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Preface

This volume represents presentations given at the 77th annual meeting of the
Psychometric Society, held at the Cornhusker Hotel in Lincoln, Nebraska, during
July 9-12, 2012. The annual meeting of the Psychometric Society typically attracts
participants from around the world, and the 2012 conference was no exception.
Attendees came from more than 15 different countries, with 149 papers being
presented, along with 50 poster presentations, three workshops, two keynote
speakers, six state-of-the-art speakers, five invited presentations, and seven invited
symposia. A full list of the conference presentation titles can be found in the January
2013 issue of Psychometrika, pp. 188—201. We thank the local organizer Ralph de
Ayala, along with his staff and students, for hosting a successful conference.

The idea for the present volume began with the recognition that many of the
useful ideas presented at the conference do not become available to a wider audience
unless the authors decide to seek publication in one of the quantitative journals. This
volume provides an opportunity for the presenters to make their ideas available to
the wider research community more quickly, while still being thoroughly reviewed.
The 31 chapters published here address a diverse set of topics, including item
response theory, reliability, test design, test validation, response styles, factor
analysis, structural equation modeling, categorical data analysis, longitudinal data
analysis, test equating, and latent score estimation. For the published chapters, we
asked the authors to include the ideas presented in their conference papers, and we
also gave them the opportunity to expand on these ideas in the published chapters.
Psychological measurement is playing a larger role internationally than ever before,
not only in educational applications but also in medicine and neuroscience. It is
important that this expanding role be supported by rigorous and thoughtful research.
We thank all of the chapter authors for their fine contributions to this volume. We
hope that the contents of this volume will stimulate wider interest in psychometric
research, both theoretical and applied.

Tempe, AZ, USA Roger E. Millsap
Madison, WI, USA Daniel M. Bolt
Tilburg, The Netherlands L. Andries van der Ark

Lawrence, KS, USA Carol M. Woods
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A Nonparametric Ability Measure

Nan L. Kong

1 Introduction

Before we define an ability measure, we need to make clear about the concept of
measure. In this section, we look into several well-defined measures from which we
try to find the property in common across these measures. We believe that the ability
measure, which is the topic of this paper, should also be defined on the basis of this
common property.

It is well known that the area of a rectangle is measured by the product of its
length and width. For example, for a rectangle with length of 2 and width of 1, the
area can be directly measured with 2 = 2 x 1. Actually, this rectangle can also be
measured indirectly: (i) split this rectangle into two unit squares with both length
and width equal to 1; (ii) the areas of these two unit squares are measured with 1 =
1 x 1; (iii) make summation of these two area measures in (ii) with 2 = 1+ 1. The
summation in (iii) is the “indirect” measure of the area of the rectangle with length
of 2 and width of 1. As we can see, both “direct” and “indirect” area measures on this
rectangle produce the same value which is 2 in this example. The relation between
“direct” and “indirect” area measures is mathematically expressed by 2 x 1 =1 x
1+ 1 x 1. The left-hand side of this equation corresponds to “direct” measure while
the right-hand side corresponds to “indirect” measure. Generally, for the same area,
both “direct” and “indirect” measures must produce the same value—this is called
additivity according to the measure theory (Halmos 1974). In the same example, if
we measure the area of the rectangle by summation of length and width, instead
of product of its length and width, with the steps in (i)—(iii), we will receive two
different values for the “direct” measure, which is 3 = 1 4+ 2, and the “indirect”
measures which is 4 = (1 + 1) 4 (1 + 1). Obviously, with summation of length and

N.L. Kong (b)
Educational Testing Service, 270 Hampshire Dr., Plainsboro, NJ 08536, USA
e-mail: nankg @yahoo.com
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2 N.L. Kong

width, the area of the rectangle is measured in a wrong way—the way that has no
additivity. Any measure without additivity is similar to measuring area of rectangle
by summation of its length and width.

In measure theory (Halmos 1974), a set function is a function whose domain of
definition is a class of sets. An extended real-valued set function u(.) defined on
a class S of sets is additive if, whenever E € S, F € S, EUF € S,and ENF =0,
then u(EUF) = u(E) + u(F). For the measure of the rectangle area, the class S
contains all rectangles (each rectangle is a set of points) and (.) is defined by the
product of its length and width.

The next well-defined measure is called probability which measures randomness
(Hays 1970). If two events A and B are exclusive, we have

Prob(AUB) = Prob(A) + Prob(B). (1)

Equation (1) is called additivity.

In information theory, the entropy (Shannon 1948; Wiener 1948) is defined to
measure the uncertainty in the random variables. One of the entropy fundamental
properties is the following equation:

HX)Y)=HX)+HY)-I1(X,Y), 2)

where X and Y are two categorical random variables; H(X) and H(Y) are the
entropies for X and Y, respectively; H(X,Y) is the entropy of X and Y; I(X,Y)
is the mutual information among X and Y.

If X and Y are independent from each other, which implies I(X,Y) = 0, Eq.(2)
becomes

H(X,Y)=H(X)+H(Y). 3)

Equation (3) is called additivity.

Unlike Shannon’s entropy, Fisher information (Fisher 1922 and 1925) is defined
to measure the parameter(s)’ information given random variable(s). If random
variables X and Y are independent, we have

Ixy(0) =1Ix(0) +1y(0), “)

where Ix y(0) is the Fisher information given X and Y; Ix(6) and Iy(6) are the
Fisher information given X and Y, respectively. 0 is the parameter(s).

Equation (4) is called additivity.

So far, we have looked into the theoretical structures for several well-defined
measures. All of these structures reveal the same property—additivity as shown in
(1), (3) and (4). We believe that the additivity is the general property for a measure.
The purpose of this paper is to study a new ability measure and, therefore, it is
requested that this ability measure be of the property of the additivity. In the next
section, an ability measure is defined and studied according to the additivity.
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2 A Nonparametric Ability Measure

In testing and psychometrics, the term ability means the knowledge, skills, or other
characteristics of a test taker measured by the test. A test question, with any stimulus
material provided with the test question, and the response choice or the scoring
rules, is called an item. Items that are scored in two categories - right (R) or wrong
(W) - are referred to as dichotomous items. In this section, the test taker’s ability
will be measured on the basis of a test consisting of a set of dichotomous items.
For a test consisting of [ items, let X; be the item-score variable for the item i (i =

1,...,I), with realization X; € {W,R}. Also, we suppose that a respondent answers
L(0 < L <) items correctly, then these correctly answered items are indicated by
i1y...,i,...,ir. For example, suppose an item-response vector of RRWWWR, then

I =6,L=3,ij =1,ip =2, and i3 = 6. The probability of right response for i is
denoted by P(X;, = R) and, the probability of right responses for both i; and i, is
denoted by P(X;, =R, X;, = R), etc.

Definition 1. The ability with right (R) response(s) foritems i; (= 1,...,L;L > 1)
is defined as

9(i1,...,i,,...,iL) = —ln(P(Xil :R,...,X,', :R,...,X,'L :R)).(LZ 1) (5)

In (5), 6(i1,---,if,...,ir) is called the measure of the ability with right (R)
response(s) for the items i;(I = 1,...,L). We also request that the examinee’s ability

be measured as zero if this examinee does not respond to any item correctly, i.e.
L=0in(5).

In Definition 1, only the probabilities on correctly responded items are used for
measuring abilities, some probabilities such as those for incorrectly responded items
are not shown in (5). Because the probabilities on any combinations of the correctly
responded items and the incorrectly responded items can be fully expressed by
the probabilities on those correctly responded items, the probabilities on correctly
responded items have fully represented all of the information associated with the
joint probabilities. Therefore, the ability measure in Definition 1 has lost nothing in
terms of the information associated with the joint probabilities.

If items iy,...,i; are (jointly) independent, the following equation can be ob-
tained directly from Definition 1 and shows that the ability measure in Definition 1
is additive

Oy, - ,iL) = 0(i1) + -+ 0(iL). (6)

As we can see in Eq. (6) that, if the items are jointly independent, the measure
of examinee’s total ability with right responses on all these items is the summation
of the measures of the examinee’s abilities with right responses on each of these
items. The additivity in Eq. (6) implies that the summation of the ability measures
on subscales can be the total ability measure if and only if these subscales are jointly
independent. For the case that the items are not jointly independent, not only the
ability measure on each subscale but also the interactions among the items play the
roles in total ability measure. In Sect. 4, the total ability measure will be studied in
more detail.
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Corollary 1.
0<0(i1, i) < oo @)

Proof. This is obvious from Definition 1.

Corollary 2.
e(l.l’...,l.L):O < P(XiIZRv"'vxiL:R):l (8)

Proof. This is obvious from Definition 1.

Corollary 3.
9(i17-.-7iL):+oo “— P(Xi]:Rg"',X[L:R):O (9)

Proof. This is obvious from Definition 1.

As shown in Corollary 1, the ability measure defined in (5) is nonnegative which
implies the total ability measure is always greater than or equal to the ability
measure on each subscale according to the additivity. Because the minus sign has
no meaning in the ability measure, the additivity requests that the ability measure
be nonnegative (generally, the measure theory always requests that a measure be
nonnegative).

Now, assume that 0 < M < L, there is

9(11, ,lM) = —l}’l(P(Xl, :R’ 7XiM :R))
< —In(P(X; = R~ Xy = R)
XP(Xi :R;"',Xi 7R|Xi1:R7"'7XiM:R))

M+1 L

= —ln(P(Xil = R,~~- ,X,’L :R)) = 9(1‘1,--- ,iL)

Therefore, the following theorem is obtained:

Theorem 1. ForO<M <L,
0(it, - ,im) < O(i1,---ir) (10)

Theorem 1 is another fundamental property of the ability measure: the measure
of the ability associated with subset of all correctly responded items is no greater
than the measure of the ability associated with all correctly responded items, i.e. the
measure of the ability associated with subscale can not be greater than the measure
of its total ability.

In summary, the ability measure defined in (5) has the following properties:
(a) Additivity (if the items are independent) as shown in Eq. (6). (b) The ability
measure is nonnegative. Therefore, the total ability measure is greater than or equal
to the ability measure on each subscale. (c) The ability measures with the same
response patterns are the same (this is obvious by Definition 1). (d) The ability
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measure on a response pattern is greater than or equal to the ability measure on the
subset of its response pattern (Theorem 1). (e) The ability measure is determined
by the difficulties of the items and the interactions among those items. The more
difficult and more jointly independent items cause higher ability measure. (f) The
ability measure in Definition 1 has no specific parametric structure. Therefore, the
ability measure in Definition 1 has no those assumptions or limitations associated
with the specific parametric structure. (g) The ability measure is defined with the
joint probability of the items in a given test and all of the response vectors out of
these items are utilized for measuring ability, therefore, the ability is measured with
full information for given joint probabilities.

In the next two sections, the following properties of the ability measure defined
in (5) will be studied: (h) With the additivity, it is possible to measure the shared
ability and unique ability. Generally speaking, an examinee’s ability consists of two
parts: the unique part that belongs to the examinee and the part shared with others.
(i) The total ability measure and the ability measures on subscales are related to the
additivity. Therefore, the interactive structures of the total ability and those abilities
associated with the subscales can be mathematically expressed.

3 Shared Ability Measure and Conditional Ability Measure

Because the ability measure in Definition 1 has the property of additivity, it is
possible to measure the shared ability among the correctly responded items and
unique ability of each correctly responded item.

Definition 2. The shared ability among correctly responded items i; and i is
measured with

G(il*iz):6(1‘1)—1—6(1‘2)—6(1'1,1‘2), (11)

where 6(i1), 6(i2), and 0(i},i,) are defined in Definition 1.

According to Definitions 1 and 2, the following equation can be obtained:

P(Xil = R)P(Xiz = R)
P(X,'1 =R,X;, =R)

9(i1 * iz) =—In (12)

By (12), it is obvious that 0 (i x i) = 0 (iy * ).

The following theorem offers a sufficient and necessary condition for no shared
ability between two items i; and i5.

Theorem 2.

0(i1 xi) =0 <= i and i, are independent.
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Proof. Let X;, and X;, be the item-score variables of the items i; and i,.
By Definition 1,

0(i1) = —In(P(X;, = R), 13)
0(ir) = —In(P(X;, =R), (14)
0(i1,iz) = —In(P(X;, =R, X;, =R)). (15)

Therefore, X;, and X;, are independent if and only if
6(i1,i2) = 0(i1) + 6(i2)
By Eq. (11), we have
0(iy %) =0

This is the proof of Theorem 2.

In concept, the shared ability is closer to the concept of interaction between those
items associated with different respondents or subscales. The stronger association
between those items implies that the more abilities are shared. For example, if two
items are identical, the shared ability is the same as the ability associated with each
of those items. Another extreme case is that, if two items are independent, the shared
ability is zero. The shared ability is also related to the redundant or overlapped
information among the items, i.e. the items could be heavily similar to each other in
which the scope for those items to cover for testing could be limited. Therefore, the
shared ability among the different items should not be too big.

Unlike the ability measure in Definition 1 which is nonnegative, the shared ability
measure in Definition 2 can be negative. If an examinee with correct response on one
item tends to correctly respond to another item, this examinee has positive shared
ability among these two items. If an examinee with correct response on one item
tends to wrongly respond to another item, this examinee has negative shared ability
among these two items. In practice, for most of cases, the shared ability is positive.
The negative shared ability only happens for two items associated with the exclusive
abilities.

Definition 3. The unique or conditional ability with i; given i, is measured with
9(i1|i2) = —lnP(X,'l :R|X,'2 :R). (16)
Corollary 4.

0(i1,i2) = 0(i2) + O(i1]ia) (17)
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Proof. The proof is obvious from Definitions 1 and 3 with noting that:

9(i1|i2) = —ln(P(X,'I =R|X,'2 ZR)) = —ln(P(X,'
= R,)(i2 = R)) + li’l(P(X,’2 = R))

Corollary 5.
e(il*iz)ze(il)—e(i1|i2) (18)

Proof. The proof is obvious from Definition 2 and Corollary 4.

The unique or conditional ability 6(i;|i») measures the part of the ability with
i1, but exclusive of i, that is, 0(i;|i) measures the unique ability associated with
i1 out of the ability associated with i; and i,. The following equation, which can be
proved with Corollaries 4 and 5, describes the relation among total ability, shared
ability, and unique ability:

G(il,iz):6(i1*i2)+6(i1|i2)+6(i2|i1). (19)

In (19), the 6 (i1, i) is decomposed into three parts—the shared ability associated
with i and i, the unique ability associated with i; with exclusive of the ability
associated with ip, and the unique ability associated with i, with exclusive of the
ability associated with i1. Equation (19) is also available in probability and entropy:

P(AUB) = P(ANB)+ P(ANB°)+ P(BNA"),
HX,Y)=IX,Y)+HX|Y)+H(Y|X),
where A and B are events; A€ and B¢ are the events “not A” and “not B”. X and Y are
two random variables; H(X,Y) is the entropy of X and Y; H(X) and H(Y) are the

entropies for X and Y, respectively; H(X|Y) is the conditional entropy of X given
Y; I(X,Y) is the mutual information among X and Y.

Theorem 3.
6(i1 *iz) < 6(1‘1) (20)

Proof.

PXy=R)

P(Xx. =R)>P(X;, =R, X;, =R) <— I >
(Ot =R 2 PO =RXy =) = i P2

2

<— —In

P(Xi, =R, X, = R) < —InP(X; =R)
P(Xil = R)P(Xiz = R)

<= 6(1‘1 *iz) < 6(i).

This is the proof of Theorem 3.
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The measure of the shared ability associated with i; and i, in Definition 2 can be
extended into the measure of the shared ability associated with iy, iy, - - -, ir which is
denoted by (i - - - i ). Without loss of generality, 0 (i iy *i3) can be defined by:

O (iy xia*i3) = 0(i1) +0(i2) + 0(i3) — 0(i1,i2)
—0(i1,i3) — 0(ia,i3) + O (i1, i2,13). (2D

Obviously, according to (21), (joint) independence among iy, i, and i3 implies
that (i1 x ip xi3) = 0. Similar to 6(i; xip), 6(i; iy *i3) can be negative, but the
interpretation for this is more complicated. Roughly speaking, 6 (i; x iy * i3) is the
interactive ability contribution by i1, i, and i3 to the total ability 0 (iy,i»,i3).

4 Total Ability and Abilities Associated with Subscales

Given the item responses i ... iy answered correctly by a respondent, the examinees’
abilities can be measured according to (5). The ability measured by (5) is called the
overall or total ability because it is measured by all correctly answered items. In
case that those correctly answered item responses i ... I, contain several subscales
in which each subscale is associated with a subset of {i; ...i.}, we need to measure
the examinees’ abilities on the basis of each subscale. First, let us look into the case
of two subscales: S; and S, which S is associated with the subset {i;,,...,i;, } and
S, is associated with the subset {iy,,...,i, } where M < L and N < L. Here the
intersection of {ij,,...,i;,} and {i,,...,ir, } may not be empty set 0, that is, some
items may be associated with both S; and S». We also assume that {i;,,... i, } U
{iky sy} ={ir-- i}

Without loss of generality, the total ability and the abilities associated with the
subscales S and S, are measured with

0(Total) = —In(P(X;, =R, -+ ,X;, =R)), (22)
G(Sl) = —ln(P(X,'jl :R,~~~ ’XijM :R)), (23)
G(SQ) = —ln(P(X,' . :R,-” 7XikN :R)) (24)

Here X; is the item-score variable for the item i. Because 6(S;) and 0(S) in
(23) and (24) are defined with the subsets {i},,...,ij, } and {i,,..., ik, } out of total
correctly answered items {ij...ir}, the 6(S;) and 0(S,) are also called marginal
measures of the abilities associated with S| and S.

Similar to Definition 2, we can define the measure for the shared ability
associated with S and S,.

Definition 4. The shared ability associated with S; and S, is measured with

0(S1%S2) = 0(S1) + 6(S2) — 6(51,52), (25)
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where
0(S1,82) = 6(Total) = —In(P(X;, =R,--- ,Xi, =R)). (26)
Equivalently, by Definition 4
0(Total) = 6(S1) + 6(S2) — 0(S1 % S2). 27

Equation (27) expresses the relation among the measures of the total ability and
the abilities associated with the S| and S,. From Definition 4, it is obvious that, if
S1 and S, are independent, the measure of the total ability is the summation of the
measures of the abilities associated with S| and Sy, i.e. 8(Total) = 0(S;) + 0(S2).
Also, similar to (12), 6(S1 *S,) can be negative in case that the abilities associated
with S| and S, are exclusive from each other.

In Eq. (22), some items may be shared by both §; and S,. Obviously, these shared
items contribute the relation between S and S, (the items which are not shared by
S1 and S, also contribute the relation between S| and S, because those not-shared
items may be related across the different subscales) and relation between S; and S,
determines 0(S; *S,) in Eq. (27). Therefore, the total ability measure is affected by
the shared items through their interactive ability measure 0 (S; * S7).

Definition 5. The conditional ability associated with S| given the ability associated
with S, is measured with

9(51|Sz) = G(Total) — 6(52), (28)

where 6(Total) = 6(S1,S,) which is defined in (22).

0(S1|S>2) in (28) measures the ability associated with S; with exclusion of S,. If
S) and S, are independent, 6(S1|S>) is equal to 6(S}), i.e. 0(S1|S2) = 6(Sy).

Similar to Eq. (19), the following theorem shows the same decomposition of the
total ability in terms of the subscales.

Theorem 4.
0(Total) = 0(S1]S2) + 0(S2|S1) + 0(S1 % S2) (29)
Proof. By Definition 5, there is

6(51|Sz) = G(Total) — 6(52), 30)
6(52|Sl)=6(T0tal)—6(Sl). 31

By (30) + (31) and (27),

6(51182) + 0(82[S1) = 26(Total) — 6(S1) — 6(S2)
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9(51|Sz) + 9(52|S1) = 0(Total) — 6(S1 xS2)

0(Total) = 6(51|Sz) + 6(52|Sl) + 9(51 *Sz).

This is the proof of Theorem 4.

In Theorem 4, the measure of the total ability is the summation of the measure
of the ability associated with §; with exclusion of S, and the measure of the ability
associated with S, with exclusion of S| and the measure of the shared ability among
S1 and S,. Obviously, if §; and S, are independent, the measure of the total ability
is the summation of the measures of the ability associated with S| and the ability
associated with Sy, i.e. 8(Total) = 6(S1) + 6(S2).

So far, we have discussed the measures on the abilities associated with two
subscales. In case of multiple subscales, the measures can be defined in the similar
way. Without loss of generality, let us look into the case of three subscales Sy, S», and
S3 which their items are those items in ., .%5 and .#3, the subsets of all correctly
responded items, which is {iy,...,i}, respectively.

S~ C {il,...,iL}
Sy~ S CHir,.. 5L}
Sy~ C {il,...,iL}
Total ~ {il, ... ,iL},
where “S] ~ .” means the items that belong to subscale S; are those in the set

71, which is a subset of all correctly responded items {iy,...,ir}. Also, we assume
AUSHUSS = {il,...,iL}.

Definition 6. The measure of the shared abilities associated with S1, S», and S5 is
defined by
0(S1#S2%83) = 8(S1) + 6(S2) + 6(S3)
_G(SlaSZ) - 6(S17S3) - 6(S27S3) + 6(S17S25S3)5 (32)

where

6(51,52,53) = G(Total) = —ln(P(X,‘l = R,...,XiL ZR)), (33)
0(S;,8) = —In(P(Xi, =R,...,X;,, =R)). (34)

"Mj

In Eq.(34), the M;; correctly responded items iy,...,iy

., are exactly those in
%U&’k, i.e. {lll,...,l'ijk} e YjUYk for j,k=1,2,3.
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It is interesting to compare the similar structure between Eqs. (21) and (32) and,
in fact, Eq.(21) is nothing but a special case of Eq.(32) if each subscale only
contains a single item. Similar to 6(S; *S3), O(S; * S, * S3) can be negative, but its
interpretation is more complicated. Although 0(S; * S, % S3) is called shared ability
here, this concept is closer to the interaction among the abilities associated with Sy,
Sz, and S3.

Corollary 6. IfSi, S> and S3 are (jointly) independent, then
0(Total) = 6(S;) + 6(S2) + 0(S3). (35

Proof. The proof is obvious by the definitions:

6(Si) = —In(P(Xi, =R,...,X;, = R)) where the M; correctly responded items
i1,...,iy; are exactly those in .75, i.e. {i1,... iy, } = % fori=1,2,3.

0(Total) = —In(P(X;, =R,...,X;, = R)) where the L correctly responded items
i1,...,ig, are exactly those in % U %5 U. 73, ie. {i1,...,iL} = S1USHUS.

Equation (35) in Corollary 6 is another example of additivity in terms of their
subscales. Equation (6) can be thought as a special case of Eq. (35) for each subscale
to associate with a single item. Although there are three subscales in Corollary 6,
the property of additivity is also true for the case of multiple subscales.

Corollary 7. IfSi, S and S5 are (jointly) independent, then
Q(Sl *52*53) =0. (36)

Proof. The proof is similar to that in Corollary 6.

Theorem 5.

0(Total) = 0(S1) + 0(S2) + O0(S3) — 6(S1*%S2) — 0(S1 % S3)
—6(52*53)4—9(51*52*53). 37

Proof. First, similar to (25), there are
Q(Sj,Sk)Ze(Sj)+6(Sk)—9(Sj*Sk) fOV j,k:1,2,3 (38)
By Definition 6 and (38), there is
9(51*52*53)
=0(S51)+0(52) +6(S3) — 0(S51,52) — 0(S1,53) — 0(52,53) + (51,52, 53)
=06(S1) +6(82) +6(S3) — 0(S1) — 0(S2) + 0(S1%52) — 6(S1) — 6(S3)
—I—G(Sl*53)—Q(Sz)—9(53)+6(SQ*S3)+6(51,52,S3)

=—0(S1)— 0(S2) — 0(S3) +6(S1,52) + 6(51,53)
+9(52,S3)+ 9(51,52,53)
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Therefore,

9(51,52,53) = Q(Sl)—l— 9(52)+6(S3) — 9(51 *Sz) — 9(51 *53)
—9(52*53)+6(S1 *Sz*S3).

This is the proof of Theorem 5.

Theorem 5 shows that the measure of the total ability can be linearly expressed
with the measures of the shared abilities. In fact, according to (32) and (37),
0(S1,5,,53) and 0(S1 * S, x S3) are two conjugate concepts.

Theorem 6.
0(Total) = 6(S1]52) + 6(S52|S3) + 0(S3]S1) + 0(S1 % S2 % S3). (39)
Proof. First, by (38), there is
0(S1%S2) = 6(S1) +0(S2) — 6(S1,52) (40)
By Theorem 5 and (40), there is
0(Total) = 0(S1) + O0(S2) + 6(S3) — O(S1 %S2) — O(S1 *S3)
—0(S2%S3) + O0(S; *S2%S3)
= 0(51,52)+0(S3) — O(S1 *53) — 0(S2%S53) + 0(S1 *S2 % S3)
Equivalently, Eq. (28) can be rewritten as
6(S1,52) = 0(S11S2) + 6(S2). (41)
By applying (41), we have
0(Total) = 6(S1|S2) + 6(S2) 4+ 0(S3) — O(S1 % S3) — O(S2%S3) + 0(S] *S2 % S3)
In the same way, by applying the following equations,
0(S1%S3) = 0(S1) + 0(S3) — 0(51,53),
6(82%S83) = 6(52) + 6(S3) — 6(S2,53),
0(S1,53) = 0(51]53) + 0(S3),

6(52,83) = 6(82[S3) + 6(S3).
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We finally have

0(Total) = 9(51|Sz)+9(52,53)— 9(51 *S3)+9(Sl *Sp % S3)
= 0(51]52) + 6(S2/S3) + 0(S3) — 0(S1%53) + 0(S1 *S2%53)
=0

(Sl|52)+9(52|53) 9(S3|Sl)+9(Sl*Sz*S3).

- -

This is the proof of Theorem 6.

It is obvious that, if S, S, and S3 are jointly independent, Eq. (39) becomes (6)
and therefore, Eq. (39) in Theorem 6 can be thought as a general form of additivity.
In Theorem 6, the total ability is decomposed into four parts which are 6(S;|S2),
0(51]S3), 0(S2]S3) and 6(S; * Sy * S3). The decomposition in Theorem 6 is not
unique. In similar way, the total ability can also be decomposed as follows:

O(Total) = 6(51|S3) + 6(S3|Sz) + 6(52|Sl) + 9(51 * Sy S3). 42)

Although the total ability is decomposed into four components in Theorem 6,
each of these four decomposed components can still be further decomposed. In the
remaining part of this section, a unique and complete decomposition for the total
ability will be derived. First, the following concepts are introduced:

9(51,52,53) = G(Total) = —ln(P(Xil =R,....X; :R)), 43)
Q(Sj,Sk) = —ln(P(X,‘l =R,... . X =R)). (44)

M

In Eq. (43), the L correctly responded items iy, ..., i are exactly those in %] U.% U
,ie i, ..., it} = 10U US. InEq. (44), the M ;. correctly responded items
i1,...,im;, are exactly those in ;U .7, ie. {i1,-. .,iMj‘k} =7 U for jk=
1,2,3. '

With 6(S1,S52,53) and 6(S;,Sk) in (43) and (44), we can define the following
ability measures conditioned on the subscale(s):

Definition 7.
0(S1]52,83) = 6(S51,52,53) — 6(52,53), 45)
where 0(S;,Sk) for j,k=1,2,3 and 6(S},S2,S3) are defined in (44) and (43).
Definition 8.
0(S1,52|53) = 6(S1,52,53) — 6(S3), (46)

where 0(S1,S>,S53) is defined in (44).
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By Definition 7, there is

0(51,52,83) = 6(S3[S1,52) + 6(51,52)
= 9(S3|Sl,52)+9(52|Sl)+9(51). 47)

Equation (47) is also called additivity.
Definition 9.

Q(Sl *SQ|S3) = 6(51|S3) + 9(52|S3) - 6(51,52|S3), 48)

where 6(S;]S3) for i = 1,2 is defined in (28).

Theorem 7.

0(Total) = 0(S1]52,53) + 0(S52[S1,53) + 0(S3[S1,52) + 0(S1 * S3/52)
—i—@(Sl*52|S3)+6(SQ*S3|51)+9(51*52*53). 49)

Proof. First, by Definitions 7 and 9,

6(51|SQ,S3) + 9(51 *SQ|S3) = 6(51,52,53) — 9(32,53) + 9(51|S3)

+0(82]83) — 0(S1,52153). (50)
Second, by Definition 8 and Eq. (41),
6(S1,82/53) = 6(S1,52,53) — 6(51,52), (5D
6(S1|S3) = 9(515S3) - 6(S3)7 (52)
0(52/S3) = 6(S2,53) — 0(S3). (53)

By substituting (51), (52), and (53) into (50) and rearranging the terms, we have

0(51/S2,83) + 0(S1 % 52[S3) = 0(S1,52,53) — 0(52,53)
+6(81,83) — 0(S3) + 0(S52,53)
—0(83) — 6(51,52,83) + 6(S3)
= 0(51,53) — 6(S3) = 0(51[53). (54)

By (54) and in the same way as (54), we have

0(S1]S3) = 6(S1]52,53) + 0(S1 % 52(S3), (55)
0(S3]52) = 6(S3/51,52) + 0(S1 % S3(S2), (56)
G(SZ|S1):6(52|S],S3)+6(SZ*S3|S1). 67
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Finally, by substituting (55), (56), and (57) into (42), we have

G(Total) = 6(51|S3)+6(S3|Sz)+9(52|S1)+6(51*52*S3)
= 0(81182,53) + 0(82/S1,S3) + 0(S3[S1,52) + 0(S1 % 53(S2)
+0(S1%52(83) + 0(S2%S3|S1) + O(S1 %52 % S3).

This is the proof of Theorem 7.

In Theorem 7, the total ability of three subscales is decomposed into seven basic
components. The interpretation of each component is different from one to another.
With the decomposition in Theorem 7, we can look into the details of subscale
structure of the total ability.

Although we have discussed the decomposition (49) for the case of three
subscales in Theorem 7, the decomposition for the case of arbitrary number of
subscales can also be derived in the similar way. Readers are encouraged to derive
the decomposition for the cases of four subscales or more.

5 Discussion

In this paper, the measure of the ability defined in (5) shows (1) additivity; (2)
nonnegativity; (3) the measure of the ability with incorrect responses for all items is
equal to zero. Therefore, the definition in (5) conceptually can be called the measure
of the ability according to Measure Theory (Halmos 1974). Here, we place emphasis
on the concept of measure because, without additivity, an “ability measure” can
cause unexpected results. For example, without additivity, the directly measured
value and indirectly measured value for the same total ability are not the same for
most of cases. This is similar to measuring the area of a rectangle by summation of
its length and width (see Introduction of this paper).

In Sect. 3, the measure of the shared abilities is defined. We point out that the
measure of the shared abilities does not make sense without additivity. Unlike
the ability measure in Definition 1 which is nonnegative, measure of the shared
abilities can be negative. The negative value of the measure of the shared abilities
is interpreted as the conflicted or exclusive interaction among these two abilities.
For two exclusive abilities, the higher for one ability, the lower will be for another
ability. The positive value of the measure of the shared abilities implies that these
two abilities are not conflicted which means that, the higher for one ability, the
higher will be also for another ability. In practice, it is very rare for the measure of
the shared ability to be negative although it is possible.

The marginal measure of the ability associated with the subscale is defined in
Sect. 4. We also look into the relation between the measure of the total ability and
the measures of those abilities associated with the subscales by decomposing the
measure of the total ability in terms of the measures of those abilities associated
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with the subscales. Like the measure of the shared ability, without additivity, it is
impossible to decompose the measure of the total ability in terms of the measures
of those abilities associated with the subscales.

Although, throughout this paper, we assume all items are dichotomous, the
definition in (5) can be expanded to include partial credits, i.e. the items can have
more than two categories of right (R) and wrong (W). Under the case of partial
credits, the property of additivity is still reserved, i.e. the ability measure with the
partial credits is on the basis of measure theory. The nonparametric ability measure
with partial credits currently is under organization and will meet with readers in the
near future.

Finally, in this paper, most conclusions can be extended to more general form in
the same way. Also, the ability measures defined in this paper may be parameterized
with some reasonable constraints such as the log-linear model. In practice, the
parameterized measures is possible to handle the datasets of small size. How to
parameterize the ability measures defined in this paper could be the topic for the
future work.
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An Alternative to Cronbach’s Alpha:
An L-Moment-Based Measure of
Internal-Consistency Reliability

Todd Christopher Headrick and Yanyan Sheng

1 Introduction

Coefficient alpha (Cronbach 1951; Guttman 1945) is a commonly used index for
measuring internal-consistency reliability. Consider alpha (¢r) in terms of a model
that decomposes an observed score into the sum of two independent components:
a true unobservable score #; and a random error component ¢;;. The model can be
summarized as

Xij =ti+eij ey

where X;; is the observed score associated with the i-th examinee on the j-th test
item, and where i = 1,...,n; j=1,...,k; and the error terms (e;;) are independent
with a mean of zero. Inspection of (1) indicates that this particular model restricts the
true score #; to be the same across all k test items. The reliability measure associated
with the test items in (1) is a function of the true score variance and cannot be
computed directly. Thus, estimates of reliability such as coefficient o have been
derived and will be defined herein as (e.g., Christman and Van Aelst 2006)

o= k 1-— zj sz
k=1\" %o +X¥05 )

A conventional estimate of o can be obtained by substituting the usual OLS sample
estimates associated with GJZ and 0 into (2) as
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N %57
bc = - ——2 3)
k=T Xjsj+XEXjy 85

where s? and s;; are the diagonal and off-diagonal elements from the variance—
covariance matrix, respectively.

Although coefficient ¢ is often used as an index for reliability, it is also well
known that its use is limited when data are non-normal, in particular leptokurtic,
or when sample sizes are small (e.g., Bay 1973; Christman and Van Aelst 2006;
Sheng and Sheng 2012; Wilcox 1992). These limitations are of concern because
data sets in the social and behavioral sciences can often possess heavy tails or
consist of small sample sizes (e.g., Micceri 1989; Yuan et al. 2004). Specifically,
it has been demonstrated that & can substantially underestimate o¢ when heavy-
tailed distributions are encountered. For example, Sheng and Sheng (2012, Table 1)
sampled from a symmetric leptokurtic distribution and found the empirical estimate
of o to be approximately ¢ = 0.70 when the true population parameter was ¢ =
0.80. Further, it is not uncommon that data sets consist of small sample sizes, e.g.,
n = 10 or 20. More specifically, small sample sizes are commonly encountered in
the contexts of rehabilitation (e.g., alcohol treatment programs, group therapy, etc.)
and special education as student—teacher ratios are often small. Furthermore, Monte
Carlo evidence has demonstrated that ¢ can underestimate o.—even when small
samples are drawn from a normal distribution (see Sheng and Sheng 2012, Table 1).

L-moment estimators (e.g., Hosking 1990; Hosking and Wallis 1997) have
demonstrated to be superior to the conventional product-moment estimators in terms
of bias, efficiency, and their resistance to outliers (e.g., Headrick 2011; Hodis et al.
2012; Hosking 1992; Vogel and Fennessy 1993). Further, L-comoment estimators
(Serfling and Xiao 2007) such as the L-correlation have demonstrated to be an
attractive alternative to the conventional Pearson correlation in terms of relative bias
when heavy-tailed distributions are of concern (Headrick and Pant 2012a,b,c,d,e).

In view of the above, the present aim here is to propose an L-comoment-based
coefficient L-o, and its estimator denoted as ¢y, as an alternative to conventional
alpha ¢ in (3). Empirical results associated with the simulation study herein indi-
cate that ¢;. can be substantially superior to éc in terms of relative bias and relative
standard error (RSE) when distributions are heavy-tailed and sample sizes are small.

The rest of the paper is organized as follows. In Sect. 2, summaries of univariate
L-moments and L-comoments are first provided. Coefficient L-o¢ (6y) is then
introduced and numerical examples are provided to illustrate the computation and
sampling distribution associated with &z . In Sect. 3, a Monte Carlo study is carried
out to evaluate the performance of & and ¢y . The results of the study are discussed
in Sect. 4.

2 L-Moments, L-Comoments, and Coefficient L-o

The system of univariate L-moments (Hosking 1990, 1992; Hosking and Wallis
1997) can be considered in terms of the expectations of linear combinations of order
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statistics associated with a random variable Y. Specifically, the first four L-moments
are expressed as

A = E[Y1.1]

1
A = EE[YQ;Z — YI:Z]
1
A = 5E[Y3:3 —2Y3 +Y1:3]
1
Ay = ZE[Y4;4 —3Y3.4+ 3Y2:4 — Y14

where Y., denotes the /th smallest observation from a sample of size m. As such,
Yiim <You < ... <Y are referred to as order statistics drawn from the random
variable Y. The values of A; and A, are measures of location and scale and are the
arithmetic mean and one-half of the coefficient of mean difference (or Gini’s index
of spread), respectively. Higher order L-moments are transformed to dimensionless
quantities referred to as L-moment ratios defined as 7, = A, /A, for r > 3, where 13
and 74 are the analogs to the conventional measures of skew and kurtosis. In general,
L-moment ratios are bounded in the interval —1 < 7, < 1 as is the index of L-
skew (73) where a symmetric distribution implies that all L-moment ratios with odd
subscripts are zero. Other smaller boundaries can be found for more specific cases.
For example, the index of L-kurtosis (74) has the boundary condition for continuous
distributions of (573 —1)/4 < 174 < 1.

