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Preface

This volume represents presentations given at the 77th annual meeting of the
Psychometric Society, held at the Cornhusker Hotel in Lincoln, Nebraska, during
July 9–12, 2012. The annual meeting of the Psychometric Society typically attracts
participants from around the world, and the 2012 conference was no exception.
Attendees came from more than 15 different countries, with 149 papers being
presented, along with 50 poster presentations, three workshops, two keynote
speakers, six state-of-the-art speakers, five invited presentations, and seven invited
symposia. A full list of the conference presentation titles can be found in the January
2013 issue of Psychometrika, pp. 188–201. We thank the local organizer Ralph de
Ayala, along with his staff and students, for hosting a successful conference.

The idea for the present volume began with the recognition that many of the
useful ideas presented at the conference do not become available to a wider audience
unless the authors decide to seek publication in one of the quantitative journals. This
volume provides an opportunity for the presenters to make their ideas available to
the wider research community more quickly, while still being thoroughly reviewed.
The 31 chapters published here address a diverse set of topics, including item
response theory, reliability, test design, test validation, response styles, factor
analysis, structural equation modeling, categorical data analysis, longitudinal data
analysis, test equating, and latent score estimation. For the published chapters, we
asked the authors to include the ideas presented in their conference papers, and we
also gave them the opportunity to expand on these ideas in the published chapters.
Psychological measurement is playing a larger role internationally than ever before,
not only in educational applications but also in medicine and neuroscience. It is
important that this expanding role be supported by rigorous and thoughtful research.
We thank all of the chapter authors for their fine contributions to this volume. We
hope that the contents of this volume will stimulate wider interest in psychometric
research, both theoretical and applied.

Tempe, AZ, USA Roger E. Millsap
Madison, WI, USA Daniel M. Bolt
Tilburg, The Netherlands L. Andries van der Ark
Lawrence, KS, USA Carol M. Woods
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A Nonparametric Ability Measure

Nan L. Kong

1 Introduction

Before we define an ability measure, we need to make clear about the concept of
measure. In this section, we look into several well-defined measures from which we
try to find the property in common across these measures. We believe that the ability
measure, which is the topic of this paper, should also be defined on the basis of this
common property.

It is well known that the area of a rectangle is measured by the product of its
length and width. For example, for a rectangle with length of 2 and width of 1, the
area can be directly measured with 2 = 2× 1. Actually, this rectangle can also be
measured indirectly: (i) split this rectangle into two unit squares with both length
and width equal to 1; (ii) the areas of these two unit squares are measured with 1 =
1× 1; (iii) make summation of these two area measures in (ii) with 2 = 1+ 1. The
summation in (iii) is the “indirect” measure of the area of the rectangle with length
of 2 and width of 1. As we can see, both “direct” and “indirect” area measures on this
rectangle produce the same value which is 2 in this example. The relation between
“direct” and “indirect” area measures is mathematically expressed by 2× 1 = 1×
1+1×1. The left-hand side of this equation corresponds to “direct” measure while
the right-hand side corresponds to “indirect” measure. Generally, for the same area,
both “direct” and “indirect” measures must produce the same value—this is called
additivity according to the measure theory (Halmos 1974). In the same example, if
we measure the area of the rectangle by summation of length and width, instead
of product of its length and width, with the steps in (i)–(iii), we will receive two
different values for the “direct” measure, which is 3 = 1+ 2, and the “indirect”
measures which is 4 = (1+ 1)+ (1+ 1). Obviously, with summation of length and

N.L. Kong (�)
Educational Testing Service, 270 Hampshire Dr., Plainsboro, NJ 08536, USA
e-mail: nankg@yahoo.com

R.E. Millsap et al. (eds.), New Developments in Quantitative Psychology,
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2 N.L. Kong

width, the area of the rectangle is measured in a wrong way—the way that has no
additivity. Any measure without additivity is similar to measuring area of rectangle
by summation of its length and width.

In measure theory (Halmos 1974), a set function is a function whose domain of
definition is a class of sets. An extended real-valued set function μ(.) defined on
a class S of sets is additive if, whenever E ∈ S, F ∈ S, E ∪F ∈ S, and E ∩F = /0,
then μ(E ∪F) = μ(E)+ μ(F). For the measure of the rectangle area, the class S
contains all rectangles (each rectangle is a set of points) and μ(.) is defined by the
product of its length and width.

The next well-defined measure is called probability which measures randomness
(Hays 1970). If two events A and B are exclusive, we have

Prob(A∪B) = Prob(A)+Prob(B). (1)

Equation (1) is called additivity.
In information theory, the entropy (Shannon 1948; Wiener 1948) is defined to

measure the uncertainty in the random variables. One of the entropy fundamental
properties is the following equation:

H(X ,Y ) = H(X)+H(Y)− I(X ,Y ), (2)

where X and Y are two categorical random variables; H(X) and H(Y ) are the
entropies for X and Y , respectively; H(X ,Y ) is the entropy of X and Y ; I(X ,Y )
is the mutual information among X and Y .

If X and Y are independent from each other, which implies I(X ,Y ) = 0, Eq. (2)
becomes

H(X ,Y ) = H(X)+H(Y). (3)

Equation (3) is called additivity.
Unlike Shannon’s entropy, Fisher information (Fisher 1922 and 1925) is defined

to measure the parameter(s)’ information given random variable(s). If random
variables X and Y are independent, we have

IX ,Y (θ ) = IX(θ )+ IY (θ ), (4)

where IX ,Y (θ ) is the Fisher information given X and Y; IX(θ ) and IY (θ ) are the
Fisher information given X and Y, respectively. θ is the parameter(s).

Equation (4) is called additivity.
So far, we have looked into the theoretical structures for several well-defined

measures. All of these structures reveal the same property—additivity as shown in
(1), (3) and (4). We believe that the additivity is the general property for a measure.
The purpose of this paper is to study a new ability measure and, therefore, it is
requested that this ability measure be of the property of the additivity. In the next
section, an ability measure is defined and studied according to the additivity.



A Nonparametric Ability Measure 3

2 A Nonparametric Ability Measure

In testing and psychometrics, the term ability means the knowledge, skills, or other
characteristics of a test taker measured by the test. A test question, with any stimulus
material provided with the test question, and the response choice or the scoring
rules, is called an item. Items that are scored in two categories - right (R) or wrong
(W) - are referred to as dichotomous items. In this section, the test taker’s ability
will be measured on the basis of a test consisting of a set of dichotomous items.
For a test consisting of I items, let Xi be the item-score variable for the item i (i =
1, . . . , I), with realization Xi ∈ {W,R}. Also, we suppose that a respondent answers
L(0 ≤ L ≤ I) items correctly, then these correctly answered items are indicated by
i1, . . . , il , . . . , iL. For example, suppose an item-response vector of RRWWWR, then
I = 6,L = 3, i1 = 1, i2 = 2, and i3 = 6. The probability of right response for i1 is
denoted by P(Xi1 = R) and, the probability of right responses for both i1 and i2 is
denoted by P(Xil = R,Xi2 = R), etc.

Definition 1. The ability with right (R) response(s) for items il (l = 1, . . . ,L;L ≥ 1)
is defined as

θ (i1, . . . , il , . . . , iL) =−ln(P(Xi1 = R, . . . ,Xil = R, . . . ,XiL = R)).(L ≥ 1) (5)

In (5), θ (i1, . . . , il , . . . , iL) is called the measure of the ability with right (R)
response(s) for the items il(l = 1, . . . ,L). We also request that the examinee’s ability
be measured as zero if this examinee does not respond to any item correctly, i.e.
L = 0 in (5).

In Definition 1, only the probabilities on correctly responded items are used for
measuring abilities, some probabilities such as those for incorrectly responded items
are not shown in (5). Because the probabilities on any combinations of the correctly
responded items and the incorrectly responded items can be fully expressed by
the probabilities on those correctly responded items, the probabilities on correctly
responded items have fully represented all of the information associated with the
joint probabilities. Therefore, the ability measure in Definition 1 has lost nothing in
terms of the information associated with the joint probabilities.

If items i1, . . . , iL are (jointly) independent, the following equation can be ob-
tained directly from Definition 1 and shows that the ability measure in Definition 1
is additive

θ (i1, · · · , iL) = θ (i1)+ · · ·+θ (iL). (6)

As we can see in Eq. (6) that, if the items are jointly independent, the measure
of examinee’s total ability with right responses on all these items is the summation
of the measures of the examinee’s abilities with right responses on each of these
items. The additivity in Eq. (6) implies that the summation of the ability measures
on subscales can be the total ability measure if and only if these subscales are jointly
independent. For the case that the items are not jointly independent, not only the
ability measure on each subscale but also the interactions among the items play the
roles in total ability measure. In Sect. 4, the total ability measure will be studied in
more detail.
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Corollary 1.
0 ≤ θ (i1, · · · , iL)≤+∞. (7)

Proof. This is obvious from Definition 1.

Corollary 2.

θ (i1, · · · , iL) = 0 ⇐⇒ P(Xi1 = R, · · · ,XiL = R) = 1 (8)

Proof. This is obvious from Definition 1.

Corollary 3.

θ (i1, · · · , iL) = +∞ ⇐⇒ P(Xi1 = R, · · · ,XiL = R) = 0 (9)

Proof. This is obvious from Definition 1.

As shown in Corollary 1, the ability measure defined in (5) is nonnegative which
implies the total ability measure is always greater than or equal to the ability
measure on each subscale according to the additivity. Because the minus sign has
no meaning in the ability measure, the additivity requests that the ability measure
be nonnegative (generally, the measure theory always requests that a measure be
nonnegative).

Now, assume that 0 < M ≤ L, there is

θ (i1, · · · , iM) = −ln(P(Xil = R, · · · ,XiM = R))

≤−ln(P(Xil = R, · · · ,XiM = R)

×P(XiM+1 = R, · · · ,XiL = R|Xil = R, · · · ,XiM = R))

=−ln(P(Xil = R, · · · ,XiL = R)) = θ (i1, · · · , iL)

Therefore, the following theorem is obtained:

Theorem 1. For 0 < M ≤ L,

θ (i1, · · · , iM)≤ θ (i1, · · · iL) (10)

Theorem 1 is another fundamental property of the ability measure: the measure
of the ability associated with subset of all correctly responded items is no greater
than the measure of the ability associated with all correctly responded items, i.e. the
measure of the ability associated with subscale can not be greater than the measure
of its total ability.

In summary, the ability measure defined in (5) has the following properties:
(a) Additivity (if the items are independent) as shown in Eq. (6). (b) The ability
measure is nonnegative. Therefore, the total ability measure is greater than or equal
to the ability measure on each subscale. (c) The ability measures with the same
response patterns are the same (this is obvious by Definition 1). (d) The ability
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measure on a response pattern is greater than or equal to the ability measure on the
subset of its response pattern (Theorem 1). (e) The ability measure is determined
by the difficulties of the items and the interactions among those items. The more
difficult and more jointly independent items cause higher ability measure. (f) The
ability measure in Definition 1 has no specific parametric structure. Therefore, the
ability measure in Definition 1 has no those assumptions or limitations associated
with the specific parametric structure. (g) The ability measure is defined with the
joint probability of the items in a given test and all of the response vectors out of
these items are utilized for measuring ability, therefore, the ability is measured with
full information for given joint probabilities.

In the next two sections, the following properties of the ability measure defined
in (5) will be studied: (h) With the additivity, it is possible to measure the shared
ability and unique ability. Generally speaking, an examinee’s ability consists of two
parts: the unique part that belongs to the examinee and the part shared with others.
(i) The total ability measure and the ability measures on subscales are related to the
additivity. Therefore, the interactive structures of the total ability and those abilities
associated with the subscales can be mathematically expressed.

3 Shared Ability Measure and Conditional Ability Measure

Because the ability measure in Definition 1 has the property of additivity, it is
possible to measure the shared ability among the correctly responded items and
unique ability of each correctly responded item.

Definition 2. The shared ability among correctly responded items i1 and i2 is
measured with

θ (i1 ∗ i2) = θ (i1)+θ (i2)−θ (i1, i2), (11)

where θ (i1), θ (i2), and θ (i1, i2) are defined in Definition 1.

According to Definitions 1 and 2, the following equation can be obtained:

θ (i1 ∗ i2) =−ln
P(Xi1 = R)P(Xi2 = R)
P(Xi1 = R,Xi2 = R)

(12)

By (12), it is obvious that θ (i1 ∗ i2) = θ (i2 ∗ i1).

The following theorem offers a sufficient and necessary condition for no shared
ability between two items i1 and i2.

Theorem 2.

θ (i1 ∗ i2) = 0 ⇐⇒ i1 and i2 are independent.
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Proof. Let Xi1 and Xi2 be the item-score variables of the items i1 and i2.
By Definition 1,

θ (i1) = −ln(P(Xi1 = R), (13)

θ (i2) = −ln(P(Xi2 = R), (14)

θ (i1, i2) = −ln(P(Xi1 = R,Xi2 = R)). (15)

Therefore, Xi1 and Xi2 are independent if and only if

θ (i1, i2) = θ (i1)+θ (i2)

By Eq. (11), we have

θ (i1 ∗ i2) = 0

This is the proof of Theorem 2.

In concept, the shared ability is closer to the concept of interaction between those
items associated with different respondents or subscales. The stronger association
between those items implies that the more abilities are shared. For example, if two
items are identical, the shared ability is the same as the ability associated with each
of those items. Another extreme case is that, if two items are independent, the shared
ability is zero. The shared ability is also related to the redundant or overlapped
information among the items, i.e. the items could be heavily similar to each other in
which the scope for those items to cover for testing could be limited. Therefore, the
shared ability among the different items should not be too big.

Unlike the ability measure in Definition 1 which is nonnegative, the shared ability
measure in Definition 2 can be negative. If an examinee with correct response on one
item tends to correctly respond to another item, this examinee has positive shared
ability among these two items. If an examinee with correct response on one item
tends to wrongly respond to another item, this examinee has negative shared ability
among these two items. In practice, for most of cases, the shared ability is positive.
The negative shared ability only happens for two items associated with the exclusive
abilities.

Definition 3. The unique or conditional ability with i1 given i2 is measured with

θ (i1|i2) =−lnP(Xi1 = R|Xi2 = R). (16)

Corollary 4.

θ (i1, i2) = θ (i2)+θ (i1|i2) (17)
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Proof. The proof is obvious from Definitions 1 and 3 with noting that:

θ (i1|i2) = −ln(P(Xi1 = R|Xi2 = R)) =−ln(P(Xi1

= R,Xi2 = R))+ ln(P(Xi2 = R))

Corollary 5.

θ (i1 ∗ i2) = θ (i1)−θ (i1|i2) (18)

Proof. The proof is obvious from Definition 2 and Corollary 4.

The unique or conditional ability θ (i1|i2) measures the part of the ability with
i1, but exclusive of i2, that is, θ (i1|i2) measures the unique ability associated with
i1 out of the ability associated with i1 and i2. The following equation, which can be
proved with Corollaries 4 and 5, describes the relation among total ability, shared
ability, and unique ability:

θ (i1, i2) = θ (i1 ∗ i2)+θ (i1|i2)+θ (i2|i1). (19)

In (19), the θ (i1, i2) is decomposed into three parts—the shared ability associated
with i1 and i2, the unique ability associated with i1 with exclusive of the ability
associated with i2, and the unique ability associated with i2 with exclusive of the
ability associated with i1. Equation (19) is also available in probability and entropy:

P(A∪B) = P(A∩B)+P(A∩Bc)+P(B∩Ac),

H(X ,Y ) = I(X ,Y )+H(X |Y)+H(Y |X),

where A and B are events; Ac and Bc are the events “not A” and “not B”. X and Y are
two random variables; H(X ,Y ) is the entropy of X and Y ; H(X) and H(Y ) are the
entropies for X and Y , respectively; H(X |Y ) is the conditional entropy of X given
Y ; I(X ,Y ) is the mutual information among X and Y .

Theorem 3.

θ (i1 ∗ i2)≤ θ (i1) (20)

Proof.

P(XXi2
= R)≥ P(Xi1 = R,Xi2 = R) ⇐⇒ ln

P(Xi2 = R)
P(Xi1 = R,Xi2 = R)

≥ 0

⇐⇒−ln
P(Xi1 = R,Xi2 = R)

P(Xi1 = R)P(Xi2 = R)
≤−lnP(Xi1 = R)

⇐⇒ θ (i1 ∗ i2)≤ θ (i1).

This is the proof of Theorem 3.
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The measure of the shared ability associated with i1 and i2 in Definition 2 can be
extended into the measure of the shared ability associated with i1, i2, · · · , iL which is
denoted by θ (i1 ∗ · · ·∗ iL). Without loss of generality, θ (i∗ i2 ∗ i3) can be defined by:

θ (i1 ∗ i2 ∗ i3) = θ (i1)+θ (i2)+θ (i3)−θ (i1, i2)

−θ (i1, i3)−θ (i2, i3)+θ (i1, i2, i3). (21)

Obviously, according to (21), (joint) independence among i1, i2, and i3 implies
that θ (i1 ∗ i2 ∗ i3) = 0. Similar to θ (i1 ∗ i2), θ (i1 ∗ i2 ∗ i3) can be negative, but the
interpretation for this is more complicated. Roughly speaking, θ (i1 ∗ i2 ∗ i3) is the
interactive ability contribution by i1, i2, and i3 to the total ability θ (i1, i2, i3).

4 Total Ability and Abilities Associated with Subscales

Given the item responses i1 . . . iL answered correctly by a respondent, the examinees’
abilities can be measured according to (5). The ability measured by (5) is called the
overall or total ability because it is measured by all correctly answered items. In
case that those correctly answered item responses i1 . . . iL contain several subscales
in which each subscale is associated with a subset of {i1 . . . iL}, we need to measure
the examinees’ abilities on the basis of each subscale. First, let us look into the case
of two subscales: S1 and S2 which S1 is associated with the subset {i j1 , . . . , i jM} and
S2 is associated with the subset {ik1 , . . . , ikN} where M ≤ L and N ≤ L. Here the
intersection of {i j1 , . . . , i jM} and {ik1 , . . . , ikN} may not be empty set /0, that is, some
items may be associated with both S1 and S2. We also assume that {i j1 , . . . , i jM}∪
{ik1 , . . . , ikN}= {i1 . . . iL}.

Without loss of generality, the total ability and the abilities associated with the
subscales S1 and S2 are measured with

θ (Total) = −ln(P(Xi1 = R, · · · ,XiL = R)), (22)

θ (S1) = −ln(P(Xij1
= R, · · · ,XijM

= R)), (23)

θ (S2) = −ln(P(Xik1
= R, · · · ,XikN

= R)). (24)

Here Xi is the item-score variable for the item i. Because θ (S1) and θ (S2) in
(23) and (24) are defined with the subsets {i j1 , . . . , i jM} and {ik1 , . . . , ikN} out of total
correctly answered items {i1 . . . iL}, the θ (S1) and θ (S2) are also called marginal
measures of the abilities associated with S1 and S2.

Similar to Definition 2, we can define the measure for the shared ability
associated with S1 and S2.

Definition 4. The shared ability associated with S1 and S2 is measured with

θ (S1 ∗ S2) = θ (S1)+θ (S2)−θ (S1,S2), (25)
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where

θ (S1,S2) = θ (Total) =−ln(P(Xi1 = R, · · · ,XiL = R)). (26)

Equivalently, by Definition 4

θ (Total) = θ (S1)+θ (S2)−θ (S1 ∗ S2). (27)

Equation (27) expresses the relation among the measures of the total ability and
the abilities associated with the S1 and S2. From Definition 4, it is obvious that, if
S1 and S2 are independent, the measure of the total ability is the summation of the
measures of the abilities associated with S1 and S2, i.e. θ (Total) = θ (S1)+θ (S2).
Also, similar to (12), θ (S1 ∗ S2) can be negative in case that the abilities associated
with S1 and S2 are exclusive from each other.

In Eq. (22), some items may be shared by both S1 and S2. Obviously, these shared
items contribute the relation between S1 and S2 (the items which are not shared by
S1 and S2 also contribute the relation between S1 and S2 because those not-shared
items may be related across the different subscales) and relation between S1 and S2

determines θ (S1 ∗S2) in Eq. (27). Therefore, the total ability measure is affected by
the shared items through their interactive ability measure θ (S1 ∗ S2).

Definition 5. The conditional ability associated with S1 given the ability associated
with S2 is measured with

θ (S1|S2) = θ (Total)−θ (S2), (28)

where θ (Total) = θ (S1,S2) which is defined in (22).

θ (S1|S2) in (28) measures the ability associated with S1 with exclusion of S2. If
S1 and S2 are independent, θ (S1|S2) is equal to θ (S1), i.e. θ (S1|S2) = θ (S1).

Similar to Eq. (19), the following theorem shows the same decomposition of the
total ability in terms of the subscales.

Theorem 4.

θ (Total) = θ (S1|S2)+θ (S2|S1)+θ (S1 ∗ S2) (29)

Proof. By Definition 5, there is

θ (S1|S2) = θ (Total)−θ (S2), (30)

θ (S2|S1) = θ (Total)−θ (S1). (31)

By (30) + (31) and (27),

θ (S1|S2)+θ (S2|S1) = 2θ (Total)−θ (S1)−θ (S2)

⇐⇒
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θ (S1|S2)+θ (S2|S1) = θ (Total)−θ (S1 ∗ S2)

⇐⇒
θ (Total) = θ (S1|S2)+θ (S2|S1)+θ (S1 ∗ S2).

This is the proof of Theorem 4.

In Theorem 4, the measure of the total ability is the summation of the measure
of the ability associated with S1 with exclusion of S2 and the measure of the ability
associated with S2 with exclusion of S1 and the measure of the shared ability among
S1 and S2. Obviously, if S1 and S2 are independent, the measure of the total ability
is the summation of the measures of the ability associated with S1 and the ability
associated with S2, i.e. θ (Total) = θ (S1)+θ (S2).

So far, we have discussed the measures on the abilities associated with two
subscales. In case of multiple subscales, the measures can be defined in the similar
way. Without loss of generality, let us look into the case of three subscales S1, S2, and
S3 which their items are those items in S1, S2 and S3, the subsets of all correctly
responded items, which is {i1, . . . , iL}, respectively.

S1 ∼S1 ⊆ {i1, . . . , iL}
S2 ∼S2 ⊆ {i1, . . . , iL}
S3 ∼S3 ⊆ {i1, . . . , iL}

Total ∼ {i1, . . . , iL},

where “S1 ∼ S1” means the items that belong to subscale S1 are those in the set
S1, which is a subset of all correctly responded items {i1, . . . , iL}. Also, we assume
S1 ∪S2 ∪S3 = {i1, . . . , iL}.

Definition 6. The measure of the shared abilities associated with S1, S2, and S3 is
defined by

θ (S1 ∗ S2 ∗ S3) = θ (S1)+θ (S2)+θ (S3)

−θ (S1,S2)−θ (S1,S3)−θ (S2,S3)+θ (S1,S2,S3), (32)

where

θ (S1,S2,S3) = θ (Total) =−ln(P(Xi1 = R, . . . ,XiL = R)), (33)

θ (S j,Sk) = −ln(P(Xi1 = R, . . . ,XiMj,k
= R)). (34)

In Eq. (34), the Mj,k correctly responded items i1, . . . , iMj,k are exactly those in
S j ∪Sk, i.e. {i1, . . . , iMj,k}=S j ∪Sk for j,k = 1,2,3.
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It is interesting to compare the similar structure between Eqs. (21) and (32) and,
in fact, Eq. (21) is nothing but a special case of Eq. (32) if each subscale only
contains a single item. Similar to θ (S1 ∗ S2), θ (S1 ∗ S2 ∗ S3) can be negative, but its
interpretation is more complicated. Although θ (S1 ∗ S2 ∗ S3) is called shared ability
here, this concept is closer to the interaction among the abilities associated with S1,
S2, and S3.

Corollary 6. If S1, S2 and S3 are (jointly) independent, then

θ (Total) = θ (S1)+θ (S2)+θ (S3). (35)

Proof. The proof is obvious by the definitions:
θ (Si) = −ln(P(Xi1 = R, . . . ,XiMi

= R)) where the Mi correctly responded items
i1, . . . , iMi are exactly those in Si, i.e. {i1, . . . , iMi}=Si for i = 1,2,3.

θ (Total) = −ln(P(Xi1 = R, . . . ,XiL = R)) where the L correctly responded items
i1, . . . , iL are exactly those in S1 ∪S2 ∪S3, i.e. {i1, . . . , iL}=S1 ∪S2 ∪S3.

Equation (35) in Corollary 6 is another example of additivity in terms of their
subscales. Equation (6) can be thought as a special case of Eq. (35) for each subscale
to associate with a single item. Although there are three subscales in Corollary 6,
the property of additivity is also true for the case of multiple subscales.

Corollary 7. If S1, S2 and S3 are (jointly) independent, then

θ (S1 ∗ S2 ∗ S3) = 0. (36)

Proof. The proof is similar to that in Corollary 6.

Theorem 5.

θ (Total) = θ (S1)+θ (S2)+θ (S3)−θ (S1 ∗ S2)−θ (S1 ∗ S3)

−θ (S2 ∗ S3)+θ (S1 ∗ S2 ∗ S3). (37)

Proof. First, similar to (25), there are

θ (S j,Sk) = θ (S j)+θ (Sk)−θ (S j ∗ Sk) for j,k = 1,2,3 (38)

By Definition 6 and (38), there is

θ (S1 ∗ S2 ∗ S3)

= θ (S1)+θ (S2)+θ (S3)−θ (S1,S2)−θ (S1,S3)−θ (S2,S3)+θ (S1,S2,S3)

= θ (S1)+θ (S2)+θ (S3)−θ (S1)−θ (S2)+θ (S1 ∗ S2)−θ (S1)−θ (S3)

+θ (S1 ∗ S3)−θ (S2)−θ (S3)+θ (S2 ∗ S3)+θ (S1,S2,S3)

=−θ (S1)−θ (S2)−θ (S3)+θ (S1,S2)+θ (S1,S3)

+θ (S2,S3)+θ (S1,S2,S3)
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Therefore,

θ (S1,S2,S3) = θ (S1)+θ (S2)+θ (S3)−θ (S1 ∗ S2)−θ (S1 ∗ S3)

−θ (S2 ∗ S3)+θ (S1 ∗ S2 ∗ S3).

This is the proof of Theorem 5.

Theorem 5 shows that the measure of the total ability can be linearly expressed
with the measures of the shared abilities. In fact, according to (32) and (37),
θ (S1,S2,S3) and θ (S1 ∗ S2 ∗ S3) are two conjugate concepts.

Theorem 6.

θ (Total) = θ (S1|S2)+θ (S2|S3)+θ (S3|S1)+θ (S1 ∗ S2 ∗ S3). (39)

Proof. First, by (38), there is

θ (S1 ∗ S2) = θ (S1)+θ (S2)−θ (S1,S2) (40)

By Theorem 5 and (40), there is

θ (Total) = θ (S1)+θ (S2)+θ (S3)−θ (S1 ∗ S2)−θ (S1 ∗ S3)

−θ (S2 ∗ S3)+θ (S1 ∗ S2 ∗ S3)

= θ (S1,S2)+θ (S3)−θ (S1 ∗ S3)−θ (S2 ∗ S3)+θ (S1 ∗ S2 ∗ S3)

Equivalently, Eq. (28) can be rewritten as

θ (S1,S2) = θ (S1|S2)+θ (S2). (41)

By applying (41), we have

θ (Total) = θ (S1|S2)+θ (S2)+θ (S3)−θ (S1 ∗ S3)−θ (S2 ∗ S3)+θ (S1 ∗ S2 ∗ S3)

In the same way, by applying the following equations,

θ (S1 ∗ S3) = θ (S1)+θ (S3)−θ (S1,S3),

θ (S2 ∗ S3) = θ (S2)+θ (S3)−θ (S2,S3),

θ (S1,S3) = θ (S1|S3)+θ (S3),

θ (S2,S3) = θ (S2|S3)+θ (S3).
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We finally have

θ (Total) = θ (S1|S2)+θ (S2,S3)−θ (S1 ∗ S3)+θ (S1 ∗ S2 ∗ S3)

= θ (S1|S2)+θ (S2|S3)+θ (S3)−θ (S1 ∗ S3)+θ (S1 ∗ S2 ∗ S3)

= θ (S1|S2)+θ (S2|S3)+θ (S3|S1)+θ (S1 ∗ S2 ∗ S3).

This is the proof of Theorem 6.

It is obvious that, if S1, S2, and S3 are jointly independent, Eq. (39) becomes (6)
and therefore, Eq. (39) in Theorem 6 can be thought as a general form of additivity.
In Theorem 6, the total ability is decomposed into four parts which are θ (S1|S2),
θ (S1|S3), θ (S2|S3) and θ (S1 ∗ S2 ∗ S3). The decomposition in Theorem 6 is not
unique. In similar way, the total ability can also be decomposed as follows:

θ (Total) = θ (S1|S3)+θ (S3|S2)+θ (S2|S1)+θ (S1 ∗ S2 ∗ S3). (42)

Although the total ability is decomposed into four components in Theorem 6,
each of these four decomposed components can still be further decomposed. In the
remaining part of this section, a unique and complete decomposition for the total
ability will be derived. First, the following concepts are introduced:

θ (S1,S2,S3) = θ (Total) =−ln(P(Xi1 = R, . . . ,XiL = R)), (43)

θ (S j,Sk) = −ln(P(Xi1 = R, . . . ,XiMj,k
= R)). (44)

In Eq. (43), the L correctly responded items i1, . . . , iL are exactly those in S1 ∪S2 ∪
S3, i.e. {i1, . . . , iL}=S1∪S2 ∪S3. In Eq. (44), the Mj,k correctly responded items
i1, . . . , iMj,k are exactly those in S j ∪Sk, i.e. {i1, . . . , iMj,k} = S j ∪Sk for j,k =
1,2,3.

With θ (S1,S2,S3) and θ (S j,Sk) in (43) and (44), we can define the following
ability measures conditioned on the subscale(s):

Definition 7.

θ (S1|S2,S3) = θ (S1,S2,S3)−θ (S2,S3), (45)

where θ (S j,Sk) for j,k = 1,2,3 and θ (S1,S2,S3) are defined in (44) and (43).

Definition 8.

θ (S1,S2|S3) = θ (S1,S2,S3)−θ (S3), (46)

where θ (S1,S2,S3) is defined in (44).
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By Definition 7, there is

θ (S1,S2,S3) = θ (S3|S1,S2)+θ (S1,S2)

= θ (S3|S1,S2)+θ (S2|S1)+θ (S1). (47)

Equation (47) is also called additivity.

Definition 9.

θ (S1 ∗ S2|S3) = θ (S1|S3)+θ (S2|S3)−θ (S1,S2|S3), (48)

where θ (Si|S3) for i = 1,2 is defined in (28).

Theorem 7.

θ (Total) = θ (S1|S2,S3)+θ (S2|S1,S3)+θ (S3|S1,S2)+θ (S1 ∗ S3|S2)

+θ (S1 ∗ S2|S3)+θ (S2 ∗ S3|S1)+θ (S1 ∗ S2 ∗ S3). (49)

Proof. First, by Definitions 7 and 9,

θ (S1|S2,S3)+θ (S1 ∗ S2|S3) = θ (S1,S2,S3)−θ (S2,S3)+θ (S1|S3)

+θ (S2|S3)−θ (S1,S2|S3). (50)

Second, by Definition 8 and Eq. (41),

θ (S1,S2|S3) = θ (S1,S2,S3)−θ (S1,S2), (51)

θ (S1|S3) = θ (S1,S3)−θ (S3), (52)

θ (S2|S3) = θ (S2,S3)−θ (S3). (53)

By substituting (51), (52), and (53) into (50) and rearranging the terms, we have

θ (S1|S2,S3)+θ (S1 ∗ S2|S3) = θ (S1,S2,S3)−θ (S2,S3)

+θ (S1,S3)−θ (S3)+θ (S2,S3)

−θ (S3)−θ (S1,S2,S3)+θ (S3)

= θ (S1,S3)−θ (S3) = θ (S1|S3). (54)

By (54) and in the same way as (54), we have

θ (S1|S3) = θ (S1|S2,S3)+θ (S1 ∗ S2|S3), (55)

θ (S3|S2) = θ (S3|S1,S2)+θ (S1 ∗ S3|S2), (56)

θ (S2|S1) = θ (S2|S1,S3)+θ (S2 ∗ S3|S1). (57)
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Finally, by substituting (55), (56), and (57) into (42), we have

θ (Total) = θ (S1|S3)+θ (S3|S2)+θ (S2|S1)+θ (S1 ∗ S2 ∗ S3)

= θ (S1|S2,S3)+θ (S2|S1,S3)+θ (S3|S1,S2)+θ (S1 ∗ S3|S2)

+θ (S1 ∗ S2|S3)+θ (S2 ∗ S3|S1)+θ (S1 ∗ S2 ∗ S3).

This is the proof of Theorem 7.

In Theorem 7, the total ability of three subscales is decomposed into seven basic
components. The interpretation of each component is different from one to another.
With the decomposition in Theorem 7, we can look into the details of subscale
structure of the total ability.

Although we have discussed the decomposition (49) for the case of three
subscales in Theorem 7, the decomposition for the case of arbitrary number of
subscales can also be derived in the similar way. Readers are encouraged to derive
the decomposition for the cases of four subscales or more.

5 Discussion

In this paper, the measure of the ability defined in (5) shows (1) additivity; (2)
nonnegativity; (3) the measure of the ability with incorrect responses for all items is
equal to zero. Therefore, the definition in (5) conceptually can be called the measure
of the ability according to Measure Theory (Halmos 1974). Here, we place emphasis
on the concept of measure because, without additivity, an “ability measure” can
cause unexpected results. For example, without additivity, the directly measured
value and indirectly measured value for the same total ability are not the same for
most of cases. This is similar to measuring the area of a rectangle by summation of
its length and width (see Introduction of this paper).

In Sect. 3, the measure of the shared abilities is defined. We point out that the
measure of the shared abilities does not make sense without additivity. Unlike
the ability measure in Definition 1 which is nonnegative, measure of the shared
abilities can be negative. The negative value of the measure of the shared abilities
is interpreted as the conflicted or exclusive interaction among these two abilities.
For two exclusive abilities, the higher for one ability, the lower will be for another
ability. The positive value of the measure of the shared abilities implies that these
two abilities are not conflicted which means that, the higher for one ability, the
higher will be also for another ability. In practice, it is very rare for the measure of
the shared ability to be negative although it is possible.

The marginal measure of the ability associated with the subscale is defined in
Sect. 4. We also look into the relation between the measure of the total ability and
the measures of those abilities associated with the subscales by decomposing the
measure of the total ability in terms of the measures of those abilities associated
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with the subscales. Like the measure of the shared ability, without additivity, it is
impossible to decompose the measure of the total ability in terms of the measures
of those abilities associated with the subscales.

Although, throughout this paper, we assume all items are dichotomous, the
definition in (5) can be expanded to include partial credits, i.e. the items can have
more than two categories of right (R) and wrong (W). Under the case of partial
credits, the property of additivity is still reserved, i.e. the ability measure with the
partial credits is on the basis of measure theory. The nonparametric ability measure
with partial credits currently is under organization and will meet with readers in the
near future.

Finally, in this paper, most conclusions can be extended to more general form in
the same way. Also, the ability measures defined in this paper may be parameterized
with some reasonable constraints such as the log-linear model. In practice, the
parameterized measures is possible to handle the datasets of small size. How to
parameterize the ability measures defined in this paper could be the topic for the
future work.
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An Alternative to Cronbach’s Alpha:
An L-Moment-Based Measure of
Internal-Consistency Reliability

Todd Christopher Headrick and Yanyan Sheng

1 Introduction

Coefficient alpha (Cronbach 1951; Guttman 1945) is a commonly used index for
measuring internal-consistency reliability. Consider alpha (α) in terms of a model
that decomposes an observed score into the sum of two independent components:
a true unobservable score ti and a random error component ei j. The model can be
summarized as

Xi j = ti + ei j (1)

where Xi j is the observed score associated with the i-th examinee on the j-th test
item, and where i = 1, . . . ,n; j = 1, . . . ,k; and the error terms (ei j) are independent
with a mean of zero. Inspection of (1) indicates that this particular model restricts the
true score ti to be the same across all k test items. The reliability measure associated
with the test items in (1) is a function of the true score variance and cannot be
computed directly. Thus, estimates of reliability such as coefficient α have been
derived and will be defined herein as (e.g., Christman and Van Aelst 2006)

α =
k

k− 1

(
1− ∑ j σ2

j

∑ j σ2
j +∑∑ j �= j′ σ j j′

)
. (2)

A conventional estimate of α can be obtained by substituting the usual OLS sample
estimates associated with σ2

j and σ j j′ into (2) as
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α̂C =
k

k− 1

(
1− ∑ j s2

j

∑ j s2
j +∑∑ j �= j′ s j j′

)
(3)

where s2
j and s j j′ are the diagonal and off-diagonal elements from the variance–

covariance matrix, respectively.
Although coefficient α is often used as an index for reliability, it is also well

known that its use is limited when data are non-normal, in particular leptokurtic,
or when sample sizes are small (e.g., Bay 1973; Christman and Van Aelst 2006;
Sheng and Sheng 2012; Wilcox 1992). These limitations are of concern because
data sets in the social and behavioral sciences can often possess heavy tails or
consist of small sample sizes (e.g., Micceri 1989; Yuan et al. 2004). Specifically,
it has been demonstrated that α̂C can substantially underestimate α when heavy-
tailed distributions are encountered. For example, Sheng and Sheng (2012, Table 1)
sampled from a symmetric leptokurtic distribution and found the empirical estimate
of α to be approximately α̂C = 0.70 when the true population parameter was α =
0.80. Further, it is not uncommon that data sets consist of small sample sizes, e.g.,
n = 10 or 20. More specifically, small sample sizes are commonly encountered in
the contexts of rehabilitation (e.g., alcohol treatment programs, group therapy, etc.)
and special education as student–teacher ratios are often small. Furthermore, Monte
Carlo evidence has demonstrated that α̂C can underestimate α—even when small
samples are drawn from a normal distribution (see Sheng and Sheng 2012, Table 1).

L-moment estimators (e.g., Hosking 1990; Hosking and Wallis 1997) have
demonstrated to be superior to the conventional product-moment estimators in terms
of bias, efficiency, and their resistance to outliers (e.g., Headrick 2011; Hodis et al.
2012; Hosking 1992; Vogel and Fennessy 1993). Further, L-comoment estimators
(Serfling and Xiao 2007) such as the L-correlation have demonstrated to be an
attractive alternative to the conventional Pearson correlation in terms of relative bias
when heavy-tailed distributions are of concern (Headrick and Pant 2012a,b,c,d,e).

In view of the above, the present aim here is to propose an L-comoment-based
coefficient L-α , and its estimator denoted as α̂L, as an alternative to conventional
alpha α̂C in (3). Empirical results associated with the simulation study herein indi-
cate that α̂L can be substantially superior to α̂C in terms of relative bias and relative
standard error (RSE) when distributions are heavy-tailed and sample sizes are small.

The rest of the paper is organized as follows. In Sect. 2, summaries of univariate
L-moments and L-comoments are first provided. Coefficient L-α (α̂L) is then
introduced and numerical examples are provided to illustrate the computation and
sampling distribution associated with α̂L. In Sect. 3, a Monte Carlo study is carried
out to evaluate the performance of α̂C and α̂L. The results of the study are discussed
in Sect. 4.

2 L-Moments, L-Comoments, and Coefficient L-α

The system of univariate L-moments (Hosking 1990, 1992; Hosking and Wallis
1997) can be considered in terms of the expectations of linear combinations of order
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statistics associated with a random variable Y . Specifically, the first four L-moments
are expressed as

λ1 = E[Y1:1]

λ2 =
1
2

E[Y2:2 −Y1:2]

λ3 =
1
3

E[Y3:3 − 2Y2:3 +Y1:3]

λ4 =
1
4

E[Y4:4 − 3Y3:4 + 3Y2:4 −Y1:4]

where Y�:m denotes the �th smallest observation from a sample of size m. As such,
Y1:m ≤ Y2:m ≤ . . . ≤ Ym:m are referred to as order statistics drawn from the random
variable Y . The values of λ1 and λ2 are measures of location and scale and are the
arithmetic mean and one-half of the coefficient of mean difference (or Gini’s index
of spread), respectively. Higher order L-moments are transformed to dimensionless
quantities referred to as L-moment ratios defined as τr = λr/λ2 for r ≥ 3, where τ3

and τ4 are the analogs to the conventional measures of skew and kurtosis. In general,
L-moment ratios are bounded in the interval −1 < τr < 1 as is the index of L-
skew (τ3) where a symmetric distribution implies that all L-moment ratios with odd
subscripts are zero. Other smaller boundaries can be found for more specific cases.
For example, the index of L-kurtosis (τ4) has the boundary condition for continuous
distributions of (5τ2

3 − 1)/4 < τ4 < 1.
L-comoments (Olkin and Yitzhuki 1992; Serfling and Xiao 2007) are introduced

by considering two random variables Yj and Yk with distribution functions F(Yj)
and F(Yk). The second L-moments associated with Yj and Yk can alternatively be
expressed as

λ2(Yj) = 2Cov(Yj,F(Yj))

λ2(Yk) = 2Cov(Yk,F(Yk)). (4)

The second L-comoments of Yj toward Yk and Yk toward Yj are

λ2(Yj,Yk) = 2Cov(Yj,F(Yk))

λ2(Yk,Yj) = 2Cov(Yk,F(Yj)). (5)

The ratio η jk = λ2(Yj,Yk)/λ2(Yj) is defined as the L-correlation of Yj with respect
to Yk, which measures the monotonic relationship (not just linear) between two
variables (Headrick and Pant 2012c). Note that in general, η jk �= ηk j. The estimators
of (4) and (5) are U-statistics (Serfling 1980; Serfling and Xiao 2007) and their
sampling distributions converge to a normal distribution when the sample size is
sufficiently large.

In terms of coefficient L-α , an approach that can be taken to equate the
conventional and L-moment (comoment) definitions of α is to express (2) as
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Table 1 Data (Items) for
computing the second
L-moment–comoment matrix
in Table 2

Xi1 Xi2 Xi3 F̂(Xi1) F̂(Xi2) F̂(Xi3)

2 4 3 0.15 0.45 0.15
5 7 7 0.75 0.95 1.00
3 5 5 0.35 0.65 0.40
6 6 6 0.90 0.80 0.75
7 7 6 1.00 0.95 0.75
5 2 6 0.75 0.10 0.75
2 3 3 0.15 0.25 0.15
4 3 6 0.55 0.25 0.75
3 5 5 0.35 0.65 0.40
4 4 5 0.55 0.45 0.40

The data are part of the “Satisfaction With Life Data” from
McDonald (1999, p. 47)

Table 2 Second
L-moment–comoment matrix
for coefficient α̂L in Eq. (9)

Item 1 2 3

1 �2(1) = 0.989 �2(12) = 0.500 �2(13) = 0.789
2 �2(21) = 0.500 �2(2) = 1.022 �2(23) = 0.411
3 �2(31) = 0.667 �2(32) = 0.333 �2(3) = 0.733

α =
1

1+(R− 1)/k
=

k
k− 1

(
1− ∑ j σ2

j

∑ j σ2
j +∑∑ j �= j′ σ j j′

)
(6)

where R> 1 is the common ratio between the main and off-diagonal elements of the
variance–covariance matrix, i.e. R = σ2

j

/
σ j j′ . (See the appendix for the derivation

of Eq. (6)). As such, given a fixed value of R in (6) will allow for α to be defined in
terms of the second L-moments and second L-comoments as

α =
1

1+(R− 1)/k
=

k
k− 1

(
1− ∑ j λ2( j)

∑ j λ2( j) +∑∑ j �= j′ λ2( j j′)

)
(7)

where R = λ2( j)/λ2( j j′). Thus, the estimator of L-α is expressed as

α̂L =
k

k− 1

(
1− ∑ j �2( j)

∑ j �2( j) +∑∑ j �= j′ �2( j j′)

)
(8)

where �2( j) (�2( j j′)) denotes the sample estimate of the second L-moments (second
L-comoment) in (4) and (5). An example demonstrating the computation of α̂L is
provided below in Eq. (9). The computed estimate of α̂L = 0.807 in (9) is based
on the data in Table 1 and the second L-moment–comoment matrix in Table 2. The
corresponding conventional estimate for the data in Table 1 is α̂C = 0.798.

α̂L = 0.807 = (3/2)(1− (�2(1)+ �2(2)+ �2(3))/(�2(1) + �2(2)+ �2(3)

+�2(21)+ �2(31)+ �2(32) + �2(12)+ �2(13)+ �2(23))). (9)
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Fig. 1 Approximate normal sampling distribution of α̂L with α = 0.50. The distribution consists
of 25,000 statistics based on samples of size n= 100,000 and the heavy-tailed distribution (kurtosis
of 25) in Fig. 2

The estimator α̂L in (8) and (9) is a ratio of the sums of U-statistics and thus a
consistent estimator of α in (7) with a sampling distribution that converges, for large
samples, to the normal distribution (e.g., Olkin and Yitzhuki 1992; Schechtman and
Yitzhaki 1987; Serfling and Xiao 2007). For convenience to the reader, provided in
Fig. 1 is the sampling distribution of α̂L that is approximately normal and based on
α = 0.50, n = 100,000, and a symmetric heavy-tailed distribution (kurtosis of 25,
see Fig. 2) that would be associated with ti in (1).

3 Monte Carlo Simulation

An algorithm was written in MATLAB (Mathworks 2010) to generate 25,000
independent sample estimates of conventional and L-comoment α . The estimators
α̂C and α̂L were based on the parameters (α , k, R) given in Tables 3 and 4 and the
distributions in Figs. 2–4. The parameters of α were selected because they represent
commonly used references of various degrees of reliability, i.e. 0.50 (poor); 5/7
= 0.714 (acceptable); 0.80 (good); and 0.90 (excellent). Further, for each set of
parameters in Tables 3 and 4, the empirical estimators α̂C and α̂L were generated
based on sample sizes of n = 10, 20, 1,000. For all cases in the simulation, the
error term ei j in (1) was normally distributed with zero mean and with the variance
parameters (σ2

e ) listed in Tables 3 and 4.
The three distributions depicted in Figs. 2–4 are associated with the true scores

ti in Eq. (1). These distributions are referred to as: Distribution 1 is symmetric
and leptokurtic (skew = 0, kurtosis = 25; L-skew = 0, L-kurtosis = 0.4225);
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Table 3 Parameters for the Conventional covariance (L-comoment) matrix
and distributions in Figs. 2–4

Distribution-matrix Diagonal Off-diagonal σ 2
e

1-C 3.420 1.710 1.710
1-L 0.848 0.424 1.000
2-C 3.224 1.612 1.612
2-L 0.842 0.421 1.000
3-C 2.000 1.000 1.000
3-L 0.798 0.399 1.000

Reliability is α =0.80, 0.90; number of items are k =4, 9
Ratio of diagonal to off-diagonal is R = 2

Table 4 Parameters for the Conventional covariance (L-comoment) matrix
and distributions in Figs. 2–4

Distribution-matrix Diagonal Off-diagonal σ 2
e

1-C 8.550 1.710 6.840
1-L 1.470 0.294 5.313
2-C 8.060 1.612 6.448
2-L 1.443 0.2886 5.135
3-C 5.000 1.000 4.000
3-L 1.262 0.2524 4.000

Reliability is α =0.50, 0.714; number of items are k =4, 10
Ratio of diagonal to off-diagonal is R = 5

Fig. 2 Distribution 1 with
skew (L-skew) of 0 (0) and
kurtosis (L-kurtosis) of 25
(0.4225)

Distribution 2 is asymmetric and leptokurtic (skew = 3, kurtosis = 21; L-skew =
0.3130, L-kurtosis = 0.3335); and Distribution 3 is standard normal (skew = 0,
kurtosis = 0; L-skew = 0, L-kurtosis = 0.1226). We would note that Distributions
1 and 2 have been used in several studies in the social and behavioral sciences
(e.g., Berkovits et al. 2000; Enders 2001; Harwell and Serlin 1988; Headrick and
Sawilowsky 1999, 2000; Olsson et al. 2003).

The pseudo-random deviates associated with the distributions in Figs. 2–4 were
generated for this study using the L-moment-based power method transformation
derived by Headrick (2011). Specifically, the true scores ti in (1) were generated
using the following (Fleishman 1978) type polynomial

ti = c1 + c2Zi + c3Z2
i + c4Z3

i (10)
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Fig. 3 Distribution 2 with
skew (L-skew) of 3 (0.3130)
and kurtosis (L-kurtosis) of
21 (0.3335)

Fig. 4 Distribution 3 is
standard normal with skew
(L-skew) of 0 (0) and kurtosis
(L-kurtosis) of 0 (0.1226)

where Zi ∼ iid N(0,1). The shape of the distribution of the true scores ti in (10)
is contingent on the values of the coefficients, which are computed based on
Headrick’s equations (2.14)–(2.17) in Headrick (2011) as

c1 = −c3 =−τ3

√
π
3

c2 =
−16δ2 +

√
2(3+ 2τ4)π

8(5δ1 − 2δ2)

c4 =
40δ1 −

√
2(3+ 2τ4)π

20(5δ1 − 2δ2)
. (11)

The three sets of coefficients for the distributions in Figs. 2–4 are (respectively):
(1) c1 = 0.0, c2 = 0.3338, c3 = 0.0, c4 = 0.2665; (2) c1 = −0.3203, c2 = 0.5315,
c3 = 0.3203, c4 = 0.1874; and (3) c1 = 0.0, c2 = 1.0, c3 = 0.0, c4 = 0.0. The values
of the three sets of coefficients are based on the values of L-skew and L-kurtosis
given in Figs. 2–4 and where δ1 = 0.36045147 and δ2 = 1.15112868 in (11) (see
Headrick 2011, Eqs. A.1, A.2). The solutions to the coefficients in (11) ensure that
λ1 = 0 and λ2 = 1/

√
π , which are associated with the unit normal distribution.

The estimator α̂C was computed using Eq. (3). The estimator α̂L was computed
using Eqs. (4), (5), and (8) as was demonstrated in Tables 1 and 2. The
estimators were both transformed to the form of an intraclass correlation as
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ρ̄C,L = α̂C,L/(1− (k− 1)α̂C,L) (e.g., Headrick 2010, p. 104) and were subsequently
Fisher z′ transformed, i.e. z′̄ρC,L

. Bias-corrected accelerated bootstrapped average
(mean) estimates, confidence intervals (C.I.s), and standard errors were
subsequently obtained for z′̄ρC,L

using 10,000 resamples. The bootstrap results
associated with the means and C.I.s were then transformed back to their original
metrics (i.e., the estimators α̂C and α̂L). Further, percentages of relative bias
(RBias) and RSE were computed for α̂C,L as: RBias = ((α̂C,L − α)/α)× 100
and RSE = (standarderror/α̂C,L)× 100. The results of the simulation are reported
in Tables 5–7 and are discussed in the next section.

4 Discussion and Conclusion

One of the advantages that L-moment ratios have over conventional product-
moment estimators is that they can be far less biased when sampling is from
distributions with more severe departures from normality (Hosking and Wallis 1997;
Serfling and Xiao 2007). And, inspection of the simulation results in Tables 5

Table 5 Simulation results for α based on the Conventional (C) and L-moment (L) procedures
(Proc) based on samples of size n = 10

Parameters Dist–Proc Estimate (α) 95 % C.I. RSE (%) RBias (%)

α = 0.50,k = 4 1-C 0.4416 0.4367, 0.4465 0.5661 −11.68
α = 0.50,k = 4 1-L 0.4847 0.4801, 0.4891 0.4725 −3.06
α = 0.50,k = 4 2-C 0.4448 0.4400, 0.4495 0.3237 −11.04
α = 0.50,k = 4 2-L 0.4839 0.4796, 0.4883 0.2583 −3.22
α = 0.50,k = 4 3-C 0.4888 0.4852, 0.4922 0.3621 −2.24
α = 0.50,k = 4 3-L 0.5003 0.4968, 0.5040 0.3698 0.06
α = 0.714,k = 10 1-C 0.6617 0.6581, 0.6652 0.2720 −7.36
α = 0.714,k = 10 1-L 0.6960 0.6931, 0.6989 0.2155 −2.56
α = 0.714,k = 10 2-C 0.6662 0.6628, 0.6697 0.2612 −6.73
α = 0.714,k = 10 2-L 0.6975 0.6946, 0.7003 0.2079 −2.35
α = 0.714,k = 10 3-C 0.7069 0.7051, 0.7086 0.1273 −1.03
α = 0.714,k = 10 3-L 0.7131 0.7113, 0.7149 0.1290 −0.17
α = 0.80,k = 4 1-C 0.7306 0.7275, 0.7336 0.2053 −8.67
α = 0.80,k = 4 1-L 0.7887 0.7866, 0.7908 0.1357 −1.41
α = 0.80,k = 4 2-C 0.7398 0.7371, 0.7426 0.1906 −7.52
α = 0.80,k = 4 2-L 0.7924 0.7904, 0.7944 0.1287 −0.95
α = 0.80,k = 4 3-C 0.7908 0.7893, 0.7922 0.0923 −1.15
α = 0.80,k = 4 3-L 0.8030 0.8016, 0.8044 0.0909 0.37
α = 0.90,k = 9 1-C 0.8591 0.8575, 0.8609 0.0989 −4.54
α = 0.90,k = 9 1-L 0.8924 0.8914, 0.8936 0.0628 −0.84
α = 0.90,k = 9 2-C 0.8636 0.8620, 0.8651 0.0926 −4.04
α = 0.90,k = 9 2-L 0.8933 0.8922, 0.8944 0.0605 −0.74
α = 0.90,k = 9 3-C 0.8934 0.8927, 0.8941 0.0381 −0.73
α = 0.90,k = 9 3-L 0.8991 0.8985, 0.8998 0.0378 −0.10

See Tables 3 and 4 for the parameters and Figs. 2–4 for the distributions (Dist)
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Table 6 Simulation results for α based on the Conventional (C) and L-moment (L) procedures
(Proc) based on samples of size n = 20

Parameters Dist–Proc Estimate (α) 95 % C.I. RSE (%) RBias (%)

α = 0.50,k = 4 1-C 0.4643 0.4606, 0.4679 0.3977 −7.15
α = 0.50,k = 4 1-L 0.4903 0.4870, 0.4933 0.3263 −1.94
α = 0.50,k = 4 2-C 0.4697 0.4663, 0.4732 0.3732 −6.05
α = 0.50,k = 4 2-L 0.4938 0.4909, 0.4967 0.306 −1.24
α = 0.50,k = 4 3-C 0.4945 0.4921, 0.4968 0.2389 −1.11
α = 0.50,k = 4 3-L 0.4995 0.4971, 0.5019 0.2456 −0.11
α = 0.714,k = 10 1-C 0.6852 0.6826, 0.6878 0.1926 −4.07
α = 0.714,k = 10 1-L 0.7056 0.7036, 0.7077 0.1485 −1.22
α = 0.714,k = 10 2-C 0.6858 0.6834, 0.6882 0.1831 −3.98
α = 0.714,k = 10 2-L 0.7047 0.7028, 0.7066 0.1414 −1.34
α = 0.714,k = 10 3-C 0.7098 0.7086, 0.7111 0.0881 −0.62
α = 0.714,k = 10 3-L 0.7130 0.7117, 0.7142 0.0882 −0.19
α = 0.80,k = 4 1-C 0.7569 0.7549, 0.7591 0.1404 −5.39
α = 0.80,k = 4 1-L 0.7937 0.7923, 0.7952 0.0917 −0.78
α = 0.80,k = 4 2-C 0.7612 0.7592, 0.7631 0.1330 −4.85
α = 0.80,k = 4 2-L 0.7940 0.7926, 0.7954 0.0893 −0.75
α = 0.80,k = 4 3-C 0.7944 0.7935, 0.7954 0.0627 −0.7
α = 0.80,k = 4 3-L 0.8000 0.7990, 0.8010 0.0613 −0.002
α = 0.90,k = 9 1-C 0.8750 0.8737, 0.8761 0.0690 −2.79
α = 0.90,k = 9 1-L 0.8958 0.8950, 0.8966 0.0431 −0.47
α = 0.90,k = 9 2-C 0.8784 0.8773, 0.8795 0.0644 −2.4
α = 0.90,k = 9 2-L 0.8965 0.8958, 0.8972 0.0411 −0.39
α = 0.90,k = 9 3-C 0.8969 0.8965, 0.8974 0.0247 −0.34
α = 0.90,k = 9 3-L 0.8998 0.8994, 0.9002 0.0250 −0.02

See Tables 3 and 4 for the parameters and Figs. 2–4 for the distributions (Dist)

and 6 clearly indicates that this is the case. That is, the superiority that the L-
comoment-based estimator α̂L has over its corresponding conventional counterpart
α̂C is obvious in the contexts of Distributions 1 and 2. For example, inspection of
the first entry in Table 5 (α = 0.50, k = 4, n = 10) indicates that the estimator α̂C

associated with Distribution 1 was, on average, 88.32 % of its associated population
parameter whereas the estimator α̂L was 96.94 % of its parameter. Further, and in
the context of Distribution 1, it is also evident that α̂L is a more efficient estimator
as its RSE is smaller than its corresponding conventional estimator (see Table 5,
α = 0.50, k = 4, n = 10). This demonstrates that α̂L has more precision because it
has less variance around its estimate.

In summary, the L-comoment-based α̂L is an attractive alternative to the tradi-
tional Cronbach alpha α̂C when distributions with heavy tails and small samples
sizes are encountered. It is also worthy to point out that α̂L had a slight advantage
over α̂C when sampling was from normal populations (see Table 5; α = 0.50,
k = 4, n = 10, 3-C, 3-L). When sample sizes was large the performance of the two
estimators α̂C,L were similar (see Table 7; n = 1,000).
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Table 7 Simulation results for α based on the Conventional (C) and L-moment (L) procedures
(Proc) based on samples of size n = 1,000

Parameters Dist–Proc Estimate (α) 95 % C.I. RSE (%) RBias (%)

α = 0.50,k = 4 1-C 0.4988 0.4982, 0.4994 0.05814 −0.24
α = 0.50,k = 4 1-L 0.4988 0.4984, 0.4992 0.04210 −0.24
α = 0.50,k = 4 2-C 0.4993 0.4987, 0.4998 0.05613 −0.14
α = 0.50,k = 4 2-L 0.5001 0.4997, 0.5005 0.04200 0.02
α = 0.50,k = 4 3-C 0.5000 0.4997, 0.5003 0.03200 0.00
α = 0.50,k = 4 3-L 0.5000 0.4997, 0.5004 0.03400 0.00
α = 0.714,k = 10 1-C 0.7134 0.7129, 0.7138 0.03084 −0.12
α = 0.714,k = 10 1-L 0.7132 0.7129, 0.7135 0.02103 −0.15
α = 0.714,k = 10 2-C 0.7133 0.7129, 0.7137 0.02804 −0.14
α = 0.714,k = 10 2-L 0.7140 0.7137, 0.7143 0.01961 −0.04
α = 0.714,k = 10 3-C 0.7141 0.7140, 0.7143 0.01120 −0.03
α = 0.714,k = 10 3-L 0.7142 0.7140, 0.7144 0.01260 −0.01
α = 0.80,k = 4 1-C 0.7991 0.7987, 0.7994 0.02127 −0.11
α = 0.80,k = 4 1-L 0.8017 0.8015, 0.8019 0.01247 0.21
α = 0.80,k = 4 2-C 0.7990 0.7987, 0.7993 0.02003 −0.12
α = 0.80,k = 4 2-L 0.8011 0.8009, 0.8013 0.01248 0.14
α = 0.80,k = 4 3-C 0.7999 0.7998, 0.8000 0.00875 −0.01
α = 0.80,k = 4 3-L 0.8000 0.7998, 0.8001 0.00875 0.00
α = 0.90,k = 9 1-C 0.8992 0.8990, 0.8994 0.01001 −0.09
α = 0.90,k = 9 1-L 0.9008 0.9007, 0.9009 0.00555 0.09
α = 0.90,k = 9 2-C 0.8994 0.8992, 0.8995 0.01000 −0.07
α = 0.90,k = 9 2-L 0.9005 0.9004, 0.9006 0.00556 0.06
α = 0.90,k = 9 3-C 0.8999 0.8999, 0.9000 0.00333 −0.01
α = 0.90,k = 9 3-L 0.9000 0.8999, 0.9000 0.00333 0.00

See Tables 3 and 4 for the parameters and Figs. 2–4 for the distributions (Dist)

Appendix

Under the assumption of parallel measures, the error term ei j in Eq. (1) has constant
variance σ2

e , the variance–covariance matrix assumes compound-symmetry, and
thus the main and off-diagonal elements are σ2

j = σ2
X and σ j j′ = σ2

t , respectively.
Hence, Eq. (2) can be expressed using the true score and observed score variances as

α =
k

k− 1

(
1− kσ2

X

kσ2
X + k(k− 1)σ2

t

)
,

which can be simplified to

α =
k

k− 1

(
1− σ2

X

σ2
X +(k− 1)σ2

t

)
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=
k

k− 1

(
(k− 1)σ2

t

σ2
X +(k− 1)σ2

t

)

=
kσ2

t

σ2
X +(k− 1)σ2

t
.

If we let R = σ2
j

/
σ j j′ = σ2

X

/
σ2

t , then it follows that

α =
k

R+ k− 1
=

1
1+(R− 1)/k

,

which is given in Eq. (6).
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Using the Testlet Response Model as a Shortcut
to Multidimensional Item Response Theory
Subscore Computation

David Thissen

1 Introduction

In many assessment contexts there may be perceived usefulness for diagnostic
scores that describe a profile of performance, reflecting a more nuanced description
of individual differences than is obtained with a single total score. Several ways
to compute diagnostic scores have been proposed and used, but the use of classic
subscores originated more than 70 years ago with tests like the Wechsler–Bellevue
Intelligence Scale (WBIS) (Wechsler 1939). The WBIS provided eleven “subtest
scores” in addition to verbal, performance, and full-scale IQ scores. Estes (1946)
referred to the subtest scores as “subscores,” possibly originating modern usage. A
footnote to the score conversion table for the subtest scores on the WBIS noted that
“one must recognize the relative unreliability of these subtest scores,” anticipating
modern concerns about the unreliability of subscores based on a few items that are
a subset of a longer test.

In the past three decades, several systems have been proposed to calculate more
reliable subscores for small subsets of test items by “borrowing strength” (Tukey
1973), using additional information such as the total score on the test, or the
other subscores on the test. Yen (1987) described an objective performance index
that used ideas from item response theory (IRT) to combine information from a
subscore with the total score on the entire test into a more reliable score. Wainer
et al. (2001) contained details on the computation of two kinds of augmented
subscores: (1) those based on summed scores, as estimates of classical true scores,
using the multivariate generalization of Kelley’s (1927) regressed estimates, and
(2) those arising from a multi-step procedure to mimic the multivariate Kelley
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regressed estimates with multiple univariate IRT analyses. Wainer et al.’s (2001)
augmented scores are estimates based on the regression of each true score on all of
the subscores; for summed scores, Haberman (2008) proposed an alternative scheme
to compute augmented subscores using only the subscore in question and the total
score on the test.

Haberman (2008) also proposed evaluation of the value of subscores using the
comparison of the proportional reduction in mean squared error (PRMSE) for each
of several subscore estimates—for the subscore itself, for the total score as an
estimate of the subscore, and for the augmented subscore. PRMSE is, in some
senses, reliability, computed for a particular observed score as an estimate of a
particular true score. Historically, there are many estimates denoted “reliability,” and
nearly as many meanings of the word, so it was wise to use “PRMSE” instead—it
is semantically neutral, and it is accurate: how much the mean squared error in
estimating the score is reduced by any observed score (relative to using the mean).

Procedures for computing augmented summed scores are well developed
and computationally straightforward (Edwards and Vevea 2006; Haberman 2008;
Sinharay et al. 2008). However, many assessment systems use IRT scale scores; the
computation of augmented IRT subscores has been more challenging, and that is the
subject of this presentation. Advances in computational equipment and algorithms
in the past two decades have made direct use of multidimensional IRT (MIRT)
models practical for the calculation of augmented subscores; this presentation
draws together several threads from recent research to propose a useful system.

2 MIRT and Subscores

To provide a concrete setting for the ideas described here, we use one of the
examples described by Wainer et al. (2001), involving responses to the late-1990s
North Carolina Test of Computer Skills—an 8th Grade performance test with four
parts: (1) Keyboarding (Kb), with three four-category items; (2) Editing (Ed), with
ten dichotomous items; (3) Database (Db), with four dichotomous items and three
three-category items; and (4) Spreadsheet (Ss) with five dichotomous items and one
item scored in three-categories.

The multi-step IRT procedure to compute augmented scores described by Wainer
et al. (2001) was developed at a time when it was not clear that MIRT models
could be reliably fitted directly to data, so it made use of assembled univariate IRT
analyses of each subscale. Nevertheless, the underlying idea was to fit a model like
that shown in path-analytic form in the left panel of Fig. 1: The model includes
four correlated latent variables, one for each subscale. Augmented MIRT subscores
are the IRT trait estimates (e.g., the maximum a posteriori (MAP) or expected a
posteriori (EAP) values) for the four latent variables, each of which depends on the
item responses for its own subscale as well as those on the other subscales through
the correlations.
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Fig. 1 Path diagrams illustrating the latent variable structures of a four-dimensional independent
clusters model (left panel), a second-order factor model (center panel), and the testlet response
model (right panel) for the four subscales of a North Carolina Test of Computer Skills

Since publication of the work by Wainer et al. (2001), there have been many
advances in statistical estimation for MIRT models, so Wainer et al.’s (2001) multi-
step procedure combining results obtained with parallel unidimensional IRT models
can be abandoned. To show that MIRT models could be fitted to data, early efforts
used Markov chain Monte Carlo (MCMC) algorithms (Béguin and Glas 2001; Bolt
and Lall 2003; Yao and Schwarz 2006; Yao and Boughton 2009; Edwards 2010).
Some of that work with MCMC algorithms has been focused on subscores, and
even higher-order models, which will be a focus of this presentation (de la Torre
and Hong 2009; de la Torre and Song 2009; de la Torre 2009; de la Torre and
Patz 2005; Yao 2010; Yao and Boughton 2007). The use of more convenient, if
less sophisticated or elegant, point estimation by maximum likelihood (ML) has
lagged behind, but has become practical with contemporary software (Haberman
and Sinharay 2010; Cai et al. 2011).

Even with the advent of modern MIRT software, parameter estimation remains
challenging for models with more than two or three latent dimensions—in the
context of subscores, that means more than two or three subscales, and that situation
is common. It follows that the use of dimension-reduction techniques could be
helpful; this presentation describes a way to recast item parameter estimation for
a high-dimensional MIRT model into parameter estimation for a bifactor model,
which can be done with more computational efficiency.
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First, we note that it is often the case that the kind of independent clusters or
simple structure MIRT model illustrated in the left panel of Fig. 1 can be approx-
imated with the second-order or higher-order factor model shown in the center
panel of the graphic. In a second-order factor model, as originally described by
Tucker (1940), a second- or higher-order latent variable θg explains the correlation
among the first-order latent variables—in this case those are the subscale θ s. For
four or more subscales, the relationship between the second-order factor model and
the independent clusters model is one of the approximations: It is often the case,
empirically, that the correlations among the subscores can be well approximated by
a one-factor model, but counterexamples can be found. For three subscales, for some
patterns of correlation the relationship is exact, while for others it is approximate;
for two subscales, the relationship is tautological. de la Torre (2009), de la Torre and
Hong (2009), and de la Torre and Song (2009) have suggested the direct use of a
second-order factor model for subscore estimation.

In this presentation, we take advantage of the relationships among the second-
order factor model, the Wainer et al. (2007) testlet response model (TRM), and
the bifactor model (Holzinger and Swineford 1937), to simplify computation. The
TRM can be expressed in path-diagram form as shown in the right panel of Fig. 1:
There is a general factor, θg, that explains covariation among all the items, and a set
of subscale-specific latent variables θ ∗ that explain residual covariation within each
subscale. While the right panel of Fig. 1 shows two factor loadings (λ s) relating each
item’s latent response to the subscale-specific and general latent variables, those
two λ s are constrained equal in the TRM. The estimated parameters are one (1)
loading (or equivalently, IRT slope) for each item, and as many variances as there are
subscales (Wainer et al. 2007; Bradlow et al. 1999; Wainer et al. 2000; Wang et al.
2002).

The original software by Wang et al. (2005) to estimate the parameters of the
TRM used MCMC. However, when the model is expressed as in Fig. 1 to show
that it is a constrained bifactor model, ML estimation using dimension-reduction
techniques (Gibbons and Hedeker 1992; Gibbons et al. 2007; Cai 2010c; Rijmen
2010; Cai et al. 2011) as implemented in software such as IRTRPO (Cai et al.
2011) can also be used. That means that the parameters of TRMs like that shown
in the right panel of Fig. 1 can be estimated efficiently using ML, with numerical
integration over only two latent dimensions regardless of the number of subscores.

To relate this to the higher-order model in the center of Fig. 1, and then back to
the original subscore problem, we note that the higher-order model in the center
of Fig. 1 is a reparameterization of the TRM in the rightmost panel. Yung et al.
(1999), based on pioneering work by Schmid and Leiman (1957), established this
identity relation for the continuous-normal factor model. Rijmen (2010) extended
these results to MIRT models; see also Li et al. (2006) and Thissen and Steinberg
(2010).

Assembling these relationships among models yields the basis for an efficient
three-step plan to estimate MIRT parameters, and subsequently compute IRT scale
subscores, for the Computer Skills subscales: (1) Estimate the parameters for the
TRM in the right panel of Fig. 1 by ML using dimension-reduction techniques
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Table 1 Correlations among the four latent variables for the North Carolina Test of
Computer Skills subscales

4D Model TRM
θKb θEd θDb θSs θKb θEd θDb θSs

θKb 1.00 θKb 1.00
θEd 0.69 1.00 θEd 0.60 1.00
θDb 0.52 0.49 1.00 θDb 0.60 0.52 1.00
θSs 0.55 0.45 0.59 1.00 θSs 0.58 0.50 0.50 1.00

that require numerical integration over only two dimensions (Gibbons and Hedeker
1992; Gibbons et al. 2007; Cai 2010c; Rijmen 2010; Cai et al. 2011). (2) Convert
the parameter estimates for the TRM into those of the second-order model in the
center of Fig. 1, using a simplification of the algorithm provided by Yung et al.
(1999). (3) Convert the parameter estimates for the second-order model into those
of the independent clusters model in the left panel of Fig. 1, and then compute the
subscores from that model as either EAP estimates (which require four-dimensional
integration) or MAP estimates (with no numerical integration).

Yung et al. (1999) provide an algorithm to convert the parameters of an
unconstrained bifactor model into the factor loadings of a more general second-
order factor model than illustrated in Fig. 1; the more general model also includes
direct paths from θg to each observed variable. In the present case, however, with the
equality constraints imposed on the bifactor model to yield the TRM, Yung et al.’s
(1999) procedure can be simplified.

The second-order factor loadings, in terms of the TRM testlet variances, are

λ g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
1+σ2∗

Kb
1√

1+σ2∗
Ed

1√
1+σ2∗

Db
1√

1+σ2∗
Ss

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Then the implied correlation matrix among the factors of the original four-
dimensional correlated independent clusters model is

R = λ gλ ′
g +[I− diag(λ gλ ′

g)] . (2)

Table 1 illustrates the results obtained with the data from the Computer Skills
test; in the left side of the table are the correlations among the four latent variables
as estimated using four-dimensional (4D) adaptive quadrature (Schilling and Bock
2005), and the right side of the table shows the similar correlation estimates obtained
using Eqs. (1) and (2) after fitting the TRM. The correlations differ by as much as
0.09; however, that is probably due in part to their large standard errors—the sample
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size for this example is only 266, and the standard errors of the latent-variable
correlations are 0.08–0.13. Because the sample size is so small, neither estimation
problem requires much time to compute; however, the four-dimensional model
required almost five times as long as the TRM to fit (165 s vs. 36 s) with the IRTPRO
software (Cai et al. 2011).

To obtain scores, MIRT slope and intercept parameters are also required. In
principle, the intercept parameters are the same for all three models shown in Fig. 1;
in practice, they vary slightly between the 4D model and the two equivalent models
on the right because the slopes are slightly different. We ignore that, and use the
TRM intercept estimates in the approximation. To compute the implied slopes for
the independent cluster model from the slopes for the TRM, we first convert the
factor loadings using a simplification of Yung et al.’s (1999) algorithm. To do that,
it is convenient to partition the loading matrix for the bifactor representation of the
TRM as follows:

Λ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ ∗

λ ∗

λ ∗

λ ∗
...
λ ∗

λ ∗
...
λ ∗

λ ∗
...
λ ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ ∗ 0 0 0
λ ∗ 0 0 0
λ ∗ 0 0 0
0 λ ∗ 0 0
...

...
...

...
0 λ ∗ 0 0
0 0 λ ∗ 0
...

...
...

...
0 0 λ ∗ 0
0 0 0 λ ∗
...

...
...

...
0 0 0 λ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λ ∗
g |Λ∗

s . (3)

Then loadings in the submatrix Λ∗
s are rescaled using the matrix Y,

Λ= Λ∗Y. (4)

Y is a simplification of one of the matrices in Yung et al.’s (1999) “inverse Schmid–
Leiman transformation”:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
1+σ2

Kb 0 0 0

0
√

1+σ2
Ed 0 0

0 0
√

1+σ2
Db 0

0 0 0
√

1+σ2
Ss

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5)
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Table 2 PRMSE values for the North Carolina Test of Computer
Skills

Kb Ed Db Ss

PRMSE(θk|uk) 0.67 0.73 0.67 0.77
PRMSE(θk|θ̄g) 0.48 0.37 0.36 0.34
PRMSE(θk|u)1 0.65 0.77 0.71 0.79
PRMSE(θk|u)2 0.67 0.77 0.72 0.80
1 Parameters from TRM/higher-order model
2 Parameters from unconstrained 4D model

Direct 4D estimation produced one set of MIRT parameters for the model in
the left panel of Fig. 1; the use of Eqs. (1)–(5) with parameters from the fitted
TRM produced another very similar set of parameters. The precision of augmented
subscore estimates computed with those two sets of parameters can be compared to
each other, and to other score estimates, using PRMSE as proposed by Haberman
(2008) and Haberman and Sinharay (2010). Two alternative subscore estimates that
might be considered would be the EAP estimate for θ for subscale k computed from
a unidimensional IRT model fitted to subscale k, and the EAP estimate for θ for
subscale k computed from its regression on θg from the TRM/higher-order model
(as an IRT analog to the replacement of all subscore estimates with the total score).
PRMSE values for these score estimates are:

PRMSE(θk|uk): the PRMSE using the EAP estimate for θ for subscale k
computed from a unidimensional IRT model fitted to subscale
k as an estimate of θk.

PRMSE(θk|θ̄g): the PRMSE using the EAP estimate for θ for subscale k
computed from its regression on θg from the TRM/higher-order
model as an estimate of θk.

PRMSE(θk|u): the PRMSE using the augmented EAP estimate for θ for sub-
scale k computed from a MIRT model fitted to the entire test as
an estimate of θk. There are two of these, one for the independent
clusters model and one for the TRM-derived version.

Table 2 shows the values of PRMSE for those four subscore estimates for the
Computer Skills subscales. The most salient feature of the values in Table 2 is that
all of the subscale estimates are much more precise than estimates derived from the
total score θ̄g. By comparison, 4D subscore augmentation increases precision only
modestly, from 0.00 (for Kb) to 0.05 (for Db), as reflected in the difference between
PRMSE(θk|uk) and PRMSE(θk|u)2. The pattern of results reflects the fact that the
latent variables for these four subscales are only moderately correlated (0.5–0.6;
see Table 1). The values of PRMSE(θk|u)1 for subscale scores computed with the
TRM-derived approximation to the 4D model are only 0.00–0.02 lower than the
values for the 4D model.
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3 Additional Examples

The PROMIS pediatric emotional distress scales (Irwin et al. 2010, 2012) provide
second example with a similar pattern of results. The PROMIS pediatric emotional
distress scales were constructed as three distinct unidimensional IRT scales mea-
suring Depressive Symptoms, Anxiety, and Anger. However, here we investigate
the properties of the suggested short forms of the three scales as if they were
subscales of a global emotional distress measure. Table 3 shows the correlations
among the three latent variables as estimated using adaptive quadrature with a three-
dimensional (3D) correlated independent clusters model, and as estimated with the
TRM and then computed using Eqs. (1)–(5); the three correlations are essentially
the same either way.

Table 4 shows the values of PRMSE for the subscore estimates for the PROMIS
pediatric Anger (Ang), Anxiety (Anx), and Depressive Symptoms (Dep) scales. As
was the case with the previous example, the most obvious feature of the values in
Table 4 is that all of the subscale estimates are much more precise than estimates
derived from a (hypothetical) total score, as reflected in the difference between
PRMSE(θk|uk) and PRMSE(θk|u)2. Again, 3D subscore augmentation increases
precision only modestly, from 0.02 (for Anger) to 0.05 (for Depressive Symptoms).
This is the case even though these three latent variables are correlated 0.66–0.78
(see Table 3), and is probably due to the fact that these scales, comprising 6–8 five-
category graded response items, already have relatively large PRMSE values when
unidimensional models are used. The values of PRMSE(θk|u)1 for subscale scores
computed with the TRM-derived approximation to the 3D model are essentially
the same as the values for the 3D model, because the correlations are essentially
the same.

Table 3 Correlations among the three latent variables for the
PROMIS pediatric emotional distress scales

3D Model TRM
θAng θAnx θDep θAng θAnx θDep

θAng 1.00 θAng 1.00
θAnx 0.656 1.00 θAnx 0.656 1.00
θDep 0.778 0.770 1.00 θDep 0.777 0.769 1.00

Table 4 PRMSE values for
the PROMIS pediatric
emotional distress scales

Anger Anxiety Depr. Symp.

PRMSE(θk|uk) 0.86 0.86 0.84
PRMSE(θk|θ̄g) 0.57 0.56 0.78
PRMSE(θk|u)1 0.88 0.89 0.89
PRMSE(θk|u)2 0.88 0.89 0.89
1 Parameters from TRM/higher-order model
2 Parameters from unconstrained 3D model
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Table 5 Correlations among the six latent variables for the APICS certification examina-
tion

6D Model TRM
θCon θHR θT QC θTech θInt θImpl θCon θHR θT QC θTech θInt θImpl

θCon 1.00 θCon 1.00
θHR 0.93 1.00 θHR 0.91 1.00
θTQC 0.92 0.89 1.00 θTQC 0.88 0.85 1.00
θTech 0.95 0.93 0.89 1.00 θTech 0.94 0.90 0.87 1.00
θInt 0.97 0.95 0.92 0.97 1.00 θInt 0.97 0.93 0.91 0.96 1.00
θImpl 0.96 0.94 0.91 0.96 0.98 1.00 θImpl 0.96 0.92 0.89 0.95 0.98 1.00

Table 6 PRMSE values for the APICS certification examination

Concepts HR TotalQC Techniques Integration Implementation

PRMSE(θk|uk) 0.47 0.54 0.66 0.67 0.55 0.71
PRMSE(θk|θ̄g) 0.81 0.74 0.70 0.79 0.85 0.82
PRMSE(θk|u)1 0.84 0.80 0.80 0.84 0.87 0.86
PRMSE(θk|u)2 0.85 0.83 0.82 0.86 0.88 0.87
1 Parameters from TRM/higher-order model
2 Parameters from unconstrained 6D model

A third example is another described by Wainer et al. (2001) that involves
a certification examination for the American Production and Inventory Control
Society (APICS) administered in 1994. This 100-item multiple-choice test was
designed to have six subscales, measuring Concepts (Con), Human Resources
(HR), Total Quality Control (TQC), Techniques (Tech), Integration (Int), and
Implementation (Impl). After various analyses, Wainer et al. (2001) found that
this test was so nearly unidimensional that any computation of subscores produced
values with poor reliability (for the subscales alone), or values that amounted to
reproducing the total score six times (for augmented subscores). The correlations
among the latent variables for the six subscales for the APICS exam shown in
Table 5 make it clear why that is the case: Nearly all of the correlations exceed 0.9.

The values in the left half of Table 5 are very challenging to estimate; fitting
a six-dimensional correlated independent clusters model is beyond the capacity of
even modern MIRT software using quadrature. The estimates shown in the left half
of Table 5 were obtained using Cai’s (2010a, 2010b) Metropolis-Hastings Robbins-
Monro (MH-RM) algorithm, with starting values derived from the TRM solution.
On the other hand, the TRM solution was easy to obtain. Table 5 shows that the
correlation estimates are not very much different.

Table 6 shows the values of PRMSE for the subscore estimates for the APICS
certification examination subscales; the pattern is very different from that previously
seen in Tables 2 and 4. In this case, all of the subscale estimates are much less
precise than estimates derived from a total score, as reflected in the difference
between PRMSE(θk|uk) and PRMSE(θk|u)2. 6D subscore augmentation increases
precision a great deal, from 0.38 (for Concepts) down to 0.16 (for Total QC and
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Implementation). However, the fact that the subscales scores are so highly correlated
means that the augmented subscores, while reliable, are nearly the same as simply
reporting the total score six times—all subscores regress to nearly the same value.
The values of PRMSE(θk|u)1 for subscale scores computed with the TRM-derived
approximation to the 6D model are similar to those obtained with the more complex
model.

4 Conclusion

The conclusion that is unique to this presentation is that it may be effective to
use the computational “shortcut” that involves fitting the TRM (as a constrained
bifactor model) to multidimensional item response data, and then using Eqs. (1)–
(5) to approximate the more difficult to estimate parameters of a correlated simple
structure model to compute subscores.

However, the examples in this presentation, together with similar examples
in the literature, suggest that subscore augmentation has a narrow window of
usefulness: If the correlations among the latent variables for the subscores are
relatively low (as in the Computer Skills example, in which they were 0.5–0.6), or
if the subscales are already relatively reliable (as in the PROMIS emotional distress
scales), augmentation is not necessarily very helpful. In those cases, separate
unidimensional models for the individual subscales are simple and effective. On
the other hand, if the correlation among the subscales are very high (as was the case
with the APICS certification exam), subscore augmentation simply reproduces the
total score; so it may be better to avoid reporting subscores entirely. It is useful to
follow (Haberman’s 2008) suggestion that comparison of relevant PRMSE values
can be used to evaluate subscores.

There are cases in which subscore augmentation is clearly useful, but they appear
to come from a narrowly defined window, in which subscale scores have relatively
low reliability (PRMSE) when considered alone, and when they appear on tests
with latent-variable correlations among the subscores between about 0.8 and the
low 0.9 s. Haberman and Sinharay (2010) provide three examples of examinations
in that window for which they found subscore augmentation to be unambigously
helpful; they also reported results for two exams with higher correlations among the
latent variables, for which the total score tended to be the better choice.

For tests with short subscales that do not produce sufficiently reliable scores
on their own, but are intercorrelated moderately highly, perhaps between 0.75
and 0.95 for the latent variables, an MIRT approach to subscore augmentation
may be effective if IRT scales are used for score reporting. In that context, the
computational shortcut described in this presentation, using the TRM, is more
efficient computationally and may be more numerically stable, and should be
considered.
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Anatomy of Pearson’s Chi-Square Statistic
in Three-Way Contingency Tables

Yoshio Takane and Lixing Zhou

1 Introduction

Research in psychology and other social sciences often involves discrete
multivariate data. Such data are conveniently summarized in the form of
contingency tables. There have been two widely used classes of techniques for
analysis of such tables. One is log linear models (e.g., Andersen 1980; Bishop et al.
1975) and the other is correspondence analysis (CA; e.g., Greenacre 1984; Nishisato
1980). The former allow ANOVA-like decompositions of the log likelihood ratio
(LR) statistic (also known as the deviance statistic or the Kullback and Leibler 1951
divergence). This statistic measures the difference in log likelihood between the
saturated and independence models. When the latter model is correct, it follows
the asymptotic chi-square distribution with degrees of freedom (df) equal to the
difference in the number of parameters in the two models.

In CA, on the other hand, an emphasis is placed on graphical representations
of associations between rows and columns of contingency tables. This approach
typically uses PCA-like (componentwise) decompositions of Pearson’s (1900) chi-
square statistic, measuring essentially the same thing as the log LR chi-square
statistic. In this paper, we develop ANOVA-like decompositions of Pearson’s chi-
square statistic, similar to those for the log LR statistic.

These decompositions are useful in constrained CA, such as canonical correspon-
dence analysis (CCA; ter Braak 1986) and canonical analysis with linear constraints

Y. Takane (�)
Department of Psychology, University of Victoria, P.O. Box 3050 Victoria,
BC, Canada, V8W 3P5
e-mail: takane@uvic.ca

L. Zhou
Department of Psychology, McGill University, 1205 Dr. Penfield Ave.
Montreal, QC, Canada, H3A 1B1
e-mail: lixing.zhou@mail.mcgill.ca

R.E. Millsap et al. (eds.), New Developments in Quantitative Psychology,
Springer Proceedings in Mathematics & Statistics 66, DOI 10.1007/978-1-4614-9348-8__4,
© Springer Science+Business Media New York 2013

41



42 Y. Takane and L. Zhou

(CALC; Böckenholt and Böckenholt 1990), in which the total association between
rows and columns of contingency tables is decomposed into what can and cannot
be explained by the constraints. Different terms in the decompositions highlight
different aspects of the total association. The terms in the proposed decompositions
are mutually orthogonal and follow independent asymptotic chi-square distributions
under suitable null hypotheses. This is in contrast to the decompositions suggested
by Lancaster (1951), in which individual terms do not necessarily follow asymptotic
chi-square distributions (Placket 1962). All terms in the proposed decompositions
can be obtained in closed form unlike some of the terms in the decompositions of
the log LR chi-square statistic.

Takane and Jung (2009b) proposed similar decompositions of the CATANOVA
C-statistic (Light and Margolin 1971), which also follows an asymptotic chi-square
distribution. This statistic, however, has been developed for situations in which rows
and columns of contingency tables assume asymmetric roles, that is, one is the
predictor, and the other is the criterion. It thus represents the overall predictability of,
say, rows on columns. Pearson’s chi-square statistic, on the other hand, represents
a symmetric association. It may be argued, however, that a symmetric measure
of association may still be useful in the predictive contexts. There are many
cases in which symmetric analysis methods (those that do not distinguish between
predictors and criterion variables) are used for prediction purposes. For example,
canonical correlation analysis (Hotelling 1936) and its special cases, canonical
discriminant analysis (Fisher 1936), CCA and CALC (cited above), reduced rank
regression analysis (Anderson 1951; Izenman 1975), maximum likelihood reduced-
rank GMANOVA (growth curve models; Reinsell and Velue 1998), and the curds
and whey method (Breiman and Friedman 1997) all involve some kind of symmetric
analysis. This suggests that decompositions of a symmetric measure of association,
such as Pearson’s chi-square statistic, may well be useful in predictive contexts.

This paper is organized as follows. Section 2 briefly reviews basic facts about
Pearson’s chi-square statistic and its historical development. Section 3 presents
our main results, the proposed decompositions, starting from elementary two-term
decompositions to full decompositions. It will be shown that the order in which
various effects are taken into consideration plays a crucial role in deriving the
decompositions. Section 4 compares the proposed decompositions to those for
the log LR statistic recently proposed by Cheng et al. (2006). Section 5 draws
conclusions.

2 Preliminaries

We use uppercase Roman alphabets (e.g., A, B, . . . ) to designate variable names
and the corresponding characters in italic (e.g., A, B, . . . ) to denote the number
of categories (levels) in the variables. Categories of a variable are indexed by the
corresponding lowercase alphabets in italic (e.g., a = 1, · · ·A).
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Let there be A mutually exclusive events with known probabilities of occurrence,
pa (a = 1, · · · ,A), and let fa (a = 1, · · · ,A) denote the observed frequency of event
a out of N replicated observations. Then the following statistic

χ2
A =

A

∑
a=1

(
fa −N pa√

N pa

)2

(1)

asymptotically follows the chi-square distribution with A df (Pearson 1900). Here,
N pa is the expected value of fa under the prescribed conditions. This is the generic
form of Pearson’s chi-square statistic, from which many special cases follow.

In one-way layouts (i.e., when there is only one categorical variable), we are
typically interested in testing H0 : pa = p for all a (a = 1, · · · ,A). We estimate p by
p̂ = 1/A. If we insert this estimate in (1), we obtain

χ2
A−1 =

A

∑
a=1

(
fa −N/A√

N/A

)2

. (2)

This statistic follows the asymptotic chi-square distribution with A−1 df under H0.
Note that we lose 1 df for estimating p. When A > 2, the above statistic can be
partitioned into the sum of A− 1 independent chi-square variables each with 1 df.
Let g denote the A-component vector of ( fa −N/A)/

√
N/A (a = 1, · · · ,A). We may

transform this vector by the Helmert type of contrasts for unequal cell sizes (Irwin
1949; Lancaster 1949). For A = 3, this contrast matrix looks like

T =

⎡
⎣

√
p̂2

p̂1+ p̂2
−
√

p̂1
p̂1+ p̂2

0√
p̂3 p̂1

( p̂1+ p̂2)( p̂1+ p̂2+ p̂3)

√
p̂3 p̂2

( p̂1+ p̂2)( p̂1+ p̂2+ p̂3)
−
√

p̂1+ p̂2
p̂1+ p̂2+ p̂3

⎤
⎦
′

, (3)

where p̂a = fa/N. Define

h = T′g. (4)

Then each of the A− 1 elements of h asymptotically follows the independent stan-
dard normal distribution under H0, whose sum of squares (i.e., h′h) asymptotically
follows the chi-square distribution with A−1 df under H0. Note that T is not unique.
It can be any columnwise orthogonal matrix with one additional requirement that it
is also orthogonal to the vector with the square root of p̂a as the a-th element for
a= 1, · · · ,A. It can be easily verified that T′T = IA−1, and that T′p̂ = 0 for T defined
in (3), where p̂ = (

√
p̂1, · · · ,

√
p̂A)

′.
In two-way layouts, we assume that there is another variable B with B categories.

Let fba denote the observed frequency of category b of variable B and category a of
variable A. Let fba be arranged in a B by A contingency table F. We are typically
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interested in testing the independence between the rows and columns of F, i.e.,
H0 : pba = pb pa, where pba is the joint probability of row b and column a, and
pb and pa are the marginal probabilities of row b and column a, respectively. Let
p̂b = ∑a fba/N and p̂a = ∑b fba/N denote the estimates of pb and pa, and define

χ2
(B−1)(A−1) =

B

∑
b=1

A

∑
a=1

(
fba −N p̂b p̂a√

N p̂b p̂a

)2

. (5)

This statistic represents the total association (or the departure from independence)
between the rows and columns of F. It is sometimes referred to as the A by
B interaction and is denoted as χ2(AB). It follows the asymptotic chi-square
distribution with (B− 1)(A− 1) df under H0. As before, it can be decomposed into
the sum of (B− 1)(A− 1) independent chi-square variables each with 1 df when
B > 2 and/or A > 2. Let G represent the B by A matrix whose ba-th element is
equal to ( fba −N p̂b p̂a)/

√
N p̂b p̂a. We then pre- and postmultiply G by something

analogous to T′ and T defined in (3). The resultant matrix has (B − 1)(A − 1)
independent asymptotically standard normal variables under H0, whose sum of
squares follows the asymptotic chi-square distribution with (B− 1)(A− 1) df.

It will be handy to have a matrix representation of the chi-square statistic given
above. Let K and L denote the diagonal matrices whose diagonal elements are the
row and the column totals of F, and let Q1/K = IB − 1B1′BK/N, where 1B is the
B-element vector of ones. Then, G can be expressed in terms of F by

G =
√

NK−1Q′
1/KFL−1 =

√
NQ1/KK−1FL−1. (6)

The χ2
(B−1)(A−1) can then be rewritten as

χ2
(B−1)(A−1) = tr(G′KGL) = SS(G)K,L. (7)

In three-way layouts, we take into account a third variable C with C categories.
Let fcba denote the observed frequency of category c of variable C, category b of
variable B, and category a of variable A, and define

χ2
CBA−C−B−A+2 =

C

∑
c=1

B

∑
b=1

A

∑
a=1

(
fcba −N p̂c p̂b p̂a√

N p̂c p̂b p̂a

)2

. (8)

This statistic represents the departure from independence among the three categor-
ical variables. Under the independence hypothesis (i.e., H0: pcba = pc pb pa), this
statistic follows the asymptotic chi-square distribution with CBA−C−B−A+2 df,
which are always larger than 1. Consequently it can always be decomposed into the
sum of CBA−C−B−A+ 2 independent chi-square variables each with 1 df.

As in the case of two-way layouts, we can express the above chi-square in
matrix notation. We first arrange a three-way table into a two-way format by
factorially combining two of the three variables. Suppose that variables B and C
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Table 1 A three-way
contingency table arranged in
two-way format

A1 A2 Total

C1 B1 79 177 256
B2 62 121 183

C2 B1 73 81 154
B2 168 75 243

Total 382 454 836

are combined to form row categories. (Which two variables we choose to combine
makes no difference for our immediate purpose. Note, however, that this will have
a rather grave impact on the decompositions of Pearson’s chi-square statistic that
follow.) We may then take categories of A as columns. Suppose further that the
row categories are ordered in such a way that the index for B categories moves
fastest. (See Table 1 below for an example.) Let F denote the two-way table
thus constructed. Let K = DC ⊗ DB, where DC and DB are diagonal matrices
with marginal frequencies of categories of variables C and B, and ⊗ indicates a
Kronecker product. Let L = DA denote the diagonal matrix of column totals of F,
and define

G = NK−1(F−K1CB1′AL/N2)L−1. (9)

Then

χ2
CBA−C−B−A+2 = tr(G′KGL) = SS(G)K,L. (10)

Consider, as an example, the three-way contingency table given in Table 1.
This is a 2 by 2 by 2 table arranged in a 4 by 2 two-way format according to
the prescription given above. This is a famous data set used by Snedecor (1958)
to illustrate the differences in the notion of the three-way interaction effect in
a three-way contingency table given by several prominent statisticians, including
Bartlett (1935), Mood (1950), and Lancaster (1951). According to Cheng et al.
(2006), however, all of them made crucial mistakes in conceptualizing the three-
way interaction effect. We are going to use this same data set to demonstrate our
proposed decompositions of Pearson’s chi-square statistic (Sect. 3) and compare
them with those of the log LR statistic (Sect. 4). For the moment, however, we are
satisfied with only calculating χ2

4 for this data set using the formula given in (8) or
(10). This value turns out to be 131.99.

The χ2
4 for this table reflects the joint effects of four sources, the A by B, A

by C, B by C, and A by B by C interaction effects with the main effects of the
three variables A, B, and C being eliminated by their marginal probabilities. Thus,
χ2

4 may also be written as χ2(AB, AC, BC, ABC). Note, however, that these four
effects are usually not mutually orthogonal due to unequal marginal frequencies,
and consequently their joint effects cannot be obtained by their sum. In this paper,
we develop systematic ways of orthogonalizing these effects to make them additive.
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3 The Proposed Decompositions

In order to derive proper decompositions of Pearson’s chi-square statistic for a three-
way contingency table, its reduction to a two-way table seems essential. Table 1
shows one way of reduction. There are two other ways of reducing a three-way table
into two, depending on which two of the three variables are combined to create
a new variable. In Table 1, B and C were combined, but A and B, and A and C
could likewise be combined. Generally, different decompositions result, depending
on which reduction method is employed. In this section we start with the reduction
method used in Table 1 and then expand our view to other situations.

If we look at Table 1 as purely a two-way table, we notice that the total
association in this table excludes certain effects in the chi-square statistic for the
original three-way table. The independence model for Table 1 implies that the
expected cell frequency is estimated by N p̂cb p̂a, where p̂ba is the estimate of the
joint marginal probability of category c of variable C and category b of variable B.
Following (5), Pearson’s chi-square statistic representing the association between
the rows and columns of Table 1 is given by

χ2
(CB−1)(A−1) =

CB

∑
cb=1

A

∑
a=1

(
fbca −N p̂cb p̂a√

N p̂cb p̂a

)2

. (11)

This is obviously different from (8), which further assumes p̂cb = p̂c p̂b.
How can we account for the difference? As noted toward the end of the

previous section, χ2
CBA−C−B−A+2 reflects the joint effects of the AB, AC, BC,

and ABC interactions, and thus it may be written as χ2(AB, AC, BC, ABC). The
χ2
(CB−1)(A−1), on the other hand, reflects the joint effects of the AB, AC, and

ABC interactions (i.e., χ2
(CB−1)(A−1) = χ2(AB, AC, ABC)) with the BC interaction

effect excluded as the marginal effect of the rows of the table. The difference then
must be due to the BC interaction effect. More specifically, we call this effect the
BC interaction eliminating the joint effects of the AB, AC, and ABC interactions
because it represents the portion of the AB, AC, BC, ABC effects left unaccounted
for by AB, AC, ABC. This effect is denoted by BC|AB, AC, ABC, where the
variables listed on the right of “|” indicate those eliminated from the effect listed
on the left. The size of this effect is found by the difference between the two chi-
squares, i.e.,

χ2(BC|AB, AC, ABC) = χ2(AB, AC, BC, ABC)− χ2(AB, AC, ABC). (12)

An equivalent way of looking at the above equation is that AB, AC, BC, ABC is
decomposed into the sum of the effects of AB, AC, ABC and BC|AB, AC, ABC,
that is,

χ2(AB, AC, BC, ABC) = χ2(AB, AC, ABC)+ χ2(AB|AC, BC, ABC). (13)

For Table 1, we find χ2
3 (AB, AC, ABC) = 86.99, so that χ2

1 (BC|AB, AC, ABC) =
131.99− 86.99= 45.00.
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If χ2(BC|AB, AC, ABC) has more than 1 df, it may be further decomposed
into the sum of the effects each with 1 df. In the present case, it has only 1 df,
so that no further decompositions are applicable. The χ2(AB, AC, ABC), on the
other hand, has 3 df, which invites further decompositions. There are a number of
(in fact, infinitely many) possible decompositions. For example, we may use the
Helmert type of contrasts, as before, to decompose this chi-square. However, then
each component χ2 may be empirically less meaningful. We therefore focus on
the decompositions that reflect the factorial structure among the rows of Table 1.
This means that we are decomposing χ2(AB, AC, ABC) into separate effects of
AB, AC, and ABC interactions. The problem is that these effects are usually
not orthogonal to each other, and consequently must be orthogonalized to derive
additive decompositions of the chi-square. As has been alluded to earlier, the
order in which they are taken into account will have a crucial effect in this
orthogonalization process. There are six possible ways of ordering three effects. We
may, however, cut down this number by considering only those orderings in which
lower-order interactions are always considered prior to higher-order interactions.
We are then left with only two possibilities. One is in which AB is considered first,
then AC, and then ABC, and the other is in which AC is considered first, then AB,
and then ABC.

When we add a new effect, we only add its unique effect. For example, when
we add AC in the first situation described above, we add only the portion of the AC
not already explained by AB. This effect, called AC eliminating AB, is orthogonal
to AB, and is denoted as AC|AB. The effect of AB considered first, on the other
hand, ignores all other effects (AC and ABC), and is simply written as AB. The
ABC effect considered last eliminates both AB and AC, and is written as ABC|AB,
AC. In general, the effect taken into account first ignores all other effects, the effect
considered last eliminates all other effects, and the effect taken into account in-
between eliminates all the effects considered earlier, but ignores all the effects
considered later. How to calculate the chi-square for these effects will be described
shortly.

The two possible orderings of AB, AC, and ABC suggested above give rise to two
orthogonal decompositions of the joint effects of AB, AC, and ABC. Symbolically,
this is written as

χ2(AB, AC, ABC) = χ2(AB)+ χ2(AC|AB)+ χ2(ABC|AB, AC) (14)

= χ2(AC)+ χ2(AB|AC)+ χ2(ABC|AB, AC). (15)

Combining (13) and (14), we obtain the first decomposition of AB, AC, BC, ABC.

Decomposition (i):

χ2(AB, AC, BC, ABC) = χ2(AB)

+ χ2(AC|AB)+ χ2(ABC|AB, AC)+ χ2(BC|AB, AC, ABC). (16)
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Combining (13) and (15), we obtain the second decomposition of AB, AC, BC,
ABC.

Decomposition (ii):

χ2(AB, AC, BC, ABC) = χ2(AC)

+ χ2(AB|AC)+ χ2(ABC|AB, AC)+ χ2(BC|AB, AC, ABC). (17)

The χ2(AB), χ2(AC|AB), and χ2(ABC|AB, AC) are calculated as follows. We
first set up contrast vectors,

t1 =

⎛
⎜⎜⎝

1
−1

1
−1

⎞
⎟⎟⎠, t2 =

⎛
⎜⎜⎝

1
1

−1
−1

⎞
⎟⎟⎠, and t3 =

⎛
⎜⎜⎝

1
−1
−1

1

⎞
⎟⎟⎠. (18)

The t1 represents the main effect of B among the rows of Table 1. When it is used
as a linear constraint on the rows, it captures the portion of the association between
the rows and columns that can be explained by the main effect of B, which is called
the AB interaction effect. Similarly, t2 captures the AC interaction effect, and t3

captures the ABC interaction effect. Note that these contrast vectors assume that
there are only two categories in all three variables. We will need more than one
contrast to represent each of these effects if there are more than two levels in some
of the variables. For example, if B = 3, t1 will be a matrix like

t1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1
−1 1

0 −2
1 1

−1 1
0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

Note also that if we want to decompose the effects of AB, AC, ABC differently, for
example, if AB, AC, ABC is decomposed into AB within C1, AB within C2, and
AC, t1, t2, and t3 would be:

t1 =

⎛
⎜⎜⎝

1
−1

0
0

⎞
⎟⎟⎠, t2 =

⎛
⎜⎜⎝

0
0
1

−1

⎞
⎟⎟⎠, and t3 =

⎛
⎜⎜⎝

1
1

−1
−1

⎞
⎟⎟⎠. (20)

The following computations use t1, t2, and t3 defined in (18). The χ2 due to
the AB interaction ignoring all other effects (AC and ABC) is calculated by first
defining
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H =
√

NPQ1/Kt1 K−1FL−1, (21)

where
PQ1/Kt1/K = Q1/Kt1(t′1Q′

1/KKt1)
−1t′1Q′

1/KK (22)

is the projector onto Sp(Q1/Kt1) (the space spanned by Q1/Kt1) along
Ker(t′1Q′

1/KK) (the space spanned by all vectors y such that y′Q1/Kt1 = 0). Recall
that N is the total sample size, K and L are diagonal matrices of row and column
totals of F, respectively, and Q1/K = I−11′K/N, where 1 is the CB-element vector
of ones. Note that Q′

1/KK = Q′
1/KKQ1/K. We then calculate

χ2(H) = SS(H)K,L. (23)

This value turns out to be 24.10(1) for the data in Table 1 (the value in parentheses
indicates the df). The χ2(H) is equal to the chi-square representing the total
association in the marginal two-way table obtained by collapsing the three-way table
across the levels of C.

The χ2(AC|AB) (the AC interaction eliminating AB, but ignoring ABC) is
calculated as follows: Let T1 = [1, t1], and define QT1/K similarly to Q1/K above,
that is,

QT1/K = I−T1(T′
1KT1)

−1T′
1K. (24)

Then, define

PQT1/K t2/K = QT1/Kt2(t
′
2Q′

T1/KKt2)
−1t′2Q′

T1/KK, (25)

and
E =

√
NPQT1/K t2/KK−1FL−1. (26)

Again, note that Q′
T1/KK = Q′

T1/KKQT1/K , and that PQT1/K t2/K is the projector onto

Sp(QT1/Kt2) along Ker(t′2Q′
T1/KK). Finally,

χ2(E) = SS(E)K,L. (27)

This value is found to be 55.83(1) for the data in Table 1. (There are other ways to
calculate this quantity. See (37) and (38) in Takane and Jung 2009b.)

The χ2(ABC|AB, AC) (the ABC interaction eliminating both AB and
AC) is calculated as follows: First let T12 = [1, t1, t2], and define QT12/K =

I−T12(T′
12KT12)

−1T′
12K. Then, define

PQT12/K t3/K = QT12/Kt3(t′3Q′
T12/KKt3)

−1t′3Q′
T12/KK, (28)

and
J =

√
NPQT12/K t3/KK−1FL−1. (29)
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Note that Q′
T12/KK = Q′

T12/KKQT12/K , and that PQT12/K t3/K is the projector onto

Sp(QT12/Kt3) along Ker(t′3Q′
T12/KK). Finally,

χ2(J) = SS(J)K,L. (30)

This value turns out to be 7.06(1) for the data in Table 1. Takane and Jung (2009b)
showed that J above can also be calculated by

J =
√

NK−1t3(t′3K−1t3)
−1t′3K−1FL−1, (31)

which is somewhat simpler.
It can be easily verified that 24.10(1), 55.83(1), and 7.06(1) add up to 86.99(3)

calculated previously. The χ2(AC) and χ2(AB|AC) can be calculated similarly to
the above. It turns out that the former is 68.66(1), and the latter is 11.27(1). These
and 7.06(1) for the ABC interaction again add up to 86.99(3). So there are indeed
two alternative decompositions of χ2(AB, AC, ABC) depending on whether AB
or AC is taken into account first. Corresponding to the two decompositions of AB,
AC, ABC, there are two decompositions of χ2(AB, AC, BC, ABC), as stated in
(16) and (17).

As remarked earlier, there are two other possible arrangements of a three-way
table into two. In Table 1, variables B and C were combined to form rows of the
table. We may have also combined A and B, or A and C. In either case, the remaining
variable constitutes the columns. Each of these two cases gives rise to two different
decompositions of AB, AC, BC, ABC analogous to those given in (16) and (17).

Let us start with the case in which A and B are combined. In this case, (13) will
become:

χ2(AB, AC, BC, ABC) = χ2(AC, BC, ABC)+ χ2(AB|AC, BC, ABC), (32)

and (14) and (15) become

χ2(AC, BC, ABC) = χ2(AC)+ χ2(BC|AC)+ χ2(ABC|AC, BC) (33)

= χ2(BC)+ χ2(AC|BC)+ χ2(ABC|AC, BC). (34)

The terms in these decompositions can be calculated similarly to the above. We
find χ2(AC, BC, ABC) = 93.73(3) (the df in parentheses), so that χ2(AB|AC,
BC,ABC) = 38.26(1) = 131.99(4)− 93.73(3)= χ2(AB, AC, BC, ABC)− χ2(AC,
BC, ABC). We also find χ2(AC) = 68.66(1) (this is the same χ2(AC) calculated
previously), χ2(BC|AC) = 18.44, and χ2(ABC|AC, BC) = 6.63, so that 68.66(1)
+ 18.44(1) + 6.63(1) = 93.77(3) = χ2(AC, BC, ABC), verifying (33). We also
find χ2(BC) = 31.80(1), and χ2(AC|BC) = 55.30(1), so that 31.80(1) + 55.30(1)
+ 6.63(1) = 93.77(3), verifying (34). Combining (32) with (33) and (34), we,
respectively, obtain
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Decomposition (iii):

χ2(AB, AC, BC, ABC) = χ2(AC)

+ χ2(BC|AC)+ χ2(ABC|AC, BC)+ χ2(AB|AC, BC, ABC)), (35)

and Decomposition (iv):

χ2(AB, AC, BC, ABC) = χ2(BC)

+ χ2(AC|BC)+ χ2(ABC|AC, BC)+ χ2(AB|AC, BC, ABC). (36)

Similarly, when A and C are combined, we obtain

χ2(AB, AC, BC, ABC) = χ2(AB, BC, ABC)+ χ2(AC|AB, BC, ABC), (37)

and

χ2(AB, BC, ABC) = χ2(AB)+ χ2(BC|AB)+ χ2(ABC|AB, BC) (38)

= χ2(BC)+ χ2(AB|BC)+ χ2(ABC|AB, BC). (39)

For the illustrative data we have been using, we find χ2(AB, BC, ABC) =
49.96(3), so that χ2(AC|AB, BC, ABC) = 82.03(1) = 131.99(4)− 49.96(3) =
χ2(AB, AC, BC, ABC)− χ2(AB, BC, ABC). We also find χ2(AB) = 24.10(1)
(this is the same χ2(AB) calculated previously), χ2(BC|AB) = 19.18(1), and
χ2(ABC|AB, BC) = 6.35(1), so that 24.10(1) + 19.51(1) + 6.35(1) = 49.96(3)
= χ2(AB, BC, ABC), verifying (38). We also find χ2(BC) = 31.80(1) (this is the
same χ2(BC) calculated before), and χ2(AB|BC) = 1181(1), so that 31.80(1) +
11.81(1) + 6.35(1) = 49.96(3), verifying (39). Combining (37) with (38) and (39),
we obtain the fifth and sixth decompositions of χ2(AB, AC, BC, ABC).

