By introduction of the functions

a(∆E, x) =
∫ ∆E

0

F (∆E′, x)d(∆E′), (9.58a)

ε(∆E, x) =
∫ ∆E

0

a(∆E′, x)d(∆E′), (9.58b)

η(∆E, x) =
ε(∆E, x)
a(∆E, x)

, (9.58c)

σ(η) =
∫ ∞

η

dσ(T ), (9.58d)

S(η) =
∫ η

0

T dσ(T ), (9.58e)

and using η, (9.58c), as the independent energy-loss variable instead of ∆E,
the function a(∆E, x) was found to be given by

a(η, x) = e−Nxσ(η) (9.59)
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as a first approximation. With this, the spectrum may be determined by
differentiation,

P (∆E, x) =
da
dη

dη
d(∆E)

, (9.60)

and ∆E was found to be given by

∆E = η +NxS(η). (9.61)

For the case of the Landau cross section the result is

g(Λ, x)dΛ =
dΛ

y(1 + y)
e−1/y, (9.62)

and

Λ = y + ln y − 1 + γ. (9.63)

Figure 9.8 shows surprisingly good agreement of this relation with a numerical
tabulation. Near-perfect agreement is seen with a second approximation that
involves a straggling parameter

W (η) =
∫ η

0

T 2 dσ(T ). (9.64)

These relations become useful when deviations from the simple Coulomb-like
scattering law (9.45) are estimated. In the first approximation, taking into
account the maximum energy transfer Tmax was found to imply a cutoff at high
energy losses and multiplication with a normalizing factor, while modifications
in the low-T behavior of the cross section have negligible influence.

In the second approximation, the low-T behavior of the cross section was
found to have a substantial influence on the spectrum. However, that influence
could be estimated from deviations of the straggling parameter W from the
Bohr value WB, i.e., effects discussed in Chapter 8.

9.3.4 Glazov’s Solution

A very powerful and transparent approach has been developed by Glazov
(2000, 2002). We have seen already that neglecting the kinematic limit in the
Coulomb cross section is a significant drawback of Landau’s solution. Hence,
Glazov (2000) wrote the transport cross section in the form

σ(k) =
∫ ∞

0

dσ(T )
(
1 − e−ikT

)− ∫ ∞

Tmax

dσ(T )
(
1 − e−ikT

)
(9.65)

and rewrote the Bothe-Landau formula (9.14) in the form
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Fig. 9.9. Energy-loss spectra for cross section (9.45): Comparison between Landau
spectrum, (9.66) taking into account 1 or 2 terms, and numerical evaluation of (9.14).
Invisible curves coincide with the exact result. From Glazov (2000).

F (∆E, x) = eNxσne

{
F∞(∆E, x) −Nx

∫ ∞

Tmax

dσ(T )F∞(∆E − T, x)

+
1
2
(Nx)2

∫ ∞

Tmax

dσ(T )
∫ ∞

Tmax

dσ(T ′) × F∞(∆E − T − T ′, x) . . .

}
, (9.66)
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where

σne =
∫ ∞

Tmax

dσ(T ) (9.67)

is the cross section for nonexisting events, and F∞(∆E, x) an energy spectrum
calculated by ignoring the upper limit Tmax in the transport cross section (cf.
problem 9.10). The merit of the expansion (9.66) is twofold,

– All integrals go over large energy transfers, i.e., refer to rare events, thus
ensuring rapid convergence for not too large pathlengths,

– Since energy spectra F∞(∆E, x) vanish for E < 0, and since T, T ′ . . . >
Tmax, the series reduces to a finite sum.

The scheme was applied to nonrelativistic Rutherford scattering, and Lan-
dau’s solution (9.52) was introduced for F∞(∆E, x). The accuracy of the
resulting spectra was tested against accurate numerical evaluations of (9.14)
for the same cross section. Remind that the low-T behavior of the cross sec-
tion mainly affects the position of the spectrum on the energy-loss axis, while
the shape is insensitive.

Figure 9.9 shows results calculated for three different target thicknesses,
corresponding to values Ω2/T 2

max = 0.1, 0.2 and 0.5. Considering only the
leading term in (9.66), implying renormalization of the Landau spectrum as
mentioned in section 9.3.3, turns out to produce almost complete agreement
with the numerical result for Ω2/T 2

max = 0.1. For higher values of Ω2/T 2
max,

up to ∼ 0.3, two terms are found adequate, while three terms are needed up
to Ω2/T 2

max ∼ 1.
The main strength of this scheme appears to lie in the reduction of a com-

plex spectrum characterized by at least two variables to a sum of very few
one-parameter Landau-type functions, even at target thicknesses where a spec-
trum expressed by a single Landau function would be completely inadequate.

9.4 Moderately Thick Targets

This section reviews calculational schemes that have been utilized to deter-
mine energy-loss spectra in moderately thick targets. The reader is reminded
that in the present terminology, a moderately thick target is still so thin that
variation with beam energy of the differential cross section can be neglected,
i.e., that the Bothe-Landau formula (9.14) may serve as a starting point.

9.4.1 Vavilov Scheme (�)

The work of Vavilov (1957) represents an attempt to bridge the gap between
the Landau spectrum and the gaussian limit. The starting point is the Bothe-
Landau formula (9.14), but unlike Landau, Vavilov did not ignore the upper
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limit Tmax in the evaluation of the transport cross section and thus ensured
a finite stopping cross section and straggling parameter4.

The evaluation starts at (9.22). In order to go beyond the diffusion approx-
imation, Vavilov included a third-order term in the expansion of the transport
cross section (9.23) but dropped all subsequent terms,

σ1(k) � −1
2
(ik)2W +

1
6
(ik)3Q3 + O (k4

)
. (9.68)

The exponent in the integral over dk can be simplified by means of the sub-
stitution

z = ik − W

Q3
, (9.69)

so that

F (∆E, x) = exp

(
W

Q3
η − 1

6
NxQ3

(
W

Q3

)3
)

× 1
2πi

∫ c+i∞

c−i∞
dz exp

(
zη − 1

6
NxQ3z

3

)
, (9.70)

where

η = ∆E −NxS +
1
2
NxQ3

(
W

Q3

)2

. (9.71)

The quantity c is nominally given by c = −W/Q3 but can be chosen to be
any real constant in view of the regularity of the exponential function in the
complex plane.

The integral can be expressed by an Airy function so that5

F (∆E, x) = A exp

(
W

Q3
η − 1

6
NxQ3

(
W

Q3

)3
)

Ai(Aη), (9.72)

where

A =
(

2
NxQ3

)1/3

(9.73)

and

Ai(z) =
1
π

√
z

3
K1/3

(
2
3
z3/2

)
(9.74)

an Airy function in the notation of Abramowitz and Stegun (1964).
4 The cross section utilized by Vavilov was equivalent to (9.45) except for an al-

lowance for relativistic velocities in accordance with (3.92).
5 Equation (9.72) corrects an error in the expression given in the author’s lecture

notes (Sigmund, 1991).
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Fig. 9.10. The Vavilov distribution for values of the parameter κ = NxS/Tmax

according to Seltzer and Berger (1964). ‘L’ denotes the Landau spectrum

Writing the variable η in the form

η

NxC′ =
∆E
NxC′ + 1 − 2L, (9.75)

where C′ = WB/2mv2 is the constant in the Landau formula and L the
stopping number, as well as

W

Q3
η =

∆E
mv2

+
NxWB

(mv2)2

(
1
2
− L

)
, (9.76)

indicates that η/NxC′ is, apart from an additive constant, identical with the
Landau energy-loss variable Λ, while ηW/Q3 approaches zero in the thin-
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target limit NxW/(mv2)2 � 1 and for energy losses near the peak where
∆E/mv2 � 1. Thus, the peak area of (9.72) comes close to Landau’s formula
in the limit of low thicknesses.

Fig. 9.10 shows plots of the Vavilov distribution for several target thick-
nesses, expressed by the ratio 〈∆E〉/Tmax. A trend toward gaussian shape
is seen with increasing thickness, but significant skewness is retained at the
largest thickness.

Nevertheless, Vavilov’s Ansatz has weak points,

– The distribution results from a truncated series expansion in terms of
a parameter ∼ kTmax which is not necessarily small,

– Inspection of the properties of the Airy function shows that the spectrum
(9.72) turns negative for

∆E −NxS < −NxW
2

Q3
− 2.338

(
1
2
mv2NxW

)1/3

. (9.77)

This general feature of diffusion approximations going beyond second order
was already mentioned in Sect. 9.2.4. Inaccuracies will be observed not far
outside the left halfwidth of the profile.

– The analytical form (9.70) is rather inconvenient for identifying scaling
properties as well as determining peak energy loss and halfwidth,

– For the simple model cross section (9.29), where the exact profile (9.31) is
available, the Vavilov solution is considerably more complex.

9.4.2 Method of Steepest Descent

The steepest-descent (or saddle-point) method is a wellknown mathematical
procedure to evaluate the integral over functions with sharp maxima. It was
applied to the Bothe-Landau formula by Moyal (1955). More recently, Sig-
mund and Winterbon (1985) showed that accurate results can be derived by
this method and simple expressions can be extracted for peak position and
half width of an energy-loss profile. Glazov (2000) demonstrated a consider-
able overlap between this and the expanded Landau scheme (9.66), so that
combined use of the two methods allows to produce accurate energy-loss pro-
files for a very wide range of target thicknesses.

The method of steepest descent is of interest in the present context because
contributions to the integral in (9.15) originate predominantly from the range
around the maximum of the exponent. Expansion of the exponent around
this maximum yields a parabola in the exponent and hence a gaussian which
allows integration in closed form.

This looks superficially like the diffusion approximation discussed in
Sect. 9.2.4, but here the exponent is expanded around its maximum, whereas
it is expanded around k = 0 in the diffusion approximation, irrespective of
cross section and pathlength. In other words, the method of steepest descent
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will reproduce the diffusion approximation where appropriate but deliver more
reliable results where not.

Now, write (9.14) in the form

F (∆E, x) =
1
2π

∫ ∞

−∞
dk e−f(k) (9.78)

with

−f(k) = ik∆E −Nxσ(k). (9.79)

Expansion around a point k0 where f(k) is stationary yields

f(k) = f0 +
1
2
(k − k0)2f ′′0 . . . (9.80)

where

f ′0 =
df(k)

dk

∣∣∣∣
k=k0

= 0. (9.81)

Dropping terms of higher than second order in k− k0 allows you to carry out
the integral and leads to

F (∆E, x) =
e−f0√
2πf ′′0

. (9.82)

Insertion of (9.79) then yields

F (∆E, x) =
eNx(k0σ

′
0 − σ0)√

2πNxσ′′0
, (9.83)

where σ0 = σ(k)|k=k0
and similar for the derivatives, and k0 is determined by

∆E = −iNxσ′0 (9.84)

according to (9.81).
Equations (9.83) and (9.84) determine the spectrum for a given transport

cross section as a parameter representation with k0 as the independent vari-
able. You may apply these relations to the cross section (9.45) (problem 9.11).
In that particular case you recover the exact result.

We are now able to determine peak value and halfwidth of the profile as
a function of k0 and use (9.84) to find the corresponding values of ∆E. The
peak value of (9.83) lies at a value kmax fulfilling the condition

Nx =
σ′′′max

2kmaxσ′′max
2 , (9.85)
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where

σ′max =
d
dk
σ(k)

∣∣∣∣
k=kmax

(9.86)

and similarly for higher derivatives. This, together with (9.84), i.e.,

∆Emax = −iNxσ′max (9.87)

represents a parameter representation of ∆Emax as a function of Nx with
kmax as the independent variable.
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Fig. 9.11. The difference between mean and peak energy loss depends on detector
resolution but is insensitive to foil thickness according to (9.94). From Mertens
(1986)

Insertion of the transport cross section then leads to

Nx =
Q3(kmax)

2ikmax[W (kmax)]2
, (9.88)

∆Emax = NxS(kmax), (9.89)

where

S(k) =
∫
Tdσ(T )e−ikT (9.90)

W (k) =
∫
T 2dσ(T )e−ikT (9.91)

Q3(k) =
∫
T 3dσ(T )e−ikT (9.92)
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Fig. 9.12. The difference be-
tween mean and peak energy loss
is approximately proportional to
the beam energy and insensi-
tive to foil thickness according to
(9.94). From Mertens (1986)

These relations are very suited for numerical evaluation. They also provide
exact or approximate analytical solutions in a number of easily integrable
cases such as the spectrum (9.45) (cf. problem 9.12).

Equation (9.89) predicts ∆Emax = NxS = 〈∆E〉 in the limit of kmax = 0.
For kmax small, (9.88) reduces to

ikmax =
Q3(0)

2NxW (0)2
, (9.93)

and expansion of (9.89) in powers of kmax yields

∆Emax = NxS − Q3(0)
2W (0)

. . . (9.94)

This is the beginning of an asymptotic expansion in powers of the inverse
thickness. It implies that a plot of the peak energy loss against thickness
will approach a straight line at large velocities, but extrapolation toward zero
thickness will show an intercept. This feature has been studied experimentally
by Mertens (1986). Figure 9.11 shows the measured difference 〈∆E〉−∆Emax

as a function of foil thickness for two experimental geometries, and Fig. 9.12
shows the same quantity as a function of beam energy for two target thick-
nesses. The dependence on thickness is weak at the high-energy end, as to be
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expected from (9.94), while a linear increase with beam energy is observed,
as to be expected from (8.122).

For straight Coulomb scattering at nonrelativistic velocities, (9.94) reads

∆Emax = NxS − mv
2

2
. . . (9.95)

You may easily convince yourself that the term Q3/2W is identical with the
expression 3/4α in (9.35) for the particular case of the cross section (9.29).

A similar procedure determines the right and left halfwidth. Here only the
result is given, while the reader is referred to Sigmund and Winterbon (1985)
for details,

(∆E − ∆Emax)±1/2 = ±
√

2 ln 2NxW

(
1 ± Q3

6W

√
2 ln 2
NxW

)
. (9.96)

Here, the leading term is the gaussian halfwidth. Since Q3 is usually positive,
the right halfwidth becomes greater, while the left halfwidth shrinks.

You may observe that changes in halfwidth due to skewness enter as a term
of order 1/

√
x, i.e., are more significant than the difference between mean and

peak value in the high-thickness limit.
In the analysis of experiments, one might determine a peak value as the

average between two half values. Going to one higher order in the expansion
(9.96), Sigmund and Winterbon (1985) obtained a modified peak position

∆E′
max = NxS − ln 2

3
Q3(0)
W (0)

. . . (9.97)

Evidently, a ‘peak value’ determined in this manner is less shifted from the
mean value than the true peak value (9.94). The difference is significant: It is
more than a factor of two!

Figure 9.13 shows a comparison of calculated peak energy losses and
halfwidths for the cross section (9.45). It is seen that a combination of the
asymptotic steepest-descent result (9.94) at large thicknesses and Glazov’s
solution (9.66) at small thicknesses provides an excellent basis for theoretical
predictions as compared with exact numerical solutions.