L-comoments (Olkin and Yitzhuki 1992; Serfling and Xiao 2007) are introduced
by considering two random variables Y; and Y; with distribution functions F(¥;)
and F(Y;). The second L-moments associated with ¥; and ¥} can alternatively be
expressed as

M (Yj) = 2Cov(Y;, F(Y)))
A (Yy) = 2Cov(Yy, F (Yy)). “)

The second L-comoments of ¥; toward ¥ and Y toward Y; are

)Lz(Yijk) = 2COV(YJvF(Yk))
M (Y, Y;) = 2Cov(Yi, F(Y))). )

The ratio njx = A2 (Y},Yx)/22(Y;) is defined as the L-correlation of Y; with respect
to Y3, which measures the monotonic relationship (not just linear) between two
variables (Headrick and Pant 2012c). Note that in general, 1) jx # 1. The estimators
of (4) and (5) are U-statistics (Serfling 1980; Serfling and Xiao 2007) and their
sampling distributions converge to a normal distribution when the sample size is
sufficiently large.

In terms of coefficient L-¢, an approach that can be taken to equate the
conventional and L-moment (comoment) definitions of ¢ is to express (2) as
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Table 1 Data (Items) for £

; Xii Xo  Xs F(Xi1) F(Xo)  F(Xa)
computing the second
L-moment—comoment matrix 2 4 3 0.15 0.45 0.15
in Table 2 5 7 7 0.75 0.95 1.00
3 5 5 0.35 0.65 0.40
6 6 6 0.90 0.80 0.75
7 7 6 1.00 0.95 0.75
5 2 6 0.75 0.10 0.75
2 3 3 0.15 0.25 0.15
4 3 6 0.55 0.25 0.75
3 5 5 0.35 0.65 0.40
4 4 5 0.55 0.45 0.40
The data are part of the “Satisfaction With Life Data” from
McDonald (1999, p. 47)
Table 2 Second Item 1 2 3

L-moment—comoment matrix

for coefficient & in Eq. (9) ! by = 0989 b1 = 0:300  by13) = 0789
2 €2(21) = 0500 €2(2) = 1022 €2(23) = 0411
3 f2(31) = 0667 f2(32) = 0333 f2(3) = 0733
2
1 k 20;
o= = - ——< (6)
I+R=-D/k k-1 Yj0j + XXz Ojy

where R > 1 is the common ratio between the main and off-diagonal elements of the
variance—covariance matrix, i.e. R = sz / 0 - (See the appendix for the derivation
of Eq. (6)). As such, given a fixed value of R in (6) will allow for & to be defined in
terms of the second L-moments and second L-comoments as

1 k

Zj )
PTITR-DK k-1 ( Tj o)+ EZj M) "

where R = A,(j)/Ay(jjr)- Thus, the estimator of L-a is expressed as

by = (1 2, ) ) ®)

k—1 il +EZ ey by

where £y (;) (£(;;)) denotes the sample estimate of the second L-moments (second
L-comoment) in (4) and (5). An example demonstrating the computation of ¢y, is
provided below in Eq. (9). The computed estimate of & = 0.807 in (9) is based
on the data in Table 1 and the second L-moment—comoment matrix in Table 2. The
corresponding conventional estimate for the data in Table 1 is & = 0.798.

0y = 0.807 = (3/2)(1 — (1) +la2) + la3)) / (La(1) +La2) + la3)
+a1) + laa1y + a2y + la12) + a3y + La23)))- )



An L-Moment Based Measure of Internal-Consistency Reliability 21

Sampling Distribution of &;

gl nl||||‘“ “H“"“llln...,.

0.485 0.490 0.495 0.500 0.505 0510

120 |

80 |

Fig. 1 Approximate normal sampling distribution of & with o¢ = 0.50. The distribution consists
of 25,000 statistics based on samples of size n = 100,000 and the heavy-tailed distribution (kurtosis
of 25) in Fig. 2

The estimator & in (8) and (9) is a ratio of the sums of U-statistics and thus a
consistent estimator of ¢ in (7) with a sampling distribution that converges, for large
samples, to the normal distribution (e.g., Olkin and Yitzhuki 1992; Schechtman and
Yitzhaki 1987; Serfling and Xiao 2007). For convenience to the reader, provided in
Fig. 1 is the sampling distribution of ¢y, that is approximately normal and based on
a = 0.50, n = 100,000, and a symmetric heavy-tailed distribution (kurtosis of 25,
see Fig. 2) that would be associated with #; in (1).

3 Monte Carlo Simulation

An algorithm was written in MATLAB (Mathworks 2010) to generate 25,000
independent sample estimates of conventional and L-comoment ¢.. The estimators
O and &g were based on the parameters (¢, k, R) given in Tables 3 and 4 and the
distributions in Figs. 2—4. The parameters of o« were selected because they represent
commonly used references of various degrees of reliability, i.e. 0.50 (poor); 5/7
= 0.714 (acceptable); 0.80 (good); and 0.90 (excellent). Further, for each set of
parameters in Tables 3 and 4, the empirical estimators & and 0y, were generated
based on sample sizes of n = 10, 20, 1,000. For all cases in the simulation, the
error term e;; in (1) was normally distributed with zero mean and with the variance
parameters (0}2) listed in Tables 3 and 4.

The three distributions depicted in Figs.2—4 are associated with the true scores
t; in Eq. (1). These distributions are referred to as: Distribution 1 is symmetric
and leptokurtic (skew = 0, kurtosis = 25; L-skew = 0, L-kurtosis = 0.4225);
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Table 3 Parameters for the Conventional covariance (L-comoment) matrix
and distributions in Figs. 2—4

Distribution-matrix Diagonal Off-diagonal GZ

1-C 3.420 1.710 1.710
1-L 0.848 0.424 1.000
2-C 3.224 1.612 1.612
2-L 0.842 0.421 1.000
3-C 2.000 1.000 1.000
3-L 0.798 0.399 1.000

Reliability is oo =0.80, 0.90; number of items are k =4, 9
Ratio of diagonal to off-diagonal is R = 2

Table 4 Parameters for the Conventional covariance (L-comoment) matrix
and distributions in Figs. 2—4

Distribution-matrix Diagonal Off-diagonal o?

1-C 8.550 1.710 6.840
1-L 1.470 0.294 5.313
2-C 8.060 1.612 6.448
2-L 1.443 0.2886 5.135
3-C 5.000 1.000 4.000
3-L 1.262 0.2524 4.000

Reliability is oo =0.50, 0.714; number of items are k =4, 10
Ratio of diagonal to off-diagonal is R =5

Fig. 2 Distribution 1 with
skew (L-skew) of 0 (0) and
kurtosis (L-kurtosis) of 25

(0.4225)

Distribution 2 is asymmetric and leptokurtic (skew = 3, kurtosis = 21; L-skew =
0.3130, L-kurtosis = 0.3335); and Distribution 3 is standard normal (skew = 0,
kurtosis = 0; L-skew = 0, L-kurtosis = 0.1226). We would note that Distributions
1 and 2 have been used in several studies in the social and behavioral sciences
(e.g., Berkovits et al. 2000; Enders 2001; Harwell and Serlin 1988; Headrick and
Sawilowsky 1999, 2000; Olsson et al. 2003).

The pseudo-random deviates associated with the distributions in Figs. 2—4 were
generated for this study using the L-moment-based power method transformation
derived by Headrick (2011). Specifically, the true scores #; in (1) were generated
using the following (Fleishman 1978) type polynomial

ti=c1+cZi+ C3Z,2 + C4Z,3 (10
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Fig. 3 Distribution 2 with 1.
skew (L-skew) of 3 (0.3130)

and kurtosis (L-kurtosis) of

21 (0.3335)

Fig. 4 Distribution 3 is 0
standard normal with skew

(L-skew) of 0 (0) and kurtosis

(L-kurtosis) of 0 (0.1226)

-3 =2 -1 1 2

W

where Z; ~ iid N(0,1). The shape of the distribution of the true scores #; in (10)
is contingent on the values of the coefficients, which are computed based on
Headrick’s equations (2.14)—(2.17) in Headrick (2011) as

T
Cl=—0C3=—T3 E

166+ V2(3+21)1
2T TT8(56,-28))
o 4006, — \/2(3 +2n)n
4T TT20(58 —28) (4o

The three sets of coefficients for the distributions in Figs.2—4 are (respectively):
(1) ¢1 = 0.0, co = 0.3338, ¢c3 = 0.0, ¢4 = 0.2665; (2) ¢; = —0.3203, ¢, = 0.5315,
¢3 =0.3203, ¢4 =0.1874;and (3) c; = 0.0, ¢ = 1.0, ¢3 = 0.0, ¢4 = 0.0. The values
of the three sets of coefficients are based on the values of L-skew and L-kurtosis
given in Figs.2—4 and where 8, = 0.36045147 and 6, = 1.15112868 in (11) (see
Headrick 2011, Egs. A.1, A.2). The solutions to the coefficients in (11) ensure that
A1 =0 and A, = 1/+/7, which are associated with the unit normal distribution.
The estimator & was computed using Eq. (3). The estimator é;, was computed
using Egs. (4), (5), and (8) as was demonstrated in Tables 1 and 2. The
estimators were both transformed to the form of an intraclass correlation as
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pcr=06cr/(1—(k—1)0cy) (e.g., Headrick 2010, p. 104) and were subsequently
Fisher 7' transformed, i.e. z;—,CL. Bias-corrected accelerated bootstrapped average
(mean) estimates, confidence intervals (Cls), and standard errors were
subsequently obtained for z%C‘L using 10,000 resamples. The bootstrap results
associated with the means and C.Ls were then transformed back to their original
metrics (i.e., the estimators ¢¢ and 6@;). Further, percentages of relative bias
(RBias) and RSE were computed for dc¢y as: RBias = ((Gcr — o)/a) x 100
and RSE = (standarderror/0c 1) x 100. The results of the simulation are reported
in Tables 5—7 and are discussed in the next section.

4 Discussion and Conclusion

One of the advantages that L-moment ratios have over conventional product-
moment estimators is that they can be far less biased when sampling is from
distributions with more severe departures from normality (Hosking and Wallis 1997,
Serfling and Xiao 2007). And, inspection of the simulation results in Tables 5

Table 5 Simulation results for o based on the Conventional (C) and L-moment (L) procedures
(Proc) based on samples of size n = 10

Parameters Dist-Proc Estimate (o) 95% C.1. RSE (%) RBias (%)
a=0.50,k=4 1-C 0.4416 0.4367, 0.4465 0.5661 —11.68
a=0.50,k=4 1-L 0.4847 0.4801, 0.4891 0.4725 —3.06
a=0.50,k=4 2-C 0.4448 0.4400, 0.4495 0.3237 —11.04
a=0.50,k=4 2-L 0.4839 0.4796, 0.4883 0.2583 —-3.22
a=0.50,k=4 3-C 0.4888 0.4852,0.4922  0.3621 —2.24
a=0.50,k=4 3-L 0.5003 0.4968, 0.5040  0.3698 0.06
a=0.714,k=10 1-C 0.6617 0.6581,0.6652  0.2720 —7.36
a=0.714,k=10 1-L 0.6960 0.6931, 0.6989 0.2155 —2.56
a=0.714,k=10 2-C 0.6662 0.6628, 0.6697 0.2612 —6.73
a=0.714,k=10 2-L 0.6975 0.6946, 0.7003 0.2079 —2.35
a=0.714,k=10 3-C 0.7069 0.7051,0.7086  0.1273 —1.03
a=0.714,k=10 3-L 0.7131 0.7113,0.7149 0.1290 —0.17
a=0.80,k=4 1-C 0.7306 0.7275,0.7336  0.2053 —8.67
a=0.80,k=4 1-L 0.7887 0.7866, 0.7908 0.1357 —1.41
a=0.80,k=4 2-C 0.7398 0.7371,0.7426  0.1906 -7.52
a=0.80,k=4 2-L 0.7924 0.7904,0.7944  0.1287 —0.95
a=0.80,k=4 3-C 0.7908 0.7893,0.7922  0.0923 —1.15
a=0.80,k=4 3-L 0.8030 0.8016, 0.8044  0.0909 0.37
a=0.90,k=9 1-C 0.8591 0.8575, 0.8609 0.0989 —4.54
a=0.90,k=9 1-L 0.8924 0.8914,0.8936  0.0628 —0.84
a=0.90,k=9 2-C 0.8636 0.8620, 0.8651 0.0926 —4.04
a=0.90,k=9 2-L 0.8933 0.8922,0.8944  0.0605 —0.74
a=0.90,k=9 3-C 0.8934 0.8927, 0.8941 0.0381 -0.73
a=0.90,k=9 3-L 0.8991 0.8985, 0.8998 0.0378 —0.10

See Tables 3 and 4 for the parameters and Figs. 2—4 for the distributions (Dist)
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Table 6 Simulation results for o based on the Conventional (C) and L-moment (L) procedures
(Proc) based on samples of size n = 20

Parameters Dist-Proc Estimate (o) 95% C.1. RSE (%) RBias (%)
a=0.50,k=4 1-C 0.4643 0.46006, 0.4679 0.3977 —7.15
a=0.50,k=4 1-L 0.4903 0.4870, 0.4933 0.3263 —1.94
a=0.50,k=4 2-C 0.4697 0.4663,0.4732  0.3732 —6.05
a=0.50,k=4 2-L 0.4938 0.4909, 0.4967 0.306 —1.24
a=0.50,k=4 3-C 0.4945 0.4921, 0.4968 0.2389 —1.11
a=0.50,k=4 3-L 0.4995 0.4971, 0.5019 0.2456 —0.11
a=0.714,k=10 1-C 0.6852 0.6826, 0.6878 0.1926 —4.07
a=0.714,k=10 1-L 0.7056 0.7036, 0.7077 0.1485 —1.22
a=0.714,k=10 2-C 0.6858 0.6834,0.6882  0.1831 —3.98
a=0.714,k=10 2-L 0.7047 0.7028, 0.7066  0.1414 —1.34
a=0.714,k=10 3-C 0.7098 0.7086, 0.7111 0.0881 —0.62
a=0.714,k=10 3-L 0.7130 0.7117,0.7142  0.0882 —0.19
a=0.80,k=4 1-C 0.7569 0.7549, 0.7591 0.1404 —5.39
a=0.80,k=4 1-L 0.7937 0.7923,0.7952  0.0917 —0.78
a=0.80,k=4 2-C 0.7612 0.7592, 0.7631 0.1330 —4.85
a=0.80,k=4 2-L 0.7940 0.7926,0.7954  0.0893 —0.75
a=0.80,k=4 3-C 0.7944 0.7935,0.7954  0.0627 -0.7
a=0.80,k=4 3-L 0.8000 0.7990, 0.8010  0.0613 —0.002
a=0.90,k=9 1-C 0.8750 0.8737, 0.8761 0.0690 -2.79
a=0.90,k=9 1-L 0.8958 0.8950,0.8966  0.0431 —0.47
a=0.90,k=9 2-C 0.8784 0.8773, 0.8795 0.0644 —2.4
a=0.90,k=9 2-L 0.8965 0.8958,0.8972  0.0411 —0.39
a=0.90,k=9 3-C 0.8969 0.8965,0.8974  0.0247 —0.34
a=0.90,k=9 3-L 0.8998 0.8994,0.9002  0.0250 —0.02

See Tables 3 and 4 for the parameters and Figs. 2—4 for the distributions (Dist)

and 6 clearly indicates that this is the case. That is, the superiority that the L-
comoment-based estimator 0y, has over its corresponding conventional counterpart
O is obvious in the contexts of Distributions 1 and 2. For example, inspection of
the first entry in Table 5 (o« = 0.50, k = 4, n = 10) indicates that the estimator &¢
associated with Distribution 1 was, on average, 88.32 % of its associated population
parameter whereas the estimator ¢y, was 96.94 % of its parameter. Further, and in
the context of Distribution 1, it is also evident that ¢y is a more efficient estimator
as its RSE is smaller than its corresponding conventional estimator (see Table 5,
o =0.50, k =4, n = 10). This demonstrates that ¢ has more precision because it
has less variance around its estimate.

In summary, the L-comoment-based ¢y is an attractive alternative to the tradi-
tional Cronbach alpha ¢ when distributions with heavy tails and small samples
sizes are encountered. It is also worthy to point out that ¢y, had a slight advantage
over &¢ when sampling was from normal populations (see Table 5; o = 0.50,
k=4, n=10, 3-C, 3-L). When sample sizes was large the performance of the two
estimators 0 ; were similar (see Table 7; n = 1,000).
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Table 7 Simulation results for o based on the Conventional (C) and L-moment (L) procedures
(Proc) based on samples of size n = 1,000

Parameters Dist-Proc Estimate (o) 95% C.1. RSE (%) RBias (%)
a=0.50,k=4 1-C 0.4988 0.4982,0.4994  0.05814 —0.24
a=0.50,k=4 1-L 0.4988 0.4984,0.4992  0.04210 —0.24
a=0.50,k=4 2-C 0.4993 0.4987, 0.4998 0.05613 —0.14
a=0.50,k=4 2-L 0.5001 0.4997, 0.5005 0.04200 0.02
a=0.50,k=4 3-C 0.5000 0.4997, 0.5003 0.03200 0.00
a=0.50,k=4 3-L 0.5000 0.4997,0.5004  0.03400 0.00
a=0.714,k=10 1-C 0.7134 0.7129, 0.7138 0.03084 —0.12
a=0.714,k=10 1-L 0.7132 0.7129, 0.7135 0.02103 —0.15
a=0.714,k=10 2-C 0.7133 0.7129, 0.7137 0.02804 —0.14
a=0.714,k=10 2-L 0.7140 0.7137,0.7143 0.01961 —0.04
a=0.714,k=10 3-C 0.7141 0.7140, 0.7143 0.01120 —0.03
a=0.714,k=10 3-L 0.7142 0.7140,0.7144  0.01260 —0.01
a=0.80,k=4 1-C 0.7991 0.7987,0.7994  0.02127 —0.11
a=0.80,k=4 1-L 0.8017 0.8015, 0.8019 0.01247 0.21
a=0.80,k=4 2-C 0.7990 0.7987, 0.7993 0.02003 —0.12
a=0.80,k=4 2-L 0.8011 0.8009, 0.8013 0.01248 0.14
a=0.80,k=4 3-C 0.7999 0.7998, 0.8000  0.00875 —0.01
a=0.80,k=4 3-L 0.8000 0.7998, 0.8001 0.00875 0.00
a=0.90,k=9 1-C 0.8992 0.8990, 0.8994  0.01001 —0.09
a=0.90,k=9 1-L 0.9008 0.9007, 0.9009 0.00555 0.09
a=0.90,k=9 2-C 0.8994 0.8992, 0.8995 0.01000 —0.07
a=0.90,k=9 2-L 0.9005 0.9004, 0.9006  0.00556 0.06
a=0.90,k=9 3-C 0.8999 0.8999, 0.9000  0.00333 —0.01
a=0.90,k=9 3-L 0.9000 0.8999, 0.9000  0.00333 0.00

See Tables 3 and 4 for the parameters and Figs. 2—4 for the distributions (Dist)

Appendix

Under the assumption of parallel measures, the error term ¢;; in Eq. (1) has constant
variance o7, the variance—covariance matrix assumes compound-symmetry, and
thus the main and off-diagonal elements are 67 = oy and 0; = 07, respectively.

Hence, Eq. (2) can be expressed using the true score and observed score variances as

k ko
o= 1= 7 )
k—1 koy +k(k—1)o;

which can be simplified to

k o2
o= —— (1_%)
k—1 oy +(k—1)o;



An L-Moment Based Measure of Internal-Consistency Reliability 27

ok (k—1)c?
k-1 (G)%-i-(k— 1)6t2>

- ko}?
o2+ (k—1)of

IfweletR = sz /o = o} /6,2 , then it follows that

k 1
T RYk—1 I+ R-1JK

which is given in Eq. (6).
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Using the Testlet Response Model as a Shortcut
to Multidimensional Item Response Theory
Subscore Computation

David Thissen

1 Introduction

In many assessment contexts there may be perceived usefulness for diagnostic
scores that describe a profile of performance, reflecting a more nuanced description
of individual differences than is obtained with a single total score. Several ways
to compute diagnostic scores have been proposed and used, but the use of classic
subscores originated more than 70 years ago with tests like the Wechsler—Bellevue
Intelligence Scale (WBIS) (Wechsler 1939). The WBIS provided eleven “subtest
scores” in addition to verbal, performance, and full-scale I1Q scores. Estes (1946)
referred to the subtest scores as “subscores,” possibly originating modern usage. A
footnote to the score conversion table for the subtest scores on the WBIS noted that
“one must recognize the relative unreliability of these subtest scores,” anticipating
modern concerns about the unreliability of subscores based on a few items that are
a subset of a longer test.

In the past three decades, several systems have been proposed to calculate more
reliable subscores for small subsets of test items by “borrowing strength” (Tukey
1973), using additional information such as the total score on the test, or the
other subscores on the test. Yen (1987) described an objective performance index
that used ideas from item response theory (IRT) to combine information from a
subscore with the total score on the entire test into a more reliable score. Wainer
et al. (2001) contained details on the computation of two kinds of augmented
subscores: (1) those based on summed scores, as estimates of classical true scores,
using the multivariate generalization of Kelley’s (1927) regressed estimates, and
(2) those arising from a multi-step procedure to mimic the multivariate Kelley
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regressed estimates with multiple univariate IRT analyses. Wainer et al.’s (2001)
augmented scores are estimates based on the regression of each true score on all of
the subscores; for summed scores, Haberman (2008) proposed an alternative scheme
to compute augmented subscores using only the subscore in question and the total
score on the test.

Haberman (2008) also proposed evaluation of the value of subscores using the
comparison of the proportional reduction in mean squared error (PRMSE) for each
of several subscore estimates—for the subscore itself, for the total score as an
estimate of the subscore, and for the augmented subscore. PRMSE is, in some
senses, reliability, computed for a particular observed score as an estimate of a
particular true score. Historically, there are many estimates denoted “reliability,” and
nearly as many meanings of the word, so it was wise to use “PRMSE” instead—it
is semantically neutral, and it is accurate: how much the mean squared error in
estimating the score is reduced by any observed score (relative to using the mean).

Procedures for computing augmented summed scores are well developed
and computationally straightforward (Edwards and Vevea 2006; Haberman 2008;
Sinharay et al. 2008). However, many assessment systems use IRT scale scores; the
computation of augmented IRT subscores has been more challenging, and that is the
subject of this presentation. Advances in computational equipment and algorithms
in the past two decades have made direct use of multidimensional IRT (MIRT)
models practical for the calculation of augmented subscores; this presentation
draws together several threads from recent research to propose a useful system.

2 MIRT and Subscores

To provide a concrete setting for the ideas described here, we use one of the
examples described by Wainer et al. (2001), involving responses to the late-1990s
North Carolina Test of Computer Skills—an 8th Grade performance test with four
parts: (1) Keyboarding (Kb), with three four-category items; (2) Editing (Ed), with
ten dichotomous items; (3) Database (Db), with four dichotomous items and three
three-category items; and (4) Spreadsheet (Ss) with five dichotomous items and one
item scored in three-categories.

The multi-step IRT procedure to compute augmented scores described by Wainer
et al. (2001) was developed at a time when it was not clear that MIRT models
could be reliably fitted directly to data, so it made use of assembled univariate IRT
analyses of each subscale. Nevertheless, the underlying idea was to fit a model like
that shown in path-analytic form in the left panel of Fig. 1: The model includes
four correlated latent variables, one for each subscale. Augmented MIRT subscores
are the IRT trait estimates (e.g., the maximum a posteriori (MAP) or expected a
posteriori (EAP) values) for the four latent variables, each of which depends on the
item responses for its own subscale as well as those on the other subscales through
the correlations.
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Fig. 1 Path diagrams illustrating the latent variable structures of a four-dimensional independent
clusters model (left panel), a second-order factor model (center panel), and the testlet response
model (right panel) for the four subscales of a North Carolina Test of Computer Skills

Since publication of the work by Wainer et al. (2001), there have been many
advances in statistical estimation for MIRT models, so Wainer et al.’s (2001) multi-
step procedure combining results obtained with parallel unidimensional IRT models
can be abandoned. To show that MIRT models could be fitted to data, early efforts
used Markov chain Monte Carlo (MCMC) algorithms (Béguin and Glas 2001; Bolt
and Lall 2003; Yao and Schwarz 2006; Yao and Boughton 2009; Edwards 2010).
Some of that work with MCMC algorithms has been focused on subscores, and
even higher-order models, which will be a focus of this presentation (de la Torre
and Hong 2009; de la Torre and Song 2009; de la Torre 2009; de la Torre and
Patz 2005; Yao 2010; Yao and Boughton 2007). The use of more convenient, if
less sophisticated or elegant, point estimation by maximum likelihood (ML) has
lagged behind, but has become practical with contemporary software (Haberman
and Sinharay 2010; Cai et al. 2011).

Even with the advent of modern MIRT software, parameter estimation remains
challenging for models with more than two or three latent dimensions—in the
context of subscores, that means more than two or three subscales, and that situation
is common. It follows that the use of dimension-reduction techniques could be
helpful; this presentation describes a way to recast item parameter estimation for
a high-dimensional MIRT model into parameter estimation for a bifactor model,
which can be done with more computational efficiency.
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First, we note that it is often the case that the kind of independent clusters or
simple structure MIRT model illustrated in the left panel of Fig. 1 can be approx-
imated with the second-order or higher-order factor model shown in the center
panel of the graphic. In a second-order factor model, as originally described by
Tucker (1940), a second- or higher-order latent variable 6, explains the correlation
among the first-order latent variables—in this case those are the subscale 8s. For
four or more subscales, the relationship between the second-order factor model and
the independent clusters model is one of the approximations: It is often the case,
empirically, that the correlations among the subscores can be well approximated by
a one-factor model, but counterexamples can be found. For three subscales, for some
patterns of correlation the relationship is exact, while for others it is approximate;
for two subscales, the relationship is tautological. de la Torre (2009), de la Torre and
Hong (2009), and de la Torre and Song (2009) have suggested the direct use of a
second-order factor model for subscore estimation.

In this presentation, we take advantage of the relationships among the second-
order factor model, the Wainer et al. (2007) testlet response model (TRM), and
the bifactor model (Holzinger and Swineford 1937), to simplify computation. The
TRM can be expressed in path-diagram form as shown in the right panel of Fig. 1:
There is a general factor, 6, that explains covariation among all the items, and a set
of subscale-specific latent variables 6* that explain residual covariation within each
subscale. While the right panel of Fig. 1 shows two factor loadings (A s) relating each
item’s latent response to the subscale-specific and general latent variables, those
two As are constrained equal in the TRM. The estimated parameters are one (1)
loading (or equivalently, IRT slope) for each item, and as many variances as there are
subscales (Wainer et al. 2007; Bradlow et al. 1999; Wainer et al. 2000; Wang et al.
2002).

The original software by Wang et al. (2005) to estimate the parameters of the
TRM used MCMC. However, when the model is expressed as in Fig. 1 to show
that it is a constrained bifactor model, ML estimation using dimension-reduction
techniques (Gibbons and Hedeker 1992; Gibbons et al. 2007; Cai 2010c; Rijmen
2010; Cai et al. 2011) as implemented in software such as IRTRPO (Cai et al.
2011) can also be used. That means that the parameters of TRMs like that shown
in the right panel of Fig. 1 can be estimated efficiently using ML, with numerical
integration over only two latent dimensions regardless of the number of subscores.

To relate this to the higher-order model in the center of Fig. 1, and then back to
the original subscore problem, we note that the higher-order model in the center
of Fig. 1 is a reparameterization of the TRM in the rightmost panel. Yung et al.
(1999), based on pioneering work by Schmid and Leiman (1957), established this
identity relation for the continuous-normal factor model. Rijmen (2010) extended
these results to MIRT models; see also Li et al. (2006) and Thissen and Steinberg
(2010).

Assembling these relationships among models yields the basis for an efficient
three-step plan to estimate MIRT parameters, and subsequently compute IRT scale
subscores, for the Computer Skills subscales: (1) Estimate the parameters for the
TRM in the right panel of Fig.1 by ML using dimension-reduction techniques
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Table 1 Correlations among the four latent variables for the North Carolina Test of
Computer Skills subscales

4D Model TRM

Ok Ok Opp, Oss Okp Ok Opp Oss
Ok 1.00 Okp 1.00
0pa 069  1.00 0ps 060  1.00
6pp 0.52 0.49 1.00 Opp 0.60 0.52 1.00

Oss 0.55 0.45 0.59 1.00 Oss 0.58 0.50 0.50 1.00

that require numerical integration over only two dimensions (Gibbons and Hedeker
1992; Gibbons et al. 2007; Cai 2010c; Rijmen 2010; Cai et al. 2011). (2) Convert
the parameter estimates for the TRM into those of the second-order model in the
center of Fig. 1, using a simplification of the algorithm provided by Yung et al.
(1999). (3) Convert the parameter estimates for the second-order model into those
of the independent clusters model in the left panel of Fig. 1, and then compute the
subscores from that model as either EAP estimates (which require four-dimensional
integration) or MAP estimates (with no numerical integration).

Yung et al. (1999) provide an algorithm to convert the parameters of an
unconstrained bifactor model into the factor loadings of a more general second-
order factor model than illustrated in Fig. 1; the more general model also includes
direct paths from 6, to each observed variable. In the present case, however, with the
equality constraints imposed on the bifactor model to yield the TRM, Yung et al.’s
(1999) procedure can be simplified.

The second-order factor loadings, in terms of the TRM testlet variances, are
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Then the implied correlation matrix among the factors of the original four-
dimensional correlated independent clusters model is

R =AM, + [I—diag(A,A,)] - ()

Table 1 illustrates the results obtained with the data from the Computer Skills
test; in the left side of the table are the correlations among the four latent variables
as estimated using four-dimensional (4D) adaptive quadrature (Schilling and Bock
2005), and the right side of the table shows the similar correlation estimates obtained
using Eqgs. (1) and (2) after fitting the TRM. The correlations differ by as much as
0.09; however, that is probably due in part to their large standard errors—the sample
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size for this example is only 266, and the standard errors of the latent-variable
correlations are 0.08-0.13. Because the sample size is so small, neither estimation
problem requires much time to compute; however, the four-dimensional model
required almost five times as long as the TRM to fit (165 s vs. 36 s) with the IRTPRO
software (Cai et al. 2011).

To obtain scores, MIRT slope and intercept parameters are also required. In
principle, the intercept parameters are the same for all three models shown in Fig. 1;
in practice, they vary slightly between the 4D model and the two equivalent models
on the right because the slopes are slightly different. We ignore that, and use the
TRM intercept estimates in the approximation. To compute the implied slopes for
the independent cluster model from the slopes for the TRM, we first convert the
factor loadings using a simplification of Yung et al.’s (1999) algorithm. To do that,
it is convenient to partition the loading matrix for the bifactor representation of the
TRM as follows:

A*|A*0 0 0
A*|A*0 0 0
A*|A*0 0 0
A0 A" 0 0
o |Aloaro 0 .
A0 0 A% 0
A0 0 0 A7
A0 0 0 A

Then loadings in the submatrix A} are rescaled using the matrix Y,
A=A"Y. “)

Y is a simplification of one of the matrices in Yung et al.’s (1999) “inverse Schmid—
Leiman transformation”:

J1+0%, 0 0 0

0 /l+o3, O 0

: (5)
0 0 \Jl+c% 0
0 0 0 /1+02

Y =
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Table 2 PRMSE values for the North Carolina Test of Computer

Skills

Kb Ed Db Ss
PRMSE(6; |u;) 0.67 0.73 0.67 0.77
PRMSE(6,|6,) 0.48 0.37 0.36 0.34
PRMSE(6;|u)! 0.65 0.77 0.71 0.79
PRMSE(6;|u)? 0.67 0.77 0.72 0.80

! Parameters from TRM/higher-order model
2 Parameters from unconstrained 4D model

Direct 4D estimation produced one set of MIRT parameters for the model in
the left panel of Fig.1; the use of Eqgs. (1)-(5) with parameters from the fitted
TRM produced another very similar set of parameters. The precision of augmented
subscore estimates computed with those two sets of parameters can be compared to
each other, and to other score estimates, using PRMSE as proposed by Haberman
(2008) and Haberman and Sinharay (2010). Two alternative subscore estimates that
might be considered would be the EAP estimate for 0 for subscale k computed from
a unidimensional IRT model fitted to subscale k, and the EAP estimate for 6 for
subscale k computed from its regression on 6, from the TRM/higher-order model
(as an IRT analog to the replacement of all subscore estimates with the total score).
PRMSE values for these score estimates are:

PRMSE(6;|u;): the PRMSE using the EAP estimate for 6 for subscale k
computed from a unidimensional IRT model fitted to subscale
k as an estimate of 6.

PRMSE(6;|6,): the PRMSE using the EAP estimate for 6 for subscale k
computed from its regression on 6, from the TRM/higher-order
model as an estimate of 6.

PRMSE(6;|u):  the PRMSE using the augmented EAP estimate for 6 for sub-
scale k computed from a MIRT model fitted to the entire test as
an estimate of 6. There are two of these, one for the independent
clusters model and one for the TRM-derived version.

Table 2 shows the values of PRMSE for those four subscore estimates for the
Computer Skills subscales. The most salient feature of the values in Table 2 is that
all of the subscale estimates are much more precise than estimates derived from the
total score ég. By comparison, 4D subscore augmentation increases precision only
modestly, from 0.00 (for Kb) to 0.05 (for Db), as reflected in the difference between
PRMSE( 6 |u;) and PRMSE(6;|u)?. The pattern of results reflects the fact that the
latent variables for these four subscales are only moderately correlated (0.5-0.6;
see Table 1). The values of PRMSE(6y|u)! for subscale scores computed with the
TRM-derived approximation to the 4D model are only 0.00-0.02 lower than the
values for the 4D model.
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3 Additional Examples

The PROMIS pediatric emotional distress scales (Irwin et al. 2010, 2012) provide
second example with a similar pattern of results. The PROMIS pediatric emotional
distress scales were constructed as three distinct unidimensional IRT scales mea-
suring Depressive Symptoms, Anxiety, and Anger. However, here we investigate
the properties of the suggested short forms of the three scales as if they were
subscales of a global emotional distress measure. Table 3 shows the correlations
among the three latent variables as estimated using adaptive quadrature with a three-
dimensional (3D) correlated independent clusters model, and as estimated with the
TRM and then computed using Eqgs. (1)—(5); the three correlations are essentially
the same either way.

Table 4 shows the values of PRMSE for the subscore estimates for the PROMIS
pediatric Anger (Ang), Anxiety (Anx), and Depressive Symptoms (Dep) scales. As
was the case with the previous example, the most obvious feature of the values in
Table 4 is that all of the subscale estimates are much more precise than estimates
derived from a (hypothetical) total score, as reflected in the difference between
PRMSE(6;|u;) and PRMSE(6;|u). Again, 3D subscore augmentation increases
precision only modestly, from 0.02 (for Anger) to 0.05 (for Depressive Symptoms).
This is the case even though these three latent variables are correlated 0.66—0.78
(see Table 3), and is probably due to the fact that these scales, comprising 6—8 five-
category graded response items, already have relatively large PRMSE values when
unidimensional models are used. The values of PRMSE(6;|u)! for subscale scores
computed with the TRM-derived approximation to the 3D model are essentially
the same as the values for the 3D model, because the correlations are essentially
the same.

Table 3 Correlations among the three latent variables for the
PROMIS pediatric emotional distress scales

3D Model TRM

QA ng QA nx eDep eAng eAnx eDep
Bang 1.0 Oung 1.0
Oany  0.656  1.00 Oany  0.656  1.00

Op;y 0778 0770 1.00  6p, 0777 0769  1.00

Table 4 PRMSE values for
the PROMIS pediatric
emotional distress scales

Anger Anxiety Depr. Symp.
PRMSE(6k|u;) 0.86  0.86 0.84
PRMSE(6|6,) 0.57 0.56 0.78
PRMSE(6;Ju)! 0.88  0.89 0.89
PRMSE(6;/u)®> 0.88  0.89 0.89

1 Parameters from TRM/higher-order model
2 Parameters from unconstrained 3D model
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Table 5 Correlations among the six latent variables for the APICS certification examina-
tion

6D Model TRM
Ocon Our Oroc Orech O Oupi Ocon Our Oroc Orech Ot Oupi
Ocon  1.00 Ocon 1.00
Oyr  0.93 1.00 Oyr 091 1.00
Oroc 0.92 0.89 1.00 Oroc 0.88 0.85 1.00
Oreen 0.95 093 0.89 1.00 Oreer 0.94 090 0.87 1.00
O 097 095 092 097 1.00 O 097 093 091 0.96 1.00

Oupr 096 0.94 091 0.96 0.98 1.00 6, 096 0.92 089 0.95 0.98 1.00

Table 6 PRMSE values for the APICS certification examination

Concepts HR TotalQC  Techniques  Integration  Implementation

PRMSE(6u;)  0.47 0.54  0.66 0.67 0.55 0.71
PRMSE(6,/6,)  0.81 0.74  0.70 0.79 0.85 0.82
PRMSE(6;u)!  0.84 0.80 0.80 0.84 0.87 0.86
PRMSE(6;[u)?>  0.85 083 0.82 0.86 0.88 0.87

1 Parameters from TRM/higher-order model
2 Parameters from unconstrained 6D model

A third example is another described by Wainer et al. (2001) that involves
a certification examination for the American Production and Inventory Control
Society (APICS) administered in 1994. This 100-item multiple-choice test was
designed to have six subscales, measuring Concepts (Con), Human Resources
(HR), Total Quality Control (TQC), Techniques (Tech), Integration (Int), and
Implementation (Impl). After various analyses, Wainer et al. (2001) found that
this test was so nearly unidimensional that any computation of subscores produced
values with poor reliability (for the subscales alone), or values that amounted to
reproducing the total score six times (for augmented subscores). The correlations
among the latent variables for the six subscales for the APICS exam shown in
Table 5 make it clear why that is the case: Nearly all of the correlations exceed 0.9.

The values in the left half of Table 5 are very challenging to estimate; fitting
a six-dimensional correlated independent clusters model is beyond the capacity of
even modern MIRT software using quadrature. The estimates shown in the left half
of Table 5 were obtained using Cai’s (2010a, 2010b) Metropolis-Hastings Robbins-
Monro (MH-RM) algorithm, with starting values derived from the TRM solution.
On the other hand, the TRM solution was easy to obtain. Table 5 shows that the
correlation estimates are not very much different.