Decomposition (v):

χ2(AB, AC, BC, ABC) = χ2(AB)

+ χ2(BC|AB)+ χ2(ABC|AB, BC)+ χ2(AC|AB, BC, ABC), (40)

and Decomposition (vi):

χ2(AB, AC, BC, ABC) = χ2(BC)

+ χ2(AB|BC)+ χ2(ABC|AB, BC)+ χ2(AC|AB, BC, ABC). (41)

Altogether we obtain (at least) six fundamental decompositions of Pearson’s
chi-square statistic for a three-way contingency table. Lancaster (1951) defined
χ2(ABC|AB, AC, BC) by
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χ2(ABC|AB, AC, BC)

= χ2(AB, AC, BC, ABC)− χ2(AB)− χ2(AC)− χ2(BC). (42)

Then, χ2(ABC|AB, AC, BC) is unique. However, as has been noted earlier,
χ2(AB), χ2(AC), and χ2(BC) are usually not independent from each other, and
consequently, χ2(ABC|AB, AC, BC) may not follow an asymptotic chi-square
distribution (Placket 1962).

4 Analogous Decompositions of the Log LR Statistic

In this section, we discuss decompositions of the log LR chi-square statistic
analogous to Decompositions (i) through (vi). The log LR statistic for a three-way
contingency table is defined as

LRCBA−C−B−A+2 =−2
C

∑
c=1

B

∑
b=1

A

∑
a=1

fcba log
fcba

p̂c p̂b p̂a
. (43)

This statistic, like Pearson’s chi-square statistic, represents the departure from the
three-way independence model and reflects the joint effects of AB, AC, BC, and
ABC (i.e., AB, AC, BC, ABC). Similarly to the case of Pearson’s chi-square
statistic, these four effects are not mutually independent, and consequently their
joint effects cannot be obtained by their sum. We find the effect of AB, AC, BC,
ABC to be 120.59 for the data given in Table 1, using the above formula.

In this section, we first take a heuristic approach to get an intuitive idea about
proper decompositions. We then present a theory due to Cheng et al. (2006) to back
up our intuition. Our heuristic approach begins with analyzing the data in Table 1
by log linear models. In log linear analysis, no reduction of a three-way table into
a two-way format is necessary in contrast to Pearson’s statistic. The three variables
are treated completely symmetrically.

We first ran the “Hiloglinear” procedure in SPSS. We obtained the three-
way interaction effect of LR(ABC|AB, AC, BC) = 6.82(1). We also obtained the
joint effects of three two-way interactions of LR(AB, AC, BC) = 113.77(3). The
three individual two-way interaction effects (these were the two-way interactions
eliminating all other two-way interactions) were found to be LR(AB|AC, BC) =
12.22(1), LR(AC|AB, BC) = 57.54(1), and LR(BC|AB, AC) = 20.00(1). These
effects do not add up to LR(AB, AC, BC), as 12.22+ 57.54+ 20.00 = 89.76 �=
113.77. Note that in log linear analysis, only the independence or conditional
independence models can be fitted non-iteratively, which implies that none of the
above quantities can be calculated in closed form.

In order to find proper constituents of the joint two-way interaction effects,
we had to run another log linear analysis procedure in SPSS called “Loglinear,”
which provided individual two-way interaction effects ignoring the other two-way
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interaction effects. They were found to be LR(AB)= 24.23(1), LR(AC) = 69.54(1),
and LR(BC) = 32.04(1). These quantities can be calculated in closed form. They do
not add up to LR(AB, AC, BC), either, as 24.23+69.54+32.02= 125.79 �= 113.77.
However, we find

LR(AB)+LR(AC)+LR(BC|AB, AC)

= 24.23+ 69.54+20.00= 113.77 = LR(AB, AC, BC), (44)

LR(AC)+LR(BC)+LR(AB|AC, BC)

= 69.54+ 32.02+12.22= 113.77 = LR(AB, AC, BC), (45)

and

LR(AB)+LR(BC)+LR(AC|AB, BC)

= 32.02+ 24.23+57.54= 113.77 = LR(AB, AC, BC). (46)

That is, we cannot add the three two-way interactions all ignoring the other two
to obtain their joint effects. One of the three must be the two-way interaction
eliminating the other two.

Adding one more term, LR(ABC|AB, AC, BC) = 6.82, to the above identities,
we obtain three alternative decompositions of

LR(AB, AC, BC, ABC)

= LR(AB, AC, BC)+LR(ABC|AB, AC, BC) = 113.77+ 6.82= 120.59, (47)

namely, Decomposition (a):

LR(AB, AC, BC, ABC)

= LR(AB)+LR(AC)+LR(BC|AB, AC)+LR(ABC|AB, AC, BC), (48)

Decomposition (b):

LR(AB, AC, BC, ABC)

= LR(AC)+LR(BC)+LR(AB|AC, BC)+LR(ABC|AB, AC, BC), (49)

and Decomposition (c):

LR(AB, AC, BC, ABC)

= LR(AB)+LR(BC)+LR(AC|AB, BC)+LR(ABC|AB, AC, BC). (50)

It is obvious that Decomposition (a) “corresponds” with Decompositions (i) and (ii),
(b) with (iii) and (iv), and (c) with (v) and (vi) for Pearson’s chi-square statistic.

These three decompositions are consistent with Cheng et al.’s (2006) decom-
positions derived rigorously through information identities. Cheng et al. however,
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arrived at these decompositions via a somewhat different route. They first derived
the sum of the last two terms in each of the above three decompositions. For ex-
ample, they first obtained LR∗(BC|A)≡ LR(BC|AB, AC)+LR(ABC|AB, AC, BC)
for Decomposition (a). This quantity can be calculated in closed form using the
information identities, whereas neither of the two terms on the right-hand side can.
Cheng et al. (2006) called the quantity on the left-hand side, i.e., LR∗(BC|A), the
conditional dependence between B and C across levels of A (or the simple two-
way interaction between B and C across levels of A). They then split this into
two additive terms on the right-hand side, LR(BC|AB, AC) (LR(BC||A) in their
notation) and LR(ABC|AB, AC, BC), by way of log linear analysis. The first term
was interpreted as the uniform part, and the second as the nonuniform part, of the
conditional dependence between B and C across levels of A (or equivalently, the
homogeneous and heterogenous aspects of the simple two-way interactions between
B and C across levels of A). In our framework, the former is interpreted as the BC
interaction eliminating the effects of AB and AC. It is interesting to find that this
effect is equivalent to the uniform part of the simple two-way interactions. The latter
is nothing but the three-way interaction among A, B, and C eliminating the joint
effects of AB, AC, and BC. Similar remarks can be made for Decompositions (b)
and (c).

5 Discussion

As has been observed in the previous section, the order in which two two-way
interactions ignoring the other two are accounted for makes no difference in the
log LR statistic, while it does in Pearson’s chi-square statistic. In fact, we have

LR(AB) = LR(AB|AC) = LR(AB|BC) �= LR(AB|AC, BC), (51)

LR(AC) = LR(AC|AB) = LR(AC|BC) �= LR(AC|AB, BC), (52)

and

LR(BC) = LR(BC|AB) = LR(BC|AC) �= LR(BC|AB, AC), (53)

while the four versions of the AB interaction effects for Pearson’s chi-square,
χ2(AB), χ2(AB|AC), χ2(AB|BC), and χ2(AB|AC, BC, ABC), are all distinct, and
so are the four versions of AC and BC. Also, there is a single unique three-way inter-
action in the decompositions of the log LR statistic (LR(ABC|AB, AC, BC)), while
there are three distinct versions of the three-way interaction effect for Pearson’s
chi-square, (χ2(ABC|AB, AC), χ2(ABC|AB, BC), and χ2(ABC|AC, BC)). These
differences stem from the fact that there is no way to evaluate χ2(AB, AC, BC)
in the latter, which in turn is more fundamentally caused by the fact that a
three-way table must always be reduced to a two-way table to obtain the decom-
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positions of Pearson’s statistic. This prevents us from obtaining quantities such as
χ2(AB|AC, BC), χ2(AC|AB, BC), χ2(BC|AB, AC), and χ2(ABC|AB, AC, BC).

Having fewer distinct terms in the decompositions of the log LR statistic may be
a point in its favor over Pearson’s statistic. However, there are still three alternative
decompositions for the former. A choice among them may not be straightforward.
This is particularly so because log linear analysis treats all variables symmetrically,
yet the resultant decompositions are not symmetric.

The fact that Pearson’s chi-square statistic has six alternative decompositions
is surely a bit unwieldy. However, if one layout of a three-way table into a two-
way format is in some sense more natural than the other two, this number is
reduced to two, which differ from each other only in a minor way. Such is the
case when analysis of contingency tables is conducted in predictive settings, and
yet a symmetric measure of association such as Pearson’s statistic is in order. In
CCA, for example, one of the variables is typically taken as the criterion variable,
while the others are used as predictor variables. There are also other considerations
to be taken into account. Pearson’s chi-square statistic is known to approach a chi-
square distribution more quickly than the log LR statistic. It is also the case that all
the terms in the decompositions of Pearson’s chi-square can be calculated in closed
form, whereas some of the terms in the log LR statistic must be obtained iteratively.

It may also be pointed out that there seems to be a “cultural” difference between
log linear analysis (based on the log LR statistic) and CA (based on Pearson’s
statistic). The former tends to focus on residual effects (eliminating effects). If we fit
the AB interaction effect, for example, we get the deviation chi-square of this model
from the saturated model. It represents the effects of all variables not included in
the model eliminating AB. To obtain the effect of AB ignoring all other variables
we have to subtract this value from the independence chi-square representing the
deviation of the independence model from the saturated model. To obtain the AB
interaction effect eliminating some other effects, we have to fit the model with these
“some other effects” only, and the model with the additional effect of AB, and take
the difference in chi-square values between the two models. In CA, on the other
hand, the chi-square value due to AB ignoring other effects is obtained directly by
the difference between the fitted model and the independence model. We need an
extra step to obtain a residual effect representing the effect of a variable not included
in the fitted model, which amounts to taking the difference in chi-square between the
saturated model (which is equal to Pearson’s chi-square for the total association) and
the fitted model. A notable exception is van der Heijden and Meijerink (1989), who
attempted to analyze residual effects in constrained CA. In the present authors’ view,
both analyses (analyses of the fitted models and the residual effects) are equally
important, as has been emphasized by Takane and Jung (2009a).

Cheng et al. (2007) attempt to extend their approach to higher-order designs,
thereby generalizing their decompositions of the log LR statistic. Presumably,
similar things could be done for Pearson’s chi-square statistic.
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Visualizing Uncertainty of Estimated Response
Functions in Nonparametric Item Response
Theory

L. Andries van der Ark

1 Introduction

Nonparametric item response theory (IRT) models are flexible models for ordinal
measurement (for an overview, see, e.g., Sijtsma and Molenaar 2002). An important
part of nonparametric IRT analysis, often referred to as Mokken scale analysis,
consists of investigating model fit using the following rationale. A nonparametric
IRT model implies certain observable properties. Each observable property is
investigated in the test data. Not observing the property in the test data indicates
that the model does not fit the data, whereas observing the property indicates
that the model may fit the data. The observable properties can be investigated
by means of specialized software packages such as MSP (Molenaar and Sijtsma
2000) and the R-package mokken (Van der Ark 2007, 2012). These software
packages can graphically display the results from Mokken scale analysis to facilitate
interpretation. However, the uncertainty of the results is not taken into account. As a
result, a graph based on a very small sample, N = 20 say, may look exactly the same
as a graph based on a large sample, N = 10,000 say. For small samples, interpreting
the graphs may yield misleading results. In this paper we focus on visualizing the
uncertainty in estimated response functions (RFs).

Suppose a test consists of J items, and each item has m + 1 ordered answer
categories, which are scored 0,1, . . . ,m. Let X1, . . . ,XJ denote the item-score
variables. Let X+ = ∑h Xh , let R( j) = X+ − Xj, and let R(i j) = X+ −Xi − Xj. X+

is called the test score; R( j) and R(i j) are called rest scores. Suppose that a latent
variableΘ explains the associations between the item scores. Let θ be a realization
of Θ .
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Pr(Xj ≥ x|θ ) (x = 1, . . . ,m) are called the item-step RFs of item j; E(Xj|θ )
is called the item RFs of item j. Both RFs are functions of θ . Note that for
dichotomous items (i.e., m = 1), the item-step RF and the item RF are equivalent.
Most assumptions of nonparametric IRT models pertain to RFs: For example, the
monotone homogeneity model for dichotomous items (Mokken 1971) includes the
assumption that the item RFs are nondecreasing in θ ; the double monotonicity
model for polytomous items (Molenaar 1997) includes the assumption that item-
step RFs do not intersect (Sijtsma and Molenaar 2002).

For checking such assumptions, it is convenient to plot estimated RFs. To
visualize the uncertainty, we propose plotting Wald confidence intervals around the
estimated RFs. First, we briefly discuss the RFs in Mokken scale analysis. Second,
we derive asymptotic standard errors (ASEs) for the RFs and the corresponding
Wald confidence intervals. The approach taken here is similar to the approach for
deriving ASEs for the scalability coefficients in Mokken scale analysis (Kuijpers
et al. 2013). Third, we show how plotting confidence envelopes based on Wald 95 %
confidence intervals around the estimated RFs helps interpreting the plot.

2 Plotting Estimated Response Functions

We discuss three assumptions of nonparametric IRT models that involve RFs. These
assumptions can be investigated by inspecting plots of estimated RFs. We use the
responses of 433 students to the 10 items of the Achievement scale of the Adjective
Checklist (Gough and Heilbrun 1980) to provide examples of plotted RFs. Each
item has five ordered answer categories (m = 4). The data and more details on the
data are available from the R packagemokken. The appendix contains the computer
code for producing the graphs.

2.1 Monotonicity

Monotonicity is the assumption that the item-step RFs are nondecreasing in θ (e.g.,
Junker and Sijtsma 2000):

Pr(Xj ≥ x|θ ) nondecreasing in θ for j = 1, . . . ,J;x = 1, . . . ,m. (1)

Alternatively, monotonicity can be defined in terms of the item RF:

E(Xj|θ ) nondecreasing in θ for j = 1, . . . ,J. (2)

For dichotomous items, Eqs. (1) and (2) are equivalent; for polytomous items (m >
1), Eq. (1) implies Eqs. (2). Monotonicity is assumed by all well-known IRT models.
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Monotonicity can be investigated by an observable property called manifest
monotonicity (Junker 1993), where Θ in Eqs. (1) and (2) is replaced by rest-
score R( j). Junker (1993) showed that for dichotomous items, monotonicity implies
manifest monotonicity. For polytomous items, monotonicity defined in terms of
Eq. (1) does not imply manifest monotonicity, although violations are rare (Junker
and Sijtsma 2000). However, using the same logic as Junker (1993), it can be
shown that for polytomous items, monotonicity defined in terms of Eq. (2) implies
manifest monotonicity. Because some values of R( j) may be empty or very sparse,
estimates of Pr(Xj ≥ x|R( j) = r) may become very unstable, and it is recommended
to combine adjacent rest scores until the sample size of a rest-score group is large
enough (Molenaar and Sijtsma 2000). Combining rest-score groups does not affect
the relationship between monotonicity and manifest monotonicity. Let R∗

( j) denote
the rest score with possibly some adjacent scores combined with realization r∗, then
the estimate of the item-step RF (Eq. (1)) is

P(Xj ≥ x|r∗( j)), (3)

and the estimate of the item RF (Eq. (2)) is

X j|r∗( j). (4)

As an example, Fig. 1 shows a plot of P(X1 ≥ x|r∗(1)) for x = 1, . . . ,4 (top left), and

a plot of X1|r∗(1) (top right). Note that the Jm+ 1 = 37 possible rest scores have
been clustered into four rest-score groups: {0, . . . ,18}, {19,20,21}, {22,23,24},
and {25, . . . ,36}. There is a slight decrease between P(X1 ≥ 2|R( j) ∈ {19,20,21}),
and P(X1 ≥ 2|R( j) ∈ {22,23,24}), indicating a violation of monotonicity. However,
it is unknown whether this is a relevant decrease.

2.2 Invariant Item Ordering

Invariant item ordering (IIO) (Sijtsma and Hemker 1998) is the assumption that the
item RFs are non-intersecting. Let the items be ordered and numbered accordingly
such that E(X1)≤ E(X2)≤ ·· · ≤ E(XJ), then an IIO means that

E(X1|θ )≤ E(X2|θ )≤ ·· · ≤ E(XJ|θ ) for all θ . (5)

Except for the Rasch model (Rasch 1960) and double monotonicity model for
dichotomous items (Mokken 1971), IIO is typically not included in the set of IRT
model assumptions and has to be investigated separately.

IIO can be investigated by an observable property called manifest IIO (Ligtvoet
et al. 2010). In manifest IIO, Θ in Eq. (5) is replaced by a manifest variable
independent from the item scores. Ligtvoet et al. (2010) suggested to make a
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Fig. 1 Plots of item-step RFs for monotonicity (a), item RF for monotonicity (b), item RF for IIO
(c), and item-step RFs for non-intersection (d)

pairwise comparison of item RFs on non-intersection, and for the comparison of
item i and item j, replaceΘ by R∗

(i j). The asterisk indicates that adjacent rest groups
may be joined. Hence the estimated RF is

X j|r∗(i j) (6)

As an example, Fig. 1 shows the plot of X1|r∗(1,2) and X2|r∗(1,2) (bottom left). The
two estimated RFs are intersecting and almost overlapping, hence is no indication
of an IIO.

2.3 Non-intersection of Item-Step Response Functions

The double monotonicity model includes the assumption of non-intersecting item-
step RFs. Let θ ∗ be a value of Θ . Non-intersection of item-step RFs implies that if
Pr(Xi ≥ x|θ ∗)≤ Pr(Xj ≥ y|θ ∗) for Θ = θ ∗, then
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Pr(Xi ≥ x|θ )≤ Pr(Xj ≥ y|θ ) for all θ and for all i �= j,x,y. (7)

Three methods have been proposed to investigate non-intersection of item-step RFs.
For one of these methods, method rest score, estimated RFs can be plotted. These
estimated RFs take Eq. (7) as a starting point and replace θ by r∗(i j). Hence the
estimated RF is

Pr(Xj ≥ x|r∗(i j)). (8)

If the double monotonicity model holds, then the estimated RFs in Eq. (8) are non-
intersecting (Sijtsma and Molenaar 2002). For each item pair, the estimated RFs
are plotted for visual inspection. As an example, Fig. 1 (bottom left) shows the plot
of P(X1 ≥ x|r∗(1,2)) and P(X2 ≥ x|r∗(1,2)) for x = 1,2,3,4. The estimated RFs are
intersecting, which indicates that the double monotonicity model does not hold.

3 Standard Errors of Estimated Response Functions

Let G be a general indicator for the grouping variable, with realization g. Each
respondent belongs to one group and one group only, so the groups are independent
samples. The estimated RFs can be classified into two types: Conditional means
(Eqs. (4) and (6)) are denoted by X j|g and conditional cumulative proportions
(Eqs. (3) and (8)) are denoted by P(Xj ≥ x|g). For both types, ASEs must be derived.

For conditional means, the ASEs have the well-known form

ase(X j|g) = S(Xj|g)/
√

N,

where S(Xj|g) is the standard deviation of Xj|g.
To compute the ASEs for conditional cumulative proportions, we use a two-

step method that takes into account possible dependencies between cumulative
proportions pertaining to the same item. The first step is to write the RFs as a
function of the observed item-score proportions. Let p = [P(Xj = 0|g), . . . ,P(Xj =
m|g)] be the vector of observed item-score proportions in group g for item j;
let p∗ = [P(Xj ≥ 1|g), . . . ,P(Xj ≥ m|g)] be the vector of observed cumulative
proportions; and let Um be an m × (m + 1) matrix: an (m + 1)× (m + 1) upper
triangular matrix of ones with the first row deleted. For example,

U2 =

[
0 1 1
0 0 1

]
.

Cumulative proportions P(Xj ≥ x|g) (x = 1,2, . . . ,m) are a linear function of
proportions P(Xj = x|g) x = 0,1, . . . ,m:

p∗ = Um ·p.
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The second step is to use the delta method to obtain the ASEs for the cumulative
proportions. Let Vp and Vp∗ be the asymptotic variance–covariance matrix of p and
p∗, respectively; and let D(p) be a diagonal matrix with the elements of vector p on
the diagonal. If p follows a multinomial distribution, then

Vp =
1
N
∗ (D(p)−p ·pT)

(e.g., Agresti 2007, p. 6). Now if, F = F(p) is the Jacobian, the matrix of first partial
derivatives of p∗ to p, then according to the delta method (e.g., Casella and Berger
2002)

Vp∗ = FVpFT. (9)

Because p∗ is a linear function of p, the Jacobian simply equals Um. Let vxy the
element at the xth row and yth column of Vp∗ . Elaborating Eq. (9) using standard
algebra yields

vxy =
1
N
[P(Xj ≥ x|g)−P(Xj ≥ x|g)P(Xj ≥ y|g)]

for x ≥ y, and

vxy =
1
N
[P(Xj ≥ y|g)−P(Xj ≥ x|g)P(Xj ≥ y|g)]

for x < y. Taking the square root of the diagonal of Vp∗ produces the required ASEs
of p∗:

ase[P(Xj ≥ x|g)] =
√

P(Xj ≥ x|g)−P2(Xj ≥ x|g)/√N.

4 Graphic Display of Wald Confidence Intervals

Let f (p) be the element of interest of an estimated RF and let z1−α/2 be the (1−
α/2) ∗ 100 percentile of the standard normal distribution, then the bounds of the
(1−α)∗ 100% Wald confidence interval are

f (p)± z1−α/2 ∗ ase[ f (p)].

Figure 2 shows the estimated RFs from Fig. 1 with the Wald 95 % confidence
intervals plotted as confidence envelopes around the estimated RFs. The appendix
shows the computer code in R for these figures. Visual inspection of Fig. 2 (top
left) indicates that the slight decrease in P(Xj ≥ 2|r∗) may be due to sample
fluctuation. Visual inspection of Fig. 2 (bottom) shows that the current item scores
are inconclusive with respect to non-intersection (bottom left) and IIO (bottom
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Fig. 2 Plots of item-step RFs for monotonicity (a), item RF for monotonicity (b), item RF for IIO
(c), and item-step RFs for non-intersection (d) with confidence intervals

right) because the confidence intervals are overlapping. Note that the user can
choose different percentages for the confidence intervals, different sample-size
requirements the rest-groups, and different colors for the confidence envelopes. In
Fig. 2, the default settings (Molenaar and Sijtsma 2000) were used.

5 Discussion

The ASEs and Wald confidence intervals are available in the R package mokken
as of version 2.7.3. They allow the interpretation of the stability of the estimated
RFs in Mokken scale analysis. The confidence intervals can be visualized, and
inspecting the plots may help diagnosing violations of nonparametric IRT model.
However, four considerations should be taken into account. First, the plot depends
on the sample-size requirements for the rest-score groups. In Figs. 1 and 2, the
default settings were used, but one can also choose to plot fewer rest-score groups
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that have larger sample sizes, or more rest-score groups that have smaller sample
sizes. The first case will provide less information on the shape of the estimated
RF but with greater accuracy (smaller confidence intervals), and the latter case
will lead to more information on the shape of the estimated RF but with less
accuracy (larger confidence intervals). It is advised to check several plots, each
having different sample-size requirements for the rest-score groups (Molenaar and
Sijtsma 2000). Second, for small sample sizes, the confidence envelopes may be
so wide that all decreases in the estimated RFs or intersections of estimated RFs
can be explained by sample fluctuation. This may be interpreted either as “no
evidence against the model” or “no evidence in favor of the model.” For example,
the overlapping confidence envelopes in Fig. 2 (bottom left) may be interpreted
as in favor of IIO because it is possible to draw two non-intersecting RFs within
the limits of the confidence envelopes, or against IIO because the two confidence
envelopes are not completely separated. New standards should be provided for
dealing with these type of situations. Third, for small sample sizes, the precision
of the confidence intervals also deteriorates. Whether there should be a minimum
sample size to consider confidence intervals is a topic for future research. Fourth,
other choices of confidence are possible that may also affect the plots. Rather
than 95 % confidence intervals, other percentages may be chosen, and rather than
Wald confidence intervals inverted chi-square confidence intervals (Lang 2008) or
Agresti–Coull confidence intervals (Agresti and Coull 1998) may be used in case
of binomial proportions. Future research may show whether alternative confidence
intervals improve the plots.

Other methods for investigating non-intersection of RFs are the methods p-matrix
and rest-split (Sijtsma and Molenaar 2002). Results for Method p-matrix can also
be displayed (Van der Ark 2007) but deriving ASEs is more involved than deriving
ASEs for estimated RFs due to a more complex dependencies. Results from Method
rest-split have not yet been visualized. This is also a topic for future research.

Acknowledgments I would to thank Alberto Mayeu-Olivares and Marcel Croon for commenting
on the derivation of ASEs.

Appendix: R Code for Plotting Estimated RFs Without
and with Confidence Envelopes

# Activate ’mokken’ package
library(mokken)
# Activate ACL data
data(acl)
# Select Achievement scale
X <- acl[,11:20]
# Investigate Monotonicity, IIO, and Non-intersection
cm <- check.monotonicity(X)
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ci <- check.iio(X)
cr <- check.restscore(X)

# Plotting estimated RFs without confidence envelopes
# Figure 1 (top left)
plot(cm, items = 1, curve = "ISRF", plot.ci = FALSE,

ask = FALSE)
# Figure 1 (top right)
plot(cm, items = 1, curve = "IRF", plot.ci = FALSE,

ask = FALSE)
# Figure 1 (bottom left)
plot(ci, item.pairs = 27, plot.ci = FALSE, ask =

FALSE)
# Figure 1 (bottom right)
plot(cr, item.pairs = 1, plot.ci = FALSE, ask =

FALSE)

# Plotting estimated RFs with confidence envelopes
# Figure 2 (top left)
plot(cm, items = 1, curve = "ISRF", ask = FALSE)
# Figure 2 (top right)
plot(cm, items = 1, curve = "IRF", ask = FALSE)
# Figure 2 (bottom left)
plot(ci, item.pairs = 27, ask = FALSE)
# Figure 2 (bottom right)
plot(cr, item.pairs = 1, ask = FALSE)
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Bayesian Estimation of the Three-Parameter
Multi-Unidimensional Model

Yanyan Sheng

1 Introduction

Multidimensional item response theory (IRT) models have been found useful
for dealing with complex test situations where multiple traits are required in
producing the manifest responses to an item (Reckase 2009). Often, however, a
test involves several latent traits and each item measures exactly one of them.
The multidimensional model specific for this scenario is referred to as the so-
called multi-unidimensional IRT model (Sheng and Wikle 2007). In the literature,
this model has been called the multidimensional model with a simple structure
(McDonald 1999) or the between-items multidimensional model (Adams et al.
1997). The shorter term “multi-unidimensional” is adopted in this paper to account
for the structure that the overall test involves multiple traits, whereas each subtest
is unidimensional. Fully Bayesian estimation using Gibbs sampling (Casella and
George 1992; Geman and Geman 1984) has been developed for such models with
two item parameters (Lee 1995; Sheng 2008; Sheng and Wikle 2007). The model
directly estimates the intertrait correlation and its advantages over the two-parameter
unidimensional model have been demonstrated (Sheng 2008; Sheng and Wikle
2007). The extension of the algorithm to the three-parameter multi-unidimensional
model is straightforward.

However, previous research on the Gibbs sampler of unidimensional models
developed by Albert (1992) and Sahu (2002) indicates that with an additional
pseudo-chance-level parameter, three-parameter models are more complicated than
two-parameter models in that noninformative prior distributions for item slope
and intercept parameters create problems in the convergence of the Markov chain
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(Sheng 2010). Specifically, studies have shown that improper noninformative prior
densities for component (i.e., component of the mixture model) specific parameters
(i.e., item slope and intercept parameters in this context) result in an undefined
posterior distribution, which gives rise to unstable parameter estimates (Sheng 2008,
2010). Even with proper noninformative prior densities, the procedure either fails
to converge or requires an enormous number of iterations for the Markov chain to
reach convergence (Sheng 2010). On the other hand, priors for the non-component
(i.e., the pseudo-chance-level) parameter can be chosen in a typical fashion, as
its posterior estimates are not sensitive to informative or noninformative prior
specifications (Sheng 2008, 2010).

In view of the above, it is believed that the three-parameter multi-unidimensional
model is more complicated than its two-parameter counterpart and therefore
requires attention in specifying prior distributions for item slope and intercept
parameters. This study focuses on the prior specification of item parameters for
the model while investigating its advantages over other IRT models.

The remainder of the paper is organized as follows. The multi-unidimensional
model is briefly outlined in Sect. 2, with a description of the Gibbs sampling
procedure and prior specifications for the model parameters. Section 3 presents
a simulation study on the performance of the developed Gibbs sampler for the
three-parameter model where sample sizes and choices of the prior distributions for
item parameters are taken into consideration. In Sect. 4, another simulation study
is presented to compare the three-parameter multi-unidimensional model with two
existing IRT models. The comparison of these models is further illustrated in Sect. 5
using a real data example. Finally, a few summary remarks are provided in Sect. 6.

2 Model and the Gibbs Sampler

Multi-unidimensional models allow separate inferences to be made about a person
for each distinct dimension being measured by a test item while taking into
consideration the relationship between all latent traits measured by the overall test.
The two-parameter normal ogive (2PNO) multi-unidimensional model generalizes
the conventional 2PNO model to a multi-unidimensional structure so that each item
measures exactly one of the multiple traits the test is designed to measure. Suppose
a K-item test consists of m subtests, each containing kv dichotomous (0–1) items,
where v = 1,2, . . . ,m. Let yvi j denote the ith person’s response to the jth item in the
vth subtest, where i = 1,2, . . . ,n and j = 1,2, . . . ,kv. With a probit link, the 2PNO
multi-unidimensional model is defined as

P(yvi j = 1) =Φ(αv jθvi −βv j) =

αv jθvi−βv j∫
−∞

1√
2π

e
−t2

2 dt (1)
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(e.g., Lee 1995; Sheng and Wikle 2007), where θvi is a scalar person trait parameter
in the vth latent dimension, αv j is a positive scalar slope parameter representing
the item discrimination, and βv j is a scalar intercept parameter that is related to the
location in the vth dimension where the item provides maximum information.

Having an additional item pseudo-chance-level (or lower asymptote) parameter
γv j, the three-parameter normal ogive (3PNO) multi-unidimensional model is
defined as

P(yvi j = 1) = γv j +(1− γv j)Φ(αv jθvi −βv j),0 < γv j < 1 (2)

so that the probability of correct response is greater than zero even for those with
very low trait levels. Fully Bayesian estimation for this model is a straightforward
extension of that for the two-parameter model as detailed in Sheng (2008). To
implement the Gibbs sampler, two augmented latent variables, Z and W , are
introduced such that Zvi j ∼ N(ηvi j ,1), where ηvi j = αv jθvi − βv j, and Wvi j =
1(Wvi j = 0) if person i knows (does not know) the correct answer to item j in subtest
v, with a probability function

P(Wvi j = wvi j|ηvi j) =Φ(ηvi j)
wvi j +(1−Φ(ηvi j))

1−wvi j . (3)

If we denote each person’s latent traits as θ i = (θ1i, . . . ,θmi)
′ and specify a

multivariate normal prior distribution for them so that θ i ∼ Nm(0,P), where P is
a constrained covariance matrix (or a correlation matrix) with 1s on the diagonal. It
is noted that the proper multivariate normal prior for θvi with their location and scale
parameters specified to be 0 and 1, respectively, ensures unique scaling and hence
is essential in resolving a particular identification problem for the model (see, e.g.,
Lee 1995 for a description of the problem). Further, it follows that the off-diagonal
element of P is the correlation ρst between θsi and θti, s �= t. One may note that
when ρst = 1 for all s, t, the model reduces to the 3PNO unidimensional model,
whose probability function is defined as

P(yi j = 1) = γ j +(1− γ j)Φ(α jθi −β j), i = 1, . . . ,n, j = 1, . . . ,K. (4)

Moreover, we can introduce an unconstrained covariance matrix Σ , where Σ =
[σvv′ ]m×m, so that the constrained covariance matrix P can be readily transformed
from Σ using

ρst =
σst√
σssσtt

, s �= t. (5)

A noninformative prior can be assumed for Σ so that p(Σ ) ∝ |Σ |−m+1
2 (Lee 1995).

Hence, with prior distributions assumed for γv j and ξ v j, where ξ v j = (αv j ,βv j)
′,

the joint posterior distribution of (θ , ξ , W, Z, γ , Σ ) is

p(θ ,ξ ,W,Z,γ,Σ |y) ∝ f (y|W,γ)p(W|Z)p(Z|θ ,ξ )p(ξ )p(γ)p(θ |P)p(Σ ), (6)
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where

f (y|Z) =
m

∏
v=1

n

∏
i=1

kv

∏
j=1

p
yvi j
vi j (1− pvi j)

1−yvi j (7)

is the likelihood function, with pvi j being the probability function for the multi-
unidimensional model as defined in (2).

Assuming a conjugate Beta prior for γv j so that γv j ∼ Beta(sv, tv), the imple-
mentation of the Gibbs sampling procedure thus involves six sampling processes,
namely,

1. a sampling of the augmented W parameters from

Wvi j|• ∼
{

Bernoulli
(

Φ(ηvi j)

γv j+(1−γv j)Φ(ηvi j)

)
, if yvi j = 1

Bernoulli(0), if yvi j = 0
, (8)

2. a sampling of the augmented Z parameters from

Zvi j|• ∼
{

N(0,∞)(ηvi j ,1), if Wvi j = 1
N(−∞,0)(ηvi j ,1), if Wvi j = 0

; (9)

3. a sampling of person traits θ from

θ i|• ∼ Nm((A′A+P )−1A′B,(A′A+P)−1), (10)

where A =

⎡
⎢⎢⎢⎣
α1 0 · · · 0
0 α2 · · · 0
...

... · · · ...
0 0 . . . αm

⎤
⎥⎥⎥⎦

K×m

and B =

⎡
⎢⎢⎢⎣

Z1i +β 1

Z2i +β 2
...

Zmi +βm

⎤
⎥⎥⎥⎦

K×1

, in which

αv = (αv1, . . . ,αvkv )
′, Zvi = (Zvi1, . . . ,Zvikv )

′, β v = (βv1, . . . ,βvkv)
′;

4. a sampling of the item slope and intercept parameters ξ from

ξ v j|• ∼ N2((x′vxv)
−1x′vZv j ,(x′vxv)

−1)I(αv j > 0), (11)

where xv = [θ v,−1], assuming noninformative uniform priors αv j > 0 and
p(βv j) ∝ 1, or from

ξ v j |• ∼ N2((x′vxv +Σ−1
ξ v
)−1(x′vZv j +Σ−1

ξ v
μ ξv

),(x′vxv +Σ−1
ξ v
)−1)I(αv j > 0),

(12)
where μξ v

= (μαv ,μβv)
′ and Σξ v

= diag(σ2
αv
,σ2

βv
) assuming conjugate normal

priors αv j ∼ N(0,∞)(μαv ,σ2
αv
), βv j ∼ N(μβv ,σ

2
βv
);

5. a sampling of the pseudo-chance-level parameters γ from

γv j|• ∼ Beta(av j + sv,bv j − av j + tv), (13)
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where bv j denotes the number of persons who do not know the correct answer to
item j in subtest v, and av j denotes the number of correct responses to this item
obtained by guessing; and

6. a sampling of the unconstrained covariance matrix Σ from

Σ |• ∼W−1(S−1,n) (14)

(an inverse Wishart distribution), where S =
n
∑

i=1
(Cθ i)(Cθ i)

′, in which

C = diag

⎛
⎝

(
k1

∏
j=1

α1 j

)1/k1

, . . . ,

(
km

∏
j=1

αm j

)1/km
⎞
⎠ (see Lee 1995 for a detailed

derivation of the full conditional distribution for Σ ). From each sampled Σ , the
constrained covaraince matrix P can be obtained using (5). Hence, with starting
values θ (0), ξ (0), γ(0), and P(0), observations (W(�), Z(�), θ (�), ξ (�), Σ (�), P(�))
can be drawn or transformed iteratively from (8), (9), (10), (11), (13), (14), and
(5) (or (12) in lieu of (11)), respectively.

3 Simulation Study 1

To investigate the performance of the developed Gibbs sampling procedure for
the 3PNO multi-unidimensional model, a simulation study was conducted where
three factors were manipulated, namely, sample size, intertrait correlation, and the
specificity of the prior density for each item parameter involved in the model. In
the simulation, tests that measure two latent traits were considered so that the first
half of the items measured one latent trait and the second half measured another.
As sample sizes play a more important role than test lengths in the Gibbs sampler
for 3PNO unidimensional models (Sheng 2010, p.107), item responses for 18 items
and n persons (n = 1,000,2,000,5,000) were generated according to the 3PNO
multi-unidimensional model, as defined in (2). Ability parameters were generated
as samples from a bivariate normal distribution with an intertrait correlation (ρ) of
0.2, 0.5, or 0.7. Item parameters were generated from uniform distributions such
that αv j ∼U(0,2), βv j ∼U(−2,2), and γv j ∼U(0.05,0.25), and were held constant
across the investigated factors.

Four prior specifications were considered in this study for the item slope and
intercept parameters (priorαβ ):

1. αv j > 0, βv j ∝ 1;
2. αv j ∼ N(0,∞)(0,1010), βv j ∼ N(0,1010);
3. αv j ∼ N(0,∞)(0,4), βv j ∼ N(0,4);
4. αv j ∼ N(0,∞)(0,1), βv j ∼ N(0,1).

It is noted that the first specification was uniform noninformative and the second
specification was conjugate noninformative, assuming a relatively flat prior on
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αv j or βv j. With increasingly smaller prior variances, specifications 3 and 4 were
increasingly more informative, constraining posterior values to be closer to their
prior means. For each of these four prior specifications for α and β , the prior
distribution for γ (priorγ ) was assumed to be either

1. diffuse so that γv j ∼ Beta(1,1), or
2. informative so that γv j ∼ Beta(5,17) with the center location being at 0.23.

With each model specification, the Gibbs sampling procedure illustrated in Sect. 2
was then implemented to fit the 3PNO multi-unidimensional model to the simulated
data. Convergence was monitored using the R statistic (Gelman and Rubin 1992) as
well as diagnostic plots.

For each simulated scenario, ten replications were conducted, and the accuracy
of parameter estimates was evaluated using the root mean square error (RMSE) and
bias, which were averaged over items to provide summary indices. Tables 1–3 sum-
marize the results for each item parameter in the 3PNO multi-unidimensional model
when the intertrait correlation was specified to be 0.2, 0.5, and 0.7, respectively.
From these tables, we can observe that:

• When αv j or βv j assumed uniform priors or proper noninformative priors with a
large variance, σ2 = 1010, the Markov chains did not reach convergence with a
run length of 30,000 iterations for sample sizes less than 5,000. It is observed that
even with n = 5,000, some of the Markov chains failed to converge within the
specified number of iterations. One may improve the convergence by increasing
the chain length or sample size.

• Increased sample sizes (n) consistently resulted in smaller average RMSE and
bias for estimating αv j , βv j, and γv j. Hence, they play an important role in
improving the accuracy of the posterior estimates with reduced bias.

• For either α , β or γ , it is generally the case that with a more informative
prior (that is, if the prior density had a smaller variance), the error and bias in
estimating these item parameters reduced. This implies that correct information
needs to be obtained regarding the item parameters in order for them to be
estimated accurately.

• It is also worth noting that when the prior distribution for γv j was informative
Beta(5,17), the error and bias in estimating αv j and βv j were smaller than those
with a diffuse prior Beta(1,1) for γv j. Hence, when appropriate information is
available, setting a smaller prior variance for one set of parameters reduces the
error and bias in estimating the other set of item parameters in the model.

Moreover, the intertrait correlation was estimated accurately for each of the
simulated scenarios. Based on these results, we can conclude that the Gibbs sampler
for the 3PNO multi-unidimensional model requires proper informative priors to
be specified for the slope and intercept parameters to ensure convergence. Unlike
what we observed for the 3PNO unidimensional model (see, e.g., Sheng 2010),
it is suggested that priors for pseudo-chance-level parameters be specified to be
informative. It should be noted that when there is a strong intertrait correlation,
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i.e., ρ > 0.7, the use of a more informative prior distribution for αv j , e.g., αv j ∼
N(0,∞)(0,1), requires their actual values to have a smaller upper bound. For example,
αv j need to be bounded between 0 and 1.5, instead of between 0 and 2, when ρ = 1
and n = 2,000 for the informative prior to be adopted. This is due to the reason
that allowing for a nonzero lower asymptote leads to larger posterior estimates of α
in the 3PNO model (see, e.g., Loken and Rulison 2010), and that higher intertrait
correlations result in more overestimation. Hence, when the estimated values are
farther away from the prior mean of 0.798, problems arise if we try to constrain αv j

to be close to it.

4 Simulation Study 2

In order to further evaluate the performance of the 3PNO multi-unidimensional
model and compare it with two existing IRT models, a second simulation study was
carried out where item responses for 20 items and 5,000 individuals were generated
according to each of the following models:

1. the 3PNO unidimensional model;
2. the 2PNO multi-unidimensional model where k1 = k2 = 10 and ρ = 0.5;
3. the 3PNO multi-unidimensional model where k1 = k2 = 10 and ρ = 0.5.

Gibbs sampling was implemented to each simulated data set to fit these three
models, where 10,000 iterations were obtained with the first half as burn-in. In
particular, based on the results of simulation study 1, informative priors were used
for the item parameters so that α ∼N(0,∞)(0,1), β ∼N(0,1), and/or γ ∼Beta(5,17).

For each simulated scenario, ten replications were conducted. Each implemen-
tation of the Gibbs sampler gave rise to Gelman–Rubin R statistics close to 1,
indicating that the Markov chain converged to its stationary distribution within
10,000 iterations. The accuracy of parameter estimates was evaluated using average
RMSE and bias. In addition, model performance was evaluated using the Bayesian
deviance information criterion (DIC; Spiegelhalter et al. 2002). Their results in each
simulated condition were averaged over the ten replications and are summarized in
Tables 4–6, which display the average RMSE and bias in estimating α , β , γ , and
ρ . In addition, the averaged estimates for the posterior expectation of the deviance
(D̄), the deviance of the posterior expectation (D(ϑ̄)) values, the effective number
of parameters (pD), and the Bayesian DIC are also shown in these tables. Small
deviance values indicate a better-fitting model. Generally more complicated models
tend to provide better fit. Hence, penalizing for number of parameters makes DIC a
more reasonable measure to use.

A close examination of the tables indicates that:

• When data conformed to the 3PNO unidimensional model (see Table 4), the
3PNO uni- and multi-unidimensional models performed similarly in involving
smaller error and bias in estimating α , β , and γ , with a slight advantage to
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Table 4 Parameter recovery and model-data fit using each of the three IRT
models under the situation where simulated data conformed to a 3PNO
unidimensional model (n = 5,000, k = 20)

Model

3PNO uni 2PNO multi-uni 3PNO multi-uni

RMSE (bias)
α 0.091 (0.034) 0.248 (−0.165) 0.089 (0.035)
β 0.187 (0.0750) 0.411 (−0.300) 0.194 (0.080)
γ 0.075 (0.044) – 0.075 (0.044)
ρ – 0.017 (−0.017) 0.005 (−0.005)
Deviance estimates
D̄ 94,907.82 95,123.25 94,876.75
D(ϑ ) 90,929.33 91,164.94 90,863.81
pD 3,978.49 3,958.31 4,012.94
DIC 98,886.31 99,081.56 98,889.70

Table 5 Parameter recovery and model-data fit using each of the three IRT
models under the situation where simulated data conformed to a 2PNO multi-
unidimensional model (n = 5,000, k1 = 10, k2 = 10, ρ = 0.5)

Model

3PNO uni 2PNO multi-uni 3PNO multi-uni

RMSE (bias)
α 0.476 (0.025) 0.057 (0.001) 0.144 (0.112)
β 0.520 (0.335) 0.039 (−0.002) 0.204 (0.153)
γ 0.189 (0.145) – 0.133 (0.102)
ρ – 0.008 (−0.002) 0.008 (0.003)
Deviance estimates
D̄ 83,952.60 75,344.13 75,623.15
D(ϑ ) 79,886.26 68,133.49 68,282.23
pD 4,066.34 7,210.64 7,340.92
DIC 88,018.93 82,554.77 82,964.07

the multi-unidimensional model. They also resulted in smaller DIC values and
hence were preferred than the 2PNO multi-unidimensional model. The two three-
parameter models had almost identical deviance results. This agrees with what
we noted earlier that the 3PNO unidimensional model is a special case of the
3PNO multi-unidimensional model.

• When data conformed to the 2PNO multi-unidimensional model, the correct
model resulted in much smaller error and bias in estimating α and β (see
Table 5), and was suggested by DIC to be better than the two 3PNO models. On
the other hand, the 3PNO unidimensional model was clearly the worst among
the three models as far as parameter recovery and model-data fit are concerned.
One may note that although the 2PNO multi-unidimensional model is said to
be a special case of the 3PNO multi-unidimensional model when γ = 0, the
latter tended to overestimate γ (i.e., estimated them to be nonzero) and had
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Table 6 Parameter recovery and model-data fit using each of the three IRT
models under the situation where simulated data conformed to a 3PNO multi-
unidimensional model (n = 5,000, k1 = 10, k2 = 10, ρ = 0.5)

Model

3PNO uni 2PNO multi-uni 3PNO multi-uni

RMSE (bias)
α 0.505 (0.015) 0.383 (−0.269) 0.126 (0.055)
β 0.573 (0.277) 0.437 (−0.314) 0.147 (0.055)
γ 0.156 (0.076) – 0.069 (0.038)
ρ – 0.021 (0.007) 0.015 (0.004)
Deviance estimates
D̄ 92,558.82 86,952.78 86,058.33
D(ϑ ) 88,649.73 80,305.46 79,047.50
pD 3,909.09 6,647.32 7,010.83
DIC 96,467.91 93,600.09 93,069.16

slightly larger error and bias in estimating α and β . However, note that in the
simulation results from Sect. 3, the average RMSE and bias in estimating item
parameters for the 3PNO multi-unidimensional model when it was true (Table 2)
were not much smaller. Hence, the relatively larger error and bias in estimating
item parameters using the 3PNO multi-unidimensional model for data with a zero
lower asymptote might be due to the complexity of the model and the estimation
procedure.

• In situations where the 3PNO multi-unidimensional model was true with a
moderate intertrait correlation (see Table 6), the correct model resulted in much
smaller estimation error and bias, and had the smallest DIC value, which suggests
that it fit the data the best even after penalizing for a large number of effective
parameters. The latent structure agreed with multi-unidimensionality. Hence, the
2PNO multi-unidimensional model resulted in relatively less error in estimating
item parameters and had a better model fit than the 3PNO unidimensional model.

• It is noted that when data were unidimensional, the two multi-unidimensional
models involved a fairly small effective number of parameters (pD), which was
close to that for the unidimensional model (see Table 4). However, when data
were multi-unidimensional, both 2PNO and 3PNO multi-unidimensional models
had a substantially larger pD than the unidimensional model (see Tables 5 and 6).

• When data conformed to the model with a nonzero lower asymptote (γ), the
2PNO multi-unidimensional model tended to underestimate both α and β (see
Tables 4 and 6).

• It is further noted that no matter whether data assumed a zero or nonzero lower
asymptote, both the 2PNO and 3PNO multi-unidimensional models estimated ρ
fairly well, with a slight advantage to the correct model (see Tables 4–6).

In general, the 3PNO multi-unidimensional model is more general and flexible
than the 3PNO unidimensional model and has advantages over it in large-sample
situations. On the other hand, when it is clear that the test data do not assume a
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nonzero lower asymptote parameter or do not involve pseudo-chance, it is suggested
that the 2PNO multi-unidimensional model be adopted for ease of implementing the
Gibbs sampling procedure.

5 An Example with CBASE Data

As an illustration, the Gibbs sampler for the 3PNO multi-unidimensional model was
implemented to a subset of College Basic Academic Subjects Examination (CBASE;
Osterlind 1997) English data and its model-data fit was evaluated by comparing it
with a 2PNO multi-unidimensional model and a 3PNO unidimensional model.

The overall CBASE exam contains an overall 41 multiple-choice items on
English, 25 of which are on reading/literature and the remaining 16 are on writing.
The data used in this study were from college students who took the LP form of
CBASE in years 2001 and 2002. After removing those who attempted the exam
multiple times and removing missing responses, a sample of 1,200 examinees was
randomly selected. Gibbs sampling with each of the three models described in
Sect. 4 was fit to the data and compared with one another in describing the data.

Each Gibbs sampler was implemented with a chain length of 10,000 iterations
and a burn-in stage of 5,000 iterations. The Gelman–Rubin R statistics were used to
assess convergence and they were found to be around or close to 1, suggesting that
stationarity had been reached within the simulated Markov chains for the models.
The Bayesian deviance estimates were subsequently obtained for each model
and the results are summarized in Table 7. Among the three models considered,
the 3PNO multi-unidimensional model had relatively smaller DIC and expected
posterior deviance (D̄) values. Hence, it provided a better description of the data.
The latent structure of the data was suggested to agree with multi-unidimensionality,
as the unidimensional model provided a worse description of the data than the
2PNO multi-unidimensional model. In addition, the pD values for the two multi-
unidimensional models were much larger than that for the unidimensional model.
Given these results, it is reasonable to believe that the actual lower asymptote
parameters for the CBASE English data are nonzero and the latent structure can
be multi-unidimensional with a fairly strong intertrait correlation ρ̂ = .826.

Table 7 Bayesian deviance estimates for the three IRT models with the
CBASE data (n= 1,200, k1 = 16, k2 = 25, chainlength = 10,000, burn− in=
5,000)

Model D̄ D(ϑ ) pD DIC

3PNO uni 53,840.81 52,744.78 1,096.03 54,936.83
2PNO multi-uni 53,501.48 52,095.27 1,406.21 54,907.69
3PNO multi-uni 53,333.62 51,866.18 1,467.44 54,801.06
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6 Discussion

In summary, fully Bayesian estimation for the three-parameter multi-unidimensional
IRT model can be developed generalizing the approach for the two-parameter model
by Lee (1995). Exploring different prior specifications, this study shows that the
procedure requires a fairly informative prior for each set of the item parameters.
When compared with the conventional three-parameter unidimensional or the two-
parameter multi-unidimensional model, simulation results indicate that the more
complex three-parameter multi-unidimensional model consistently provides a good
if not better model description to the data that assume either a perfect intertrait
correlation or a zero pseudo-chance level. It is noted that the three-parameter
multi-unidimensional model, allowing for a nonzero lower asymptote, is more
complicated than the two-parameter model. It requires informative priors or a much
larger sample size for the Markov chains to work properly.

One has to also note that the advantages of the multi-unidimensional model
over the unidimensional model demonstrated by the simulations of this study relied
on the fact that the latent structure was correctly specified. For situations where
such information is not readily available, a misspecified latent structure for the
multi-unidimensional model could result in an insufficient description of the data.
To avoid this, one can choose to use the simpler unidimensional model if the
amount of dimensionality is suggested to be negligible. After all, unidimensional
models have been predominant in educational research given the fact that many
IRT applications are only possible with such models. Alternatively, if a test is
believed to involve multiple distinct latent traits, which is more common in actual
testing situations, the more general multidimensional IRT model (Reckase 2009)
should be used to explore the dimensionality structure. The difference between the
general multidimensional model and the multi-unidimensional model is analogous
to the distinction made between exploratory and confirmatory factor analysis (Sheng
2012). As such, one can use the former to identify the latent structure when it is not
available and use the latter to confirm this structure.

Given that previous research on Gibbs sampler for 3PNO unidimensional models
found that the estimation accuracy of item parameters should improve with larger
sample sizes, but not necessarily with larger test lengths (Sheng 2010), this study
used fixed number of items in the simulation study. Certainly, additional studies are
needed to empirically demonstrate the effect of test length on estimating 3PNO
multi-unidimensional model parameters. In addition, this study only looked at
nonhierarchical models where item hyperparameters take specific values. It will
also be interesting to consider hierarchical Bayesian models where second-order
priors are assumed for item hyperparameters. Given findings from Sheng (2013)
on 3PNO unidimensional models, it is believed that hierarchical modeling provides
advantages in modeling the complex 3PNO multi-unidimensional model. Further,
only conjugate prior densities for item parameters were investigated in this paper.
Future studies may adopt non-conjugate priors.
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The Effect of Response Model Misspecification
and Uncertainty on the Psychometric Properties
of Estimates

Kristian E. Markon and Michael Chmielewski

The effect of model uncertainty and model misspecification on test score properties
has been a prominent issue in assessment for decades, manifesting implicitly or
explicitly in a number of different domains. For example, measurement invariance
(i.e., differential item or test functioning) is often of interest because of the possi-
bility that test models otherwise might be misspecified for particular individuals or
groups. Similar issues regarding predictive invariance also often arise from concerns
about the effects of response models that might be misspecified (Borsboom et al.
2008; Millsap 1997, 2007). Impression management continues to be an area of
focus because of concerns about misspecified assumptions during test scoring or
trait estimation (Ziegler et al. 2012).

The prominence of these issues has led to substantial advances in methods
for detecting and preventing possible model misspecification (e.g., Meijer 2003;
Meredith 1993; Millsap and Everson 1993). Less well understood, however, are
the effects of misspecified models on the psychometric properties of tests, such as
test error and reliability (Wainer and Thissen 1987). For example, it is possible to
test whether a model might be inappropriate for a certain person or subpopulation,
but how does inappropriate use of that model affect overall test score accuracy and
precision?

Understanding how model misspecification impacts the psychometric properties
of tests is critically important for quantifying the impact of misspecification, but also
because misspecification is likely endemic to the assessment process. From a prag-
matic perspective, for instance, a certain proportion of misspecification cases will
likely always go undetected simply due to unavoidable random errors of inference.
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From a more theoretical perspective, individual variation and heterogeneity in
response processes may be typical, implying that any purely nomothetic assessment
approach will necessarily entail some model misspecification effects at the level of
individuals, who may each be responding idiosyncratically (Borsboom et al. 2003;
Molenaar 2004; von Eye 2004).

In this paper, we review the literature on model misspecification, to clarify how
use of incorrect models impacts the actual and assumed accuracy and precision of
trait estimates. First, we review the broader statistical literature on misspecification
and its effects on estimation, and explore how misspecification affects the accuracy
of estimates under common response models. We then explore the effects of
misspecification on the precision of estimates. Interestingly, using analytic and sim-
ulation results, we show that although misspecification often decreases the accuracy
of estimates, somewhat counterintuitively, it actually may also increase accuracy
under certain circumstances. Moreover, depending on the form of misspecification,
reliability can actually be increased under misspecification, in a way that provides
a misleading characterization of test precision. We conclude with recommendations
for applied use of tests when model uncertainty is a prominent concern.

1 Response Models and Their Misspecification: Overview

Throughout this paper, it is assumed that a probabilistic model of test response, at
either the item or score level, is being used implicitly or explicitly. That is, the
model can be written in some general form of P(X|θ ,γ), where the probability
of some response X is modeled in terms of one or more person parameters (e.g.,
latent traits) θ and item parameters γ . In this paper, it is also generally assumed
that the item parameters are assumed to be known (note that the assumed item
parameters can be correct or incorrect), and the interest is in obtaining an estimate
of respondents’ standing on a single latent trait, θ̂ , using maximum likelihood
(ML) unless otherwise stated (Bayesian estimation is briefly discussed at the end
of the paper). Although these assumptions are admittedly somewhat simplistic, they
are nevertheless arguably realistic and applicable to a wide variety of situations,
simplify discussion, and likely generalize well to more complex scenarios.

Many familiar response models, including a variety of item response theory
(IRT) and classical test theory (CTT) models, can be derived from a more general
framework, that of generalized linear latent variable modeling (e.g., Mellenbergh
1994a; Moustaki and Knott 2000; Skrondal and Rabe-Hesketh 2004). In this
framework, a model for the responses to a measure j by a person i can be written as

g(τi j) = a jθi + b j, (1)

where g is a link function relating the latent trait to an expected value of the response
variable and τ ij is the expected value of the response variable given a value of
the latent trait (i.e., E(xij|θ i)). The link function g, which derives from generalized
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linear modeling, depends on the assumed distribution of the response variable and
choices regarding the specific model of interest (e.g., normal versus logistic). It
can be thought of as a function that transforms the scale of the latent variable
(e.g., continuous) into the assumed scale and distribution of the response variable
(e.g., an ordinal polytomous variable or a count variable). The parameter a reflects
the discrimination or loading of the item and the parameter b is an intercept term
reflecting the difficulty or severity of the item. For example, using a normal link
function with variance ψ2 equal to the residual variance, one obtains a family of
continuous response models that include traditional (e.g., parallel, tau-equivalent)
models as special cases; using a logit link one obtains the familiar two-parameter
item response model.

The central question in this paper is: what happens if the form of the response
model in Eq. (1) is different from the actual model governing an individual’s
responses to items? For example, what happens if the item parameters that are used
to estimate trait scores [e.g., a and b in Eq. (1)] are different from the actual item
parameters describing the process used to generate responses? What are the effects
on trait estimate accuracy and reliability if measurement invariance does not hold
across ethnic groups, but the response model describing a majority subpopulation is
incorrectly applied to estimate scores in a minority subpopulation? Similarly, how
is the accuracy of trait estimates affected if individual differences in impression
management are ignored—or conversely, if impression management is assumed
incorrectly?

Various authors have explored the effect of item parameter estimation errors
on trait estimation (e.g., Thissen and Wainer 1990; Tsutakawa and Johnson 1990;
Yang et al. 2012; Zhang et al. 2011). This can be considered a form of model
misspecification due to stochastic sampling variation during the item parameter
estimation process. Although important and relevant to the current discussion, here
we focus on a different phenomenon: structural model misspecification, where
misspecification is not due to stochastic sampling variation, and would occur even
if the population item parameters were known (i.e., the misspecification will not
disappear as the sample used to estimate item parameters becomes infinitely large).

2 Estimation Under Misspecification: Accuracy,
Bias, and Variance

2.1 Estimates

Various authors have illustrated that, under misspecification, ML estimates—in this
case, ML trait estimates—approach the value that minimizes the relative entropy
(i.e., Kullback–Leibler distance) between the misspecified likelihood and the true
likelihood (e.g., Akaike 1973; Gustafson 2001; White 1982). Specifically, under
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misspecification, ML estimates will tend toward (i.e., have expected values of) the
value of θ̂ that minimizes

∑P
(

X
∣∣∣ θ ∗,γ∗

)
ln

⎡
⎣P

(
X

∣∣∣ θ ∗,γ∗
)

P
(

X
∣∣∣ θ̂ ,γ)

⎤
⎦ , (2)

where θ* is the true trait value and γ* are the true item parameters, and the sum is
taken over all possible response vectors. The relative entropy will be zero when the
misspecified model produces likelihoods that are exactly the same as the true model
likelihoods, and will increase as the misspecified likelihoods and true likelihoods
diverge. Misspecification will produce trait estimates that come closest, on average
across response patterns, to reproducing the probability of the data under the true
model, minimizing the relative entropy in Eq. (2).

Note that the value being minimized in Eq. (2) by θ̂ under the misspecified model
is still defined even when direct comparisons between the parameters of the true
model and the assumed model are not meaningful—e.g., in the case that responses
do not actually involve trait or person parameters at all, or where true person
parameters are on one scale of measurement (e.g., nominal) and the estimated
parameters are on another (e.g., interval). In this case, P(X|θ*, γ*) is arguably
more accurately thought of in terms of P(X|M*), where M* is the true model, with
misspecification still producing trait estimates that come closest, on average across
response patterns, to reproducing the likelihood under the true model.

2.2 Estimation Error, Bias, and Variance

Assuming that the true model and the assumed model both have directly comparable
trait parameters, how accurate are they? How close they are to the true values?
Although the minimized value in Eq. (2) could be used to indirectly answer this
question—with values closer to zero indicating accurate estimates and smaller
effects of misspecification, and larger values indicating less accurate estimates and
larger effects of misspecification—this would still not address how similar the
estimated trait value is to the true trait value.

2.2.1 Mean Square Error

A more direct index of the accuracy of estimates, often used in statistical theory and
research, is the mean square error (MSE):

MSE = E

[(
θ̂ −θ ∗

)2
]

(3)
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which is the expected—i.e., average—squared difference between the estimated trait
value and true trait value. The MSE has the benefit of ignoring the direction of
estimation errors; it also weights estimation errors more the greater they are.

Although the MSE under model misspecification can be derived for specific
types of models, obtaining a general formula for the MSE under misspecification
is challenging. Xu et al. (2004) present general lower bounds for the MSE under
misspecification, relating the MSE with regard to a parameter to the log-likelihood
ratio with regard to that parameter. They show that in general the MSE over a range
of a parameter is lower bounded by the integrated error probability under the log-
likelihood ratio test, using the misspecified model.

2.2.2 Bias–Variance Decomposition

Importantly, the MSE can be reexpressed as the sum of two components: the squared
estimation bias and the estimation variance. That is,

MSE = β 2 +σ2, (4)

where β is the bias and σ2 is the variance of the estimates:

β = E
[(

θ̂ −θ ∗
)]

(5)

and

σ2 = E

[(
θ̂ −E

[
θ̂

])2
]
, (6)

where E[θ̂ ] is the expected or average trait estimate [i.e., the estimate minimizing
Eq. (2)]. The bias is therefore the average difference between the estimated and true
trait value, and the variance is the variance of the trait estimates around their average
(which is not necessarily the same as the true value). It is important to emphasize
that the term bias here specifically refers to the extent to which trait estimates differ
on average from their true values. This is related to, but different from, the use of the
term “bias” in some of the applied and psychometric literature, where it is often used
to refer to misspecification or misestimation of measurement models more broadly.

The bias–variance decomposition of the MSE significantly underscores that the
accuracy of an estimate depends on both bias and variance, and that there may be
compromises between the two in selecting a model. A model that increases bias may
nevertheless produce more accurate estimates if the increased bias is sufficiently
offset by decreased variance. Conversely, a model that decreases bias may produce
less accurate estimates if it increases the variance of those estimates too much.
This phenomenon is well documented in the broader statistical literature: more
flexible models with fewer constraints, for example, are likely to produce less biased
estimates but are also more susceptible to sampling variability; conversely, less
flexible models are less susceptible to sampling variability but are more susceptible
to bias (e.g., Forster 2000; Hero et al. 1996).
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Similar phenomena may occur in trait estimation. For example, in some cases it
may be that estimating ancillary person parameters (e.g., reflecting response style
or impression management) together with trait level may introduce more estimation
uncertainty than the amount of bias it reduces, decreasing the accuracy of trait
estimates overall. Even among response models with only one parameter—the
trait parameter—it may be the case that some response models introduce greater
uncertainty into estimates, even as they decrease bias, by virtue of their structural
features.

It is important to emphasize that these bias–variance compromises apply when
comparing a misspecified model to the correct model just as they apply to com-
parisons between two misspecified models. In other words, a misspecified model
may actually produce more accurate estimates than the correct model, by virtue
of reducing uncertainty at the cost of increased bias. This phenomena has been
observed in other areas of statistics (Lowerre 1974; Rao 1971; Todros and Tabrikian
2011), suggesting that use of an incorrect test response model may sometimes have
little effect on test scores, and may actually improve the accuracy of the scores in
some cases.

2.3 Example: Continuous Response Models

As an example, consider a continuous response model, obtained from Eq. (1) by
using a normal link function with variance ψ2 equal to the residual variance. As
noted earlier, many traditional test models (e.g., parallel or tau-equivalent measures
models) can be obtained as special cases from this model under certain constraints.
As illustrated by Mellenbergh (1994b), for a single trait, ML trait estimates under
this model are given by

θ̂i =
∑a j (xi j − b j)/ψ2

j

∑a2
j/ψ2

j

. (7)

This is equivalent to Bartlett’s factor score estimator (Bartlett 1937) for a
single trait. Moreover, as noted by Bartholomew and Knott (1999), this estimate
is unbiased when the model is correctly specified.

Following Mellenbergh (1994b, page 231), and substituting a∗j θ ∗
i + b∗j + e∗ij for

xij in Eq. (7), one obtains the following expression for the expected value of the trait
estimate under misspecification, conditional on the true trait value:

E
[
θ̂

∣∣∣ θ ∗,γ
]
=
∑a j

[
a∗jθ ∗

i +
(

b∗j − b j

)]
/ψ2

j

∑a2
j/ψ2

j

. (8)
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Here, as elsewhere, the asterisks indicate the true parameters and the values
without asterisks indicate the assumed parameters (e.g., a is the assumed loading
and a* is the true loading). Equation (8) can be used to estimate the expected bias

at a given level of the trait, as β (θ ) = E
[
θ̂

∣∣∣ θ ∗,γ
]
−θ ∗. Expanding this gives the

following value for the bias conditional on the true trait value:

β
(
θ̂

∣∣∣ θ ∗,γ
)
=
∑
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a j
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a∗jθ ∗
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)]
− a2

jθ ∗
i

]
/ψ2

j

∑a2
j/ψ2

j

. (9)

Similarly, assuming uncorrelated error variances, the variance of the trait esti-
mate under misspecification is given by

σ2
(
θ̂

∣∣∣ θ ∗,γ
)
=
∑ a2

j

ψ2
j

ψ∗2
j

ψ2
j[

∑ a2
j

ψ2
j

]2 , (10)

where again, ψ*2 is the true error variance and ψ2 is the assumed error variance.
The derivation of the variance under misspecification is explained in greater detail
in the Appendix.

Note that if the true and assumed error variance are equal (i.e., there is no
misspecification), then the variance becomes

σ2
(
θ̂

∣∣∣ θ ∗,γ∗
)
=

1

∑ a2
j

ψ2
j

=
1
I
, (11)

where I is the nominal test information (Mellenbergh 1994b), which will be
constant.

Equations (9) and (10) reveal various characteristics of how continuous response
model trait estimates behave under misspecification. Bias, for example, depends
on the relative magnitudes of true versus assumed loadings and intercepts, but not
the true error variances. Variance, in contrast, does not depend on the true loading,
but does depend on the relative magnitudes of the true and assumed error variances.
Similarly, bias depends on the true trait value, but variance is independent of it. Both
bias and variance are affected by the assumed loadings and assumed error variances.

In order to illustrate the effects of misspecification on estimation accuracy,
and verify the accuracy of Eqs. (8)–(10), a series of simulations were conducted.
Values of the parameters were taken from measurement invariance analyses of
the Spanish and English Neuropsychological Assessment Scales (SENAS; Mungas
et al. 2011), a cognitive battery developed for use in multiethnic and multilingual
applications. The SENAS provides an excellent example of how misspecification
might impact accuracy of test score estimates, as its psychometric properties in
differently responding groups of individuals are well documented.
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Table 1 Bias, variance, and MSE under misspecification: continuous response model

θ*= 0 θ*= 1 θ*= 2

Model σ 2 β MSE σ 2 β MSE σ 2 β MSE

Model A, correctly specified 0.114 0.001 0.114 0.115 −0.001 0.115 0.114 −0.001 0.114
0.114 0.000 0.114 0.114 0.000 0.114 0.114 0.000 0.114

Model A, misspecified 0.096 0.038 0.097 0.096 −0.056 0.099 0.096 −0.150 0.119
0.096 0.038 0.097 0.096 −0.056 0.099 0.096 −0.149 0.118

Model B, correctly specified 0.087 0.000 0.087 0.088 0.000 0.088 0.088 −0.001 0.088
0.088 0.000 0.088 0.088 0.000 0.088 0.088 0.000 0.088

Model B, misspecified 0.107 −0.041 0.109 0.108 0.057 0.111 0.108 0.154 0.131
0.108 −0.041 0.110 0.108 0.057 0.111 0.108 0.155 0.132

Note: Values in table are variance, bias, and MSE at true trait values of 0, 1, and 2, for different
correctly and incorrectly specified models. For each model specification condition, the top number
is the value obtained in simulations; the bottom number is the predicted value based in Eqs. (8)–
(10). Within each model specification condition, the predicted variance did not depend on trait
value but is repeated across trait values to compare with simulation results, which did vary very
slightly

Two models were used in the simulations, each of which was based on the
Semantic/Language scales of the SENAS, which assess verbal reasoning or lan-
guage ability. Model A corresponded to the SENAS parameter estimates among
White individuals (loadings of 0.76, 0.74, 0.49, 0.42, 0.73; intercepts of 0.64, 0.63,
0.67, −0.03, 0.47; and residual variances of 0.20, 0.31, 0.22, 0.83, 0.19); Model B
corresponded to the SENAS parameter estimates among English-speaking Hispanic
individuals (loadings of 0.81, 0.82, 0.59, 0.54, 0.78; intercepts of 0.64, 0.63, 0.51,
−0.03, 0.47; and residual variances of 0.20, 0.24, 0.22, 0.58, 0.19). Four sets of
simulations conducted: one in which Model A was the true, data-generating model,
and was correctly specified; another simulation in which Model A was the true
model, but Model B was incorrectly specified as the data-generating model; a
simulation in which Model B was the true model and was correctly specified; and
a simulation in which Model B was the true model but Model A was incorrectly
specified as the data-generating model. 1,00,000 response vectors were simulated
for each condition, for trait values of 0, 1, and 2, and trait estimates were calculated
using Eq. (7).

Table 1 presents the results of these simulations. Throughout the conditions, the
simulated bias, variance, and MSE were nearly identical to predictions using Eqs.
(8)–(10). Consistent with predictions, whereas the variance is constant across trait
level, the bias changes with trait level. The results in Table 1 also illustrate that,
under correct model specification, trait estimates are unbiased and MSE is constant
across trait level. Under misspecification, the trait estimates exhibit varying degrees
of bias, and the MSE changes across trait level.

Figure 1 also illustrates these trends, showing predicted MSE as a function of true
trait level across the different conditions. Importantly, as is evident in the figure, the
misspecified model does not in fact always produce the greatest estimation error.
When Model B is used as the true model, error is in fact always greater for the
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Fig. 1 Mean square error (MSE) as a function of true trait level, population model, and assumed
model. MSE for population Model A is illustrated by the gray lines; MSE for population Model
B is illustrated by the black lines. MSE for correctly specified models is illustrated by solid lines,
MSE for misspecified models by dashed lines

misspecified model. However, when Model A is used as the true model, error is only
sometimes greater for the misspecified model: for extreme values of the trait, the true
model produces lower error, but for moderate values of the trait, the misspecified
model actually produces less estimation error.

Figure 1 demonstrates that the effect of misspecification on estimation accuracy
is complex, depending on the true model, the form of misspecification, and the
distribution of true trait values in the population. For a standard normal population
responding under Model A, for example, the misspecified model would actually
result in slightly lower MSE overall than the correct model (simulations indicate an
MSE of 0.106 for the misspecified model versus 0.114 for the correct model).

One important implication of these results is that ignoring measurement nonin-
variance does not always result in an overall increase in estimation error, and may
actually decrease estimation error depending on the circumstances. Similar phenom-
ena involving small or negligible effects of noninvariance or model misspecification
have been observed empirically in various studies (e.g., Hendrawan et al. 2005;
Reise et al. 2001; Roznowski and Reith 1999) but is illustrated here analytically and
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through simulations. The precise form of the bias, variance, and corresponding MSE
provided by Eqs. (8)–(10) will help quantify the effect of measurement variance on
estimation accuracy.

In this particular example, with the SENAS, failure to recognize measure-
ment variance would likely result in decreased estimation accuracy. As Model
B corresponds to test parameters among minorities, the most likely form of
misspecification—incorrectly assuming that European American test parameters
apply to other groups—would increase error. However, with other tests and other
measurement invariance scenarios, other conclusions might be more appropriate.

2.4 Example: Discrete Response Models

In the case of discrete observed variables (e.g., with IRT models), the relationship
between trait level, bias, variance, and MSE becomes more complex. For instance,
with typical IRT models, the variance as well as the bias would be expected to
change with trait level (consider the typical information function of IRT, which
reflects this variance, and generally changes with trait level). Also, even with correct
model specification, IRT estimates may be biased, in a form that depends on the true
trait value (Lord 1983).

Both of these factors lead to potentially complex effects of misspecification on
trait estimation. For example, if correctly specified models do in fact produce biased
estimates, it is conceivable that a misspecified model might produce bias of a form
that counteracts the bias of the correctly specified model—a sort of antibias—
reducing estimation error overall. Similarly, a misspecified model might reduce
overall estimation error in a trait range by decreasing variance in that range, even if
it increases bias somewhat.

Impression management effects provide a useful context for exploring some
of these issues. Although the effects of impression management on responding
can be demonstrated well in experimental settings (e.g., Baer and Miller 2002),
it has been difficult to demonstrate validity of impression management indices in
observational settings (McGrath et al. 2010). This has led to apparent paradox
and associated controversy, whereby putatively obvious, even known, effects of
impression management on response processes are sometimes asserted to have no
effect on test validity (Ziegler et al. 2012).

The current discussion provides one additional possible explanation for this
phenomenon: if use of the correct impression management response model leads to
sufficient uncertainty in trait estimation—i.e., sufficiently increases the variability
of trait estimates—it may be inconsequential or even desirable to ignore the
impression management and adopt an incorrect, biased model for the purposes of
trait estimation. This phenomenon would hold even if it is known with certainty that
the individual has used impression management during the response process.
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2.4.1 The Asymptote-Shift Model of Impression Management

Consider, for example, models of impression management relying on a shift in the
asymptotic response from extreme trait values. Under this scenario, in response to
a binary response item (e.g., true–false), extreme individuals who are faking always
have a finite probability of responding to an item in a direction that they might
otherwise not respond. For example, on a measure of Big Five agreeableness, a very
aggressive individual faking might always have a nonzero probability of responding
“true” to the item “I would never harm someone.” The three-parameter logistic
(3PL) IRT model is often used in this scenario to model impression management,
with the lower asymptote parameter reflecting effects of impression management.
Similar four-parameter models have also been proposed, with both lower and upper
asymptotic parameters (Loken and Rulison 2010; Waller and Reise 2009).

Simulations were conducted to investigate the effects of model misspecification
in this scenario (e.g., using the correct impression management model or ignoring
it). In this simulation, 4,000 responses were generated for each of 13 trait values,
equally spaced from −3 to 3. In all cases, respondents were assumed to be
responding using impression management to a 23-dichotomous-item test, under
a process described by a 3PL IRT model, with the lower asymptote reflecting
impression management. Item parameters were taken from Waller and Reise (2009);
as those authors were studying the four-parameter model, population values of lower
asymptotes for the simulations were obtained by taking one minus the estimated
upper asymptotes from their results (many of their estimated lower asymptotes were
near zero; note that which asymptote is upper or lower depends on a relatively
arbitrary keying of the items).

To model the effects of item parameter estimation, every 100 simulee’s trait
values were estimated using item parameters estimated on a different 2,500-person
calibration sample. In other words, 2,500 simulated responses were generated and
used to estimate item parameters; these item parameters were used to estimate trait
values from a different set of 100 randomly generated responses; this process was
repeated 40 times for the 4,000 trait values to be estimated for each of the 13 trait
values. Each 2,500-person calibration sample was assumed to come from a known
population—i.e., item parameters from the 1PL and 2PL models were estimated on
a zero-lower-asymptote population, and the 3PL item parameters were estimated
on a nonzero-lower-asymptote population (to simulate the effects of experimentally
modeling response processes). Ultimately, trait estimates were obtained for each
of the 4,000 simulees using each of four models: the population 3PL model, the
sample-estimated 3PL model, the sample-estimated two-parameter logistic (2PL)
model (ignoring impression management), and the sample-estimated one-parameter
logistic (1PL) model (again, ignoring impression management).

Figure 2 illustrates the results of these simulations. The top figure plots the bias
of the estimates as a function of trait level; the middle figure plots the variance as
a function of trait level, and the bottom figure plots overall MSE as a function of
trait level. As is evident in the figure, in general, bias, variance, and overall MSE
was smallest for moderate to large trait values, and larger for smaller trait values.
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Fig. 2 Bias, variance, and MSE of trait estimates as a function of true trait level, for a population of
individuals responding using impression management modeled by a three-parameter logistic (3PL)
model, as described in the text. Solid line reflects trait estimates obtained using population 3PL item
parameters; dashed line, trait estimates obtained using sample-estimated 3PL item parameters;
dashed and dotted line, sample-estimated 2PL item parameters, and dotted line, sample-estimated
1PL item parameters

Also, in general, bias, variance, and MSE from the misspecified trait estimates were
similar, as were those from the correctly specified estimates.

Consistent with what might be expected, trait estimates were more biased overall
when using the incorrect 1PL and 2PL models for trait estimation, especially
for smaller trait values. This is consistent with the idea that ignoring impression
management would lead to increased bias in trait estimates. However, use of the
correct impression management model also increases variance of the trait estimates
relative to the incorrect models, especially at extreme trait levels. This increased
variance offsets the decreased bias, leading to a scenario where for much of the
range of the trait, the accuracy of trait estimates is extremely similar regardless of
whether the correct or incorrect model is used. The incorrect model does produce
less accurate estimates overall, especially for low levels of the trait. However, for
moderate to high levels of the trait, the decrement in accuracy is slight.
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2.4.2 The Intercept-Shift Model of Impression Management

Another possible account of impression management is the intercept-shift model.
In this model, individuals utilizing impression management shift their thresholds
for endorsing an item in a manner consistent with their impression management.
For example, individuals engaging in positive impression management might raise
their thresholds for endorsing socially undesirable items; individuals engaging
in negative impression management might lower their thresholds for endorsing
socially undesirable items. Multiple-group modeling in quasi-experimental designs
suggests that this sort of intercept-shift model can account for at least some positive
impression management (Ferrando and Anguiano-Carrasco 2009).

Simulations were again conducted in order to investigate the effects of model
misspecification in this scenario (e.g., using the correct impression management
model or ignoring it). Simulation conditions were the same as in the simulation
study just described. In this study, however, impression management was modeled
by a shift in intercept parameters relative to the normal response condition; the 2PL
model was used in all conditions. Population parameters were based on the SNAP-2
(Clark et al. 1993) Negative Temperament scale, a 28-dichotomous-item measure of
the tendency to experience negative emotions. Two-PL parameters of the SNAP-2
Negative Temperament scale in a general community sample (Simms et al. 2007)
were used for the population normal response parameters. Impression management
parameters were calculated using experimental estimates of the effect of impression
management on the SNAP Negative Temperament scale (Simms and Clark 2001);
each item’s threshold was assumed to shift by an amount (in d units) equal to the
corresponding observed shift in the Negative Temperament scale under impression
management (i.e., each item’s thresholds were assumed to shift by 1.56 d in the
negative impression management condition and 1.15 d in the positive impression
management condition).

Figure 3 illustrates the results of the simulations of positive impression man-
agement. Consistent with expectations, using the incorrect model resulted in
downwardly biased estimates at higher (i.e., more pathological) levels of the trait—
i.e., positive impression management resulted in estimates that were too low for
high-trait individuals when the incorrect model was used. For low-trait individuals,
the bias was actually reversed, such that low-trait individuals’ estimates were
somewhat too large. However, throughout the range of the trait, the variance of
estimates was lower under the misspecified models compared to the true model,
especially at lower trait levels. Overall MSE was generally greater when using the
incorrect model, although this was primarily true of the upper range of the trait;
for low-trait individuals the decrement in overall MSE was much less, and for
moderately low trait values the misspecified model actually produced slightly more
accurate estimates.

Figure 4 illustrates the results of simulating negative impression management.
Again, consistent with expectations, using the incorrect model resulted in upwardly
biased estimates throughout the range of the trait—i.e., negative impression man-
agement resulted in estimates that were generally too high (i.e., pathological) when
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Fig. 3 Bias, variance, and MSE of trait estimates as a function of true trait level, for a
population of individuals responding using positive impression management modeled by a two-
parameter logistic (2PL) model, as described in the text. Solid line reflects trait estimates obtained
using population item parameters; dashed line, trait estimates obtained using sample-estimated
impression management item parameters; dashed and dotted line, sample-estimated 2PL normal
response item parameters, and dotted line, sample-estimated 1PL normal response item parameters

the incorrect model was used. However, in contrast to the other two forms of
impression management being simulated, the variance in estimates was generally
similar across different models, although slightly greater for the incorrect models at
lower trait levels, and slightly greater for the correct models at higher trait levels.
Also, in contrast to the other forms of impression management, overall error was
almost uniformly larger for the misspecified model, except for individuals at very
high levels of the trait.

These three simulations are generally consistent with the findings for the
continuous response model. Overall, misspecification does generally decrease the
accuracy of estimates, at least for the cases examined here. However, these overall
trends obscure the fact that, under particular circumstances, misspecification might
not decrease estimation accuracy significantly, and might actually slightly improve
estimates.
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Fig. 4 Bias, variance, and MSE of trait estimates as a function of true trait level, for a
population of individuals responding using negative impression management modeled by a two-
parameter logistic (2PL) model, as described in the text. Solid line reflects trait estimates obtained
using population item parameters; dashed line, trait estimates obtained using sample-estimated
impression management item parameters; dashed and dotted line, sample-estimated 2PL normal
response item parameters, and dotted line, sample-estimated 1PL normal response item parameters

For example, negative impression management of the form illustrated in Fig. 4
suggests that misspecification would result in decreased estimation accuracy in
many scenarios. However, for settings where very high trait levels are encountered
(e.g., in settings with high levels of psychopathology, such as hospital settings),
ignoring the impression management might actually produce more accurate es-
timates. Moreover, for the other two forms of impression management being
modeled, in samples having relatively low to moderate levels of the trait, ignoring
the impression management might result in only a slight decrement in accuracy
(in the case of the asymptote-shift form of impression management), or might
actually improve accuracy slightly (in the case of the intercept-shift form of positive
impression management).

Note that focusing entirely on the bias in responses (e.g., illustrated in the top
of Figs. 2, 3, and 4), as is often the case in the literature, would give a misleading
idea of how model misspecification affects estimation accuracy. In all three cases,
the bias was generally larger under the misspecified model (albeit in different
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directions; Fig. 3). However, the variance was affected differently in the different
scenarios, at different levels of the trait, producing more nuanced effects on actual
estimation accuracy.

These phenomena may help explain some findings in the impression manage-
ment literature, where effects of impression management on response can clearly
be demonstrated, but use of this information to estimate trait values appears to
have little impact on the validity of trait estimates (McGrath et al. 2010; Ziegler
et al. 2012). It is possible that in certain cases, the form of impression management
introduces so much uncertainty into trait estimation, that even if respondents were
known with certainty to use impression management, overall trait estimation error
would be relatively unaffected by making use of that information.

Considered together, these three simulations illustrate that use of a correct IRT
model does not always improve estimation error, and may actually worsen it for
certain individuals in certain circumstances. Even when use of a misspecified
model increases bias, if it decreases the variance of the estimates sufficiently, it
may decrease estimation error overall. Although in most cases, use of an incorrect
response model will increase estimation error, in other cases—depending on the
response process, test, and true value of the trait—using an incorrect model may
have little effect on overall estimation error, or might in fact decrease it.

3 The Effects of Misspecification on Estimates of Precision

3.1 Reliability

Mellenbergh (1996) noted that the reliability of a test can be expressed in terms
of the variance of the true trait values, the variance of the expected values of the
estimates, and the expected variance of the estimates:

ρ =
var (θ ∗)

var
[
E
[
θ̂

∣∣∣ θ ∗,γ
]]

+E
[
σ2

(
θ̂

∣∣∣ θ ∗,γ
)] . (12)

In Eq. (12), ρ is the reliability and E again indicates the expectation (i.e.,
average). Reliability is the ratio of true trait variance to total trait estimate variance,
where the total variance is the sum of the variance of the expected values of the
estimates and the expected variance of the estimates conditional on the true trait
values.

The reliability under misspecification can be obtained from Eq. (12) by noting
that the expected value of the estimates conditional on trait value [the expectation
in the first term in the denominator of Eq. (12)] is given by θ*+β , where β is the
bias [Eq. (5)]. Reinserting this gives reliability under misspecification:
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Multiple consequences implied by Eq. (13) are worth noting. First, the reliability
under misspecification depends on the variance of the bias across levels of the true
trait value, not the absolute value of the bias. Most importantly, even if a test model
is biased, if that bias is constant across different levels of the trait, it will not change
reliability relative to a model that is completely unbiased. More accurately, even
if an incorrectly specified model produces biased estimates relative to a correctly
specified model, that bias will not affect reliability if the variance in bias across
the population or sample of interest is the same as the variance in bias under the
correctly specified model.

Initially, results such as those presented in Table 1 and Figs. 1, 2, 3, and 4
might seem to suggest that constant bias across the trait might be an unreasonable
assumption. However, note that the variance involving bias in Eq. (13) applies to the
trait distribution in the sample or population of interest, not the entire range of the
trait. Moreover, even if the bias varies across the entire trait, if it varies similarly
under misspecified and correct models, the reliability will be affected similarly.
If the bias under a misspecified model is relatively constant within the population
of interest—or does not vary more than the correctly specified model—it will not
decrease reliability relative to a correctly specified model. In Fig. 2, for example,
the bias under both the correct and misspecified model is relatively constant for trait
values from 0 to 1; in a sample from that range, the reliability would be less affected
by bias than a sample from elsewhere in the range of the trait where the bias varies
more greatly.

A second notable consequence of Eq. (13) is that direction as well as magnitude
of covariation between bias and trait level can substantially influence the observed
variance in estimates, and therefore, the reliability. In particular, if the bias and latent
trait negatively covary, the observed variance will decrease and the reliability will
increase. In fact, if the covariance between the bias and trait is sufficiently negative,
it might offset the other terms in Eq. (13) and produce a reliability greater than one.
Similarly, if the bias and latent trait positively covary, the observed variance will
increase and the reliability will decrease. In this way, the shape as well as variance
of the bias also will affect reliability.

A final consequence implied by Eq. (13) is that the reliability under misspecifi-
cation does depend on the absolute magnitude of the variance of the estimates. A
decrease in variance under misspecification—as is illustrated in Figs. 2 and 3—will
actually contribute to an increase in reliability.

In order to illustrate these phenomena, reliabilities were calculated under the
three impression management scenarios illustrated in Figs. 1, 2, 3, and 4. In each
case, the population of interest was assumed to have a trait distribution that was
standard normal, and was assumed to be responding using one of the impression
management scenarios illustrated in Figs. 1, 2, 3, and 4. Reliability was calculated
for scores estimated using the correct population model as well for scores estimated
an incorrect model, as described earlier and illustrated in the figures. Reliabilities
were calculated in two ways: using Eq. (13), as well as directly using simulations.
These new simulations were identical to those described earlier, except that 1,000
responses were generated from a standard normal population; the reliability was
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Table 2 Reliabilities of estimates obtained using correct and incorrect models

Analytic reliability estimates Simulation reliability estimates

Population model Correct model Incorrect model Correct model Incorrect model

Continuous, Model A 0.898 1.089 0.900 1.095
Continuous, Model B 0.919 0.762 0.890 0.738
Asymptote shift 0.713 1.082 0.757 1.058
Intercept shift: PIM 0.815 1.579 0.810 1.664
Intercept shift: NIM 0.782 0.978 0.857 1.099

Note: Analytic reliability estimates were obtained using Eq. (13) with values obtained from
simulations whose results are illustrated in Figs. 2, 3, and 4. Reliabilities greater than one are
discussed in the text. Simulation reliability estimates were calculated directly as the ratio of latent
trait variance to observed estimate variance, using methods described in the text. PIM refers to
positive impression management, NIM to negative impression management

calculated directly as the ratio of the latent trait variance to the observed estimate
variance. For the continuous response models, the bias and variance functions were
calculated directly using Eqs. (9) and (10). For the discrete response models, values
used in Eq. (13) were derived from the previous simulations (e.g., Eq. (13) was
calculated using the bias functions illustrated in Figs. 2, and 3).

Table 2 presents these reliabilities, for scores estimated using correct and
incorrect models, for each of the impression management scenarios. The analytic
estimates using Eq. (13) and the directly calculated reliabilities are similar, support-
ing the accuracy of Eq. (13).

Note that the reliabilities greater than one in Table 2 are not in error. The cases
where this occurs involve scenarios in which an incorrect model is used and the bias
is negatively related to the trait (compare with Table 1 and Figs. 2, 3, and 4). The
negative covariance between the bias and the trait [Eq. (13)] decreases the observed
variable variance to the point where the observed variance in estimates is actually
less than the true trait variance, producing a reliability greater than one. For example,
in the scenario where the normal-response 2PL model is incorrectly applied to a
group of individuals responding under an asymptote-shift impression management
model, the covariance between the bias and the trait in a standard normal population
is approximately −0.201 and the variance in bias is 0.06, producing a variance in
expected scores equal to 0.658; as the expected variance is 0.266, this produces an
observed variable variance of approximately 0.924, and a reliability equal to 1.082.
Note that in the one case where the bias of the incorrect model positively covaries
with the trait (cov(θ*, β )= 0.098), in the case of continuous response population
Model B, the reliabilities are less than one.

A related point important to emphasize about Table 2 is that the greater reliabili-
ties under the incorrect models are not overestimates of the reliability—reliability is
a property of a score or estimate, which will depend on the particular estimation
model being used in addition to the test and sample. Although these examples
illustrate that the reliability can provide a misleading sense of test precision when
models are misspecified, it should be emphasized that the reliabilities under many of
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the incorrect models illustrated in the table are actually greater than the reliabilities
under the correct models. That is, the ratio of the true trait variance to observed
score variance will be greater when using an incorrect model in many settings.

3.2 Information and Confidence Intervals

Given that model misspecification can substantially impact the variance of esti-
mates, it is important to determine how it impacts item or test information functions
as summaries of measurement precision. A related, more general question is how
misspecification affects indices of estimation precision, such as confidence intervals.
Regardless of how the accuracy and precision of estimates are actually affected
by misspecification, if that effect is represented well in indices of overall accuracy
and precision, uncertainty due to misspecification can be quantified and used to
make decisions based on the trait estimates. If, on the other hand, indices of overall
accuracy and precision do not represent effects of misspecification well, it becomes
difficult to know how to quantify uncertainty due to model misspecification and use
it to make decisions.

3.2.1 Robust Information

A variety of authors (e.g., Freedman 2006; Huber 1967; Kent 1982; Vuong 1989;
White 1982) have discussed estimates of information under misspecification. In the
current setting, the information associated with an estimate of a single latent trait
value from a very long test is given by

Ir

(
θ̂
)
=

H2

J
=

[
∑lnP′′

(
Xj

∣∣∣θ̂)]2

∑
[
lnP′

(
Xj

∣∣∣θ̂)]2 . (14)

In Eq. (14), H is the sum of second derivatives of the log-likelihood across items,
at the maximum likelihood estimate, and J is the sum of squared first derivatives
of the log-likelihood at the same estimate (note that the derivatives are empirically
observed values, not expected values under the model). The robust variance of the

estimate at the maximum likelihood estimate is then given by Vr = 1/Ir

(
θ̂
)

.

The robust information, Ir, is well known in the literature and holds asymptoti-
cally even when the model is misspecified. As many authors have noted, however,
the robust information performs more poorly in scenarios involving small numbers
of observations (e.g., in terms of confidence interval coverage or hypothesis tests),
such as those scenarios typically encountered in psychological measurement. The
robustness properties of Ir are asymptotic, for very large numbers of observations;
in a psychological measurement scenario, this would correspond to very long tests
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that are rarely encountered in practice (e.g., tests that are 100s of items long). For
this reason, it is unclear whether the robust information would be any more useful in
typical psychological measurement scenarios than the assumed information under
the misspecified model.

3.2.2 Simulations

Simulations were conducted in order to explore the accuracy of confidence intervals
based on the robust information. Conditions were the same as in the previous
simulations of impression management (i.e., the asymptote and intercept-shift
models). Confidence intervals were created for each simulated trait estimate using
two different estimators of information: the assumed model information and the
robust information [Eq. (14)]. In all conditions, a nominal coverage of 0.95 was
assumed, corresponding to an overall nominal 0.05 Type I error rate.

Results of these simulations are presented in Table 3. In interpreting the values
in the tables, it is important to remember that sampling variation in item parameter
estimates was included in simulations and therefore affected coverage.

Examining the results in Table 3, three broad trends become apparent. First,
as would be predicted, intervals were generally, although not always, closer to
nominal values for correctly specified models compared to incorrectly specified
models. Second, intervals conditional on trait level varied substantially with trait
level in terms of how close they were to nominal values. Finally, use of the assumed
information generally, but again not always, produced confidence intervals that
were closer to their nominal values than use of the robust information. However,
actual coverage levels using robust information were not necessarily further from
their nominal levels under misspecification, and differences between the different
estimators were not large.

Overall, our results echo the conclusions of Freedman (2006), who argued that
the possible benefits to be accrued from using robust information are likely small
when weighed against the much larger effects of misspecification. In our results,
use of the information under the assumed but possibly incorrect model performed
approximately as well as the robust information, suggesting little difference between
the two in practical use, especially given that the effects of misspecification could
be large.

4 Important Areas of Inquiry

4.1 Model Averaged Estimates

Given the effects of misspecification demonstrated thus far, how might one obtain
trait estimates and estimates of precision when there is uncertainty about the
appropriate model? In general, two approaches have been developed: the model
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selection approach and the model averaging approach (Buckland et al. 1997;
Claeskens and Hjort 2008; Draper 1995). The model selection approach is relatively
standard in the psychometric and assessment literature: in this approach to model
uncertainty, one attempts to identify the optimal model for a given respondent, based
on model selection statistics or appropriateness indices, and use that optimal model
to estimate or make other inferences about trait level (a common variant of the
model selection approach is to identify individuals for whom a desired model is
inappropriate or less optimal, and not make inferences about their trait level).

The model averaging approach, in contrast, is a relatively novel approach to
handling model uncertainty in assessment settings. In this approach, multiple
trait estimates are obtained for each respondent, using the different models under
consideration, and are averaged, weighting each estimate by the optimality of the
corresponding models. Specifically, the model averaged estimate, θ̃ , is given by

θ̃ =∑wmθ̂m, (15)

where wm is some index of the relative optimality of model m for the respondent
(e.g., a value of a person-fit or model selection statistic) and θ̂m is the estimate
obtained with model m. Usually the weights wm are scaled so that they sum to one.

Model averaging offers a number of potential benefits over a model selection ap-
proach to handling modeling uncertainty in trait estimation. First and perhaps most
importantly, research suggests that model averaging reliably improves the accuracy
of estimates under conditions of model uncertainty (Burnham and Anderson 2004).
This can be explained intuitively by noting that in a model selection approach, there
will be errors of model selection, which will increase the variability of estimates. By
weighting estimates under different models in a way that is inversely proportional
to the risk of error, and then averaging, the variability of estimates due to selection
error is decreased. This can also be seen by noting that a model selection approach is
equivalent to a model averaging approach where unit weights are used in the latter
(i.e., wm is 1 for the best fitting model and 0 for all other models). Although this
might be appropriate in certain settings, such weights will overstate the certainty of
model selection in many cases, underestimating the effect of model selection errors
on estimation variance (Leeb and Pötscher 2005).

Another advantage to model averaging is that it allows one to incorporate model
uncertainty into indices of trait estimate uncertainty (e.g., in quantifying measure-
ment information or calculating confidence intervals). Just as sampling variation
contributes one source of uncertainty about trait level, model uncertainty contributes
another. Rather than conceptualizing model misspecification as a problem requiring
identification of misfitting response profiles, treating them as misfitting or not, one
can instead assume that model uncertainty is part of the trait estimation process, and
incorporate it into indices of estimation error.

Initial simulation results, not reported here, are consistent with previous research
in suggesting that, in cases of model uncertainty, incorporating that uncertainty into
estimates and associated confidence intervals through the use of model averaging
produces more accurate estimates than if one used model selection to identify a
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best model to use for estimation. Model averaging accounts for errors in the model
selection process by weighing different models by their likelihood of being optimal,
thereby “hedging” estimates against different models. Further research is needed
to verify these results and understand how different model averaging approaches
perform.

4.2 Bayesian Estimation

Throughout this paper, we have assumed that trait estimates are obtained through
maximum likelihood inference. One important question is how the conclusions
drawn here might generalize to trait estimates obtained through Bayesian inference,
which is increasingly being used in a number of assessment settings.

Some of the phenomena illustrated here are likely to generalize in a straight-
forward way to the Bayesian case. Bunke and Milhaud (1998), for example,
demonstrated that under very general conditions, under misspecification, Bayesian
estimates will converge to the same expected value as the maximum likelihood
estimate [Eq. (2)], and will have a variance similar in form to the inverse of
the robust information [Eq. (14); the exact form depends on the specific type of
Bayesian estimator]. These results apply asymptotically, however, for very large
tests, and it is unclear how they would generalize to finite samples of observations,
with smaller tests. Bayesian inference itself can be seen as a form of estimation
in which a potential bias is induced (through the prior; e.g., Bickel and Blackwell
1967) in order to reduce variance, raising further questions about the small-sample
bias, variance, and error of Bayesian estimates under model misspecification.

Model averaged estimates, similarly, are formulated naturally within a Bayesian
paradigm. In the case of Bayesian estimation, model averaged estimates are obtained
by integrating the likelihood over the posterior distribution of the model, which itself
can be decomposed into priors involving the model and its parameters and another
likelihood (Draper 1995; Hoeting et al. 1999; Walker et al. 2001). How to integrate
model uncertainty into Bayesian trait estimation, especially in applications such as
computerized adaptive testing, is an important area for future inquiry. Questions
about choices of priors, the form of Bayesian estimation, and how to integrate
uncertainty into Bayesian adaptive testing design all require additional investigation.

4.3 Random Model Misspecification and Multiparameter
Models

Random model misspecification is another critical area for future inquiry. The
scenarios examined here reflected fixed forms of model misspecification, where the
form of misspecification was the same for all individuals. Although this simplifies
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exploration of phenomena, it is likely unrealistic in many settings, where the degree
of misspecification will likely vary randomly across individuals (due to, e.g., group
or idiographic factors). Relatedly, many models will include multiple parameters,
including parameters representing possible sources of misspecification—impression
management or response style parameters, for example.

Various authors have explored the effects of model uncertainty in these settings.
Claeskens and Hjort (2008; also Hjort and Claeskens 2003), for example, focus
on the multiparameter setting, as do Liang et al. (2011). Results similar to those
discussed here are obtained in the multiparameter case, but generally incorporate
the effects of estimating one nuisance parameter on the parameter of interest (e.g.,
the effects of estimating an impression management parameter on estimation of a
trait parameter).

5 Summary and Recommendations for Applied
Assessment Settings

Model misspecification and uncertainty is an important issue arising in a number of
measurement and assessment settings. Here, we have attempted to clarify the role
of model misspecification in psychological measurement by addressing the effect
of misspecification and uncertainty on the psychometric properties of estimates.
Although model misspecification will often negatively impact estimates, its effects
can be unintuitive and complex, helping to explain certain findings in the literature.
We conclude by offering recommendations for applied assessment settings.

5.1 Consider Total Error, Including Variance as Well as Bias
Effects, of Misspecified Models

It is our sense that the applied literature on misspecification has focused much more
extensively on bias effects than variance effects, which can be misleading given
that overall error is a function of both. There are various examples of this focus
on bias in the literature (Meade 2010; Nye and Drasgow 2011). One explanation
for this focus might be a seemingly reasonable but incorrect assumption that the
form of misspecification will directly parallel its effects on estimation accuracy and
precision. For example, it is tempting to assume that misspecification limited to a
location shift (e.g., a shift in intercepts or thresholds) will result solely in a shift in
expected values of estimates (i.e., bias). Although this might be true under certain
circumstances (e.g., for continuous normal responses), the current results indicate
that this will often not be the case (e.g., Fig. 3).

This is not to suggest bias effects can or should be ignored—intuitively, and as
evidenced by the results presented here, bias can exert powerful effects on overall
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estimation error. Also, in certain settings where the effects of location shifts are
amplified, bias effects might predominate. For example, in classification or selection
settings, even if overall estimation error is similar using correct and incorrect
models, if it is increased in the range of the classification or selection threshold,
bias effects might exert strong effects (cf. Kalohn and Spray 1999).

As demonstrated here, variance effects of misspecification can substantially
influence the overall error of estimates, either increasing or decreasing error. For
this reason, we recommend that test users remain mindful of variance as well as
bias effects of misspecification in test scoring, trait estimation, and interpretation.

5.2 Explicitly Determine Misspecification Effects
in a Given Setting

Relatedly, we recommend that effects of misspecification on estimation accuracy
and precision be explicitly determined when issues related to model uncertainty
are important. In the case of continuous responses, equations presented here [Eqs.
(3)–(10)] can be used to quantify the effects of misspecification on MSE; in the
case of discrete responses, simulations could be used. If MSE is an undesirable
index of estimation accuracy for a particular application, other indices (e.g., median
absolute difference) could also be used (Heskes 1998; James 2003). Explicitly
delineating misspecification effects is important because they can be unintuitive or
complex, depending on the form of misspecification, the probability (e.g., base rate)
of misspecification, and true trait level. Characterizing the most likely effects of
misspecification can help prevent errors in interpretation and apparent paradoxes
regarding misspecification.

One important possible example is provided by recent literature on the validity
of impression management indices (McGrath et al. 2010). It is often assumed in
that literature that indices of impression management should moderate the validity
of trait estimates, such that estimates associated with greater values of such indices
should be less valid. However, one important implication of the results obtained here
[e.g., Eq. (13)] is that this assumption can be false: indices of model misspecification
(e.g., validity scales) may not moderate criterion-related validity of test scores, even
if model misspecification exists and negatively affects accuracy and precision.

For instance, consider an estimate of the bias, β̂ , obtained through a validity
scale or other index. As this estimate becomes more accurate, if one conditions
on it, the variance in bias and the covariance between the bias and the trait will,
by definition, go to zero. Examining Eq. (13), it becomes apparent that this will
actually remove the component of the observed score variance due to bias, leaving
only the true variance and expected error variance in trait estimates at each level
of the estimated bias. If these two components of variance do not change across
different levels of bias, β̂ will not moderate the validity of the estimates. In fact,
if variance decreases with misspecification (e.g., as in Fig. 3), β̂ might moderate
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validity in the opposite direction, such that conditioning on β̂ becomes associated
with more valid estimates. In fact, in this case, one would predict more accurate
estimates of bias (e.g., more valid validity scales) to increase conditional validity
even more. Similarly, in the case that error variance does not change across levels
of bias, any moderation effect would decrease with more accurate estimates of bias.

The purpose of this example is not to weigh on the utility of impression
management indices: many other issues regarding their validity and utility have
been discussed (McGrath et al. 2010; Ziegler et al. 2012). However, the example
does illustrate that misspecification effects can be unintuitive, and illustrate the
importance of explicitly delineating these effects when model uncertainty is a
concern.

Acknowledgment We would like to thank Katherine Jonas for her helpful comments on drafts of
this manuscript.

Appendix

Throughout the appendix, to simplify notation, the trait estimate conditional on the

true trait value and model parameters,
(
θ̂

∣∣∣ θ ∗,γ
)

, will be written as θ̂ . As noted in

the text, the variance of the trait estimate can then be written as

σ2 = E

[(
θ̂ −E

[
θ̂
])2

]
= E

[
θ̂ 2

]
−E

[
θ̂
]2
. (16)

Let

f =
∑a j

[
a∗jθ ∗

i +
(

b∗j − b j

)]
/ψ2

j

∑a2
j/ψ2

j

and g =
∑

[
a je∗i j

]
/ψ2

j

∑a2
j/ψ2

j

. (17)

Then, following Mellenbergh (1994b), page 231, and substituting a∗j θ ∗
i + b∗j + e∗ij

for xij in Eq. (7), one has θ̂ = f +g, and E
[
θ̂
]
= E [ f + g] = E [ f ]+E [g]. However,

assuming that the mean true error e∗ij is zero, the second term, E[g], equals zero, so

E
[
θ̂
]
= E [ f ] = f [Eq. (8)]. Substituting back into Eq. (16), one has

σ2=E
[
( f+g)2

]
− f 2=E

[
f 2+2 f g+g2]− f 2 = E

[
f 2]+E [2 f g]+E

[
g2]− f 2.

(18)

However, if the expected true error e∗ij is zero, the second term on the rightmost

side is zero, and the first and last terms cancel, leaving E[g2]:
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σ2 = E
[
g2]= E

⎡
⎢⎣
[
∑

[
a je∗i j

]
/ψ2

j

]2

[
∑a2

j/ψ2
j

]2

⎤
⎥⎦ . (19)

The denominator in the expectation can be treated as a constant. The numerator
in the expectation expands to

[
∑

[
a je

∗
i j

]
/ψ2

j

]2
=

a2
1(

ψ2
1

)2 e∗i1
2 +

a2
j(

ψ2
j

)2 e∗i j
2 +

a1

ψ2
1

a j

ψ2
j

e∗i1e∗i j + · · · . (20)

However, with uncorrelated errors, all the multiplicative terms [represented by
the last term in Eq. (20)] equal zero in expectation. This gives

E
[[
∑

[
a je

∗
i j

]
/ψ2

j

]2
]
= E

[
a2

1(
ψ2

1

)2 e∗i1
2

]
+E
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⎢⎣ a2

j(
ψ2

j

)2 e∗i j
2
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⎥⎦+ . . .
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a2
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ψ2

1

)2 E
[
e∗i1

2]+ a2
j(

ψ2
j

)2 E
[
e∗i j

2]+ · · · . (21)

Note, though, that ψ*2
j =E[(e∗ij −E[e∗ij])2]=E[e∗ij2]−E[e∗ij]2. Assuming the

mean of the errors is zero, this implies ψ*2
j =E[e∗ij2]. Substituting this back into

Eq. (21), and combining with Eq. (19), this gives

σ2 =
∑ a2

j

ψ2
j

ψ∗2
j

ψ2
j[

∑ a2
j

ψ2
j

]2 .

References

Akaike, H. (1973). Information theory and an extension of the likelihood principle. In B. N. Petrov
& F. Csaki (Eds.), Proceedings of the second international symposium of information theory
(pp. 267–281). Budapest: Akademiai Kiado.

Baer, R. A., & Miller, J. (2002). Underreporting of psychopathology on the MMPI-2: A meta-
analytic review. Psychological Assessment, 14, 16–26.

Bartholomew, D. J., & Knott, M. (1999). Latent variable models and factor analysis. London:
Arnold.

Bartlett, M. S. (1937). The statistical conception of mental factors. British Journal of Psychology,
3, 77–85.



112 K.E. Markon and M. Chmielewski

Bickel, P., & Blackwell, D. (1967). A note on Bayes estimates. Annals of Mathematical Statistics,
38, 1907–1911.

Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2003). The theoretical status of latent
variables. Psychological Review, 110, 203–219. doi:10.1037/0033-295X.110.2.203.

