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Preface and Acknowledgements

This book hasits origins in the Australasian Remote Sensing and Photogrammetry
conference series. The theme for the book, Innovations in Remote Sensing and
Photogrammetry, encompasses a broad range of topics in geoinformation and car-
tography presented over 36 papers. These are characterised in four sections: data
fusion techniques and their applications in environmental monitoring; synoptic
monitoring and data processing; terrestrial applications of remote sensing; and
marine applications of remote sensing. Color figures are an important contribution to
many of these papers. Readers are directed to the eBook version of this publication
for access to full color reprints of the relevant papers.

The book begins with an introduction to spatial data visualization, with particu-
lar focus given to attribute uncertainty, as a critical step in enabling users to assess
the suitability of the data for the intended application and to better understand the
potential limitations of their data and subsequent outputs. This is important for
policy-makers and natural resource managers whose decisions depend on spatial
information. Consequences can be severe if data is unknowingly erroneous or mis-
used. This paper provides a setting for the way in which we as spatial data providers
and users need to think about, and share information. In addition it provides alink-
age between this book and the book series, Lecture Notes in Geoinformation and
Cartography, to which it belongs.

The first section begins with a series of papers on remote sensing data fusion
techniques and their applications in environmental monitoring. Data synthesis and
integration iscritical to unlocking thefull potential of earth observing sensors. Inthe
context of landcover mapping, Ali et a. explore a method of combing both active
and passive imagery. They conclude more accurate land cover mapping is attain-
able using object-level fusion than using the pixel-level supervised process. Bunting
et a. present atechnique that uses textural information, derived from image filters,
to be used alongside hyperspectral data for the classification of broad forest types.
Poon et al. discuss the potentia for QuickBird as an effective method of extract-
ing 3D information to be used for high accuracy ground feature determination. Lee
et a. calibrate the ICESat laser data with airborne Lidar to generate new data prod-
ucts providing information about forest height and structure. Finally Sheffield et al.
describe a native woody vegetation ground data collection protocol that attempts to
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integrate the spatial resolution of several remotely sensed datasets and the spatial
variation of vegetation into a common framework.

The second section presents an overview of the use of remote sensing as a syn-
optic monitoring tool. The importance of remote sensing in its capacity to monitor
the Earth, often in near real time, requires advancing our understanding in sensor
technology and in the methods we employ to obtain and use spatial monitoring infor-
mation. The Landsat program and its data archive are reviewed by Arvidson et al.
for its utility in the analysis of globa climate and environmental change. Furby
et a. and Wu et al. discuss Landsat aternatives and quantify the effects of using
SPOT 4, CBERS and Landsat 7 SLC-off images instead of the current Landsat 5
images in the context of continuity in climate change monitoring. The potential of
the PALSAR instrument to support the inventory, conservation and management
of wetlands in different areas around the world is evaluated by Lowry et a. and a
new classification procedure for mapping terrestrial carbon within an operational,
satellite based, forest monitoring system is offered by O’ Connell et al. Processing
methods are overviewed by Broomhall et al. who propose an aerosol optical depth
retrieval method to facilitate better atmospheric correction of remotely sensed data
particularly at the synoptic resolution level. McAtee et al. present an improved near
real time atmospheric correction for MODI S data and Goessmann et a. propose an
algorithm for the detection of active fires using the MODI S sensor. Grant presents a
paper on operational land surface monitoring, while Griersmith et al. review recent
developments in meteorological remote sensing.

The third section on terrestrial applications of remote sensing provides an
overview of several key application areas; woody vegetation, landcover, wildfire,
agriculture and built environments. The variety presented in this section highlights
the enormous breadth of applications afforded by remote sensing technologies.
Barry et a. explore aremotely sensed technique with the potential for distinguish-
ing eucalypt phenology (seasonal change) from leaf stress. Vescovo et al. assessthe
utility of vegetation indices for grassland mapping, whilst Ferwerda et al. assess a
range of commonly used vegetation indices for detecting nitrogen status and crop
growth/production of wheat under arange of nitrogen fertilizer and irrigation treat-
ments. The paper by Handcock et a. asks ‘how remotely-sensed observations of
pastures in an intensively managed dairy system change in relation to intensive
management practices? and found the observed spectral response varied with the
length of time since the paddock was grazed. An overview of the Pastures from
Space program is given by Stovold et al. Hall et al. propose an algorithm to be used
in identifying a set of vine pixels with the aim to achieve improved remote viticul-
ture canopy mapping. Hempel et al. use a Generalised Additive Modelling approach
to predict weed occurrence and Eustace et al. present a semi-automated method to
map gully extent and volume using LiDAR. Land use and land cover mapping is
addressed in papers by Schroers et al. and Schmidt et a., and Mauger et al. maps
mineralogy using the three HyMap hyperspectral instruments. In contrast to the
natural environment, Fulton et al. provide a description for the automated recon-
struction of buildings using digital video imagery and photogrammetric techniques.
The issue of remote sensing and wildfire is examined in four papers. Goessmann
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et a. propose an algorithm for the detection of active fires using the MODI S sensor
whilst Martin et al. present two papers on the theme of assessing grassland curing
(or water content) for enhanced wildfire risk mapping. Cook et al. present anarrative
of bushfire remote sensing from experience gained in NSW and the ACT, Australia,
during the years 2001-2003.

The fourth section on marine applications of remote sensing begins with papers
by Kutser et al. and Thankappan et a. which explore benthic mapping methodolo-
gies based on SAR, optical sensors and ancillary datasets. Majewski et a. evaluate
methods for the monitoring the optical properties of marine water bodies, and
Metsamaa et al. evaluate the performance of the new MERIS Level 2 products in
retrieving marine chlorophyll metrics. Radlifski et al. uses the diagnostic spectral
features of oil to map oil slicks on the ocean.

In conclusion the editors wish to thank all the authors for their involvement and
for enabling us to compile their work into this book. On behalf of the authors, the
editors would also like to acknowledge and thank the generous contribution made
by the many anonymous reviewers. Without this combined effort, this book would
not have been realized.

Melbourne, Austraia Smon Jones
23rd October 2008 Karin Reinke
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Introduction: Visualising Uncertainty
in Environmental Data

K.J. Reinke and S.D. Jones

Abstract The ever-increasing use of spatial data in environmenta applications
and studies, coupled with the rapidly growing number of datasets available, the
need for effective tools that enable users to manage issues of uncertainty is vital.
This paper focuses on the visualisation of attribute uncertainty as a critical step in
enabling users to assess the suitability of the data for the intended application and
better understand the potential limitations of their data and subseguent outputs. For
policy-makers and natural resource managers whose decisions depend on spatial
information, the consequences can be severe if that datais erroneous or misused.

This paper explores some of the representation issuesthat exist with environmen-
tal data and reviews the different ways of describing and visualising uncertainty.
The review progresses from examining standard visual variables through to more
advanced, but common, static techniques such as the third dimension. The purpose
of this paper isto identify and review some common representation and communica-
tion methods available for visualising spatial data uncertainty. Emphasisis directed
to those examples that relate specifically to issues of uncertainty that commonly
occur in environmental information and which have been sourced from imaging
based technologies such as satellite remote sensing. This review isimportant, since
it is needed to provide the link between attribute uncertainty and its implementation
in software that will correctly communicate its meaning to users. Many methods
exist for presenting spatial data quality and information to users. Traditionally this
has usually been done using paper maps. However, the availability and development
of new digital techniques has increased the ways in which such data can be por-
trayed. Such advances have allowed users to better explore their data and, hence,
foster a better understanding of the problem at hand.

K.J. Reinke (=)
School of Mathematics and Geospatia Science, RMIT University, Melbourne, VIC, Australia
e-mail: karin reinke@rmit.edu.au
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XX K.J. Reinke and S.D. Jones

I ntroduction

Describing Uncertainty in Environmental Data

Attribute uncertainty refers specifically to the thematic content of the dataand isfun-
damental to any type of environmental information. The thematic domain provides
information about what occurs at different locationsin the data. Often the attributes,
which are the relevant properties of entities in the real world, are collected and
organised into themes or layers. An attribute is usually considered to be a textual
or numerical description of a defined location. The method by which environmen-
tal data are collected and/or represented plays an important role in understanding
attribute uncertainty. In some instances, what isto be collected isrelatively straight-
forward such as recording the spectral signature from remotely sensed imagery, the
pH of a stream or the number of species per hectare. Yet, in many other situations
it is defining what is to be collected and how these should be organised that is the
source of uncertainty.

Most definitions of attribute uncertainty hinge around the notion of how closely
the attribute data represents the truth, or what is accepted to be truth. In other words,
the attribute in the dataset should correspond to what is found at the same location
in the real world. However, this definition is considered too general when assigning
visualisation techniques. Table 1breaks down attribute uncertainty into five elements
and meanings based on existing spatial data quality standards (ANZLIC 2007) and
previous work by Beard (1997).

Attribute uncertainty in the data can be affected by each of the parameters
described in Table 1. With some parameters, as in the case of resolution, compl ete-
ness and accuracy, they may be strongly connected particularly in environmental
data sourced from satellite remote sensing. Resolution clearly influences the level
of accuracy and degree of completeness in the data.

The quality indicators and quality measures for attribute accuracy fal into two
general groups, depending on the level of measurement of the attribute (Chrisman
1991). Attributes that use continuous measures (for example, interval/ratio) usu-
ally express accuracy by the standard deviation (o) or the Root Mean Square Error
(RMSE). Some attributes of this nature, such as elevation, can adopt the same accu-
racy tests used to determine positional accuracy (Chrisman 1991). The other group
of attributes are those with non-quantitative or discrete values, such as categorical
data. For this type of data it is difficult to calculate metric differences, athough
fuzzy set theory may give degrees of similarity. Sometimes as Woodcock and Gopal
(2000) and others (e.g. Bordogna et a. 2006) explain, a linguistic rating system
such as absolutely right, good answer, reasonable, understandable but wrong and
absolutely wrong may be used to indicate accuracy. Yet generaly the accuracy
measurements assigned to categorical data include Percentage Correctly Classified
(PCC), Overall Accuracy (OA), Kappa (k), producer’s accuracy and consumer’s
accuracy. Most of these indices are derived from a misclassification matrix (Veregin
and Haragitai 1995) and are useful for assessing overall attribute accuracy (Veregin
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Table 1 An overview of the quality parameters that affect the thematic domain in spatial
information

Parameter Description

Accuracy Attribute accuracy refers to the attribute in the dataset, and how closely the
attribute corresponds to what is considered to be the truth at that location.

Resolution Attribute resolution is dependent on the measurement scale of the attribute. For
categorical data, resolution describes the fineness (or coarseness) of category
definitions. For quantitative data, resolution is the precision of the measurements
discernable in the data.

Consistency  Attribute consistency refersto the validity of the relationships between attributes.
Attribute consistency can also describe the appropriateness of the logic
associated with the attribute collection and definition method. Internal attribute
consistency refers to the compliance of values with attribute codes and
definitions and external attribute consistency refers to the logic and repeatability
of attribute definitions and attribution methods.

Completeness Attribute compl eteness describes the completeness to which the attributes
collected match the intended model. It can include errors of omission where the
attribute list does not account for all attributes, and commission where the
attribute list contains attributes that do not belong. Completeness is affected by
the sampling scheme, and in remote sensing by the atmospheric conditionsin the
scene (e.g. cloud cover).

Lineage Attribute lineage provides a description on the attribute content of the data, who
collected the data, the instruments used and the processes applied. Attribute
lineage is not atrue quality parameter because it is not an implicit characteristic
of the data.

1998). A measure produced by stochastic ssimulations (for example, Monte Carlo
method) uses an error model to generate equally possible but simulated outcomes of
the data. The measure is termed ‘realisations of the error model’ (Goodchild 1995)
and is suitable for both continuous and discrete attributes.

Representing Environmental Data as a Source of Uncertainty

Research to date into attribute data uncertainty has concentrated primarily on the
uncertainty generated from conversion between raster and vector structures, the mis-
classification of areal units and the uncertainty resulting from overlaying categorical
datasets. Despite progress in these areas, the visualisation and communication of
attribute uncertainty in environmental data is still of concern. Indeed, some of the
sources of uncertainty stem from inappropriate methods of data representation, an
issue that has been in existence since the creation of maps. Theissue is more funda-
mental than the intentional or unintentional misuse of visualisation methods because
it lies within the very nature of data itself. The problem surrounds the lack of com-
monly available categorical representations for entities that are ill-defined and not
uniform in properties or type across that area. The same can also be applied to
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how actual uncertainty measures associated with the data are visualised. The prob-
lem is compounded by human tendencies to generalise and classify the world into
orderly and unnatural arrangements. There are, of course, entities that occur as crisp
boundaries and/or homogenous units, many which can be found in the manufac-
tured world, such as building footprints or road networks. Other discrete features
are artificial constructs that do not exist in reality but exist in the socia and digital
realm such as the cadastre of acity, or anational park boundary. However, for those
entities that do not fall naturally within easily defined spatial, temporal or thematic
limits, they pose representational dilemmas.

Broadly, it is possible to define two types of representational uncertainty in envi-
ronmental data of which many examples may be found in Wu et a. (2006), Hunsaker
et a. (2001) and Couclelis (1996). The first may be termed category uncertainty
(Edwards 1994) which isthe degree of uniformity or purity of afeature's properties.
The second may be termed as boundary uncertainty (Edwards 1994) which concerns
the positioning and representation of ill-defined boundaries. Both are a function of
scale (or resolution). If the scale is fine enough, then theoretically, diversity in the
class should not occur and without diversity the cut-off between properties becomes
discrete. However, to work at such a scale is smply impractical. In the same way
that scale can eliminate the problem the reverseis also true. Some natural phenom-
ena continue (for example, coastline) to vary spatialy at al scales, asillustrated by
work with fractals (Mandelbrot 1982 and Burrough 1986). It is not uncommon for
diversity in class and boundary definitions to influence and exacerbate the problem
in each other, as they are not always mutually exclusive.

Category Uncertainty

The definition and classification of environmenta attributes, and how they are
collected, can sometimes be vague or ambiguous. This issue is one of attribute
accuracy; whether a location in the dataset has been allocated the correct proper-
ties. This is dependent on many factors including the intended use of a map, the
mapping conventions adopted and the nature of the phenomenon itself (Aspinall and
Pearson 1995). Thereisthe underlying philosophical argument tied to scale because
at some scale the meaning of an attribute can fall apart. For example, the concept
of ‘forest’ can become meaningless at a sufficiently large scale. It becomes a case
of not seeing the forest for the trees. Other class identification problems are based
on how the group is defined. Unless stringent criteria are provided for each group,
the allocation of space into each class may differ between people, or classes may
appear ambiguous. It is not unusual for the observers or data collectors to disagree
or produce different interpretations (Edwards 1994).

Categorical map units seldom represent homogenous areas, particularly for the
classic example of soil polygons. It is more typical for an area to exhibit multi-
ple characteristics of differing amounts rather than one uniform characteristic. Such
data are considered to be internally heterogeneous (Aspinall and Pearson 1994).
However, the degree to which the feature describes what is taken to be the truth in
traditional GIS is either a definite yes or no. As an example, the vegetation type
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is either open woodland or it is not. Categorical data suffer the most of all data
types from this type of problem. Depending on the resolution of the classes used
and on the datatype, it can impact on the severity of this problem. While more gen-
eral categories are likely to contain less attribute inaccuracy, they are more likely
to be prone to heterogeneity within classes. The reverse also applies that whilst
more specific classes are less prone to heterogeneity, they are more likely to contain
attribute inaccuracy because the chance of correct classification has decreased. As
described previously, there are methods of measuring this (for example, misclassifi-
cation matrix) and whilst the information about the purity of the map or class units
is often recorded in reports (Fisher 1991) it israrely incorporated or stored with the
digital data.

The question here, therefore, is how to represent this type of information?
Methods are available for identifying the uncertainty in categorical coverages that
arises from the purity of the classification and error models have been devel oped by
applying stochastic processes to describe class membership and within-class inclu-
sions (Wu et al. 2006, Hunsaker et al. 2001 and Goodchild 1992). Goovaerts (1997)
believes that categorical uncertainty can be addressed using the indicator approach
from geostatistics. But before these methods can become fully general and avail-
able to GIS users, Unwin (1995) believes that it will be necessary to be able to
handle entities that are themselves fuzzy. The portrayal of category uncertainty has
focussed on utilising animation techniques. Fisher (1993) used animation to visu-
alise the uncertainty as multiple realisations were calculated. Little work has been
done evaluating the effectiveness of such displays, and even fewer examples of static
displays of category uncertainty can be found.

Boundary Uncertainty

The representation of feature boundaries attempts to delineate areas of different
kinds. Representation is simplefor sharply defined features, but how can the change
between categories that are less exact be adequately represented? Where the tran-
sition zone between classes is abrupt it can be represented by a sharp line but
where the transition zone is smooth, it is much more difficult to represent, par-
ticularly when the transition may not have a linear function of change. Thisis a
commonly observed phenomenon within the natural world and such locations are
formally described as ecotones or environmental gradients.

Representation of the transition zone depends on the adjacency behaviour or rela
tionships between classes. For example, the change between Class A and Class B
might be gradual over asmall distance but between Class A and Class C, the change
might be over a much larger distance. It could even favour a particular class so the
change occurs more rapidly as Class A is approached. Burrough (1986) describes
thetransitions as being characterised by either sharp, large or trend-based changes. It
requires knowledge about the spatial relationships shared between the attributes and
how these can be stored as part of the database. Providing this type of information
would assist in creating appropriate representations such as the use of transiograms
(Li 2007).
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Burrough (1986) defines three kinds of boundaries associated with soil mapping.
These are abrupt boundaries, boundariesthat divide atrend and boundaries resulting
from sampling variation. Abrupt boundaries are where large changes in soil prop-
erties occur over short distances. Boundaries that divide a trend are used to group
continuous data into discrete classes, and thisisacommon trait of choropleth maps.
Thefinal boundary typeis created from sampling variation. It results from two simi-
lar observations being classified differently simply becausethey fall outsideacertain
class cut-off. Thisis afunction of the binary nature of maps, which does not allow
for the fuzzy nature characterised by some natural phenomena. In recognition of
this, some researchers (for example, Chen 2002, Edwards and Lowell 1996 and Zhu
1996) have suggested the use of fuzzy logic to better describe boundaries between
polygons.

Typically, boundary uncertainty has been represented by using the epsilon band
and different distribution functions can be used to locate the boundary within the
band (Aspinall and Pearson 1994). Edwards (1994) presents three different modes
of presenting boundary uncertainty generated from a number of independent inter-
pretations. Thefirst provides all interpretations on the one map, the second presents
asolid buffer for the full set of interpretations and the third uses a solid buffer plus
askeleton of the ‘average’ boundaries (Edwards 1994). Couclelis (1996) lists fuzzy
boundaries, fractal boundaries, multiple boundaries, movable boundaries (anima-
tion), ad hoc boundaries, flashing boundaries, probability surfaces, buffer zones,
bands, colour gradations, aural signals, textual warnings, multiple representations
(multiple windows) as some of the available visualisation methods. However, the
candidate stresses that there is a need for evaluating these types of displays against
the different types of boundary uncertainty before they can be confidently applied.

Visualisation M ethods

Methods for Visualising Environmental Uncertainty

The most common form of attribute uncertainty is attribute accuracy. It is the
difference between the thematic value of data compared to that accepted as the
truth or real world at the location at which the attribute was observed. Leitner and
Buttenfield (1997 and 2000) report attribute accuracy to be defined as the discrep-
ancy in categorisation or the probability of misclassification. There are two main
approachesto attribute accuracy: firstly, looking at the actual attribute accuracy mea-
surements, and secondly, how the original values vary according to their attribute
accuracy.

The application of the visual variables (Bertin 1967) to attribute accuracy has
depended on mapping the visual variable to the scale of measurement (after Stevens
1946) for a particular attribute accuracy parameter. From this, it could be proposed
that size and value are useful for portraying quantitative uncertainty values and ori-
entation, shape, hue and texture useful for nominal uncertainty measurements. With
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the exception of texture, MacEachren (1992) proposes the same visual variables of
uncertainty visualisation. Van der Wel et al. (1994) specifically associates hue, size,
texture, value and saturation for the display of attribute accuracy. Jaakkola (1996)
suggests hue for qualitative data and saturation or intensity for quantitative data
based on the theory of graphics. Clapham and Beard (1991) used size to increase
the area of a symbol proportionately to the ratio measurement of the attribute accu-
racy and suggested discrete color variables to be used to represent nominal quality
measurements. Buttenfield (2001) uses a more detailed definition that includes the
data type of the attribute accuracy that links texture and saturation, hue and tex-
ture, and saturation and point gradients to discrete, categorical and continuous data
respectively. Kurtener and Badenko (2001) and MacEachren (1992) employ color
saturation as the most logical visual variable for portraying uncertainty where pure
hue indicates high certainty and unsaturated hue is equated to low certainty. This
isin contrast with Buttenfield and Beard (1994) who found that users had trouble
associating color saturation with quality. With the exception of saturation, it appears
that there is a consensus about the likely mapping of visual variables to attribute
accuracy. However, empirical testing is required to validate these assumptions.