Table 6 shows the values of PRMSE for the subscore estimates for the APICS
certification examination subscales; the pattern is very different from that previously
seen in Tables 2 and 4. In this case, all of the subscale estimates are much less
precise than estimates derived from a total score, as reflected in the difference
between PRMSE (6, |u;) and PRMSE(6;|u)?. 6D subscore augmentation increases
precision a great deal, from 0.38 (for Concepts) down to 0.16 (for Total QC and



38 D. Thissen

Implementation). However, the fact that the subscales scores are so highly correlated
means that the augmented subscores, while reliable, are nearly the same as simply
reporting the total score six times—all subscores regress to nearly the same value.
The values of PRMSE(6;|u)' for subscale scores computed with the TRM-derived
approximation to the 6D model are similar to those obtained with the more complex
model.

4 Conclusion

The conclusion that is unique to this presentation is that it may be effective to
use the computational “shortcut” that involves fitting the TRM (as a constrained
bifactor model) to multidimensional item response data, and then using Eqs. (1)—
(5) to approximate the more difficult to estimate parameters of a correlated simple
structure model to compute subscores.

However, the examples in this presentation, together with similar examples
in the literature, suggest that subscore augmentation has a narrow window of
usefulness: If the correlations among the latent variables for the subscores are
relatively low (as in the Computer Skills example, in which they were 0.5-0.6), or
if the subscales are already relatively reliable (as in the PROMIS emotional distress
scales), augmentation is not necessarily very helpful. In those cases, separate
unidimensional models for the individual subscales are simple and effective. On
the other hand, if the correlation among the subscales are very high (as was the case
with the APICS certification exam), subscore augmentation simply reproduces the
total score; so it may be better to avoid reporting subscores entirely. It is useful to
follow (Haberman’s 2008) suggestion that comparison of relevant PRMSE values
can be used to evaluate subscores.

There are cases in which subscore augmentation is clearly useful, but they appear
to come from a narrowly defined window, in which subscale scores have relatively
low reliability (PRMSE) when considered alone, and when they appear on tests
with latent-variable correlations among the subscores between about 0.8 and the
low 0.9s. Haberman and Sinharay (2010) provide three examples of examinations
in that window for which they found subscore augmentation to be unambigously
helpful; they also reported results for two exams with higher correlations among the
latent variables, for which the total score tended to be the better choice.

For tests with short subscales that do not produce sufficiently reliable scores
on their own, but are intercorrelated moderately highly, perhaps between 0.75
and 0.95 for the latent variables, an MIRT approach to subscore augmentation
may be effective if IRT scales are used for score reporting. In that context, the
computational shortcut described in this presentation, using the TRM, is more
efficient computationally and may be more numerically stable, and should be
considered.
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Anatomy of Pearson’s Chi-Square Statistic
in Three-Way Contingency Tables

Yoshio Takane and Lixing Zhou

1 Introduction

Research in psychology and other social sciences often involves discrete
multivariate data. Such data are conveniently summarized in the form of
contingency tables. There have been two widely used classes of techniques for
analysis of such tables. One is log linear models (e.g., Andersen 1980; Bishop et al.
1975) and the other is correspondence analysis (CA; e.g., Greenacre 1984; Nishisato
1980). The former allow ANOVA-like decompositions of the log likelihood ratio
(LR) statistic (also known as the deviance statistic or the Kullback and Leibler 1951
divergence). This statistic measures the difference in log likelihood between the
saturated and independence models. When the latter model is correct, it follows
the asymptotic chi-square distribution with degrees of freedom (df) equal to the
difference in the number of parameters in the two models.

In CA, on the other hand, an emphasis is placed on graphical representations
of associations between rows and columns of contingency tables. This approach
typically uses PCA-like (componentwise) decompositions of Pearson’s (1900) chi-
square statistic, measuring essentially the same thing as the log LR chi-square
statistic. In this paper, we develop ANOVA-like decompositions of Pearson’s chi-
square statistic, similar to those for the log LR statistic.

These decompositions are useful in constrained CA, such as canonical correspon-
dence analysis (CCA; ter Braak 1986) and canonical analysis with linear constraints
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(CALC; Bickenholt and Bockenholt 1990), in which the total association between
rows and columns of contingency tables is decomposed into what can and cannot
be explained by the constraints. Different terms in the decompositions highlight
different aspects of the total association. The terms in the proposed decompositions
are mutually orthogonal and follow independent asymptotic chi-square distributions
under suitable null hypotheses. This is in contrast to the decompositions suggested
by Lancaster (1951), in which individual terms do not necessarily follow asymptotic
chi-square distributions (Placket 1962). All terms in the proposed decompositions
can be obtained in closed form unlike some of the terms in the decompositions of
the log LR chi-square statistic.

Takane and Jung (2009b) proposed similar decompositions of the CATANOVA
C-statistic (Light and Margolin 1971), which also follows an asymptotic chi-square
distribution. This statistic, however, has been developed for situations in which rows
and columns of contingency tables assume asymmetric roles, that is, one is the
predictor, and the other is the criterion. It thus represents the overall predictability of,
say, rows on columns. Pearson’s chi-square statistic, on the other hand, represents
a symmetric association. It may be argued, however, that a symmetric measure
of association may still be useful in the predictive contexts. There are many
cases in which symmetric analysis methods (those that do not distinguish between
predictors and criterion variables) are used for prediction purposes. For example,
canonical correlation analysis (Hotelling 1936) and its special cases, canonical
discriminant analysis (Fisher 1936), CCA and CALC (cited above), reduced rank
regression analysis (Anderson 1951; Izenman 1975), maximum likelihood reduced-
rank GMANOVA (growth curve models; Reinsell and Velue 1998), and the curds
and whey method (Breiman and Friedman 1997) all involve some kind of symmetric
analysis. This suggests that decompositions of a symmetric measure of association,
such as Pearson’s chi-square statistic, may well be useful in predictive contexts.

This paper is organized as follows. Section 2 briefly reviews basic facts about
Pearson’s chi-square statistic and its historical development. Section 3 presents
our main results, the proposed decompositions, starting from elementary two-term
decompositions to full decompositions. It will be shown that the order in which
various effects are taken into consideration plays a crucial role in deriving the
decompositions. Section 4 compares the proposed decompositions to those for
the log LR statistic recently proposed by Cheng et al. (2006). Section 5 draws
conclusions.

2 Preliminaries

We use uppercase Roman alphabets (e.g., A, B, ...) to designate variable names
and the corresponding characters in italic (e.g., A, B, ...) to denote the number
of categories (levels) in the variables. Categories of a variable are indexed by the
corresponding lowercase alphabets in italic (e.g.,a = 1,---A).
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Let there be A mutually exclusive events with known probabilities of occurrence,
pa(@a=1,---,A),and let f, (a=1,---,A) denote the observed frequency of event
a out of N replicated observations. Then the following statistic

2 _ Ja— Npa> 1
XA a;( Npa (D

asymptotically follows the chi-square distribution with A df (Pearson 1900). Here,
Np, is the expected value of f, under the prescribed conditions. This is the generic
form of Pearson’s chi-square statistic, from which many special cases follow.

In one-way layouts (i.e., when there is only one categorical variable), we are
typically interested in testing Hy : p, = p foralla (a =1,--- ,A). We estimate p by
p = 1/A.If we insert this estimate in (1), we obtain

A

5 (fa N/A) ®

-1\ VN/A
This statistic follows the asymptotic chi-square distribution with A — 1 df under Hy.
Note that we lose 1 df for estimating p. When A > 2, the above statistic can be
partitioned into the sum of A — 1 independent chi-square variables each with 1 df.
Let g denote the A-component vector of (f, —N/A)/y/N/A (@a=1,---,A). We may

transform this vector by the Helmert type of contrasts for unequal cell sizes (Irwin
1949; Lancaster 1949). For A = 3, this contrast matrix looks like

- ~ /
/ _ PzA _ ] _ I’lA 0
T= D1+p2 p1+D2 (3)
\/ Y \/ Y _\/AﬁlfrﬁzA ’
(P1+p2)(p1+P2+P3) (P1+p2)(P1+D2+P3) Pr+patp3

where p, = f,/N. Define

h=Tg. )

Then each of the A — 1 elements of h asymptotically follows the independent stan-
dard normal distribution under Hy, whose sum of squares (i.e., h’h) asymptotically
follows the chi-square distribution with A — 1 df under Hy. Note that T is not unique.
It can be any columnwise orthogonal matrix with one additional requirement that it
is also orthogonal to the vector with the square root of p, as the a-th element for
a=1,--- A It can be easily verified that T'T = I4_, and that T'p = 0 for T defined
in (3), where p = (v/p1,*+ ,v/Pa)-

In two-way layouts, we assume that there is another variable B with B categories.
Let f;, denote the observed frequency of category b of variable B and category a of
variable A. Let fp,, be arranged in a B by A contingency table F. We are typically
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interested in testing the independence between the rows and columns of F, i.e.,
Ho : ppa = PpPa, Where pp, is the joint probability of row b and column a, and
pp and p, are the marginal probabilities of row b and column a, respectively. Let
Do =YaSba/N and p, =Y, fra/N denote the estimates of p;, and p,, and define

_ii(ﬁ)a prpa> . (5)
b=1la—=1 VNDPvPa

This statistic represents the total association (or the departure from independence)
between the rows and columns of F. It is sometimes referred to as the A by
B interaction and is denoted as y2(AB). It follows the asymptotic chi-square
distribution with (B — 1)(A — 1) df under Hy. As before, it can be decomposed into
the sum of (B— 1)(A — 1) independent chi-square variables each with 1 df when
B > 2 and/or A > 2. Let G represent the B by A matrix whose ba-th element is
equal to (fye — NPpPa)//NPppa. We then pre- and postmultiply G by something
analogous to T" and T defined in (3). The resultant matrix has (B —1)(A — 1)
independent asymptotically standard normal variables under Hy, whose sum of
squares follows the asymptotic chi-square distribution with (B—1)(A — 1) df.

It will be handy to have a matrix representation of the chi-square statistic given
above. Let K and L denote the diagonal matrices whose diagonal elements are the
row and the column totals of F, and let Ql/K =1 — IBIgK/N, where 1p is the
B-element vector of ones. Then, G can be expressed in terms of F by

G =VNK'Q] KFL™ = VNQ, xK 'FL ™. (6)
The X(Zg,l) (A1) can then be rewritten as

X511y = t(G'KGL) = SS(G)x 1. (7

In three-way layouts, we take into account a third variable C with C categories.
Let f.», denote the observed frequency of category c¢ of variable C, category b of
variable B, and category a of variable A, and define

C B A N
fcba - NPchPa)
X = <# . (8)
can-cnae= 2 2 2\ T AE

This statistic represents the departure from independence among the three categor-
ical variables. Under the independence hypothesis (i.e., Hy: pepa = pePppa). this
statistic follows the asymptotic chi-square distribution with CBA —C — B — A 42 df,
which are always larger than 1. Consequently it can always be decomposed into the
sum of CBA — C — B — A + 2 independent chi-square variables each with 1 df.

As in the case of two-way layouts, we can express the above chi-square in
matrix notation. We first arrange a three-way table into a two-way format by
factorially combining two of the three variables. Suppose that variables B and C
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Table 1 A three-way A4 Aj Total
contingency table arranged in C B 79 177 256
1 1

two- fi t
wo-way forma B, 62 121 183

C By 73 81 154
B, 168 75 243
Total 382 454 836

are combined to form row categories. (Which two variables we choose to combine
makes no difference for our immediate purpose. Note, however, that this will have
a rather grave impact on the decompositions of Pearson’s chi-square statistic that
follow.) We may then take categories of A as columns. Suppose further that the
row categories are ordered in such a way that the index for B categories moves
fastest. (See Table 1 below for an example.) Let F denote the two-way table
thus constructed. Let K = D¢ ® Dp, where D¢ and Dp are diagonal matrices
with marginal frequencies of categories of variables C and B, and ® indicates a
Kronecker product. Let L. = D4 denote the diagonal matrix of column totals of F,
and define

G = NK '(F — Kl¢pl,L/N*)L 1. )
Then
Xpa—c—p-a+2 = t(G'KGL) = S$(G)k L. (10)

Consider, as an example, the three-way contingency table given in Table 1.
This is a 2 by 2 by 2 table arranged in a 4 by 2 two-way format according to
the prescription given above. This is a famous data set used by Snedecor (1958)
to illustrate the differences in the notion of the three-way interaction effect in
a three-way contingency table given by several prominent statisticians, including
Bartlett (1935), Mood (1950), and Lancaster (1951). According to Cheng et al.
(2006), however, all of them made crucial mistakes in conceptualizing the three-
way interaction effect. We are going to use this same data set to demonstrate our
proposed decompositions of Pearson’s chi-square statistic (Sect.3) and compare
them with those of the log LR statistic (Sect.4). For the moment, however, we are
satisfied with only calculating xf for this data set using the formula given in (8) or
(10). This value turns out to be 131.99.

The xf for this table reflects the joint effects of four sources, the A by B, A
by C, B by C, and A by B by C interaction effects with the main effects of the
three variables A, B, and C being eliminated by their marginal probabilities. Thus,
X3 may also be written as x2(AB, AC, BC, ABC). Note, however, that these four
effects are usually not mutually orthogonal due to unequal marginal frequencies,
and consequently their joint effects cannot be obtained by their sum. In this paper,
we develop systematic ways of orthogonalizing these effects to make them additive.
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3 The Proposed Decompositions

In order to derive proper decompositions of Pearson’s chi-square statistic for a three-
way contingency table, its reduction to a two-way table seems essential. Table 1
shows one way of reduction. There are two other ways of reducing a three-way table
into two, depending on which two of the three variables are combined to create
a new variable. In Table 1, B and C were combined, but A and B, and A and C
could likewise be combined. Generally, different decompositions result, depending
on which reduction method is employed. In this section we start with the reduction
method used in Table 1 and then expand our view to other situations.

If we look at Table 1 as purely a two-way table, we notice that the total
association in this table excludes certain effects in the chi-square statistic for the
original three-way table. The independence model for Table 1 implies that the
expected cell frequency is estimated by Np.,p,, where pyp, is the estimate of the
joint marginal probability of category c of variable C and category b of variable B.
Following (5), Pearson’s chi-square statistic representing the association between
the rows and columns of Table 1 is given by

CB A p.1 D 2
) o fbca_NpCbp“
X(cB-1)(a-1) = 2 <W) '

ch=1a=1
This is obviously different from (8), which further assumes p., = p.pp.

How can we account for the difference? As noted toward the end of the
previous section, ¥¢p4_c_p_a4o reflects the joint effects of the AB, AC, BC,
and ABC interactions, and thus it may be written as y*(AB, AC, BC, ABC). The
X(ZCB—l)( 4-1)> On the other hand, reflects the joint effects of the AB, AC, and

ABC interactions (i.e., X5 1)4_1) = X°(AB, AC, ABC)) with the BC interaction
effect excluded as the marginal effect of the rows of the table. The difference then
must be due to the BC interaction effect. More specifically, we call this effect the
BC interaction eliminating the joint effects of the AB, AC, and ABC interactions
because it represents the portion of the AB, AC, BC, ABC effects left unaccounted
for by AB, AC, ABC. This effect is denoted by BC|AB, AC, ABC, where the
variables listed on the right of “|” indicate those eliminated from the effect listed
on the left. The size of this effect is found by the difference between the two chi-

squares, i.e.,

(1)

2*(BC|AB, AC, ABC) = x*(AB, AC, BC, ABC) — y*(AB, AC, ABC). (12)

An equivalent way of looking at the above equation is that AB, AC, BC, ABC is
decomposed into the sum of the effects of AB, AC, ABC and BC|AB, AC, ABC,
that is,

%*(AB, AC, BC, ABC) = y*(AB, AC, ABC) + x*(AB|AC, BC, ABC).  (13)

For Table 1, we find y7(AB, AC, ABC) = 86.99, so that y?(BC|AB, AC, ABC) =
131.99 — 86.99 = 45.00.
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If x*(BC|AB, AC, ABC) has more than 1 df, it may be further decomposed
into the sum of the effects each with 1 df. In the present case, it has only 1 df,
so that no further decompositions are applicable. The y*(AB, AC, ABC), on the
other hand, has 3 df, which invites further decompositions. There are a number of
(in fact, infinitely many) possible decompositions. For example, we may use the
Helmert type of contrasts, as before, to decompose this chi-square. However, then
each component ¥ may be empirically less meaningful. We therefore focus on
the decompositions that reflect the factorial structure among the rows of Table 1.
This means that we are decomposing y2(AB, AC, ABC) into separate effects of
AB, AC, and ABC interactions. The problem is that these effects are usually
not orthogonal to each other, and consequently must be orthogonalized to derive
additive decompositions of the chi-square. As has been alluded to earlier, the
order in which they are taken into account will have a crucial effect in this
orthogonalization process. There are six possible ways of ordering three effects. We
may, however, cut down this number by considering only those orderings in which
lower-order interactions are always considered prior to higher-order interactions.
We are then left with only two possibilities. One is in which AB is considered first,
then AC, and then ABC, and the other is in which AC is considered first, then AB,
and then ABC.

When we add a new effect, we only add its unique effect. For example, when
we add AC in the first situation described above, we add only the portion of the AC
not already explained by AB. This effect, called AC eliminating AB, is orthogonal
to AB, and is denoted as AC|AB. The effect of AB considered first, on the other
hand, ignores all other effects (AC and ABC), and is simply written as AB. The
ABC effect considered last eliminates both AB and AC, and is written as ABC|AB,
AC. In general, the effect taken into account first ignores all other effects, the effect
considered last eliminates all other effects, and the effect taken into account in-
between eliminates all the effects considered earlier, but ignores all the effects
considered later. How to calculate the chi-square for these effects will be described
shortly.

The two possible orderings of AB, AC, and ABC suggested above give rise to two
orthogonal decompositions of the joint effects of AB, AC, and ABC. Symbolically,
this is written as

%*(AB, AC, ABC) = y*(AB) + x*(AC|AB) + x*(ABC|AB, AC) (14)

= x*(AC) + x*(AB|AC) + x*(ABC|AB, AC). (15)

Combining (13) and (14), we obtain the first decomposition of AB, AC, BC, ABC.
Decomposition (i):

x*(AB, AC, BC, ABC) = y*(AB)
+ x*(AC|AB) + x*(ABC|AB, AC) + ¥*(BC|AB, AC, ABC).  (16)
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Combining (13) and (15), we obtain the second decomposition of AB, AC, BC,
ABC.

Decomposition (ii):

x*(AB, AC, BC, ABC) = x%(AC)
+ x*(AB|AC) + x*(ABC|AB, AC) + y*(BC|AB, AC, ABC).  (17)

The %(AB), x*>(AC|AB), and y%(ABC|AB, AC) are calculated as follows. We
first set up contrast vectors,

1 1 1
—1 1 —1

1 B | andts _1 (18)
—1 —1 1

The t; represents the main effect of B among the rows of Table 1. When it is used
as a linear constraint on the rows, it captures the portion of the association between
the rows and columns that can be explained by the main effect of B, which is called
the AB interaction effect. Similarly, t, captures the AC interaction effect, and t3
captures the ABC interaction effect. Note that these contrast vectors assume that
there are only two categories in all three variables. We will need more than one
contrast to represent each of these effects if there are more than two levels in some
of the variables. For example, if B = 3, t; will be a matrix like

1

1
6= | (19)

1

1

0

Note also that if we want to decompose the effects of AB, AC, ABC differently, for
example, if AB, AC, ABC is decomposed into AB within C;, AB within C,, and
AC, t, t,, and t3 would be:

1 0 1
—1 0 1

t ol t L |an t3 _1 (20)
0 —1 —1

The following computations use t;, t, and t3 defined in (18). The x> due to
the AB interaction ignoring all other effects (AC and ABC) is calculated by first
defining
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H = VNP, KLY Q1

where
Py, ok = Quti (6Q) K1) 7'1Q) (K (22)

is the projector onto Sp(Q; /Kt1) (the space spanned by Q/t;) along
Ker(t) Q| /KK) (the space spanned by all vectors y such that y'Q, /xt; = 0). Recall
that NV is the total sample size, K and L are diagonal matrices of row and column
totals of F, respectively, and Q/x =1— 11'K/N, where 1 is the CB-element vector

of ones. Note that Q| /KK =Q; /KKQ 1/k- We then calculate

x*(H) =SS(H)k . (23)

This value turns out to be 24.10(1) for the data in Table 1 (the value in parentheses
indicates the df). The y2(H) is equal to the chi-square representing the total
association in the marginal two-way table obtained by collapsing the three-way table
across the levels of C.

The x?(AC|AB) (the AC interaction eliminating AB, but ignoring ABC) is
calculated as follows: Let Ty = [1,t,], and define Qy, /x similarly to Q; /x above,
that is,

Qr /x =I-Ti(T{KT;)”'T{K. (24)
Then, define
PQTI/Kt2/K =Qy /Ktz(tIZQ/Tl /KKt2)71t§Q;“1/KK7 (25)
and
—lgy -1
E= \/NPQTl tykKTFLTL (26)

Again, note that Q’Tl / K= Q’Tl /KKQTI /K> and that PQT1 kt2/K is the projector onto
Sp(Q /kt2) along Ker(t)Q}, /, K). Finally,

%*(E) =SS(E)k L. 27)

This value is found to be 55.83(1) for the data in Table 1. (There are other ways to
calculate this quantity. See (37) and (38) in Takane and Jung 2009b.)

The x*(ABC|AB, AC) (the ABC interaction eliminating both AB and
AC) is calculated as follows: First let Tjp = [1,t;,t], and define Qyp,/x =

I—T)»(T},KT2) "' T},K. Then, define
PQTIZ/Kt3/K =Qq,/kt3 (th/le/KK‘BY1t/3Q/le/KK= (28)

and
J=VNPg, /KK 'FL7". (29)
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Note that Q’le/KK = Q’le/KKQle/K, and that Perz/Kls/K is the projector onto
Sp(Qle/Kt3) along Ker(t} Ile/KK)' Finally,

22 (J) =SSk... (30)

This value turns out to be 7.06(1) for the data in Table 1. Takane and Jung (2009b)
showed that J above can also be calculated by

J=VNK 't;(t;K 't3) '";K'FL !, (31)

which is somewhat simpler.

It can be easily verified that 24.10(1), 55.83(1), and 7.06(1) add up to 86.99(3)
calculated previously. The y?(AC) and x?(AB|AC) can be calculated similarly to
the above. It turns out that the former is 68.66(1), and the latter is 11.27(1). These
and 7.06(1) for the ABC interaction again add up to 86.99(3). So there are indeed
two alternative decompositions of y2(AB, AC, ABC) depending on whether AB
or AC is taken into account first. Corresponding to the two decompositions of AB,
AC, ABC, there are two decompositions of y?(AB, AC, BC, ABC), as stated in
(16) and (17).

As remarked earlier, there are two other possible arrangements of a three-way
table into two. In Table 1, variables B and C were combined to form rows of the
table. We may have also combined A and B, or A and C. In either case, the remaining
variable constitutes the columns. Each of these two cases gives rise to two different
decompositions of AB, AC, BC, ABC analogous to those given in (16) and (17).

Let us start with the case in which A and B are combined. In this case, (13) will
become:

2*(AB, AC, BC, ABC) = y%(AC, BC, ABC) + y*(AB|AC, BC, ABC), (32)
and (14) and (15) become

x*(AC, BC, ABC) = x*(AC) + x*(BC|AC) + x*(ABC|AC, BC)  (33)
= x?(BC) + x*(AC|BC) + x*(ABC|AC, BC).  (34)

The terms in these decompositions can be calculated similarly to the above. We
find y%(AC, BC, ABC) = 93.73(3) (the df in parentheses), so that x?(AB|AC,
BC,ABC) = 38.26(1) = 131.99(4) — 93.73(3) = x%(AB, AC, BC, ABC) — x*(AC,
BC, ABC). We also find y?(AC) = 68.66(1) (this is the same y?(AC) calculated
previously), x?(BC|AC) = 18.44, and x?(ABC|AC, BC) = 6.63, so that 68.66(1)
+ 18.44(1) + 6.63(1) = 93.77(3) = x*(AC, BC, ABC), verifying (33). We also
find x2(BC) = 31.80(1), and y*(AC|BC) = 55.30(1), so that 31.80(1) + 55.30(1)
+ 6.63(1) = 93.77(3), verifying (34). Combining (32) with (33) and (34), we,
respectively, obtain
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Decomposition (iii):

%>(AB, AC, BC, ABC) = x*(AC)
+ x*(BC|AC) + x*(ABC|AC, BC) + y*(AB|AC, BC, ABC)),  (35)

and Decomposition (iv):

2*(AB, AC, BC, ABC) = y*(BC)
+ x*(AC|BC) + x%(ABC|AC, BC) + x*(AB|AC, BC, ABC). (36)

Similarly, when A and C are combined, we obtain
%*(AB, AC, BC, ABC) = x%(AB, BC, ABC) + x*(AC|AB, BC, ABC), (37)
and

x2*(AB, BC, ABC) = y*(AB) + x*(BC|AB) + x*(ABC|AB, BC) (38)
= x*(BC) + x*(AB|BC) + x*(ABC|AB, BC). (39)

For the illustrative data we have been using, we find y?(AB, BC, ABC) =
49.96(3), so that x2(AC|AB, BC, ABC) = 82.03(1) = 131.99(4) — 49.96(3) =
2%(AB, AC, BC, ABC) — x%(AB, BC, ABC). We also find y?(AB) = 24.10(1)
(this is the same y2(AB) calculated previously), y*(BC|AB) = 19.18(1), and
2*(ABC|AB, BC) = 6.35(1), so that 24.10(1) + 19.51(1) + 6.35(1) = 49.96(3)
= x%(AB, BC, ABC), verifying (38). We also find x?(BC) = 31.80(1) (this is the
same x2(BC) calculated before), and y%(AB|BC) = 1181(1), so that 31.80(1) +
11.81(1) + 6.35(1) = 49.96(3), verifying (39). Combining (37) with (38) and (39),
we obtain the fifth and sixth decompositions of x?(AB, AC, BC, ABC).

Decomposition (v):

x*(AB, AC, BC, ABC) = x*(AB)
+ x*(BC|AB) + x*(ABC|AB, BC) + y*(AC|AB, BC, ABC),  (40)

and Decomposition (vi):

%*(AB, AC, BC, ABC) = ¥*(BC)
+ x*(AB|BC) + x*(ABC|AB, BC) + x*(AC|AB, BC, ABC). (41)
Altogether we obtain (at least) six fundamental decompositions of Pearson’s

chi-square statistic for a three-way contingency table. Lancaster (1951) defined
x%(ABC|AB, AC, BC) by
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%*(ABC|AB, AC, BC)
= x%(AB, AC, BC, ABC) — x%(AB) — x*(AC) — x*(BC). (42)

Then, y?(ABC|AB, AC, BC) is unique. However, as has been noted earlier,
2%(AB), x*(AC), and x*(BC) are usually not independent from each other, and
consequently, y*(ABC|AB, AC, BC) may not follow an asymptotic chi-square
distribution (Placket 1962).

4 Analogous Decompositions of the Log LR Statistic

In this section, we discuss decompositions of the log LR chi-square statistic
analogous to Decompositions (i) through (vi). The log LR statistic for a three-way
contingency table is defined as

C B A
LRcpa—c-p-a42=-22, 2, ¥ febalog = (43)

This statistic, like Pearson’s chi-square statistic, represents the departure from the
three-way independence model and reflects the joint effects of AB, AC, BC, and
ABC (i.e., AB, AC, BC, ABC). Similarly to the case of Pearson’s chi-square
statistic, these four effects are not mutually independent, and consequently their
joint effects cannot be obtained by their sum. We find the effect of AB, AC, BC,
ABC to be 120.59 for the data given in Table 1, using the above formula.

In this section, we first take a heuristic approach to get an intuitive idea about
proper decompositions. We then present a theory due to Cheng et al. (2006) to back
up our intuition. Our heuristic approach begins with analyzing the data in Table 1
by log linear models. In log linear analysis, no reduction of a three-way table into
a two-way format is necessary in contrast to Pearson’s statistic. The three variables
are treated completely symmetrically.

We first ran the “Hiloglinear” procedure in SPSS. We obtained the three-
way interaction effect of LR(ABC|AB, AC, BC) = 6.82(1). We also obtained the
joint effects of three two-way interactions of LR(AB, AC, BC) = 113.77(3). The
three individual two-way interaction effects (these were the two-way interactions
eliminating all other two-way interactions) were found to be LR(AB|AC, BC) =
12.22(1), LR(AC|AB, BC) = 57.54(1), and LR(BC|AB, AC) = 20.00(1). These
effects do not add up to LR(AB, AC, BC), as 12.22 4+ 57.54 + 20.00 = 89.76 #
113.77. Note that in log linear analysis, only the independence or conditional
independence models can be fitted non-iteratively, which implies that none of the
above quantities can be calculated in closed form.

In order to find proper constituents of the joint two-way interaction effects,
we had to run another log linear analysis procedure in SPSS called “Loglinear,”
which provided individual two-way interaction effects ignoring the other two-way
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interaction effects. They were found to be LR(AB) =24.23(1), LR(AC) =69.54(1),
and LR(BC) = 32.04(1). These quantities can be calculated in closed form. They do
notadd up to LR(AB, AC, BC), either, as 24.23469.54+32.02=125.79 £ 113.77.
However, we find

LR(AB) + LR(AC) + LR(BC|AB, AC)

=24.23469.54+20.00 = 113.77 = LR(AB, AC, BC), (44)
LR(AC) + LR(BC) + LR(AB|AC, BC)
=69.54432.02+ 12.22=113.77 = LR(AB, AC, BC), (45)

and
LR(AB)+ LR(BC) + LR(AC|AB, BC)
=32.02+24.23+57.54=113.77 = LR(AB, AC, BC). (46)

That is, we cannot add the three two-way interactions all ignoring the other two
to obtain their joint effects. One of the three must be the two-way interaction
eliminating the other two.

Adding one more term, LR(ABC|AB, AC, BC) = 6.82, to the above identities,
we obtain three alternative decompositions of
LR(AB, AC, BC, ABC)

= LR(AB, AC, BC) + LR(ABCJ|AB, AC, BC) = 113.77+6.82=120.59, (47)

namely, Decomposition (a):
LR(AB, AC, BC, ABC)
= LR(AB)+ LR(AC) + LR(BC|AB, AC) + LR(ABC|AB, AC, BC), (48)
Decomposition (b):
LR(AB, AC, BC, ABC)
= LR(AC) + LR(BC) + LR(AB|AC, BC) + LR(ABC|AB, AC, BC), (49)
and Decomposition (c):
LR(AB, AC, BC, ABC)
= LR(AB)+ LR(BC) + LR(AC|AB, BC) + LR(ABC|AB, AC, BC). (50)
It is obvious that Decomposition (a) “corresponds” with Decompositions (i) and (ii),
(b) with (iii) and (iv), and (c) with (v) and (vi) for Pearson’s chi-square statistic.

These three decompositions are consistent with Cheng et al.’s (2006) decom-
positions derived rigorously through information identities. Cheng et al. however,
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arrived at these decompositions via a somewhat different route. They first derived
the sum of the last two terms in each of the above three decompositions. For ex-
ample, they first obtained LR*(BC|A) = LR(BC|AB, AC)+ LR(ABC|AB, AC, BC)
for Decomposition (a). This quantity can be calculated in closed form using the
information identities, whereas neither of the two terms on the right-hand side can.
Cheng et al. (2006) called the quantity on the left-hand side, i.e., LR*(BC|A), the
conditional dependence between B and C across levels of A (or the simple two-
way interaction between B and C across levels of A). They then split this into
two additive terms on the right-hand side, LR(BC|AB, AC) (LR(BC]||A) in their
notation) and LR(ABC|AB, AC, BC), by way of log linear analysis. The first term
was interpreted as the uniform part, and the second as the nonuniform part, of the
conditional dependence between B and C across levels of A (or equivalently, the
homogeneous and heterogenous aspects of the simple two-way interactions between
B and C across levels of A). In our framework, the former is interpreted as the BC
interaction eliminating the effects of AB and AC. It is interesting to find that this
effect is equivalent to the uniform part of the simple two-way interactions. The latter
is nothing but the three-way interaction among A, B, and C eliminating the joint
effects of AB, AC, and BC. Similar remarks can be made for Decompositions (b)
and (c).

5 Discussion

As has been observed in the previous section, the order in which two two-way
interactions ignoring the other two are accounted for makes no difference in the
log LR statistic, while it does in Pearson’s chi-square statistic. In fact, we have

LR(AB) = LR(AB|AC) = LR(AB|BC) # LR(AB|AC, BC), (29

LR(AC) = LR(AC|AB) = LR(AC|BC) # LR(AC|AB, BC), (52)
and

LR(BC) = LR(BC|AB) = LR(BC|AC) # LR(BC|AB, AC), (53)

while the four versions of the AB interaction effects for Pearson’s chi-square,
2%(AB), x*(AB|AC), x*(AB|BC), and y?(AB|AC, BC, ABC), are all distinct, and
so are the four versions of AC and BC. Also, there is a single unique three-way inter-
action in the decompositions of the log LR statistic (LR(ABC|AB, AC, BC)), while
there are three distinct versions of the three-way interaction effect for Pearson’s
chi-square, (x?(ABC|AB, AC), x*(ABC|AB, BC), and y*(ABC|AC, BC)). These
differences stem from the fact that there is no way to evaluate y?(AB, AC, BC)
in the latter, which in turn is more fundamentally caused by the fact that a
three-way table must always be reduced to a two-way table to obtain the decom-
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positions of Pearson’s statistic. This prevents us from obtaining quantities such as
2%(AB|AC, BC), x*(AC|AB, BC), x*(BC|AB, AC), and y*(ABC|AB, AC, BC).

Having fewer distinct terms in the decompositions of the log LR statistic may be
a point in its favor over Pearson’s statistic. However, there are still three alternative
decompositions for the former. A choice among them may not be straightforward.
This is particularly so because log linear analysis treats all variables symmetrically,
yet the resultant decompositions are not symmetric.

The fact that Pearson’s chi-square statistic has six alternative decompositions
is surely a bit unwieldy. However, if one layout of a three-way table into a two-
way format is in some sense more natural than the other two, this number is
reduced to two, which differ from each other only in a minor way. Such is the
case when analysis of contingency tables is conducted in predictive settings, and
yet a symmetric measure of association such as Pearson’s statistic is in order. In
CCA, for example, one of the variables is typically taken as the criterion variable,
while the others are used as predictor variables. There are also other considerations
to be taken into account. Pearson’s chi-square statistic is known to approach a chi-
square distribution more quickly than the log LR statistic. It is also the case that all
the terms in the decompositions of Pearson’s chi-square can be calculated in closed
form, whereas some of the terms in the log LR statistic must be obtained iteratively.

It may also be pointed out that there seems to be a “cultural” difference between
log linear analysis (based on the log LR statistic) and CA (based on Pearson’s
statistic). The former tends to focus on residual effects (eliminating effects). If we fit
the AB interaction effect, for example, we get the deviation chi-square of this model
from the saturated model. It represents the effects of all variables not included in
the model eliminating AB. To obtain the effect of AB ignoring all other variables
we have to subtract this value from the independence chi-square representing the
deviation of the independence model from the saturated model. To obtain the AB
interaction effect eliminating some other effects, we have to fit the model with these
“some other effects” only, and the model with the additional effect of AB, and take
the difference in chi-square values between the two models. In CA, on the other
hand, the chi-square value due to AB ignoring other effects is obtained directly by
the difference between the fitted model and the independence model. We need an
extra step to obtain a residual effect representing the effect of a variable not included
in the fitted model, which amounts to taking the difference in chi-square between the
saturated model (which is equal to Pearson’s chi-square for the total association) and
the fitted model. A notable exception is van der Heijden and Meijerink (1989), who
attempted to analyze residual effects in constrained CA. In the present authors’ view,
both analyses (analyses of the fitted models and the residual effects) are equally
important, as has been emphasized by Takane and Jung (2009a).

Cheng et al. (2007) attempt to extend their approach to higher-order designs,
thereby generalizing their decompositions of the log LR statistic. Presumably,
similar things could be done for Pearson’s chi-square statistic.
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Visualizing Uncertainty of Estimated Response
Functions in Nonparametric Item Response
Theory

L. Andries van der Ark

1 Introduction

Nonparametric item response theory (IRT) models are flexible models for ordinal
measurement (for an overview, see, e.g., Sijtsma and Molenaar 2002). An important
part of nonparametric IRT analysis, often referred to as Mokken scale analysis,
consists of investigating model fit using the following rationale. A nonparametric
IRT model implies certain observable properties. Each observable property is
investigated in the test data. Not observing the property in the test data indicates
that the model does not fit the data, whereas observing the property indicates
that the model may fit the data. The observable properties can be investigated
by means of specialized software packages such as MSP (Molenaar and Sijtsma
2000) and the R-package mokken (Van der Ark 2007, 2012). These software
packages can graphically display the results from Mokken scale analysis to facilitate
interpretation. However, the uncertainty of the results is not taken into account. As a
result, a graph based on a very small sample, N = 20 say, may look exactly the same
as a graph based on a large sample, N = 10,000 say. For small samples, interpreting
the graphs may yield misleading results. In this paper we focus on visualizing the
uncertainty in estimated response functions (RFs).

Suppose a test consists of J items, and each item has m 4 1 ordered answer
categories, which are scored 0,1,...,m. Let Xj,...,X; denote the item-score
variables. Let X1 = ¥, Xj , let R(;) = X} — Xj, and let R;;) = X3 —X; — X;. Xy
is called the rest score; R;) and R, are called rest scores. Suppose that a latent
variable © explains the associations between the item scores. Let 0 be a realization
of O.
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Pr(X; > x|0) (x =1,...,m) are called the item-step RFs of item j; E(X;|0)
is called the item RFs of item j. Both RFs are functions of 6. Note that for
dichotomous items (i.e., m = 1), the item-step RF and the item RF are equivalent.
Most assumptions of nonparametric IRT models pertain to RFs: For example, the
monotone homogeneity model for dichotomous items (Mokken 1971) includes the
assumption that the item RFs are nondecreasing in 6; the double monotonicity
model for polytomous items (Molenaar 1997) includes the assumption that item-
step RFs do not intersect (Sijtsma and Molenaar 2002).