Borsboom, D., Romeijn, J., & Wicherts, J. M. (2008). Measurement invariance ver-
sus selection invariance: Is fair selection possible? Psychological Methods, 13, 75–98.
doi:10.1037/1082-989X.13.2.75.

Buckland, S. T., Burnham, K. P., & Augustin, N. H. (1997). Model selection: An integral part of
inference. Biometrics, 53, 603–618.

Bunke, O., & Milhaud, X. (1998). Asymptotic behavior of Bayes estimates under possibly incorrect
models. Annals of Statistics, 26, 617–644.

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding
AIC and BIC in model selection. Sociological Methods & Research, 33, 261–304.
doi:10.1177/0049124104268644.

Claeskens, G., & Hjort, N. L. (2008). Model selection and model averaging. Cambridge:
Cambridge University Press.

Clark, L. A. (1993). Schedule for nonadaptive and adaptive personality (SNAP). Manual for
administration, scoring, and interpretation. Minneapolis: University of Minnesota Press.

Clark, L. A., Simms, L. J., Wu, K. D., & Casillas, A. (1993). Schedule for Nonadaptive and
Adaptive Personality—Second edition (SNAP-2). Minneapolis: University of Minnesota Press.

Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 57, 45–97.

Ferrando, P. J., & Anguiano-Carrasco, C. (2009). Assessing the impact of faking on binary
personality measures: An IRT-based multiple-group factor analytic procedure. Multivariate
Behavioral Research, 44, 497–524.

Forster, M. R. (2000). Key concepts in model selection: Performance and generalizability. Journal
of Mathematical Psychology, 44, 205–231. doi:10.1006/jmps.1999.1284.

Freedman, D. A. (2006). On the so-called “Huber sandwich estimator” and “robust standard
errors”. The American Statistician, 60, 299–302.

Gustafson, P. (2001). On measuring sensitivity to parametric model misspecification. Journal of
the Royal Statistical Society, Series B: Statistical Methodology, 63, 81–94.

Hendrawan, I., Glas, C. A. W., & Meijer, R. R. (2005). The effect of person misfit on classification
decisions. Applied Psychological Measurement, 29, 26–44. doi:10.1177/0146621604270902.

Hero, A. O., Fessler, J. A., & Usman, M. (1996). Exploring estimator bias-variance tradeoffs using
the uniform CR bound. IEEE Transactions on Signal Processing, 44, 2026–2041.

Heskes, T. (1998). Bias/variance decompositions for likelihood-based estimators. Neural Compu-
tation, 10, 1425–1433. doi:10.1162/089976698300017232.

Hjort, N., & Claeskens, G. (2003). Frequentist model average estimators. Journal of the American
Statistical Association, 98, 879–899.

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging:
A tutorial. Statistical Science, 14, 382–417.

Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions.
In L. M. Le Cam & J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability (Statistics, Vol. 1, pp. 221–233). Berkeley: University
of California Press.

James, G. M. (2003). Variance and bias for general loss functions. Machine Learning, 51, 115–135.
Kalohn, J. C., & Spray, J. A. (1999). The effect of model misspecification on classification

decisions made using a computerized test. Journal of Educational Measurement, 36, 47–59.
Kent, J. T. (1982). Robust properties of likelihood ratio tests. Biometrika, 69, 19–27.
Leeb, H., & Pötscher, B. M. (2005). Model selection and inference: Facts and fiction. Econometric

Theory, 21, 21–59. doi:10.1017/S0266466605050036.
Liang, H., Zou, G., Wan, A. T. K., & Zhang, X. (2011). Optimal weight choice for frequentist

model average estimators. Journal of the American Statistical Association, 106, 1053–1066.

http://dx.doi.org/10.1037/0033-295X.110.2.203
http://dx.doi.org/10.1037/1082-989X.13.2.75
http://dx.doi.org/10.1177/0049124104268644
http://dx.doi.org/10.1006/jmps.1999.1284
http://dx.doi.org/10.1177/0146621604270902
http://dx.doi.org/10.1162/089976698300017232
http://dx.doi.org/10.1017/S0266466605050036


Model Misspecification and Uncertainty 113

Loken, E., & Rulison, K. L. (2010). Estimation of a four-parameter item response the-
ory model. British Journal of Mathematical and Statistical Psychology, 63, 509–525.
doi:10.1348/000711009X474502.

Lord, F. M. (1983). Unbiased estimators of ability parameters, of their variance, and of their
parallel-forms reliability. Psychometrika, 48, 233–245.

Lowerre, J. M. (1974). On the mean square error of parameter estimates for some biased estimators.
Technometrics, 16, 461–464.

McGrath, R. E., Mitchell, M., Kim, B. H., & Hough, L. (2010). Evidence for response bias
as a source of error variance in applied assessment. Psychological Bulletin, 136, 450–470.
doi:10.1037/a0019216.

Meade, A. W. (2010). A taxonomy of effect size measures for the differential functioning of items
and scales. Journal of Applied Psychology, 95, 728–743. doi:10.1037/a0018966.

Meijer, R. R. (2003). Diagnosing item score patterns on a test using item response theory-based
person-fit statistics. Psychological Methods, 8, 72–87. doi:10.1037/1082-989X.8.1.72.

Mellenbergh, G. J. (1994a). Generalized linear item response theory. Psychological Bulletin, 115,
300–307.

Mellenbergh, G. J. (1994b). A unidimensional latent trait model for continuous item responses.
Multivariate Behavioral Research, 29, 223–236.

Mellenbergh, G. J. (1996). Measurement precision in test score and item response models.
Psychological Methods, 1, 293–299.

Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychome-
trika, 58, 525–543.

Millsap, R. E. (1997). Invariance in measurement and prediction: Their relationship in the single-
factor case. Psychological Methods, 2, 248–260.

Millsap, R. E. (2007). Invariance in measurement and prediction revisited. Psychometrika, 72,
461–473.

Millsap, R. E., & Everson, H. T. (1993). Methodology review: Statistical approaches for assessing
measurement bias. Applied Psychological Measurement, 17, 297–334.

Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person
back into scientific psychology, this time forever. Measurement: Interdisciplinary Research &
Perspective, 2, 201–218. doi:10.1207/s15366359mea0204_1.

Moustaki, I., & Knott, M. (2000). Generalized latent trait models. Psychometrika, 65, 391–411.
Mungas, D., Widaman, K. F., & Reed, B. R. (2011). Measurement invariance of neuropsychologi-

cal tests in diverse older persons. Neuropsychology, 25, 260–269.
Nye, C. D., & Drasgow, F. (2011). Effect size indices for analyses of measurement equivalence:

Understanding the practical importance of differences between groups. Journal of Applied
Psychology, 96, 966–980. doi:10.1037/a0022955.

Rao, P. (1971). Some notes on misspecification in multiple regressions. The American Statistician,
25, 37–39.

Reise, S. P., Smith, L., & Furr, R. M. (2001). Invariance on the NEO PI-R neuroticism scale.
Multivariate Behavioral Research, 36, 83–110. doi:10.1207/S15327906MBR3601_04.

Roznowski, M., & Reith, J. (1999). Examining the measurement quality of tests containing
differentially functioning items: Do biased items result in poor measurement? Educational and
Psychological Measurement, 59, 248–269.

Simms, L. J., & Clark, L. A. (2001). Detection of deception on the schedule for nonadap-
tive and adaptive personality: Validation of the validity scales. Assessment, 8, 251–266.
doi:10.1177/107319110100800302.

Simms, L. J., Turkheimer, E., & Clark, L. A. (2007). Novel approaches to the structure of
personality disorder. Symposium presented at the 21st annual meeting of the society for
research in psychopathology, Iowa City.

Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel,
longitudinal, and structural equation models. Boca Raton: Chapman & Hall/CRC.

Thissen, D., & Wainer, H. (1990). Confidence envelopes for item response theory. Journal of
Educational Statistics, 15, 113–128.

http://dx.doi.org/10.1348/000711009X474502
http://dx.doi.org/10.1037/a0019216
http://dx.doi.org/10.1037/a0018966
http://dx.doi.org/10.1037/1082-989X.8.1.72
http://dx.doi.org/10.1207/s15366359mea0204_1
http://dx.doi.org/10.1037/a0022955
http://dx.doi.org/10.1207/S15327906MBR3601_04
http://dx.doi.org/10.1177/107319110100800302


114 K.E. Markon and M. Chmielewski

Todros, K., & Tabrikian, J. (2011). Uniformly best biased estimators in non-Bayesian
parameter estimation. IEEE Transactions on Information Theory, 57, 7635–7647.
doi:10.1109/TIT.2011.2159958.

Tsutakawa, R. K., & Johnson, J. C. (1990). The effect of uncertainty of item parameter estimation
on ability estimates. Psychometrika, 55, 371–390.

von Eye, A. (2004). The treasures of Pandora’s box. Measurement: Interdisciplinary Research and
Perspectives, 2, 244–247.

Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses.
Econometrica, 57, 307–333.

Wainer, H., & Thissen, D. (1987). Estimating ability with the wrong model. Journal of Educational
Statistics, 12, 339–368.

Walker, S. G., Gutierrez-Pena, E., & Muliere, P. (2001). A decision theoretic approach to model
averaging. Journal of the Royal Statistical Society. Series D (The Statistician), 50, 31–39.

Waller, N. G., & Reise, S. P. (2009). Measuring psychopathology with non-standard IRT models:
Fitting the four parameter model to the MMPI. In S. Embretson & J. S. Roberts (Eds.),
New directions in psychological measurement with model-based approaches (pp. 147–173).
Washington, DC: American Psychological Association.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50,
1–25.

Xu, W., Baggeroer, A. B., & Bell, K. L. (2004). A bound on mean-square estimation error with
background parameter mismatch. IEEE Transactions on Information Theory, 50, 621–632.
doi:10.1109/TIT.2004.825023.

Yang, J. S., Hansen, M., & Cai, L. (2012). Characterizing sources of uncertainty in item response
theory scale scores. Educational and Psychological Measurement, 72(2), 264–290.

Zhang, J., Xie, M., Song, X., & Lu, T. (2011). Investigating the impact of uncertainty about item
parameters on ability estimation. Psychometrika, 76, 97–118.

Ziegler, M., MacCann, C., & Roberts, R. D. (Eds.). (2012). New perspectives on faking in
personality assessment. New York: Oxford University Press.

http://dx.doi.org/10.1109/TIT.2011.2159958
http://dx.doi.org/10.1109/TIT.2004.825023


A State Space Approach to Modeling IRT
and Population Parameters from a Long
Series of Test Administrations

Richard G. Wanjohi, Peter W. van Rijn, and Alina A. von Davier

1 Introduction

In certain standardized educational assessments, there are many administrations of
test forms of the same assessment over a specific period. The issue of equating
these test forms from long series of test administrations is complicated, because
the statistical properties of the items and the student populations can be volatile.
Populations of test takers are always changing over time. For example, testing
companies can target new groups or countries as to expand their business, where
the ability level of these new groups can be quite different from the current group
of test takers. In addition, external influences can have serious effects. For instance,
if, at a certain point in time, a test is accredited for some sort of certification by
a government, this can have a major and direct influence on the population of test
takers. In addition, test preparation can become more and more popular, which can
lead to increased scores. Most of the techniques and methodologies for equating are,
however, assuming stable statistical properties for items, student population, or both.
In addition, most equating techniques are concerned with relatively few forms to be
equated (in the simplest case, there are two). The framework that we use for equating
long series of test administrations is based on item response theory (IRT). The first
step, then, is to estimate the parameters of an appropriate IRT model. If the test
forms contain common items, then concurrent calibration procedures can be used to
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estimate the IRT model parameters. If the number of administrations becomes large,
the model parameters might have drifted gradually over time or broken from their
initial distribution. This may occur for any number of reasons, including changes
in institutional arrangements, economics, or policy, or, more seriously, breaches
of security and mistakes in test development. Drift in the model parameters is an
important aspect to consider in equating long series of test forms, because, if it
is ignored, it can seriously impact the scores of the test takers. Therefore, there is a
need to develop methodology to detect such drift, so that it can be addressed quickly.

Commonly used quality control techniques in the field of educational testing
have mainly focused on the detection of changes or drift in item parameters in the
context of computerized adaptive testing (Veerkamp and Glas 2000; Glas 2000).
These techniques include straightforward and effective visual inspection charts like
the Shewhart control and cumulative sum (CUSUM) charts (Glas 1998). The use
of such techniques in the context of equating large numbers of test forms can be
limited. In particular, the standard CUSUM charts that have been used in educational
measurement do not work well if the variables of interest exhibit correlation over
time, even at low levels (VanBrackle and Reynolds 1997). Time series techniques
are more suited to deal with such correlations and, therefore, will be used in the
present paper.

In recent years, researchers have considered monitoring the distributions of
various variables over a long series of test administrations (Li et al. 2011). Some
of these variables are means and variances of the scaled and raw scores, means
and variances of IRT parameters, IRT linking parameters, automated and human
scoring data, and background variables (Keller and Keller 2011; Brinkhuis and
Maris 2009). Li et al. (2011) monitored the distribution of the mean scaled scores
using autoregressive integrated moving average (ARIMA) models. However, they
assumed that the distribution of test takers’ ability is stationary over time. There is
a need to develop fast, flexible, and effective procedures to monitor the variables of
interest over time and capture any unusual patterns in these large data streams in real
time. For example, in the context of monitoring scale scores, Lee and von Davier
(in press) discuss quality control charts and time series techniques, and von Davier
(2012) provides an overview including data mining techniques.

We will demonstrate the use of state space modeling techniques to model IRT
characteristics in the context of equating long series of test forms. In our approach,
the item parameters from the 2-parameter logistic model (2PLM) are combined with
population parameters from a Gaussian distribution (van Rijn et al. 2010). In this
paper, we will focus on sudden breaks (change points or jumps), trends, seasonal
effects, and outliers in the population means in this model, but the methodology can
be applied to other parameters in the model as well (e.g., the item parameters or the
population variance). In our case, however, the estimated population means from
each administration serve as input for the state space model.

The outline of the present paper is as follows. First, the 2PLM and state space
model for the population means are discussed. Next, models for breaks, trends,
seasonal effects, and outliers in the population means are introduced. Then, we
illustrate our approach through three different examples with simulated data. The
paper ends with a discussion.
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2 IRT and State Space Models

IRT models and their estimation are described in Lord and Novick (1968), van der
Linden and Hambleton (1997), and Rao and Sinharay (2007). In the 2PLM,
the probability of a correct answer to dichotomous item j is modeled as fol-
lows (Birnbaum 1968)

P(x j = 1|θ ) = 1
1+ exp(−a j(θ − b j))

(1)

where a j is an item discrimination parameter, b j is an item difficulty parameter, and
θ is the unobserved ability level. We assume that ability θ is normally distributed
with mean μ and variance σ2. In addition, we assume that there exists a series
of T test administrations where a different population mean is assumed for each
administration and that both item and population parameters can be calibrated
concurrently through a linking design by means of marginal maximum likelihood
estimation (see Li et al. 2011). In this paper, we will focus on the population means,
and we denote the series of estimated populations μ̂t by yt for t = 1, . . . ,T , so that we
can retain straightforward notation for the state space model. However, whenever an
item is used in multiple administrations, its parameters can be inspected for drift by
the state space methods discussed next.

State space models provide an effective basis for practical time series analysis
and forecasting. They are used in a wide range of fields including statistics,
econometrics, genetics, and engineering (Lindquist and Picci 1981; West and
Harrison 1997; Durbin and Koopman 2001). A state space model involves two
processes: the observation process and the unobserved state process. The state-
space approach to time series modeling focuses attention on the state vector process
of a system, because the state vector contains all relevant information required to
describe the system under investigation.

In our case, the observation process is the univariate series of estimated popu-
lation means yt , t = 1, . . . ,T which are related to an unobserved state vector αt of
dimension p through an observation equation. Although we assume that we obtain
this mean from the estimation of a general linear mixed model, this is not strictly
necessary to specify a time series model. That is, simple estimated means from the
scaled scores derived from equating techniques other than concurrent calibration
can also serve as input. The dynamics of the state vector are captured in the state
equation, and the state vector can contain different elements depending on the
dynamic model that is used. Both equations can be given by

yt = f (αt ,vt ,ψ), (observationequation) (2)

αt = g(αt−1,wt ,φ), (stateequation) (3)

where f and g are known functions, vt and wt are independent error sequences, and
ψ and φ are vectors of unknown parameters in the model.
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2.1 Linear State Space Models

Linear Gaussian state space models are also referred to as dynamic linear models
(DLMs). In a DLM, the functions f and g are linear functions, and the distributions
of the error sequences are assumed to be Gaussian. For our case, a DLM can be
specified as follows

yt = Ftαt + vt , vt ∼ N(0,Vt), (4)

αt = Gtαt−1 +wt , wt ∼ N(0,Wt). (5)

where Ft and Gt are known design and transition matrices of order 1× p and p× p,
respectively, and vt and wt are two independent sequences of independent Gaussian
random vectors with mean zero and known variance matrices Vt and Wt , respectively.

2.2 Particular Cases of the Linear State Space Model

We will make use of the three instances of the linear state space model to
accommodate breaks, trends, and seasonality in the series of population means: the
random walk plus noise model, the linear trend model, and

(i) The random walk model plus noise model, or local level model, can be
denoted as

μt = αt + vt , vt ∼ N(0,Vt),

αt = αt−1 +wt , wt ∼ N(0,Wt), (6)

where p = 1 and F = G = 1. This model is appropriate for population means
showing no clear trend and seasonal variations.

(ii) In the local linear trend model, the dimension of the state vector and associated
error is two:

μt =

[
1
0

]
αt + vt vt ∼ N(0,Vt),

αt =

[
1 1
0 1

]
αt−1 +wt , wt ∼ N(0,Wt). (7)

These two cases, (i) and (ii) above, are polynomial DLMs with order one
and two, respectively, where the order is the dimension of the state vector.
Polynomial DLMs are commonly used for describing the trend of a time series.

(iii) Seasonal model with linear trend: If there is a seasonal pattern in the series
of population means, then this can also be modeled in the DLM framework.
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We first write the model for a series with S seasons as a structural time series
model as follows (Harvey 1989)

μt = β1t +β2t + γt + εt , (8)

where β1t and β2t comprise a local linear trend model as specified above, εt is
a white noise sequence, and the seasonal component γt is given by

γt =
S/2

∑
j=1

γ jt , (9)

where each γ jt follows

[
γ jt

γ∗jt

]
=

[
cosλ j sinλ j

−sinλ j cosλ j

][
γ j,t−1

γ∗j,t−1

]
+

[
ε jt

ε∗jt

]
, (10)

where λ j = 2π j/S is the frequency in radians. For example, a model with
quarterly observations, a trend, and a yearly cycle reduces to the following
state space model:

μt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
αt + vt vt ∼ N(0,Vt),

αt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
αt−1 +wt , wt ∼ N(0,Wt), (11)

where

αt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β1t

β2t

γ1t

γ∗1t
γ2t

γ∗2t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, wt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1t

w2t

ε1t

ε∗1t
ε2t

ε∗2t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12)
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When the seasonality (or periodicity) varies over time, an autoregressive
process of order two with complex roots can be used. In a similar context, Lee
and Haberman (2012) used harmonic regression to investigate the stability of
mean scale scores.

We note that the assumption of equidistant estimated population means is only
tenable when the test administrations are regular (e.g., weekly). Methods exist to
allow for irregularly spaced test administrations (e.g., weekly, but not in winter and
summer holidays). For strong irregularities, the model can be specified in continuous
time, but the state space representation then accommodates the observations in
discrete time (Harvey 1989; Oud and Singer 2008).

In this paper, we do not take into account the estimation error of the population
mean. We find this reasonable because the sample sizes for the applications we have
in mind are quite large (1,000+). In addition, Lee and Haberman (2012) make use
of scale scores of a series of administrations from which the mean is computed and
do not take into account the estimation error of the scale scores. In addition, note
that estimating the variance from scale scores is susceptible to underdispersion, i.e.,
the variance is underestimated.

The estimation and prediction of the state vector is achieved by computing the
conditional density p(αk,ξ |y1:t), where ξ is a vector of all unknown parameters in
the model. When k = t, we deal with what is referred to as the filtering problem,
where we estimate αt as data arrive. This is the case in many applications, including
test administrations, where data is collected sequentially over time. When k < t,
we have the smoothing problem, where the researcher has all the data and wants to
study retrospectively the state process underlying the observed data. When k > t, we
have the prediction problem, where the researcher is interested in forecasting future
states.

Effective algorithms exist to filter, smooth, and predict the unobserved
states and predict future observations. These algorithms include the Kalman
filter (Kalman 1960) and the Forward Filtering Backward Sampling (FFBS)
algorithm (Frühwirth-Schnatter 1994).

2.3 Detecting Outliers and Breaks

To account for observations and states that are unusual, Petris et al. (2009) replaced
the Gaussian distributions of vt and wt with Student’s t-distribution. Then, the error
sequences in the DLM can be regarded as a mixture of normals, conditional on
the scale parameters, and a vector of latent random variables (Petris et al. 2009;
Shephard 1994). This class of conditionally linear Gaussian state space models
offers a general and convenient framework for parameter learning, state filtering
and detection of observational outliers, structural breaks, or scale drift (Petris et al.
2009).
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Here, we follow Petris et al. (2009) and, therefore, assume that vt follows
a t-distribution with ηy,t degrees of freedom and common scale parameter λy

λ 1/2
y vt |λy,ηy,t ∼ t(ηy,t). (13)

Introducing the latent variable ωy,t , we can equivalently write

vt |λy,ωyt ∼ N(0,(λyωyt)
−1). (14)

Following a similar argument, the conditional distribution of wt can be expressed as

wt,i|λα i,ωαti ∼ N(0,(λα iωαti)
−1), i = 1,2, . . . , p. (15)

From (8) and (9) above, Vt and Wt in (4) can now be expressed as

Vt = (λyωy,t)
−1, (16)

Wt = diagonal(λα iωαti)
−1, fori = 1,2, . . . , p, (17)

and (4) now becomes:

yt = Ftαt + vt , vt ∼ N(0,(λyωyt)
−1) (18)

αt = Gtαt−1 +wt , wti ∼ N(0,(λα iωαti)
−1). (19)

The variable ω can be interpreted as the degree of non-normality of v and w. Small
values of ω will produce large values of v and w. This can be observed by taking,
as baseline, vt ∼ N(0,λ−1

y ) corresponding to ωy = 1. Values of ωy less than 1 make
larger absolute values of vt more likely (Petris et al. 2009). Ideally, if there are no
outliers or break points in the series, the values of the ω’s are expected to be equal
to 1. Specifically, from (16), a small value of ωy corresponds to large variance Vt

making a large vt accounted for, easily, by the model. A small value of ωy will
therefore signal an outlier in the series. Similarly, from (17), a small value of ωα i,t

corresponds to large variance Wt,i (Wt,i is the ith diagonal element of Wt ). A small
value of ωα i,t flags a break or jump in the ith component of the state vector.

Our goal is to estimate the unknown states α0:T and parameters ξ given the data
y1:T . This inference is expressed through the joint posterior density

p(α0:T ,ξ |y1:T ) ∝ p(α0:T |ξ ,y1:T )p(ξ |y1:T ). (20)

In practice, computing the density Eq. (20) is analytically intractable (Gilks et al.
1996), so we resort to Monte Carlo methods and, in particular, Markov Chain
Monte Carlo (MCMC). The most commonly used approach is to implement a
Gibbs sampler to draw from the joint posterior distribution of the states and the
parameters given the data. As mentioned earlier, ξ is the vector of all unknown
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parameters, but, in this study, we are particularly interested in the ω’s. A Gibbs
sampler to draw from this posterior distribution can easily be implemented. For

each ξ ( j) in the MCMC sample of size N, we can draw α( j)
0:T from p(α0:T |ξ =

ξ ( j),y1:T ) using the FFBS algorithm. The parameters are, in turn, drawn from their
full conditional distributions given the states and observations, that is draw ξ ( j)

from p(ξ |y1:T ,α0:T = α( j)
0:T ). This process is repeated for j = 1,2, . . . ,N. The full

conditional distributions for the parameters are easy to derive. For example, the full
conditional distribution of ωy for t = 1,2, . . . ,T is given by

p(ωy| . . .) ∝ p(y1:T |α1:T ,ωy,λy) · p(ωy|ηy)

∝
T

∏
t=1

ω
1
2

y · exp

{
−λyωy,t

2
(yt −Ftαt)

2
}
·ω

η
2 −1

y · exp
{
−ωy

η
2

}

∝ ω
T+ηy

2 −1 · exp

{
−ωy

[
1
2
λy

T

∑
t=1

(yt −Ftαt )
2

]}
(21)

and, therefore,

ωy| . . .∼ Gamma

(
T +ηy

2
,
ηy +λy∑T

t=1(yt −FtXt)
2

2

)
. (22)

The entire sampler is available in Petris (2010).

3 Simulation Design

We simulated data with 20 common items in 100 test administrations, each test
being administered to 100 test takers. A series of simulations was performed in
which the time series of test takers’ ability means contained seasonal effects, trends,
and/or sudden breaks. In particular, test takers’ ability means were simulated to cater
for three different possible instances (a) when the ability means are assumed to be
the same across different forms (b) when there is some linear growth in the ability
means over time, and (c) when the ability means exhibit some seasonality over time.
The results for each of the three cases are presented in the next section.

Difficulty parameters for each item were drawn from a standard normal distribu-
tion, while the discrimination parameters were drawn from a standard log-normal
distribution. The simulated ability means together with the item parameters were
then used to generate item responses under the two parameter logistic model,
Eq. (1).

From the generated data, the item parameters and population means were esti-
mated using the marginal maximum likelihood (MML) estimation method (van der
Linden and Hambleton 1997). The design in this study is a complete data design



A State Space Approach to Modeling IRT and Population Parameters... 123

where all the test takers took the same test with all common items (Kolen and
Brennan 2004). The complete data design was employed to keep things straight-
forward and the concurrent calibration procedure effective. From this procedure,
we obtained a set of estimated item parameters and, for each test administration,
an estimated population mean and variance. The estimated means were then used
as the observed data in the time series analysis. The MCMC methods were used
to compute the joint posterior estimates of the states and the unknown parameters
given the observed data, up to time t.

4 Results

4.1 Local Level Model

As explained earlier, this model is appropriate for series that do not exhibit any trend
or seasonality. The test takers’ mean abilities were drawn from a local level model
(4). The assumption here is that the mean abilities of the different groups of test
takers are the same across different administrations, apart from random fluctuations.
We created intentionally a change point at test administration 73 (t = 73). The
simulated and the estimated ability means are displayed in Fig. 1. We can clearly
see that the two series overlap, an indication that the estimation method is quite
accurate.

To compute the posterior estimates of the states and the parameters in this state
space model, an MCMC algorithm using a random walk plus noise model was run.
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Fig. 1 Simulated and estimated mean abilities for local level model
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Fig. 2 MCMC diagnostic plots for local level model

The MCMC samples were set at 20,500, and the first 500 were removed as burn-in
before the analysis. The MCMC diagnostic plots are displayed in Fig. 2.

From these MCMC diagnostic plots, it is very clear that the trace plots and the
ergodic means —the running sample means—are very stable. The autocorrelation
function (ACF) decays very fast. We can conclude that the convergence has been
achieved and, therefore, go ahead and use the output from MCMC for analysis.

From Fig. 3, we can see that the unobserved states, Xt , which, in this model,
correspond to the test takers’ expected mean ability, are the same across the different
test administrations. The change point at administration 73 is well captured in
the plot. It is also clear that there are many observations that lie outside the
95 % probability interval of the test takers’ expected mean ability. Observation at
administration 58 is, however, very far from the rest.

We can see from Fig. 4, the left panel, that the major break or change point at
administration t = 73 is captured. In the right panel, we can see that there are several
outliers, and the furthest one at administration t = 58 has been captured.

4.2 Local Linear Trend Model

The test takers’ ability means were drawn from a local linear trend model. The
assumption here is that the mean ability of the different populations changes linearly
through time. As discussed earlier, the state in this model is two-dimensional —the
intercept and the slope or growth rate. The simulated test takers’ mean abilities and
the estimated ones, again, were highly correlated. Figure 5 shows the two plots for
this model.
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To compute the posterior estimates of the states and the parameters in this model,
an MCMC algorithm using the linear trend model was run. The MCMC samples
were set at 20,500, and the first 500 were removed as burn-in before the analysis.
Figure 6 shows the MCMC diagnostic plots.
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Fig. 6 MCMC diagnostic plots for linear trend model

From these plots, we can conclude that the convergence has been achieved. The
ergodic means —the running sample means—are very stable, especially at the end
of the iterations. The ACF decays very fast. Next, we use the output from MCMC
for analysis.

Figure 7 shows the plots of the test takers’ simulated, estimated, and true mean
abilities and 95 % confidence interval for the expected mean. There are also several,
but mild, observational outliers.



A State Space Approach to Modeling IRT and Population Parameters... 127

0 20 40 60 80 100

−
2

−
1

0
1

2
3

Test Administration

M
ea

n 
A

bi
lit

y

Estimated Mean Ability
Simulated Mean Ability
Expected Mean Ability
95% prob interval

−
3

Fig. 7 MCMC output for local linear trend model

intercept

Test Administration

ω
θ,

t, 
1

0.
0

0.
4

0.
8

0 10 20 30 40 50 60 70 80 90 100

slope

Test Administration

ω
θ,

t, 
 2

0.
96

0.
98

1.
00

1.
02

0 10 20 30 40 50 60 70 80 90 100

Test Administration

ω
y,

 t

0.
0

0.
4

0.
8

0 10 20 30 40 50 60 70 80 90 100

Fig. 8 Posterior estimates of ω for local linear trend model

From Fig. 8, we can see that there are several outliers, but they are relatively mild.
The intercept component of the state vector is very stable. In the slope component,
the major break at t = 85 has captured. The results from these plots are consistent
with the plot of the expected mean abilities.

4.3 Seasonal Model with Linear Trend

This model has three-dimensional state space: the intercept, slope, and the seasonal
component. The assumption here is that the mean abilities of test takers vary from
one test administration to another, and the tests are administered at different seasons
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Fig. 9 Simulated and estimated mean abilities for seasonal model with linear trend

within a year. For a start, we assume one test form is given per season in any given
year. We also consider four seasons in each year: Spring (S), Summer (U), Fall (F),
and Winter (W). Multiple tests per season can also be modeled. The mean ability
is simulated using linear trend plus seasonal component model. For illustration, we
simulated from year 1996 to 2010, and we intentionally created a change point in
spring of year 2008. The plots of simulated and estimated mean abilities are shown
in Fig. 9.

To compute the posterior estimates of the states and the parameters in this model,
an MCMC algorithm was run. The MCMC samples were set at 20,500, and the
first 500 were removed as burn-in before the analysis. MCMC diagnostics plots are
displayed in Fig. 10.

From these MCMC diagnostic plots, we can conclude that the convergence has
been achieved. We can now go ahead and use the output from MCMC for analysis.

From Fig. 11, it is apparent that the linear trend is stable. This is also confirmed
by the posterior estimates of ω for the slope component of the state. That is ωx,t,2 in
Fig. 12. The major change point in Summer 2008 is well captured in the posterior
estimates of ω for intercept component of the state, ωx,t,1 in Fig. 12. It is clear from
Fig. 11 that we do not have any observational outliers; this is confirmed by very
stable estimates of ωy,t in Fig. 12.

The seasonal instability in Winter of 2006 and Fall and Winter of 2007 apparent
in plots of simulated and estimated mean abilities is well captured by the posterior
estimates of ω for seasonal component, ωx,t,3.
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Fig. 10 MCMC diagnostic plots for seasonal model with linear trend

Test Administration

M
ea

n 
A

bi
lit

y

Simulated Mean Ability

Estimated Mean Ability

Trend

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

−
1

0
1

2

U

F

W

S

U

F

W

S

U

F

W

S

U

F

W

S

U

F

W

S

U

F

W

S

U

F

W

S

U

F

W

S

U

F

W

S

U

F

W

S

U

F

W

S

U

F

W

S

U

F

W

S
U

F

W

S

U

F

W

S

Fig. 11 Simulated and estimated mean abilities, and the trend for seasonal model with linear trend

5 Discussion and Future Directions

This paper investigates the use of DLM in an IRT framework. This approach allows
us to detect, effectively and in real time, any outliers and structural breaks or change
point(s) in population parameters in different test administrations over time. In
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principle, the methodology is capable of dealing with changes in both item and
population parameters over time. The approach then is analogous to detection of
differential item functioning (DIF) where one has to distinguish between actual
differences in ability between groups (known as impact) and actual differences in
item performance conditional on ability (known as DIF). It would, however, be
the case that in studying changes in item parameters over time, this is performed
on an item-by-item basis. Due to effectiveness of this approach on simulated data,
its application to real data sets with complete or incomplete design is encouraged.
Positive results are expected. The approach may also be extended to other different
variables that are to be monitored over a long chain of administrations. Since the
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posterior estimate based on time t cannot be used to evaluate posterior based on
time (t + 1), every time a new observation is made, a totally new Markov chain
has to be simulated. This makes inference using MCMC limited, especially if
the observations are made rapidly (in minutes or hours). We are currently in the
process of designing a fast algorithm to detect the outliers and the breaks using
sets of weighted particles —an approach commonly referred to as sequential Monte
Carlo (Liu and West 2001; Pitt and Shephard 1999; Storvik 2002).
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Detection of Unusual Test Administrations Using
a Linear Mixed Effects Model

Yi-Hsuan Lee, Minzhao Liu, and Alina A. von Davier

1 Introduction

Nowadays, many educational standardized assessments have an (almost) continuous
administration mode. With an increase in the number of administrations of test
forms there is also an increase in the complexity of the quality assurance procedures
needed to maintain the stability of the reported scores. Traditional methods for
quality control (QC; Allalouf 2007) are not sufficient for detecting unusual scores
in a rapid flow of administrations. This study investigates data from several
consecutive administrations that follow a specific equating design (or braiding plan)
and proposes a linear mixed effects model for the detection of abnormal results.

Monitoring and maintaining the quality and stability of the scale scores of a stan-
dardized assessment are perhaps the most important goals of the psychometricians’
work. Global tests are taken all over the world by examinees from different language
groups and different countries. Being responsible for the reported scores to millions
of examinees implies that many layers of quality control are cautiously and seriously
employed, since any mistake or unusual result might affect examinees’ lives. For
testing programs that provide a large number of administrations each year, the
challenge of maintaining comparability of test scores is influenced by the potential
rapid accumulation of errors and by the lack of time between administrations to
apply the usual techniques for detecting and addressing scale drift or anomalous
results. Many traditional techniques available to psychometricians for understanding
and monitoring the equating results (Allalouf 2007) have been developed for tests
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with only a small number of administrations per year, and therefore, while very
valuable and necessary, they are not sufficient for a complex and rapid flow of scale
scores (Lee and von Davier 2013; von Davier 2012). To assess the significance of the
variability of scale scores over time, a different type of techniques is needed. In this
paper, we investigate the usefulness of linear mixed effects models for detecting
the effects of background variables, the administration, and the equating design
(or braiding plan) on the variability of scale scores over time. This approach is
illustrated with real data from 15 administrations of a global English assessment.
In this study we fit a linear mixed effects regression model to test data to predict
scores of certain subgroups and to help detect unusual results.

In recent years, research has been conducted on identifying promising statistical
tools that can be used as QC procedures on assessment data over time. Lee and von
Davier (2013) proposed the inspection of the QC charts, such as the Shewhart and
CUSUM, to detect trends and the application of the change point models to detect
abrupt changes in the flow of scores over time. Li et al. (2011) investigated the use of
time series to model test scores data over time. Lee and Haberman (2013) proposed
the use of harmonic regression to account for the seasonality observed in test scores
over time. The study of Luo et al. (2011) had similar objectives as the current study,
but used data from a test with a very different equating design (or braiding plan)
than ours. They focused on mean score vectors and examined the effects of three
background variables (i.e., testing country, native language, and reason of taking
the test) on the mean scores. This method may lose some information about the
data because the raw, individual data were aggregated by subgroups. Meanwhile,
it had limitations in the selection of the independent variables in order to ensure
decent sample sizes for each subgroup. Therefore, instead of working with mean
scores, in this study we propose a linear mixed effects model with individual scores
as responses to describe the data.

The rest of the paper proceeds as follows. The data set and the model will be
described in Sect. 2. In Sect. 3, results from model selection will be presented, and
interpretations and inferences will be made. The prediction method will be used to
detect unusual score patterns in test administrations for a certain target population
and it will be described in Sect. 4. In the last section, we discuss the limitations of
the study and propose future research.

2 Methods

2.1 Data and Design

The data came from 15 administrations of an international English test. They
included examinees’ scaled scores and their responses to a background ques-
tionnaire. A random sample of 18,000 examinees was drawn from each of the
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Fig. 1 Equating design involved in the 15 administrations (each triangle and circle stands for one
administration. Three of them were given in country A, and the other two were given in country B)

administrations. The 15 administrations can be classified into three groups of five
administrations each based on the equating design: within each group, the five
administrations were linked in a certain way; three of them were assigned to country
A and the other two were assigned to country B. The three groups were randomly
selected from a large pool of administrations. Figure 1 demonstrates the equating
design and data structure.

We looked at the Listening and Reading sections of the test. Each examinee
received a score for each section on a scale from 5 to 495 points. In this study,
Reading and Listening scores were modeled separately. The scores for each section
were treated as a continuous variable.

The background questionnaire contained 14 questions. Basically, they could
be divided into two parts: demographical information and learning experience,
including level of education, major, working status, job, years of learning English,
times of taking this test, daily study time, etc. After a preliminary exploratory
investigation, several variables were selected as potential predictors. Table 1 shows
the complete list of variables of interest as well as their properties and basic
description. They are predictors (i.e., independent variables) considered in the
model selection. The properties of these predictors are discussed in the following
subsections.
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Table 1 List of predictors and their properties

Term Label Property Levels Type Description

Group “group” Random 3 Nominal Group of administrations
Administration “admin” Random 15 Nominal Administration
Gender “gender” Fixed 2 Binary Examinee’s gender
Country “cntry” Fixed 2 Binary Examinee’s country
Repeater “repeater” Fixed 2 Binary Whether test previously taken
Education “edu” Fixed 3 Nominal Level of education
Status “status” Fixed 3 Nominal Employment status
Major “major” Fixed 7 Nominal Examinee’s major
Job “job” Fixed 3 Nominal Industry of jobs
Years “years” Fixed Integer Years of study
Time “time” Fixed Integer Daily study time
English country “engctry” Fixed Integer Years abroad

Table 2 Frequency table for the “education” variable

Education Frequency Proportion

Missing value 8,957 0.03
Primary school 304 0.00
Junior high school 919 0.00
High school 13,507 0.05
Vocational/technical high school 1,804 0.01
Vocational/technical school after high school 5,515 0.02
Community/junior college 14,967 0.06
Undergraduate college or university 191,368 0.71
Graduate or professional school 31,676 0.12
Language institution 983 0.00

2.2 Data Manipulation

Based on the property of those independent variables, different data manipulations
are needed for the predictors for fixed effects. Here are three major modifications.

1. Grouping: There are many possible response categories for variables such as
“education,” “job,” and “status,” so grouping some of the categories appears
reasonable and necessary because the sample size might be too small in some
categories. From Tables 2 and 3, it is easy to find that undergraduate students and
graduate students are the major categories for “education,” and full-time students
and full-time employees are the majority for “status.” By categorizing the two
major levels and combining all the others into a separate level “others” for either
variable, we might have a more meaningful and accurate model. For the “job”
variable, there were 32 response categories, and we grouped the categories into
three levels (manufacturing, service, and others).
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Table 3 Frequency table for the “status” variable

Status Frequency Proportion

Missing value 7,838 0.03
Employed full-time (including self-employed) 89,034 0.33
Employed part-time and/or study part-time 13,428 0.05
Not employed 22,885 0.08
Full-time student 136,815 0.51

Table 4 Assigned scores for
the ordinal variables

Question Scores Question Scores

Years Time
(A) Less than or equal to 4 1 (A) None 1
(B) 4–6 2 (B) 1–10 % 2
(C) 6–10 3 (C) 11–20 % 3
(D) More than 10 4 (D) 21–50 % 4

(E) 51–100 % 5
English country
(A) No 1
(B) Less than 6 months 2
(C) 6–12 months 3
(D) 12–24 months 4
(E) 24 months more 5

2. Assigning scores: Response categories of the variables “years” (how many years
examinees have learned English), “time” (how often they use English in daily
life), and “English country” (how long they stayed in English-speaking countries)
have intrinsic ordering, so we treat them as ordinal variables and assign scores to
the response categories. The most naïve method is to assign 1–n scores. Any other
assignments would have a very similar Pearson correlation and similar inference
from the model. Table 4 shows the assigned values for each response category of
a question. Handling them in this manner also makes the approach more efficient
(Agresti 1996, pp. 36–38).

3. Missing data: There were no missing data in the random predictors “group”
and “administration” and the fixed predictor “country” because their values are
determined when the examinees register for the test. When all the other fixed
predictors (“repeater,” “gender,” “years,” “time,” “English country,” “educa-
tion,” “status,” “major,” and “job”) were considered, the number of missing
observations is 36,565 out of 270,000 total number of observations (about 14 %).
The simplest method for analyzing data with missing observations is to delete
cases and obtain a data set that is complete, which is also the default method
for many statistical packages. This method was used in our study under the
assumption that the missingness of those predictors was irrelevant to test-takers’
scores; i.e., missing covariates were missing completely at random (MCAR).
If the MCAR assumption is reasonable, valid inferences can still be made
based on the complete responses, even though we did not make full use of the
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available data and might lack some accuracy in estimating the variance of the
regression coefficients (Daniels and Hogan 2008, p. 92). Alternatively, one may
impute the missing observations, but this approach often requires the missing
at random (MAR) assumption and some distributional assumptions. As noted in
Gelman and Hill (2007, Chap. 25), it is impossible to prove that data are missing
(completely) at random because they are unobserved. For missing categorical
predictors, one may avoid the assumption of MCAR or MAR by creating an extra
category for the variable indicating missing. We did not consider this method
because the proportion of missing values per variable of interest was very small
(the maximum was about 7 %).

2.3 Univariate Linear Mixed Effects Model

We propose a linear mixed effects model to analyze the examinees’ scores collected
from the equating design shown in Fig. 1. Due to the equating design, the test scores
possibly have two levels of variance components: (a) examinees taking the same
administration are likely to have scores that are more correlated than those taking
different administrations due to seasonality and (b) it is also possible that scores in a
particular group of administrations are more correlated than those in different groups
because of equating. Recall that the groups of administrations are a random sample
from a large pool of groups of administrations, rather than pre-decided groups of
administrations of interest. Therefore, we differentiate the two sources of variations
by assigning “group” and “administration” as two independent categorical random
effects and estimating the variance component attributable to either random effect.
By nature of the equating design, each administration only appeared in one group
(i.e., a nested design). Other background variables mentioned in Table 1 are taken as
fixed independent variables when examining their contribution to individual scores.

Let Yijk be the random variable that represents the score of examinee k in
administration j and group i, where 1≤ k≤ 18, 000, 1≤ j≤ 5, and 1≤ i≤ 3, and
let Xijk be a vector of fixed predictors for this examinee. Following the convention
in mixed models analysis and variance components estimation (e.g., Searle et al.
2006; Snijders and Bosker 2012), the proposed linear mixed effects model is defined
as follows:

Yi jk = μ0+Gi+Ai j+X ′
i jkβ+εi jk,

Gi ∼ N
(
0,σ2

g

)
,

Ai j ∼ N
(
0,σ2

a

)
,

εi jk ∼ N
(
0,σ2) ,
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where μ0 is the grand mean, Gi is a random categorical variable indicating group i,
Aij is a random categorical variable indicating administration j in group i (i.e., Aij is
a factor nested within Gi), β is a coefficient vector for the predictors Xijk, and εijk

is the individual (random) error. The property that the random variables Gi, Aij, and
εijk are independent of each other follows from the model specification (see, e.g.,
Snijders and Bosker 2012). The normality assumption about the individual error
can be checked through residual diagnostics.

We first show how the random effect terms affect the expectation of an examinee’
score:

(a) The expected score for an examinee in administration j of group i equals

E
(

Yi jk

∣∣∣Gi,Ai j

)
= μ0 +X ′

i jkβ +Gi +Ai j;

(b) the expected score for an examinee in group i equals and

E
(

Yi jk

∣∣∣Gi

)
= μ0 +X ′

i jkβ +Gi;

(c) the expected score for any examinee equals

E
(
Yi jk

)
= μ0 +X ′

i jkβ .

Note that the constraints E(Gi)= 0 and E(Aij)= 0 not only involve no loss of
generality in (a)–(c) but also make the estimation of μ0 identifiable.

Next, we show how the random effect terms explain the variance of an exami-
nee’s score and the covariance between two individuals’ scores: First,

Var
(
Yi jk

)
= σ2

g +σ2
a +σ2,

where σ2
g, σ2

a, and σ2 are variance components of Var(Yijk). Second, consider two
examinees’ scores, Yij1 and Yi′ j′2. It is clear that (a)

Cov
(
Yi j1,Yi′ j′2

)
= σ2

g +σ2
a

if i= i′ and j= j′ (i.e., they took the same administration and hence in the same
group), (b)

Cov
(
Yi j1,Yi′ j′2

)
= σ2

g

if i= i′ and j �= j′ (i.e., different administrations in the same group), and (c)

Cov
(
Yi j1,Yi′ j′2

)
= 0
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if i �= i′ (i.e., different groups, and hence different administrations). Clearly, this
model describes our hypothesis that the scores of examinees from the same
administration may have stronger correlation than those from the same group but
different administrations. Whether this hypothesis is supported by the data is the
main question to answer. Note that the current study addresses the issue of repeaters
by including a fixed predictor that indicates whether an examinee repeated or not.
This variable came from the background questionnaire. An alternative way to handle
this issue is to model the correlation between scores of the same examinee (even if
the scores came from administrations in different groups), which requires unique
identification for each examinee across administrations in order to identify when a
person retakes the test. The alternative method cannot be considered here because
the information is not available in our data set. Although it is not impossible
that some of the randomly selected examinees took more than one of the 15
administrations, the portion of such examinees is expected to be quite small. Thus,
our model assumption about the correlation between scores should not limit our
findings to a great extent.

Various models that include different numbers of predictors are considered,
and a set of predictors that best explain the section scores is determined by the
model/variable selection procedure described in the next subsection. All computa-
tion was done with R (R Development Core Team 2011) package “lme4” (Bates and
Maechler 2010) and can also be done in SAS

®
.

2.4 Model Selection and Variable Selection

The model selection procedure begins with the selection of random effects terms.
Suitable fixed predictors are then chosen from the ten available fixed predictors in
Table 1 based on the forward selection procedure (Draper and Smith 1998, p. 336).
We select predictors based on their contribution to the explanatory power of the
model. In this case, a predictor will be retained in the model only when it leads to
significant reduction in the estimated standard deviation of individual error (or root
mean squared error). For purposes of illustration, a decrement of 0.5 % or more
in the estimated standard deviation of error is considered significant in this paper.
This criterion is chosen to facilitate the model selection procedure, and adopting the
value 0.5 % roughly separates the models with useful predictors and those without
in our study. This value may not be adequate for all applications. One should try
different models to see the contribution of individual predictors in explaining the
variability in test scores before setting up a fixed criterion to automate the model
selection procedure.
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3 Results

3.1 Variable Selection

Tables 5 and 6 show the log-likelihood (LogLik) value for each model and the
percent reduction in the estimated standard deviation of individual error when extra
random effect terms, group and/or administration (admin), were added to the null
model. We can see from these tables that the “group” random effect is negligible in
terms of reduction in σ̂ or increase in log-likelihood values. For either section score,
the administration random term was retained in the model because the variance
reduction is greater than 0.5 %. Thus, we continued the variable selection based on
the model with the “administration” random effect.

Tables 7 and 8 present the steps of forward selection for Reading and Listening,
respectively. Recall that a fixed predictor is retained if its entry results in more
than 0.5 % of reduction in σ̂ from the previous step. Table 7 shows that predictors
“English country,” “years,” “education,” “repeater,” and “major” were selected as
main effects in the model by the forward selection procedure for Reading scores. For
Listening score, Table 8 shows that the main effects are “English country,” “years,”
“repeater,” and “major.” Note that we only consider a linear relationship between the
section scores and the ordinal predictors (“years,” “time,” and “English country”)
because there is an evident linear trend between the scores and each of the predictors
(see Fig. 2).

Results for the selection of interactions are presented in Tables 9 and 10, where
“main” refers to the main effects terms in Tables 7 and 8. Tables 9 and 10 show that
none of the interactions reduced σ̂ significantly, so they were not chosen in the final
model for either section scores.

To summarize, we obtained the final model with “education,” “major,”
“repeater,” “English country,” and “years” as fixed predictors for Reading scores.

Table 5 Random effects terms selection for Reading scores

Model Term LogLik σ̂ Reduction (%)

Null model Intercept –1,612,582 94.97
Model 1 Intercept + group –1,612,459 94.93 0.05
Model 2 Intercept + group+ admin –1,610,178 94.12 0.90
Model 3 Intercept + admin –1,610,178 94.12 0.90

Table 6 Random effects terms selection for Listening scores

Model Term LogLik σ̂ Reduction (%)

Null model Intercept –1,585,039 85.76
Model 1 Intercept + group –1,584,935 85.73 0.04
Model 2 Intercept + group+ admin –1,582,115 84.82 1.09
Model 3 Intercept + admin –1,582,115 84.82 1.09
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Table 7 Fixed effects terms selection for Reading score

Model Term LogLik σ̂ Reduction (%)

Model 1 Intercept + admin –1,391,315 93.79
Model 2 Intercept + admin+ engctry –1,380,639 89.6 4.47
Model 3 Model 2+ years –1,371,977 86.33 3.65
Model 4 Model 3+ edu –1,367,952 84.86 1.7
Model 5 Model 4+ repeater –1,364,375 83.57 1.52
Model 6 Model 5+major –1,361,969 82.71 1.03

Reduction was obtained by (σ̂0 − σ̂1)/σ̂0, where σ̂0 is the estimated standard
deviation of individual error for Model 1, and σ̂1 is that for a selected model

Table 8 Fixed effects terms selection for Listening score

Model Term LogLik σ̂ Reduction (%)

Model 1 Intercept + admin –1,367,021 84.52
Model 2 Intercept + admin+ engctry –1,342,935 76.23 9.81
Model 3 Model 2+ years –1,336,312 74.1 2.79
Model 4 Model 3+ repeater –1,331,601 72.62 2
Model 5 Model 4+major –1,328,007 71.51 1.53

Reduction was obtained by (σ̂0 − σ̂1)/σ̂0, where σ̂0 is the estimated standard
deviation of individual error for Model 1, and σ̂1 is that for a selected model

Table 9 Selection of interaction terms for Reading score

Model Term LogLik σ̂ Reduction (%)

Model 0 Intercept + admin+main –1,361,969 82.71
Model 1 Model 0+ engctry: years –1,361,965 82.7089 0.001
Model 2 Model 0+ engctry: repeater –1,361,755 82.6346 0.090
Model 3 Model 0+ engctry: major –1,361,944 82.7014 0.081
Model 4 Model 0+ engctry: edu –1,361,946 82.7024 0.001
Model 5 Model 0+ years: repeater –1,361,969 82.7104 0.010
Model 6 Model 0+ years: major –1,361,835 82.6631 0.057
Model 7 Model 0+ years: edu –1,361,958 82.7066 0.053
Model 8 Model 0+ repeater: major –1,361,906 82.6882 0.022
Model 9 Model 0+ repeater: edu –1,361,917 82.6922 0.005
Model 10 Model 0+major: edu –1,361,704 82.6164 0.092

For Listening scores, the final model includes the following fixed predictors:
“years,” “English country,” “repeater,” and “major.” Both models include the
“administration” random predictor.

As in regression analysis, standard residual diagnostics can help to check model
assumptions and assess model fit. As an example, we used individual residuals
to check the normality assumption for individual errors. Figure 3 shows the QQ-
plots based on the final models. From the figures, we can see the residuals were
approximately normally distributed. Further checking could be executed through
stratified residual plots over groups or administrations. Estimates of the random
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Fig. 2 Box plot of scores versus the three ordinal predictors (years of study, daily study time, and
years abroad)

Table 10 Selection of interaction terms for Listening score

Model Term LogLik σ̂ Reduction (%)

Model 0 Intercept + admin+main –1,328,007 71.51
Model 1 Model 0+ engctry: years –1,327,971 71.4990 0.015
Model 2 Model 0+ engctry: repeater –1,327,716 71.4210 0.109
Model 3 Model 0+ engctry: major –1,327,946 71.4914 0.099
Model 4 Model 0+ years: repeater –1,328,002 71.5087 0.024
Model 5 Model 0+ years: major –1,327,945 71.4912 0.025
Model 6 Model 0+ repeater: major –1,327,973 71.4999 0.012

effect terms can be plotted to test the normality assumption about the random effects.
The reader can refer to Draper and Smith (1998, Chaps. 2, 7 and 8) for an in-depth
discussion about general model-fit assessment.
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Fig. 3 Residual QQ-plots for Reading (left) and for Listening (right). Quantiles of the sample
distribution and quantiles of standard normal distribution are plotted against each other. If the
points in the QQ-plots approximately lie on the line y= x, then the sample (i.e., residual)
distribution can be regarded as following the standard normal distribution approximately

3.2 Inference and Interpretation of the Final Models

Based on the final models, we found the “group” random effect was not significant.
In other words, scores of examinees from the same group and different admin-
istrations were not significantly correlated. This indicates that the equating plan
did not introduce a noticeable level of dependency to the scores examined here.
As we expected, the “administration” random effect appeared to be significant,
showing that scores of examinees from the same administration are significantly
correlated. The intraclass correlation estimate based on the Reading final model
was σ̂2

a /
(
σ̂2

a + σ̂2
)
= 0.02, meaning that only 2 % of the variance in the Reading

scores was between administrations. The estimated intraclass correlation was 0.03
for Listening scores.

Tables 11 and 12 show the estimated fixed effects for the Reading and Listening
final models, respectively. All of the estimated fixed effects are significantly
nonzero. Because the estimated coefficient for “English country” is positive,
examinees who spent more time in English-speaking countries had higher scores
than those who did not. Meanwhile, the longer the examinees studied English, the
better the scores were. Also, examinees who had a college or higher degree tended to
score higher. Another important finding is that repeaters scored higher than the first-
timers. In terms of Reading score, examinees obtained approximately 22.83 more
points when they spent 6 more months in English-speaking countries; while for
Listening score, the increment was 30.12 points. Meanwhile, the examinees scored
about 20.67 more points on Reading and 17.49 more points on Listening when they
spent 3 more years studying English. For the predictor “education,” undergraduate
students were the baseline. For Reading score (Table 11), undergraduate students
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Table 11 Fixed effects in the final model for Reading

Predictor Interpretation Estimate Standard error

(Intercept) 152.31 3.09
Engctry 22.83 0.17
Years 20.67 0.21
Edu2 Graduate student 22.61 0.55
Edu3 Others −38.47 0.55
Repeater1 Repeated examinee 37.14 0.43
Major2 Social study/law 5.84 0.58
Major3 Business −2.36 0.55
Major4 Sciences −17.32 0.64
Major5 Health −6.61 0.95
Major6 Engineering/architecture −27.63 0.51
Major7 Others/none −19.50 0.84

Note: Reference categories of the categorical predictors are under-
graduate students (Edu1), examinees taking the test for the first time
(Repeater0), and examinees majoring in liberal arts (Major1)

Table 12 Fixed effects in the final model for Listening

Predictor Interpretation Estimate Standard error

(Intercept) 202.01 3.50
Engctry 30.12 0.14
Years 17.49 0.18
Repeater1 Repeated examinee 37.35 0.37
Major2 Social study/law −3.38 0.49
Major3 Business −11.52 0.48
Major4 Sciences −23.41 0.54
Major5 Health −17.24 0.82
Major6 Engineering/architecture −32.78 0.43
Major7 Others/none −24.59 0.70

Note: Reference categories of the categorical predictors are exam-
inees taking the test for the first time (Repeater0) and examinees
majoring in liberal arts (Major1)

tended to score 38.47 more points than examinees who had a lower degree than
bachelors (Edu3); while for graduate students (Edu2), their advantage was 22.61
points higher on the mean Reading score as compared to undergraduate students.
For the predictor “major,” students with a major of liberal arts were the baseline.
Among the seven categories for “major,” only the students who majored in social
studies/law scored higher on average than the baseline.
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4 Prediction

One important application of the linear mixed effects model is to construct a
prediction interval for the mean score of a new administration based on the final
model built on historical data that include necessary predictors to explain the test
scores. By way of illustration, consider a 95 % prediction interval. One can be 95 %
sure that the future mean score of an administration should fall within the 95 %
prediction interval. If not, there might be something unusual with the administration
so that the whole operational procedures should be checked for quality control
purposes.

Following the notation in the previous sections, denote Yjk as individual k’s score
(Reading or Listening) in administration j, and denote p as the number of predictors
included in the final model built on historical data or a training set. Let Xjk be a
p-dimensional vector of the predictors included in the final model for the section
score, and let β be the p-dimensional coefficient vector. To simplify the formulas
in this section, we further define a (p+ 1)-dimensional vector Wjk = [1,X

′
jk]′ and a

(p+ 1)-dimensional coefficient vector β 1 = [μ0,β ′]′ that includes the intercept of
the model, and the final model can be rewritten as

Yjk =W ′
jk β 1 +A j + ε jk,

A j ∼ i.i.d.N
(
0,σ2

a

)
,

ε jk ∼ i.i.d.N
(
0,σ2) ,

A j ⊥ ε jk.

The ⊥ sign means two random variables are independent of each other. Let n be the
number of examinees in administration j, and let μ jk =W

′
jk β 1. Then the expected

mean score of administration j, Yj, conditioning on Aj, is equal to

E
(

Y j.

∣∣∣A j

)
= E

(
1
n

n

∑
k=1

Yjk

∣∣∣A j

)
=

1
n

n

∑
k=1

μ jk +A j +E

(
1
n

n

∑
k=1

ε jk

)

where the last term equals zero.
However, if we are interested in predicting the mean score of a new administra-

tion, we need to find the marginal distribution of Yj by integrating out Aj. Based on
the properties of conditional expectation and the variance decomposition formula
(e.g., Casella and Berger 2002, Chap. 4.4), one can find that

Y j.∼ N

(
1
n

n

∑
k=1

μ jk,
1
n
σ2 +σ2

a

)
.
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From the final model built on historical data or a training set, we have the estimates
for β 1, σ2, and σ2

a. Let

μ j.=
1
n

n

∑
k=1

μ jk =
1
n

n

∑
k=1

W ′
jk β 1 =

1
n

1′W ′
jβ 1, (1)

where Wj = [Wj1, . . . ,Wjn] is a (p+ 1)× n matrix and 1= [1, . . . ,1]′ is an
n-dimensional vector. Therefore,

Y j.− μ̂ j. ∼ N
(
0,Var

(
Y j.− μ̂ j.

))
,

where μ̂ j. =
(

1′W ′
jβ̂ 1

)
/n is the prediction of the new value Y j. with its predictors

Wj, and

Var
(
Y j.− μ̂ j.

)
=

(
1
n
σ2 +σ2

a

)
+

1
n2

(
1′W ′

jVar
(
β̂ 1

)
W j1

)
. (2)

Thus, the 95 % approximate prediction interval for Yj, the mean score of the new
administration of interest, is(

μ̂ j· ± z2.5 %

√
V̂ar

(
Y j· − μ̂ j·

))
, (3)

where z2.5 % = 1.96, and the σ ,σa, and Var
(
β̂ 1

)
in Eq. (2) are replaced by their

estimates, σ̂2, σ̂2
a and V̂ar

(
β̂ 1

)
, respectively. The approximation is more accurate

with more administrations. Note that, for quality control purposes, the 95 %
prediction interval may lead to too many false positives. One solution is to construct
the prediction interval with a type I error α%< 5 % by using z(α /2) % rather than
z2.5 % in Eq. (3). In the quality control literature, z(α /2) % = 3 is a common choice
when the issue of multiple comparisons is involved.

An empirical example. To demonstrate the above formulas for detecting unusual
test administrations, we used data from the earlier 14 administrations as the training
set to build the linear mixed effects models for Reading and Listening. Following
the procedure described in Sect. 2, the same final models resulted for the 14
administrations (of course, the estimated fixed effects and variance components
had different values than those reported in Sect. 3). Based on the final models, we
then constructed the 95 % approximate prediction intervals for the Reading mean
score and the Listening mean score of the last administration. For Listening, the
observed mean score was 348.81, and the 95 % approximate prediction interval from
Eq. (3) was (335.78, 385.75). For Reading, the observed mean score was 292.61, and
the 95 % approximate prediction interval from Eq. (3) was (290.68, 336.96). The
observed mean scores of the last administration fall with the prediction intervals.



148 Y.-H. Lee et al.

5 Conclusion

In this study we proposed a new way of conducting QC of test scores data over
time for a specific operational setting. We proposed a linear mixed effects model
to identify an unusual test administration in a flow of administrations by using a
prediction interval for the mean scaled score of an administration. We applied this
method to a set of operational data from a global English assessment.

In order to apply the linear mixed effects model we assumed that individual
residuals were normally distributed. The “group” random effect turned out to be
not significant, while examinees from the same “administration” still shared a small
but significant random effect, which means the examinees’ scores were slightly
correlated due to seasonality. Approximate prediction intervals could be constructed
from the model and can be used to detect unusual administrations for certain
subgroups. In some sense, “country” and “administration” effects were confounded
because of the equating design.

This procedure can be improved upon by increasing the number of administra-
tions and the equating groups of administrations, thereby increasing the precision of
the results. Then, the proposed prediction interval can be updated and computed at
each administration for a detection of unusual results on-the-fly, if the time allotted
for reporting scores permits extra analyses; otherwise, the interval can be updated
after each administration in order to predict the next administration’s results.

In the future, one might consider investigating a nonlinear link in the linear mixed
effects model. In addition, further research may consider accounting for seasonality.
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Heterogeneous Populations and Multistage
Test Design

Minh Q. Duong and Alina A. von Davier

1 Introduction

In this paper we discuss the considerations involved in designing a test so that the
difficulty of the test matches the distribution of the target population of test takers.
The underlying idea is that an assessment brings together a set of items with a
set of test takers and, if the attributes of these two sets are suitably matched, then
measurement is improved and the validity of the assessment is better supported.

This applied research was motivated by operational experience: a linear achieve-
ment test of English skills was repurposed as a placement test. The assessment was
initially designed for a population of highly educated professionals and then was
administered, in several instances, to a less educated, more heterogeneous group of
test takers. This change in the demographics led to poor measurement and biased
equating results for some subgroups of test takers. These consequences were in
violation of the fairness standards to which we adhere in the field of psychometrics.

In this paper we will discuss how the data were problematic in this testing
situation, propose a change in the test design, and describe a simulation study
that we conducted to investigate the potential performances of two multistage test
(MST) designs. The remainder of this paper is structured as follows: first, the target
population and test designs are briefly discussed. Next, an example using our data
is presented, and the bias that occurred is discussed. We will conclude with a
description of our simulation study, including the methods, results, and conclusions.
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2 Target Population

The target population for an assessment should be from a population of test takers
for whom the test results should be valid. To ensure a good match between items
and people, tests are designed for a target population. The items, tests, and equating
results are expected to be (relatively) invariant with respect to the subgroups that
comprise the target population (see Dorans and Holland 2000). These subgroups
may be defined by language, gender, race, and so forth (Van de Vijver and
Leung 1997). This requirement tends to hold for most traditional, well-constructed
standardized assessments for which the target population is clearly defined (see
Dorans and Holland 2000; von Davier and Wilson 2008). When subgroups of
test takers have different ability levels in the skill measured by the test, then the
test results might be dependent on which group being examined. In addition, the
population of test takers might change over time and differ from the population
initially targeted. In this case, the accuracy of the scores may decrease and the
equating function may become dependent on subgroups of test takers with different
skill levels. In addition, differing subgroup sample sizes across administrations may
impact measurement (Qian et al. 2012). Together, these conditions could undermine
the fairness of the assessment.

The following discussion addresses the issue of test design for these types of
shifts in the testing population and how to choose a test design that matches the
characteristics of the skill distribution of the target population.

3 Test Design

For many years, linear tests have been the most popular way to measure test takers’
skills in educational assessments. In a linear test, all test takers are administered the
same items, regardless of whether the items are too easy or too difficult for them
(Rudner 1998). When properly developed, the construction of a linear test is easy
and economical; moreover, the test could have a good reliability and relatively little
measurement error.

A computer adaptive test (CAT) is a computer-based test that uses an algorithm to
administer test items that match the test taker’s estimated skill level, based on his/her
pattern of responses as the test proceeds. With the right item pool, a CAT can be
much more efficient than traditional linear tests, by shortening the test (Hambleton
and Swaminathan 1985; Lord 1971, 1980; Wainer et al. 1992).

A multistage (adaptive) test is very similar to a CAT, but rather than selecting
individual items, groups of items (modules) are selected, and the test is constructed
in stages. In an MST, all test takers are administered an initial set of items at the
first stage, and, based on the test taker’s performance, the test taker is then routed
to one of the several different modules in the second stage that are based on the
test taker’s estimated skill level. This routing process may continue to subsequent
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stages, depending on the test. For tests that are intended to measure a wide range of
proficiency, MSTs are more effective than linear tests (Kim and Plake 1993; Lord
1971, 1980) and offer more control on the test development, in particular at module
level, than a CAT does. An overview of the various designs, particularly of the MST
design, is given in Hendrickson (2007) and Yan et al. (in press).

If the distribution of test takers’ measured skill is clearly unimodal, then a linear
test for measurement and placement purposes may be the appropriate design. If the
distribution is bimodal or exhibits a very large variance, then a CAT or MST should
be considered in an effort to increase the precision of measurement in the full range
of skill levels without increasing the test length.

CATs and MSTs can be used with any type of population distributions, as long as
other measurement requirements are met: (a) a very large item pool is available; (b)
the calibration samples are large; and (c) a sophisticated algorithm for item selection
is available to optimize the item selection based on multiple constraints, such as the
difficulty and discrimination of items, content coverage, item exposure, and so forth.

4 Real Data Example

We illustrate how to match a skill (or ability) distribution with a test design using our
data from an English linear achievement test that was administered to a polarized
population of test takers for placement purposes—to those who speak some English,
as well as those who speak little or no English. The test is long and very reliable,
and it includes some very easy items that are appropriate for the low ability group.
However, there is a concern that the measurement might not be as precise for
these lower and middle levels of ability as would be appropriate. In addition, it has
been found that test takers with very low English skill levels tend to perform less
predictably on the anchor items of the test and guess more often on all test items,
in general, thus endangering the quality of equating. The ability distribution for this
heterogeneous group of test takers is plotted in Fig. 1. For these data, we propose
reconsidering the test design.

The dataset was obtained from an administration of a 200-item English skills test
to a group of test takers. The test consists of two parts, each part being constituted
of 100 items measuring listening and reading skills, respectively. For illustration
purpose in this study each part will be considered as a different form of the same
test. For simplicity, we will call them Test Form X and Test Form Y, respectively.
A total of 6,852 test takers were assigned to two different groups, P and Q, based on
their reported educational background. Group P consists of 2,808 test takers (41 %)
whose educational level was less than a bachelor’s degree. Group Q is comprised
of 4,044 test takers (59 %) whose educational level was equivalent to a bachelor’s
degree or higher. Descriptive statistics of the scores on the two forms for the two
groups are presented in Table 1. An examination of Fig. 1 reveals that the score
distributions for overall population, and particularly for the scores on Test Form Y,
are bimodal.
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Table 1 Real Data: score descriptive statistics

Form X score Form Y score

Group Sample size Mean Std. Dev. Mean Std. Dev.

P 2,808 43.84 11.60 35.67 12.82
Q 4,044 68.89 11.41 69.25 12.97
T (total) 6,852 58.62 16.85 55.49 20.96
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5 Procedures

Duong and von Davier (2012) analyzed these data and investigated the appropriate
linking methods for them. Because the two forms measure different constructs, the
process of mapping their scores is considered a linking rather than an equating. This
distinction is not important here, as we only use the linking data for illustration
purposes. In a real testing situation, one should never attempt to equate two tests
that measure different constructs. The only purpose of linking the score distributions
from these two sections of the test in this paper is to illustrate what would happen
if one links two bimodal distributions and what subgroups of test takers might
be impacted. In this particular case, this link is informative because the two
distributions are very similar, as shown in Fig. 1.

Duong and von Davier (2012) linked Test Form X to Test Form Y using both
the operational observed-score (kernel) equating (OSE) method (von Davier et al.
2004) and a two-parameter logistic (2PL) observed-score multigroup item response
theory (IRT) method (Kolen and Brennan 2004) with multiple group calibration for
each section. The data from the two sections, reading and listening, were calibrated
separately. The factor structure in the data was preliminary analyzed for each of the
two sections in order to ensure that the two modes in the distributions do not reflect
different factors. One factor model underlines each of the two sets of data. The
fit of the IRT model was acceptable. There is no evidence that the items function
differently in the two groups of the mixture for either reading or listening. There
seems to be sufficient evidence that the two groups in the sample differed mainly in
their English ability and that there is no other factor that impacts the test results that
leads to the bimodal distribution.

During the presmoothing step, the log-linear model that preserves the first
five univariate moments and the first bivariate moment was chosen from among
other (nested) models using several statistical indices available in the LOGLIN/KE
Software (ETS 2011) for each of the datasets. In this example, three ways of using
the data were considered during equating: (a) use both subgroups with weights that
were proportional to group sample sizes; (b) use data only from P, that is, use
weights wP = 1 and wQ = 0, denoted as KE.P; or (c) use data only from Q, that
is, use weights wP = 0 and wQ = 1, denoted as KE.Q.

Figure 2 shows the equating differences when using the high-ability group
(wP = 0 and wQ = 1) versus using the full distribution. It appears that, for scores
greater than 67, using all the data or using only the most able group produced similar
results.

If the test is used as a licensure or placement test with one or more cut scores at or
below the score interval [55, 58] (where 55 and 58 are the means of the two tests for
the overall group), then choosing only the higher ability group for equating might
impact the results for those who score close to the cut score(s). Hence, if the test
is used for placement purposes, then the placement of test takers in learning groups
might not be accurate for all cut-score points and, therefore, the opportunities for
efficient learning, as well as those for career advancement, might be in jeopardy.
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A dilemma exists as to what to do with these issues. There are several options:
(a) continue to use one linear test and pool the two ability groups (this might lower
accuracy and lead to group dependent equating); (b) continue to use one linear test
and remove one of the ability groups for equating, applying the equating results to
the entire population (this might lead to scores that are not fair to all of the test takers
as it was shown in Duong and von Davier 2012); (c) change the item difficulties to
match the low ability group (which may cause the test to lose comparability with
previous test forms, and the score scale may not have the same meaning); or (d)
change the test design and use either an adaptive test, a CAT (which may be difficult
for the users of this test to implement and use), or a multistage adaptive test. These
options, together with the traditional operational practice, were discussed in detail
by Duong and von Davier (2012).

In this paper we considered two research ideas: (a) choose an MST targeted to
the bimodal population and (b) investigate two MST designs, both with two stages
(see Figs. 3 and 4) where we use either one routing module and two second-stage
modules or one routing module and three second-stage modules. These test designs
will be presumably applied to each of the two sections separately. We will now
describe these research studies using simulated data.
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Fig. 3 A proposed MST design (with two modules on second stage) for a bimodal distribution

6 Simulation Study

6.1 Method

6.1.1 Design

In this study, two MST designs were employed, both consisting of two stages.
Design A had two second-stage modules: easy and difficult. Design B had three
modules in the second stage: easy, moderate, and difficult. The module structure
was similar in the two designs. The routing module consisted of 40 items with a
wide range of difficulty (b parameters). All second-stage modules consisted of 20
items with narrow ranges of difficulty. In terms of item parameters, all modules were
similar except for the b parameters, which varied across modules to create various
difficulty levels, as mentioned above.
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Data were simulated to closely match the real data in terms of the ability
distribution, and the two simulated MST designs were analyzed. The data were
simulated using a 3PL model because the first mode of the bimodal distribution
is close to the guessing point, and, therefore, we assumed that perhaps many of
the test takers from this new group guessed their answers. We also wanted to have a
different model for the simulation of the data from the model used for the calibration
so that some level of misspecification would be introduced, as is the case with test
takers.

The item parameters for each module were simulated independently. The a
parameters were simulated from a log-normal distribution LN (μ =−0.15,σ = 0.3).
In this paper, σ denotes the standard deviation. The c (guessing) parameters were
simulated from a beta distribution Beta (α = 7, β = 34), which has a mean of 0.17
and standard deviation of 0.058. The b parameters were simulated from a normal
distribution N (μ , σ ) with different values of μ and σ . For the routing modules,
μ = 1.5 and σ = 1.6. For all second-stage modules, σ was set at 1 and μ at –0.5
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Table 2 Generating item parameter statistics

Module (number
of items)

Item
parameter

Design A (two modules on
second stage)

Design B (three modules on
second stage)

Mean Std. Dev. Mean Std. Dev.

Routing (40) a 0.873 0.256 0.879 0.278
b 1.535 1.626 1.528 1.614
c 0.134 0.046 0.134 0.044

Easy (20) a 0.882 0.299 0.878 0.271
b −0.505 0.927 −0.556 0.908
c 0.128 0.045 0.153 0.051

Moderate (20) a NA 0.911 0.265
b 1.577 0.908
c 0.131 0.058

Difficult (20) a 0.886 0.285 0.875 0.300
b 2.503 0.933 2.482 0.934
c 0.134 0.045 0.131 0.041

Table 3 Population structure Population

Condition P Q Total

1 22,500 7,500 30,000
2 15,000 15,000 30,000
3 7,500 22,500 30,000

for the easy module, 1.5 for the moderate module, and 2.5 for the difficult module.
The summary statistics for the simulated item parameters are presented in Table 2.
Those parameters were used as generating parameters to simulate data.

The test taker population was simulated as a bimodal population consisting of
two distinct groups P and Q. P had a normal distribution N (μ = 0, σ = 1) while Q
had a normal distribution with a larger mean N (μ = 3, σ = 1). The ability levels of
the two groups were set far apart (i.e., the mean difference equaled three standard
deviations) to produce a clear bimodal distribution, as in the real data. Table 3
shows the three sample structures that were investigated. These structures represent
balanced and imbalanced sample sizes. The sample sizes were set large enough to
exclude possible sample size effects on the calibration.

6.1.2 Data Simulation and Calibration

In an MST administration, test takers are administered the routing module and a
specific second-stage module depending on their score on the routing module. To
mimic that data structure, the data simulation included two steps. In the first step, test
takers’ responses to all modules were simulated using generated item parameters
with the 3PL model. In the second step, responses to the routing module and one
second-stage module were kept, resulting in the MST-like data. The second-stage
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module for which the test taker’s responses were kept depended on his or her score
on the routing module. In Design A, if the score on the routing module was less than
or equal to 20, the response on the easy module was kept. Otherwise, the response
on the difficult model was retained. In Design B (which had three modules in the
second stage), if a score on the routing module was less than or equal to 13, the
response on the easy module was kept. If the score was greater than or equal to 27,
then the response on the difficult module was retained. Otherwise, the response on
the moderate module was kept.

Simulated data were calibrated using the computer program BILOG-MG (Zi-
mowski et al. 1996), using the multigroup procedure in order to reflect the bimodal
nature of the data. Group P was set as a reference group, which, by the program’s
default, is assumed to have a standard normal distribution. Default priors were
used for all item parameters.1 Besides item parameter estimates, the expected a
posteriori (EAP) of theta was also obtained for classifying test takers. Although the
data were simulated using the 3PL model, both the 2PL and 3PL models were used
in calibration. The 2PL model was used to determine if the model misfit had any
impact on the results.

For each condition (i.e., sample structure presented in Table 3), 100 replications
were conducted. Each replication included the following steps: (a) data simulation,
(b) calibration, and (c) computation of evaluation statistics (which are presented in
the next section). Across all replications, the generating item parameters remained
unchanged.

6.1.3 Evaluation Statistics

Several evaluation statistics were used in this study. To evaluate item parameter
recovery, bias and root mean square error (RMSE) between the estimated and true
parameters were used. Standard errors were also used to evaluate the item parameter
estimation.

To assess how well test takers were classified, two classification statistics were
used, based on the true (simulated) theta and the estimated EAP. For simplicity,
only dichotomous classifications were employed such that test takers falling below
the cut score (on a theta or EAP scale) were classified as “nonmasters” and those
meeting or exceeding the cut score were classified as “masters.” The percentage
of test takers who were classified at the same level on both true theta and EAP
scales was used as the classification accuracy statistic. The other classification
index was the kappa statistic, which indicates the magnitude of agreement between
two classification procedures based on true theta and EAP values accounting for

1log(a) ∼ N (μ = 0,σ = 0.5)
b ∼ N (μ = 0,σ = 2)
c is set to have a Beta distribution with the mean equal to 0.2 for the 3PL model or a mean of 0.001
for the 2PL model.
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Table 4 Classification based on true theta and EAP

EAP classification

Nonmaster Master Total

True theta classification Nonmaster a b t0
Master c d t1
Total e0 e1 N

agreement by chance. Several theta cut scores were used between −2 and 5 with
a 0.5 increment to investigate how well test takers were classified at various cut
scores, to cover a wide range of scores.

The kappa was computed using

kappa =
p0 − pe

1− pe
(1)

where pe and p0 are expected and observed agreement calculated from

pe =
t1
N

e1

N
+

t0
N

e0

N
(2)

p0 =
a+ d

N
(3)

All terms in (1)–(3) are presented in Table 4.
In addition, relative (IRT) information was used for all modules as a way to

evaluate module quality. All evaluation statistics were computed for each replication
and averaged across all replications.

6.2 Results

6.2.1 Score Distribution

The target population investigated in this study was bimodal, consisting of two
distinct groups. Figure 5 presents score distributions for the routing module for one
of the replications (used as an example for illustrative purpose) in all conditions
(i.e., sample structure presented in Table 3) within each design. The simulated
score distributions were obviously bimodal, especially in condition 2, where the
population was equally represented by both Groups P and Q. It should be noted
that the other distributions were skewed, due to an imbalanced population structure,
but were also somewhat bimodal. In Fig. 5, A1 denotes Design A, Condition 1, A2
denotes Design A, Condition 2, and so on.
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Fig. 5 Routing module score distribution (of one replication)

6.2.2 Calibration Results

All calibration runs converged with less than 30 cycles on the default criterion
(0.01). The number of Gauss–Newton iterations following E-M cycle was set at
two (default) for 3PL model and at three for 2PL model.

6.2.3 Bias, RMSE, and Standard Error

The results for bias, RMSE, and standard error are presented in Table 5 for all
conditions described in Table 3 in both designs for both 2PL and 3PL calibration
models.



Heterogeneous Populations and Multistage Test Design 163

Table 5 Bias, RMSE, and standard error

Design (number
of items) Condition

Item
parameter

Bias RMSE Standard error

2PL 3PL 2PL 3PL 2PL 3PL

A (80) 1 a −0.380 −0.044 0.465 0.059 0.010 0.031
b 0.266 0.074 1.127 0.132 0.043 0.054
c 0.002 0.023 0.020

2 a −0.374 −0.059 0.448 0.072 0.010 0.028
b 0.166 0.085 0.937 0.152 0.036 0.055
c 0.000 0.025 0.021

3 a −0.364 −0.077 0.431 0.099 0.012 0.029
b 0.110 0.114 0.806 0.192 0.036 0.063
c 0.003 0.034 0.025

B (100) 1 a −0.400 −0.064 0.475 0.093 0.014 0.047
b 0.229 0.085 0.970 0.165 0.067 0.077
c −0.002 0.029 0.028

2 a −0.403 −0.085 0.466 0.112 0.014 0.044
b 0.157 0.094 0.842 0.183 0.057 0.079
c −0.004 0.032 0.030

3 a −0.402 −0.114 0.458 0.142 0.017 0.045
b 0.122 0.110 0.785 0.233 0.058 0.088
c −0.008 0.036 0.033

Bias. In the 3PL model, Design A produced slightly less bias than Design B,
especially for the a and c parameters. Biases increased, especially for the a and b
parameters, when the number of high-ability test takers increased (i.e., moving from
condition 1 to condition 2 and to condition 3).

Under the 2PL model, where the model misfit might have had an impact, Design
A produced slightly less bias than Design B for the a parameter, but not for the b
parameter. Unlike the 3PL model, bias decreased, especially for the b parameter,
when the number of high-ability test takers increased.

It is obvious from Table 4 that using a 3PL model for calibration produced much
better results than using a 2PL model. This observation was not unexpected, since
the data were simulated using a 3PL model.

RMSE. Under the 3PL model, Design A produced a slightly smaller RMSE than
Design B for all item parameters. As with bias, the RMSE increased when the
number of high-ability test takers increased.

When the 2PL model was used for calibration, there was no clear advantage for
either design. While Design A produced better results for the a parameter, Design
B worked better in reducing the RMSE for the b parameter. It was not clear if the
group structure had any impact on RMSE for both a and b parameters, although
having more high-ability test takers had a slightly better advantage (e.g., a smaller
RMSE moving from condition 1 to condition 2 and to condition 3). As with bias, the
same pattern can be observed that using a 3PL model produced much better results
compared to a 2PL model.
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Standard error. If a 3PL model was used for calibration, Design A produced a
smaller standard error than Design B for all of the item parameters. For the b and c
parameters, having more high-ability test takers led to larger standard errors. It was
not obvious whether the group structure had any impact on the standard error for
the a parameter.

When a 2PL model was used to calibrate the data, Design A also produced a
smaller estimation error. There was no clear impact of group structure on standard
errors.

6.2.4 Classification Accuracy

The classification accuracy results for the 2PL and 3PL models are presented in
Figs. 6 and 7, respectively.

It is obvious from Figs. 6 and 7 that the accuracy was low if the theta cut score
was set to values where the majority of test takers were. When the majority of
test takers were far from the theta cut score, the classification accuracy was high.
For example, in condition 1 when the population was dominated by Group P (see
Table 3), whose mean theta was 0, the classification accuracy was lowest when
theta cut score was 0, and it was higher when the theta cut score was not near 0.
That pattern is reasonable because classification accuracy tends to have more error if
there are many test takers near the borderline, because this is where misclassification
often occurs.

If a 2PL model was used to calibrate the data, the classification accuracy was
lowered significantly with higher theta cut scores. That is because guessing, which
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Fig. 7 3PL model classification accuracy

was integrated in the 3PL during data simulation, was not accounted for with the
2PL model. When the theta cut score was set high, more students whose true ability
was not high enough were misclassified as “masters” because their scores were
inflated by guessing.

There were no significant differences between Design A and Design B regardless
of group structure. As can be seen in Figs. 6 and 7, in each condition of the
group structure presented in Table 3, the curves representing both designs are close
together, although the curve in Design A is slightly higher, that is, indicating a better
accuracy classification.

6.2.5 Kappa Statistic

The results for the kappa statistic for the 2PL and 3PL models are presented in
Figs. 8 and 9, respectively.

In Fig. 8, all of the curves approach zero at the ends. That means that when a
2PL model was used to calibrate the data, the kappa statistic decreased significantly
when the theta cuts cores were set too low or too high. The same pattern is observed
in Fig. 9, which represents the results when a 3PL model was used. However,
compared to the kappa produced by the 2PL model, the kappa for the 3PL model
was much higher and did not decrease as much at the ends. The kappa values are
quite good, being higher than 0.6 for most of the score range. In both Figs. 8 and 9,
the curves stay close together, indicating that there was no significant difference
between Design A and Design B or among the different group structures.
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6.2.6 Information

IRT-based relative information was computed for each module in all conditions for
both designs. The relative information equals the average item information in each
module. The average item information was used in comparing modules because the
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Fig. 10 2PL model information function

modules had different numbers of items. The information is presented in Figs. 10
and 11 for Design A and Design B, respectively.

It is clear from those figures that each relative information curve covers a specific
area where its module was supposed to differentiate the test takers. The routing
curves cover a wider range because it was supposed to differentiate test takers during
the first stage, when students are not pre-classified. Except for the easy modules,
using a 3PL model resulted in higher relative information. No significant differences
were evident between the designs or conditions.



168 M.Q. Duong and A.A. von Davier

0.0

0.1

0.2

0.3

0.4

-6 -4 -2 0 2 4 6

In
fo

rm
at

io
n

Theta

A1
routing

easy

difficult

0.0

0.1

0.2

0.3

0.4

-6 -4 -2 0 2 4 6

In
fo

rm
at

io
n

Theta

A2
routing

easy

difficult

0.0

0.1

0.2

0.3

0.4

-6 -4 -2 0 2 4 6

In
fo

rm
at

io
n

Theta

A3
routing

easy

difficult

0.0

0.1

0.2

0.3

0.4

-6 -4 -2 0 2 4 6

In
fo

rm
at

io
n

Theta

B1
routing
easy
moderate
difficult

0.0

0.1

0.2

0.3

0.4

-6 -4 -2 0 2 4 6

In
fo

rm
at

io
n

Theta

B2
routing
easy
moderate
difficult

0.0

0.1

0.2

0.3

0.4

-6 -4 -2 0 2 4 6

In
fo

rm
at

io
n

Theta

B3
routing

easy

moderate

difficult

Fig. 11 3PL model information function

7 Conclusions

In this paper we investigated some of the considerations necessary for an assessment
to transition from a linear test design to an MST, when there are shifts in the test
taker population, leading to a bimodal distribution of test taker ability. Data were
simulated to closely match the real data in terms of the ability distribution, and the
two simulated MST designs were analyzed. The data were simulated using a 3PL
model because the first mode of the ability distribution from the real data is close
to the guessing point, and, therefore, we assumed that perhaps many of the test
takers from this group would guess their answers. We also wanted to use a different
model for the simulation of the data than from the model used for the calibration
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so that some level of misspecification would be introduced, as is the case in a real
application.

As expected, the results indicate that using the 2PL model to calibrate the data is
not as good as using the 3PL model. When the estimation errors are large, then the
classification accuracy is lower, and the information is lower. If the hypothesis that
the test takers with low ability tend to guess more holds, then a 3PL model might be
more appropriate for this type of data.

No significant differences were found between using the two modules (Design A)
and using the three modules (Design B) in the second stage, in terms of measurement
and classification. This finding means that it may not be necessary to use three
modules in the second stage if the population is bimodal and the test will not be
equated. If the test continues to be post-equated, then perhaps adding a module in
the middle might prove to be useful and might lead to less bias in the equating results
of real data for test takers with scores in the middle of the distribution, as displayed
in Fig. 2.

The population structure affects the classification accuracy, depending on the cut
score. It is reasonable to assume that accuracy tends to be higher in the middle of
the bimodal distribution and lower when the cut score is set to a location where the
majority of test takers are located.

The investigations conducted here would definitely support the use of an MST to
improve measurement and classification accuracy. The next step in this research
project is to actually build the MST with the items from the item pools of
the aforementioned English assessment. We will then investigate the different
calibration and equatings and compare the pre-equating methods as they are known
in the realm of MST to post-equating methods. The challenge presented in this
particular situation is that the linear test will continue to be used in the other
applications for which it was initially constructed, and, therefore, a request might
be made to post-equate the test scores for this specific use of the test.

The data example considered in this paper is extreme, but real. In other testing
situations the differences between different ability subgroups might not be as
dramatic, and therefore, different operational decisions might be considered.
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Achieving a Stable Scale for an Assessment
with Multiple Forms: Weighting Test Samples
in IRT Linking

Jiahe Qian, Alina A. von Davier, and Yanming Jiang

1 Introduction

In quality control of an assessment with multiple forms, one way to ensure a stable
scale for the reported scores is to achieve a stable linking process over time. For
an assessment with multiple test forms, measurement precision and invariance in
linking and equating are always a concern to test investigators (Holland 2007;
Holland and Dorans 2006; Kolen and Brennan 2004; von Davier and Wilson
2008). In this paper, we use the term linking to describe a transformation of IRT
parameters from two or more test forms to establish a common IRT scale (a linear
transformation of the IRT parameters from the two test forms). Although the same
specifications are used to construct forms for multiple test administrations, equating
and linking procedures can still be unstable because of sample heterogeneity. There
are two main sources of variation: general variability and seasonality. The general
variability is largely due to the heterogeneity across the test taker samples over time,
while seasonality is caused by some identifiable seasonal conditions and sources,
such as curriculum schedule and college application deadlines (Guo et al. 2008; Li
et al. 2011). The goal of this study is to obtain an improved sampling design to
stabilize the estimates of the measurement model parameters, of the item response
theory (IRT) linking parameters, and of the means and variances of the equated
scores across numerous administrations (Qian et al. 2011). Specifically, statistical
weighting techniques are applied to yield a weighted sample distribution that is
consistent with the distribution of the target population of the test. In this way, the
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disparity of the distributions of linking samples across administrations is reduced.
The design in this study aligns the proportions of the examinee groups of interest in
the sample to those of the target population. The objective of the study is to achieve
a stable scale for an assessment with multiple forms and to explore an effective
paradigm to evaluate the procedure. The future research is to explore a formal
optimal sampling design for linking based on weighted samples and equating of
multiple test forms over many administrations (Berger 1991, 1997; Berger and van
der Linden 1992; Buyske 2005; Lord and Wingersky 1985; Stocking 1990; van der
Linden and Luecht 1998).

The basis of achieving a stable linking is the consistency between a weighted
distribution of a sample (for certain demographic variables) and the distribution
of the test’s target population. This idea is analogous to the idea of “sampling
exchangeability,” an assumption in the Draper–Lindley–de Finetti (DLD) measure-
ment validity framework (Zumbo 2007). For linking based on weighted samples,
whenever a target population is available, we can always adjust the marginal
distributions in a sample and make them to be consistent with those in the target
population. In addition, achieving a stable linking by applying weighted samples is
essential for quality control. For example, in analyzing a test with multiple forms,
the measurement invariance found in one administration sample may not be a valid
presumption for another one. Or when a linking has to use partial data that are
sometimes gathered with selection bias, a decision based on such results could
differ from those based on the whole data set. So the linking function yielded
from a partial data set or a specific sample could also be biased, and the quality
of reporting could be compromised by the sample characteristics and heterogeneity.
In order to perform IRT linking based on weighted samples, we first define the
target population and the equating samples, and then apply weighting techniques to
obtain an improved sampling design for invariant Stocking and Lord (1983) test
characteristic curve (TCC) linking across testing seasons. The linking based on
weighted samples process will result in more stable equating results.

The previous studies on population invariance in equating are focused on
improving measurement precision and scale invariance across examinee subgroups
within an administration sample (Kolen and Brennan 2004). The root mean square
difference (RMSD) is often used to quantify group invariance in random group
equating (Holland and Dorans 2006; Yang and Gao 2008; Yi et al. 2008). Based on
RMSD using half a point as the criterion (Holland and Dorans 2006), Moses (2011)
found that measurement invariance, including scaling invariance and regression
invariance, was most likely when there were similarities in the tests being linked and
in the examinee groups taking the tests but were not guaranteed to be invariant when
the tests and/or groups are dissimilar. However, Huggins (2011) did identify tests
that failed to possess either the measurement invariance or population invariance
properties. As pointed out by Kolen (2004), most of these studies are sample relevant
because linkings and equatings are data dependent. Some papers in the equating
literature studied matching the equating sample to a target population (Duong and
von Davier 2012; von Davier et al. 2004). As shown in this paper, our approach
of weighting has similarities to the methods described in the equating literature.
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For example, poststratification, one of the methods that we used here, has also
been employed in observed-score equating for nonequivalent groups with anchor
test (NEAT) design (Braun and Holland 1982; Livingston 2004), and in chain and
poststratification equating (Sinharay et al. 2011). Although some studies have used
poststratification to align the proportions of demographic groups to those in the
reference sample in linking (Livingston 2007), no study has been based on total
linking errors, and none has demonstrated that weighting effectively reduces the
linking errors due to sample variability.

As mentioned previously, the focus of this study is the stability and accuracy
of linking over time and is conceptually similar to that of optimal sampling design
research. In this paper, the main research question is how to select the samples so
that the estimates of the model parameters are stable or with less variability over
many test forms and administrations. We aim to reduce the mean squared error
(MSE) of the parameters and estimates of interest.

In Sect. 2 of this paper, we introduce the methodology of the study, including
study design, weighting techniques, and the statistical tools employed for the
evaluation of the proposed design. In Sect. 3 we document the empirical results
of weighting examinee samples in IRT linking. The final section offers a summary
and conclusions.

2 Methodology

In this section, we introduce the study design and the statistical tools applied in the
analysis which include the linking procedure of Stocking and Lord (1983) based
on test characteristic curves (S-L TCC), IRT true-score equating, the weighting
techniques applied (including poststratification and raking), and complete grouped
jackknife variance estimation.

2.1 Data Resources

In this study, we employed eight data sets from a large-scale international language
assessment, four from the reading section and four from the listening section; these
assessments were administered across different testing seasons. Table 1 shows the
summary of the eight data sets and their subsamples used in the study.

For the reading test design, all of the examinees had responses to 42 operational
items from two blocks having 14 and 28 items, respectively. The IRT linking was
accomplished using both internal and external anchors. The anchor items were used
to link the scale of a new test form to the scale of the reference forms. For the
listening test design, all of the examinees had responses to 34 operational items that
were evenly distributed in two blocks. Similar to the reading design, the linking in
listening was accomplished using both internal and external anchors. In each data
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Table 1 Basic statistics of the samples and their subsamples

Data set Sample size Nonlinking cases Subsample size (40 %) Nonlinking cases

Listening 1 10,433 32 4,173 14
Listening 2 8,760 293 3,504 121
Listening 3 9,566 311 3,826 132
Listening 4 10,293 0 4,117 0
Reading 1 10,313 32 4,125 17
Reading 2 8,628 288 3,451 118
Reading 3 9,454 307 3,782 120
Reading 4 10,120 0 4,048 0

set, there were some demographic variables available for analysis, such as gender,
age, test location, reason and length of time of study. Some of them are correlated
with general variability and seasonality across administration samples.

2.2 Study Design

As stated above, the procedure proposed in this paper is intended to yield a weighted
sample distribution that is consistent with the distribution of the target population. If
we have the baseline scale score of the target population, we can judge whether the
weighted or unweighted results from the same administration sample have smaller
linking errors and higher precision in estimation. Because we are unable to conduct
an assessment on the whole target population, we are unable to make a judgment
directly. Thus the evaluation becomes challenging due to a lack of a baseline for
comparison.

To counter this issue, we selected a subsample from each of the eight original
administration samples. The subsample was treated as a relative “sample” and the
original administration sample was treated as a relative “pseudo target population.”
In making comparisons, the results, i.e., transformation parameters, etc., from the
pseudo target population were treated as the baseline. Therefore, the two sets of sub-
sample results (weighted and unweighted) can be compared with the results yielded
from the original administration sample. If the results from the weighted subsample
are closer to the results yielded by the original administration sample than those
from the unweighted subsample, then the linking based on weighted samples pro-
cess is better. RMSE was used as the evaluation criterion. In this study, we selected
one subsample from each original administration sample and created one set of
base weights for each subsample. By employing poststratification and trimming,
we eventually yielded eight sets of weights for analysis for each set of the base
weights. For details of poststratification and trimming, see the descriptions below.

In selecting subsamples from the original eight data sets, the sampling rate in
selecting examinees is 40 %. In this study, the symbol R refers to an original data
set (i.e., the pseudo target population) and R refers to the sample selected from R
with a rate of 40 %.
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2.3 Linking in an IRT Framework

In this study we used IRT true-score equating with separate calibrations to match
the procedures used in operational practice. The equating process consisted of three
steps: IRT calibration, item parameter transformation through S-L TCC linking, and
IRT true-score equating. The two-parameter logistic (2PL) regression IRT model
and/or the generalized partial credit model (GPCM) were chosen for item calibration
(Allen et al. 2001; Lord 1980) using the PARSCALE software package (Muraki and
Bock 2002). The same calibration procedure was carried out for each data set and
for each weighting method.

In conducting the IRT calibration with weighted samples, weights are used
to estimate a sample distribution including prior and posterior distributions in
the calibration procedure. Each examinee in a weighted distribution is counted
by the magnitude of its weight instead of one as in a size-based distribution.
Correspondingly, weights are also used to calculate the values of means and standard
deviations of different distributions. The definition of a weighted mean is given in
Sect. 2.3. The results of IRT calibration with weighted samples usually differ from
those with unweighted samples.

The results yielded by the calibration with weighted samples are the input to
the linking step. Based on common items, the S-L TCC method transforms the
item parameter and ability estimates of the new form to the scale of the reference
forms or existing item pool through a linear transformation. The common items on
the reference form are usually assembled from an item pool already on the base
scale (Haberman 2009). The S-L TCC method obtains the linear transformation
by minimizing the squared difference between the two TCCs for common items
between the new and reference forms. See Stocking and Lord (1983) for the details
of this method.

Let A and B, slope and intercept, be the solution of the linear transformation for
the S-L TCC linking method. The expected values of A and B are 1 and 0 (Stocking
and Lord 1983). Let θ̂N and θ̂∗N represent the ability scores for the same examinee
on the new and reference forms, respectively. For item t, let âNt and b̂Nt be the item
parameter estimates of the 2PL IRT models on the new form, and let â∗Nt and b̂∗Nt
be the item parameter estimates on the scale of the reference form. Then the score
transformation between two forms is

θ̂∗N = Aθ̂N +B, (1)

and item parameters can be transformed by

b̂∗Nt = Ab̂Nt +B, (2)

and

â∗Nt = âNt/A. (3)
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The step after S-L TCC linking is IRT true-score equating (i.e., obtaining the
equated scores based on the conversion table). In this study we used IceDog software
(Robin et al. 2006) to conduct IRT true-score equating. See Kolen and Brennan
(2004) for a detailed description of the procedure.

2.4 Weighting Techniques for Calibration Samples

The objective of creating weights in this study was to make the weighted distribution
of a subsample (representing a calibration and equating sample) consistent with
the distribution of the original data (representing the reference population). The
weighting process consisted of three steps: computing base weights for cases
(examinees) that have participated in the assessment, conducting poststratification
or raking, and performing weight trimming (Cochran 1977; Deming and Stephan
1940; Potter 1990).

Creation of base weights. Let Ng be the sample size of test center g in the
total sample and ng be the sample size of test center g in a subsample. We chose
the variable test center because it reflected the mechanism of data collection.
Other demographic variables may also be used, such as region, country, and native
language. Although native language can serve the same function in creating base
weights as test center, it usually contains more missing values than test center. Let
rg = ng/Ng be the ratio of sample sizes for test center g. Then the base weight for
any examinee i in test center g in the subsample equals

wi,g = r−1
g . (4)

For example, in applying weights in estimation, let xi be the variable of interest
and wi be the weight for case i for a sample of size n. The Hurwitz–Thompson
estimator of total statistic is ∑ n

i=1wixi (Cochran, 1977). Then, a weighted mean of
x can be defined by x =∑n

i=1wixi/∑n
i=1wi. Although x is biased, this bias vanishes

with increasing n on the order of O(1/n) (Cochran, 1977).
Poststratification and raking. The characteristics of a target population can be

described by some demographic variables, such as gender, age, ethnicity, location,
and experiences of study (Allen et al. 2001). After base weights were created,
some demographic variables could show considerable gaps between a weighted
subsample distribution and its corresponding original sample distribution. Such gaps
were revealed in corresponding cells that were cross-classified by variables. These
gaps were due to the inconsistency between the subsamples and its original sample,
and such inconsistency was mainly caused by sample variability and/or by some
undue factors such as holidays or storms that could led to nonparticipation. Raking
and poststratification can be used to correct for these known gaps. Consequently, the
linking based on the weighted sample will have improved precision such as reduced



Achieving a Stable Scale for an Assessment with Multiple Forms: Weighting . . . 177

mean squared error. Based on data analysis, we first select several demographic
variables (usually 3–5) that highlight the feature of a target population; then we
conduct a poststratification or raking process.

Poststratification matches the weighted sample cell counts to the population cell
counts by applying a proportional adjustment to the weights in each cell across the
contingency table (Cochran 1977; Kish 1965). Sometimes though, the sample can be
spread too thinly across the cells in the table, thus poststratification would produce
extreme weights in cells with few cases and cause large design effects of weighting
(Kish 1965). To avoid such flaws, raking is used to control marginal distributions
for the variables of interest.

A raking procedure iteratively adjusts the case weights in the sample to make the
weighted marginal distributions of the sample agree with the marginal distributions
of the population on specified demographic variables (Deming 1943). The algorithm
used in raking is called the Deming–Stephan algorithm (Haberman 1979). Again,
this is conceptually similar to estimating the weights assigned to examinees or
the parameters of a specified distribution of characteristics in an optimal sampling
design, as described in Berger (1997, pp. 73–75).

In this study, the Deming–Stephan raking procedure is based on some or all
of the following four demographic variables to adjust the base weights in Eq. (4):
gender, age, time of language study, and reason for language study. As listed in the
Appendix, a total of eight sets of weights were formed by different raking schemes.

Trimming weights. To reduce the design effects of weighting, the weight
adjustment process usually includes a weight trimming step. The trimming process
truncates extreme weights caused by unequal probability sampling or by raking and
poststratification adjustment. It reduces variation caused by extremely large weights
but introduces some bias in estimates. The process usually employs the criterion
of minimum MSE (Potter 1990). To investigate the effects of different trimming
criteria, though not optimal, we implemented ten criteria for the subsamples, which
are given in the Appendix.

2.5 Evaluation Criterion and Complete Grouped Jackknifing

In this study, we used the RMSE of linking parameters and equated scores as the
criterion to measure the stability of the whole complex linking procedure and to
evaluate the effects of different weighting approaches. Bias estimation was used to
evaluate the effects of reducing selection bias in the comparison of weighted and
unweighted samples. The bias estimate measures the error due to selection bias and
RMSE measures the overall variability due to both sampling and selection bias.
In general, RMSE is preferred to standard error or bias in evaluating the effects
of linking (van der Linden 2010). In computing the RMSE, the original samples
from the eight administrations played the role of pseudo target populations, and the
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transformation parameters yielded from the original samples were treated as the true
values. A subsample was then randomly selected from each original sample. Thus,
it is viable to compare the RMSEs of the parameter estimates from the weighted
subsamples against those from the unweighted subsamples. If the RMSEs of the
linking parameter estimates for a weighted data set are smaller than those for its
unweighted counterpart, we can conclude that the weighted sample is closer to its
(pseudo) target population than the unweighted sample.

Recently, the jackknifing method was used to investigate the two types of errors
involved in S-L TCC linking: errors due to the variability of examinee samples
and errors due to the selection of anchor items. Compared with examinee selection,
anchor item selection usually has comparatively small effects on linking and such
effects are usually controllable by test developers (Haberman et al. 2009).

Complete grouped jackknifing. A complete grouped jackknife repeated replica-
tion (CGJRR; Haberman et al. 2009; Miller 1964; Qian 2005; Wolter 1985) method
is used to estimate the standard errors of the whole linking procedure, including
IRT calibration, item parameter scaling, and IRT linking. In the CGJRR we ran, the
examinees in the sample were randomly aggregated into J (=120 in this study)
groups of similar sizes. The jth jackknife replicate sample R(j) was formed by
deleting the jth group from the whole sample, and therefore, 120 jackknife replicate
samples were formed in total.

For the whole sample and each jackknife replicate sample, we conducted the
same IRT calibration, scaling, and the equating procedure. Then we estimated the
jackknifed standard errors of the parameters of interest. Let θ̂R,R be the parameter
estimated with weights from the subsample R. The first R in the subscript indicates
the data set is being used in calibration; the second R indicates the data set used
in linking. Let θ̂R( j) ,R( j)

be the weighted estimate from the jth jackknife replicate

sample, and the replicate sample R(j) is used in both calibration and linking. The
complete jackknifed variance of θ̂ is estimated by

v[RJ ,RJ ]

(
θ̂
)
=

J − 1
J ∑ j

j=1

(
θ̂R( j),R( j)− θ̂·,·

)2
, (5)

where θ̂·,· is the mean of all θ̂R( j),R( j)
(Haberman et al. 2009). The MSE estimate is

MSE[RJ ,RJ ]

(
θ̂
)
= v[RJ ,RJ ]

(
θ̂
)
+

(
θ̂R,R − θ̂R,R

)2
. (6)

The second term
(
θ̂R,R − θ̂R,R

)2
in the equation is the estimate of squared bias

and θ̂R,R is estimated from the original sample R in both calibration and linking.



Achieving a Stable Scale for an Assessment with Multiple Forms: Weighting . . . 179

3 Results

3.1 The Sample Effects on S-L TCC Linking

To show the sample effects on S-L TCC linking, in Table 2 we present estimates
of the bias and RMSE of the S-L TCC transformation parameters A and B in Eqs.
(1)–(3) for the unweighted subsamples. The RMSEs of the linking parameters for
subsamples measure the differences in the linking function between a whole sample
and its subsamples. Given that the theoretical value of B equals zero, the RMSEs
of B are sizable and these errors are nonnegligible. Similar results hold for other
statistics such as converted mean scores. This evidence of the sample variation
effects signals a need to reduce the variability in linking. The goal is to obtain a
set of weights with RMSEs (for A and B or scale scores) that are smaller than those
from the unweighted data, as shown in Table 2.

3.2 Sampling Baseline Characteristics of the Weighted
A and B Estimates

One basic interest in evaluating weighting effects is to examine the characteristics
of transformation coefficients A and B of S-L TCC linking. Because the expected
values of A and B are 1 and 0, respectively (Stocking and Lord 1983), we examine
which estimates of A and B, weighted or unweighted, deviate further from their
expected values. Table 3 presents a summary of such comparisons. The analysis
used the subsamples of eight data sets, and base weights were created from the
variable of test center size (i.e., each base weight was the inverse of the sample
ratio of test center sizes). The base weights of each subsample were further raked
by some or all of the four variables listed in the Appendix.

Table 2 Bias and RMSE of the estimated A and B for subsamples (unweighted)

A B

Data set Whole sample size Subsample size Bias RMSE Bias RMSE

Listening 1 10,433 4,125 −0.0018 0.0168 0.0196 0.0268
Listening 2 8,760 3,451 0.0101 0.0254 0.0178 0.0304
Listening 3 9,566 3,782 0.0104 0.0262 0.0129 0.0287
Listening 4 10,293 4,048 −0.0033 0.0219 −0.0014 0.0235
Reading 1 10,313 4,173 0.0145 0.0214 0.0335 0.0383
Reading 2 8,628 3,504 −0.0224 0.0293 −0.0156 0.0250
Reading 3 9,454 3,826 −0.0143 0.0274 −0.0217 0.0339
Reading 4 10,120 4,117 −0.0020 0.0198 0.0123 0.0262
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Table 3 Baseline characteristics of weighted A and B estimates

No. of the weighted B
estimates closer to 0
than the unweighted
(N = 32)

No. of the weighted A
estimates closer to 1
than the unweighted
(N = 32)

Listening 24 (75.0 %) 25 (78.1 %)
Reading 22 (68.8 %) 13 (40.6 %)

For the B transformation parameter, 75 % of weighted B estimates (24 out of 32)
for listening were closer to 0 than their corresponding unweighted B estimates, and
68.8 % of the weighted B estimates (22 out of 32) for reading were closer to 0 than
their unweighted counterparts. See Table 3. These results thus favor the weighted
estimates, and this statement can be confirmed by a binomial test. Assume that the
weighted estimates are no better than the unweighted counterparts. For listening in
24 out of 32 of weighted estimates, the p-value is 0.001 for a one-side binomial
significance test, and the assumption is rejected at the 0.01 level. Similarly, for
reading in 22 out of 32 weighted estimates, the assumption can be rejected at the
0.01 level with a p-value of 0.01. Correspondingly, binomial significance tests can
be used to confirm the conclusions drawn from other tables.