Empirical research hasalready beeninitiated in thisarea (for example, Aertset al.
2003). In addition, Leitner and Buttenfield (1997 2000) investigated the degree to
which value, saturation and texture when used to portray attribute accuracy influ-
enced the confidence, correctness and timing in a decision making exercise. It was
found that lighter values represented |ower attribute accuracy measurement. Almost
as effective in representing attribute accuracy was texture with finer textures being
interpreted as low uncertainty and coarse textures as high uncertainty. It was con-
cluded that these two variables were useful for assisting correct decisions whereas
certainty maps that used saturation, where greater saturation implied greater cer-
tainty, improved decision response times. MacEachren et al. (1998) also found
texture useful when embedded in a choropleth map that used value for representing
attribute data. 1t was found that users were able to recognise unreliable (ratio) data
and still perform map reading tasks associated with the actual data such as pattern
recognition. Thisisin contradiction with what is expected from the accepted appli-
cation of the visual variables but the experiment may have been limited to locating
the attribute uncertainty.

Arising from investigations into the visualisation of uncertainty, and made pos-
sible through advancements in computer graphic technologies, MacEachren (1995)
suggests further additions to Bertin's visual variables. They are essential variations
in focus that MacEachren (1995) terms clarity and are useful methods for creating
graphical ambiguity. It is suggested there are three states of clarity evolving from
initial studiesinto focus by MacEachren (1992). They include:

e Crispness. Thisvisua variable deals with the sharpness of map features. Details
on the map may be de-focused by the spatial filtering of the edges (that is, contour
crispness), internal fill (fill clarity) or both. The greater the visua fuzziness or
fading of the feature, the greater the associated uncertainty. This can be applied
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to al datatypes. McGranaghan (1993) believes crispness can portray qualitative,
and most likely, quantitative information.

e Resolution. This visual variable shows change in spatial precision (for exam-
ple, display size or grid size) and is concerned with the geometry of the object
rather than its attributes. It is similar to texture and can produce the impression
of zooming in and out.

e Transparency. This visual variable employs effects that are representative of fog
or cloud. MacEachren et a. identified fog as having intuitive appeal for repre-
senting data reliability by obscuring uncertain map objects with fog. The degree
of visual ambiguity isimplied by the amount of fog present. Bastin et al. (1999)
used tiny clouds to surround certain values in graphs to imply vagueness.

Plewe (1997) applied these new visual variables for portraying the uncertainty
surrounding heterogenous classes and uncertain class boundaries. Hansen (1998)
used crispness to qualitatively display the fuzziness between non-discrete feature
boundaries. Plewe (1997) Aspinall and Pearson (1994) and Edwards (1994) used
resolution, specifically line thickness, to portray transitional boundaries between
classes. Both methods suggest uncertainty about the boundary but provide no detail
about the magnitude of that uncertainty or transitions in much the same way as
dashed lines indicate inferred boundaries in geological maps.

Symbol presence or absence (McGranaghan 1993) has also been added to the list
of visua variables. Its usefulness as a communication tool increases when driven
by user interaction or thresholding (Reinke et a. 2006). In a fuzzy context, they
serve as the extreme endpoints for the gradual degrading of features in applications
of clarity. In other words, the object continually fades by varying the saturation of
the background and symbols in the display until the object disappears from view.
Clarke and Teague (2000) observe that fading is particularly suited to attribute
uncertainty. The use of presence/absence as a visualisation technique relies on ani-
mation (McGranaghan 1993) and user interaction. Often the complete benefit of a
single visual variable cannot be realised and it may prove fruitful where the vari-
ableisused in conjunction with another variable or display technique. For example,
Leitner and Buttenfield (1997) found color saturation and focus useful for depicting
uncertainty.

The visual variables that make up color are considered to be useful for bivari-
ate mappings of uncertainty and spatial data. Hunter and Goodchild (1996) found
hue (used to portray the data) and saturation (used to portray the uncertainty) to
be a useful combination, usually with strong colors having high quality and pale
colors having low quality. Color ramps that vary continuously or as discrete hues
across transitional zones can aso indicate ambiguity at boundaries (M cGranaghan
1993). Clarke and Teague (2000) support this, finding brighter colors indicate less
uncertainty. Color guidelines by Brewer (1999) have shown how color in bivariate
mapping can be successfully applied. However, other empirical investigations have
suggested that the use of color characteristics to simultaneously represent the data
and the attribute accuracy generally caused users to have difficulty in distinguishing
between them (MacEachren et al. 1998 and MacEachren 1995).
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Digital imaging technology has enabled color transformations between red,
green, blue (RGB) systems and their hue, value (or intensity) and saturation (HVS),
hue, lightness and saturation (HL S), cyan, magentaand yellow (CMY') components.
Hue is used to convey nominal data, together with value and/or saturation to con-
vey quality information (Van der Wel et al. 1994). The quality information becomes
embedded within the attribute information upon conversion from the HV'S compo-
nents back to RGB creating a bivariate map (for example, Jiang et al. 1995). Whilst
Clarke and Teague (1998) and Jiang et al. (1995) both used HV'S systems for rep-
resenting uncertainty, the increase in complexity should not be overlooked (Van der
Wel et al. 1994). In contrast, Schweizer and Goodchild (1992) observed no intuitive
association between data quality and value. Once value and saturation have been
re-transformed into the RGB system, there is no concept by the user of uncertainty
asalinear progression

Other types of bivariate mapping exist apart from changing color characteristics.
By applying line thickness to isolines, Beard and Mackaness (1993) were able to
convey both actual data and reliability simultaneously. Another type of bivariate
mapping employed hue to represent the actual data and opacity or size to depict
the uncertainty (Drecki 1999, 2000). The first method uses low opacity to refer to
low reliability and high opacity to refer to high reliability of a classified satellite
image. The second method used the variable size to communicate the classification
accuracy. Each pixel or cell was represented by a single square symbol (of a partic-
ular hue) its size being dependant upon the level of uncertainty. The maximum size
was equal to pixel size and indicated no uncertainty. Smaller squares indicated poor
quality. Thus, an area on the map that was of poor quality would be mostly absent
of color and usualy ‘filled-in" with.

The use of the third dimension is another accepted method for portraying the
magnitude of attribute uncertainty. It is particularly useful because when used in
true 3D it allowsthe attribute component of the datato be shown in conjunction with
the associated uncertainty. This method is well suited to continuous environmental
data (e.g. temperature) as it allows the attribute component to be draped over the
continuous landscape. Van der Wel et al. (1994) and Fisher (1992) use high z values
toindicate areasthat have high levels of uncertainty. Thus, plateausindicate uniform
accuracy, elevated peaks indicate areas of poor accuracy and low elevation indicate
areas of good accuracy. Kraak (1994) contemplates both the positive and negative
implications of allowing usersto interactively exaggerate the uncertainty (X) axis as
is available in many 3D modules of current GIS. Uncertainty relief maps can also
be created using shading effects to achieve realistic 3D visualisations.

The use of perspective is not immune to interpretation problems because of dis-
tortion and obscurity problems associated with displaying a 3D image on a 2D
screen. Thus, users can have trouble gathering useful information from them. To
counteract this researchers (for example, Bastin et a. 1999) use linked plans and
contour maps to preserve all information.

The methods used to visualise attribute accuracy are often a function of scale
or resolution of the data. Visualising attribute accuracy specifically refers to the
resolution of the data, whereas attribute accuracy can vary according the resolution
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of the data. This is because of resolution requirements of the application. As such,
attribute resolution is critical to map users. Attribute accuracy isonly affected where
the resolution is lower than the required scale. In such circumstances, this needs
to be visualised appropriately. Attribute resolution refers to the smallest attribute
uni, which can be observed. For discrete attributes, resolution refers to the number
of categories, ranges or ranked classes. For continuous attributes, resolution is the
equivalent of spatial resolution as resolution relates to the smallest unit able to be
observed or represented and the precision of the measuring instrument. For remotely
sensed data, this relates to the spectral and radiometric resolution of the sensor on
board the satellite. In addition, to capture scale or resolution, the display scale will
affect the size of the features (MacEachren 1995).

Traditionally, map scale was reported in one of three ways (Monmonier 1996).
The first as aratio scale (for example, 1:50,000), the second as a verbal scale (for
example, one centimetre represents one kilometre) and the third as a graphic scale
(for example, scale bars). The most effective method is the graphic scale because
enlarging or reducing the map subsequently results in the graphic scale also being
enlarged or reduced. However, with the advent of digital technologies, ratio and
verbal scales are updated on the fly as the user zooms in or out of the display (for
example, ArcGIS9). The replacement or addition of agraphic scale would neverthe-
less be considered an improvement because of the ease of understanding they offer
over ratio and verbal scales. This still only considers scale in terms of the display
scale rather than providing information about the capture scale for the data. Source
scale becomes important particularly where multiple datasets are being utilised. In a
display context, ESRI’s ArcGIS 9 product provides user control over the maximum
and minimum scales a dataset may be shown. As a minimum, source scale infor-
mation should be readily available to the user. In a sense, resolution is a part of the
lineage accompanying the data. This merely emphasises the need for lineage to be
an accessible adjunct to the data.

As stated previously, information often consists of multiresolution data. That is,
the resolution of the data is not homogenous. To convey this variation, the pres-
ence/absence variable could be used such that when auser zoomsin beyond acertain
scale features visually disappear or appear as provided in the display thresholding
of ArcGIS 9. Similarly, feature resolution or crispness (MacEachren 1995) for dis-
crete objects could also be applied in conjunction with zooming facilities. Other
display techniques could use multi-legends to illustrate the changes in source scale
of the data. Because scale is a ratio, the visual variables of value but less so size
because of the impact on the geometric resolution could be applied to depict differ-
ences in conjunction with alegend. An approach to show spatial variation in source
scale for multinomial or continuous features would be to superimpose a grid where
each grid cell size is representative of the source scale. Johnson (1995) introduced
metapictures for satellite data as thumbnails of the data that communicated sum-
mary information including the resolution of the data. Part of an image is shown at
full resolution as athumbnail to convey resolution information.

Beard's (1997) definition of resolution separated discrete and continuous data
into the number of classes and precision of the measuring instruments. It is possible
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to extend this definition to include information about class homogeneity and, in the
case of interpolated continuous values, the number of sites used during the inter-
polation process. Both additional examples can be considered a type of attribute
resolution tied in closely to lineage (and subsequently accuracy). Most of thisinfor-
mation may be documented within the lineage report; however, information such as
site locations used in the interpolation may be more appropriately communicated
to the user using map form to indicate spatial distribution. For example, Stephan
(1995) provides an additional window to the display that shows the distribution
of sampling stations in conjunction with the interpolated data. Likewise Beard and
Mackaness (1993) showed the location of sample points as asimple method of visu-
aising the reliability of the interpolated values alowing the user to toggle-on and
toggle-off point locations. They further observe that it would be possible to graph-
ically code the sample points according to lineage information providing the user
with even more uncertainty information by which to assess the quality of the output
interpolation.

Attribute resolution involves more than just the geometric scale at which the data
was captured. It is equally as important to describe the details of the classifica-
tions and measurements. Many GIS provide the ability to interactively manipulate
the range and classification of data. In other words, users may adjust the attribute
resolution of datato coarser resolutions or classify continuous data. Increasing user
control in datamanipul ation suggests that knowledge about the original attribute res-
olution would be useful for making classification decisions. In particular, attribute
resolution, whichislinked to class homogeneity, can bevital in assessing the fitness-
for-use of data. Such an example can be found in soil data types where the type of
inclusions and/or rate of change across the boundary that occur about a soil polygon
is of the utmost importance. Attribute resolution isaway of assessing the suitability
of aclassification.

A variety of methods have been used to portray boundary and class accuracy
when it is actually resolution that is being represented. Although, the distinction
between resolution and accuracy is usually difficult to make as accuracy is par-
tially a function of scale. There is considerable research dedicated to improving
ways of recording and subseguently representing continuous or heterogeneous data.
The most common approach to date appears to be fuzzy memberships. While this
information can improve the fineness of classes, the attribute resol ution information
must till be available to the user. Where traditional discrete categories were rela-
tively easy to report, fuzzy memberships may involve several values at the class or
individual featurelevel. These are usually available in the form of matrices but alone
do not provide information about their spatial distribution. In this sense, resolution
may be considered internal classresolution (that is, homogeneity) and between class
resolution (that is, boundary uncertainty). Hunter and Goodchild (1996) cite work
whereby the description of homogeneity variation is communicated using variabil-
ity diagrams. The value of these approaches is that resolution is shown implicitly
rather than explicitly. As such the user is simultaneously viewing the data and its
resolution.
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Summary

This paper serves as a review by which to begin classifying visuaisation tech-
niques and assigning them to different uncertainty elements found in environmental
data. It was suggested that key elements of attribute uncertainty should include
accuracy, resolution, consistency, completeness and lineage. Although it was gen-
erally found that measures were supplied for attribute accuracy and resolution only.
It also is apparent that the representation of the data itself could be a source of
attribute uncertainty, particularly for features that had poorly defined boundaries
and non-homogenous characteristics. How the data occurs as a natural phenom-
ena, how thisis arranged in a spatial framework and the levels of measurement for
the attributes are all important considerations when choosing a representation for
attribute uncertainty.

Different strategies may be used to assign different symbolisation and visuali-
sation techniques to environmental data. Those employed vary depending on the
phenomena being mapped and the level of measurement. Developments in com-
puter graphics have improved ease of use and opened up new ways in which the
traditional visual variables are used, as well as creating new visualisation methods
entirely. This progress, coupled with advances in understanding the human cogni-
tive and perceptual responses to these types of displays, will continue to promote the
emergence of new types of representation of environmental data and information.
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A Comparison of Pixel- and Object-Level Data
Fusion Using Lidar and High-Resolution
Imagery for Enhanced Classification

S.S. Ali, PM. Dare, and S.D. Jones

Abstract Fusion of multisource data is becoming a widely used procedure due to
the availability of complementary yet dissimilar datasets. The combined use of high
spatial resolution imagery and lidar (light detection and ranging) derived digital sur-
face models (DSM) can reduce interclass confusion in the fusion process. However,
pixel-level data fusion does not take spatial information into account. Pixels from
multisource images are fused depending on their spectral values, regardless of their
neighbour values. Object-level fusion overcomes this shortcoming by segmenting
multisource images into meaningful objects and then performing fusion with the
information imbedded into their topology. This paper compares the results of the
pixel- and object-level fusion of a lidar derived DSM with colour aerial photog-
raphy and multispectral imagery. The comparison is based on the assessment of
the classification accuracy where reference information has been collected through
field survey. Pixel-level fusion of the colour photography and the DSM exhibits bet-
ter results than sole classification of colour photography. The same result is found
for the multispectral imagery and the DSM. Object-level fusion achieves superior
results compared to all pixel-level classification of tested categories. Object-level
fusion of the colour photography and the DSM shows the highest classification
accuracy (91%). Multispectral imagery and the lidar derived DSM achieve 90%
classification accuracy. These resultsimply that the high spatial resolution of colour
photography has a large influence on the fusion process perhaps greater than the
spectral and radiometric resolution of the multispectral imagery.
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Airborne remote sensing provides valuable data in various forms and scales for
mapping and monitoring land cover features. Its use has increased dramaticaly
in recent years due to availability of high-density lidar and high spatial resolution
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digital imagery. Hence, greater attention is now being given to the use of multisource
datafusion and classification. The underlying assumption isthat classification accu-
racy should improve if additional features are incorporated (Tso and Mather, 2001).
Image fusion and subsequent classification can be performed at pixel-, object or
feature- and decision-levels (Pohl and van-Genderen, 1998; Schistad-Solberg et al.,
1994). Pixel level fusion operates at the lowest processing level, which refers
the merging of measured physical parameters. This fusion is very sensitive to
geo-referencing and pixel spacing. The main drawback of thisfusion isthat a multi-
dimensional feature space does not make use of any topological information in the
imagery (Blaschke and Strobl, 2001). In the fusion process it is very likely that
neighbouring pixels of the source images belong to the same land cover class due
to spatial patterns of differing complexity or texture. Thus, the output from pixel-
level processing algorithms may possess some uncertainty (Townshend et al., 2000).
Object-level image fusion overcomes these difficulties by segmenting multisource
imagesinto meaningful multi-pixel objects of various sizes, based on both the spec-
tral and spatial characteristics of groups of pixels. Then the segmented image objects
are classified using expert knowledge within afuzzy logic and hierarchical decision
tree (Schiewe et a., 2001). In object-level fusion, a set of geo-referenced data from
different sources defines the topology of image objects, and allows these different
types of data to be brought together in a concrete local relation. An advantage of
this process is that image objects can be extracted from one data layer, and subse-
guently in the image analysis step those image objects are able to take into account
the attributes of the other data layers (Baatz and Schape, 2000). The application of
pixel-level fusion and subsequent classification have been showing very unsatisfac-
tory resultswhen applied to high-resolution images (Blaschke et al., 2001; Rego and
Koch, 2003). In high-resolution imagery each pixel isrelated not to the character of
object or areaasawhole, but to the components of theimage. Asaresult, many more
classes are often detected when a classification is performed (Smith et al., 2000).

The overal objective of this research, was to evaluate whether high resolution
airborne optical imagery and/or small footprint lidar data could be used as tools,
either singularly or in combination, for semi-urban landscape feature extraction.
It focused on an agricultural-based semi-urban settlement in southern New South
Wales (NSW), considered typical such settlements across large areas of Austraia.
The study aimed specifically to evaluate the results of the pixel- and object-level
fusions used to integrate the information content of the colour aerial photograph
with lidar derived DSM and multispectral imagery with lidar derived DSM. The
comparison of these two approaches draws upon a quantitative assessment of the
quality using statistical, visual and graphical analyses of the results.

Background

Although aerial photography has been used as a mapping tool for a century
(Baltsavias, 1999), the fusion of aerial photography and lidar data has only been
possible in the past few years due to advances in sensor design and data acquisition
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and processing. The following sections therefore provide a brief overview of the
different levels of image fusion as well as the different sensor fusion examples.

Imagery and Lidar Data Fusion

Lidar is a recent development in remote sensing with great potential for creat-
ing highly accurate DSMs. Three-dimensiona point clouds describe the range
(distance) of earth surfaces. Lidar provides very accurate position and height infor-
mation, but less direct information on the object’s geometrical shape. High spatial
resolution imagery offers very detailed information on objects, including spectral
reflectance, texture, and shape metrics. Combining these two kinds of comple-
mentary datasets is quite promising for improving land cover mapping (Tao and
Yasuoka, 2002). There have been several attempts to fuse lidar and high-resolution
imagery for mapping land cover in the past. The idea of exploiting the complemen-
tary properties of lidar and aerial imagery was first initiated by Schenk and Csatho
(2002) to extract semantically meaningful information from the aggregated data for
a more complete surface description. Haala and Brenner (1999) combine a lidar
derived DSM with three colour spectral bands of aerial imagery. In this context, the
most problematic task is to separate trees from buildings with low-resolution lidar
dataisgreatly facilitated by the presence of anear-infrared band. Rottensteiner et a.
(2004) use alidar derived digital terrain model and the normalised difference vege-
tation index (NDV 1) from multispectal image to detect buildingsin densely built-up
urban aress.

Pixel- and Object-Level Fusions

The most straightforward approach to deal with the pixel-level image fusion prob-
lem is simply to extend the dimension of the data vectors to include each source.
This approach is known as the stacked-vector method (Tso and Mather, 2001). Each
data vector can be used together as an input to any pixel-based classifier such as
unsupervised or supervised classification. Unsupervised techniques detect clusters
of pixelsin feature space and categorize the pixelsto the clusters based on the mini-
mum distance criterion. Haalaand Brenner (1999) apply unsupervised classification
based on the ISODATA (lIterative Self-Organizing Data Analysis Technique) algo-
rithm to the three bands of a CIR image and a normalised DSM. In this process,
elevation data plays a role in separating different classes but automatic interpre-
tation of the relevant classes is difficult. A rule-based classification scheme was
applied to fuse lidar data and multispectral images (Rottensteiner et a., 2004). In
this scheme Dempster-Shafer theory had been applied to delineate building regions,
combining NDV | and the average relative heights to distinguish buildings from other
objects. Mass (1999) applies a supervised maximum likelihood (ML) classifier on
lidar derived DSM to extract different land cover features.
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Object-level fusion starts with agrouping of neighbouring pixelsinto meaningful
objects. Fusion isthen achieved through utilising different rule-based classifications.
Geneletti and Gorte (2003) developed a sequential application of object-based seg-
mentation and classification for fusing Landsat TM data and aerial photographs. In
this application they used a region-based segmentation technique to segment the
aerial photographs. Then they employed a dedicated set of rulesto classify the seg-
mented image with a reference Landsat TM image. Hofmann (2001) put forward
the idea of the object-level approach to detect buildings and roads from high res-
olution satellite imagery using additional elevation information. Object-level data
fusion shows very promising results in recent years. Ali et a. (2005) applied an
automated object-level technique to fuse high-resolution imagery and lidar data. In
this process, a multi-resol ution segmentation technique was used to segment multi-
source images, after which a hierarchical decision tree was used to fuse segmented
objects.