A weak point of the method of steepest descent is that it does not preserve
the normalization of the original distribution function. In cases of minor dis-
crepancies this can be repaired by a normalizing factor. In more drastic cases
the validity of the approximation may need an independent check.

9.4.3 Applications

This section reviews explicit calculations of energy-loss profiles for specific sys-
tems. The main thrust here is the effect of a realistic cross section as opposed
to (9.45). Early attempts in this direction made use of two assumptions,
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Fig. 9.13. Relation between peak and mean energy loss (upper graph) and between
halfwidth and standard deviation (lower graph) for cross section (9.45). Thick solid
lines: Numerical; thin solid lines: Glazov solution, 1-term approximation; dotted
lines: Steepets descent, asymptotic. From Glazov (2002)

– Deviations of the cross section from (9.45) enter primarily via the second
moment W , and

– The Vavilov expansion (9.68) is an adequate approximation to the trans-
port cross section.

While the validity of the first assumption has been confirmed by Lindhard
(1985), as mentioned already in Sect. 9.3.3, the second assumption is not uni-
versally valid. Therefore, early attempts to evaluate spectra for realistic cross
sections are generally hampered by inaccuracies introduced by the Vavilov
expansion (Blunck and Leisegang, 1950, Shulek et al., 1966, Bichsel, 1970).
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9.4.4 Straight Convolution
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Fig. 9.14. Calculated energy-loss spectra for 20 MeV protons in aluminium found
by straight convolution. mc = Nxσtot is the mean number of collisions. From Bichsel
and Saxon (1975)
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Bichsel and Saxon (1975) evaluated an energy-loss spectrum for protons
in aluminium by straight numerical convolution of a single-collision spectrum.
They operate with a finite total cross section σtot =

∫∞
0 dσ(T ), so that Nxσtot

is the mean number of collisions undergone by the projectile while penetrat-
ing the target. The procedure starts at (9.9), which is applied to a very thin
foil, corresponding to Nxσtot = 1/1024. Insertion of this expression into (9.4)
for y = x, and numerical integration yields F (∆E, 2x), i.e., a spectrum for
Nxσtot = 1/512. Doubling the thickness the necessary number of times pro-
vides a rapid procedure to construct the desired spectrum for an arbitrary
thickness.

The cross section applied received contributions from K and L electrons,
evaluated by the Born approximation, and from a model for M electrons al-
lowing for a plasmon peak, but less sophisticated than the models discussed
in Chapter 5.
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Fig. 9.15. Same as Fig. 9.14 for mc = 16. Solid line: convolution; dotted line:
Landau spectrum; dashed line: Vavilov spectrum. Absolute values refer to the upper
abscissa scale. From Bichsel and Saxon (1975)

Figure 9.14 shows results calculated from this model for 20 MeV protons
having undergone 2, 4 and 8 collisions, corresponding to 0.029, 0.058 and 0.116
µm foil thickness. For the lowest thickness, the spectrum is dominated by
multiple plasmon peaks, while the continuum portion increases in significance
with increasing thickness. Resolving energy losses at the 10 eV level for an
ion beam in the 10 MeV range is experimentally difficult if not impossible.
Figure 9.15 shows graphs evaluated for Nxσtot = 16. Discrete features are no
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longer resolved here. More important, significant discrepancies are observed
from Landau and Vavilov spectrum.

9.5 Transport Equations

Before proceeding to very thick targets we need to look at a very useful tool
which has been used almost universally in the literature. Transport equations
govern stopping in targets of all thicknesses. For thin and moderately thick
targets, the Bothe-Landau equation (9.14) is a general solution, but for very
thick targets that solution is not available.

9.5.1 Derivation by Two-Layer Argument

Let F (E,E′, x)dE′ be the probability that a projectile with initial energy E
has an energy in the interval (E′, dE′) after a pathlength x. In this notation,
the convolution equation (9.4) reads

F (E,E′, x+ y) =
∫ E

0

dE′′F (E,E′′, y)F (E′′, E′, x). (9.98)

Note that the spectrum is now characterized by two energy variables E,E′

rather than just the difference.
Now assume the thickness y of the first layer in Fig. 9.1 to be so small

that the chance for more than one collision in that layer be negligible. Then
the factor F (E,E′′, y) in (9.98) is determined by (9.9),

F (E,E′′, y) =

⎛
⎝1 −

∑
j

Nyσj(E)

⎞
⎠ δ (E − E′′)

+
∑

j

Nyσj(E)δ (E − E′′ − Tj) . (9.99)

Insert this into (9.98) and apply Taylor expansion in y on both sides, keeping
only terms up to first order. The terms of zero order in y then drop out, and
the terms of first order yield

−∂F (E,E′, x)
∂x

= N
∑

j

σj(E)
{
F (E,E′, x) − F (E − Tj , E

′, x)
}
. (9.100)

Although F (E,E′, x) has three variables, only two of them, E and x are active
in (9.100) while E′ is a dummy variable.

Eq. (9.100) is a differential equation of first order in x and hence requires
an initial condition to be imposed. The proper condition here is
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F (E,E′, 0) = δ(E − E′) (9.101)

for an initially monoenergetic beam.
With regard to the E-variable we deal with a difference equation. However,

going over to continuum notation, i.e., substituting

σj(E) → dσ(E, T ) ≡ K(E, T ) dT, (9.102)

yields the following form for (9.100),

− ∂F (E,E′, x)
∂x

= N
∫

dTK(E, T )
{
F (E,E′, x)

−F (E − T,E′, x)
}
, (9.103)

which is an integro-differential equation.
Before going on let us do the same calculation once more, starting from

(9.98) but assuming now that the thickness x of the second layer be small
instead of y. Applying the same steps and afterwards renaming y to x we
arrive at

− ∂F (E,E′, x)
∂x

= N
∑

j

{
F (E,E′, x)σj(E′)

−F (E,E′ + Tj , x)σj(E′ + Tj)
}
, (9.104)

which looks similar but by no means identical to (9.100). The most visible
difference is in the active energy variable which was the initial energy E in
(9.100) but now is the exit energy E′ in (9.104).

In continuum notation, (9.104) reads

− ∂F (E,E′, x)
∂x

= N
∫

dT
{
K(E′, T )F (E,E′, x)

−K(E′ + T, T )F (E,E′ + T, x)
}
. (9.105)

These two kinds of integro-differential equations are well known in statisti-
cal physics. They go under names such as kinetic equations, master equations,
rate equations, linear transport equations or even Boltzmann equations. Since
Boltzmann’s original equation is nonlinear in general, the latter nomenclature
implies a linearized version.

9.5.2 Forward and Backward Equations

Rewrite (9.104) by dropping the initial energy E and changing sign,

∂F (E′, x)
∂x

=
∑

j

{−F (E′, x)Nσj(E′)+

F (E′ + Tj , x)Nσj(E′ + Tj)
}
. (9.106)
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The physical content of this equation is readily grasped: The left-hand side
indicates the local change in the energy spectrum of a particle beam per trav-
eled pathlength. The first term on the right-hand side expresses the loss of
projectiles from an energy interval around E′ by collisions, and the second
term represents a corresponding gain of projectiles scattered from an energy
interval around E′ + Tj into E′. The equation is ‘local’ in the sense that only
processes happening at depth x enter into the argument. Numerous rate equa-
tions in physics, chemistry and other branches of science follow this general
scheme. In transport theory this equation is called a ‘forward equation’.

Conversely, (9.100) or its continuum version is called a ‘backward equa-
tion’. The physical difference may be appreciated by looking at Fig. 9.1 and
realizing that the physical processes entering into the argument are collisions
taking place in a thin layer of thickness y near the entrance surface, even
though the quantity ultimately determined is the energy spectrum at the exit
surface. This explains the alternative nomenclature of a propagator equation.

For homogeneous media the two formulations yield equivalent results. The
forward form is more well-established in a general-physics context, but the
backward form is more convenient when averages are taken over the exit
energy. Numerous examples will be discussed in Volumes II and III. A very
illuminating discussion of the entire complex in general terms was given by
Lindhard and Nielsen (1971).

9.6 Very Thick Targets (�)

In the derivation of the Bothe-Landau formula it was assumed that the cross
sections σj were constant throughout the penetrated layer. With increasing
layer thickness the decrease in projectile speed may become too large for this
assumption to be maintainable. Then, two major complications arise,

– The energy-loss spectrum F (E,∆E, x) entering the convolution equation
(9.4) now depends explicitly on energy. Therefore the convolution does not
reduce to a product in Fourier space.

– Cross sectional input is needed for an extended range of beam energies.

Regarding the first point, the Chapman-Kolmogorov equation now reads

F (E,∆E, x+ y)

=
∫ ∆E

0

d(∆E′)F (E,∆E′, y)F (E − ∆E′,∆E − ∆E′, x). (9.107)

While closed analytical expressions for the energy spectrum are harder to
obtain, this relation is still an appropriate starting point for numerical con-
volutions of the type described in Sect. 9.4.4. However, in view of the second
point, the necessary computational effort may increase substantially.
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9.6.1 Continuous Slowing-Down Approximation

A useful starting point is the continuous-slowing-down approximation, where
all straggling is neglected. You may then operate with a unique projectile
energy E(x) as a function of pathlength x, which is connected to the stopping
cross section S(E) via the relation

dE
dx

= −NS(E). (9.108)

This has the general solution

x =
∫ E0

E

dE′

NS(E′)
, (9.109)

which determines the inverse function x = x(E) if E0 is the energy at x = 0.
You may derive the continuous-slowing-down approximation from the

backward transport equation by making the assumption that only very small
energy transfers contribute to the cross section K(E, T ), so that straggling
can be ignored. You may then try to expand

F (E − T,E′, x) = F (E) − T ∂
∂E
F (E,E′, x) . . . (9.110)

and truncate the series after the term ∝ T . Equation (9.103) then reduces to[
∂

∂x
+NS(E)

∂

∂E

]
F (E,E′, x) = 0, (9.111)

with the solution

F (E,E′, x) = δ (E′ − E(x)) , (9.112)

where E(x) is given by (9.109).

9.6.2 Ionization Yield

The continuous-slowing-down approximation is a convenient tool to estimate
radiation effects. Consider e.g., the number of ionizations generated by a pro-
jectile over a pathlength x. Let the ionization cross section be given by some
function σI(E). For a thin foil, the mean number nI of ionizations will be
given by

nI = NxσI(E), (9.113)

but in case of substantial energy loss through the foil this expression cannot
remain valid. Neglecting straggling you may write
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nI =
∫ x

0

Ndx′ σI

(
E(x′)

)
, (9.114)

and by introducing E′ instead of x′ as the independent variable you arrive at

nI =
∫ E0

E(x)

dE′NσI(E′)
NS(E′)

, (9.115)

where E0 and E(x) are the entrance and exit energy, respectively.
Although relations of this type are extremely useful, they are not rigorous.

More sophisticated estimates will be postponed to Volume III.

9.6.3 Stopping Measurement on a Thick Target

Equation (9.109) can be utilized in the analysis of stopping-force measure-
ments on thick targets, if the fractional energy loss is substantial but strag-
gling inappreciable. Write the relation in the form

x =
∫ E0

E1

dE′

NS(E′)
, (9.116)

where

E1 = E0 − ∆E (9.117)

is the exit energy and x the foil thickness.
As a first-order approximation take

E =
E0 + E1

2
(9.118)

and get

NS(E) � ∆E
x
. (9.119)

This is a popular and usually quite good approximation. To improve this,
introduce a new variable

ξ = E′ − E, (9.120)

so that (9.116) reads

x =
∫ ∆E/2

−∆E/2

dξ
NS(E + ξ)

. (9.121)

Now, inserting the Taylor expansion

S(E + ξ) = S(E) + ξS′(E) +
1
2
ξ2S′′(E) . . . (9.122)
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into (9.121), and expanding the integrand up to second order in ∆E,

x =
1

NS(E)

∫ ∆E/2

−∆E/2

dξ

[
1 − ξ S

′

S
+ ξ2

((
S′

S

)2

− 1
2
S′′

S

)
. . .

]
, (9.123)

we can carry out the integral and obtain

x =
∆E
NS(E)

[
1 +

∆E2

12

((
S′

S

)2

− 1
2
S′′

S

)
. . .

]
. (9.124)

This is exact up to the third order in ∆E. We may solve for NS(E),

NS(E) =
∆E
x

[
1 +

(∆E)2

12

((
S′

S

)2

− 1
2
S′′

S

)
. . .

]
. (9.125)

Since the correction term on the right-hand side is ∝ ∆E2, we may, up to
second order in ∆E, replace S and its derivatives on the right-hand side by
their zero-order values. With the notation

f(E) ≡ ∆E
x
, (9.126)

we may then rewrite (9.125) in the form

NS(E) = f(E)

[
1 +

(∆E)2

12

((
f ′(E)
f(E)

)2

− 1
2
f ′′(E)
f(E)

)
. . .

]
, (9.127)

which contains only measurable quantities on the right-hand side, provided
that ∆E is measured as a function of E accurately enough so that both the
first and the second derivative with respect to E can be determined with ac-
ceptable accuracy. The factor 1/12 indicates that the second-order correction
needs to be considered in high-precision measurements.

9.6.4 Straggling According to Symon (�)

You may be tempted to apply (9.115) to estimate straggling in a very thick
target and write

Ω2 =
∫ E0

E

dE′NW (E′)
NS(E′)

. (9.128)

If this were applied to Bohr straggling (8.14) – which is independent of en-
ergy – the solution Ω2 = NxWB would hold even for very thick targets.
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However, Symon (1948) demonstrated that this is not so. The calculation is
nontrivial but an interesting application of the forward transport equation
and hence will be reproduced explicitly here6.

We start at the forward equation (9.106), with E as the instantaneous
energy variable,

∂F (E, x)
∂x

=
∑

j

{
−F (E, x)Nσj(E)

+F (E + Tj , x)Nσj(E + Tj)
}
. (9.129)

The occurrence of the product F (E+Tj, x)σj(E+Tj), in connection with the
fact that Tj � E, suggests a Taylor series in powers of Tj, leading to

∂F (E, x)
∂x

= N
∞∑

ν=1

1
ν!

(
∂

∂E

)ν

Qν(E)F (E, x), (9.130)

where Qν(E) is defined as

Qν(E) =
∑

j

T ν
j σj(E). (9.131)

In particular, Q1(E) = S(E) is the stopping cross section and Q2(E) =W (E)
the straggling parameter.