For the A transformation parameter, 78.1 % of weighted A estimates for listening
were closer to 1 than corresponding unweighted ones. However, the weighted A
estimates from the reading test did not show the same characteristics. We analyzed
different A parameter estimates from the reading data and found that when the
unweighted estimates from a subsample were closer to 1 than the estimates from
the original sample, the weighted estimates from the subsample could actually be
closer to the estimates from the original sample than 1.

3.3 Comparison of the Bias and RMSE of the Weighted
A and B Estimates

To evaluate weighting effects, we also compared the biases and RMSEs of A and
B for the weighted and the unweighted subsamples; Table 4 contains the results
of the comparisons. The base weights were created based on test center sizes with
raking. For each listening or reading subsample, all eight sets of weights, trimmed
by default scheme (i.e., the maximum weight size was set at 2), were used in the
analysis. The detailed raking and trimming schedules are listed in the Appendix.

All the biases and RMSEs of the B parameter estimates obtained from weighted
samples were smaller than those estimated from unweighted samples. More than
75 % of the weighted A estimates also had smaller biases and RMSEs than those
of the unweighted estimates. These results thus favor the weighted estimates. At
the 0.01 significance level for the one-side binomial test, all of the results favor
weighted estimates. These results show that compared with the estimates from the



Achieving a Stable Scale for an Assessment with Multiple Forms: Weighting . . . 181

Table 4 Comparison of the Bias and RMSE of the weighted A and B estimates with those of the
unweighted estimates

No. of the bias of
weighted B
smaller than the
unweighted
(N = 32)

No. of the RMSE
of weighted B
smaller than the
unweighted
(N = 32)

No. of the bias of
weighted A
smaller than the
unweighted
(N = 32)

No. of the RMSE
of weighted A
smaller than the
unweighted
(N = 32)

Listening 32 (100.00 %) 32 (100.00 %) 24 (75.00 %) 32 (100.00 %)
Reading 32 (100.00 %) 32 (100.00 %) 28 (87.50 %) 28 (87.50 %)

unweighted samples, those from the weighted samples have smaller biases and
overall variabilities. This verifies that the linking weighting procedure functions
well for a sample that deviates greatly from its population when its sampling rate is
small and selection bias is strong.

4 Discussion

In this study, we applied weighting techniques to samples of test takers in conduct-
ing IRT linking to achieve a stable scale for an assessment with multiple forms. In
the method proposed here, the weighted distributions of different samples would
be consistent, as if all of them were probability sample selected from the target
population. In this way, the linking quality is controlled by a sampling design for
numerous administrations over time.

The results obtained based on the proposed paradigm showed the effectiveness
of weighting the samples in IRT linking procedures. Although this study is focused
on reducing the variability across multiple samples, the evaluation procedure and
weighting techniques can also be employed to analyze the precision of item
calibration through item selection in test assembly. Thus, we think, this procedure
may also be used for constructing a better test design.

Application has always been a focus of this study. The proposed weighting
strategy can be employed in two scenarios. In the first scenario, one applies the
weighting strategy in an assessment such as GRE

®
or TOEFL

®
with multiple

forms and variability and seasonality among multiple test samples. In the second
scenario, one applies the same strategy in analyzing partial data. A typical example
is analyzing the data from state assessments where the available data for making
initial equating decisions may be only about 20 % of the final data. Instead of
using randomization, the initial data are often a convenient sample gathered from
the school districts that complete testing early. So applying weighting techniques
could help psychometricians avoid biased results based on the initial equating
analysis. Note that if the initial sample of a state assessment is a random sample,
the problem might not exist. In general, the weighting procedure can be used to
correct the differences between a sample and its population, such as under- or over-
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representation of certain subgroups for a given administration. Moreover, applying
weighting techniques, including creating weights and raking, is not very complex,
although evaluating weighting efficiency as done in this study is computationally
intensive.

In application, the process to create weights should follow the steps in Section
2.3: computing base weights, conducting poststratification or raking, and per-
forming weight trimming. In poststratification and raking, we should, based on
statistical analysis of data, choose several demographic variables, such as gender,
age, ethnicity, location, and experiences of study, that are correlated with the
estimates of interest in the target population.

As future research, we may consider a different strategy, such as imposing
selection bias in samples by deliberately oversampling certain demographic groups
to evaluate the effects of optimized weighting on reducing selection bias (Berger
et al. 2000). In the future, we may conduct a comparison of the method that
we proposed here to the formal optimal sampling design described by Berger
(1997). The difficulty in following Berger’s approach consists of formally modeling
the three aspects of the situation: the background information, the IRT model
parameters for each administration, and the IRT linking parameter for each pair
of administrations, and all these for multiple test forms/administrations. One might
focus first on linking only two test forms/administrations, in a simple way, say using
a mean–mean IRT linking. The formal expression of the IRT linking expressed as a
restriction function on the parameter space, as given in von Davier and von Davier
(2011), could be useful for writing the constraints formally. Then as in von Davier
and von Davier and using the definition of an optimal sampling design (Berger 1991,
1997), a sampling design is locally optimal if a specific optimality criterion (which
is usually a function of the information matrix) is achieved. Writing the linking
parameters as constraints as in von Davier and von Davier might aid with writing
the constraints formally in linear programming for estimating the weights that lead
to a sample for which the linking parameters are estimated most efficiently.
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Appendix: Weights, Raking Variables, and Number
of Trimming Criteria Applied in Analyses

Weight
Variable used for
base weight

Variables used
for rakinga

Criteria used for
trimmingb Note

W0A Test center V1, V2, V3, V4 10 Results reported
W0B Test center V1, V2, V3 10 Results reported
W0C Test center V1, V2 10 Results reported
W0YY Test center V1, V3 10 Results reported
W0ZZ Test center V2, V3 10 Results reported
W0X Test center V1 10 Results reported
W0Y Test center V2 10 Results reported
W0Z Test center V3 10 Results reported
aSymbols of the variables used in raking: V1= gender, V2= age, V3= time of language study,
V4= reason for language study
bIn trimming, the total of the weights was normalized to the size of each subsample. The default
trimming criterion was set at 2. For the base weights based on test center, the criteria used for
trimming ranged from 1.5 to 2.4 with an even interval of 0.1. The base weights based on native
language only used the default trimming criterion
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A Monte Carlo Approach for Nested Model
Comparisons in Structural Equation Modeling

Sunthud Pornprasertmanit, Wei Wu, and Todd D. Little

1 Introduction

Model selection is an important issue in structural equation modeling (SEM). Model
selection occurs when researchers have two or more competing research hypotheses
(or models) and would like to know which provides a better explanation to the
population behind the data. When the competing models are nested in a sense that
one model can be created by fixing or relaxing some parameters in the other model,
model selection can be done using likelihood ratio test (LRT, also termed chi-square
difference test). The model that has more parameters is called the parent model and
the model with fewer parameters is called the nested model. The LRT compares the
chi-square test statistic (an absolute model fit index) of the two models. A significant
LRT indicates that the nested model provides a poorer model fit than the parent
model, leading to rejection of the nested model.

A major disadvantage of the LRT is its sensitivity to large sample size. As a
result, even a trivial difference in fit between the parent and nested models could
lead to rejection of the nested model. For example, suppose the parent model is
a two-factor confirmatory factor analysis model (CFA) on six indicators with a
correlation of 0.95 between the two factors. The nested model is a one-factor CFA
on the same six indicators. The factor correlation is so high in the parent model that
it is reasonable to deem the one-factor model (nested model) as good as the two-
factor model (parent model). Unfortunately, the LRT would reject the nested model
with a large enough sample size.
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To solve the problem, many researchers have used difference in fit indices other
than chi-square test statistic for nested model comparisons. For example, Cheung
and Rensvold (2002) used a change in comparative fit index (CFI), gamma hat,
or McDonald’s noncentrality index to compare nested models with different levels
of measurement invariance across groups. They suggested a cutoff of 0.01 for
the change in CFI in keeping control of the Type I error rate. A later study by
Meade et al. (2008) argued that a cutoff of 0.002 for the change in CFI would
be more appropriate because the cutoff led to higher power to reject models
without measurement invariance. Although cutoffs have been suggested for the
multiple-group measurement invariance test, there are infinite types of nested
model comparison (e.g., longitudinal measurement invariance test or a comparison
between full and partial mediation models). It is unlikely that either of the cutoffs is
suitable for all of them. In addition, the LRT and change in CFI are used to test the
hypothesis that a nested model is equal to the parent model in model fit. In practice,
a null hypothesis that the nested model approximates the parent model in model fit
would be more realistic and meaningful.

We argue that a desirable method for nested model comparisons should have
the following characteristics. First, the method is applicable to all nested model
comparisons. Second, it should not be sensitive to sample size (Hu and Bentler
1999). Third, it should retain a nested model if it is only trivially different from
the parent model and reject a nested model if it deviates substantially from the
parent model. Taking the three criteria into consideration, we propose a Monte Carlo
approach for nested model comparisons. This approach is an extension of the Monte
Carlo approach for model fit evaluation developed by Millsap (2012). We argue that
the Monte Carlo approach can satisfy all of the three criteria outlined above. The
goal of the article is to demonstrate and evaluate the performance of the Monte
Carlo approach.

The rest of the article is organized as follows. We start with a brief introduction
of the Monte Carlo approach for model fit evaluation. We then illustrate how to
extend this approach to nested model comparisons followed by a discussion of ways
to account for a trivial difference between the nested models in the Monte Carlo
approach. A simulation study is conducted to evaluate the approach. We conclude
this paper by discussing the implications and limitations of the study and providing
suggestions for applied researchers.

2 Monte Carlo Approach for Model Fit Evaluation

The basic idea of the Monte Carlo approach to model fit evaluation is to create
an empirical sampling distribution of a fit index given the null hypothesis that the
hypothesized model is approximately correct (Millsap 2007, 2010, 2012; Millsap
and Lee 2008). A cutoff criterion for the fit index can be then derived from the
sampling distribution and used for testing approximate fit.



A Monte Carlo Approach for Nested Model Comparisons 189

To implement the approach, a target model is first fit to the original data and
fit indices (e.g., RMSEA) are recorded. Second, an alternative model is created by
adding trivial model errors to the target model such that the target model remains
a good approximation of the alternative model (below, we describe how a trivial
error can be added). A large number of simulated data sets (with the same sample
size as the original data) are then generated from the alternative model. Third,
the target model is fit to each of the simulated data sets. Target fit indices are
saved from each of the resulting analyses of fitting simulated data sets. The fit
indices are used to form sampling distributions. Because the target model is fit
to the data generated from the alternative model and the target model is slightly
different from the alternative model, the sampling distribution reflects the sampling
variability of a fit index assuming that the target model is only an approximation of
the population. Finally, after the sampling distribution of a fit index is established,
the cutoff of the fit index is derived as the critical value based on an a priori alpha
level (usually α = 0.05) in the sampling distribution. The fit index from the original
data is then compared to this cutoff to decide whether the target model should be
rejected. Using RMSEA as an example, the cutoff criterion is the 95th percentile
(one-tailed test) in the simulated sampling distribution of RMSEA. If the original
RMSEA is larger than the cutoff, then the target model would not be considered
a good approximation (it would be rejected in favor of the severely misspecified
alternative). In other words, given the null hypothesis is true that the target model
approximates the population, it is very unlikely to obtain such a large RMSEA in the
sample, indicating that the sample is probably not from the population defined by
the null hypothesis. Note that a plug-in p value can also be calculated to facilitate the
decision. The p value is estimated as the proportion of the fit indices from simulated
data that suggest worse fit than the observed fit index. The alternative model is
rejected if the plugin p-value is smaller than or equal to the a priori alpha level
(p ≤ α) or vice versa.

3 Monte Carlo Approach for Nested Model Comparison

Now we describe how to extend the procedure to nested model comparisons.
Similar to the Monte Carlo approach to model fit evaluation, the purpose here is
to derive a sampling distribution. However, because nested model comparisons use
differences in fit indices, we derive the sampling distribution for the difference in
a given fit index. After the sampling distribution is established, the cutoff criterion
for the difference can be established correspondingly. To facilitate test of a more
realistic hypothesis regarding the difference in model fit between nested models, the
sampling distribution should be created based on the null hypothesis that the nested
model fits the data approximately as well as the parent model. In other words, the
difference between the nested and parent models or the parameter constraints in the
nested model should be trivial.

This approach involves the following steps:
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First, both nested and parent models are fit to the original data and the difference
in a fit index is recorded.

Second, an alternative nested model is created by adding trivial misspecification
to the nested model such that the target nested model is a good approximation
of the alternative nested model. For example, small amounts of noise can be
added to the constrained parameters in the nested model. Using a multiple-group
measurement invariance test as an illustration, suppose that the parent model is a
weak measurement invariance model (factor loadings are equal but intercepts are
different across groups) and the nested model is a strong measurement invariance
model (both factor loadings and intercepts are equal across groups). A good
candidate for the alternative nested model is a model with trivial group difference in
the intercepts.

Third, a large number of simulated data sets with the same sample size as the
original data are generated from the alternative nested model. Both nested and parent
models are then fit to each of the simulated data sets and the difference in a fit index
(e.g., CFI) is recorded. The differences in the fit index from the simulated datasets
form the sampling distribution of the difference. In this case, the parent model fits
the simulated data well (because it is an over-specified model) and the target nested
model fits the simulated data approximately well. The sampling distribution derived
in this way would be consistent with the null hypothesis that the nested model fits
approximately as well as the parent model.

Finally, the cutoff criterion for the difference in the fit index is the critical value
based on a priori alpha level (usually 0.05) in the simulated sampling distribution.
If the difference from the original sample exceeds the cutoff, the nested model
is rejected. Again, a plug-in p value can be calculated as the proportion of the
differences from the simulated data exceeds the observed difference to facilitate
the decision.

4 Imposing Trivial Misspecifications in a Nested Model

As can be seen above, creating an alternative nested model by adding trivial
misspecifications to the nested model is a key step in the Monte Carlo approach.
In terms of specifying a misspecification, both the type and severity of the
misspecification need to be considered. A misspecification can be considered as
trivial if it is not of central interest to researchers and its magnitude is small. In this
article, we focus on the case where the nested model underspecifies the population
model. We define the severity of a model misspecification using the magnitude of
the misspecified parameter or added noise following Millsap (2010) and Saris et al.
(2009).

There are three possible methods to add a trivial misspecification. Millsap (2010,
2012) proposed using an exemplar of maximally acceptable misspecifications (e.g.,
a misspecified cross loading of size 0.3). We refer to this method as the fixed method.
This method can be directly applied in nested model comparisons. An exemplar
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of maximally acceptable misspecifications can be added in a nested model (e.g.,
measurement intercept of 0.2 in standardized scale in the example above). The
major disadvantage of this approach is that it only considers one form and one
size of trivial misspecification out of a large number of possible misspecifications.
As a consequence, the result might be sensitive to the selected misspecification. To
take into account more variety of forms and sizes of potential misspecifications,
Pornprasertmanit et al. (2012) proposed two new ways to introduce the trivial
misspecification into the model: random and maximal methods.

The random method treats model misspecifications as random and assumes that
they have a distribution (e.g., all measurement intercepts have uniform distribution
from −0.2 to 0.2 in a standardized scale). In each replication, a set of values for the
trivial misspecified parameters is drawn from the distribution based on which data
set is generated. In other words, the set of values for the trivial misspecifications
would be different for each replication. By doing this, multiple exemplars of
possible misspecified models are taken into account.

The maximal method also accommodates the fact that there could be a range
of trivial misspecifications. However, instead of randomly assigning values to
misspecifications, the maximal method selects a combination of values that results
in maximum misfit and uses it to generate data. Suppose any measurement intercepts
fall in between −0.2 and 0.2 in a standardized scale are deemed as trivial, the
maximal method will go through all possible combinations of the measurement
intercepts within the range and pick the one that results in a maximum misfit. Note
that the amount of misfit can be defined by a fit index such as LR, RMSEA (Browne
and Cudeck 1992), or SRMR (Bentler 1995). This combination of values for the
measurement intercepts are then used for data generation in each replication.

5 Simulation Study

Having described the Monte Carlo approach to nested model comparison, we
now conduct a simulation study to evaluate this approach in comparison with the
traditional LRT and change in CFI approach with a cutoff of 0.002.

In the simulation study, the data generation model is a longitudinal CFA model
with three time points. At each time point, there was one latent factor indicated by
three observed variables (see Fig. 1). The analysis model examines the measurement
invariance of the single factor construct across time. The population values of
the parameters in the data generation model are specified as follows. All factor
loadings are equal to 1. Factor variances of each time point are 1, 1.2, and
1.4, respectively. The factor correlations between adjacent time points are 0.7
and the factor correlation between Times 1 and 3 is 0.49. All factor means and
measurement intercepts are fixed at 0. The error variances are 0.4. The error
correlation matrix follows a second-order autoregressive structure where the first-
order autocorrelations are 0.2 and the second-order autocorrelations are 0.04.
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Fig. 1 The longitudinal CFA model

The parent model is a configural factorial invariance model in which the factor
loadings are all freely estimated except that the loading of the marker variable
is fixed to 1 at each time point. Note that the marker-variable method is only
appropriate when the marker variable is known a priori to be invariant across time
(which we assume here). The nested model is a weak factorial invariance model
in which the factor loadings are constrained to be equal across time. Following
the procedure outlined above, an alternative model is created by adding trivial
misspecifications to the nested model. In this case, the trivial misspecifications are
imposed by allowing the factor loadings of Y and Z at the third time point to be
different from those at the previous time points.

Three factors are manipulated in this study. The first factor is the severity of
the misspecifications in the nested model which has three levels: none, trivial, and
severe. In the none condition, all factor loadings in the data generation model are
1. In this case, the nested model fits the data perfectly. In the trivial condition, the
factor loadings of Y and Z at the third time point are 0.9 while all of the other factor
loadings are set at 1. In this case, the nested model approximates the data generation
model, assuming that a difference of 0.1 in factor loadings is trivial. In the severe
condition, the factor loadings of Y and Z at the third time point are 0.4 while all
of the other factor loadings are set at 1. Now the two factor loadings are different
from those at the first and second time points by 0.6 points. We assume that this
difference is large enough to falsify the weak factorial invariance assumption. In
other words, the nested model would fit the data worse than the parent model. Note
that for all of the conditions, the parent model (configural invariance model) fits the
data perfectly.
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The second factor is sample size which has four levels: 125, 250, 500, and 1,000.
We consider both small and large sample sizes to examine whether the Monte Carlo
approach is sensitive to sample size.

The third factor is the way to impose trivial misspecifications to create the
alternative nested model in the Monte Carlo approach. This factor varied at four
levels: none, fixed, random, and maximal methods. For the “none” misspecification,
the simulated data in the Monte Carlo approach are created based on the nested
model (weak factorial invariance model). For fixed misspecification, the simulated
data are created based on the alternative nested model with the factor loadings of Y
and Z at the last time point subtracted by 0.1s. With random misspecification, the
factor loadings of Y and Z at all time points are subtracted by a random draw from
a uniform distribution ranged from −0.1 to 0.1. For maximal misspecification, the
factor loadings of Y and Z at all time points are subtracted by a value within the
range between −0.1 to 0.1 such that the population RMSEA would be maximized
comparing to the fitted parameters. Figure 2 shows examples of the simulated
sampling distribution for the different methods of imposing trivial misspecification.

One thousand replications are generated for each condition. The rejection rate
of the nested model is used to evaluate the performance of all methods. If the
population misspecification is none or trivial, the nested model should be preferred
and the rejection rate should be close to or less than 0.05. If the population
misspecification is severe, the parent model should be preferred and the rejection
rate should approach 1. We used the simsem package (Pornprasertmanit et al.
2012) in (R Core Development Team 2012) to conduct the simulation. The simsem
package calls the lavaan package (Rosseel 2012) in R for SEM.

6 Results

Figure 3 shows the rejection rates for each condition. For the chi-square difference
test, when there was no misspecification in the nested model, the rejection rate was
0.05, which is the nominal level of Type I error. When the misspecifications in
the nested model were severe, the rejection rate was 1. When the misspecifications
were trivial, the rejection rate increased as sample size increased (see Fig. 3a). For
the change in CFI with the cutoff of 0.002, the rejection rates were all close to 0
indicating low power to detect severe misspecifications (see Fig. 3b). Note that the
cutoff of 0.01 for the change in CFI (Cheung and Rensvold 2002) would lead to
even lower rejection rates.

In comparison, when trivial misspecifications are not taken into account in the
Monte Carlo approach, the Monte Carlo approach for the change in chi-square
test statistic was essentially identical to the chi-square difference test (see Fig. 3c).
However, with the trivial misspecifications taken into account, the Monte Carlo
approach is superior to the chi-square difference test by correctly retaining the
nested model with zero or trivial misspecifications while maintaining a sufficient
power to reject the nested model with severe misspecification. The different methods
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Fig. 2 The simulated sampling distribution of the difference in chi-square values between nested
models for the different methods of imposing trivial misspecification

to impose trivial misspecifications resulted in similar results under all of the
conditions with only one exception. When the sample size was small (N = 125), the
random and maximal methods tended to have lower power than the fixed method
to reject the nested model with severe misfit (see Fig. 3d–f). The power from
both methods, however, was still greater than 0.8 which is generally deemed as a
sufficient power. Note that we only presented the simulation results for the change
in chi-square test statistic. The same result pattern was found for the Monte Carlo
approach for the change in RMSEA, CFI, TLI, or SRMR
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Fig. 3 The rejection rates of each condition. MC = Monte Carlo approach. (a) Chi-square
difference test, (b) change in CFI, (c) MC: no misfit, (d) MC: fixed method with true misfit, (e)
MC: Random method with uniform misfit, (f) MC: maximal method
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7 Discussion

The current study examined the performance of a Monte Carlo approach to
nested model comparison in the context of a longitudinal measurement invariance
test. Different ways to incorporate trivial misspecifications in the Monte Carlo
approach were also examined. The results suggest that the Monte Carlo approach
is superior to the chi-square difference test by correctly rejecting the nested model
with severe misspecifications without overrejecting the nested model with trivial
misspecifications. In general, the rejection rates associated with the Monte Carlo
approach were not influenced by sample size except that the nested model with
trivial misspecification had small difference in rejection rates across sample sizes
in the maximal method. The suggested cutoffs (either 0.002 or 0.01) for the change
in CFI turned out to be too lenient for longitudinal measurement invariance tests,
indicating that the cutoffs developed under one type of model might not work
for another. The Monte Carlo approach proposed in the article then provides an
excellent solution for researchers to develop the cutoffs appropriate for their target
models.

The Monte Carlo method requires researchers to define trivial misspecifi-
cation(s). The trivial misspecification(s) should be defined carefully based on
theoretical consideration, experience, or past research. In practice, researchers
may try out different trivial misspecifications to see how the result is sensitive to
the different trivial misspecifications. This would be analogous to conducting a
sensitivity analysis. Stronger evidence to support a decision would be obtained if
the different trivial misspecifications lead to the same conclusion. Although this
practice might be subjective, we believe that it is still better than applying the
suggested cutoffs blindly as they might lead to misleading statistical inference
regarding model selection. Note that although the different methods to impose
trivial misspecifications led to similar results in the current simulation study, their
performance might differ when the modeling context changes. More studies need to
be conducted to fully understand the advantages and disadvantages of the different
methods.

For all methods examined in this paper, the simsem package (Pornprasertmanit
et al. 2013) provides an automated script for evaluating model fit and model
selection using the Monte Carlo approach (see http://simsem.org/). The package also
implements the Bollen–Stine bootstrap approach (Bollen and Stine 1992), which
can be combined with the Monte Carlo approach to handle nonnormal data (Millsap
2012).

Acknowledgments Partial support for this project was provided by grant NSF 1053160 (Wei
Wu & Todd D. Little, co-PIs) and by the Center for Research Methods and Data Analysis at
the University of Kansas (when Todd D. Little was director). Todd D. Little is now director of
the Institute for Measurement, Methodology, Analysis, and Policy at Texas Tech University. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funding agencies.

http://simsem.org/


A Monte Carlo Approach for Nested Model Comparisons 197

References

Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: Multivariate
Software.

Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation
models. Sociological Methods & Research, 21, 205–229.

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological
Methods & Research, 21, 230–258.

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing
measurement invariance. Structural Equation Modeling, 9, 233–255.

Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:
Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.

Meade, A. W., Johnson, E. C., & Braddy, P. W. (2008). Power and sensitivity of alternative fit
indices in tests of measurement invariance. Journal of Applied Psychology, 93, 568–592.

Millsap, R. E. (2007). Structural equation modeling made difficult. Personality and Individual
Differences, 2, 875–881.

Millsap, R. E. (September, 2010). A simulation paradigm for evaluating “approximate fit” in
latent variable modeling. Paper presented at the conference “Current topics in the Theory and
Application of Latent Variable Models: A Conference Honoring the Scientific Contributions of
Michael W. Browne”, Ohio State University, Columbus, OH.

Millsap, R. E. (2012). A simulation paradigm for evaluating model fit. In M. C. Edwards & R. C.
MacCallum (Eds.), Current issues in the theory and application of latent variable models (pp.
165–182). New York: Routledge.

Millsap, R. E. & Lee, S. (September, 2008). Approximate fit in SEM without a priori cutpoints.
Paper presented at the Annual Meeting of Society of Multivariate Experimental Psychology,
McGill University, Montreal, QC, Canada.

Pornprasertmanit, S., Miller, P. J., & Schoemann, A. M. (2013). simsem: simulated structural
equation modeling version 0.5-0 [Computer Software]. Available at the Comprehensive R
Archive Network.

Pornprasertmanit, S., Wu, W., & Little, T. D. (May, 2012). Monte Carlo approach to model fit
evaluation in structural equation modeling: How to specify trivial misspecification. Poster
presented at the American Psychological Society Annual Convention, Chicago, IL.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical
Software, 48, 1–36.

R Development Core Team (2012). R: A language and environment for statistical computing
[Computer software manual]. Retrieved from http://www.R-project.org/

Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation models or
detection of misspecifications? Structural Equation Modeling, 16, 561–582.

http://www.R-project.org/


Positive Trait Item Response Models

Joseph F. Lucke

1 Introduction

Measurement models from item response theory (IRT) (Embretson and Reise 2000)
have been recently and increasingly applied to measures of addictive disorders such
as alcohol use disorder (Keyes et al. 2011; Wu et al. 2009, and references therein),
nicotine use disorder (Liu et al. 2012, and references therein), illicit drug use
disorders (Saha et al. 2012; Wu et al. 2009, and references therein), and gambling
behavior disorder (Sharp et al. 2012, and references therein). All of the above-cited
studies have been concerned with the psychometric properties of various measures
of addictive disorders, usually the Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV, American Psychiatric Association 1994). The research has
primarily investigated whether a given disorder can be adequately represented as a
unidimensional continuum rather than the traditional categories of use, dependence,
abuse, and addiction (Orford 2001). Standard IRT models, including the above-
referenced models, posit the real trait assumption that the latent trait follows a
density, usually but not necessarily the standard normal density, whose support1 is
the entire real line. Intuitively, the assumption claims the range of a trait θ with
positive probability density is −∞ < θ < ∞. This assumption is appropriate for
the traits of ability, achievement, or attitude for which everyone can be assigned
a score, positive or negative, relative to an anchor at zero, representing the average
level of the trait. However, the assumption of real traits creates several problems for
addictions research.

1The topological closure of the union of all open sets of positive measure.
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The first is that the assumption entrains trait scores that are not interpretable as a
level of disorder. While it makes sense to assert that a person has a below-average
ability in music or a right-of-center attitude towards gun control, it makes little or
no sense to assert that a person has a below- or above-average level of addictive
disorder. The more meaningful assertion is that person has a certain level of disorder,
always relative to the level of no disorder.

The second problem arises from assigning the proper score to no disorder.
A person with no disorder must be distinguished from one at risk for the disorder
but endorses no items. The former is identified independently of the diagnostic test
(e.g., one who never drinks alcohol cannot have an alcohol use disorder), whereas
only a person at risk for the disorder is given the diagnostic test. The anchor for the
scale should therefore be no disorder, and as there is no trait level less than that of
no disorder, the anchor should be located at the infimum of the density’s support.
A person with a potential for the disorder but endorses no items should have a trait
score bounded away from the infimum. Under the assumption of real trait, the trait
representing no disorder must be located at −∞ with probability zero, effectively
excluding such persons from measurement. This problem could be remedied by
allowing positive probability at −∞, but the remedy would create a scale such that
no disorder would be infinitely distant from any disorder.

The third and most important problem is that the assumption violates current
theories regarding the etiology of addictions. Theories of addictive disorders, from
neuropharmacology to social psychology, hold that “[an addictive disorder] can
be usefully viewed as a behavioral manifestation of a chronic condition of the
motivational system in which a reward-seeking behavior has become out of control”
(West 2006, p. 174). The excessive behavior exhibited by the disorder is presumed
to be caused by the motivational system’s being subjected to ampliative effects that
are inadequately regulated by impaired constraints such that the current level of the
disorder is proportional to cumulative previous effects (Orford 2001). Conceptual-
izing the state of a motivational process as a latent trait and modeling the partially
constrained, ampliative effects as infinitesimal multiplicative processes, Gibrat’s
“law of proportional effects” implies that the trait should follow a nonnegatively
supported, right-skewed density that is asymptotically lognormal (Johnson et al.
1994, Chap. 14).

One of the advantages of IRT models is that they can be formulated to more
realistically represent the underlying psychological processes that may explain an
individual’s response to items. Here I introduce a class of IRT models that attempts
to account for a person’s response to items on a diagnostic test by representing
the latent trait according to our understanding of addictive disorders. The proposed
positive trait item response model (PTIRM) posits that the trait for an addictive
disorder follows a mixed density comprising a point-supported probability at zero
representing the absence of disorder and the lognormal density representing the
presence of disorder. The functions linking the trait to the response are formulated
as multiplicative, rather than additive, models. IRT models with positive traits
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are not new. The original Rasch model posited fixed positive traits (Rasch 1966).
Recently, van der Maas et al. (2011) proposed a positive ability model derived
from cognitive information processing principles, but did not directly estimate the
positive trait.

2 Positive Trait Item Response Models

Random variables are underlined (Hemelrijk 1966). Let y
i1
, . . . ,y

iK
be observable

Bernoulli random variables denoting K items on a diagnostic test such that y
ik
= 1

if a person i endorses the item and y
ik
= 0 if not. Let θ i, i = 1, . . . , I, be nonnegative

latent random variables denoting i-th person’s level of addictive disorder such that
θ i = 0 if i has no disorder and θ i > 0 otherwise. Let F be an absolutely continuous
distribution function with positive support, and let χA denote the indicator function
for a set A. The PTIRM posits that the probability (Pr) that person i endorses
item k is2

πk(θi) = Pr
(

y
k
= 1 |θ i = θi,βk,αk

)
= χ]0:∞[(θi)F

(
θαk

i

βk

)
. (1)

The parameter βk > 0 is the (multiplicative) intercept for the k-th item denoting
the probability of endorsement β−1

k for θ = 1. The parameter αk > 0 is the
(multiplicative) slope or discriminability of the k-th item with respect to severity,

with larger αk denoting finer discriminability. The derived parameter δk = βα−1
k

k
is the severity of the disorder as revealed by item k, and setting θ = δk gives the
probability F(1) of endorsement. If the sample contains a person i with no disorder,
then θi = 0, so that χ]0:∞[ (0) = 0, and from Eq. (1), πk(0) = 0. In this case, the
parameters βk, αk, and δk have no meaning.

Three specific PTIRMs are readily available. First is the log-logistic:

πLL
k (θi) = χ]0:∞[ (θi)

θαk
i

βk +θαk
i

. (2)

Second is the lognormal (Johnson et al. 1994, Chap. 14):

πLN
k (θi) = χ]0:∞[ (θi)Φ

[
log

(
θαk

i

βk

)]
. (3)

2To conform with the more common parameterization, the item parameters α and β in original
presentation have been reversed to β and α , and the person parameter z has been replaced with θ .
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And third is the Weibull (Johnson et al. 1994, Chap. 21):

πW
k (θi) = χ]0:∞[ (θi)

[
1− exp

(
−θαk

i

βk

)]
. (4)

As previously mentioned, the log-logistic with θ > 0 and αk = 1 is a version of
Rasch’s original item response model (Rasch 1966). The log-normal with θ > 0 is a
statistical version of a psychophysical stimulus–response function (Thomas 1983).
The Weibull model with θ > 0, although used in other fields, is, I believe, new
as a psychometric model. For θ > 0, these three models can also be expressed
as a log-linear extension of generalized linear item response models (Mellenbergh
1994), namely as h [π(θ )] = α log(θ )− log(β ), where h is the logit, probit, or
complementary log–log link function.

The item characteristic curves (ICC’s) are given by Eqs. (2)–(4) for all nonnega-
tive θ . The point θ = 0 supplies no additional information, so from here on out we
assume θ is positive. The trait quantile π−1

k (p) for a given endorsement probability
p to item k is

π−1
k (p) =

[
βkF−1(p)

] 1
αk .

Dropping the item subscript k, log-logistic quantile function is

π−1
LL (p) =

[
β

p
1− p

] 1
α

; (5)

the lognormal quantile function is

π−1
LN(p) =

{
β exp

[
Φ−1(p)

]} 1
α ; (6)

and the Weibull quantile function is

π−1
W (p) = [−β log(1− p)]

1
α . (7)

For the log-logistic and lognormal PTIRMs, the median trait quantile for a
specific item occurs at the item’s severity, that is,

π−1
k (.5) = β

1
αk

k = δk and πk (δk) = .5

The equality between the median trait quantile and severity does not hold for the
Weibull PTIRM. In this case

π−1
k (.5) = [log(2)βk]

1
αk but πk (δk) = 1− e−1 ≈ .63.

One could restore the equality by additionally scaling the severity for the Weibull

model as [log(2)βk]
1
αk , but that not pursued here.
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The item (Fisher) information function provides an index of item precision as
a function of the latent trait. For a given item k and dropping subscripts, the item
information function for the general model (1) is

I(θ ) = E

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

d log

{[
F

(
θα

β

)]y [
1−F

(
θα

β

)]1−y
}

dθ

⎞
⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎦

=

[
αθα−1

β
f

(
θα

β

)]2

F

(
θα

β

)[
1−F

(
θα

β

)] .

The log-logistic item information function is

ILL(θ ) =
βα2θα−2

(β +θα)2 =
(α
θ

)2
π(θ ) [1−π(θ )] . (8)

The log-normal item information function is

ILN(θ ) =

{
α
θ
φ
[

log

(
θα

β

)]}2

Φ
[

log

(
θα

β

)]{
1−Φ

[
log

(
θα

β

)]} =

{
α
θ
φ
[

log

(
θα

β

)]}2

π(θ ) [1−π(θ )]
, (9)

where φ is the standard normal density function. The Weibull item information
function is

IW(θ ) =
[
αθα−1

β

]2 exp

(
−θα

β

)

1− exp

(
−θα

β

) =

[
αθα−1

β

]2
1−π(θ )
π(θ )

. (10)

3 Inference

Bayesian inference was used to obtain parameter estimates. Let [yik] be the I ×K
matrix of observed binary outcomes denoting the i-th person’s response to item k.
Under the standard IRT assumptions of independence among subjects and local
independence among items along with no missing data and prior independence
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among parameters, the joint posterior density (pr) of the model parameters given
the observed responses is

pr
(
β

1
, . . . ,β

K
,α1, . . . ,αK ,θ 1, . . . ,θ I |y11, . . . ,y1K , . . . , yI1, . . . ,yIK

)

∝
I

∏
i=1

pr(θ i)
K

∏
k=1

πk(θi)
yik [1−πk(θi)]

1−yik pr(β
k
)pr(αk).

Markov chain Monte Carlo (MCMC) methods were used to obtain the 2K + I
marginal parameter distributions (Fox 2010, Chap. 4). The parameters were given
mutually independent, low information prior densities, namely β

k
∼ gamma(.1, .1)

and αk ∼ gamma(.1, .1), so that Pr(0 < β
k
< 6) = .95 and Pr(0 < αk < 6) = .95

for all k. Following the reasoning given in Sect. 1 on page 199 the prior density
for the trait was θ i ∼ lognormal(0,1) for all i. The analyses were conducted in R
(R Development Core Team 2012) under Rstudio (RStudio, Inc 2012) using JAGS
(Plummer 2011) and the R2jags package (Su and Yajima 2012) for the MCMC
analyses and the lattice package (Sarkar 2008) for graphics.

4 Data Set

The data sources were two public-use files from the Clinical Trials Network for
the methadone and non-methadone maintenance trials for abstinence-based contin-
gency management (Peirce et al. 2006; Petry et al. 2005) which had previously
been analyzed using a standard IRT model (Wu et al. 2009). The data comprised
854 subjects responding to the seven alcohol dependency items of the DSM-IV
(American Psychiatric Association 1994) at baseline, prior to any intervention. Of
the 854 subjects, 167 (19.6 %) reported they had never used alcohol in the past nor
were currently using alcohol. These subjects were given a trait score of θ = 0. The
remaining 687 were assumed to be potentially addicted to alcohol and assumed to
have a trait score θ > 0. The DSM-IV items were

1. toler—increasing tolerance of alcohol,
2. wdraw—experience withdrawal symptoms,
3. amount—using larger amounts,
4. unable—unable to control use,
5. time—large amount of time spent in acquiring alcohol,
6. giveup—giving up important activities, and
7. contin—continued use despite accompanying problems.

Two MCMC simulations were run to obtain the marginal densities of the 2×
7item+ 687person parameters. The first comprised three chains with a burn-in of
1,000 replications followed by estimation based on 1,000 replications. The Brooks–
Gelman–Rubin (BGR) potential scale reduction statistic was less than 1.1 for all
parameters (Gelman et al. 2004). The final 1,000 samples from each of the three
chains became the estimated marginal densities for the analysis.
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5 Results

Figure 1 presents the ICC’s for the three models according to Eqs. (2)–(4). The
curves, constrained to the positive real line, are not symmetric around any trait
score. Although the curves showed, as would be expected, slightly different
forms, the ordering of the curves along the latent trait axis (Alcohol Disorder
Score) was the same for all three models. Visual inspection revealed that six of
the seven characteristic curves showed roughly the same item severity (δk) and
discriminability (αk) with the exception being the item wdraw, which had the
greatest severity the least discriminability.

Table 1 on page 207 presents for each item the posterior means of the intercept,
discrimination, and severity parameters along with their respective standard errors.
The mean severity across items within each model induced the same rank ordering
among models, so the items are ranked by increasing mean severity. For each item,
the log-logistic tended to generate the smallest severity estimates, the lognormal
the next largest, the Weibull the largest. As there is no intrinsic scale, only the
ordering of the items is meaningful. The deviance information criterion (DIC), a
Bayesian measure similar to the Akaike information criterion (Spiegelhalter et al.
2002), indicated that all three models had similar goodness of fit, with the lognormal
model showing the best fit and the Weibull the worst.

The item unable indicated the least severity and wdraw indicated the greatest
for all three models. Also, as previously mentioned, all of the items except wdraw
showed similar estimates of severity. The mean discriminabilities of the items
were not consistent across the three models. The item wdraw showed the least
discriminability for the log-logistic and lognormal models, whereas unable showed
the least for the Weibull. For item analysis, the relative severity of the items appears
independent of the model, but the relative discriminability depends on the model.

Figure 2 on page 208 presents the item information curves for the three models
according to (8)–(10). The item information curves are not consistent across
models. The log-logistic model shows greatest precision for unable, followed by the
precisions for contin and giveup. In contrast, the log-normal model shows greatest
precision for giveup followed by unable and next contin. In further contrast, the
Weibull model shows greatest precision for giveup followed by contin then by time
and amount. However, all models show the least precision for wdraw.

Figure 3 on page 209 presents the total item information curves, the sum of
all seven item information curves, for each model. The log-logistic and lognormal
models showed similar curves, but with the lognormal peak being slightly lower and
skewed further to the right. The Weibull curve was considerably lower and more
right-skewed than the other two.

Apart from item analysis, the goal of a PTIRM is to provide person scores.
Figure 4 on page 210 presents the posterior person score densities, obtained from
the MCMC analysis, for eight selected item response patterns under the log-logistic
model. The thin line appearing the same in each panel displays the prior standard
log-normal density for the person score. The thick line presents the posterior density
of the score for that pattern. The upper left panel presents the posterior score density
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Fig. 1 Item characteristic curves of the seven dependence items of the DSM-IV for the log-
logistic, log-normal, and Weibull PTIRMs
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Fig. 2 Item information curves for the seven dependence items of the DSM-IV for the log-logistic,
lognormal, and Weibull PTIRMs

for a person endorsing none (0000000) of the seven items and the lower right panel
presents that for one endorsing all (1111111) of the items. The upper right panel
presents the posterior density for a person endorsing only the seventh item contin
(0000001) and the lower left panel presents that for one endorsing all but the second
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Fig. 3 Total item information curves for the seven dependence items of the DSM-IV for the log-
logistic, lognormal, and Weibull PTIRMs

item wdraw (1011111). The remaining panels have similar interpretations. Also
given are the mean score and its standard error for each response pattern. The upper
six panels have posterior densities with standard errors smaller than the prior, but
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Fig. 4 Posterior distribution of trait scores for eight selected response patterns with posterior
means and standard errors from the log-logistic PTIRM

the lowest right panel has a density with large standard error, possibly associated
that score’s being the extreme along with the poor discriminability of the second
item wdraw.
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6 Discussion

The purpose here was to introduce a class of item response models that more
realistically represent traits such as addictive disorders. This new class of models
was proposed on theoretical rather than empirical grounds. Theories of addictive
disorders emphasize the increasingly ampliative effects worsening the disorder
over a baseline of no disorder. This theoretical premise is not consistent with
the standard IRT assumption that the trait can lie anywhere along the real line.
The PTIRM introduced here assumes the trait representing an addictive disorder to
be positive with the baseline of no disorder fixed at zero. Three PTIRM models were
introduced—the log-logistic, the lognormal, and the Weibull—as special cases of a
general PTIRM. Subsidiary derivations yield the trait quantile functions and item
information functions.

These models were applied to a data set measuring alcohol use disorder. Bayesian
inference via MCMC methods provided a satisfactory method for obtaining poste-
rior distributions for item parameters and the person trait. Different PTIRMs yielded
differently shaped ICC’s that nonetheless retained the same ordering of items
across models. The item severity parameters were ranked in the same order across
all three models, but the discriminability parameters were not similarly ranked.
Likewise, different PTIRMS yielded different item information curves, with some
items showing greater precision under one model but other items showing greater
precision under another. Also presented were the densities of a selected subset of
person scores.

PTIRMs are a multiplicative transformation of standard IRT models. For purely
item analyses, the ranking of items in terms of severity scores from a PTIRM should
correspond to the ranking of severity from the corresponding IRT model. Indeed,
analyzing these data with standard IRT models yielded the same ordering of items
with respect to severity which was, in turn, the same order as in the original analyses
(Wu et al. 2009). One can also estimate the moments of the trait scores for PTIRM
from the moments of trait scores from a standard IRT model that assumes a standard
normal trait density. An occasional question is whether the PTIRM fits the data
better than a standard IRT model. Although I consider the empirical question of fit
secondary to the theoretical properties of the PTIRM, I note that the logistic IRT
with a standard normal density for the trait applied to these data yields a DIC of
2,341, which is only slightly worse than the DIC of 2,325 of the corresponding
log-logistic PTIRM.

PTIRMs provide a viable alternative to the standard IRT models for phenomena
such as addiction disorders.
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A Comparison of Algorithms for Dimensionality
Analysis

Sedat Sen, Allan S. Cohen, and Seock-Ho Kim

1 Introduction

Item response theory (IRT) models have been widely used for various educational
and psychological testing purposes such as detecting differential item functioning
(DIF), test construction, ability estimation, equating, and computer adaptive testing.
The main assumption underlying these models is that local independence holds with
respect to the latent ability being modeled (Lord and Novick 1968). It is important,
therefore, to show that the unidimensionality assumption holds before any unidi-
mensional IRT modeling is applied. Otherwise, violations of the unidimensionality
assumption may have a considerable and negative effect on parameter estimation
(Ackerman 1989; Reckase 1979). Ackerman (1992) also showed that the presence
of multidimensionality may also cause DIF. Correct identification of the internal test
structure also helps to examine how well the test measures the underlying structure.
Tate (2003) noted that strict dimensionality and essential dimensionality are two
types of dimensionality in the traditional IRT context. The former refers to the
minimum number of examinee latent abilities required to estimate a monotone and
locally independent model (McDonald 1981; Stout 1990) while the latter refers to a
test with a single dominant factor and one or more minor factors (Stout 1987, 1990).

Because of the centrality of the unidimensionality assumption to many app-
lications of IRT, the dimensionality assessment problem has been the focus of
considerable study. Excellent reviews are provided by Hattie (1984) and Tate (2003).
Dimensionality assessment is more problematic for categorical variables than
continuous variables. When the variables are continuous, traditional factor analysis
techniques can be used to identify factors that may be used to explain the observed
data. Data in social science are often categorical in nature (e.g., dichotomous

S. Sen (�) • A.S. Cohen • S.-H. Kim
University of Georgia, Athens, GA 30602, USA
e-mail: sedatsen@uga.edu; acohen@uga.edu; shkim@uga.edu

R.E. Millsap et al. (eds.), New Developments in Quantitative Psychology,
Springer Proceedings in Mathematics & Statistics 66, DOI 10.1007/978-1-4614-9348-8__14,
© Springer Science+Business Media New York 2013

215



216 S. Sen et al.

and polytomous item responses). These types of data normally fail to meet the
distributional requirements of the traditional linear factor analysis. As a result, factor
analysis may not be directly applicable to categorical variables because spurious
factors (called difficulty factors) may emerge when using Pearson product-moment
correlations (Ackerman et al. 2003; McLeod et al. 2001). As a result, the number
of dimensions may be overestimated (Bock et al. 1988). In order to deal with this
situation, tetrachoric correlations can be used instead of Pearson correlations to deal
with dichotomous nature of item scores (Hulin et al. 1983; Knol and Berger 1991;
Parry and McArdle 1991). However, it should be noted that tetrachoric matrices
for item-level data may not always be positive definite, as required for modern
factor analysis techniques. Another problem with this method is the estimation of
tetrachoric correlations which can be difficult to implement when correlations are
very close to unity (Thissen and Wainer 2001).

A number of different methods have been proposed to assess test dimensionality
for item-level, beginning with work by Christoffersson (1975) and Muthén (1977).
Some relatively new methods based on item factor analysis (IFA) have also been
proposed. There are a wide range of IFA models within structural equation modeling
(SEM) and IRT including full-information maximum-likelihood (FIML) estimation
(Bock et al. 1988), the algorithm in the software package LISCOMP (Muthén 1978),
nonlinear factor analysis (McDonald 1982), and factor analysis of the tetrachoric
correlations between all item pairs (Knol and Berger 1991). The FIML estimation
method is based on analyzing the entire item response pattern while the other
three use bivariate information. These parametric approaches also differ in the
estimation algorithms used. There are several methods available for IFA model
parameter estimations. Among these are FIML, unweighted least squares (ULS),
weighted least squares (WLS), and its modified extensions such as modified WLSM
and WLSMV. In addition to these parametric approaches, there are also some
nonparametric approaches for dimensionality assessment such as the algorithm in
the computer software DIMTEST (Nandakumar and Stout 1993) and in the software
DETECT (Kim 1994; Zhang and Stout 1999a,b). These techniques are designed to
test essential dimensionality of a set of test items.

More recently, a number of studies of dimensionality have focused on compari-
son of different methods (e.g., Nandakumar 1994; Nandakumar and Yu 1996; Tate
2003), the effect of applying unidimensional IRT to multidimensional items (e.g.,
Ackerman 1989), and the effect of guessing parameter (Tate 2003; Stone and Yeh
2006). Although it has been more than three decades since Lord’s (1980) call for
a statistical significance test for assessing dimensionality of a test, there is still
no general test for dichotomous items. Hattie (1984) noted that most indices were
inappropriate for dimensionality assessment for the case of dichotomous variables.

Even though substantial work has been done on techniques used for dimen-
sionality checking, there has been a lack of study on the effectiveness of different
software packages implementing these techniques. The purposes of this study were
to (1) compare two popular software packages, Mplus and TESTFACT, with respect
to their effectiveness for checking dimensionality in multiple-choice tests and
(2) compare different criteria used in these programs. We also included SAS in our
empirical analyses to examine what would happen if Pearson correlations instead
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of tetrachoric correlations were used. In addition to use of Pearson correlations, we
also analyzed the empirical data set with SAS to provide a tetrachoric correlation for
completeness. Guessing parameters and the size of correlations between dimensions
were manipulated to explore possible interaction between these effects. Three
indices based on the proportion of variance, RMSR reduction, and a chi-square
difference test were used to examine dimensionality. The research included two
parts, a simulation study using a Monte Carlo approach and an application with data
from a large midwestern university mathematics placement testing program.

1.1 Software

There are a number of computer programs used for both parametric and nonpara-
metric approaches. Because the focus of this study is on parametric approaches,
software packages designed for nonparametric approaches (e.g., DIMTEST) are
not discussed in detail. IFA-based procedures for applications with dichotomously
scored items can be implemented in software programs, including Mplus (Muthén
and Muthén 2010), NOHARM (Fraser and McDonald 1988), and TESTFACT
(Wilson et al. 2003). Although the goal of these three programs is the same, the
methods employed by each are different. They differ in sample statistics, estimation
methods, and how guessing is handled (Stone and Yeh 2006).

1.1.1 Mplus

Mplus can handle categorical, continuous, and ordinal types of data. The software
permits users to perform both exploratory factor analysis (EFA) and confirmatory
factor analysis (CFA) to estimate unidimensional or multidimensional models.
Estimation of dichotomous data is done using tetrachoric correlations via the
following methods: ULS, WLS, WLSM, and WLSMV. Mplus also provides several
fit indices including chi-square test statistics, root mean square residuals (RMSR),
root mean square error of approximation (RMSEA), and comparative fit index
(CFI). In addition, both orthogonal (varimax) and oblique (promax) rotations of the
initial solution are available. There is no option for handling the guessing parameter
in the three-parameter model. The Mplus manual also indicates that the relationship
between the extracted factors and the observed indicators is provided using probit
regression of items on factors.

1.1.2 TESTFACT

TESTFACT was designed to perform nonlinear, exploratory full-information IFA
on dichotomous items. This software uses marginal maximum likelihood (MML)
estimation in combination with an expectation-maximization (EM) algorithm.
The estimates are obtained in TESTFACT using all of the information in the
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item responses rather than use of an item covariance or correlation matrix as is
implemented in Mplus, and TESTFACT can handle the guessing parameter for
factor analyses. TESTFACT prompts the user to specify the number of factors
and the guessing parameters, if guessing is assumed in the model. The guessing
parameter can be input by either assuming a single value or providing estimated
guessing parameters for each item from another software package such as BILOG
or MULTILOG. TESTFACT calculates chi-square statistics which can be used for
model comparison. However, TESTFACT requires nonzero frequencies for each
item pattern in order to calculate this value. Problematic correlations due to extreme
proportions are replaced with admissible values using Thurstone’s centroid method
(Tate 2003). A smoothing option is also available if the correlation matrix is
nonpositive definite. Although TESTFACT can produce the output of a residual
matrix, there is no residual-based fit index. RMSR value can be calculated from
residual matrix. As with Mplus, varimax and promax rotations of the initial solution
can be obtained in TESTFACT.

1.1.3 SAS

SAS provides a way of doing common-factor and component analysis using the proc
factor statement. It offers a range of methods in EFA to select the number of factors,
extraction and rotation methods. These analyses can be done using either raw data
or correlation/covariance matrix. SAS is often used for continuous variables with
Pearson correlation coefficients. Although it is not very practical, one can conduct
factor analysis for dichotomous type data by providing a tetrachoric correlation
matrix. The extraction methods available in SAS include principal component
analysis, principal factor analysis, iterated principal factor analysis, ULS factor
analysis, maximum likelihood (canonical) factor analysis, alpha factor analysis,
image component analysis, and Harris component analysis. Proc factor produces
the residual correlation matrix and the partial correlation matrix. EQUAMAX,
ORTHOMAX, QUARTIMAX, PARSIMAX, and VARIMAX; and two oblique
rotation methods, PROCRUSTES and PROMAX, can be obtained with proc factor
statement. In order to help in determining the number of components or factors, the
scree plot, percentage of variance, and Kaiser’s rule can be obtained from output.

2 Method

Dimensionality assessment results for the simulated data are given first, followed
by results for the real data. Only the results of applying Mplus and TESTFACT
are presented in the simulation study. Additional results from SAS are reported for
the real data study. As mentioned earlier, number of dimensions, correlation, and
guessing parameter were manipulated. Results from uncorrelated factors and those
from correlated (r = 0.3) factors are presented for both Mplus and TESTFACT in
results section. Values in the each cell represent the correct number of identifications
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out of ten replications. First rows of two tables are the same since only the
uncorrelated condition is possible for unidimensional data. EFA was carried out
using WLSM for all Mplus analyses. Similarly, exploratory analyses in TESTFACT
were conducted using FIML for one to five factors. Hereafter, we refer Mplus as
it is applied with WLSM and TESTFACT as it is applied with FIML in simulated
data analyses. Maximum likelihood extraction method was used for SAS analyses
in empirical data set.

2.1 Simulated Data

Examinees’ responses to ten different 60-item tests were simulated based on the
dichotomous, multidimensional logistic IRT model. Each of the ten tests was
replicated ten times. One-, two-, and three-dimensional data sets were simulated
for each replication. Two guessing conditions were simulated in which the guessing
parameter was set at 0 and 0.25. There is a certain amount of correlation among
factors in most educational tests. To simulate this, a correlation of 0.3 was used
in addition to correlations of 0 between factors. Data were generated for 2,000
respondents for each test using WINGEN 3.0 (Han 2006) software. Following
the conditions in (Yeh 2007), distribution of latent traits was normal with mean
of zero and standard deviation of 0.1 for unidimensional data. While mean of
latent traits remained the same for each dimension, different values for standard
deviations were used to obtain the desired correlation (r = 0.3) between dimensions.
Because this was the only way to obtain correlated dimensions in WINGEN. Item
parameter distributions were N(1, 0.36) and N(0, 1.43) for discrimination and
difficulty parameters, respectively. Ten data conditions were simulated by changing
correlation, guessing, and the number of dimensions.

2.2 Real Data

The data used in this study were from a test designed to measure calculator
proficiency in pre-calculus mathematics. A total of 765 students took a special,
experimental form of this 28-item test. Each item had five choices. Students were
allowed to use a calculator on the first 14 items, but were not allowed to do so
on the second 14 items. Only the second 14 items, which allowed no calculator use,
were analyzed for this study. The test was originally constructed as a unidimensional
instrument.

The multidimensional item response theory (MIRT) model for dichotomously
scored items with a guessing parameter (Bock et al. 1988) was used to analyze the
data. The probability of a correct response to item j can be given as

P(Uj = 1|θ ) = g j +(1− g j)Φ[z j(θ )] = g j +(1− g j)
1√
2π

∫ z j(θ)

−∞
exp(−t2/2)dt,

(1)
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where

Φ[z j(θ )] =Φ

(
c j +

K

∑
k=1

a jkθk

)
=Φ

(
δ j +∑K

k=1α jkθk

σ j

)
, (2)

g j is the guessing parameter, c j is the intercept or easiness parameter, a jks are
the slopes, θks are latent variables equivalent to the vector θ , δ j is the standard
difficulty or negative threshold (i.e., −γ j), α jks are items regression coefficients
or factor loadings to the respective dimensions from 1 to K (i.e., λ jk), and σ j =√

1−∑K
k=1α2

jk. If we let d j =
√

1+∑K
k=1 a2

jk, then α jk = a jk/d j and δ j = c j/d j

(cf. McLeod et al. 2001, p. 199).
TESTFACT was used to obtain the a jks and c j for each item under MMLE. The

g j parameters are not estimated with other parameters in TESTFACT and must be
specified by the user. BILOG-MG (Zimowski et al. 2002; see also Mislevy and Bock
1990) was used to obtain the lower asymptote estimates using all default options
with an exception of the option for items with five choices.

2.3 Decision Criteria

Several methods for determining the number of factors have been proposed.
Eigenvalues, fit indices, and proportions of variance are typically used to examine
the factor structure of a set of items. Scree plots involve plotting the eigenvalues for
all possible numbers of factors and looking for the elbow in the plot (i.e., the point
at which the eigenvalues tend to stop decreasing). The number of factors is taken as
one fewer than the solution corresponding to the elbow. This approach is criticized
as being very subjective because the location of the elbow is not always very clear.
Kaiser (1960) proposed a heuristic rule called the eigenvalue-greater than-one (K1)
rule in which each eigenvalue greater than one is taken to indicate a component,
and his rule was applied by some to common-factor analysis (Mulaik 2009, p. 186).
The proportion of variance is an index for the substantive importance of factors.
This procedure is fairly straightforward and suggests keeping the number of factors
needed to account for a specified percentage of the variance (e.g., 80% or 90%).

In addition to using eigenvalues, there are several residuals and fit indices that
can be used for dimensionality assessment such as chi-square fit statistics, RMSEA,
and RMSR. These statistics indicate the differences between observed values and
estimated values. Smaller values are taken to indicate better fit. A cutoff value of
0.05 or less for the RMSR and RMSEA statistic has been suggested as a guide
indicating an acceptable number of factors (Browne and Cudeck 1993). Hu and
Bentler (1999) offer different cutoff values for these indices, specifically RMSR <
0.08 and RMSEA < 0.06. The chi-square test evaluates whether the observed data
correspond to the expected data. The chi-square statistic is dependent on sample
size, but RMSEA is not. Thus, for larger samples, it may be more appropriate to
use RMSR and RMSEA to assess the model fit. In addition to using cutoff values,
the model fit decision can be made based on the percentage of reduction of the
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RMSR (Tate 2003). Tate (2003) suggests that factors be added to the model until
the percent of RMSR reduction is less than 10%.

Dimensionality decisions in this study were based on the following three criteria:
percentage of the RMSR reduction, chi-square difference test, and proportion of
variance. As mentioned earlier, the assessment of test dimensionality in TESTFACT
can be done using a test of the change of the chi-square fit statistic due to adding
a factor to the model. In Mplus, RMSR reduction approach was used. However,
proportion of variance criterion was used for all of the software packages.

3 Results

3.1 Simulated Data Results

3.1.1 One-Dimensional Tests

One-dimensional data with two guessing situations were analyzed in Mplus and
TESTFACT programs. The fit statistics of the bifactor model were compared with
those for the 1-factor model. As can be seen in the first rows of the two tables,
TESTFACT and Mplus did not correctly identify the unidimensional structure when
no guessing was simulated. When guessing was simulated, however, TESTFACT
performed better than Mplus as expected (Table 1).

3.1.2 Two-Dimensional Tests

Within each test form, the correlations between factors were fixed at either 0 or
0.30. Mplus provided no correct identification when no guessing was simulated
regardless of the simulated correlation. TESTFACT correctly identified 80% and
50% in the no-guessing simulation, however, for uncorrelated and correlated cases,
respectively. As in the one-dimensional case, TESTFACT did better than Mplus,
when guessing was simulated for two-dimensional data. Mplus correctly identified
four cases when two-dimensional uncorrelated data were simulated with a guessing
effect.

Table 1 Number of correct identification for TESTFACT and Mplus for 1- to
3-factor models (r = 0)

c = 0 c = 0.25

# of dimensions TESTFACT Mplus TESTFACT Mplus

1 0/10 0/10 10/10 6/10
2 8/10 4/10 5/10 4/10
3 4/10 2/10 10/10 10/10
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Table 2 Number of correct identifications for TESTFACT and Mplus for 1- to
3-factor models (r = 0.3)

c = 0 c = 0.25

# of dimensions TESTFACT Mplus TESTFACT Mplus

1 0/10 0/10 10/10 6/10
2 5/10 0/10 8/10 0/10
3 9/10 1/10 7/10 0/10

3.1.3 Three-Dimensional Tests

The results from applying the 3-factor models indicated that TESTFACT performed
better than Mplus in each of the four conditions. Correct identification rates range
for TESTFACT ranged from 40% to 100%. Similar rates for Mplus were low in each
of the three conditions except for the case for which guessing with zero correlation
was simulated (Table 1).

3.2 Real Data Results

3.2.1 Full-Information Item Factor Analysis with TESTFACT

Summary indices for TESTFACT, Mplus, and SAS are presented in Table 3 for
1- to 4-factor solutions. The TESTFACT/BILOG rows show indices for the MIRT
model with the g j estimates from BILOG-MG since TESTFACT cannot estimate the
lower asymptote. The TESTFACT/C rows show the results from the same MIRT
model but the g j were assumed to have a fixed value of 0.20 (because all items
had five choices). The g j parameters in this case are not separately estimated. The
TESTFACT rows contain MIRT models without the g j term.

The difference between the chi-squared goodness of fit values from the 1-factor
solution to 2-factor solution was not significant for all the three cases with
TESTFACT. (The critical value at the 0.05 level is χ2(13) = 19.19.) The respective
critical values at the 0.05 nominal level are χ2(12) = 21.20 and χ2(11) = 8.52
for the 2-factor to 3-factor solution and for the 3-factor to the 4-factor solution.
Although the 2-factor solution to the 3-factor solution shows a significant reduction
in the goodness of fit values, the 1-factor solution seems to be a reasonable choice
for the data.

The cumulative proportions of the variance accounted for appear to increase as
the number of factors increases. The 1-factor solution for TESTFACT/C yielded a
higher proportion of variance accounted for than was observed for a higher number
of factors. Table 3 contains the summary of items with high Promax loadings (i.e.,
α jk or λ jk > 0.30). Although all TESTFACT methods yielded proper extraction
results for the 4-factor solution for the TESTFACT/BILOG, TESTFACT/C, and
TESTFACT cases, the Promax rotation failed to yielded reasonable loading results
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Table 3 Numbers of items with high promax loadings and correlations between factors

One factor Two factors Three factors Four factors

I I II I II III I II III IV

Mplus/WLSMV 14 6 6 6 3 4 Heywood case
Mplus/WLS 14 6 7 Heywood case due to over-factoring
Mplus/ULS 14 8 5 4 3 4 8 1 3 1
TESTFACT/BILOG 14 10 1 6 2 3 Not available
TESTFACT/C 14 10 1 6 2 3 Not available
TESTFACT 14 9 1 6 1 3 Not available
SAS 13 8 7 7 5 6 4 6 4 4
SAS/Tetrachoric 14 9 7 7 3 6 7 4 4 3

Correlation between factors
Mplus/WLSMV
II 0.71 0.58
III 0.70 0.53
IV Heywood case
Mplus/WLS
II 0.68
III Heywood case due to over-factoring
IV
Mplus/ULS
II 0.64 0.57 0.48
III 0.68 0.52 0.75 0.51
IV 0.39 0.34 0.32
TESTFACT/BILOG
II 0.65 0.66
III 0.73 0.59
IV Not available
TESTFACT/C
II 0.65 0.67
III 0.73 0.59
IV Not available
TESTFACT
II 0.64 0.68
III 0.75 0.61
IV Not available
SAS
II 0.31 0.25 0.25
III 0.27 0.17 0.28 0.11
IV 0.16 0.07 0.17
SAS/Tetrachoric
II 0.43 0.42 0.38
III 0.36 0.33 0.20 0.31
IV 0.22 0.33 0.30
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Table 4 TESTFACT/BILOG loadings for 1- to 4-factor solutions

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.50 0.55 −0.09 0.56 −0.09 −0.04 Not available
2 0.44 0.21 0.29 0.27 0.31 −0.07
3 0.45 0.48 −0.04 −0.03 −0.12 0.59
4 0.34 −0.22 0.60 −0.18 0.62 −0.05
5 0.49 0.35 0.19 −0.02 0.16 0.41
6 0.49 0.49 0.01 0.29 −0.02 0.26
7 0.47 0.27 0.25 0.19 0.25 0.09
8 0.44 0.47 −0.04 0.54 −0.03 −0.07
9 0.48 0.25 0.29 0.16 0.28 0.12
10 0.47 0.54 −0.09 0.50 −0.10 0.06
11 0.42 0.41 0.01 0.37 0.00 0.07
12 0.49 0.43 0.09 0.03 0.04 0.39
13 0.50 0.32 0.23 0.34 0.24 −0.05
14 0.50 0.52 −0.03 0.49 −0.04 0.04

Correlation between factors
Factor
II 0.65 0.66
III 0.73 0.59
IV Not available

and, therefore, are reported as “Not available.” For the 2-factor solution, one item
consistently loaded on the second factor while other items mainly loaded on the first
factor. High correlations were obtained between pairs of the factors under the 2- and
3-factor solutions.

Tables 4–6 contain the loadings for the 1-factor, 2-factor, and 3-factor solutions
for TESTFACT/BILOG, TESTFACT/C, and TESTFACT, respectively. In Table 4,
the 2-factor solution yielded only one item, Item 4, on the second factor. This item
asks for the complete factoring of 12ax2 − 9ax− 3a. The same item as well as Item
2 yielded relatively high loadings on the second factor. Items 3, 5, and 12 had high
loadings on the third factor for the 3-factor solution. Also for the 3-factor solution,
the number of items loading on the first factor decreased from ten on the 2-factor
solution to six on the 3-factor solution. Similar patterns of loadings were observed
for the TESTFACT/C and TESTFACT solutions.

3.2.2 Factor Analysis with Mplus

Summary results are presented in Table 3 for results from Mplus for each of the three
different estimation methods. For the EFA, WLSMV (i.e., weighted least squares
parameter estimates using a diagonal weight matrix with standard errors and mean-
and variance-adjusted chi-square test statistics that use a full weight matrix) is the
default estimation in Mplus (Muthén and Muthén 2010, pp. 531–532). Two other
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Table 5 TESTFACT/C loadings for 1- to 4-factor solutions

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.50 0.56 −0.11 0.56 −0.19 −0.05 Not available
2 0.44 0.21 0.29 0.27 0.30 −0.08
3 0.44 0.46 −0.03 −0.05 −0.12 0.59
4 0.34 −0.23 0.61 −0.18 0.63 −0.06
5 0.49 0.34 0.20 0.00 0.16 0.38
6 0.49 0.48 0.01 0.29 −0.02 0.25
7 0.47 0.27 0.26 0.18 0.27 0.09
8 0.44 0.47 −0.04 0.53 −0.02 −0.07
9 0.49 0.25 0.30 0.16 0.29 0.11
10 0.49 0.55 −0.09 0.52 −0.10 0.05
11 0.42 0.42 0.01 0.37 0.00 0.07
12 0.47 0.41 0.09 0.03 0.04 0.35
13 0.50 0.32 0.23 0.33 0.25 −0.04
14 0.49 0.50 −0.04 0.47 −0.04 0.03

Correlation between factors
Factor
II 0.66 0.67
III 0.73 0.59
IV Not available

Table 6 TESTFACT loadings for 1- to 4-factor solutions

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.50 0.56 −0.10 0.57 −0.07 −0.03 Not available
2 0.42 0.27 0.21 0.31 0.26 −0.09
3 0.41 0.43 −0.03 −0.06 −0.12 0.58
4 0.31 −0.19 0.60 −0.19 0.63 −0.04
5 0.47 0.35 0.16 0.00 0.15 0.37
6 0.46 0.47 −0.00 0.27 −0.03 0.26
7 0.41 0.28 0.18 0.19 0.19 0.08
8 0.41 0.48 −0.09 0.57 −0.09 −0.08
9 0.46 0.30 0.22 0.17 0.25 0.12
10 0.45 0.53 −0.11 0.51 −0.12 0.04
11 0.40 0.42 −0.02 0.39 −0.01 0.03
12 0.50 0.45 0.07 0.03 0.04 0.45
13 0.40 0.28 0.16 0.28 0.19 −0.01
14 0.43 0.45 −0.03 0.37 −0.03 0.10

Correlation between factors
Factor
II 0.64 0.68
III 0.75 0.61
IV Not available
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estimation methods used in this study were WLS and ULS. The proportions of
variance accounted for by the respective factors were based on the varimax rotated
loadings instead of the initial extraction. The total variance accounted for is reported
as sum (see Table 7).

In terms of the model selection using the various indices from Mplus-type
computer programs, Hu and Bentler (1999) recommend a model with a value of
RMSR less than 0.08 for selection of a model. That recommendation, however, was
not based on analysis of binary variables. The values of RMSR’s from the Mplus
runs using Hu and Bentler’s RMSR < 0.08 suggested 1-factor solution provided
reasonably good fit under all estimation methods. Stone and Yeh (2006) suggested
a model with a value of RMSR less than 0.05 could be chosen in conjunction with
factor analysis for a set of dichotomously scored items. Using the Stone and Yeh
suggestion, then WLSMV and ULS estimation methods yielded a 2-factor solution
rather than a 1-factor solution.

Hu and Bentler (1999) suggested a value of an RMSEA less than 0.06 as
indicating good fit. Using this criterion, WLSMV and WLS both would suggest
a 1-factor solution. Stone and Yeh (2006) recommended an RMSEA of less than
0.05. Using this criterion, a 1-factor solution would be recommended. In addition
to RMSR and RMSEA, Stone and Yeh also suggested a chi-square divided by its
degrees of freedom of less than 1.4 as an indicator of reasonable fit. Using this
latter criterion, the 1-factor solution would be selected based on WLSMV and
WLS estimates. Tate (2003) recommended a 10% reduction. Using this criterion,
WLSMV would have yielded a 3-factor solution, WLS a 2-factor solution; and ULS
a 4-factor solution.

As can be seen in Table 3, Heywood cases resulted for both WLSMV and WLS
estimation, possibly due to over-factoring. The patterns of factor loadings were
different from those with TESTFACT although high correlations were obtained
between pairs of the available Promax factors. Tables 8–10 contain the factor
loadings for 1- to 4-factor solutions for the three estimation methods using Mplus.
The 2-factor solution presented in Table 8 shows six items as loading on the first
factor (Items 1, 6, 8, 10, 11, and 14) and six items on the second factor (Items 2, 3,
4, 5, 9, and 12). For the 3-factor solution, six items (Items 1, 6, 8, 10, 11, and 14)
loaded on the first factor, three items (Items 2, 4, and 9) on the second factor, and
four items (Items 3, 5, 6, and 12) on the third factor. Similar patterns were observed
for WLS and ULS.

3.2.3 Factor Analysis with SAS

Two different sets of SAS results are reported based on Phi coefficients (Table 11)
and Tetrachoric correlations (Table 12). Adding factors increased the cumulative
proportions of variance (see Table 7). Using the 20 % criterion suggested in Reckase
(1979), results for both coefficients yielded a 1-factor solution.

The 2-factor solution shown in Table 11 indicated nine items loaded on the first
factor (Items 1, 3, 4, 6, 8, 10, 11, 12, and 14), and seven items on the second factor
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Table 7 Indices for item factor analyses

One factor Two factors Three factors Four factors

I I II I II III I II III IV

Mplus/WLSMV
χ2(d f ) p 73.7(65) 0.22 55.7(55) 0.45 40.4(46) 0.70 Heywood case
RMSEA 0.013 0.004 0.000 Heywood case
RMSR 0.0540 0.0462 0.0377 Heywood case
Mplus/WLS
χ2(d f ) p 97.7(77) 0.06 67.1(64) 0.37 Heywood case due to over-factoring
RMSEA 0.019 0.008 Heywood case due to over-factoring
RMSR 0.0649 0.0570 Heywood case due to over-factoring
Mplus/ULS
RMSR 0.0538 0.0457 0.0371 0.0318
TESTFACT/BILOG
χ2(d f ) 1533.46(736) 1512.80(723) 1488.25(711) 1478.97(700)
Δχ2(d f ) 20.66(13) 24.55(12) 9.28(11)
TESTFACT/C
χ2(d f ) 1540.08(736) 1519.16(723) 1493.91(711) 1485.50(700)
Δχ2(d f ) 20.92(13) 25.25(12) 8.41(11)
TESTFACT
χ2(d f ) 1538.78(736) 1519.59(723) 1498.39(711) 1489.87(700)
Δχ2(d f ) 19.19(13) 21.20(12) 8.52(11)

Proportion of variances accounted for by factors
Mplus/WLSMV
Proportion 0.27 0.16 0.14 0.14 0.09 0.11 Heywood case
Sum 0.27 0.30 0.34 Heywood case
Mplus/WLS
Proportion 0.30 0.17 0.16 Heywood case due to over-factoring
Sum 0.30 0.33 Heywood case due to over-factoring
Mplus/ULS
Proportion 0.27 0.18 0.12 0.14 0.09 0.11 0.15 0.06 0.11 0.07
Sum 0.27 0.30 0.34 0.39
TESTFACT/BILOG
Proportion 0.22 0.21 0.02 0.19 0.02 0.02 0.17 0.02 0.02 0.01
Cumulative 0.22 0.21 0.23 0.19 0.21 0.23 0.17 0.19 0.21 0.22
TESTFACT/C
Proportion 0.30 0.20 0.02 0.18 0.02 0.02 0.17 0.02 0.02 0.01
Cumulative 0.30 0.20 0.22 0.18 0.20 0.22 0.17 0.19 0.21 0.22
TESTFACT
Proportion 0.17 0.18 0.02 0.17 0.02 0.02 0.17 0.02 0.02 0.01
Cumulative 0.17 0.18 0.20 0.17 0.19 0.21 0.17 0.19 0.21 0.22
SAS
Proportion 0.21 0.21 0.08 0.21 0.08 0.07 0.21 0.08 0.07 0.07
Cumulative 0.21 0.21 0.29 0.21 0.29 0.36 0.21 0.29 0.36 0.44
SAS/Tetrachoric
Proportion 0.32 0.32 0.08 0.32 0.08 0.07 0.32 0.08 0.07 0.07
Cumulative 0.32 0.32 0.40 0.32 0.40 0.47 0.32 0.40 0.47 0.54
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Table 8 Mplus/WLSMV factor loadings for models with 1- to 4-factors

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.67 0.73 0.01 0.81 0.03 −0.11 Heywood case
2 0.48 0.21 0.31 0.27 0.39 −0.07
3 0.45 0.08 0.41 0.01 −0.08 0.57
4 0.33 −0.13 0.48 −0.17 0.65 0.01
5 0.57 −0.01 0.63 −0.00 0.23 0.45
6 0.57 0.34 0.27 0.33 −0.01 0.30
7 0.46 0.20 0.29 0.20 0.25 0.10
8 0.48 0.61 −0.08 0.58 −0.06 −0.01
9 0.57 0.14 0.47 0.17 0.40 0.12
10 0.53 0.55 0.03 0.55 −0.07 0.09
11 0.47 0.41 0.11 0.42 0.07 0.04
12 0.68 0.07 0.68 −0.05 0.12 0.76
13 0.44 0.26 0.22 0.26 0.24 0.02
14 0.48 0.37 0.15 0.34 0.02 0.17

Correlation between factors
Factor
II 0.71 0.58
III 0.70 0.53
IV Heywood case

(Items 2, 4, 5, 7, 9, 12, and 13). For the 3-factor solution, seven items loaded on the
first factor (Items 1, 2, 4, 8, 10, 11, and 14), five items on the second factor (Items
2, 3, 5, 6, and 12), and six items (Items 2, 4, 5, 7, 9, and 13) on the third factor. For
the 4-factor solution, four items loaded on the first factor (Items 3, 5, 6, and 12), six
items loaded on the second factor (Items 1, 2, 4, 8, 10, and 11), four items loaded
on the third factor (Items 4, 7, 13, and 14), and four items (Items 2, 4, 5, and 9)
on the fourth factor. Results in Table 12 yielded complex patterns similar to those
in Table 11. The lower part of Tables 11 and 12 contains the correlations between
promax factors for SAS and SAS/Tetrachoric, respectively.

4 Discussion

The primary purpose of this study was to compare two popular software pack-
ages, Mplus and TESTFACT, on their capabilities for checking dimensionality
in multiple-choice tests. Consistent with previous research (Stone and Yeh 2006;
Tate 2003), analyses of the guessing condition indicated that TESTFACT was
more accurate at detecting the simulated number of dimensions than Mplus. Both
TESTFACT and Mplus, however, failed to detect unidimensionality, when no
guessing was simulated. TESTFACT detected unidimensionality, when guessing
was simulated, but Mplus overestimated the number of factors, because it has no
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Table 9 Mplus WLS factor loadings for models with 1- to 4-factors

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.68 0.72 0.05 Heywood case due to over-factoring
2 0.53 0.27 0.28
3 0.49 0.17 0.37
4 0.36 −0.17 0.54
5 0.61 0.07 0.57
6 0.60 0.46 0.19
7 0.50 0.09 0.44
8 0.50 0.67 −0.10
9 0.61 0.05 0.60
10 0.54 0.55 0.04
11 0.52 0.34 0.24
12 0.72 0.10 0.68
13 0.44 0.13 0.36
14 0.50 0.35 0.21

Correlation between factors

Factor
II 0.68
III Heywood case due to over-factoring
IV

option for handling guessing. With respect to the estimated number of dimensions,
TESTFACT generally was more accurate than Mplus for both guessing and no
guessing conditions. Mplus with WLSM using RMSR criteria tended to over
estimate the number of dimensions when guessing was simulated. Similarly, Mplus
performed less well when factors were correlated. TESTFACT performed similarly
with correlated and uncorrelated factors.

In the real data analysis example, both TESTFACT and Mplus yielded similar
results. Although the true underlying factor structure of the data was unknown, the
mathematics test itself was designed to be unidimensional. According to results for
both algorithms, a 1-factor solution appeared to be a reasonable choice for the data.
In addition, results for SAS were consistent with those for TESTFACT and Mplus.
The results for TESTFACT were consistent with previous research by Stone and
Yeh (2006) and Tate (2003).

A second purpose of this study was to compare different indices used for
detection of dimensionality for dichotomous items. The main finding was that the
proportion of variance was not a good indication of dimensionality. The RMSR
reduction in Mplus, recommended by Tate (2003), also did not appear to work well,
whereas the chi-square test was successful in most conditions. The RMSR reduction
criterion of 10% (Tate 2003) was more sensitive, overestimating the simulated
dimensionality under most conditions. RMSR reduction yielded a 3-factor solution
for the real data. The RMSR criterion of < 0.08 proposed by Hu and Bentler (1999)
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Table 10 Mplus/ULS factor loadings for the models of one factor, two factors, three factors, and
four factors

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.67 0.71 −0.01 0.83 0.00 −0.08 0.87 −0.11 −0.16 0.11
2 0.48 0.19 0.35 0.29 0.44 −0.14 0.12 0.03 0.03 0.69
3 0.44 0.32 0.15 −0.04 −0.07 0.61 0.10 −0.05 0.49 −0.11
4 0.33 −0.23 0.66 −0.20 0.61 0.06 −0.14 0.91 −0.08 0.03
5 0.57 0.22 0.42 −0.00 0.29 0.41 0.04 0.07 0.17 0.14
6 0.56 0.48 0.12 0.26 −0.02 0.39 0.46 0.05 0.19 −0.14
7 0.46 0.22 0.29 0.14 0.23 0.18 0.31 0.20 0.08 −0.07
8 0.48 0.57 −0.06 0.52 −0.03 0.04 0.57 −0.05 −0.05 0.03
9 0.57 0.19 0.47 0.19 0.44 0.08 0.22 0.13 0.19 0.22
10 0.53 0.60 −0.04 0.49 −0.05 0.15 0.57 −0.07 0.03 0.01
11 0.48 0.44 0.08 0.42 0.09 0.03 0.42 −0.05 0.14 0.14
12 0.67 0.37 0.37 −0.05 0.17 0.69 −0.10 −0.07 0.93 0.05
13 0.44 0.25 0.24 0.23 0.22 0.07 0.38 0.18 −0.01 −0.04
14 0.48 0.43 0.08 0.28 0.03 0.22 0.38 0.01 0.14 −0.04

Correlation between factors

Factor
II 0.64 0.57 0.48
III 0.68 0.52 0.75 0.51
IV 0.39 0.34 0.32

seemed to work well, given the conditions simulated, but the criterion of < 0.05
recommended by Stone and Yeh (2006) suggested a 2-factor solution. Results for
RMSEA using the criteria from both Yeh and Stone and Tate yielded a 1-factor
solution. Overall results provided no clear-cut answer to the practical question of
which method should be used in all circumstances. Results from the chi-square test
in TESTFACT were similar to previous research by Stone and Yeh and by Tate
whereas results for the RMSR reduction index with Mplus were not consistent with
these studies.

Although Mplus is easy to use and provides more fit indices, one suggestion
is that using the chi-square test in TESTFACT might be more useful based on
the higher number of correct identifications. Additionally, it would seem wise at
this point to use a combination of these indices rather than relying on a single
one. Substantive theory also should be considered as a meaningful explanation is
more important than simply fitting a statistical model (Cudeck 2000). Finally, factor
loadings should also be examined when determining the number of factors.
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Table 11 SAS/Phi factor loadings for 1- to 4-factor solutions

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.52 0.53 0.07 0.59 0.06 0.06 0.12 0.57 −0.07 0.22
2 0.36 0.03 0.46 0.34 −0.32 0.50 −0.16 0.34 −0.16 0.70
3 0.40 0.42 0.04 −0.09 0.73 −0.05 0.78 −0.09 −0.09 −0.11
4 0.30 −0.30 0.79 −0.30 0.03 0.78 −0.01 −0.35 0.43 0.53
5 0.51 0.24 0.41 0.01 0.39 0.35 0.51 0.00 −0.08 0.36
6 0.50 0.50 0.09 0.17 0.52 0.02 0.54 0.16 0.03 −0.01
7 0.44 0.21 0.35 0.10 0.23 0.31 0.11 0.04 0.47 0.11
8 0.44 0.56 −0.08 0.65 0.01 −0.08 −0.09 0.60 0.25 −0.05
9 0.52 0.15 0.53 0.12 0.14 0.51 0.21 0.10 0.08 0.50
10 0.49 0.58 −0.03 0.47 0.25 −0.06 0.21 0.44 0.14 −0.04
11 0.43 0.42 0.08 0.54 −0.04 0.08 −0.02 0.51 0.04 0.20
12 0.61 0.44 0.30 0.11 0.54 0.23 0.53 0.08 0.18 0.13
13 0.41 0.21 0.32 0.19 0.12 0.30 −0.11 0.11 0.71 0.02
14 0.44 0.46 0.04 0.33 0.27 0.01 0.07 0.27 0.52 −0.18

Correlation between factors

Factor
II 0.31 0.25 0.25
III 0.27 0.17 0.28 0.11
IV 0.16 0.07 0.17

Table 12 SAS/Tetrachoric factor loadings for the 1- to 4-factor solutions

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.70 0.68 0.11 0.66 0.12 0.08 0.61 0.13 0.26 −0.01
2 0.53 0.13 0.53 0.37 −0.21 0.55 0.30 −0.18 0.80 −0.10
3 0.49 0.50 0.04 −0.10 0.86 −0.11 −0.07 0.87 −0.11 −0.07
4 0.37 −0.33 0.89 −0.28 0.02 0.86 −0.36 −0.02 0.46 0.60
5 0.61 0.29 0.45 0.00 0.49 0.35 −0.02 0.51 0.44 −0.06
6 0.61 0.59 0.09 0.20 0.60 −0.02 0.19 0.59 −0.03 0.08
7 0.51 0.24 0.39 0.15 0.20 0.34 0.09 0.15 0.05 0.50
8 0.53 0.65 −0.08 0.76 0.07 −0.07 0.70 −0.09 0.00 0.16
9 0.62 0.18 0.59 0.14 −0.16 0.54 0.08 0.17 0.58 0.09
10 0.58 0.68 −0.05 0.57 0.23 −0.09 0.54 0.22 0.06 −0.02
11 0.53 0.50 0.10 0.60 −0.05 0.10 0.54 −0.04 0.28 −0.02
12 0.70 0.50 0.32 0.14 0.59 0.21 0.11 0.58 0.17 0.12
13 0.50 0.24 0.36 0.32 −0.02 0.36 0.23 −0.11 −0.08 0.76
14 0.53 0.54 0.04 0.47 0.18 0.01 0.41 0.13 −0.18 0.40

Correlation between factors

Factor
II 0.43 0.42 0.38
III 0.36 0.33 0.20 0.31
IV 0.22 0.33 0.30
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Evaluating CTT- and IRT-Based
Single-Administration Estimates
of Classification Consistency and Accuracy

Nina Deng and Ronald K. Hambleton

1 Introduction

In many testing contexts, it is necessary to classify the examinees into mutually
exclusive performance categories based on a set of performance standards (e.g.,
the pass–fail decisions on the credentialing exams and the advanced, proficient,
basic, and failing classifications on the achievement tests). The classification often
provides an appropriate and convenient way to report and interpret the candidates’
test performance. For tests designed for such purposes, the classical approach to
reliability estimate may not be particularly useful. It has been agreed that the
consistency and accuracy of such classifications, rather than the test scores, are of
more concern. The Standards for Educational and Psychological Testing (AERA
et al. 1999, p. 35) calls that “when a test or combination of measures is used to make
categorical decisions, estimates should be provided of the percentage of examinees
who would be classified in the same way on two applications of the procedure.”

A couple of methods have been proposed to determine the consistency and
accuracy of the proficiency classifications (Hambleton and Novick 1973; Swami-
nathan et al. 1974) and substantial amounts of research on these and other methods
have continued. Of special interest are the methods that are capable of providing
single-administration decision consistency and accuracy (DC/DA) estimates given
that the parallel administrations of assessments are rarely possible in practice.
Among the limited comparative studies, the Livingston and Lewis (1995) method
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was found to outperform several other classical test theory (CTT) model-based
methods (Wan et al. 2007). Furthermore, the item response theory (IRT) model-
based methods were found, generally, having a better fit than the beta-binomial
model-based methods to the real data (Lee et al. 2002). Additionally, the IRT-based
DC/DA estimates were found to be slightly higher than the beta-binomial model-
based DC/DA estimates in several studies (Lee et al. 2002; Li 2006; Lee 2010), as
well as with our own experiences with these methods (Deng 2011). Nevertheless, it
is not clear which method provides more accurate estimates. Given the discrepancies
found between the CTT- and IRT-based DC/DA estimates, and the fact that the IRT-
based methods are comparatively new, further comparative studies of these methods
seem highly desirable.

A series of simulation studies were conducted in this paper to investigate: (1) how
accurate these CTT- and IRT-based DC/DA methods are. The accuracy could poten-
tially be assessed given that the “true” scores are possibly known in the simulation;
(2) how robust these DC/DA methods are to various less-standard testing conditions.
The most widely used CTT model-based Livingston and Lewis method (denoted as
“LL”) and the newly developed IRT model-based Lee (2010) method were com-
pared and investigated under a variety of simulated conditions by varying the test
length, shape of true score distribution, and degree of local item dependence (LID).

2 Decision Consistency and Accuracy Methods

The DC/DA indices were proposed for the purpose of describing the reliability and
validity of the proficiency classifications. The DC index refers to the percentage
of candidates who are classified into the same proficiency category across two
independent administrations (or parallel forms) of the same test. The DA index
refers to the percentage of candidates who are classified into the same proficiency
category as that classified based on their “true” or criterion scores. Specifically, the
DC/DA indices can be expressed in Eq. (1)

P =
J

∑
j=1

p j j (1)

where J is the number of proficiency categories. When pjj stands for the proportion
of examinees consistently classified into the jth proficiency category across the two
independent administrations, the summed percentage P stands for the DC index. If
one administration is replaced with the examinee’s “true” score or another criterion
score, the summed percentage P stands for the DA index. Kappa (Cohen 1960) is an
alternate way of calculating the DC index by correcting for the chance agreement.
It is defined as

k =
P− pc

1− pc
(2)
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where pc is the agreement percentage expected by chance and is computed as

pc =
J

∑
j=1

p j.p. j (3)

where pj. and p. j are the marginal proportions of the jth proficiency category in the
two independent administrations, respectively.

The notion of DC/DA indices is appealing and the calculation is straightforward.
However, the requirement of two administrations is not attractive. Therefore,
the single-administration based methods were introduced to overcome the
two-administration restriction (Huynh 1976; Subkoviak 1976). The single-
administration based methods call for an underlying measurement model to
estimate the true and the observed score distributions of a parallel form (or a re-
administration) of the test without actually administering it. Based on the underlying
measurement model, the available DC/DA methods can generally be divided into
two categories: the CTT model-based method and the IRT model-based method.
The former assumes a binomial or an extension (Huynh 1976; Subkoviak 1976;
Hanson and Brennan 1990; Livingston and Lewis 1995; Lee et al. 2009) and the
latter assumes a family of IRT models (Huynh 1990; Wang et al. 2000; Rudner
2001, 2005; Bourque et al. 2004; Li 2006; Lee 2010).

The Livingston and Lewis (1995) method, denoted as “LL” in this study, is the
first and so far the most widely used binomial model-based method for handling
tests with a mixture of polytomously and dichotomously scored items. By creating
a concept of “effective test length,” denoted as n, the LL method converts the
original test into a new scale of n discrete, dichotomously scored, and locally
independent items necessary to produce the total scores having the same precision
(i.e., reliability) as the observed scores being actually used in the real test to classify
the candidates. The formula to solve n suggested by the authors is shown in Eq. (4)

n =
(μx −Xmin) (Xmax − μx)− rσ2

x

σ2
x (1− r)

(4)

where Xmin is the lowest possible score, Xmax is the highest possible score, μx is the
mean score, σ2

x is the test score variance, and r is the classical reliability estimate
of the test. It can be implied from the formula that three types of inputs are required
to calculate n: (1) the observed test score distribution (mean and variance), (2) the
possible maximum and minimum test scores, and (3) the reliability estimate of the
test. The Cronbach’s coefficient alpha (Cronbach 1951) is the most commonly used
reliability estimate and was used by the authors in the LL method. Lastly, the cut-off
scores are needed for computing the DC/DA indices.

Adopting a different approach, Lee (2010) proposed to compute the DC/DA
indices based on the conditional observed score distribution derived from IRT
models. Specifically, provided with IRT models, the probability of a vector of item
responses (U1, U2, . . .Un) given the true score θ can be expressed as
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P
(

U1,U2, . . . ,Un

∣∣∣θ)=
n

∏
i=1

P
(

Ui

∣∣∣θ) (5)

where P(Ui| θ ) is the probability of endorsing the response Ui for item i conditional
on the latent ability θ , as defined in the IRT models. The conditional probability
is summed up for all possible vectors of item responses which have a sum
equal to the test score X, which in turn, becomes the conditional probability of
having an observed summed score X, denoted as P(X|θ ). The summed conditional
probability is then integrated across the true score distribution to obtain the observed
score distribution. There are generally two approaches to providing the true score
distribution: (1) the estimated quadrature points and weights provided in the IRT
calibration outputs are used to approximate the true score distribution. It was called
the D-method by the author since a distributional assumption for the true scores was
made and (2) the classification indices are calculated for each candidate and then
averaged over the population. It was called the P-method. The author found that
the two approaches produced very similar results. To implement the Lee method,
the item parameter estimates from the chosen IRT model(s), and the true score
distribution are needed for computing the observed score distribution. And again
the cut-off scores are needed for computing the DC/DA indices. The software
BB-CLASS (Brennan 2004) and IRT-CLASS (Lee and Kolen 2008) were used to
implement the LL and Lee methods, respectively.

3 Simulation Studies

3.1 Data

The data were generated using the item parameter estimates from an item pool
in a US statewide standardized achievement test (an English Language Arts test
at the grade 10 level). The pool had 84 dichotomously scored multiple-choice
items and 12 polytomously scored open-response items (scored 0–4 per item). The
three-parameter logistic (3PL) IRT model (Birnbaum 1968) and the two-parameter
graded response model (GRM) (Samejima 1969), which were used to calibrate the
operational test, were used to generate the unidimensional data for the dichotomous
and polytomous items, respectively. The 3PL and GRM Testlet Response Theory
(TRT) models (Wainer et al. 2000) were used to generate the data with various
degrees of LID to study their effects on the DC/DA indices estimates. Adopted
from the operational test, three cut-off scores on the theta scale (−1.75, −0.81,
and 0.58) were used to classify the candidates into four proficiency categories.
The percentages of candidates in the four proficiency categories observed from the
operational test were 4, 17, 51, and 28 %, respectively, which were the same as the
percentages found in a normal distribution using the three cut-off scores.
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3.2 Study 1: Test Length

The DC/DA methods were found sensitive to the test length in the previous studies
(Wan et al. 2007; Li 2006). Therefore, four different test lengths were studied: 10/1,
20/2, 40/4, and 80/8 (the numbers before the slashes denote the total number of
items in the test and the numbers after denote the number of polytomously scored
items in the test). These lengths are in the range typically found with the educational
and psychological tests and subscales. And their Cronbach’s alpha estimates were
0.73, 0.85, 0.92 and 0.96, respectively, which are in the range of reliability estimates
found acceptable in practice. The proportion of polytomous items in each test was
fixed to eliminate the possible effects of the proportion of polytomous items on the
DC/DA indices. For each test length condition, the designated numbers of items
were randomly drawn from the item pool described above.

3.3 Study 2: Ability Distribution

Different from the test length, there is less known about how robust the DC/DA
methods are to the different shapes of score distributions. All of the research to
date has been carried out with normal score distributions. Therefore, five different
score distributions were investigated: one normal distribution (mean of 0 and
standard deviation of 1) and four skewed beta distributions. Specifically, the four
beta distributions were B(α = 2, β = 4), B(α = 2, β = 3), B(α = 3, β = 2), and
B(α = 4, β = 2), representing positively skewed, slightly positively skewed, slightly
negatively skewed, and negatively skewed distributions, respectively. The means
of scores were ±1 for the negatively/positively skewed distributions and ±0.6 for
the slightly negatively/positively skewed distributions. The standard deviations of
scores were all around 1.0. A graphic illustration of the five distributions is displayed
in Fig. 1. The skewed distributions may be less atypical with educational tests but
are more common with psychological and social behavior tests. (The ability scores
were later linearly transformed back onto a scale of mean of 0 and standard deviation
of 1 so that they were on the same scale as the IRT score estimates. More details
were provided in the section of Evaluation Criterion).

3.4 Study 3: Local Item Dependence

Although both the underlying CTT- and IRT-based measurement models assume
that the items are conditionally independent given the candidates’ true scores, it is
not unusual in practice to have items interrelated with each other due to reasons other
than the measured latent trait, such as a common format, stimuli, or sub-domain. The
consequence of having interrelated items is called LID. It is of interest to study the
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Fig. 1 Five simulated true score distributions

impacts of LID when it comes to the DC/DA indices. The TRT model was used to
simulate the data with four degrees of LID by varying the variance of testlet effect
parameters to 0, 0.2, 0.5, and 1, where 0 means no LID and 1 indicates a high level
of LID among the items within the testlets. It was not clear what values might be
typically seen in practice, thus a wide range of values were chosen for the study. The
3PL and GRM TRT models were used to generate the data which had two testlet
effects associated with the item format, one associated with the multiple-choice
questions and the other associated with the open-response questions. The principal
component analysis (PCA) was used to double check the test dimensionality.

3.5 Evaluation Criteria

A main advantage of simulation studies is that the truth is known and can be used
as a criterion for evaluating the results of interest. To calculate the “true” DA index,
the classification based on the simulated data was compared with that based on the
“true” scores, and the percentage of candidates consistently classified across the two
classifications was computed as the “true” DA index. It deserves a special note for
the LID study in which the general factor was regarded as the “true” score, while
the testlet factors were regarded as the method effects and thus were not taken into
account in computing the “true” score. To calculate the “true” DC index, a second
data set was simulated using the “true” scores and “true” item parameters, which
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was considered a parallel form of the first simulated data set, and the percentage
of candidates who were consistently classified across the two classifications based
on the two parallel forms was computed as the “true” DC index. The “true” Kappa
index was computed accordingly based on the classification contingency table.

Biases of the DC/DA indices estimates were calculated to reflect both the
systematic error (by the sign of the statistic) and the random error (by the absolute
value of the statistic). The statistic of bias is given by

BIAS
(

P̂
)
= P̂−P (6)

where P is the “true” DA/DC/Kappa index and P̂ is the DA/DC/Kappa estimate.
Since sample size was eliminated as a factor in this study, rather than calculating
P̂ across a number of replications and taking the average, a large sample size of
50,000 examinees was used to essentially eliminate the sampling error as a concern
in the interpretation of the results. For the IRT-based Lee method, all the 50,000
examinees were used to obtain the item parameter estimates, which were in turn
read as the input for the Lee method.

A special note on the “true” DA index for the conditions of skewed ability
distributions should be mentioned. Because the software PARSCALE (Version
4.1) (Muraki and Bock 2003), which was used in this study for IRT calibration,
arbitrarily rescales the ability estimates to a scale of mean of 0 and standard
deviation (SD) of 1 to eliminate the indeterminacy problem, therefore, the “true”
scores in the skewed ability distributions were rescaled to mean of 0 and SD of 1
to put them on the same scale as the IRT score estimates for computing the “true”
DA index. The cut-off theta scores were rescaled accordingly too. This problem is
resolved in practice by the test score equating process.

4 Results

4.1 Test Length

The “true” DC/DA/Kappa indices with different test lengths are plotted in Fig. 2.
As we expected, a longer test resulted in greater “true” DC/DA/Kappa indices due
to a greater degree of score reliability. The biases of DC/DA/Kappa estimates of the
LL and Lee methods are plotted in Fig. 3. It shows that the biases were reasonably
small across different test lengths. That said, the biases for both methods decreased
as the test length increased. Comparatively speaking, the Lee method had smaller
biases and was more robust to the short tests. On the contrary, the LL method had
much larger biases of the DC and Kappa estimates with the short tests, e.g., the LL
method had biases of −0.04 and −0.06 for the DC and Kappa estimates with 10
items, versus both biases of −0.01 with 80 items.
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4.2 Ability Distribution

The “true” DC/DA/Kappa indices with different ability distributions when the test
had 40 items are displayed in Fig. 4. The labels of “++”, “+”, “0”, “−”, “−−”
on the x-axis stand for the positively skewed, slightly positively skewed, normal,
slightly negatively skewed, and negatively skewed distributions, respectively. In-
terestingly, it is found that the “true” DC/DA/Kappa indices with the negatively
skewed distributions were higher than those with the normal and positively skewed
distributions. This is suspected due to the effects of the location of cut-off scores
relative to the ability distribution. Since the cut-off scores (−1.75, −0.81, 0.58)
were more on the lower end of the ability scale, there were more candidates in
the positively skewed distributions around the cut-off scores, which in turn had a
greater chance of misclassification and lower DC/DA indices. The biases of the
DC/DA/Kappa estimates with different ability distributions are illustrated in Fig. 5.
Two findings are clear—(1) the biases in the estimates are generally small and (2)
the LL method had consistently larger biases than the Lee method, especially with
the negatively skewed distributions.

Combining the previous results, it seemed reasonable to assume that the LL
method was more sensitive to both short tests and skewed distributions. Some
further efforts were attempted to investigate the potential negative effects of a
joint condition of short test length and skewed ability distribution on the DC/DA
estimates. Figure 6 displays the biases with different ability distributions when the
test had ten items. It was found that the LL method had generally larger biases with
those non-normal distributions in a short test. Specifically, the LL method over-
estimated the DA index in the positively skewed distributions and under-estimated
in the negatively skewed distributions. Furthermore, the LL method consistently
under-estimated the DC/Kappa indices across all distributions, having especially
large biases with negatively skewed distributions. In contrast with the LL method,
the Lee method performed relatively consistently and had reasonably small biases
across the different ability distributions. Additionally, the findings that the LL
method performed very differently across the five ability distributions suggested
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a negative interaction between ability distribution and cut-off score location on the
LL method for the short tests. In fact, using another set of cut-off scores (−0.414,
0.384, and 1.430), the differences of bias of the LL method across the different
distributions diminished but still were larger than the Lee method (plots not shown).
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4.3 Local Item Dependence

The PCA was conducted as a validity check of the test dimensionality with various
degrees of LID. The first five eigenvalues are summarized in Table 1 (in the order of
increasing LID levels). It shows that along with an increasingly high level of LID,
the tests presented from strong unidimensionality to moderate multidimensionality
(with an emerging stronger second factor). Table 1 also suggests that the ratio of
the first factor to the second factor was much more sensitive to the LID than the
proportion of total variance explained by the first factor.

Figure 7 displays the “true” DA/DC/Kappa indices at various levels of LID. It
was found that the “true” DA index decreased noticeably when the test had a higher
level of LID. By contrast, the “true” DC and Kappa indices stayed more or less
stable across the various levels of LID. When it comes to the bias of the estimates
(Fig. 8), both methods excessively over-estimated the DA index when the test had a
moderate or high level of LID (e.g., bias close to 0.2 for a high level of LID). Yet,
the biases of the DC and Kappa indices were much smaller and less consequential.
Comparatively speaking, the Lee method was more sensitive to the LID and had
larger biases of the DC/Kappa indices when the test had a high level of LID (e.g.,
when the variance of testlet parameters was equal to 1).

5 Conclusions

A series of comprehensive simulation studies were conducted to compare a widely
used CTT-based method and a newly developed IRT-based method (the LL and Lee
methods) for computing the single-administration decision consistency and accu-
racy (DC/DA) estimates under various standard and nonstandard testing conditions.
Both methods had reasonably small biases when the conditions were standard,
that is, when the tests were reasonably long, the ability scores were normally
distributed, and the data were unidimensional without the LID. In the less-typical
or nonstandard situations, in general, we found that the Lee method provided more
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accurate estimates than the LL method. One exception was the condition of LID,
where the underlying assumption of IRT was violated, and here, the LL method
outperformed the Lee method when the test had a high level of LID. In addition,
there was a negative interaction between the ability distribution and cut-off score
location with the LL method for the short tests, and this finding was not observed
with the Lee method.

The simulation results also confirmed a sometimes reported finding in the liter-
ature on the discrepancies between the CTT- and IRT-based single-administration
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Table 1 Eigenvalues of tests with different levels of local item dependence (40 items)

LID
level

First five eigenvalues
Variance (%) explained
by first eigenvalue

Ratio of first to
second eigenvalues1 2 3 4 5

0 15.2 0.89 0.85 0.79 0.79 38.1 17.2
0.2 15.7 1.07 0.87 0.82 0.78 39.3 14.7
0.5 16.5 1.74 0.85 0.79 0.73 41.3 9.5
1 17.7 2.39 0.82 0.75 0.68 44.3 7.4
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DC/DA estimates. Specifically, the LL method consistently under-estimated the
decision consistency indices across the simulated conditions, while the Lee method
reduced the under-estimation in many conditions by providing somewhat higher
values of the estimates. This is an important finding because it suggests that the
often reported DC/DA findings using the LL method for the tests are probably
underestimates of the true DC/DA results. Recall too, that many tests today are
using IRT models in the test development and analyses.

This study has important implications for both methods in practice. First, for the
LL method, it suggested that it provided poor estimates with both short tests and
skewed ability distributions. In addition, the results suggest the under-estimation of
the LL method for the decision consistency indices. Given that there are a couple
of reliability estimates available (e.g., Cronbach’s alpha, stratified alpha, test–retest
reliability, parallel-form reliability, etc.), the practitioners may want to evaluate and
pick the most suitable available reliability estimate before applying the LL method.
For the Lee method, it is important that the assumptions of IRT models, namely,
the unidimensionality and local item independence, be met to ensure the accurate
DC/DA estimates. The IRT model fit is also assumed with the Lee method and
therefore should always be checked. Finally, the IRT parameter estimates need to
be precise since they are used in computing the observed score distributions. When
the assumption of local item independence was violated as illustrated in this paper,
interestingly, it was found that the DA estimates were much more negatively affected
than the DC and Kappa estimates. One possible explanation could be that the
problems with the LID were consistent with the two parallel forms, which made the
effects on the decision consistency indices much less consequential. Nevertheless,
the testlet factors can vary from form to form, and from testlet to testlet in the real
world, and the content- or paragraph-related testlet factors could have more negative
effects on the DC estimates than the format-related testlet factors as simulated in
this study, and thus deserve further research. The effects of multidimensionality,
although related with the LID but having a more complex factor structure, provide
the possibility of future investigation too. Lastly, there are fewer works investigating
the effects on the DA estimate than on the DC estimate and more such studies would
be desirable.
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One criticism of the study could be that the data were simulated within the IRT
framework. This could result in a bias in favor of the Lee Method. Nevertheless,
the IRT models often show more than adequate fit with many tests in use and these
models are widely used in test development, equating, and the study of differential
item functioning. More studies using the Lee method with IRT models that fail to fit
the data well would be worth carrying out. Another possible limitation is associated
with the assumption of the random parallel forms made for the CTT-based method,
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which would in turn have lager error variances than the strict parallel forms (namely,
the parallel forms have exactly the same items) assumed for the IRT-based methods.
Future simulation studies using a large item pool to randomly generate the parallel
forms may facilitate a more in-depth understanding of the discrepancies between the
two approaches. Lastly, the comparison with other existing DC/DA methods, e.g.,
the IRT-based Rudner (2005) method, is of interest and should be included in the
future studies.
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Modeling Situational Judgment Items
with Multiple Distractor Dimensions

Anne Thissen-Roe

Multiple choice situational judgment items (SJI) are often used in employee
selection assessment. Such SJIs pair an item stem describing a realistic on-the-
job problem scenario with response options describing specific problem-solving
actions. In addition to information about problem-solving skills and job-related
procedural knowledge, SJIs may contribute information about personality traits, as
in Motowidlo et al.’s (2006) implicit trait policy (ITP) model. Schmitt and Chan
(2006) advised that SJIs be modeled so as to obtain information about multiple dis-
tinct personality antecedents of work behaviors, independent of contextual behavior
effectiveness. Both development and scoring processes for SJIs stand to benefit from
the application of item response theory (IRT), and specifically from the use of a
diagnostic item response model capable of distinguishing the effects of multiple
latent traits on response option selection, which may vary across distractors. The
multidimensional nominal response model (MNRM; Bolt and Johnson 2009) fits
intrinsically multidimensional items, e.g., where response sets or skill component
information are present (Bolt and Newton 2010, 2011). Appropriately constrained,
the MNRM can model differential personality antecedents to SJI response options
as continuous latent variables, as well as in-context problem solving. The present
study demonstrates an application of the MNRM to employee selection SJIs.

1 Situational Judgment Items in Employee Selection
Assessment

When considering candidates for employment, a hiring organization may be
interested in predicting their performance on a job. Making that prediction is
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not always as simple as administering an intelligence test; it may be as complex
and multidimensional as the evaluation metrics, and the behavioral antecedents,
of job performance itself. In service of such a prediction, assessments taken
during the application and hiring process can provide information about candidates’
knowledge, skills, and abilities as well as their preferences, inclinations, beliefs, and
behavior patterns.

Situational judgment tests are often used in employee selection assessment.
SJI pose realistic on-the-job problem scenarios and offer specific problem-solving
responses. They can be developed to assess problem solving, job-related procedural
knowledge, work styles, work preferences, and/or personality expression. Relative
to general measures of ability and personality, they provide a distinct measurement
of contextual reasoning, potentially capturing interactions between person and role
(Gessner and Klimoski 2006; Swander 2001; Motowidlo and Beier 2009). An
additional benefit of SJIs in an employee selection context is that they are capable
of functioning as a realistic job preview. After taking a situational judgment test
tailored to the job to which they are applying, candidates’ expectations of the job
align better with the hiring organization’s. A candidate who fits the role well might
be motivated to apply, while one likely to be quickly dissatisfied is encouraged to
self-select out of the application process. Such self-selection is beneficial in cases
where the candidates, if hired, would quit too quickly for the organization to recoup
hiring and training costs.

An example of a multiple choice SJI is as follows:

On one of your breaks some of your co-workers start gossiping about an apparent romance
taking place between a supervisor and another employee. Which of the following would
you most likely do?