In the present study, acomparison of pixel- and object-level datafusion and sub-
sequent classification of lidar and high-resolution imagery is discussed. Comparison
is made using metrics of classification accuracy, and suggestions are made regarding
the best land cover classification of the study site, the town of Mathoura, NSW.

Study Area and Materials

To evaluate the fusions of both optical imagery and the lidar data for classifying
semi-urban structures, an area of 1 x 1 km in southern New South Wales was
selected. The study areaissituated in the small town of Mathoura, and comprisesthe
central portion of the town and contains most typical semi-urban landscape classes.
Buildingsin thisareahave avery distinct shape and their sizesrange from very large
to small. This area has a mixture of vegetation, open space and road networks. This
area was selected due to repeated coverage of alarge data sets combine with aerial
images and lidar data.

Lidar Data

The lidar data used for this project was acquired by AAMGeoScan (now
AAMHatch) in May 2001. The lidar system used was the ALTM 1225, which
operates with a sampling intensity of 11000 Hz at a wavelength of 1.047 pm.
Approximate flying height of this sensor, was 1100 m and the laser swath width was
800 m. Vertical accuracy was0.15 m (10), theinternal precision was0.05 m, and the
original laser footprint was 22 cm in diameter. The origina lidar dataset was pro-
cessed by AAMHatch and provided to the Victorian Department of Sustainability
and Environment (DSE). The provided data were two separate files representing the
first and last return point clouds. The original lidar data had point spacing in the
order of 16 points per m? and was resampled to a1 m grid.
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Multispectral | magery

The multispectral imagery was captured over the study area using an Ultracam-
D with a calibrated focal length of 101.400 mm. Three colour (red, green and
blue) and infrared (IR) band images were collected with a 28.125 um pixel size.
The radiometric resolution of the images was 16-bit. This enhanced radiomet-
ric range captures detailed information of the land cover features. As a result, in
extreme bright and dark areas we still mange to get redundant information, which
is beyond what is visible in images with lower radiometric resolution (Leberl and
Gruber, 2005).

Colour Imagery

The colour image data, collected by AEROmetrex, was acquired using aZeissLMK
152 camera with a calibrated focal length of 152.261 mm. It was captured at an
approximate flying height of 850 m above the ground level equating to an average
scale of 1:5500, which waslater scanned at 15 jum to provide apixel sizeof 8.25cm.
The photographic images were orthorectified with the help of accompanying exte-
rior orientation parameters (Xo, Yo, Zo, w,b,k), which were captured using onboard
GPS and IMU sensors.

Fieldwork carried out in the study area in July 2005 and April 2006 allowed
the collection of ground data and the setting of a suitable land cover classes. The
ERDAS Imagine 8.6 was used for image processing and pixel-level fusion, whereas
eCognition Professional version 4.0 was used for the object-level fusion.

M ethodology

Following data collection, the optical imagery and the lidar data were fused pri-
marily to extract landscape features of the semi urban area, so that the comparative
fusions could be better evaluated. The proposed comparative study of pixel- and
object-level fusion is based on the use of high-resolution imagery and lidar derived
DSM. The flowchart in Fig. 1, describes the mgjor steps, which were performed
through this data fusion project.

Geometric Corrections

The aignment of the supplied multispectral and colour imagery was not perfect.
The lidar data was considered more stable in positional accuracy due to the avail-
ability of an accuracy report for the lidar mission. But the main constraint was that
the lidar geometry couldn’t be used to align the other images due to the imprecise
shape and size of common visible features in both images. In this context, we used
ground control points to align the optical images. An optimum number of ground
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Fig. 1 The comparative approach of pixel-and object-level datafusion

control points were collected from the study area using differential GPS. The geo-
rectification of multispectral and colour imagery was independent from each other.
Therefore, their accuracy level varied but consistently fell within the desirable limit.
A third order polynomial transformation was applied to rectify the multispectral and
colour imagery. The bilinear interpolation resampling technique was used to bring
all the images to a common spatial resolution of 0.5 m.

Some temporal effects were expected in the data fusion process, due to the dif-
ferencesin acquisition time of the images. These were the only available images for
this data fusion project; therefore we had to compromise on this issue. The study
areaisaslow growing regiona town therefore within thistime frameit had not seen
many changes. However, some temporal effects were found, due mainly to moving
objects, which is always a challenge in high-resolution data fusion.

Normalized Digital Surface Model (nDSM) Generation

Lidar first and last return height data were used to generate the normalized digital
surface model for the study area. The last return of the lidar normally represents the
digital terrain model (DTM) and thefirst return as the digital surface model (DSM).
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A height difference between the DSM and DTM represents the absolute height of
the features. A height threshold was applied to remove any features <2.0 m close
to the terrain surface. This normalized DSM aong with multispectral and colour
images was used in the data fusion process.

Pixel-Level Fusion

A pixel-level approach was implemented to fuse the optical imagery and lidar
derived nDSM. Two stacked-vector data sets were created, one nDSM with the
three-band colour image and then the nDSM with the four-band multispectral image.
An independent supervised classification procedure was then applied to them sepa-
rately. First, a set of suitable target classes was established after careful analysis of
the landuse maps and aerial photographs.

In particular the following eight land cover classes were identified: open-
spacelroad, grey roof, grey roof shadow, colour roof, colour roof shadow, grass,
tree and tree shadow. For each of these classes a set of ground data was collected,
approximating to a stratified random criterion. The ground data plots covered nearly
5% of the total areato be classified. The ground data samples were then split into
two subsets: the training data and the test data. The training data were used to create
a spectral signature for each of the classes. Using the test data, accuracy assessment
was performed on all classified images, cal culating the relevant confusion matrix.

The training statistics show (Table 1) that the training areas contain an ade-
guate number of pixels and they are separable in spectral bands and nDSM layer.
Thisissue isimportant in supervised classification to avoid the misinterpretation of
land cover features for similar spectral signatures. The degree of interclass spectral
variability for each landscape class has been assessed through the computation of

Table 1 Derivation of training statistics used of 4-band multispectral image and nDSM data for
maximum likelihood classification

Tree Color roof Grey roof
Class shadow Tree  Grass shadow Colorroothadow Greyroof Roads

Pixel 853 1091 2614 164 344 607 4778 10171
count
Band1l Mean 47823 86821 13256 650.78 15742 763.47 41526 2752.0
Sh* 140.97 17065 29451 16550 593.44 190.82 1480.4 881.67
Band2 Mean 286.70 476.46 65387 34747 67333 42980 20575 1246.6
Sh* 6097 7401 8618 77.60 199.99 91344 727.89 348.01
Band3 Mean 312.06 364.22 44459 37031 60523 41599 13352 81421
Sh* 3287 3124 3844 69.71 15362 54.06 457.12 168.07
Band4 Mean 806.84 23149 23352 1043.0 23238 93323 2664.8 2014.1
Sh* 191.04 32205 276.35 180.83 584.77 181.14 842.61 603.148
nDSM Mean 0.15 5.36 0.07 0.80 3.73 0.32 3.96 0.00
SD* 0.86 3.27 0.78 1.82 1.56 110 2.07 0.03

*SD = Standard deviation



10 SS. Alieta.

training statistics as measured by spectral profiles. Table 1 summarises the train-
ing statistics of the sample classes. The mean and variance are the indicators of the
spectral independence. The mean and variance of the training features for 4-band
multispectral dataindicated that the main groups such as roofs, and trees were bet-
ter distinguished than the minor groups, such as different categories of shadows.
Spectral independence was also examined by analysing spectral signatures for each
of the candidate landcover classes. A scatter plot of the training signatures revealed
that they were spectrally different from each other. Statistics were generated for the
supervised classification of the integrated layers of colour imagery and nDSM data.
The distance between signatures was assessed through both tests on their statistical
separability and computation of contingency matrices (Richards, 1993). The clas-
sification was performed using a maximum likelihood classifier with equal prior
probabilities.

Object-Level Fusion

Object-level data fusion requires the identification of meaningful objects over the
multisource images and classifying them with class attributes. Therefore, the overall
procedure consists of a sequential application of segmentation and classification.
Object-level fusion wasimplemented on two sets of images, the multispectral image
and nDSM and then the colour image and nDSM.

| mage Segmentation

The basic processing units of object-level fusion are segments or image objects, and
not single pixels. In the segmentation process, for each image object a meaningful
statistic is calculated in an increased uncorrel ated feature space using shape, texture
and topological features. This information improves the value of the final classifi-
cation and cannot be fulfilled by pixel-level approaches alone (Benz et al., 2004).
Initially image-object primitives are created through multi-resolution segmentation.
These objects are polygons of roughly equal size exhibiting interior homogeneity.
In the segmentation process, the scale parameter determines the maximum allowed
heterogeneity for the resulting image objects. The size of the image objects varies
by modifying the value of the scale parameter. For homogeneity, the relative weight
appliesto spectral versus shape criteriato reduce heterogeneity. Here shape, smooth-
ness and compactness criterion are applied in a mixed form to define homogeneity
for the image objects (Table 2).

For multispectral and nDSM data fusion, equal weight was assigned to each of
the multispectral bands. This emphasis was chosen because of the lack of colour
homogeneity visually observed within the same features in the image. On the con-
trary, the lidar derived nDSM layer had more homogeneity in grey level; therefore
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Table2 Segmentation parameters for image and nDSM fusion

Parameters MS & nDSM fusion Colour & nDSM
Scale factor 25 25

Shape factor 0.75 0.15
Compactness 0.3 0.6
Smoothness 0.7 04

more weight was given to this layer. By visually interpreting different image seg-
mentation results, a scale parameter of 25 was chosen to create local homogeneity
and to keep global heterogeneity. The larger than 25 scale parameter had coarse seg-
ment size roughly equal to 40 pixels per feature. The large segment includes more
detail within afeature and dilutes separability among the features. Therefore, appro-
priate feature extraction was not achieved with this segmentation. The same problem
arose for the smaller than 25 scale parameters. Small segments only include part of
a feature and may highlight noise within a feature. This segmentation behaves like
apixel-level approach and is not suitable for further fusion. Similarly on atrial and
error basis, a ratio of smoothness to compactness weight was defined. Here, 3:7
was specified (Table 1), emphasizing the discrete, compact nature of building roofs.
A higher smoothness emphasis would be used to define objects observed to have
greater variability between features (Baatz et al., 2004). The compactness weight
made it possible to separate objects that had quite different shapes but not neces-
sarily agreat deal of colour contrast, such as building roofs versus roads within the
study area.

ClassHierarchy

The class hierarchy isthe frame of object-level fusion used to create the knowledge
base for the data fusion task. It contains all classes and is organized in a hierarchical
structure (Baatz et al., 2004). The class hierarchy passes down class descriptions
from parent classes (Level I) to their child classes (Level I1). It reduces the redun-
dancy and complexity in the class descriptions and creates a meaningful grouping
of classes.

Figure 2 illustrates the class hierarchy of the object-level fusion, which was
developed through utilizing similar legend of the pixel-level fusion. Class hierarchy
is defined as an inheritance hierarchy, which refersto the physical relations between
the classes. In Level |, natural, manmade and obscure features are the child class of
whole segments and they become parent classes of vegetation, infrastructure, house
and shadow classes (Fig. 2). Later in Level 11, the vegetation class becomes a par-
ent class with grass and tree child classes. Within this class-hierarchy each classis
described either by one or more fuzzy-membership functions, a nearest neighbour
classifier or by a combination of both. Membership functions are determined by the
semantic import model, which is based on the expert knowledge of the features.
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Fig. 2 The class hierarchy for the object-level fusion

A stepwise refinement of the class-hierarchy was achieved using the inheritance
mechanism.

Fusion Based on Spectral Properties

Since the generated image objects hold more spectral information compared to
pixels digital numbers, the object-level fusion offers a huge variety of deriva
tive spectral features (Hofmann, 2001). Brightness and spectral ratios of the image
objects were calculated using all image layers. Textural features were calculated
using standard deviations of layer values, spectral mean values of sub-objects,
and average spectral differences of sub-objects. Contrast information were gener-
ated though spectral differences to neighbouring objects and super-objects. Context
related features included mean spectral differencesto a given class.

For the colour imagery, natural and manmade classes were separated by a fuzzy
membership description of the mean and the ratio of the green spectral band. In
contrast, the normalized difference vegetation index (NDVI) was utilised in the
multispectral image.

Colour Surface’ was the sub-class of the manmade class. This class was defined
by the object’s brightness and the ratio of the blue band. ‘ Grey Surface’ was defined
by the object’s brightness and the ratio of the red band. Shadow was the subclass of
obscure class and is defined by the brightness. An image object was a shadow if its
brightness was less or equal to 70.
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Fusion Based on nDSM Properties

In object-level data fusion, the nDSM property can be modelled by describing the
difference in elevation to neighbouring objects. In this research, houses and infras-
tructures were discriminated by the mean difference of the nDSM layer. An image
object was represented asroad if its mean difference of nNDSM was smaller or equal
to 1.2 m. On the contrary, an image object was represented as house if its mean
difference of NDSM was higher than 1.2 m. The vegetation class was further sub-
divided in tree and grass classes. The nDSM layer was utilised to discriminate tree
and grass by their relative height difference.

Fusion Using Contextual Information

Asshadows aretypically created by elevated features, most of them can be detected
and described by their source features. Additionally, shadow areas can be clas-
sified according to their spectral properties. Pixel-level classification using these
properties showed unsatisfactory results (Dare, 2005). Thus it is useful to classify
shadows by describing their contextua criteria and subsequently by their different
spectral properties. Therefore, depending on the type, shadows may inherit their
spectral properties from an appropriate super-class and then be identified by their
surroundings. The logic applied for this was ‘if an object classified as shadow is
surrounded sufficiently by objects classified as building, it should be classified as
building shadow’. In this process, grey roof shadow was a subclass of shadow and
theinherency was defined by the neighbour-aobject relation. A shadow object isclas-
sified as a grey roof shadow if its ‘border to neighbour-object relation’ for grey
object islarger or equal to 0.025 m. A shadow object is classed as tree shadow if its
‘border to vegetation neighbour-object’ islarger or equal to 0.02 m.

Accuracy Assessment

The sample design of this project was extremely complex because it involved
the assessment of eight different maps (pixel-level: colour, colour and nDSM,
multispectral, multispectral and nDSM; object-level: colour, colour and nDSM,
multispectral, multispectral and nDSM) and used two types of reference data (the
2006 aerial photos and field visits accomplished in 2005 and 2006). As a resullt,
trade-offs between statistical rigor and practicality are apparent throughout this
study. Existing aerial photography was used to design much of the sampling, includ-
ing the selection of the appropriate sample unit and the methods used to select the
sample units. Sample design for this project addressed two types of samples: (1)
Samples from the 2006 aerial photo polygons for assessment of multispectral and
fused multispectral and nDSM maps. (2) Samples from existing aerial photo poly-
gons for field data collection and assessment of colour and fused colour and NDSM
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maps. A total of 110 accuracy assessment sites were randomly selected from each
of the classified maps and then collected the reference information from 2006 aerial
photos and field survey data.

Fusions using lidar and optical imagery were evaluated using error matrices
for each of the pixel- and object-level fusion algorithms. Overall fusion accuracy
and the Kappa Coefficient were computed to provide measures of the success of
the fusion process. Comparative values of Kappa were discussed in the following
section and provide a relevant benchmark for comparison.

Results and Discussions

To provide summary information of the different fusion level, their accuracies were
assessed using the field sample data. In the data fusion process, the evaluation of the
results becomes relatively complex due to the involvement of different data sources.
The different aspects of image acquisition of the various sensors have to be consid-
ered as well as the approach of the image fusion itself plays arole. In this analysis,
both visual methods and statistical parameters were selected as the assessment cri-
teria. From visually inspecting the results, the main difference between pixel- and
object-level fusionsisthe sharpness of the classified feature. Thisis particularly evi-
dent when observing the open space and the building roofsin the pixel-level fusion.
In the colour image classification results, ‘pepper and salt’ effect was prominent
due to alarge misclassification among the feature classes. Including DSM informa
tion reduced this ‘pepper and salt’ effect but the misclassification of the shadows
was still present. The object-level approach improved the shadow classification by
incorporating contextual information in this process.

In the pixel-level multispectral and nDSM fusion process, the high spectral depth
of the multispectral image played a vital role. It reduced interclass confusion but
the shape of the above ground features were not perfectly delineated due to the
low spatial resolution of the images. Object-level classification of the single source
image exhibited poor classification results for the abrupt spectral changes within
the classes due to the sun illumination factor. From this observation, it can be said
that additional elevation data can improve the classification results for the high-
resolution imagery.

Based on the analysis outlined above, the use of both optical imagery and lidar
data for semi-urban landscape mapping was evaluated. Accuracy assessment was
performed for each of the classified images obtained through the pixel- and object-
level fusion. To ensure consistency, the same sampling technique was employed
for al of the classified images. For each of the classified images, the accuracy was
assessed in an independent manner to reduce the systematic basis and defuse the
temporal effect on the overall accuracy. The accuracy results, presented in Fig. 3,
revealed that in most of the cases the object-level fusion exhibited higher accu-
racy level than the associated pixel-level fusion. Object-level fusion of colour and
DSM data achieved highest (91%) accuracy with kappa value 0.90, which exhibited
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Fig. 3 Summary of the overall accuracy of the pixel- and object-level datafusion

better fusion technique than others. Whereas only colour image classification in this
category had worst (66%) accuracy result.

Asthe kappa value approaches 1.0, it indicates perfect agreement between fused
and reference maps. Table 3 and Fig. 3, shows the accuracy and kappa statistics
were highly correlated further enhancing confidence of the results. In the pixel-
level approaches, the highest accuracy (80%) was achieved through multispectral
and DSM fusion with high kappa value 77%. On the contrary, object-level fusion
of those images had accuracy 90% with kappa value 88.5%. In general, object-level
fusion performed better than the pixel-level fusion for all combinations except solo
colour image classification.

Fusion resultsfor optical imagery and lidar dataare shown in Table 3indicate that
at the 95% confidence level the standard normal deviate of the Kappa Coefficient
is greater than 1.96 for both lidar and colour imagery fusion and the lidar and mul-
tispectral imagery fusion. A significant difference was detected between pixel- and
object-level fusion algorithms with the object-level fusion providing the superior
results for both cases.

Table3 Comparison of pixel- and object-level fusion results at 95% confidence

Lidar and colour imagery fusion Lidar and multispectral imagery
Fusion Pixel-level Object-level Pixel-level Object-level
Overall 75.5 91.0 80.0 90.0
Accuracy (%)
Kappa K (%) 71.8 89.7 77.0 88.5
var(K) 0.002837 0.001063 0.002119 0.001216
z 13.4806 27.5094 16.7232 25.366795
Z, %, 2.86 1.99
Significance* S S

*NS = not significant, S= significant
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The main contributing factor to the observed difference between the pixel- and
object-level fusions of the optical imagery and lidar data is the failure of the clus-
tering process to recognize some classes. This problem was acute for the Shadow
classes in pixel-level fusion, as it could not distinguish different shadow classes
on the basis of spectral content alone. The object-level approach overcomes this
problem by incorporating contextual information in the fusion process.

Conclusions

The goa of this study was to compare different data fusion techniques for clas-
sifying high-resolution imagery and lidar derived DSM data. A semi-urban image
subset was analysed using two fusion techniques. Results suggest a more accurate
land cover maps using object-level fusion than are attainable using the pixel-level
supervised process. Shadow objects are particularly susceptible to misclassification
when using only pixel-level spectra. Even so, object-level fusion has proven effec-
tivein correctly identifying the shadows where thisis difficult using other methods.
Although avery simple object-level approach was utilised to fuse imagery and lidar
data, significant improvement over pixel-level fusion was obtained.

In this study, object-level fusion was found more flexible than the pixel-level
supervised fusion. The improvement can be achieved with a relatively simple and
unrefined application of the object-level approach. It allows data fusion in more
meaningful ways with highly refined and specialized membership functions, which
in a more complex case would probably lead to further improvements in accuracy.
There is a great potential for further improving object-level fusion quality through
refining the decision rule structure. In contrast, pixel-level supervised fusion offers
very little potential for improvement, other than through a procedure that tries to
imitate the object-level approach, and can be said to have reached the end of its
paradigm.
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Combining Texture and Hyper spectr al
I nformation for the Classification of Tree
Speciesin Australian Savanna Woodlands

Peter Bunting, Wenda He, Reyer Zwiggelaar, and Richard Lucas

Abstract This paper outlines research undertaken to assess the ability of textural
information, from imagefilters, to be used alongside hyperspectral datafor the clas-
sification of broad forest types. The study made use of 2.6 m hyperspectral HyMap
data acquired over the Injune study area, Queensland, Australia, in September 2000.
The HyMap data provided spectral data from the blue to shortwave infrared in
126 wavelengths, al of which were used for classification. A measure of texture
was achieved using a set of 48 image filters including Laplacian of Guassian and
Gaussian smoothing, first and second order derivatives at different scale and where
appropriate different rotations. Analysis took place using an air photo interpreta-
tion to provide regions of interest for areas dominated by Angophora, Callitris, and
Eucalyptus, additionally areas of non-forest were also included. Classification of
the resulting dataset was performed using Multiple Stepwise Discriminant Analysis
where an accuracy of 60% was achieved using the combined reflectance and texture
data compared to accuracies of 55 and 43% using only the reflectance and textural
datasets, respectively.