Now, introduce the mean energy at a given path length,

ε(x) =
∫

dE EF (E, x) (9.132)

and the variance

Ω2(x) =
∫

dE
[
E − ε(E, x)]2F (E, x). (9.133)

Equation (9.130) then delivers the following equations of motion,

dε(x)
dx

= N
∞∑

ν=1

∫
dE E

(
d

dE

)ν

Qν(E)F (E, x) (9.134)

dΩ2(x)
dx

= N
∞∑

ν=1

∫
dE
[
E − ε(x)]2( d

dE

)ν

Qν(E)F (E, x). (9.135)

6 Symon’s thesis has unfortunately not been published in the open literature. The
present calculation has been reproduced by Payne (1969).
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Repeated partial integration shows that the two series break at ν = 1 and 2,
respectively, so that

dε(x)
dx

= −N
∫

dE S(E)F (E, x) (9.136)

dΩ2(x)
dx

= −2N
∫

dE
[
E − ε(x)]S(E)F (E, x)

+N
∫

dEW (E)F (E, x). (9.137)

So far, these relations are exact. Now the assumption enters that the variation
of the cross sections with energy is weak, so that

S(E) ≡ S (ε(x) + E − ε(x)) � S (ε(x))
+ [E − ε(x)]S′ (ε(x)) + . . . (9.138)

and similarly for Ω2(E), where the prime indicates the derivative with respect
to energy. Now consider only the two leading terms on the right-hand side,
insert into (9.136) and (9.137), respectively and make use of the definitions
(9.132) and (9.133) as well as the normalization condition∫

dE F (E, x) = 1. (9.139)

Then you arrive at

dε(x)
dx

= −NS (ε(x)) (9.140)

dΩ2(x)
dx

= NW
(

(ε(x)
)
− 2NΩ2(x)S′

(
ε(x)

)
. (9.141)

Here, (9.140) recovers the continuous-slowing-down approximation, while
(9.141) demonstrates that (9.128) cannot in general be correct.

Equation (9.140) has the solution

x =
∫ E0

E

dε
NS(ε)

(9.142)

which was already mentioned in (9.109). However, (9.109) was based on
the continuous slowing-down approximation where straggling is ignored. The
present derivation identifies the solution of (9.142) as the mean energy ε(x) at
pathlength x and takes full account of straggling within the limits introduced
by the approximation (9.138).

The solution of (9.141) may be written in x-variables,

Ω2(x) =
∫ x

0

dx′NW (ε(x′)) e−2
∫ x

x′ dx′′NS′(ε(x′′)). (9.143)
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Now, going over to energy variables we find that the integral in the exponent
reduces to∫ x

x′
dx′′NS′ (ε(x′′)) =

∫ ε′

E

dε′′

NS(ε′′)
d (NS(ε′′))

dε′′
= ln

S(ε′)
S(E)

. (9.144)

Hence,

Ω2(x) =
∫ E0

E

dε′

NS(ε′)
NW (ε′)

(
S(E)
S(ε′)

)2

(9.145)

where, again, E0 is the incident and E the exit energy. This was first derived
by Symon (1948).

The only approximative step that has been made in this derivation is the
truncated Taylor expansion (9.138) which assumes slow variation of the stop-
ping cross section. The corresponding relation for the straggling parameterW
also enters but is less critical, at least in the velocity regime where the Bohr
expression applies.

In principle, higher cumulants like skewness and curtosis could be evalu-
ated similarly (Symon, 1948). However, this is of minor importance in view of
the fact that gaussian spectra prevail in the range of thicknesses obeying the
Bohr criterion Ω � Tmax.

9.6.5 Nonstochastic Broadening and Skewing

The Taylor expansion (9.138) sets a limit on the range of validity of Symon’s
approximation (9.145). Eventually, recourse has to be made to (9.136) and
(9.137). Now, considering that the dependence of W (E) on E is much weaker
than that of S(E), the first term on the right-hand side of (9.137) increases
more rapidly than the second one, as the effective integration interval increases
with pathlength. Note also that the term is positive, because the contribution
of energies E > ε(x) to the integrand is less than that from E < ε(x) since
S(E) decreases with increasing E. For the same reason, the latter interval
broadens more rapidly, i.e., the profile tends to skew toward low energies, i.e.,
high energy losses.

In other words, the energy-loss spectrum tends to develop a high-loss tail
again, just as for thin targets, but this is not caused by statistical fluctua-
tions – which enter through the second term in (9.137) – but by the energy
dependence of the stopping cross section.

Figure 9.16 shows a simple model calculation to illustrate this effect (cf.
problem 9.18). Let the energy distribution at depth x = 0 be distributed uni-
formly over a certain interval, and assume continuous slowing down according
to

−dE
dx

=
NC

E
, (9.146)

with C being a constant. It is seen that the fact that the high-energy end of
the initial spectrum suffers less energy loss than the low-energy end gives rise
to a deformation of the initially rectangular spectrum and a high-loss tail.



366 9 Energy-Loss Spectra

0

0.2

0.4

0.6

0 4 8 12

initial spectrum
spectrum at half range

E' [arb. units]

F
(E

',x
) 

[a
rb

. u
ni

ts
]

Fig. 9.16. Nonstochastic broadening of a rectangular profile. See text

Evidently, evaluation of the variance is insufficient to determine a profile,
once skewing becomes efficient. Symon (1948) presented relations similar to
(9.136) and (9.137) for higher cumulants, and Tschalär (1968) presented an
elaborate numerical study of variance, skewness and curtosis for the cross
section (9.45). Spectra were reconstructed from a Johnson distribution7.

Fig. 9.17. Calculated energy spectrum of protons in Be for an initial energy of 50
MeV for a target thickness corresponding to a mean energy loss of 42 MeV. From
Payne (1969)

7 Johnson distributions are deformed gaussians found by a class of transformations
(Johnson, 1949).
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An alternative approach was taken by Payne (1969). Going back to the
forward transport equation (9.105), and applying Taylor expansion in powers
of T to the term K(E′ + T, T )F (E′ + T, x) one obtains an infinite series

∂F (E′, x)
∂x

= N
∞∑

ν=1

1
ν!

(
∂

∂E′

)ν

Qν(E′)F (E′, x), (9.147)

where Qν(E) =
∫
T νdσ(E, T ). Truncation after the term of second order leads

to the so-called Fokker-Planck equation. Payne also studied the case where
the Q2-term is neglected. This is relevant in the thickness regime where the
term containingW in (9.137) becomes insignificant. A result is shown in figure
9.17, where the beam has lost 84 % of its initial energy.

9.6.6 Method of Moments

Once target thickness becomes so large that particles lose more than 90 %
of their energy, the calculational tools described up to now become unreli-
able. Symon (1948) established a procedure to determining moments from
the transport equation and proposed to reconstruct energy-loss profiles from
moments by means of standard mathematic tools such as Gram-Charlier and
Edgeworth expansions (Kendall and Stuart, 1963). This method has been
explored by Tschalär (1968) and Payne (1969).

Reconstruction of a profile from moments is mathematically a much more
problematic enterprise than approximating a function by a Taylor expansion.
With the present availability of computer capacity, numerical tools such as
straight convolution or Monte Carlo simulation are preferrable.

9.7 Simulation

9.7.1 Monte Carlo Schemes

The stochastic nature of the collision processes described so far makes particle
penetration phenomena well suited for numerical treatment by Monte Carlo
simulation. In fact, particle penetration has been one of the first major ap-
plications of computer simulation in physics. An early review was written by
Berger (1963). In principle, a Monte Carlo simulation is equivalent with the
solution of a transport equation for identical input. Differences appear in the
practical implementation of either scheme.

Note that accurate solution of a transport equation normally requires reli-
able numerical procedures. Although typically requiring less computer capac-
ity than Monte Carlo simulations, the necessary programming effort may be
substantial. This makes Monte Carlo simulations a competitive tool.

The present section is devoted to fairly general aspects and avoids specific
discussion of numerous available codes.
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9.7.2 Procedure

Most Monte Carlo simulations make heavily use of the mean free path λ(E)
defined as

λ(E) =
1

Nσ(E)
, (9.148)

where

σ(E) =
∑

j

σj(E) (9.149)

is the total cross section, i.e., the sum of the cross sections for all possible
events.

A typical Monte Carlo simulation starts with some particle that has been
given a well-defined energy8. The particle is allowed to move uniformly until
a collision is going to happen. That first collision takes place after a certain
free-flight-path interval (x′, dx′) which is determined by means of a random-
number generator from the probability

dx′

λ(E)
e−x′/λ(E) , (9.150)

which follows from (2.7) for n = 0. The outcome of this event is then deter-
mined by another throw of the dice: The probability for event j to happen is
given by

σj(E)
σ(E)

= Nλσj(E). (9.151)

For the problems discussed above, this implies that a quantum of energy
Tj has been transmitted to the surroundings, and the projectile has gotten
a new starting point for a certain free-flight distance with a new energy E−Tj.
Angular deflection can, but need not be part of the bookkeeping. If so, a third
throw of the dice is necessary to determine the new direction of motion: Even
if there is a unique relation between energy loss and scattering angle, as is the
case for elastic collisions, the azimuthal scattering angle is a random variable
that needs to be fixed. Further random variables such as the state of the
projectile after a collision may be of interest, as will be seen in Volume II.

After complete characterization of the projectile – and if necessary other
particles emerging from a collision – the procedure is repeated with a properly
revised distribution of pathlength and a new probability (9.151) reflecting the

8 Monte Carlo is the preferred technique to compute slowing-down profiles of elec-
trons, where angular deflection is an essential effect that cannot normally be
neglected. It is straightforward to include this additional dimension in the simu-
lation, but explicit reference will not be made here.
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emerging projectile. The procedure may then be iterated as often as neces-
sary until the projectile has slowed down below some threshold energy that is
prescribed by the physical situation. This whole sequence of events is usually
called a trajectory. Gaining statistically significant predictions requires simu-
lation of a large number of trajectories. Dependent on the amount of detail
required, a run may require simulation of millions of trajectories.

9.7.3 Equivalence with Transport Theory (�)

It is of interest to formulate the above procedure analytically. The probability
for a free flight up to some pathlength x is exp(−x/λ(E)), and the associated
energy distribution is δ(E−E′). Conversely, the probability for the first colli-
sion in (x′, dx′) is given by (9.150) and the type of event by (9.151). Since we
are asking for the probability for energy (E′, dE′) at pathlength x, and since
the particle has already travelled x′ and lost an energy Tj, we now need the
probability F (E − Tj, E

′, x− x′). Collecting these probabilities we arrive at

F (E,E′, x) = e−x/λ(E)δ(E′ − E) +
∫ x

0

dx′

λ(E)
e−x′/λ(E)

×
∑

j

σj(E)
σ(E)

F (E − Tj , E
′, x − x′). (9.152)

Relations of the type of (9.152) are alternative forms of transport equations
which require reasonably large mean free paths in order to be of practical
use. They have been in use very much in neutron transport theory. You may
demonstrate the equivalence with (9.100) in problem 9.16.

Note that unlike (9.100), (9.152) contains both a summation over j and an
integration over x. This is a manifestation of the fact that the random number
generator is consulted twice in each step, first to find the travelled path length
and then to determine the type of collision. On the other hand, no differenti-
ations occur. This implies that initial conditions have been incorporated into
the integral equation and need not be formulated independently.

Simulation codes have also been developed that avoid a free-path distri-
bution and, therefore, utilize the random number generator only once in each
step, namely to determine the type of collision.

9.8 Discussion and Outlook

Energy-loss spectra of charged particles much heavier than electrons are con-
ventionally classified into three regimes of target thickness,

– For thin targets, where the variance Ω2 = NxW � T 2
max, the maximum

energy loss in a single event, the spectrum resembles the single-event spec-
trum, i.e., , the differential cross section. In case of high energy resolution,
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structure of the latter may be visible. More frequently the spectrum re-
sembles the Rutherford cross section.

– For moderately thick targets, when Ω2 = NxW � T 2
max but 〈∆E〉 � E,

the spectrum tends toward gaussian shape with the width determined by
Ω. The approach to gaussian shape may be quite slow.

– For very thick targets, when 〈∆E〉 approaches the initial beam energy
E, nonstochastic broadening becomes noticeable. Consequently, significant
deviations from gaussian shape may be observed.

The most versatile theoretical tool is the kinetic equation, in forward or back-
ward form, but for thin and moderately thick layers it has a general solu-
tion, the Bothe-Landau formula which can serve as a starting point for rig-
orous calculations. The exactly solvable model spectrum following from the
Lindhard-Nielsen cross section (9.29) serves as a useful lesson if you tend to
the opinion that the diffusion approximation is a universally-valid tool. The
Bohr-Williams approach, handled with skill, is still powerful but has been
superceded by more rigorous methods with the upcome of ever more capable
computational tools.

The classic description for thin targets is the one by Landau (1944). The-
oretical work on deviations from the Landau spectrum – which operates with
classical Coulomb scattering – used to focus on the fine structure of the cross
section. This may be significant for penetrating electrons but is rarely of inter-
est for heavier projectiles. Even for classical Coulomb scattering, the range of
validity of Landau’s description is limited to rather small target thicknesses.
Deviations used to be treated by the formalism of Vavilov. This can now safely
be replaced by a combination of Glazov’s scheme and the method of steepest
descent.

Glazov’s calculations indicate that the approach to gaussian behavior is
usually quite slow, and gaussian spectra provide satisfactory descriptions
mainly because experimental accuracy is rarely sufficient to pin down mi-
nor discrepancies with theory. Deviations from gaussian shape for moderately
thick targets are well described by the scheme of Sigmund and Winterbon
(1985).

Nuclear energy loss has been ignored in this as well as all previous chapters
except Chapter 2. In the present context, this implies neglecting high-loss tails
in the spectra.

Spectra for ions allowing to lose a sizeable fraction of their initial energy
are most efficiently calculated by numerical solution of the kinetic equation or
by the equivalent technique of Monte Carlo simulation. Although analytical
solution of the transport equation in combination with the moments method
is an efficient alternative, angular deflection may become important at the
same time.

A major topic belonging into the present context is the influence of charge
exchange on the energy-loss spectrum. This topic – which has a long history
– will be discussed in volume II. The effect has two distinctly different impli-
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cations: Energy lost in a charge-changing event may be substantial and hence
give rise to splitting an energy-loss spectrum into a multiple-peak structure.
Moreover, since the stopping force depends on the ion charge, fluctuating ion
charge is a source of energy-loss fluctuation, called charge-exchange straggling.

This chapter dealt exclusively with Poissonian collision statistics. Charge
exchange is not the only process that has been omitted for that reason. Also
bunching, discussed in Sect. 8.9 has likewise been omitted, albeit for a different
reason: Estimates of energy-loss spectra seem unavailable. Moreover, effects of
crystal structure, in particular channeling, have been reserved for Volume II.
In that connection, also simulation techniques going beyond the Monte Carlo
method will come up for discussion.

Finally, phenomena connected with complete slowing down, such as ion
ranges and radiation effects, have been reserved for Volumes II and III, re-
spectively.