A. Tell your co-workers that they should not be gossiping.
B. Join the conversation so that you can change the topic to something more appropriate.
C. Tell your supervisor about the conversation.
D. Listen to the conversation, but don’t say anything.

This item was administered to candidates for entry-level, customer-facing hourly
retail jobs. It functions as a realistic job preview, in that it presents a situation
an hourly retail employee may encounter that isn’t covered in the recruitment job
description, a situation that is uncomfortable to some degree.

Not all SJIs are alike. Some SJIs, such as this one, tap “other duties as required”:
dealing with rude customers, frustrating co-workers, unglamorous tasks, inter-
task conflict, and encroachment of work on personal time. Despite such duties
being captured only in the catch-all portion of a job description, the SJIs are
designed to measure the same attributes, such as diligence and social skills, that
help with primary task performance. They are not intended to make demands on
the candidate’s fluid reasoning or creativity. By contrast, SJIs used for specialized
professions, such as military or medical jobs, sometimes look for good intuitions
about unfamiliar situations, or practical solutions to novel problems (McDaniel et al.
2001; Gessner and Klimoski 2006).

The development of SJI content and scoring methods tend to be pragmatic
and practically rooted. The purpose of this article is to advance the psychometric
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science of SJIs through application of a flexible item response model. To that end,
the following sections briefly review the state of measurement theory and existing
scoring methods for SJIs; then, the MNRM (Bolt and Johnson 2009) is presented as
an alternative. Finally, as a demonstration, the model is applied to real job candidate
responses to a situational judgment test, and compared with the fit of a simpler
alternative model.

2 Measurement Theory for Situational Judgment Items

Over the years, some theoretical understanding has developed of the psychology of
SJI responses. Some of this understanding is general, while some is specific to one
presentation or response format. This article concerns itself with SJIs formatted as
multiple choice items, having K response options.

Responses to K-option multiple choice items have K − 1 degrees of freedom, and
can distinguish respondents on up to K − 1 dimensions (Cronbach 1946). Although
Cronbach’s early conception of secondary measurement dimensions within multiple
choice items involved nuisance dimensions such as response sets, there is no reason
items cannot be written to simultaneously address multiple constructs.

The first axis of differentiation within an SJI is usually considered to be
effectiveness. One of the responses is, or several of the responses are, more effective
work behavior than the others. However, Schmitt and Chan (2006) recommend
coding responses for personality antecedents, independent of effectiveness. If
personality traits are not strongly related to effectiveness, they constitute secondary
measurement dimensions, about which the remaining axes of differentiation in
each SJI may provide information. In a related approach, Stemler and Sternberg
(2006) wrote seven-response SJIs in which each response endorsed one of seven
categorically differentiated interpersonal strategies, which were more or less effec-
tive in the context of the situation given, but could also be preferred or avoided
across items independent of context. In both of these cases, SJIs are meaningfully
multidimensional at the item level.

Motowidlo et al. (2006) presented an ITP model, in which SJI responses reflect
personality expression in an interactionist sense. An ITP is defined as an implicit
belief about the contextual effectiveness of trait expression. ITPs moderate the
effect of the latent trait on behavior choices. Although the traits in question are
personality traits, the policies are implicit cognition and contingent on the situation,
and can be a form of procedural job knowledge. By their situational context and
cognitive framing, SJIs measure ITPs directly and traits indirectly, via dispositional
fit (Motowidlo and Beier 2009) and, presumably, familiarity with the results of
personality-consonant actions. Again, multiple traits and policy moderators may
affect responses to a single item, leading to differentiation on multiple axes.

Based on these descriptions, it appears that a model of SJI responses should
permit intrinsic multidimensionality within each item. It is illuminating, further, to
consider the distinction between these joint effectiveness-approach models of SJIs
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and cognitive diagnostic models of skill items. Cognitive diagnostic models such
as DINA (Junker and Sijtsma 2001) also call for a primary latent trait that permits
problem-solving effectiveness, along with a set of individual component skills that
may be present or absent. However, no underlying theory of SJI response requires a
personality trait, an ITP, or even a preference for or against an interpersonal strategy
to be explicitly two-valued. Most of them are better conceptualized as continua.

Returning to our example SJI, its four responses can be divided along two axes of
general behavioral expression, each of which has an unknown degree of relationship
to effectiveness overall and within the given context. One axis reflects an orientation
toward active (versus passive) responses. Another axis is a relative prioritization
of either the needs of the team or the rules of the organization—an ITP axis,
reflecting a choice between two possible trait expressions. One response reflects
each combination of the two ends of the two axes:

On one of your breaks some of your co-workers start gossiping about an apparent romance
taking place between a supervisor and another employee. Which of the following would
you most likely do?

A. Tell your co-workers that they should not be gossiping. (Active, rule priority)
B. Join the conversation so that you can change the topic to something more appropriate.

(Active, team priority)
C. Tell your supervisor about the conversation. (Passive, rule priority)
D. Listen to the conversation, but don’t say anything. (Passive, team priority)

3 Scoring Situational Judgment Items

To date, SJIs have been scored with a variety of methods, from the ad hoc to the
theory driven. There are dichotomous and polytomous variations on the assignment
of credit for the selection of effective or ineffective responses. The simplest,
dichotomous version involves assignment of one point for the best response and no
points to any other; partial-credit variations include assigning each response points
equal to its mean effectiveness rating or according to a regression model derived
empirically from validation data. In both of these cases, simple accumulation of test
scores over items is implied (Weekley et al. 2006; Zu and Kyllonen 2012).

Realistic SJIs are not written in a vacuum. Commonly, the situations are obtained
through a critical incidents methodology, in which anecdotes of real job situations,
capable of provoking good or bad job performance, are distilled into an appropriate
length and level of specificity (Weekley et al. 2006). Given that practical, largely
atheoretical origin for the stem and sometimes response text, the issue of key
provenance merits some attention. Rationally derived keys may be obtained through
incumbent consensus; based on the ratings of “subject matter experts” including
supervisors, trainers, customers, and outside stakeholders; or based on psychologist
review according to a theory of job performance (Weekley et al. 2006; McDaniel
et al. 2009; Motowidlo and Beier 2009). Empirical models, in addition to regression
derived from concurrent or predictive validation, may include models of group
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membership and nonmembership. Finally, hybrid keys combine elements of rational
and empirical keying, use multiple sources to generate the keys, or use multiple
sources to eliminate inconsistently keyed items.

An alternative to accumulative scoring algorithms is latent trait estimation
according to IRT. The use of IRT to score SJIs is relatively novel. Zu and Kyllonen
(2012) tested five item response models in comparison to non-IRT methods on
two skill-focused situational judgment tests, and found the nominal response model
(NRM) to produce more reliable and valid scores than the alternatives, particularly
in cases of ambiguous or multiply keyed responses, the same type of cases that led
to recommendations for partial credit summed-score methods.

Both of the assessments studied by Zu and Kyllonen (2012) were unidimen-
sional, written to assess single latent traits: the ability to manage emotions, and
teamwork. By contrast, Mangos et al. (2012) studied SJIs written to assess both abil-
ity and work style traits simultaneously, and considered one- and three-dimensional
IRT models. Most of the models addressed only the multidimensionality of the test,
allowing for differences in measurement between items; Mangos et al. suggested
the MNRM as an effective alternative for modeling intrinsic multidimensionality in
SJIs. Except for issues of dimensionality, Mangos et al. generally corroborated Zu
and Kyllonen’s findings.

The use of IRT models to score SJIs, in general, reduces but does not eliminate
the problem of initial keying. An imprecise key according to expected trait-response
relationships is sufficient to orient an IRT model for calibration, but the initial key
still determines which of two or more ultimate models emerge from the calibration
process. (The minimum is two models: every IRT model has a trivial counterpart
where the latent trait’s high and low anchors are exchanged.)

4 The Multidimensional Nominal Response Model

The MNRM (Bolt and Johnson 2009) can be written as:

T (i,k) =
ezik

∑h
ezih

where

zik =∑ j
ai j ∗ si jk ∗θ j + cik

for item i, dimension j, and category k. T(i,k) traces the probability of a response
in category k as a function of the j-dimensional latent variable θ . The parameter
cik is an intercept parameter for each response category, while discrimination for
each dimension j is decomposed into a slope aij and a set of scoring functions
sijk. This decomposition is consistent with Thissen et al. (2010, p. 59) and (prior
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to the imposition of cross-item equality constraints) Johnson and Bolt (2010, p. 99).
The scoring functions for each dimension can be thought of as giving the order of
response categories; spacing is determined by sijk jointly with aij.

A more constrained multidimensional form of the NRM (Thissen et al. 2010) is
usually used, for example, in the estimation software IRTPRO (Cai et al. 2011). In
this version,

zik =∑ jai j ∗ sik ∗θ j + cik

for item i, dimension j, and category k; a single vector sik applies across all
dimensions. While an NRM item may measure in a multidimensional space relative
to other items, it has only one dimension of intrinsic measurement.

The constraint imposed by the NRM upon the general form of the MNRM,
and conversely, the advantage offered by MNRM, is particularly salient in the
case of SJIs. Multiple scoring functions sijk allow the MNRM to fit intrinsically
multidimensional items, e.g., where response sets or skill component information
are present (Bolt and Newton 2010, 2011). SJIs have the potential to be intrinsically
multidimensional as well. A K-response SJI can differentiate applicants on up to
K − 1 dimensions, with the responses in a different order on each. Recall that in
our recurring example, two responses were coded active and two passive; two were
coded for rule priority and two were coded for team priority. The effectiveness judg-
ments of subject matter experts produced a third response ordering, corresponding
exactly to neither work style dimension. Appropriately constrained, the MNRM can
model differential personality antecedents to SJI response options as continuous
latent variables, as well as in-context problem solving.

While the intrinsic unidimensionality constraint may be excessive, some iden-
tification constraints are needed to fit the MNRM to I items, J dimensions, and
K categories. It is sufficient, as an alternative to the identification practices used by
Bolt and Johnson (2009), to constrain J of the discrimination parameters aij, leaving
J(I − 1) free; to constrain one intercept parameter cik per item, leaving K − 1 free;
and to constrain two scoring function parameters sijk per item per dimension, leaving
K − 2 free. For example, one may use structural zeroes: ci0 = 0 for all i, intended
lowest sijk = 0 and intended highest sijk =K − 1 for all ij. (The remaining sijk are
expected to fall between 0 and K − 1 but can vary outside that range if the expected
order is not supported by the data.) Further constraint may, of course, be needed for
practical identification; that is, to obtain convergence of item parameter estimates
given a real dataset.

The practice of constraining two scoring function values in a particular direction,
and also constraining discrimination parameters aij to be greater than zero, has
consequences for the factor rotation. As with the intrinsic unidimensionality
constraint, a positive discrimination parameter constraint is theoretically significant,
potentially useful and potentially too constricting for the data.

Here, in Table 1, initial parameters are presented for our example SJI under NRM
and MNRM. In this example, the three dimensions measured, in order, are expected
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Table 1 Initial parameters for calibration of an example item, under NRM and
MNRM

NRM MNRM

ai0 = 1, ai1 = 1,
ai2 = 1

j= 0 j= 1 j= 2
ai0 = 1 ai1 = 1 ai2 = 1

(A) k= 0 ci0 = 0*; si0 = 2 ci0 = 0* si00 = 2 si10 = 3* si20 = 1
(B) k= 1 ci1 = 0; si1 = 3* ci0 = 0 si01 = 3* si11 = 2 si21 = 2
(C) k= 2 ci2 = 0; si2 = 1 ci0 = 0 si02 = 1 si12 = 1 si22 = 0*
(D) k= 3 ci3 = 0; si3 = 0* ci0 = 0 si03 = 0* si13 = 0* si23 = 3*

Subscript i indexes the current item. Starred values are fixed; others are starting
values for calibration

to be effectiveness or problem solving, active (versus passive) response orientation
(initiative), and team (versus rule) priority. Judged effectiveness was used to set the
scoring function order for NRM and the first dimension of MNRM; if appropriately
scaled, average SME ratings could be used directly, as could trait level estimates,
but the value of conferred precision in scoring function values is unknown.

On one of your breaks some of your co-workers start gossiping about an apparent romance
taking place between a supervisor and another employee. Which of the following would
you most likely do?

A. Tell your co-workers that they should not be gossiping. (Active, rule priority)
B. Join the conversation so that you can change the topic to something more appropriate.

(Active, team priority)
C. Tell your supervisor about the conversation. (Passive, rule priority)
D. Listen to the conversation, but don’t say anything. (Passive, team priority)

5 Empirical Study

SJI response data were collected from four million individuals’ job applications to
22 organizations in the United States over a 3-year period. Job candidates took one
of several forms of a screening assessment as a part of the initial application process,
following minimal screening. The screening assessment in question is designed to
predict customer service performance in hourly jobs in industries such as retail, by
way of measuring work styles and preferences. It is a multiple-section assessment
that includes SJIs as well as other item formats.

Responses were collected from each job candidate to some, but not all, of a
set of 20 SJIs. Candidates were presented a minimum of 4 and a maximum of 15
SJIs, on average 7.3. The number of SJIs presented to any particular job candidate
was limited out of respect for the candidate’s effort in completing the application,
but candidates were not permitted to skip items presented. Missing responses are
considered to be missing at random, because the presence or absence of response
data was under the control of the assessment’s creator, not the job candidate.
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Fig. 1 Difference in BIC between MNRM and NRM for each sample, with cross-fit range

Some individuals applied to more than one job; subsequent repeat applications
after the first, from the same individual, were discarded in order to satisfy the
assumption of local independence between response patterns. The remaining re-
sponse data was divided into four replication samples of approximately one million
response patterns each, based on the remainder of a unique database key attached to
the application after division by four.

The NRM and MNRM were separately calibrated against each of the four
samples, using the same starting parameters, and the Bayesian Information Criterion
(BIC) was calculated for model comparison. In addition, the obtained MNRM
parameters from each sample were cross-validated against the other three samples;
the BIC was calculated for each set of parameters on the three samples not used
to obtain them. These cross-fit values give a sense of the degree of overfit or
capitalization on chance due to the larger number of free parameters in MNRM,
separately from variable success in calibration when using different samples.

In all cases, MNRM fit the data better than NRM. Figure 1 shows the difference
in BIC between MNRM and NRM for each sample; black lines represent the
difference in fit for models calibrated on the same sample, whereas the gray
represents the range of differences resulting from cross-validation. (In order to
account for small variations in sample size, differences were always calculated
between fit statistics for the same sample, no matter on which sample the parameter
calibration was done.)

It is readily apparent from Fig. 1 that the obtained improvement of MNRM on
NRM varies considerably by calibration sample; differences in BIC for models
calibrated and fit on the same sample range from 7,721 to 18,516. (With 50
additional free parameters, a significant χ2, at α = 0.05, is at least 71.4.) The narrow
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Fig. 2 Rotational indeterminacy in practice. Obtained factor loading configurations differed more
between calibration samples under MNRM than under NRM

cross-fit ranges suggest that model overfit, or capitalization on chance, is not a large
determinant in the obtained improvement; the mean advantage in BIC conferred
by MNRM calibration and fit evaluation on the same sample was 380. Instead,
calibration on certain data samples resulted in universally better or worse parameter
vectors. This pattern could result from local minima in the loglikelihood surface
for the model in parameter space, but it might also simply indicate large nearly
flat regions in the same surface, over which minimization algorithms do not readily
traverse. Either way, the loglikelihood surface is not well suited to minimization.
Further evidence toward rotational near-indeterminacy, as suggested by Bolt and
Johnson (2009), is provided by comparison of the configurations of loadings of four
representative items across two dimensions, as shown in Fig. 2. NRM generated
much more consistent patterns of loadings between calibration samples than did
MNRM.

The problem of rotational indeterminacy can, at least some of the time, be
ameliorated through the use of anchor items which can be constrained to load on
particular dimensions, or in general modeled with fewer free parameters. In this
case, six additional items were drawn from the assessment’s paired preference
section, and modeled with the two-parameter logistic model (2PL; Birnbaum 1968).
As shown in Fig. 3, the improvement of MNRM over NRM was much more
consistent when anchor items were used, although the anchor items themselves were
modeled identically in both conditions. Differences in BIC for models calibrated and
fit on the same sample, with anchors, ranged from 17,621 to 22,000, less than half
the range of the models fit without anchors.

Figure 4 shows that, while less dramatic, the problem of rotational indeterminacy
has not been eliminated. In the third replication sample, but not the first, second
or fourth, one plotted item loads only on the second dimension (vertical axis).
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Fig. 3 Difference in BIC between MNRM and NRM for each sample when anchor items were
used, with cross-fit range

Fig. 4 Less configural variation was observed between MNRM factor loadings derived under
different calibration samples when six anchor items were used

Furthermore, under both the NRM and MNRM, two of the anchor items “stole
theta” on the second dimension; that is, a relatively high correlation between those
two items manifested not as local dependence, but as high loadings on that trait
while all other items’ loadings were suppressed. This might be a case where more
or better-chosen anchors could do a better job of stabilizing the models. In short,
anchor items are a practical amelioration strategy, not a panacea.
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Returning once again to our example item, Fig. 5 compares the trace lines under
NRM and MNRM. Under NRM, the item loads mostly on the third dimension; its
trace lines correspond closely to MNRM’s third dimension, but left–right reversed.
The difference is a side effect of the choice of initial high and low categories for each
dimension on MNRM; the third dimension category anchor orders were sufficiently
opposed to the first dimension category anchor orders (used for all three dimensions
under NRM) that the two models fit that dimension with high and low ends reversed.

In addition, the other two dimensions of MNRM picked up a lower-
discrimination pattern. The first two dimensions in this case correspond closely,
although they are distinct from the third dimension, team priority. This is visible in
the first two trace lines in the second panel of Fig. 5.

Another way of visualizing the two patterns is to look at the latent trait regions
where each item response is dominant, jointly on two axes of differentiation. In
Fig. 6, dominant response regions are plotted on a composite of dimensions 1 and 2
(horizontal) against team priority (vertical). It is immediately apparent that the four
item responses do not fall in a line, as NRM enforces.

NRM’s intrinsic single dimension of measurement is generally aligned with the
vertical axis. In the two-dimensional display of Fig. 6, it is apparent that the vertical
axis, team priority, differentiates three response options that don’t involve getting
one’s teammates in trouble from one response option that does—and the option to
be a “supervisor proxy” ends up in the middle. Contrary to expectations, initiative
or action orientation appears to be primarily relevant in distinguishing between the
two high team priority options.

6 Discussion

At least in the case of the screening assessment studied, the intrinsic multidimen-
sionality of the MNRM allows better fit to SJI response data, compared to the NRM,
even when extrinsic (between-items) multidimensionality is permitted in both cases.
It further appears from the preceding empirical study that the “exploratory-like”
flexibility of the MNRM, and even NRM, allows some data-driven rotation of the
latent measurement axes.

Starting parameters for the study were based on the expectation of problem
solving (overall effectiveness), action orientation (initiative), and team priority
factors. The measures actually obtained were better labeled as customer priority
(attentiveness), initiative, and team priority. Customer priority can be described as a
willingness to drop routine tasks in order to attend a customer, and does not appear
to be a general problem-solving measure. Several items do not load on the first
factor; if that latent trait were problem solving, they should.

All of the obtained measures can be characterized as work styles contrasts, not
ability components. Is situational performance in retail jobs then more a matter of
ITP than ability? Such a finding would be consistent with Motowidlo and Beier’s
(2009) findings that novice-derived SJI keys contained only ITP information,
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Nominal Response Model
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Fig. 5 Trace lines for an example item under NRM (top panel) and MNRM (bottom panel). Under
NRM, the horizontal axis is aligned to the item’s intrinsic single dimension of measurement; under
MNRM, three orthogonal axes are shown for the three modeled dimensions, in each case with the
other two thetas held constant at zero

whereas experienced employees produced keys with additional performance-
relevant information; Motowidlo and Beier labeled that information job-relevant
knowledge. However, as a practical matter, the selection of critical incidents to
translate into SJIs acts as a filter on the types of performance and performance
determinants represented by a set of SJIs. The present study is by no means
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Fig. 6 Dominant response regions for an example item under MNRM. The horizontal axis is a
composite of two constructs, customer priority and initiative; the vertical axis is team (as opposed
to rule) priority

sufficiently broad or deep to determine conclusively whether and under what
conditions problem-solving ability remains relevant to situational performance in
retail jobs. It merely suggests the question.

7 Conclusions

The MNRM can be used to model multiple constructs antecedent to situational
judgment item responses; for example, K − 1 work styles contrasts within a K-
response SJI, which jointly predict an overall assessment of job performance.
However, due to the complexity of the MNRM, when modeling SJIs with it, it is
a good idea to constrain the model according to theory, anchor it to constructs with
non-SJIs, or both.
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Theory Development as a Precursor
for Test Validity

Klaas Sijtsma

The two classical main themes in psychological measurement are reliability and
validity. The other topics psychological measurement addresses are directly or
indirectly concerned with investigating aspects of reliability and validity or con-
tribute directly to making measurements more reliable and more valid. For example,
equating of different scales assumes that the scales measure the same attribute, thus
producing a common scale that is a valid representation of the attribute. Adaptive
testing aims at selecting the items for the measured individual from the item bank
that produce the most reliable measurement of the individual using the smallest
number of items. Differential item functioning research identifies items that measure
different attributes in different populations in addition to the dominant attribute,
hence suggesting removing the items that threaten test validity. Person-fit analysis
identifies respondents whose responses were driven by the intended attribute (e.g.,
intelligence) but also by attributes the test was not constructed to measure (e.g., test
anxiety) or that even replaced the intended attribute (e.g., guessing, cheating), and
person-fit analysis suggests studying such aberrant respondents or removing their
data from the dataset. Componential item response models and cognitive diagnosis
models hypothesize theories explaining how respondents produce item scores, thus
providing a more solid basis for understanding what the test measures and thus
improving its validity.

Reliability is a more technical subject and a narrower concept than
validity; hence, it is a less problematic concept even though the estimation of
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reliability (group-level characteristic) and measurement precision (individual-level
characteristic) is not devoid of discussion (Mellenbergh 1996). The broader and
less technical, hence more problematic validity concept has been debated since it
originated in the 1920s (Sireci 2009; for a discussion of the validity concept, see
Zumbo 2007) and has proven to be more intangible than reliability. The ongoing
debate about validity’s main issue still is the same as it was then: What is valid,
the test or the test score? If the focus is on the test the question is what the test
measures, and if the focus is on the test score the question is for which purposes the
test score can be used. Present-day validity conceptions predominantly focus on the
practical usefulness of the test score and the question of what the test measures is
largely suppressed. This contribution discusses the necessity to do research aimed
at establishing what the test measures and touches upon the surprisingly modest
role psychometrics plays in the validation of measurement.

1 Brief History

In the 1920s, the psychological attribute was considered the causal agent of
responses persons provide to items and a test was considered a measurement instru-
ment of such a causal agent. The novel technique known as factor analysis that had
been introduced recently (Spearman 1904) played a crucial role, and psychologists
saw factors not so much as summaries of variance but more as representing entities
with an ontological status. The view on validity strongly influenced the early ideas of
Cronbach and Meehl (1955). Their nomological network describes the relationships
of the test score with other variables and represents the attributes’ theory. Soon
attention shifted from what (i.e., a “construct”) the test measures to studying
relationships in the nomological network from which the meaning of the test score
could be derived, and with this shift the view of an attribute as a causal agent
disappeared and was replaced by studying relationships with other variables. The
meaning of measurement was derived from these relationships, thus weakening the
role of theory as a guiding principle in the development of tests and questionnaires.

In the 1920s already another viewpoint emerged, which was that a test can be
valid for many different purposes. This view was inspired by the use of tests for
selecting military personnel in WWI and in personnel selection in civil society. The
idea developed that a test is valid to the degree to which it relates to a criterion. For
example, a criterion may operationalize an applicant’s suitability for a particular
job and for each job one may define a different criterion. As there are many
different criteria, a test can have many different validities. For each criterion, the
test’s validity was expressed in the product–moment correlation, which like factor
analysis at the time was still quite new (Pearson 1896). Soon the need emerged to
distinguish different types of criteria and consequently different types of validity,
such as convergent, divergent, incremental, differential, concurrent, and synthetic
validity. Finally, Messick (1989, p. 13) proposed that “Validity is an integrated
evaluative judgment of the degree to which empirical evidence and theoretical
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rationales support the adequacy and appropriateness of inferences and actions
based on test scores and other modes of assessment.” Thus, validity became both
an encompassing but also a fuzzier concept that referred to the degree to which
available sources support a particular interpretation or a particular use of the test
score. As a result, what the test measures moved to the background and validity
focused on technology, emphasizing that a test fulfilling its practical purpose is a
good test and that in principle one does not need to know what the test measures.

The technological approach to validity is a practical approach that avoids difficult
questions for which one would need an elaborate founding theory of the attribute of
interest, as if such a theory does not matter. The approach reminds one of a consumer
who simply wants an apparatus to work and is uninterested in the mechanics
responsible for its successful performance. But test constructors are not consumers
and it is difficult to imagine that test constructors do not purposefully construct tests
as measures of a particular attribute. The idea that one would assemble a set of
items only because they seem to have predictive power for one or two criteria, at
the same ignoring what the items measure in common, seems preposterous. It is as
if scientific curiosity no longer is of interest. The Standards for Educational and
Psychological Testing (AERA et al. 1999, p. 9) indeed shows that the question what
a test measures does not seem to play a role in modern views on validity.

2 Modern Resistance

Recently, several authors have expressed their concern about the technological
approach to validity. Michell (1999) posited that psychological measurement must
be based on a theory about the attribute but also noticed that very few measurement
instruments are based on this point of departure. The basic problem in psychological
measurement is the absence in most cases of well-founded and well-tested theories
about attributes. If theories are available, the problem usually is that there are
too many competing theories for the same attribute, and that there are no crucial
experiments that allow a decision that favors one theory with respect to the others.
Intelligence is an excellent example for which several theories exist next to one
another so that different tests for intelligence can be based on different theories, such
as Spearman’s 2-factor theory, Thurstone’s 7-factor theory, and Guilford’s three-
dimensional 120-factor theory, whereas other tests are based on binary distinctions
between verbal and performal intelligence and crystallized and fluid intelligence.
The richness of the field in fact signifies its weakness as different intelligence
conceptions continue to exist next to one another. However, for many personality
traits such as leadership and social intelligence the situation is much grimmer, as
propositions, hypotheses, and guesses replace theories and are often expressed by
inaccurate associations between the test score and other variables.

The general complaint is that many tests and questionnaires are based on vague
“theories” that are not well founded and well tested. As a result, test construction
often entails the selection of a set of items that define what the test measures instead
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of a theory that guides the operationalization of the attribute into a set of items.
The psychometric analysis of the collected data and the analysis of the correlations
of test score and a limited number of other variables then serve as the basis for
establishing validity. The researcher relying on psychometrics to find out what his
test measures thus interprets the structure that factor analysis or item response theory
reveals and in hindsight accepts this interpretation as the explanation of how the re-
spondent answered the items. The Achilles heel of this approach is that in hindsight
one is always able to interpret structures found in data. On the contrary, the availabil-
ity of a theory prior to data collection enables one to formulate hypothesis that can
be tested using the data. The dominant approach using items to define what the test
measures rather than theory about the attribute is known as operationism. Following
operationism, the attribute coincides with the operations used to measure it.

Cronbach and Meehl (1955) proposed investigating a test score’s validity through
the relations a test score entertains with the other variables in the test’s nomological
network. Borsboom et al. (2009) noticed that in psychology nomological networks
do not exist; hence, they cannot be investigated. Thus, it is unclear which variables
would have to be investigated to ascertain test-score validity and how a selection of
variables can give rise to a correct inference of what the test measures. Indeed, in
much practical validity research the test score is correlated with one or two other
similar test scores, which is supposed to give evidence of convergent validity, while
correlations with a limited number of other, dissimilar variables should provide
evidence of discriminant validity. These two pieces of information together are
important aspects of a methodology for the investigation of the nomological network
known as the multi-method multi-trait approach (Campbell and Fiske 1959).

Can a few correlations be a sound basis for the inference of what the test
measures? The abundance of theories for some attributes and the absence of theories
for other attributes necessitate the reliance on the nomological network or whatever
is available (see Cronbach’s 1988, weak program), and much test construction work
reports correlations with variables that are available and replace convergent and
discriminant validity. Borsboom et al. (2009) argue that the development of attribute
theories is necessary to know what a test measures, and for this purpose one has to
investigate what persons do when they respond to items: Which cognitive processes
are activated? Which affective processes are activated? Psychometrics can lend a
helping hand by means of cognitive processing models (e.g., De Boeck and Wilson
2004) and cognitive diagnostic models (Rupp et al. 2010). A relatively simple
example of a cognitive processing model is the linear logistic test model (Fischer
1995), which explains item locations from contributions of different operations
that students have to perform when they attempt to solve a cognitive problem.
Psychometric models contribute to theory development in the intelligence domain,
for example, investigating solution strategies in Raven’s Progressive Matrices test
(Verguts and De Boeck 2002) and competing theories for transitive reasoning
(Bouwmeester et al. 2007), and in the emotion domain for investigating the process
structure of guilt (Smits and De Boeck 2003).
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3 Cycle of Measurement

Sijtsma (2012) extensively discussed how either the presence or the absence of
a well-developed theory affects the construction of a test. Figure 1 shows a
cycle the development of a test goes through. I assume that one starts the test
construction by selecting the theory for the attribute for which one intends to
construct a measurement instrument. In rare cases a well-developed theory is
available, such as for proportional reasoning and transitive reasoning; in other cases
the researcher has to choose one from multiple, possibly well-developed theories,
as with intelligence; and in many cases theory takes the appearance of notions,
abstractions, and traditions, intuitions and educated guesses, that define hypotheses
at best but no well-developed theory supported by sound empirical research and
replicated on several research occasions. The dashed box “Attribute Theory” in
Fig. 1 represents this initial state of theory development, and the solid box “Attribute
Theory” represents the other two, better-developed states.

Theories define attributes at a high abstraction level, but attributes only become
“tangible” in behavior. Hence, the theoretical attribute structures need to be
translated into observable behaviors that are typical of the attribute. This process
is known as operationalization (Fig. 1); that is, the specification of the operations
needed to measure the attribute. The typical behaviors are provoked by well-
chosen items that require respondents to provide solutions or give answers that are
informative of the attribute. This only works well with a strong, well-developed
attribute theory but not with a weak, immature attribute theory when subjectivity
guides the operationalization. For example, with weak theory one has little more
“theory” available than general statements referring to weak relations, such as
“depressive people are inclined to sleep shorter and worry more.” Even though this
may be true, people sleeping shorter and worrying more often are not depressive.
Hence, these are behaviors that are not typical of depression and a better-developed
depression theory would provide more guidance for operationalization and test
construction.

Attribute
Theory

Operationalization

Data

Attribute
Theory

AnalysisFig. 1 Cycle of test
construction



272 K. Sijtsma

Does not
apply

Applies

Items: I sometimes feel gloomy

I wish I were cheerful more often

Now and then I have pessimistic thoughts 

I am not always as gay as I should be

Fig. 2 Imaginary four-item questionnaire for measuring melancholy

After a set of items has been defined irrespective of the status of the underlying
theory, next a preliminary test is constructed, administered to a representative
sample from the population of interest producing qualitative responses, and the
responses are transformed into numbers or item scores constituting the data (Fig. 1).
The transformation follows the general principle that a higher score reflects a
higher level of the attribute. This is a hypothesis, which may be proven wrong by
data analysis, for example, using item response theory models. The psychometric
analysis (Fig. 1) of the data produces results that are informative about the structure
of the data and the quality of the test, but which may also be fed back to the
theory of the attribute. The feedback loops in Fig. 1 show that outcomes of
psychometric analysis have more repercussions for better-developed theories than
for immature theories. It is important to notice that without a theory that guides the
operationalization data analysis can only provide information about the data, not
about the non-existing theory.

A generally accepted idea among test constructors seems to be that in the absence
of a well-developed attribute theory the analysis of the collected data helps to
develop the attribute theory. This way theory is inferred from data. Why do people
believe that data can provide such information? I contend that they are misguided
by the structure data always display (unless a computer generated random data),
and which is revealed by clever statistical modeling. Statistical modeling always
comes up with “something” but why would that “something” be informative about a
theory? All that was revealed is the structure of the data. I use an example to clarify
my point. The example is made up for didactical purposes, and not based on a real
questionnaire that was used to collect real data.

The example concerns the measurement of the inclination to having feelings
of melancholy. Figure 2 shows four items that each are hypothesized to represent
different aspects of melancholy. My prediction is that a principal components
analysis or a confirmatory factor analysis of data collected in a sample of re-
spondents supports a 1-factor model. I have not done this experiment and may
be wrong but the point I want to make is that a researcher may readily infer the
existence of a causal attribute from the 1-factor solution, and that this is what
happens in the absence of a theory for melancholy that guides the construction of
the items. The 1-factor structure simply suggests that an underlying trait caused
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the responses to the items. This practice led Kagan (2005) to conclude that self-
descriptions rely too much on “the semantic structures activated when participants
answer questionnaires.” Thus, respondents reflect on the situation in which they find
themselves answering questions and tend to come up with a consistent picture. But
is this trait measurement? Or is this a linguistic phenomenon? Or something else?
Without theory one cannot know this.

This discussion serves to emphasize the importance of having a theory available
when one constructs a measurement instrument. In the absence of theory, all efforts
should be invested in the development of such a theory. Only if test construction is
based on theory guidance can tests be decided to be valid.

4 Conclusion

My advice to researchers is to use whatever theory about the attribute in question
that is available to design a first draft of the test. However, the best they could do is
to actively contribute to the development of the theory, provided a theory is absent or
in its infancy. Then, researchers may use psychometric cognitive processing models
to study the psychological processes that subjects employ to solve or answer the
items and to use the results of the statistical data analysis to amend the test and
the theory that stood at the basis of the test construction. The flexibility of modern
cognitive processing models including variations on item response theory models,
latent class models, and factor models suggests that one has much leeway to describe
such processes well and make huge contributions to better measurement. The end
result is a test that measures the intended attribute. Finally, after the test has been
constructed it should be investigated how well it can be used to predict a particular
criterion, such as an applicant’s suitability for a particular job or the classification
of persons for treatment. The degree to which the test produces valid positives and
valid negatives qualifies the test for the particular purpose but does not say anything
about what the test measures; this was established in the previous stage of test
construction.

The discussion about validity has become too complex. There are basically two
problems that have to be tackled. First, one has to establish whether a test is a valid
measurement instrument for the intended attribute. Second, one has to establish
whether the test can be used effectively for a particular practical usage. Both aspects
of validity are essential; constructing a test to measure an attribute without intending
to ever use it in practice is a useless enterprise, and using a test in practice without
having established what it measures is bad science.
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Bayesian Methods and Model Selection
for Latent Growth Curve Models
with Missing Data

Zhenqiu (Laura) Lu, Zhiyong Zhang, and Allan Cohen

1 Introduction

There has been widespread interest in the analysis of change in social and
behavioral sciences (e.g., Singer and Willett 2003). Growth modeling, in particular,
is becoming increasingly important in these areas. Among the most popular growth
models, latent growth curve models (LGCMs) are statistical models designed to
study individuals’ latent growth trajectories by analyzing the variables of interest
on the same individuals repeatedly through time (e.g., Bollen and Curran 2006).
With an increase in complexity of LGCMs, comes an increase in difficulties
estimating such models. First, missing data are almost inevitable with longitudinal
data (e.g., Jelicic et al. 2009). Second, using conventional likelihood procedures
may be challenging when estimating model parameters in complex models with
complicated data structures. And third, even with effective estimation methods,
model selection in such complex situations becomes difficult.

1.1 Missing Data

As LCGMs involve data collection on the same participants through multiple waves
of surveys, tests, or questionnaires, missing data are almost inevitable. This is
because some students may miss a test because of absence or fatigue or research
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participants may drop out of a study (e.g., Schafer 1997). Missing data can be
investigated from their mechanisms, that is, by examining why missing data occur.
Little and Rubin (2002) distinguished two mechanisms for missing data, ignorable
and non-ignorable. For ignorable missingness, estimates are usually asymptotically
consistent when the missingness is ignored (Little and Rubin 2002). This is because
parameters that govern the missing process either are distinct from the parameters
that govern the model outcomes or depend on the observed parameters in the fitted
model. The non-ignorable missingness is also referred to as missing not at random
(MNAR), in which the missing data probability depends on unobserved outcomes or
on some unobserved latent variables in the model.

With the appearance of missing data comes the challenge in estimating growth
model parameters. Although there is a large literature addressing the problems of
missing data in applied and quantitative psychology (e.g., Yuan and Lu 2008; Roth
1994), particularly in longitudinal studies (e.g., Jelicic et al. 2009), the majority
of the literature is on ignorable missingness. This is mainly because (1) analysis
models or techniques for non-ignorable missing data are traditionally difficult to
implement and not yet well suited for widespread use (e.g., Baraldi and Enders
2010); and (2) missingness mechanisms are not testable (Little and Rubin 2002).
At the same time, however, the analysis of non-ignorable missingness is a crucial
and a serious concern in applied research areas, in which participants may be
dropping out for reasons closely related to the response being measured (e.g., Enders
2011). Not attending to the non-ignorable missingness may result in severely biased
statistical estimates, standard errors, and associated confidence intervals (e.g.,
Schafer 1997), and thus poses substantial risk of leading researchers to incorrect
conclusions. Accordingly, this paper focuses on non-ignorable missingness and
investigates its influences on model estimation for different types of missingness.

In a recent study of latent growth models, Lu et al. (2011) investigated non-
ignorable missingness. However, the missingness in that study was only allowed to
depend on latent class membership. In practice, the non-ignorable missingness in
latent growth models can depend on many other latent variables such as individual
starting level and growth rate. Furthermore, Lu et al. (2011) did not discuss how to
identify the missingness mechanisms.

1.2 Bayesian Approach

In this study, a full Bayesian approach is used for parameter estimation. Previously,
maximum likelihood methods were adopted for most of the studies, and statistical
inferences were carried out using conventional likelihood procedures (e.g., Yuan
and Lu 2008). Recently, Bayesian methods have been proposed as an alternative
approach (e.g., Muthén and Asparouhov 2012) to estimate complex models. The
advantages of Bayesian methods include their intuitive interpretations of statistical
results, their flexibility in incorporating prior information about how data behave
in similar contexts and findings from experimental research, their capacity for
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dealing with small sample sizes (such as occur with special populations), and their
expandability in the analysis of complex statistical models with complicated data
structure (e.g., Lee 2007).

In a Bayesian approach, when the joint distribution is complex or unknown but
the conditional distribution of each variable is available for each set of variables,
Gibbs sampling algorithm (Geman and Geman 1984) can be adopted. The Gibbs
sampling generates Markov chains which can be shown to be ergodic (Geman
and Geman 1984), and thus the sequence of samples after convergence can be
viewed from the joint probability distribution of all parameters. It is also shown
that each variable from the Markov chain converges to the marginal distribution of
that variable (Robert and Casella 2004).

1.3 Model Selection Criteria

Model selection criteria can be used to compare models to identify the best-fit
model. Akaike (1974) proposed the Akaike’s information criterion (AIC). AIC
offers a relative measure of the information lost. For Bayesian models, the Bayes
factor is used for hypothesis testing. But the Bayes factor is usually difficult or even
impossible to calculate, especially for models that involve many random effects,
large numbers of unknowns parameters, or improper priors. To approximate the
Bayes factor, Schwarz (1978) developed the Bayesian information criterion (BIC)
or Schwarz criterion. To obtain more precise criteria, Bozdogan (1987) proposed the
consistent Akaike Information Criterion (CAIC) and Sclove (1987) proposed the
sample-size adjusted Bayesian information criterion (ssBIC) which is based on
the Rissanen Information Criteria (RIC, Rissanen 1978) for auto-regressions. The
deviance information criterion (DIC) (Spiegelhalter et al. 2002) is a recently
developed criterion designed for complex hierarchical models. It is based on the
posterior distribution of the log-likelihood, following the original suggestion of
Dempster (1974) for model choice in the Bayesian framework, and it is particularly
useful in Bayesian model selection problems where the posterior distributions of
the models have been obtained by Markov chain Monte Carlo (MCMC) simulation.
DIC is usually regarded as a Bayesian version or generalization of the AIC and BIC.
For all these criteria, the model with a smaller value is better supported by data.

In a Bayesian context, currently there are no well-defined model selection criteria
for latent growth models with missing data (e.g., Celeux et al. 2006). The problem
is mainly due to random effects and missing data. For random effects models, the
likelihood function can be an observed-data likelihood, a complete-data likelihood,
or a conditional likelihood. Briefly speaking, an observed-data likelihood does
not explicitly include latent variables, such as random-effects; a complete-data
likelihood includes all auxiliary variables in the model; and a conditional likelihood
is the joint likelihood function of the observed outcomes and the missingness
indicator conditional on the random-effects, and thus the likelihood only includes
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random-effects, with no fixed-effects involved (e.g., Celeux et al. 2006). Also, the
missing data part can be either included in or excluded from the log-likelihood
functions.

1.4 Goals and Structure

The goals of the paper are to propose latent growth models with non-ignorable
missingness, to estimate the models via a Bayesian approach, and to evaluate the
performance of model selection criteria.

The rest of the paper consists of six sections. Section 2 describes the pro-
posed growth models. Three non-ignorable missingness selection models are
presented and formulated. Section 3 presents a full Bayesian method to estimate the
latent growth models through data augmentation and Gibbs sampling algorithms.
Section 4 proposes model selection criteria in a Bayesian context for growth
models with missing data. Section 5 conducts simulation studies. Estimates from
models with different non-ignorable missingness and different sample sizes are
summarized, analyzed, and compared. Conclusions based on the simulation studies
are drawn. Section 6 discusses the implications and future directions of this study.
In addition, the Appendices present some technical details.

2 Latent Growth Models

The LGCMs can be expressed by a regression equation with latent variables being
regressors. Specifically, for a longitudinal study with N subjects and T measurement
time points, let yi = (yi1,yi2, . . . ,yiT )

′ be a T × 1 random vector, where yit stands
for the outcome or observation of individual i on occasion t (i = 1,2, . . . ,N;
t = 1,2, . . . ,T ), and let η i be a q× 1 random vector containing q continuous latent
variables. A LGCM for the outcome yi related to the latent η i can be written as

yi = Λη i + ei (1)

η i = β + ξ i, (2)

where Λ is a T × q matrix consisting of factor loadings, ei is a T × 1 vector
of residuals or measurement errors that are assumed to follow a T -dimensional
multivariate normal distribution, i.e., ei ∼ MNT (0,Θ), and ξ i is a q×1 vector that is
assumed to follow a q-dimensional multivariate distribution, i.e., ξ i ∼ MNq(0,Ψ ).
In LGCMs, β is a vector of fixed effects and ξ i is a vector of random effects (e.g.,
Fitzmaurice et al. 2004). The vector β , η i, and the matrix Λ determine the growth
trajectory of the model.
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2.1 Selection Models for Non-ignorable Missingness

To address the non-ignorable missingness, there are two general approaches,
pattern-mixture models (Little and Rubin 1987) and selection models (Glynn
et al. 1986). In both cases, the statistical analysis requires joint modeling of
dependent variable and missing data processes. In this research, selection models
are used, mainly because (1) substantively selection models seem more natural for
considering the behavior of the response variable in the full target population of
interests, rather than in the sub-populations defined by missing data patterns (e.g.,
Fitzmaurice et al. 2008), and (2) the selection models formulation leads directly
to the joint distribution of both dependent variables and the missingness (e.g.,
Fitzmaurice et al. 2008):

p(yi,mi|ν,φ ,xi) = p(yi|ν,xi) p(mi|yi,ν,φ ,xi)

where xi is a vector of covariates for individual i, yi is a vector of individual
i’s outcome scores, θ = (ν,φ ) are all parameters in the model, in which ν are
parameters for the growth model and φ are parameters for the missingness, and
mi is a vector mi = (mi1,mi2, . . . ,miT )

′ that indicates the missingness status for yi.
Specifically, if yi is missing at time point t, then mit = 1. Otherwise, mit = 0.

Let τit = p(mit = 1) be the probability that yit is missing, then mit follows a
Bernoulli distribution of τit , and the density function of mit is

p(mit) = τmit
it (1− τit)

1−mit . (3)

For different non-ignorable missingness patterns, the expressions of τit are different.
In Lu et al. (2011), τit is a function of latent class membership and thus the miss-
ingness is latent class dependent (LCD). However, the non-ignorable missingness
mechanism could be much more complex in reality. For example, the missingness
may be related to the latent intercept, the latent slope of growth, or the potential
outcome variables. In these cases, the missing data probabilities depend on latent
variables, and thus missingness is non-ignorable. We propose three basic non-
ignorable missingness models in detail as follows.

(1) Latent Intercept-Dependent (LID) Missingness: This pattern assumes that the
missingness depends on individual’s latent intercept, or initial level, Ii, and some
observed covariates xi. The rate of missingness τIit is expressed as a probit link
function of Ii and xi

τIit =Φ(γ0t + IiγIt + x′iγxt) =Φ(ω ′
Ii γ It ), (4)

where xi is an r-dimensional vector, ω Ii = (1, Ii,x′i)′ and γ It = (γ0t ,γIt ,γ ′xt )
′. Note

that if the vector γ It = 0, then the missingness is ignorable. A path diagram of
the LGCM with an LID missingness is illustrated in Fig. 1.
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Fig. 1 Path diagram of a latent growth model with latent intercept-dependent missingness (LID),
where the rate of missingness p(mt ) depends on covariates xrs and individual’s latent intercept, or
initial level, I

(2) Latent Slope-Dependent (LSD) Missingness: This pattern assumes the miss-
ingness depends on the latent slope of individuals, Si. The missing data rate τit is
expressed as a probit link function of Si and covariates xi,

τSit =Φ(γ0t + SiγSt + x′iγxt) =Φ(ω ′
Si γSt), (5)

with ωSi = (1,Si,x′i)′ and γSt = (γ0t ,γSt ,γ ′xt)
′. Its path diagram is drawn in Fig. 2.

(3) Latent Outcome-Dependent (LOD) Missingness: This pattern assumes that the
missing data rates depend on the potential outcomes that may be missing. With
covariates xi, we express τit as a probit link function as follows.

τyit =Φ(γ0t + yitγyt + x′iγxt ) =Φ(ω ′
yit γyt), (6)

with ωyit = (1,yit ,x′i)′ and γyt = (γ0t ,γyt ,γ ′xt)
′. The path diagram illustrating the

LGCMs with LOD missingness is illustrated in Fig. 3.
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Fig. 2 Path diagram of a latent growth model with latent slope-dependent missing data where
p(mt ) depends on covariates xrs and the latent slope S

3 Bayesian Estimation

In this research, a full Bayesian estimation approach is used to estimate growth
models. The algorithm is described as follows. First, model-related latent variables
are added via the data augmentation method (Tanner and Wong 1987). By including
auxiliary variables, the likelihood function for each model is obtained. Second,
proper priors are adopted. Third, with the likelihood function and the priors, based
on the Bayes’ Theorem, the posterior distribution of the unknown parameters
is readily available. We obtain conditional posterior distributions instead of the
joint posteriors because the integrations of marginal posterior distributions of
the parameters are usually hard to obtain explicitly for high-dimensional data.
Fourth, with conditional posterior distributions, Markov chains are generated for
the unknown model parameters by implementing a Gibbs sampling algorithm
(Geman and Geman 1984). Finally, the statistical inferences are conducted based
on converged Markov chains.
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Fig. 3 Path diagram of a latent growth model with potential outcome-dependent missing data
where p(mt ) depends on covariates xrs and the outcome y

3.1 Data Augmentation and Likelihood Functions

In order to construct the likelihood function explicitly, we use the data augmentation
algorithm (Tanner and Wong 1987). The observed outcomes yobs

i can be augmented
with the missing values ymis

i such that yi = (yobs
i ,ymis

i )′ for individual i. Also, the
missing data indicator variable mi is added to models. Then the joint likelihood
function of the selection model for the ith individual can be expressed as

Li(η i,yi,mi) = [p(η i) p(yi|η i)] p(mi|yi,η i,xi).

For the whole sample, the likelihood function is specifically expressed as

L(y,η ,m) ∝
N

∏
i=1

{
|Ψ |−1/2 exp

[
−1

2
(η i −β)′Ψ−1(η i −β)

]

×|φ |−T/2 exp

[
− 1

2φ
(yi −Λη i)

′(yi −Λη i)

]

×
T

∏
t=1

[
τmit

it (1− τit)
1−mit

]}
,

(7)
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where τit is defined by Eq. (4) for the LID missingness, (5) for the LSD missingness,
and (6) for the LOD missingness.

3.2 Priors, Posteriors, and Gibbs Sampling

We assume that all posterior distributions exist in this study. Commonly used
proper priors (e.g., Lee 2007) are adopted. Specifically, (1) an inverse Gamma
distribution prior is used for φ ∼ IG(v0/2,s0/2) where v0 and s0 are given hyper-
parameters. The density function of an inverse Gamma distribution is p(φ) ∝
φ−(v0/2)−1 exp(−s0/(2φ)). (2) An inverse Wishart distribution prior is used for Ψ .
With hyper-parameters m0 and V0,Ψ ∼ IW (m0,V0), where m0 is a scalar and V0 is
a q× q matrix. Its density function is p(Ψ) ∝ |Ψ |−(m0+q+1)/2 exp[−tr(V0Ψ−1)/2].
(3) For β a multivariate normal prior is used, and β ∼ MNq(β 0,Σ0) where the
hyper-parameter β 0 is a q-dimensional vector and Σ0 is a q× q matrix. (4) The
prior for γt (t = 1,2, . . . ,T ) is chosen to be a multivariate normal distribution γt ∼
MN(2+r)(γt0,Dt0), where γt0 is a (2+r)-dimensional vector, Dt0 is a (2+r)×(2+r)
matrix, and both are pre-determined hyper-parameters.

After constructing the likelihood function and assigning the priors, the joint
posterior distribution for unknown parameters is readily available. Considering the
high-dimensional integration for marginal distributions of parameters, the condi-
tional distribution for each parameter is obtained instead. The derived conditional
posteriors are provided by the equations for parameters in the Appendix. In addition,
the conditional posteriors for the latent variable η i and the augmented missing
data ymis

i (i = 1,2, . . . ,N) are also provided by their corresponding equations in the
Appendix.

After obtaining conditional posteriors, the Markov chain for each model param-
eter is generated by implementing a Gibbs sampling algorithm (Geman and Geman
1984). Specifically, suppose θ = (θ1,θ2, . . . ,θM) is a vector of model parameters,
latent variables, and missing values. We start with a set of initial values for θ s.
At the sth iteration, θ (s) is generated. To obtain θ (s+1), each θ (s+1) is generated
from its corresponding posterior distribution, derived in the Appendix, with renewed
parameters.

3.3 Statistical Inference

After passing convergence tests, the generated Markov chains can be viewed as from
the joint and marginal distributions of all parameters. The statistical inference can
then be conducted based on the generated Markov chains.

For different loss functions of θ , the point estimates are different. For example,
if a square loss function, LF = (θ − θ̂ )2, is used, then the posterior mean is the
estimate of θ ; but if an absolute loss function, LF = |θ− θ̂ |, is used, then its estimate
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is the posterior median. There are other function forms, such as 0–1 loss function,
but in this research we take the square loss function.

Let θ = (θ1,θ2, . . . ,θp)
′ denote a vector of all the unknown parameters in

the model. Then the converged Markov chains can be recorded as θ (s),s =
1,2, . . . ,S, and each parameter estimate θ̂ j ( j = 1,2, . . . , p) can be calculated as

θ̂ j = ∑S
s=1 θ

(s)
j /S with standard error (SE) s.e.(θ̂ j) =

√
∑S

s=1(θ
(s)
j − θ̂ j)2/(S− 1).

To get the credible (confidence) intervals, both percentile intervals and the highest
posterior density intervals (HPD, Box and Tiao 1973) of the Markov chains can

be used. Percentile intervals are obtained by sorting θ (s)
j . HPD intervals may also

be referred to as minimum length confidence intervals for a Bayesian posterior
distribution, and for symmetric distributions HPD intervals obtain equal tail area
probabilities.

4 Model Selection Criteria

Model selection criteria play an important role in comparing competing models.
In this section, Bayesian model selection criteria are proposed for latent growth
models with missing data.

The general mathematical forms of selection criteria are closely related to each
other. Almost all of them try to find a balance between the accuracy and the
complexity of a model. First, the accuracy of a model can be measured by deviance,
which is defined as D(θ ) =−2log(p(y|θ ))+C for some constant C. In a Bayesian
context, the most popular way to calculate the deviance is to plug the expectation
of θ . So we have D(θ̂ ) = −2log(p(y|Eθ |y[θ ])) +C, which can be estimated by

D(θ̂ )≈−2log(p(y|θ̂))+C. For latent growth models with missing data, D(θ̂ ) can
be calculated as

D(θ̂ ) =−2
N

∑
i=1

T

∑
t=1

[
(1−mit)lit(y|θ̂ )+ lit(m|θ̂ )] (8)

in which mit is the missing data indicator for individual i at occasion t, θ̂ is
the posterior mean of parameter estimates across S converged Markov iterations,

and l(s)it (y) and l(s)it (m) are the conditional likelihood functions of yit and mit ,
respectively, for individual i at occasion t. When yit is missing, mit = 1, the
likelihood of yit is excluded. When yit are normally distributed, the log-likelihood
function is

lit(yN) =− 1
2

log(2π |φ |)− (yit − Ii− tSi)
2

2φ
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Table 1 Model selection
criteria

Criterion(Index) = Deviance + Penalty

Dhat.AIC D(θ̂ ) 2 p
Dhat.BIC D(θ̂ ) log(N) p
Dhat.CAIC D(θ̂ ) (log(N)+1) p
Dhat.ssBIC D(θ̂ ) log((N+2)/24) p
DIC D(θ̂ ) 2(D(θ )−D(θ̂ ))
rough DIC D(θ ) var(D(θ ))/2

where Ii and Si are obtained from the random effect model. For the missing data
indicator mit , the log-likelihood function is

lit(m) =mit log(τit)+ (1−mit)log(1− τit),

where τit varies for different missingness models.
The second part of a criterion is the complexity of a model, which is also

called a penalty term. For AIC, the penalty is 2 p, where p is the number of model
parameters. As the penalty of AIC is sometimes considered to be too lenient in that
it selects saturated models in large samples (e.g., Janssen and De Boeck 1999), BIC
uses log(N)p as the penalty, where N is the sample size. CAIC is another improved
version of AIC. Compared with BIC, CAIC adds an extra p in penalty, which makes
CAIC favor smaller models slightly more than BIC. Also, ssBIC improves BIC. The
penalty in ssBIC is log((N + 2)/24) p. For DIC, the penalty takes the difference
between Eθ |y[D] and D(Eθ |y[θ ]), where Eθ |y[D] = Eθ |y[−2log(p(y|θ ))] +C is a
Monte Carlo estimation of the expectation deviance and can be estimated as the
posterior mean across the converged Markov chain,

D(θ ) =−2
S

S

∑
s=1

N

∑
i=1

T

∑
1=t

[
(1−mit)l

(s)
it (y)+ l(s)it (m)

]
. (9)

In DIC, pD=Eθ |y[D]−D(Eθ |y[θ ]) is a measure of the effective model parameters or

the complexity of the model, and it is approximated by pD = D(θ )−D(θ̂). In prac-
tice, rough DIC (RDIC, sometimes called DICV in some literature, e.g., Oldmeadow
and Keith 2011) is an approximation of formal DIC (e.g., Sturtz et al. 2005). It takes
D(θ ) as its deviance and pV =Var(D(θ ))/2 as its penalty.

In summary, the model selection criteria for latent growth models with missing
data in this study are listed in Table 1.
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5 Simulation Studies

In this section, simulation studies are conducted to evaluate the performance of
the proposed latent growth models and the model selection criteria in a Bayesian
context.

5.1 Simulation Design and Implementation

In the simulation we focus on linear LGCMs to simplify the presentation. Higher
order LGCMs can be easily expanded by adding quadratic or higher order terms.

First, four waves of complete LGCM data yi are generated based on Eqs. (1) and
(2). The random effects consist of the intercept Ii and the slope Si, with Var(Ii) = 1,
Var(Si) = 4, and Cov(Ii,Si) = 0. The fix-effects are (I,S)= (1,3). The measurement
errors are assumed to follow a normal distribution with mean 0 and standard
deviation 1. In the simulation we also assume there is one covariate X generated
from a normal distribution, X ∼ N(1,sd = 0.2). Missing data are created based on
different pre-designed missingness rates. We assume the true missingness is LSD
(also noted as the XS missingness in this study because the missingness depends on
the latent individual slope S and covariate X). With LSD, the bigger the slope is, the
more the missing data. For the sake of simplicity in the simulation, the missingness
rate is set the same for every occasion. Specifically, we set the missingness
probit coefficients as γ0 = (−1,−1,−1,−1), γx = (−1.5,−1.5,−1.5,−1.5), and
γS = (0.5,0.5,0.5,0.5). With the setting, missingness rates are generated based on
Eq. (5). If a participant has a latent growth slope 3, with a covariate value 1, his or
her missingness rate at each wave is τ ≈ 16%; and if the slope is 5, with the same
covariate value, the missing rate increases to τ ≈ 50%; but when the slope is 1, the
missingness rate decreases to τ ≈ 2.3%.

Next, we fit data with LGCMs with different missingness. Specifically, the model
design with different missingness is shown in Table 2, where the symbol “�” shows
the related factors on which the missing data rates depend. For example, when both
“X” and “I” are checked, the missingness depends on the individual’s latent intercept
“I” and the observed covariate “X.” Four types of missingness are studied: LID
(also noted as XI in Table 2), LSD (XS), LOD (XY), and ignorable (X). The shaded
model, LSD (XS), is the true model we used for generating the simulation data.
Five levels of sample size (N = 1,000, N = 500, N = 300, N = 200 and N = 100)
are investigated, and for each sample size, 100 converged replications are analyzed
and summarized.

The simulation studies are implemented by the following algorithm. (1) Set
the counter R = 0. (2) Generate complete longitudinal growth data according
to predefined model parameters. (3) Create missing data according to missing
data mechanisms and missing data rates. (4) Generate Markov chains for model
parameters through the Gibbs sampling procedure. (5) Test the convergence of
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Table 2 Model design in the
simulation study

LGCM: N = 1000, 500, 300, 200 and 100

Missingness

Model X2 I3 S4 Y5

Ignorable (X)
√

LID (XI)
√ √

LSD (XS)1 √ √

LOD (XY)
√ √

1 The shaded model is the true model.
2 Observed covariates.
3 Individual latent intercept. If checked, the missingness is non-

ignorable.
4 Individual latent slope. If checked, the missingness is non-

ignorable.
5 Individual potential outcome y. If checked, the missingness is

non-ignorable.

generated Markov chains. (6) If the Markov chains pass the convergence test, set
R = R+ 1 and calculate and save the parameter estimates. Otherwise, set R = R
and discard the current replication of simulation. (7) Repeat the above process till
R = 100 to obtain 100 replications of valid simulation.

In step 4, priors carrying little prior information are adopted (Zhang et al.
2007). Specifically, for ϕ1, we set μϕ1

= 02 and Σϕ1 = 103I2. For φ , we set
v0k = s0k = 0.002. For β , it is assumed that β k0 = 02 and Σ k0 = 103I2. For Ψ ,
we define mk0 = 2 and Vk0 = I2. Finally, for γt , we let γt0 = 03 and Dt0 = 103I3,
where 0d and Id denote a d-dimensional zero vector and a d-dimensional identity
matrix, respectively. In step 5, the iteration number of burn-in period is set.
The Geweke convergence criterion indicated that less than 10,000 iterations were
adequate for all conditions in the study. Therefore, a conservative burn-in of 20,000
iterations was used for all iterations. And then the Markov chains with a length of
20,000 iterations are saved for convergence testing and data analysis. After step 7,
twelve summary statistics are reported based on 100 sets of converged simulation
replications. For the purpose of presentation, let θ j represent the jth parameter,
also the true value in the simulation. The twelve statistics are defined below. (1)
The average estimate (est. j) across 100 converged simulation replications of each

parameter is obtained as est. j =
¯̂θ j = ∑100

i=1 θ̂i j/100, where θ̂i j denotes the estimate
of θ j in the ith simulation replication. (2) The simple bias (BIAS.smp j) of each

parameter is calculated as BIAS.smp j =
¯̂θ j − θ j. (3) The relative bias (BIAS.rel j)

of each parameter is calculated using BIAS.rel j = ( ¯̂θ j − θ j)/θ j when θ j �= 0 and

BIAS.rel j =
¯̂θ j − θ j when θ j = 0. (4) The empirical standard error (SE.emp j) of

each parameter is obtained as SE.emp j =

√
∑100

i=1(θ̂i j − ¯̂θ j)2/99. (5) The average

standard error (SE.avg j) is calculated by SE.avg j =∑100
i=1 ŝi j/100, where ŝi j denotes

the estimated standard error of θ̂i j. (6) The average mean square error (MSE)
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of each parameter is obtained by MSE j = ∑100
i=1 MSEi j/100, where MSEi j is the

mean square error for the jth parameter in the ith simulation replication, MSEi j =
(Biasi j)

2 +(ŝi j)
2. (7) The average lower and (8) upper limits of the 95% percentile

confidence interval (CI.low j and CI.upper j) are, respectively, defined as CI.low j =

∑100
i=1 θ̂ l

i j/100, and CI.upper j = ∑100
i=1 θ̂ u

i j/100 where θ̂ l
i j and θ̂ u

i j denote the 95%
lower and upper limits of CI for the jth parameter, respectively. (9) The coverage
probability of the 95% percentile confidence interval (CI.cover j) of each parameter
is obtained using CI.cover j = [#(θ̂ l

i j ≤ θ j ≤ θ̂ u
i j)]/100. (10) The average lower, (11)

upper limits, and (12) the coverage probability of the 95% highest posterior density
credible interval (HPD, Box and Tiao 1973) of each parameter are similarly defined
by HPD.low j, HPD.upper j, and HPD.cover j, respectively.

5.2 Simulation Results

In this section, we show simulation results for the estimates obtained from the true
model and mis-specified models, and the performance of model selection criteria.

First, we investigate the estimates obtained from the true model. Tables 3 and
4 show the summarized estimates for different sample sizes (N = 1,000, N = 500,
N = 300, N = 200, and N = 100). From both tables, except for the small sample
size N = 100, one can see that (1) all the estimate biases are very small; (2) the
difference between the empirical SEs and the average SEs is very small, which
indicates the SEs are estimated accurately; (3) both percentile interval and HPD
interval coverage probabilities are very close to the theoretical percentage 95%,
which means the type I error for each parameter is close to the specified 5% so
that we can use the estimated confidence intervals to conduct statistical inference;
and (4) this true model has 100% convergence rate.

In order to conveniently compare estimates for different sample sizes, we
further summarize Tables 3 and 4 by calculating five summary statistics across
all parameters, which are shown in Table 5. The first statistic is the average
absolute relative biases (|Bias.rel|) across all parameters, which is defined as
|Bias.rel| = ∑p

j=1 |Bias.rel j|/p, where p is the total number of parameters in a
model. Second, we obtain the average absolute differences between the empirical
SEs and the average Bayesian SEs (|SE.diff|) across all parameters by using
|SE.diff| = ∑p

j=1 |SE.emp j − SE.avg j|/p. Third, we calculate the average per-
centile coverage probabilities (CI.cover) across all parameters by using CI.cover =
∑p

j=1 CI.cover j/p. Fourth, we calculate the average HPD coverage probabilities
(HPD.cover) across all parameters by using HPD.cover = ∑p

j=1 HPD.cover j/p.
Fifth, the convergence rate for the study is calculated.

Table 5 shows that, except for the case for N = 100, the true mode can
recover model parameters very well, by checking (1) the small average absolute
relative biases of estimates, |Bias.rel|, (2) the small average absolute differences
between the empirical SEs and the average SEs, |SE.diff|, and (3) the almost 95%
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Table 5 Summary and comparison of simulation results of the true model

|Bias.rel|a |SE.diff|b MSEc CI.coverd HPD.covere CVG.ratef (%)

1,000 0.025 0.007 0.033 0.942 0.942 100
500 0.052 0.021 0.079 0.932 0.939 100

N 300 0.089 0.031 0.150 0.922 0.930 100
200 0.160 0.090 0.366 0.909 0.924 94.34
100 1.202 2.664 23.743 0.869 0.893 70.42

aThe average absolute relative bias across all parameters, defined by |Bias.rel| =
∑p

j=1 |Bias.rel j|/p. The smaller, the better
bThe average absolute difference between the empirical SEs and the average Bayesian SEs
across all parameters, defined by |SE.diff| = ∑p

j=1 |SE.emp j − SE.avg j|/p. The smaller, the
better
cThe Mean Square Errors (MSE) across all parameters, defined by MSE = ∑p

j=1[(Bias j)
2 +

(ŝ j)
2]/p. The smaller, the better

dThe average percentile coverage probability across all parameters, defined by CI.cover =
∑p

j=1 CI.cover j/p, with a theoretical value of 0.95
eThe average highest posterior density (HPD) coverage probability across all parameters,
defined by HPD.cover = ∑p

j=1 HPD.cover j/p, with a theoretical value of 0.95
fThe convergence rate

average percentile coverage probabilities, CI.cover, and the average HPD coverage
probabilities, HPD.cover. With the increase of the sample size, both the point
estimates and standard errors get more accurate.

Second, we compare the estimates obtained from the true model and different
mis-specified models. In this study the true model is the LGCM with LSD (XS)
missingness, and there are three mis-specified models, the LGCM with LID
(XI) missingness, the LGCM with LOD (XY) missingness, and the LGCM with
ignorable missingness (see Table 2 for simulation design). The estimates from the
mis-specified models, such as LID (XI) missingness, LOD (XY) missingness, and
ignorable missingness, are also summarized, but not included in this paper due to
limit space.

To compare estimates from different models, we further summarize and visualize
some statistics. Figure 4a compares the point estimates of intercept and slope for all
models when N = 1,000. The true value of slope is 3 but the estimate is 2.711 when
the missingness is ignored. Actually, for the model with ignorable missingness, the
slope estimates are all less than 2.711 for all sample sizes in our study. Figure 4b
focuses on the coverage of slope. When the missingness is ignored, it is as low
as 4% for N = 1,000, and 21% for N = 500 (the coverage for N = 1,000 is
lower because the SE for N = 1,000 is smaller than the SE for N = 500). As a
result, conclusions based on the model with ignorable missingness will be severely
misleading. Figure 4b also shows that the slope estimate from the model with the
mis-specified missingness, LID (XI), has low coverage, with 76% for N = 1,000
and 87% for N = 500. So the conclusions based on this model may still be incorrect.
Figure 4c compares the true model and the model with another type of mis-specified
missingness, LOD (XY) for N = 1,000. For the wrong model, the coverage is 51%
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Fig. 4 Comparison of four models/missingness mechanisms. (a) Intercept and slope estimates
for all models (True Int=1, True Slope=3), (b) Slope coverage for all models (Theoretical
coverage=95%), (c) Parameter coverage for LSD(XS) and LOD (XY) (Theoretical value=95%),
and (d) Convergence rates for all models (The closer to 100%, the better)

for intercept, and 72% for Cov(I,S). Finally, Fig. 4d compares the convergence rates
for all models. One can see that the convergence rates of LOD (XY) and LID (XI)
models are much lower than those of the true model LSD (XS) and the model with
ignorable missingness. When the missingness is ignored, the number of parameters
is smaller than that of non-ignorable models, and then convergence rate gets higher.

In summary, the estimates from mis-specified models may result in severely
misleading conclusions, especially when the missingness is ignored. Also, the
convergence rate of a mis-specified model is usually lower than that of the true
model.

Third, regarding model selection, Table 6 lists the selection proportions across
all replications. It shows that almost all the criteria, except for the rough DIC, can
correctly identify the true model with high certainty.
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Table 6 Model selection proportion

Non-ignorable missingness
ignorable

Non-ignorable missingness
ignorable

Criteron1 LSD (XS) 2 LOD (XY) LID (XI) missingness LSD (XS) LOD (XY) LID (XI) missingness

N = 1000 N = 500

Dhat.AIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Dhat.BIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Dhat.CAIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Dhat.ssBIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

DIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Rough DIC 0.013 0.000 0.987 0.000 0.038 0.000 0.962 0.000

N = 300 N = 200

Dhat.AIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

Dhat.BIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

Dhat.CAIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

Dhat.ssBIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

DIC 1 0.000 0.000 0.000 0.98125 0.0125 0.00625 0.000

Rough DIC 0.1125 0.000 0.8875 0.000 0.2 0.03125 0.76875 0.000

N = 100

Dhat.AIC 0.7125 0.28125 0.00625 0.000

Dhat.BIC 0.7125 0.28125 0.00625 0.000

Dhat.CAIC 0.7125 0.28125 0.00625 0.000

Dhat.ssBIC 70625 0.28125 0.00625 0.000

DIC 0.70625 0.175 0.11875 0.000

Rough DIC 0.1125 0.04375 0.84375 0.000
1 The definition of each criterion is given in Table 1.
2 The shaded model is the true model.
3 The shaded cell has the largest proportion. For each criterion, the sum of all proportions might be larger than 1 because

models may have the same lowest index value.

5.3 Simulation Conclusions

Based on the simulation studies, we conclude as follows. (1) The proposed Bayesian
method can accurately recover model parameters (both point estimates and standard
errors). (2) The small difference between the empirical SE and the average SE
indicates that the Bayesian method used in the study can estimate the standard
errors accurately. (3) With the increase of the sample size, estimates get closer to
their true values and standard errors become more accurate. (4) Ignoring the non-
ignorable missingness can lead to severely incorrect conclusions. (5) Mis-specified
missingness may also result in misleading conclusions. (6) Almost all the criteria,
except for the rough DIC, can correctly identify the true model with high certainty.
(7) The non-convergent model might be a sign of a wrong model.
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6 Real Data Analysis

In this section, we illustrate the application of the Bayesian latent growth curve
model with missing data through the analysis of mathematical ability growth
data from the NLSY97 survey (Bureau of Labor Statistics, U.S. Department of
Labor 1997). The data set available to us consisted of N = 362 youths who
were administered the Peabody Individual Achievement Test (PIAT) Mathematics
Assessment yearly from 1997, when they were 12 years old and in Grade 7, to 2000,
when they were 15 years old and in Grade 10. Figure 5 plots the data, which shows
the four measures of mathematical ability increased over time with a roughly linear
trend.

Table 7 presents the summary statistics. The missing data rates range from
5.801% to 12.707%. Information on mothers’ education (in years) was also included
in the sample. In this analysis, we are interested to see how mathematical ability
grew over the 4-year period, and if mothers’ education influenced the missing data
pattern.

First, for comparison purposes, we fit four models with different types of
missingness, LSD, LID, LOD, and ignorable. For each model, the burn-in period
for Gibbs sampling was generated long enough to make sure Markov chains for
parameters converged. To test convergence, the history plot and Geweke test statistic
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Fig. 5 Plot for the PIAT math data
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Table 7 Summary statistics
for the PIAT math data

1997 1998 1999 2000

Mean 6.110 6.309 6.722 6.959
Standard deviation 1.560 1.698 1.679 1.770
Missing data (count) 22 21 39 46
Missing data rate (%) 6.077 5.801 10.773 12.707

for each unknown model parameter were examined. Except for the LID model, all
the other three models converged. Table 8 shows the Geweke test statistics for all the
model parameters are smaller than 1.96, which indicates the convergence of Markov
chains (Geweke 1992). The next 90,000 iterations are then saved for data analysis.
The results of the three models are provided in Table 8. In the table, the ratio
of Monte Carlo error (MC error) and standard deviation (SD) for each parameter
is around or smaller than 0.05, which indicates parameter estimates are accurate
(Spiegelhalter et al. 2003). MC error is an important statistic providing a measure of
the variability of each parameter estimate in the MCMC chain. The lower the MC
error, the more precise the parameter estimate. Overall, we conclude that the results
from the real data analysis can be used for further inference. A quick look at the
results from the three models shows that the growth parameters do not differ much,
even for the model with ignorable missingness. This is due to the low missing data
rates for our data set. However, for missingness parameters, different missingness
models have different results which, in turn, leads to different interpretations of the
data.

Second, the model selection criteria were used to identify the best-fit model.
Table 9 shows all the available indices. As one can see, the LSD model is favored
by all the criteria. The results from the best-fit model, LSD, reveal that (1) none of
γxts, the coefficients for the covariate, are significant at the α level of 0.05, which
implies that the missingness is not related to mothers’ education level; however, (2)
the missingness is significantly negatively correlated with the latent slope in 1999
and 2000, which implies that in these 2 years the youth with a low mathematical
growth is more likely to miss a test.

7 Discussion

Latent growth curve models are becoming increasingly complex and with this
comes an increase in concerns about estimating these models. In this study, we
examined several growth models designed to address problems common to almost
all longitudinal research, namely, that of missing data. Three new non-ignorable
missingness mechanisms were considered: latent intercept missingness, latent slope
missingness, and outcome-dependent missingness. A fully Bayesian approach was
implemented using data augmentation and Gibbs sampling to estimate these models
in the presence of the three types of non-ignorable missingness. Simulation results
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Table 8 Estimates from different models in real data analysis

Mean S.D.1 MCs.e./S.D.2 Lower[2.5%] Upper[97.5%] Geweke t3

Model with LSD (XS) missingness 4

G
ro

w
th

C
ur

ve

Pa
ra

m
et

er
s

Intercept 6.060 5 0.083 0.001 5.895 6.223 −0.718

Slope 0.288 0.030 7.3E−4 0.230 0.348 0.170

Var(I) 1.697 0.171 0.002 1.387 2.057 0.928

Var(S) 0.078 0.020 7.4E−4 0.046 0.121 −1.280

Cov(I,S) −0.039 0.038 8.7E−4 −0.120 0.031 −0.199

Var(e) 1.011 0.054 0.001 0.909 1.121 1.734

M
is

si
ng

ne
ss

Pa
ra

m
et

er
s 19

97

γ01 −2.574 0.625 0.033 −3.847 −1.450 −1.448

γx1 0.081 0.046 0.002 −0.004 0.175 1.512
γS1 −0.089 0.840 0.030 −1.797 1.550 0.205

19
98

γ02 −1.656 0.516 0.025 −2.681 −0.636 −0.162

γx2 0.022 0.039 0.002 −0.054 0.103 0.313
γS2 −0.926 0.796 0.025 −2.613 0.526 −0.989

19
99

γ03 −1.710 0.695 0.039 −3.164 −0.407 1.387

γx3 0.083 0.054 0.003 −0.020 0.195 −1.146

γS3 −4.332 2.878 0.073 −12.457 −1.170 −1.201

20
00

γ04 −0.875 0.482 0.025 −1.823 0.021 0.484
γx4 0.009 0.037 0.002 −0.061 0.085 −0.230

γS4 −1.838 0.920 0.032 −3.967 −0.319 −1.258

Model with LOD (XY) missingness

G
ro

w
th

C
ur

ve

Pa
ra

m
et

er
s

Intercept 6.002 0.084 8.8E−4 5.838 6.167 0.315

Slope 0.333 0.032 6.0E−4 0.271 0.396 0.205

Var(I) 1.738 0.187 0.002 1.396 2.128 0.035

Var(S) 0.103 0.022 3.2E−4 0.064 0.150 0.437

Cov(I,S) −0.057 0.050 6.6E−4 −0.161 0.036 0.243

Var(e) 0.972 0.053 4.7E−4 0.873 1.080 −1.124

M
is

si
ng

ne
ss

Pa
ra

m
et

er
s 19

97

γ01 −0.986 0.760 0.041 −2.491 0.539 0.204

γx1 0.102 0.052 0.003 0.005 0.211 −0.466

γY1 −0.345 0.117 0.006 −0.591 −0.133 0.201

19
98

γ02 −1.794 0.681 0.036 -3.213 −0.543 −0.162

γx2 0.026 0.040 0.002 −0.053 0.104 −0.593
γY2 −0.019 0.082 0.004 −0.178 0.145 0.902

19
99

γ03 −1.258 0.586 0.031 −2.344 −0.034 −1.477

γx3 0.050 0.038 0.001 −0.024 0.124 1.272
γY3 −0.092 0.069 0.003 −0.230 0.045 0.804

20
00

γ04 −1.638 0.606 0.033 -2.740 −0.371 −0.142

γx4 4.4E-4 0.032 0.002 −0.060 0.064 −0.464
γY4 0.067 0.070 0.004 −0.076 0.187 0.529

Model with ignorable (X) missingness

G
ro

w
th

C
ur

ve

Pa
ra

m
et

er
s

Intercept 6.051 0.082 4.7E−4 5.890 6.210 1.303

Slope 0.311 0.030 2.5E−4 0.252 0.369 −1.376

Var(I) 1.683 0.183 0.001 1.349 2.064 1.431

Var(S) 0.100 0.021 3.0E−4 0.062 0.145 1.052

Cov(I,S) −0.043 0.049 5.7E−4 −0.144 0.049 −1.945

Var(e) 0.966 0.052 3.8E−4 0.869 1.072 −1.446

(continued)
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Table 8 (continued)
M

is
si

ng
ne

ss
Pa

ra
m

et
er

s

19
97 γ01 −2.554 0.553 0.029 −3.640 −1.433 −0.254

γx1 0.080 0.043 0.002 −0.007 0.163 0.305
19

98 γ02 −1.906 0.541 0.028 −2.963 −0.869 −0.282

γx2 0.026 0.043 0.002 −0.058 0.109 0.294

19
99 γ03 −1.784 0.420 0.021 −2.598 −0.978 −0.394

γx3 0.044 0.033 0.002 −0.021 0.109 0.389

20
00 γ04 −1.189 0.381 0.019 −1.914 −0.463 −0.287

γx4 0.004 0.031 0.002 −0.056 0.061 0.281

Note:
Standard deviation.
Ratio of MC error to standard deviation. A value around or less than 0.05 indicates that the
corresponding estimate is accurate (Spiegelhalter et al. 2003).
Geweke test t value. An absolute value less than 1.96 indicates
The shaded model is selected to be the best-fit model by all criteria in this study.
The shaded parameter estimate is significant from zero.

Table 9 Model selection in real data analysis
non-ignorable missingness ignorable

Criterion LOD (XY) LSD (XS) LID (XI) missingness

Dhat.AIC 4125.000 4083.000 N/A 4151.000

Dhat.BIC 4195.050 4153.050 N/A 4205.483

Dhat.CAIC 4213.050 4171.050 N/A 4219.483

Dhat.ssBIC 4137.944 4095.944 N/A 4161.067

DIC 4959.000 4953.000 N/A 4979.000

rough DIC 5730.878 5714.752 N/A 5731.980

Note:
The definition of each criterion is given in Table 1.
The shaded cell has the smallest value.

showed that the Bayesian method was able to accurately recover parameters in all
models considered.

Next, Bayesian model selection criteria were studied to identify the best-fit model
in the context of the correct missing mechanisms. Almost all the criteria were able
to correctly identify the true model with high certainty.

We also illustrated the application of the Bayesian latent growth curve model
with missing data through the analysis of mathematical ability growth data from
the NLSY97 survey. In this example, the focus was on seeing how mathematical
ability grew over the 4-year period, and whether mothers’ education influenced the
missing data pattern. Using the model selection criteria introduced in this study,
we were able to identify the best-fit of the models considered. The results obtained
from the best-fit model showed that mathematical ability grew significantly, and the
missing data mainly depended on student’s latent rate of growth. Further, mothers’
education did not significantly influence the missing data pattern.

The models proposed in this paper can be further developed in various ways.
First, the missingness in the simulation was assumed to be independent across time
points. If this assumption is violated, likelihood functions will be different. For
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example, if the missingness depends on the previous session, then autocorrelations
might be involved, and the likelihood will be much more complicated. Furthermore,
the missingness in practice can be a combination of different types of missingness,
quite probably leading to development of increasingly more complex models.
Second, additional model selection criteria could be considered, for example, Bayes
factors and predictive posterior probabilities. Also, designing new criteria is an
interesting topic for future work. It might be useful, for example, to consider
observed-data or complete-data likelihood functions for random effects models
for p(y|θ ). Third, the data considered in the study were assumed to be normally
distributed. However, in reality data are seldom normally distributed, particularly
in behavioral and educational sciences (e.g., Micceri 1989). When data have heavy
tails, or are contaminated with outliers, robust models (e.g., Huber 1996) should be
adopted to help reduce the sensitivity to small deviations from the assumption of
normality. Fourth, latent population heterogeneity (e.g., McLachlan and Peel 2000)
may exist in the collected longitudinal data. Growth mixture models (GMMs) can
be considered to provide a flexible set of models for analyzing longitudinal data
with latent or mixture distributions (e.g., Bartholomew and Knott 1999).

Appendix

The Derived Posteriors for LGCMs with Non-ignorable Missingness:

(1) Let η = (η1,η2, . . . ,ηN), and the conditional posterior distribution for φ can
be easily derived as an Inverse Gamma distribution,

φ |η ,y ∼ IG(a1/2,b1/2) ,

where a1 = v0 +N T , and b1 = s0 +∑N
i=1(yi −Λη i)

′(yi −Λη i).
(2) Notice that tr(AB) = tr(BA), so the conditional posterior distribution forΨ is

derived as an Inverse Wishart distribution,

Ψ |β ,η ∼ IW (m1,V1) ,

where m1 = m0 +N, and V1 = V0 +∑N
i=1(η i −β)(η i −β)′.

(3) By expanding the terms inside the exponential part and combining similar
terms, the conditional posterior distribution for β is derived as a multivariate
normal distribution,

β |Ψ ,η ∼ MN(β 1,Σ 1),

where β 1=
(
NΨ−1+Σ−1

0

)−1 (Ψ−1∑N
i=1η i+Σ−1

0 β 0

)
, and Σ1 =

(
NΨ−1+

Σ−1
0

)−1
.

(4) The conditional posterior for γt , (t = 1,2, . . . ,T ), is a distribution of
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p(γt |ω,x,m) ∝ exp

[
− 1

2
(γt − γt0)

′D−1
t0 (γ t − γt0)

+
N

∑
i=1

{
mit logΦ(ω ′

iγt)+ (1−mit) log[1−Φ(ω ′
iγt)]

}]
.

where Φ(ω ′
iγt) is defined by Eqs. (4), (5), or (6).

(5) By expanding the terms inside the exponential part and combining similar
terms, the conditional posterior distribution for η i, i = 1,2, . . . ,N, is derived
as a Multivariate Normal distribution,

η i|φ ,Ψ ,β ,yi ∼ MN(μηi,Σηi),

where μηi =
(

1
φ Λ

′Λ +Ψ−1
)−1 (

1
φ Λ

′yi +Ψ−1β
)

, and Σηi =
(

1
φ Λ

′Λ +Ψ−1
)−1

.

(6) The conditional posterior distribution for the missing data ymis
i , i = 1,2, . . . ,N,

is a normal distribution,

ymis
i |η i,φ ∼ MN [Λη i,ITφ ] ,

where IT is a T ×T identity matrix. The dimension and location of ymis
i depend

on the corresponding mi value.
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Notes on the Estimation of Item Response
Theory Models

Xinming An and Yiu-Fai Yung

1 Introduction

Item response theory (IRT) was first proposed in the field of psychometrics for
the purpose of educational testing and personality assessment. During the last 10
years, it has become increasingly popular in other fields, such as health behavior
and health policy research. The most widely used estimation method for IRT
models is the Gauss–Hermite quadrature-based EM algorithm proposed by Bock
and Aitkin (1981). Because of its several appealing properties, it has become the
gold standard and the most popular method used by all the major IRT packages,
such as BILOG and TESTFACT. However, there are several issues associated with
the G–H quadrature-based EM algorithms that have been overlooked. There are
generally two issues associated with this algorithm: the first being the approximation
accuracy of the G–H quadrature and the second being the computational properties
of the EM algorithm. These issues will be explored in detail in Sects. 2 and 3
by using an example. In this example, binary responses are fitted by the uni-
dimensional IRT model, which can be expressed by the following equations:

yi =Ληi + εi, (1)

and
P(ui j = 1) = P(yi j > α j), (2)

where ui j is the observed binary response from subject i for item j, yi j is a
continuous latent response underlying ui j, α = (α1, . . . ,αJ) is a vector of difficulty
(or threshold) parameters,Λ is a matrix of the slopes (or discrimination) parameters,
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ηi and εi are the latent factor and unique factor for subject i. ηi ∼ N(0, I), εi ∼
NJ(0, I) or LJ(0, I). ηi and εi are independent.

Based on the above model specifications, we have

Pi j = P(ui j = 1) = P(yi j > α j) =

∫ ∞

α j−λ jηi

f (y;0,1)dy, (3)

where f (y;0,1) is the density function of the normal or logistic distribution with
mean 0 and variance 1. To simplify the notation, let Qi j = 1−Pi j and vi j = 1− ui j.

Parameter estimates for this model are often obtained by maximizing the
marginal likelihood, which can be expressed as

L(θ |U) =
N

∏
i=1

∫ J

∏
j=1

P
ui j
i j Q

vi j
i j φ(η)dη , (4)

where θ is a set of all the model parameters and U represents responses from all
subjects, and φ(η) is the density function of the prior distribution for latent factor η .
The corresponding log likelihood is

logL(θ |U) =
N

∏
i=1

log
∫

Li(η)dη =
N

∏
i=1

log
∫ J

∏
j=1

P
ui j
i j Q

vi j
i j φ(η)dη . (5)

Because the integrands, Li = ∏J
j=1 P

ui j
i j Q

vi j
i j φ(η), involved in the above likeli-

hood are not linear functions of η , integrations cannot be solved analytically.
They are usually approximated by numeric integration, most often Gauss–Hermite
quadrature.

2 Likelihood Approximation with Numeric Integration

For latent variable models with categorical responses, such as IRT, parameter
estimates based on numerical integration, mostly Gauss–Hermite (G–H) quadrature,
have been shown to be the most accurate and reliable (Schilling and Bock 2005).
However there are two scenarios where G–H quadrature becomes inadequate (Rabe-
Hesketh et al. 2002). The first scenario occurs when the number of latent variables is
large, since the number of quadrature points grows exponentially as the number of
latent variables increases. The second scenario involves the approximation accuracy
of G–H quadrature under certain situations. It is commonly believed that 20 G–H
quadrature points per dimension produces accurate approximation of the likelihood
and as a result, reliable parameter estimates (Lesaffre and Spiessens 2001). How-
ever, several cases have been reported where a large number of quadrature points
are required to obtain valid estimates (Lesaffre and Spiessens 2001; Rabe-Hesketh
et al. 2002).



Notes on the Estimation of Item Response Theory Models 307

Fig. 1 Illustrations of three Gaussian–Hermite quadratures with 20 (left), 30 (center), 50 (right)
quadrature points, respectively

While the issue associated with high dimensional quadrature is widely known,
the approximation accuracy issue has only been reported for the generalized linear
mixed model (GLMM) under certain cases. Its effects on IRT have not been
investigated.

In general the G–H quadrature can be presented as follows:

∫ ∞

−∞
g(x)dx =

∫ ∞

−∞
f (x)φ(x)dx ≈

G

∑
g=1

f (xg)wg, (6)

where G is the number of quadrature points, xg and wg are the integration points
and weights, which are uniquely determined by the integration domain and the
weighting kernel φ(x). Traditional G–H quadrature often uses e−x2

as the weighting
kernel. In the field of statistics, the density of standard normal distribution is more
widely used instead, because for the estimation of various statistical models, the
Gaussian density is often a factor of the integrand. In the case when the Gaussian
density is not a factor of the integrand, the integral is transformed into the form in 6
by dividing and multiplying the original integrand by the standard normal density.
Graphical illustrations of G–H quadrature with the number of quadrature points
ranging from 20 to 50 are included in Fig. 1. From Fig. 1 we can observe that
(1) the positions and weights of the quadrature points are symmetric around zero,
and (2) as the number of quadrature points increases, the quadrature points extend
gradually to the two ends.

The G-point quadrature approximation is exact if f (x) or g(x)/φ(x) is a
polynomial of order 2G− 1 (Skrondal and Rabe-Hesketh 2004). However, as many
studies note, f (x) for various statistical models often has a sharp peak and cannot
be well approximated by a low degree polynomial (Rabe-Hesketh et al. 2002).
Furthermore, the peak may be far from zero so that substantial contributions to
the integral are lost unless a large number of quadrature points are used. Three
cases when the G–H quadrature will become inadequate are shown in Fig. 2.
The locations of 30 G–H quadrature points are plotted along the x axis. The solid
curve represents the case when f (x) has a sharp peak. The dashed curve shows the
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Fig. 2 Illustration of three situations when the Gaussian–Hermite quadrature becomes inadequate

case where the peak of the integrand is far from zero. The most troublesome case
is illustrated by the dotted curve, in which f (x) has a sharp peak and the peak is
far from zero. Among these 30 quadrature points, only 6, 2, and 1 quadrature points
make significant contributions to the approximation, respectively, for the three cases
from left to right in Fig. 2.

G–H quadrature has been widely used along with optimization techniques,
such as EM and Newton methods, to estimate various latent variable models with
categorical responses. Several cases have been reported that a larger number of
quadrature points are needed to get reliable estimates for generalized linear mixed
models with categorical responses (Lesaffre and Spiessens 2001). These problems
are often caused by the fact that the peak for some integrands involved in the model
are far from zero and/or the integrands are very sharp around the peak. Although
these problems have not been clearly recognized, they can also occur in latent
variable models with categorical responses, such as IRT models.

Using the unidimensional IRT model presented in Sect. 1, we investigate
how the integrand’s peak location and sharpness are affected by the items and
parameters of the IRT model. Equation (5) suggests that the integrand, Li(η) =
∏J

j=1 P
ui j
i j Q

1−ui j
i j φ(η), can be considered as the unnormalized posterior distribution

of latent variable η for a subject i with response ui = (ui1, . . . ,uiJ). Let η̂i and
Hi denote the location of the peak and the corresponding Hessian of − logLi(η),
respectively. Then η̂i can be used as estimates for the posterior mean and 1

Hi
as an

estimate of its variance.
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Table 1 Number of Gaussian–Hermite quadrature points needed for the integrands with the
sharpest peak, MaxHi, or the peak furthest from zero, Max abs(η̂i), in IRT models with different
item sizes (J = 30, 100, 200). In column two, η̂i and these values between the parentheses represent
the locations where the Max Hessian, Hi, is obtained. In Column five, Hi and these values between
the parentheses represent the Hessian corresponding to Max η̂i. Ave Hi and Ave abs(η̂i) are the
average of Hessian and average absolute value of peak locations across all the response patterns
with different marginal means

J MaxHi (η̂i) G–H AveHi Max abs[η̂i](Hi) G–H Ave abs[η̂i]

30 20.10(0) 55 15.89 1.926(4.83) 15 0.72
100 64.65(0) 170 49.61 2.378(6.71) 15 0.77
200 128.30(0) 340 97.68 2.610(7.80) 20 0.78

The default setting includes 30 items and one latent factor. Factor loadings are set
to be 1 and difficulty parameters are set to be 0. Under these settings, responses that
have the same marginal mean will produce roughly the same integrand, since Pi j

are the same for different items. Thus instead of keeping track of all the possible
response patterns, we will only consider the J response patterns with different
marginal means. In the following studies, the average absolute values of η̂i, Ave
abs(η̂i), and the maximum value of Hi, Max η̂i, across these J response patterns
will be investigated under different settings. For the integrand with the maximum η̂i

or Hi, the number of quadrature points that is needed to approximate the integration
with an error smaller than 0.01 will be reported.

It is known that as the number of items increases, the shape of the integrand
becomes closer to a normal density function but sharper (the posterior variance
becomes smaller), causing problems for the G–H quadrature (Schilling and Bock
2005). Results for item sizes of 30, 100, and 200 are summarized in Table 1,
including the average and maximum η̂i and Hi and the number of quadrature points
needed to accurately approximate these integrands with the maximum η̂i or Hi.
These results suggest that item size has a significant impact on the posterior variance
( 1

Hi
) which in turn strongly affects the number of quadrature points required. As the

item size moves from 30 to 200, the maximum Hi increases from 20 to 128; and to
obtain equal accuracy, the number of quadrature points moves from 55 to 340.

Next, we want to examine how factor loadings affect the maximum and average
value of Hi and η̂i and whether they will cause problems for the G–H quadrature.
Table 2 summarizes the results for three cases where factor loadings are set to 0.5,
1, and 2 respectively. These results suggest that factor loadings have a great impact
on the maximum and average values of Hi and in turn the G–H quadrature.

In this section, we investigate several different factors that will affect the G–H
quadrature for IRT model. Results suggest that item size and the value of factor
loadings have great impact on G–H quadrature. The same problem also applies to
other latent variable models, such as structural equation modeling with categorical
responses, when G–H quadrature is used for model estimation. Adaptive G–H
quadrature (Liu and Pierce 1994) has been shown to solve this problem effectively
(Lesaffre and Spiessens 2001) and has also been used to improve computational
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Table 2 Number of Gaussian–Hermite quadrature points needed for the integrands with the
sharpest peak (MaxHi) or the peak furthest from zero (Max abs(η̂i)) in IRT models with different
factor loadings (λ ). In Column Two, η̂i and these values between the parentheses represent the
locations where the Max Hessian, Hi, is obtained. In Column Five, Hi and these values between
the parentheses represent the Hessian corresponding to Max η̂i. Ave Hi and Ave abs(η̂i) are the
average of Hessian and average absolute value of peak locations across all the response patterns
with different marginal means

λ MaxHi (η̂i) G–H AveHi Max abs(η̂i)(Hi) G–H Ave abs(η̂i)

0.5 5.77(0) 15 4.95 2.680(3.03) 9 1.1611
1 20.10(0) 55 15.89 1.926(4.83) 15 0.7165
2 77.39(0) 210 59.11 1.221(7.02) 18 0.3885

efficiency for high dimensional latent variable models (Rabe-Hesketh et al. 2002;
Schilling and Bock 2005). While several statistical packages, such as SAS PROC
GLMMIX, have changed their default numeric integration method from G–H to
adaptive G–H quadrature, there are a large number of packages for IRT that still
use G–H as their default and many of them do not have adaptive G–H available.
A suggestion from the findings in this paper to applied researchers is to make
the adaptive G–H quadrature the default integration technique if it is available,
otherwise increase the number of quadrature points until the change in parameter
estimate becomes very small.

3 Likelihood Maximization with Numerical Algorithms

One of the most popular estimation methods for latent variable models with
categorical responses is based on the marginal likelihood. Parameter estimates can
be obtained by maximizing the marginal likelihood using numerical algorithms,
such as EM and Newton type algorithms.

3.1 EM Algorithm

The EM algorithm starts from the complete data log likelihood that can be expressed
as follows:

logL(θ |u,η) =
N
∑

i=1

[(
J
∑
j=1

ui j log(Pi j)+ (vi j) log(Qi j)

)
+ logφ(ηi)

]

∝
J
∑
j=1

N
∑

i=1
[ui j log(Pi j)+ (vi j) log(Qi j)] ,

(7)

where φ(ηi) is the prior distribution for latent factor ηi.
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In the E step, we calculate the expectation of the complete data log likelihood
with respect to the conditional distribution of η , f (ηi|ui,θ (t)),

f (ηi|ui,θ (t)) =
f (ui|η ,θ (t))φ(η)∫

f (ui|η ,θ (t))φ(η)dη
=

f (ui|η ,θ (t))φ(η)
f (ui)

. (8)

Let Q(θ |θ (t)) denote the conditional expectation of the complete data log
likelihood, and we have

Q(θ |θ (t)) =
J

∑
j=1

N

∑
i=1

[
ui jE

[
logPi j|ui,θ (t)

]
+(vi j)E

[
log(Qi j)|ui,θ (t)

]]
=

J

∑
j=1

Q j.

(9)

Expectations involved in the above equation are often approximated by either
numerical or Monte Carlo integration. Let Q̃(θ |θ (t)) denote the approximated
conditional expectation of the complete data log likelihood.

In the M step of the EM algorithm, parameters are updated by maximizing
Q̃(θ |θ (t)). To summarize, the EM algorithm consists of the following two steps:

E Step: Approximate Q(θ |θ (t)) with either numerical or Monte Carlo integration;
M Step: Update parameter estimates by maximizing Q̃(θ |θ (t)) with a one step

Newton–Raphson algorithm.

Technical details about the EM algorithm are provided in Appendix 1. Interested
readers can refer to (McLachlan and Krishan 2007) for general discussions about
the EM algorithm.

3.2 Newton Type Algorithms

Compared with EM type algorithms which start from the complete data log
likelihood, Newton type algorithms maximize the marginal log likelihood directly.
Based on the model specified in Sect. 1, the marginal likelihood is

L(θ |U) =
N

∏
i=1

∫ J

∏
j=1

(Pi j)
ui j(Qi j)

vi jφ(η)dη , (10)

where φ(η) is the density function for latent factor η . The corresponding log
likelihood is

logL(θ |U) =
N

∑
i=1

logLi =
N

∑
i=1

log
∫ J

∏
j=1

(Pi j)
ui j(1−Pi j)

1−ui j g(η)dη . (11)

Similar to EM type algorithms, integrations involved in the above equation are often
approximated by either numerical or Monte Carlo integration.
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Let LogL̃(θ |U) denote the approximated marginal log likelihood. Parameter
estimates can be obtained by maximizing LogL̃(θ |U) with Newton type algorithms.
Two of the most widely used estimation algorithms are Newton–Raphson and Fisher
Scoring which rely on the gradient and Hessian of the log likelihood. However,
for latent variable models with categorical responses, the Hessian matrix is often
expensive to compute. As a result, several Quasi-Newton algorithms only requiring
gradients have been proposed. In the field of IRT, Bock and Lieberman (1970)
proposed replacing the Hessian with the following information matrix

I(θ ) = E

[
∂LogL̃(θ |U)

∂θ

(
∂LogL̃(θ |U)

∂θ

)T
]
=

2J

∑
h=1

[
∂ log L̃i

∂θ

(
∂ log L̃i

∂θ

)T
]
. (12)

To calculate the above expectation, we need to sum over not just the observed
but all 2J possible response patterns which will become very computationally
intensive when the number of items is large. Fortunately, other Quasi-Newton
algorithms that do not suffer from this computational difficulty have been proposed.
However, they have not been used for IRT. Notable examples include the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method, one of the most popular Quasi-Newton
algorithms that approximate the Hessian matrix with the gradient. It is a general
algorithm that does not rely on any statistical properties and its usage is far beyond
statistics. The second method was proposed by Berndt et al. (1974), which replaces
the expectation in (12) with summation runs over only the observed response
patterns. The accuracy of this approximation depends on two statistical properties:
that the model is correct and the sample size is relatively large. This algorithm has
been used for the estimation of generalized linear mixed model (GLMM) and is
shown to work well even with bad starting values (Skrondal and Rabe-Hesketh
2004). Technical details about the Quasi-Newton algorithm corresponding to the
model used here are included in Appendix 2.

3.3 Comparison of Computational Efficiency

In this section, we will investigate the relative computational properties of the EM
and the Quasi-Newton type algorithms. Since the EM and Quasi-Newton algorithms
use different convergence criteria and computational efficiency of the algorithm can
be greatly affected by the implementation, it is very hard to conduct a meaningful
comparison with numerical examples. Thus, we will discuss some analytical results
that will affect the performance of these algorithms. The purpose of this study is to
illustrate the potential advantage of Quasi-Newton algorithms in the field of IRT.

As shown by (9), the Q function is a summation of J functions that involve
independent parameters. As a result, maximizing the Q function is equivalent to
maximizing J separate functions with two parameters each. In contrast, directly
maximizing the marginal likelihood of (11) requires handling all 2J parameters
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Table 3 Computation time measured in seconds for the calculation of
different number of exponential functions and standard normal CDFs
using SAS IML

Number of summations EXP CDF

2000 0.01 0.01
20000 0.09 0.12
400000 1.7 2.3

Table 4 Computation time measured in seconds for solving a system of linear equations with
different number of parameters using SAS IML

Number of parameters

2 10 100 500 1000 2000
Computation time 9e−05 1e−4 6e−4 0.04 0.29 2.2

simultaneously. This is the most important advantage for the EM algorithm. This
advantage becomes more significant as the number of items increases. On the
other hand, the advantage of the Quasi-Newton algorithms lies in the calculation of
derivatives. To implement the Quasi-Newton algorithm, we only need to calculate
the gradient that involves 2J elements. In contrast, the M step of the EM algorithm
needs to calculate 3J elements of the Hessian matrix on top of the gradient. For a
multidimensional IRT model with d latent factors, EM algorithms will need to do
2+ d

2 times more calculations than the Quasi-Newton algorithm. Thus as the number
of latent factor, d, increases, this advantage for Quasi-Newton algorithm becomes
more obvious.

Technical details provided in the appendices suggest that both algorithms involve
similar calculations for each iteration which can be divided into two steps. The first
step calculates the gradient and/or Hessian, which is accomplished by a nested loop
that involve N×G summations in total. The key components for each summation are
the calculations of exponential function (EXP) and/or the cumulative distribution
function (CDF) of standard normal distribution. The total number of summations
ranges from thousands to millions. Table 3 lists the computation time measured
in seconds for the calculation of different number of exponential functions and
standard normal CDFs.

Then in the second step, parameters are updated with the Newton type equation
as follows

θt+1 = θt − f ′(θt)

f ′′(θt)
, (13)

which is equivalent to solving a system of linear equations. With current compu-
tational techniques and resources, solving a system of linear equations is easy and
fast. In Table 4 we list the computation time measured in seconds for solving system
of linear equations with different number of parameters.

While the actual computational time might be different if different programming
tools other than SAS IML are used, we assume the relative computational time
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to be similar across languages. Comparing Tables 3 and 4, we can observe that
computations for the first step often dominate the computation time for each
iteration unless the number of parameters is very large, for example above 1000.
Thus the advantages of the EM algorithm on the total computational time decrease
with each iteration, and as a result, we can expect that the Quasi-Newton will be as
fast as, if not faster than, the EM for each iteration.

EM algorithm’s convergence rate is linear at most. In contrast, Quasi-Newton is
super linear. As a result, it can be expected that the Quasi-Newton algorithm would
use less iterations to reach the same convergence criteria as compared with EM.
Furthermore, with the extension of IRT to multidimensional models, confirmatory
analysis becomes increasingly useful and desirable. When parameter restrictions are
applied across different items, the Q function in (9) cannot be decomposed into the
summation of independent functions and consequently the above advantage for EM
algorithm will be impaired.

In this section, we demonstrated that under most cases, Quasi-Newton algorithms
for IRT model are computationally as efficient as EM algorithms and at the same
time avoid problems typically associated with EM algorithms.

4 Discussion

In this paper, we explored several computational issues associated with the G–H
quadrature-based EM algorithm for the estimation of IRT models. There are several
other practical issues associated with EM type algorithms. First, standard errors are
not readily available. While several attempts such as the SEM algorithm (Meng and
Rubin 1991) have been made, the problem has not been well addressed. Second,
the convergence rate of the EM algorithm is slow, especially when the fraction of
missing information is large. Last, the convergence of EM type algorithms is often
monitored by the biggest parameter change. This approach is much less reliable
than the gradient-based convergence criteria used by Newton type algorithms, since
small parameter changes can also be caused by a slow convergence rate instead
of convergence. As a result, EM type algorithms might sometimes mistake slow
sub-linear convergence as a sign of [NON?convergence] <- NOT SURE WHAT
YOU MEAN!!! and produce incorrect maximum likelihood estimates (Bentler and
Tanaka 1983). Our results suggest that the combination of adaptive G–H quadrature
with Quasi-Newton algorithm can avoid most of these issues without sacrificing
computational efficiency. We do not claim that this combination is the best for all
different situations. EM algorithms, especially Monte Carlo EM, are usually easier
to implement. That makes EM very popular among methodology researchers who
need to implement estimation algorithms for newly developed modeling techniques,
especially for well-controlled simulations under standard statistical conditions.
However, these disadvantages make EM algorithm a poor candidate for commercial
software that require higher standards of estimation accuracy and computational
efficiency to deal with all kinds of anomalies encountered in practical applications.
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Hybrid algorithms that start with EM and then switch to Newton type algorithms
have also been proposed (McLachlan and Krishan 2007), but more explorations are
needed to identify these situations for IRT.

Appendix 1: Technical Details for EM

The conditional distribution f (η |ui,θ (t)) is

f (η |ui,θ (t)) =
f (ui|η ,θ (t))φ(η)∫

f (ui|η ,θ (t))φ(η)dη
=

f (ui|η ,θ (t))φ(η)
f (ui)

. (14)

Then these conditional expectations involved in the Q function can be expressed
as follows:

E[logPi j|ui,θ (t)] =
∫

logPi j f (η |ui,θ (t))dη , (15)

E[log(1−Pi j)|ui,θ (t)] =
∫

log(1−Pi j) f (η |ui,θ (t))dη , (16)

and
E[logφ(η)|ui,θ (t)] =

∫
logφ(η) f (η |ui,θ (t))dη . (17)

Then we have

Q1 j =
∫ N
∑

i=1

[
ui j logPi j f (η |ui,θ (t))+(1−ui j) log(1−Pi j) f (η |ui,θ (t))

]
dη

=
∫ [

logPi j

[
N
∑

i=1
ui j f (η |ui,θ (t))

]
+ log(1−Pi j)

[
∑N

i=1(1−ui j) f (η |ui,θ (t))
]]

dη

=
∫ [

logPi jr j(θ (t))+ log(1−Pi j)[n(θ (t))−r j(θ (t))]
]
φ(η |θ (t)))dη ,

(18)

where r j(θ (t)) = ∑N
i=1 ui j

f (ui|η,θ (t))
f (ui)

, and n(θ (t)) = ∑N
i=1

f (ui|η,θ (t))
f (ui)

.
Integrations in the equations above can be approximated as follows using G–H

quadrature. Note that these quadrature points, xg, and weights, wg, correspond to
φ(η |θ (t)) which is the density function of N(0,Φ(t)).

Q̃1 j =
G

∑
g=1

[
logPi j(xg)r j(xg,θ (t))+ log(1−Pi j(xg))(n(xg,θ (t))− r j(xg,θ (t)))

]
wg.

(19)
We take the derivatives of Q1 j with respect to model parameters

∂ Q̃1 j

∂α j
=

G

∑
g=1

[
r j(xg,θ (t))

Pi j(xg)
− n(xg,θ (t))− r j(xg,θ (t))

1−Pi j(xg)

]
∂Pi j(xg)

∂α j
wg, (20)
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∂ Q̃1 j

∂λ j
=

G

∑
g=1

[
r j(xg,θ (t))

Pi j(xg)
− n(xg,θ (t))− r j(xg,θ (t))

1−Pi j(xg)

]
∂Pi j(xg)

∂λ j
wg, (21)

∂ 2Q̃1 j

∂α2
j

=
G

∑
g=1

[[
−r j

P2
i j

− n− r j

(1−Pi j)2

][
∂Pi j(xg)

∂α j

]2

+

[
r j

Pi j
− n− r j

1−Pi j

]
∂ 2Pi j(xg)

∂α2
j

]
wg,

(22)

∂ 2Q̃1 j

∂λ 2
j

=
G

∑
g=1

[[
−r j

P2
i j

− n− r j

(1−Pi j)2

][
∂Pi j(xg)

∂λ j

]2

+

[
r j

Pi j
− n− r j

1−Pi j

]
∂ 2Pi j(xg)

∂λ 2
j

]
wg,

(23)
and

∂ 2Q̃1 j

∂α j∂λ j
=

Gd

∑
g=1

[[
−r j

P2
i j

− n− r j

(1−Pi j)2

][
∂Pi j(xg)

∂α j

∂Pi j(xg)

∂λ j

]
+

[
r j

Pi j
− n− r j

1−Pi j

]
∂ 2Pi j(xg)

∂α j∂λ j

]
wg.