I ntroduction

The delineation of woodlands into regions unique in terms of species and structure
composition is important for many applications, including the provision of forest
management units (Leckie et al., 2003), indicators of biodiversity (Bock et al., 2005)
and the interpretation of other remotely sensed data.

The interpretation of aerial imagery is heavily scale dependent, where at high
spatial resolutionsinterpretation hastraditionally required experienced human inter-
preters and is mostly based on structure, context and texture, rather than spectral
qualities (Held et a., 2003). Therefore, a number of studies (Cots-Floch et al.,
2007; Buddenbaum et a., 2005; Coburn and Roberts, 2004; Franklin et al., 2000;
Kushwaha et a., 1994) have started to introduce textural measures alongside the
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spectral values. Franklin et al., 2000, found the addition of textural information,
in the form of homogeneity and entropy calculated through a moving window,
increased the overall classification accuracy of forest stand types by 5-12%, pro-
viding overall accuracy in the order of 60-65%. While, Kushwaha et al., 1994
demonstrated an increase in classification accuracy from 69 to 80% when classi-
fying stand age and levels of degradation when the textural measures entropy and
the inverse difference moment were introduced alongside the spectral data.

Texture is the term used to describe information on the local variability of the
image pixel values. Representation of texture can take a number of forms, one of the
most common are the so called Haralick features (Haralick, 1979; Haralick et a.,
1973) where the statistical properties of the pixels within a moving window are
calculated, representing the homogeneity of the surrounding pixels. Although this
method has demonstrated some success (e.g., Franklin et al., 2000), the results often
vary with scale and application and have, therefore, not been widely adopted within
the field of remote sensing where the pixel values (either reflectance or backscatter)
have tended to be used in isolation. Another representation of texture isthat of filter
responses, where through the application of a number of image filters structures
within the scene at different scales and rotations are identified and the composite of
these filter responses forms the texture signature or texton (Leung and Malik, 2001,
Varma, 2004). The texton isidentified from the filter responses through a clustering
stage (e.g., K-Means, Varma, 2004; He et al., 2008) where the resulting texton can
be used for segmentation and classification.

Study Site and Datasets

The study was carried out using remote sensing and field data acquired over a
40 x 60 km area near the township of Injune (Lat 25° 32/, Long 147° 32),
located within the Southern Brigalow Belt, a biogeographic region of southeast cen-
tral Queensland, Austrdia (Fig. 1). These woodlands contain forest communities
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Fig. 1 Thelocation of the Injune study area, southeast central Queensland, Australia. The shaded
area represents the Southern Brigalow Belt



Combining Texture and Hyperspectral Information 21

existing in varying states of degradation and regeneration as aresult of prior distur-
bance (e.g., broad scale clearing, altered fire regimes and spread of exotic species)
and are structurally similar to over 70% of those occurring in Australia. Many
stands are dominated by Callitris glaucophylla, although selective harvesting has
reduced the abundance of larger individuals, therefore, typically forming dense
stands with a large number of small individuals (several trees per m?). Eucalyptus
species are also common across the site with stands dominated by Eucalyptus pop-
ulnea (Poplar Box), Eucalyptus melanophloia (Silver-leaved ironbark), Eucalyptus
microcarpa (Grey Box), Eucalyptus chloroclada (Baradine gum), Angophora leio-
carpa (Smoothed barked apple) and Angophora floribunda (Roughed barked apple).
Additionally, Eremophila mitchelli and a number of Acacia species form dense
understories. While Acacia harpophylla is commonly associated with duplex and
cracking clay soils in the southeast of the study areg, it is largely in the form of
regrowth given previous clearing.

During July 2000, Large Scale (1:4000) stereo aerial photography (LSP) were
acquired over a grid of one hundred and fifty 500 x 150 m Primary Sampling
Units (PSUs), with each separated by 4 km in the north-south and east-west direc-
tions (Lucas et a., 2004). Across the site, 1 km wide strips of Hyperspectral
Mapper (HyMap) data were acquired along six of the PSU columns, at 2.6 m
spatial resolution with 126 bands in the VIS, NIR and SWIR parts of the electro-
magnetic spectrum. The HyMap data were subsequently atmospherically corrected
and geo-referenced by HyVista Corporation (who acquired the data) using the
HyCorr atmospheric correction software. The algorithm, developed by CSIRO asan
extension to the ATREM atmospheric correction software (Gao and Goetz, 1990),
retrieves information on atmospheric gases from wavebands operating in the water
absorption regions and uses these to correct the image bands.

M ethods

Airphoto I nterpretation

Using the LSP, an aeria photography interpreter delineated the extent of broad
forest communities and described each in terms of the dominant species (Tickle
et al., 2006). It was observed that the woodlands were dominated by a number of
broad forest communities that were often texturally different as much as they were
spectrally different. Angophora dominated woodlands were distinct due to the large
size of the trees where the textures presented were very course with large areas of
ground and shadow being present between the crowns (Fig. 2aa). Callitris dom-
inated stands were found to contain relatively smooth textures due to the dense
number of stems and homogenous canopy cover (Fig. 2b). While Eucalypts (e.g.,
Silver-leaved Ironbark and Poplar Box) were often found to be only afew pixels (at
a pixel resolution of 2.6 m) across but with small areas of soil and shadow visible
between the crowns (Fig. 2c).
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Fig. 3 Thefilter bank used to identify texture

Image Filtering

To identify the textures within the images a filtering technique similar to that of
Varma (2004) was used where a series of image filters (Fig. 3) were applied to
the image and the normalised filter responses were used to characterise the texture.
For this study the Leung-Malik filter bank (Leung and Malik, 2001), consisting
of 48 filters, including 8 Laplacian of Gaussian, 4 Gaussian smoothing filters and
6 Gaussian first and second order derivative filters at 3 scales, was used. For the
Laplacian of Gaussian filters scales of 1,,/2, 2, 2,/2, 2, 3,/2, 6 and 6,/2 were used
while the Gaussian smoothing used scales of 1, /2, 2 and 2,/2. For the Gaussian
first and second order derivative filters scales of oy, oy, (1,3), (v/2, 34/2) and (2,6)
were used, where each scale was rotated by 0, 30, 60, 90, 120 and 150 degrees.

Remotely Sensed Data and Association to Forest Types

Filtering all 126 wavelengths avail able from the HyMap sensor would prove imprac-
tical due to the data size (48 x 126 output bands), therefore a subset of 3 bands was
selected. The selected bands were in the blue channel (446.1 nm), on the red edge
(716.2 nm) and the NIR (891.2 nm). These wavelengths were selected as they have
been shown by Bunting and L ucas (2006) to provide the optimum visualisation of
these woodlands for the differentiation of tree crowns and species.

Following the application of image filters to each of the image bands the poly-
gons identified from the LSP by the airphoto interpreter were attributed with the
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mean filter response for each of the 3 input bands along with the mean spectra
response for each of the 126 bands.

Classification

Classification was performed on the data extracted for the LSP polygons using
Multiple (stepwise) Discriminant Analysis (MDA), from within the SPSS software
package. MDA was selected due to its success in the previous studies (Clark et al.,
2005, Lucas et a., 2008), where hyperspectral data from individual crowns, from
high resolution 1 m imagery, were extracted and classified to species, resulting in
accuracies > 70% where 10 species were compared. The algorithm was parame-
terised such that the stepwise method was applied using the Rao’s V. metric, with
the probability of F being 0.05 for entry and 0.1 for removal of data bands in the
forward and backward steps (Galvao et a., 2005).

Results

To test the method the polygonsidentified through the L SPinterpretation for 4 of the
6 HyMap strips were select and attributed with the mean reflectance for each of the
HyMap bands and mean filter responses providing 270 variables and 252 samples
of the 4 ground cover types (Table 1).

To generate overall accuracy values for the 4 classes each set of samples was
randomly split into training and testing datasets, using a Bernoulli distribution with
aprobability of 0.5. The split was made 25 times where for each split the results of
the classification were recorded and the mean and standard deviations cal culated. To
test the significance of the texture and refl ectance data the experiments were carried
out individually on the reflectance and texture data as well as the combined data
(Table 2).

Table1 The number of samples for each ground cover type

Species Number of samples
Angophora (ANG) 10
Callitris (CP-) 82
Eucalyptus (EUC) 130
Non Forest (NF) 30

Table2 Resultsfor the experiments using both the datasets individual and in combination

Combined Reflectanceonly ~ Texture only

Training Testing Training Testing Training Testing

Mean 61.79 60.21  60.98 5531 50.18 43.31
StdDev  0.67 0.86 1.10 1.04 1.74 151
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The results show a modest, 5%, improvement for the testing datasets when the
combined data was used over the reflectance data while a significant, 17%, increase
from the results using only the texture data. Also, by combining the reflectance and
textural data the standard deviation of the classification results have been reduced,
demonstrating a more robust classification, less sensitive to the training and testing
samples used.

Discussion

From these initial resultsit is clear that the introduction of textural information has
increased the classification accuracy and robustness to a similar extent as previ-
ous studies (e.g., Coburn and Roberts, 2004 and Franklin et al., 2000). The use of
textural information at this scale is viewed as an important additional (Held et al.,
2003) as it more closely corresponds with the methods used by human interpreters
and allows the forestry environment to be more fully understood at this resolution.
Alternative methods (Bunting and Lucas, 2009) have concentrated on the aggre-
gation of high-resolution results, for example delineated tree crowns classified to
species. These methods provide an advantage in that the resulting classification can
be attributed with information from high-resolution analysis (e.g., crown area, num-
ber of individuals) useful for estimating attributes such as biomass and indicators of
biodiversity (e.g., Shannon or Simpson indexes) but require significant effort in the
production of intermediate data products to allow the analysis to take place. While
the method outlined in this paper and those following on from this method, allow
the regions to be directly selected from the imagery without intermediate products.

Limitations of the work mainly centered around the testing and training dataset,
derived from the LSP, as although providing a good overview of the study area to
guide further remote sensing acquisitions and field surveys, as originally intended,
they do not accurately delineate the forest types leading to noise in the training and
testing data. Additionally, the low number of Angophora samples has limited the
reliability of the classification for this forest type which occurs in many parts of
the imagery, although often outside the areas for which the L SP data was available,
formsavery texturally distinct forest type. Therefore, further samples and morefor-
est types (e.g., Acacia) and forest structures (e.g., regrowth, burnt) are to be selected
for future study.

Future work on the algorithm will concentrate on data reduction meth-
ods to reduce the complexity of the input data, while alowing further vari-
ables (e.g., max response, min response and standard deviation) to be used
alongside the mean filter responses. In addition, further classification methods
(e.g., K-Means clustering, K-Nearest Neighbor and support vector machines)
will be investigated with the possibility of further increasing the classification
accuracy.
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Conclusions

This research has demonstrated the use of afilter based texture measure in addition
to spectral datafor the classification of forest structural typesfrom the 2.6 m HyMap
data where the addition of the textural information contributed to a 5% increase in
overall accuracy and robustness of the selected samples. Moving forward this study
recommends the use of textural measures alongside reflectance data for studies of
this type where large regions (> 1000 pixels) with significant spectral variation are
of interest.
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High-Resolution Satellite Imaging in Remote
Regions: A Case Study in Bhutan

J. Poon and C.S. Fraser

Abstract In remote developing countries, such as Bhutan, it is common for exist-
ing maps to be either out-of-date or to not exist. Featuring forest covered peaks and
broad valleys with a 2000 m elevation range, the rugged mountainous and largely
inaccessible landscape is not well suited to traditional topographic surveying and
mapping. It does, however, provide a unique and challenging environment for the
generation of image-based products. This paper demonstrates that even with lim-
ited ground control, satellite imagery has the potential to rectify the situation and
vastly enhance mapping prospects in remote regions. By compensating exterior ori-
entation biases inherent in the recorded sensor orientation data, the attainment of
1:5000 mapping scale ground measurement positions is possible with lowest cost
QuickBird imagery. Two image matching algorithms were applied to produce DSM
data. Firstly, intensity based matching procedure embodied in commercia software,
and secondly a multi-photo, geometrically constrained (MPGC) image matching
approach incorporating a hybrid matching algorithm. A third DSM generated by
radar was also assessed and compared to the optically derived surfaces. The most
accurate DSM generated (MPGC) was used to remove relief displacement, so that
planimetric coordinates can be obtained from a single orthoimage to an accuracy of
better than a metre. The results show that there is potential for QuickBird ‘Basic’ to
be an effective and economically viable method of extracting 3D information to be
used for high accuracy ground feature determination. Theimplications of using this
imagery for precision geopositioning in remote areasinclude the generation of more
accurate digital terrain models and cartographic maps and location data for incor-
poration into a GI S, providing useful information for devel opment agencies and the
wider community.

Keywords DSM - High-resolution satelliteimagery - QuickBird - SRTM - Accuracy
assessment - Remote regions
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Introduction

It iswithout doubt that land isa preciousresource. A country’seconomy relies either
directly or indirectly on land information, and with sufficient land information, we
can better monitor and manage our land resources. Topographic mapping is just
one essential tool that is needed to accomplish this seemingly huge task. Devel oped
countries with established mapping agencies focus on change detection and map
updating and aided by incessant advances in technology, are spoilt with a range of
data sources — electronic distance measurements, aerial imagery and radar to name
afew, to complete such tasks.

The situation, however, is different in remote areas of the world, such as
Bhutan, where it is common for existing maps to be either out-of-date or not
exist. Therefore, we need to look towards information sources which can pro-
vide low cost and quick-delivery land information products, without compromising
metric accuracy. Opportunities exist for access to low cost height models derived
from Interferometric Synthetic Aperture Radar (InSAR) by way of the NASA/DLR
Shuttle Radar Topography Mission (SRTM), which isfreely available online.

Of greater application, high-resolution satellite imagery (HRSI) allows produc-
tion of numerous spatial information products, such as geopositioning, surface
models, orthoimages and visualisations. While HRSI can be costly, particularly
when acquiring stereopairs, it does not assume existing infrastructure, such as
equipment, mobilisation, or complex processing ahilities.

Great Britain’s National Mapping Agency (NMA) investigated QuickBird
imagery for updating mid-scale, 1:25,000 and 1:50,000, and large scale 1:10,000,
1:2500 and 1:1250, mapping (Holland et al., 2006). The use of IKONOS imagery
for mapping has been conducted by several European mapping agencies and insti-
tutions in the European Organisation for Experimental Photogrammetric Research
(OEEPE). Findings were that rural regions can benefit from such imagery when
mapping at 1:10,000 and 1:50,000 scales (Holland et al., 2003). Developing coun-
triessimilarly consider IKONOS imagery for large scale map revision and conclude
mapping at 1:2000-1:10,000 scales is theoretically feasible (Samadzadegan et al.,
2003). Despite positive reinforcements about the geometric potentia of HRSI,
it seems the available technology has not yet made the transition to large scale
topographic mapping in practice.

This paper investigates information sources for topographic mapping in remote
areas, focusing on the application of HRSI in the Bhutan testfield. The testfield
spans approximately 300 km?, featuring forest covered peaks and broad valleys in
the scene’s west, overlooking the capital of Thimphu and extending northwards to
the Dechenchoeling Palace. With an average terrain inclination of 27° and ground
elevations from 2000 m and climbing as high as 4200 m, the scene provides a
unique and challenging environment for the generation of image-based spatial infor-
mation products. With limited ground control and lowest cost QuickBird imagery,
we investigate geopositioning, and surface modelling from both commercial and
independent algorithms, generate orthoimagery and explore the use of HRSI for
visualisation.
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QuickBird ‘Basic’ Imagery

The QuickBird satellite orbits the Earth at an atitude of approximately 450 km
and travels at 7 km/s. With a field of view of 2.1° and focal length of 9 m, the
pushbroom sensor captures submetre resolution for panchromatic (0.61-0.72 m)
and 2.44-2.88 m multispectral imagery. Within the focal plane are 6 panchromatic
arrays operating with time delay integration and 6 four-linear multispectral arrays
imaging in 11 bits; all CCD lines are staggered (Digital Globe, 2006).

The satellite is agile such that oblique pointing is possible to 30° off-nadir.
Along- and across-track stereo capability allows collection of same pass stereo
pairs and therefore, the scene content, lighting conditions and satellite geometry
are the same for the two images. After the initial forward image is acquired, the
satellite is steered to point backwards to image the same scene with approximately
90% ovzerlap. A stereo pair covers an approximate area of 21.2 x 21.2 km, totaling
450 km<.

DigitalGlobe's QuickBird products are provided at varying levels depending on
their positional accuracy and degree of processing. Predictably, as the positioning
accuracy is increased, the price of the product a so increases (Digital Globe, 2006).
The sensor corrected ‘Basic’ product with the least specified accuracy and lowest
cost has been employed in thisinvestigation.

Geopositioning

To facilitate high-precision geopositioning, a dozen precisely measured ground
control points (GCPs) were acquired by GPS-survey conducted by Bhutan's
Department of Survey and Land Records. These largely constituted road markings
in the Thimphu region, concentrated in the north-east of the scene.

An initial analysis of the satellite imagery utilising no GCPs and a Rational
Polynomial Coefficient (RPC)-based approach resulted in absolute geoposition-
ing accuracies of approximately 20 m. The positional biases in the DigitalGlobe
generated RPCs are reflected by the large discrepancies, quantified in Table 1.
These inherent biases can be accounted for by using a bias compensation method
which incorporates corrections into the existing RPCs, without the need for addi-
tional correction parameters. A single GCP is all that is needed for this procedure
(Fraser et al., 2006). The provision of GCPs enabled the geopositioning accuracy

Table1 Geopositioning discrepanciesin sensor orientation

RM SE discrepancies at
CKPs[m]
Orientation GCPs CKPs Se SN SH
QuickBird RPCs 0 12 214 6.3 0.4

Corrected RPCs 4 12 0.6 0.7 04
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to be significantly improved in the bias-compensated RPC bundle adjustments,
where accuracy at 1-pixel level was obtained. Additionally, these bias-corrected
RPCs were to be used as an additional control scenario to supplement the 12
measured GCPs for downstream generation of digital surface models (DSMs) and
orthoimagery.

Height Modelling

DSM Generation

Elevation information and surface topography is important for a diverse range of
applications such as hydrology, geomorphology and infrastructure planning. High
costs associated with acquiring a dense elevation network often trandate to lim-
ited and infrequent opportunities of DEM generation in developing countries. For
instance, the existing DEM data for Bhutan is an old 1964 Survey of India scanned
map; the contour interval is 200 m and contour lines are stated as only approxi-
mate. With the aid of optical stereo imagery and radar technologies, updated height
information can be obtained and modelled at relatively low cost.

Two image matching algorithms were applied to produce DSM data from
the optical imagery. The QuickBird along-track stereo pairs produce near simul-
taneous data capture resulting in consistent imaging conditions and reduced
radiometric variation, conducive for image matching and DSM generation. First,
an intensity based matching procedure embodied in Z/l Imaging's ImageStation
Photogrammetry Suite 4.3 Image Station Automatic Elevations (ISAE) was applied;
and second, a multi-photo, geometrically constrained (MPGC) image matching
method incorporating a hybrid matching agorithm was used. A third approach to
generating elevation information and an aternative to image matching, is utilising
height models derived from low cost NASA/DLR SRTM InSAR DEMs.

ISAE

ISAE's commercialy available automatic height generator uses bilinear finite ele-
ments to calculate differences in parallax of matched points within the limits of
a user specified parallax bound and epipolar line distance. Matches are considered
reliable once successful with similarity measures of correlation coefficient and inter-
est value. A more detailed description of the | SAE mathematical model can befound
in Z/I Imaging Corporation (2004).

Initialy, it was anticipated that the bias-corrected RPCs would be used to orient
the images to 1-pixel level accuracy. Unfortunately, this was not possible on the
ImageStation due to Z/I Imaging QuickBird modules relying only on ephemeris,
attitude and image metadata files, omitting the RPB files in triangulation. Without
adaptive matching, the finest allowable post-spacing generated from the QuickBird
scenewas 15 m.
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MPGC

The second image matching approach, MPGC, extracts matching candidates using
a geometrically constrained cross-correlation method (Gruen, 1985). The proce-
dure incorporates feature point matching, edge extraction and relational matching,
where successfully matched features are further refined with a modified MPGC
alowing potentially sub-pixel accuracy. Greater discussion of this process is pro-
vided in Zhang and Gruen (2006). The MPGC procedure alowed support from
bias-corrected RPCs which ensured optimal object space accuracy and a DSM was
generated with 5 m post-spacing.