For checking such assumptions, it is convenient to plot estimated RFs. To
visualize the uncertainty, we propose plotting Wald confidence intervals around the
estimated RFs. First, we briefly discuss the RFs in Mokken scale analysis. Second,
we derive asymptotic standard errors (ASEs) for the RFs and the corresponding
Wald confidence intervals. The approach taken here is similar to the approach for
deriving ASEs for the scalability coefficients in Mokken scale analysis (Kuijpers
et al. 2013). Third, we show how plotting confidence envelopes based on Wald 95 %
confidence intervals around the estimated RFs helps interpreting the plot.

2 Plotting Estimated Response Functions

We discuss three assumptions of nonparametric IRT models that involve RFs. These
assumptions can be investigated by inspecting plots of estimated RFs. We use the
responses of 433 students to the 10 items of the Achievement scale of the Adjective
Checklist (Gough and Heilbrun 1980) to provide examples of plotted RFs. Each
item has five ordered answer categories (m = 4). The data and more details on the
data are available from the R package mokken. The appendix contains the computer
code for producing the graphs.

2.1 Monotonicity

Monotonicity is the assumption that the item-step RFs are nondecreasing in 8 (e.g.,
Junker and Sijtsma 2000):

Pr(X; > x|0) nondecreasingin 6 for j=1,...,J;x=1,...,m. (1)
Alternatively, monotonicity can be defined in terms of the item RF:
E(X/|0) nondecreasing in 6 for j =1,...,J. (2)

For dichotomous items, Eqgs. (1) and (2) are equivalent; for polytomous items (m >
1), Eq. (1) implies Egs. (2). Monotonicity is assumed by all well-known IRT models.
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Monotonicity can be investigated by an observable property called manifest
monotonicity (Junker 1993), where © in Eqs. (1) and (2) is replaced by rest-
score Ry ;). Junker (1993) showed that for dichotomous items, monotonicity implies
manifest monotonicity. For polytomous items, monotonicity defined in terms of
Eq. (1) does not imply manifest monotonicity, although violations are rare (Junker
and Sijtsma 2000). However, using the same logic as Junker (1993), it can be
shown that for polytomous items, monotonicity defined in terms of Eq. (2) implies
manifest monotonicity. Because some values of R ;) may be empty or very sparse,
estimates of Pr(X; > x|R;) = r) may become very unstable, and it is recommended
to combine adjacent rest scores until the sample size of a rest-score group is large
enough (Molenaar and Sijtsma 2000). Combining rest-score groups does not affect
the relationship between monotonicity and manifest monotonicity. Let R?j) denote
the rest score with possibly some adjacent scores combined with realization r*, then
the estimate of the item-step RF (Eq. (1)) is

P(X; = x|rf)), 3)
and the estimate of the item RF (Eq. (2)) is

As an example, Fig. | shows a plot of P(X; > x|r(*1)) forx =1,...,4 (top left), and
a plot of )_(1|r2‘1) (top right). Note that the Jm + 1 = 37 possible rest scores have
been clustered into four rest-score groups: {0,...,18}, {19,20,21}, {22,23,24},
and {25,...,36}. There is a slight decrease between P(X; > 2|R(;) € {19,20,21}),
and P(X; > 2|R(j) € {22,23,24}), indicating a violation of monotonicity. However,
it is unknown whether this is a relevant decrease.

2.2 Invariant Item Ordering

Invariant item ordering (IIO) (Sijtsma and Hemker 1998) is the assumption that the
item RFs are non-intersecting. Let the items be ordered and numbered accordingly
such that E(X;) <E(X;) < --- <E(Xj), then an IIO means that

E(X1|6) <E(X|0) < --- < E(X;|6) for all 0. (5)

Except for the Rasch model (Rasch 1960) and double monotonicity model for
dichotomous items (Mokken 1971), ITO is typically not included in the set of IRT
model assumptions and has to be investigated separately.

ITO can be investigated by an observable property called manifest 110 (Ligtvoet
et al. 2010). In manifest IIO, © in Eq. (5) is replaced by a manifest variable
independent from the item scores. Ligtvoet et al. (2010) suggested to make a
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Fig. 1 Plots of item-step RFs for monotonicity (a), item RF for monotonicity (b), item RF for IIO
(c), and item-step RFs for non-intersection (d)

pairwise comparison of item RFs on non-intersection, and for the comparison of
item i and item j, replace © by R?I.j.). The asterisk indicates that adjacent rest groups
may be joined. Hence the estimated RF is

Xjlriy) (6)

As an example, Fig. 1 shows the plot of X |1, 2y and )_(2|r2‘1‘2) (bottom left). The
two estimated RFs are intersecting and almost overlapping, hence is no indication
of an I1O.

2.3 Non-intersection of Item-Step Response Functions

The double monotonicity model includes the assumption of non-intersecting item-
step RFs. Let 8* be a value of ©. Non-intersection of item-step RFs implies that if
Pr(X; > x|6*) < Pr(X; > y|6*) for © = 6", then
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Pr(X; > x|6) < Pr(X; > y|0) for all 6 and for all i # j,x,y. 7

Three methods have been proposed to investigate non-intersection of item-step RFs.
For one of these methods, method rest score, estimated RFs can be plotted These
estimated RFs take Eq. (7) as a starting point and replace 8 by r( i) Hence the
estimated RF is

Pr(X; > x|r(;;)). (8)

If the double monotonicity model holds, then the estimated RFs in Eq. (8) are non-
intersecting (Sijtsma and Molenaar 2002). For each item pair, the estimated RFs
are plotted for visual inspection. As an example, Fig. 1 (bottom left) shows the plot
of P(X; > x|rf ri2) ) and P(X, > x|r | 2>) for x = 1,2,3,4. The estimated RFs are
intersecting, which indicates that the double monotonicity model does not hold.

3 Standard Errors of Estimated Response Functions

Let G be a general indicator for the grouping variable, with realization g. Each

respondent belongs to one group and one group only, so the groups are independent

samples. The estimated RFs can be classified into two types: Conditional means

(Egs. (4) and (6)) are denoted by )_(j|g and conditional cumulative proportions

(Egs. (3) and (8)) are denoted by P(X; > x|g). For both types, ASEs must be derived.
For conditional means, the ASEs have the well-known form

ase(Xj|g) = S(Xjlg)/ VN,

where S(X;|g) is the standard deviation of X/|g.

To compute the ASEs for conditional cumulative proportions, we use a two-
step method that takes into account possible dependencies between cumulative
proportions pertaining to the same item. The first step is to write the RFs as a
function of the observed item-score proportions. Let p = [P(X; =0lg),...,P(X; =
m|g)] be the vector of observed item-score proportions in group g for item j;
let p* = [P(X; > 1|g),...,P(X; > m|g)] be the vector of observed cumulative
proportions; and let U,, be an m x (m + 1) matrix: an (m+ 1) x (m+ 1) upper
triangular matrix of ones with the first row deleted. For example,

011
U =
2 {0 0 1]
Cumulative proportions P(X; > x|g) =1,2,...,m) are a linear function of

proportions P(X; = x[g) x=0,1,..

P =Unp.
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The second step is to use the delta method to obtain the ASEs for the cumulative
proportions. Let V), and Vp: be the asymptotic variance—covariance matrix of p and
p*, respectively; and let D(p) be a diagonal matrix with the elements of vector p on
the diagonal. If p follows a multinomial distribution, then

Vo= ]%,* (D(p)—p-p")
(e.g., Agresti 2007, p. 6). Now if, F = F(p) is the Jacobian, the matrix of first partial
derivatives of p* to p, then according to the delta method (e.g., Casella and Berger
2002)
Vp =FV,F'. ©)

Because p* is a linear function of p, the Jacobian simply equals U,. Let v,, the
element at the xth row and yth column of V. Elaborating Eq. (9) using standard
algebra yields

1
vy = [P(X; > x|g) = P(X; > 2lg) P(X; > yg)]
for x >y, and
1
viy = 5 [P(X; 2 ylg) = P(X; = x|g) P(X; = yIg)]

for x < y. Taking the square root of the diagonal of V« produces the required ASEs
of p*:

aselP(X; > xlg)] = /P(X; > alg) — PA(X; > x[g) /VA.

4 Graphic Display of Wald Confidence Intervals

Let f(p) be the element of interest of an estimated RF and let z;_4/, be the (1—
o /2) * 100 percentile of the standard normal distribution, then the bounds of the
(1 — o) % 100 % Wald confidence interval are

F(p) £z1_gp2 *ase[f(p)].

Figure 2 shows the estimated RFs from Fig. 1 with the Wald 95 % confidence
intervals plotted as confidence envelopes around the estimated RFs. The appendix
shows the computer code in R for these figures. Visual inspection of Fig.2 (top
left) indicates that the slight decrease in P(X; > 2|r*) may be due to sample
fluctuation. Visual inspection of Fig.2 (bottom) shows that the current item scores
are inconclusive with respect to non-intersection (bottom left) and IIO (bottom



Visualizing Uncertainty in Nonparametric IRT 65

a active b active
.5 ] c ¥
g o 2
. —] o
2 o S o
3 E //
— (0]
5 2 o
7 X S
© o 3
s | O ~
2 = _J g
e 29 = o
g ° 7 | | T | | | T
0-18 19-21 22-24 25-36 0-18 19-21 22-24 25-36
Rest score group Rest score group
c active (solid) alert (dashed) d active (solid) alert (dashed)
2
0 < o —
5 g
= c
e 2 o 7|
> [0]
2 8 ]
3 g
s 7 & <
Q. O O
2 o
i a
o o _
g ®
= o £ <9
| | | T L °
0-16 17-19 20-22 23-32 0-16 17-19 20-22 23-32
Rest score group Rest score group

Fig. 2 Plots of item-step RFs for monotonicity (a), item RF for monotonicity (b), item RF for [IO
(c), and item-step RFs for non-intersection (d) with confidence intervals

right) because the confidence intervals are overlapping. Note that the user can
choose different percentages for the confidence intervals, different sample-size
requirements the rest-groups, and different colors for the confidence envelopes. In
Fig. 2, the default settings (Molenaar and Sijtsma 2000) were used.

5 Discussion

The ASEs and Wald confidence intervals are available in the R package mokken
as of version 2.7.3. They allow the interpretation of the stability of the estimated
RFs in Mokken scale analysis. The confidence intervals can be visualized, and
inspecting the plots may help diagnosing violations of nonparametric IRT model.
However, four considerations should be taken into account. First, the plot depends
on the sample-size requirements for the rest-score groups. In Figs. 1 and 2, the
default settings were used, but one can also choose to plot fewer rest-score groups
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that have larger sample sizes, or more rest-score groups that have smaller sample
sizes. The first case will provide less information on the shape of the estimated
RF but with greater accuracy (smaller confidence intervals), and the latter case
will lead to more information on the shape of the estimated RF but with less
accuracy (larger confidence intervals). It is advised to check several plots, each
having different sample-size requirements for the rest-score groups (Molenaar and
Sijtsma 2000). Second, for small sample sizes, the confidence envelopes may be
so wide that all decreases in the estimated RFs or intersections of estimated RFs
can be explained by sample fluctuation. This may be interpreted either as “no
evidence against the model” or “no evidence in favor of the model.” For example,
the overlapping confidence envelopes in Fig.2 (bottom left) may be interpreted
as in favor of IIO because it is possible to draw two non-intersecting RFs within
the limits of the confidence envelopes, or against IIO because the two confidence
envelopes are not completely separated. New standards should be provided for
dealing with these type of situations. Third, for small sample sizes, the precision
of the confidence intervals also deteriorates. Whether there should be a minimum
sample size to consider confidence intervals is a topic for future research. Fourth,
other choices of confidence are possible that may also affect the plots. Rather
than 95 % confidence intervals, other percentages may be chosen, and rather than
Wald confidence intervals inverted chi-square confidence intervals (Lang 2008) or
Agresti—Coull confidence intervals (Agresti and Coull 1998) may be used in case
of binomial proportions. Future research may show whether alternative confidence
intervals improve the plots.

Other methods for investigating non-intersection of RFs are the methods p-matrix
and rest-split (Sijtsma and Molenaar 2002). Results for Method p-matrix can also
be displayed (Van der Ark 2007) but deriving ASEs is more involved than deriving
ASE:s for estimated RFs due to a more complex dependencies. Results from Method
rest-split have not yet been visualized. This is also a topic for future research.

Acknowledgments I would to thank Alberto Mayeu-Olivares and Marcel Croon for commenting
on the derivation of ASEs.

Appendix: R Code for Plotting Estimated RFs Without
and with Confidence Envelopes

# Activate ’'mokken’ package

library (mokken)

# Activate ACL data

data (acl)

# Select Achievement scale

X <- acl[,11:20]

# Investigate Monotonicity, IIO, and Non-intersection
cm <- check.monotonicity (X)
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ci <- check.iio(X)
cr <- check.restscore (X)

# Plotting estimated RFs without confidence envelopes

# Figure 1 (top left)

plot (cm, items = 1, curve = "ISRF", plot.ci = FALSE,
ask = FALSE)

# Figure 1 (top right)

plot (cm, items = 1, curve = "IRF", plot.ci = FALSE,
ask = FALSE)

# Figure 1 (bottom left)

plot (ci, item.pairs = 27, plot.ci = FALSE, ask =
FALSE)

# Figure 1 (bottom right)

plot (cr, item.pairs = 1, plot.ci = FALSE, ask =
FALSE)

# Plotting estimated RFs with confidence envelopes
# Figure 2 (top left)

plot (cm, items = 1, curve = "ISRF", ask = FALSE)
# Figure 2 (top right)
plot (cm, items = 1, curve = "IRF", ask = FALSE)

# Figure 2 (bottom left)

plot (ci, item.pairs = 27, ask = FALSE)
# Figure 2 (bottom right)

plot (cr, item.pairs = 1, ask = FALSE)
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Bayesian Estimation of the Three-Parameter
Multi-Unidimensional Model

Yanyan Sheng

1 Introduction

Multidimensional item response theory (IRT) models have been found useful
for dealing with complex test situations where multiple traits are required in
producing the manifest responses to an item (Reckase 2009). Often, however, a
test involves several latent traits and each item measures exactly one of them.
The multidimensional model specific for this scenario is referred to as the so-
called multi-unidimensional IRT model (Sheng and Wikle 2007). In the literature,
this model has been called the multidimensional model with a simple structure
(McDonald 1999) or the between-items multidimensional model (Adams et al.
1997). The shorter term “multi-unidimensional” is adopted in this paper to account
for the structure that the overall test involves multiple traits, whereas each subtest
is unidimensional. Fully Bayesian estimation using Gibbs sampling (Casella and
George 1992; Geman and Geman 1984) has been developed for such models with
two item parameters (Lee 1995; Sheng 2008; Sheng and Wikle 2007). The model
directly estimates the intertrait correlation and its advantages over the two-parameter
unidimensional model have been demonstrated (Sheng 2008; Sheng and Wikle
2007). The extension of the algorithm to the three-parameter multi-unidimensional
model is straightforward.

However, previous research on the Gibbs sampler of unidimensional models
developed by Albert (1992) and Sahu (2002) indicates that with an additional
pseudo-chance-level parameter, three-parameter models are more complicated than
two-parameter models in that noninformative prior distributions for item slope
and intercept parameters create problems in the convergence of the Markov chain
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(Sheng 2010). Specifically, studies have shown that improper noninformative prior
densities for component (i.e., component of the mixture model) specific parameters
(i.e., item slope and intercept parameters in this context) result in an undefined
posterior distribution, which gives rise to unstable parameter estimates (Sheng 2008,
2010). Even with proper noninformative prior densities, the procedure either fails
to converge or requires an enormous number of iterations for the Markov chain to
reach convergence (Sheng 2010). On the other hand, priors for the non-component
(i.e., the pseudo-chance-level) parameter can be chosen in a typical fashion, as
its posterior estimates are not sensitive to informative or noninformative prior
specifications (Sheng 2008, 2010).

In view of the above, it is believed that the three-parameter multi-unidimensional
model is more complicated than its two-parameter counterpart and therefore
requires attention in specifying prior distributions for item slope and intercept
parameters. This study focuses on the prior specification of item parameters for
the model while investigating its advantages over other IRT models.

The remainder of the paper is organized as follows. The multi-unidimensional
model is briefly outlined in Sect.2, with a description of the Gibbs sampling
procedure and prior specifications for the model parameters. Section 3 presents
a simulation study on the performance of the developed Gibbs sampler for the
three-parameter model where sample sizes and choices of the prior distributions for
item parameters are taken into consideration. In Sect. 4, another simulation study
is presented to compare the three-parameter multi-unidimensional model with two
existing IRT models. The comparison of these models is further illustrated in Sect. 5
using a real data example. Finally, a few summary remarks are provided in Sect. 6.

2 Model and the Gibbs Sampler

Multi-unidimensional models allow separate inferences to be made about a person
for each distinct dimension being measured by a test item while taking into
consideration the relationship between all latent traits measured by the overall test.
The two-parameter normal ogive (2PNO) multi-unidimensional model generalizes
the conventional 2PNO model to a multi-unidimensional structure so that each item
measures exactly one of the multiple traits the test is designed to measure. Suppose
a K-item test consists of m subtests, each containing k, dichotomous (0-1) items,
where v=1,2,...,m. Let y,;; denote the ith person’s response to the jth item in the
vth subtest, where i = 1,2,...,n and j = 1,2,..., k,. With a probit link, the 2PNO
multi-unidimensional model is defined as

Oy j 6Vi*ﬁvj

P(yvij = 1) = @(046y; — Byj) =

e dt (1)
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(e.g., Lee 1995; Sheng and Wikle 2007), where 6,; is a scalar person trait parameter
in the vth latent dimension, o ; is a positive scalar slope parameter representing
the item discrimination, and fB,; is a scalar intercept parameter that is related to the
location in the vth dimension where the item provides maximum information.

Having an additional item pseudo-chance-level (or lower asymptote) parameter
%), the three-parameter normal ogive (3PNO) multi-unidimensional model is
defined as

P(yij=1) =%+ (1 = %) P(w;60s — Brj),0 <1 <1 @)

so that the probability of correct response is greater than zero even for those with
very low trait levels. Fully Bayesian estimation for this model is a straightforward
extension of that for the two-parameter model as detailed in Sheng (2008). To
implement the Gibbs sampler, two augmented latent variables, Z and W, are
introduced such that Z,;; ~ N(nj,1), where n,;; = o,;6,; — Byj, and W,;; =
1(W,;; = 0) if person i knows (does not know) the correct answer to item j in subtest
v, with a probability function

P(Wiij = wyij|Mvi) = @ (Mij)™ 7 + (1 — (1)) 3)

If we denote each person’s latent traits as 0; = (0y;,...,0,;)" and specify a
multivariate normal prior distribution for them so that 8; ~ N,,(0,P), where P is
a constrained covariance matrix (or a correlation matrix) with 1s on the diagonal. It
is noted that the proper multivariate normal prior for 6,; with their location and scale
parameters specified to be 0 and 1, respectively, ensures unique scaling and hence
is essential in resolving a particular identification problem for the model (see, e.g.,
Lee 1995 for a description of the problem). Further, it follows that the off-diagonal
element of P is the correlation py between 6;; and 6;;, s # . One may note that
when py =1 for all s, ¢, the model reduces to the 3PNO unidimensional model,
whose probability function is defined as

Plyij=1)=7+(1—7)®(c;6; — B)), i=1,....n, j=1,....,K. (4

Moreover, we can introduce an unconstrained covariance matrix X, where ¥ =
[0/ ]mxm> so that the constrained covariance matrix P can be readily transformed

from X using
Ot

Pst = )
v/ OssOtt

A noninformative prior can be assumed for X so that p(X) «< |X |’mT+l (Lee 1995).
Hence, with prior distributions assumed for %, and &, ;, where &, ; = (o4, B;)',
the joint posterior distribution of (8, &, W, Z, ¥, X) is

sA1. 5)

p(0,8,W,Z,y,Xy) = f(y|W,y)p(W|Z)p(Z|6,5)p(E)p(7)p(0IP)p(X), (6)
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where
fiylz) = HHHP’J'/ 1= pyij)! i (7
v=1i=1j=

is the likelihood function, with p,;; being the probability function for the multi-
unidimensional model as defined in (2).

Assuming a conjugate Beta prior for ¥,; so that %,; ~ Beta(s,,t,), the imple-
mentation of the Gibbs sampling procedure thus involves six sampling processes,
namely,

1. a sampling of the augmented W parameters from

' %) oy —
Wiijle ~ {Berno"”l’ (nﬁ(lfm)@(nw,-) ’ ?f wij =1 (8)
Bernoulli(0), if  y,ij=0

2. a sampling of the augmented Z parameters from

i~ Nowo)(Mijs 1), if Woij=1 N
vij N(,oo,’())(nvijv 1)7 if inj —0°

3. a sampling of person traits 6 from

ile ~N,(AA+P) 'AB (A'A+P) 1), (10)
o 0 - 0 Z+B,
0 ay--—- 0 L+ B,
where A= | | | . and B = . , in which
0 0 ..amly,, Zni+ Bl

av - (a\/lv R} avkv)/7 Zvi - (Zvilv e 7Zvikv)/’ Bv = (ﬁvl P 7BVkv)/;
4. a sampling of the item slope and intercept parameters & from

Ejle ~ Na((x)x) X\ Zyj, (x[x,) "I (0 > 0), (11)

where x, = [0,,—1], assuming noninformative uniform priors o, ; >0 and
p(Bvj) o< 1, or from

Ejle ~ Na((xixy + 2 )T (X2 + 25 1 g,), (X030 + 2 1) ) (04> 0),
(12)
where f1z = (U, pp,) and X = diag(og, , G[%V) assuming conjugate normal

priors 0j ~ N(g ) (Hay, 65, )» Buj ~ N(Up, Gév);
5. a sampling of the pseudo-chance-level parameters y from

Yj|® ~ Beta(ayj+ sy, byj — ayj+1,), (13)
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where b, ; denotes the number of persons who do not know the correct answer to
item j in subtest v, and a,; denotes the number of correct responses to this item
obtained by guessing; and

6. a sampling of the unconstrained covariance matrix ¥ from

Zle~W (S n) (14)

n

(an inverse Wishart distribution), where S = Y. (C6;)(C9;)’, in which

i=1

1/ky 1/km
k n
C = diag <]'II a1j> ey <H ocmj> (see Lee 1995 for a detailed
j=1 j=1

derivation of the full conditional distribution for X). From each sampled X, the
constrained covaraince matrix P can be obtained using (5). Hence, with starting
values 00, é(o), 79, and PO), observations (W), Z(0), (), 5(@, pONS LON
can be drawn or transformed iteratively from (8), (9), (10), (11), (13), (14), and
(5) (or (12) in lieu of (11)), respectively.

3 Simulation Study 1

To investigate the performance of the developed Gibbs sampling procedure for
the 3PNO multi-unidimensional model, a simulation study was conducted where
three factors were manipulated, namely, sample size, intertrait correlation, and the
specificity of the prior density for each item parameter involved in the model. In
the simulation, tests that measure two latent traits were considered so that the first
half of the items measured one latent trait and the second half measured another.
As sample sizes play a more important role than test lengths in the Gibbs sampler
for 3PNO unidimensional models (Sheng 2010, p.107), item responses for 18 items
and n persons (n = 1,000,2,000,5,000) were generated according to the 3PNO
multi-unidimensional model, as defined in (2). Ability parameters were generated
as samples from a bivariate normal distribution with an intertrait correlation (p) of
0.2, 0.5, or 0.7. Item parameters were generated from uniform distributions such
that o,; ~ U(0,2), B,j ~U(—2,2), and ¥,; ~ U(0.05,0.25), and were held constant
across the investigated factors.

Four prior specifications were considered in this study for the item slope and
intercept parameters (priorqg):

oyj >0, ij o< 13

0tyj ~ N, (0,10'°), B, ~ N(0,10'%);
0j ~ N(0.e) (0,4), Byj ~ N(0,4);

oj ~ N)(0,1), Byj ~N(0,1).

L=

It is noted that the first specification was uniform noninformative and the second
specification was conjugate noninformative, assuming a relatively flat prior on
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oy or fB,;. With increasingly smaller prior variances, specifications 3 and 4 were
increasingly more informative, constraining posterior values to be closer to their
prior means. For each of these four prior specifications for o and 3, the prior
distribution for y (priory) was assumed to be either

1. diffuse so that %,; ~ Beta(1,1), or
2. informative so that ¥,; ~ Beta(5,17) with the center location being at 0.23.

With each model specification, the Gibbs sampling procedure illustrated in Sect.2
was then implemented to fit the 3PNO multi-unidimensional model to the simulated
data. Convergence was monitored using the R statistic (Gelman and Rubin 1992) as
well as diagnostic plots.

For each simulated scenario, ten replications were conducted, and the accuracy
of parameter estimates was evaluated using the root mean square error (RMSE) and
bias, which were averaged over items to provide summary indices. Tables 1-3 sum-
marize the results for each item parameter in the 3PNO multi-unidimensional model
when the intertrait correlation was specified to be 0.2, 0.5, and 0.7, respectively.
From these tables, we can observe that:

e When o, or B,; assumed uniform priors or proper noninformative priors with a
large variance, 6> = 10'%, the Markov chains did not reach convergence with a
run length of 30,000 iterations for sample sizes less than 5,000. It is observed that
even with n = 5,000, some of the Markov chains failed to converge within the
specified number of iterations. One may improve the convergence by increasing
the chain length or sample size.

» Increased sample sizes (n) consistently resulted in smaller average RMSE and
bias for estimating o,j, By, and %,;. Hence, they play an important role in
improving the accuracy of the posterior estimates with reduced bias.

» For either o, B or , it is generally the case that with a more informative
prior (that is, if the prior density had a smaller variance), the error and bias in
estimating these item parameters reduced. This implies that correct information
needs to be obtained regarding the item parameters in order for them to be
estimated accurately.

It is also worth noting that when the prior distribution for ¥,; was informative
Beta(5,17), the error and bias in estimating o,; and f3,; were smaller than those
with a diffuse prior Bera(1,1) for %,;. Hence, when appropriate information is
available, setting a smaller prior variance for one set of parameters reduces the
error and bias in estimating the other set of item parameters in the model.

Moreover, the intertrait correlation was estimated accurately for each of the
simulated scenarios. Based on these results, we can conclude that the Gibbs sampler
for the 3PNO multi-unidimensional model requires proper informative priors to
be specified for the slope and intercept parameters to ensure convergence. Unlike
what we observed for the 3PNO unidimensional model (see, e.g., Sheng 2010),
it is suggested that priors for pseudo-chance-level parameters be specified to be
informative. It should be noted that when there is a strong intertrait correlation,
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i.e., p > 0.7, the use of a more informative prior distribution for o, e.g., o,; ~
N(0,00) (0,1), requires their actual values to have a smaller upper bound. For example,
o, need to be bounded between 0 and 1.5, instead of between 0 and 2, when p =1
and n = 2,000 for the informative prior to be adopted. This is due to the reason
that allowing for a nonzero lower asymptote leads to larger posterior estimates of o
in the 3PNO model (see, e.g., Loken and Rulison 2010), and that higher intertrait
correlations result in more overestimation. Hence, when the estimated values are
farther away from the prior mean of 0.798, problems arise if we try to constrain ¢,
to be close to it.

4 Simulation Study 2

In order to further evaluate the performance of the 3PNO multi-unidimensional
model and compare it with two existing IRT models, a second simulation study was
carried out where item responses for 20 items and 5,000 individuals were generated
according to each of the following models:

1. the 3PNO unidimensional model;
2. the 2PNO multi-unidimensional model where k; =k, = 10 and p =0.5;
3. the 3PNO multi-unidimensional model where k; =k, = 10 and p =0.5.

Gibbs sampling was implemented to each simulated data set to fit these three
models, where 10,000 iterations were obtained with the first half as burn-in. In
particular, based on the results of simulation study 1, informative priors were used
for the item parameters so that & ~ N(g ..) (0, 1), B ~N(0, 1), and/or y ~ Beta(5,17).

For each simulated scenario, ten replications were conducted. Each implemen-
tation of the Gibbs sampler gave rise to Gelman—Rubin R statistics close to 1,
indicating that the Markov chain converged to its stationary distribution within
10,000 iterations. The accuracy of parameter estimates was evaluated using average
RMSE and bias. In addition, model performance was evaluated using the Bayesian
deviance information criterion (DIC; Spiegelhalter et al. 2002). Their results in each
simulated condition were averaged over the ten replications and are summarized in
Tables 4-6, which display the average RMSE and bias in estimating o, 8, ¥, and
p. In addition, the averaged estimates for the posterior expectation of the deviance
(D), the deviance of the posterior expectation (D(ﬁ)) values, the effective number
of parameters (pp), and the Bayesian DIC are also shown in these tables. Small
deviance values indicate a better-fitting model. Generally more complicated models
tend to provide better fit. Hence, penalizing for number of parameters makes DIC a
more reasonable measure to use.

A close examination of the tables indicates that:

¢ When data conformed to the 3PNO unidimensional model (see Table 4), the
3PNO uni- and multi-unidimensional models performed similarly in involving
smaller error and bias in estimating o, 8, and ¥, with a slight advantage to
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Table 4 Parameter recovery and model-data fit using each of the three IRT
models under the situation where simulated data conformed to a 3PNO
unidimensional model (n = 5,000, k = 20)

79

Model

3PNO uni 2PNO multi-uni 3PNO multi-uni
RMSE (bias)
o 0.091 (0.034) 0.248 (—0.165) 0.089 (0.035)
B 0.187 (0.0750) 0.411 (—0.300) 0.194 (0.080)
Y 0.075 (0.044) - 0.075 (0.044)
p - 0.017 (—=0.017) 0.005 (—0.005)
Deviance estimates
D 94,907.82 95,123.25 94,876.75
D(9) 90,929.33 91,164.94 90,863.81
PD 3,978.49 3,958.31 4,012.94
DIC 98,886.31 99,081.56 98,889.70

Table S Parameter recovery and model-data fit using each of the three IRT
models under the situation where simulated data conformed to a 2PNO multi-
unidimensional model (n = 5,000, k; = 10, k, =10, p =0.5)

Model

3PNO uni 2PNO multi-uni 3PNO multi-uni
RMSE (bias)
o 0.476 (0.025) 0.057 (0.001) 0.144 (0.112)
B 0.520 (0.335) 0.039 (—0.002) 0.204 (0.153)
Y 0.189 (0.145) - 0.133 (0.102)
p - 0.008 (—0.002) 0.008 (0.003)
Deviance estimates
D 83,952.60 75,344.13 75,623.15
D(¥) 79,886.26 68,133.49 68,282.23
PD 4,066.34 7,210.64 7,340.92
DIC 88,018.93 82,554.77 82,964.07

the multi-unidimensional model. They also resulted in smaller DIC values and
hence were preferred than the 2PNO multi-unidimensional model. The two three-
parameter models had almost identical deviance results. This agrees with what
we noted earlier that the 3PNO unidimensional model is a special case of the
3PNO multi-unidimensional model.

¢ When data conformed to the 2PNO multi-unidimensional model, the correct
model resulted in much smaller error and bias in estimating o and 3 (see
Table 5), and was suggested by DIC to be better than the two 3PNO models. On
the other hand, the 3PNO unidimensional model was clearly the worst among
the three models as far as parameter recovery and model-data fit are concerned.
One may note that although the 2PNO multi-unidimensional model is said to
be a special case of the 3PNO multi-unidimensional model when y = 0, the
latter tended to overestimate Y (i.e., estimated them to be nonzero) and had
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Table 6 Parameter recovery and model-data fit using each of the three IRT
models under the situation where simulated data conformed to a 3PNO multi-
unidimensional model (n = 5,000, k; = 10, k& =10, p =0.5)

Model

3PNO uni 2PNO multi-uni 3PNO multi-uni
RMSE (bias)
o 0.505 (0.015) 0.383 (—0.269) 0.126 (0.055)
B 0.573 (0.277) 0.437 (—0.314) 0.147 (0.055)
Y 0.156 (0.076) - 0.069 (0.038)
P - 0.021 (0.007) 0.015 (0.004)
Deviance estimates
D 92,558.82 86,952.78 86,058.33
D(9) 88,649.73 80,305.46 79,047.50
PD 3,909.09 6,647.32 7,010.83
DIC 96,467.91 93,600.09 93,069.16

slightly larger error and bias in estimating o and 3. However, note that in the
simulation results from Sect. 3, the average RMSE and bias in estimating item
parameters for the 3PNO multi-unidimensional model when it was true (Table 2)
were not much smaller. Hence, the relatively larger error and bias in estimating
item parameters using the 3PNO multi-unidimensional model for data with a zero
lower asymptote might be due to the complexity of the model and the estimation
procedure.

In situations where the 3PNO multi-unidimensional model was true with a
moderate intertrait correlation (see Table 6), the correct model resulted in much
smaller estimation error and bias, and had the smallest DIC value, which suggests
that it fit the data the best even after penalizing for a large number of effective
parameters. The latent structure agreed with multi-unidimensionality. Hence, the
2PNO multi-unidimensional model resulted in relatively less error in estimating
item parameters and had a better model fit than the 3PNO unidimensional model.
It is noted that when data were unidimensional, the two multi-unidimensional
models involved a fairly small effective number of parameters (pp), which was
close to that for the unidimensional model (see Table 4). However, when data
were multi-unidimensional, both 2PNO and 3PNO multi-unidimensional models
had a substantially larger pp than the unidimensional model (see Tables 5 and 6).
When data conformed to the model with a nonzero lower asymptote (), the
2PNO multi-unidimensional model tended to underestimate both o and 3 (see
Tables 4 and 6).

It is further noted that no matter whether data assumed a zero or nonzero lower
asymptote, both the 2PNO and 3PNO multi-unidimensional models estimated p
fairly well, with a slight advantage to the correct model (see Tables 4-0).

general, the 3PNO multi-unidimensional model is more general and flexible

than the 3PNO unidimensional model and has advantages over it in large-sample
situations. On the other hand, when it is clear that the test data do not assume a
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nonzero lower asymptote parameter or do not involve pseudo-chance, it is suggested
that the 2PNO multi-unidimensional model be adopted for ease of implementing the
Gibbs sampling procedure.

S An Example with CBASE Data

As an illustration, the Gibbs sampler for the 3PNO multi-unidimensional model was
implemented to a subset of College Basic Academic Subjects Examination (CBASE;
Osterlind 1997) English data and its model-data fit was evaluated by comparing it
with a 2PNO multi-unidimensional model and a 3PNO unidimensional model.

The overall CBASE exam contains an overall 41 multiple-choice items on
English, 25 of which are on reading/literature and the remaining 16 are on writing.
The data used in this study were from college students who took the LP form of
CBASE in years 2001 and 2002. After removing those who attempted the exam
multiple times and removing missing responses, a sample of 1,200 examinees was
randomly selected. Gibbs sampling with each of the three models described in
Sect. 4 was fit to the data and compared with one another in describing the data.

Each Gibbs sampler was implemented with a chain length of 10,000 iterations
and a burn-in stage of 5,000 iterations. The Gelman—Rubin R statistics were used to
assess convergence and they were found to be around or close to 1, suggesting that
stationarity had been reached within the simulated Markov chains for the models.
The Bayesian deviance estimates were subsequently obtained for each model
and the results are summarized in Table 7. Among the three models considered,
the 3PNO multi-unidimensional model had relatively smaller DIC and expected
posterior deviance (D) values. Hence, it provided a better description of the data.
The latent structure of the data was suggested to agree with multi-unidimensionality,
as the unidimensional model provided a worse description of the data than the
2PNO multi-unidimensional model. In addition, the pp values for the two multi-
unidimensional models were much larger than that for the unidimensional model.
Given these results, it is reasonable to believe that the actual lower asymptote
parameters for the CBASE English data are nonzero and the latent structure can
be multi-unidimensional with a fairly strong intertrait correlation p = .826.

Table 7 Bayesian deviance estimates for the three IRT models with the
CBASE data (n = 1,200, k; = 16, kp = 25, chainlength = 10,000, burn — in =

5,000)
Model D D(1) PD DIC
3PNO uni 53,840.81 52,744.78 1,096.03 54,936.83

2PNO multi-uni 53,501.48 52,095.27 1,406.21 54,907.69
3PNO multi-uni 53,333.62 51,866.18 1,467.44 54,801.06
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6 Discussion

In summary, fully Bayesian estimation for the three-parameter multi-unidimensional
IRT model can be developed generalizing the approach for the two-parameter model
by Lee (1995). Exploring different prior specifications, this study shows that the
procedure requires a fairly informative prior for each set of the item parameters.
When compared with the conventional three-parameter unidimensional or the two-
parameter multi-unidimensional model, simulation results indicate that the more
complex three-parameter multi-unidimensional model consistently provides a good
if not better model description to the data that assume either a perfect intertrait
correlation or a zero pseudo-chance level. It is noted that the three-parameter
multi-unidimensional model, allowing for a nonzero lower asymptote, is more
complicated than the two-parameter model. It requires informative priors or a much
larger sample size for the Markov chains to work properly.

One has to also note that the advantages of the multi-unidimensional model
over the unidimensional model demonstrated by the simulations of this study relied
on the fact that the latent structure was correctly specified. For situations where
such information is not readily available, a misspecified latent structure for the
multi-unidimensional model could result in an insufficient description of the data.
To avoid this, one can choose to use the simpler unidimensional model if the
amount of dimensionality is suggested to be negligible. After all, unidimensional
models have been predominant in educational research given the fact that many
IRT applications are only possible with such models. Alternatively, if a test is
believed to involve multiple distinct latent traits, which is more common in actual
testing situations, the more general multidimensional IRT model (Reckase 2009)
should be used to explore the dimensionality structure. The difference between the
general multidimensional model and the multi-unidimensional model is analogous
to the distinction made between exploratory and confirmatory factor analysis (Sheng
2012). As such, one can use the former to identify the latent structure when it is not
available and use the latter to confirm this structure.