Problems

9.1. Derive (9.8) from (9.7). A simple procedure is by Taylor expansion in
powers of the penetration depth.

9.2. Carry out the calculation leading from (9.19) to (9.21).

9.3. Derive (2.19) and (2.26) from (9.21).

9.4. Derive (9.30) from (9.15) and (9.29). You will need the integral represen-
tation of the gamma function Γ (z + 1) =

∫∞
0

dt tze−t as well as Γ (z + 1) =
zΓ (z) and Γ (1/2) =

√
π.

9.5. Derive (9.31) from (9.30). Hint: Introduce a variable z = α + ik and
keep track of the proper path of integration. Then reduce the exponential to
a simple gaussian by substituting z = ±t+A with a suitable constant A.

9.6. Determine T1 defined in Sect. 9.3.1 for the spectrum (9.38) by requiring
the approximate peak position NxS1 to be identical with the exact value ∆Ep

given by (9.34).

9.7. Use the Bothe-Landau formula to show that the quantity Q3 defined by
(9.25) fulfills the relation〈

(∆E − 〈∆E〉)3
〉

= NxQ3 (9.153)

without specifying a cross section.

9.8. Derive (9.26) from (9.14) and (9.24).
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9.9. Evaluate the energy-loss profile for the model spectrum (9.30) in the
diffusion approximation.

9.10. Derive (9.66) from (9.14).

9.11. Apply the method of steepest descent to the cross section (9.29). You
will arrive at the exact energy-loss spectrum (9.31).

9.12. Make a plot of peak energy loss ∆Ep versus mean energy loss NxS for
the cross section (9.45) on the basis of (9.89).

9.13. Go explicitly through the derivation of (9.104).

9.14. An alternative derivation of (9.104) considers the change of the distri-
bution F (E,E′, x) after passage through a small pathlength increment ∆x.
Express F (E,E′, x + ∆x) by the loss of particles from F (E,E′, x) and the
gain of particles from F (E,E′ + Tj , x) and take the limit ∆x→ 0.

9.15. In this problem you will derive the transport equation (9.104) from the
nonlinear Boltzmann equation.

1. Find the Boltzmann equation in a text on statistical mechanics or in
the original reference (Boltzmann, 1875). If it is written in terms of ve-
locity variables, try to rewrite it in terms of energy variables and elim-
inate any directional variables by orientational averaging. You will then
end up with a nonlinear equation for an energy distribution f(E′, t)dE′

as a function of time t. The central input quantity is a cross section
K(E,E′;E′′, E′′′)dE′′dE′′′ for two particles with energies E and E′ to
collide with exit energies (E′′, dE′′) and (E′′′, dE′′′), respectively.

2. You will find several ways in the literature to linearize the Boltzmann
equation. In the present context, the pertinent physical assumption is that
a moving ion meets the scattering centers, i.e., the atoms of the target,
at rest. If you have found the Boltzmann equation for a multicomponent
medium (for example in Boltzmann’s original paper), all you have to do
is to assume that there is only one particle of the first species, and that
all atoms of all other species are at rest.

3. If you have only found the Boltzmann equation for a monoatomic medium
– which is most common in textbooks – you have to assume that the
number of moving atoms is infinitesimally small, i.e.,

f(E′, t) � Nδ(E′) + F (E′, t) (9.154)

and apply Taylor expansion up to first order in F (E′, t).
4. Arrive at the final form by substituting dx = vdt.

9.16. Demonstrate the equivalence of (9.152) with (9.100). Replace x′ → x−
x′ in the integral on the right-hand side, multiply the whole equation by
exp(x/λ′′(E)), differentiate with respect to x and observe (9.148).



References 373

9.17. Show that (9.14) satisfies both (9.100) and (9.104), when Kj(E) is in-
dependent of E.

9.18. Derive an expression for the energy spectrum shown in Fig. 9.16, assum-
ing continuous slowing down according to the energy-loss function (9.146). Let
the initial spectrum extend from energy 9 to 11 (arbitrary units) and assume
2NCx = 50.
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Appendices



A

Selected Tutorials

A.1 Units

A.1.1 Electromagnetic Units

Amongst a considerable number of systems of electromagnetic units that have
been in use over the past century, mainly the official SI units and the Gaussian
system of units seem to have survived. The latter is frequently used in the
literature on particle penetration and collision theory, and in atomic physics
in general. It is, therefore, of utmost importance that the reader be able to
correctly evaluate the contents of an equation written in gaussian units.

Modern textbooks in electromagnetic theory employ SI units in which
Maxwell’s equations in vacuum take on the form

∇ · E′ =
ρe

′

ε0
(A.1a)

∇ · B′ = 0 (A.1b)

∇ × E′ = −∂B
′

∂t
(A.1c)

∇ × B′

µ0
=
∂(ε0E′)
∂t

+ J ′, (A.1d)

where E′ and B′ denote the electric and the magnetic field and ρe
′ and Je

′

the charge and current density, respectively. The relation between the fields
and the force F on a point charge q′ is given by

F = q′(E′ + v × B′), (A.2)

and the Coulomb force between two point charges q′1, q′2 has the magnitude

FCoul =
q′1q

′
2

4πε0r2
. (A.3)

Coulomb’s law (A.3) takes a particularly simple appearance,

FCoul =
q1q2
r2
. (A.4)
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if the quantity

q =
q′√
4πε0

(A.5)

is taken as a measure of electric charge. This implies the following measures
of charge and current density,

ρe =
ρe

′
√

4πε0
; J =

J ′
√

4πε0
. (A.6)

It is appropriate, then, also to introduce alternative quantities E,B for the
electric and magnetic field.

For the electric field, convenience suggests to require that qE = q′E′.
Then,

E =
√

4πε0E′, (A.7)

and the force equation reads

F = q
(
E +

√
4πε0v × B′). (A.8)

Amongst several feasible options for B, the one adopted in the gaussian system
of units is based on the convention that the electric and magnetic field have
the same dimension. This is achieved by setting

√
4πε0v × B′ =

v

c
× B, (A.9)

where c = 1/
√
ε0µ0 is the speed of light in vacuum. This leads to

B =
√

4π
µ0

B′, (A.10)

and Maxwell’s equations take the form

∇ · E = 4πρe (A.11a)
∇ · B = 0 (A.11b)

∇ × E = −1
c

∂B

∂t
(A.11c)

∇ × B =
1
c

∂E

∂t
+

4π
c

J . (A.11d)

For q′ = 1 Coulomb (C) and ε0 = 8.854 × 10−12 C V−1 m−1 we find

q = 9.4803× 104 kg1/2m3/2s−1 = 3 × 109 g1/2cm3/2s−1

≡ 3 × 109 esu, (A.12)

where 1 esu = 1 g1/2cm3/2s−1 is called the electrostatic unit of charge.
Gaussian units are used everywhere in this book except in Chapter 1 and

the first parts of this appendix. From a practical point of view, the most visible
feature of gaussian units is the absence of the factor 1/4πε0 in all equations
containing e2.
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A.1.2 Atomic Units

Experimental parameters discussed in this book are most often expressed in
terms of the elementary charge e, the electron mass m, the speed of light
c, and Planck’s constant � = h/2π. The evaluation of expressions involving
some of these parameters is an easy routine if atomic units are utilized. Table
A.1 shows expressions for the most frequently used parameters both in SI and
gaussian units along with their numerical values.

Table A.1. Basic atomic parameters

Quantity Symbol Expression Expression Value
(SI units) (gauss. units)

Bohr radius a0 4πε0�
2/me2

�
2/me2 0.0529177 nm

Rydberg energy R e2/8πε0a0 e2/2a0 13.60569 eV
=2.179872×10−18 J

Fine structure constant α e2/4πε0�c e2/�c 1/137.0360
Bohr velocity v0 e2/4πε0� e2/� 2.187691×106 m/s

=αc
Electron radius re e2/4πε0mc2 e2/mc2 2.81894×10−15 m

=α2a0

As an example, take the factor preceding the Bethe logarithm in the ex-
pression for the electronic stopping cross section (4.118). From the definition
(2.20) of the stopping cross section we know that it has the dimension of
energy × area. Therefore we express the factor in terms of Ra20 which leads
to

4πZ2
1Z2e

4

mv2
=
Z2

1Z2

(v/v0)2
4πe4

mv20
=
Z2

1Z2

(v/v0)2
8πa20R

= 0.96
Z2

1Z2

(v/v0)2
eVnm2 (A.13)

If SI were used, the same quantity would read

4πZ2
1Z2e

4

(4πε0)2mv2
=
Z2

1Z2

(v/v0)2
4πe4

(4πε0)2mv20
=
Z2

1Z2

(v/v0)2
8πa20R

= 0.96
Z2

1Z2

(v/v0)2
eVnm2 (A.14)

A.1.3 Length Measures

In the field of particle penetration, length measures such as mg/cm2 or µg/cm2

are frequently encountered. This denotes weight/area or density × thickness.
There are three obvious points supporting this choice,
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– A metal foil 100 nm thick with an area of 1 cm2 weighs a few tens of
micrograms. Area and weight are more readily accessible to accurate ex-
perimental determination than thickness,

– The density of a material may not be accurately known, and it may change
during particle bombardment because of heating, defect formation, disor-
dering, phase changes etc.,

– Measurable quantities depend typically on dimensionless variables like
Nxσ, where N is the number of atoms per volume while x and σ denote
pertinent lengths and cross sections, respectively.

The third item identifies weight/area as being closer to a ‘natural’ length
measure in particle penetration than length proper, although that is strictly
true only for the ideal case of an elemental, isotopically pure material.

Denoting the mass density by ρm we find the following expression for the
weight per area

weight/area = ρmx =
∑

�

N�M�x (A.15)

for a polyatomic material of thickness x containing atoms of massM� or, more
generally,

weight/area =
∑

�

M�

∫
dxN�(x) (A.16)

for a material with a depth-dependent composition.
A simple conversion formula for homogeneous poly- or monoatomic mate-

rials may be found by noting that a weight per area of

ρmx = 1
µg
cm2

(A.17)

represents a thickness of

x =
100

ρm[g/cm3]
Å. (A.18)

A.2 Calculus

A.2.1 Poisson Statistics

Consider an ideal gas with a density N [molecules/volume] contained in a
very large volume. We are interested in the probability Pn(v) to find precisely
n gas molecules within some well-defined volume v at a given time.
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Assume first that v is so small that the chance to find more than one
molecule within its boundaries is negligible. The average number of molecules
Nv in v may then be expressed by

Nv = 0 × P0(v) + 1 × P1(v),

i. e.,

P1(v) = Nv. (A.19)

Moreover, since the probabilities must sum up to 1 we also have

P0(v) = 1 − P1(v) = 1 −Nv. (A.20)

Next, consider two volumes v, v′ of arbitrary size and ask for the probability
Pn(v + v′) to find n molecules in v + v′. Evidently we must have

Pn(v + v′) =
n∑

m=0

Pm(v)Pn−m(v′) (A.21)

from the laws of multiplication and addition of probabilities.
A solution of (A.21) can conveniently be found by introduction of a gen-

erating function

g(ζ, v) =
∞∑

n=0

Pn(v)ζn, (A.22)

where ζ is a dimensionless variable. Multiplying (A.21) by ζn and summing
over n we find

g(ζ, v + v′) = g(ζ, v)g(ζ, v′). (A.23)

From this follows that

g(ζ, v) = eα(ζ)v (A.24)

with a yet undefined function α(ζ).
For small v (A.22) reduces to

g(ζ, v) � P0(v) + P1(v)ζ = [1 −Nv] +Nvζ � 1 + α(ζ)v, (A.25)

by means of (A.19) and (A.20), and hence

α(ζ) = (ζ − 1)N. (A.26)

This leads to

g(ζ, v) = e(ζ−1)Nv = e−Nv
∞∑
0

(Nvζ)n

n!
(A.27)
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or, by comparison with (A.22),

Pn(v) = e−Nv (Nv)n

n!
. (A.28)

It is seen that
∑∞

n=0 Pn(v) = 1 as it must be.
Eq. (A.28) represents the Poisson distribution. The essential assumption

entering its derivation is that we deal with the molecules of an ideal gas, i. e.,
particles that are statistically independent. In particular it is implied that
there is no upper limit on the number of molecules which, in principle, could
find space within the volume v.

A.2.2 Fourier Transform

One Dimension

Fourier’s theorem addresses periodic functions. Let f(t) be some periodic func-
tion of t with a period τ ,

f(t+ τ) = f(t) for all t. (A.29)

f(t) may be written in the form of a Fourier series

f(t) =
∞∑

n=0

(an cosnω0t+ bn sinnω0t), (A.30)

where ω0 = 2π/τ and an, bn are constants. Eq. (A.30) can be recast into the
more compact form

f(t) =
∞∑

n′=−∞
An′ein′ω0t, (A.31)

where the An′ are linear combinations of the an and bn.
Multiplication of (A.31) by e−inω0t with n being an arbitrary integer and

integration over one period τ yields

An =
1
τ

∫ τ/2

−τ/2

dt f(t)e−inω0t. (A.32)

Fourier integrals deal with aperiodic functions. Fourier’s theorem may be
applied to such functions by the transition τ → ∞. For finite τ we may rewrite
(A.31) in the form

f(t) =
∑
ω

∆ω fω eiωt (A.33)
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with ω = n′ω0, ∆ω = ω0, and fω = An′/ω0. When τ becomes large, ∆ω =
2π/τ becomes small and (A.33) turns into an integral,

f(t) =
∫ ∞

−∞
dωf̄(ω)eiωt (A.34)

with

f̄(ω) = fω = lim
τ=∞

1
ω0τ

∫ τ/2

−τ/2

dt f(t)e−iωt =
1
2π

∫ ∞

−∞
dt f(t)e−iωt. (A.35)

Eqs. (A.34) and (A.35) represent a Fourier transformation and its inverse
transformation, respectively. The function f̄(ω) is called the Fourier transform
of f(t). A condition for a function to have a Fourier transform is square
integrability, i.e., the integral

∫∞
−∞ dt |f(t)|2 exists.

There is no fundamental difference between a Fourier transform and its
inverse. Therefore the bar in f̄(ω) is usually omitted, and it is the name
of the variable that determines whether a function is considered in real or
Fourier space. For the same reason the choice of the sign in the exponent is
arbitrary, except that the sign in the Fourier transform has to be the opposite
of that in the inverse transform. Finally there is some flexibility with regard
to the arrangement of the factor 1/2π. In quantum mechanics it has become
customary to let the Fourier transform and its inverse each have a factor
(2π)−1/2. This notation has been adopted in appendix A.4.1.

In physics problems one frequently deals with the Fourier transform of an
observable quantity. Let f(t) be such a quantity which must then be a real
function. Then (A.35) shows that

f∗(ω) =
1
2π

∫ ∞

−∞
dt f(t)eiωt = f(−ω), (A.36)

where the asterisk denotes the complex conjugate.