SRTM

In February 2000, SRTM captured near-global height information by single-pass
INSAR on two antenna pairs supporting C- and X-band wavelengths. The fixed
antenna receiving shorter wavelength X-band pulses has a higher relative accuracy,
+/- 16 m absolute vertical and +/—6 mrelative vertical accuracy (Rabuset al., 2003),
although a narrower swath width of 50 km in comparison to the C-band data. C-
band terrain model datais freely available over the internet at a 3 arcsec resolution
world wide, and X-band data is available at 1 arcsec post spacings, although due
to US Government restrictions, areas outside North America must be requested.
The advantage of SRTM data over satellite imagery is that irrespective of time and
seasonality, INSAR can acquire height information.

Here we concern ourselves with the X-band data for Bhutan, which was pro-
cessed by DLR (Knopfle et al., 1998) and made available for this study. As the
X-band is a high energy wavelength, these height models represent the surface of
the terrain (as opposed to ‘bare earth’), similar to that of optical space imagery. The
1 arcsec resolution in this region transates to aDSM of 28 m post-spacing.

Accuracy Assessment

Given that orientation with bias-corrected RPCs can yield accuracy at the 1-pixel
level, these RPCs were used as an additional control scenario to generate 33 CKPs
from stereo measurements to supplement the 12 GPS-measured GCPs.

Asapreliminary accuracy assessment of the DSMs, elevation comparisons were
computed between the GPS- and stereo-derived CKPs and bilinearly interpolated
heights for each of the DSMs. While the MPGC DSM had height discrepancies just
under 2 m at the CKPs, the SRTM DSM had height discrepancies slightly over 13 m.
The overall accuracy was reflected in the RM SE val ues, where the MPGC DSM had
a height discrepancy of less than a metre, the | SAE image matching DSM a RMSE
of 4 m, and the SRTM an error of 6 m. Averages of the discrepancies show that there
isamean shiftinthe ISAE and SRTM DSMs; the ISAE 1.5 m shifted below the true
surface, and SRTM 3 m above the surface. Examining the MPGC DSM, thereisno
mean shift and the height discrepancy is pixel-level at the CKPs.

A statistical overview isgivenin Table 2; however, with only 40 or so CKPs over
a 300 km? scene, these figures are unlikely to be representative of the entire test
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Table2 DSM Height discrepancies at GPS and stereo CKPs

DSM and Height discrepancy at CKPs

post spacing  Data source Reference CKPs RMSE[m] Mean[m] AbsMax [m]
ISAE15m  Image matching GPS 12 12 -0.3 19
MPGC5m  Imagematching GPS 12 0.5 -0.2 0.9

SRTM 28m  InSAR GPS 12 54 49 7.4
ISAE15m  Image matching GPS+ Stereo 43 37 -15 10.8
MPGC5m  Imagematching GPS+ Stereo 45 0.7 -0.2 1.7

SRTM 28m  InSAR GPS+ Stereo 38 6.2 31 133

region. In order to obtain a more representative overall heighting accuracy based
on surface extraction results over a greater number of sample points and through
variable relief and slope, the most accurate DSM available, the 5 m MPGC DSM,
was utilised as a reference surface.

A comparison between the heights obtained in the ISAE matching method and
bilinearly interpolated values in the reference MPGC DSM revealed a heighting
RMSE of 10 m from over 1 million CKPs.

Although these divergences are partly attributed to sensor orientation differences
and the image matching algorithms, it must be noted that blunders originating from
image saturation were not excluded from assessment. There was no consideration
given to the normal process of manual review and post-processing of the generated
DSMs, athough differences in height values over 25 m, which accounted for 18%
of the offsets, were treated as blunders and disregarded in the analysis.

The same comparison procedure was carried out between the SRTM DSM and
the reference MPGC DSM and summarized in Table 3. Thisresulted in a heighting
RMSE of 13 m, where athird of the height discrepancies were deemed as blunders.
Thisis not surprising, as the DLR height error map for the INSAR DSM indicated
that well over half thetest field wasin error of 50-90 m.

The DSM evaluation assumes that errors are solely attributable to the source, i.e.
aspects of the image matching or the INSAR acquisition; however, there are also
other factors to consider when comparing multi-resolution DSMs, where interpo-
lation errors may play a significant role. The differences in post spacing and its
effect on modelling the surface can be seen when examining cross-section pro-
files, as shown in Fig. 1. Surface discontinuities are preserved in the MPGC 5 m

Table3 DSM height discrepancies with MPGC 5 m reference

Height discrepancy at CKPs
DSM and
post-spacing CKPs Blunders (%) RMSE (m) Mean (m)
ISAE15m 1,061,433 18 9.8 0.7

SRTM 28 m 246,009 32 12.7 1.0
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Fig. 2 Influence of slope on (a) ISAE and (b) SRTM height discrepancies with MPGC reference

post spacing DSM, whereas the ISAE 15 m DSM smoothed and generalised sur-
face topography. Errors are most noticeable in the SRTM 28 m DSM in regions of
variablerelief, most likely dueto the effects of radar foreshortening and layover sus-
ceptible in mountainous regions. There is a clear indication that slope plays arole
in higher RM SE values, as shown in Fig. 2. Asthe terrain inclination increases, the
height discrepancy also increases for both image matching and InSAR acquisition
methods.

Data I ntegration: Orthorectification,
Pansharpening and Visualisation

The QuickBird ‘Basic’ imagery has limited image processing, confined to correc-
tions for radiometric and internal sensor geometry and optical and scan distortions.
The panchromatic and the multispectral images are both in the satellite reference
frame and preprocessing is required for geometric integration of all channels. In
their raw form, the QuickBird pan and multispectral images are offset north and
south to one another. As no georeferencing is applied, image-to-image registration
must first be carried out before pansharpening can proceed.

The most accurate DSM generated (MPGC) was used to remove relief displace-
ment, so that planimetric coordinates could be obtained from a single orthoimage
to an accuracy of better than ametre. The metric results of this process are summa-
rized in Table 4. The results show that high accuracy ground feature determination
is possible with lowest cost QuickBird imagery.

Visua representation of the terrain can improve understanding of the landscape
and has benefits in communicating information to awider audience. The multispec-
tral imagery was fused with the single band imagery to generate a pansharpened
orthoimage and further, draped over the metrically accurate DSM, as shown in
Fig. 3.
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Table4 Planimetric accuracy achieved with Orthoimagery

RM SE discrepancies at CKPs
Ortho imagery CKPs Sg [m] Sn [mM]
Resampled to 1 m 44 1.00 0.80

Fig. 3 Visudisation —
orthorectified pansharpened
image draped over DSM

Concluding Remarks

In remote areas such as Bhutan, it is common for existing maps to be either out-
of-date or to not exist. Although picturesque, the rugged mountainous and largely
inaccessible landscape is not well suited to traditional topographic surveying and
mapping (e.g. there is only one airport in the country and only a few passenger
aircraft). It has been shown here, that even with limited ground control, satel-
lite imagery has the potential to rectify the situation and vastly enhance mapping
prospects in such an environment.

By compensating exterior orientation biases inherent in the recorded sensor
orientation data, the attainment of 1:5000 mapping scal e ground measurement accu-
racy ispossible with lowest cost QuickBird imagery. While low cost aternative data
sources such as SRTM are available, the INSAR acquisition may not be suited to an
undulating environment with an average terrain inclination of 27°, such as those
experienced in Bhutan.

It has been shown that there is potential for QuickBird ‘Basic’ to be an effec-
tive and economically viable method of extracting 3D information to be used
for high accuracy ground feature determination. The implications of using this
imagery for precision geopositioning include the generation of more accurate digi-
tal terrain models and cartographic maps and location data for incorporation into
a GIS, providing useful information for the wider community, especially in the
case of adeveloping country with very limited resources for 3D spatial information
generation.
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A New Dataset for Forest Height Across
Australia: Pilot Project to Calibrate | CESat
L aser Data with Airborne LiDAR

Alex Lee, Peter Scarth, and Adam Gerrand

Abstract To better quantify and monitor the extent, structure and biomass of
Australian forests, accurate cover and height information is required, yet only a
small proportion of Australia's forests have reliable height information. The use
of arborne laser survey using Light Detection and Ranging (LiDAR) data has
rapidly developed and has demonstrated its effectiveness and high accuracy for
forests height measurement. However it is expensive and data is not yet widely
available for many areas. A recent source of height data is now available from the
NASA ICESat satellite. The ICESat laser pulses give approximately 70 m diameter
footprints, spaced at 170-m intervals along the Earth’s surface. Tracks are spaced
about 50 km wide, and since 2003 over 2 million points across Australia have been
imaged. These could provide significant potential for improving vegetation structure
assessment, and monitoring both natural and human induced change. A pilot project
utilised three sites where coincident airborne LiDAR was available; in NE Victoria,
south-central Queensland, and along the Brisbane River (Queensland). Ground ele-
vation correspondence gave a mean difference < 2 m (ICESat higher than LiDAR),
with woodlands recording a difference of 0.16 m. For forest structural attributes,
| CESat gavereliable estimates (i.e. within 2 m for height and 10% for cover) in some
cases, but the results were dependant on the density and height of the forest, and
terrain slope within the footprint, thus making the extraction inconsistent between
structural metrics. In sparser forests, |CESat tends to report foliage projective cover,
whereas in dense forests, crown cover equivalent values are recorded. An apparent
threshold of improved accuracy when cover was higher than 30% was observed.
Further research is required to better define the thresholds where ICESat does not
produce reliable results. Whilst ICESat appears to be unsuited to continental appli-
cation for national reporting of both height and cover until further calibration across
a greater range of forest environments is undertaken, however ongoing research
efforts to improve the calibration are showing promise.
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I ntroduction

To effectively respond to a changing climate, there is a need to improve forest and
vegetation assessment methods, particularly as the dynamics (direction and mag-
nitude) of potential change need to be identified as well as the current stock. In
addition, such informationis required by governments, industry, private landholders
and the public to detect trends in commercial, biodiversity and greenhouse values,
assess the performance of management practices and public policies, guide sus-
tainable development, and forecast the future condition of these ecosystems (Henry
et al. 2002, Brack 2007).

Undertaking comprehensive, consistent, and accurate assessments within
Australiarepresents asignificant challengefor two main reasons. First, Australiahas
an estimated 164 million hectares (ha) of native forests and woodlands, which are
widely distributed, and generally located around the outer margins of the continent.
Second, around 70% of these forests are under private management, with less than
10% in commercial public forest estates where traditionally the best information
was collected. In the areas under private management, the information available on
structure and condition is especialy limited (National Forest Inventory (NFI) 2003).
The development of efficient and cost-effective methods, such as that described for
the proposed Continental Forest Monitoring Framework (CFMF) (Norman et al.
2003, Wood et al. 2006) from which this essential information may be retrieved, is
therefore critical if national and international obligations are to be better fulfilled
(Thackway et al. 2007).

The use of airborne laser survey using small footprint multiple (discrete) return
and large footprint full waveform Light Detection and Ranging (LiDAR) data has
rapidly developed, and has demonstrated an effectiveness and high accuracy for
forest structure measurements (Reutebuch et al. 2005). Small footprint LiDAR
is an active sensor that uses a laser beam in the near infrared spectral range
directed towards the ground. For forest assessment purposes, small footprint LIDAR
provides a commercialy available, highly precise, point dataset of terrain and
vegetation, and the high accuracies now makes it possible to ‘image’ and locate
individual tree crowns (Suarez et al. 2005).

However, to date the extent of LiIDAR use in Australia has been restricted to
a small number of research sites (Lee and Lucas 2007). Therefore for nationwide
sampling of forest height, satellite based measurements are currently the only feasi-
ble aternative. Whilst there are no satellite based laser altimetry systems presently
dedicated to vegetation assessment, this limitation is being addressed to some extent
by spaceborne LIDAR platforms used for monitoring changes in global ice volume.
One such system is the Geoscience Laser Altimeter System (GLAS) on the current
NASA Ice, Cloud, and land Elevation Satellite (ICESat). The full-waveform laser
with an approximate ellipsoid footprint of 70 m diameter (variable between 50 m
diameter circle to 60 x 120 m ellipse), which samples approximately every 170 m
along track, and has a 183 day repeat cycle path. Investigations into forest height
extraction have been initiated, and are currently ongoing (Lefsky et a. 2005a, Sun
et al. 2008).
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Research Design

The ICESat laser sensors provide a possible solution to the current lack of a height
data source that is consistently collected across Australia. Therefore, to investigate
the potential for ICESat data to meet this requirement, ICESat data were summa-
rized and analysed in a number of steps, as described below. The full assessment is
reported in (Lee et al. 2006).

1. The available data (version r26) were summarized across Australia to examine
how the forest estate was represented, when compared to current NFI estimates.
The main collection periods available in the r26 version were Oct-Nov 2003,
March 2004, and Nov 2005.

2. Ground elevation comparisons were made from 132 footprints at three different
locations where airborne LiDAR were available, with two sites in Queensland,
and one site in NE Victoria utilising the CFMF pilot project data (Wood
et al. 2006).

3. Vegetation assessment comparisons were made using CFMF data from NE
Victoria. Here a total of 27 overlap locations within the LiDAR transects were
found (Fig. 1). The locations span a wide range of broad ecological zones
(ecozones), from floodplains, rolling foothills, to montane and subal pine sites.
From the overlap sites, a total of 76 footprints were selected that were within
the LiDAR swath and included forest. A detailed case study was undertaken

Fig. 1 ICESat transects (light diagonal points) with the airborne LiDAR transects (north-south &
east—west lines) and numbered overlap |ocations across CFMF pilot region in NE Victoria Darker
areas are native forest; lighter areas are cropping and grazing. The image spans approximately
225 km across (east-west) and 170 km high (north—south)
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with a subset of three footprints at one location that spanned a ridge, mid-slope
and gully.

4. Subsequent to the r26 version analyses, the next version (r28) of ICESat
data became available. This data were summarised at a continental scale and
compared to the r26 results and current NFI data.

Analysis Methods

Detailed spatial comparisons of elevation and forest structure between |CESat and
airborne LiDAR first calculated the approximate ICESat footprint size and shape,
which were used to select the equivalent airborne LiDAR data. Then terrain and
vegetation information were extracted from the LiDAR data from within the esti-
mated footprint area (Lee et al. 2006). The footprint shape and size were accurately
calculated, such that the selection of the associated airborne LiDAR data was as
precise as possible. Standard elliptical formulae were utilised to model the bound-
ing area of the ICESat footprint, using the parameters of azimuth, eccentricity
and the magjor and minor axes (see Lee et a. 2006 for formulae and parameter
description).

Different laser sensors on the satellite have been used since 2000, which has
resulted in different footprint shapes being observed. Figure 2 illustrates one loca-
tion with three footprints from different dates. The yellow crosses indicate the
respective footprint centres, and the labels are the Julian day (number of days) since
the sensor began recording (from 12 p.m., January 1st, 2000). The smallest (and
most recent) footprint (purple) is approximately 50 min diameter.

2147.396

Fig. 2 Examples of airborne
LiDAR selected within three
|CESat footprints from
different dates
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The following parameters were extracted from the full waveform curve for
comparison:

e Canopy cover (0-100%);

e Centroid height (distance from centre of the ground pulse to the centre of the
highest vegetation pulse);

e Fit_height (the third parameter (RA) in the weibull distribution used to fit
the cumulative vegetation profile, calculated as (RFA[1]*expR-fA[2]* (height_[//
fA[RA[4)));

e Veg height (height on the curve where the cumulative FPC greater than 2 m
crosses 95%);

e Height at 10% FPC (height where the cumulative FPC greater than 2 m crosses
10% (for r28 data only).

The forest structural attributes derived from the airborne LiDAR for compari-
son were:

Maximum vegetation height (m);

Predominant vegetation height, (m);

Percent vegetation foliage cover (0.5 m+ height) (0-100%);
Percent forest foliage cover (2 m+ height) (0—100%);
Percent crown cover (0-100%).

See Leeet al. (2006) and Lee and Lucas (2007) for a detailed description of all
the attributes.

Results

Initial Continental Summary

For the r26 version of the ICESat data, there were a total of 1,906,792 footprints
across Australia, from which approximately 39.4% had height > 2 m, and cover
>10% (i.e. forest) (Table 1). This contrasts with the NFI continental forest estimate
of approximately 21.4%. In terms of structure class comparisons between |CESat
and NFI, both medium and tall classes are within 3%, however all other height
and cover classes differ by between 5.7 and 31.6%. The comparison in cover class
estimates is especialy disparate.

Ground Elevation Comparisons

For the North East Victorian sites, elevation extracted was within 2-3 m of airborne
LiDAR dataon average, within amean range of & 5m (n = 94). For sitesin central
Queensland woodlands, the mean difference was approximately 20 cm, within a
range of + 2 m (n = 18). For the Brisbane river (south east Queensland) sites, the
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Tablel GLA v26 continental summary for height (centroid height) and cover, including the NFI
estimate (2003-2007)

Cover (%)
% of records
Height (m) 0-10 10-30 30-70 70-100 ICESat total NFI %
0-2 48.0 22 8.9 0.0 59.1 78.8
2-10 14 36 20.8 1.7 27.4 46
10-30 0.1 0.6 7.8 4.4 12.9 15.7¢
30+ 0.0 0.0 0.3 0.3 0.6 11
ICESat total 495 6.4 37.7 6.3 100.0 100.0
NFI % 78.8 14.62 6.1° 0.6 100.0

For NFI totals; @includes 1.3% unknown cover; Pincludes 0.2% plantations; Cincludes 4.9%
unknown height

mean difference was within 1-2 m, with a mean range of & 5 m (n = 20). A more
detailed description of the resultsis provided in (Lee et al. 2006).

Vegetation Comparisonsin NE Victoria

Across al ecozones, ICESat FPC correspondence with LiDAR foliage-branch
cover was very poor (2 = 0.12, RSE = 18.26%, y = 0.28115x + 20.486),
and crown cover (12 = 0.14, RSE = 29.83%, y = 0.5114x + 32.406). When
applying an arbitrary quality or utility assessment, ICESat gave a good result for
foliage cover (i.e. within 10% cover) for 33% of footprints, whilst 41% gave
poor results (i.e. a difference of greater than 20% cover). When examined by
ecozone, 40% were good, and 20-40% were poor for floodplains and montane
footprints. For footprints found in foothills sites, 21% were good whilst 50%
were poor.

Forest height values extracted from ICESat had poor correspondence to the
LiDAR heights, with r? valuesfor the three different height parameters ranging from
0.2t00.45. The best initial correspondence was between | CESat parameter ‘veg_ht’
and LiDAR elevation range (r2 = 0.45, RSE = 13.47 m; Fig. 3-left). ICESat gave
a good result (i.e. within 5 m) for predominant canopy height for 54% of foot-
prints, whereas 28% of footprints had a height difference greater than 10 m (i.e.
poor). When assessed by ecozone, floodplains and montane footprints recorded 40%
that were good, with 40% poor. For foothills sites, 75% were good and 10% were
poor. The ICESat parameter ‘ centroid_ht’ related best to LiDAR predominant height
(r> = 0.26, RSE = 8.13 m; (Fig. 3—right)). When the comparison was further sub-
divided by ecozone, it is apparent that the floodplain sites have a higher number of
poor comparison sites. The foothills and montane sites have most occurring within
5 m of the 1:1 line. There are some larger outliers where ICESat tends to report a
lower height than the LIiDAR, but further investigation is required to determine the
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Fig. 3 (left) ICESat waveform ‘veg_ht' versus LiDAR elevation range. (right) ICESat ‘cen-
troid_ht" related best to LiDAR predominant height

cause of the disparity. Additionally, it was noted from the results that ICESat data
tended to give either a good result for height and poor for cover or vice versa.

| CESat Comparison Case Study in NE Victoria

The case study site examined three footprints (Fig. 4) in detail to assessthe potential
effects of slope, terrain position, and vegetation density on the extraction of |CESat
height and cover attributes. In the riparian footprint, a close correspondence was
observed for both ICESat ‘Fit_ht" with LIDAR maximum height (~1 m difference),
and ICESat ‘ Centroid_ht" with LiDAR predominant height (~2 m difference). This
contrasts with the mid-slope and ridge top footprints, which recorded poorer height
correspondences overall (differencesin excess of 5 m). The exception was for mid-
slope ICESat ‘Fit_ht' and LiDAR maximum height, where the difference was <
1 m. The poorer correspondences observed for height and cover in the mid-slope
and ridge top footprints were attributed to a combination of higher slope and rel-
atively sparse vegetation within the respective footprints. The ICESat waveforms
were extracted and compared to the airborne LiDAR return data for height and
cover, and to compare between the apparent vertical profiles (Table 2).