Given that previous research on Gibbs sampler for 3PNO unidimensional models
found that the estimation accuracy of item parameters should improve with larger
sample sizes, but not necessarily with larger test lengths (Sheng 2010), this study
used fixed number of items in the simulation study. Certainly, additional studies are
needed to empirically demonstrate the effect of test length on estimating 3PNO
multi-unidimensional model parameters. In addition, this study only looked at
nonhierarchical models where item hyperparameters take specific values. It will
also be interesting to consider hierarchical Bayesian models where second-order
priors are assumed for item hyperparameters. Given findings from Sheng (2013)
on 3PNO unidimensional models, it is believed that hierarchical modeling provides
advantages in modeling the complex 3PNO multi-unidimensional model. Further,
only conjugate prior densities for item parameters were investigated in this paper.
Future studies may adopt non-conjugate priors.
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The Effect of Response Model Misspecification
and Uncertainty on the Psychometric Properties
of Estimates

Kristian E. Markon and Michael Chmielewski

The effect of model uncertainty and model misspecification on test score properties
has been a prominent issue in assessment for decades, manifesting implicitly or
explicitly in a number of different domains. For example, measurement invariance
(i.e., differential item or test functioning) is often of interest because of the possi-
bility that test models otherwise might be misspecified for particular individuals or
groups. Similar issues regarding predictive invariance also often arise from concerns
about the effects of response models that might be misspecified (Borsboom et al.
2008; Millsap 1997, 2007). Impression management continues to be an area of
focus because of concerns about misspecified assumptions during test scoring or
trait estimation (Ziegler et al. 2012).

The prominence of these issues has led to substantial advances in methods
for detecting and preventing possible model misspecification (e.g., Meijer 2003;
Meredith 1993; Millsap and Everson 1993). Less well understood, however, are
the effects of misspecified models on the psychometric properties of tests, such as
test error and reliability (Wainer and Thissen 1987). For example, it is possible to
test whether a model might be inappropriate for a certain person or subpopulation,
but how does inappropriate use of that model affect overall test score accuracy and
precision?

Understanding how model misspecification impacts the psychometric properties
of tests is critically important for quantifying the impact of misspecification, but also
because misspecification is likely endemic to the assessment process. From a prag-
matic perspective, for instance, a certain proportion of misspecification cases will
likely always go undetected simply due to unavoidable random errors of inference.
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From a more theoretical perspective, individual variation and heterogeneity in
response processes may be typical, implying that any purely nomothetic assessment
approach will necessarily entail some model misspecification effects at the level of
individuals, who may each be responding idiosyncratically (Borsboom et al. 2003;
Molenaar 2004; von Eye 2004).

In this paper, we review the literature on model misspecification, to clarify how
use of incorrect models impacts the actual and assumed accuracy and precision of
trait estimates. First, we review the broader statistical literature on misspecification
and its effects on estimation, and explore how misspecification affects the accuracy
of estimates under common response models. We then explore the effects of
misspecification on the precision of estimates. Interestingly, using analytic and sim-
ulation results, we show that although misspecification often decreases the accuracy
of estimates, somewhat counterintuitively, it actually may also increase accuracy
under certain circumstances. Moreover, depending on the form of misspecification,
reliability can actually be increased under misspecification, in a way that provides
a misleading characterization of test precision. We conclude with recommendations
for applied use of tests when model uncertainty is a prominent concern.

1 Response Models and Their Misspecification: Overview

Throughout this paper, it is assumed that a probabilistic model of test response, at
either the item or score level, is being used implicitly or explicitly. That is, the
model can be written in some general form of P(X]|6,y), where the probability
of some response X is modeled in terms of one or more person parameters (e.g.,
latent traits) 6 and item parameters }. In this paper, it is also generally assumed
that the item parameters are assumed to be known (note that the assumed item
parameters can be correct or incorrect), and the interest is in obtaining an estimate
of respondents’ standing on a single latent trait, 6, using maximum likelihood
(ML) unless otherwise stated (Bayesian estimation is briefly discussed at the end
of the paper). Although these assumptions are admittedly somewhat simplistic, they
are nevertheless arguably realistic and applicable to a wide variety of situations,
simplify discussion, and likely generalize well to more complex scenarios.

Many familiar response models, including a variety of item response theory
(IRT) and classical test theory (CTT) models, can be derived from a more general
framework, that of generalized linear latent variable modeling (e.g., Mellenbergh
1994a; Moustaki and Knott 2000; Skrondal and Rabe-Hesketh 2004). In this
framework, a model for the responses to a measure j by a person i can be written as

g(Tij)Zaje,‘-i-bj, (1)
where g is a link function relating the latent trait to an expected value of the response

variable and 7; is the expected value of the response variable given a value of
the latent trait (i.e., E(x;;|0;)). The link function g, which derives from generalized
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linear modeling, depends on the assumed distribution of the response variable and
choices regarding the specific model of interest (e.g., normal versus logistic). It
can be thought of as a function that transforms the scale of the latent variable
(e.g., continuous) into the assumed scale and distribution of the response variable
(e.g., an ordinal polytomous variable or a count variable). The parameter a reflects
the discrimination or loading of the item and the parameter b is an intercept term
reflecting the difficulty or severity of the item. For example, using a normal link
function with variance y? equal to the residual variance, one obtains a family of
continuous response models that include traditional (e.g., parallel, tau-equivalent)
models as special cases; using a logit link one obtains the familiar two-parameter
item response model.

The central question in this paper is: what happens if the form of the response
model in Eq. (1) is different from the actual model governing an individual’s
responses to items? For example, what happens if the item parameters that are used
to estimate trait scores [e.g., a and b in Eq. (1)] are different from the actual item
parameters describing the process used to generate responses? What are the effects
on trait estimate accuracy and reliability if measurement invariance does not hold
across ethnic groups, but the response model describing a majority subpopulation is
incorrectly applied to estimate scores in a minority subpopulation? Similarly, how
is the accuracy of trait estimates affected if individual differences in impression
management are ignored—or conversely, if impression management is assumed
incorrectly?

Various authors have explored the effect of item parameter estimation errors
on trait estimation (e.g., Thissen and Wainer 1990; Tsutakawa and Johnson 1990;
Yang et al. 2012; Zhang et al. 2011). This can be considered a form of model
misspecification due to stochastic sampling variation during the item parameter
estimation process. Although important and relevant to the current discussion, here
we focus on a different phenomenon: structural model misspecification, where
misspecification is not due to stochastic sampling variation, and would occur even
if the population item parameters were known (i.e., the misspecification will not
disappear as the sample used to estimate item parameters becomes infinitely large).

2 Estimation Under Misspecification: Accuracy,
Bias, and Variance

2.1 Estimates

Various authors have illustrated that, under misspecification, ML estimates—in this
case, ML trait estimates—approach the value that minimizes the relative entropy
(i.e., Kullback-Leibler distance) between the misspecified likelihood and the true
likelihood (e.g., Akaike 1973; Gustafson 2001; White 1982). Specifically, under



88 K.E. Markon and M. Chmielewski

misspeciﬁcation, ML estimates will tend toward (i.e., have expected values of) the
value of 6 that minimizes

P(X’e*,r*)
P(X ‘ @,y) ’

where 0 * is the true trait value and y* are the true item parameters, and the sum is
taken over all possible response vectors. The relative entropy will be zero when the
misspecified model produces likelihoods that are exactly the same as the true model
likelihoods, and will increase as the misspecified likelihoods and true likelihoods
diverge. Misspecification will produce trait estimates that come closest, on average
across response patterns, to reproducing the probability of the data under the true
model, minimizing the relative entropy in Eq. (2).

Note that the value being minimized in Eq. (2) by 6 under the misspecified model
is still defined even when direct comparisons between the parameters of the true
model and the assumed model are not meaningful—e.g., in the case that responses
do not actually involve trait or person parameters at all, or where true person
parameters are on one scale of measurement (e.g., nominal) and the estimated
parameters are on another (e.g., interval). In this case, P(X|0*, y*) is arguably
more accurately thought of in terms of P(X|M*), where M* is the true model, with
misspecification still producing trait estimates that come closest, on average across
response patterns, to reproducing the likelihood under the true model.

yP (X ‘ 6*,V*)ln 2)

2.2 Estimation Error, Bias, and Variance

Assuming that the true model and the assumed model both have directly comparable
trait parameters, how accurate are they? How close they are to the true values?
Although the minimized value in Eq. (2) could be used to indirectly answer this
question—with values closer to zero indicating accurate estimates and smaller
effects of misspecification, and larger values indicating less accurate estimates and
larger effects of misspecification—this would still not address how similar the
estimated trait value is to the true trait value.

2.2.1 Mean Square Error

A more direct index of the accuracy of estimates, often used in statistical theory and
research, is the mean square error (MSE):

MSE = E [(5—6*)1 3)
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which is the expected—i.e., average—squared difference between the estimated trait
value and true trait value. The MSE has the benefit of ignoring the direction of
estimation errors; it also weights estimation errors more the greater they are.

Although the MSE under model misspecification can be derived for specific
types of models, obtaining a general formula for the MSE under misspecification
is challenging. Xu et al. (2004) present general lower bounds for the MSE under
misspecification, relating the MSE with regard to a parameter to the log-likelihood
ratio with regard to that parameter. They show that in general the MSE over a range
of a parameter is lower bounded by the integrated error probability under the log-
likelihood ratio test, using the misspecified model.

2.2.2 Bias—Variance Decomposition

Importantly, the MSE can be reexpressed as the sum of two components: the squared
estimation bias and the estimation variance. That is,

MSE = B* + o2, (4)

where 3 is the bias and 67 is the variance of the estimates:

()

GZ—E{(g—EPDZ}, (6)

where E[0)] is the expected or average trait estimate [i.e., the estimate minimizing
Eq. (2)]. The bias is therefore the average difference between the estimated and true
trait value, and the variance is the variance of the trait estimates around their average
(which is not necessarily the same as the true value). It is important to emphasize
that the term bias here specifically refers to the extent to which trait estimates differ
on average from their true values. This is related to, but different from, the use of the
term “bias” in some of the applied and psychometric literature, where it is often used
to refer to misspecification or misestimation of measurement models more broadly.

The bias—variance decomposition of the MSE significantly underscores that the
accuracy of an estimate depends on both bias and variance, and that there may be
compromises between the two in selecting a model. A model that increases bias may
nevertheless produce more accurate estimates if the increased bias is sufficiently
offset by decreased variance. Conversely, a model that decreases bias may produce
less accurate estimates if it increases the variance of those estimates too much.
This phenomenon is well documented in the broader statistical literature: more
flexible models with fewer constraints, for example, are likely to produce less biased
estimates but are also more susceptible to sampling variability; conversely, less
flexible models are less susceptible to sampling variability but are more susceptible
to bias (e.g., Forster 2000; Hero et al. 1996).
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Similar phenomena may occur in trait estimation. For example, in some cases it
may be that estimating ancillary person parameters (e.g., reflecting response style
or impression management) together with trait level may introduce more estimation
uncertainty than the amount of bias it reduces, decreasing the accuracy of trait
estimates overall. Even among response models with only one parameter—the
trait parameter—it may be the case that some response models introduce greater
uncertainty into estimates, even as they decrease bias, by virtue of their structural
features.

It is important to emphasize that these bias—variance compromises apply when
comparing a misspecified model to the correct model just as they apply to com-
parisons between two misspecified models. In other words, a misspecified model
may actually produce more accurate estimates than the correct model, by virtue
of reducing uncertainty at the cost of increased bias. This phenomena has been
observed in other areas of statistics (Lowerre 1974; Rao 1971; Todros and Tabrikian
2011), suggesting that use of an incorrect test response model may sometimes have
little effect on test scores, and may actually improve the accuracy of the scores in
some cases.

2.3 Example: Continuous Response Models

As an example, consider a continuous response model, obtained from Eq. (1) by
using a normal link function with variance y? equal to the residual variance. As
noted earlier, many traditional test models (e.g., parallel or tau-equivalent measures
models) can be obtained as special cases from this model under certain constraints.
As illustrated by Mellenbergh (1994b), for a single trait, ML trait estimates under
this model are given by

G- Yaj(xij—bj)/ Wf' o

Yai/v;

This is equivalent to Bartlett’s factor score estimator (Bartlett 1937) for a
single trait. Moreover, as noted by Bartholomew and Knott (1999), this estimate
is unbiased when the model is correctly specified.

Following Mellenbergh (1994b, page 231), and substituting a; 0} + b; + ¢;; for
x;j in Eq. (7), one obtains the following expression for the expected value of the trait
estimate under misspecification, conditional on the true trait value:

Zaj {a}‘-@i* + (b}‘ —bj)} /l//j2
i/ |

E{@’ 9*,7/} - ®)
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Here, as elsewhere, the asterisks indicate the true parameters and the values
without asterisks indicate the assumed parameters (e.g., a is the assumed loading
and a* is the true loading). Equation (8) can be used to estimate the expected bias

at a given level of the trait, as § (6) = E {@ ‘ 0, }/} — 0*. Expanding this gives the
following value for the bias conditional on the true trait value:

3 [ai a6 + (65— b)) | — a67] /w2
243/ v; |

Similarly, assuming uncorrelated error variances, the variance of the trait esti-
mate under misspecification is given by

€))

b(6]01)-

@ Vi
_ ol
o2 (6 ’ 6*,y) S/ A/ (10)

=4

where again, y*? is the true error variance and y? is the assumed error variance.
The derivation of the variance under misspecification is explained in greater detail
in the Appendix.

Note that if the true and assumed error variance are equal (i.e., there is no
misspecification), then the variance becomes

~ 1 1
2 * ok
G e‘e, ): S
3or) - !
v;

where [ is the nominal test information (Mellenbergh 1994b), which will be
constant.

Equations (9) and (10) reveal various characteristics of how continuous response
model trait estimates behave under misspecification. Bias, for example, depends
on the relative magnitudes of true versus assumed loadings and intercepts, but not
the true error variances. Variance, in contrast, does not depend on the true loading,
but does depend on the relative magnitudes of the true and assumed error variances.
Similarly, bias depends on the true trait value, but variance is independent of it. Both
bias and variance are affected by the assumed loadings and assumed error variances.

In order to illustrate the effects of misspecification on estimation accuracy,
and verify the accuracy of Eqgs. (8)—(10), a series of simulations were conducted.
Values of the parameters were taken from measurement invariance analyses of
the Spanish and English Neuropsychological Assessment Scales (SENAS; Mungas
etal. 2011), a cognitive battery developed for use in multiethnic and multilingual
applications. The SENAS provides an excellent example of how misspecification
might impact accuracy of test score estimates, as its psychometric properties in
differently responding groups of individuals are well documented.

(1)
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Table 1 Bias, variance, and MSE under misspecification: continuous response model

0*%=0 0*=1 0*%=2
Model o> B MSE o2 S MSE o2 S MSE
Model A, correctly specified 0.114 0.001 0.114 0.115 —0.001 0.115 0.114 —0.001 0.114
0.114 0.000 0.114 0.114 0.000 0.114 0.114 0.000 0.114
Model A, misspecified 0.096 0.038 0.097 0.096 —0.056 0.099 0.096 —0.150 0.119
0.096 0.038 0.097 0.096 —0.056 0.099 0.096 —0.149 0.118
Model B, correctly specified 0.087 0.000 0.087 0.088 0.000 0.088 0.088 —0.001 0.088
0.088 0.000 0.088 0.088 0.000 0.088 0.088 0.000 0.088
Model B, misspecified 0.107 —0.041 0.109 0.108 0.057 0.111 0.108 0.154 0.131
0.108 —0.041 0.110 0.108 0.057 0.111 0.108 0.155 0.132

Note: Values in table are variance, bias, and MSE at true trait values of 0, 1, and 2, for different
correctly and incorrectly specified models. For each model specification condition, the top number
is the value obtained in simulations; the bottom number is the predicted value based in Egs. (8)—
(10). Within each model specification condition, the predicted variance did not depend on trait
value but is repeated across trait values to compare with simulation results, which did vary very
slightly

Two models were used in the simulations, each of which was based on the
Semantic/Language scales of the SENAS, which assess verbal reasoning or lan-
guage ability. Model A corresponded to the SENAS parameter estimates among
White individuals (loadings of 0.76, 0.74, 0.49, 0.42, 0.73; intercepts of 0.64, 0.63,
0.67, —0.03, 0.47; and residual variances of 0.20, 0.31, 0.22, 0.83, 0.19); Model B
corresponded to the SENAS parameter estimates among English-speaking Hispanic
individuals (loadings of 0.81, 0.82, 0.59, 0.54, 0.78; intercepts of 0.64, 0.63, 0.51,
—0.03, 0.47; and residual variances of 0.20, 0.24, 0.22, 0.58, 0.19). Four sets of
simulations conducted: one in which Model A was the true, data-generating model,
and was correctly specified; another simulation in which Model A was the true
model, but Model B was incorrectly specified as the data-generating model; a
simulation in which Model B was the true model and was correctly specified; and
a simulation in which Model B was the true model but Model A was incorrectly
specified as the data-generating model. 1,00,000 response vectors were simulated
for each condition, for trait values of 0, 1, and 2, and trait estimates were calculated
using Eq. (7).

Table 1 presents the results of these simulations. Throughout the conditions, the
simulated bias, variance, and MSE were nearly identical to predictions using Egs.
(8)—(10). Consistent with predictions, whereas the variance is constant across trait
level, the bias changes with trait level. The results in Table 1 also illustrate that,
under correct model specification, trait estimates are unbiased and MSE is constant
across trait level. Under misspecification, the trait estimates exhibit varying degrees
of bias, and the MSE changes across trait level.

Figure 1 also illustrates these trends, showing predicted MSE as a function of true
trait level across the different conditions. Importantly, as is evident in the figure, the
misspecified model does not in fact always produce the greatest estimation error.
When Model B is used as the true model, error is in fact always greater for the
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Fig. 1 Mean square error (MSE) as a function of true trait level, population model, and assumed
model. MSE for population Model A is illustrated by the gray lines; MSE for population Model
B is illustrated by the black lines. MSE for correctly specified models is illustrated by solid lines,
MSE for misspecified models by dashed lines

misspecified model. However, when Model A is used as the true model, error is only
sometimes greater for the misspecified model: for extreme values of the trait, the true
model produces lower error, but for moderate values of the trait, the misspecified
model actually produces less estimation error.

Figure 1 demonstrates that the effect of misspecification on estimation accuracy
is complex, depending on the true model, the form of misspecification, and the
distribution of true trait values in the population. For a standard normal population
responding under Model A, for example, the misspecified model would actually
result in slightly lower MSE overall than the correct model (simulations indicate an
MSE of 0.106 for the misspecified model versus 0.114 for the correct model).

One important implication of these results is that ignoring measurement nonin-
variance does not always result in an overall increase in estimation error, and may
actually decrease estimation error depending on the circumstances. Similar phenom-
ena involving small or negligible effects of noninvariance or model misspecification
have been observed empirically in various studies (e.g., Hendrawan et al. 2005;
Reise et al. 2001; Roznowski and Reith 1999) but is illustrated here analytically and
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through simulations. The precise form of the bias, variance, and corresponding MSE
provided by Eqs. (8)—(10) will help quantify the effect of measurement variance on
estimation accuracy.

In this particular example, with the SENAS, failure to recognize measure-
ment variance would likely result in decreased estimation accuracy. As Model
B corresponds to test parameters among minorities, the most likely form of
misspecification—incorrectly assuming that European American test parameters
apply to other groups—would increase error. However, with other tests and other
measurement invariance scenarios, other conclusions might be more appropriate.

2.4 Example: Discrete Response Models

In the case of discrete observed variables (e.g., with IRT models), the relationship
between trait level, bias, variance, and MSE becomes more complex. For instance,
with typical IRT models, the variance as well as the bias would be expected to
change with trait level (consider the typical information function of IRT, which
reflects this variance, and generally changes with trait level). Also, even with correct
model specification, IRT estimates may be biased, in a form that depends on the true
trait value (Lord 1983).

Both of these factors lead to potentially complex effects of misspecification on
trait estimation. For example, if correctly specified models do in fact produce biased
estimates, it is conceivable that a misspecified model might produce bias of a form
that counteracts the bias of the correctly specified model—a sort of antibias—
reducing estimation error overall. Similarly, a misspecified model might reduce
overall estimation error in a trait range by decreasing variance in that range, even if
it increases bias somewhat.

Impression management effects provide a useful context for exploring some
of these issues. Although the effects of impression management on responding
can be demonstrated well in experimental settings (e.g., Baer and Miller 2002),
it has been difficult to demonstrate validity of impression management indices in
observational settings (McGrath et al. 2010). This has led to apparent paradox
and associated controversy, whereby putatively obvious, even known, effects of
impression management on response processes are sometimes asserted to have no
effect on test validity (Ziegler et al. 2012).

The current discussion provides one additional possible explanation for this
phenomenon: if use of the correct impression management response model leads to
sufficient uncertainty in trait estimation—i.e., sufficiently increases the variability
of trait estimates—it may be inconsequential or even desirable to ignore the
impression management and adopt an incorrect, biased model for the purposes of
trait estimation. This phenomenon would hold even if it is known with certainty that
the individual has used impression management during the response process.
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2.4.1 The Asymptote-Shift Model of Impression Management

Consider, for example, models of impression management relying on a shift in the
asymptotic response from extreme trait values. Under this scenario, in response to
a binary response item (e.g., true—false), extreme individuals who are faking always
have a finite probability of responding to an item in a direction that they might
otherwise not respond. For example, on a measure of Big Five agreeableness, a very
aggressive individual faking might always have a nonzero probability of responding
“true” to the item “I would never harm someone.” The three-parameter logistic
(3PL) IRT model is often used in this scenario to model impression management,
with the lower asymptote parameter reflecting effects of impression management.
Similar four-parameter models have also been proposed, with both lower and upper
asymptotic parameters (Loken and Rulison 2010; Waller and Reise 2009).

Simulations were conducted to investigate the effects of model misspecification
in this scenario (e.g., using the correct impression management model or ignoring
it). In this simulation, 4,000 responses were generated for each of 13 trait values,
equally spaced from —3 to 3. In all cases, respondents were assumed to be
responding using impression management to a 23-dichotomous-item test, under
a process described by a 3PL IRT model, with the lower asymptote reflecting
impression management. Item parameters were taken from Waller and Reise (2009);
as those authors were studying the four-parameter model, population values of lower
asymptotes for the simulations were obtained by taking one minus the estimated
upper asymptotes from their results (many of their estimated lower asymptotes were
near zero; note that which asymptote is upper or lower depends on a relatively
arbitrary keying of the items).

To model the effects of item parameter estimation, every 100 simulee’s trait
values were estimated using item parameters estimated on a different 2,500-person
calibration sample. In other words, 2,500 simulated responses were generated and
used to estimate item parameters; these item parameters were used to estimate trait
values from a different set of 100 randomly generated responses; this process was
repeated 40 times for the 4,000 trait values to be estimated for each of the 13 trait
values. Each 2,500-person calibration sample was assumed to come from a known
population—i.e., item parameters from the 1PL and 2PL models were estimated on
a zero-lower-asymptote population, and the 3PL item parameters were estimated
on a nonzero-lower-asymptote population (to simulate the effects of experimentally
modeling response processes). Ultimately, trait estimates were obtained for each
of the 4,000 simulees using each of four models: the population 3PL model, the
sample-estimated 3PL model, the sample-estimated two-parameter logistic (2PL)
model (ignoring impression management), and the sample-estimated one-parameter
logistic (1PL) model (again, ignoring impression management).

Figure 2 illustrates the results of these simulations. The top figure plots the bias
of the estimates as a function of trait level; the middle figure plots the variance as
a function of trait level, and the bottom figure plots overall MSE as a function of
trait level. As is evident in the figure, in general, bias, variance, and overall MSE
was smallest for moderate to large trait values, and larger for smaller trait values.
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Fig. 2 Bias, variance, and MSE of trait estimates as a function of true trait level, for a population of
individuals responding using impression management modeled by a three-parameter logistic (3PL)
model, as described in the text. Solid line reflects trait estimates obtained using population 3PL item
parameters; dashed line, trait estimates obtained using sample-estimated 3PL item parameters;
dashed and dotted line, sample-estimated 2PL item parameters, and dotted line, sample-estimated
1PL item parameters

Also, in general, bias, variance, and MSE from the misspecified trait estimates were
similar, as were those from the correctly specified estimates.

Consistent with what might be expected, trait estimates were more biased overall
when using the incorrect 1PL and 2PL models for trait estimation, especially
for smaller trait values. This is consistent with the idea that ignoring impression
management would lead to increased bias in trait estimates. However, use of the
correct impression management model also increases variance of the trait estimates
relative to the incorrect models, especially at extreme trait levels. This increased
variance offsets the decreased bias, leading to a scenario where for much of the
range of the trait, the accuracy of trait estimates is extremely similar regardless of
whether the correct or incorrect model is used. The incorrect model does produce
less accurate estimates overall, especially for low levels of the trait. However, for
moderate to high levels of the trait, the decrement in accuracy is slight.
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2.4.2 The Intercept-Shift Model of Impression Management

Another possible account of impression management is the intercept-shift model.
In this model, individuals utilizing impression management shift their thresholds
for endorsing an item in a manner consistent with their impression management.
For example, individuals engaging in positive impression management might raise
their thresholds for endorsing socially undesirable items; individuals engaging
in negative impression management might lower their thresholds for endorsing
socially undesirable items. Multiple-group modeling in quasi-experimental designs
suggests that this sort of intercept-shift model can account for at least some positive
impression management (Ferrando and Anguiano-Carrasco 2009).

Simulations were again conducted in order to investigate the effects of model
misspecification in this scenario (e.g., using the correct impression management
model or ignoring it). Simulation conditions were the same as in the simulation
study just described. In this study, however, impression management was modeled
by a shift in intercept parameters relative to the normal response condition; the 2PL
model was used in all conditions. Population parameters were based on the SNAP-2
(Clark et al. 1993) Negative Temperament scale, a 28-dichotomous-item measure of
the tendency to experience negative emotions. Two-PL parameters of the SNAP-2
Negative Temperament scale in a general community sample (Simms et al. 2007)
were used for the population normal response parameters. Impression management
parameters were calculated using experimental estimates of the effect of impression
management on the SNAP Negative Temperament scale (Simms and Clark 2001);
each item’s threshold was assumed to shift by an amount (in d units) equal to the
corresponding observed shift in the Negative Temperament scale under impression
management (i.e., each item’s thresholds were assumed to shift by 1.56d in the
negative impression management condition and 1.15d in the positive impression
management condition).

Figure 3 illustrates the results of the simulations of positive impression man-
agement. Consistent with expectations, using the incorrect model resulted in
downwardly biased estimates at higher (i.e., more pathological) levels of the trait—
i.e., positive impression management resulted in estimates that were too low for
high-trait individuals when the incorrect model was used. For low-trait individuals,
the bias was actually reversed, such that low-trait individuals’ estimates were
somewhat too large. However, throughout the range of the trait, the variance of
estimates was lower under the misspecified models compared to the true model,
especially at lower trait levels. Overall MSE was generally greater when using the
incorrect model, although this was primarily true of the upper range of the trait;
for low-trait individuals the decrement in overall MSE was much less, and for
moderately low trait values the misspecified model actually produced slightly more
accurate estimates.

Figure 4 illustrates the results of simulating negative impression management.
Again, consistent with expectations, using the incorrect model resulted in upwardly
biased estimates throughout the range of the trait—i.e., negative impression man-
agement resulted in estimates that were generally too high (i.e., pathological) when
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Fig. 3 Bias, variance, and MSE of trait estimates as a function of true trait level, for a
population of individuals responding using positive impression management modeled by a two-
parameter logistic (2PL) model, as described in the text. Solid line reflects trait estimates obtained
using population item parameters; dashed line, trait estimates obtained using sample-estimated
impression management item parameters; dashed and dotted line, sample-estimated 2PL normal
response item parameters, and dotted line, sample-estimated 1PL normal response item parameters

the incorrect model was used. However, in contrast to the other two forms of
impression management being simulated, the variance in estimates was generally
similar across different models, although slightly greater for the incorrect models at
lower trait levels, and slightly greater for the correct models at higher trait levels.
Also, in contrast to the other forms of impression management, overall error was
almost uniformly larger for the misspecified model, except for individuals at very
high levels of the trait.

These three simulations are generally consistent with the findings for the
continuous response model. Overall, misspecification does generally decrease the
accuracy of estimates, at least for the cases examined here. However, these overall
trends obscure the fact that, under particular circumstances, misspecification might
not decrease estimation accuracy significantly, and might actually slightly improve
estimates.
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Fig. 4 Bias, variance, and MSE of trait estimates as a function of true trait level, for a
population of individuals responding using negative impression management modeled by a two-
parameter logistic (2PL) model, as described in the text. Solid line reflects trait estimates obtained
using population item parameters; dashed line, trait estimates obtained using sample-estimated
impression management item parameters; dashed and dotted line, sample-estimated 2PL normal
response item parameters, and dotted line, sample-estimated 1PL normal response item parameters

For example, negative impression management of the form illustrated in Fig. 4
suggests that misspecification would result in decreased estimation accuracy in
many scenarios. However, for settings where very high trait levels are encountered
(e.g., in settings with high levels of psychopathology, such as hospital settings),
ignoring the impression management might actually produce more accurate es-
timates. Moreover, for the other two forms of impression management being
modeled, in samples having relatively low to moderate levels of the trait, ignoring
the impression management might result in only a slight decrement in accuracy
(in the case of the asymptote-shift form of impression management), or might
actually improve accuracy slightly (in the case of the intercept-shift form of positive
impression management).

Note that focusing entirely on the bias in responses (e.g., illustrated in the top
of Figs. 2, 3, and 4), as is often the case in the literature, would give a misleading
idea of how model misspecification affects estimation accuracy. In all three cases,
the bias was generally larger under the misspecified model (albeit in different
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directions; Fig. 3). However, the variance was affected differently in the different
scenarios, at different levels of the trait, producing more nuanced effects on actual
estimation accuracy.

These phenomena may help explain some findings in the impression manage-
ment literature, where effects of impression management on response can clearly
be demonstrated, but use of this information to estimate trait values appears to
have little impact on the validity of trait estimates (McGrath et al. 2010; Ziegler
et al. 2012). It is possible that in certain cases, the form of impression management
introduces so much uncertainty into trait estimation, that even if respondents were
known with certainty to use impression management, overall trait estimation error
would be relatively unaffected by making use of that information.

Considered together, these three simulations illustrate that use of a correct IRT
model does not always improve estimation error, and may actually worsen it for
certain individuals in certain circumstances. Even when use of a misspecified
model increases bias, if it decreases the variance of the estimates sufficiently, it
may decrease estimation error overall. Although in most cases, use of an incorrect
response model will increase estimation error, in other cases—depending on the
response process, test, and true value of the trait—using an incorrect model may
have little effect on overall estimation error, or might in fact decrease it.

3 The Effects of Misspecification on Estimates of Precision

3.1 Reliability

Mellenbergh (1996) noted that the reliability of a test can be expressed in terms
of the variance of the true trait values, the variance of the expected values of the
estimates, and the expected variance of the estimates:

var(0%)

var[Eo] o]+ £ [ (3] 0-1)] 12

In Eq. (12), p is the reliability and E again indicates the expectation (i.e.,
average). Reliability is the ratio of true trait variance to total trait estimate variance,
where the total variance is the sum of the variance of the expected values of the
estimates and the expected variance of the estimates conditional on the true trait
values.

The reliability under misspecification can be obtained from Eq. (12) by noting
that the expected value of the estimates conditional on trait value [the expectation
in the first term in the denominator of Eq. (12)] is given by 0*+ 3, where 3 is the
bias [Eq. (5)]. Reinserting this gives reliability under misspecification:

var (6*)
var(e*)—l—var(ﬁ } 9*,7) +2cov (9*,[3 ’ 9*,7) +E [62 (@’ 9*,7/)}

p= . (13)
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Multiple consequences implied by Eq. (13) are worth noting. First, the reliability
under misspecification depends on the variance of the bias across levels of the true
trait value, not the absolute value of the bias. Most importantly, even if a test model
is biased, if that bias is constant across different levels of the trait, it will not change
reliability relative to a model that is completely unbiased. More accurately, even
if an incorrectly specified model produces biased estimates relative to a correctly
specified model, that bias will not affect reliability if the variance in bias across
the population or sample of interest is the same as the variance in bias under the
correctly specified model.

Initially, results such as those presented in Table 1 and Figs. 1, 2, 3, and 4
might seem to suggest that constant bias across the trait might be an unreasonable
assumption. However, note that the variance involving bias in Eq. (13) applies to the
trait distribution in the sample or population of interest, not the entire range of the
trait. Moreover, even if the bias varies across the entire trait, if it varies similarly
under misspecified and correct models, the reliability will be affected similarly.
If the bias under a misspecified model is relatively constant within the population
of interest—or does not vary more than the correctly specified model—it will not
decrease reliability relative to a correctly specified model. In Fig. 2, for example,
the bias under both the correct and misspecified model is relatively constant for trait
values from O to 1; in a sample from that range, the reliability would be less affected
by bias than a sample from elsewhere in the range of the trait where the bias varies
more greatly.

A second notable consequence of Eq. (13) is that direction as well as magnitude
of covariation between bias and trait level can substantially influence the observed
variance in estimates, and therefore, the reliability. In particular, if the bias and latent
trait negatively covary, the observed variance will decrease and the reliability will
increase. In fact, if the covariance between the bias and trait is sufficiently negative,
it might offset the other terms in Eq. (13) and produce a reliability greater than one.
Similarly, if the bias and latent trait positively covary, the observed variance will
increase and the reliability will decrease. In this way, the shape as well as variance
of the bias also will affect reliability.

A final consequence implied by Eq. (13) is that the reliability under misspecifi-
cation does depend on the absolute magnitude of the variance of the estimates. A
decrease in variance under misspecification—as is illustrated in Figs. 2 and 3—will
actually contribute to an increase in reliability.

In order to illustrate these phenomena, reliabilities were calculated under the
three impression management scenarios illustrated in Figs. 1, 2, 3, and 4. In each
case, the population of interest was assumed to have a trait distribution that was
standard normal, and was assumed to be responding using one of the impression
management scenarios illustrated in Figs. 1, 2, 3, and 4. Reliability was calculated
for scores estimated using the correct population model as well for scores estimated
an incorrect model, as described earlier and illustrated in the figures. Reliabilities
were calculated in two ways: using Eq. (13), as well as directly using simulations.
These new simulations were identical to those described earlier, except that 1,000
responses were generated from a standard normal population; the reliability was
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Table 2 Reliabilities of estimates obtained using correct and incorrect models

Analytic reliability estimates Simulation reliability estimates
Population model Correct model  Incorrect model  Correct model — Incorrect model
Continuous, Model A 0.898 1.089 0.900 1.095
Continuous, Model B 0.919 0.762 0.890 0.738
Asymptote shift 0.713 1.082 0.757 1.058
Intercept shift: PIM 0.815 1.579 0.810 1.664
Intercept shift: NIM 0.782 0.978 0.857 1.099

Note: Analytic reliability estimates were obtained using Eq. (13) with values obtained from
simulations whose results are illustrated in Figs. 2, 3, and 4. Reliabilities greater than one are
discussed in the text. Simulation reliability estimates were calculated directly as the ratio of latent
trait variance to observed estimate variance, using methods described in the text. PIM refers to
positive impression management, NIM to negative impression management

calculated directly as the ratio of the latent trait variance to the observed estimate
variance. For the continuous response models, the bias and variance functions were
calculated directly using Eqgs. (9) and (10). For the discrete response models, values
used in Eq. (13) were derived from the previous simulations (e.g., Eq. (13) was
calculated using the bias functions illustrated in Figs. 2, and 3).

Table 2 presents these reliabilities, for scores estimated using correct and
incorrect models, for each of the impression management scenarios. The analytic
estimates using Eq. (13) and the directly calculated reliabilities are similar, support-
ing the accuracy of Eq. (13).

Note that the reliabilities greater than one in Table 2 are not in error. The cases
where this occurs involve scenarios in which an incorrect model is used and the bias
is negatively related to the trait (compare with Table 1 and Figs. 2, 3, and 4). The
negative covariance between the bias and the trait [Eq. (13)] decreases the observed
variable variance to the point where the observed variance in estimates is actually
less than the true trait variance, producing a reliability greater than one. For example,
in the scenario where the normal-response 2PL model is incorrectly applied to a
group of individuals responding under an asymptote-shift impression management
model, the covariance between the bias and the trait in a standard normal population
is approximately —0.201 and the variance in bias is 0.06, producing a variance in
expected scores equal to 0.658; as the expected variance is 0.266, this produces an
observed variable variance of approximately 0.924, and a reliability equal to 1.082.
Note that in the one case where the bias of the incorrect model positively covaries
with the trait (cov(0*, B)=0.098), in the case of continuous response population
Model B, the reliabilities are less than one.

A related point important to emphasize about Table 2 is that the greater reliabili-
ties under the incorrect models are not overestimates of the reliability—reliability is
a property of a score or estimate, which will depend on the particular estimation
model being used in addition to the test and sample. Although these examples
illustrate that the reliability can provide a misleading sense of test precision when
models are misspecified, it should be emphasized that the reliabilities under many of
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the incorrect models illustrated in the table are actually greater than the reliabilities
under the correct models. That is, the ratio of the true trait variance to observed
score variance will be greater when using an incorrect model in many settings.

3.2 Information and Confidence Intervals

Given that model misspecification can substantially impact the variance of esti-
mates, it is important to determine how it impacts item or test information functions
as summaries of measurement precision. A related, more general question is how
misspecification affects indices of estimation precision, such as confidence intervals.
Regardless of how the accuracy and precision of estimates are actually affected
by misspecification, if that effect is represented well in indices of overall accuracy
and precision, uncertainty due to misspecification can be quantified and used to
make decisions based on the trait estimates. If, on the other hand, indices of overall
accuracy and precision do not represent effects of misspecification well, it becomes
difficult to know how to quantify uncertainty due to model misspecification and use
it to make decisions.