Higher Dimensions

The Fourier transform is not restricted to functions of one variable. In three-
dimensional space it may be written in the form

f(r) =
∫

d3kf(k) eik·r (A.37a)

f(k) =
1

(2π)3

∫
d3rf(r) e−ik·r, (A.37b)

and similarly in two or higher dimensions.
For the special case of a spherically-symmetric function f(r) = f(r) the

directional variable drops out also from the Fourier transform, and
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f(k) = f(k) =
1

(2π)3

∫
4πr2 dr f(r)

sin kr
kr

=
1

(2π)3

∫
4πr2 dr f(r)j0(kr) (A.38)

in terms of the spherical Bessel function j0(z) = sin z/z. Similarly, in two
dimensions,

f(k) = f(k) =
1

(2π)2

∫
2πr dr f(r)J0(kr) (A.39)

in terms of the standard Bessel function J0(z) (Abramowitz and Stegun, 1964).

Coulomb Potential

As an example we evaluate the Fourier transform of the Coulomb potential,
or

f(r) =
1
r
. (A.40)

The integral

f(k) =
1

(2π)3

∫
d3r

1
r

e−ik·r (A.41)

is readily evaluated by means of (A.38) and leads to

f(k) =
1

(2π)3
4π
k

∫ ∞

0

dr sin kr =
1

2π2k2
. (A.42)

A reader who feels uneasy about the validity of the last step should first
evaluate the Fourier transform of a screened-Coulomb potential function,
f(r) = (1/r) exp(−r/a), leading to

f(k) =
1

2π2

1
k2 + 1/a2

(A.43)

and subsequently let the screening radius a go toward infinity.

A.2.3 Spherical Harmonics and Legendre Polynomials

Spherical harmonics form a complete orthonormal set of functions on the unit
sphere. This implies that a ‘reasonably well-behaved’ function Ψ(θ, φ) of the
polar angle θ and the azimuthal angle φ can be expanded in terms of spherical
harmonics Y�µ(Ω),
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Ψ(θ, φ) =
∞∑

�=0

�∑
µ=−�

a�µY�µ(Ω) (A.44)

with

a�µ =
∫ 1

−1

d cos θ
∫ 2π

0

dφΨ(θ, φ)Y ∗
�µ(Ω), (A.45)

where Ω represents the unit vector

Ω = (sin θ cosφ, sin θ sinφ, cos θ). (A.46)

(A.44) and (A.45) show strong similarities to the Fourier expansion, (A.30)
and (A.31). It is helpful to keep this one-dimensional analog in mind when
getting familiar with spherical harmonics.

While harmonic functions come out as solutions of the differential equation
d2ψ(x)/dx2 + k2ψ(x) = 0, spherical harmonics emerge as solutions of the
angular part of the equation ∇2ψ(r) + k2ψ(r) = 0.

Just as in case of Fourier expansions there is some ambiguity which war-
rants precise definitions. This concerns both the functional form and various
normalization factors. In the notation of Jackson (1975) we have

Y�µ(Ω) = N�µP
µ
� (cos θ) eiµφ , (A.47)

where Pµ
� (η) represents an associated Legendre function,

Pµ
� (η) =

(−)µ

2�!
(1 − η2)µ/2 d�+µ

dη�+µ

(
η2 − 1

)�
(A.48)

and N�µ a normalization constant

N�µ =

√
2+ 1

4π
(− µ)!
(+ µ)!

(A.49)

such that∫ 1

−1

d cos θ
∫ 2π

0

dφY ∗
�µ(Ω)Y�′µ′(Ω) = δ��′δµµ′ . (A.50)

Spherical harmonics could be (and are occasionally) defined via cos(µφ) and
sin(µφ) instead of exp(iµφ), and several legitimate versions exist for the fac-
torization into N�µ and Pµ

� (cos θ), as well as the definition of Pµ
� for negative

values of µ.
In the special but not infrequent case of vanishing azimuthal dependence

all terms with µ �= 0 drop out. Then (A.50) reduces to∫ 1

−1

d cos θ P�(cos θ)P�′ (cos θ) =
2

2+ 1
δ��′ , (A.51)
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where

P�(η) = P 0
� (η),  = 0, 1, 2 . . . (A.52)

are the Legendre polynomials, the definition of which seems to be unique in
the more recent literature. They obey the differential equation

(1 − η2)P ′′
� − 2ηP ′

� + (+ 1)P� = 0, (A.53)

where the prime indicates a derivative.
In the following a few relationships are listed that are utilized in various

parts of this book. Many more may be found in standard compilations like
Abramowitz and Stegun (1964) as well as textbooks on quantum mechanics
and electromagnetic theory.

The lowest-order Legendre polynomials read

P0(η) = 1 (A.54a)
P1(η) = η (A.54b)

P2(η) =
1
2
(3η2 − 1) (A.54c)

P3(η) =
1
2
(5η3 − 3η) (A.54d)

. . .

and the lowest-order spherical harmonics are

Y00 =

√
1
4π

(A.55a)

Y10 =

√
3
4π

cos θ (A.55b)

Y1±1 = ∓
√

3
8π

sin θ e±iφ (A.55c)

Y20 =

√
5
4π

(
3
2

cos2 θ − 1
2

)
(A.55d)

Y2±1 = ∓
√

15
8π

sin θ cos θ e±iφ (A.55e)

Y2±2 =

√
15
32π

sin2 θ e±2iφ (A.55f)

Useful to know is the completeness relation

∞∑
�=0

�∑
µ=−�

Y ∗
�µ(Ω)Y�µ(Ω′)

= δ(Ω − Ω′) ≡ δ(cos θ − cos θ′)δ(φ − φ′) (A.56)
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or, after integration over the azimuth,

∞∑
�=0

(+
1
2
)P�(η)P�(η′) = δ(η − η′). (A.57)

Then there is the addition theorem

P�(Ω · Ω′) =
4π

2+ 1

�∑
µ=−�

Y ∗
�µ(Ω)Y�µ(Ω′). (A.58)

There are numerous recurrence relations, of which only one is mentioned ex-
plicitly,

ηPµ
� =

1
2+ 1

[
(− µ+ 1)Pµ

�+1 + (+ µ)Pµ
�−1

]
. (A.59)

Last but not least, mention is made of a generating function

1√
1 − 2ηt+ t2

=
∞∑

�=0

P�(η) t�, (A.60)

which is convenient to determine explicit expressions and matrix elements.

A.2.4 Dirac Function

One Dimension

The Dirac function is defined by the relations

δ(x) =

⎧⎨
⎩

0 x �= 0
for

∞ x = 0
(A.61)

and∫ ∞

−∞
dx δ(x) = 1. (A.62)

One may represent this function analytically by a limiting process such as a
gaussian with a zero width,

δ(x) = lim
a=0

1√
2π a

e−x2/2a2
,

but such representations are rarely needed in practical applications.
From either of the above definitions one deduces that

δ(Ax) =
δ(x)
|A| (A.63)
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for an arbitrary nonvanishing constant A.
For an arbitrary function f(x), continuous in x = 0, the above definition

yields∫ ∞

−∞
dx f(x) δ(x) = f(0)

∫ ∞

−∞
dx δ(x) = f(0) (A.64)

or, more generally,∫ ∞

−∞
dx′ f(x′) δ(x− x′) = f(x) (A.65)

for any value of x where f(x) is continuous.
The Fourier transform of δ(x) is defined by

δ̄(k) =
1
2π

∫ ∞

−∞
dx δ(x) e−ikx (A.66)

according to (A.35). By (A.64) this reduces to

δ̄(k) =
1
2π
. (A.67)

This yields the identity

δ(x) =
1
2π

∫ ∞

−∞
dk eikx (A.68)

which is a useful tool not the least in the handling of Fourier transforms.
In practical applications one frequently encounters Dirac functions of more

complex arguments such as δ
(
f(x)

)
, where f(x) is some function of x. It is

evident that δ
(
f(x)

)
is nonvanishing only at the zeros of f(x). Let xi be such

a root so that f(xi) = 0, and try to define an interval Ci around xi within
which y = f(x) depends monotonically on x so that f(x) � (x − xi)f ′(xi),
where f ′(x) = df/dx. Then the contribution of the interval Ci to the integral∫∞
−∞ dx δ

(
f(x)

)
reads

∫
Ci

dx δ
(
f(x)

)
=
∫
Ci

dx δ
(
(x − xi)f ′(xi)

)
=

1
|f ′(xi)|

∫
Ci

dx δ(x − xi) =
1

|df/dx|x=xi

(A.69)

by use of (A.63). If there are several roots the integral reads∫ ∞

−∞
dx δ

(
f(x)

)
=
∑

i

1
|df/dx|x=xi

. (A.70)
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Example

As an example, evaluate the integral∫ 2π

0

dx δ(cosx) =
1

| sinx|x=π/2

+
1

| sinx|x=3π/2

= 2 . (A.71)

Three Dimensions

In three dimensions one defines

δ(r) = δ(x)δ(y)δ(z). (A.72)

Then (A.68) yields

δ(r) =
1

(2π)3

∫ ∞

−∞
d3k eik·r. (A.73)

It is useful to have expressions for multidimensional Dirac functions in
non-cartesian coordinates, such as

δ(r − r′) =
δ(r − r′)
r

δ(φ− φ′)δ(z − z′) (A.74)

in cylindrical coordinates r, φ, z, and

δ(r − r′) =
δ(r − r′)
r2

δ(cos θ − cos θ′)δ(φ− φ′) (A.75)

in spherical coordinates r, cos θ, φ.

Point Charge

We may express the charge density ρ(r) of a point charge e placed in the
origin by a Dirac function,

ρ(r) = eδ(r). (A.76)

The electrostatic potential V (r) = e/r is known to satisfy Poisson’s equation

∇2V (r) = −4πρ(r) (A.77)

in gaussian units. In Fourier space,

V (r) =
∫

d3k V (k)eik·r

(A.78)

ρ(r) =
∫

d3k ρ(k)eik·r,
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Poisson’s equation reduces to

k2V (k) = 4πρ(k). (A.79)

From (A.73) we deduce that

ρ(k) =
e

(2π)3
(A.80)

and hence

V (k) =
e

2π2k2
(A.81)

in accordance with (A.42)

A.2.5 Green Functions

General

Green functions serve to provide explicit or implicit solutions to a wide class
of differential or integral equations. As a simple prototype consider

Lxψ(x) = f(x), (A.82)

where f(x) is a known function of some variable x, Lx a linear (differential
and/or integral) operator acting in x-space, and ψ(x) an unknown solution.
Recall that

Lx

(
ψ1(x) + ψ2(x)

)
= Lxψ1(x) + Lxψ2(x) (A.83)

for arbitrary ψ1, ψ2 if Lx is linear.
Try to write ψ(x) as an integral

ψ(x) =
∫

dx′G(x, x′)f(x′), (A.84)

where the ‘Green function’ G(x, x′) is required to satisfy the relation

LxG(x, x′) = δ(x − x′), (A.85)

and δ(x− x′) represents the Dirac function.
Then, evaluating Lxψ(x) by inserting ψ(x) from (A.84) you find

Lxψ(x) =
∫

dx′ LxG(x, x′)f(x′)

=
∫

dx′ δ(x− x′)f(x′) = f(x) (A.86)
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by use of (A.64), in agreement with (A.82). Interchanging the order of Lx

and integration over dx′ is justified since Lx is linear according to (A.83) and
acting only on the x variable.

A more general solution of (A.82) can then be written in the form

ψ(x) =
∫

dx′G(x, x′)f(x′) + ψ0(x), (A.87)

where ψ0(x) is an arbitrary solution of the homogeneous equation,

Lxψ0(x) = 0. (A.88)

Clearly this scheme is not restricted to functions of one variable. Indeed, x
may symbolize a set of arbitrarily many continuous variables, and an extension
to discrete variables is straightforward. This allows the scheme to be applied
to a variety of operators.

One evident advantage is that solving (A.85) once for all provides solutions
in closed form to a whole family of equations of the type of (A.84) for different
f(x). This is particularly useful if boundary conditions to be satisfied by ψ(x)
can be incorporated already into G(x, x′).

A very important application, used in this monograph as well as many
branches of theoretical physics, emerges when the function f(x) is replaced
by some functional containing the unknown function, i. e.,

f(x) → f
{
x, ψ(x)

}
. (A.89)

While the derivation above still remains valid, (A.84) or (A.87) then do not
any longer constitute explicit solutions but, instead, integral equations from
which the unknown function may be determined as a second step. This may
be an advantage since important clues about the analytic behavior of the
complete solution may emerge readily. Moreover, (A.87) may form a more
suitable starting point for a perturbation expansion, an iterative scheme, or a
straight numerical solution than the original equation. When utilized in this
manner, Green functions may be useful tools in the solution of both linear and
nonlinear equations, provided that it is possible to single out a linear operator
Lx characterizing some essentials of the system under consideration.

Harmonic Oscillator

As a first example consider the differential equation of a forced harmonic
oscillator

d2ψ

dt2
+ Γ

dψ
dt

+ ω2
0ψ =

1
m
f(t), (A.90)

where ψ(t) is the displacement versus time, m the mass, ω0 the resonance
frequency, Γ an infinitesimal damping constant and f(t) some external force.
The solution (A.87) may be written in the form
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ψ(t) =
1
m

∫
dt′G(t, t′)f(t′) + ψ0(t), (A.91)

where ψ0(t) describes a free, damped oscillation and G(t, t′) must obey

∂2G(t, t′)
∂t2

+ Γ
∂G(t, t′)
∂t

+ ω2
0G(t, t′) = δ(t− t′). (A.92)

Two procedures will be used to solve this differential equation. The first
is more elegant but the second is more powerful in general.

Procedure A

Equation (A.92) represents a free, damped oscillation initiated by a short
pulse given at time t′. For weak damping (Γ → 0) we may write

G(t, t′) = A cosω0(t− t′) +B sinω0(t− t′) for t > t′ (A.93)

with constants A,B to be determined from the initial conditions at t = t′.
Integration of (A.92) over t over the interval (t′ − 0, t′ + 0) yields

(
∂G(t, t′)
∂t

+ ΓG(t, t′)
)t′+0

t=t′−0

= 1, (A.94)

where a third term on the left-hand side dropped out since the integral of
G(t, t′) over an interval of vanishing size vanishes for any finite G(t, t′). Now
assume the oscillator to be at rest so long as there is no force, G(t, t′) = 0
for t < t′. Then (A.94) is satisfied by the initial conditions G(t′, t′) = 0 and
∂G(t, t′)/∂t|t=t′ = 1. This yields A = 0 and Bω0 = 1 in (A.93) and, therefore,

G(t, t′) =

⎧⎪⎪⎨
⎪⎪⎩

sinω0(t− t′)
ω0

t > t′

for
0 t < t′

(A.95)

Procedure B

This paragraph requires some knowledge of integration in the complex plane,
especially Cauchy’s theorem and the concept of a residue.