For forest cover estimation at the case study site, the ridge-top footprint correctly
estimates foliage-branch cover, whereas the riparian footprint correctly estimates
crown cover. In the case study example the riparian stand has a higher LiDAR
foliage-branch cover (43%), and the ICESat value extracted is closer to LIiDAR
crown cover (~70%), whereas the ridge-top LiDAR foliage-branch cover is lower
(28%), with the corresponding | CESat cover value being similar to LiDAR foliage-
branch cover. The mid-slope ICESat footprint cover estimate is much higher than
either LIiDAR foliage-branch cover or crown cover, with the combination of steeper
slope (up to 13°) and lack of tree cover (LiDAR crown cover = 8%) as potential
factorsin the difference observed. See (Lee et a. 2006) for tabular results.
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-36
LIDAR DEM
Elevation (m-asl)
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.m:mm

Fig. 4 Airborne LiDAR with three ICESat footprints displayed on a 1 m LiDAR derived DEM.
(Upper) planimetric view showing footprints in relation to other vegetation, as represented by
LiDAR returns. (Lower) LiDAR returns only within the |CESat footprints displayed in 3D
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Table3 GLA v28 continental summary with NFI estimates (2003-2007)

Cover (%)
% of records
Height (m) 0-10 10-30 30-70 70-100 |CESat total NFI %
02 80.8 0.0 0.0 0.0 80.8 78.8
2-10 0.4 0.1 11 0.0 1.7 4.6
10-30 19 15 8.7 2.3 14.3 15.7¢
30+ 0.1 0.2 1.9 1.0 3.2 1.1
|CESat total 83.1 1.8 11.8 3.3 100.0 100.0
NFI % 78.8 14.62 6.1° 0.6 100.0

NFI totals: 2includes 1.3% unknown cover; includes 0.2% plantations; ®includes 4.9% unknown
height

Updated Continental Summary

For the r28 version of the ICESat data, there were atotal of 2,579,278 records across
Australia, from which approximately 16.9% were classed asforest, that ishad height
and cover attributesthat were greater than or equal to 2 m and 10% respectively. The
r28 data was significantly improved for national assessment when compared to the
r26 version. The overall estimate of forest area is much closer to the NFI estimate
(21.4%), differing by 4.5% (Table 3). The comparisons in height classes with NFI
estimates are reasonably close, i.e. within 3%. The cover class comparisons are
more variable, with large differences between the respective woodland and open
forest class comparisons. This may reflect a threshold or limitation in the ability
of ICESat to adequately resolve areas of scattered trees within the footprint area,
particularly when cover is less than 20-30%.

Histograms of the height and cover distribution are shown in Fig. 5, and include
the NFI structure class boundaries. Figure 6 illustrates the spatial distribution of
ICESat footprints across the continent. Overall, the forest footprints appear in the
same locations as have been mapped by the NFI, i.e. predominantly on the coastal
margins of the eastern, south western and northern areas of the continent. Of noteis
the apparent forest recorded in northwest Western Australia and central Australia.
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Fig. 5 ICESat GLA14r28 forest height and cover class distribution for Australia



Fig. 6 |CESat GLA14r28 distribution across Australia (2006). Dark points are estimated forest (2
m+ height and 10%-+ cover). Footprint point size representation is not to scale

Discussion

In terms of nationa level reporting and monitoring, the r28 version of ICESat
shows promise for height assessment, though the cover estimates need improve-
ment. The use of histograms for cover and height illustrate the advantage of the
continuous measurement available with |CESat over the categorical classes used by
the NFI. This provides an improved understanding of the actual distribution (assum-
ing ICESat is an accurate sample) of forest height across the continent. However,
improvements are required and currently ongoing. For example, with forest height
the lowest value from the full waveform curveis5.8 m (‘height at 10% FPC' param-
eter). Therefore, to better match the NFI forest threshold of 2 m, more research is
required to see if vegetation less than 5.8 m but greater than 2 m can be resolved
from the waveform curves when using this parameter. Thisis especialy relevant in
the mallee and arid regions where much of the vegetation would be in the 2-5 m
height range, and which is likely to be missed with the current parameter attribute
extraction settings.

The three-footprint case study highlights several issues that combine to cause
difficulties for attribute extraction and calibration. The case study hasidentified that
ICESat (version r26) can extract attributes for height and cover that are similar to
the LiDAR derived estimates, however the consistency of the extraction is variable.
Issues that need to be further investigated, before consistent continental applica
tion can be undertaken, include an assessment of cloud cover at time of footprint
collection (either with ICESat categorical attribute, or MODI S cloud opacity/depth
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value for example), to determine if exclusion or additional calibration functions
arerequired. Thiswould assist in determining if thereis any impact of smoke, high
cloud, haze, and fog/mist on the | CESat response, especialy in riparian areas, where
these conditions may occur more frequently. Hazy conditions may result in greater
scattering of the laser pulse, so resulting in less sensitivity to the vegetation, and
incorrect assessment of height and cover.

Additionally, laser interactions with vegetation need more detailed investigation,
as very sparse or clumped vegetation can violate many large footprint-processing
assumptions, potentially resulting in incorrect results (Harding et al. 2001). Tall,
dense, multi-layered forests can a so present issues, especially when combined with
steep slopes. Therefore likely error thresholds for height, cover, and strata need to
be further investigated. This could include developing initial linear regression func-
tions to improve height or cover using arange of ICESat attributes (e.g. elevation,
dlope, reflectance, intensity, footprint area, height, cover, time of day) to improve
the attribute estimation. A combination of decision tree and/or series of calibration
steps or functions stratified by ecozone will be required to optimise the extraction
of height and cover from ICESat for all the major vegetation types across Australia.

Conclusions

Based on the comparisons undertaken for ground elevation, ICESat appears to be
an effective calibration tool for continental terrain model validation. Whilst initial
comparisons between ICESat and LiDAR forest structural metrics were variable
and appeared to be dependant on the density of the forest and terrain slope within
the footprint, ICESat did appear to extract reasonable estimates when compared to
the LiDAR (especially with height), with an apparent threshold of improved accu-
racy when foliage-branch cover was higher than 30%. The differences observed
in the case study were comparable (in terms of RSE for height) with those found
in other pilot studies (e.g. Harding and Carabajal 2005, Sun et al. 2008), although
more comparison sites are required to generate improved correlations and reliable
continental application. It is encouraging to note the large improvement in national
level statistics for forest structure with the r28 version over the r26 version, when
compared to current National Forest Inventory estimates. Thisis especially so con-
sidering that height information is not consistently collected over the continent, and
that not all forest area have been explicitly mapped or attributed with height and
cover estimates.
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Linking Biological Survey Information
to Remote Sensing Datasets. A Case Study

K.J. Sheffield, S.D. Jones, J.G. Ferwerda, P. Gibbons, and A. Zerger

Abstract Remote sensing iswidely used as atool to map and monitor environmen-
tal attributes, such as vegetation. This paper describes a native vegetation ground
data collection protocol that attempts to integrate the spatial resolution of several
remotely sensed datasets and the spatial variation of vegetation into aframework. A
particular challenge of this study was to use pre-existing vegetation survey method-
ology and adapt this for use with a number of remote sensing satellite systems.
The spatia properties of remotely sensed data were explored by calculating textural
measures for images at progressively coarser spatial resolutions, allowing sources
of remotely sensed data for this project to be evaluated, with respect to spatial scale.
This study forms part of a larger project which investigates the potential use of
remotely sensed data in the development of a vegetation assessment framework,
providing linkages between variables at site, landscape, and regional scales.

I ntroduction

This paper presents an overview of the approach taken to develop a vegetation
ground data collection protocol that provides relevant ground information for use
with SPOT 5 and Ikonosimagery, and integrates currently operational ground-based
methods for assessing vegetation attributes at a site scale. This case study takes
established knowledge and techniques from remote sensing and ecological disci-
plines, and provides an applied example of how data requirements for two purposes
can be integrated within the one approach. This work employs known concepts and
issues relating to the collection of ground data for remote sensing studies and pro-
vides a practical application of this theory in the context of vegetation assessment
for biodiversity conservation in south-eastern Australia.
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Multi-Spectral Remote Sensing of Vegetation

Imagery from multi-spectral satellite remote sensing platforms is frequently used
for vegetation assessment. Remote sensing based vegetation measures range
from highly detailed fine scale assessments, to regional and globa applications
(Thomlinson et a. 1999, Defries et a. 2000, Huang et al. 2001, Armston et al. 2004,
Johansen et al. 2007). Satellite remotely sensed data provide an efficient method to
measure stands of vegetation in a timely manner, particularly over larger tracts of
vegetation (Coops and Culvenor 2000, Zawadzki et al. 2005).

The spectral response of vegetation is characterised by lower reflectance in the
visible portion of the electromagnetic spectrum, and high reflectance of near infra-
red wavelengths. Key factors that affect the spectra reflectance characteristics of
vegetation include leaf size and orientation, physical structure of the plant, species
distribution, vegetation density, and the influence of other land covers (Bannari et al.
1995, Armitage et al. 2000, Nagendra 2001). The tempora influence on vegetation
spectral response is aso a key consideration as vegetation phenology (and conse-
quently spectral reflectance) varies seasonally and at different plant growth stages
(Jensen 2000, Nagendra 2001, McCoy 2005).

A common approach to the assessment of vegetation using multi-spectral
remotely sensed data is the use of vegetation indices. Vegetation indices are radio-
metric functions that provide information about vegetation reflectance and biomass.
Many different vegetation indices have been developed to provide information on
arange of vegetation characteristics such as vegetation cover, leaf density or leaf
water content. The Normalized Difference Vegetation Index (NDVI) iswidely used
to derive estimates of vegetation cover (Bannari et al. 1995, Defries et al. 2000,
North 2002, Jiang et a. 2005, Carreiras et al. 2006, Liu et a. 2007). Other routinely
used vegetation indices include the Soil Adjusted Vegetation Index (SAVI) and the
Enhanced Vegetation Index (EVI1) (Huete 1988, Bannari et a. 1995, Nagler et al.
2001, Huete et al. 2002).

The assessment of vegetation using multi-spectral remotely sensed data requires
some form of ground data with which to compare products derived from remotely
sensed data. The collection of ground or reference data for remote sensing studiesis
awell established, but often under-resourced process. There are, however, numerous
issues that require consideration to produce a well-designed and flexible field that
will alow appropriate ground data to be collected for a given study.

Ground Data Collection | ssues

Ground data quality issues are an important consideration in any study involv-
ing geographic information, including remotely sensed data. Ground data, and
specifically spatial data, quality elements identified within existing geographic data
guidelines include what are termed the ‘Big 5’ issues: (1) positional accuracy, (2)
attribute accuracy, (3) logical consistency, (4) data completeness, and (5) data lin-
eage (Hunter et a. 2003a, Morrison 2005, Comber et a. 2006, Reinke and Jones
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Fig. 1 A summary of ground data quality issues considered in the development of this ground
data sampling approach, based on issues identified in Guptill and Morrison (1995), Aspinall and
Pearson (1996), Brogaard and Olafsddttir (1997), and Reinke and Jones (2006)

2006). While some issues are generic to all spatia data, such aslineage and attribute
accuracy, others, such as spatial scale, temporal resolution, and site homogeneity,
are particularly relevant to remote sensing applications.

Consideration of these data quality issues is required to improve the ability
of existing vegetation field surveys to accommodate the needs of remote sensing
applications (McCoy 2005, Reinke and Jones 2006), thus addressing the compat-
ibility between remotely sensed data analysis and ground data requirements. Poor
compatibility between ground data and remote sensing data will greatly impinge
data analysis, and may undermine any identified relationships between the data
(Congalton 1991, Defries et a. 2000, Liang 2004, Reinke and Jones 2006). Data
quality issues that were considered in this study are summarised in Fig. 1.

Spatial scale and spatia resolution are key elements of remotely sensed data.
The spatial resolution of a sensor is an important feature, as it determines the detail
of the information that can be extracted from an image (Marceau et al. 1994). The
spatial resolution of remotely sensed datais often considered as the pixel size of the
imagery or in terms of the sensor’s ground sample area. Collection of ground data
that corresponds with the spatial resolution of remotely sensed data enhances the
utility of ground data, and is a key challenge for remote sensing studies (Brogaard
and Olafsdottir 1997, McCoy 2005, Reinke and Jones 2006).
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The spatia structure of remotely sensed data changes with image scale and res-
olution (Milne and Cohen 1999), which emphasises the need to carefully select
appropriate remotely sensed data for specific studies, and is aso an important con-
sideration when collecting ground data for remote sensing proj ects. Semivariograms
can be used to represent the spatial structure of remotely sensed imagery, and have
been used to guide the selection of appropriate spatial resolutions for individual
studies (Woodcock and Strahler 1987, Curran 1988, Woodcock et al. 1988a). This
type of analysis can be particularly helpful when multiple spatial scales are con-
sidered simultaneously within a single study. Multi-scale analysis is becoming an
increasingly important challenge, as recognition of the scale-dependent nature of
ecological variation increases (White and Walker 1997, Hay et al. 2002, Fischer
et al. 2004). Reconciling these considerations with remote sensing data requirements
isarecognised issue.

In terms of temporal resolution, the synchronicity between ground and remotely
sensed data acquisition is a key consideration. Where vegetation is the feature of
interest in a study, temporal resolution is particularly important, as vegetation is a
dynamic feature that varies temporally aswell as spatially (White and Walker 1997,
Landres et al. 1999, Jensen 2000, Nagendra 2001). The methods used to record
ground data are a key issue given the variability of methods available to measure
any given attribute. The use of continuous variables allows greater flexibility for
future use of the data than variables recorded as categorical attributes, and alows
the data to be manipulated for different purposes (Fassnacht et al. 2006, Reinke
and Jones 2006). The methods used to record data also influence the accuracy and
precision of the data, which can be an important consideration if it is then used to
validate remotely sensed data.

A requirement of ground data for use in remote sensing applications is a known
spatia relationship to the remotely sensed data. An important consideration of
ground data collection planning is the estimation of potential positiona inaccu-
racy sources and compensating for this within the ground sampling strategy (Treitz
et a. 1992, Stehman and Czaplewski 1998, Means et a. 1999, McCoy 2005). To
reduce the impact of positional errors on the estimate of variables from remotely
sensed data, sampling strategies based on pixel clusters are often used in remote
sensing studies. This strategy negates the need to locate single pixels accurately
within an image.

The use of pixel clusters as sampling units can also assist in sampling the interior
of an area, reducing the potential of sampling mixed pixels rather than homogenous
ground areas. Incorporating abuffer around ground data collection sites al so ensures
a full pixel is sampled, rather than the edges of pixels (Thomlinson et al. 1999).
Sampling in homogenous areas is advantageous since a given variable is evenly
mixed, or distributed uniformly across an area (McCoy 2005).

Generally, for remote sensing studies, ground data collection sites are located
within homogenous areas (Nusser and Klaas 2003, Armston et al. 2004, Gallo et al.
2005, Reinke and Jones 2006). While spatial heterogeneity of vegetation attributes
is considered important from an ecological perspective (Turner 2005), homogenous
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areas are often of more interest in terms of ground data collection for remote
sensing studies. Large homogenous areas are less likely to be negatively affected
by positional inaccuracy (Means et a. 1999, McCoy 2005).

There are many other dataissues that influence the use of spatial data and the col-
lection of ground data for remote sensing applications. In addition to those issues
reviewed above, other important considerations include datalineage, data compl ete-
ness, logical consistency, and the provision of appropriate metadata (Brassel et al.
1995, Hunter et al. 2003b, Lee et a. 2003, Reinke and Jones 2006).

Study Area

The case study was undertaken in southern New South Wales (NSW), Australia
(Fig. 2). The study area covers approximately 120 km?, and islocated in the Murray
Catchment Management Authority (CMA) area. The study area is dominated by
agricultural land uses, predominately dryland grazing and cropping, with some areas
of forestry plantations, remnant native vegetation and National Park.

The landscape has largely been cleared for agriculture, and consequently most
remaining native vegetation is located along roadsides, in traveling stock reserves,
along watercourses, and in small remnants on private land. The dominant vegetation
types found in the area are Grassy Box Woodlands, Riverine Woodland Forest and
Dry Foothill Forest (Murray CMA 2006). Dominant tree species found in this land-
scape include White Box (Eucalyptus albens), Western Grey Box (E. microcarpa),
Yellow Box (E. melliodora), Blakely's Red Gum (E. blakelyi), and Silver Weattle
(Acacia dealbata).

Murrumbidgee CMA

New South Wales

Hobrook
— /
Murray CMA

A
0 5 10 20 Km
Lol N

Fig. 2 Location and extent of study area within the Murray Catchment Management Authority
areain southern New South Wales, Australia
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Remotely Sensed Data

The choice of remotely sensed imagery used for this study was limited to two oper-
ational multi-spectral platforms: Ikonos and SPOT 5. These data were selected due
to their availability and general use within the study area. Details of the spatial and
spectral resolutions of the sensors are given in Table 1.

Table 1 Spatial and spectral (panchromatic (Pan) and multi-spectral (MS)) details of remote
sensing platforms used in this study

Platform Mode Spatia resolution Spectral resolution
Ikonos Pan 1m 0.45-0.90 pm
MS 4m 0.45-0.52 pm
0.51-0.60 um
0.63-0.70 um
0.76-0.85 um
SPOT 5 Pan 25m 0.48-0.71 um
MS 10m 0.50-0.59 um
0.61-0.68 um
0.78-0.89 um
20m 1.58-1.75 um

Development of a Vegetation Ground Data Collection Protocol

The ability of remotely sensed data to provide measures of vegetation at landscape
and regional scales that are consistent with those measured at a stand-level strongly
depends on the sampling scheme used to collect ground data (Reinke and Jones
2006). The process outlined below was used to develop a vegetation ground data
collection protocol that provides ground data relevant for use with SPOT 5 and
Ikonos imagery, while integrating methods for assessing vegetation attributes at a
site scale that are currently used within the study area. The development of this
protocol considered three key areas:

1. Definition of an appropriate sampling unit, based of the spatial resolution of
remotely sensed data,

2. Determination of amethodology to sample a suite of vegetation attributes within
the defined sampling unit at an appropriate spatial scale, and

3. Consideration of key ground data collection issues considered relevant to
this study.

Determining Field Site Dimensions

The field site structure was based on the spatial resolution of the imagery used
in this project. Semivariograms and Moran’'s | spatial autocorrelation measured
were used to examine the underlying spatial properties of the remotely sensed data.
Semivariograms are a visua tool used to represent the spatial structure of remotely
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Fig. 3 Average and individual band semivariograms for Ikonos imagery (excluding urban areas)
derived from global image semivariance calculations

sensed data, relating semivariance to distance (Curran 1988, Woodcock et al. 1988a,
Tso and Mather 2001). Semivariograms derived from Ikonosimagery (both individ-
ual bands and an image average) are shown in Fig. 3. As vegetation was the primary
interest in this study, urban land cover was excluded from the analysis.

Information regarding the spatia structure of remotely sensed data can be
inferred from a number of semivariogram features. The sill is the value at which
the maximum semivariance value is reached (Curran 1988, Woodcock et a. 1988a,
Merino de Miguel 2000), and represents the amount of variation explained by the
nugget effect and the spatial structure of the imagery (Zawadzki et al. 2005). The
distance at which the sill isreached is known as the range (Woodcock et al. 1988b),
and represents the spatial resolution above which image objects are considered spa-
tially independent (Woodcock et al. 1988a). The range isrelated to the size of image
objects as these contribute to the spatial structure of the image, and spatial depen-
dence of pixel values (Woodcock et al. 1988a, Merino de Miguel 2000, Song and
Woodcock 2002, Zawadzki et al. 2005).

Inspection of semivariograms derived from both Ikonos and SPOT 5 imagery,
determined that a sill was approached at distances (range) of approximately 50 m.
For al semivariograms, there was an initial rapid increase in semivariance below a
distance of approximately 50 m, after which semivariance increased at a more grad-
ual rate, suggesting larger variation in image object sizes at distances below 50 m
(Woodcock et al. 1988b, Merino de Miguel 2000). A similar analysiswas conducted
using Moran's |, a measure of spatia autocorrelation (Emerson et al. 2005). The
results of this analysis supported the conclusions established using semivariance
values for the two images.
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The ground data sampling protocol was therefore designed to target areas below
50 x 50 m, facilitating an analysis of spatial scale issues at distances where there
is greater variability in image object size. A previous study conducted within the
study area found that 34% of remnant native vegetation occurred in patches of less
than 1 ha (Gibbons and Boak 2002), suggesting that using a field site of 50 m?
was capable of capturing both information in small vegetation remnants within the
landscape and variation within larger vegetation remnants.

Dueto the variable spatial resolution of the two sources of remotely sensed data,
a nested sampling approach was used, following established ground data collection
protocols such as the BigFoot calibration and validation program (Campbell et al.
1999). Pixel clusters, rather than individual pixels, were used to construct the nested
field site design. The use of pixel clusters as sampling units is a common approach
in remote sensing studies (Stehman and Czaplewski 1998, Lefsky et al. 1999, Means
et al. 1999, Golevitch et al. 2002, Nusser and Klaas 2003).