3.2.1 Robust Information

A variety of authors (e.g., Freedman 2006; Huber 1967; Kent 1982; Vuong 1989;
White 1982) have discussed estimates of information under misspecification. In the
current setting, the information associated with an estimate of a single latent trait
value from a very long test is given by

) (6)- e [Sinp" (X,‘é)r

= : (14)

s ()]

In Eq. (14), H is the sum of second derivatives of the log-likelihood across items,
at the maximum likelihood estimate, and J is the sum of squared first derivatives
of the log-likelihood at the same estimate (note that the derivatives are empirically
observed values, not expected values under the model). The robust variance of the

estimate at the maximum likelihood estimate is then given by V, = 1/I, ( 0).

The robust information, /,, is well known in the literature and holds asymptoti-
cally even when the model is misspecified. As many authors have noted, however,
the robust information performs more poorly in scenarios involving small numbers
of observations (e.g., in terms of confidence interval coverage or hypothesis tests),
such as those scenarios typically encountered in psychological measurement. The
robustness properties of I, are asymptotic, for very large numbers of observations;
in a psychological measurement scenario, this would correspond to very long tests
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that are rarely encountered in practice (e.g., tests that are 100s of items long). For
this reason, it is unclear whether the robust information would be any more useful in
typical psychological measurement scenarios than the assumed information under
the misspecified model.

3.2.2 Simulations

Simulations were conducted in order to explore the accuracy of confidence intervals
based on the robust information. Conditions were the same as in the previous
simulations of impression management (i.e., the asymptote and intercept-shift
models). Confidence intervals were created for each simulated trait estimate using
two different estimators of information: the assumed model information and the
robust information [Eq. (14)]. In all conditions, a nominal coverage of 0.95 was
assumed, corresponding to an overall nominal 0.05 Type I error rate.

Results of these simulations are presented in Table 3. In interpreting the values
in the tables, it is important to remember that sampling variation in item parameter
estimates was included in simulations and therefore affected coverage.

Examining the results in Table 3, three broad trends become apparent. First,
as would be predicted, intervals were generally, although not always, closer to
nominal values for correctly specified models compared to incorrectly specified
models. Second, intervals conditional on trait level varied substantially with trait
level in terms of how close they were to nominal values. Finally, use of the assumed
information generally, but again not always, produced confidence intervals that
were closer to their nominal values than use of the robust information. However,
actual coverage levels using robust information were not necessarily further from
their nominal levels under misspecification, and differences between the different
estimators were not large.

Overall, our results echo the conclusions of Freedman (2006), who argued that
the possible benefits to be accrued from using robust information are likely small
when weighed against the much larger effects of misspecification. In our results,
use of the information under the assumed but possibly incorrect model performed
approximately as well as the robust information, suggesting little difference between
the two in practical use, especially given that the effects of misspecification could
be large.

4 Important Areas of Inquiry

4.1 Model Averaged Estimates

Given the effects of misspecification demonstrated thus far, how might one obtain
trait estimates and estimates of precision when there is uncertainty about the
appropriate model? In general, two approaches have been developed: the model
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selection approach and the model averaging approach (Buckland et al. 1997;
Claeskens and Hjort 2008; Draper 1995). The model selection approach is relatively
standard in the psychometric and assessment literature: in this approach to model
uncertainty, one attempts to identify the optimal model for a given respondent, based
on model selection statistics or appropriateness indices, and use that optimal model
to estimate or make other inferences about trait level (a common variant of the
model selection approach is to identify individuals for whom a desired model is
inappropriate or less optimal, and not make inferences about their trait level).

The model averaging approach, in contrast, is a relatively novel approach to
handling model uncertainty in assessment settings. In this approach, multiple
trait estimates are obtained for each respondent, using the different models under
consideration, and are averaged, weighting each estimate by the optimality of the
corresponding models. Specifically, the model averaged estimate, 8, is given by

] :Zwmam, (15)

where wy, is some index of the relative optimality of model m for the respondent
(e.g., a value of a person-fit or model selection statistic) and 8, is the estimate
obtained with model m. Usually the weights w,, are scaled so that they sum to one.

Model averaging offers a number of potential benefits over a model selection ap-
proach to handling modeling uncertainty in trait estimation. First and perhaps most
importantly, research suggests that model averaging reliably improves the accuracy
of estimates under conditions of model uncertainty (Burnham and Anderson 2004).
This can be explained intuitively by noting that in a model selection approach, there
will be errors of model selection, which will increase the variability of estimates. By
weighting estimates under different models in a way that is inversely proportional
to the risk of error, and then averaging, the variability of estimates due to selection
error is decreased. This can also be seen by noting that a model selection approach is
equivalent to a model averaging approach where unit weights are used in the latter
(i-e., wy, is 1 for the best fitting model and O for all other models). Although this
might be appropriate in certain settings, such weights will overstate the certainty of
model selection in many cases, underestimating the effect of model selection errors
on estimation variance (Leeb and Potscher 2005).

Another advantage to model averaging is that it allows one to incorporate model
uncertainty into indices of trait estimate uncertainty (e.g., in quantifying measure-
ment information or calculating confidence intervals). Just as sampling variation
contributes one source of uncertainty about trait level, model uncertainty contributes
another. Rather than conceptualizing model misspecification as a problem requiring
identification of misfitting response profiles, treating them as misfitting or not, one
can instead assume that model uncertainty is part of the trait estimation process, and
incorporate it into indices of estimation error.

Initial simulation results, not reported here, are consistent with previous research
in suggesting that, in cases of model uncertainty, incorporating that uncertainty into
estimates and associated confidence intervals through the use of model averaging
produces more accurate estimates than if one used model selection to identify a
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best model to use for estimation. Model averaging accounts for errors in the model
selection process by weighing different models by their likelihood of being optimal,
thereby “hedging” estimates against different models. Further research is needed
to verify these results and understand how different model averaging approaches
perform.

4.2 Bayesian Estimation

Throughout this paper, we have assumed that trait estimates are obtained through
maximum likelihood inference. One important question is how the conclusions
drawn here might generalize to trait estimates obtained through Bayesian inference,
which is increasingly being used in a number of assessment settings.

Some of the phenomena illustrated here are likely to generalize in a straight-
forward way to the Bayesian case. Bunke and Milhaud (1998), for example,
demonstrated that under very general conditions, under misspecification, Bayesian
estimates will converge to the same expected value as the maximum likelihood
estimate [Eq. (2)], and will have a variance similar in form to the inverse of
the robust information [Eq. (14); the exact form depends on the specific type of
Bayesian estimator]. These results apply asymptotically, however, for very large
tests, and it is unclear how they would generalize to finite samples of observations,
with smaller tests. Bayesian inference itself can be seen as a form of estimation
in which a potential bias is induced (through the prior; e.g., Bickel and Blackwell
1967) in order to reduce variance, raising further questions about the small-sample
bias, variance, and error of Bayesian estimates under model misspecification.

Model averaged estimates, similarly, are formulated naturally within a Bayesian
paradigm. In the case of Bayesian estimation, model averaged estimates are obtained
by integrating the likelihood over the posterior distribution of the model, which itself
can be decomposed into priors involving the model and its parameters and another
likelihood (Draper 1995; Hoeting et al. 1999; Walker et al. 2001). How to integrate
model uncertainty into Bayesian trait estimation, especially in applications such as
computerized adaptive testing, is an important area for future inquiry. Questions
about choices of priors, the form of Bayesian estimation, and how to integrate
uncertainty into Bayesian adaptive testing design all require additional investigation.

4.3 Random Model Misspecification and Multiparameter
Models

Random model misspecification is another critical area for future inquiry. The
scenarios examined here reflected fixed forms of model misspecification, where the
form of misspecification was the same for all individuals. Although this simplifies
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exploration of phenomena, it is likely unrealistic in many settings, where the degree
of misspecification will likely vary randomly across individuals (due to, e.g., group
or idiographic factors). Relatedly, many models will include multiple parameters,
including parameters representing possible sources of misspecification—impression
management or response style parameters, for example.

Various authors have explored the effects of model uncertainty in these settings.
Claeskens and Hjort (2008; also Hjort and Claeskens 2003), for example, focus
on the multiparameter setting, as do Liang et al. (2011). Results similar to those
discussed here are obtained in the multiparameter case, but generally incorporate
the effects of estimating one nuisance parameter on the parameter of interest (e.g.,
the effects of estimating an impression management parameter on estimation of a
trait parameter).

5 Summary and Recommendations for Applied
Assessment Settings

Model misspecification and uncertainty is an important issue arising in a number of
measurement and assessment settings. Here, we have attempted to clarify the role
of model misspecification in psychological measurement by addressing the effect
of misspecification and uncertainty on the psychometric properties of estimates.
Although model misspecification will often negatively impact estimates, its effects
can be unintuitive and complex, helping to explain certain findings in the literature.
We conclude by offering recommendations for applied assessment settings.

5.1 Consider Total Error, Including Variance as Well as Bias
Effects, of Misspecified Models

It is our sense that the applied literature on misspecification has focused much more
extensively on bias effects than variance effects, which can be misleading given
that overall error is a function of both. There are various examples of this focus
on bias in the literature (Meade 2010; Nye and Drasgow 2011). One explanation
for this focus might be a seemingly reasonable but incorrect assumption that the
form of misspecification will directly parallel its effects on estimation accuracy and
precision. For example, it is tempting to assume that misspecification limited to a
location shift (e.g., a shift in intercepts or thresholds) will result solely in a shift in
expected values of estimates (i.e., bias). Although this might be true under certain
circumstances (e.g., for continuous normal responses), the current results indicate
that this will often not be the case (e.g., Fig. 3).

This is not to suggest bias effects can or should be ignored—intuitively, and as
evidenced by the results presented here, bias can exert powerful effects on overall
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estimation error. Also, in certain settings where the effects of location shifts are
amplified, bias effects might predominate. For example, in classification or selection
settings, even if overall estimation error is similar using correct and incorrect
models, if it is increased in the range of the classification or selection threshold,
bias effects might exert strong effects (cf. Kalohn and Spray 1999).

As demonstrated here, variance effects of misspecification can substantially
influence the overall error of estimates, either increasing or decreasing error. For
this reason, we recommend that test users remain mindful of variance as well as
bias effects of misspecification in test scoring, trait estimation, and interpretation.

5.2 Explicitly Determine Misspecification Effects
in a Given Setting

Relatedly, we recommend that effects of misspecification on estimation accuracy
and precision be explicitly determined when issues related to model uncertainty
are important. In the case of continuous responses, equations presented here [Eqgs.
(3)—(10)] can be used to quantify the effects of misspecification on MSE; in the
case of discrete responses, simulations could be used. If MSE is an undesirable
index of estimation accuracy for a particular application, other indices (e.g., median
absolute difference) could also be used (Heskes 1998; James 2003). Explicitly
delineating misspecification effects is important because they can be unintuitive or
complex, depending on the form of misspecification, the probability (e.g., base rate)
of misspecification, and true trait level. Characterizing the most likely effects of
misspecification can help prevent errors in interpretation and apparent paradoxes
regarding misspecification.

One important possible example is provided by recent literature on the validity
of impression management indices (McGrath et al. 2010). It is often assumed in
that literature that indices of impression management should moderate the validity
of trait estimates, such that estimates associated with greater values of such indices
should be less valid. However, one important implication of the results obtained here
[e.g., Eq. (13)] is that this assumption can be false: indices of model misspecification
(e.g., validity scales) may not moderate criterion-related validity of test scores, even
if model misspecification exists and negatively affects accuracy and precision.

For instance, consider an estimate of the bias, 3, obtained through a validity
scale or other index. As this estimate becomes more accurate, if one conditions
on it, the variance in bias and the covariance between the bias and the trait will,
by definition, go to zero. Examining Eq. (13), it becomes apparent that this will
actually remove the component of the observed score variance due to bias, leaving
only the true variance and expected error variance in trait estimates at each level
of the estimated bias. If Athese two components of variance do not change across
different levels of bias, B will not moderate the validity of the Estimates. In fact,

if variance decreases with misspecification (e.g., as in Fig. 3), B might moderate
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validity in the opposite direction, such that conditioning on ﬁ becomes associated
with more valid estimates. In fact, in this case, one would predict more accurate
estimates of bias (e.g., more valid validity scales) to increase conditional validity
even more. Similarly, in the case that error variance does not change across levels
of bias, any moderation effect would decrease with more accurate estimates of bias.

The purpose of this example is not to weigh on the utility of impression
management indices: many other issues regarding their validity and utility have
been discussed (McGrath et al. 2010; Ziegler et al. 2012). However, the example
does illustrate that misspecification effects can be unintuitive, and illustrate the
importance of explicitly delineating these effects when model uncertainty is a
concern.

Acknowledgment We would like to thank Katherine Jonas for her helpful comments on drafts of
this manuscript.

Appendix

Throughout the appendix, to simplify notation, the trait estimate conditional on the
true trait value and model parameters, (9 ‘ 0", 7/) , will be written as 6. As noted in

the text, the variance of the trait estimate can then be written as

GZ—E[(§—E[§D2] :E{éz}—E[é}z. (16)

> [“fe?j} /v

B Zaj [a;ei*—l—(b}f—bj)} /l[/j2 and g— an
245/vj dajlvi

Then, following Mellenbergh (1994b), page 231, and substituting a; 8; + b} + ¢;;
for x;; in Eq. (7), one has 0=f+g andE [5} =E|[f+g]=E|[f]+E|g]- However,

*

y
E [5} — E[f] = f [Eq. (8)]. Substituting back into Eq. (16), one has

f

assuming that the mean true error e, is zero, the second term, E[g], equals zero, so

= [(f+87] - P=E [fP+2fg+8’] - £ =E [/ +EPfe + E[¢] - 1
(18)

However, if the expected true error ejj is zero, the second term on the rightmost

side is zero, and the first and last terms cancel, leaving E[g?]:
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The denominator in the expectation can be treated as a constant. The numerator
in the expectation expands to

o’=E|[g’] =E (19)

2 2 "
[2 [aie?j] /‘V/Z]z = a21 2e?12+ —jzesz+ a—lz—ée?le;‘j—i- s (20)
(vi) (v?) vty

However, with uncorrelated errors, all the multiplicative terms [represented by
the last term in Eq. (20)] equal zero in expectation. This gives

* 2 a2 % a2_ N
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2 )
= azl sE [6712} + / sE [esz} R Q21
(vi) (%)

Note, though, that y/*} =El(ef; - E[ei*j])z] = E[e;;.z] - E[e;;.]z. Assuming the

mean of the errors is zero, this implies l//*jz :E[e,’sz]. Substituting this back into
Eq. (21), and combining with Eq. (19), this gives

2 2
>4y
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A State Space Approach to Modeling IRT
and Population Parameters from a Long
Series of Test Administrations

Richard G. Wanjohi, Peter W. van Rijn, and Alina A. von Davier

1 Introduction

In certain standardized educational assessments, there are many administrations of
test forms of the same assessment over a specific period. The issue of equating
these test forms from long series of test administrations is complicated, because
the statistical properties of the items and the student populations can be volatile.
Populations of test takers are always changing over time. For example, testing
companies can target new groups or countries as to expand their business, where
the ability level of these new groups can be quite different from the current group
of test takers. In addition, external influences can have serious effects. For instance,
if, at a certain point in time, a test is accredited for some sort of certification by
a government, this can have a major and direct influence on the population of test
takers. In addition, test preparation can become more and more popular, which can
lead to increased scores. Most of the techniques and methodologies for equating are,
however, assuming stable statistical properties for items, student population, or both.
In addition, most equating techniques are concerned with relatively few forms to be
equated (in the simplest case, there are two). The framework that we use for equating
long series of test administrations is based on item response theory (IRT). The first
step, then, is to estimate the parameters of an appropriate IRT model. If the test
forms contain common items, then concurrent calibration procedures can be used to
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estimate the IRT model parameters. If the number of administrations becomes large,
the model parameters might have drifted gradually over time or broken from their
initial distribution. This may occur for any number of reasons, including changes
in institutional arrangements, economics, or policy, or, more seriously, breaches
of security and mistakes in test development. Drift in the model parameters is an
important aspect to consider in equating long series of test forms, because, if it
is ignored, it can seriously impact the scores of the test takers. Therefore, there is a
need to develop methodology to detect such drift, so that it can be addressed quickly.

Commonly used quality control techniques in the field of educational testing
have mainly focused on the detection of changes or drift in item parameters in the
context of computerized adaptive testing (Veerkamp and Glas 2000; Glas 2000).
These techniques include straightforward and effective visual inspection charts like
the Shewhart control and cumulative sum (CUSUM) charts (Glas 1998). The use
of such techniques in the context of equating large numbers of test forms can be
limited. In particular, the standard CUSUM charts that have been used in educational
measurement do not work well if the variables of interest exhibit correlation over
time, even at low levels (VanBrackle and Reynolds 1997). Time series techniques
are more suited to deal with such correlations and, therefore, will be used in the
present paper.

In recent years, researchers have considered monitoring the distributions of
various variables over a long series of test administrations (Li et al. 2011). Some
of these variables are means and variances of the scaled and raw scores, means
and variances of IRT parameters, IRT linking parameters, automated and human
scoring data, and background variables (Keller and Keller 2011; Brinkhuis and
Maris 2009). Li et al. (2011) monitored the distribution of the mean scaled scores
using autoregressive integrated moving average (ARIMA) models. However, they
assumed that the distribution of test takers’ ability is stationary over time. There is
a need to develop fast, flexible, and effective procedures to monitor the variables of
interest over time and capture any unusual patterns in these large data streams in real
time. For example, in the context of monitoring scale scores, Lee and von Davier
(in press) discuss quality control charts and time series techniques, and von Davier
(2012) provides an overview including data mining techniques.

We will demonstrate the use of state space modeling techniques to model IRT
characteristics in the context of equating long series of test forms. In our approach,
the item parameters from the 2-parameter logistic model (2PLM) are combined with
population parameters from a Gaussian distribution (van Rijn et al. 2010). In this
paper, we will focus on sudden breaks (change points or jumps), trends, seasonal
effects, and outliers in the population means in this model, but the methodology can
be applied to other parameters in the model as well (e.g., the item parameters or the
population variance). In our case, however, the estimated population means from
each administration serve as input for the state space model.

The outline of the present paper is as follows. First, the 2PLM and state space
model for the population means are discussed. Next, models for breaks, trends,
seasonal effects, and outliers in the population means are introduced. Then, we
illustrate our approach through three different examples with simulated data. The
paper ends with a discussion.
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2 IRT and State Space Models

IRT models and their estimation are described in Lord and Novick (1968), van der
Linden and Hambleton (1997), and Rao and Sinharay (2007). In the 2PLM,
the probability of a correct answer to dichotomous item j is modeled as fol-
lows (Birnbaum 1968)

1
1+exp(—a;(6 —bj))

P(x;=1]6) = )

where a; is an item discrimination parameter, b; is an item difficulty parameter, and
0 is the unobserved ability level. We assume that ability 6 is normally distributed
with mean y and variance ¢2. In addition, we assume that there exists a series
of T test administrations where a different population mean is assumed for each
administration and that both item and population parameters can be calibrated
concurrently through a linking design by means of marginal maximum likelihood
estimation (see Li etal.2011). In this paper, we will focus on the population means,
and we denote the series of estimated populations fI, by y; fort =1,..., T, so that we
can retain straightforward notation for the state space model. However, whenever an
item is used in multiple administrations, its parameters can be inspected for drift by
the state space methods discussed next.

State space models provide an effective basis for practical time series analysis
and forecasting. They are used in a wide range of fields including statistics,
econometrics, genetics, and engineering (Lindquist and Picci 1981; West and
Harrison 1997; Durbin and Koopman 2001). A state space model involves two
processes: the observation process and the unobserved state process. The state-
space approach to time series modeling focuses attention on the state vector process
of a system, because the state vector contains all relevant information required to
describe the system under investigation.

In our case, the observation process is the univariate series of estimated popu-
lation means y;, t = 1,...,T which are related to an unobserved state vector ¢o; of
dimension p through an observation equation. Although we assume that we obtain
this mean from the estimation of a general linear mixed model, this is not strictly
necessary to specify a time series model. That is, simple estimated means from the
scaled scores derived from equating techniques other than concurrent calibration
can also serve as input. The dynamics of the state vector are captured in the state
equation, and the state vector can contain different elements depending on the
dynamic model that is used. Both equations can be given by

yr = f(04,vs, ), (observationequation) )

o = g(04_1,w,9), (statcequation) 3)

where f and g are known functions, v; and w; are independent error sequences, and
v and ¢ are vectors of unknown parameters in the model.
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2.1 Linear State Space Models

Linear Gaussian state space models are also referred to as dynamic linear models
(DLMs). In a DLM, the functions f and g are linear functions, and the distributions
of the error sequences are assumed to be Gaussian. For our case, a DLM can be
specified as follows

)’t:FtOCt‘i‘Vta VINN(Oa‘/t)v (4)
OC,:G,OC;,1+W,, WtNN(O,vV[) (5)
where F; and G; are known design and transition matrices of order 1 X p and p X p,

respectively, and v, and w; are two independent sequences of independent Gaussian
random vectors with mean zero and known variance matrices V; and W;, respectively.

2.2 Particular Cases of the Linear State Space Model

We will make use of the three instances of the linear state space model to
accommodate breaks, trends, and seasonality in the series of population means: the
random walk plus noise model, the linear trend model, and

(i) The random walk model plus noise model, or local level model, can be
denoted as

U = 04 + vy, VtNN(Oavt)a
O = 04— + Wy, WINN(Oa‘/VZ)7 (6)

where p = 1 and F = G = 1. This model is appropriate for population means
showing no clear trend and seasonal variations.

(i) Inthe local linear trend model, the dimension of the state vector and associated
error is two:

1
H = [O] o +ve v NN(Oa‘/t)7

11
O = [0 1} 01 +wy, WZNN(()ath)- @)

These two cases, (i) and (ii) above, are polynomial DLMs with order one
and two, respectively, where the order is the dimension of the state vector.
Polynomial DLMs are commonly used for describing the trend of a time series.
(i) Seasonal model with linear trend: If there is a seasonal pattern in the series
of population means, then this can also be modeled in the DLM framework.
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We first write the model for a series with S seasons as a structural time series
model as follows (Harvey 1989)

=B+ P+ % +s, (8)

where f31; and [35; comprise a local linear trend model as specified above, & is
a white noise sequence, and the seasonal component ¥ is given by

s/2

%= Vi, ©)
j=1

where each y;; follows

Vi _ [cos/’Lj sin)Lj} Yii—1
Y;t —sinA; cosA; ﬁ,z—l
where A; = 27j/S is the frequency in radians. For example, a model with

quarterly observations, a trend, and a yearly cycle reduces to the following
state space model:

+

8j[
« | (10)
2|

0
1
1
H = 1 o +ve v ~N(0,V;),
1
_1_
(11000 0]
01 000 O
00010 O
= _ ~ 11
(73 00-10 0 0 (0 l+wta Wr N(O,VV;), ( )
00 0 0-10
_00 000 —1_
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B Wi
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When the seasonality (or periodicity) varies over time, an autoregressive
process of order two with complex roots can be used. In a similar context, Lee
and Haberman (2012) used harmonic regression to investigate the stability of
mean scale scores.

We note that the assumption of equidistant estimated population means is only
tenable when the test administrations are regular (e.g., weekly). Methods exist to
allow for irregularly spaced test administrations (e.g., weekly, but not in winter and
summer holidays). For strong irregularities, the model can be specified in continuous
time, but the state space representation then accommodates the observations in
discrete time (Harvey 1989; Oud and Singer 2008).

In this paper, we do not take into account the estimation error of the population
mean. We find this reasonable because the sample sizes for the applications we have
in mind are quite large (1,000+). In addition, Lee and Haberman (2012) make use
of scale scores of a series of administrations from which the mean is computed and
do not take into account the estimation error of the scale scores. In addition, note
that estimating the variance from scale scores is susceptible to underdispersion, i.e.,
the variance is underestimated.

The estimation and prediction of the state vector is achieved by computing the
conditional density p(og, & |y1;), where & is a vector of all unknown parameters in
the model. When k = ¢, we deal with what is referred to as the filtering problem,
where we estimate ¢ as data arrive. This is the case in many applications, including
test administrations, where data is collected sequentially over time. When k < ¢,
we have the smoothing problem, where the researcher has all the data and wants to
study retrospectively the state process underlying the observed data. When k > ¢, we
have the prediction problem, where the researcher is interested in forecasting future
states.

Effective algorithms exist to filter, smooth, and predict the unobserved
states and predict future observations. These algorithms include the Kalman
filter (Kalman 1960) and the Forward Filtering Backward Sampling (FFBS)
algorithm (Frithwirth-Schnatter 1994).

2.3 Detecting Outliers and Breaks

To account for observations and states that are unusual, Petris et al. (2009) replaced
the Gaussian distributions of v; and w; with Student’s ¢-distribution. Then, the error
sequences in the DLM can be regarded as a mixture of normals, conditional on
the scale parameters, and a vector of latent random variables (Petris et al. 2009;
Shephard 1994). This class of conditionally linear Gaussian state space models
offers a general and convenient framework for parameter learning, state filtering
and detection of observational outliers, structural breaks, or scale drift (Petris et al.
2009).
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Here, we follow Petris et al. (2009) and, therefore, assume that v, follows
a t-distribution with 1, degrees of freedom and common scale parameter A,

2 A My~ 1(0y). (13)

Introducing the latent variable w,,, we can equivalently write

il Ay, @y ~ N(O, (Ayay) ™). (14)
Following a similar argument, the conditional distribution of w; can be expressed as
Wil Aai, @t ~ N0, (Aei@aui) '), i=1,2,....p. (15)

From (8) and (9) above, V; and W; in (4) can now be expressed as

V= (Moy) " (16)
W, = diagonal(Agi0e) "', fori=1,2,....p, (17)

and (4) now becomes:

i =Fo+v, vi~N(O, (A'ywyt)il) (18)
o =Gy 1 +wi, wi~N(0, (Agi®oui) ). (19)

The variable @ can be interpreted as the degree of non-normality of v and w. Small
values of @ will produce large values of v and w. This can be observed by taking,
as baseline, v; ~ N (O,)Ly’l) corresponding to @y = 1. Values of , less than 1 make
larger absolute values of v; more likely (Petris et al. 2009). Ideally, if there are no
outliers or break points in the series, the values of the @’s are expected to be equal
to 1. Specifically, from (16), a small value of @, corresponds to large variance V;
making a large v; accounted for, easily, by the model. A small value of @, will
therefore signal an outlier in the series. Similarly, from (17), a small value of @i,
corresponds to large variance W;; (W, ; is the ith diagonal element of W;). A small
value of wg;, flags a break or jump in the ith component of the state vector.

Our goal is to estimate the unknown states .7 and parameters & given the data
v1.7. This inference is expressed through the joint posterior density

ploo.r,Elyir) o< p(ao.r|&,yi.r)p(Elyrr). (20

In practice, computing the density Eq. (20) is analytically intractable (Gilks et al.
1996), so we resort to Monte Carlo methods and, in particular, Markov Chain
Monte Carlo (MCMC). The most commonly used approach is to implement a
Gibbs sampler to draw from the joint posterior distribution of the states and the
parameters given the data. As mentioned earlier, £ is the vector of all unknown
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parameters, but, in this study, we are particularly interested in the @’s. A Gibbs
sampler to draw from this posterior distribution can easily be implemented. For
each £0) in the MCMC sample of size N, we can draw a((){% from p(op.7|& =
é(j ), y1.7) using the FFBS algorithm. The parameters are, in turn, drawn from their
full conditional distributions given the states and observations, that is draw g(ﬂ
from p(&lyr.r, 0. = océ’%) This process is repeated for j = 1,2,...,N. The full
conditional distributions for the parameters are easy to derive. For example, the full

conditional distribution of @, fort =1,2,...,T is given by
p(y|...) o< p(yrr|on.r, @y, Ay) - p(wy[ny)

n
2

To el 2 -1 n
octljla,yz.exp{— 50— Fion) }w) .exp{_wya}
} 2n

T . A T_ —EX)2
a)y|,,,NGamma( ‘;n)777y+ yZ,,lz(yz 2.0 )

T+ny

T
oca)Zl.exp{ l z Eat

and, therefore,

(22)

The entire sampler is available in Petris (2010).

3 Simulation Design

We simulated data with 20 common items in 100 test administrations, each test
being administered to 100 test takers. A series of simulations was performed in
which the time series of test takers’ ability means contained seasonal effects, trends,
and/or sudden breaks. In particular, test takers’ ability means were simulated to cater
for three different possible instances (a) when the ability means are assumed to be
the same across different forms (b) when there is some linear growth in the ability
means over time, and (c) when the ability means exhibit some seasonality over time.
The results for each of the three cases are presented in the next section.

Difficulty parameters for each item were drawn from a standard normal distribu-
tion, while the discrimination parameters were drawn from a standard log-normal
distribution. The simulated ability means together with the item parameters were
then used to generate item responses under the two parameter logistic model,
Eq. (D).

From the generated data, the item parameters and population means were esti-
mated using the marginal maximum likelihood (MML) estimation method (van der
Linden and Hambleton 1997). The design in this study is a complete data design
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where all the test takers took the same test with all common items (Kolen and
Brennan 2004). The complete data design was employed to keep things straight-
forward and the concurrent calibration procedure effective. From this procedure,
we obtained a set of estimated item parameters and, for each test administration,
an estimated population mean and variance. The estimated means were then used
as the observed data in the time series analysis. The MCMC methods were used
to compute the joint posterior estimates of the states and the unknown parameters
given the observed data, up to time 7.

4 Results

4.1 Local Level Model

As explained earlier, this model is appropriate for series that do not exhibit any trend
or seasonality. The test takers’ mean abilities were drawn from a local level model
(4). The assumption here is that the mean abilities of the different groups of test
takers are the same across different administrations, apart from random fluctuations.
We created intentionally a change point at test administration 73 (t = 73). The
simulated and the estimated ability means are displayed in Fig. 1. We can clearly
see that the two series overlap, an indication that the estimation method is quite
accurate.

To compute the posterior estimates of the states and the parameters in this state
space model, an MCMC algorithm using a random walk plus noise model was run.
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Fig. 2 MCMC diagnostic plots for local level model

The MCMC samples were set at 20,500, and the first 500 were removed as burn-in
before the analysis. The MCMC diagnostic plots are displayed in Fig. 2.

From these MCMC diagnostic plots, it is very clear that the trace plots and the
ergodic means —the running sample means—are very stable. The autocorrelation
function (ACF) decays very fast. We can conclude that the convergence has been
achieved and, therefore, go ahead and use the output from MCMC for analysis.

From Fig. 3, we can see that the unobserved states, X;, which, in this model,
correspond to the test takers’ expected mean ability, are the same across the different
test administrations. The change point at administration 73 is well captured in
the plot. It is also clear that there are many observations that lie outside the
95 % probability interval of the test takers’ expected mean ability. Observation at
administration 58 is, however, very far from the rest.

We can see from Fig. 4, the left panel, that the major break or change point at
administration # = 73 is captured. In the right panel, we can see that there are several
outliers, and the furthest one at administration ¢ = 58 has been captured.

4.2 Local Linear Trend Model

The test takers’ ability means were drawn from a local linear trend model. The
assumption here is that the mean ability of the different populations changes linearly
through time. As discussed earlier, the state in this model is two-dimensional —the
intercept and the slope or growth rate. The simulated test takers’ mean abilities and
the estimated ones, again, were highly correlated. Figure 5 shows the two plots for
this model.
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Fig. 4 Posterior estimates for @ in local level model (left = @, right = w,,)

To compute the posterior estimates of the states and the parameters in this model,
an MCMC algorithm using the linear trend model was run. The MCMC samples
were set at 20,500, and the first 500 were removed as burn-in before the analysis.
Figure 6 shows the MCMC diagnostic plots.
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Fig. 6 MCMC diagnostic plots for linear trend model

From these plots, we can conclude that the convergence has been achieved. The
ergodic means —the running sample means—are very stable, especially at the end
of the iterations. The ACF decays very fast. Next, we use the output from MCMC

for analysis.

Figure 7 shows the plots of the test takers’ simulated, estimated, and true mean
abilities and 95 % confidence interval for the expected mean. There are also several,
but mild, observational outliers.
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Fig. 8 Posterior estimates of @ for local linear trend model

From Fig. 8, we can see that there are several outliers, but they are relatively mild.
The intercept component of the state vector is very stable. In the slope component,
the major break at ¢+ = 85 has captured. The results from these plots are consistent
with the plot of the expected mean abilities.

4.3 Seasonal Model with Linear Trend

This model has three-dimensional state space: the intercept, slope, and the seasonal
component. The assumption here is that the mean abilities of test takers vary from
one test administration to another, and the tests are administered at different seasons
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Fig. 9 Simulated and estimated mean abilities for seasonal model with linear trend

within a year. For a start, we assume one test form is given per season in any given
year. We also consider four seasons in each year: Spring (S), Summer (U), Fall (F),
and Winter (W). Multiple tests per season can also be modeled. The mean ability
is simulated using linear trend plus seasonal component model. For illustration, we
simulated from year 1996 to 2010, and we intentionally created a change point in
spring of year 2008. The plots of simulated and estimated mean abilities are shown
in Fig. 9.

To compute the posterior estimates of the states and the parameters in this model,
an MCMC algorithm was run. The MCMC samples were set at 20,500, and the
first 500 were removed as burn-in before the analysis. MCMC diagnostics plots are
displayed in Fig. 10.

From these MCMC diagnostic plots, we can conclude that the convergence has
been achieved. We can now go ahead and use the output from MCMC for analysis.

From Fig. 11, it is apparent that the linear trend is stable. This is also confirmed
by the posterior estimates of @ for the slope component of the state. That is @, > in
Fig. 12. The major change point in Summer 2008 is well captured in the posterior
estimates of @ for intercept component of the state, @, 1 in Fig. 12. It is clear from
Fig. 11 that we do not have any observational outliers; this is confirmed by very
stable estimates of ,, in Fig. 12.

The seasonal instability in Winter of 2006 and Fall and Winter of 2007 apparent
in plots of simulated and estimated mean abilities is well captured by the posterior
estimates of @ for seasonal component, @y 3.
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Fig. 11 Simulated and estimated mean abilities, and the trend for seasonal model with linear trend

5 Discussion and Future Directions

This paper investigates the use of DLM in an IRT framework. This approach allows
us to detect, effectively and in real time, any outliers and structural breaks or change
point(s) in population parameters in different test administrations over time. In
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Fig. 12 Posterior estimate of @ for seasonal model with linear trend

principle, the methodology is capable of dealing with changes in both item and
population parameters over time. The approach then is analogous to detection of
differential item functioning (DIF) where one has to distinguish between actual
differences in ability between groups (known as impact) and actual differences in
item performance conditional on ability (known as DIF). It would, however, be
the case that in studying changes in item parameters over time, this is performed
on an item-by-item basis. Due to effectiveness of this approach on simulated data,
its application to real data sets with complete or incomplete design is encouraged.
Positive results are expected. The approach may also be extended to other different
variables that are to be monitored over a long chain of administrations. Since the
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posterior estimate based on time ¢ cannot be used to evaluate posterior based on
time (¢ + 1), every time a new observation is made, a totally new Markov chain
has to be simulated. This makes inference using MCMC limited, especially if
the observations are made rapidly (in minutes or hours). We are currently in the
process of designing a fast algorithm to detect the outliers and the breaks using
sets of weighted particles —an approach commonly referred to as sequential Monte
Carlo (Liu and West 2001; Pitt and Shephard 1999; Storvik 2002).
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Detection of Unusual Test Administrations Using
a Linear Mixed Effects Model

Yi-Hsuan Lee, Minzhao Liu, and Alina A. von Davier

1 Introduction

Nowadays, many educational standardized assessments have an (almost) continuous
administration mode. With an increase in the number of administrations of test
forms there is also an increase in the complexity of the quality assurance procedures
needed to maintain the stability of the reported scores. Traditional methods for
quality control (QC; Allalouf 2007) are not sufficient for detecting unusual scores
in a rapid flow of administrations. This study investigates data from several
consecutive administrations that follow a specific equating design (or braiding plan)
and proposes a linear mixed effects model for the detection of abnormal results.
Monitoring and maintaining the quality and stability of the scale scores of a stan-
dardized assessment are perhaps the most important goals of the psychometricians’
work. Global tests are taken all over the world by examinees from different language
groups and different countries. Being responsible for the reported scores to millions
of examinees implies that many layers of quality control are cautiously and seriously
employed, since any mistake or unusual result might affect examinees’ lives. For
testing programs that provide a large number of administrations each year, the
challenge of maintaining comparability of test scores is influenced by the potential
rapid accumulation of errors and by the lack of time between administrations to
apply the usual techniques for detecting and addressing scale drift or anomalous
results. Many traditional techniques available to psychometricians for understanding
and monitoring the equating results (Allalouf 2007) have been developed for tests
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with only a small number of administrations per year, and therefore, while very
valuable and necessary, they are not sufficient for a complex and rapid flow of scale
scores (Lee and von Davier 2013; von Davier 2012). To assess the significance of the
variability of scale scores over time, a different type of techniques is needed. In this
paper, we investigate the usefulness of linear mixed effects models for detecting
the effects of background variables, the administration, and the equating design
(or braiding plan) on the variability of scale scores over time. This approach is
illustrated with real data from 15 administrations of a global English assessment.
In this study we fit a linear mixed effects regression model to test data to predict
scores of certain subgroups and to help detect unusual results.