Write (A.92) in Fourier space,

G(t, t′) =
∫

dωG(ω)eiω(t−t′), (A.96)

so that(
−ω2 + iωΓ + ω2

0

)
G(ω) =

1
2π
. (A.97)
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Fig. A.1. Paths of integration in the
complex ω plane (see text). Dots in-
dicate poles at ±ω0 + iΓ/2

Solving for G(ω) and insertion into (A.96) lead to

G(t, t′) =
1
2π

∫ ∞

−∞
dω

eiω(t−t′)

ω2
0 − ω2 + iωΓ

. (A.98)

For t− t′ > 0 the integral can be closed in the complex ω-plane by means of
a semicircle in the upper half-plane (Fig. A.1) which does not contribute to
the integral in the limit of infinite radius. The latter can be seen by setting
ω = ω1 + iω2 and noticing that the imaginary part ω2 is positive in the
upper half-plane. Therefore the real part of the product iω(t − t′) becomes
a large negative number for t − t′ > 0 and |ω| approaching infinity. Also the
integration path becomes large, but the denominator more than compensates
and the exponential dominates since exp[iω(t− t′)] goes even more rapidly to
zero in that limit.

The value of the closed integral is determined by the sum of residues lying
in the upper half-plane. In the context of this monograph we are interested
mostly in the case where the damping constant Γ is infinitesimally small.
Then, poles of the denominator are located in ω � ±ω0 + iΓ/2, i.e., in the
upper half-plane close to the real axis. This yields

G(t, t′) = 2πi
∑

Res

{
eiω(t−t′)

2π(ω0 − ω)(ω0 + ω)

}
, (A.99)

where ‘Res’ indicates the residues. Evaluation of the latter reproduces the
upper part of (A.95).

For t − t′ < 0 the integral in the complex ω-plane can be closed by a
semicircle in the lower half-plane (ω2 < 0). Again the value of the integral
reduces to the sum of residues. Since no poles are located in the lower half-
plane the integral vanishes. This is in accordance with the lower part of (A.95).
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Thus, from both procedures one deduces that the general solution for the
forced oscillator with infinitesimal damping can be written in the form

ψ(t) =
1
m

∫ t

−∞
dt′

sinω0(t− t′)
ω0

f(t′) + ψ0(t). (A.100)

This form is consistent with the law of causality: Only the force acting up to
time t determines the displacement at t.

One of several alternative solutions would be

ψ(t) = − 1
m

∫ ∞

t

dt′
sinω0(t− t′)

ω0
f(t′) + ψ1(t), (A.101)

which is mathematically equivalent with (A.100) for a suitably chosen free
oscillation ψ1(t). Physically this solution reflects a situation in which the roles
of cause and effect have been interchanged. An analogous case is known from
electromagnetic theory where both ‘retarded’ and ‘advanced’ potentials are
in use.

Wave Equation

The Green function of the wave equation is central to the quantum theory of
elastic and inelastic scattering. Writing the stationary Schrödinger equation
for a single particle in a potential V(r),(

− �
2

2m
∇2 + V(r) − E

)
ψ(r) = 0 (A.102)

in the form(
− �

2

2m
∇2 − E

)
ψ(r) = −V(r)ψ(r), (A.103)

we may obtain a formal solution

ψ(r) = ψ0(r) −
∫

d3r′G(r, r′)V(r′)ψ(r′) (A.104)

where ψ0(r) is a solution of the force-free wave equation(
− �

2

2m
∇2 − E

)
ψ0(r) = 0, (A.105)

and the Green function G(r, r′) obeys(
− �

2

2m
∇2 − E

)
G(r, r′) = δ(r − r′). (A.106)
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You may solve (A.106) in Fourier space along the same line as was followed in
case of the forced oscillator. However, a more direct approach is again possible.
Set r − r′ = R and assume G to depend on R only. Then,

(∇2 + k2)G(R) = −2m
�2
δ(R) (A.107)

with k2 = 2mE/�2. Since the Dirac function shows spherical symmetry we
must be able to find a spherically symmetric solution of (A.107). Then, outside
R = 0, we have two independent solutions,

G(R) = const
e±ikR

R
for R �= 0. (A.108)

The value of the constant is determined by the singular behavior near R = 0
which is insensitive to the value of k. For k = 0 (A.107) reduces to Poisson’s
equation for the potential of a point charge of magnitude 2m/4π�

2, i. e.,

G(R) =
m

2π�2

1
R

for R � 0. (A.109)

This determines the constant in (A.108), and hence

G(R) =
m

2π�2

e±ikR

R
(A.110)

or

G(r, r′) =
m

2π�2

e±ik|r−r′|

|r − r′| . (A.111)

Solutions of this type are familiar from electromagnetic theory (Jackson,
1975).

The difference between the two solutions contained in (A.110) is readily
identified by adding the time-dependent factor to the wave function. Then the
two phases read

±ikR− iEt/� = ±i(kR∓ Et/�). (A.112)

The function with the upper sign describes an outgoing spherical wave, i.e.,
a wave moving radially away from the center of force. The lower sign, on the
other hand, describes an incoming spherical wave.

A.3 Mechanics

A.3.1 Classical Perturbation Theory

This section serves to derive results reported without proof in Sect. 3.3.6.
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Scattering angle

Consider first the scattering integral

θ = π − 2p
∫ ∞

rm

dr
r2

1√
1 − V(r)/Er − p2/r2

(A.113)

according to (3.35) and (3.34). A perturbation expansion is synonymous with
Taylor expansion in powers of the interaction potential V(r). Straight expan-
sion of the square root, however, would lead to increasingly strong singularities
at r = p. A way to circumvent this problem has been designed by Lehmann
and Leibfried (1963).

C

Re(p)

Im(p)

prm

C1

C 2

+  +  +  +  +  +  +  +  +
-  -  -  -  -  -  -  -  -

Fig. A.2. Integration path C for scattering integral. Attractive interaction assumed

We first note that in the complex r-plane, the integrand is a meromorphous
(multi-valued) function which, however, can be made unique by making a cut
on the real axis for r > rm, such that the positive value of the square root
is approached from the positive-imaginary half-plane, and vice versa for the
negative square root. This means that (A.113) can be rewritten in the form

θ = π − p
∫
C

dr
r2

1√
1 − V(r)/Er − p2/r2

, (A.114)

where the integration path C indicated in Fig. A.2 circumvents the cut. This
is allowed by Cauchy’s theorem since the integrand is regular outside the cut.
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Taylor expansion now yields

θ = π − p
∫
C

dr
r2

1√
1 − p2/r2

×
[
1 +

1
2
V(r)/Er

1 − p2/r2 +
3
8

[V(r)/Er ]2

(1 − p2/r2)2 . . .
]
. (A.115)

Consider now the first two terms,

θ(0) = π − 2p
∫ ∞

p

dr
r2

1√
1 − p2/r2 , (A.116)

where the integration path has been pulled back to the real axis as close as
possible. Substituting p/r as the integration variable you immediately see that
θ(0) vanishes, as it has to in the absence of an interaction.

Consider now the first-order term

θ(1) = −p
2

∫
C

dr
r2

V(r)/Er

(1 − p2/r2)3/2
. (A.117)

You may rewrite this in the form

θ(1) =
1

2pEr

∫
C

dr[rV(r)]
d
dr

1√
1 − p2/r2 , (A.118)

which is ready for integration by parts. The integrated term vanishes since both
end points C1 and C2 of C lie at infinity (Fig. A.2), where rV(r) will vanish
for a screened Coulomb potential1. The remaining integral has an integrable
singularity at r = p. We may then pull the integration path back on the real
axis and obtain

θ(1) = − 1
pEr

∫ ∞

p

dr√
1 − p2/r2

d
dr

[rV(r)] . (A.119)

This well-known standard expression can also be written in the alternative
form

θ(1) = − p

Er

∫ ∞

p

dr√
r2 − p2

dV(r)
dr

, (A.120)

as can be seen by differentiating the product rV(r), substituting r2 = r2 −
p2 + p2 and partial integration (in the complex plane).

The second-order term

θ(2) = −3p
8

∫
C

dr
r2

[V(r)/Er]2

(1 − p2/r2)5/2
(A.121)

1 Lehmann and Leibfried (1963) also provided an alternative procedure which only
requires V(r) to vanish at infinity.
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can be evaluated similarly. Indeed,

θ(2) = − p

8E2
r

∫
C

dr
[
r2V(r)

]2 d
dr

1
r

d
dr

1√
r2 − p2 (A.122)

reduces after repeated partial integration and subsequent deformation of the
integration path to

θ(2) = − p

4E2
r

∫ ∞

p

dr√
r2 − p2

d
dr

1
r

d
dr

[rV(r)]2 . (A.123)

An alternative form, which can be found by substituting V ⇒ (1/r)(d/dr)r2V2

in the two expressions for θ(1) above, reads

θ(2) = − 1
4pE2

r

∫ ∞

p

rdr√
r2 − p2

d2

dr2
r2V(r)2 (A.124)

Now, both (A.119) and (A.123) have integrable singularities at r = p. As an
example, take the Yukawa potential

V(r) =
e1e2
r

e−r/a. (A.125)

Then,

θ(1) =
e1e2
aEr

K1

(p
a

)
(A.126)

and

θ(2) = −
(
e1e2
aEr

)2

K1

(
2p
a

)
. (A.127)

The ratio of the two leading contributions,

θ(2)

θ(1)
= −e1e2

aEr

K1(2p/a)
K1(p/a)

, (A.128)

is seen to be governed both by the energy Er and the impact parameter. The
latter dependence is illustrated in Fig. A.3.

Time Integral

The time integral (3.61) has been evaluated in the same manner by Sigmund
and Schinner (2000). Indeed, writing it in the form

τ(p, v) =
∫ ∞

p

dr√
1 − p2/r2 −

∫ ∞

rm

dr√
1 − V(r)/Er − p2/r2 , (A.129)
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Fig. A.3. The ratio K1 (2p/a) /K1 (p/a) governing the relative significance of the
second-order perturbation for Yukawa interaction

we again pull the path of integration into the complex plane in accordance
with Fig. A.2. This leads to

τ(p, v) =
1
2

∫
C

dr

(
1√

1 − p2/r2 − 1√
1 − V(r)/Er − p2/r2

)
, (A.130)

where a common integration path C has been chosen by making use of
Cauchy’s theorem.

Taylor expansion up to the first order in V(r) then yields

τ(p, v) = − 1
4Er

∫
C

dr
V(r)

(1 − p2/r2)3/2
(A.131)

or, after partial integration,

τ(p, v) = − 1
4Er

∫
C

1√
r2 − p2

d
dr
[
r2V(r)

]
. (A.132)

For Yukawa interaction we then obtain

τ(p, v) = −e1e2
2Er

∫ ∞

p

dr√
r2 − p2

(
1 − r

a

)
e−r/a

=
e1e2
2Er

[
K1

(p
a

)
− p
a
K0

(p
a

)]
. (A.133)

A.3.2 Relativity

This is just a brief recapitulation of pertinent results from special relativity.
The reader who needs a genuine introduction into the field is referred to
Landau and Lifshitz (1971) or Jackson (1975).
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Kinematics

The Lorentz transformation describes coordinate transformations between two
reference frames S and S′ in uniform motion relative to each other. For sim-
plicity of notation, we may place the x axis of S and the x′ axis of S′ in the
direction of the relative velocity v. With a suitable choice of y and z axes as
well as time t = 0 we may write the transformation equations in the form

x′ = γv (x− vt) (A.134a)
y′ = y (A.134b)
z′ = z (A.134c)

t′ = γv

(
t− vx

c2

)
, (A.134d)

where c is the speed of light and

γv =
1√

1 − v2/c2 . (A.135)

The so-called Galilei transformation – which is valid in Newtonian mechanics
– emerges from this by letting c go to infinity.

Direct consequences of this are Lorentz contraction and time dilatation.
From the first equation follows

x′1 − x′2 = γv [x1 − x2 − v(t1 − t2)] . (A.136)

Now, consider a ruler with length ∆′ = x′1 − x′2 in S′, where it is at rest. In
S, at time t1 = t2 we see a length

∆ = x1 − x2 =
∆′

γv
, (A.137)

i.e., the ruler looks shorter.
Conversely, for a person moving uniformly with the speed v relative to S,

we have x = vt and hence, from the last equation,

t′ =
1
γv
t, (A.138)

i.e., time runs more slowly in the moving reference frame.
The set of variables x, y, z, ct is said to form a four-vector. You may define

a four-vector as a set of four variables that satisfies the same transformation
equations as x, y, z, ct.

Consider now a particle moving with a velocity u = (ux, uy, uz) in the
frame S. We want to know the connection of u to the corresponding velocity
u′ = (u′x, u

′
y, u

′
z) in S′.
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From (A.134d) we find

dx′ = γv (dx− vdt) (A.139a)
dy′ = dy (A.139b)
dz′ = dz (A.139c)

dt′ = γv

(
dt− v

c2
dx
)
, (A.139d)

and hence,

u′x =
dx′

dt′
=

ux − v
1 − vux/c2

(A.140a)

u′y =
dy′

dt′
=

uy

γv(1 − vux/c2)
(A.140b)

u′z =
dz′

dt′
=

uz

γv(1 − vux/c2)
(A.140c)

This is one of several ways to express the addition theorem of velocities. Note
that the velocity so defined is not a four-vector.

Dynamics

The momentum P of a particle with the rest mass m, moving with a velocity
v, is given by

P = mγvv. (A.141)

It forms a four-vector together with the quantity

E =
√

(mc2)2 + P 2c2, (A.142)

which defines the energy of the particle,

P ′
x = γv

(
Px − vE

c2

)
(A.143a)

P ′
y = Py (A.143b)
P ′

z = Pz (A.143c)
E′ = γv (E − Pxv) , (A.143d)

where, as in the previous section, the x-axis is chosen to point in the direction
of the relative velocity v.

For P = 0, (A.142) represents the rest energy mc2, and the difference
denotes the kinetic energy

Ekin =
√

(mc2)2 + P 2c2 −mc2 ≡ mc2(γv − 1). (A.144)
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Newton’s second law remains valid if written in the form
dP

dt
= F , (A.145)

where F is the force acting on the particle.
The angular momentum, defined by

L = r × P , (A.146)

is easily seen to be conserved for a central force, as in nonrelativistic dynamics.

Electromagnetic fields

The Lorentz transformation for electromagnetic fields is most easily written
in terms of the potentials A, Φ discussed in Sect. 5.2 since they form a four-
vector. In terms of the electric and the magnetic field the transformation
equations read

E′
x = Ex (A.147a)

E′
y = γv

(
Ey − v

c
Bz

)
(A.147b)

E′
z = γv

(
Ez +

v

c
By

)
(A.147c)

B′
x = Bx (A.147d)

B′
y = γv

(
By +

v

c
Ez

)
(A.147e)

B′
z = γv

(
Bz − v

c
Ey

)
. (A.147f)

A.4 Quantum Mechanics

A.4.1 Gaussian Wave Packets

The wave function

ψ(x, t) =
1√
2π

∫ ∞

−∞
dk A(k)ei(kx−ωkt) (A.148)

with ωk = �k2/2m is a linear superposition of plane waves, a ‘wave packet’.
It is a solution of Schrödinger’s equation for a free particle regardless of the
choice of weight function A(k) since each of the partial waves exp

(
i(kx −

ωkt)
)

satisfies that equation. This follows from the linearity of Schrödinger’s
equation.