Pixel clusters of 3 x 3 and 5 x 5 from both sensors were used to construct
the nested field site design, which incorporated cluster dimensions ranging from
12 to 50 m2. The use of pixel clusters to sample remotely sensed data addresses
two key spatial data issues identified previously: (1) the need to sample homoge-
nous areas, and (2) the need to alow for potential positional inaccuracies. To
ensure field sites were located in homogenous areas of vegetation and to reduce
the potential influence of edge areas, the field sites a 20 m buffer was incorporated
around sites.

Sampling Vegetation Variables Within the Field Site

Within the nested spatial arrangement of the field site, plots and transects were
established to collect ground data measurements. The layout of plots and transects
is shown in Fig. 4. This sampling design enabled assessment of vegetation at dis-
tances smaller than 50 m, corresponding to key spatial areas identified from the
image semivariograms. Across each site, replicate areas were assessed to obtain a
mean estimation of vegetation attributes within a given spatial area. Pilot studies
were conducted to determine appropriate sampling intensities within the study area.

20m x 50m quadrat 20m x 20m quadrat

\\\
Fig. 4 Plot and transect - \ ﬁ)m transect
arrangement used to sample

vegetation attributes within a
nested field site arrangement
based on clusters of image
pixels (adapted from Gibbons /
et al. 2005) GPS Point
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The structure and layout of each plot assessment is based on the BioMetric
vegetation condition site assessment methodology (Gibbons et a. 2005). This
approach to assessing stand-level vegetation attributes is widely used through-
out NSW, Australia. Designing the ground data collection protocol for use with
remotely sensed data, while also facilitating integration with existing vegetation
survey work in the study area helps to explore how the two disciplines (ecology
and remote sensing) can be incorporated into an effective vegetation assess-
ment framework, an important area of work for natural resource management
(Leeet a. 2003).

Vegetation attributes were measured using quantitative continuous measure-
ments. Attribute measurement is a key ground data collection issue identified
previously. The use of quantitative continuous measurements does not impose arti-
ficial restrictions on the data, allowing greater flexibility in the use and further
analysis of that data (McCoy 2005, Fassnacht et al. 2006, Reinke and Jones 2006).
By collecting ground data in this manner, the data could be re-scaled and com-
piled to yield information at different spatial scales and within different pixel cluster
areas.

Conclusions

While the low cost, repeatability and synoptic overview provided by remotely
sensed data means that it is a widely used technology to map and monitor envi-
ronmental variables, linking these data with in-situ (or on-ground) observations is
often difficult. This forms a central challenge of this work, through the design of
aflexible ground data collection approach that is capable of providing ground data
suitable for a suite of remotely sensed data.

A ground data collection protocol is presented that allows for: (1) the spatial
resolution of the imagery utilized; and, (2) the spatial variation of the attribute being
measured. An understanding of the spatial structure of remotely sensed data and the
effect that spatial resolution has on classification and analysis of remotely sensed
data has a significant influence on analysis results (Marceau et al. 1994). While the
concepts behind this protocol are not new, it provides an example of how issues
specific to re-mote sensing can be integrated in the design of a multi-purpose field
cam-paign.

Identification of appropriate spatial resolutions for analyzing vegetation has
important consequences for the choice and use of remotely sensed data. Outcomes
from this project will be used to guide appropriate analysis and data use in the devel -
opment of a vegetation assessment framework, which aimsto provide data across a
range of spatial scales (such as site, landscape and regional areas) incorporating a
number of remotely sensed data sources.
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Characterizing the Landsat Global Long-Term
Data Record

T. Arvidson, SNN. Goward, and D.L. Williams

Abstract The effects of global climate change are fast becoming politically, soci-
ologicaly, and personally important: increasing storm frequency and intensity,
lengthening cycles of drought and flood, expanding desertification and soil saliniza-
tion. A vital asset in the analysis of climate change on a global basisis the 36-year
record of Landsat imagery. In recognition of its increasing importance, a detailed
analysis of the Landsat observation coverage within the US archive was commis-
sioned. Results to date indicate some unexpected gaps in the US-held archive.
Fortunately, throughout the Landsat program, data have been downlinked routinely
to International Cooperator (IC) ground stations for archival, processing, and distri-
bution. These IC data could be combined with the current US holdings to build a
nearly global, annual observation record over this 36-year period. Today, we have
inadequate information as to which scenes are available from which IC archives.
Our best estimate is that there are over four million digital scenesin the IC archives,
compared with the two million scenes held in the US archive. This vast pool of
Landsat observations needs to be accurately documented, via metadata, to deter-
mine the existence of complementary scenes and to characterize the potential scope
of the global Landsat observation record. Of course, knowing the extent and com-
pleteness of the data record is but the first step. It will be necessary to assure that
the data record is easy to use, internally consistent in terms of calibration and data
format, and fully accessible in order to fully realize its potential.

I ntroduction

Global climate change is rapidly becoming a common discussion point in the gen-
eral populace, arising concern for the scientific community, and apriority for policy
and decision makers. Studies of theimpact of climate change are conducted at many
levels — global, regional, and local. Remotely sensed data at a moderate resolu-
tion — between 10 and 120 m (Green 2006) — play acritical role in addressing these

T. Arvidson (=)
Lockheed Martin, Goddard Space Flight Center, Greenbelt, MD 20771
e-mail: terry.arvidson@nasa.gov

S. Jones, K. Reinke (eds.), Innovations in Remote Sensing and Photogrammetry, 65
Lecture Notes in Geoinformation and Cartography, DOI 10.1007/978-3-540-93962-7 6,
© Springer-Verlag Berlin Heidelberg 2009



66 T. Arvidson et al.

concerns. Asthe only systematic global archive of land scenes at amoderate resolu-
tion, the Landsat archive is key to the study of the changes being recognized in our
global climate system.

Landsat has primarily been managed as a survey mission, concentrating on
achieving global coverage at least annually. Thus a considerable archive of data has
been gathered for the purpose of being available if needed in the future, as opposed
to being acquired in response to a specific request. The exception to thisis aperiod
of commercialization ushered in by the Land Remote Sensing Commercialization
Act of 1984 (Public Law 98-365) and ended by the 1992 Land Remote Sensing
Policy Act (Public Law 102-555) (Green 2006). The commercial operator, EOSAT
(later Space Imaging), concentrated on acquisitions based on user requests — data
for which they had a buyer.

Additionally, Landsat data characteristics and calibration are generally well
understood, enabling the goal of continuity from one spacecraft and sensor to
the next. This also enables use of Landsat data with other sensor data. Recently,
Geoscience Australia has studied, through a pilot project over Gwydir Catchment in
Northern New South Wales, the value of Landsat archive data processed to consis-
tent quality surface reflectance products, combined with Moderate Resol ution Image
Spectroradiometer (MODIS) time series data, to derive land cover information for
tackling national issues such as water management, environmental responses to cli-
mate change, as well as provide data for national environment reporting. In this
study, Lymburner et al. (2008) used MODIS data — 250 m spatial resolution and
daily revisit frequency — with Landsat data — 30 m spatia resolution and 16-day
revisit frequency — to identify irrigated versus rainfed crops, fallow periods, the
number of crops per year, productivity, and yield trends from year-to-year. Thistype
of information would support the accounting of water usage, interactions between
surface water bodies and ground water, water allocation, and other water-related
issues.

The first Landsat satellite was launched in 1972 and there has been continuous
Landsat presence in orbit since then. Landsat 5 and Landsat 7 are currently opera-
tional, respectively adding a total of 6,000 and 9,000 scenes per month to the US
archive.

An application of the Landsat long-term record is the Nationa Carbon
Accounting System (NCAS) of the Department of Climate Change in Australia
(Australian Greenhouse Office 2005), which verifies compliance with the Kyoto
Protocol. The NCAS monitors land clearing and revegetation and is vital to
Australia’'s National Greenhouse Gas Inventory reporting. Using continental
Landsat imagery maps with geometric and radiometric consistency, 15 sequences
of land cover change from 1972 to 2004 have been generated and used to identify
the sinks and sources of greenhouse gases and catal og those caused by human activ-
ity, including: fires, farming, land conservation, and forest management (Caccetta
et al. 2007).

Given the importance of the 36-year Landsat archive to the science commu-
nity, the US National Satellite Land Remote Sensing Data Archive (NSLRSDA)
Advisory Committee commissioned an analysis of the state of the US Landsat
holdings. This paper reports on the results-to-date of that analysis.
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US Archive Status

Since 1972, the US has been accumulating Multispectral Scanner (MSS, from
Landsats 1-5), Thematic Mapper (TM, from Landsats 4-5), and Enhanced Thematic
Mapper Plus (ETM+, from Landsat 7) datain the US archive (Table 1). The archive
is housed at the US Geological Survey’s (USGS) Center for Earth Observation and
Science (EROS) in Sioux Falls, South Dakota.

Table1l USarchive holdings by sensor (as of 31 August 2008)

Date range Sensor source No. of scenes
1972-1992 Multispectral scanner 649,423
1982—present Thematic mapper 760,437
1999-present Enhanced thematic mapper plus 840,364
Total 2,250,224

EROS personnel are constantly assessing the physical state of the archive,
refreshing the archive media, and recovering data from deteriorating media. For
example, another 20,000 TM scenes were recently located during a transcription of
tapes sent to the EROS by EOSAT.

In response to the NSLRSDA commission, we used metadata generated during
the archival process to produce graphic representations of the annual and sea
sonal coverage for each Landsat sensor type in the archive. An example of each
isshowninFigs. 1, 2, 3, 4, and 5. The full set of coverage graphics can be found at
http://edc.usgs.gov/archive/nslrsda/geoCov.html. An updated set of annual and sea-
sonal coverage maps isin preparation at EROS, this time on a sensor/satellite/year
basis rather than sensor/year. Additional statistics on the number of marketable
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Fig.1 MSS 1975 annua coveragein US archive. Dark gray tiles represent images that are ‘ unus-
able’, with <5 quality rating (Goward et al. 2006) and > 30% cloud cover. Light gray tiles represent
images having >5 quality rating and cloud cover <30%
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Fig. 3 MSSMarch-May 1975 spring season

scenes, the number of scenes with 30% cloud cover or less, and the depth of the
archive will be provided for each map. These updated maps should be available
in 2009.

Our subsequent analysis of the annual and seasonal maps revealed surprises. The
global coverage was neither as consistent nor compl ete aswe had expected. We went
through historical documentation and interviewed Landsat personnel to discover
why this was so. Table 2 summarizes the predominant reasons we have found for
coverage gaps. Further details can be found in Goward et al. 2006. There are some
gaps we have not yet been able to explain; for example, we suspect that, at times,
datawas routed directly to another government agency and never entered the EROS
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Fig. 5 MSS September—November 1975 autumn season

Table2 Reasonsfor gapsin the US archive global coverage

Category

Examples

Program management
Spacecraft problems
Sensor problems
Communication constraints

Acquisition priorities

Commercialization period with limited 4/5 coverage
Ku-band failureson 4 and 5

Power problems on 4

Recorder problems on 1-3

MSS line start problems on 1-3

Scan-line corrector failureon 7

Late launch of TDRS-West, preventing western hemisphere
coverage from 19821988

Reef campaign in 1981-1982
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archives. Having discovered the extent of the gaps, our next concern is identifying
data that might fill these gaps — perhaps from the international archives.

International Archive Status

From the onset of the Landsat program, participation of ground stations sponsored
by other countries has been an important part of the mission, enhancing the global
nature of the Landsat archive. This network of International Cooperator (1C) stations
has been active since 1972, some since the beginning, others off and on, and some
for short campaign periods only. The current complement of full-time US and IC
stations is shown in Fig. 6. Those stations that operate on a campaign basis are not
shown in that figure.

The|C stations are operated under aMemorandum of Understanding between the
IC Government agency and the US operating agency for Landsat — currently thisis
the USGS. Some ICs comprise more than one station. The ICs are responsible for
acquisition, archive, product generation, and distribution of the Landsat data that
is downlinked to their stations. Each IC station receives a direct downlink of the
land scenes within its acquisition circle at every viewing opportunity, subject to
any scheduling constraints such as duty cycle or engineering activities. Thus there
is a deep archive at each |C station from which gaps in the US holdings over their
geographical areas could befilled. The requirements placed on the I Cs, based on the
MOU, include adherence to the Landsat data policies and retention of the Landsat
datain an archive. If they make the decision to retire the archive, the IC must give
the USfirst refusal on incorporating the | C archive holdings into the US archive.

Today for Landsat 7 and soon for Landsat 5, each |C must return metadata to the
EROS detailing data entered into their archive. In the past, this policy was not as
consistently applied nor was there consistent willingness on the part of the ICs to

L7 1GS Network
L5 1GS Network
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Fig. 6 Current network of Landsat stations
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Table 3 Estimates of scenes held at IC archives (as of 31 March 2007)

Countries involved Years active Holdings (scenes)
Australia, Brazil, Canada, China, Europe, Indonesia, > 20 4,205,038
Japan, South Africa, Thailand
Argentina, Ecuador, India, Pakistan, Saudi Arabia, <20 260,224
South Korea, Taiwan
Antarctica, Dubai, Gabon, Iran, Kenya, Kyrgyzstan, Short-term 21,042
Mongolia
23 countries, 30 stations 4,486,304

submit the metadata. Therefore, we do not have a clear picture as to what historical
data are in the IC archives around the world. Based on the metadata that has been
submitted over the years, we can estimate that there are two to three times more
data in the IC archives than we have in the US archive (see Table 3). We have
started efforts to remedy this lack of knowledge of the IC holdings; newly reported
hol dings numbers have raised the total to over 4.5 million scenes, with more stations
yet to report.

Achieving a Global Archive

We have identified several steps toward achieving a more complete global Landsat
archive that is useful and supportive of global climate change studies. These steps
concentrate on the identification of IC holdings, establishing the status (or * state of
health’) of the archived data, enabling accessto the datathrough the implementation
of standards, and enhancing utility of the data through improved calibration.

Metadata

The USGS and ICs have agreed upon a consistent metadata definition for
Landsats 17, for al three sensors. The Landsat Metadata Definition Document
(USGS/EROS 2008) describes a metadata format that is applicable to Landsats 1-5
and 7, as well as future Landsats. Once implemented at each IC, the ICs will sub-
mit to EROS metadata for the full set of Landsat holdings in their archives. This
will be a gradual process in some cases, where older M SS data sets have yet to be
incorporated into an online digital archive system. The US will ingest the metadata
and establish amore complete global catalog of Landsat holdings. Each IC is being
encouraged to submit the associated browse imagery with the new metadata.

Archive Maintenance

Maintaining an archive of digital data requires constant attention, and hence con-
stant financial support. Data on older media need to be transcribed onto newer
media. As time passes, this becomes more difficult to accomplish for data sets still
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residing on wideband video tapes. Deterioration of the tape itself and scarcity of
tape drives with which to read the tapes compound the problems. It is vital that
we assure that archives are being maintained and media are being refreshed. The
Landsat Ground Station Operators Working Group is compiling alist of tape drives
and hardware experts available at each IC. The hope is that an IC with tape media
issues may find aworking tape drive at another station or an expert to assist with the
repair of non-operational egquipment.

Access Standards

Online catalog data and browse images ensure archive accessibility to researchers.
For Landsat 7, an exchange product standard has been established and has proven
its worth when data exchange has been necessary among the stations. This standard
is currently being extended to Landsat 5; subsequent application to Landsats 1—
4 should be the next step. An important part of the exchange product standard is
USGS validation of the format generated by each station to assure compliance with
the standard.

Data Utility

Once we have identified the global archive extent and enabled archive maintenance
and data exchange, we need to address data utility. Calibration of the Landsat 7
data set is excellent (Markham et al. 2004) and efforts are underway to improve
the calibration of Landsat 5 TM through cross-calibration with Landsat 7 ETM+
(Teillet et al. 2001). We have just started to address the calibration of the MSS. There
are known artifacts and problems, and very little documentation on the calibration
history of the sensor, but we are hopeful. Early results suggest that the M SS sensors
werevery stable over time (Helder, personal communications). Efforts are underway
to gather whatever information might be available from the ICs on MSS agorithms
and ancillary data sets.

Conclusions

Our analysis of the US-held Landsat archive has highlighted the importance of the
IC-held assets in forming a more robust global Landsat archive with minimal cov-
erage gaps. A standardized metadata format is essential to building a catalog of the
Landsat archives held at | C stations, and this standard is now being implemented by
thelCs.

The deterioration of the global Landsat archiveisamajor concern. Financial and
technical support must be found within the Landsat stations, including that of the
US, to maintain, document, and rescue, as necessary, the Landsat archives around
the world.
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Identifying and stabilizing the archives needs to be followed by enhancing the
usability of the entire scope of archives, so that researchers can work as seamlessly
as possible, from Landsat 1 MSS to Landsat 7 ETM+ data and the future Landsat
Data Continuity Mission (Landsat 8) observations. Achieving this goal requires
continual updating of data set calibration to maximize radiometric consistency,
devising corrections for known image artifacts and sensor effects, and generation
of orthorectified products at regular intervals — for example, every 2-3 years.

Knowing the extent and completeness of the data record is but the first step.
Assuring that the data record is easy to use, internally consistent in terms of calibra-
tion and data format, and fully accessible is the ultimate requirement to arrive at a
truly global and productive Landsat archive.
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Evaluation of Alternative Sensors
for a Landsat-Based Monitoring Program

S.L. Furby and X. Wu

Abstract In Australia, Landsat imagery is currently used in a number of regional
and national monitoring projects to provide maps of the extent and change in area
of perennial vegetation. They provide basic information for conservation, land man-
agement and for modelling carbon flux and water use. With the looming gap in
Landsat data continuity it istimely to consider theissuesinvolved in using datafrom
other sensorsto continue these monitoring programs. In the context of the Australian
Department of Climate Change Land Cover Change Program, this paper describes
the issues and quantifies the effects of using Spot 4 and Landsat 7 SL C-off images
instead of the current Landsat 5 images. The data pre-processing issues inves-
tigated include ortho-rectification, calibration and terrain illumination correction.
Overlapping sets of images from three different geographic regions were processed
to assess logistical and technical issues. The ability to discriminate between classes
of interest is considered in the context of the forest monitoring. The accuracy of the
change products from mixed-sensor time series analysisis also discussed. Both the
accuracy of the products from each step in the processing and the cost in terms of
processing time and complexity are reviewed.

I ntroduction

In Australia, Landsat imagery is currently used in a number of regional and national
monitoring projects. However, the future of Landsat imagery is not assured. Both
Landsat 5 and Landsat 7 are estimated to run out of fuel around 2010. The Scan
Line Corrector (SLC) failed on Landsat 7 in 2003 and only SLC-off products are
now available. Landsat 5 has had problems with its Solar Array Drive which have
affected data availability in 2006. A replacement Landsat or Landsat-like sensor
from the Landsat Data Continuity Mission does not yet have a launch date, and so
isunlikely before 2012.
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With thelooming gap in Landsat data continuity it istimely to consider the issues
involved in using data from other sensors to continue these monitoring programs.
This paper describes the issues and quantifies the effects of using Spot 4 and L andsat
7 SLC-off images in the Land Cover Change Program (LCCP) of the Australian
Department of Climate Change (DCC) (http://www.climatechange.gov.au/ncas),
instead of the current Landsat 5 images. Landsat 7 SLC-off images were also used
in the 2006 update of the Land Monitor |l Perennial Vegetation Monitoring pro-
gram (http://www.landmonitor.wa.gov.au). Experiences with the Land Monitor data
are aso included in this paper. Other Landsat-like data that are being evaluated are
from the China-Brazil Earth Resources Satellites (CBERS) (Wu et al. 2006) and the
Indian Remote Sensing satellites (IRS) (Furby and Wu 2007).

All aspects of the forest cover mapping program are considered; including scene
selection, ortho-rectification, calibration, mosaicking and thresholding to produce
forest cover maps. Unless indicated otherwise in the text, all processing was per-
formed according to the standard methodology for the LCCP (Furby 2002, 2006).
Full details of the results summarised here can be found in Furby and Wu 2006 and
Furby et al. 2006.

Test Areas

Overlapping sets of images from three different geographic regions were processed
to assess logistical and technical issues. The test areas are in New South Wales
(NSW), Tasmania (Tas) and Western Australia (WA) as shown in Fig. 1. Specific
scenes are listed in Tables 1 and 2.