In recent years, research has been conducted on identifying promising statistical
tools that can be used as QC procedures on assessment data over time. Lee and von
Davier (2013) proposed the inspection of the QC charts, such as the Shewhart and
CUSUM, to detect trends and the application of the change point models to detect
abrupt changes in the flow of scores over time. Li et al. (2011) investigated the use of
time series to model test scores data over time. Lee and Haberman (2013) proposed
the use of harmonic regression to account for the seasonality observed in test scores
over time. The study of Luo et al. (2011) had similar objectives as the current study,
but used data from a test with a very different equating design (or braiding plan)
than ours. They focused on mean score vectors and examined the effects of three
background variables (i.e., testing country, native language, and reason of taking
the test) on the mean scores. This method may lose some information about the
data because the raw, individual data were aggregated by subgroups. Meanwhile,
it had limitations in the selection of the independent variables in order to ensure
decent sample sizes for each subgroup. Therefore, instead of working with mean
scores, in this study we propose a linear mixed effects model with individual scores
as responses to describe the data.

The rest of the paper proceeds as follows. The data set and the model will be
described in Sect. 2. In Sect. 3, results from model selection will be presented, and
interpretations and inferences will be made. The prediction method will be used to
detect unusual score patterns in test administrations for a certain target population
and it will be described in Sect. 4. In the last section, we discuss the limitations of
the study and propose future research.

2 Methods

2.1 Data and Design

The data came from 15 administrations of an international English test. They
included examinees’ scaled scores and their responses to a background ques-
tionnaire. A random sample of 18,000 examinees was drawn from each of the
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Group 1 @ @ @

Group 2 ONOXO

Group 3 OROXO

Fig. 1 Equating design involved in the 15 administrations (each triangle and circle stands for one
administration. Three of them were given in country A, and the other two were given in country B)

administrations. The 15 administrations can be classified into three groups of five
administrations each based on the equating design: within each group, the five
administrations were linked in a certain way; three of them were assigned to country
A and the other two were assigned to country B. The three groups were randomly
selected from a large pool of administrations. Figure 1 demonstrates the equating
design and data structure.

We looked at the Listening and Reading sections of the test. Each examinee
received a score for each section on a scale from 5 to 495 points. In this study,
Reading and Listening scores were modeled separately. The scores for each section
were treated as a continuous variable.

The background questionnaire contained 14 questions. Basically, they could
be divided into two parts: demographical information and learning experience,
including level of education, major, working status, job, years of learning English,
times of taking this test, daily study time, etc. After a preliminary exploratory
investigation, several variables were selected as potential predictors. Table 1 shows
the complete list of variables of interest as well as their properties and basic
description. They are predictors (i.e., independent variables) considered in the
model selection. The properties of these predictors are discussed in the following
subsections.
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Table 1 List of predictors and their properties

Term Label Property Levels Type Description

Group “group” Random 3 Nominal  Group of administrations
Administration ~ “admin” Random 15 Nominal ~ Administration

Gender “gender” Fixed 2 Binary Examinee’s gender
Country “cntry” Fixed 2 Binary Examinee’s country
Repeater “repeater”  Fixed 2 Binary Whether test previously taken
Education “edu” Fixed 3 Nominal  Level of education
Status “status” Fixed 3 Nominal ~Employment status
Major “major” Fixed 7 Nominal Examinee’s major

Job “job” Fixed 3 Nominal  Industry of jobs

Years “years” Fixed Integer Years of study

Time “time” Fixed Integer Daily study time
English country ~ “engctry”  Fixed Integer Years abroad

Table 2 Frequency table for the “education” variable

Education Frequency Proportion
Missing value 8,957 0.03
Primary school 304 0.00
Junior high school 919 0.00
High school 13,507 0.05
Vocational/technical high school 1,804 0.01
Vocational/technical school after high school 5,515 0.02
Community/junior college 14,967 0.06
Undergraduate college or university 191,368 0.71
Graduate or professional school 31,676 0.12
Language institution 983 0.00

2.2 Data Manipulation

Based on the property of those independent variables, different data manipulations
are needed for the predictors for fixed effects. Here are three major modifications.

1. Grouping: There are many possible response categories for variables such as
“education,” “job,” and “status,” so grouping some of the categories appears
reasonable and necessary because the sample size might be too small in some
categories. From Tables 2 and 3, it is easy to find that undergraduate students and
graduate students are the major categories for “education,” and full-time students
and full-time employees are the majority for “status.” By categorizing the two
major levels and combining all the others into a separate level “others” for either
variable, we might have a more meaningful and accurate model. For the “job”
variable, there were 32 response categories, and we grouped the categories into
three levels (manufacturing, service, and others).
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Table 3 Frequency table for the “status” variable

Status Frequency Proportion
Missing value 7,838 0.03
Employed full-time (including self-employed) 89,034 0.33
Employed part-time and/or study part-time 13,428 0.05
Not employed 22,885 0.08
Full-time student 136,815 0.51
Table 4 ASSiz‘?’ned scores for Question Scores  Question Scores
the ordinal variables -
Years Time
(A) Less than orequal to4 1 (A) None 1
(B) 4-6 2 (B) 1-10 % 2
(©) 6-10 3 (©) 1120 % 3
(D) More than 10 4 D)21-50% 4
(E)51-100% 5

English country

(A) No

(B) Less than 6 months
(C) 6-12 months

(D) 12-24 months

(E) 24 months more

WV AW N~

2. Assigning scores: Response categories of the variables “years” (how many years
examinees have learned English), “time” (how often they use English in daily
life), and “English country” (how long they stayed in English-speaking countries)
have intrinsic ordering, so we treat them as ordinal variables and assign scores to
the response categories. The most naive method is to assign 1-# scores. Any other
assignments would have a very similar Pearson correlation and similar inference
from the model. Table 4 shows the assigned values for each response category of
a question. Handling them in this manner also makes the approach more efficient
(Agresti 1996, pp. 36-38).

3. Missing data: There were no missing data in the random predictors “group”
and “administration” and the fixed predictor “country” because their values are
determined when the examinees register for the test. When all the other fixed
predictors (“repeater,” “gender,” “years,” “time,” “English country,” “educa-
tion,” “status,” “major,” and “job”) were considered, the number of missing
observations is 36,565 out of 270,000 total number of observations (about 14 %).
The simplest method for analyzing data with missing observations is to delete
cases and obtain a data set that is complete, which is also the default method
for many statistical packages. This method was used in our study under the
assumption that the missingness of those predictors was irrelevant to test-takers’
scores; i.e., missing covariates were missing completely at random (MCAR).
If the MCAR assumption is reasonable, valid inferences can still be made
based on the complete responses, even though we did not make full use of the

EEINT3

EEINT3
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available data and might lack some accuracy in estimating the variance of the
regression coefficients (Daniels and Hogan 2008, p. 92). Alternatively, one may
impute the missing observations, but this approach often requires the missing
at random (MAR) assumption and some distributional assumptions. As noted in
Gelman and Hill (2007, Chap. 25), it is impossible to prove that data are missing
(completely) at random because they are unobserved. For missing categorical
predictors, one may avoid the assumption of MCAR or MAR by creating an extra
category for the variable indicating missing. We did not consider this method
because the proportion of missing values per variable of interest was very small
(the maximum was about 7 %).

2.3 Univariate Linear Mixed Effects Model

We propose a linear mixed effects model to analyze the examinees’ scores collected
from the equating design shown in Fig. 1. Due to the equating design, the test scores
possibly have two levels of variance components: (a) examinees taking the same
administration are likely to have scores that are more correlated than those taking
different administrations due to seasonality and (b) it is also possible that scores in a
particular group of administrations are more correlated than those in different groups
because of equating. Recall that the groups of administrations are a random sample
from a large pool of groups of administrations, rather than pre-decided groups of
administrations of interest. Therefore, we differentiate the two sources of variations
by assigning “group” and “administration” as two independent categorical random
effects and estimating the variance component attributable to either random effect.
By nature of the equating design, each administration only appeared in one group
(i-e., anested design). Other background variables mentioned in Table 1 are taken as
fixed independent variables when examining their contribution to individual scores.

Let Yj; be the random variable that represents the score of examinee k in
administration j and group i, where 1 <k <18,000, 1 <;j<5, and 1 <i<3, and
let X;jx be a vector of fixed predictors for this examinee. Following the convention
in mixed models analysis and variance components estimation (e.g., Searle et al.
2006; Snijders and Bosker 2012), the proposed linear mixed effects model is defined
as follows:

Yijk = Mo+ GitAij+X| 3 B+eiji,
Gi~N(0,03),
Aij~N(0,07),

€k ~ N (0,0%),
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where L is the grand mean, G; is a random categorical variable indicating group i,
Ajj is arandom categorical variable indicating administration j in group 7 (i.e., A;j is
a factor nested within G;), B is a coefficient vector for the predictors X, and €%
is the individual (random) error. The property that the random variables G;, A;;, and
€;jx are independent of each other follows from the model specification (see, e.g.,
Snijders and Bosker 2012). The normality assumption about the individual error
can be checked through residual diagnostics.

We first show how the random effect terms affect the expectation of an examinee’
score:

(a) The expected score for an examinee in administration j of group i equals

E (Yt‘jk‘GiaAij) = to+X; 3B+ Gi+Aij;

(b) the expected score for an examinee in group i equals and

( ”k‘G) O+X”kﬁ+Gl’

(c) the expected score for any examinee equals

E( l]k) :u0+thkB

Note that the constraints E(G;)=0 and E(A;;)) =0 not only involve no loss of
generality in (a)—(c) but also make the estimation of (o identifiable.

Next, we show how the random effect terms explain the variance of an exami-
nee’s score and the covariance between two individuals’ scores: First,

Var (Yijk) = (7; + 034‘(72,

where Gg, Ga, and 62 are variance components of Var(Yj). Second, consider two

examinees’ scores, Y1 and Yy ;. Itis clear that (a)
COV( ljluyz'j'Z) = G +(7

if i=i and j=j (i.e., they took the same administration and hence in the same
group), (b)

COV( tjlaYl//Z) G;?

ifi=i and j#/ (i.e., different administrations in the same group), and (c)

COV( t/luYz/j/Z) 0
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if i#1i (ie., different groups, and hence different administrations). Clearly, this
model describes our hypothesis that the scores of examinees from the same
administration may have stronger correlation than those from the same group but
different administrations. Whether this hypothesis is supported by the data is the
main question to answer. Note that the current study addresses the issue of repeaters
by including a fixed predictor that indicates whether an examinee repeated or not.
This variable came from the background questionnaire. An alternative way to handle
this issue is to model the correlation between scores of the same examinee (even if
the scores came from administrations in different groups), which requires unique
identification for each examinee across administrations in order to identify when a
person retakes the test. The alternative method cannot be considered here because
the information is not available in our data set. Although it is not impossible
that some of the randomly selected examinees took more than one of the 15
administrations, the portion of such examinees is expected to be quite small. Thus,
our model assumption about the correlation between scores should not limit our
findings to a great extent.

Various models that include different numbers of predictors are considered,
and a set of predictors that best explain the section scores is determined by the
model/variable selection procedure described in the next subsection. All computa-
tion was done with R (R Development Core Team 2011) package “Ime4” (Bates and
Maechler 2010) and can also be done in SAS”.

2.4 Model Selection and Variable Selection

The model selection procedure begins with the selection of random effects terms.
Suitable fixed predictors are then chosen from the ten available fixed predictors in
Table 1 based on the forward selection procedure (Draper and Smith 1998, p. 336).
We select predictors based on their contribution to the explanatory power of the
model. In this case, a predictor will be retained in the model only when it leads to
significant reduction in the estimated standard deviation of individual error (or root
mean squared error). For purposes of illustration, a decrement of 0.5 % or more
in the estimated standard deviation of error is considered significant in this paper.
This criterion is chosen to facilitate the model selection procedure, and adopting the
value 0.5 % roughly separates the models with useful predictors and those without
in our study. This value may not be adequate for all applications. One should try
different models to see the contribution of individual predictors in explaining the
variability in test scores before setting up a fixed criterion to automate the model
selection procedure.
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3 Results

3.1 Variable Selection

Tables 5 and 6 show the log-likelihood (LogLik) value for each model and the
percent reduction in the estimated standard deviation of individual error when extra
random effect terms, group and/or administration (admin), were added to the null
model. We can see from these tables that the “group” random effect is negligible in
terms of reduction in G or increase in log-likelihood values. For either section score,
the administration random term was retained in the model because the variance
reduction is greater than 0.5 %. Thus, we continued the variable selection based on
the model with the “administration” random effect.

Tables 7 and 8 present the steps of forward selection for Reading and Listening,
respectively. Recall that a fixed predictor is retained if its entry results in more
than 0.5 % of reduction in & from the previous step. Table 7 shows that predictors
“English country,” “years,” “education,” “repeater,” and “major” were selected as
main effects in the model by the forward selection procedure for Reading scores. For
Listening score, Table 8 shows that the main effects are “English country,” “years,”
“repeater,” and “major.” Note that we only consider a linear relationship between the
section scores and the ordinal predictors (“years,” “time,” and “English country”)
because there is an evident linear trend between the scores and each of the predictors
(see Fig. 2).

Results for the selection of interactions are presented in Tables 9 and 10, where
“main” refers to the main effects terms in Tables 7 and 8. Tables 9 and 10 show that
none of the interactions reduced G significantly, so they were not chosen in the final
model for either section scores.

To summarize, we obtained the final model with “education,” ‘“major,”
“repeater,” “English country,” and “years” as fixed predictors for Reading scores.

EEINT3

Table 5 Random effects terms selection for Reading scores

Model Term LogLik o Reduction (%)
Null model  Intercept -1,612,582  94.97

Model 1 Intercept + group -1,612,459  94.93  0.05

Model 2 Intercept + group + admin ~ -1,610,178  94.12  0.90

Model 3 Intercept + admin -1,610,178  94.12 0.90

Table 6 Random effects terms selection for Listening scores

Model Term LogLik c Reduction (%)
Null model  Intercept -1,585,039 85.76
Model 1 Intercept + group -1,584,935 85.73  0.04

Model 2 Intercept + group + admin ~ -1,582,115 84.82  1.09
Model 3 Intercept + admin -1,582,115 84.82 1.09
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Table 7 Fixed effects terms selection for Reading score

Y.-H. Lee et al.

Model Term LogLik o Reduction (%)
Model 1  Intercept + admin -1,391,315  93.79

Model 2 Intercept 4+ admin +engetry ~ —1,380,639  89.6 4.47

Model 3 Model 2 + years -1,371,977 86.33  3.65

Model 4  Model 3 + edu -1,367,952 84.86 1.7

Model 5 Model 4 + repeater -1,364,375 83.57 1.52

Model 6 Model 5 + major -1,361,969  82.71 1.03

Reduction was obtained by (6p— 6) /6o, where Gy is the estimated standard
deviation of individual error for Model 1, and & is that for a selected model

Table 8 Fixed effects terms selection for Listening score

Model Term LogLik o Reduction (%)
Model 1  Intercept + admin -1,367,021  84.52

Model 2 Intercept + admin +engctry 1,342,935  76.23  9.81

Model 3  Model 2 + years -1,336,312 74.1 2.79

Model 4  Model 3 + repeater -1,331,601 72.62 2

Model 5 Model 4 + major -1,328,007 71.51 1.53

Reduction was obtained by (6p— 6) /6o, where Gy is the estimated standard
deviation of individual error for Model 1, and & is that for a selected model

Table 9 Selection of interaction terms for Reading score

Model Term LogLik o Reduction (%)
Model 0 Intercept + admin + main -1,361,969  82.71

Model 1 Model 0 + engctry: years -1,361,965  82.7089  0.001
Model 2 Model O + engctry: repeater ~ —1,361,755  82.6346  0.090
Model 3 Model 0 + engctry: major -1,361,944  82.7014  0.081
Model 4 Model 0 + engctry: edu -1,361,946  82.7024  0.001
Model 5 Model 0 + years: repeater -1,361,969  82.7104  0.010
Model 6 Model 0 + years: major -1,361,835 82.6631 0.057
Model 7 Model 0 + years: edu -1,361,958 82.7066  0.053
Model 8 Model 0 + repeater: major -1,361,906  82.6882  0.022
Model 9 Model 0 + repeater: edu -1,361,917  82.6922  0.005
Model 10 Model 0 + major: edu -1,361,704  82.6164  0.092

For Listening scores, the final model includes the following fixed predictors:

“years,” “English country,

LEINT3

“administration” random predictor.

As in regression analysis, standard residual diagnostics can help to check model
assumptions and assess model fit. As an example, we used individual residuals
to check the normality assumption for individual errors. Figure 3 shows the QQ-
plots based on the final models. From the figures, we can see the residuals were
approximately normally distributed. Further checking could be executed through
stratified residual plots over groups or administrations. Estimates of the random

repeater,” and “major.” Both models include the
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Fig. 2 Box plot of scores versus the three ordinal predictors (years of study, daily study time, and
years abroad)

Table 10 Selection of interaction terms for Listening score

Model Term LogLik o Reduction (%)
Model 0  Intercept + admin + main -1,328,007 71.51

Model I Model 0 + engctry: years -1,327,971  71.4990 0.015

Model 2 Model 0 + engctry: repeater  —1,327,716 ~ 71.4210  0.109

Model 3 Model 0 + engctry: major -1,327,946  71.4914  0.099

Model 4  Model 0 + years: repeater -1,328,002 71.5087 0.024

Model 5 Model 0 + years: major -1,327,945  71.4912  0.025

Model 6 Model 0 + repeater: major -1,327973  71.4999 0.012

effect terms can be plotted to test the normality assumption about the random effects.
The reader can refer to Draper and Smith (1998, Chaps. 2, 7 and 8) for an in-depth
discussion about general model-fit assessment.
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Fig. 3 Residual QQ-plots for Reading (leff) and for Listening (right). Quantiles of the sample
distribution and quantiles of standard normal distribution are plotted against each other. If the
points in the QQ-plots approximately lie on the line y=ux, then the sample (i.e., residual)
distribution can be regarded as following the standard normal distribution approximately

3.2 Inference and Interpretation of the Final Models

Based on the final models, we found the “group” random effect was not significant.
In other words, scores of examinees from the same group and different admin-
istrations were not significantly correlated. This indicates that the equating plan
did not introduce a noticeable level of dependency to the scores examined here.
As we expected, the “administration” random effect appeared to be significant,
showing that scores of examinees from the same administration are significantly
correlated. The intraclass correlation estimate based on the Reading final model
was 02/ (62 +62) = 0.02, meaning that only 2 % of the variance in the Reading
scores was between administrations. The estimated intraclass correlation was 0.03
for Listening scores.

Tables 11 and 12 show the estimated fixed effects for the Reading and Listening
final models, respectively. All of the estimated fixed effects are significantly
nonzero. Because the estimated coefficient for “English country” is positive,
examinees who spent more time in English-speaking countries had higher scores
than those who did not. Meanwhile, the longer the examinees studied English, the
better the scores were. Also, examinees who had a college or higher degree tended to
score higher. Another important finding is that repeaters scored higher than the first-
timers. In terms of Reading score, examinees obtained approximately 22.83 more
points when they spent 6 more months in English-speaking countries; while for
Listening score, the increment was 30.12 points. Meanwhile, the examinees scored
about 20.67 more points on Reading and 17.49 more points on Listening when they
spent 3 more years studying English. For the predictor “education,” undergraduate
students were the baseline. For Reading score (Table 11), undergraduate students
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Table 11 Fixed effects in the final model for Reading

Predictor Interpretation Estimate  Standard error
(Intercept) 152.31 3.09
Engctry 22.83 0.17
Years 20.67 0.21
Edu2 Graduate student 22.61 0.55
Edu3 Others —38.47  0.55
Repeater] =~ Repeated examinee 37.14 0.43
Major2 Social study/law 5.84  0.58
Major3 Business —2.36 0.55
Majord Sciences —17.32 0.64
Major5 Health —6.61 0.95
Major6 Engineering/architecture  —27.63 0.51
Major7 Others/none —19.50 0.84

Note: Reference categories of the categorical predictors are under-
graduate students (Edul), examinees taking the test for the first time
(Repeater0), and examinees majoring in liberal arts (Majorl)

Table 12 Fixed effects in the final model for Listening

Predictor Interpretation Estimate  Standard error
(Intercept) 202.01 3.50
Engctry 30.12 0.14
Years 17.49 0.18
Repeater] ~ Repeated examinee 37.35 0.37
Major2 Social study/law —-3.38 049
Major3 Business —-11.52 0.48
Majord Sciences —23.41 0.54
Major5 Health —17.24 0.82
Major6 Engineering/architecture  —32.78 0.43
Major7 Others/none —24.59 0.70

Note: Reference categories of the categorical predictors are exam-
inees taking the test for the first time (Repeater0) and examinees
majoring in liberal arts (Majorl)
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tended to score 38.47 more points than examinees who had a lower degree than
bachelors (Edu3); while for graduate students (Edu2), their advantage was 22.61
points higher on the mean Reading score as compared to undergraduate students.
For the predictor “major,” students with a major of liberal arts were the baseline.
Among the seven categories for “major,” only the students who majored in social

studies/law scored higher on average than the baseline.
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4 Prediction

One important application of the linear mixed effects model is to construct a
prediction interval for the mean score of a new administration based on the final
model built on historical data that include necessary predictors to explain the test
scores. By way of illustration, consider a 95 % prediction interval. One can be 95 %
sure that the future mean score of an administration should fall within the 95 %
prediction interval. If not, there might be something unusual with the administration
so that the whole operational procedures should be checked for quality control
purposes.

Following the notation in the previous sections, denote Yj; as individual X’s score
(Reading or Listening) in administration j, and denote p as the number of predictors
included in the final model built on historical data or a training set. Let X be a
p-dimensional vector of the predictors included in the final model for the section
score, and let B be the p-dimensional coefficient vector. To simplify the formulas
in this section, we further define a (p + 1)-dimensional vector Wy, = [I,Xjk]’ and a
(p + 1)-dimensional coefficient vector 31 = [l,B’]’ that includes the intercept of
the model, and the final model can be rewritten as

Yie=W By +Aj+e€p,
Aj~iid.N(0,07),
€jx ~ii.d.N(0,6%),

Aj L €.

The L sign means two random variables are independent of each other. Let n be the
number of examinees in administration j, and let pj = W/‘k B1. Then the expected

mean score of administration j, Yj, conditioning on A;, is equal to

_ 1 1 & 1 &
E (Yj. ‘Aj) =E —ZY;‘/«‘A;‘ == DMt AFE| ~ e
= =1 =

where the last term equals zero.

However, if we are interested in predicting the mean score of a new administra-
tion, we need to find the marginal distribution of ¥; by integrating out A;. Based on
the properties of conditional expectation and the variance decomposition formula
(e.g., Casella and Berger 2002, Chap. 4.4), one can find that

— 1 & 1
Yj.NN(- Z/.ij,— 02+G§>.
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From the final model built on historical data or a training set, we have the estimates
for B1, 62, and o2. Let

1 n
—Z Jkﬁr—lwvil, (1

S| =
M=

Hj. =
& n

1

where W;=[W;;,....Wj,] is a (p+1)xn matrix and 1=[1,...,1]" is an
n-dimensional vector. Therefore,

i~ N (0Nar (T~ )

where I; = (1/W’jﬁl) /n is the prediction of the new value Y ;. with its predictors
W;, and

Var (V) — i) = (% 62—1—6(12)—1-%(I’W’jVar(Bl)le). @)

Thus, the 95 % approximate prediction interval for Y;, the mean score of the new
administration of interest, is

<l~A1j- +T225% Var( — ;. )) 3

where 7559 = 1.96, and the o, 6,, and Var (51) in Eq. (2) are replaced by their

estimates, 62, 83 and Var (Bl) , respectively. The approximation is more accurate

with more administrations. Note that, for quality control purposes, the 95 %
prediction interval may lead to too many false positives. One solution is to construct
the prediction interval with a type I error a% <5 % by using z(q/2) 9 rather than
2259 in Eq. (3). In the quality control literature, z(4/2) % =3 is a common choice
when the issue of multiple comparisons is involved.

An empirical example. To demonstrate the above formulas for detecting unusual
test administrations, we used data from the earlier 14 administrations as the training
set to build the linear mixed effects models for Reading and Listening. Following
the procedure described in Sect. 2, the same final models resulted for the 14
administrations (of course, the estimated fixed effects and variance components
had different values than those reported in Sect. 3). Based on the final models, we
then constructed the 95 % approximate prediction intervals for the Reading mean
score and the Listening mean score of the last administration. For Listening, the
observed mean score was 348.81, and the 95 % approximate prediction interval from
Eq. (3) was (335.78,385.75). For Reading, the observed mean score was 292.61, and
the 95 % approximate prediction interval from Eq. (3) was (290.68, 336.96). The
observed mean scores of the last administration fall with the prediction intervals.
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5 Conclusion

In this study we proposed a new way of conducting QC of test scores data over
time for a specific operational setting. We proposed a linear mixed effects model
to identify an unusual test administration in a flow of administrations by using a
prediction interval for the mean scaled score of an administration. We applied this
method to a set of operational data from a global English assessment.

In order to apply the linear mixed effects model we assumed that individual
residuals were normally distributed. The “group” random effect turned out to be
not significant, while examinees from the same “administration” still shared a small
but significant random effect, which means the examinees’ scores were slightly
correlated due to seasonality. Approximate prediction intervals could be constructed
from the model and can be used to detect unusual administrations for certain
subgroups. In some sense, “country” and “administration” effects were confounded
because of the equating design.

This procedure can be improved upon by increasing the number of administra-
tions and the equating groups of administrations, thereby increasing the precision of
the results. Then, the proposed prediction interval can be updated and computed at
each administration for a detection of unusual results on-the-fly, if the time allotted
for reporting scores permits extra analyses; otherwise, the interval can be updated
after each administration in order to predict the next administration’s results.

In the future, one might consider investigating a nonlinear link in the linear mixed
effects model. In addition, further research may consider accounting for seasonality.
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Heterogeneous Populations and Multistage
Test Design

Minh Q. Duong and Alina A. von Davier

1 Introduction

In this paper we discuss the considerations involved in designing a test so that the
difficulty of the test matches the distribution of the target population of test takers.
The underlying idea is that an assessment brings together a set of items with a
set of test takers and, if the attributes of these two sets are suitably matched, then
measurement is improved and the validity of the assessment is better supported.
This applied research was motivated by operational experience: a linear achieve-
ment test of English skills was repurposed as a placement test. The assessment was
initially designed for a population of highly educated professionals and then was
administered, in several instances, to a less educated, more heterogeneous group of
test takers. This change in the demographics led to poor measurement and biased
equating results for some subgroups of test takers. These consequences were in
violation of the fairness standards to which we adhere in the field of psychometrics.
In this paper we will discuss how the data were problematic in this testing
situation, propose a change in the test design, and describe a simulation study
that we conducted to investigate the potential performances of two multistage test
(MST) designs. The remainder of this paper is structured as follows: first, the target
population and test designs are briefly discussed. Next, an example using our data
is presented, and the bias that occurred is discussed. We will conclude with a
description of our simulation study, including the methods, results, and conclusions.
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2 Target Population

The target population for an assessment should be from a population of test takers
for whom the test results should be valid. To ensure a good match between items
and people, tests are designed for a target population. The items, tests, and equating
results are expected to be (relatively) invariant with respect to the subgroups that
comprise the target population (see Dorans and Holland 2000). These subgroups
may be defined by language, gender, race, and so forth (Van de Vijver and
Leung 1997). This requirement tends to hold for most traditional, well-constructed
standardized assessments for which the target population is clearly defined (see
Dorans and Holland 2000; von Davier and Wilson 2008). When subgroups of
test takers have different ability levels in the skill measured by the test, then the
test results might be dependent on which group being examined. In addition, the
population of test takers might change over time and differ from the population
initially targeted. In this case, the accuracy of the scores may decrease and the
equating function may become dependent on subgroups of test takers with different
skill levels. In addition, differing subgroup sample sizes across administrations may
impact measurement (Qian et al. 2012). Together, these conditions could undermine
the fairness of the assessment.

The following discussion addresses the issue of test design for these types of
shifts in the testing population and how to choose a test design that matches the
characteristics of the skill distribution of the target population.

3 Test Design

For many years, linear tests have been the most popular way to measure test takers’
skills in educational assessments. In a linear test, all test takers are administered the
same items, regardless of whether the items are too easy or too difficult for them
(Rudner 1998). When properly developed, the construction of a linear test is easy
and economical; moreover, the test could have a good reliability and relatively little
measurement error.

A computer adaptive test (CAT) is a computer-based test that uses an algorithm to
administer test items that match the test taker’s estimated skill level, based on his/her
pattern of responses as the test proceeds. With the right item pool, a CAT can be
much more efficient than traditional linear tests, by shortening the test (Hambleton
and Swaminathan 1985; Lord 1971, 1980; Wainer et al. 1992).

A multistage (adaptive) test is very similar to a CAT, but rather than selecting
individual items, groups of items (modules) are selected, and the test is constructed
in stages. In an MST, all test takers are administered an initial set of items at the
first stage, and, based on the test taker’s performance, the test taker is then routed
to one of the several different modules in the second stage that are based on the
test taker’s estimated skill level. This routing process may continue to subsequent
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stages, depending on the test. For tests that are intended to measure a wide range of
proficiency, MSTs are more effective than linear tests (Kim and Plake 1993; Lord
1971, 1980) and offer more control on the test development, in particular at module
level, than a CAT does. An overview of the various designs, particularly of the MST
design, is given in Hendrickson (2007) and Yan et al. (in press).

If the distribution of test takers’ measured skill is clearly unimodal, then a linear
test for measurement and placement purposes may be the appropriate design. If the
distribution is bimodal or exhibits a very large variance, then a CAT or MST should
be considered in an effort to increase the precision of measurement in the full range
of skill levels without increasing the test length.

CATs and MSTs can be used with any type of population distributions, as long as
other measurement requirements are met: (a) a very large item pool is available; (b)
the calibration samples are large; and (c) a sophisticated algorithm for item selection
is available to optimize the item selection based on multiple constraints, such as the
difficulty and discrimination of items, content coverage, item exposure, and so forth.

4 Real Data Example

We illustrate how to match a skill (or ability) distribution with a test design using our
data from an English linear achievement test that was administered to a polarized
population of test takers for placement purposes—to those who speak some English,
as well as those who speak little or no English. The test is long and very reliable,
and it includes some very easy items that are appropriate for the low ability group.
However, there is a concern that the measurement might not be as precise for
these lower and middle levels of ability as would be appropriate. In addition, it has
been found that test takers with very low English skill levels tend to perform less
predictably on the anchor items of the test and guess more often on all test items,
in general, thus endangering the quality of equating. The ability distribution for this
heterogeneous group of test takers is plotted in Fig. 1. For these data, we propose
reconsidering the test design.

The dataset was obtained from an administration of a 200-item English skills test
to a group of test takers. The test consists of two parts, each part being constituted
of 100 items measuring listening and reading skills, respectively. For illustration
purpose in this study each part will be considered as a different form of the same
test. For simplicity, we will call them Test Form X and Test Form Y, respectively.
A total of 6,852 test takers were assigned to two different groups, P and Q, based on
their reported educational background. Group P consists of 2,808 test takers (41 %)
whose educational level was less than a bachelor’s degree. Group Q is comprised
of 4,044 test takers (59 %) whose educational level was equivalent to a bachelor’s
degree or higher. Descriptive statistics of the scores on the two forms for the two
groups are presented in Table 1. An examination of Fig. 1 reveals that the score
distributions for overall population, and particularly for the scores on Test Form Y,
are bimodal.
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Fig. 1 Real data: distributions of X, Y in T

Table 1 Real Data: score descriptive statistics

Form X score

Form Y score

Group Sample size  Mean  Std. Dev. Mean  Std. Dev.
P 2,808 43.84 11.60 35.67 12.82
0] 4,044 68.89 11.41 69.25 1297
T (total) 6,852 58.62 16.85 5549  20.96
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S Procedures

Duong and von Davier (2012) analyzed these data and investigated the appropriate
linking methods for them. Because the two forms measure different constructs, the
process of mapping their scores is considered a linking rather than an equating. This
distinction is not important here, as we only use the linking data for illustration
purposes. In a real testing situation, one should never attempt to equate two tests
that measure different constructs. The only purpose of linking the score distributions
from these two sections of the test in this paper is to illustrate what would happen
if one links two bimodal distributions and what subgroups of test takers might
be impacted. In this particular case, this link is informative because the two
distributions are very similar, as shown in Fig. 1.

Duong and von Davier (2012) linked Test Form X to Test Form Y using both
the operational observed-score (kernel) equating (OSE) method (von Davier et al.
2004) and a two-parameter logistic (2PL) observed-score multigroup item response
theory (IRT) method (Kolen and Brennan 2004) with multiple group calibration for
each section. The data from the two sections, reading and listening, were calibrated
separately. The factor structure in the data was preliminary analyzed for each of the
two sections in order to ensure that the two modes in the distributions do not reflect
different factors. One factor model underlines each of the two sets of data. The
fit of the IRT model was acceptable. There is no evidence that the items function
differently in the two groups of the mixture for either reading or listening. There
seems to be sufficient evidence that the two groups in the sample differed mainly in
their English ability and that there is no other factor that impacts the test results that
leads to the bimodal distribution.

During the presmoothing step, the log-linear model that preserves the first
five univariate moments and the first bivariate moment was chosen from among
other (nested) models using several statistical indices available in the LOGLIN/KE
Software (ETS 2011) for each of the datasets. In this example, three ways of using
the data were considered during equating: (a) use both subgroups with weights that
were proportional to group sample sizes; (b) use data only from P, that is, use
weights wp =1 and wgp =0, denoted as KE.P; or (c) use data only from Q, that
is, use weights wp =0 and wp =1, denoted as KE.Q.

Figure 2 shows the equating differences when using the high-ability group
(wp=0 and wp =1) versus using the full distribution. It appears that, for scores
greater than 67, using all the data or using only the most able group produced similar
results.

If the test is used as a licensure or placement test with one or more cut scores at or
below the score interval [55, 58] (where 55 and 58 are the means of the two tests for
the overall group), then choosing only the higher ability group for equating might
impact the results for those who score close to the cut score(s). Hence, if the test
is used for placement purposes, then the placement of test takers in learning groups
might not be accurate for all cut-score points and, therefore, the opportunities for
efficient learning, as well as those for career advancement, might be in jeopardy.
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A dilemma exists as to what to do with these issues. There are several options:
(a) continue to use one linear test and pool the two ability groups (this might lower
accuracy and lead to group dependent equating); (b) continue to use one linear test
and remove one of the ability groups for equating, applying the equating results to
the entire population (this might lead to scores that are not fair to all of the test takers
as it was shown in Duong and von Davier 2012); (c) change the item difficulties to
match the low ability group (which may cause the test to lose comparability with
previous test forms, and the score scale may not have the same meaning); or (d)
change the test design and use either an adaptive test, a CAT (which may be difficult
for the users of this test to implement and use), or a multistage adaptive test. These
options, together with the traditional operational practice, were discussed in detail
by Duong and von Davier (2012).

In this paper we considered two research ideas: (a) choose an MST targeted to
the bimodal population and (b) investigate two MST designs, both with two stages
(see Figs. 3 and 4) where we use either one routing module and two second-stage
modules or one routing module and three second-stage modules. These test designs
will be presumably applied to each of the two sections separately. We will now
describe these research studies using simulated data.
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Fig. 3 A proposed MST design (with two modules on second stage) for a bimodal distribution

6 Simulation Study

6.1 Method

6.1.1 Design

In this study, two MST designs were employed, both consisting of two stages.
Design A had two second-stage modules: easy and difficult. Design B had three
modules in the second stage: easy, moderate, and difficult. The module structure
was similar in the two designs. The routing module consisted of 40 items with a
wide range of difficulty (b parameters). All second-stage modules consisted of 20
items with narrow ranges of difficulty. In terms of item parameters, all modules were
similar except for the b parameters, which varied across modules to create various
difficulty levels, as mentioned above.
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Fig. 4 A proposed MST design (with three modules on second stage) for a bimodal distribution

Data were simulated to closely match the real data in terms of the ability
distribution, and the two simulated MST designs were analyzed. The data were
simulated using a 3PL model because the first mode of the bimodal distribution
is close to the guessing point, and, therefore, we assumed that perhaps many of
the test takers from this new group guessed their answers. We also wanted to have a
different model for the simulation of the data from the model used for the calibration
so that some level of misspecification would be introduced, as is the case with test
takers.

The item parameters for each module were simulated independently. The a
parameters were simulated from a log-normal distribution LN (1 = —0.15, 0 =0.3).
In this paper, o denotes the standard deviation. The ¢ (guessing) parameters were
simulated from a beta distribution Beta (o =7, 8 = 34), which has a mean of 0.17
and standard deviation of 0.058. The b parameters were simulated from a normal
distribution N (u, o) with different values of u and o. For the routing modules,
u =15 and o =1.6. For all second-stage modules, ¢ was set at 1 and u at —0.5
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Table 2 Generating item parameter statistics

Design A (two modules on Design B (three modules on
Module (number Item second stage) second stage)
of items) parameter Mean Std. Dev. Mean Std. Dev.
Routing (40) a 0.873  0.256 0.879  0.278
b 1.535 1.626 1.528 1.614
c 0.134  0.046 0.134  0.044
Easy (20) a 0.882  0.299 0.878 0.271
b —-0.505  0.927 —0.556  0.908
c 0.128  0.045 0.153  0.051
Moderate (20) a NA 0.911  0.265
b 1.577  0.908
¢ 0.131  0.058
Difficult (20) a 0.886  0.285 0.875  0.300
b 2.503  0.933 2482 0934
¢ 0.134  0.045 0.131  0.041
Table 3 Population structure Population
Condition P (0] Total
1 22,500 7,500 30,000
2 15,000 15,000 30,000
3 7,500 22,500 30,000

for the easy module, 1.5 for the moderate module, and 2.5 for the difficult module.
The summary statistics for the simulated item parameters are presented in Table 2.
Those parameters were used as generating parameters to simulate data.