Comparison of (A.148) with the one-dimensional analog of (A.37a) shows
thatA(k) exp(−ωkt) may be read as a Fourier transform of ψ(x, t) with respect
to the spatial variable, apart from the assignment of the factor (2π)−1 which,
in accordance with common practice in quantum mechanics, has been chosen
differently here.
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Making use of the inverse transform one easily verifies that∫ ∞

−∞
dxψ�(x, t)ψ(x, t) =

∫ ∞

−∞
dk A∗(k)A(k). (A.149)

Hence, if A(k) is normalized to 1, ψ(x, t) is normalized to 1 at all times t.
Now choose a weight function A(k) having a narrow peak around some

value k0. The resulting wave function ψ(x, t) consists of plane waves which
all travel with a velocity v � �k0/m. Therefore, it represents a free particle
moving with this velocity but with the most notable difference to a plane
wave that the wave packet is localized in space. In accordance with Heisen-
berg’s uncertainty principle, some spread is assigned to both position and
momentum.

The expectation value of the position operator x is given by

〈x〉 =
∫ ∞

−∞
dxψ�(x, t)xψ(x, t) (A.150)

as a function of time. Insertion of (A.148) and integration over dx leads to

〈x〉 = i
∫ ∞

−∞
dkA�(k)

(
dA(k)

dk
− i

�kt

m
A(k)

)
. (A.151)

Similarly one finds

〈
x2
〉

=
∫ ∞

−∞
dxψ�(x, t)x2ψ(x, t)

=
∫ ∞

−∞
dk
∣∣∣∣dA(k)

dk
− i

�kt

m
A(k)

∣∣∣∣
2

. (A.152)

Now, assume a gaussian weight function

A(k) =
1

(2π∆k2)1/4
e−(k−k0)2/4∆k2

. (A.153)

Here, form and constants have been chosen such that the probability density

|A(k)|2 =
1√

2π∆k2
e−(k−k0)2/2∆k2

(A.154)

has the common gaussian form, normalized to 1 with the mean value

〈k〉 =
∫ ∞

−∞
dk k

∣∣A(k)
∣∣2 = k0 (A.155)

and the variance〈(
k − k0

)2〉 =
∫ ∞

−∞
dk (k − k0)2

∣∣A(k)
∣∣2 = ∆k2. (A.156)

The spread in wave number ∆k is a key parameter that can be chosen freely.
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For this choice of weight function the spatial extent of the wave packet is
characterized by the average values

〈x〉 =
�k0
m
t = vt (A.157)

which follows by insertion of (A.153) into (A.150), and

∆x2 =
〈(
x− 〈x〉)2〉 =

1
4∆k2

+
(

2�∆k
m

)2

t2 . (A.158)

It is seen from (A.158) that the spatial extent ∆x of a wave packet increases
as time goes on.

After replacement of the wave number k by the momentum variable P =
�k, (A.158) reduces to

∆P 2∆x2 =
(

�

2

)2

+
(

2∆P 2

m
t

)2

. (A.159)

It is seen that the uncertainty product ∆P∆x has its minimum value �/2 at
time t = 0 whereas it is larger at any other instant. It can be shown that this
minimum value of the uncertainty product is a unique feature of a gaussian
weight function (Schiff, 1981).

A.4.2 Time-Dependent Perturbation Theory

This appendix serves to recapitulate standard time-dependent perturbation
theory (Schiff, 1981, Merzbacher, 1970) up to the point where it is needed in
this monograph. The notation is kept as close as possible to the applications
discussed in Chapters 4–6.

Consider a system governed by a hamiltonian H with eigenstates |j〉 and
energies εj, perturbed by an interaction V which may depend explicitly on
time, V = V(r, t).

Note first that according to Schrödinger’s equation (4.33),

∂

∂t
Ψ∗Ψ =

1
i�
{
Ψ∗ [H + V(t)]Ψ − Ψ [H + V(t)]Ψ∗}. (A.160)

After integration over all spatial variables one finds that

d
dt

〈Ψ |Ψ〉 = 0 (A.161)

because of the hermiticity of both H and V . In other words, if the wave
function Ψ is normalized at one time it will remain normalized at all times.

A distinguishing feature of scattering problems is an interaction V(t) which
vanishes at times t = ±∞ and goes through a maximum at some intermediate
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time which, frequently, will be chosen around t = 0. The system may be
assumed to occupy an eigenstate |0〉 at t = −∞. Since eigenfunctions form a
complete basis set, we may expand the wave function according to

Ψ =
∑

j

cj(t)e−iωjt|j〉, (A.162)

where ωj = εj/�. The coefficients cj(t) have to be determined from Schrödin-
ger’s equation, (4.33) which reduces to

∑
j

V(t)cj(t)e−iωjt|j〉 = i�
∑

j

dcj(t)
dt

e−iωjt|j〉. (A.163)

In the absence of an interaction, cj(t) would be constant and identical with
the value at t = −∞, cj(t) ≡ c

(0)
j = δj0. Multiplication of (A.163) with 〈|

yields

∑
j

V�j(t)cj(t)e−iωjt = i�
dc�(t)

dt
e−iω�t (A.164)

or, after integration,

c�(t) = δ�0 +
1
i�

∑
j

∫ t

−∞
dt′ V�j(t′)eiω�jt′cj(t′), (A.165)

where ω�j = ω� − ωj and V�j(t) = 〈|V(t)|j〉.
We may try to expand the time-dependent coefficients cj(t) in powers of

the interaction V ,

cj(t) = c(0)j (t) + c(1)j (t) + c(2)j (t) . . . . (A.166)

Then (A.165) reduces to

c
(ν)
j (t) =

1
i�

∑
�

∫ t

−∞
dt′ Vj�(t′)eiωj�t′c

(ν−1)
� (t′) (A.167)

for ν ≥ 1, by collection of terms of equal order in V . This yields

c
(0)
j (t) = δj0 (A.168a)

c
(1)
j (t) =

1
i�

∫ t

−∞
dt′ Vj0(t′)eiωj0t′ (A.168b)

c
(2)
j (t) =

1
(i�)2

∑
�

∫ t

−∞
dt′
∫ t′

−∞
dt′′ Vj�(t′)V�0(t′′)eiωj�t′eiω�0t′′ (A.168c)

. . .
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These expressions are applied as they stand in dispersion theory, Appendix A.5
and Chapter 5. In Chapters 4 and 6 mainly the total energy absorbed by the
system due to the interaction V is of interest. Since the interaction is assumed
to vanish at t = ∞ the mean energy change is given by

T = 〈Ψ(t) |H |Ψ(t)〉t=∞ − 〈Ψ(t) |H |Ψ(t)〉−∞ . (A.169)

Insertion of the expansion (A.166) and observation of the normalization
(A.161), or

∑
j |cj |2 = 1, yields

T =
∑

j

�ωj0

([
c
(1)∗
j c

(1)
j

]
+
[
c
(1)∗
j c

(2)
j + c(2)∗j c

(1)
j

]

+
[
c
(1)∗
j c

(3)
j + c(2)∗j c

(2)
j + c(3)∗j c

(1)
j

]
+ . . .

)
t=∞

(A.170)

up to terms of fourth order in V .

A.4.3 Generalized Oscillator Strengths
for the Harmonic Oscillator

This appendix serves to illustrate one of several powerful methods of evalu-
ating matrix elements. Use is made of generating functions. An example of a
generating function has been mentioned in (A.27), Appendix A.2.1. Several
examples of the utilization of generating functions in the determination of
matrix elements may be found in ref. Schiff (1981).

A linear harmonic oscillator has eigenfunctions

|n〉 = NnHn(ξ)e−ξ2/2, n = 0, 1, 2 . . . (A.171)

where

ξ = αx; α =
√
mω0/�, (A.172)

Hn(ξ) are Hermite polynomials and Nn a set of normalizing constants.
A generating function for the Hn is given by Abramowitz and Stegun

(1964),

S(ξ, s) = e−s2+2sξ =
∞∑

n=0

sn

n!
Hn(ξ), (A.173)

where s is a dimensionless variable. Write this relation once more with another
dimensionless variable t,

S(ξ, t) = e−t2+2tξ =
∞∑

m=0

tm

m!
Hm(ξ), (A.174)
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take the product between the two relations, multiply by exp(iqx − ξ2), and
integrate both sides over x. This yields

∞∑
n=0

∞∑
m=0

sntm

n!m!

∫ ∞

−∞
dxHn(ξ)Hm(ξ)e−ξ2/2+iqx

=
√
π

α
e2st+iq(s+t)/α−q2/4α2

. (A.175)

Information about matrix elements is then found by Taylor expansion of the
right-hand side in powers of s and t. Instead of the general expansion we
consider two special cases.

Set first q = 0, so that

∞∑
n=0

∞∑
m=0

sntm

n!m!

∫ ∞

−∞
dxHn(ξ)Hm(ξ)e−ξ2/2 =

√
π

α
e2st

≡
√
π

α

∞∑
n=0

(2st)n

n!
. (A.176)

Comparison of equal powers of s and t leads to∫ ∞

−∞
dxHn(ξ)Hm(ξ)e−ξ2

= δnm

√
π

α
2nn!, (A.177)

from which Nn is determined to

Nn =
√

α√
π2nn!

. (A.178)

Next consider q arbitrary but t = 0,

∞∑
n=0

sn

n!

∫ ∞

−∞
dxHn(ξ)H0(ξ)e−ξ2/2+iqx

=
√
π

α
eiqs/α−q2/4α2 ≡

√
π

α
e−q2/4α2

∞∑
n=0

sn

n!

(
iq
α

)n

. (A.179)

Comparison of equal powers of s yields∫ ∞

−∞
dxHn(ξ)H0(ξ)e−ξ2+iqx =

√
π

α

(
iq
α

)n

e−q2/4α2
(A.180)

or, after multiplication with NnN0,

〈n|eiqx|0〉 =
1√
2nn!

(
iq
α

)n

e−q2/4α2
, (A.181)

from which (4.109) emerges by means of (4.107).
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A.4.4 Sum Rules

This appendix presents proofs of sum rules that have been utilized in various
chapters. The simplest and most well-known sum rule is the one involving
dipole oscillator strengths (4.48). Since this follows as a limiting case of Bethe’s
sum rule for generalized oscillator strengths, the latter will be derived first.

Bethe’s Sum Rule

According to (4.114) the generalized oscillator strengths defined by (4.107),

fj0(Q) =
1
Z2

εj − ε0
Q

|Fj0(q)|2 , (A.182)

satisfy the sum rule∑
j

fj0(Q) = 1. (A.183)

For a proof consider first the case of a one-electron atom. Then,

∑
j

fj0(Q) =
1
Q

∑
j

(εj − ε0)
〈
0
∣∣∣e−iqx

∣∣∣ j〉 〈 j ∣∣∣eiqx∣∣∣ 0〉 , (A.184)

where it has been assumed that the vector q points into the x direction.
Now,

(εj − ε0)
〈
j
∣∣∣eiqx∣∣∣ 0〉 =

〈
j
∣∣∣Heiqx − eiqxH

∣∣∣ 0〉 (A.185)

because of H |j〉 = εj |j〉.
The commutator reduces to

Heiqx − eiqxH ≡ [H, eiqx] =
[
p2x
2m
, eiqx

]

=
�q

2m
eiqx(�q + 2px), (A.186)

where px = −i�∂/∂x is a momentum operator.
With this we find∑

j

fj0(Q) =
�q

2mQ

∑
j

〈
0
∣∣∣e−iqx

∣∣∣ j〉〈j ∣∣∣eiqx(�q + 2px)
∣∣∣ 0〉

=
1
�q

〈0 |(�q + 2px)| 0〉 . (A.187)

Here the completeness relation
∑

j |j〉 〈j| = 1 has been applied.
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For an atom at rest we must have

〈0 |px| 0〉 = 0. (A.188)

With this, (A.187) reduces to (A.183).
For a many-electron atom the same procedure leads to

∑
j

fj0(Q) =
1
Z2�q

∑
µ,ν

〈
0
∣∣∣eiq(xν − xµ)(�q + 2pxν)

∣∣∣ 0〉 . (A.189)

Here the terms for µ = ν make up a sum of Z2 identical contributions corre-
sponding to the single-electron case. Hence the sum rule is proven if it can be
shown that the sum over µ �= ν vanishes. To this end, write the contribution
to (A.189) containing the momentum operator in the form

1
Z2�q

∑
µ�=ν

〈
0
∣∣∣eiq(xν − xµ)2pxν

∣∣∣ 0〉 =
1
Z2�q

∑
µ�=ν

〈
0
∣∣∣eiq(xν − xµ)pxν

∣∣∣ 0〉

+
1
Z2�q

∑
µ�=ν

〈
0
∣∣∣pxνe−iq(xν − xµ)

∣∣∣ 0〉 , (A.190)

which must be true since the sum is real.
Now,

pxνe−iq(xν − xµ)|0〉 = −pxµe−iq(xν − xµ)|0〉 (A.191)

for µ �= ν. This invokes the antisymmetry of the ground-state wave function
|0〉 in the electron coordinates. Then,

1
Z2�q

∑
µ�=ν

〈
0
∣∣∣eiq(xν − xµ)2pxν

∣∣∣ 0〉 =
1
Z2�q

∑
µ�=ν

〈
0
∣∣∣[eiq(xν − xµ), pxν

]∣∣∣ 0〉

=
1
Z2�q

∑
µ�=ν

〈
0
∣∣∣−�qeiq(xν − xµ)

∣∣∣ 0〉 , (A.192)

which cancels the remaining term in (A.189).

Dipole Limit

In view of (A.182), generalized oscillator strengths vanish for degenerate
states, i.e., for εj = ε0. Therefore the constant term in the Taylor expansion
for small q,〈

j
∣∣∣eiqx∣∣∣ 0〉 = 〈j |(1 + iqx+ . . .)| 0〉 (A.193)

vanishes because of orthogonality, 〈j|0〉 = 0. In the limit of q = 0, (A.182)
reduces to
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lim
Q=0

fj0(Q) =
1
Z2

2m
�2

(εj − ε0)
∣∣∣∣∣
〈
j
∣∣∑

ν

xν

∣∣0
〉∣∣∣∣∣

2

, (A.194)

in agreement with the definition of the dipole oscillator strength, (4.47). Since
(A.183) has been shown to be valid for arbitrary real values of q it must also
remain valid in the limit of q = 0. This proves (4.48).