The NSW test area (red in Fig. 1) was selected to include a black soil stratifi-
cation zone so that forest/non-forest discrimination can be evaluated in one of the
most challenging environments encountered in Australia. It also includes a region

Fig. 1 Approximate location
of the test areas
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Tablel SPOT 4 images

Path/Row Date Cloud Inc. angle
WA

317/416 26/01/2006 Partly —138
318/416 05/02/2006 Clear +32
319/416 21/01/2006 Clear —138
319/415 10/02/2006 Clear +134
Tas

384/434 06/01/2006 Little cloud +7.7
385/434 06/01/2006 Some cloud +10.7
386/434 17/02/2006 Some cloud —26.5
387/434 06/01/2006 Clear -13.1
NSW

387/410 22/12/2005 Hazy -1.2
388/410 10/03/2006 Clear -304
389/410 01/02/2006 Little cloud +25.8
390/410 22/12/2005 Little cloud —24.4

Table2 Landsat 7 ETM+ SLC-off images

Path/Row Date Cloud Purpose
NSW

89/81 15/03/2006 Clear Primary
89/81 31/03/2006 5% Fill
90/81 07/04/2006 Clear Primary
90/81 10/02/2006 40% Fill
Tas

90/89 23/04/2006 55% Primary
90/89 07/04/2006 50% Fill
91/89 24/01/2006 40% Primary
WA (LCCP)

111/83 21/01/2006 25% Primary
111/83 06/02/2006 25% Fill
112/83 17/03/2006 Clear Primary
112/83 13/02/2006 25% Fill
WA (Land Monitor)

113/82-84 03/03/2006 10% Primary
113/82-84 19/03/2006 10% Fill

with significant terrain effects to allow evaluation of registration, bi-directiona
reflectance distribution function (BRDF) and terrain illumination correction issues
in an ‘extreme’ environment. The Tas test area (yellow) was selected to include
mountainous areas as well as an agricultural environment where discrimination
between cropped paddocks and plantations can be difficult. The WA test area (blue)
was chosen to include a significant region of new plantations as well as some of the
wheat belt tree cover that is close to the 20% canopy cover cut-off used in the forest
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definition. Thistest areaisrelatively flat. Additional imagery for WA was available
from the Land Monitor project.

Image Data and Scene Selection

Images from the SPOT 4 satellite have been acquired in archive mode since approx-
imately December 2005. Acquisitions from the most recent SPOT satellite, SPOT
5, must be pre-ordered, making the SPOT 4 archive a more practica alternative
to Landsat TM data when circumstances preclude ordering data in advance of the
required acquisition interval.

Unlike the Landsat series of satellites, the SPOT satellites can point to the left
and right of nadir. The SPOT 4 overpasses which have been archived have a variety
of pointing angles. Variation in acquisition angle results in shifts in scene location
and varying BRDF effects. In some cases there are gaps between nominally adjacent
images in the archive. Near-nadir acquisition cloud-free imagery is desirable and,
for this evaluation, an east-west row of four scenes was considered ideal. In prac-
tice scene selection against these criteria from the existing archive proved difficult.
The image archive was searched for several path/rows surrounding those eventually
selected to obtain the best possible sequences of test data. For the broader areas
searched, most archived images had extensive cloud cover and/or significant miss-
ing data. Generally there was at most one suitable image, not a choice of dates.
Operationally, scene selection specifications would need to consider these issues.
The images selected for this study are listed in the Table 1. Due to their smaller spa-
tial extent, at least six SPOT 4 images are required to cover the extent of a Landsat
TM image.

To evaluate the Landsat SL C-off data both individual path-oriented images and
the composite products produced by the Australian Centre for Remote Sensing
(ACRES) were obtained to allow investigation of the compositing process as well
asissues with using the individual scenes directly. The composite product is created
by merging multiple Landsat 7 SLC-off images to fill the gaps in any one image.
The standard scene selection criteria were applied to select the ‘primary’, or main,
image for each path/row. The criteriafor selecting the ‘fill’ image were closeness to
the primary image acquisition date and low cloud cover. A dightly increased cloud
cover was considered better than alonger time between acquisitions.

At least two images are required for each path/row, a primary image and at least
one fill image. Although some gaps remain after compositing two images, three
relatively cloud-free images were very rare due to extensive cloud cover during the
2006 summer. In Tasmania only one relatively cloud-free image for path 91 row 81
could be obtained. The images used are listed in Table 2. The ACRES composites
were formed using the same primary and fill images. The composites were provided
as ACRES standard ortho-rectified products.

Table 3 showsthe remaining ‘gap’ area after compositing for the NSW test area.
As discussed in section (Mosaicking Issues), cloud is masked from the individual
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Table 3 Proportion of Landsat 7 image areafilled by compositing

Image Date Percentage of 89/91 Percentage of 90/81
composite composite

89/81 15/03/2006 78.82 0.52

89/81 31/03/2006 11.79 0

90/81 07/04/2006 2.29 80.72

90/81 10/02/2006 1.07 18.10

images before compositing. The percentage of the composite remaining unfilled
includes cloud-masked areas. Cloud is a minor component in the filled NSW data
but a major component in the other test areas; hence the results are presented for
NSW only. In the overlap region between adjacent paths, data from all four images
are included in the composite. The 89/81 images are an example where the gaps
are largely coincident in the two images. This would represent a near ‘worst case’
scenario when only two images are used. The 90/81 images are an example from
the opposite extreme. Even with a higher proportion of cloud in the ‘fill’ image, the
coverage is almost complete.

At the time of writing this paper, anew Landsat 7 SL C-off ‘interpolated’ product
was being released by the United States Geological Survey. The product is created
from a single Landsat 7 SLC-off image. The gaps are filled by interpolation from
the adjacent data in the same ‘region’. Regions are identified by segmentation of an
earlier complete Landsat 5 or Landsat 7 image. This product is not suitable for our
application as the size of the missing datais larger than the area of change that we
need to be able to detect (0.2 hectares). The interpolated product is suitable only
when the area of change to be detected is larger than the amount of data missing.
Hence examples of this product were not sought for evaluation.

Landsat 5 TM imagery was acquired for the test areas for comparison. The
images are listed in Table 4.

Table4 Landsat 5 TM image dates

Path/Row Date Cloud

89/81 08/04/2006 10% cloud
90/81 14/03/2006 Mostly clear
111/83 08/04/2006 30% cloud
112/83 14/03/2006 Mostly clear
90/89 26/02/2006 40% cloud

Raw Image Quality Issues

With the exception of the missing data, the image quality of theindividual Landsat 7
SL C-off path-oriented image productsis as expected for Landsat TM data. The gaps
are approximately one swathe wide at the edge of the images and disappear towards
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the centre of the image. Along the edges of the gaps there are occasional pixels for
which the data for only some of the image bands are missing, e.g., bands 1, 2 and 3
may contain zeros, while bands 4, 5 and 7 contain non-zero data. In the composites
from ACRES, these pixels end up having intensity values from both images. In the
composites we formed, such pixels were excluded.

The raw SPOT 4 images appeared noisier than path level Landsat TM images.
The images appear to have some geometric patterns. The variation in intensity val-
ues within the forest is generally small compared to the differences between forest
and non-forest cover. There should be little overall effect on forest/not forest dis-
crimination, but there may be some effects at the edge of forest blocks and in
areas with forest density around the 20% canopy cover cut-off. It should be noted,
however, that this noise effect is not obvious visualy in the ortho-rectified image
data.

The order of theimage bandsin the supplied imagery was XS3, XS2, XS1, SWIR
(i.e. 3,2, 1, 4). Theimage bands were reordered prior to processing.

Ortho-rectification | ssues

The individual path-oriented Landsat 7 SL C-off images were ortho-rectified using
the standard processing sequence for Landsat 7 imagery. The satellite orbital model
(Toutin, 1994) in the PCI OrthoEngine ™ software was used for ortho-rectification,
however an issue was encountered with the resampling algorithm. The algorithm
places a zero in the output image any time its resampling window includes a zero
from the input image. Effectively all gaps in the SLC-off images are grown by the
size of the resampling window (8 pixels square for the 8 pt sin/x kernel used) caus-
ing an unacceptable loss of data. Within PCI, the only options are to use alternative
resampling algorithms with smaller resampling windows such as cubic convolution
or nearest neighbour. The alternative considered was to ‘fill’ the gaps with data that
will produce a sensible resampled pixel value. The gaps were filled by interpolat-
ing the data above and below the gap. An indicator image tracking the location of
the interpolated data was created. The image with the interpolated data was ortho-
rectified in PCI using the usua resampling algorithm. The indicator image was
ortho-rectified separately using the same ground control points (GCPs) and near-
est neighbour resampling. The indicator image is then used to mask the extra data
from the ortho-rectified overpass image.

The interpolation strategy provided the best ortho-rectified imagery. Equivalent
registration accuracy was obtained as for unaffected Landsat 7 imagery. The modi-
fied procedures are all automated rather than manual, providing only a very minor
‘per image’ increment to the ortho-rectification effort.

In order to composite (merge) two or more images, they must be registered to
each other. To create their Landsat 7 SLC-off composite product ACRES ortho-
rectifies each image, applying their normal processing sequence using standard GCP
chips with known coordinates. (The images are ortho-rectified to an ACRES base
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Fig. 2 Comparison of SPOT 4 and Landsat TM image bands

rather than the L CCP base, the correspondence of which has not been systematically
investigated.) In the test data, for some areas the registration to the LCCP base is
good, but in other areas, such as the 89/81 composite image in NSW, a clear shift
between the two images of up to two pixels (50 m) can be seen. The LCCP base and
images registered to it match the terrain features in the NSW state digital elevation
model (DEM). The position of ridges and valley floorsin the ACRES composite are
displaced from the DEM leading to artefacts in the terrain illumination correction.

In one of the ACRES Landsat 7 SLC-off composite image supplied for the Land
Monitor project there was a displacement of between 8 and 12 pixels (200-300 m)
between the two images being composited. ACRES investigated the problem and
reported that it was caused by the failure to automatically locate sufficient GCPs.
A combination of the missing data and cloud cover meant that GCPs were not cor-
rectly located. As aresult of the review of all composite imagery provided, ACRES
reprocessed the 91/89 imagery to correct asimilar but much smaller deficiency.

Theseregistration issuesrequirethat if Landsat 7 SL C-off datais going to be used
inthe LCCP, theindividual images must obtained rather than the ACRES composite,
even though it means more processing.

The SPOT 4 images were initialy ortho-rectified using the standard procedures
applied to the Landsat data used in the LCCER , i.e. using the merged Australian Land
Information Group (AUSLIG) 3 and 9 second DEMs.

Landsat TM band 7 is typically used in the correlation matching calculations to
locate Master GCP features in the overlap images. As an equivalent spectral band is
not available in the SPOT imagery (see Fig. 2), matching SPOT band 4 to Landsat
TM band 5 and SPOT band 2 to Landsat TM band 3 were both evaluated. Equivalent
results both in numbers of GCPs matched and GCP locations were obtained.

Twenty seven GCPs spread uniformly across the image area are considered suf-
ficient to adequately register the Landsat images. The Master GCP files typically
deliver between sixty and one hundred well matched GCPsfor each (single) Landsat
TM image. However, the SPOT images cover only about one sixth of aLandsat TM
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image. Only ten to fifteen well matched GCPs were obtained over the test images.
Comparisons showed that better registration to the base was obtained by adding
GCPs so that a minimum of twenty five to thirty GCPs were used in the model fit.
Operationally, during the first epoch for which SPOT imagery is used the Master
GCP and Master Check GCP files will need to be revised for most areas, requiring
asmall ‘per image’ increase in effort for the ortho-rectification processing.

The biggest issue encountered during the ortho-rectification process was poor
registration in areas of terrain, particularly for images with large incidence angles.
The effect was largest for the NSW images. Even with extra GCPs, errors up to
100 m in the registration in some valleys could not be corrected. Using the NSW
state DEM in place of the usual merged AUSLIG DEM produced an image with
improved registration. Many problem regions were resolved completely using the
higher-resolution DEM and the remaining shifts were limited to around 25 m. These
results are consistent with the SPOT Image Technical Information (SPOT Image,
2008) that states that ortho-rectification locational accuracy is 15-30 m depending
on DEM quality. Smaller shifts were observed in the Tasmanian images using the
AUSLIG DEM (no morethat 25-50 m). Again the registration wasvisibly improved
by using a higher resolution DEM. Testing with the NSW images showed that the
results using the NASA Shuttle Radar Topography Mission-DEM were almost iden-
tical to those from the state DEMs. It appears that the ortho-rectification is more
sensitive to terrain issues and that the registration of SPOT 4 imagery to the base
may not be quite as good as can be obtained for Landsat imagery.

Calibration

The standard calibration process consists of three distinct steps:

1. top-of-atmosphere and BRDF corrections (Danaher et al. 2001);
2. invariant target atmospheric check/correction (Furby and Campbell 2001); and
3. terrain-illumination correction (Wu et al. 2004), if required.

Each of these steps is discussed for both image types. In addition, a calibration
step is part of the process for creating the ACRES Landsat 7 SL C-off products. The
effect of this calibration on the composite image is al so discussed.

There are no issues in applying the top-of-atmosphere and BRDF corrections
to the individual ortho-rectified Landsat 7 SLC-off images. The invariant target
check/correction is hampered by some of the targets being located in gaps in the
SL C-off images. Over these test areas the number of targets in gaps was sufficient
to compromise the gain and offsets calculated. Typically more targets in one of the
dark, mid-range or bright intensity ranges were omitted than the others causing the
targets to be unbalanced. Targets had to be manually updated for each image sepa-
rately, not just for each path/row, which would add a substantial ‘ per image’ amount
to the calibration effort.

However, particularly with Landsat 7 imagery, the invariant target calculations
are performed as a check of the processing rather than an automatic correction.
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Corrections are applied only in very rare circumstances when very seasonally atypi-
cal imagesare used and it can be clearly demonstrated that the image ismore similar
to adjacent images with the correction than without it. Theinvariant target correction
was not needed for any of the test imagery. Potentially this step could be omitted
for the primary Landsat 7 SLC-off imagery with no consequences for threshold-
ing accuracy. Systematically subsampled pixels from the overlapping image area
were used to estimate a whole-scene correction of the fill image(s) directly to the
primary image rather than trying to calibrate image each to the calibration base
independently.

In the standard processing sequence terrain illumination correction is performed
after the images have been mosaicked into map sheet units. Image date boundaries
are used to derive and apply an individual correction to each constituent image as
the individual sun-angles differ. The coefficients for each correction are estimated
from the image data using a woody cover mask. If the Landsat 7 SLC-off images
are composited before terrain illumination correction there are two few woody pix-
els remaining from the ‘fill’ image for reliable coefficient estimation. Instead, the
corrections must be calculated and applied before the images are composited, i.e.
before the mosaicking stage. This change to the processing order does not change
the overall level of effort involved.

ACRES perform a calibration of the fill image to the primary image as part of
their compositing process. As the images are merged, a local calibration is per-
formed for each fill pixel. A local gain and offset is estimated to calibrate the
intensity valuesfor the ‘fill’ imageto the intensity valuesin the primary image using
datain asmall local window centred on the pixel being inserted. The result in all of
the images provided by ACRES is a seamless visual product. Numerical processing
of such imagesisvalid only if ground cover reflectances have not changed between
the two images. However, even with images acquired sixteen days apart it is rarely
true that there is no change anywhere in the image.

In the extreme, clear pixelsin thefill image are‘ calibrated’ to look like the cloud
inthe primary image. Cloud-covered pixelsin afill image arealso ‘ calibrated’ to the
underlying cover in the primary image. The Land Monitor images were acquired 16
days apart. The earlier image, acquired shortly after significant rains, shows residual
effects of flooding. In the later image much of the surface water is gone and the wet-
ness and greenness of many paddocks has changed. The ACRES composite image
isvisually pleasing, but for mapping and monitoring land cover changeit is of con-
cern that water in the fill image appears like dry land in the fina merged image.
Other undesirable changes are likely to be present, although perhaps not aways as
ohvious.

The top-of-atmosphere/BRDF correction software relies on reading satellite gain
and offset and sun-angle information from ancillary ‘report’ files normally provided
with path-oriented image data. These files were not part of the composite product.

For this evaluation the composite images were corrected as if they were a sin-
gleimage using report files from the individual primary image; however the values
used were incorrect for the fill image. There were no complications in perform-
ing the invariant target check, but again no correction was deemed necessary. The
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terrain illumination correction was performed on the composite image (again using
parameters from the primary image only) in a straightforward manner, but a com-
parison of the corrected individual images with the composite for the 89/81 image
in NSW highlighted a consequence of the registration issues noted earlier. Terrain
effects remain in the corrected composite image. This is not actually due to any
inherent fault in the terrain illumination correction process, simply that the image
is dightly displaced from the DEM. Incorrect slopes and aspects are applied near
apparent ridgelines and streamlines in the image data.

The intensity values in the SPOT 4 images are observed to have a much greater
dynamic range than Landsat data (2—3 timesin the visible bands). A new calibration
strategy is required to avoid compressing the intensity range of the SPOT image
data, with subseguent loss of discrimination, if it were adopted operationally. For
the tests conducted here the data were rescaled to the full 0255 data range at each
step in the calibration process.

The viewing geometry of the SPOT 4 images is such that new BRDF kernels
as well as coefficients may well be required. The BRDF kernels used for Landsat
data are not the optimal choices for SPOT 4 data due to the viewing geometry dif-
ferences (SPOT 4 has a wider field of view compared to Landsat and, usualy, a
non-zero satellite incidence angle). The test data were insufficient for testing the
validity of the current kernels and coefficients. The current Landsat kernels were
applied and coefficients were estimated scene-by-scene by matching directly to the
Landsat calibration baseimage using sitesin forested areas. Thisapproach isashort-
term solution for the study areas, but is not recommended for large scal e operational
processing.

As with the Master GCPs, the invariant targets are distributed over the Landsat
TM scene area (and rarely uniformly). There are too few, if any, targets located in
most of the SPOT 4 test images. New targets were selected for all of the test images;
however most of the good bright pseudo-invariant targets are saturated in the first
two SPOT 4 image bands. A common gain and offset (usually estimated from pool ed
data) was used to align the data for each test area with the (scaled) base.

If SPOT 4 imagery isto be used operationally, amuch more detailed investigation
of calibration issues needs to be conducted using significantly more image data than
considered here, of the order of a good portion of at least one state. However, once
this research establishes the appropriate corrections and parameters, the operational
processing effort will only increase by the ‘per image’ amount necessary for the
selection of new invariant targets.

M osaicking

For the individual Landsat 7 SL C-off ‘path’ images, mosaicking can be considered
to consist of two activities:

e compositing two or more images from the same path/row (to fill the

gaps); and
e mosaicking images from adjoining path/rows to form map sheet units.
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Operationally, both activities would be performed simultaneously. Overlay order
(primary and fill images) would be stipulated for the compositing activity; otherwise
the standard overlay order rules apply.

Although not part of the mosaicking stage of the current LCCP processing
seguence, it is more efficient to cloud mask Landsat 7 SL C-off images before com-
positing/mosaicking rather than as the first step in the thresholding process. In the
individual image each cloud or patch of cloud is digitised as a single polygon. After
compositing, many cloud-affected areas will appear as stripes in the composited
image. Either separate polygons are required for every stripe or stripes of clear data
will be masked. Thiswill result in additional mosaicking effort, but the extra effort
will be matched by areduction of effort during the thresholding stage.

Vector image date boundaries are created during the current mosaicking
sequence. The vector polygons allow separate thresholds to be applied to each image
date and the tracking of the image acquisition dates of each change area during the
carbon modelling phase of the DCC program. Vector polygons are simple and effi-
cient when there is only a single image per path/row, but are inefficient for tracking
the areas of primary and fill images in acomposite. Raster images are more efficient
and are easily created during the mosaicking process.

No difficulties arise in the mosaickng stage of the processing for SPOT 4 or
ACRES Landsat 7 SL C-off composite imagery.

Thresholding I ssues

Due to the local calibration issues identified for the ACRES Landsat 7 SLC-off
composite products, they were not considered in the thresholding evaluation.

The standard thresholding procedures were applied to the mosaicked individual
Landsat 7 SL C-off imagesto derive asingle-date forest cover probability image. For
each stratification sub-zone, image matching was applied to derive thresholds inde-
pendently for the mosaicked image and the individual primary and fill images that
form the mosaic for this evaluation. The final thresholds produced by the matching
program for each input image for a particular sub-zone varied slightly, particularly
between the values estimated from the full ‘fill’ image compared to the primary
image or the mosaic (about 80% primary image). However, the resulting probability
images were virtually identical. All of the fill images are visually very similar to
their primary image for the NSW test area and separate threshol ds were not needed
within acomposite image. Larger differences are apparent in the WA test area, how-
ever only one sub-zone showed some slight stripes in the probability image formed
from the mosaic. Even then the difference in probability between the ‘stripes’ was
dight and the subsequent multi-temporal processing corrected the problem so that
the effect is not observed in the outputs.

The wet/dry image pair from the Land Monitor project provided the best oppor-
tunity to evaluate the thresholding process when the individual Landsat 7 SL C-off
images forming the mosaic are very different. Thresholds were estimated separately



86 S.L. Furby and X. Wu

for each sub-zone for the individual images and the mosaic image. Stripes were
observed in the forest cover probability image derived from the mosaic. Most of the
stripes are commission errors with the wetter image stripes being assigned a higher
probability of forest cover using thresholds derived from the mostly dry mosaic
image. When thresholds are derived directly from the wet image, 