(24)

In the above equations, we have

∂Pi j(xg)

∂α j
=−φ(α j −λ jxg) =−∂Qi j(xg)

∂α j
, (25)

∂Pi j(xg)

∂λ j
= φ(α j −λ jxg)xg =−∂Qi j(xg)

∂λ j
, (26)

∂ 2Pi j(xg)

∂α2
j

=−∂φ(α j −λ jxg)

∂α j
= φ(α j −λ jxg)(α j −λ jxg) =−∂ 2Qi j(xg)

∂α2
j

, (27)

∂ 2Pi j(xg)

∂α j∂λ j
=−∂φ(α j −λ jxg)

∂λ j
=−φ(α j −λ jxg)(α j −λ jxg)xg =−∂ 2Qi j(xg)

∂α j∂λ j
,

(28)
and

∂ 2Pi j(xg)

∂λ 2
j

=
∂φ(α j −λ jxg)xg

∂λ j
= φ(α j −λ jxg)(α j −λ jxg)x

2
g =−∂ 2Qi j(xg)

∂λ 2
j

. (29)

Appendix 2: Technical Details for the Quasi-Newton
Algorithm

For our objective function, LogL̃(θ ), the first derivative with respect to θ j , the latent
trait for the jth item, is

∂ log L̃(θ |U)

∂θ j
=

N

∑
i=1

[
(L̃i)

−1 ∂ L̃i

∂θ j

]
=

N

∑
i=1

[
(L̃i)

−1
G

∑
g=1

[
∂ fi(xg)

∂θ j
wg

]]
, (30)
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where

L̃i =
G

∑
g=1

[
J

∏
j=1

(Pi j(xg))
ui j (Qi j(xg))

1−ui j

]
wg =

G

∑
g=1

fi(xg)wg, (31)

∂ fi(xg)

∂θ j
=

∂ [Pi j(xg)
ui j Qi j(xg)

1−ui j ]

∂θ j

fi(xg)

Pi j(xg)
ui j Qi j(xg)

1−ui j
. (32)

For the probit link

∂Pi j(xg)

∂α j
=−φ(α j −λ jxg) =−∂Qi j(xg)

∂α j
, (33)

∂Pi j(xg)

∂λ j
= φ(α j −λ jxg)xg =−∂Qi j(xg)

∂λ j
. (34)
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Some Comments on Representing Construct
Levels in Psychometric Models

Ronli Diakow, David Torres Irribarra, and Mark Wilson

1 Introduction

There is increasing interest in the development of diagnostic assessments that can
provide actionable information to teachers to help them plan and target instructional
activities. In order to successfully implement a system of assessments that pro-
vides such diagnostic information, it is necessary to coordinate cognitive theories
about learning, our observations of student performance, and the interpretation
of the evidence gathered during those observations. These are the components of
the assessment triangle (National Research Council 2001) presented in Fig. 1.
The alignment of these three areas is usually challenging, but is a necessary step
to adequately embed meaning into the assessments used throughout the educational
system.

This paper is concerned with one aspect of this process: tracing the connection
between the substantive theory that serves as a basis for an assessment and the
mathematical models that are used to analyze and rate student responses. We are
interested in exploring this connection in the context of hypothesized variables that
(a) have multiple ordered levels, (b) have been assessed with polytomous items that
are meant to capture the aforementioned ordered performance levels, and (c) are
modeled as continuous rather than ordinal.
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Observation Interpretation

Cognition

Fig. 1 The NRC assessment
triangle

1.1 Setting Performance Standards

Points (a) and (c) characterize the common case where the original theory that
motivates the assessments classifies students into an ordered set of performances
(e.g., “below basic,” “basic,” “proficient,” “advanced”) but the assessment models
rely on the assumption of a continuous latent variable (e.g., Rasch Model, 2PL,
3PL). Traditionally when these conditions arise in the context of a criterion
referenced assessment (Glass 1978), stakeholders will use standard setting methods
(see Cizek and Sternberg 2001) to provide cut-points in order to link the individual
ability estimates back to the original levels of proficiency that the assessment was
meant to differentiate.

It is worth noting that the term “standard setting” does not refer to a single
procedure, but to a myriad of techniques (Cizek et al. 2004), such as the Bookmark
Method (Lewis et al. 1996), the Angoff Methods (Angoff 1971) and its variations,
and more recent Holistic Methods named in that way because “they require
participants to focus judgment on a sample or collection of examinee work greater
than a single item or task at a time.” (p. 42) (Cizek et al. 2004). Overall the practice
of standard setting has been described by Cizek as “the proper following of a
prescribed, rational system of rules or procedures resulting in the assignment of
a number to differentiate between two or more states or degrees of performance”
(p. 100) (Cizek 1993). A specific method of standard setting has been developed for
the context where constructs have been designed based on identifying sequences of
qualitatively different levels, such as the focus of this paper. The method is referred
to as Construct Mapping (Wilson and Draney 2002) and is essentially a blend of the
item-mapping concept behind the Bookmark method, and holistic methods. Recent
examples are shown in work by Wilmot et al. (2011) and Schwartz et al. (2011).
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1.2 Connecting Levels to Polytomous Tasks

The second point mentioned before, namely the use of polytomous items that are
meant to capture the aforementioned ordered performance levels, is both more
specific and less common than the other two. While many assessments are subject
to a standard setting procedure, few of them have a strong connection between the
theoretical levels of performance and the scoring procedures that would yield graded
responses associated with specific performance levels.

We contend that the additional effort required for the development of items and
scoring procedures with these characteristics can provide us with a good alternative
to standard setting methods thanks to the alignment of the original theory, the
assessment tasks, and the statistical model. In this paper we use an empirical dataset
to illustrate how we can achieve traceability from the meaning based on substantive
theory to the mathematical model used to estimate each student’s location.

We address the overall question about how to connect the original theory
(which contains levels) to the assessment model by answering three more specific
questions:

1. How to delimit the boundaries between the levels (i.e., set cut-points)?
2. How to characterize the respondents whose estimates lie within a level?
3. How to evaluate if the estimated levels are consistent with the theoretical levels?

We answer the first question by illustrating a simple method for estimating
interpretable level boundaries. We then introduce some graphical methods that can
help practitioners address the second and third questions, namely, the interpretation
of the performances associated with each level and the comparison to the levels
originally predicted by the theory.

2 The Empirical Illustration

The empirical data for the illustration of the proposed methods comes from a larger
multi-year project to assess adolescent literacy. The Striving Readers project focuses
on a literacy intervention implemented by the San Diego Unified School District
and funded by the Institute for Education Sciences called Strategies for Literacy
Independence across the Curriculum (SLIC) (Institute for Education Sciences 2006;
McDonald et al. 2009). Students are taught how authors use different text forms
to present particular types of information and how the features convey information
about the content of the text.

A team from the Berkeley Evaluation and Assessment Research (BEAR) Center
developed a system of assessments that would be embedded in the curriculum and
also would be used as part of the evaluation of SLIC. The assessment development
and refinement followed the Bear Assessment System (BAS) (Wilson 2005). A full
description of the development of the assessments can be found in the project
technical report (Dray et al. 2011).
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Overall, 16 different assessments were developed for the SLIC curriculum,
spanning the four grades covered by the curriculum (7th through 10th) and four
assessment times in each school year (September, December, March, and June).
Each assessment asks students to respond to a different text, and the genre of
the text varies across the assessments. The same item types (questions that are
similarly worded and address the same topics, e.g. main idea or inference) are used
across the 16 texts as appropriate. Both the genres of text and the item types are a
direct reflection of the instructional strategy implemented in the SLIC curriculum.
All items on the SLIC assessments are scored polytomously. Since each of the 16
assessments relies on a different text, there are technically no common items across
the assessments. A calibration sample, obtained in New Zealand1 in the summer of
2008, was used to link the assessments; students in grades 7–10 took the assessments
in an overlapping design that allowed linking through common persons.

The construct, assessments, items, and scoring guides were developed and
refined jointly by the curriculum developers, district personnel, and assessment
team. All 16 assessments were designed to assess the same underlying con-
struct (Fig. 2). The final construct had five levels, corresponding to increasingly
sophisticated levels of reading comprehension. The literature suggests that the
comprehension of written texts requires understanding the ways textual forms
present particular types of information. The construct contains successive levels of
identifying both how a text works and what the text means.

Each assessment consisted of an authentic text (i.e., a published text, not written
by the test developers) and 10–12 open-ended questions. Figure 3 shows an example
copied from the scoring guide for one of the 7th grade assessments; it displays a
portion of the text and one question. The text for this assessment is a persuasive
text (a magazine article on the benefits of exercise) and the second question asks
students to anticipate the content of the article based on the text features. The figure
also points out the relevant text features for the rater (these hints were not given to
the students).

Each response was scored from 0 to 4 with the score categories corresponding
to one of the construct levels. Figure 2 shows another part of the scoring guide for
the example item. Note how the score categories on the far left side of Fig. 2 match
the construct levels on the left side of the same figure. The tests were scored by the
teachers, curriculum developers, and other district personnel.

The subset of data used in this article comes from the calibration sample collected
in New Zealand in the summer of 2008. It consists of the responses of 202 7th
graders with complete data for the 12 items of the 7th grade assessment using the
persuasive text shown in the above example.

1The calibration required that the assessments be taken by students who had used the new
curriculum but were not potentially part of the experimental study in San Diego; schools in New
Zealand, where the curriculum was first designed, were used.
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4

3

2

1

0

Synthesizing - Creating New Key Ideas

- new understanding based upon the 
  text
- new understanding based upon 
  multiple texts

- literary and/ or rhetorical criticism
- evaluating author�s intent

Cross-checking - Coordinating Key Ideas 
in the Text

- claim
- argument
- theme
- identifying author�s intent

Discriminating - Key Ideas in the Text

- idea structure
- supporting statement
- plot
- characterization

Engaging - Ideas in the Text

- topic
- main idea of a paragraph

Disengaging - Ideas Not in the Text

- not challenging existing knowledge
- no new ideas

Construct Description

Response is complete in relation to the
information contained:

Example : This article is convincing you to get 
healthy by describing a program of exercise and 
eating right. It also encourages to do exercise 
and suggests that it is not hard.

Student responds with multiple items from
tactics-based sources and cross-checks
or combines items of information:

Example : This article is about convincing us to
stay fit and healthy.

Student responds with at least two items
from tactics-based sources:

Example : Exercise is good for you. We should
all exercise.

Student responds with one item of
information from tactics-based source:

Examples:
- A fitness plan
- Exercise is good for you
- Everyone should exercise
- Changing your diet can enhance fitness 
  results

Student gives an incorrect response:

Example : It�s about how you should exercise

Scoring Guide

Fig. 2 The Striving Readers construct map and the scoring guide for one item

3 The Analysis and the Levels

The Striving Readers example nicely illustrates a construct that has a well-defined
set of ordered performance levels and a set of assessment tasks and scoring guides
directly informed by those levels. However, it is in the final step, the measurement
model used for analysis, that this connection is usually lost.
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Fig. 3 A Striving Readers sample item

A standard approach would be, for instance, to use a model like Master’s Partial
Credit Model (PCM) (Masters 1982), where the logit of the probability of person p
of answering item i at level j is:

logit[Pr(xpi j = 1 | θp)] = ηpi j = θp − δi j (1)

In this model, the person proficiency is represented by θp, which indicates the
person’s location on the latent variable. Similarly, the difficulty associated with each
category j in item i is represented by the δi j term.

This parameter represents the point on the latent variable when category j
becomes more likely than category j − 1. As we can see in Fig. 4, δ11 is located
at the intersection of the category characteristic curve (CCC) for category 0 and
category 1, and similarly, δ12 and δ13 are located at the intersection of the CCC’s of
the respective adjacent categories.

As represented in the left panel of Fig. 5, each δi j represents the interaction
between the item and the category level, which means that the “levels” that
are differentiated are effectively item specific and not common across the items.
An alternative way to express the PCM, presented in the right panel in Fig. 5,
illustrates this more clearly by decomposing the interaction term δi j into the main
effect of the item δi. (represented by the black diamonds) and an interaction term τi j

(represented by the dashed lines).
When the PCM is expressed in this way it is possible to see that there is no

parameter associated with the level main effect, which effectively means that the
original levels specified in the substantive theory are no longer directly represented
as model parameters in this traditional parameterization of the PCM.
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Fig. 4 Sample illustration of the locations of δi j parameters in a category characteristic curve plot

The PCM, like other polytomous logit models such as the graded response model
(Samejima 1969) or continuation ratio models such as the sequential model (Tutz
1990), estimates these interaction terms. Because of this, they provide a better
model fit than more restrictive models such as Andrich’s Rating Scale Model (RSM)
(Andrich 1978). Instead of including an interaction term, the RSM relies on the use
of main effects for both items and levels; however, the parsimony of the RSM often
proves too restrictive, and the PCM is then preferred for the better fit it provides. For
instance, in the Striving Readers example, the PCM fit the data significantly better
than the RSM (χ2

(22) = 207.040, p < 0.001).
It is possible to obtain the benefits of an overall level main effect (i.e., a δ. j

parameter) without resorting to the RSM by simply reparameterizing the PCM

accordingly:

logit[Pr(xpi j = 1 | θp)] = ηpi j = θp − (δ. j +λi j) (2)

This simple reparameterization is graphically represented in Fig. 6. It includes an
overall level parameter δ. j (represented by the dashed horizontal lines) that directly
estimates a location for each boundary between the levels. The λi j, estimated as
deviations from the level effects, are constrained such that the sum of the λi j for a
given level j is 0.
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Fig. 5 Sample illustration comparing Master’s parameterization of the PCM and a “rating scale”
parameterization of the same model

Fig. 6 Sample illustration illustrating the L-PCM reparametirization of the PCM including level
main effects

Using this alternative parameterization (henceforth L-PCM for level-PCM), we
can preserve the link to the original theory and examine how closely the interaction
terms λi j follow the overall level parameters δ. j by examining their dispersion as
shown in Fig. 7. The item map in the figure organizes the λi j parameters around the
overall level parameters, and the amount of observed variation in each level provides
information about the quality of the overall levels as predictors of the item difficulty.
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Fig. 7 Wright map organizing the λi j parameters as deviations of the δ. j level parameters

In this example we can see that, although the dispersion of the λi j is considerable in
all three levels, it is possible to appreciate a reasonable degree of separation between
the three clusters of item by category parameters.

We have addressed the first of the questions raised in the introduction, namely
how to estimate the boundaries (i.e., cut-points) between the levels. Based on these
cut-points we can separate persons into the different levels of proficiency, fulfilling
at least one of the goals that are usually pursued in standard setting exercises.
However, it is one thing to determine cut-points, an another entirely different is
to claim that those newly created levels in the latent variable correspond to the
originally hypothesized performance levels.

4 Interpreting the Levels

Evaluating whether the estimated levels can be considered an accurate reflection
of the theoretical levels is a critical issue that needs to be addressed in order to
make tenable inferences about the respondents. We propose two complementary
approaches to examine the “fit” of the estimated levels to the original hypothesis.
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Fig. 8 Illustration of both kinds of ideal cases: prototypes and boundary cases

4.1 Identifying Ideal Cases

The first alternative for characterizing the proficiency levels estimated by the model
is to consider them in relation to “ideal” cases, by which we mean response patterns
that would canonically represent a performance level according to the original
theory and task design.

We focus on two kinds of ideal cases, namely, prototypical and boundary cases
(see Fig. 8):

1. Prototypical cases: refer to response patterns that would be considered exem-
plary of a given level, for instance, a respondent at level three that answers all the
items at that level.

2. Boundary cases: refer to response patterns that would be prototypical for a
respondent that is “in between” two levels. For example, a respondent that is
transitioning from level one to level two may answer exactly half of the tasks at
level one and half of the tasks at level two.

Using these ideal cases as a guide, we can produce a plot, an example of which
is shown in Fig. 9, that “crosses” the average item scores of each one of these cases
with the cut-points estimated directly by the model.

For example, the prototypical case of a respondent at level three, answering all
the items at level three, would have an average item score of 3 and the boundary
case of a respondent transitioning from level one to level two, answering exactly
half of the tasks at level one and half of the tasks at level two, would have an
average item score of 1.5. In this plot, the “prototypical” cases (shown by gray
dashed vertical lines) should indicate the centroid of the level, while the “boundary”
cases (shown by black solid vertical lines) should signal the cut-points between the
levels. The horizontal black solid lines indicate the model estimates of the cut-points
between the levels. Thus, the areas highlighted in gray indicate the regions where we
expect our actual data to fall if the estimated levels match the hypothesized levels.
We would compare the estimated person ability for each person2 (given by solid

2Note that when fitting a partial credit model on complete data, each average item score is a
sufficient statistic for ability estimate; the figure would be messier but interpreted the same way if
incomplete data was used.
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Fig. 9 Plotting proficiency estimates in relation to estimated cut-points and ideal cases

black points) and their standard errors (the vertical gray lines around each black
point) to the gray regions to check.

Figure 9 shows the results for the Striving Readers example. The unusual linear
relationship between average item score and estimated theta is due to the even
coverage of the sample ability range by the item parameters. Most of the points fall
within the gray regions, indicating good fit between the hypothesized and estimated
levels for this dataset. Perhaps the level two cut-point is slightly overestimated and
the level one cut-point is slightly underestimated, since the data falls slightly outside
the highlighted zones at those boundaries. Overall, the estimated level cut-points by
the model appear to match the hypothesized levels.

This plot shows the zones in which we would expect the respondents to be located
if there is a good match between the levels demarcated by the estimated cut-points
and the levels hypothesized by the construct and allows us to compare the estimated
person locations to those zones. Information about both kinds of ideal cases (Fig. 8)
is used to provide evidence regarding the match between the hypothesized and
estimated levels.
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4.2 Examining Expected Score Ranges

The second alternative for characterizing the proficiency levels that are being
demarcated by the model cut-points is to examine the expected responses for the
items within the range of each level. The expected item score for each item i is a
function of θp and can be calculated by:

∑
j

jPr(xpi j = 1 | θp) (3)

using the estimated values for the item parameters.
Figure 10 shows the expected item scores for the 12 Striving Readers items from

the 7th grade persuasive assessment. In order to examine the expected scores for a
given level, we could use the area under each curve within that level, for example
by integrating each curve in the left-hand side of the figure over each of the four
estimated levels. Alternatively, we could examine the expected score for one (or
more) discrete values of theta, as in the right-hand side of the figure. The two
methods will yield similar results unless the expected score curves are irregularly
shaped, and the latter method has the advantage of simplicity in calculation,
presentation, and interpretation.

If we look at the range of the expected item scores associated with level two
(i.e., between the 1–2 and the 2–3 cut-points), we would anticipate that the expected
scores on that range are (a) aggregated closely around the value associated with
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a prototypical case and (b) within the range established by the boundary cases.
An example of the kind of graph to do this is presented in Fig. 11.

In this figure, the gray dashed vertical lines indicate the expected score for
prototypical cases at each level and the solid black horizontal lines indicate the
expected score for boundary cases between each successive pair of levels. The
horizontal black solid lines indicate the model estimates of the cut-points between
the levels. Thus, the areas highlighted in gray indicate the regions where we expect
our actual data to fall if the estimated levels match the hypothesized levels. The
black solid points give the expected item score for each item i at a given θp that is
representative of the level.3

Figure 11 shows the results for the Striving Readers example. In general, the
expected item scores are centered around the gray dashed lines within each level
and fall within the gray regions, indicating good fit between the hypothesized and
estimated levels. There is possibly one item that is too easy and one that is too
difficult; these items could be removed from further analysis. Note that there is not
much data regarding level three, so in this particular example, we would conclude

3The representation of standard errors in this figure is not straightforward considering that the
standard errors in the logit scale would be presented as horizontal bars, which would not contribute
to the inference in the plot.
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that the hypothesized levels zero, one, and two are well recovered by the model but
we would not make strong statements about the location of level three.

The two approaches, identifying ideal cases (as in Fig. 9) and examining expected
score ranges (as in Fig. 11), provide complementary but distinct evidence. The first
approach uses evidence from the person side of the model (the estimates of the
person ability), while the second approach uses information from the item side
of the model (the estimates of the item parameters). Since the person and item
estimates are connected, the two figures will provide consistent evidence of the
match between the hypothesized and estimated levels from alternative views of what
the levels mean. However, we are investigating if one method is preferred in specific
circumstances.

5 Discussion

5.1 Next Steps

Splitting a continuous variable into proficiency groups and then interpreting those
groups, as is done in standard setting, is common practice. The methods to do so
discussed in this paper could be extended by the use of located latent class models
(Lindsay et al. 1991; Formann 1995), which directly model proficiency groups as
in latent class analysis (Lazarsfeld and Henry 1968; Hagenaars and McCutcheon
2002), and a similar reparametrization to estimate a level main effect:

1. Located Latent Classes (LLC)

ηpi j = θc(p)− δi j

2. Level Located Latent Classes (L-LLC)

ηpi j = θc(p)− (δ· j +λi j)

These models could be used to directly estimate the centroids of each level,
represented by the θc(p), concurrently with the level cut-points. This would provide
an alternative to the use of prototypical score patterns to characterize each level.

A second area where the direct estimation of level cut-points could be useful
is in the context of previous work on Structured Construct Models (SCM) (Wilson
2009; Diakow et al. 2011). In SCM, the relations between constructs are specified
as conditional relations between specific levels of two different constructs. In other
words, to reach level 4 of my “target” construct, the respondent is not only required
to be at level 3 of that same construct, but also achieve a specific level, say level 3, of
a “requirement” construct. So far, these models have relied exclusively on the use of
latent class models to allocate the respondents into the different proficiency levels,
but the estimation of the cut-points directly within the item response model opens
the possibility of modeling these relations directly on a continuous latent variable.
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5.2 Summary

In this paper we have presented a simple idea for improving the connection between
the substantive theory used to create an assessment and the measurement model
used to analyze it. Additionally, we have introduced two graphical representations
that can help characterize the groups that have been established by the estimated cut-
points by contrasting the observed performances of those groups to the performance
levels originally hypothesized.

We believe that this kind of procedure can help practitioners make meaningful
interpretations and provide more accurate diagnostic information to respondents in
general. Furthermore, the procedure described in this paper can provide additional
evidence to support, corroborate, or potentially raise questions about the results of
traditional standard setting procedures.

It is important to note, however, that the methodological simplicity of this
procedure requires a considerable amount of work in the definition of the construct,
the creation of the assessment tasks, and the elaboration of the scoring guides. It is
our hope that the possibility of generating this kind of analysis will encourage test
developers to invest effort in those earlier stages in order to improve the quality and
interpretation of their assessments.
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The Comparison of Two Input Statistics
for Heuristic Cognitive Diagnosis

Hans-Friedrich Köhn, Chia-Yi Chiu, and Michael J. Brusco

1 Introduction

In the past decade, cognitive diagnosis models (CDMs) of educational test
performance, a special form of constrained latent class models, have received
increasing attention among educational researchers as a new and promising
paradigm of formative assessment. CDMs decompose ability in a domain into a set
of specific binary skills called attributes. (Non-)mastery of attributes documents an
examinee’s strengths and weaknesses in the domain as a profile of mental aptitude.
Distinct profiles define classes of intellectual proficiency. Methods for fitting CDMs
to educational test data and assigning examinees to proficiency classes are typically
based on maximum likelihood estimation (MLE) procedures such as Expectation
Maximization (EM) and Markov Chain Monte Carlo (MCMC). These procedures
often encounter difficulties in practice (e.g., the need for specialized, complex
software that tends to be proprietary and difficult to use for educational practitioners;
the sensitivity to the starting values of the iterative MLE procedures; no guarantee
of optimal solutions; CPU time and convergence issues; the requirement of large
samples that are often not available in small- or medium-sized testing programs).
In response to these difficulties, a number of researchers (Ayers et al. 2008; Chiu
2008; Chiu and Douglas 2013; Chiu et al. 2009; Park and Lee 2011; Willse et al.
2007) have proposed nonparametric (i.e., model-free) classification techniques

H.-F. Köhn (�)
University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
e-mail: hkoehn@cyrus.psych.uiuc.edu

C.-Y. Chiu
Rutgers, the State University of New Jersey, New Jersey, NJ 08901, USA
e-mail: chia-yi.chiu@gse.rutgers.edu

M.J. Brusco
Florida State University, Tallahassee, FL 32306, USA
e-mail: mbrusco@cob.fsu.edu

R.E. Millsap et al. (eds.), New Developments in Quantitative Psychology,
Springer Proceedings in Mathematics & Statistics 66, DOI 10.1007/978-1-4614-9348-8__21,
© Springer Science+Business Media New York 2013

335



336 H.-F. Köhn et al.

(cluster analysis) as heuristic or approximate alternatives to MLE procedures
for assigning examinees to proficiency classes. (A heuristic method solves a
nontrivial optimization problem using clever computational approximations so
that the obtained solution is very close to the desired optimal solution.) These
classification techniques first aggregate each examinee’s test item scores into a
profile of attribute sum-scores, which then form the basis for clustering examinees
into groups that serve as proxies for the proficiency classes in cognitive diagnosis.
One difficulty of this approach is that aggregating distinct observed item scores of
examinees, who belong to different proficiency classes, can result in their having
identical attribute sum-score profiles and therefore risks misclassification of those
examinees. This study demonstrates that clustering examinees into proficiency
classes based on their item scores rather than on their attribute sum-score profiles
results in a more accurate classification of examinees. First, a brief review of
relevant definitions and technical key concepts concerning CDMs and classification
techniques adapted to cognitive diagnosis is provided. The results of a simulation
study are then presented. The discussion addresses two questions regarding the
theoretical and empirical implications raised by the findings.

2 Definitions and Technical Concepts

2.1 Cognitive Diagnosis Models

Let Yi j denote the observed response of examinee i, i= 1, . . . ,N, to binary item j, j =
1, . . . ,J. Consider N examinees who belong to K distinct latent classes of intellectual
proficiency. The general (unconstrained) latent class model defines the conditional
probability of examinee i in proficiency class Ck, k = 1, . . . ,K, answering correctly
item j by the item response function, P(Yi j = 1|i ∈ Ck) = π jk, where π jk is constant
for item j across all members i in proficiency class Ck. (For J items, the item
response function is characterized by J × K parameters, π jk.) The proficiency-
class membership of the examinees is estimated from the observed item responses,
Yi j, using MLE; local independence is assumed for the observed item responses.
No further restrictions are imposed on the relation between the latent variable—
proficiency-class membership—and the observed item response. In contrast, CDMs
constrain the relation between the latent variable and the observed item response so
that the mastery of cognitive attributes characteristic for distinct latent proficiency
classes is assumed to determine the observed response to an item.

Suppose that A latent binary attributes constitute a certain ability domain; there
are then 2A distinct attribute profiles composed of these A attributes representing K
distinct latent proficiency classes. (An attribute profile for a proficiency class can
consist of all zeroes, because it is possible for an examinee not to have mastered
any attributes at all.) Let the A-dimensional vector, αk = (α1, . . . ,αA)

′, represent the
binary attribute profile of proficiency class Ck, where the ath entry indicates whether
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the respective attribute has been mastered. (For brevity, the attribute profile of
examinee i ∈Ck, α i∈Ck , will often be written α i = (αi1, . . . ,αiA)

′.) Consider a test of
J items for assessing ability in that domain. Each individual item j is associated with
a binary attribute profile that specifies or constrains the particular skills required
for answering it correctly. Item-attribute profiles that consist entirely of zeroes,
however, are inadmissible, because they correspond to items whose answers require
no skills at all; hence, given A attributes, there are at most 2A − 1 distinct item-
attribute profiles. The entire set of constraints specifying the associations between J
items and A attributes constitutes the Q-matrix, Q = {q ja}(J×A), a = 1, . . . ,A, where
q ja = 1 if a correct answer to the jth item requires mastery of the ath attribute,
and 0 otherwise (Tatsuoka 1985); thus, the rows of Q represent the item-attribute
profiles, q j.

2.2 Model-Free Classification Adapted to Cognitive Diagnosis

Let Yi denote the J-dimensional item-score profile, Yi = (Yi1, . . . ,YiJ)
′, of examinee

i (for brevity, the examinee index is omitted when the context permits). For input to
classification techniques, (Ayers et al. 2008; Willse et al. 2007), and (Chiu et al.
2009) aggregated each examinee’s item-score profile, Yi, into an A-dimensional
profile of attribute sum-scores, Wi, defined as Wi = (Wi1, . . . ,WiA)

′ = YiQ, where
Wia = ∑J

j=1Yi jq ja. Because each cell entry of Q = {q ja} represents the association
between an item and an attribute, each element of Wi consists of the sum of the
correct answers of examinee i to all items requiring mastery of the ath attribute.
(Items that require mastery of more than one attribute for their solution contribute
to multiple elements of Wi.) Across examinees, the attribute sum-score profiles, Wi,
form the rows of a rectangular N ×A matrix.

Many techniques exist for the model-free classification of a set of objects
(such as the rows of a matrix). The principal objective shared by all of these
techniques is to identify maximally homogeneous groups (“clusters”) that are
maximally separated. To adapt one popular technique, hierarchical agglomerative
cluster analysis (HACA), to cognitive diagnosis requires transforming the N × A
matrix of examinees’ attribute sum-score profiles into an N ×N symmetric matrix
of inter-examinee Euclidean distances. Popular HACA algorithms include single-
link, complete-link, and average-link clustering (Johnson 1967) and Ward’s (Ward
1963) minimum-variance method. HACA algorithms all sequentially merge or
agglomerate examinees (or groups of examinees) closest to each other at each
step into an inverted tree-shaped hierarchy of nested classes that represents the
relationship between examinees. The inter-examinee distances are updated after
each merger to reflect the latest status of examinee/cluster cohesion as input for
the next agglomeration step; the specific manner of re-calculating these distances
distinguishes the link algorithms. (Ward’s method uses a different strategy that does
not rely upon inter-examinee distances but instead attempts to minimize the increase
in total within-cluster variance after merging.)
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The Asymptotic Classification Theory of Cognitive Diagnosis (ACTCD) (Chiu
et al. 2009) provided a theoretical foundation for using HACA as a heuristic for
assigning examinees to proficiency classes for educational data conforming to
the conjunctive non-compensatory Deterministic Input Noisy Output “AND” Gate
(DINA) model (Junker and Sijtsma 2001; Macready and Dayton 1977), which
is perhaps the most popular of the many available CDMs. (A conjunctive non-
compensatory model assumes that an examinee cannot make up for a lack of mastery
of a specific attribute or attributes by mastery of another attribute or attributes.) The
item response function of the DINA model for item j and examinee i is

P(Yi j = 1|α i,s j ,g j) = (1− s j)
ηi j

g
(1−ηi j )

j (1)

where s j = P(Yi j = 0|ηi j = 1) and g j = P(Yi j = 1|ηi j = 0) are item parameters
formalizing the probabilities of “slipping” (failing to answer item j correctly despite
having the skills required to do so) and “guessing” (answering item j correctly
despite lacking the skills required to do so), respectively. The conjunction parameter
ηi j indicates whether examinee i has mastered all the attributes needed to answer

correctly item j and is defined as ηi j = ∏A
a=1α

q ja
ia (thus, ηi j represents the ideal

response when neither slipping nor guessing occurs; an examinee’s entire vector of
J ideal responses is written as η).

The ACTCD consists of three lemmas, each of which specifies a condition
necessary for a consistency theorem to hold; this theorem states that the probability
that complete-link HACA assigns examinees correctly to their true proficiency
classes approaches 1 as the length of a test (i.e., the number of test items) increases,
provided that each examinee’s item-score profile, Y, has been aggregated into
an attribute sum-score profile, W (Consistency Theorem of Classification of the
ACTCD; Chiu et al. 2009, pp. 645–647).

3 Proposition: Y as Input to Heuristic Classification

Lemma 2 of the ACTCD justifies using W as a statistic for α . Let T(α) = E(W|α)
be the conditional expectation of the attribute sum-score profile, W, given attribute
profile α , where the ath element of T(α) is defined as Ta(α) = E(Wa|α) =
∑J

j=1 E(Yj|α)q ja. (For the DINA model, the expected response, E(Yj|α), equals

(1 − s j)
η j g

(1−η j )

j .) Loosely speaking, T(α) can be regarded as the center of
the proficiency class characterized by α . Consider two attribute profiles, α and
α∗. Lemma 2 of the ACTCD states that if the Q-matrix is complete (i.e., allows
identification of all possible attribute profiles), then α �= α∗ ⇒ T(α) �= T(α∗)
always holds (Chiu et al. 2009) (pp. 645–647). Thus, W guarantees distinct, well-
separated centers of the different proficiency classes, which is a requirement for
proving the Consistency Theorem. (At present, Lemma 2 has been proven only for
item responses conforming to the DINA model.)
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The ACTCD does not address the relative advantages of assigning examinees
to proficiency classes based on their attribute sum-score profiles, W, or their item-
score profiles, Y, but focuses on only W because of its direct conceptual relation to
the underlying constrained latent class model. However, as indicated earlier, using
attribute sum-score profiles, W, as input to heuristic classification techniques may
encounter difficulties. Specifically, aggregating each examinee’s item-score profile,
Y, into an attribute sum-score profile, W, can result in the representation of distinct
Y, where examinees possibly belong to different proficiency classes, by identical
W, which may then lead to the misclassification of those examinees. Consider the
following example. Suppose that A = 2 and J = 5, with the Q-matrix defined as

Q =

⎛
⎜⎜⎜⎜⎜⎝

1 0
1 0
0 1
0 1
1 1

⎞
⎟⎟⎟⎟⎟⎠.

Let Y = (00011) and Y∗ = (01110) denote the observed item-score profiles of two
examinees who belong to distinct proficiency classes. However, aggregating Y and
Y∗ results in identical attribute sum-score profiles, W = W∗ = (12), which then
leads to the assignment of the two examinees to the identical proficiency class. Thus,
to avoid these potential ambiguities, it is proposed to use Y as input to heuristic
classification for assigning examinees to proficiency classes (note that Y is linked
to α through η ; hence, Y can also be regarded as a statistic for α).

4 Simulation Study

A simulation study was conducted to compare the performance of item-score
profiles, Y, with that of attribute sum-score profiles, W, when used as input to
complete-link HACA for assigning examinees to proficiency classes.

4.1 Generation of Item Scores

Examinees’ item scores conforming to the DINA model were simulated according to
the method described in Chiu et al. (2009). The experimental design included three
variables: (a) number of examinees, N = 100,500; (b) number of attributes, A= 3,4;
and (c) number of items, J = 20,40,80. For the levels of variable A, 23 − 1 = 7 and
24−1= 15 distinct binary item-attribute profiles were generated (profiles consisting
of all zeroes being omitted) to form template Q-matrices of tests containing J = 20
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items (Chiu et al. 2009) (Table 2, p. 650). These Q-matrix designs guaranteed that
all attributes occurred with equal frequencies. The Q-matrices for tests containing
40 or 80 items were created by stacking the 20-item template Q-matrices.

An examinee’s attribute profile was drawn either from a discrete uniform distri-
bution (i.e., the attribute profile for each proficiency class, αk, had the same proba-
bility, 1/K, where K = 2A) or from a more realistic and complex multivariate normal
distribution (θ = (θ1, . . . ,θA)

′ ∼ NA (0,Σ ), where 0 indicates the location vector
and Σ , the covariance matrix, with values along the main diagonal equal to 1.00 and
off-diagonal entries set to either 0.25 or 0.50), so that each binary attribute, αa, was
linked to a latent continuous ability dimension, θa. For each examinee, a vector θ i

was randomly sampled; if its component values exceeded a predetermined thresh-
old, then the corresponding entry in the examinee’s attribute profile, α i, was set to 1:

αia =

{
1 if θia ≥Φ−1

(
a

A+1

)
0 otherwise

The simulated item responses, Yi j, were sampled from a Bernoulli distribution with
πi j = P(Yi j = 1) defined by (1), the item response function of the DINA model.
The slipping and guessing parameters, s j and g j, respectively, were drawn from the
continuous uniform distribution U(0,0.15), allowing only minor deviations from
the ideal item responses, or U(0,0.30), adding more noise. Completely crossing the
three distributions for examinees’ attribute profiles and the two distributions for the
slipping and guessing parameters with the levels of the variables N, A, and J resulted
in an experimental design with 3× 2× 2 × 2× 3 = 72 cells. Twenty-five paired
(Y and W) data sets were generated for each cell, for a total of 1,800 paired data sets.

4.2 Clustering Attribute Sum-Score Profiles
and Item-Score Profiles

From examinees’ observed attribute sum-score profiles, W, and observed item-score
profiles, Y, the inter-examinee Euclidean distances were computed and collected
into two N ×N input proximity matrices. The examinees were grouped into K =
2A proficiency classes using the complete-link HACA algorithm (Johnson 1967) as
implemented in the hclust routine in R.

For the simulated data sets, the true proficiency-class membership of each
examinee is known and provides a standard for quantifying the results of the
cluster analysis. However, because complete-link HACA does not label the clusters
representing the proficiency classes with their respective attribute profiles, it is not
possible to compute rates of correct classification. Instead, a measure of agreement
between the true classification of the examinees and the classification assigned
by complete-link HACA was computed using the Hubert–Arabie Adjusted Rand
Index (ARI) (Hubert and Arabie 1985; Steinley 2004), which has bounds 0 and 1
indicating perfect disagreement and perfect agreement, respectively. A major ad-
vantage of the ARI over “true-false” classification-rate indices is that it incorporates
a sophisticated adjustment for random correct classifications.
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4.3 Results

Table 1 presents the results separately for each of the three distributions used
to generate examinees’ attribute profiles. For each combination of N, A, J, and
the distribution of the slipping and guessing parameters, Table 1 reports the
average (mean) ARI computed across the 25 simulated data sets when attribute
sum-score profiles, W, and item-score profiles, Y, served as input to complete-
link HACA. For comparison, the table column labeled “EM” reports the average
ARI computed across 25 replications of examinee classification based on the
DINA-model parameters produced by EM. Of course, because the simulated item
responses conform perfectly to the DINA model, EM should outperform complete-
link HACA.

Table 1 shows that, for all of the 72 cells of the experimental design, the per-
formance of complete-link HACA in assigning examinees to their true proficiency
classes is better when item-score profiles, Y, rather than attribute sum-score profiles,
W, served as input. Table 1 also demonstrates that the assignment of the examinees
to their true proficiency classes deteriorates when either the number of attributes or
the level of error perturbation (as reflected by the slipping and guessing parameters)
increases; the number of examinees does not seem to have an effect. Interestingly,
for both levels of error perturbation, (a) a larger number of items led to more
accurate classification regardless of whether attribute sum-score profiles, W, or
item-score profiles, Y, served as input, and (b) the difference between the accuracy
of examinee classification when W or Y served as input decreased as the number of
items increased.

5 Discussion

The simulation study demonstrated that, for item responses conforming to the
DINA model, assignment of test examinees to their true proficiency classes was
more accurate when their item-score profiles, Y, rather than their attribute sum-
score profiles, W, served as input to complete-link HACA. Two questions regarding
the theoretical and empirical implications of these findings are briefly addressed
here.

First, does the inferior performance of the attribute sum-score profiles contradict
the Consistency Theorem of Classification of the ACTCD (Chiu et al. 2009), which
states that the probability that complete-link HACA assigns examinees correctly to
their true proficiency classes based on their attribute sum-score profiles approaches
1 as the length of a test (i.e., the number of items, J) approaches infinity? The results
of the simulation study suggest the opposite. Recall that generally a larger number
of items led to more accurate classification regardless of whether attribute sum-score
profiles, W, or item-score profiles, Y, served as input and that the difference between
the accuracy of examinee classification when W or Y served as input decreased as
the number of items increased. Therefore, the empirical findings support rather than
contradict the Consistency Theorem.
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Table 1 Average ARIs for complete-link HACA of the simulated data sets using attribute sum-
score profiles, W, and item-score profiles, Y, as input

Discrete uniform distribution of attribute profiles

s j ,g j ∼U(0,0.15) s j ,g j ∼U(0,0.30)

N A J EM W Y EM W Y

100 3 20 0.936 0.676 0.766 0.815 0.467 0.560
100 3 40 0.945 0.893 0.974 0.953 0.688 0.810
100 3 80 0.990 0.988 0.998 0.991 0.809 0.871
100 4 20 0.818 0.470 0.657 0.626 0.251 0.354
100 4 40 0.952 0.756 0.874 0.782 0.399 0.534
100 4 80 0.993 0.862 0.972 0.986 0.713 0.824
500 3 20 0.965 0.603 0.807 0.879 0.476 0.593
500 3 40 0.995 0.874 0.964 0.958 0.620 0.789
500 3 80 1.000 0.988 0.992 0.995 0.828 0.950
500 4 20 0.886 0.427 0.657 0.619 0.222 0.298
500 4 40 0.970 0.651 0.841 0.884 0.420 0.576
500 4 80 0.991 0.897 0.986 0.979 0.581 0.801

MVN distribution of attribute profiles (ρ = 0.25)

s j ,g j ∼U(0,0.15) s j ,g j ∼U(0,0.30)

N A J EM W Y EM W Y

100 3 20 0.954 0.688 0.858 0.803 0.495 0.579
100 3 40 0.985 0.877 0.940 0.954 0.746 0.863
100 3 80 0.987 0.979 0.995 0.986 0.816 0.892
100 4 20 0.857 0.547 0.723 0.722 0.322 0.448
100 4 40 0.950 0.674 0.835 0.884 0.390 0.509
100 4 80 0.989 0.827 0.917 0.954 0.596 0.699
500 3 20 0.976 0.697 0.895 0.828 0.433 0.525
500 3 40 0.998 0.810 0.973 0.992 0.737 0.925
500 3 80 1.000 0.972 0.999 0.999 0.818 0.943
500 4 20 0.914 0.486 0.714 0.796 0.311 0.461
500 4 40 0.984 0.679 0.922 0.929 0.469 0.637
500 4 80 0.990 0.816 0.987 0.979 0.604 0.833

MVN distribution of attribute profiles (ρ = 0.50)

s j ,g j ∼U(0,0.15) s j ,g j ∼U(0,0.30)

N A J EM W Y EM W Y

100 3 20 0.886 0.655 0.725 0.847 0.389 0.556
100 3 40 0.985 0.813 0.924 0.960 0.605 0.721
100 3 80 0.996 0.984 0.991 0.988 0.856 0.874
100 4 20 0.865 0.499 0.664 0.687 0.275 0.356
100 4 40 0.937 0.609 0.797 0.864 0.338 0.471
100 4 80 0.971 0.723 0.869 0.936 0.552 0.689
500 3 20 0.965 0.652 0.878 0.886 0.527 0.643
500 3 40 0.996 0.831 0.969 0.975 0.678 0.841
500 3 80 1.000 0.994 0.999 0.999 0.834 0.968
500 4 20 0.892 0.476 0.682 0.696 0.250 0.399
500 4 40 0.989 0.644 0.919 0.939 0.468 0.705
500 4 80 1.000 0.830 0.967 0.995 0.592 0.863
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Second, the results of the simulation study suggest that item-score profiles might
be more sensitive than attribute sum-score profiles in preserving true proficiency-
class membership. Hence, the Consistency Theorem of Classification might also
apply when item-score profiles, Y, rather than attribute sum-score profiles, W, serve
as input to complete-link HACA. At present, however, there is no definite expla-
nation of this phenomenon, and the dilemma that the theoretically well-supported
statistic, W, is outperformed empirically by the theoretically indeterminate statistic,
Y, remains unresolved and awaits further study.
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Does Model Misspecification Lead to Spurious
Latent Classes? An Evaluation of Model
Comparison Indices

Ying-Fang Chen and Hong Jiao

1 Introduction

In recent decades, researchers have paid increasing attention to developing extended
item response theory (IRT) models. These models were developed primarily because
of the need to resolve the violation of the strong assumptions of IRT models,
to more clearly reflect the nature of real-world testing scenarios, and to generate
more accurate estimates of model parameters. One such extension is mixture IRT
modeling (Kelderman and Macready 1990; Mislevy and Verhelst 1990; Rost 1990),
which integrates an IRT or a Rasch model with latent class analysis (LCA) (Dayton
1999; McCutcheon 1987) to accommodate heterogeneity in examinee population.

In educational or psychological assessments, examinees/respondents may not be
qualitatively homogeneous in terms of item response patterns. If examinees form a
mixture of latent subgroups but a single latent population is assumed, the assumption
of local independence in IRT models is violated. When such violations are not
taken into account, the estimation of model parameters can be affected. For these
reasons, the mixture modeling approach—which can identify the number of latent
classes as well as describe multiple latent classes in the examinee population—has
been progressively used in assessments (e.g., Cohen and Bolt 2005; De Ayala et al.
2002; Finch and Pierson 2011; Maij-de Meij et al. 2010; Mislevy and Verhelst 1990;
Samuelsen 2005; Smith et al. 2012).

In the framework of mixture IRT modeling, the most frequently used mixture
model is the mixture Rasch model (MRM) (Rost 1990). The MRM combines the
Rasch measurement model (Rasch 1960) and LCA, allowing for multiple latent pop-
ulations. For example, two examinees who have identical ability levels but belong
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to qualitatively heterogeneous subgroups are allowed to perform differentially on
items (i.e., different item difficulties). The unconditional probability of a response
vector can be expressed as

P
(

x
∣∣∣θ)=∑C

c=1πcP
(

x
∣∣∣θ ,c) , (1)

and the conditional probability of success given the latent class membership and
model parameters for a specific latent class in the MRM is

P
(

x = 1
∣∣∣θc,c

)
=

exp
(
θjc −βic

)
1+ exp

(
θjc −βic

) , (2)

where x= (x1, . . . , xI) represents the response vector, πc is the mixing proportion
with a constraint ∑πc = 1, β ic is the difficulty for item i conditional on latent class
c (c= 1, . . . ,C), and θ jc denotes the ability parameter for an examinee j in latent
class c. For each latent class, the Rasch model is assumed. Both item and ability
parameters are conditional on a discrete latent class. For scale identification, item
difficulties within a class are usually constrained with ∑ I

iβ ic = 0 (Rost 1990). If a
one-class solution is suggested for the data, the MRM is reduced into the Rasch
model.

Given that the estimation of model parameters in mixture modeling depends on
the identification of latent class membership, accurately extracting latent classes is
important. If errors in latent class extraction occur, the estimation and interpretation
of model parameters will be accordingly biased (e.g., Alexeev et al. 2011; Cho et al.
2012; Li et al. 2009). Alexeev et al. (2011) have recently demonstrated that model
misspecification contributed to the creation of spurious latent classes in the MRM.
The authors applied the MRM to the data generated as 2PLM. Their simulation
results showed that at least two classes were extracted despite the fact that only
one class was simulated. Their findings suggest that the extraction of latent classes
did not result from examinee heterogeneity, but from model misspecification in the
MRM.

Alexeev et al. (2011) provided valuable insights into potential nuisance sources
that cause the formation of spurious latent classes. A major limitation in their
simulation study, however, is that only varying item discrimination was considered
as a single source of model misspecification (i.e., only 2PLM data were generated).
Consequently, little is known as to whether their findings are generalizable to
other testing conditions, such as model misspecification due to an addition of item
guessing and/or slipping parameters that are not represented in the Rasch model.

In addition to item difficulty and discrimination, guessing and slipping param-
eters can also characterize items. A logistic IRT model that contains four item
parameters (4PLM) (Barton and Lord 1981) is expressed as

P
(

x = 1
∣∣∣αi,βi,γi,λi,θ j

)
= γi +

λi − γi

1+ exp(−αi (θ j −βi))
, (3)
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Fig. 1 Two 4PLM ICCs (item 1: α = 2.0, γ = 0.1, λ = 0.9; item 2: α = 1.0, γ = 0.3, λ = 0.7)

where α i, β i, γ i, λ i, and θ i represent item discrimination, item difficulty, item
guessing, item slipping, and ability parameter, respectively. In the plot of item char-
acteristic curves (ICCs), item difficulty and discrimination represent the location
and slope of an ICC, and the guessing parameter refers to the lower asymptote of
an ICC and slipping is the upper asymptote of the ICC. Figure 1 illustrates two
4PLM ICCs, in which item 2 (α = 1.0, γ = 0.3, λ = 0.7) exhibits stronger degrees
of item guessing and slipping but weaker item discrimination than does item 1
(α = 2.0, γ = 0.1, λ = 0.9). The probability of success in the 4PLM ranges from
the lower asymptote to the upper asymptote across the ability continuum (Fig. 1).
A guessing parameter is defined as the probability of a correct response by a very
low-ability examinee. It can result from the use of a multiple choice format (e.g.,
the probability of success is 0.25 for a four-option item if a respondent guesses)
and can be affected by flaws in an item (e.g., clues hidden in the item options or
distractions are unattractive). A slipping item parameter is defined as the probability
of an incorrect response to an item by a high-proficiency examinee. For some items,
a high-ability examinee may unintentionally misread a question or overthink an easy
item in a unique or creative manner. In a computer-based testing scenario, an item
slipping effect may occur because of a special item response interface (Rulison and
Loken 2009).

In the psychometric literature, the 3PLM with guessing is more prevalently
used than IRT models with slipping. This predominance may be attributed to the
fairly limited software available for estimating slipping parameters. Item slipping
effects have been found to improve model-data fit and the accuracy of model
parameter estimates in many empirical applications. For example, Barton and Lord
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(1981) fitted the 4PLM and 3PLM to several large-scale assessment data sets and
found that the former provided better model-data fit to the SAT verbal and math
sections. In Loken and Rulison (2010), the 4PLM provided better fit (than did the
2PLM and 3PLM) to the delinquency data that were extracted from the large-scale
Monitoring the Future (MTF) national survey (Johnston et al. 2006); in particular,
the 4PLM yielded more information about moderate delinquency levels. Barton and
Lord also demonstrated the adverse consequences of fitting the 3PLM and 2PLM
to 4PLM data. Jiao et al. (2011) demonstrated how a 3PLM with slipping (i.e.,
3PLM-λ) better fit a cognitive psychological test. Yen et al. (2012) indicated that in
computerized adaptive testing scenarios, the 4PLM improved the ability estimates
for a national sample data set that was drawn from the English Ability Test for
college entrance in Taiwan. The above-mentioned studies suggest the practical need
for and importance of including slipping effects to improve overall model-data fit
and accuracy of parameter estimates.

The (mixture) Rasch model assumes no guessing or slipping effects. Therefore,
model misspecification can also occur if one fits the (mixture) Rasch model to
data with item guessing and/or slipping. To more comprehensively investigate the
psychometric issue of the over-extraction of latent classes arising from model
misspecification, the current study aims to examine whether the violation of assump-
tions regarding item discrimination, as well as guessing and slipping parameters, in
the applications of the Rasch model causes the artificial extraction of latent classes.
This research is expected to provide a more thorough discussion of the concerns
about the over-extraction of latent classes. To sum up, this study intends to answer
the following questions:

1. Which of the model-fit indices better selects the correct number of latent classes?
2. Does model misspecification cause the extraction of spurious latent classes in the

MRM?
3. Do sample size and test length contribute to the extraction of spurious latent

classes in the MRM?
4. How latent classes are extracted in real data applications?

2 Method

A simulation study was conducted to examine whether the extraction of spurious
latent classes can be attributed to model misspecification. This research also
explored the extraction of latent classes under real data scenarios. The succeeding
section introduces the simulation design, real data sources, and data analysis
methods used in this work.
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Table 1 Simulation design

Manipulated factors Levels

Item discrimination 1.0, 2.0
Item guessing 0.1, 0.3
Item slipping 0.7, 0.9
Test length 20, 40
Sample size 500, 1,000, 3,000

2.1 Simulation Study

This study was designed as a 3× 2× 2× 2× 2 experimental design, in which
sample size, test length, and magnitude of item discrimination, guessing, and slip-
ping were manipulated. For each condition, 100 replications were simulated. Data
were generated under a unidimensional IRT 4PLM [see Eq. (3)]. The data matrix
comprises 500, 1,000, or 3,000 examinees’ responses to 20 or 40 dichotomously
scored items. Ability and item difficulty parameters were simulated from a standard
normal distribution with a mean of 0 and a variance of 1.

Model misspecification in the Rasch model was manipulated using varying item
discrimination and incorporating item guessing parameters (i.e., γ is greater than 0)
and slipping parameters (i.e., λ is smaller than 1). Two levels of item discrimination,
namely, 1.0 and 2.0, were used to represent low and high discrimination, respec-
tively; these levels are identical to those adopted in previous studies (i.e., Emons
et al. 2004; Li et al. 2009). Two levels of guessing (i.e., 0.1 and 0.3) and slipping
effects (i.e., 0.7 and 0.9) were also manipulated as model misspecification factors.
The extent of slipping was manipulated on the basis of slipping parameter estimates
observed in previous empirical studies (i.e., λ = 0.72–0.89, Loken and Rulison
2010; λ = 0.565–0.998, Jiao et al. 2011). A discrimination of 2.0, a guessing level
of 0.3, or a slipping level of 0.7 represents a strong violation of the Rasch model;
that is, in the Rasch model, item discrimination is equal to 1, guessing is equal to
0, and slipping is equal to 1. The specifications used in the simulation study are
summarized in Table 1.

Item response data were then analyzed with the MRM, which incorporates only
difficulty parameters in the model [see Eqs. (1) and (2)]. The software mdltm
developed by von Davier (2005) was used for estimation; it applies marginal
maximum likelihood estimates with an expectation-maximization algorithm. Given
that more than two extracted classes (e.g., two classes, three classes, and so on)
indicate the presence of spurious latent classes (i.e., in the data generation, one latent
class was simulated), this study reports the percentages of replications that suggest
multiple-class solutions in the data. The outcome statistics for evaluating model-
data fit are Akaike information criterion (AIC; Akaike 1974), Bayesian information
criterion (BIC; Schwarz 1978), corrected Akaike information criterion (AICc;
Burnham and Anderson 2002), and sample-size adjusted Bayesian information
criterion (SABIC; Sclove 1987). These statistics are expressed as Eqs. (4)–(7). The
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AIC and BIC measures were output from mdltm, and SABIC and AICc—which
have penalties greater for a large number of parameters or small samples—were
computed from Eqs. (6) and (7). The outcome statistics were computed across 100
replications:

AIC =−2LL+ 2k, (4)

BIC =−2LL+ kln(N) , (5)

AICc = AIC+
2k(k+ 1)
N− k− 1

, (6)

SABIC =−2LL+ kln

(
N+ 2

24

)
, (7)

where LL= log-likelihood, k= number of parameters, and N= sample size.

2.2 Empirical Examples

Two real data sets were used. The first was extracted from a standardized large-
scale assessment—the Progress in International Reading Literacy Study (PIRLS)
2006 (PIRLS 2006 Assessment 2007) conducted by the International Association
for the Evaluation of Educational Achievement (Green et al. 2009; Mullis et al.
2007). PIRLS is designed to measure the reading comprehension abilities of fourth
grade students. The extracted sample data set contains 1,398 examinees’ responses
to 21 items, in which the items were originally constructed under the 2PL or the
3PL model.

The second data set was extracted from the 2005 national MTF survey of
12th grade students (Johnston et al. 2006). The extracted data set contains 2,463
examinees’ responses to 14 self-report questions of delinquency according to a 5-
point Likert scale (i.e., students reported the frequency of delinquency acts; 1= not
at all to 5=five or more times within the past year). The item responses were re-
coded in binary format (i.e., 1= at least once, 0= never). Loken and Rulison (2010)
demonstrated that the 4PLM satisfactorily fit this data set; the estimates of slipping
parameters ranged from 0.72 to 0.89, which implicitly suggests that individuals at
high levels of delinquency did not necessarily commit all delinquency acts. The data
analysis procedure for the empirical examples is identical to that implemented in the
above-mentioned simulation study.
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3 Results

3.1 Simulation Study

Table 2 shows the average hit rates of latent class selection under each simulated
condition, while Table 3 reveals the percentages of replications that extracted
spurious latent classes in the MRM. The performance ranking of the model-fit
indices followed the order BIC, SABIC, AICc, and AIC, with overage hit rates of
97.10 %, 86.30 %, 75.90 %, and 70.50 %, respectively (Table 2). Among the model-
fit indices, BIC exhibited the best performance in selecting the correct number of
latent classes, particularly under small- (i.e., sample size= 500) and moderate-sized
(i.e., sample size= 1,000) samples (i.e., average hit rate= 100 %). BIC showed a
relatively satisfactory and consistent performance across all simulated conditions
(average hit rate= 91.25–100 %). By contrast, AIC produced the worst model
selection, particularly when item discrimination was violated in the Rasch model
(i.e., α= 2.0) and when sample sizes increased (Table 3).

The inclusion of item guessing and slipping parameters did not contribute to the
extraction of spurious latent classes in the MRM (Table 3). However, the model
misspecification resulting from item discrimination was an influential factor for
such extraction. At an item discrimination of 1 (i.e., as the constraint of item
discrimination in the Rasch model), spurious latent classes were imperceptibly
extracted even under item guessing and slipping effects.

Table 2 Average hit rates for latent class selection under simulated
conditions (%)

AIC BIC SABIC AICc

Overall 70.50 97.10 86.30 75.90
Sample sizes
500 94.63 100.00 100.00 100.00
1,000 65.25 100.00 96.19 74.19
3,000 51.63 91.25 62.56 53.63
Test lengths
20 74.04 99.25 87.54 78.79
40 66.96 94.92 84.96 73.08
Item discrimination
1.0 99.29 100.00 100.00 99.79
2.0 41.71 94.17 72.50 52.08
Item guessing
0.1 64.83 94.71 80.83 71.46
0.3 76.17 99.46 91.67 80.42
Item slipping
0.7 75.33 95.92 89.33 80.71
0.9 65.67 98.25 83.17 71.17



352 Y.-F. Chen and H. Jiao

Table 3 Percentages of replications that extracted spurious classes in the mixture Rasch model
(%)

Fit indices

AIC BIC SABIC AICcSample sizes
Item α γ λ 500 1,000 3,000 500 1,000 3,000 500 1,000 3,000 500 1,000 3,000

20 1 0.1 0.7 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0.1 0.9 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0.3 0.7 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0.3 0.9 0 0 0 0 0 0 0 0 0 0 0 0
40 1 0.1 0.7 0 0 16 0 0 0 0 0 0 0 0 5
40 1 0.1 0.9 0 0 0 0 0 0 0 0 0 0 0 0
40 1 0.3 0.7 0 0 0 0 0 0 0 0 0 0 0 0
40 1 0.3 0.9 0 0 1 0 0 0 0 0 0 0 0 0
20 2 0.1 0.7 0 69 100 0 0 1 0 0 100 0 22 100
20 2 0.1 0.9 3 93 100 0 0 14 0 0 100 0 74 100
20 2 0.3 0.7 0 0 58 0 0 0 0 0 0 0 0 44
20 2 0.3 0.9 6 94 100 0 0 3 0 0 99 0 69 100
40 2 0.1 0.7 49 100 100 0 0 97 0 56 100 0 99 100
40 2 0.1 0.9 15 99 100 0 0 15 0 4 100 0 85 100
40 2 0.3 0.7 0 1 99 0 0 0 0 0 0 0 0 93
40 2 0.3 0.9 13 100 100 0 0 10 0 1 100 0 64 100

When item discrimination varied from one as a kind of model misspecification
in the Rasch model, the extraction of spurious latent classes increased; in particular,
all the indices tended to extract spurious latent classes as sample sizes and test
lengths increased. Overall, BIC was the least influenced by model misspecification
resulting from item discrimination. For example, when α= 1, all the model-fit
indices produced perfect or nearly perfect hit rates (i.e., average hit rate= 99.29–
100 %). When α= 2, however, the average hit rate of BIC remained high (94.17 %),
whereas those of the other indices visibly decreased (41.71 %, 52.08 %, and 72.50 %
for AIC, AICc, and SABIC, respectively). Across all model misspecification
conditions (i.e., α= 2.0, γ= 0.1 or 0.3, λ= 0.7 or 0.9), BIC resulted in high hit
rates that ranged from 94.17 to 99.46 % (Table 2).

3.2 Empirical Examples

Tables 4 and 5 show the results of the latent class selection for the PIRLS and
the MTF data sets, respectively. In the empirical examples, the model-fit indices
generated conflicting results, making the determination of the number of latent
classes difficult. For both real data sets, BIC suggested a one-class solution, whereas
SABIC recommended a two-class solution and AIC and AICc selected three-class
solutions. Given that BIC effectively selected the correct number of latent classes,
the one-class solution was adopted for both real data sets. AIC, SABIC, and AICc
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Table 4 Latent class selection for the PIRLS

AIC (rank) BIC (rank) AICc (rank) SABIC (rank)

One-class solution 30,299 (4) 30,414 (1) 30,299 (4) 30,344 (2)
Two-class solution 30,225 (3) 30,461 (2) 30,228 (2) 30,318 (1)
Three-class solution 30,212 (1) 30,569 (4) 30,219 (1) 30,353 (3)
Four-class solution 30,216 (2) 30,694 (3) 30,229 (3) 30,404 (4)

Table 5 Latent class selection for the MTF

AIC (rank) BIC (rank) AICc (rank) SABIC (rank)

One-class solution 18,963 (3) 19,271 (1) 18,966 (4) 19,103 (3)
Two-class solution 18,666 (2) 19,288 (2) 18,676 (2) 18,948 (1)
Three-class solution 18,642 (1) 19,578 (3) 18,665 (1) 19,066 (2)
Four-class solution 18,666 (2) 19,915 (4) 18,707 (3) 19,232 (4)

tended to select a model that had many latent classes in both empirical examples,
echoing the results of the simulation study.

4 Summary and Discussion

This research investigated whether model misspecification results in an extraction
of spurious latent classes in the MRM and assessed the effectiveness of model-
fit indices in latent class selection. BIC was the most promising model-fit index
for selecting the correct number of latent classes, whereas AIC and AICc tended
to select a model with spurious latent classes in the MRM. Our findings are
consistent with those of previous studies, in which BIC performed effectively
and AIC functioned poorly in latent class selection (i.e., Alexeev et al. 2011;
Cho and Cohen 2010; Cho et al. 2012, Li et al. 2009; Preinerstorfer and Forman
2012). As stated earlier, model parameter estimation considerably depends on the
identification of latent class membership; therefore, inaccurate estimates of the
number of latent classes can cause severe biases in model parameter estimates.
Given that no consensus regarding the best indicator of latent class numeration
in mixture modeling has been reached (Nylund et al. 2007), researchers and
practitioners should be particularly cautious in choosing model-fit measures. As
indicated by the current and previous findings, BIC is favorable for latent class
selection in data.

In Alexeev et al. (2011), BIC extracted spurious latent classes under large
sample sizes, long test lengths, and a distribution of item discrimination parameters
that corresponds to a violation of uniform item discrimination in the MRM. In
the current work, however, BIC reduces concerns over the extraction of spurious
latent class resulting from model misspecification. More specifically, BIC extracted
spurious latent classes only when the constraint of item discrimination in the MRM
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was violated in few large-sample conditions. Sample size and test length were
not the primary influential factors in the current study. AIC, SABIC, and AICc
over-extracted latent classes under large item discrimination combined with large
sample sizes—a finding that corresponds with that of Alexeev et al. (2011). The
slight differences in findings between the current study and Alexeev et al. (2011)
may be due to the different estimation programs used (Mplus was used in the
latter). An interesting and new finding from the present research is that the model
misspecification resulting from item guessing and slipping effects did not contribute
to the extraction of spurious latent classes in the MRM.

Finally, the empirical examples show that the model-fit indices presented incon-
sistent results, also an observed occurrence in previous studies that used real data
(e.g., Cho and Cohen 2010; Li et al. 2009; Willse 2011). Inconsistent latent class
selection in real data can be a serious concern because the true number of latent
classes in real data is usually unknown. In our real data application, both sets of real
data, which contain items best modeled with guessing and/or slipping parameters,
did not lend themselves to additional latent classes (i.e., possibly spurious latent
classes), as indicated by the BIC values.
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Modeling Differences in Test-Taking Motivation:
Exploring the Usefulness of the Mixture Rasch
Model and Person-Fit Statistics

Marie-Anne Mittelhaëuser, Anton A. Béguin, and Klaas Sijtsma

1 Modeling Differences in Test-Taking Motivation:
Exploring the Usefulness of the Mixture Rasch Model
and Person-Fit Statistics

Item response theory (IRT) models are useful in educational measurement for
supporting the construction of measurement instruments, linking and equating of
measurements, and evaluation of test bias (Scheerens et al. 2007). However, the
IRT model must fit the data so as to be applicable to practical testing problems
and yield correct proficiency level and item parameter estimates. Unfortunately,
researchers often implicitly assume that scores on a test are valid indicators of
a student’s best effort (Wolf and Smith 1995) but Wainer (1993, p. 12) noted
that: “If a test doesn’t count for specific individuals, how can we be sure that
they are trying as hard as they might if it mattered?”. Over the years, evidence
has accumulated that if item performance does not contribute to the test score or
if no feedback is provided, students may not give their best effort and perform
to their best ability (e.g., Wise and DeMars 2005; O’Neil et al. 1996; Kiplinger
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and Linn 1996). Under-performance is typical for tests administered in a low-
stakes administration condition. Consequently, performance on items administered
in a low-stakes condition may differ from performance on items administered in a
high-stakes condition, resulting in unusual patterns of item scores or in relatively
poor performance on the low-stakes items. Within an IRT framework, low-stakes
performance threatens the correct estimation of the proficiency and item parameters.
For example, Mittelhaëuser et al. (2011) found that using low-stakes common
items to link two high-stakes tests yielded different conclusions about the ability
distributions compared to using high-stakes common items.

This article explores the usefulness of two methods that may be helpful in
removing bias in parameter estimation caused by the low-stakes administration
condition of a test. The first method uses a mixture Rasch model that assumes that
the data are a mixture of different datasets from two or more latent populations (Rost
1997; Von Davier and Yamamoto 2004), also called latent classes. If the mixture
assumption is correct, a Rasch model does not hold for the entire population but
different model parameters are valid for different subpopulations. Let Xi denote the
score on item i and let k denote the number of items in the test. According to the
mixture Rasch model, the probability of passing item i (Xi = 1) depends on a class-
specific person parameter, θ jg, which denotes the proficiency of student j if he/she
belongs to latent class g. The conditional response probability is defined as:

P
(

Xi = 1
∣∣∣θ jg

)
=

exp(θ jg −βig)

1+ exp(θ jg −βig)
(1)

where β ig is a class-specific difficulty parameter. The probability of obtaining an
item-score vector, x = {x1,x2, . . . ,xk}, given proficiency θ jg equals

P
(

x j

∣∣∣θ jg

)
=

k

∏
i=1

exp [xi (θ jg −βig)]

1+ exp(θ jg −βig)
(2)

Let πg denote the proportion of the population that belongs to class g (g= 1, . . . , G).
The probability for an individual j to belong to class g, also known as the posterior
probability, depends on the item-score vector x j; that is,

p
(

g
∣∣∣x j

)
=

πg p
(

x j

∣∣∣g)
∑G

g=1πg p
(

x j

∣∣∣g) (3)

Mixture IRT models can be used to identify classes resulting from different
types of response behavior. Consequently, the mixture strategy can also be used to
handle known sources of contamination in item parameter estimates. For example,
Bolt et al. (2002) used a mixture Rasch model with ordinal constraints to help
remove the effect of test speededness on item parameter estimates. We used
other constraints facilitating identification of latent classes such that one of the
latent classes represents “high-stakes response behavior” and the other latent class
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“low-stakes response behavior” (Béguin 2005; Béguin and Maan 2007). As the
probability for each individual to belong to a latent class (i.e., posterior probability)
can be estimated, it is possible to identify the item-score vectors the low-stakes
administration condition of the test affect. The posterior probabilities represent the
probabilities for a student to respond in either a “low-stakes manner” or a “high-
stakes manner.”

Alternatively, person-fit methods assign a value to each individual vector of
item scores, and a statistical test is used to determine whether the underlying IRT
model fits the item scores (Embretson and Reise 2000). Significant person-fit values
identify item-score vectors for which the IRT model does not fit, and the researcher
may decide to remove the aberrant item-score vectors from the dataset (Meijer and
Sijtsma 1995). The remaining set of item-score vectors for which the IRT model
fits are expected to produce correct parameter estimates. The lz statistic is a well-
known person-fit statistic (Drasgow et al. 1985). By estimating the lz statistic on a
low-stakes item-score vector given the ability parameter estimated on a high-stakes
test, it may be possible to detect students driven by unmotivated response behavior.

The goal of this study was to explore whether indicators of non-typical response
behavior, such as the posterior probabilities from a mixture IRT model and the lz
person-fit statistic can be used to model motivational differences between students.
We investigated the relationship between student’s self-reported motivation on the
one hand and the posterior probabilities of the mixture Rasch model and the lz
statistic on the other hand.

2 Method

2.1 Participants and Design

Four different scales were used to collect data: the Eindtoets Basisonderwijs 2012
(End of Primary Education Test), the pre-test of the Eindtoets Basisonderwijs 2013,
a scale measuring test-taking motivation (TTM), and a scale measuring social
desirability. The order in which the different scales are discussed below corresponds
to the order in which they were administered to the students.

Pre-test. Subsets of items intended for use in a high-stakes test are usually pre-
tested on different samples of students to examine the statistical characteristics of
the items before including them in a high-stakes test. To pre-test math items for the
Eindtoets Basisonderwijs 2013, eighth-grade primary-school students (N = 9,124)
were presented with a pre-test containing math items. Items most suitable for the
population were selected for the Eindtoets Basisonderwijs 2013. Twenty-seven
different pre-test versions also called test booklets were constructed, varying in
test length from 30 to 60 items and including 585 multiple-choice items in total.
The responses were coded 0 representing a wrong answer and 1 representing a
right answer. The number of respondents per test booklet ranged from 7 to 516.
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Table 1 Test-taking motivation items with mean scores and component loadings

Loadings

Item M A1 A2 A3

1 I enjoy going to school 3.00 −0.121 0.061 0.853
2 I enjoy learning math 2.86 0.011 −0.107 0.817
3 I did my best on the math items 3.80 0.705 0.066 0.103
4 My teacher wants me to do my

best on the math items
3.80 −0.034 0.841 0.001

5 My parents want me to do my best
on the math items

3.83 0.009 0.823 0.055

6 I did a good job on the math items 3.21 0.525 −0.178 0.205
7 The kids in my class did their best

on the math items
3.53 0.409 0.202 −0.061

8 I could have worked harder on the
math items

2.88 0.788 −0.097 −0.115

9 I’m curious about how many math
items I answered correctly

3.66 0.203 0.132 0.422

However, as a given pre-test item was administered in more than one pre-test
booklet, the number of observations per item ranged from 332 to 1,424. The pre-test
was used in most schools to practice for the high-stakes Eindtoets Basisonderwijs
2012, but the students were aware that they would not receive a score on the
pre-test. Therefore, the pre-test is considered to be administered in a low-stakes
administration condition.

Test-Taking Motivation. After the administration of the pre-test, a subsample
of 1,512 students was administered a questionnaire containing nine items that
measured TTM. The construction of the items was inspired by existing scales, such
as the test-taking motivation questionnaire (Eklöf 2006), the student opinion scale
(Thelk et al. 2009), and a subset of items from the self-report questionnaires of
the Education Quality Accountability Office (Zerpa et al. 2011). Each item was
answered on a four-point Likert-scale (1=No, 2=Not so much, 3=Kind of,
4=Yes). Table 1 shows English translations of the items.

Social Desirability. To check whether the tendency to answer in a socially
desirable way influenced self-reported motivation, the students were administered
six items stating desirable but uncommon behavior. The construction of the items
was inspired by the children’s social desirability scale (Baxter et al. 2004). Each
item was answered as Not True (1) or True (2). Table 2 provides English translations
of the items.

Eindtoets Basisonderwijs 2012. Each year in February, the Eindtoets Basisonder-
wijs is administered to students who are in the last year of Dutch primary education.
The test results provide an independent advice to primary-school teachers, parents
and secondary-schools about the most appropriate type of secondary education
for a student. The test is administered in a high-stakes condition, and secrecy
of the items is vital; hence, the test form is renewed each year. The Eindtoets
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Table 2 Social desirability items with mean scores and standard deviations

Item M SD

1 I like all the kids in my class 1.49 0.50
2 I always tell the truth 1.35 0.48
3 I never fight 1.15 0.36
4 I always do what my teacher tells me to do 1.60 0.49
5 I always behave well 1.44 0.50
6 I never lie 1.27 0.45

Basisonderwijs 2012 contained 60 multiple-choice math items. The responses were
coded 0 representing a wrong answer and 1 representing a right answer. In total,
144,708 students completed the math items of the Eindtoets Basisonderwijs 2012.

2.2 Analyses

All analyses were performed using SPSS version 20 unless stated otherwise.
Principal Components Analysis. A principal components analysis (PCA) was

performed to investigate the internal structure of the TTM scale. After motivational
components of the TTM scale were identified, the reliability estimate known as the
greatest lower bound (GLB) was calculated for the total TTM scale using factor 8.1
(Lorenzo-Seva and Ferrando 2006).

Mixture Rasch Model. The data of the pre-test and the data of the Eindtoets
Basisonderwijs 2012 were combined, providing 9,124 item-score vectors containing
items administered in a low-stakes condition (pre-test items) and different items
administered in a high-stakes condition (items from the Eindtoets Basisonderwijs
2012). A mixture Rasch model was estimated for this dataset using a dedicated
version of the OPLM software (Verhelst et al. 1995; Béguin 2008). We anticipated
that we would not find motivational differences in the high-stakes administration
condition. Therefore, the item-score vectors of the Eindtoets Basisonderwijs 2012
were modeled as being exclusively part of the first latent class by setting πg= 0 = 0
and πg= 1 = 1 in Eq. (3). The item-score vectors of the pre-test could be in either the
first or the second latent class. To identify the model, it was assumed that student’s
abilities did not differ across latent classes.

After estimating the mixture Rasch model for the 9,124 item-score vectors, the
posterior probabilities of the 1,512 students who completed the TTM scale were
related to their self-reported motivation. This was done by estimating the correlation
coefficient and inspecting the mean posterior probability for each separate TTM sum
score. Furthermore, the item difficulty parameters of both latent classes were plotted
to inspect the differences between the latent classes.

Person-Fit. The lz statistic (Drasgow et al. 1985; Meijer and Sijtsma 1995) is
a person-fit statistic that assesses the likelihood of an item-score vector under a
specific IRT model. The lz statistic is given by
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lz =
l −E(l)√

Var(l)
(4)

where l denotes the unstandardized likelihood of the item-score vector and E(l) and
Var(l) denote the expected likelihood and the variance of the likelihood, respectively.
These three quantities are given by:

l =
k

∑
i=1

{Xi lnPi (θ )+ (1−Xi) ln [1−Pi (θ )]} (5)

with

E(l) =
k

∑
i=1

{Pi (θ ) ln [Pi (θ )]+ [1−Pi (θ )] ln [1−Pi (θ )]} (6)

and

Var(l) =
k

∑
i=1

Pi (θ ) [1−Pi (θ )]
[

ln
Pi (θ )

1−Pi (θ )

]2

. (7)

The lz statistic is assumed to be a standard normal deviate, with large negative values
providing evidence of misfit.

For each student, the lz statistic was calculated using the statistical program R (R
Development Core Team 2010) by means of the following three steps:

1. Item parameters of the Rasch model were estimated for the Eindtoets Basison-
derwijs 2012 and pre-test concurrently.

2. The item parameters estimated in step 1 were fixed and the proficiency parame-
ters of the Rasch model were estimated for the Eindtoets Basisonderwijs 2012.

3. The lz statistic was calculated for the pre-test items, given the item parameters
and proficiency parameters estimated in steps 1 and 2, respectively.

The lz statistic provided a likelihood measure of the low-stakes item-score
pattern of the pre-test given the ability estimate based on the high-stakes item-score
pattern of the Eindtoets Basisonderwijs 2012. High negative lz values suggested
motivational differences between the administration conditions.

After having estimated the lz statistic for the 9,124 item-score vectors, the lz
statistics of the 1,512 students who completed the TTM scale were related to their
self-reported motivation. This was done by estimating the correlation coefficient and
analyzing the mean lz statistic for each sum score on the TTM scale.

Social Desirability. We used the Kruskal–Wallis test to investigate the relation-
ship between the score on the TTM scale and the social desirability (SD) scale so as
to determine whether social desirability influenced the TTM scores.
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3 Results

3.1 Principle Components Analysis

A PCA was performed on the nine items from the TTM scale. After 53 cases having
missing values were deleted, the analysis was performed using data from 1,459
students. Prior to performing the PCA, the suitability of the data for PCA was
assessed. Bartlett’s test of sphericity (Bartlett 1954) reached statistical significance
and the Kaiser–Meyer–Oklin (Kaiser 1974) value was 0.639, indicating that the data
were suitable for PCA.

The PCA produced three components having eigenvalues exceeding 1 that
explained 24.1, 16.4, and 12.7% of the variance, respectively. Analysis of the
screeplot did not show a clear elbow. However, the loadings of the three-component
solution revealed a simple structure. To aid the interpretation of the components,
oblimin rotation was performed. The loadings are presented in Table 1, where the
highest loadings per item are presented in boldface. The three-component solution
explained a total of 53.2% of the variance. The first component can be interpreted
as a “general TTM” component, the second component as an “external motivation”
component, and the third component as measuring “general attitudes.” The small
number of items in each subscale renders the usefulness of the separate subscales
that might be constructed based on these components limited. Therefore, we decided
to use the sum score on the total TTM scale in all subsequent analyses.

The GLB was calculated for the total TTM scale and equaled 0.71. This value
suggests a reliability that allows less important decisions about individuals (Evers
et al. 2010).

3.2 Mixture Rasch Model

We computed the correlations between students’ self-reported motivation and their
posterior probabilities in a subsample of 1,453 students without incomplete data
patterns. A significant but small positive relation between the variables was found,
r = 0.09, p= 0.001.

We inspected the mean posterior probability for each sum score on the TTM
scale. Figure 1 (upper panel) shows the results. Each of the sum scores of 16, 18,
and 20 was produced by just one examinee, so that 95% confidence intervals for the
mean posterior probabilities could not be determined. The student having the lowest
score of 16 on the TTM scale had a very low posterior probability of belonging to
the “motivated” class. However, the student having a sum score of 20 on the TTM
scale had a very high posterior probability of belonging to the “motivated” class.
The student having a TTM sum score of 16 indeed performed better on the high-
stakes Eindtoets Basisonderwijs (95% of the items correctly answered) than on the
low-stakes pre-test (41.67% of the items correctly answered). The student having a
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sum score of 20 performed better on the low-stakes pre-test (66.67% of the items
correctly answered) than on the high-stakes Eindtoets Basisonderwijs (56.67% of
the items correctly answered). The mean percentage of correctly answered items
in the sample of 1,512 students on the Eindtoets Basisonderwijs was 72.56, and
the mean percentage of correctly answered items on the pre-test was 64.96. It
appears that the administration condition indeed influenced the student having a
sum score of 16. Furthermore, the student having a sum score of 20 showed an
average performance on the pre-test but scored below average on the Eindtoets
Basisonderwijs.

As the number of observations on the lower sum scores on the TTM scale was
very low (sum score 16: n= 1, 18: n= 1, 20: n= 1, 21: n= 7, 22: n= 5, 23: n= 12),
we combined the observations for the low sum scores. Figure 1 (lower panel) shows
the relationship between the mean posterior probability and the TTM sum score.

The mean posterior probability was low for the lower TTM sum scores and
stabilized starting from sum score 27 onward at a mean posterior probability of
0.6. The 95% confidence interval for the mean posterior probability for sum score
36 was slightly wider than the confidence intervals for sum score 27 onward.

Figure 2 shows the item difficulty parameters of both latent classes. The difficulty
parameters for most items were higher in the “unmotivated” class than in the
“motivated” class, which was expected. However, for a few items the difficulty
parameters were higher in the “motivated” class than in the “unmotivated” class.

3.3 Person-Fit

The correlation between students’ self-reported motivation and their lz statistics
equaled r = 0.15, p< 0.001 (N = 1,453, incomplete cases removed). Figure 3 (upper
panel) the mean lz statistic for each TTM sum score. Due to the low frequency
of one observation, sum scores 16, 18, and 20 are presented without a 95%
confidence interval. The results for sum scores 16–23 were combined to facilitate
the interpretation of the results. Figure 3 (lower panel) shows the results. The student
having the lowest TTM sum score of 16 had a very low lz statistic. Figure 3 (upper
panel) shows that the mean lz value stabilized starting from sum score of 25 onward
at a mean lz value just under 0. This result indicates that starting from sum score of
25 onward, the item-score patterns on the low-stakes pre-test were consistent with
the proficiency parameters estimated for the high-stakes Eindtoets Basisonderwijs.
The low-stakes administration condition of the pre-test did not (or very little at most)
influence these item-score vectors. The 95% confidence interval for the mean lz
statistic for TTM sum score 36 was only little wider than that for sum score 25
onward.
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Fig. 1 (a) Mean posterior probability per motivation score, (b) mean posterior probability per
motivation score with the lowest sum scores on the TTM scale combined. The gray area represents
the 95% confidence interval for the mean posterior probability
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Fig. 2 Comparison of the item parameters estimated for the two latent classes

3.4 Social Desirability

Based on the data of 1,484 students (incomplete cases removed), Table 2 presents
the SD items and their means and standard deviations. The relationship between the
TTM score and the SD scale score was investigated by means of the Kruskal–Wallis
test. The results revealed a statistically significant difference between the TTM sum
score across the seven different SD scores (group 1, n= 286: sum score 6; group 2,
n= 259: sum score 7; group 3, n= 269: sum score 8; group 4, n= 231: sum score
9; group 5, n= 196: sum score 10; group 6, n= 131: sum score 11; group 7, n= 65:
sum score 12), χ2(6, n= 1,437)= 92.08, p< 0.001. The higher SD sum scores, 11
and 12, recorded a higher median sum score on the TTM scale (Md= 32) than
the SD sum scores 7–10 (Md= 31) and the SD sum score equal to 6 (Md = 30).
As the results showed a statistically significant difference between the TTM sum
scores across the different SD scores, the analyses were rerun without the highest
SD sum score, which was equal to 12. Removing these cases from the analyses
did not change the results regarding the relationship of the TTM scale sum score
and the posterior probabilities of the mixture Rasch model on the one hand and the
lz statistic on the other hand. Therefore, the results of the complete dataset were
interpreted.
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Fig. 3 (a) Mean lz statistic per motivation score, (b) mean lz statistic per motivation score with
the lowest sum scores on the TTM scale combined. The gray area represents the 95% confidence
interval for the mean lz statistic
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4 Discussion

The validity and the reliability of the TTM scale have not been investigated in
earlier studies. Consequently, the question that arises is whether the TTM scale is
appropriate as a measure of self-reported motivation. A more extensive investigation
of the TTM scale is desirable. The reliability (GLB) was appropriate for the
type of inference envisaged (Evers et al. 2010). The PCA revealed an internal
structure approximately corresponding to results reported in existing literature on
TTM (Eklöf 2006). For example, two of three motivational components that Eklöf
found in the development of the TTM Questionnaire (TTM, general attitudes and
performance expectancy) were also found for our TTM scale. The fact that we
did not find a “performance expectancy” component might be due to the limited
number of items in the TTM scale measuring performance expectancy. Furthermore,
our TTM scale was administered to younger children who are probably affected
more by “external motivation” than older children. The relationship between the
TTM sum score and SD was as we expected. Higher SD scores were associated
with higher TTM scores. Most likely, this result explains why the 95% confidence
intervals found with the highest TTM sum score in Figs. 1 and 3 are slightly wider
than the confidence intervals found with the sum scores just below the highest TTM
sum score. This result was probably due to response tendencies or the influence of
SD on the maximum TTM score. We conclude that the TTM sum score can be used
in our research as a measure of self-reported motivation.

The relationship between the posterior probability and the TTM sum score did
not provide an indication of whether the posterior probabilities of the mixture Rasch
model are useful for modeling motivation in low-stakes administration conditions.
Even though the mean posterior probabilities increased when the TTM sum score
increased, it is not certain whether the two latent classes the mixture Rasch model
estimated actually represent “low-stakes” and “high-stakes” response behavior.
After all, the correlation between the TTM sum score and the posterior probabilities
was low. Furthermore, the mean posterior probability stabilized at approximately
0.6. If the latent classes truly represented “low-stakes” and “high-stakes” response
behavior, the mean posterior probability likely would increase more among the
higher TTM sum scores. Possibly, the classes did not represent “low-stakes” and
“high-stakes” response behavior, but instead reflected something else. Furthermore,
the lower difficulty of items in the class representing “low-stakes” response behavior
might indicate that assuming that the student’s ability did not differ across latent
classes was incorrect. An in-depth analysis of the interpretation of the latent classes
is needed. For now, we conclude that the posterior probabilities of the mixture Rasch
model have a limited usefulness in modeling motivational differences.

The lz statistic seemed a more promising approach to model motivational
differences. First, the correlation between the lz statistic and the TTM sum score
suggested a stronger relationship. Second, not only did the student having the
lowest TTM sum score have the lowest lz statistic, the mean lz statistic stabilized
just below 0 among the higher TTM sum scores, which was expected. Even
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though the lz statistic seems more useful in modeling motivational differences,
the results should be interpreted with caution. The parameter estimates on which
the lz statistic is based were estimated in a dataset including highly misfitting
item-score vectors. Consequently, the data of a relatively small cluster of students
showing extreme response behavior might have influenced the parameter estimates.
Therefore it is advisable to only use the lz statistic as a means for identifying
the most extreme cases instead of whole classes displaying “low-stakes” response
behavior. Without using an iterative procedure to update the parameter estimates
and the lz statistics, identification of a whole classes displaying “low-stakes”
response behavior is likely to fail. For now, we conclude that the lz statistic may
be useful in modeling motivational differences, specifically in identifying students
showing extreme differences in response behavior between low-stakes and high-
stakes administration conditions.

References

Bartlett, M. S. (1954). A note on the multiplying factors for various chi square approximations.
Journal of the Royal Statistical Society, 16 (Series B), 296–298.

Baxter, S. D., Smith, A. F., Litaker, M. S., Baglio, M. L., Guinn, C. H., & Shaffer, N. M.
(2004). Children’s social desirability and dietary reports. Journal of Nutrition Educational and
Behaviour, 36, 84–89.

Béguin, A. A. (2005). Bayesian IRT equating with correction for unmotivated respondents on the
anchor-test. Paper presented at the International Meeting of the Psychometric Society, Tilburg,
The Netherlands.

Béguin, A. A. (2008). Application of mixed IRT models in IRT linking: Combining high-stakes tests
with a low-stakes anchor. Paper presented at the International Meeting of the Psychometric
Society, Durham, NC.

Béguin, A. A., & Maan, A. (2007, April 10–12). IRT linking of high-stakes tests with a low-stakes
anchor. Paper presented at the 2007 Annual National Council of Measurement in Education
(NCME) Meeting, Chicago, IL.

Bolt, D. M., Cohen, A. S., & Wollack, J. A. (2002). Item parameter estimation under conditions
of test speededness: Application of a mixture Rasch model with ordinal constraints. Journal of
Educational Measurement, 39, 331–348.

Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness measurement with poly-
chotomous item response models and standardized indices. British Journal of Mathematical
and Statistical Psychology, 38, 67–86.

Eklöf, H. (2006). Development and validation of scores from an instrument measuring student
test-taking motivation. Educational and Psychological Measurement, 66, 643–656.

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ:
Lawrence Erlbaum.

Evers, A., Lucassen, W., Meijer, R., & Sijtsma, K. (2010). COTAN Beoordelingssysteem voor de
Kwaliteit van Tests (geheel herziene versie) [COTAN rating system for test quality (completely
revised edition)]. Amsterdam: NIP.

Kaiser, H. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36.
Kiplinger, V. L., & Linn, R. L. (1996). Raising the stakes of test administration: The impact

on student performance on the National Assessment of Educational Progress. Educational
Assessment, 3, 111–133.



370 M.-A. Mittelhaüser et al.

Lorenzo-Seva, U., & Ferrando, P. J. (2006). FACTOR: A computer program to fit the exploratory
factor analysis model. Behavioral Research Methods, Instruments and Computers, 38, 88–91.

Meijer, R. R., & Sijtsma, K. (1995). Detection of aberrant item score patterns: A review and new
developments. Applied Measurement in Education, 8, 261–272.

Mittelhaëuser, M., Béguin, A. A., & Sijtsma, K. (2011). Comparing the effectiveness of different
linking designs: The internal anchor versus the external anchor and pre-test data (Report
No. 11-01). Retrieved from Psychometric Research Centre website http://www.cito.nl/~/media/
cito_nl/Files/Onderzoek%20en%20wetenschap/cito_mrd_report_2011_01.ashx

O’Neil, H. F., Sugrue, B., & Baker, E. L. (1996). Effects of motivational interventions on
the National Assessment of Educational Progress mathematics performance. Educational
Assessment, 3, 135–157.

R Development Core Team. (2010). R: A language and environment for statistical computing
[Computer software]. Vienna: R Foundation for Statistical Computing.

Rost, J. (1997). Logistic mixture models. In W. Van der Linden & R. K. Hambleton (Eds.),
Handbook of modern item response theory (pp. 449–463). New York: Springer.

Scheerens, J., Glas, C., & Thomas, S. M. (2007). Educational evaluation, assessment, and
monitoring. New York, NY: Taylor & Francis.

Thelk, A., Sundre, D. L., Horst, J. S., & Finney, S. J. (2009). Motivation matters: Using the student
opinion scale (SOS) to make valid inferences about student performance. Journal of General
Education, 58, 129–151.

Verhelst, N. D., Glas, C. A. W., & Verstralen, H. H. F. M. (1995). One-parameter logistic model
(OPLM). Arnhem: Cito, National Institute for Educational Measurement.

Von Davier, M., & Yamamoto, K. (2004). Partially observed mixtures of IRT models: An extension
of the generalized partial-credit model. Applied Psychological Measurement, 28, 389–406.

Wainer, H. (1993). Measurement problems. Journal of Educational Measurement, 30, 1–21.
Wise, S. L., & DeMars, C. E. (2005). Low examinee effort in low-stakes assessment: Problems and

potential solutions. Educational Assessment, 10, 1–17.
Wolf, L. F., & Smith, J. K. (1995). The consequence of consequence: Motivation, anxiety and test

performance. Applied Measurement in Education, 8, 227–242.
Zerpa, C., Hachey, K., van Barneveld, C., & Simon, M. (2011). Modeling student motivation

and students’ ability estimates from a large-scale assessment of mathematics. SAGE open.
doi:10.1177/2158244011421803.

http://www.cito.nl/~/media/cito_nl/Files/Onderzoek%20en%20wetenschap/cito_mrd_report_2011_01.ashx
http://www.cito.nl/~/media/cito_nl/Files/Onderzoek%20en%20wetenschap/cito_mrd_report_2011_01.ashx
http://dx.doi.org/10.1177/2158244011421803


A Recursive Algorithm for IRT Weighted
Observed Score Equating

Yuehmei Chien and Ching David Shin

1 Introduction

Item weighting has historically received much attention. Gulliksen (1950) said that
as long as an overall score is to be formed from separate test scores, the weighting
problem arises. Large-scale tests are usually composed of multiple test sections. One
of the reasons for weighting is that for tests with multiple sections, administrators
commonly incorporate weights to account for, or to correct for, perceived
inequalities between test sections (Stucky 2009; Wainer and Thissen 1993).

Another reason for weighting tests with different item types is to weight in order
to achieve equal contributions to the score for each of several test sections. For
example, a ten-item multiple choice test section (ten points maximum) is coupled
with a single essay question (five points maximum). To achieve equality a weight of
2 is attached to the essay question. No matter what the reasons that test scores are
weighted, testing programs that report a single score based on multiple choice and
performance components must face the issue of how to derive the component scores
(Rudner 2001).

There are various ways to select weights of the test components. Early methods
attempted to account for items with differing length, difficulty, or assumed validity.
For example, Gulliksen (1950) provided formulae and rationales for basing weights
on the reliabilities, the standard deviations of the test or subtest scores, or factor
analysis results. McDonald (1968) proposed a “unified treatment of the weighting
problem,” classifying the approaches described by Gulliksen and others as special
cases of a general approach. Wang and Stanley (1970) reviewed approaches to
determining weights for tests, subtests, and items, and added a consideration of
differential weighting of response options within item.
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As large-scale assessments increasingly use both constructed-response (CR) and
multiple choice (MC) items, recent studies have focused on issues related to creating
weighted composites from tests or subtests consisting of mixed formats of items.
For example, Wainer and Thissen (1993) compared approaches to combine a test
consisting of MC items with one consisting of CR items. Lukhele and Sireci (1995)
discussed this problem in the context of the conversion of the writing skills section
of the General Educational Development (GED) test from classical test theory
analysis to an item response theory (IRT) analysis. Traditionally, the GED test had
weights of 0.64 and 0.36 for the MC and CR sections, respectively, which were
arbitrarily chosen to allow the essay section to adequately contribute without overly
reducing the composite reliability. Ito and Sykes (2000) and Sykes et al. (2001)
examined the effects on composite test scores of increasing the weights of extended
response, CR, or MC items, as compared to the effects of adding an equivalent
number of items of the relevant type. The standard error of the scores that included
weighted components were higher across the latent trait scale, though the difference
was greater in the lower and upper parts of the scale than in the middle. Sykes and
Hou (2003) used a more direct approach to combine weighting with IRT. Sykes
and Hou demonstrate that for tests composed of combined item types (CR and
MC), weights may be applied prior to IRT estimation of scores. This weighting
was accomplished by increasing the portion of the test characteristic curve (TCC)
that was contributed by CR items and then using the modified TCC to create a
weighted-summed-score to IRT-score conversion table. In the example considered
by Sykes and Hou, all CR items were weighted by 2, with the MC items receiving
unit weights. In the study of Schaeffer et al. (2002), the CR items were weighted so
that MC and CR items contributed the same number of points to the total score.

Not only were various methods developed to weight test components to form a
composite score, but also these methods were compared in some studies, and issues
regarding the impact of these methods on reliability and validity were discussed. For
example, Chang (2009) compared five weighting schemes: the equally weighted
model, the reliability weighting model, the standard deviation weighting model,
the error measurement weighting model, and the effective score point model. The
comparison found that, overall, the SD and the error of measurement weighting
models seemed to perform better in establishing the composites than the reliability
or the effective score point model. Rudner (2001) expresses concern that the focus
on the reliability of the composite score may cause researchers to lose sight of
the effect of weighting on validity. For example, a MC subtest may have higher
reliability, but a lower correlation with a criterion measure, than a CR subtest. In
such a case, determining weights may involve a trade-off between the reliability of
the composite and its validity. Ercikan et al. (1998), similarly, describe the value
of CR items as increasing test validity. In their study, they compare scores and
information from MC and CR items calibrated together and calibrated separately
using IRT models, but they do not create a composite score from the results of the
separate calibrations. Related to the issue of score validity, Wilson and Wang (1995)
compared the contributions of MC and performance-based items to define the latent
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variable in IRT analyses and to test information, concluding that performance-based
items contributed more information than MC items but that MC items did affect the
definition of the latent variable.

Although a number of research studies have investigated the psychometric
properties of weighted scale scores and approaches to computing standard error for
such scores, fewer have addressed the method of equating of the weighted scores. If
test scores are weighted to obtain desired properties, it is equally critical to equate
the test forms properly so that the desired properties can be generalized across test
sessions/forms.

2 IRT Observed Score Equating

Using IRT to equate different test forms is not uncommon since the IRT models
are popular in many testing programs for test development, test assembling, and
scoring. Two assumptions are made for using IRT to equate test forms: (1) data
used need to fit the IRT model assumption and (2) precise item parameter estimates
are necessary. When those assumptions hold, the test taker’s ability estimate is
independent of test forms. Then, when the test forms have been put on the same
scale, the same ability estimate will be obtained regardless of which test form the
test taker has taken. This is referred to as sample invariance property in IRT. Based
on the sample invariance property in IRT, obviously, the first step to equate test
forms is to place the item parameters of the test forms on the same scale. After all of
the items’ parameters are placed on the same scale for different test forms, the ability
estimates of the test takers can be compared across different test forms; therefore,
the test forms are equated. If the ability estimates on the θ scale are used for score
reporting, the equating process is actually finished at this point. In practice, the
number-correct scores, however, are more commonly used than the ability estimates
for score reporting of fixed forms due to some issues associated with the ability
estimates. If the ability estimates on the θ scale are NOT used for score reporting,
a further step of equating process is a necessity—that is, to develop a relationship
between the number-correct scores on test forms.

Two equating methods are commonly used when using IRT to equate test
forms—IRT true score equating and IRT observed score equating. The concept
of the IRT true score equating is to equate number-correct scores on two test
forms through true scores, in which the true score of a given θ on one form is
considered to be equivalent to the true score of that given θ on another form.
Different from the IRT true score equating, the IRT observed score equating
develops a relationship directly from the number-correct scores by producing
estimated distributions of observed scores on both forms and then equating those
forms through the conventional equipercentile methods, which identify scores on
one form that have the same percentile ranks as scores on another form. (See Kolen
and Brennan 2004, for details of these two methods.)
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Table 1 An estimated
distribution of observed
scores for a test form with
four items

x f (x) F(x) P(x)

0 0.2 0.2 10
1 0.3 0.5 35
2 0.2 0.7 60
3 0.2 0.9 80
4 0.1 1.0 95

To equate test forms for weighted scores, the IRT true score equating can still be
applied by simply changing the score unit from one to the weighted unit for each
of the score categories. Currently, the computer program named WITSE (Chien
and Shin 2008) can conduct the weighted IRT true score equating. No procedures,
however, exist for conducting IRT weighted observed score equating. The main
reason is that there is no algorithm that can be used to systematically obtain the
estimated distributions of weighted scores and it is laborious to do it manually.
In this paper, an extended algorithm based on the recursive formula described by
Lord and Wingersky (1984) is proposed to solve this predicament. To introduce
this extended algorithm, the recursive formula by Lord and Wingersky (1984) is
described first. Then, the extended algorithm is introduced in the next section.

The essential component of the IRT observed score equating is to obtain the
estimated distributions of observed scores for both forms being equated. To under-
stand the estimated distribution of observed scores, a simple example for a specific
population is presented in Table 1. In Table 1, x refers to test scores of one form,
f (x) is to the proportion of examinees gaining the score x, F(x) is the cumulative
proportion at or below score x, and P(x) is the percentile rank of score x. Based
on the assumption of local independence in IRT, f (x) is calculated by multiplying
each of the probabilities for the responses of score x. For example, the probability
of earning score four for ability θ i is f (x= 4|θ i)= p1(θ i)p2(θ i)p3(θ i)p4(θ i), where
pj(θ i) is the probability to answer the j - th item correctly given θ i. (To simplify the
notation, pj(θ i) is labeled as pij thereafter.) To obtain the distribution of observed
scores based on the ability distribution of test takers, the formula below is used to
accumulate the probability across different theta points:

f (x) =∑
i

f
(

x
∣∣∣θi

)
ψ (θi) , (1)

where ψ(θ ) is the discrete ability distribution. Note that even though the ability
θ is a continuous scale, in practice, the ability distribution is characterized by a
discrete distribution on a finite number of equally spaced theta points. One can use
the estimated posterior distribution of ability obtained from BILOG as the discrete
ability distribution in Eq. (1) when the software is used for item calibration.

In a real situation, the test length is much longer than four items and, therefore,
obtaining f (x|θ i) for a given discrete ability distribution becomes laborious. Fortu-
nately, Lord and Wingersky (1984) proposed a recursive formula presented in Eq.
(2) to calculate f (x|θ i) and it has become commonly used
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fr

(
x
∣∣∣θi

)
= fr−1

(
x
∣∣∣θi

)
(1− pir) , x = 0

= fr−1

(
x
∣∣∣θi

)
(1− pir)+ fr−1 (x− 1|θi

)
pir, 0 < x < r

= fr−1

(
x− 1

∣∣∣θi

)
pir, x = r,

(2)

where fr(x|θ i) is the distribution of number-correct scores over the first r items for
the ability θ i for r > 1. The initial step for r = 1 is f1(0)= 1− p1 for x= 0 and
f1(1)= p1 for x= 1.

This recursive formula works when items are dichotomously scored and not
weighted. As described previously, the items might be weighted for various
purposes. Thus, how to obtain the estimated distribution of weighted score seems
problematic because the total number of the weighted scores is possibly huge,
depending on the variety of weights on items. However, in this paper, a solution
that is based on the recursive formula (Lord and Wingersky 1984) is proposed and
described in detail in the next section.

3 The Extended Recursive Algorithm

3.1 Algorithm

The extended recursive algorithm is proposed to obtain f (z|θ i), where z is the
weighted score based on the weights and test score x and f (z|θ i) is the probability
earning weighted score z for the test takers of ability θ i. To further describe this
algorithm, the following variables are first defined:

xrl: score of category l on item r
pijl: probability earning a score l on item j given θ i

zr: weighted scores over the first r items
wr: weight on item r

For the first item r = 1, f1(z1|θ i)= pi1l, where z1 =w1x1l. For example, if the first
item has three categories scored 0, 1, and 2, respectively, and is weighted by 1.5,
f1(z1 = 0|θ i)= pi10, f1(z1 = 1.5|θ i)= pi11, and f1(z1 = 3|θ i)= pi12. The extended
formula in Eq. (2) can be recursively used to generalize the procedure for the rest of
items (i.e., r > 1) following the steps below.

Step 1: Calculate fr(zr|θ i)= fr(zr− 1 +wrxrl|θ i) for each of different scores xrl and
each of different zr − 1.

Step 2: Sort fr(zr|θ i) by zr.
Step 3: Sum up fr(zr|θ i) and fr(z

′
r|θ i) from Step 2 if zr = z

′
r.
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Table 2 IRT weighted observed score distribution recursion formula example with three items for
test takers of θ i

r xrl zr = zr− 1 +wixrl Calculate fr(zr |θ i) Sort Sum up

1 0 0 f1(z1 = 0)= f1(0)= pi10 f1(0) f1(0)
1 1.5 f1(z1 = 1.5)= pi11 f1(1.5) f1(1.5)

2 0 0+ 0 f2(z2 = 0+ 1.5× 0)= f2(0)= f1(0)pi20 f2(0) f2(0)
1 0+ 1.5× 1 f2(z2 = 0+ 1.5× 1)= f2(1.5)= f1(0)pi21 f2(1.5) f2(1.5)
0 1.5+ 0 f2(z2 = 1.5+ 1.5× 0)= f2(1.5)= f1(1.5)pi20 f2(1.5)
1 1.5+ 1.5× 1 f2(z2 = 1.5× 1+ 1.5× 1)= f2(3)= f1(1.5)pi21 f2(3) f2(3)

3 0 0+ 0 f3(z3 = 0+ 2× 0)= f3(0)= f2(0)pi30 f3(0) f3(0)
1 0+ 1.5× 1 f3(z3 = 0+ 1.5× 1)= f3(1.5)= f3(0)pi31 f3(1.5) f3(1.5)
2 0+ 1.5× 2 f3(z3 = 0+ 1.5× 2)= f3(3)= f3(0)pi32 f3(1.5)
0 1.5+ 0 f3(z3 = 1.5+ 1.5× 0)= f3(1.5)= f3(1.5)pi30 f3(3) f3(3)
1 1.5+ 1.5× 1 f3(z3 = 1.5+ 1.5× 1)= f3(3) = f3(1.5)pi31 f3(3)
2 1.5+ 1.5× 2 f3(z3 = 1.5+ 1.5× 2)= f3(4.5)= f3(1.5)pi32 f3(3)
0 3+ 0 f3(z3 = 3+ 1.5× 0)= f3(3)= f3(3)pi30 f3(4.5) f3(4.5)
1 3+ 1.5 f3(z3 = 3+ 1.5× 1)= f3(4.5)= f3(3)pi31 f3(4.5)
2 3+ 1.5× 2 f3(z3 = 3+ 1.5× 2)= f3(6)= f3(3)pi32 f3(6) f3(6)

An example of using the extended recursive algorithm is presented in Table 2 for
two dichotomous items and one 3-category polytomous item with the weight 1.5 for
all three items.

The extended recursive algorithm is used to calculate the weighted observed
score distribution for test takers of a given ability θ i. To accumulate the weighted
observed score distribution over ability distribution of test takers, Eq. (1) is used
with x replaced by z to obtain f (z). After f (z) is available for each of the weighted
scores, obtaining F(z), the cumulative proportion at or below score z, and P(z), the
percentile rank of score z, is straightforward. After f (z), F(z), and P(z) are obtained
for both forms, the conventional equipercentile methods can be applied to equate
the two forms.

3.2 Equating Example

To demonstrate the use of the extended recursive algorithm, the IRT weighted
observed score equating was conducted using two real test forms administered in
two consecutive years, which are referred to as Form X and Form Y. For illustration
purposes, the IRT unweighted observed score equating, IRT true score equating
for weighted scores, and IRT true score equating for unweighted scores were also
conducted. Both test forms contain 70 items, including 65 dichotomous items and
5 polytomous items with 3, 3, 4, 4, and 4 score categories, respectively. The IRT
weighted and unweighted observed score equating conducted were implemented
using Equating Recipes (Brennan et al. 2009). Equating Recipes provides a set
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of open source functions to perform all types of equating discussed by Kolen
and Brennan (2004). The weighted and unweighted IRT true score equating were
conducted using WITSE (Chien and Shin 2008).

The purpose of the equating conducted is simply to demonstrate the extended
recursive algorithm. Therefore, how to weigh the items was not seriously considered
and weights were arbitrarily set to 1 for those 65 dichotomous items and to 0.5 for
those 5 polytomous items. Tables 3, 4, 5, and 6 present the equating results for the
two different equating methods—IRT observed score vs. IRT true score—and two
different types of scores—weighted vs. unweighted.

The unweighted scores are from 0 to 81 and the weighted scores are from 0 to
73. The weighted scores listed in the tables contain only rounded integer scores. The
form differences (Form Y equivalent minus Form X score) are plotted in Fig. 1. In
the legend of Fig. 1, OB stands for IRT observed score equating, TRUE stands
for IRT true score equating, WT stands for weighted scores, and UWT stands
for unweighted scores. The relationship for the weighted score equating differs
noticeably from the relationship for the unweighted score equating for both IRT
equating methods. In this example, the two different IRT equating methods have
slightly closer form differences on the weighted scores than on the unweighted
scores. Also, the shapes of the form differences as shown in Fig. 1 are different
between the weighted scores and unweighted scores for each of the IRT equating
methods. This is an example of demonstrating the IRT weighted score equating
using the extended recursive algorithm; therefore, further discussion about the
results is not essential.