A.4.5 Dirac Equation

The Dirac equation is a relativistic extension of the Schrödinger equation. In
its rigorous form it refers to the motion of a single electron in an electromag-
netic field. Apart from minor differences in notation and units, we follow the
presentation of Bransden and Joachain (2000).

Fundamentals

Consider first a free electron. We want to describe its motion by a an equation
of the type

HΨ = i�
dΨ
dt
, (A.195)

just as in nonrelativistic quantum mechanics, and we want to keep the mo-
mentum operator

P = −i�∇. (A.196)

The energy operator H needs to be constructed from (A.142),

H =
√

P · P c2 + (mc2)2, (A.197)

which we try to write in the form

H =
3∑

i=1

αiPi + βmc2 (A.198)

with operators α, β to be determined so that (A.197) is fulfilled. Squaring
(A.198) and equating the result with the square of (A.197) leads to the fol-
lowing conditions,

αiαj + αjαi = 0; i �= j (A.199a)
αβ + βα = 0; (A.199b)

α2
i = 1 (A.199c)

β2 = 1 (A.199d)
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These conditions are satisfied with the following 4 × 4 matrices,

αi =
(

0 σi

σi 0

)
; β =

(
I 0
0 −I

)
(A.200)

where

I =
(

1 0
0 1

)
(A.201)

and σi are the Pauli matrices

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
. (A.202)

In analogy with classical hamiltonian or nonrelativistic quantum mechanics,
we may then incorporate an electromagnetic field by means of the substitu-
tions

H → H − qΦ; P → P − q
c
A, (A.203)

where q = −e is the electron charge and Φ and A the electromagnetic scalar
and vector potential, respectively.

Plane Waves

In order to describe the dynamics of a free electron, we look for plane-wave
solutions of the Dirac equations in the form

Ψ(r, t) = Auei(k·r−Et/�). (A.204)

Here, A is a normalization constant, while u is a spinor, a four-dimensional
array defined by the eigenvalue equation(

�cα · k +mc2β
)
u = Eu. (A.205)

In the Dirac representation (A.200), the four linearly independent solutions
are

u(1) = N

⎛
⎜⎜⎜⎜⎜⎝

1
0

�ckz

E+ +mc2
�ck+

E+ +mc2

⎞
⎟⎟⎟⎟⎟⎠ ; u(2) = N

⎛
⎜⎜⎜⎜⎜⎝

0
1

�ck−
E+ +mc2

− �ckz

E+ +mc2

⎞
⎟⎟⎟⎟⎟⎠ (A.206)

and

u(3) = N

⎛
⎜⎜⎜⎜⎜⎝

− �ckz

−E− +mc2

− �ck−
−E− +mc2

1
0

⎞
⎟⎟⎟⎟⎟⎠ ; u(4) = N

⎛
⎜⎜⎜⎜⎜⎝

− �ck−
−E− +mc2

�ckz

−E− +mc2
0
1

⎞
⎟⎟⎟⎟⎟⎠ , (A.207)
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where

k+ = kx + iky; k− = kx − iky (A.208)

and

E+ =
√

(�ck)2 + (mc2)2; E− = −
√

(�ck)2 + (mc2)2 (A.209)

and

N =

√
E+ +mc2

2E+
. (A.210)

With this last relation, u is normalized according to

u+u ≡
4∑

ν=1

u2
ν = 1 (A.211)

Unlike in nonrelativistic quantum mechanics, electron spin is an intrinsic
part of the theory. Indeed, u(1) and u(2) represent electrons with two spin
orientations ‘up’ and ‘down’, respectively. In addition, there are two more
solutions, u(3) and u(4), representing negative-energy states E−.

A.5 Dispersion and Absorption

A.5.1 Drude Theory for a Dilute Gas

The Drude theory considers the interaction between an electromagnetic wave
and an atom as that between a harmonically bound electron and an electric
field that may be considered constant in space over the dimensions of the
atom but oscillating in time with a frequency ω. With the field pointing in
the z direction the equation of motion

m
d2z(t)
dt2

= −mω2
0z(t) −mΓ

dz(t)
dt

− eReE0e−iωt (A.212)

has the solution

z(t) = − e
m

Re
E0e−iωt

ω2
0 − ω2 − iΓω

, (A.213)

where ω0 is the resonance frequency of the oscillator, Γ a damping constant,
and E0 the amplitude of the field which may contain a phase and thus be
complex.

Contrary to common usage the symbol Re denoting the real part has
been inserted explicitly in the above equations. This will also be done in the
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following in order to leave no doubt about the occurrence of real and complex
quantities, respectively.

The displacement z(t) of the electron from its equilibrium position gener-
ates a dipole moment −ez(t). For a local density of N oscillators per volume
this implies a dielectric polarization P = −Nez(t) and, hence, an electric
displacement

D = E + 4πP = Re
(

1 +
4πNe2

m

1
ω2

0 − ω2 − iΓω

)
E0e−iωt (A.214)

or a dielectric function

ε =
D

E
= 1 +

ω2
P

ω2
0 − ω2 − iΓω

, (A.215)

where

ωP =

√
4πNe2

m
(A.216)

is called the plasma frequency. Here as well as in the following, the function
of the damping constant Γ is to ensure a physically acceptable behavior of
ε(ω) around zeros and singularities. It is sufficient, from this point of view,
to assume Γ to be infinitesimally small. This implies that any known and
important physical damping mechanism has to be included separately into
the general description. Note that a specific damping force is not necessarily
proportional to the velocity of the moving electron. This tends to complicate
the analysis.

It is immaterial whether damping is introduced as a property of the un-
perturbed oscillator – as has been implied here – or as a factor turning on
and off the field adiabatically such that E(t) = E0 cosωt exp(−Γ |t|).

A.5.2 Quantum Theory for a Dilute Gas

In an equivalent quantal description we may consider a one-electron atom for
simplicity. Extension to a multi-electron atom is strictly analogous to the case
considered in Sect. 4.3. We need to solve Schrödinger’s equation[

H + V(t)
]
ψ(r, t) = i�

∂ψ(r, t)
∂t

, (A.217)

where H is the hamiltonian of the unperturbed atom and V(t) = −eΦ with
Φ = −E0z cosωt the perturbation induced by the field.

The equation is solved via perturbation theory to first order. In the nota-
tion of Chapter 4 the wave function may be written in the form
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ψ(r, t) = ψ(0)(r, t) + ψ(1)(r, t) . . .

= e−iω0t|0〉 +
∑

j

c
(1)
j (t)e−iωjt|j〉 . . . . (A.218)

From (A.168d) we find

c
(1)
j (t) =

1
i�

∫ t

−∞
dt′ eiωj0t′〈j|V(t′)|0〉

= −eE0

2�
eiωj0t〈j|z|0〉

(
eiωt

ωj0 + ω − iΓ
+

e−iωt

ωj0 − ω − iΓ

)
, (A.219)

where again an infinitesimal damping constant Γ has been introduced, this
time in the field as mentioned in the last paragraph of Sect. A.5.1.

The induced dipole moment is found as an expectation value

〈−ez〉 =
∫

d3rψ∗(r, t)(−ez)ψ(r, t)

=
∫

d3r [ψ(0)(r, t)]∗(−ez)
[
ψ(1)(r, t)

]
+ conj. compl.

= Re
2e2E0

�

∑
j

ωj0〈0|z|j〉〈j|z|0〉 e−iωt

ω2
j0 − ω2 − 2iΓω

. (A.220)

Comparison with −ez(t) given by (A.213) shows that the quantal result
emerges from the classical one by the substitution

1
ω2

0 − ω2 − iΓω
→ 2m

�

∑
j

ωj0〈0|z|j〉〈j|z|0〉
ω2

j0 − ω2 − iΓω
. (A.221)

Therefore, the quantal result for the dielectric constant may be written in the
form

ε(ω) = 1 + ω2
P

∑
j

fj0
ω2

j0 − ω2
, (A.222)

with the dipole oscillator strengths

fj0 =
2m
�
ωj0〈0|z|j〉〈j|z|0〉 =

2m
�2

(εj − ε0)|〈j|z|0〉|2, (A.223)

in complete agreement with (4.48).
Eq. (A.222) demonstrates that the classical theory of dispersion translates

into quantum mechanics with the main modification that the electron can be
viewed as an ensemble of classical oscillators characterized by the transition
frequencies ωj0 = (εj − ε0)/�, weighted according to the dipole oscillator
strengths fj0, (A.223).
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A.5.3 Dense Media

In dense media the field acting upon an electron in a medium is affected by
the induced fields due to the other electrons. In textbooks of classical electro-
dynamics (Jackson, 1975), this effect is taken into account in the Clausius-
Mosotti scheme. In brief, the polarization field acting on a given electron in
a medium is split into two parts, one from dipoles in the near vicinity and
another one from those outside a sphere of a given radius. The contribution
from the latter reduces to 4πP /3, while the former can be shown to vanish
under specific assumptions on symmetry.

If those symmetry requirements are fulfilled, E = E0 cosωt in (A.213)
needs to be replaced by E + 4πP/3, and this results in the Lorentz-Lorenz
relation

3
ε− 1
ε+ 2

=
ω2

P

ω2
0 − ω2 − iωΓ

, (A.224)

which approaches (A.215) in the limit of weak polarization, ε ∼ 1.
One major weakness of this scheme is the use of the dipole approxima-

tion even for interactions at very short distances. This is circumvented in the
dielectric theory described in Chapter 5.

A.5.4 Lindhard Function of the Fermi Gas

This section contains details on calculations outlined in Chapter 5. In contrast
to other appendices and previous sections, the present one is heavily dependent
on the main text. It is recommended that the reader return to Chapter 5 and
consult the present section only after proper reference.

We start at (5.150) and transform the sum over k0 into an integral ac-
cording to (5.145). We then need to carry out the integral

ε(k, ω) = 1 +
ω2

P

2ωk

3
4πk3

F

∫
k0<kF

d3k0
(
g(k, ω′) + g(k,−ω′)

)
, (A.225)

with

g(k, ω′) =
1

ωk + �kk0η/m− ω′ , (A.226)

where η = cos θ and θ the angle between k0 and k, and ω′ = ω + iΓ .
After integration over d3k0 this reads

ε(k, ω) = 1

+
3mω2

P

4ωkk3
F�k

(
h(k, ω′) − h(−k, ω′) + h(k,−ω′) − h(−k,−ω′)

)kF

k0=0
,

(A.227)
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with

h(k, ω) =
1
2

(
k2
0 − b

a

2)
ln(ak0 + b) − 1

4

(
k0 − b

a

)2

, (A.228)

where a = �k/m and b = ωk − ω′. After collecting terms with ±k and intro-
duction of dimensionless variables

k = 2kFz; ω′ = kvFu′ (A.229)

this reads

ε = 1 +
3ω2

P

k2v2F

{
1
2

+
1
8z

[1 − (z − u′)2] ln 1 + z − u′
−1 + z − u′

+
1
8z

[1 − (z + u′)2] ln
1 + z + u′

−1 + z + u′

}
. (A.230)

Inserting u′ = u+ iΓ ′ we find

ln
1 + z − u′
−1 + z − u′ = ln

(z − u)2 − (1 − iΓ ′)2

(−1 + z − u)2 + Γ ′2 (A.231)

or, by the standard expression for the logarithm of a complex number z =
|z| exp(iϕ), i.e., ln z = ln |z| + iϕ,

ln
1 + z − u′
−1 + z − u′ = ln

∣∣∣∣ 1 + z − u
−1 + z − u

∣∣∣∣+
⎧⎨
⎩

iπ |z − u| < 1
for

0 |z − u| > 1
, (A.232)

and similarly

ln
1 + z + u′

−1 + z + u′
= ln

∣∣∣∣ 1 + z + u
−1 + z + u

∣∣∣∣+
⎧⎨
⎩

−iπ |z + u| < 1
for

0 |z + u| > 1
. (A.233)

This yields (5.155).
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B

Books and Reviews

Although I am unaware of a textbook or monograph with a similar scope,
numerous major and minor summaries have been written in which you may
find parts of the material presented in this book. Here I give a list of books and
reviews which I can recommend to the reader for further and/or alternative
study, with brief comments about their respective merits.

Textbooks

Landau and Lifshitz (1960a,b,c)

Short chapters on central topics presented in a highly original and precise
manner.

Jackson (1975)

Excellent presentation of central aspects of classical penetration theory.

Bonderup (1981)

Well-written transcript of a lecture series inspired by J. Lindhard.

Bethe and Jackiw (1986)

Concise presentation of Bethe stopping theory.

Monographs

Bohr (1948)

The classic in the field.
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Kumakhov and Komarov (1981)

Useful reference.

ICRU (1984, 1993, 2005)

Official documentation of the International Commision on Radiation Units
and Measurements.

Sigmund (2004)

Recent monograph emphasizing penetration of swift heavy ions.

Reviews

Bethe (1933), Livingston and Bethe (1937), Bethe and Ashkin
(1953)

Classic reviews.

Uehling (1954), Whaling (1958), Birkhoff (1958)

Early reviews, not only of historic interest.

Fano (1963)

This paper raised the state of the art when it appeared and is still a standard
reference.

Inokuti (1971)

A thorough study of quantitative aspects and implications of Bethe theory
with numerous instructive illustrations.

Bichsel (1972)

Handbook article with extensive tables. Superceded by ICRU (1984) and
ICRU (1993).

Sigmund (1975)

Emphasis on low-velocity stopping, a bit out of date.
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Ahlen (1980)

Emphasis on relativistic heavy-ion stopping, a bit out of date.

Ziegler et al. (1985)

You will need to look into this book if you want to know what is behind the
popular SRIM code.

Article collections

Uehling (1960), Fano (1964)

Several articles still relevant.

Gras-Marti et al. (1991)

Excellent summaries of selected aspects presented at a NATO summer insti-
tute.

Cabrera-Trujillo and Sabin (2004a,b)

Collection of articles of varying quality, but there are a few nice summaries
of recent work.

Applications

Mayer et al. (1970)

Introduction to collision physics underlying ion implantation.

Feldman and Mayer (1986)

Introduction to physical principles of ion beam analysis.

Turner (1995)

Applications in health physics.

Nastasi et al. (1996)

Modern introduction to ion implantation.
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Wieszczycka and Scharf (2001)

Ion beam therapy.

Conference series

Atomic collisions in solids (ICACS)

Biennial, starting 1965. Published in Nucl. Instrum. Methods B since 1980.

Symposia on stopping of charged particles

– Nucl. Instrum. Methods B 12, 1-191 (1985)
– Nucl. Instrum. Methods B 27, 249-353 (1987)
– Nucl. Instrum. Methods B 69, 1-166 (1992)
– Nucl. Instrum. Methods B 93, 113-226 (1994)
– Nucl. Instrum. Methods B 195, 1-231 (2002).

Ion Beam Analysis (IBA)

Biennial, starting 1973. Published in Nucl. Instrum. Methods B since 1985

Radiation Research Congress

Every four years. Proceedings published in book form.
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