4 Summary

In this study, an extended recursive algorithm, which is used to construct the esti-
mated score distribution in the process of the IRT weighted observed score equating,
has been proposed and demonstrated using a real data set. As the use of different
weighting schemes has increased to accommodate different purposes under different
testing situations, the proposed extended recursive algorithm allows the practitioners
and the researchers to equate test forms using the IRT weighted observed score
equating. Therefore, further researches on the IRT weighted observed score equating
is achievable and desirable.
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Table 3 IRT unweighted observed score equating results

Form X score Form Y equivalent Form X weighted score Form Y equivalent

0 −0.33 41 34.67
1 0.08 42 35.66
2 0.61 43 36.63
3 1.05 44 37.60
4 1.46 45 38.56
5 1.91 46 39.50
6 2.54 47 40.44
7 3.23 48 41.37
8 4.00 49 42.29
9 4.78 50 43.21
10 5.53 51 44.12
11 6.34 52 45.01
12 7.09 53 45.90
13 7.62 54 46.78
14 8.06 55 47.64
15 8.49 56 48.49
16 9.08 57 49.40
17 9.88 58 50.29
18 10.80 59 51.11
19 11.75 60 51.73
20 12.72 61 52.35
21 13.71 62 53.07
22 14.71 63 54.00
23 15.71 64 55.00
24 16.72 65 56.01
25 17.72 66 57.02
26 18.73 67 58.04
27 19.74 68 59.06
28 20.75 69 60.09
29 21.76 70 61.15
30 22.78 71 62.22
31 23.80 72 63.33
32 24.85 73 64.46
33 26.01 74 65.63
34 27.40 75 66.85
35 28.61 76 68.15
36 29.66 77 69.92
37 30.67 78 73.27
38 31.68 79 75.06
39 32.68 80 76.67
40 33.68 81 78.83
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Table 4 IRT weighted observed score equating results

Form X score Form Y equivalent Form X weighted score Form Y equivalent

0 −0.33 37 28.54
1 0.09 38 29.46
2 0.86 39 30.38
3 1.30 40 31.32
4 1.72 41 32.26
5 2.16 42 33.21
6 2.79 43 34.16
7 3.50 44 35.12
8 4.26 45 36.09
9 5.04 46 37.06
10 5.78 47 38.04
11 6.60 48 39.03
12 7.33 49 40.02
13 7.77 50 41.02
14 8.23 51 42.02
15 8.71 52 43.04
16 9.21 53 44.05
17 9.91 54 45.04
18 11.13 55 45.87
19 11.67 56 46.99
20 12.34 57 47.76
21 13.64 58 48.87
22 14.47 59 50.10
23 15.30 60 50.83
24 16.12 61 52.05
25 16.92 62 53.31
26 18.21 63 54.59
27 19.04 64 55.43
28 19.88 65 56.84
29 20.73 66 57.80
30 21.58 67 59.22
31 22.44 68 60.70
32 23.32 69 62.11
33 24.29 70 65.50
34 25.29 71 67.35
35 26.73 72 68.90
36 27.63 73 71.10
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Table 5 Form Y equivalents of Form X scores using IRT true score equating

Form X score θ Equivalent Form Y equivalent Form X score θ Equivalent Form Y equivalent

0 −99.00 0.00 41 −0.15 34.94
1 −3.56 0.39 42 −0.11 35.93
2 −3.10 0.82 43 −0.07 36.90
3 −2.82 1.29 44 −0.03 37.84
4 −2.61 1.80 45 0.00 38.76
5 −2.44 2.33 46 0.04 39.65
6 −2.30 2.88 47 0.08 40.52
7 −2.17 3.45 48 0.12 41.37
8 −2.06 4.05 49 0.15 42.19
9 −1.96 4.66 50 0.19 43.00
10 −1.86 5.29 51 0.22 43.80
11 −1.77 5.94 52 0.26 44.59
12 −1.69 6.61 53 0.29 45.38
13 −1.61 7.31 54 0.32 46.17
14 −1.54 8.02 55 0.35 46.97
15 −1.47 8.76 56 0.39 47.78
16 −1.40 9.53 57 0.42 48.61
17 −1.34 10.34 58 0.45 49.46
18 −1.28 11.18 59 0.49 50.33
19 −1.22 12.06 60 0.52 51.23
20 −1.16 12.97 61 0.55 52.15
21 −1.10 13.91 62 0.59 53.09
22 −1.05 14.89 63 0.63 54.05
23 −1.00 15.89 64 0.66 55.03
24 −0.94 16.90 65 0.70 56.02
25 −0.89 17.93 66 0.74 57.02
26 −0.84 18.97 67 0.78 58.04
27 −0.79 20.01 68 0.83 59.07
28 −0.74 21.07 69 0.87 60.13
29 −0.70 22.13 70 0.93 61.23
30 −0.65 23.19 71 0.98 62.38
31 −0.60 24.27 72 1.05 63.59
32 −0.56 25.36 73 1.13 64.89
33 −0.51 26.45 74 1.21 66.28
34 −0.46 27.54 75 1.31 67.77
35 −0.42 28.63 76 1.44 69.38
36 −0.37 29.71 77 1.58 71.12
37 −0.33 30.79 78 1.77 73.00
38 −0.28 31.85 79 2.03 75.08
39 −0.24 32.90 80 2.46 77.46
40 −0.19 33.93 81 99.00 81.00
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Table 6 Form Y equivalents of Form X scores using IRT weighted true score equating

Form X
weighted
score θ Equivalent Form Y equivalent

Form X
weighted
score θ Equivalent Form Y equivalent

0 −99.00 0.00 37 −0.29 28.44
1 −3.56 0.39 38 −0.24 29.42
2 −3.10 0.82 39 −0.19 30.40
3 −2.82 1.30 40 −0.15 31.38
4 −2.61 1.80 41 −0.10 32.35
5 −2.44 2.33 42 −0.06 33.31
6 −2.30 2.88 43 −0.01 34.27
7 −2.17 3.46 44 0.03 35.21
8 −2.05 4.05 45 0.07 36.15
9 −1.95 4.66 46 0.11 37.07
10 −1.86 5.29 47 0.16 37.98
11 −1.77 5.94 48 0.20 38.89
12 −1.69 6.60 49 0.24 39.79
13 −1.61 7.27 50 0.29 40.69
14 −1.53 7.97 51 0.33 41.59
15 −1.46 8.68 52 0.37 42.51
16 −1.39 9.41 53 0.41 43.45
17 −1.33 10.17 54 0.46 44.41
18 −1.27 10.95 55 0.50 45.39
19 −1.21 11.75 56 0.55 46.41
20 −1.15 12.57 57 0.59 47.45
21 −1.09 13.42 58 0.64 48.51
22 −1.03 14.28 59 0.69 49.60
23 −0.98 15.16 60 0.75 50.70
24 −0.93 16.06 61 0.80 51.84
25 −0.87 16.96 62 0.86 53.00
26 −0.82 17.87 63 0.93 54.20
27 −0.77 18.79 64 1.00 55.47
28 −0.72 19.72 65 1.08 56.81
29 −0.67 20.66 66 1.17 58.23
30 −0.62 21.61 67 1.28 59.75
31 −0.58 22.57 68 1.41 61.38
32 −0.53 23.53 69 1.56 63.12
33 −0.48 24.51 70 1.75 65.00
34 −0.43 25.49 71 2.01 67.07
35 −0.38 26.47 72 2.44 69.45
36 −0.34 27.45 73 99.00 73.00
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Bartlett Factor Scores: General Formulas
and Applications to Structural Equation Models

Yiu-Fai Yung and Ke-Hai Yuan

This paper is based on a presentation by the first author at the International Meeting
of Psychometric Society held in Lincoln, Nebraska, July 2012.

1 Bartlett Factor Scores and Its Applications
to Structural Equation Modeling

Bartlett (1937) derives a formula for computing factor scores in the context of
exploratory factor analysis. Yuan and Hayashi (2010) adapt Bartlett’s method and
provide extended formulas to compute factor scores in the LISREL-type structural
equation model. The main purpose of the current paper is to continue the effort
to provide more general formulas to compute factor scores in structural equation
modeling. Related formulas that are useful for residual diagnostics, outlier and
leverage point detection, and robust estimation are also derived.

To describe Bartlett’s formula for computing factor scores, it would be useful to
introduce the factor model and its notation. In a factor model, observed variables y
are said to be “explained” by a set of factors f, where y is a p× 1 random vector
of observed variables and f is an m× 1 random vector of latent factors. Typically,
the number of variables p should be much larger than the number of factors m.
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The relationships between observed variables and latent factors are described by the
following factor model equation:

y = ν+Λ f + e (1)

where ν is a p× 1 vector of intercepts,Λ is a p×m matrix of factor loadings, and e
is a p× 1 vector of errors. The latent factors f are centered at zero with a covariance
matrix Φ (that is, E f= 0 and E ff’ =Φ). The errors e are centered at zero with
a covariance matrix Θ (that is, E e= 0 and E ee’ =Θ). Usually, Θ is assumed to
be a diagonal matrix, although it is not necessary to make such an assumption in
the current context. Latent factors and errors are uncorrelated (E fe’ = 0). Moreover,
with the assumption of multivariate normality of factors and errors, this also means
that latent factors and errors are independent.

Moving the intercept term ν in Eq. (1) to the left side of the equation shows the
decomposition of the “true” and “error” components of the centered version of y:

y−ν = Λ f + e (2)

where Λf and e are regarded as the “true” score and error components, respectively,
of the mean-adjusted observed score y.

Because factors are unobserved or theoretically unobservable, formulas have
been derived to estimate the factors given the factor model and the observed
variables y. Bartlett (1937) proposes the following formula for estimating factor
scores:

f̂ =
(
Λ′Θ−1Λ

)−1
Λ′Θ−1 (y−ν) (3)

Due to its form, Eq. (3) is also referred to as the weighted least squares method
for computing factor scores. Bartlett’s method is not the only formula to compute
factor scores. For example, the regression method has also been proposed (see, for
example, Chap. 9 of Johnson and Wichern 2007). However, as discussed in Yuan
and Hayashi (2010), Bartlett’s formula has some nice geometric properties. Define
a projection matrix P by the following equation:

P = Λ
(
Λ′Θ−1Λ

)−1
Λ′Θ−1 (4)

Then the true score component of y− ν is estimated by:

Λf̂ = Λ
(
Λ′Θ−1Λ

)−1
Λ′Θ−1 (y−ν) = P(y−ν) (5)

which is a projection of (y− ν) onto the space spanned by the columns of Λ (or the
true score space). In addition, the error or residual is estimated by:

ê = y− ŷ = y−
(
ν+Λf̂

)
= (y−ν)−Λf̂ = (I−P)(y−ν) (6)

http://dx.doi.org/10.1007/978-1-4614-9348-8_9
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Hence, Eqs. (5) and (6) show that Bartlett’s formula results in an orthogonal
decomposition of (y− ν) for estimating the true and error scores. This property is
important. As ê is not correlated with f̂ , residual analysis based on ê would not
be confounded with the estimation of factor scores. Other desirable properties of
Bartlett factor scores, as compared with the regression factor scores, are discussed
in Yuan and Zhong (2008) and Yuan and Hayashi (2010).

To estimate factor scores in practical applications, the model parameters are
replaced with their estimates (with the “hat” notation) from samples so that Eq.
(3) becomes

f̂ =
(
Λ̂
′
Θ̂
−1

Λ̂
)−1

Λ̂
′
Θ̂

−1
(y− ν̂) (7)

Because the “population” form of Bartlett’s formula in Eq. (3) essentially defines
the computation, for simplicity the “sample” form in Eq. (7), which uses the “hat”
notation, will not be presented in subsequent derivations. It is understood that in
practical applications sample estimates must be obtained in place of the population
parameters in the formulas.

Certainly, factor score estimation is useful in itself as a data reduction technique.
Instead of dealing with a large number of observed variables, one can reduce the
data to a much smaller number of factor scores when the factor model is appropriate.
Moreover, factor score estimation facilitates the adaptation of traditional regression
techniques to general structural equation modeling. Recall that the factor model in
Eq. (1) has a similar form to the regression model. The critical difference is only
that the predictors in Eq. (1) are latent variables. If these latent variables can be
estimated reasonably well, then regression techniques such as outlier and leverage
point detection can be applied to the factor model in very much the same way as they
are applied to the regression model. Many other regression techniques might also
be applicable to structural equation modeling once the factor scores are available.
In this regard, using Bartlett factor scores is a good choice for the factor model.
The harder problem is to make Bartlett factor scores also work in general structural
equation modeling.

Recently, Yuan and Hayashi (2010) propose the use of Bartlett’s method to
estimate factor scores in LISREL-type structural equation models. They provide
extended formulas for estimating factor scores in situation where endogenous latent
variables might be present in the system. With the use of Bartlett factor scores,
they also derive related formulas for outlier and leverage point detection, residual
diagnostics, and robust estimation.

In summary, Bartlett’s method of computing factor scores is very useful not
only because it is a data reduction tool but also it would make some techniques in
regression adaptable to structural equation modeling. However, the original Bartlett
formula is limited as it can only deal with exogenous latent factors. Yuan and
Hayashi (2010) provide extended formulas to deal with endogenous latent factors,
but more general formulas are still needed. As shown in Table 1, there is another
dimension that the original Bartlett formula and the extended formulas of Yuan
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Table 1 Different sets of formulas for computing Bartlett factor scores

No endogenous factors Endogenous factors possible

No exogenous observed variables Bartlett (1937) Yuan and Hayashi (2010)
Exogenous observed variables possible (NA) Current extension

and Hayashi (2010) have not dealt with general structural equation modeling. This
dimension is the presence of exogenous observed variables in structural equation
models. Hence, the main goal of this paper is to derive more general formulas
to fill this gap. The next section describes the general setting and derives the
main formulas for computing Bartlett factor scores. Related results for outlier and
leverage point detection and residual diagnosis are also derived. Next, the derived
formulas are illustrated by using a simulated data set. Finally, the last section
concludes the current findings and suggests further applications.

2 Estimating Bartlett Factor Scores in General
Structural Equation Models

Figure 1a shows the path diagram of a structural equation model. Error terms are
omitted for simplicity. Essentially, ξ 1 in the path diagram is a latent factor for the
observed variables y1, y2, and y3. If the observed variable x and its arrows pointing
to the two y variables were omitted, the path diagram would have represented a
typical confirmatory factor model. In that case, the Bartlett factor scores for ξ 1 can
be computed directly by using Eq. (3). With the presence of the x variable, however,
neither Eq. (3) nor the formulas in Yuan and Hayashi (2010) are applicable.

It is emphasized here that the model in Fig. 1a is not an unrealistic example
created only for motivating the current problem with exogenous observed variables
in structural equation models. In practical situations, response variables y might
indeed covariate with some other variables in a factor model. The model shown
in Fig. 1a represents a covariate variable x with response variables y1 and y2.
It is desirable to estimate Bartlett factor scores with the covariate effects taken
into account. Moreover, there are certainly many other practical analyses in which
exogenous observed variables play important roles in the models, much like the
predictors in regression analysis.

To circumvent the problem with exogenous observed variables, one might
suggest a common “trick” that specifies dummy latent variables to represent
exogenous observed variables perfectly. Figure 1b shows this idea for the current
example. A dummy latent variable ξ 2 is created and its path to the x variable is
fixed at 1. In addition, a fixed zero error variance is represented by a double-headed
arrow attaching to the x variable. Statistically, the model in Fig. 1b is equivalent
to that in Fig. 1a. Both models will have exactly the same model fit given the
data. However, with regard to the estimation of Bartlett factor scores, the trick
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Fig. 1 A structural equation model with an exogenous observed variable

in Fig. 1b does not work as desired. If the model in Fig. 1b is specified in any
SEM (structural equation modeling) software, ξ 2 will be treated literally as a latent
factor (SEM software does not know whether a latent factor is a real or a dummy
one). As a result, factor scores for ξ 1 and ξ 2 would be estimated simultaneously.
However, because one of the error variance is fixed at zero, the matrix Θ will
have a zero entry in its diagonal. Hence, Θ is not invertible in Eq. (3). Even if
SEM software can distinguish between “dummy” and “real” latent variables, it is
still scientifically better to have theoretically sound formulas to compute the factor
scores in general situations. Relying on “tricks” to solve an important problem
might make the software implementation unnecessarily complicated and difficult
to maintain. It might not even work as desired. An approach that explicitly includes
exogenous observed variables is needed, and will be described below.

With no loss of generality, the structural equation model of interest can be
represented by the following model equation:

(
y
η

)
=

(
νy
νη

)
+B

(
y
η

)
+Γ

(
x
ξ

)
+

(
ε
ζ

)
(8)

where

(
y
η

)
is a random vector of endogenous manifest variables y and latent

factors η ,

(
x
ξ

)
is a random vector of exogenous manifest variables x and latent

factors ξ ,

(
ε
ζ

)
is a vector of error terms, which are independent of

(
x
ξ

)
,

(
νy
νη

)
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is a vector of intercepts for manifest variables y and latent factors η , respectively, B
is a matrix of effects among the endogenous variables (with zero diagonal elements),
and Γ is a matrix of effects of the exogenous variables on the endogenous variables.

Therefore, the current system covers the general situation where observed and
latent variables could be either endogenous or exogenous. To derive the formulas
for computing Bartlett factor scores, the approach of Yuan and Hayashi (2010) is
adopted. Basically, the model in Eq. (8) would be “reduced” to a form that matches
the factor model in Eq. (1). Then, Bartlett factor scores for general structural
equation models are computed by Eq. (3), with modified definitions of the parameter
matrices.

First, expand the y component in Eq. (8) to obtain the following:

y = A11νy +A12νη +G11x+G12ξ +A12ζ +A11ε (9)

where A11, A12, G11, and G12 are sub-matrices defined by the following equalities:

(
A11 A12

A21 A22

)
≡ A = (I−B)−1

(
G11 G12

G21 G22

)
≡ G = (I−B)−1 Γ

Invertibility of (I−B) is assumed, but this is a common assumption to all kinds
of structural equation models. The essence of Eq. (9) is that it is identified with the
following form of factor model:

y∗ = ν+Λf + e (10)

Following Yuan and Hayashi (2010), two set of definitions of the variables and
parameter matrices can be used in Eq. (10).

Definition 1 Treating ζ as factors. Let

y∗ = y−G11x, f =
(
ξ
ζ

)
, e = A11ε

ν = A11νy+A12νη , Λ=
(

G12 A12
)

The reduced factor model in Eq. (10) removes the effects of x on y by using
the transformed response y*, which is then functionally related to factors f in a
way that it bears the same form as the factor model in Eq. (1). Hence, with these
new definitions, Eq. (3) can be used for estimating the Bartlett factor scores in
the current general structural equation model. That is, the Bartlett factor scores are
computed by:

f̂ =
(
Λ′ Θ−1Λ

)−1Λ′Θ−1 (y∗ −ν) =
(
Λ′Θ−1Λ

)−1Λ′Θ−1 (y−G11x−ν) (11)



Bartlett Factor Scores 391

where

Θ= A11ΘεA′
11 (12)

and Θε ≡COV(ε,ε′) (Covariance matrix of ε), which is a parameter matrix in the
general structural equation model defined in Eq. (8). Yuan and Hayashi (2010)

argue that Definition 1 with f =

(
ξ
ζ

)
can be used when the model structures are

theoretically sound. Otherwise, ζ should be treated as errors with the following
alternative set of definitions for Eqs. (10)–(12):

Definition 2 Treating ζ as errors. Let

y∗ = y−G11x, f = ξ , e = A12ζ +A11ε
ν = A11νy +A12νη , Λ= G12

With Definition 2, the error covariance matrix Θ in Eqs. (11) and (12) for
estimating Bartlett factor scores is now defined by:

Θ= A12ΨA′
12 +A11ΘεA′

11 +A12COV
(
ζ ,ε′

)
A′

11 +A11COV
(
ε,ζ ′)A′

12 (13)

where Θε ≡COV(ε,ε′), Ψ≡COV(ζ ,ζ ′), and COV(ζ ,ε′)= (COV(ε,ζ ′))′ are all
parameter matrices in the general structural equation model defined in Eq. (8). In
most practical applications, the errors ζ for endogenous latent factors and errors e
for endogenous observed variables are not correlated. In this case, the last two terms
of Eq. (13) vanish. However, if for any reason COV(ζ ,ε′) is non-null, the full form
of Eq. (13) must be used.

In fact, when COV(ζ ,ε′) is non-null, only Definition 2 for the reduced factor
model should be used. The reason is that Definition 1 treats ζ as factors. If
COV(ζ ,ε′) is not null, factors in ζ would correlate with the corresponding error
terms e=A11ε in Definition 1. This violates the assumption of the factor model
in Eq. (1) and would render the use of Eq. (3) invalid for computing Bartlett factor
scores.

3 Applications to Outlier and Leverage Point Detection
and Residual Diagnostics

This section builds upon the preceding results to derive formulas that are needed to
conduct outlier and leverage point detection and residual diagnosis. In regression
analysis, residuals are well defined because the predicted values ŷ can be computed
easily by putting the model estimates and the observed values y into the regression
equation. The residuals are simply defined by:

ê = y− ŷ (14)
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Outlier detection and residual diagnosis are then based on the residuals defined
in Eq. (14). In structural equation modeling, two additional issues need to be
resolved before implementing similar types of regression techniques. First, residuals
ê in structural equation modeling are multi-dimensional. An overall measure of
residuals is needed to facilitate the outlier detections and residual diagnosis. Second,
the computation of the predicted values ŷ is not as straightforward due to the
presence of unobserved values in latent variables. To an extent, the derived results
in the preceding section address the second issue quite satisfactorily. The first issue
has been addressed by using the M-distance (Mahalanobis distance) measure of
residuals (see Yuan and Hayashi 2010). Because the M-distance can be viewed as a
kind of statistically standardized distance measure, the residual M-distance has the
following familiar form:

dr =
√

ê′Ω−1
ê ê (15)

where ê can be computed conveniently by Eq. (6) and Ωê is the covariance matrix
of the error components in ê. With modified definitions for ν and Λ in Definition 1
or 2, and for Θ in Eq. (12) or (13), ê can be obtained from the following formula:

ê = (I−ΛP)y∗ = (I−ΛP)(y−G11x−ν) (16)

and Ωê is given by the following formula:

Ωê = (I−ΛP)Θ (17)

However, Ωê might not have a full rank in general structural equation modeling.
Its rank is reduced by the number of factors, m, in the reduced factor model—that
is, m is the dimension of f in Definition 1 or 2. If m is not zero, the covariance
matrix Ωê is rank deficient. Hence, Ωê is not invertible in Eq. (15). To deal with
this issue, Yuan and Hayashi (2010) proposed a modified M-distance measure for
the multivariate residuals based on extracting the orthogonal components of ê. The
following formula is used instead of Eq. (15) to define the residual M-distance:

dr =

√
(Lê)′

(
LΩêL′)−1

(Lê) (18)

where L is a (p−m)× p matrix that extracts a set of (p−m) orthogonal components
of ê. Principal component techniques can be used to find such an L matrix.

Model outliers are determined by the magnitude of dr, which is computed for
each observation in the data set. By referring dr to a χ-distribution (i.e., square-root
of the χ2-distribution), one can set the outlier detection criterion with the desired
probability level of control, given that the model is reasonably accurate.
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Because of the potential presence of exogenous observed variables in the general
structural equation model, a related diagnostic measure—the leverage M-distance—
also needs to be modified. Previous definition of the leverage M-distance involves
only the Mahalanobis distance in the factor space, as shown in the following
equation:

d f =

√
f̂
′
Ω−1

f̂
f̂ (19)

where Ωf̂ is the covariance matrix COV
(

f̂ , f̂
′)

of the estimated factor scores and is

derived by Lawley and Maxwell (1971, p. 110) as:

Ωf̂ = COV
(
f , f ′

)
+

(
Λ′Θ−1Λ

)−1
(20)

where COV(f,f)≡Φ is the model parameter matrix for factor covariances.
With the inclusion of exogenous observed variables x, Eq. (19) should be

replaced with the following extended formula:

dx,f̂ =

√(
(x− x)′

(
f̂ −κ

)′ )
Ω−1

x,f̂

(
x− x
f̂ −κ

)
(21)

where x is the mean of the x variables, κ is the model parameter vector for factor
means (which is fixed zero in factor model, but could be a free parameter vector in
general structural equation models), and Ωx,f̂ is the covariance matrix of all x and

f̂ variables, which is given by:

Ωx,f̂ =

(
Σxx COV

(
x, f ′

)
COV

(
f̂ ,x′

)
COV

(
f̂ , f̂

′)
)

(22)

where Σxx is the covariance matrix of x, COV
(

f̂ ,x′
)

is the covariance matrix

between f̂ and x, and COV
(

f̂ , f̂
′)

is the same as Ωf̂ , as defined in Eq. (20). Because

Σxx is a model matrix and can be estimated from samples, the only quantity that

needs to be further defined in Eq. (22) is COV
(

f̂ ,x′
)

. By using Eq. (11) for Bartlett

factor scores, the covariance matrix between Bartlett factor scores f̂ and x can be
expressed as:

COV
(

f̂ ,x′
)
= COV

((
Λ′Θ−1Λ

)−1Λ′Θ−1 (y−G11x−ν) ,x′
)

=
(
Λ′Θ−1Λ

)−1Λ′Θ−1 {COV(y,x′ )−COV(G11x,x′ )}
=

(
Λ′Θ−1Λ

)−1Λ′Θ−1 (Σyx′ −G11Σxx′
) (23)
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However, using model Eqs. (9) and (10), it is easy to derive that:

Σyx′ = G11Σxx′ +Λ COV
(
f ,x′

)
(24)

By using Eq. (24), Eq. (23) simplifies to:

COV
(

f̂ ,x′
)
=

(
Λ′Θ−1Λ

)−1Λ′Θ−1Λ COV
(
f ,x′

)
= COV

(
f ,x′

)
(25)

Because COV(f,x′) is a parameter matrix (that is, the covariance matrix for all
exogenous non-error variables) in the general structural equation model, it can be
estimated in practical situations. Using the results in Eqs. (20) and (25), Ωx,f̂ in Eq.

(22) is now given by the following formula that contains only population parameter
matrices:

Ωx,f̂ =

(
Σxx COV

(
x, f ′

)
COV (f ,x′) COV

(
f , f ′

)
+

(
Λ′Θ−1Λ

)−1

)
(26)

Hence, with the formula for Ωx,f̂ in Eq. (26), the leverage M-distance computed

with Eq. (21) is now well defined.
Equation (25) is worth of note because it shows another nice property of the

Bartlett factor scores. That is, even though the true factor scores are unknown in the
population, its covariances with any exogenous observed variables in the model are
reflected truthfully by the covariances of the computable Bartlett factor scores and
the exogenous observed variables.

Another nice property of Bartlett factor scores is that all the derived results in this
paper will not be affected if nonzero factor means κ is assumed for factors. That is,
even if Eq. (1) assumes nonzero factors for f (so that E f= κ �= 0), Bartlett factor
scores can still be computed by Eq. (3). This result is certainly important in the cur-
rent context of structural equation modeling, in which factor means can be assumed
to be nonzero in many applications. Appendix A.1 gives a proof of this result.

4 Illustrations

With the derived general formulas in Eqs. (18) and (21) for computing residual and
leverage M-distances, this section shows how outlier and leverage point detection
and residual diagnosis could be done in practical applications. A simulated data set
with N= 100 is drawn from the model shown in Fig. 1a. The distribution of the data
is multivariate normal. The SAS/IML software (SAS Institute Inc. 2012) was used
to generate the data. Analysis results and graphical output were produced by the
CALIS procedure of SAS/STAT software (SAS Institute Inc. 2012). Appendix A.2
shows the SAS program code for the simulation and the analysis.

Detection of Outliers and Leverage Points. To detect model outliers, one must first
set a detection criterion. Under multivariate normality, the residual M-distance is
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Table 2 The ten
observations with largest
residual M-distances

Diagnostics

Case number Residual (M-distance) Outlier Leverage

13 3.02244 *
5 2.97928 *
93 2.91068 *
78 2.86228 * *
63 2.47793 *
44 2.37628
88 2.24721
11 2.23010
48 2.20710
66 2.14201

* Alpha-level = 0.05 is used.

approximately χ-distributed with degrees of freedom (p−m), where p is the number
of y variables and m is the number of exogenous latent factors in the reduced factor
model [Eq. (10)]. Therefore, the detection criterion can be set at a certain “extreme”
upper tail-value in the χ-distribution. Such a detection criterion can be defined by
the usual notion of α-level (at the upper tail only). For example, the model in Fig. 1a
has three endogenous observed variables and one factor to estimate. The degrees of
freedom (df ) is 2. Suppose that a 0.05 α-level is desirable, one can first find the
upper 0.05 tail-value of the chi-square distribution with df = 2. This tail-value is
5.992. The square-root of this tail-value is 2.448, which will then be used as the
criterion for outlier detection. Observations with residual M-distances [Eq. (18)]
greater than 2.448 are judged to be model outliers by the criterion. Similarly, the
detection criterion for leverage points is also set by specifying an appropriate α-
level, say, 0.05, at the upper tail of the χ-distribution. Notice that, however, for
leverage point detection the degrees of freedom (df ) of the reference chi-distribution
is the number of exogenous variables (excluding error terms) in the model. Because
there are two exogenous non-error variables in Fig. 1a, the detection criterion value
for leverage M-distance [Eq. (21)] is also 2.448 for the current example.

Table 2 shows the numerical results of outlier diagnosis. The ten observations
with the largest residual M-distances [Eq. (18)] are shown and ordered. Observa-
tions 13, 5, 93, 78, and 63 are diagnosed as outliers. In addition to being an outlier,
Observation 78 is also marked as a leverage point. Table 3 shows the numerical
results of leverage points. The ten observations with the largest leverage M-distances
[Eq. (21)] are shown and ordered. Observations 33, 71, 95, 78, and 53 are diagnosed
as leverage points, with Observation 78 also being marked as an outlier. These
results (detection of five outliers and five leverage points) are expected because the
criteria have been set at the 0.05 α-level and the simulated data set (N= 100) was
generated from a correctly specified model.

Figure 2 shows the residual by leverage plot for the current example. The residual
by leverage plot is a popular graphical technique for showing outliers and leverage
points in the context of regression analysis. With the uses of residual and leverage
M-distances, this example can also make use of such a well-established graphical
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Table 3 The ten
observations with largest
leverage M-distances

Diagnostics

Case number Leverage (M-distance) Leverage Outlier

33 2.83947 *
71 2.72600 *
95 2.61350 *
78 2.55818 * *
53 2.55109 *
29 2.41610
65 2.31782
24 2.30883
50 2.11795
68 2.08888

* Alpha-level = 0.05 is used.

Fig. 2 Residual by leverage plot

technique. In fact, it would be more accurate to call Fig. 2 the residual M-distance
by leverage M-distance plot. Calling it residual by leverage plot also makes perfect
sense because the interpretations are actually the same as that in regression analysis.

Essentially, this residual by leverage plot shows the same outlier and leverage
point diagnoses as that of Tables 2 and 3. However, the graphical plot shows an
overall picture of the distribution of outliers and leverage points in a single display.
As discussed in Yuan and Zhong (2008) and elsewhere, leverage points themselves
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Fig. 3 Q–Q plot of residual M-distances

are not bad at all for model estimation unless they are also outliers. In the current
example, only Observation 78 is classified both as an outlier and a leverage point,
as shown in the upper-right region of the plot in Fig. 2.

Residual Diagnostics Based on Residual M-Distance. In regression analysis, the so-
called Q–Q plot examines whether the empirical distribution of the residuals departs
from the theoretical distribution. Significant departures might imply the model being
considered is not adequate for the data. In general structural equation modeling,
however, residuals are multi-dimensional and the corresponding Q–Q plot must
be based on an overall measure of residuals. The residual M-distance measure
[Eq. (18)] can serve such a purpose. Unlike the traditional residuals that can be
positive and negative, residual M-distances are always positive. Also, the reference
theoretical distribution for residual M-distances is the chi-distribution rather than
the normal distribution in regression analysis. Figure 3 shows the Q–Q plot for
the simulated data. The residual M-distances are plotted against their theoretical
quantiles of the chi-distribution. Ideally, all observations should fall closely onto the
line with slope= 1 for this simulated data set. Observations that are marked with the
“+” signs (and with their observation numbers labeled) are those observations that
show greatest departures from the theoretical distribution. Even though it is known
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that all data were generated from the true model, due to sampling fluctuation Fig. 3
still shows that some residual M-distances deviate significantly from the theoretical
quantiles (for example, Observations 78, 93, and 5). More discussions on identifying
outliers using the Q–Q plot are given in Yuan and Hayashi (2010).

5 Conclusion

In this paper, general formulas for computing Bartlett factor scores and the
corresponding residuals are derived for general structural equation model. The
derived results also lead to general formulas for computing residual and leverage
M-distances, which play important roles in case-level (observation-level) residual
diagnostics in general structural equation modeling. Along the line, some interesting
properties of Bartlett factor scores are also discussed. Finally, a preceding section
illustrates how these derived formulas are used in applications.

The current results can also be applied to robust estimation of structural equation
models. The residual M-distance defined in Eq. (18) can be transformed into
weights by some weighting functions in the context of robust estimation, as
shown in Yuan and Hayashi (2010). The idea is that outlying observations with
large residual M-distances are downweighted during the estimation of the model
parameters. Residual M-distances are computed repeatedly during the iterative
steps of estimation until a converged solution is found. The current results could
broaden the application scope of the robust estimation scheme proposed by Yuan
and Hayashi (2010). For example, robust estimation based on Eq. (18) and the
weighting scheme proposed by Yuan and Hayashi (2010) have been implemented
successfully in the CALIS procedure of the SAS/STAT software (2012) for general
structural equation modeling. See Appendix A.2 for an example program.

If outlier and leverage detection is based on the robust estimation results of
structural equation models, then it resembles to the “unmasking” technique in
regression diagnostics (Rousseeuw and van Zomeren 1990). Masking effects refer
to the situation where true model outliers (leverage points) could not be detected
if there are multiple outliers (leverage points) present in the data. The reason is
that the effect of a single outlier can be strong enough so that residuals (leverage
points) corresponding to other outliers (leverage points) are not significant anymore.
However, with the use of robust estimation, the influence of outliers has already been
downweighted during the estimation. Consequently, the masking effects would be
minimized at the later stage when outlier (leverage point) detection is performed.
To a certain degree, the derived formula for Bartlett factor scores and other related
ones in the current paper can advance the use of the unmasking technique in
structural equation modeling (see Appendix A.2 for an example code in SAS).
Hopefully, more and more useful regression diagnostic techniques could be adapted
to the field of structural equation modeling.
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A.1 Computing Bartlett Factor Scores with Nonzero κ
for Factor Means

This appendix shows that the computation of Bartlett factor scores of the factor
model in Eq. (3) will not be affected by the assumption of nonzero factor means κ
for factors f.

Now, assume in Eq. (1) that

E f = κ �= 0 (A1)

Equation (1) is rewritten in the following form:

y = ν+Λ(f −κ+κ)+ e
= v∗+Λf ∗+ e

(A2)

where ν*= ν +Λκ and f*= (f−κ). Because Eq. (A2) still has the same form as
the original factor model in Eq. (1) (with E f*= 0), Bartlett’s formula for computing
factor scores in Eq. (3) can be applied to the factor system in Eq. (A2). That is,

f̂
∗
=

(
Λ′Θ−1Λ

)−1Λ′Θ−1 (y− v∗)
=

(
Λ′Θ−1Λ

)−1Λ′Θ−1 (y−ν)− (
Λ′Θ−1Λ

)−1Λ′Θ−1Λκ
=

(
Λ′Θ−1Λ

)−1Λ′Θ−1 (y−ν)−κ
(A3)

Equation (A3) can then be written as:

f̂
∗
+κ =

(
Λ′Θ−1Λ

)−1
Λ′Θ−1 (y−ν) (A4)

Because f= (f*+κ) is just a translation of factor space with a fixed vector
parameter in κ , by using Eq. (A4) Bartlett factor scores f̂ for the original factors
can be estimated equivalently by:

f̂ = f̂
∗
+κ =

(
Λ′Θ−1Λ

)−1
Λ′Θ−1 (y−ν) (A5)

Therefore, Eq. (A5) shows that Bartlett factor scores is computed the same way
as Eq. (3), even if nonzero factor means κ is assumed for factors f.
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A.2 SAS Program for Generating Simulated Data
and Model Fitting

/* Simulated Data */

proc iml;

call randseed(111);

mean = {0, 5, 0, 0, 0};
cov = diag({1, 3, .6, .7, .6});
cov[1,2] = .5;

cov[2,1] = .5;

N = 100;

exog = randnormal(N, Mean, Cov);

/* rows: x y1-y3; columns: xi, x, e1, e2, e3 */

lambda = {0 1 0 0 0 ,

1 .3 1 0 0 ,

.7 .2 0 1 0 ,

.6 0 0 0 1 };
data = exog*lambda‘;

varname = {“x” “y1”“y2” “y3”};
create sim_data from data [colname=varname];

append from data;

close sim_data;

quit;

/* Detection of outliers and leverage points */

ods graphics on;

proc calis residual alphalev=.05 alphaout=.05
plots=all;

path

kxi ===> y1-y3,

x ===> y1-y2;

pvar kxi = 1.;

run;

ods graphics off;
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/* Robust estimation */

proc calis robust;

path

kxi ===> y1-y3,

x ===> y1-y2;

pvar kxi = 1.;

run;

/* Robust estimation with Unmasking in outlier and
leverage point detection*/

ods graphics on;

proc calis residual robust plots=all;

path

kxi ===> y1-y3,

x ===> y1-y2;

pvar kxi = 1.;

run;

ods graphics off;
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A Scalable EM Algorithm for Hawkes Processes

Peter F. Halpin

1 Introduction

Halpin and De Boeck (2013) considered the time series analysis of bivariate event
data in the context of dyadic interaction. They proposed the use of point processes
(e.g., Daley and Vere-Jones 2003), and in particular Hawkes processes (Hawkes
1971; Hawkes and Oakes 1974), as way to capture the temporal dependence
between the actions of two individuals. Here an action is treated as an occurrence,
which is a discrete event that is viewed as having negligible duration relative to the
period of observation. Occurrences may be contrasted with events that are viewed as
extended in time (e.g., states, regimes). Examples of occurrences during the course
of a conversation include specific types of statements (e.g., criticism, questions,
lies) or nonverbal behaviors (e.g., laughter, facial expressions, gestures). Point
processes are especially well suited to cases where human interaction is mediated
by technology (e.g., text-messaging, emailing, chatting, tweeting), because such
interactions are naturally parsed as series of time-stamped events. We can also view
interaction more broadly, including, say, a student’s interactions with an intelligent
tutor, or a gamer’s interactions with a virtual agent. The fundamental idea is to
represent an interaction as a series of discrete, instantaneous actions. The theory
of point processes then provides a general statistical framework for modelling the
timing of those actions—how their probability changes in continuous time, how this
depends on previous actions, and how the actions of two or more people may be
coordinated in time.

The approach to estimation taken by Halpin and De Boeck (2013) was based on
the so-called branching structure representation of the Hawkes process, which they
showed to be amenable to the EM algorithm (see also Veen and Schoenberg 2008).
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Unfortunately, the runtime of the algorithm grows quadratically in the number of
observations, making its application to large data sets impractical. The present paper
provides a modification of the original algorithm that substantially improves its
runtime. The modification reduces the number of computations in the algorithm
by tolerating a specified degree of rounding error, and this results in linear growth
for many applications.

The next section outlines the Hawkes process in sufficient detail for this paper to
be self-contained and gives an intuitive description of the problem to be addressed.
The subsequent section presents the modification to the EM algorithm and illustrates
some cases where this yields linear growth. The final section uses data simulation
to arrive at a magnitude of rounding error that has a negligible effect on parameter
recovery.

2 The Hawkes Process

Under mild conditions, a point process can be uniquely defined in terms of its
conditional intensity function (CIF). The main reason for specifying a point process
in terms of its CIF is that this leads directly to an expression for its likelihood. A
general form for the CIF is

λ (t) = lim
Δ↓0

E(M{[t, t +Δ)} | Ht)

Δ
(1)

where M{(a,b)} is random counting measure representing the number of events
(i.e., isolated points) falling in the interval (a,b), E(M{(a,b)}) is the expected
value, and Ht is the σ -algebra generated by the time points tk, k ∈ N, occurring
before time t ∈ R+ (see Daley and Vere-Jones 2003). In this paper it is assumed
that the probability of multiple events occurring simultaneously is negligible, in
which case M is said to be orderly. Then for fixed t and sufficiently small values
of Δ, λ (t)Δ is an approximation to the bernoulli probability of an event occurring
in the interval [t, t +Δ), conditional on all of the events happening before time t. In
applications, this means that we are concerned with modelling the probability of an
event in continuous time, conditional on previous events.

Point processes extend immediately to the multivariate case. M{(a,b)} is then
vector-valued and each univariate margin gives the number of a different type of
event occurring in the time period (a,b). Although Halpin and De Boeck (2013)
considered a bivariate model, this paper focusses on the univariate case since the
problem to be addressed can be most simply explained in that situation.

The CIF of the Hawkes process can be specified as a linear causal filter:

λ (t) = μ+
∫ t

0
φ(t − s) dM(s). (2)
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The interpretation of Eq. (2) is unpacked in the following three points.

1. The parameter μ > 0 is baseline, which can be a function of time but is here
treated as a constant.

2. The response function φ(u) governs how the process depends on its past. Hawkes
processes require the following three assumptions:

φ(u)≥ 0, u ≥ 0; φ(u) = 0, u < 0;
∫ ∞

0
φ(u)du ≤ 1.

Together these assumptions imply that

φ(u) = α× f (u;ξ ) (3)

where 0 ≤ α ≤ 1 and f (u;ξ ) is a probability density function on R+ with
parameter ξ . Equation (3) presents a convenient method for parametrizing φ ,
with some common choices for f (u;ξ ) being the exponential (e.g., Ogata 1988;
Truccolo et al. 2005), the two-parameter gamma (Halpin and De Boeck 2013),
and the power law distribution (Barabási 2005; Crane and Sornette 2008). Under
this parameterization, α is referred to as the intensity parameter and f (u;ξ ) the
response kernel.

3. In the case that M is orderly, dM(u) = M[u + Δ) is representable as a series
of right-shifted Dirac delta functions and the integral reduces to a sum over all
events in [0, t], yielding

∫
φ(t − s) dM(s) = ∑

t j<t
φ(t − t j). (4)

Thus each new time point is associated with a response function describing how
that time point affects the future of the process. Under the assumptions of the
Hawkes process, each new time point increases the probability of further events
occurring in the immediate future (i.e., φ(u) is non-negative). The summation
shows that the effect of multiple time points on the probability of further events
is cumulative. For these reasons, Hawkes processes are often referred to as self-
exciting; the occurrence of one event increases the probability of further events,
whose occurrence in turn increases the probability of even more events. In terms
of applications this means that Hawkes processes are appropriate for modelling
clustering, which occurs when periods of high event frequency are separated by
periods of relative inactivity. It has been argued that such a phenomenon is quite
general in human dynamics (e.g. Barabási 2005; Kalman et al. 2006). An intuitive
example is “chatting” or text-messaging. Here a conversation consists of bursts
of messages sent from both users, and different chat sessions are separated by a
relatively low frequency of messages. Other plausible examples from the dyadic
context include turn taking in conversation (e.g., Sacks et al. 1974) and affective
reciprocity (e.g., Gottman 1994).
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As noted, the CIF leads directly to an expression for the log-likelihood (see
Daley and Vere-Jones 2003):

l(θ | X) =∑
k

ln(λ (tk))−
∫ T

0
λ (s)ds (5)

where [0,T ] is the observation period, X = t1, t2, . . . tN denotes the observed
event times, and θ contains the parameters of the model. Substitution of Eqs. (2)
through (4) into Eq. (5) shows that the log-likelihood of the Hawkes process
contains the logarithm of a weighted sum of density functions. A similar situation
occurs in finite mixture modelling (e.g., McLachlan and Peel 2000) and nonlinear
regression (e.g., Seber and Wild 2003), where it is known to lead to numerical
optimization problems related to ill-conditioning of and multiple roots in the
likelihood function. In the present case the problem is aggravated by the fact that
the number of densities appearing in the likelihood increases with the number of
observations, which is shown in Eq. (4). It is important to note that the number
of model parameters does not grow with the number of time points; the densities
are simply right-shifted. In general, if there are a total of N observed events, then
there are a total of N(N −1)/2 response functions appearing in the summation in
Eq. (5). This is the source of the quadratic growth of the optimization problem,
which is the issue to be dealt with in this paper.

The quadratic growth is especially problematic because the EM algorithm
proposed by Halpin and De Boeck (2013) requires the use of multiple starting
values. This means that even moderately sized data sets cannot be estimated
in a reasonable amount of time. For example, an actual runtime of over 24 h
was recorded for a problem with N ≈ 1,500 events and 50 starting values
(implemented in the C language on a machine with 2 GHz of processing speed).
Because one of the most exciting potential applications of Hawkes processes is to
“big data” collected via computer-mediated communication (e.g., email, twitter),
it is important to have an estimation approach that is feasible for large samples.
The following section outlines how that can be accomplished.

3 Reducing Runtime by Introducing Rounding Error

This section outlines the original EM algorithm suggested by Halpin and De Boeck
(2013) and then considers how to reduce its runtime. The algorithm is based on
an alternative representation of the Hawkes process, which is referred to as its
branching structure. In terms of the EM algorithm, the branching structure provides
the complete data representation of the model, whereas the causal filter in Eq. (2)
is the incomplete data representation. Taking this approach, the logarithm of the
sum of densities in Eq. (5) is replaced by the sum of their logarithms, which
results in better conditioning of the numerical optimization problem and was shown
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to perform satisfactorily with relatively small data sets (N ≈ 400). Although the
considerations of this section could also be made for Eq. (5), the focus is on the EM
approach.

The branching structure representation of the Hawkes process is in terms of a
cluster Poisson process. It was first proposed by Hawkes and Oakes (1974), who
proved it to be equivalent to the representation given in the foregoing section,
thereby establishing the existence and uniqueness of the process. The branching
structure has also found more intuitive applications. For example, in ecology it
is used to describe the growth of wildlife populations in terms of subsequent
generations of offspring due to each immigrant (e.g., Rasmussen 2011). In the
context of disease control, it is interpreted as the number of people contaminated
by each subsequent carrier (e.g., Daley and Vere-Jones 2003). Veen and Schoenberg
(2008) were the first to consider the branching structure as a strategy for obtaining
maximum likelihood estimates (MLEs) of a Hawkes process.

For the present purpose, the effect of the branching structure is to decompose
the Hawkes process into N independent Poisson processes whose rate functions are
given by the response functions in Eq. 3. These processes govern the number of
“offspring” of each event. There is also an additional Poisson process governing the
number of “immigrant” events; this process has a rate function given by the baseline
parameter μ . Importantly, each event tk is assumed to be due to one and only one
of these independent Poisson processes: either one centered at its parent, t j, with
t j < tk, or the baseline process. Consequently, if we knew which process each event
belonged to, estimation would reduce to that for a collection of independent Poisson
processes. It is therefore natural to introduce a missing variable that describes the
specific process to which each event tk belongs and proceed by means of the EM
algorithm. As with other applications of the EM algorithm, the missing data need
not correspond to the hypothesized data generating process; it can be treated merely
as a tool for obtaining MLEs.

The following notation is employed to set up the algorithm. Let Z =
(Z1,Z2, · · · ,ZN) denote the missing data. If an event tk is an offspring of event t j,
t j < tk, this is denoted by setting Zk = j. If an even tk is an immigrant, then Zk = 0.
Also let φ j(u) denote the response functions governing each Poisson process, where
it is understood that φ0(u) = μ . For j > 0, these response functions are identical to
those introduced in Eq. (3) above, with the subscript serving to make explicit the
centering event t j.

Letting l(θ | X ,Z) denote the complete data log-likelihood, Halpin and De Boeck
(2013) showed that

Q(θ ) = EZ|X ,θ l(θ | X ,Z)

=
N

∑
j=0

(
∑
k> j

ln(φ j(tk − t j))×Prob(Zk = j | X ,θ )−
∫ T

0
φ j(T − t j)

)
(6)
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where

Prob(Zk = j | X ,θ ) =
φ j(tk − t j)

∑r<k φr(tk − tr)
. (7)

Equations (6) and (7) provide the necessary components of an EM algorithm for
the Hawkes process. Equation (7) is readily computed on the E step. On the M
step these probabilities are treated as fixed and entered into Eq. (6). Using this
approach, Halpin and De Boeck (2013) provided closed form solutions for the
baseline parameter μ and the intensity parameter α . However, in order to obtain
the parameters of the response kernel, it is necessary to numerically optimize the Q
function. This is the computationally expensive part of the algorithm.

Since the sum over k > j is the source of the quadratic growth of the Q function,
let’s first consider how this can be reduced. Recall that for j > 0, φ j(u)=α× f (u;ξ )
is just a weighted density on R+. For usual choices of the response kernel,
f (u;ξ ) → 0 as u becomes large (i.e., response functions typically have a right
tail that asymptotes at zero). Intuitively, this means that when tk − t j is large, the
contribution of φ j(tk − t j) to Eq. (6) will be negligible.

In order to make this idea more formal, consider the sets

Wj = {k : f (tk − t j;ξ )> w}.

If w denotes some specified degree of rounding error, then Wj contains the indices
of all time points for which the response function φ j(u) is greater than the rounding
error. In other words, Wj denotes the non-negligible time points for process j.

Next consider the consequences of replacing the sum over k > j with the sum
over k∈Wj in Eq. (6). This substitution will be referred to as the modified Q function
and denoted Q̃. Letting |W | denote the average of the cardinalities of the Wj then
|W | ×N densities appear in the sum over k ∈ Wj. |W | is referred to as the linear
growth factor of Q̃. The relative efficiency of Q̃ over Q may be expressed as

R = 1− |W |×N
N(N − 1)/2

= 1− 2|W |
N − 1

where 1 ≥ R ≥ 0 is scaled so that values closer to 1 denote better efficiency of Q̃.
Clearly, the improvement comes down to how much smaller |W | is than N. The exact
value of |W | depends on several factors including (a) ξ , which is updated throughout
the optimization process, (b) w, which can be determined by the researcher, and (c)
the actual observations tk, which are fixed. This makes it difficult to obtain analytical
results on |W |. However, Table 1 provides evidence that it does not grow with N.

The table was produced by simulating data using the inverse method (see Daley
and Vere-Jones 2003). The causal filter in Eq. (2) was used for simulation, not
the branching structure. Three different sample sizes (N = 500,1500, and 5000)
were simulated from each of three different models. Model 1 and Model 2 used
exponential response functions, with Model 1 having moderate intensity (α = .4)
and Model 2 having high intensity (α = .8). This means that the data from Model 2
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Table 1 Growth of the Q̃
function in number of time
points (simulated data)

N = 500 N = 1,500 N = 5,000

Model 1 6.665 6.589 6.632
Model 2 19.870 23.609 25.083
Model 3 28.226 24.0133 23.567

Note: N is number of simulated time points and the table
entries are the linear growth factor, |W |, of the modified
Q function, Q̃, computed using the true parameter values.
|W | ×N gives the number of computations required for Q̃
and 1− 2|W |/(N − 1) gives the efficiency of Q̃ relative to
the original Q function proposed by Halpin and De Boeck
(2013). The models are described in the text

showed a much higher degree of clustering (i.e., a larger number of events occurring
in close proximity to one another). Model 3 is also high intensity (α = .8) but
used a two-parameter gamma kernel with shape parameter set to .5. The result is
heavier-tailed response functions, which have been reported in various applications
to human communication data (e.g., Barabási 2005; Crane and Sornette 2008;
Halpin and De Boeck 2013). The choices of the intensity parameter are intended
to reflect its possible range rather than realistic values; I have not seen intensity
estimates greater than .5 in real data applications. For each simulated data set, Q̃
was computed using the true parameter values and w = 1× 10−10.

The main point to be taken from Table 1 is that the values of |W | did not
increase with N and therefore the rate of growth of Q̃ was linear. The exact
rate of linear growth depended on the parameters of the data generating model,
with more clustered data showing faster growth. However, even at extraordinarily
high intensities and even at the smallest sample size, the growth rate was much
smaller than (N − 1)/2. Based on these results, it reasonable to conclude that Q̃
is more efficient to compute than Q, even in circumstances where the advantage is
minimized. It should be emphasized that in general the improvement in performance
will depend on the type of response kernel, with kernels that asymptote more quickly
showing better improvements.

This section has only focussed on the computation of the Q function, but entirely
similar remarks can be made about the computation of Eq. (7) on the E step, and
about the computation of Eq. (5). We have not yet addressed how the rounding error
w affects the MLEs produced by the EM algorithm. That is the topic of the next
section.

4 Effect of Rounding Error on the EM Algorithm

This section considers how the use of Q̃ affects convergence and parameter recovery.
Data were again simulated using the inverse method with the incomplete data model
(Eq. (2)). The data generating model used a two-parameter gamma density as the
response kernel. The parameters of the data generating model are stated in Table 3
and were based on the real data example reported in Halpin and De Boeck (2013).
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Table 2 Effect of rounding error on log-likelihoods (simulated
data)

w = 0 w = 1×10−10 w = 1×10−5 w = 1×10−3

Mean 100 99.966 113.163 652.114
SD 100 100.014 99.268 284.921

Note: Table entries are means and standard deviations (SD) of
differences between log-likelihoods of the estimated models and
the log-likelihoods computed using the true values. The means and
standard deviations are reported as percentages of the values for
w = 0 (i.e., percentages of the intrinsic estimation error). The MLEs
were obtained using the EM algorithm described by Halpin and De
Boeck (2013) with the modified Q̃ function and the indicated levels
of rounding error, w

A total of n = 250 data sets of N = 500 time points were generated from the model.
For each data set, the EM algorithm described in Halpin and De Boeck (2013) was
implemented using Q̃ in place of Q. The starting values for the estimation algorithm
were obtained by randomly disturbing the data generating values, which avoided the
need for multiple starting values. Convergence was evaluated using the incomplete
data log-likelihood (Eq. (5)). The convergence criterion was an absolute difference
of less than 1× 10−5 on subsequent M steps.

The simulation compared the rounding errors w = 0, 1 × 10−10, 1 × 10−5,
1 × 10−3. Because a rounding error of 0 is not possible in practice, this was
implemented using w= 2.22×10−16, which is the smallest double precision number
representable in most modern computers. Therefore the value w = 0 represents the
amount of error that is intrinsic to the specific realization of the estimation process
(i.e., with the given sample size, convergence criterion, etc.). The remaining values
of w represent the introduction of rounding error for computation efficiency.

Let’s first consider the role of rounding error in the convergence of the algorithm.
Figure 1 shows the relationship between the log-likelihoods evaluated at the MLEs
and the log-likelihoods evaluated at the data generating parameters. The relation is
quite similar for the three smallest values of w, but is appreciably worse for the
largest value. It is important to note that even for w = 0, the relationship is not
perfect. The amount of additional error introduced by the two middle values of w is
not perceptible in the figure.

Table 2 provides a closer look at the log-likelihoods. It reports the mean and
standard deviation for the differences between the log-likelihoods of the estimated
models and the log-likelihoods computed using the true values. The table entries are
reported as percentages of the difference between the log-likelihoods of w = 0 and
of the true values (i.e., as percentages of the intrinsic estimation error). If w > 0 did
not affect the convergence of the EM algorithm, all values in the table would be 100.
Based on the table we can conclude that all values of w > 0 introduced additional
error into the convergence of the EM algorithm. For w = 1× 10−10 this was less
than .1 % of the intrinsic estimation error.
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Fig. 1 Relation of log-likelihoods at convergence with log-likelihoods computed using the data
generating values (simulated data). The model was estimated using the EM algorithm described
by Halpin and De Boeck (2013) with the modified Q̃ function and the indicated levels of rounding
error, w

Turning now to address parameter recovery, Table 3 reports the bias and error of
the MLEs for each level of w. The entries are reported as percentages of the data
generating parameters. It can be seen that bias and error were very similar for the
lowest two values of w, but for larger values of w there is increased bias and reduced
error. Figure 2 shows the distribution of estimates of the gamma response kernels
for w = 0 and w = 1× 10−10.

Based on this simulation it may be concluded that there is little to distinguish the
results obtained using a rounding error of w = 1× 10−10 from the intrinsic error in
the algorithm (i.e., w = 0). On the other hand, w ≤ 1× 10−5 has a relatively large
influence both on the convergence of the algorithm and on the bias and error of the
resulting parameter estimates.



412 P.F. Halpin

Table 3 Effect of rounding
error on parameter recovery
(simulated data)

μ α κ β
True values .1 .45 .6 10

w = 0 2.289 −2.662 2.782 −0.4757
(12.707) (14.282) (11.812) (49.986)

w = 1×10−10 2.266 −2.634 2.775 −0.2537
(12.725) (14.315) (11.824) (50.664)

w = 1×10−5 4.458 −5.475 5.7890 −19.507
(10.857) (11.592) (11.215) (22.937)

w = 1×10−3 29.083 −35.617 28.390 −78.925
(9.969) (8.786) (17.114) (3.618)

Note: Table entries are bias (error) of maximum likelihood
estimates (MLEs) as percentages of the true values. μ denotes
the baseline parameter and α the intensity parameter; κ is the
shape parameter of the two-parameter gamma response kernel,
and β its scale parameter. MLEs were obtained using the EM
algorithm described by Halpin and De Boeck (2013) with the
modified Q̃ function and the indicated levels of rounding error, w

5 Conclusions

The number of computations required by the EM algorithm proposed by Halpin and
De Boeck (2013) grows quadratically in the number of observed events, making its
application to large data sets infeasible. This paper has shown that the runtime of
the algorithm can be reduced by introducing rounding error into the computation
of the Q function (i.e., the objective function of the M step of the EM algorithm).
In three applications involving response functions with right tails asymptoting at
zero, this was shown to result in linear growth. The consequences for convergence
of the algorithm and parameter recovery were also considered. A rounding error of
1×10−10 was found to have negligible effects compared to the intrinsic error of the
algorithm, but larger values were not. While more research can be done to optimize
the rounding error for specific applications of the algorithm, it can be concluded that
the approach presented here provides an acceptable compromise between runtime
and computational accuracy, resulting in scalable maximum likelihood estimation
of Hawkes processes.
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Fig. 2 Histograms of maximum likelihood estimates (MLEs) of the two-parameter gamma density
kernel (simulated data). Bold vertical line indicates the value of the data generating parameters.
MLEs were obtained using the EM algorithm described by Halpin and De Boeck (2013) with the
modified Q̃ function and the indicated levels of rounding error, w
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Estimating the Latent Trait Distribution
with Loglinear Smoothing Models

Jodi M. Casabianca and Brian W. Junker

1 Introduction

This chapter is concerned with the specification of the latent trait distribution for
purposes of numerical integration in the marginal maximum likelihood (MML)
estimation of item parameters (Bock and Aitkin 1981; Bock and Lieberman 1970).
Poor quality of specification of the latent trait distribution is linked to poor
quality item parameter estimates (Boulet 1996; Casabianca et al. 2010; Stone 1992;
Swaminathan and Gifford 1983; Woods and Lin 2009; Woods and Thissen 2006;
Yamamoto and Muraki 1991). The current standard practice for specifying the
latent trait distribution is to assume a fixed (standard) normal distribution. A popular
alternative is to estimate the distribution (Bock and Aitkin 1981; Mislevy and Bock
1985). Since these standards were implemented, some alternatives were introduced
(e.g., Woods and Lin 2009; Woods and Thissen 2006; Xu and Jia 2011), but none
have replaced what is still considered standard practice.

In this chapter we place the current and standard specifications for the latent
trait distribution into a framework defined by the family of loglinear smoothing
(LLS) models, where the weights at each point in the distribution are the object
of the smoothing. LLS models have a long history in psychometrics, and not only
for smoothing observed test score distributions before test equating (Holland and
Thayer 1987, 1998, 2000). Smoothing of the latent distribution is not a new concept
for multidimensional discrete latent trait models either (Heinen 1996; Haberman
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et al. 2008; Rost and von Davier 1995, Chap. 14; Xu and von Davier 2008; von
Davier 2005). Casabianca (2011), Casabianca and Lewis (2012), and Casabianca et
al. (2010) demonstrate the usefulness of LLS in the unidimensional IRT context.
Our purpose in this paper is to propose a theoretical generalization of this approach
and connect it to extant treatments of the latent trait distribution.

The chapter is organized as follows. Section 2 introduces the notation needed to
discuss the latent trait distribution; Sect. 3 integrates some pertinent discussions
of the latent trait distribution for MML from the literature, mainly Mislevy
(1984) and Heinen (1996); Sect. 4 provides a very brief introduction to LLS for
latent distributions; Sect. 5 describes how LLS framework connects the various
specifications of the distribution; Sect. 6 focuses on the importance of the smoothing
aspect and how this relates to the bias–variance tradeoff; Sect. 7 provides results
from a simulation study; lastly, Sect. 8 describes some future work and concluding
statements.

2 Notation

Let nl be the number of test takers with response pattern l (l= 1, . . . , L) and
L

∑
l=1

nl = N, xl the vector of item response patterns, which gives the item responses

for k items (i= 1, . . . , k) for response pattern l such that x1l,x2l,, . . . , xkl, P(xil| θ ;ϕ)
an IRT model specifying the conditional probability of obtaining a score xil for item
i from response pattern l given θ and a vector of item parameters ϕ (e.g., for a
3PL model: discrimination, difficulty, and guessing, ϕ ′ = [α ′ β ′ γ ′]), and g(θ ) the
density for the latent trait distribution.

Any discrete approximation to the continuous density g(θ ) can be characterized
by a set of Q discrete points T1, . . . , TQ on the θ scale, together with weights W(Tq).
Because, for fixed Q, this setup cannot perfectly approximate a continuous density
g(θ ), it is common instead to consider the discrete density g(θ*), with random
variable θ* taking values T1, . . . , TQ with probabilities p1, . . . , pq. In the remainder
of this paper we only consider the discrete density g(θ*), which can be sufficiently
approximated by the Tq, W(Tq) setup.

The discretization and consequent summation eliminates the need for integration
over dθ . MML finds parameters ϕ and weights W(Tq) to maximize

lnL =
L

∑
l=1

nl ln [L(xl)]∼=
L

∑
l=1

nl ln

{
Q

∑
q=1

[
k

∏
i=1

P
(
xil

∣∣Tq
)]

W (Tq)

}
. (1)

Note that since the density g(θ ) is unobserved and therefore considered missing,
Bock and Aitkin (1981) used the expectation-maximization (EM) algorithm (Demp-
ster et al. 1977) to implement MML estimation of item parameters using discrete
weights W(Tq).
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3 Extant Taxonomies for the Latent Trait Distribution

Mislevy (1984) discussed four approaches to treating g(θ ), or equivalently, spec-
ifying W(Tq), in MML. First, a normal solution for the latent trait distribution is
specified by integrating over a continuous normal distribution (Bock and Lieberman
1970), or with Gauss–Hermite quadrature with fixed points and weights (Bock
and Aitkin 1981). The normal solution appears in commercial IRT software as
normal (symmetric) weights over fixed points where the same points are maintained
throughout the solution of the likelihood equations. Second, in a nonparametric
solution, a discrete distribution on a set of points approximates g(θ )—the points
and/or weights of the distribution are estimated without assuming a parametric
or distributional form (Bock and Aitkin 1981; Laird 1978). The third and fourth
approaches are less popular: a beta-binomial distribution and a resolution of mixed
normal components (useful in a multidimensional context) (Mislevy 1984).

Heinen (1996) captured the true generality of the latent distribution by a
classification of estimation methods in the context of discrete latent trait models.
His taxonomy organizes MML estimation methods into parametric, [partially]
semiparametric, and fully semiparametric; these labels assume a parametric item
response function (IRF). For example, his parametric estimation uses a parametric
form for the distribution (with or without specified parameter values), and points
and weights remain fixed throughout the estimation procedure. The [partially]
semiparametric method estimates distributional weights, and points are prespeci-
fied. Lastly, the fully semiparametric method estimates both points and weights,
which is frequently the case when estimating (ordered) latent class models and less
frequently the case when estimating IRT models. The two latter cases are “semi”
parametric1 since the model for the distribution is nonparametric and the model
for the IRF is parametric. Note that Mislevy’s normal and nonparametric solutions
are analogous to Heinen’s parametric and [partially] semiparametric estimation
methods, respectively.

In the next section we provide a brief description of LLS in order to set up the
structure and notation for the LLS framework for estimating latent distributions.

4 A Brief Primer on LLS

LLS estimates the probabilities pq from the contingency table n= (n1, . . . ,nQ) of
observations of each value of θ*, T1, T2, . . . , TQ, using the polynomial loglinear
model

loge (pq) = β0 +
M

∑
m=1

βmT m
q , (2)

1Note that in the present paper, we label estimation methods based on the model for the latent
distribution only; while it is acknowledged that the parametric form of the item response function
may change, it will be restricted to having a parametric form throughout this discussion.
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where Tm
q is the mth power of Tq, and the coefficients βt = (β 1,β 2, . . . ,βM) and

intercept β 0 are to be estimated from the observed counts n= (n1, . . . ,nQ). Note
that β 0 is a normalizing constant forcing the sum of the pq to be 1.

The degree of smoothness (or actually “roughness”) in LLS is determined by
the highest power M of Tq in (2). For M = 0 (i.e., not including Tq in the model at
all) LLS maximally smoothes the pq estimating them as a uniform distribution. For
M sufficiently large, the loglinear model in (2) is saturated and LLS estimates the
pq as the natural method of moments estimators, nq/N; indeed for M =Q− 1, the
polynomial on the right hand side of (2) will be an interpolating polynomial for the
log(pq) ′ s.

The main feature of LLS is that it matches sample moments of the observed
distribution. The maximum likelihood estimates from the model in (2), β̂, force
the estimated probabilities to satisfy moment-matching conditions put forth by the
model specification M and the observed distribution (Holland and Thayer 1987,
1998, 2000). That is, the β̂, satisfy the property that

∑
q

T m
q p̂q =∑

q
T m

q (nq/N) , m = 1, . . . ,M.

In other words, the sample moments of θ* match the theoretical moments under
the fitted model.

When M is small, few moments are matched, and fitting (2) provides more
smoothing. When M is large, more moments are matched and fitting (2) provides
less smoothing. Once the parameters are estimated, the estimated probabilities are
computed and considered the weights W(Tq) that characterize the smooth fitted
distribution in the form of a histogram. The next section demonstrates how LLS with
latent variables can accommodate some standard approaches to specifying g(θ*).

5 LLS Framework for Estimating the Latent
Trait Distribution

This section details the connection between LLS models with latent variables to the
standard approaches for estimating distributions to characterize g(θ*) (Casabianca
2011; Casabianca and Lewis 2012; Casabianca et al. 2010). Table 1 provides the
LLS framework for estimating the latent trait distribution; for each method, the
table lists the parameters estimated in order to specify W(Tq), and the analogous
LLS model. In order to associate the weights of the latent trait distribution to the
probabilities determined by LLS, we denote the probability at location Tq by W(Tq)
instead of pq as in the traditional LLS notation.
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Table 1 LLS framework for methods of specifying the latent trait distribution

Method What is estimated? Number of parameters estimated LLS analogue

Standard normal – 0 M = 2
Normal μ , σ 2 2 M = 2
LLS smooth β M 2<M <Q− 1
Nonparametric W(Tq) Q− 1 M =Q− 1

Note: The standard normal approach is equivalent to a 2-moment LLS model with β 1 = 0 and
β 2 =− 0.5

5.1 Connections: LLS and the (Standard)
Normal Distribution

Noting the normal distribution is a two parameter model, we begin with a basic
smoothing model with M = 2 given by

loge [W (Tq)] = β0 +β1T 1
q +β2T 2

q . (3)

If a quantity proportional to a normal density was inserted for W(Tq) in (3) such

that W (Tq) = K exp

(
− 1

2 ·
(Tq−μ)

2

σ2

)
then:

log [W (Tq)] = logK − 1
2
(Tq − μ)2

σ2 ,

log [W (Tq)] = logK − T 2
q

2σ2 − Tqμ
σ2 − μ2

2σ2 ,

log [W (Tq)] =

(
logK − μ2

2σ2

)
+

(
− μ
σ2

)
Tq +

(
− 1

2σ2

)
T 2

q

and based on the form of (3), β1 =− μ
σ2 and β2 =− 1

2σ2 .

Following from this are the moments of θ ∗ : μ =−β1 ·σ2 = β1
2β2

. and σ2 = −1
2β2

.

If μ = 0 and σ2 = 1, then β 1 = 0 and β 2 =− 0.5, and the resultant probabilities
(which must be scaled to sum to one) characterize a symmetric histogram or
a discretized normal distribution. Depending on how the IRT scale is fixed, a
normalizing of this distribution limits the moments of θ̂ ∗ to characterize a standard
normal. If the scale is fixed using the item parameters, the estimated moments of θ̂ ∗
reflect the parameters of the latent trait distribution.

This relationship is implicitly acknowledged by many psychometricians and to
the authors’ knowledge has never been shown explicitly in an effort to point to a
framework of models for θ*. It is important to note that for computational reasons



420 J.M. Casabianca and B.W. Junker

the recovered distribution will not precisely match a normal; as in any estimation
procedure there is estimation error in the fitting process.

5.2 Connections: LLS and Nonparametric Estimation

A nonparametric model fully estimates the weights W(Tq) of g(θ*) from the data

without constraints (with the exception that
Q

∑
q=1

Ŵ (Tq) = 1; Bock and Aitkin 1981;

Mislevy and Bock 1985). The sufficient statistic Nq =
L

∑
l=1

nlP
( j)

(
T = Tq

∣∣∣xl

)
is

computed in the E-step of the EM algorithm for the MML estimation of item
parameters. This quantity, which is a function of the posterior probability of trait
level q given response pattern l, is subsequently used in the M-step to estimate item
parameters; however, it is also used to compute the W(Tq).

A saturated LLS model (where M =Q− 1) can exactly reproduce W(Tq). The
matrix equation log(p)=Tβ defines a system of Q linear equations for the saturated
LLS model with fixed locations. Here there are Q known values for the fixed
distribution locations taken to powers 1, 2, . . . , Q− 1 making T a square Q×Q
(where Q=M + 1) matrix,

T =

⎡
⎢⎢⎢⎢⎣

1 T 1
1 T 2

1 · · · T Q−1
1

1 T 1
2 T 2

2 · · · T Q−1
2

...
...

...
. . .

...
1 T 1

Q T 2
Q · · · T Q−1

Q

⎤
⎥⎥⎥⎥⎦ ,

βt = (β 0,β 1,β 2, . . . ,βQ− 1) are M =Q− 1 unknown model parameters plus a con-
stant β 0, and pt = (log[W(T1)], log[W(T2)], . . . , log[W(TQ)]) are Q unknown values
for the probabilities for the discrete set of point locations for the distribution. If we
consider this equation written as a linear combination of the columns of T such that

⎡
⎢⎢⎢⎣

log [W (T1)]

log [W (T2)]
...

log [W (TQ)]

⎤
⎥⎥⎥⎦= β0

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦+β1

⎡
⎢⎢⎢⎣

T1

T2
...

TQ

⎤
⎥⎥⎥⎦+β2

⎡
⎢⎢⎢⎣

T 2
1

T 2
2
...

T 2
Q

⎤
⎥⎥⎥⎦+ · · ·+βQ−1

⎡
⎢⎢⎢⎢⎣

T Q−1
1

T Q−1
2

...
T Q−1

Q

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

β0 +β1T1 + · · ·+βQ−1T Q−1
1

β0 +β1T2 + · · ·+βQ−1T Q−1
2

...
...

...
...

β0 +β1TQ + · · ·+βQ−1T Q−1
Q

⎤
⎥⎥⎥⎥⎦ ,
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it is easy to see that T is full rank (rT =Q) and invertible and therefore log(p)=Tβ
is a determined system with a unique solution.

Depending on the number of items, k, and the number of support points, Q, this
system may be nonlinear but can be approximated locally by a linear function (based
on Taylor approximations) and solved with a number of approaches. Holland and
Thayer (1987) give details on how to solve for β for when p is known. However,
because the distributional parameters of g(θ*) are unknown in the IRT context, we
solve for β within an EM algorithm where values for p are obtained in the E-step
and values for β are estimated in the M-step (see Casabianca 2011; Casabianca and
Lewis 2012). The β estimated in the M-step are used to solve for fitted frequencies,
which then become the updated weights used in the next iteration of the EM
algorithm.

6 Smoothing and the Bias–Variance Tradeoff

We demonstrated how LLS can exactly reproduce the nonparametric model, but
what is the advantage? The importance of LLS becomes apparent when actually
smoothing or matching M <Q− 1 moments. Consider the family of smoothing
models, which match M moments to the distribution. The advantage is that LLS will
characterize a good representation of g(θ*) but require fewer estimated parameters.
The degree of the advantage depends on M and Q. If we thought of the bias–
variance tradeoff on a continuum, LLS allows us to be in an optimal place on
that continuum. As we increase M (or the number of estimated parameters), we
will reduce bias, but also increase the variance. Smoothing permits us to find a
model that well represents the original distribution, but at a lower cost. This is true
with the nonparametric model (as described) as well as models where both point
locations Tq and weights W(Tq) are estimated, and models where the number of
points Q, the point locations Tq, and the weights W(Tq) are estimated. Thus far in
our framework we have worked out the generalizations for the nonparametric model
estimating W(Tq); the generalizations for these other two nonparametric models are
in progress, however, note that LLS has already been applied to such models in the
literature (Haberman et al. 2008; Rost and von Davier 1995; Xu and von Davier
2008; von Davier 2005).

We simulated 50 3PL item responses from a bimodal latent trait distribution
(depicted in Fig. 1 as the continuous bimodal curve on each plot) and performed
a series of item calibrations using the LLSEM2 software with a fixed standard
normal distribution, the nonparametric model, and LLS specifications for the latent
trait distribution. Figure 1 shows the estimated discrete distributions for g(θ*) in
order of increasing complexity from left to right: the discretized standard normal

2LLSEM: LogLinear Smoothing Expectation Maximization (Casabianca and Lewis 2011) is a
software available upon request by Jodi M. Casabianca (jodicasa@andrew.cmu.edu).
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N(0,1) Nonparametric
Model

LLS
M=4

LLS
M=3

LLS
M=2

LLS
M=Q-1

…

BIAS-VARIANCE TRADEOFF

LLS
M=5

Increase M (or # parameters)  reduced bias, increased variance

Fig. 1 The bias–variance tradeoff continuum as it pertains to the estimation of latent distributions
with LLS models

distribution, distributions from the 2-, 3-, 4-, and 5-moment LLS models, and then
distributions from the saturated LLS model (M =Q− 1) and the nonparametric
model. Starting with the rightmost distribution, one can see that the true latent
distribution is nicely captured by the nonparametric model, which is based on direct

estimation using Nq =
L

∑
l=1

nlP
( j)

(
T = Tq

∣∣∣xl

)
. One should also notice the saturated

LLS model to the left of it, which is exactly the same. Depending on the number of
support points Q for the latent distribution, the number of estimated parameters for
these two options might be 10 (default in BILOG is Q= 10; Zimowski et al. 2003)
or 40 (as is standard practice in many operational calibrations) or even 120 (used
in item parameter recovery simulation studies; Woods and Lin 2009; Woods and
Thissen 2006). Large Q presents estimation and identifiability issues when using
it with a complex parametric form for the IRF (Haberman 2005); simply put, it
behooves the modeler to select a parsimonious model for g(θ*).

Now with parsimony and Q in mind, direct your attention to the distributions
estimated with the LLS models. The M = 2 distribution will simply be a discretized
normal, M = 3 will capture skew, M = 4 will capture skew and kurtosis, and
so on. The M = 4 and M = 5 distributions are very similar to the M =Q− 1
and nonparametric distributions; the fit might even be better for the smoothing
models, especially with the larger mode. What would be the advantage of using
the 5-moment LLS model? With Q= 10, there would not be a huge difference;
the 5-moment LLS model estimates 5 β parameters and the nonparametric model
estimates 9 weights. However, with Q= 40 there are still only 5 β parameters
estimated with LLS and 39 weights estimated with the nonparametric model. With
Q= 120, which is an unusual level of Q but appears in the literature, there are 5
parameters estimated with LLS and 119 with the nonparametric model. Clearly,
there is the opportunity for a much more parsimonious model with LLS, with lower
standard errors, as long as not much bias is introduced.

It is also important to get the shape of the θ distribution right, rather than just
estimating or assuming a discretized normal distribution for g(θ*). One example of
the importance is the impact on item parameter estimation. For item calibration,
testing companies often use the normal distribution assumption (i.e., the fixed
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discretized normal). Research shows that when the true latent trait distribution is
nonnormal (bimodal, skewed, etc.) there is bias in item parameter estimates when
assuming the distribution is normal (Boulet 1996; Casabianca et al. 2010; Stone
1992; Swaminathan and Gifford 1983; Woods and Lin 2009; Woods and Thissen
2006; Yamamoto and Muraki 1991).

7 Item Parameter Recovery Simulation Results

The simulated results in the previous section were an excerpt from a simulation
study that evaluated 3PL item parameter recovery under a true normal, negatively
skewed, and bimodal distribution with three different treatments of g(θ*) and
Q= 11 (Casabianca and Lewis 2012). Results from this study show that the max-
imum absolute differences3 in true versus estimated ICCs for 50 items were only
negligibly different when the true distribution is normal. However, consistent with
the literature on this topic, there were differences under nonnormal conditions. With
a negatively skewed latent trait distribution (skewness=−1.5), the method yielding
the least error (smallest of the maximum absolute differences) was the 4-moment
LLS model (0.046). Assuming a normal distribution yielded approximately double
the amount of error in ICCs (0.089). The nonparametric approach was comparable
(0.053) but still technically yielded larger errors than LLS. The 4-moment LLS
model also yielded the least error (0.045) under the bimodal latent trait distribution
condition (as shown in Fig. 1). The maximum absolute difference from assuming a
normal distribution was 0.01 higher, and the nonparametric model was only 0.003
higher. In both nonnormal cases, the amount of error from LLS models converged
to the amount of error from the nonparametric model as the number of moments M
increased.

It should be noted that these results are specific to the collection of items used
in our simulation and the degree of nonnormality modeled for the true latent trait
distributions. In addition, the small differences in error between the LLS models
and the nonparametric model indicate that even with a relatively small degree of
nonnormality, there is still an advantage to using a more parsimonious model and
furthermore, the advantage may be greater with a larger degree of nonnormality or
under more complex models with additional estimated parameters.

3The maximum absolute difference between the estimated item characteristic curves (ICCs) and the
true ICCs was used to assess overall recovery of item parameters. That is, the absolute difference
between the ICC using estimated item parameters and the ICC using the true item parameters was
computed for each item across the Q quadrature points. Within condition, item, and replication, the
maximum of these absolute differences (over the Q quadrature points) was determined. The mean
of the absolute maximum difference was taken across the 50 items, and the mean was also taken
across replications.
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8 Future Work and Summary

In this chapter, we placed two standard approaches for specifying the latent
trait distribution into a framework defined by the family of LLS models. For
a normal distribution, this is just a LLS with two moments (M = 2). However,
under a model that estimates the distribution, LLS allows the estimation of a more
parsimonious model while still capturing any important nonnormal characteristics
of the distribution. Depending on Q this is hugely important in reducing the number
of estimated parameters.

Our theoretical generalization of LLS to extant treatments of the latent trait distri-
bution is incomplete. As Heinen (1996) described, there are two other approaches to
specifying the latent distribution: (1) estimating point locations and weights and (2)
estimating Q, locations and weights. These models specify distributions for discrete
latent trait models, or ordered latent class models. Clearly, there will be more
estimated parameters with these models, specifically, 2Q− 1 and 2Q, respectively.
LLS has already been used with these more complex models (Haberman et al. 2008;
Rost and von Davier 1995; Xu and von Davier 2008; von Davier 2005). We foresee
the theoretical advantage to LLS to be greater with these more complex models, such
as multidimensional IRT models, where additional research with nonnormal latent
variable distributions is needed (Cai 2010); however, both the theoretical component
and empirical studies investigating the actual payoff are needed.

In addition to extending the LLS framework, we intend to compare this approach
with recent contributions by Woods and colleagues which involve splines for
estimating the latent trait distribution (Woods and Lin 2009; Woods and Thissen
2006).
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From Modeling Long-Term Growth
to Short-Term Fluctuations: Differential
Equation Modeling Is the Language of Change

Pascal R. Deboeck, Jody S. Nicholson, C.S. Bergeman,
and Kristopher J. Preacher

1 Introduction

Language is an integral part of expressing ideas, so much so that the statistical
language(s) we understand may affect our ability to formulate ideas. One’s initial
statistics class consists of exposure to a new language; familiar words take on
new meaning, mathematical symbols are used to abbreviate entire paragraphs,
and you even learn a little Greek. Learning other dialects, for example structural
equation modeling (SEM) diagrams, expands one’s ability to posit and understand
statistical models. The numerous simultaneous regressions occurring in many SEM
diagrams would be difficult to understand as a list of equations, but these equations
become readily accessible when expressed in the language of SEM diagrams.
The representation of regression in diagram form allows for the formulation and
understanding of new ideas. Differential equations, and their component derivatives,
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constitute a language that is less often used in the social sciences; the few clear
exceptions like the Hessian matrix and calculation of the minima or maxima of
functions are in the vernacular of relatively few social scientists. Like learning the
language of SEM, learning the language of derivatives has the potential to change
the way we understand models with which we are familiar, and opens us to new
ways of formulating ideas.

In this chapter we present the idea that differential equation modeling is the
language of change. The meaning in this statement is twofold. In the literal sense
derivatives express the change in variables with respect to each other; differential
equation models—models that include derivatives—are models that express the
relations between the states of variables and how variables are changing. Derivatives
and differential equations provide a language that gives a framework for precisely
describing change. But this approach also provides a different way of understanding
many of the models of change that are currently being used in research; by
providing a unifying framework, differential equations have the potential to help in
identifying models that have been overlooked and therefore can identify unexplored
questions. By providing a means to alter how questions about change are being
asked, differential equation models constitute a language that could lead to changes
in the kinds of research being done.

This chapter begins by considering differential equations and derivatives in the
context of something familiar—ordinary linear regression. As the new language is
introduced, the chapter expands into other familiar models including hierarchical
linear models (HLMs) and latent growth curve models (LGCMs). These sections
introduce the derivative language framework as literally being a language for
describing change. We then consider the application of derivatives to the modeling
of intraindividual observations. The language framework is used to extend the idea
of differential equation modeling as the language of change so as to introduce
methods and models that are likely to be unfamiliar to many readers. Three
differential equation models will be presented, each of which provides cutting edge
questions that can be addressed using social science data.

2 Regression

Whether made explicit or not, early in statistics classes students are introduced to
the idea that mathematics can be used to address whether one variable is related
to another, and more specifically that the change in one variable can be related to
changes in another variable. This idea often begins with the case of relating central
tendency to group membership (i.e., t-tests), but becomes more general with the
introduction of ordinary linear regression. This idea gets a formal mathematical
representation,

y = β0 +β1x+ ε, (1)
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Fig. 1 The figure (left) depicts a trajectory with a constant first derivative, and consequently a
second derivative equal to zero. The figure (right) depicts a trajectory where there is a change in
the first derivative with respect to time; that is, the second derivative is nonzero

where β0 represents the value of a variable y when x = 0, β1 expresses how changes
in a variable x are related to changes in y, and ε represents error. This seemingly
simple equation allows for significant amounts of statistical language to be taught,
including keywords like intercept and slope, statistic and parameter. Interpretation
of β0 and β1 also becomes an important exercise, at which point figures such as
Fig. 1 (left) may be used. In Fig. 1 it has been assumed that we are working with the
equation y = 5+ 2x, and therefore β0 = 5 is the value of y when x = 0. A series of
points (joined with a line) can then be drawn, substituting values x = 1,2,3 . . . and
solving for y. Earlier in your education, you may have been given a line and asked:
“what is the rise over the run?” Said another way, this question asks how much of a
change in y coincides with a specific amount of change in x (one unit); that is, what
is β1?

“Rise over run” can be equivalently expressed as “the change in y with respect
to the change in x.” In mathematics this is frequently expressed as dy

dx ; this is the
first derivative of y with respect to x. Instead of writing β1 it would be equally
appropriate to write

y = y0 +

(
dy
dx

)
x+ ε, (2)

where y0 is the zeroth derivative which is the value of y at x = 0. This form
of the regression equation, in the authors’ experience, seems to appear rarely in
introductory statistics texts. One likely reason is that Eq. (2) may be perceived as
more complex than Eq. (1), even though these equations are equivalent. Another
reason may be that the equivalence of β1 and dy

dx is thought to be commonly
understood, so stating this explicitly in equations is considered unnecessary.



430 P.R. Deboeck et al.

Whatever the reason, by not being explicit that β1 is a derivative, useful language
has been set aside. Consider the quadratic model,

y = β0 +β1x+β2x2 + ε. (3)

In presentations of this model, it is not unusual to hear that β2 is difficult to directly
interpret; so much so that efforts have been undertaken to reparameterize β0, β1,
and β2 so as to make the parameters more readily interpretable (Cudeck and du Toit
2002). Making the derivatives explicit, Eq. (3) is equivalent to

y = y0 +

(
dy
dx

)
x+

1
2

(
d2y
dx2

)
x2 + ε. (4)

β2 in itself is difficult to understand, but twice this quantity is equal to the second

derivative, d2y
dx2 . The second derivative expresses how the first derivative dy

dx is
changing with respect to changes in x. That is, twice the quadratic parameter β2

conveys precisely how quickly the slope (first derivative) is changing for every unit
change in x.

A person’s score y based on Eq. (4) depends on three things: (a) the score at x= 0,
that is, the zeroth derivative, (b) the rate at which scores change with respect to x
(slope or first derivative) at x = 0, and (c) how the slope changes with respect to x
(second derivative). If x represents time and y position, derivatives can be discussed
drawing on the common experience of traveling in a vehicle. The zeroth derivative
is the position, or level in the case of a construct, at some point in time. The first
derivative, or change in position with respect to time, represents velocity (speed in
a particular direction). The second derivative, or change in velocity with respect to
time, corresponds to acceleration (positive or negative).

Early introduction of derivative language has the potential to provide a unifying
framework for understanding many models of change. Extending Eq. (4) to include
predictors of the estimated derivatives (parameters), as is often done in Hierarchical
Linear Modeling (HLM) or Multilevel Modeling (MLM), the language of deriva-
tives gives another way to understand the hypotheses being tested. Consider the
equations

yti = β0i +β1iTti +β2iT
2

ti + εti (5)

β0i = γ00 + γ01Zi + u0i

β1i = γ10 + γ11Zi + u1i

β2i = γ20 + γ21Zi + u2i,

where the dependent variable yti is measured at multiple times t for each individual i.
The effect of the predictor time (T ) allows for a linear relationship (β1i) with time
and the possibility that the slope (β1i at T = 0) may change with respect to time
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(β2i). Furthermore, each individual may have a different β0, β1, and/or β2; it is
hypothesized that individual differences in these parameters are related to a person’s
trait Zi.

Rewriting the equations expressed in Eq. (5) using derivative notation

y0i = γ00 + γ01Zi + u0i (6)(
dy
dT

)
i
= γ10 + γ11Zi + u1i (7)

1
2

(
d2y
dT 2

)
i
= γ20 + γ21Zi + u2i. (8)

These equations express that in HLM/MLM one is examining the relations between
the level (zeroth derivative) of a trait Z and derivatives expressing different aspects
of how the dependent variable y is changing with respect to time T . In Eq. (6), γ01

posits a relation1 between the zeroth derivative of the dependent variable y and the
trait Z. In Eq. (7), γ11 relates the first derivative of the dependent variable to the
trait. Finally, in Eq. (8), γ21 relates the second derivative of y to the trait. These three
equations ask qualitatively different questions. The first asks whether Z is related to
the level of y at T = 0; that is, a level–level relation. The second asks whether Z is
related to the velocity of y at T = 0; that is, a level–velocity relation. The third asks
whether Z is related to changes in velocity; that is, a level–acceleration relation.

Equations (5) and (6) through (8) show HLM/MLM as a series of differential
equations. Looking at these equations, and considering the relations between level,
velocity, and acceleration gives another way to understand this model in terms
of level–level questions (Eq. (6)), level–velocity questions (Eq. (7)), and level–
acceleration questions (Eq. (8)). Examining other models, and the relationships
between derivatives that are being modeled, provides a way to organize the
similarities and differences across a wide range of models of change. In the
next section we examine the LGCM, which can relate both similar and different
pairs of derivatives relative to HLM and therefore ask both similar and different
questions about change. The decision to use one over the other should be driven by
constraints such as the structure of the data collected, for example HLMs/MLMs can
handle individuals with variations in sampling interval more readily than LGCMs;
conversely, LGCMs can handle multiple dependent variables simultaneously. The
decision to use one over the other should not be driven by the perception that these
models are necessarily addressing different questions, as in some cases the questions
being asked are very similar.

1This relation could be expanded to indicate that parameters such as γ11 express the change in an

individual’s first derivative d
(

dy
dT

)
i

(numerator) divided by the change in the trait dZi.
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3 Latent Growth Curve Model

We posit an example where we consider the effect of Stress on Negative Affect
measured across the last 4 weeks of a semester in a hypothetical sample of
undergraduate students. A LGCM is posited, as in Fig. 2, such that changes in
stress result in changes to negative affect; a unidirectional relationship from stress
to negative affect has been posited only to simplify discussion and is not based
on theory. Typically the latent variables would be labeled “Intercept,” “Slope,” and
“Quadratic,” and the paths to the observed variables would all be fixed such that the
latent variables would correspond to the names they were given. It may not be clear,
however, what a quadratic–quadratic relationship implies. In Fig. 2, therefore, the
labels have been changed to “Level,” “Velocity,” and “Acceleration” to reflect that
the zeroth, first, and second derivatives, with respect to time, are being estimated; to
accomplish this, only the loadings of the quadratic factor are changed, and these are
merely multiplied by 1/2 as in Eq. (4).

There are many possible paths that could be drawn from stress to negative affect
(paths A through I). Some of these paths are familiar, such as paths A, B, and C
which ask level–level, level–velocity, and level–acceleration questions as in HLM.

Stress
(Time 1)

Stress
(Time 2)

Stress
(Time 3)

Stress
(Time 4)

Stress
Level

Stress
Accel.

Stress
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Negative 
Affect 
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Fig. 2 A latent growth curve model which, with slightly modified fixed paths, expresses the
level, velocity, and acceleration in stress and negative affect as latent variables. Many possible
relationships between the stress and negative affect derivatives could be considered (paths A
through I). It should be noted that causal interpretations of this model may not make sense,
depending on how time has been coded. When Time = 1 is used as the initial time, paths D and
G suggest that later changes over the four observations could alter one’s initial level of Negative
Affect (i.e., time travel)
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LGCM allows for questions similar to HLM to be addressed, but also a multitude of
additional questions (paths D through I). What then is meant when one states that
stress and negative affect are related? Should we posit all paths?

When changed to level, velocity, and acceleration, it may be possible to argue
that there are only a few paths that are of theoretical interest. First one must consider
the dependent variable (negative affect): Do we wish to predict a person’s level of
negative affect at T = 0? Do we wish to predict a person’s velocity at T = 0? or Do
we wish to predict whether a person’s trajectory of negative affect is changing—
what traits are related to a person departing from their initial trajectory? The third
question is one about the acceleration in negative affect (second derivative; paths C,
F, and I). Turning to the predictor, what is it about stress that is related to changes in
the velocity of negative affect (i.e., acceleration)? Is one’s level of stress related to
changes in the velocity of negative affect? Or, is it that increases in stress are related
to changes in the velocity of negative affect? Or, is it the fact that one’s stress is
not just increasing, but increasing at a faster rate, that is related to changes in the
velocity of negative affect? These three questions are qualitatively different, and the
presence of any one relation does not necessarily imply anything about the presence
or lack of the other two relations.

The question “Is stress related to negative affect?” is too simple, as even limiting
ourselves to a unidirectional case implies nine possible relations as in Fig. 2 (paths
A through I), or even more if one considers higher order derivatives. Even narrowing
our interest to what is related to a change in the velocity of negative affect, there are
still multiple possibilities to consider (paths C, F, and I), each of which addresses a
qualitatively different question. What is it that most directly causes one’s negative
affect trajectory to curve (accelerate) in a negative direction—is it the specific
level of one’s stress, the fact that one’s stress has been increasing for several
weeks, or that one’s stress level is increasing at a faster and faster rate? Whatever
one’s response, the language of derivatives allows us to more clearly highlight the
questions addressed by the LGCM (as opposed to considering quadratic–quadratic
relations). The common language between this section and the previous section also
highlights that LGCM has the potential to address many of the questions addressed
by HLM (see Bauer 2003; MacCallum et al. 1997).

4 Derivative Language Framework

In this chapter we have introduced the language of derivatives in a manner intended
for a broad audience, and without requiring an introduction to calculus. Just
the realization that many common models contain parameters that express the
change in one variable with respect to another (derivatives), and labeling them as
level, velocity, and acceleration, has the potential to provide researchers a novel
language framework for understanding a variety of models. There are at least four
consequences of adopting the language of differential equations and derivatives.
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Table 1 Summary of derivatives related in several common methods for the analysis of change

Construct 2

y dy/dt d2y/dt2

x Correlationa

Ordinary Regressiona

SEMa

HLM/MLM
LGCM
GLLA/GOLD/LDE

Construct 1 dx/dt HLM/MLM
LGCM
LCS
LPM/CLPM
GLLA/GOLD/LDE

LGCM/PPM
LCS

GLLA/GOLD/LDE
d2x/dt2 HLM/MLMb

LGCMb

LCSb

GLLA/GOLD/LDE

LGCMb

LCSb

GLLA/GOLD/LDE

LGCMb

LCSb

GLLA/GOLD/LDE

SEM structural equation modeling, HLM/MLM Hierarchical Linear Modeling/Multilevel Model-
ing, PPM Parallel Process Modeling, LGCM latent growth curve modeling, LCS Latent Change
Scores, LPM/CLPM lagged panel modeling/cross-lagged panel modeling, GLLA/GOLD/LDE
Generalized Local Linear Approximation, Generalized Orthogonal Local Derivatives, Latent
Differential Equations
aMany, but not all applications
bApplications corresponding to this relationship are unusual

First, by thinking about the possible ways derivatives can be related—level–
acceleration relations, velocity–velocity relations, level–level relations, etc.—there
is a relatively limited number of combinations that are possible (nine, unless higher
order derivatives are considered). Rather than continue to present students an ever-
increasing number of models and methods for describing change, a matrix of
derivative relations could be introduced (e.g., Table 1). Each method/model would
fall into one or more of the finite number of combinations. The differences between
all methods/models that allow for level–acceleration questions to be addressed
could then be compared and contrasted. From the authors’ perspective, some of
the key differences are the kind of data to which a particular method/model is
typically applied, and the time scale over which derivatives are being estimated
(Deboeck et al. submitted).

Second, using this language framework allows for the presentation of a theory–
method Rosetta stone as in Table 2. Using level, velocity, and acceleration would
allow researchers to be much more specific with regard to theories of change.
But as these words are directly related to the zeroth, first, and second derivatives,
the mathematical interpretation of these words is very precise. The challenging
endeavor of translating theory into mathematics can then be made much more
precise. Moreover, in areas where theory is rich, use of this language may drive
the development of new, more appropriate models.
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Table 2 Summary of several equivalent ways to express the zeroth through second derivatives

Characteristic of scores Derivative Name Graphical depiction Notation

Score at some time 0th Level Single point y
Rate at which level is changing 1st Velocity Straight line dy/dt
Rate at which velocity is changing 2nd Acceleration Curved line d2y/dt2

Third, this framework would allow for more detailed and accurate interpretation
of results. Putting into words the differences between Eqs. (6) through (8), or paths
A through I in Fig. 2, may be challenging. By highlighting that the parameters
and latent variables can take on names associated with change—level, velocity,
acceleration—may allow the hypotheses being tested to be more readily put into
words.

Fourth, this new framework provides a structure that allows for the understanding
of new methodology relative to well-known models. The following section intro-
duces three differential equations that can be used to model the complex, nonlinear
changes in studies of intraindividual variability. These models will be introduced
relative to the more familiar LGCM. In introducing these newer methods, we
highlight some new questions that become accessible using the derivative language
framework.

5 Modeling Intraindividual Observations

The collection of repeated, intraindividual measurements on psychological and
behavioral variables presents a new challenge for modeling. To provide an example
of these challenges, we take as a motivating example daily measurements of positive
and negative affect from the Notre Dame Study of Health & Well-being. Figure 3
shows estimates of positive affect measured over time, representing a sample of
everyday positive affect (i.e., not following any particular stressor). One way to
model these data would be to consider an HLM or LGCM, which would give some
impression of the overall trajectory. This trajectory might be related to changes in
season, or other macrotemporal changes occurring in the participants’ lives but not
directly related to the daily regulation of emotions. Moreover, HLM, LGCM, and
many other models designate the variation around the overall trajectory as error,
when in fact it might be the case that characteristics of this variability are related to
important differences between individuals, such as resiliency.

As introduced in the previous section, and depicted in Fig. 4a, the latent variables
of an LGCM can be used to estimate the level at T = 0, the velocity at T = 0,
and the acceleration across a series of observations. This model is closely related
to Latent Differential Equation Modeling (LDE; Boker et al. 2004), a method for
modeling the rich, complex nonlinearity of intraindividual variability. Despite the
differences the names may convey, these methods have many similarities: both can
estimate the same derivatives and allow for the same relations between derivatives
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Fig. 3 Plots of positive affect measured over the course of 56 days. The plots contain the data from
two different older adults. The gray lines are based on the estimated values of individual-specific
quadratic regression models. Positive affect was measured using the PANAS (Watson et al. 1988)
administered to older adults in paper and pencil daily diary self-report

to be examined (e.g., level–acceleration relations). The key difference between the
two methods is the time scale over which they are applied; rather than estimate
derivatives over the entire period of observations as in Fig. 4a, LDE estimates
derivatives over the course of just a few observations as in Fig. 4b. The model in
Fig. 4b may appear an impossible model to fit, but this is not the case once the data
are reorganized into what is called an embedded matrix. In a manner akin to the
depiction in Fig. 4c, one can rearrange data such that each row of a matrix consists of
a subset of a longer time series. For example, given a time series y = y1,y2,y3, . . . ,yt

one can create an embedded matrix

⎡
⎢⎢⎢⎢⎢⎣

y1 y2 y3 y4

y2 y3 y4 y5

y3 y4 y5 y6
...

...
...

...
yt−3 yt−2 yt−1 yt

⎤
⎥⎥⎥⎥⎥⎦ (9)
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Fig. 4 Three differing versions of a latent growth curve model. (a) The LGCM can be applied
to entire time series, providing a single estimate of the derivatives. (b) Many small LGCMs can
be applied to a time series to generate estimates of derivatives at many different times across the
series. (c) A revisualization of model (b) where the small LGCMs have been stacked. This both
aids in estimation and allows one to think about the creation of an embedded data matrix which
involves arranging data much as the observed variables have been stacked in this figure
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Fig. 5 By applying the latent growth curve model to short series of observations (small circles),
the level (bold, larger circles), velocity (straight, light gray lines), and acceleration (curved, dark
gray lines) can be estimated at many different times across a time series. The gray acceleration
lines have been drawn such that they represent the slope that is expected at some time before/after
the point at which the estimate was created; for example, for the estimate at day 23, the acceleration
is such that a velocity of nearly zero would be estimated for day 20–21, and a relatively steep
positive slope would be estimated for day 25–26. Confidence intervals exist for the derivative
estimates, but have not been displayed to simplify the figure

where the first three rows of the matrix match the observed variable labels in Fig. 4c.
Readers interested in more specifics about applying LDE are referred to Boker et al.
(2004) and Deboeck (2011).

What does changing the time scale of derivative estimation buy us? In a LGCM
we would have single estimates of level, velocity, and acceleration. In LDE we have
estimates of level, velocity, and acceleration across an individual’s time series, and
therefore can observe how these values are changing, as in Fig. 5. In this figure, the
observations (small circles) are used to estimate the level (bold circles), velocity
(straight, light gray lines), and acceleration (curved, dark gray lines). The challenge
lies in finding predictors of the derivatives across time. If the language of derivatives
is applied to theoretical models, one could then translate theory into testable models
to address research questions. Alternatively, data can be explored by examining
predictors of different derivatives. As with the LGCM presented earlier, there are
many possible derivative relations that could be considered (Fig. 2). Being precise
as to how the level, velocity, and acceleration of variables affect each other over the
span of a few days, however, is largely unexplored territory for many fields of study.

The following sections introduce three differential equation models. The models
can be implemented in a variety of ways, including LDE (Boker et al. 2004),
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Fig. 6 A linear regression of level on acceleration (solid line, left) describes a model that implies
that as one’s level on a construct (circles, right) gets far from equilibrium (horizontal line, right)
there is an acceleration (gray curves, right) in the direction of the equilibrium. As regressing
level on acceleration is a linear relationship (solid line, left), one can borrow ideas from linear
regression; for example, using piecewise regression one could allow the level–acceleration relation
to be different when one is above equilibrium compared to when one is below equilibrium (solid
line below equilibrium, dashed line above equilibrium)

Generalized Orthogonal Linear Derivative Estimates (Deboeck 2010), the Exact
Discrete Model (Oud and Jansen 2000; Voelkle et al. 2012) and Generalized Local
Linear Approximation (Boker et al. 2008; Boker and Nesselroade 2002). Through
the three models that we present, we explore a few ideas of how relating derivatives
may give some insight into certain processes. These models have not been applied in
a wide range of contexts, so for many areas of the social sciences these are examples
of how differential equations can provide a language to address new questions about
change.

5.1 Model 1

The first model considers only a single variable—positive affect. As with the
LGCM, we focus on the questions: What leads to changes in the trajectory of
positive affect? and What is related to positive affect acceleration? But now these
questions are being considered in the context of having made multiple derivative
estimates over a time series as in Fig. 5. One way to model these data would be
to posit additional variables, the derivatives of which might explain positive affect
acceleration. Another option is to consider how the level, velocity, and acceleration
estimates of positive affect might be related to each other.

For example, consider the linear relation (solid line) that has been drawn between
the acceleration and level of positive affect in Fig. 6 (left). The interpretation of this
relation is interesting, as when the level of positive affect is high there is negative
acceleration; conversely, when positive affect is low, there is positive acceleration.
This is depicted in another way in Fig. 6 (right). Such a relation would suggest that
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if one were near some average or typical level of positive affect (horizontal line)
there might not be much change. But if one develops a high value of positive affect,
negative acceleration is expected; the slope is changing so that the upward trajectory
is not maintained, and eventually a negative trajectory will occur. The inverse is true
for a low positive affect score.

This is one possible model of homeostasis or self-regulation. There is a typical
state, or equilibrium, around which affect is expected to vary. Moreover, when
affect is displaced far from equilibrium in either direction, there is a relation
with an acceleration in the opposite direction, suggesting a change in slopes that
would result in changes towards equilibrium. This model does not specify the
mechanisms that lead to self-regulation, but it may be useful for characterizing how
quickly individuals move towards and away from equilibrium; that is, do the gray
acceleration curves in Fig. 6 (right) have a very steep or very shallow u-shape? The
relationship in Fig. 6 can be written as the differential equation

d2x
dt2 = βx+ ε, (10)

which expresses that the second derivative (acceleration) is related to the zeroth
derivative (level) times β plus error ε. The relationship β—which expresses how
changes in the level of the self-regulating variable are related to changes in the
acceleration of the same variable—is related to how quickly people return to, and
move away from, their equilibrium state. For examples of papers implementing this
model, see Bisconti et al. (2006), Boker and Laurenceau (2005), Montpetit et al.
(2010), and Nicholson et al. (2011).

As the relationship in Fig. 6 and Eq. (10) consists of a linear regression, one can
draw on familiarity with regression to inform how this model could be modified for
different contexts. For example, the present model assumes the same relationship
between acceleration and level regardless of whether one is above or below
one’s equilibrium. Perhaps it is expected that the level–acceleration relation above
equilibrium is different than when it is below equilibrium; the rate at which one
returns to equilibrium differs above and below one’s equilibrium (see Fig. 6, left).
This would correspond to a different slope above and below equilibrium, as depicted
with the solid line below equilibrium and the dashed line above equilibrium. One
could allow for the differing slopes using piecewise regression, using the equation

d2x
dt2 = β1x+β2x2 + ε. (11)

where x2 is coded to be zero for negative values of x, and x2 would be equal to x for
positive values of x.
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Fig. 7 Simulated plots of differing types of trajectories observed when measuring negative affect
in a sample of older adults

5.2 Model 2

Models of self-regulation may be reasonable first approximations in many contexts;
as in any domain, however, application of these models will require refinement.
Figure 7 shows plots that are not atypical of what is observed when examining
negative affect in older adults (Ram 2011). Some of the data patterns might be
reasonably characterized using a model of self-regulation; there appears to be some
equilibrium state around which an individual varies (Fig. 7, left). It is not unusual,
however, to also observe patterns such as in Fig. 7 (right). In this figure, there
appears to be a floor effect. Initially, one may expect this is due to a measurement
problem, which could be solved by including items that would be more commonly
endorsed. Attempts to take such a step, however, appear to mitigate but do not
fully alleviate the presence of floor effects (Deboeck and Bergeman 2013). When
examining negative affect, there appears to be a large proportion of individuals who
do not follow a self-regulation-like model, but rather appear to register very low
levels of negative affect that on occasion will increase in response to events.

One idea that has been proposed for modeling these data is the differential
equation model

dx
dt

= βx+ ε, (12)

where the slope between days (first derivative) is related to the level of negative
affect plus error (Deboeck and Bergeman 2013). Unlike other models, the errors
in this model are assumed to consist of only positive values; for example, ε could
follow a gamma distribution. If the errors are all positive, and the values of x are
all positive, the value of β is required to be negative, otherwise scores would be
required to monotonically increase for the duration of the study.
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Fig. 8 Examples of the trajectories (right column) that occur from recording the height of the
liquid in a simulation of two reservoirs (left column). In the reservoir in the top row, the rate of
liquid (gray) inflow and outflow are approximately balanced; in this case, the reservoir always
has liquid, although its level fluctuates around an equilibrium-like value. In the reservoir in the
bottom row, the outflow is faster than the inflow; consequently, the trajectory often approaches the
minimum value (empty reservoir) except when a large input event occurs

A metaphor for the behavior of this model is that of a reservoir, as in Fig. 8 (left
column). The negative affect reported on any given day corresponds to the height
(level) of the liquid in this reservoir. Above the reservoir is a pipe that adds liquid
to the reservoir, increasing the height of the liquid; the added liquid corresponds
to any events perceived as increasing one’s negative affect. There is also a pipe at
the bottom of the reservoir that allows the liquid to flow out of the reservoir; this
corresponds to one’s ability to dissipate negative affect.

When the input (inflow) and dissipation (outflow) rates are approximately
balanced, the trajectory appears very much like someone who is self-regulating
(Fig. 8, top row). If one’s dissipation rate is larger than the rate of input, however,
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Fig. 9 A cross-lagged panel model

there is a tendency for floor effects to occur (Fig. 8, bottom row).2 This model is
one example of when a single differential equation can produce time series that
appear qualitatively different, or time series with differing distributions for the
dependent variable. Such models may be useful for identifying important parameters
for characterizing intraindividual variability. Initially, it will be important to show
how the average perceived input and dissipation parameters differentially relate
to traits in the literature, but eventually these parameters may help to parse out
similarities and differences between traits as well as identify traits that have been
overlooked.

5.3 Model 3

The presentation of Models 1 and 2 has focused on new questions related to
characterizing intraindividual variability and the relationship between different
levels of the same variable that can be addressed using differential equations. The
language of differential equations also has the potential to give new insight into
old problems. The cross-lagged panel model (CLPM) in Fig. 9 has often been used
in applications of longitudinal mediation. The ability to make a causal inference
with this model is often stronger, although arguably not complete, because of the

2Videos demonstrating the evolution of these systems have been posted on the web site of the first
author.



444 P.R. Deboeck et al.

ability to test the directionality of relations such as Xt to Mt+1 versus Mt to Xt+1.
One limitation of drawing inferences with the CLPM is that inferences are limited
to the specific lag at which data are collected (Cole and Maxwell 2003; Gollob and
Reichardt 1987, 1991). Consequently, how to go about collecting data such that one
selects the “correct” lag becomes a thorny issue, as the “correct” lag for one effect
may not be the “correct” lag for another effect, and differing lags may be required
for variables to reach their maximal influence (Cole and Maxwell 2003).

The CLPM is a discrete time model, as time is only implicitly considered
through the order of the observations, but never explicitly considered through the
specification of the time between observations (Voelkle et al. 2012). An alternative
way of modeling data similar to the CLPM is by specifying a differential equation
model that describes the underlying process that is generating the data. With such
a model it would be possible to estimate the expected value of each variable at
all times across the duration of the study, as time is explicitly considered in such
a model. The expected values of the variables are calculated by integrating the
differential equation model from some time t to some later time t + δ .

One differential equation model that has been implemented frequently across
many literatures is the model

dx
dt

= Ax+ ε, (13)

where the key difference with respect to Eq. (12) is that the errors are no longer all
positive. Rather, ε is usually replaced with a continuous-time process that generates
independent, normally distributed observations when integrated over some period
of time (see Voelkle et al. 2012, for details). While Eqs. (12) and (13) appear very
similar, the change in the distribution of the stochastic errors ε results in very
different interpretations of β and A; while β addresses only the decay to zero, A
is related to both increases and decreases that return the system to its steady state
(see Deboeck and Boker in press, for examples and more details). The model in
Eq. (13) can be rewritten in matrix form:

dX
dt

= AX+ ε, (14)

so as to allow it to be fit to more than one variable at a time, as in the CLPM in
Fig. 9.

One advantage to using a differential equation model in this context is that the
estimated parameters (e.g., A) are independent of lag; that is, they do not depend on
the spacing between repeated observations. Moreover, these parameters can be used
to solve for the expected model parameters for differing lags; the lags for which
one solves are not limited to those measured in one’s data, although one should be
cautious about examining lags that extrapolate beyond one’s data. Figure 10 shows
an example of the results that can be produced using differential equation models
(Deboeck and Preacher 2013); the values of the lines, for any particular lag, can be
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Fig. 10 Estimates based on differential equation model parameters of how the cross-lagged panel
values (Discrete Time Parameters) change as a function of lag. The values of the lines, for any
particular lag, can be interpreted as the parameters that would be expected if the cross-lagged
panel model in Fig. 9 were fit to data with that particular lag. The maximal and minimal points
have been marked with a circle, and the name of each effect is indicated on the right. The X to Y
total effect represents the sum of the direct and indirect effects of X on Y

interpreted as the parameters that would be expected if the CLPM in Fig. 9 were fit to
data with that particular lag assuming Eq. (14). Consequently, this figure shows how
the discrete-time CLPM paths would be expected to change if data with differing
lags were analyzed. While in a CLPM the results are typically presented for a single
lag, corresponding to a single vertical slice through Fig. 10, with the differential
equation model there is the potential to estimate relationships for many possible
lags.

6 Concluding Remarks

In this chapter, the language of derivatives was introduced, and it was demonstrated
how this language could be applied to familiar models to facilitate the appropriate
application of these models to research questions related to change (e.g., HLM and
LGCM). By using the language in Tables 1 and 2, precision in the specification of
theories about change can be improved, methodology can be more easily identified,
and accuracy of interpretation of results can be ensured. Perhaps most encouraging,
this language framework also provides a structure within which new methods
and models of change can be introduced, thus creating the potential to open new
ways of formulating questions and ideas, such as those related to the analysis of
intraindividual variability. Three models were explored to highlight some of the
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ways that dynamic, nonlinear, intraindividual variability can be characterized, and
how these models have the potential to shed new light on old problems such as the
dependency of results on sampling rate.

Curriculum used to train researchers on how to analyze research questions related
to change already integrates some of the concepts presented in this chapter. Unfor-
tunately, derivatives and differential equations are seldom presented in introductory
texts, perhaps under the guise of simplifying the presentation of statistics. We
propose this is a disservice to researchers as derivatives provide an appropriate
framework to analyze change. Without training in the language of differential
equation models, an incoherent framework may be presented for the different
analytic approaches available for testing similar models. Without the Rosetta stone
of derivatives, it is more difficult for researchers to integrate different approaches
and systematically and effectively match their research question about change to
the correct model. Rather than learning what makes models different, this approach
first identifies the types of derivative relations present, and subsequently identifies
key differences between models with differing names (i.e., LGCM versus LDE).

Differential equations have the potential to change the way we think about
change, subsequently impacting the research questions asked and consequently the
models fit. This is especially warranted given the increased focus on intraindividual
variability that is occurring in many fields. Future decades promise to bring
more application of statistics to individual lives, whether through personalized
medicine, ecological momentary interventions, or other means. Learning the lan-
guage of derivatives opens the floodgates to characterizing the rich complexity of
intraindividual variability with interesting parameters that may be informative of
unobserved processes. As with all languages, fluency takes practice; but fluency
also provides a perspective, understanding, and beauty that is nearly unobtainable
through translation.
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Evaluating Scales for Ordinal Assessment
in Clinical and Medical Psychology

Wilco H.M. Emons and Paulette C. Flore

1 Introduction

Personality and psychosocial indicators such as quality of life, distress, anxiety,
and social inhibition are increasingly being used as predictors of poor prognosis
in medicine, and as outcome measures in counseling and psychotherapy. These
indicators are often assessed by means of multiple item self-report questionnaires.
Examples include the Hospital Anxiety and Depression Scale (Zigmond and Snaith
1983), the Outcome Questionnaire 45 (Lambert and Finch 1999) and the DS14
(Denollet 2005). Practitioners use the total score to decide whether a patient should
receive counseling, has an elevated risk of poor prognosis, or has an improved
health condition during treatment. For these purposes, the obtained total score
must at least be an ordinal indicator of the intended attribute of measurement. In
general, ordinal assessment often suffices in clinical and medical applications as
they allow a categorization of persons into diagnostic groups and may reveal within-
person changes during treatment. Hence, to determine whether a scale has sound
psychometric quality amounts to evaluating whether the scale’s total scores provide
a reliable and valid rank ordering of persons on the intended attribute and whether
the ranking is precise enough for reliable individual decision-making.

Nonparametric item-response theory (NIRT; Sijtsma 2005) offers a psychometric
framework for constructing ordinal scales for person measurement. A distinctive
feature of item-response theory (IRT) models is the definition of the item-response
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function, which describes the relationship between the latent attribute of interest
and the probability of responding in a particular answer category. Parametric IRT
models define this relationship by a mathematical function, such as a logistic
function or the normal ogive. NIRT models, however, only impose monotone
order restrictions on the item-response functions, without constraining the function
to a particular parametric shape. NIRT models are thus more general than their
parametric counterparts. The practical importance of NIRT models is that if the
items in the scale satisfy the NIRT assumptions, it is reasonable to conceive total
scores as ordinal measurements of the latent attribute (Sijtsma 2005; Van der
Ark 2005). NIRT models are therefore particularly useful for analyzing ordinal
measurement properties of clinical scales and outcome questionnaires (Meijer and
Baneke 2004; Sijtsma et al. 2008; Waller and Reise 2010).

Popular NIRT approaches are exploratory in nature as they rely on summarized
patterns in the data. A typical NIRT analysis estimates the item-response functions
from the data by means of nonparametric regression techniques, such as binning
(Sijtsma and Molenaar 2002) and kernel smoothing (Ramsay 1991). Based on
graphical inspection, supported by statistical tests, one has to verify whether
observed patterns agree with expectations under the NIRT model. If they do, the
data support the hypothesis that the items constitute an ordinal scale. A confirmatory
NIRT analysis may involve the use of a statistical model such as ordered latent
class models (OR-LCMs; Croon 1991). OR-LCMs provide a full parameterization
of the NIRT assumptions. Like parametric IRT models, the OR-LCM serves as
a null hypothesis that can be tested in sample data. OR-LCMs thus maintain the
flexibility of NIRT models but additionally offer a profound statistical framework
for analyzing the psychometric properties of presumed ordinal scales (Van Onna
2004; Vermunt 2001).

Despite the promising possibilities of OR-LCMs for analyzing ordinal scales,
two important practical issues remain neglected. First, in practice researchers often
rely only on relative fit measures for selecting the best fitting model. However, the
model with relatively the best fit may still have poor absolute fit. Hence, model
selection should be based on both relative and absolute fit information. In our view,
absolute fit assessment receives too little attention both in the psychometric liter-
ature and in applications. Second, OR-LCMs only provide a sparse (probabilistic)
summary of the data and many of the scale properties of primary interest, such
as total-score reliability, cannot be directly read from the fitted model. We believe
that there is a need for more practice-oriented ways to meaningfully summarize the
measurement properties that follow from the fitted model. The goal of the present
chapter is to present a number of tools for testing absolute fit of OR-LCMs and to
show how to use the OR-LCMs to gauge total-score reliability and measurement
precision for ordinal person measurement.
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2 Background

2.1 OR-LCM for Likert-Type Items

The OR-LCM discussed in this chapter belongs to the family of graded response
models (GRM; Hemker et al. 1997). We assume that we have item-response data
collected by means of Likert-type items. Let J be the number of items and Xj

(j= 1, . . . , J) be the item-score variable with realizations xj = 0, . . . , M. Hence, the
number of answer categories per item equals M + 1. Latent attribute variables (e.g.,
anxiety, depression) are assumed to be unidimensional and denoted by θ . The OR-
LCM divides the population into Q ordered latent classes of increasing θ levels;
that is, θ q < θ q+ 1 and q (=1, . . . , Q) indexing the latent classes. Proportional class
sizes are denoted by P(θ q) such that ∑ Q

q=1P(θ q)= 1. The item scores are assumed
to be independent within classes; this is the assumption of local independence.
Item responses are related to θ q by means of M cumulative response functions;
that is, P(Xj ≥ xj|θ q), xj = 1, . . . , M. Throughout this chapter, we use shorthand
notation π jx j (θq) for the cumulative response probabilities P(Xj ≥ xj|θ q), and we
may note that π j0(θ q)= 1 by definition. The graded response OR-LCM constrains
the cumulative response probabilities between classes as follows:

π jx j (θq)≤ π jx j

(
θq+1

)
.

The sum of the M cumulative response probabilities defines the class-specific

item-mean score function (ISF); that is, E
(

Xj

∣∣∣θq

)
=∑M

xj=1π jx j (θq). LatentGOLD

4.5 (Vermunt and Magidson 2005) was used to obtain maximum likelihood esti-
mates of the class sizes P(θ q) and the parameters π jx j (θq).

2.2 Model-Fit Assessment

To draw valid conclusions from the OR-LCM one has to ascertain that the model
adequately fits the data for the application envisaged. For this purpose, most often
researchers rely on information criteria, such as the Akaike Information Criterion
3 (AIC3) and the Bayesian Information Criterion (BIC). These are measures of
relative fit and using them as the only criteria for model selection does not guarantee
that the selected model is able to accurately reproduce the structure of the data
at hand. To avoid that wrong conclusions are drawn from a poor fitting model,
additional evidence of absolute fit should be included in the process of model
selection. In the present chapter we evaluated absolute model fit by evaluating the
agreement between model predictions and observed data at the item-pair, the item,
and total-score level.
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2.3 Psychometric Implications for Person Measurement

Once it is found that the postulated OR-LCM adequately fits the data, one can
use the estimated parameters to evaluate the properties of the scale for person
measurement. Examples include total-score reliability and item discrimination. In
the present chapter, we focus on evaluating the scale’s quality for screening and
diagnosis, which are typical testing goals in the clinical and medical context.
Assume persons are classified into one of two diagnostic categories (e.g., non-
clinical versus clinical group), where the categories are defined by a fixed cut-off
score. One of the test properties of interest concerns the reliability with which
persons are ranked below or above the clinical cut-off point. For this purpose,
Emons et al. (2007) introduced the concept of certainty level, which is defined as
the proportion in which a person would be correctly classified in the hypothetical
event of infinitely many independent replications of the test. They argued that for
high-stakes decisions researchers want to have certainty levels of 0.9 or higher,
whereas for low-stakes decisions certainty levels of 0.7 are deemed acceptable.
The scale’s classification consistency (CC) is defined as the proportion of persons
in a population for whom the desired minimum certainty level is reached and it
ideally should be high. The CC shows for how many respondents in the target
population the test is able to come to a sufficiently reliable decision. This is
important information because decision errors may have serious consequences, not
only from the perspective of the person being tested but also from the perspective
of the organization and clinician. We may add that the average certainty level in the
population may be acceptable (say >0.80), but that still a non-negligible proportion
of the respondents may be classified with a certainty that is deemed too low given the
application envisaged. This raises concerns about the appropriateness of the scale
in the target population. Because in practice persons cannot be repeatedly tested,
information about certainty levels and CC has to be inferred from measurement
models like the OR-LCM or the true-score model in classical test theory (e.g.,
Crocker and Algina 1986; Kruyen et al. 2013).

3 A Simulated Data Example

3.1 Data

Because we also wanted to illustrate the accuracy with which the OR-LCM recovers
the true CC values, we used simulated data so we can compare model-based
estimates with known true (population) values. In particular, data were simulated
for a seven-item test, each item having five ordered answer categories. One thousand
θ values were randomly drawn from two normal distributions, each with variance
1, but with means of 0 (n= 600) and 1 (n= 400), respectively. This results in a
latent variable distribution that was positively skewed, which is typical for clinical
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Table 1 Model-selection statistics AIC3 and BIC, proportional reduc-
tion in L2, and proportion of classification errors, for OR-LCMs for seven
OR-LCMs

Q No. par. BIC AIC3 Prop. red in L2a Class. errors

1 28 21,563.0 21,453.4
2 36 19,398.7 19,258.0 0.27 0.040
3 44 18,797.9 18,626.0 0.47 0.074
4 52 18,672.0 18,468.8 0.56 0.125
5 60 18,666.0 18,431.5 0.59 0.168
6 68 18,709.5 18,443.7 0.60 0.245
7 73 18,735.5 18,450.2 0.60 0.300

Note: Q= number of classes; no. par. = number of parameters in the
model
aProp. red in L2 = proportional reduction in L2 with respect to 1-class
OR-LCM

attributes (Reise and Waller 2009). To generate realistic item responses, we used the
parametric GRM (Samejima 1969) and parameter values from the social inhibition
scale of the DS14 (Denollet 2005), which were obtained in a sample of cardiac
patients (Emons et al. 2012, p. 215).

3.2 Fitting the Model and Model-Fit Assessment

Nine OR-LCMs were fitted to the simulated data set, starting with the one-class
model and adding one latent class at the time; thus the number of classes (Q)
ranged from 1 through 9. Table 1 shows for Q= 1–7 the BIC and AIC3, proportional
reduction in the likelihood statistic (L2), and the proportion of classification errors
(Vermunt and Magidson 2005). The BIC and AIC3 both supported the 5-class OR-
LCM. Considerable L2 reductions were found going from Q= 1 to 5 classes (up to
59%), and then the reduction leveled off. To find further support for the final model,
we inspected the absolute fit in three ways.

Pairwise Item-Fit Analysis. First, we inspected model fit at the item-pair level
using the residual associations between all item pairs. The pairwise residual between
two items is defined as the difference between the expected (or model-based
reproduced) association under the postulated OR-LCM and the observed pairwise
association in the sample. If the model fits the data well, bivariate residuals should
be close to 0. To stay within the NIRT framework, we used scalability coefficient
Hij as the measure of association between two items i and j (Sijtsma and Molenaar
2002, Chap. 7), but other (ordinal) association measures such as Spearman’s ρ and
Kendall’s τ can be applied as well. The reproduced coefficient Hij was obtained
from the weighted sum of the class-specific bivariate item-score distributions, where
the weights are the class sizes P(θ q). The class-specific bivariate distributions
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Table 2 Unstandardized
(below diagonal) and
standardized (above diagonal)
residual Hij coefficients under
the 4-class OR-LCM

1 2 3 4 5 6 7

1 0.79 1.13 0.26 0.15 1.15 1.05
2 0.02 0.81 0.52 1.45 −0.67 −1.76
3 0.03 0.02 1.27 0.52 0.42 0.63
4 0.01 0.01 0.03 −0.07 1.08 0.72
5 0.00 0.04 0.01 0.00 0.10 1.05
6 0.03 −0.02 0.01 0.03 0.00 1.50
7 0.02 −0.02 0.01 0.05 0.02 0.03

followed directly from the local independence assumption. Sample values for Hij

and corresponding standard errors were obtained using the R-package Mokken
(Van der Ark 2012). The residual association was the expected Hij value minus
the observed Hij value. Dividing the residuals by the standard error gave the
standardized residuals. Absolute standardized values larger than 1.96 indicated
significant differences between the model-based expected value and the observed
value (two-tailed test, 5% significance level).

Inspection of the bivariate residuals for each of the nine fitted OR-LCMs
suggested that four classes were enough to accurately describe pairwise asso-
ciations. The residual Hij coefficients under the 4-class OR-LCM are given in
Table 2 (unstandardized values are displayed below diagonal, standardized above
the diagonal). All values were close to 0 and none of the residuals was significant at
the 5% level, which indicates adequate fit.

Item-Level Fit Analysis. Second, we graphically compared discrepancies between
observed and model-based expected ISFs to assess absolute fit at the item level (i.e.,
the fitted model serves as the null hypothesis). However, when ISF are obtained
using the estimated latent group membership, the uncertainty with which persons
are assigned to latent classes must be taken into account (e.g., Stone 2003). Ignoring
this uncertainty may produce spurious discrepancies and, as a result, lead to false
rejection of items (Drasgow et al. 1995). In the framework of OR-LCMs, uncertainty
in the ability estimates is reflected in the posterior distribution of class membership.
This posterior distribution can be estimated from the sample using the cross-
tabulation of modal and (posterior) probabilistic class assignments (Vermunt and
Magidson 2005, p. 63). Table 3 gives an example for the 5-class OR-LCM; the
diagonal elements represent the expected frequencies of correct classifications, the
off-diagonal elements represent the expected classification errors.

The estimated ISFs under the postulated Q-class OR-LCM were obtained as
follows. Let f (s|θ q) be the posterior distribution of estimated class membership
s (s= 1, . . . , Q) for the population of persons in latent class q. The sample estimate
of distribution f (s|θ q) is given by the row percentages of the probabilistic (rows) by
modal (columns) classification table. The estimated ISF under the fitted OR-LCM
is given by

Ê
(

Xj

∣∣∣θq

)
=∑Q

s=1

[
f
(

s
∣∣∣θq

)
∑M

xj=1π jx j (θq = s)
]
, (q = 1, . . . ,Q) .
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Table 3 Cross-classification of modal and probabilistic latent class assignments of
persons for the 5-class OR-LMC

Modal assignment

Prob. assign. Class 1 Class 2 Class 3 Class 4 Class 5 Total

Class 1 154.194 20.984 0.011 0.000 0.000 175.188
Class 2 19.787 232.884 29.652 0.033 0.000 282.356
Class 3 0.019 31.082 265.497 21.893 0.025 318.516
Class 4 0.000 0.050 27.816 128.167 7.855 163.888
Class 5 0.000 0.000 0.024 8.907 51.120 60.052
Total 174.000 285.000 323.000 159.000 59.000 1,000.000

Note: Prob. assign. = probabilistic assignment

Following Drasgow et al. (1995) observed ISFs were estimated as follows. Let
x− j

v be the item-score vector of person v (=1, . . . ,N) without item j and xvj the
person’s response to item j. Furthermore, let P(θ q = s|x− j

v ) be the corresponding
posterior probability of being a member of class s for person v, given observed x− j

v .
The observed ISF equals

O
(

Xj

∣∣∣θq

)
=
∑N

v=1xv jP
(
θq = s

∣∣∣x− j
v

)
∑N

v=1P
(
θq = s

∣∣∣x− j
v

) , (q = 1, . . . ,Q) .

Substantial differences between Ê
(

Xj

∣∣∣θq

)
and O(Xj|θ q) indicated item misfit.

Figure 1 gives the item-fit plots for two items for the 7-class OR-LCM, showing
small differences between the observed (solid) and estimated (dashed line) ISFs.
This result indicates adequate fit. Similar item-fit results were found for all other
items.

Test-Level Fit Analysis. Third, we graphically inspected discrepancies between
the observed and the expected total-score distribution under the fitted models.
The expected total-score distributions were obtained as follows. Let X+ be the

total-score variable with realizations X+ (=0, . . . , JM), and let fÊ

(
X+

∣∣∣θq

)
be the

expected discrete sum-score distribution in class q under the postulated OR-LCM.

For polytomous items, fÊ

(
X+

∣∣∣θq

)
is a generalized multinomial distribution (e.g.,

Thissen et al. 1995). The model-based expected (marginal) sum-score distribution

equals fÊ (X+) =∑Q
q=1P(θq) f

(
X+

∣∣∣θq

)
.

Figure 2 shows the observed (dots) and the expected distributions (solid line) for
the 5-class (upper panel) and 7-class (lower panel) OR-LCM. Under the 5-class
model, the function fÊ (X+) already approximated the observed X+ distribution
quite well, but showed some irregularities at the lower range of the X+ scale.
The 7-class OR-LCM produced an fÊ (X+) that runs more smoothly through the
observed distribution at lower X+ ranges. To evaluate the accuracy of fÊ (X+), we
also imposed the true X+ distribution (dashed line) that results from the θ values
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Fig. 1 Expected (dashed
lines) and observed (solid
lines) ISF for item 1 (upper
panel) and item 5 (lower
panel), under the 7-class
OR-LCM

used for generating the data. It can be seen that the estimate fÊ (X+) was quite
accurate. Bootstrapped confidence envelopes can be added to reflect sampling error
and to test the significance of sample discrepancies (e.g., De Cock et al. 2011).

3.3 Psychometric Implications: Classification Consistency

Our simulated data example was based on the social inhibition scale of the DS14.
In practice, a cut-off value of X+ = 10 is used for this scale to identify persons who
have a so-called distressed personality, referred to as Type D personality (Denollet
2005). If these data were used to evaluate the suitability of the scale for assessing
Type D personality, the question is how consistent are persons classified into one
of two categories of distressed personality. This question is addressed by means
of two CC indices. Index CC90(+) denotes the proportion of persons with a true
score (i.e., the error-free score) at or above the cut-off point for whom the certainty
level exceeds 0.90. Likewise, index CC90(−) denotes the proportion of persons with
a true score below the cut-off point for whom the certainty level exceeds 0.90.
Similar expressions are used for CCs at the 0.70 certainty level. We may add that
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Fig. 2 Observed (dotted
lines), the OR-LCM
estimated total-score
distribution (solid lines), and
true-score (dashed line)
frequency distribution, for the
5-class model (upper panel)
and the 7-class model (lower
panel)

indices CC90(+) and CC90(−) relate to the well-known concepts of sensitivity and
specificity, respectively. In the context of screening for diseases, sensitivity indicates
the proportion of patients the test correctly classifies as being ill, whereas specificity
is the proportion of patient correctly classified as being healthy. The concept of
classification consistency is different because it summarizes the certainty levels,
which are measures of sensitivity and specificity defined at the person level. For
example, a CC90(+) of 0.77 means that for 77% of the persons in the clinical
population the sensitivity of the test is at least 0.90. Because tests can have high
sensitivity, but low specificity, both aspects need to be studied separately (Kruyen
et al. 2013).

To explain how CCs were estimated, we use some concepts from CTT. Let
f (X+|T = t) denote the distribution of total score X+ for persons whose true score
(denoted T) equals t. This distribution is known as the propensity distribution (Lord
and Novick 1968, pp. 29–30) and by definition its mean equals t. Because we have
polytomous items, the propensity distribution is again a generalized multinomial
distribution (Emons et al. 2007; Thissen et al. 1995). The area under the propensity
distribution to the left or to the right of the cut-off score indicates the probability
of a correct classification (certainty level) given t. For example, for persons having
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a true score t in excess of the clinical cut-off point 10, the certainty of a correct
classification is given by f (X+≥ 10|T = t). CC + is the relative frequency of t-
scores above the cut-off point for which the certainty level exceeds the desired
minimum. The CC − is obtained likewise for the true scores below the cut-off point,
where the certainty level is defined as (X+< 10|T = t).

From the above, it follows that for estimating the CCs we need to have the
conditional item-response probabilities given t and the relative weights for each t.
For practical reasons, we only considered the propensity distributions and weights
at t= 0, 1, 2 . . . , max(X+). The true-score weights are obtained from expected total-
score distribution under the postulated Q-class OR-LCM; that is, weights are given
by fÊ (X+ = t). The item-response probabilities given t also have to be obtained
from the OR-LCM. However, the OR-LCM only gives the class-specific item-
response probabilities π jx j (θq) for the Q-classes, whereas we need them conditional
on the true score. Therefore, we used a weighted sum of π jx j (θq) s between adjacent
classes to obtain conditional response probabilities given t. This was done as
follows. Let Πq be the matrix of item-response probabilities in class q, where the
rows correspond to the items and columns to the response options; that is, the mth
column of the jth row gives the class-specific probability of responding in category
m of item j. Furthermore, let E(X+|θ q) be the expected total score within class
q, which follows from item-response probabilities in Πq. We also introduce two
matrices defining the item-response probabilities for t = 0 and t = JM. In particular,
let Π0 be a matrix with probabilities equal to 1 in the first column and 0s elsewhere;
and ΠQ+ 1 a matrix with 1s in the last column and 0s elsewhere. The expected total
scores resulting from Π0 and ΠQ+ 1 are 0 and JM, respectively.

Now, suppose we want to have the estimated propensity distribution for t= 5.
Because E(X+|θ q) is monotonically increasing with q, we can determine the two
classes, q and w, satisfying the inequality E(X+|θ q)< 5≤E(X+|θw). The item-
response probability matrix corresponding to t = 5, denoted Πt = 5, is then obtained
as a weighted sum of Πq and Πw, where the weight is chosen such that the expected
total score for the weighted matrix Πt = 5 equals 5. This means that persons having
t= 5 are conceived as a mixture of classes q and s. The propensity distribution,
f (X+|t = 5), results from the response probabilities defined by Πt= 5. This procedure
was repeated for all true-score levels t = 0, 1, 2, . . . , T, . . . , JM and the result is a set
of JM + 1 (i.e., 29 in our example) propensity distributions.

Table 4 gives the estimated base rate and CCs for minimum certainty levels of
0.70 and 0.90, for both the 5-class and the 7-class OR-LCM. The 5-class model was
included for comparison purposes. Inspection of the results showed that the 5-class
and 7-class models produced slightly different results. The proportion of persons
above the cut-off (i.e., base rate) is estimated to be 0.57. About 70% of all persons
would be consistently classified with a certainty of at least 0.90, and 90% with a
certainty of at least 0.70. Comparison of the CC estimates with those obtained from
the true generating θ values showed that OR-LCM based CC estimates were quite
accurate.
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Table 4 True and estimated
base rate and classification
consistency at certainty levels
of 0.70 and 0.90 for the
5-class and 7-class OR-LCM

Statistic True value
OR-LCM estimate

Q= 5 Q= 7

Base rate (≥ 10) 0.55 0.57 0.57
CC70(−) 0.87 0.90 0.90
CC70(+) 0.88 0.84 0.92
CC90(−) 0.64 0.69 0.70
CC90(+) 0.68 0.67 0.67

4 Discussion

This chapter elaborated on the use of OR-LCMs for analyzing ordinal measurement
properties of total scores obtained from Likert-type items. An important practical
issue is model fit, which may be acceptable at the item-pair level, but may be
inadequate at the item or total-score level. For example, we found that few classes
were enough to adequately model the item-pair associations, even though the data
were generated for a continuous latent variable. However, additional classes were
needed to obtain a model that was able to reproduce the total-score distribution
sufficiently precise. Therefore, to obtain sound inferences from the fitted OR-LCM,
absolute model fit needs to be examined at the different levels in the data. In real
applications, the level at which model fit has to be examined depends on the specific
goals for which the model is used. For example, when the model is used to study
dimensionality and scalability of a set of items, all one need is a model that can
accurately describe the bivariate item associations. For this purpose, absolute model-
fit is established if the model is able to adequately reproduce the bivariate inter-item
associations. A few classes may then be sufficient (see also Van Onna 2004) even
when the number of classes is too small to adequately reproduce the data structure
at other levels, such as the total-score distribution. However, if the model is used
to evaluate reliability and classification consistency, absolute fit at the level of the
items and total scores has to be established as well. This may result in more classes
than needed in applications where only the fit at the level of item pairs is concerned.
We may add that if misfit persists after continuing adding classes, it means that one
or more NIRT assumptions are violated. This may be a reason to remove some of
the items or to split the scale into subscales.

The OR-LCM used in this study assumed unidimensionality, which means that
the total score X+ meaningfully orders persons on one underlying dimension. Al-
though unidimensional measurement is worth pursuing, clinical scales with proven
predictive validity often measure a hierarchically structured attribute that subsumes
a mixture of related lower-level attributes (Gustafsson and Åberg-Bengtsson 2010).
As a result, clinical scales are rarely strictly unidimensional. The pattern of local
dependencies as shown in the residual Hij matrix may reveal the presence of
lower-level facets within an attribute hierarchy. However, as long as the local
dependencies are within certain limits (say, |Hij|< 0.05) and acceptable fit is found
at the item and total-score level, one can have enough confidence in the total scores
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as unidimensional ordinal measures of the general attribute. Future research may
focus on the use of OR-LCM as an exploratory tool for assessing an attribute
hierarchy, for example, as a precursor to a confirmatory bifactor analysis (Reise
et al. 2007).

To evaluate a scale’s reliability, researchers commonly rely on group-level
estimates such as coefficient alpha. A common rule is that for individual decision-
making, reliability at least needs to be 0.7 (low-stakes decisions) or 0.9 (high-stakes
decisions). However, one cannot infer from total-score reliability statistics whether
individual measurements are precise enough for the application envisaged (Sijtsma
2009). In this chapter, we used OR-LCM for modeling measurement errors at the
person level by deriving propensity distributions conditional on integer-valued true
scores. This approach facilitates several conceptualizations of local measurement
precision, including conditional standard errors of measurement (Feldt et al. 1985)
for single and difference scores. Future research may further explore the usefulness
of OR-LCMs for analyzing measurement precision at the individual level.
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Differentiating Response Styles
and Construct-Related Responses: A New IRT
Approach Using Bifactor and Second-Order
Models
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1 Introduction

The problem of construct-irrelevant preferences for response options or response
styles (RS) in psychological assessment when rating scales or Likert scales are
used has been known for a long time (Nunnally 1967). RS are defined as re-
spondents’ tendencies to respond in a systematic way independently of the item
content (Paulhus 1991; Rost 2004) and are assumed to be largely stable individual
characteristics not only within single questionnaire administrations (Nunnally 1967;
Javaras and Ripley 2007) but across longitudinal survey data (Weijters et al. 2010).
If respondents show certain RS when responding to a questionnaire, their test score
does not reflect a fair measurement of personality. Thus, the presupposition that
respondents’ answers are based on the substantive meaning of the items is not met
(Harzing 2006).
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There are different kinds of response styles depending on the number of response
categories. The current paper addresses the problem of the extreme response style
(ERS) and the midpoint response style (MRS) using a five-point rating scale. ERS
describes the tendency to choose the extreme response categories (in a rating scale
with more than three response options) but not as expression of a very high or
low intensity of the measured construct. MRS describes the tendency to choose the
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midpoint of the scale, if a middle category is provided, in order to avoid decisions
rather than as an expression of an average degree of the variable being measured.

Response styles can affect the dimensionality of the measurement (Chun et al.
1974; Rost 2004) and the validity of survey data (Baumgartner and Steenkamp 2001;
De Jong et al. 2008; Dolnicar and Grun 2009; Morren et al. 2012; Weijters et al.
2008) and thus are especially a problem in cross-cultural studies (Chun et al. 1974;
Morren et al. 2012) or large-scale assessments (Buckley 2009; Bolt and Newton
2011) as differences in group means become uninterpretable (Chun et al. 1974;
Harzing 2006; Morren et al. 2012).

Gender differences were found (De Jong et al. 2008; Weijters et al. 2010) as
well as cultural or ethnic differences in the employment of different response styles
(Bachman and O’Malley 1984; Chen et al. 1995; De Jong et al. 2008; Dolnicar and
Grun 2009; Hamamura et al. 2008; Harzing 2006; Hui and Triandis 1989; Johnson
et al. 2005; van Herk et al. 2004; Weijters et al. 2010). Correcting data for RS was
shown to provide meaningful research and equivalent measurements with regard to
cross-cultural data (Morren et al. 2012; Rammstedt et al. 2013) and other group
comparisons such as with respondents with different educational levels (Rammstedt
et al. 2010).

Reducing response styles in rating data by simply constraining the response
categories to a dichotomous format with “agree” and “disagree” as the only response
options leads to disadvantages. First, the information about the intensity of attitudes
is lost. Second, a dichotomous response format was found to provoke reactance as
respondents do not have the possibility to describe themselves in a sufficiently fine-
grained way (resulting in atypical or arbitrary responses that do not describe the
subjects’ true character; Karner 2002) and might lead to higher faking tendencies or
impression management (Khorramdel and Kubinger 2006).

In order to retain multicategory response formats, a variety of approaches has
been developed trying to measure response styles and control for their effect.
Some approaches are using simple frequency counts (e.g., the number of extreme
responses to account for ERS) or the standard deviation of item scores within a
respondent (Baumgartner and Steenkamp 2001; Buckley 2009). Such approaches
are not as computationally intensive as more complex approaches but need heteroge-
neous items that are nearly uncorrelated. Such items are not always easy to find, and
this may negatively influence the measurement’s validity (Bolt and Newton 2011).
Moreover, these approaches do not account for the influence of the substantive trait.

There is the possibility that some respondents might, for example, show a
construct-unrelated ERS when choosing extreme response categories of a rating
scale, while others give construct-related responses by choosing the same categories.
Therefore, simple frequency counts cannot be assumed to be clear measures of
response styles without looking into how differences in these individual frequencies
relate to the target of measurement — the constructs of traits the questionnaire was
developed to measure. Therefore, other approaches focused on item response theory
(IRT), which provides the possibility to estimate item parameters (characteristics of
items) and person parameters (trait level of respondents) that both can interact with
response styles (Bolt and Johnson 2009; De Jong et al. 2008).
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The most recent IRT approach to test and correct for response styles is proposed
by Böckenholt (2012). The attempt is to separate RS from trait-related responses by
decomposing the response process in ordinal rating scales into different sequential
subprocesses using binary pseudo items (BPIs). This generates a set of BPI
responses for each original ordinal item response.

Example for the decomposition into BPIs: A four-point rating scale, for example,
(0–1–2–3) could be decomposed into BPIs which account only for the extreme
responses (responses to 0 and 3 would be scored as 1, responses to 1 and 2 would
be scored as 0), or into BPIs which account only for the moderate responses
(responses to 1 and 2 would be scored as 1, responses to 0 and 3 would be scored
as 0). Note that this is just an example to explain the decomposition in BPIs; this
is not the decomposition used by Böckenholt (2012).

These single BPIs are then examined with simple-structure multidimensional IRT
(MIRT) models. Thus, the observed responses in rating data can be viewed as result
of multiple latent responses.

Simple-structure MIRT models actually postulate that there is a response process
controlled by different latent variables at different stages that leads to the observed
choices modeled as difference between respondents’ ability and item difficulty.
The advantage of this approach is that the hypotheses about the dimensionality of
BPIs or response subprocesses can be tested. In other words, it is first tested if
unidimensional RS exist in the data — that is, the score used for measuring RS is a
distinct measurement for RS (items are loading on one factor only) — before data
are corrected for (putative) RS. Moreover, this approach provides a data structure
that is easy to handle and results in estimates of latent variables with a clear-cut
interpretation.

Meisner and Böckenholt (2011) used a similar approach and decomposed
responses to a questionnaire with one personality scale (personal need for structure)
obtained from a six-point rating scale (coded from 0 to 5) into four response
subprocesses or BPIs: one BPI type to account for clear-cut decisions (scored 1
if the categories 0, 1, 4, or 5 are chosen, 0 otherwise), two BPI types to account for
the direction of the responses towards the trait (one BPI scored 1 if the category
3 is chosen, 0 or missing value otherwise; second BPI scored 1 if the category
4 or 5 is chosen, 0 or missing value otherwise), as well as one BPI type to
account for extreme ratings (scored 1 if the category 0 or 5 is chosen, 0 or missing
value otherwise). Then nonlinear mixed-effects IRT models (specifying generalized
hierarchical models with items as fixed and respondents as random effects) were
applied to the BPIs. Results showed a superior model fit of a four-dimensional IRT
model (to account for the four response subprocesses: BPIs were related to four
factors by type) compared to a unidimensional partial credit model (where all BPIs
were related to one general factor only).

Expanding on this approach (using multiscale questionnaires), Khorramdel and
von Davier (in press) investigated ERS and MRS by decomposing the data from
a five-point rating scale. In contrast to Meisner and Böckenholt (2011), who
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investigated responses to a questionnaire with only one personality scale and
multidimensional RS factors, they examined responses to a questionnaire with five
personality scales with the opportunity to model unidimensional RS factors. The
latter approach was compared to the approach with multidimensional RS factors
and was shown to provide more detailed information about the dimensionality of
RS measures. Furthermore, it could be shown that ERS and MRS measures are not
always unidimensional but may be confounded with trait-related responses (c.f. Bolt
and Johnson 2009; Bolt and Newton 2011; Johnson and Bolt 2010). The current
paper addresses this problem by applying IRT models which allow items to have
loadings on both an RS factor and a specific personality factor. These models are
described in more detail below.

1.1 Aims of the Current Study

The current study addresses the conjecture that BPIs defined in the approach of
Böckenholt (2012) may measure a mixture of RS and construct-related sources
of variance. In a prior study Khorramdel and von Davier (in press) were able
to show that simple-structure IRT models may not be sufficient to disambiguate
between RS and construct-related variance. Some of the BPIs seemed to mea-
sure not only response styles but also (at least to some part) construct-relevant
responses. Therefore, models are needed that allow items to measure both and
enable researchers to assess the degree to which RS and trait variance mix in these
binary response style indicators. In the present study, we propose using bifactor
and second-order multidimensional IRT models to model RS factors if simple-
structure IRT (Böckenholt 2012) and MIRT (Khorramdel and von Davier under
review) approaches fail to show distinct measures of RS. A detailed description
of the IRT models which were applied in the current study is given below.

We analyzed the data of two different questionnaires. Both are based on the five
factor model (FFM) of personality (McCrae and Costa 1987), also called the Big
Five, comprising the scales of agreeableness, emotional stability (or neuroticism),
conscientiousness, extraversion, and openness. In both questionnaires, a Likert type
scale with five response options was used. The rating data were decomposed into
three different BPIs: one to measure ERS, one to measure MRS, and one to measure
construct-related responses with regard to psychological personality constructs.

The aim is to provide an approach which enables researchers to test and correct
their rating data for RS in order to obtain fair trait measures (e.g., assessments
of personality). A score corrected for RS would be a score that uses only those
response categories which are not influenced by response styles. In other words,
only particular response categories are used to calculate the test score (after the data
have been proofed to be biased by response styles).
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2 Method

We applied unidimensional and multidimensional IRT (MIRT) models to the BPIs,
which were constructed by decomposing the rating scale response data into multiple
binary response subprocesses. Each test taker’s responses are assumed to be
driven by three latent variables per scale, the target of measurement (trait-related
responses), the tendency to use extreme responses, and the tendency to choose the
middle category (undecided responses). Because the FFM consists of five scales,
there are five targets of measurement, and at a maximum twice as many variables
that describe the two RS per scale. Because prior research indicates that RS are
consistent behavioral patterns, we assumed for most models that ERS and MRS are
best represented by a variable where each describes RS as a unidimensional factor
across the five personality scales. Similar to Khorramdel and von Davier (under
review), BPIs are modeled as unidimensional as well as multidimensional factors to
measure ERS and MRS.

All IRT models were estimated by applying the mixture general diagnostic
modeling framework (MGDM; von Davier 2008, 2010) using the software mdltm
(von Davier 2005) for multidimensional discrete latent traits models. The software
provides marginal maximum likelihood (MML) estimates obtained using customary
expectation-maximization (EM) methods, with optional acceleration. It offers the
possibility to estimate MIRT models based on the Rasch model and two-parameter
logistic (2PL) model.

2.1 Simple-Structure Unidimensional and Multidimensional
IRT Models

In a first step, we estimated simple-structure unidimensional and multidimensional
IRT models which are based on the two-parameter logistic model (2PL model;
Birnbaum 1968), a generalization of the Rasch model or one-parameter logistic
(1PL) model (Rasch 1960). In contrast to the 1PL-Rasch model — which postulates
that the probability for response x to item i for respondent v (or for answering
towards a trait) depends on only two parameters, the item parameter β i (difficulty
of endorsement) and the person parameter θ v (respondent’s trait level) — the 2PL
model postulates an additional item discrimination parameter α i. For unidimen-
sional scales, the model equation is defined as:

P (x |θv,βi ,αi) =
exp(αi (θv −βi))

1+ exp(αi (θv −βi))
(1)

The discrimination parameter α i describes how well an item discriminates
between examinees with different trait levels, independently of the difficulty of an
item.
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In MIRT models, the Rasch model or the 2PL model can be specified for multiple
scales. It is assumed that the Rasch model or the 2PL model holds, with the
qualifying condition that it holds with a different person parameter for each of a set
of distinguishable subsets (scales) of items (von Davier et al. 2007). For the case of
a multidimensional 2PL model with between-item multidimensionality (each item
loads on only one scale), the probability of response x to item i (with x= 1, . . . ,mi)
in scale k by respondent v can be defined as:

P (x = 1 |θv,βi ,αi) =
exp(αi (xθvk −βix))

1+∑mi

y=1 exp(αi (yθvk −βiy))
(2)

2.2 Bifactor and Second-Order Models

In a second step, the bifactor model, which is a hierarchical IRT model, and
the second-order model, which is a higher-order IRT model, were applied to the
rating data. Both models account for items that are nested at more than one level.
Hierarchical models with proportionality constraints on the loadings are equivalent
to higher-order models (cf. Rijmen 2009, 2011; Yung et al. 1999).

In the bifactor model for binary data (Gibbons and Hedeker 1992), each item
measures a general dimension and one out of K specific dimensions. The general
dimension represents the latent variable of central interest and accounts for the
covariance among all items. The specific dimensions are integrated to account
for additional dependencies (unique coherency) among particular groups of items.
Statistical independence is assumed between all responses that are conditionally
dependent on the general dimension and the specific dimensions. The latent
variables typically are assumed to be normally distributed. The model equation for
binary data can be denoted as follows:

P
(

y
∣∣∣θ)=∏I

i=1P
(

yi(k)

∣∣∣θg,θk

)
(3)

with y as vector of all binary scored responses, yi(k) as response on item i
(i= 1, . . . , I) in dimension k (k= 1, . . . , K), θ k as dimension-specific variable,
and θ g as general latent variable which is common to all items with
θ = (θ g,θ 1, . . . ,θ k, . . . ,θK).

π i = (yi(k) = 1|θ g, θ k) is related to a linear function of the latent variables through
a (probit or logit) link function g(·):

g(πi) = αigθg +αikθk +βi (4)

with β i as intercept parameter for item i, and α ig and α ik as slopes or loadings of
item i on the general and specific latent variables. When α ig and α ik are assumed to
be known, a one-parameter bifactor model is obtained. A three-parameter bifactor



Bifactor and Second-Order Models to Detect RS 469

Specific dimensions
(Big Five scales)

y1 y2 y3 y4 y5

e-items or m-items

RSGeneral dimension
(extreme or midpoint RS)

A
1

C
2

g

E
3

N
4

O
5

Fig. 1 Illustration of a bifactor model for e-items or m-items with regard to the Big Five scales
(note: arrows represent conditional dependencies)

model is obtained if an additional guessing parameter is incorporated into the
expression of π i. Figure 1 shows an illustration of a bifactor model for the RS scores
examined in the current study.

The second-order model — formally equivalent to the testlet model described by
Bradlow et al. (1999) and Wainer et al. (2007) for discrete observed variables (cf.
Rijmen 2009, 2011) — contains a general dimension and specific dimensions like
the bifactor model. In contrast to the bifactor model, items do not directly depend
on the general dimension but rather on their respective specific dimensions. The
specific dimensions in turn depend on the general dimension and are assumed to
be conditionally independent (the general dimension is assumed to account for all
relations between the specific dimensions). Often, a standard normal distribution is
assumed for the latent variables. The model equation for binary data can be denoted
as follows:

g(πi) = αikθk +βi (5)

θk = αkgθg + ξk (6)

where αkg accounts for the extent to which the specific dimension θ k is explained
by the general dimension θ g, with ξ k as the part of θ k that is unique. All ξ k are
assumed to be statistically independent from each other and from θ g. Equations (5)
and (6) can be combined as follows:

g(πi) = αikαkgθg +αikξk +βi (7)

Equation (7) shows that the second-order model is a restricted bifactor model, where
the loadings on the specific dimensions are proportional to the loadings on the
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Fig. 2 Illustration of a second-order model for e-items or m-items with regard to the Big Five
scales (note: arrows represent conditional dependencies)

general dimension within each testlet. Figure 2 shows an illustration of a second-
order model for the RS scores examined in the current study.

2.3 Description of the Datasets (Samples and Instruments)

German sample and NEO-FFI instrument: The data which were used to test the
current approach come from 11,697 respondents of the nonclinical German norm
sample of the NEO Five-Factor Inventory (NEO-FFI; Borkenau and Ostendorf
2008). More than half of the test takers were female (64 %) and the mean age was
29.9 years. The NEO-FFI is a personality questionnaire which measures the Big
Five personality dimensions and consists of 60 items, each rated on a five-point scale
(1= strong disagreement, 2= disagreement, 3= neutral, 4= agreement, 5= strong
agreement). The Big Five dimensions comprise the following scales: agreeableness
(e.g., “I try to be friendly towards everyone”), conscientiousness (e.g., “I always
keep my things tidy and clean”), extraversion (e.g., “I love being around lots of
people”), neuroticism (e.g., “I get worried easily”), and openness to experience (e.g.,
“I am very interested in philosophical discussions”). Each scale consists of 12 items.
The Cronbach’s alpha reliabilities of the NEO-FFI scales estimated using the current
German dataset (based on the scores with regard to the five-point Likert scale) range
from 0.70 to 0.86 (agreeableness: 0.70; conscientiousness: 0.83; extraversion: 0.79;
neuroticism: 0.86; openness to experience: 0.74).

U.S. sample and International Personality Item Pool (IPIP) instrument: The
findings obtained from the German NEO-FFI sample were validated on the sample
used in the study of Khorramdel and von Davier (in press). The data come from
2,026 U.S. students with different ethnical background, who responded to an FFM
questionnaire based on the IPIP (Goldberg et al. 2006) which, similar to the NEO-
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FFI, measures the Big Five personality dimensions. More than half of the sample
consists of females (60.6 %), and the mean age is 22.58 years. The IPIP consists
of 50 items, each rated on a five-point Likert-type scale (1= very inaccurate,
2=moderately inaccurate, 3= neither inaccurate nor accurate, 4=moderately
accurate, 5= very accurate) and measures the dimensions of agreeableness (e.g.,
“I am not interested in other people’s problems”), conscientiousness (e.g., “I
pay attention to details”), extraversion (e.g., “I feel comfortable around people”),
emotional stability (e.g., “I get stressed out easily”), and intellect-imagination (e.g.,
“I am full of ideas”), each with ten items. The Cronbach’s alpha reliabilities of
the IPIP scales were estimated using the current U.S. dataset range from 0.77 to
0.86 (agreeableness: 0.79; conscientiousness: 0.79; extraversion: 0.86; emotional
stability: 0.84; intellect/imagination: 0.77). The items are publicly available at the
IPIP website (http://ipip.ori.org/ipip/).

2.4 Procedure and Design (BPIs)

The data were prepared in a way that missing responses were coded with the number
9, and negatively worded items were recoded (27 items) so that endorsement on the
recoded negative items and the positively phrased items all indicate higher levels
of the trait. Then the five-category responses to the items were decomposed based
on a decision tree (see Fig. 3) that assumes three sequential response subprocesses
similar to Khorramdel and von Davier (in press): (1) the first response process
constitutes the decision if a response towards the trait, positive or negative, will be
given (clear-cut decision) or if the respondent is undecided and therefore chooses
the scale midpoint; (2) the second response process, in the case of a clear-cut
decision, constitutes the decision if there is a positive or negative response; (3) the
third response process accounts for the intensity of the decision made in the second
response process (extreme versus nonextreme trait loading).

Based on this multinomial processing tree, every questionnaire item (of the
NEO-FFI and IPIP) was recoded into three different kinds of BPIs (see Table 1):
one considering extreme positive and negative responses (BPI e), one accounting
for responses to the middle category (BPI m), and one considering only positive
(extreme and nonextreme) responses (BPI d).

The score composed out of BPIs e (e-score) constitutes a possible measure for
ERS (where extreme positive and negative responses are weighted equally), and the
score composed of BPIs m (m-score) a possible measure for MRS. Scale-wise scores
based on BPIs d in turn aim to model the construct-relevant responses (actual trait
level) for each of the five personality dimensions (or scales) that are not biased by
RS tendencies. Note that the question whether e-items and m-items are measures of
RS while d-items are construct-relevant measures can be examined using the above-
mentioned IRT models. If the middle category was chosen (BPI m= 1), BPIs e and
d receive a missing value code. If the original item response to the rating scale was
missing, all BPIs (e, m, and d) received a missing value code.

http://ipip.ori.org/ipip/
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Fig. 3 Multinomial processing tree for a five-point rating scale to illustrate possible response
processes according to ERS and MRS

Table 1 Example for coding binary pseudo items (BPIs)

Original NEO-FFI item
(five-point rating scale)

BPI e
(extreme
responses)

BPI m
(midpoint
responses)

BPI d (trait
responses)

1 1 0 0
2 0 0 0
3 – 1 –
4 0 0 1
5 1 0 1

The reason that responses to the middle category were coded as missing
values (instead of 0) with regard to BPIs e and d is that this will produce an
incomplete contingency table in which quasi-independence (Goodman 1994; Gail
1972; Fienberg 1970) may hold. This is not to say that independence will hold, but
rather that, with the coding as given in Table 1, there is no implied dependency
between BPIs e, d, and m.

In the case of a rating scale with only four response categories, the table would
be a complete two-by-two table with no zero frequencies (see the two-by-two table
defined by the cells with gray underground within the larger structure in Table 2).
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Table 2 Incomplete contingency table for category probabilities for a
five-point rating scale

moderate extreme midpoint
0 1 

negative 0 P(1) P(0) 0 P(p=0)
positive 1 P(3) P(4) 0 P(p=1)
midpoint 0 0 P(2) P(m=1)

P(e=0) P(e=1) P(m=1)

However, the additional fifth category together with the coding from Table 1 leads
to an incomplete table with probabilities that are a priori zero (as, for example, it
is not possible to observe both an extreme response and a midpoint response when
using this coding).

As a consequence, the cells in this contingency table with missing responses
jointly determine the BPIs e, d, and m without imposing implied dependencies.
This allows us to use the three BPIs e, d, and m as indicators that relate to
three different latent variables without the need to model implied dependencies (as
there are none) between the three BPIs using specific (testlet) factors or similar
to account for local dependencies. Therefore, a three-dimensional simple-structure
MIRT model, with one dimension for each of the item types e, d, and m, can
be used to analyze unidimensional scales based on this recoding of Likert type
items. For multidimensional personality questionnaires such as the various Big Five
instruments, a range of models will be introduced in the next section.

2.5 Hypotheses

If RS exist in the rating data, we expect that the IRT scales based on BPIs e and
BPIs m, respectively, are measurements of ERS and MRS cutting across the five
personality scales rather than measures that apply separately to each of the five
NEO-FFI subscales. Therefore, we assume that in the case of distinct measurements
of RS — that is, BPIs e and m are measuring RS only — one-dimensional simple-
structure IRT models (where BPIs are modeled to load on one factor only) would fit
these items across the five subscales better than five-dimensional simple-structure
IRT models (where BPIs are modeled to load on the five personality dimensions).
Moreover, we would expect substantial correlations between the five scales based
on BPIs e and BPIs m, indicating high consistency across the scales.

However, if this is not the case, as items have loadings on both RS and the
five personality dimensions, we assume that a bifactor IRT model or a higher-order
IRT model can indicate whether BPIs e and BPIs m are indicators of either RS or
personality dimensions. The corresponding RS would then be defined as the general
factor and the five personality dimensions as specific factors. In the case of items
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with higher loadings on RS, most variance should be explained by the general (RS)
factor. In the case of items with higher loadings on their respective specific factors
(Big Five dimensions), the general factor should explain less variance than each of
the specific factors.

Moreover, if BPIs e and BPIs m are indicators of RS (shown by simple-structure
models or hierarchical/higher-order models), the binary d-based scores which are
(almost) not affected by ERS and MRS should be a better measurement of the five
personality dimensions than the original score using all five response categories.
More specifically, we assume that correlations between the five scales based on
BPIs d should be lower compared to scale intercorrelations based on the original
score. However, if it turns out that BPIs d are better fitted by a five-dimensional than
a one-dimensional simple-structure model, this would show that the five subscales
based on BPIs d are an adequate measurement for the five personality dimensions.

3 Results

To investigate whether BPIs e (extreme responses) and BPIs m (midpoint responses)
are measurements of RS, and whether BPIs d are rather a measurement of the
Big Five personality dimensions, we estimated the following IRT models using the
NEO-FFI dataset (German sample):

1. Simple-structure IRT and MIRT models with either unidimensional or multidi-
mensional RS factors (cf. Khorramdel and von Davier in press):

(a) First, three-dimensional, five-dimensional, and seven-dimensional IRT mod-
els with multidimensional RS factors were compared to one another: a
three-dimensional model was calculated to examine the three different kinds
of response processes or scores (e-items were assigned to one factor of ERS,
m-items were assigned to one factor of MRS, and d-items were assigned
to one factor); a five-dimensional model was calculated to account for the
Big Five dimensions (all BPI types were assigned to the five personality
factors); a seven-dimensional model was calculated to account for the Big
Five dimensions, as well as for ERS and MRS (e-items were assigned to one
factor of ERS, m-items were assigned to one factor of MRS, and d-items
were assigned to the five personality factors).

(b) Second, one-dimensional, and five-dimensional IRT models with unidimen-
sional RS factors were estimated separately for each BPI type and compared
to one another: In the one-dimensional model, BPIs were assigned to one
factor only, while in the five-dimensional models, BPIs were assigned to the
five personality factors.

2. Moreover, bifactor models and second-order models with unidimensional RS fac-
tors were estimated separately for each BPI type: these models were calculated
to account for items with loadings on ERS or MRS as well as on one of the
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Big Five personality dimensions. In both models, the Big Five dimensions were
defined as specific factors, while ERS and MRS were defined as general factor.
All BPIs were assigned to one general factor (ERS according to e-items and MRS
according to m-items) as well as to their respective specific factors so that every
item had two loadings.

3. Finally, we show how to correct the data for RS to obtain fair scores for the five
personality dimensions: BPIs d were scored by omitting midpoint and extreme
negative responses, and by using equally weighted extreme and nonextreme
positive responses (both responses were coded with 1). The dimensionality of
these BPIs was tested by comparing a five-dimensional (simple structure) model
(all BPIs were assigned to the five personality factors, respectively) to a one-
dimensional model (all BPIs were assigned to one factor only). Moreover, a
bifactor and second-order model were estimated as well and compared to the
five-dimensional model.

For model evaluation, the Akaike Information Criterion (AIC; Akaike 1974)
and the Bayesian Information Criterion (BIC; Schwarz 1978) were used. Both
AIC and BIC use the maximum likelihood value (L) of a model, the number of
estimated model parameters (k), and the sample size. While the number of model
parameters in the AIC is weighted with 2 (AIC=− 2 log L+ 2k), the BIC uses
the logarithm of the sample size (N) as weight (BIC=− 2 log L+ (log N)k) thus
penalizing overparameterization more than the AIC as soon as Log(N)> 2.

3.1 Simple-Structure IRT and MIRT Models

3.1.1 IRT Models with Multidimensional RS Factors

To examine if there are response styles in the rating data which can be differentiated
from personality traits, we estimated three-dimensional, five-dimensional, and
seven-dimensional IRT models (all based on the 2PL model) and compared them
to one another. We assigned BPIs by type (e, m, d) to the dimensions in the
three-dimensional model, while in the five-dimensional model, all BPI types were
assigned to the five personality factors. For the seven-dimensional model, we
assigned BPIs of type d to the five personality traits, but BPIs e and m to a sixth
and seventh (RS) factor, respectively.

Results show that the seven-dimensional model fits the data best. While the three-
dimensional model (AIC= 1,772,369.82; BIC= 1,775,044.07) fits the data better
than the five-dimensional model (AIC= 1,758,257.81; BIC= 1,760,983.63), the
seven-dimensional model (AIC= 1,730,146.41; BIC= 1,732,901.70) fits the data
better than the three-dimensional model. Thus, itcan be assumed that BPIs d are
measuring the five personality dimensions, and that BPIs e and m are measuring
ERS and MRS. Detailed results are given in Table 3.
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3.1.2 IRT Models with Unidimensional RS Factors

As the analysis with multidimensional RS factors shows that RS can be found in the
decomposed rating data, further analysis at the BPI level with unidimensional RS
factors was computed. Khorramdel and von Davier (in press) showed that analysis
with unidimensional RS factors and multidimensional trait factors provide more
information about the dimensionality of RS, and thus, provide more information
with regard to the correction for RS (or finding an optimal trait score). Therefore, we
estimated one-dimensional IRT models where either BPIs e or m were assigned to
one (RS) factor, and five-dimensional IRT models where BPIs e or m were assigned
to the five personality dimensions (all models were based on the 2PL model).

Comparing the results of the one-dimensional models with those of the five-
dimensional models discloses that both BPIs e and m are not unidimensional
measures of RS, as the five-dimensional models (e-items: AIC= 546,422.36,
BIC= 547,380.08; m-items: AIC= 663,508.70; BIC= 664,466.42) fit the
data better than the one-dimensional models (e-items: AIC= 553,234.01,
BIC= 554,132.79; m-items: AIC= 666,969.17; BIC= 667,867.96). Detailed
model-fit statistics are given in Table 4.

Still, it cannot be assumed that BPIs e and m are pure measures of the five
personality traits because the differences between the model fit indexes (AIC, BIC)
of the five-dimensional and one-dimensional models are not large, and the analysis
with multidimensional RS factors (including all BPI types) showed that the seven-
dimensional model fitted the data better than a five-dimensional model (see Table 3).
Moreover, the intercorrelations between the five personality scales based on BPIs e
and BPIs m (obtained from the five-dimensional models with unidimensional RS
factors) are considerably higher than the intercorrelations of the five scales based
on BPIs d or based on the original NEO-FFI items (where all five ordinal response
categories are used to score test takers’ responses: 0–1–2–3–4). Table 5 shows all
scale intercorrelations based on BPIs and original NEO-FFI items.

As scores with lower intercorrelations represent more suitable measures of
different scales or dimensions (the lower the intercorrelations are, the more justified
it is to score different test items to separate scales), it must be assumed that BPIs e
and m are not suitable measures of the five personality scales. With regard to these

Table 3 Results of the three-dimensional, five-dimensional, and seven-dimensional
simple-structure IRT models with multidimensional RS factors, including all BPI
types (180 items in total) — NEO-FFI dataset (German sample)

All five scales,
items: e, d, m

Seven-dimensional
model

Five-dimensional
model

Three-dimensional
model

AIC index 1,730,146.41 1,758,257.81 1,772,369.82
BIC index 1,732,901.70 1,760,983.63 1,775,044.07
Log-penalty

(model based,
per item) 0.475 0.483 0.486
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Table 4 Results of the one-dimensional and five-dimensional simple-structure IRT models with
unidimensional RS factors, and the bifactor and second-order models separately for each BPI type
(60 items each) — NEO-FFI dataset (German sample)

Five-dimensional
model

One-dimensional
model Bifactor model

Second-order
model

All five scales, e-items
AIC index 546,422.36 553,234.01 542,792.26 544,970.46
BIC index 547,380.08 554,132.79 544,074.13 545,920.81
Log-penalty (model

based, per item) 0.488 0.494 0.484 0.486
All five scales, m-items
AIC index 663,508.70 666,969.17 661,288.93 663,597.44
BIC index 664,466.42 667,867.96 662,570.80 664,510.96
Log-penalty (model

based, per item) 0.473 0.476 0.472 0.473
All five scales, d-items
AIC index 506,963.78 552,898.86 507,570.29 509,986.36
BIC index 507,921.50 553,797.64 508,852.16 510,899.87
Log-penalty (model

based, per item) 0.452 0.493 0.453 0.455

higher-scale intercorrelations and the better fit of the seven-dimensional model, we
hypothesize that the BPIs e and m do measure both RS and trait-related responses.
To test if this hypothesis is true, bifactor and second-order IRT models were applied
to BPIs e and BPIs m. Note that the ERS measure based on BPIs e and the MRS
measure based on BPIs m also show rather high IRT-based (marginal) reliabilities
(Sireci et al. 1991; Wainer et al. 2007, p. 76) obtained from the one-dimensional
model: 0.851 and 0.774.

3.2 Bifactor and Second-Order IRT Models

To examine if BPIs e and m have loadings on RS and personality dimensions,
we computed bifactor IRT models and second-order IRT models (all based on
the 2PL model), which allow items to load on two dimensions at the same time.
BPIs were assigned to the five personality factors and one RS factor (see an
illustration in Table 6). In the bifactor model, the general dimension (ERS factor or
MRS factor) reflects the covariance among items (overlap across all items), while
the independent specific dimensions (five personality factors) reflect the unique
coherency among particular groups of items. Items depend directly on the general
dimension (see Fig. 1). The second-order model items do not depend directly on the
general dimension but rather on their respective specific (conditionally independent)
dimensions, and the specific dimensions in turn depend on the general dimension.
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Table 5 Intercorrelations of the score distributions of the Big Five dimensions according
to the five-dimensional simple-structure IRT model for BPIs e (extreme responses), BPIs m
(midpoint responses), BPIs d (construct-related responses), and for the original NEO-FFI
items (original five-point Likert scale) — NEO-FFI dataset (German sample)

Agreeableness Conscientiousness Extraversion Neuroticism

e-items (extreme)
Agreeableness
Conscientiousness 0.617
Extraversion 0.618 0.540
Neuroticism 0.590 0.571 0.601
Openness 0.541 0.477 0.551 0.512
m-items (midpoint)
Agreeableness
Conscientiousness 0.428
Extraversion 0.463 0.445
Emotional stability 0.428 0.435 0.471
Openness 0.322 0.280 0.331 0.337
d-items (trait)
Agreeableness
Conscientiousness 0.149
Extraversion 0.198 0.197
Neuroticism −0.147 −0.320 −0.479
Openness 0.057 −0.111 0.114 0.024
Original NEO-FFI items (five-point rating scale)
Agreeableness
Conscientiousness 0.205
Extraversion 0.315 0.198
Neuroticism −0.146 −0.319 −0.516
Openness 0.084 −0.090 0.128 0.048

The general dimension is assumed to account for all relations between the specific
dimensions (see Fig. 2).

Results (see Table 4) show that a bifactor IRT model fits BPIs e and BPIs m
better (e-items: AIC= 542,792.26, BIC= 544,074.13; m-items: AIC= 661,288.93,
BIC= 662,570.80) than a five-dimensional simple-structure IRT model (e-items:
AIC= 546,422.36, BIC= 547,380.08; m-items: AIC= 663,508.70, BIC= 664,
466.42), and better than a second-order IRT model (e-items: AIC= 544,970.46,
BIC= 545,920.81; m-items: AIC= 663,597.44, BIC= 664,510.96).

Table 7 gives an overview of how much variance is explained by each factor with
regard to the bifactor model and (for complete information) the second-order model.
For BPIs e, most variance is explained by the general (ERS) factor (ERS: 0.906,
agreeableness: 0.393, conscientiousness: 0.711, extraversion: 0.516, neuroticism:
0.621, openness: 0.585), indicating they are mainly indicators of ERS. However, this
does not pertain for BPIs m: the general (MRS) factor does not explain most of the
variance. The specific factors, compared to the general (MRS) factor, explain about
the same amount of variance (MRS: 0.297, agreeableness: 0.250, conscientiousness:
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Table 6 Example of a data matrix for a bifactor or second-order IRT model for BPIs e and m,
in the case of five questionnaire items which are decomposed in 15 BPIs — NEO-FFI dataset
(German sample)

Item
RS
factor

Agreeable
ness

Conscien
tiousness

Extra
version

Emotional
stability

Intellect/
imagination

Bifactor or second-order IRT model for e-items
e-1 1 1 0 0 0 0
e-2 1 0 1 0 0 0
e-3 1 0 0 1 0 0
e-4 1 0 0 0 1 0
e-5 1 0 0 0 0 1
Bifactor or second-order IRT model for m-items
m-1 1 1 0 0 0 0
m-2 1 0 1 0 0 0
m-3 1 0 0 1 0 0
m-4 1 0 0 0 1 0
m-5 1 0 0 0 0 1

Table 7 Variances (SD2) of the estimated specific factors (Big Five dimensions) and the general
factor (ERS factor for e-items, MRS factor for m-items, and undefined factor for d-items) according
to the bifactor model and the second-order model — NEO-FFI dataset (German sample)

Agreeable
ness

Conscien
tiousness

Extra
version Neuroticism Openness ERS/MRS

Bifactor model
e-items, SD2 0.393 0.711 0.516 0.621 0.585 0.906
m-items, SD2 0.25 0.381 0.305 0.315 0.467 0.297
d-items, SD2 1.553 2.680 3.799 1.844 1.874 0.101
Second-order model
e-items, SD2 0.440 0.634 0.456 0.541 0.741 0.855
m-items, SD2 0.203 0.350 0.171 0.261 0.923 0.321
d-items, SD2 0.569 1.326 7.334 26.670 2.126 0.156

0.381, extraversion: 0.305, neuroticism: 0.315, openness: 0.467). This indicates that
the m BPIs are less (compared to the e items) influenced by RS and are a mixed
measure of RS and the five personality variables (the same picture is shown in the
second-order model; see Table 7).

3.3 Correcting the Trait Scores for RS

Our hypothesis was that if the data include ERS and MRS BPIs d (only extreme
and nonextreme responses, weighted equally with 1), they might be a better
measurement of the five personality scales than the original scored NEO-FFI items
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(all five response categories are used for scoring the personality dimensions) as they
are not biased by ERS and MRS. To test if this the case, we calculated the following
analysis:

1. We tested if BPIs d are measuring five factors and not one (BPI type based)
factor. Therefore, we computed a five-dimensional model (BPIs were assigned to
the five personality factors) and a one-dimensional model (BPIs were assigned
to one factor only) based on BPIs d and compared them to each other (again,
models were based on the 2PL model). A bifactor model and a second-order
model (based on the 2PL model) with a general factor in addition to the five trait
factors were computed as well and compared to the five-dimensional model.

2. We computed intercorrelations among the five personality scales based on BPIs
d, and compared them to the scale intercorrelations based on the original NEO-
FFI items (where all five ordinal response options are scored).

Results (see Table 4) show that BPIs d are better fitted with the five-dimensional
model (AIC= 506,963.78, BIC= 507,921.50) than the one-dimensional model
(AIC= 552,898.86, BIC= 553,797.64). The five-dimensional model also fits the
data better than a bifactor model (AIC= 507,570.29, BIC= 508,852.16) or a
second-order model (AIC= 509,986.36, BIC= 510,899.87). According to the vari-
ances explained by each factor (see Table 7), it can be seen that the general factor in
the bifactor model and second-order model, respectively, explains the least variance
in the data based on BPIs d compared to the variances explained by the five
personality factors. Hence, the dimensionality of BPIs d seems to apply to the five
personality dimensions. In addition, the scale intercorrelations based on BPIs d are
slightly lower than the scale intercorrelations based on the original NEO-FFI items
(see Table 5). Overall, it can be assumed that BPIs d are a more appropriate measure
for the five personality dimensions than the original scored NEO-FFI items, which
seem to be biased by RS.

3.4 Validation of the Current Approach on a Second Dataset

To validate the current approach of differentiating RS from trait-related responses by
applying bifactor and second-order IRT models on BPIs, we used the IPIP dataset
(U.S. sample) of a prior study by Khorramdel and von Davier (in press). The results
of the simple-structure IRT models with multidimensional and unidimensional RS
factors are similar to the results reported for the NEO-FFI dataset. BPIs e, m, and
d were best described by a seven-dimensional model than a three-dimensional or
five-dimensional model (including all BPI types). But analysis with unidimensional
RS factors could show that BPIs e and m were each better fitted with a five-
dimensional model than a one-dimensional model. While a better model fit of the
one-dimensional model for BPIs e could be obtained after exclusion of only one
misfitting item (with regard to a graphical item check; cf. Khorramdel and von
Davier in press), 11 of 50 items had to be excluded from the analysis in order to
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Table 8 Results of the one-dimensional and five-dimensional simple-structure IRT models with
unidimensional RS factors, and the bifactor and second-order models separately for BPIs e and m
(50 items each) — IPIP dataset (U.S. sample)

Five-dimensional
model

One-dimensional
model

Bifactor
model

Second-order
model

All five scales, e-items
AIC index 81,133.78 82,521.52 80,606.16 80,814.61
BIC index 81,723. 22 83,094.13 81,414.55 81,645.46
Log-penalty (model

based, per item) 0.532 0.542 0.528 0.530
All five scales, m-items
AIC index 100,885.44 101,129.70 100,464.48 100,684.18
BIC index 101,502.96 101,702.31 101,272.87 101,520.64
Log-penalty (model

based, per item) 0.497 0.498 0.495 0.496

Table 9 Variances (SD2) of the estimated specific factors (Big Five dimensions) and the general
factor (ERS factor for e-items, MRS factor for m-items) according to the bifactor model — IPIP
dataset (U.S. sample)

Agreeable
ness

Conscien
tiousness

Extra
version Neuroticism Openness ERS/MRS

Bifactor model
e-items, SD2 1.595 0.778 0.961 1.290 0.858 2.076
m-items, SD2 1.441 0.504 0.682 0.675 0.886 0.977

get a slightly better model fit of the one-dimensional model for BPIs m (but only
with regard to the BIC index; the AIC index was still showing a better fit of the
five-dimensional model).

Therefore, it was assumed that BPIs (especially BPIs m) are measuring not only
RS but also (in part) trait-related responses. See the detailed results of all analyses
in Khorramdel and von Davier (in press) and partly in Table 8.

In the current paper, a bifactor model and a second-order model were computed
to better examine the dimensionality of BPIs e and m. Again, the results are similar
to those of the NEO-FFI dataset: The bifactor model fits BPIs e and BPIs m
better (e-items: AIC= 80,606.16, BIC= 81,414.55; m-items: AIC= 100,464.48,
BIC= 101,272.87) than the five-dimensional model (e-items: AIC= 81,105.88,
BIC= 81,723.40; m-items: AIC= 100,882.03, BIC= 101,499.55) and better than
the second-order model (e-items: AIC= 80,814.61, BIC= 81,645.46; m-items:
AIC= 100,684.18, BIC= 101,520.64). See the detailed information about the
model fits in Table 8.

Furthermore, it is shown that the general factor (ERS) with regard to the bifactor
model for BPIs e explains more variance than each of the five personality factors,
while this is not true for the general factor (MRS) with regard to BPIs m. The MRS
factor explains the second most variance, while the factor for agreeableness explains
most variance. See the variances for each factor in Table 9.
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4 Discussion

This paper introduces an approach to test and correct rating data for ERS, MRS if
they are not unidimensional but mixed with trait-related responses (for example,
because some test takers show RS while others do not). Response styles (RS)
are differentiated from trait-related responses by using multidimensional bifactor
and second-order IRT models. The aim is to find measures of personality which
are unaffected by RS and can provide fair comparisons with regard to individual
differences. Based on an approach of Böckenholt (2012), ordinal rating data
are decomposed into BPIs which represent different sequential (nested) response
processes. These reflect potential cognitive thought processes used by a test taker
to a rating scale category. The advantage of such BPIs is that different response
processes (trait-related responses and RS) can be scored and tested separately.

In the current study, rating data from the German version of the NEO-FFI
personality questionnaire (Borkenau and Ostendorf 2008) using a five-point Likert-
type scale are decomposed into single response processes. According to the number
of response categories (five), it is hypothesized that ERS and MRS might occur.
Therefore, the data are decomposed into three different BPIs: BPIs e (accounting
for extreme positive and negative responses), BPIs m (accounting for midpoint
responses) and BPIs d (trait-related responses: equally weighted extreme and
nonextreme positive responses directed towards the measured trait). To examine if
the different BPIs are measures of RS (e-items and m-items) and unbiased trait-
related responses (d-items), different unidimensional and multidimensional IRT
analyses were conducted. The different BPIs were modeled as multidimensional
RS factors as described by Böckenholt (2012), and as unidimensional RS factors as
described by Khorramdel and von Davier (in press). In addition to simple-structure
IRT models, more complex models were computed as well: bifactor and second-
order IRT models, which allow items to have loadings on both RS and trait factors,
and which show how much variance is explained by each factor.

4.1 The Dimensionality of ERS and MRS Measures

The analyses with multidimensional and unidimensional RS factors using simple-
structure IRT models show that RS can be assumed to exist in the data, but that it
cannot be differentiated from trait-related responses straightforwardly. The e-items
and m-items cannot be defined as pure RS measures, nor can they be seen as pure
measures of the five personality traits. They are measuring both RS and trait-related
responses.
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4.2 Differentiating Between Trait-Related Responses and RS

To be able to differentiate RS from construct- or trait-related responses with regard
to ERS and MRS, bifactor and second-order IRT models were applied to the BPIs,
which allow items to have loadings on two factors at the same time. Results show
that the bifactor model fits BPIs e and m best compared to the simple-structure
models and the second-order model. Hence, hypothesis that these BPIs measure RS
and trait-related responses is confirmed.

Importantly, the bifactor model discloses the variances explained by each factor.
Thus, it shows to which extent the data are biased by RS. While the ERS factor
clearly explained more variance than each of the five personality factors, the MRS
factor did not and is therefore not a distinct RS measure.

4.3 Correcting Rating Data for RS

To correct data for ERS and MRS, we used a score which does not account
for midpoint or extreme negative responses, and where extreme and nonextreme
positive responses are equally weighted (both responses are coded with 1) — BPIs
d. Results of the simple-structure IRT analysis could show that the BPIs d were
rather multidimensional (five-dimensional) personality measures than unidimen-
sional measures. Moreover, scale intercorrelations of the personality scales based on
BPIs d are lower than scale intercorrelations based on the original (ordinal scored)
NEO-FFI items.

Furthermore, a bifactor and a second-order model for the d-items showed no
better model fit than the simple-structure IRT model, and more variance is explained
by the five personality factors than by an additional general factor with regard to the
bifactor and the second-order model. Therefore, it can be assumed that the binary
coded d-items are not biased by RS and are a more adequate measurement of the
five personality dimensions than the original scored NEO-FFI items with regard to
the current data.

4.4 Validation of the Current Approach (Bifactor Model)

To validate the current approach, a bifactor model was estimated for the dataset
(U.S. sample) of the prior study of Khorramdel and von Davier (in press), which
comes from an FFM questionnaire (IPIP) as well using a five-point Likert scale.
The results reflect those of the NEO-FFI dataset: A bifactor model fits BPIs e and m
better than a simple-structure IRT model, and the bifactor model also shows superior
model fit compared to a second-order model. Again, the MRS measure with BPIs m
is not distinct.
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4.5 Summary of the Findings

In summary, we were able to show that the current approach — a combination
of Böckenholt’s approach (2012), the extended approach of Khorramdel and von
Davier (in press), and the application of multidimensional bifactor IRT models —
can be used to identify RS in rating data, to achieve a better differentiation between
RS and trait-related responses, and to correct for RS in order to provide less biased
personality assessments.

In both studies (NEO-FFI and IPIP datasets), ERS and MRS are not purely
unidimensional as both item types seem to have additional trait loadings. But both
RS measurements show high IRT-based (marginal) reliabilities (in both studies). A
bifactor model that accounts for RS and trait loadings for each item shows the best
model fit, and demonstrates that ERS as a general factor explains more variance than
the trait measures as specific factors. Thus, our hypothesis is supported that BPIs e
are a measurement for ERS rather than for the five personality dimensions.

4.6 Limitations and Implications for Further Research

The demonstrated results are restricted to a five-point Likert scale and to instruments
which are measuring the Big Five personality dimensions. Further research is
needed using other rating scales and other questionnaires. Our problem in finding a
distinct measure for MRS does not imply that the use of a middle category in rating
scales is without problems, or that no MRS exists in the data (the latter would require
a better fit of the five-dimensional model than of the bifactor model, which was not
the case). Thus, the measurement of RS with BPIs should be further investigated,
especially with regard to MRS. Moreover, the investigation of other scoring methods
or types of RS (e.g., acquiescence) would be interesting as well.
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Gender DIF in Reading Tests: A Synthesis
of Research

Hongli Li, C. Vincent Hunter, and T.C. Oshima

1 Introduction

Many studies have investigated gender differences in reading from a range of
perspectives. A general trend is that female students perform slightly better in
reading than male students (Chiu and McBride-Chang 2006; Mullis et al. 1993).
Neuroimaging studies suggest that male and female students have different patterns
of functioning activation during reading (Pugh et al. 1996; Shaywitz et al. 1995). It
has also been found that male and female students use different reading strategies
(Thompson 1987) and that they benefit from different types of reading instruction
(Johnston et al. 2009). Another finding is that, compared with male students,
female students have a more positive attitude toward reading (McKenna et al. 1995;
Sainsbury and Schagen 2004). Female students have also been found to read more
often than males do (Hall and Coles 1999; Mullis et al. 2007). Furthermore, it is
generally reported that male students have poorer attention during literacy lessons as
compared with female students (Logan et al., as cited in Logan and Johnston 2009).

However, females’ advantage at the item level may or may not exist, when
their overall reading ability is controlled for. This can be interpreted as whether an
item shows differential item functioning (DIF) between gender groups. DIF occurs
when examinees from different groups show different probabilities of success on an
item after being matched on the underlying ability the test is intended to measure
(Camilli and Shepard 1994). A large number of gender-related DIF studies have
been conducted with reading tests. However, we do not yet have an overall picture of
gender DIF in reading tests, and the reasons for the existence of gender DIF are not
fully understood. In addition to simply identifying the existence and the direction
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of DIF, two primary reasons often motivate researchers to explore the sources for
DIF. The first is that this information would help test developers plan appropriately
during test development to make tests as DIF-free and as fair as possible. The second
reason is that understanding the nature of group differences (Ferne and Rupp 2007;
Gierl 2005; Shimizu and Zumbo 2005) would inform instructional changes that may
ameliorate the differences.

The purpose of this study is to synthesize gender-related DIF in reading tests.
Two main questions are asked: First, what is the average proportion of items
identified as exhibiting gender DIF in reading tests, and is there any pattern
involved? Second, what characteristics are prevalent in items and in tests exhibiting
gender DIF? The results of the study will provide useful information regarding
gender DIF in reading tests and the possible reasons behind such differences. It
is expected that these results will have important implications for the assessment
and instruction of reading skills.

2 Literature Review

2.1 DIF Methods

DIF is a widely used technique for item bias detection. However, items showing
DIF are not necessarily biased. Item bias occurs when examinees in one group are
less likely to answer an item correctly than examinees in another group because of
some characteristics of the test item or testing situation that are irrelevant to the
test purpose. Therefore, DIF is regarded as a necessary but not sufficient condition
for item bias (Zumbo 1999). There are two types of DIF: uniform and nonuniform
(Mellenbergh 1982). Uniform DIF exists when the statistical relationship between
item response and group membership is constant for all levels of the matching
ability variable. An item may consistently favor one group over another regardless
of the underlying ability being tested. Nonuniform DIF exists when this statistical
relationship is not the same for all the matching ability levels. One group may have
a relative advantage at one end of the ability level, whereas the other group may
have a relative advantage at the other end of the ability level.

A variety of statistical procedures for detecting DIF have been developed. The
following gives a brief overview of four major DIF methods: Mantel–Haenszel
(M–H), logistic regression, item response theory-likelihood ratio (IRT-LR), and
the SIBTEST method. Mantel and Haenszel (1959) developed a model of relative
risk given a set of possible risk factors. This method uses a non-iterative 2× 2
contingency table. The expected value of any cell in the table can be tested as a
χ2 with one degree of freedom, calculated as the ratio of a squared deviation from
the expected value of the cell to its variance, where the variance is defined as the
marginal totals divided by the squared total times the total minus 1. Holland and
Thayer (1988) generalized the Mantel–Haenszel (M–H) χ2 procedure to education,



Gender DIF in Reading Tests: A Synthesis of Research 491

substituting ability level for risk factor. They noted that the overall significance test
proposed by Mantel and Haenszel is a common odds ratio that exists on a scale of
0 to ∞ with 1 being the null hypothesis of no DIF. The Mantel–Haenszel method is
easy to implement and detects uniform, but not nonuniform, DIF (Swaminathan and
Rogers 1990).

The logistic regression method (Swaminathan and Rogers 1990) models the
probability of a correct response to an item as a function of the observed total score
X, group membership G, and the interaction between X and G. To test for signifi-
cance of DIF, there is a natural three-step hierarchy in regard to the entry of predictor
variables as follows (Zumbo 1999). In Model 1, the conditioning variable X (i.e., the
total score) is entered; in Model 2, the grouping variable G is entered; and in Model
3, the interaction term X×G is entered. Changes in the −2loglikelihood among
the three models are compared so as to determine the existence of uniform DIF,
nonuniform DIF, and/or both (Camilli and Shepard 1994; Hambleton et al. 1991).

The IRT-LR (Thissen et al. 1988) is based on testing the differences between IRT
parameters for the reference and focal groups. It begins with the null hypothesis
that there is no difference in the parameters (trace lines) for each group. Using
a set of anchor items combined with the studied items, the IRT-LR method
fits simultaneously the focal and reference groups to each of two models: an
unconstrained model, in which all parameters are allowed to vary freely, and a
constrained model, in which one or more of the parameters are constrained to be
equal across the study groups (Pae 2012). Typically, the −2loglikelihood values of
the models are compared to determine the existence of DIF.

SIBTEST is an implementation of the standardization approach, which is built on
Shealy and Stout’s (1993) multi-dimensional IRT model of differential functioning.
It is a non-parametric, multi-dimensional IRT model to detect DIF at both the item
and the test levels. The model holds that two classes of abilities affect scores:
target ability, which is intentionally measured, and nuisance determinants, which
are inadvertently measured. DIF comes from nuisance determinants having different
levels of prevalence in different examinee groups. SIBTEST uses an internal set of
test items that do not exhibit DIF as the matching criterion. This method requires
a valid sub-test score and a studied sub-test score. Simulation studies (Shealy and
Stout 1993; Zhou et al. 2006) have shown that SIBTEST has acceptable levels of
Type 1 errors and has power comparable to the Mantel–Haenszel test.

For a DIF evaluation method to be informative, a measure of the magnitude
(effect size) of DIF present is needed (Roussos and Stout 1996). For example,
the SIBTEST DIF index (β ) and the M–H index (Δ) do not have a mathematical
equivalence. However, they do have a very strong correlation and can be approxi-
mately equated (Roussos and Stout 1996). Based on research (Dorans and Holland
1993; Jodoin and Gierl 2001; Roussos and Stout 1996; Zwick and Ercikan 1989),
ETS proposes three categories of DIF magnitude: A (trivial), B (moderate), and
C (large). For the Mantel–Haenszel test, DIF magnitude belongs to category A if∣∣∣Δ̂∣∣∣ < 1,category B if 1 ≤

∣∣∣Δ̂∣∣∣ < 1.5, and category C if
∣∣∣Δ̂∣∣∣ ≥ 1.5 (Zieky 1993).
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For SIBTEST, DIF magnitude belongs to category A if
∣∣∣β̂ ∣∣∣ < 0.059, category B if

0.059 ≤
∣∣∣β̂ ∣∣∣ < 0.088, and category C if

∣∣∣β̂ ∣∣∣ ≥ 0.088. Furthermore, for the logistic

regression method, DIF magnitude belongs to category A if R2 < 0.035, category
B if 0.035≤R2 < 0.07, and category C if R2 ≥ 0.07. However, there is no complete
agreement about this category separation (Zhang and French 2010), and it is unclear
how DIF magnitude determined using other methods, such as IRT-LR, may be
mapped on this scheme. When two different methods are on different metrics, they
do not have a formal mathematical equivalence. Therefore, this classification can be
used as a guideline but not as an exact transformation equation.

2.2 Gender-Related DIF in Reading

Researchers are motivated to examine the potential sources of DIF. However, this
determination is a complex process, and the results of this effort have not been
fruitful (Ryan and Bachman 1992). Because of the varying contexts in which DIF
appears, Birjandi and Amini (2007) speculated that “item format, content, and type,
along with word or sentence-level complexities and ambiguities were recognized as
possible sources of bias in items flagged as DIF” (pp. 157–158).

The first possible source of DIF investigated is item content. Many researchers
have noted that items with technical and/or science content tend to favor males,
whereas items with content related to the arts and humanities or nontechnical
science tend to favor females (Birjandi and Amini 2007; Doolittle and Welch
1989; Durand and Park 2007; Gibson 1998; Karami 2011; Lawrence et al. 1988).
Similarly, for items whose content is about a traditionally gendered activity or
occupation, the ones describing male activities tend to favor males, whereas the ones
describing female activities tend to favor females (Dorans and Kulick 1983; Takala
and Kaftandjieva 2000). Items from informational passages favor males, whereas
items from narrative passages favor females (Lawrence et al. 1988). Items dealing
with the concrete and practical tend to favor males, whereas items dealing with
the abstract tend to favor females (Birjandi and Amini 2007; Carlton and Harris
1992). Additionally, items requiring logical inference favor males regardless of item
content (Karami 2011; Pae 2004).

Item format or type has also been frequently found to be associated with gender
DIF. According to Pae (2012), cloze items that require contextual information to
answer the items tend to favor males over females more frequently. Multiple-choice
items (including True/False/Not Given) tend to favor males, as do sentence-
completion items (Birjandi and Amini 2007; Lin and Wu 2003; Ryan and Bachman
1992). Items related to summary completion and flowcharts tend to favor females
(Birjandi and Amini 2007; Ryan and Bachman 1992). Pae (2012), while seeing
item type and item content as both possible sources of gender DIF, indicates that
item type is a more influential source than item content.



Gender DIF in Reading Tests: A Synthesis of Research 493

Another possible source of DIF, reported in the literature, is the examinee’s
attitude toward the test item, that is, the level of comfort or interest the examinee has
toward the item. The more interest that an examinee has in the content of an item the
more likely he or she is to perform well on it (Chavez, as cited in Brantmeier 2001).
Where males and females have a wide gap in their respective interest in the content
of an item, DIF is more likely to occur (Bügel and Buunk 1996). For example, Pae
(2012) found that examinee interest in the subject explains a significant proportion
of male–female DIF on test items.

Among DIF studies of reading tests, many research studies focused on DIF
caused by examinees’ different native languages (e.g., Abbott 2007; Bae and
Bachman 1998; Bügel and Buunk 1996; Kim and Jang 2009; Stephenson et al.
2004). Therefore, it is necessary to investigate the possible relationship between
gender DIF and the test-takers’ native languages, which can be generally grouped
into native speakers of English and nonnative speakers of English. In addition, test
stakes is another important test characteristic. Tests can be defined as high stakes
or low stakes when an examinee’s test results produce significant or nonsignificant
personal consequences, respectively, for that examinee (Wise 2006). Examinees’
motivation to succeed varies accordingly, with more effort expended for high stakes
tests (DeMars 2000; Jacob 2002; O’Neil et al. 1995; Wise et al. 2006). Because of
the potential relationship between test stakes and gender difference (DeMars 2000),
test stakes will also be considered in the current study.

3 Methods

The first step of this study was to collect studies on gender DIF in reading tests.
The second was to select studies that met the inclusion criteria. Then important
characteristics of the items and the tests in each study were coded. Finally, the
results of each study were quantitatively synthesized. The following describes the
procedure in detail.

3.1 Selecting the Studies

For the purpose of the current synthesis, the following criteria were used to select
the studies to be included:

1. Eligible studies must include gender-related DIF analyses of reading tests.
2. Studies must provide sufficient information regarding item-level gender-DIF.
3. Only studies published in English are included.

In addition, to avoid the file-drawer problem, which is the tendency for only
studies that produce significant effects to be published formally (Glass 1976;
Lipsey and Wilson 2001), we considered a very broad range of studies, such that
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all published and unpublished studies were considered, including journal articles,
technical reports, conference presentations, conference proceedings, theses, and
dissertations.

Several strategies were used to search for eligible studies. First, using the
combination of the keywords “DIF” “gender” and “reading,” we searched well-
known online databases (e.g., ERIC, ProQuest, Dissertation Abstracts International,
Social Sciences Abstracts, and the Social Sciences Citation Index). Second, we
searched major journals in educational measurement and language assessment
to check for potentially relevant articles. Third, we searched the web sites of
major testing companies and organizations, such as ETS, ACT, the College Board,
Pearson, CTB/McGraw-Hill, Cambridge Michigan Language Assessments, the
National Council on Measurement in Education (NCME) annual meeting program,
and the American Educational Research Association (AERA) Division D annual
meeting program. Finally, we reviewed references in the eligible studies and added
those that we had not already found in our original search.

A total of 180 articles and reports were collected as a result of this initial search,
as described above. However, after screening each article using the inclusion crite-
ria, we determined that only 18 articles provided sufficient and unique information
for this study. Table 1 summarizes these 18 studies. One major reason for excluding
some studies is that they did not report item-level DIF. For example, Geske and
Ozola (2010) conducted a DIF study using the IEA PIRLS 2006 data for Latvia;
however, they did not present information regarding how many or which items
exhibited DIF. Other studies were excluded because they used the same dataset. For
example, three articles—Karami (2011), Rezaee and Shabani (2010), and Salehi
and Tayebi (2011)—studied the University of Tehran English Proficiency Test, an
entrance exam for PhD programs at the University of Tehran, using the same dataset.
We decided to include only one study—Salehi and Tayebi (2011)—in order to
ensure that each included study would provide unique information.

3.2 Coding Procedure

We coded item-level DIF information and other important item characteristics and
test characteristics. To ensure coding reliability, two of the authors first coded
each study independently and then convened to discuss any discrepancies. Table 2
lists the coded variables and the coding scheme. As indicated in the previous
literature review section, there is a lack of universal criteria on DIF magnitude
across different methods. In addition, some studies did not provide sufficient
item-level DIF magnitude information. We, therefore, used a rough dichotomous
variable to indicate the presence of DIF instead of continuous coding, which would
have indicated the magnitude of any DIF present. Other DIF-related information
includes whether the DIF item favors males or females and whether it is uniform or
nonuniform. Item type and item scoring information were also coded. The topic of
the item was not coded because the studies did not provide sufficient information on
this point.
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Table 1 Studies included

Study name Test studied DIF method used

Birjandi and Amini
(2007)

International English Language
Testing System (IELTS)

IRT-LR

Carlton and Harris (1992) Scholastic Aptitude Test (SAT) Mantel–Haenszel
Dorans and Kulick (1983) Scholastic Aptitude Test (SAT) Standardization
Durand and Park (2007) Kanda English Placement Test

(KEPT)
Mantel–Haenszel

Gibson (1998) Armed Services Vocational
Aptitude Battery (ASVAB)

Mantel–Haenszel

Gierl (2005) High School Exit Exam SIBTEST
Hauser and Kingsbury

(2004)
National Curriculum Test 2008 IRT-LR

Kline (2004) Test of Workplace Essential Skills
(TOWES)

IRT-LR

Lawrence et al. (1988) Scholastic Aptitude Test (SAT) Standardization
Lin and Wu (2003) English Proficiency Test (EPT) SIBTEST
Pae (2004) Korean National Entrance Exam

for Colleges and Universitiesa
IRT-LR

Pae (2012) Korean College Scholastic
Aptitude Test (KCSAT)

IRT-LR

Pae and Park (2006) Korean College Scholastic
Aptitude Test (KCSAT)

IRT-LR

Park et al. (2005) Korean College Scholastic
Aptitude Test (KCSAT)

Mantel–Haenszel

Ross and Okabe (2006) University Admissions Test of
English as a Foreign Language
(EFL)

Mantel–Haenszel

Ryan and Bachman
(1992)

Test of English as a Foreign
Language (TOEFL)/First
Certificate of English (FCE)

Mantel–Haenszel

Salehi and Tayebi (2011) University of Tehran English
Proficiency Test (UTEPT)

Logistic regression

Twist and Sainsbury
(2009)

National Curriculum Test 2008 Absolute mean differenceb

aThe Korean National Entrance Exam for Colleges and Universities was later called the KCSAT
bTwist and Sainsbury conducted t-tests between males’ and females’ performance on each item
while controlling for their overall reading performance

Three test characteristics were coded. First, test length, which was indicated by
the number of items on the test. Tests were found to range from 15 items (Gibson
1998) to 80 items (Birjandi and Amini 2007). Second, test stakes were mainly
judged by whether the test had significant personal effects for the examinees, such as
university admission (Salehi and Tayebi 2011; Wise 2006). For example, the Korean
College Scholastic Aptitude Test (KCSAT), which is used to determine whether the
examinees can be admitted to a university in Korea, is a high stakes test (Pae and
Park 2006). On the other hand, the Kanda English Placement Test (KEPT), which
is used to place students in different classes to receive appropriate instruction, was



496 H. Li et al.

Table 2 Variables and coding

Variables Coding

Item DIF method 1 if IRT-LR
2 if logistic regression
3 if Mantel-Haenszel
4 if SIBTEST
5 if Standardization
6 if absolute mean difference

DIF existence 1 if the item is determined as showing DIF, 0 if not
Uniform or nonuniform 0 if nonuniform DIF, 1 if uniform DIF
Favoring male or female 0 if favoring male, 1 if favoring female
Item type 0 if multiple choice, 1 if constructed response items
Item scoring 0 if dichotomous, 1 if polytomous

Test Test length Number of items on the test
Test stakes 1 if high stakes, 0 if not
Second language test 1 if test is for English as a second language speakers,

0 if not

not regarded as a high stakes test. The third test characteristic is whether the test is
designed for native English speakers or for speakers of English as a second language
(ESL). A second language test, such as the First Certificate in English (FCE; Ryan
and Bachman 1992), is intended to assess the reading proficiency of examinees in
a language other than their native language. Reading tests such as the Scholastic
Aptitude Test-Verbal (SAT-V) are intended to be primarily used with native speakers
of the test language.

3.3 Analysis Procedure

The coding data from these articles (1,210 items from 18 studies) were entered
into SPSS software. Descriptive statistics, such as percentages and means, were
produced to provide an overall picture of the gender DIF pattern in the included
studies. Then correlation and cross-tab statistics were provided in order to describe
any possible relationships between gender DIF and the item and test characteristics.

4 Results

4.1 Percentage of DIF Items

As shown in Table 3, 1,210 items from 18 gender DIF studies were collected. Six
different DIF methods were used in the studies, with the most common ones being
IRT-LR and M–H. The percentage of DIF items was 23.3% across the 18 studies,
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Table 3 DIF methods used in the studies

DIF methods Number of studies Number of items Percentage of DIF items

IRT-LR 6 541 28.1
M–H 6 432 18.9
Standardization 2 125 1.6
Logistic regression 1 35 2.9
Absolute mean difference 1 34 2.9
SIBTEST 2 52 3.8
Total 18 1,210 23.3
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Fig. 1 Percentage of DIF items across individual studies

which indicates that in general almost one fourth of the items on a reading test
may be detected as exhibiting gender DIF. The average percentage of DIF items for
studies using IRT-LR was 28.1%, which is higher than the average percentage of
DIF items for studies using M–H (18.9%).

Figure 1 shows the percentage of DIF items for each study. There is a large
variation in the percentage of DIF items among the 18 studies. The study having
the highest percentage of DIF items is Pae (2004): 77.78%, followed by Pae (2012):
68.6%, and Pae and Park (2006): 66.7%. All three of these studies used IRT-LR to
detect DIF in the Korean College Scholastic Aptitude Test (KCSAT), and it should
be noted that Pae is the sole author of the first two of these studies and the first author
of the third. The percentage of DIF items was zero in both Dorans and Kulick (1983)
and Salehi and Tayebi (2011).

Figure 2 lists the percentage of DIF items according to the kind of test being
used. It is notable that the test having the highest percentage of DIF items is the
KCSAT, which was studied in all three articles for which Pae is either the sole
or the first author. When the KCSAT is not considered, the other second language
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Fig. 2 Percentages of DIF items across tests studied

tests, such as the International English Language Testing System (IELTS), the First
Certificate in English (FCE), the Test of English as a Foreign Language (TOEFL),
and the University of Tehran English Proficiency Test (UTEPT), seem to have lower
percentages of DIF items overall. In addition, in order to capture any trends in
regard to the percentage of DIF items over time, we also graphed the percentage
of DIF items in each study across time periods (Fig. 3). However, no trend could be
identified.

Furthermore, we calculated the percentages of DIF items favoring males or
females (Table 4). In terms of all 18 studies, half the DIF items favored males
while half favored females. For studies using IRT-LR, about 53.5% of the DIF
items favored males and 46.7% favored females. Similarly, for studies using
M–H, 43.8% of the DIF items favored males and 56.3% favored females. A chi-
square association test showed no significant association between the percentage
of DIF items favoring males or females and the DIF method (χ2 = 1.605, df= 1,
p> 0.05).

Unfortunately, many of the studies did not report whether the detected DIF was
uniform or nonuniform. Also, the M–H method is unable to identify nonuniform
DIF. For studies using IRT-LR, about 23.5% of the DIF items showed uniform DIF,
whereas 28.8% of the DIF items showed nonuniform DIF. Overall, the information
available in the included studies regarding uniform and nonuniform DIF is limited.
Therefore, in the present study, we are not able to provide accurate patterns
regarding whether uniform or nonuniform gender DIF is more prevalent in reading
tests.
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Fig. 3 Percentage of DIF items across time period

Table 4 Percentage of DIF items favoring males and percentage of DIF items favoring
females

Gender All studies (%) Studies using IRT-LR (%) Studies using M–H (%)

Favoring male 49.3 53.5 43.8
Favoring female 50.7 46.7 56.3

4.2 Relationships Between DIF Existence and Item and Test
Characteristics

The respective relationships between DIF and item type and between DIF and
item scoring are of theoretical interest. However, among the 1,210 items from the
18 studies, 1,176 items were multiple-choice and dichotomously coded. Due to
insufficient variation to study the relationship between DIF existence and item type
and the relationship between DIF existence and item scoring, we only examined the
relationship between DIF existence and test length using point-biserial correlation.
For all 18 studies, the correlation coefficient −0.145 is statistically significant
(p< 0.001), which shows that items from shorter tests are more likely to show
gender DIF than are items from longer tests. A similar pattern exists for studies using
IRT-LR (r=−0.468, p< 0.001) and for studies using M–H (r=−0.304, p< 0.001),
respectively.

Table 5 summarizes the relationship between DIF existence and test stakes. When
all the studies are considered, the odds ratio is 1.59. This ratio indicates that the odds
for an item from a high stakes test to show DIF are 1.59 times the odds for an item
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Table 5 Relationship between DIF and test stakes

Test stakes With DIF No DIF χ2
(1) Odds ratio

All studies High 188 517 10.675*** 1.590
Not high 94 411

Studies using IRT-LR High 139 192 81.527*** 10.971
Not high 13 197

Studies using M–H High 16 198 36.936*** 0.183
Not high 64 145

***p< 0.001

Table 6 Relationship between DIF existence and whether the test is administered to ESL speakers
or to native speakers

Tests With DIF No DIF χ2
(1)

Odds
ratio

All studies ESL speakers
Native English speakers

152130 346582 24.657∗∗∗ 0.508

Studies
using
IRT-LR

ESL speakers
Native English speakers

13913 192197 81.527∗∗∗ 0.091

Studies
using
M–H

ESL speakers
Native English speakers

971 93250 8.921∗∗ 2.935

**p< 0.01; ***p< 0.001

from a low stakes test. A similar pattern exists when only studies using IRT-LR are
considered. That is, the odds ratio is 10.971, which indicates that the odds for an
item from a high stakes test to show DIF are over 10 times the odds for an item from
a low stakes test. However, when only studies using M–H are considered, the result
is the opposite: the odds ratio of 0.183 indicates that the odds for an item from a
high stakes test showing DIF are only 0.183 times the odds for an item from a low
stakes test.

Table 6 summarizes the relationship between DIF existence and whether the test
is for ESL speakers or native English speakers. When all the studies are considered,
the odds ratio is 0.508. This ratio indicates that the odds for an item from tests
for ESL speakers to show DIF are 0.508 times the odds for an item from tests for
native English speakers. A similar pattern exists when only studies using IRT-LR
are considered. That is, the odds ratio is 0.091, which indicates that the odds for an
item from tests for ESL speakers to show DIF are 0.091 times the odds for an item
from tests for native English speakers. However, when only studies using M–H are
considered, the result is the opposite. The odds ratio of 2.935 indicates that the odds
for an item from tests for ESL speakers to show DIF are 2.935 times the odds for an
item from tests for native English speakers.
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5 Discussion

5.1 Percentage of DIF Items

In this study, based on 1,210 items from 18 articles, the percentage of gender-related
DIF items is 23.3%. This number is much smaller than what Zhang and French
(2010) found in their study regarding gender DIF in math. Synthesizing 615 items
from 14 studies, Zhang and French found that about 46% of the items were identified
as not showing DIF, 23% of them were identified as showing moderate DIF, and 31%
as showing large DIF. Based on the current study and the synthesis conducted by
Zhang and French, it seems that the proportion of gender-related DIF items is lower
in reading tests than in math tests.

The present study also shows that half of the DIF items favor males and half
favor females. This pattern generally holds true across all the DIF methods used.
For example, studies using IRT-LR showed about 53% of the DIF items favoring
males and 47% of the DIF items favoring females; studies using M–H also showed
DIF items approximately evenly favoring each gender but with a reverse twist: 44%
favoring males and 56% favoring females. Zhang and French, however, reported
that overall 60% of the math DIF items favor males and 40% favor females. Based
on the present study and the synthesis conducted by Zhang and French, we would
speculate that it is probably easier to develop DIF-free items in reading than in
math. We were not able to determine whether there were any patterns regarding
nonuniform or uniform DIF. The findings are inconclusive because studies using the
M–H method cannot detect nonuniform DIF, and also some studies using the other
methods did not report whether the detected DIF were uniform or nonuniform.

Another important finding is the large variation in the percentage of DIF items
among the 18 studies, which ranges from 0 to 77.88%. For example, the study
having the highest percentage of DIF item is 77.78% (Pae 2004), followed by
68.6% (Pae 2012), and 66.7% (Pae and Park 2006). All three of these studies
examined gender DIF in the KCSAT test using IRT-LR, and all three used chi-square
difference tests to determine the existence of DIF. It is not clear whether the KCSAT
truly has many DIF items or the DIF procedure used in these three studies tends to
inflate the Type 1 error. It would be very helpful to replicate those studies with other
DIF detection methods.

We did not detect any obvious trends regarding whether the percentage of
DIF items changes over time by referencing the chart in Fig. 3. However, it is
important to note that the unclear trend observed in this study is probably due to
the involvement of too many factors at the same time, such as different tests being
studied, the different methods being used, and the limited samples included. For a
clearer trend and a more definite conclusion, it would be meaningful to track the
percentage of DIF items in a single test, such as the SAT, preferably with the same
DIF method and criterion.
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5.2 Relationship Between DIF Existence and Item and Test
Characteristics

Although item type is a very important characteristic, as indicated in the literature,
among the 1,210 items from 18 studies, 1,176 items were multiple-choice and
dichotomously coded. Therefore, we were not able to examine how DIF existence
might be related to item type. Similarly, item content information was often not
provided in the studies reviewed, and we were not able to study the relationship
between item content and DIF existence, though the previous literature has indicated
that item content is a potentially important source of gender DIF in reading.

The only clear relationship we found was that items from shorter tests are more
likely to show DIF. A point-biserial correlation between test length and number of
DIF items found a significant negative relationship. Shorter tests tended to have
more DIF items than longer tests regardless of the DIF analysis method used.
Noteworthy in this regard is that studies using either IRT-LR or M–H have medium-
sized correlations (−0.468 and −0.304, respectively).

Based on all 18 studies, it seems that high stakes tests generally have more DIF
items than low stakes tests. In studies using IRT-LR, this pattern holds true; however,
in studies using M–H, this pattern is reversed with low stakes tests having more DIF
items. Furthermore, tests developed for ESL learners are less likely to contain DIF
items than tests developed for native speakers of English. While studies using IRT-
LR show this pattern, in studies using M–H, tests developed for ESL learners are
more likely to show DIF. To summarize, the relationship between DIF existence
and test stakes and the relationship between DIF existence and whether tests are
developed for ESL learners are inconclusive.

6 Conclusion, Limitations, and Further Study

To summarize, this study provides a synthesis of gender-related DIF studies in
reading tests. Based on 1,210 items from 18 articles, the study shows that 23.3%
of the items in reading tests show gender DIF. There is a large variation in the
percentage of items determined as showing DIF across studies, ranging from 0%
(Dorans and Kulick 1983) to 77.78% (Pae 2004). Also, studies using IRT-LR
methods report a higher percentage of DIF items than studies using M–H. Among
the DIF items, about half favor males and half favor females, and this pattern holds
true for studies using IRT-LR and for those using M–H. Furthermore, items from
shorter tests are more likely to be determined as having DIF than items from longer
tests. Other potential DIF patterns seem to depend on the DIF methods and the
tests. For example, for studies using IRT-LR, tests developed for ESL learners
are less likely to contain DIF items than tests developed for native speakers of
English; however, the opposite pattern is found for studies using M–H. This inverse
relationship needs further investigation to determine what is occurring. Another
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possible cause of these differences, which should be considered in follow-up studies,
is how the studies constructed the set of presumably DIF-free anchor items. In some
studies, anchor items consist of all items other than the studied item, whereas in
other studies the anchor items consist of a set of items which have been previously
identified as being DIF-free. The different methods can potentially produce very
different outcomes.

The present study does not report averaged DIF magnitude (or effect sizes).
Despite the fact that ETS proposes a three-category DIF effect size scheme, there is
much disagreement on how accurately we can align effect sizes from different DIF
methods to the same metric (DeMars 2011). Also many studies did not provide
any item-level DIF effect size information. Therefore, we had to use a rougher
classification of whether the item did or did not show DIF. Most of these decisions
were based on the hypothesis testing in the original articles. Another challenge
for this study was the insufficient DIF-related information reported in the articles.
This restricted us from examining meaningful research questions such as how item
content is related to gender DIF in reading tests. A more standardized procedure
needs to be adopted regarding how to report DIF studies.

Finally, this study is limited in that it only provides primarily descriptive infor-
mation. The 1,210 items from the 18 studies involve a nesting structure, such that
items (level 1) are nested in studies (level 2). A multi-level regression analysis would
have provided more informative inferences regarding how item characteristics and
test characteristics simultaneously influence the existence of gender DIF in reading
tests. This kind of analysis would also show how the variance of DIF existence
is partitioned between studies and within studies. However, preliminary analyses
indicate that the results of such a multi-level analysis would not have been reliable
due to the small level-2 sample size in this study. Should more qualified studies be
collected in the future, a multi-level regression analysis will be used.
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AIC= 253,446.90; BIC= 255,209.64
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E2 M. von Davier and L. Khorramdel

On page 476, Table 3 had wrong data in it as below

Table 3 Results of the three-dimensional, five-dimensional, and seven-dimensional
simple-structure IRT models with multidimensional RS factors, including all BPI
types (180 items in total) — NEO-FFI dataset (German sample)

All five scales,
items: e, d, m

Seven-dimensional
model

Five-dimensional
model

Three-dimensional
model

AIC index 253,446.90 265,681.48 257,970.67
BIC index 255,209.64 267,421.77 259,671.66
Log-penalty

(model based,
per item) 0.499 0.523 0.508

It should read :

Table 3 Results of the three-dimensional, five-dimensional, and seven-dimensional
simple-structure IRT models with multidimensional RS factors, including all BPI
types (180 items in total) — NEO-FFI dataset (German sample)

All five scales,
items: e, d, m

Seven-dimensional
model

Five-dimensional
model

Three-dimensional
model

AIC index 1,730,146.41 1,758,257.81 1,772,369.82
BIC index 1,732,901.70 1,760,983.63 1,775,044.07
Log-penalty

(model based,
per item) 0.475 0.483 0.486
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