The test taker population was simulated as a bimodal population consisting of
two distinct groups P and Q. P had a normal distribution N (4 =0, o = 1) while O
had a normal distribution with a larger mean N (1 =3, o = 1). The ability levels of
the two groups were set far apart (i.e., the mean difference equaled three standard
deviations) to produce a clear bimodal distribution, as in the real data. Table 3
shows the three sample structures that were investigated. These structures represent
balanced and imbalanced sample sizes. The sample sizes were set large enough to
exclude possible sample size effects on the calibration.

6.1.2 Data Simulation and Calibration

In an MST administration, test takers are administered the routing module and a
specific second-stage module depending on their score on the routing module. To
mimic that data structure, the data simulation included two steps. In the first step, test
takers’ responses to all modules were simulated using generated item parameters
with the 3PL model. In the second step, responses to the routing module and one
second-stage module were kept, resulting in the MST-like data. The second-stage
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module for which the test taker’s responses were kept depended on his or her score
on the routing module. In Design A, if the score on the routing module was less than
or equal to 20, the response on the easy module was kept. Otherwise, the response
on the difficult model was retained. In Design B (which had three modules in the
second stage), if a score on the routing module was less than or equal to 13, the
response on the easy module was kept. If the score was greater than or equal to 27,
then the response on the difficult module was retained. Otherwise, the response on
the moderate module was kept.

Simulated data were calibrated using the computer program BILOG-MG (Zi-
mowski et al. 1996), using the multigroup procedure in order to reflect the bimodal
nature of the data. Group P was set as a reference group, which, by the program’s
default, is assumed to have a standard normal distribution. Default priors were
used for all item parameters.' Besides item parameter estimates, the expected a
posteriori (EAP) of theta was also obtained for classifying test takers. Although the
data were simulated using the 3PL model, both the 2PL and 3PL models were used
in calibration. The 2PL model was used to determine if the model misfit had any
impact on the results.

For each condition (i.e., sample structure presented in Table 3), 100 replications
were conducted. Each replication included the following steps: (a) data simulation,
(b) calibration, and (c) computation of evaluation statistics (which are presented in
the next section). Across all replications, the generating item parameters remained
unchanged.

6.1.3 Evaluation Statistics

Several evaluation statistics were used in this study. To evaluate item parameter
recovery, bias and root mean square error (RMSE) between the estimated and true
parameters were used. Standard errors were also used to evaluate the item parameter
estimation.

To assess how well test takers were classified, two classification statistics were
used, based on the true (simulated) theta and the estimated EAP. For simplicity,
only dichotomous classifications were employed such that test takers falling below
the cut score (on a theta or EAP scale) were classified as “nonmasters” and those
meeting or exceeding the cut score were classified as “masters.” The percentage
of test takers who were classified at the same level on both true theta and EAP
scales was used as the classification accuracy statistic. The other classification
index was the kappa statistic, which indicates the magnitude of agreement between
two classification procedures based on true theta and EAP values accounting for

Nog(a) ~N (1 =0,0=0.5)

b~N(u=0,0=2)

c is set to have a Beta distribution with the mean equal to 0.2 for the 3PL model or a mean of 0.001
for the 2PL model.
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Table 4 Classification based on true theta and EAP

EAP classification
Nonmaster Master Total
True theta classification Nonmaster a b to
Master ¢ d t
Total eo e] N

agreement by chance. Several theta cut scores were used between —2 and 5 with
a 0.5 increment to investigate how well test takers were classified at various cut
scores, to cover a wide range of scores.

The kappa was computed using

kappa = M (1
1—pe
where p, and p are expected and observed agreement calculated from
fieg Ifoeo
==—=4 == 2
Pe NN NN 2
a+d
= 3
Po=—y (3)

All terms in (1)—(3) are presented in Table 4.

In addition, relative (IRT) information was used for all modules as a way to
evaluate module quality. All evaluation statistics were computed for each replication
and averaged across all replications.

6.2 Results

6.2.1 Score Distribution

The target population investigated in this study was bimodal, consisting of two
distinct groups. Figure 5 presents score distributions for the routing module for one
of the replications (used as an example for illustrative purpose) in all conditions
(i.e., sample structure presented in Table 3) within each design. The simulated
score distributions were obviously bimodal, especially in condition 2, where the
population was equally represented by both Groups P and Q. It should be noted
that the other distributions were skewed, due to an imbalanced population structure,
but were also somewhat bimodal. In Fig. 5, Al denotes Design A, Condition 1, A2
denotes Design A, Condition 2, and so on.
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Fig. 5 Routing module score distribution (of one replication)

6.2.2 Calibration Results

All calibration runs converged with less than 30 cycles on the default criterion
(0.01). The number of Gauss—Newton iterations following E-M cycle was set at
two (default) for 3PL model and at three for 2PL model.

6.2.3 Bias, RMSE, and Standard Error

The results for bias, RMSE, and standard error are presented in Table 5 for all
conditions described in Table 3 in both designs for both 2PL and 3PL calibration
models.
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Table 5 Bias, RMSE, and standard error

Design (number Item Bias RMSE Standard error
of items) Condition parameter 2PL 3PL 2PL  3PL 2PL 3PL
A (80) 1 a —0.380 —0.044 0.465 0.059 0.010 0.031
b 0.266  0.074 1.127 0.132 0.043 0.054
c 0.002 0.023 0.020
2 a —0.374 —0.059 0.448 0.072 0.010 0.028
0.166  0.085 0.937 0.152 0.036 0.055
0.000 0.025 0.021
3 a —0.364 —0.077 0.431 0.099 0.012 0.029
0.110 0.114 0.806 0.192 0.036 0.063
c 0.003 0.034 0.025
B (100) 1 a —0.400 —0.064 0.475 0.093 0.014 0.047
b 0.229  0.085 0.970 0.165 0.067 0.077
c —0.002 0.029 0.028
2 a —0.403 —0.085 0.466 0.112 0.014 0.044
b 0.157 0.094 0.842 0.183 0.057 0.079
c —0.004 0.032 0.030
3 a —0.402 —0.114 0458 0.142 0.017 0.045
b 0.122  0.110 0.785 0.233 0.058 0.088
c —0.008 0.036 0.033

Bias. In the 3PL model, Design A produced slightly less bias than Design B,
especially for the a and ¢ parameters. Biases increased, especially for the a and b
parameters, when the number of high-ability test takers increased (i.e., moving from
condition 1 to condition 2 and to condition 3).

Under the 2PL model, where the model misfit might have had an impact, Design
A produced slightly less bias than Design B for the a parameter, but not for the b
parameter. Unlike the 3PL model, bias decreased, especially for the b parameter,
when the number of high-ability test takers increased.

It is obvious from Table 4 that using a 3PL. model for calibration produced much
better results than using a 2PL model. This observation was not unexpected, since
the data were simulated using a 3PL model.

RMSE. Under the 3PL model, Design A produced a slightly smaller RMSE than
Design B for all item parameters. As with bias, the RMSE increased when the
number of high-ability test takers increased.

When the 2PL model was used for calibration, there was no clear advantage for
either design. While Design A produced better results for the a parameter, Design
B worked better in reducing the RMSE for the b parameter. It was not clear if the
group structure had any impact on RMSE for both a and b parameters, although
having more high-ability test takers had a slightly better advantage (e.g., a smaller
RMSE moving from condition 1 to condition 2 and to condition 3). As with bias, the
same pattern can be observed that using a 3PL model produced much better results
compared to a 2PL model.
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Standard error. If a 3PL model was used for calibration, Design A produced a
smaller standard error than Design B for all of the item parameters. For the b and ¢
parameters, having more high-ability test takers led to larger standard errors. It was
not obvious whether the group structure had any impact on the standard error for
the a parameter.

When a 2PL model was used to calibrate the data, Design A also produced a
smaller estimation error. There was no clear impact of group structure on standard
eITOrS.

6.2.4 Classification Accuracy

The classification accuracy results for the 2PL and 3PL models are presented in
Figs. 6 and 7, respectively.

It is obvious from Figs. 6 and 7 that the accuracy was low if the theta cut score
was set to values where the majority of test takers were. When the majority of
test takers were far from the theta cut score, the classification accuracy was high.
For example, in condition 1 when the population was dominated by Group P (see
Table 3), whose mean theta was 0, the classification accuracy was lowest when
theta cut score was 0, and it was higher when the theta cut score was not near 0.
That pattern is reasonable because classification accuracy tends to have more error if
there are many test takers near the borderline, because this is where misclassification
often occurs.

If a 2PL model was used to calibrate the data, the classification accuracy was
lowered significantly with higher theta cut scores. That is because guessing, which
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Fig. 7 3PL model classification accuracy

was integrated in the 3PL during data simulation, was not accounted for with the
2PL model. When the theta cut score was set high, more students whose true ability
was not high enough were misclassified as “masters” because their scores were
inflated by guessing.

There were no significant differences between Design A and Design B regardless
of group structure. As can be seen in Figs. 6 and 7, in each condition of the
group structure presented in Table 3, the curves representing both designs are close
together, although the curve in Design A is slightly higher, that is, indicating a better
accuracy classification.

6.2.5 Kappa Statistic

The results for the kappa statistic for the 2PL and 3PL models are presented in
Figs. 8 and 9, respectively.

In Fig. 8, all of the curves approach zero at the ends. That means that when a
2PL model was used to calibrate the data, the kappa statistic decreased significantly
when the theta cuts cores were set too low or too high. The same pattern is observed
in Fig. 9, which represents the results when a 3PL model was used. However,
compared to the kappa produced by the 2PL model, the kappa for the 3PL model
was much higher and did not decrease as much at the ends. The kappa values are
quite good, being higher than 0.6 for most of the score range. In both Figs. 8 and 9,
the curves stay close together, indicating that there was no significant difference
between Design A and Design B or among the different group structures.
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6.2.6 Information

IRT-based relative information was computed for each module in all conditions for
both designs. The relative information equals the average item information in each
module. The average item information was used in comparing modules because the



Heterogeneous Populations and Multistage Test Design 167

Al B1 .
04 - ) 04 - — routing
— routing casy
—— easy
c 034 difficult < 0.3 ——— moderate
-(E—’E % difficult
€ € 0.2+
S S
£ £
0.1
0.0 T T T T = '
-6 -4 -2 0 2 4 6
Theta
A2 B2
4 —— routing 4 — routing
—— easy
c 0.3 e.as'y _§ 0.3 —— moderate
2 — difficult g —— difficult
£ S
S £
£
A3 B3
0.4 - ) 0.4
— routing — routing
0.3 4 — easy 0.3 - — easy
c c
S — difficult S — moderate
S S
= £
0.1
0.0 - T T : .

Theta

Fig. 10 2PL model information function

modules had different numbers of items. The information is presented in Figs. 10
and 11 for Design A and Design B, respectively.

It is clear from those figures that each relative information curve covers a specific
area where its module was supposed to differentiate the test takers. The routing
curves cover a wider range because it was supposed to differentiate test takers during
the first stage, when students are not pre-classified. Except for the easy modules,
using a 3PL model resulted in higher relative information. No significant differences
were evident between the designs or conditions.
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7 Conclusions

In this paper we investigated some of the considerations necessary for an assessment
to transition from a linear test design to an MST, when there are shifts in the test
taker population, leading to a bimodal distribution of test taker ability. Data were
simulated to closely match the real data in terms of the ability distribution, and the
two simulated MST designs were analyzed. The data were simulated using a 3PL
model because the first mode of the ability distribution from the real data is close
to the guessing point, and, therefore, we assumed that perhaps many of the test
takers from this group would guess their answers. We also wanted to use a different
model for the simulation of the data than from the model used for the calibration
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so that some level of misspecification would be introduced, as is the case in a real
application.

As expected, the results indicate that using the 2PL model to calibrate the data is
not as good as using the 3PL model. When the estimation errors are large, then the
classification accuracy is lower, and the information is lower. If the hypothesis that
the test takers with low ability tend to guess more holds, then a 3PL model might be
more appropriate for this type of data.

No significant differences were found between using the two modules (Design A)
and using the three modules (Design B) in the second stage, in terms of measurement
and classification. This finding means that it may not be necessary to use three
modules in the second stage if the population is bimodal and the test will not be
equated. If the test continues to be post-equated, then perhaps adding a module in
the middle might prove to be useful and might lead to less bias in the equating results
of real data for test takers with scores in the middle of the distribution, as displayed
in Fig. 2.

The population structure affects the classification accuracy, depending on the cut
score. It is reasonable to assume that accuracy tends to be higher in the middle of
the bimodal distribution and lower when the cut score is set to a location where the
majority of test takers are located.

The investigations conducted here would definitely support the use of an MST to
improve measurement and classification accuracy. The next step in this research
project is to actually build the MST with the items from the item pools of
the aforementioned English assessment. We will then investigate the different
calibration and equatings and compare the pre-equating methods as they are known
in the realm of MST to post-equating methods. The challenge presented in this
particular situation is that the linear test will continue to be used in the other
applications for which it was initially constructed, and, therefore, a request might
be made to post-equate the test scores for this specific use of the test.

The data example considered in this paper is extreme, but real. In other testing
situations the differences between different ability subgroups might not be as
dramatic, and therefore, different operational decisions might be considered.
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Achieving a Stable Scale for an Assessment
with Multiple Forms: Weighting Test Samples
in IRT Linking

Jiahe Qian, Alina A. von Davier, and Yanming Jiang

1 Introduction

In quality control of an assessment with multiple forms, one way to ensure a stable
scale for the reported scores is to achieve a stable linking process over time. For
an assessment with multiple test forms, measurement precision and invariance in
linking and equating are always a concern to test investigators (Holland 2007,
Holland and Dorans 2006; Kolen and Brennan 2004; von Davier and Wilson
2008). In this paper, we use the term linking to describe a transformation of IRT
parameters from two or more test forms to establish a common IRT scale (a linear
transformation of the IRT parameters from the two test forms). Although the same
specifications are used to construct forms for multiple test administrations, equating
and linking procedures can still be unstable because of sample heterogeneity. There
are two main sources of variation: general variability and seasonality. The general
variability is largely due to the heterogeneity across the test taker samples over time,
while seasonality is caused by some identifiable seasonal conditions and sources,
such as curriculum schedule and college application deadlines (Guo et al. 2008; Li
et al. 2011). The goal of this study is to obtain an improved sampling design to
stabilize the estimates of the measurement model parameters, of the item response
theory (IRT) linking parameters, and of the means and variances of the equated
scores across numerous administrations (Qian et al. 2011). Specifically, statistical
weighting techniques are applied to yield a weighted sample distribution that is
consistent with the distribution of the target population of the test. In this way, the
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disparity of the distributions of linking samples across administrations is reduced.
The design in this study aligns the proportions of the examinee groups of interest in
the sample to those of the target population. The objective of the study is to achieve
a stable scale for an assessment with multiple forms and to explore an effective
paradigm to evaluate the procedure. The future research is to explore a formal
optimal sampling design for linking based on weighted samples and equating of
multiple test forms over many administrations (Berger 1991, 1997; Berger and van
der Linden 1992; Buyske 2005; Lord and Wingersky 1985; Stocking 1990; van der
Linden and Luecht 1998).

The basis of achieving a stable linking is the consistency between a weighted
distribution of a sample (for certain demographic variables) and the distribution
of the test’s target population. This idea is analogous to the idea of “sampling
exchangeability,” an assumption in the Draper—Lindley—de Finetti (DLD) measure-
ment validity framework (Zumbo 2007). For linking based on weighted samples,
whenever a target population is available, we can always adjust the marginal
distributions in a sample and make them to be consistent with those in the target
population. In addition, achieving a stable linking by applying weighted samples is
essential for quality control. For example, in analyzing a test with multiple forms,
the measurement invariance found in one administration sample may not be a valid
presumption for another one. Or when a linking has to use partial data that are
sometimes gathered with selection bias, a decision based on such results could
differ from those based on the whole data set. So the linking function yielded
from a partial data set or a specific sample could also be biased, and the quality
of reporting could be compromised by the sample characteristics and heterogeneity.
In order to perform IRT linking based on weighted samples, we first define the
target population and the equating samples, and then apply weighting techniques to
obtain an improved sampling design for invariant Stocking and Lord (1983) test
characteristic curve (TCC) linking across testing seasons. The linking based on
weighted samples process will result in more stable equating results.

The previous studies on population invariance in equating are focused on
improving measurement precision and scale invariance across examinee subgroups
within an administration sample (Kolen and Brennan 2004). The root mean square
difference (RMSD) is often used to quantify group invariance in random group
equating (Holland and Dorans 2006; Yang and Gao 2008; Yi et al. 2008). Based on
RMSD using half a point as the criterion (Holland and Dorans 2006), Moses (2011)
found that measurement invariance, including scaling invariance and regression
invariance, was most likely when there were similarities in the tests being linked and
in the examinee groups taking the tests but were not guaranteed to be invariant when
the tests and/or groups are dissimilar. However, Huggins (2011) did identify tests
that failed to possess either the measurement invariance or population invariance
properties. As pointed out by Kolen (2004), most of these studies are sample relevant
because linkings and equatings are data dependent. Some papers in the equating
literature studied matching the equating sample to a target population (Duong and
von Davier 2012; von Davier et al. 2004). As shown in this paper, our approach
of weighting has similarities to the methods described in the equating literature.
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For example, poststratification, one of the methods that we used here, has also
been employed in observed-score equating for nonequivalent groups with anchor
test (NEAT) design (Braun and Holland 1982; Livingston 2004), and in chain and
poststratification equating (Sinharay et al. 2011). Although some studies have used
poststratification to align the proportions of demographic groups to those in the
reference sample in linking (Livingston 2007), no study has been based on total
linking errors, and none has demonstrated that weighting effectively reduces the
linking errors due to sample variability.

As mentioned previously, the focus of this study is the stability and accuracy
of linking over time and is conceptually similar to that of optimal sampling design
research. In this paper, the main research question is how to select the samples so
that the estimates of the model parameters are stable or with less variability over
many test forms and administrations. We aim to reduce the mean squared error
(MSE) of the parameters and estimates of interest.

In Sect. 2 of this paper, we introduce the methodology of the study, including
study design, weighting techniques, and the statistical tools employed for the
evaluation of the proposed design. In Sect. 3 we document the empirical results
of weighting examinee samples in IRT linking. The final section offers a summary
and conclusions.

2 Methodology

In this section, we introduce the study design and the statistical tools applied in the
analysis which include the linking procedure of Stocking and Lord (1983) based
on test characteristic curves (S-L TCC), IRT true-score equating, the weighting
techniques applied (including poststratification and raking), and complete grouped
jackknife variance estimation.

2.1 Data Resources

In this study, we employed eight data sets from a large-scale international language
assessment, four from the reading section and four from the listening section; these
assessments were administered across different testing seasons. Table 1 shows the
summary of the eight data sets and their subsamples used in the study.

For the reading test design, all of the examinees had responses to 42 operational
items from two blocks having 14 and 28 items, respectively. The IRT linking was
accomplished using both internal and external anchors. The anchor items were used
to link the scale of a new test form to the scale of the reference forms. For the
listening test design, all of the examinees had responses to 34 operational items that
were evenly distributed in two blocks. Similar to the reading design, the linking in
listening was accomplished using both internal and external anchors. In each data
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Table 1 Basic statistics of the samples and their subsamples

Data set Sample size  Nonlinking cases ~ Subsample size (40 %) Nonlinking cases
Listening 1 10,433 32 4,173 14
Listening 2 8,760 293 3,504 121
Listening 3 9,566 311 3,826 132
Listening 4 10,293 0 4,117 0
Reading 1 10,313 32 4,125 17
Reading 2 8,628 288 3,451 118
Reading 3 9,454 307 3,782 120
Reading 4 10,120 0 4,048 0

set, there were some demographic variables available for analysis, such as gender,
age, test location, reason and length of time of study. Some of them are correlated
with general variability and seasonality across administration samples.

2.2 Study Design

As stated above, the procedure proposed in this paper is intended to yield a weighted
sample distribution that is consistent with the distribution of the target population. If
we have the baseline scale score of the target population, we can judge whether the
weighted or unweighted results from the same administration sample have smaller
linking errors and higher precision in estimation. Because we are unable to conduct
an assessment on the whole target population, we are unable to make a judgment
directly. Thus the evaluation becomes challenging due to a lack of a baseline for
comparison.

To counter this issue, we selected a subsample from each of the eight original
administration samples. The subsample was treated as a relative “sample” and the
original administration sample was treated as a relative “pseudo target population.”
In making comparisons, the results, i.e., transformation parameters, etc., from the
pseudo target population were treated as the baseline. Therefore, the two sets of sub-
sample results (weighted and unweighted) can be compared with the results yielded
from the original administration sample. If the results from the weighted subsample
are closer to the results yielded by the original administration sample than those
from the unweighted subsample, then the linking based on weighted samples pro-
cess is better. RMSE was used as the evaluation criterion. In this study, we selected
one subsample from each original administration sample and created one set of
base weights for each subsample. By employing poststratification and trimming,
we eventually yielded eight sets of weights for analysis for each set of the base
weights. For details of poststratification and trimming, see the descriptions below.

In selecting subsamples from the original eight data sets, the sampling rate in
selecting examinees is 40 %. In this study, the symbol R refers to an original data
set (i.e., the pseudo target population) and R refers to the sample selected from R
with a rate of 40 %.
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2.3 Linking in an IRT Framework

In this study we used IRT true-score equating with separate calibrations to match
the procedures used in operational practice. The equating process consisted of three
steps: IRT calibration, item parameter transformation through S-L TCC linking, and
IRT true-score equating. The two-parameter logistic (2PL) regression IRT model
and/or the generalized partial credit model (GPCM) were chosen for item calibration
(Allen et al. 2001; Lord 1980) using the PARSCALE software package (Muraki and
Bock 2002). The same calibration procedure was carried out for each data set and
for each weighting method.

In conducting the IRT calibration with weighted samples, weights are used
to estimate a sample distribution including prior and posterior distributions in
the calibration procedure. Each examinee in a weighted distribution is counted
by the magnitude of its weight instead of one as in a size-based distribution.
Correspondingly, weights are also used to calculate the values of means and standard
deviations of different distributions. The definition of a weighted mean is given in
Sect. 2.3. The results of IRT calibration with weighted samples usually differ from
those with unweighted samples.

The results yielded by the calibration with weighted samples are the input to
the linking step. Based on common items, the S-L. TCC method transforms the
item parameter and ability estimates of the new form to the scale of the reference
forms or existing item pool through a linear transformation. The common items on
the reference form are usually assembled from an item pool already on the base
scale (Haberman 2009). The S-L TCC method obtains the linear transformation
by minimizing the squared difference between the two TCCs for common items
between the new and reference forms. See Stocking and Lord (1983) for the details
of this method.

Let A and B, slope and intercept, be the solution of the linear transformation for
the S-L TCC linking method. The expected values of A and B are 1 and 0 (Stocking
and Lord 1983). Let GN and GN represent the ability scores for the same examinee
on the new and reference forms, respectively. For item ¢, let ay; and bN, be the 1tEm
parameter estimates of the 2PL IRT models on the new form, and let @y, and by,
be the item parameter estimates on the scale of the reference form. Then the score
transformation between two forms is

05 = Aby + B, (1)
and item parameters can be transformed by

by, = Aby, + B, 2
and

&%, = d /A, 3)
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The step after S-L. TCC linking is IRT true-score equating (i.e., obtaining the
equated scores based on the conversion table). In this study we used IceDog software
(Robin et al. 2006) to conduct IRT true-score equating. See Kolen and Brennan
(2004) for a detailed description of the procedure.

2.4 Weighting Techniques for Calibration Samples

The objective of creating weights in this study was to make the weighted distribution
of a subsample (representing a calibration and equating sample) consistent with
the distribution of the original data (representing the reference population). The
weighting process consisted of three steps: computing base weights for cases
(examinees) that have participated in the assessment, conducting poststratification
or raking, and performing weight trimming (Cochran 1977; Deming and Stephan
1940; Potter 1990).

Creation of base weights. Let N, be the sample size of test center g in the
total sample and n, be the sample size of test center g in a subsample. We chose
the variable test center because it reflected the mechanism of data collection.
Other demographic variables may also be used, such as region, country, and native
language. Although native language can serve the same function in creating base
weights as test center, it usually contains more missing values than test center. Let
rg = ng/N, be the ratio of sample sizes for test center g. Then the base weight for
any examinee i in test center g in the subsample equals

Wig =Tg L @

For example, in applying weights in estimation, let x; be the variable of interest
and w; be the weight for case i for a sample of size n. The Hurwitz—Thompson
estimator of total statistic is 3., w;x; (Cochran, 1977). Then, a weighted mean of
x can be defined by X = 2:’: | WiXi / 2?:1wi. Although ¥ is biased, this bias vanishes
with increasing n on the order of O(1/n) (Cochran, 1977).

Poststratification and raking. The characteristics of a target population can be
described by some demographic variables, such as gender, age, ethnicity, location,
and experiences of study (Allen et al. 2001). After base weights were created,
some demographic variables could show considerable gaps between a weighted
subsample distribution and its corresponding original sample distribution. Such gaps
were revealed in corresponding cells that were cross-classified by variables. These
gaps were due to the inconsistency between the subsamples and its original sample,
and such inconsistency was mainly caused by sample variability and/or by some
undue factors such as holidays or storms that could led to nonparticipation. Raking
and poststratification can be used to correct for these known gaps. Consequently, the
linking based on the weighted sample will have improved precision such as reduced
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mean squared error. Based on data analysis, we first select several demographic
variables (usually 3-5) that highlight the feature of a target population; then we
conduct a poststratification or raking process.

Poststratification matches the weighted sample cell counts to the population cell
counts by applying a proportional adjustment to the weights in each cell across the
contingency table (Cochran 1977; Kish 1965). Sometimes though, the sample can be
spread too thinly across the cells in the table, thus poststratification would produce
extreme weights in cells with few cases and cause large design effects of weighting
(Kish 1965). To avoid such flaws, raking is used to control marginal distributions
for the variables of interest.

A raking procedure iteratively adjusts the case weights in the sample to make the
weighted marginal distributions of the sample agree with the marginal distributions
of the population on specified demographic variables (Deming 1943). The algorithm
used in raking is called the Deming—Stephan algorithm (Haberman 1979). Again,
this is conceptually similar to estimating the weights assigned to examinees or
the parameters of a specified distribution of characteristics in an optimal sampling
design, as described in Berger (1997, pp. 73-75).

In this study, the Deming—Stephan raking procedure is based on some or all
of the following four demographic variables to adjust the base weights in Eq. (4):
gender, age, time of language study, and reason for language study. As listed in the
Appendix, a total of eight sets of weights were formed by different raking schemes.

Trimming weights. To reduce the design effects of weighting, the weight
adjustment process usually includes a weight trimming step. The trimming process
truncates extreme weights caused by unequal probability sampling or by raking and
poststratification adjustment. It reduces variation caused by extremely large weights
but introduces some bias in estimates. The process usually employs the criterion
of minimum MSE (Potter 1990). To investigate the effects of different trimming
criteria, though not optimal, we implemented ten criteria for the subsamples, which
are given in the Appendix.

2.5 Evaluation Criterion and Complete Grouped Jackknifing

In this study, we used the RMSE of linking parameters and equated scores as the
criterion to measure the stability of the whole complex linking procedure and to
evaluate the effects of different weighting approaches. Bias estimation was used to
evaluate the effects of reducing selection bias in the comparison of weighted and
unweighted samples. The bias estimate measures the error due to selection bias and
RMSE measures the overall variability due to both sampling and selection bias.
In general, RMSE is preferred to standard error or bias in evaluating the effects
of linking (van der Linden 2010). In computing the RMSE, the original samples
from the eight administrations played the role of pseudo target populations, and the
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transformation parameters yielded from the original samples were treated as the true
values. A subsample was then randomly selected from each original sample. Thus,
it is viable to compare the RMSEs of the parameter estimates from the weighted
subsamples against those from the unweighted subsamples. If the RMSEs of the
linking parameter estimates for a weighted data set are smaller than those for its
unweighted counterpart, we can conclude that the weighted sample is closer to its
(pseudo) target population than the unweighted sample.

Recently, the jackknifing method was used to investigate the two types of errors
involved in S-L TCC linking: errors due to the variability of examinee samples
and errors due to the selection of anchor items. Compared with examinee selection,
anchor item selection usually has comparatively small effects on linking and such
effects are usually controllable by test developers (Haberman et al. 2009).

Complete grouped jackknifing. A complete grouped jackknife repeated replica-
tion (CGJRR; Haberman et al. 2009; Miller 1964; Qian 2005; Wolter 1985) method
is used to estimate the standard errors of the whole linking procedure, including
IRT calibration, item parameter scaling, and IRT linking. In the CGJRR we ran, the
examinees in the sample were randomly aggregated into J (=120 in this study)
groups of similar sizes. The jth jackknife replicate sample R was formed by
deleting the jth group from the whole sample, and therefore, 120 jackknife replicate
samples were formed in total.

For the whole sample and each jackknife replicate sample, we conducted the
same IRT calibration, scaling, and the equating procedure. Then we estimated the
jackknifed standard errors of the parameters of interest. Let O g be the parameter
estimated with weights from the subsample R. The first R in the subscript indicates
the data set is bAeing used in calibration; the second R indicates the data set used
in linking. Let GRU) &) be the weighted estimate from the jth jackknife replicate

sample, and the replicate sample R; is used in both calibration and linking. The
complete jackknifed variance of 6 is estimated by

VIRs,R)] (6) = J%Zle (/G\R(j),R( ) —6-,-)2, (5)

where 6 is the mean of all §R<j) R;, (Haberman et al. 2009). The MSE estimate is
R . . ~ 2
MSER, g, (9) =V[R,.R)] (9) + (eR,R - em)m) . (6)

~ —~ 2
The second term (GR,R — 99%,9%) in the equation is the estimate of squared bias

and 69%9% is estimated from the original sample R in both calibration and linking.
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3 Results

3.1 The Sample Effects on S-L TCC Linking

To show the sample effects on S-L TCC linking, in Table 2 we present estimates
of the bias and RMSE of the S-L TCC transformation parameters A and B in Eqgs.
(1)—(3) for the unweighted subsamples. The RMSEs of the linking parameters for
subsamples measure the differences in the linking function between a whole sample
and its subsamples. Given that the theoretical value of B equals zero, the RMSEs
of B are sizable and these errors are nonnegligible. Similar results hold for other
statistics such as converted mean scores. This evidence of the sample variation
effects signals a need to reduce the variability in linking. The goal is to obtain a
set of weights with RMSEs (for A and B or scale scores) that are smaller than those
from the unweighted data, as shown in Table 2.

3.2 Sampling Baseline Characteristics of the Weighted
A and B Estimates

One basic interest in evaluating weighting effects is to examine the characteristics
of transformation coefficients A and B of S-L TCC linking. Because the expected
values of A and B are 1 and 0, respectively (Stocking and Lord 1983), we examine
which estimates of A and B, weighted or unweighted, deviate further from their
expected values. Table 3 presents a summary of such comparisons. The analysis
used the subsamples of eight data sets, and base weights were created from the
variable of test center size (i.e., each base weight was the inverse of the sample
ratio of test center sizes). The base weights of each subsample were further raked
by some or all of the four variables listed in the Appendix.

Table 2 Bias and RMSE of the estimated A and B for subsamples (unweighted)

A B
Data set Whole sample size ~ Subsample size ~ Bias RMSE  Bias RMSE
Listening 1 10,433 4,125 —0.0018  0.0168 0.0196  0.0268
Listening 2 8,760 3,451 0.0101  0.0254 0.0178  0.0304
Listening 3 9,566 3,782 0.0104  0.0262 0.0129  0.0287
Listening4 10,293 4,048 —0.0033  0.0219 —-0.0014  0.0235
Reading 1 10,313 4,173 0.0145 0.0214 0.0335 0.0383
Reading 2 8,628 3,504 —0.0224  0.0293 —-0.0156  0.0250
Reading 3 9,454 3,826 -0.0143  0.0274 —-0.0217  0.0339

Reading 4 10,120 4,117 —0.0020  0.0198 0.0123  0.0262
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Table 3 Baseline characteristics of weighted A and B estimates

No. of the weighted B No. of the weighted A
estimates closer to 0 estimates closer to 1
than the unweighted than the unweighted
(N=32) (N=32)

Listening 24 (75.0 %) 25 (78.1 %)

Reading 22 (68.8 %) 13 (40.6 %)

For the B transformation parameter, 75 % of weighted B estimates (24 out of 32)
for listening were closer to O than their corresponding unweighted B estimates, and
68.8 % of the weighted B estimates (22 out of 32) for reading were closer to 0 than
their unweighted counterparts. See Table 3. These results thus favor the weighted
estimates, and this statement can be confirmed by a binomial test. Assume that the
weighted estimates are no better than the unweighted counterparts. For listening in
24 out of 32 of weighted estimates, the p-value is 0.001 for a one-side binomial
significance test, and the assumption is rejected at the 0.01 level. Similarly, for
reading in 22 out of 32 weighted estimates, the assumption can be rejected at the
0.01 level with a p-value of 0.01. Correspondingly, binomial significance tests can
be used to confirm the conclusions drawn from other tables.

For the A transformation parameter, 78.1 % of weighted A estimates for listening
were closer to 1 than corresponding unweighted ones. However, the weighted A
estimates from the reading test did not show the same characteristics. We analyzed
different A parameter estimates from the reading data and found that when the
unweighted estimates from a subsample were closer to 1 than the estimates from
the original sample, the weighted estimates from the subsample could actually be
closer to the estimates from the original sample than 1.

3.3 Comparison of the Bias and RMSE of the Weighted
A and B Estimates

To evaluate weighting effects, we also compared the biases and RMSEs of A and
B for the weighted and the unweighted subsamples; Table 4 contains the results
of the comparisons. The base weights were created based on test center sizes with
raking. For each listening or reading subsample, all eight sets of weights, trimmed
by default scheme (i.e., the maximum weight size was set at 2), were used in the
analysis. The detailed raking and trimming schedules are listed in the Appendix.
All the biases and RMSEs of the B parameter estimates obtained from weighted
samples were smaller than those estimated from unweighted samples. More than
75 % of the weighted A estimates also had smaller biases and RMSEs than those
of the unweighted estimates. These results thus favor the weighted estimates. At
the 0.01 significance level for the one-side binomial test, all of the results favor
weighted estimates. These results show that compared with the estimates from the
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Table 4 Comparison of the Bias and RMSE of the weighted A and B estimates with those of the
unweighted estimates

No. of the bias of No. of the RMSE No. of the bias of No. of the RMSE

weighted B of weighted B weighted A of weighted A
smaller than the smaller than the smaller than the smaller than the
unweighted unweighted unweighted unweighted
(N=32) (N=32) (N =32) (N=32)
Listening 32 (100.00 %) 32 (100.00 %) 24 (75.00 %) 32 (100.00 %)
Reading 32 (100.00 %) 32 (100.00 %) 28 (87.50 %) 28 (87.50 %)

unweighted samples, those from the weighted samples have smaller biases and
overall variabilities. This verifies that the linking weighting procedure functions
well for a sample that deviates greatly from its population when its sampling rate is
small and selection bias is strong.

4 Discussion

In this study, we applied weighting techniques to samples of test takers in conduct-
ing IRT linking to achieve a stable scale for an assessment with multiple forms. In
the method proposed here, the weighted distributions of different samples would
be consistent, as if all of them were probability sample selected from the target
population. In this way, the linking quality is controlled by a sampling design for
numerous administrations over time.

The results obtained based on the proposed paradigm showed the effectiveness
of weighting the samples in IRT linking procedures. Although this study is focused
on reducing the variability across multiple samples, the evaluation procedure and
weighting techniques can also be employed to analyze the precision of item
calibration through item selection in test assembly. Thus, we think, this procedure
may also be used for constructing a better test design.

Application has always been a focus of this study. The proposed weighting
strategy can be employed in two scenarios. In the first scenario, one applies the
weighting strategy in an assessment such as GRE" or TOEFL® with multiple
forms and variability and seasonality among multiple test samples. In the second
scenario, one applies the same strategy in analyzing partial data. A typical example
is analyzing the data from state assessments where the available data for making
initial equating decisions may be only about 20 % of the final data. Instead of
using randomization, the initial data are often a convenient sample gathered from
the school districts that complete testing early. So applying weighting techniques
could help psychometricians avoid biased results based on the initial equating
analysis. Note that if the initial sample of a state assessment is a random sample,
the problem might not exist. In general, the weighting procedure can be used to
correct the differences between a sample and its population, such as under- or over-
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representation of certain subgroups for a given administration. Moreover, applying
weighting techniques, including creating weights and raking, is not very complex,
although evaluating weighting efficiency as done in this study is computationally
intensive.

In application, the process to create weights should follow the steps in Section
2.3: computing base weights, conducting poststratification or raking, and per-
forming weight trimming. In poststratification and raking, we should, based on
statistical analysis of data, choose several demographic variables, such as gender,
age, ethnicity, location, and experiences of study, that are correlated with the
estimates of interest in the target population.

As future research, we may consider a different strategy, such as imposing
selection bias in samples by deliberately oversampling certain demographic groups
to evaluate the effects of optimized weighting on reducing selection bias (Berger
et al. 2000). In the future, we may conduct a comparison of the method that
we proposed here to the formal optimal sampling design described by Berger
(1997). The difficulty in following Berger’s approach consists of formally modeling
the three aspects of the situation: the background information, the IRT model
parameters for each administration, and the IRT linking parameter for each pair
of administrations, and all these for multiple test forms/administrations. One might
focus first on linking only two test forms/administrations, in a simple way, say using
a mean—mean IRT linking. The formal expression of the IRT linking expressed as a
restriction function on the parameter space, as given in von Davier and von Davier
(2011), could be useful for writing the constraints formally. Then as in von Davier
and von Davier and using the definition of an optimal sampling design (Berger 1991,
1997), a sampling design is locally optimal if a specific optimality criterion (which
is usually a function of the information matrix) is achieved. Writing the linking
parameters as constraints as in von Davier and von Davier might aid with writing
the constraints formally in linear programming for estimating the weights that lead
to a sample for which the linking parameters are estimated most efficiently.
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Appendix: Weights, Raking Variables, and Number
of Trimming Criteria Applied in Analyses

Variable used for Variables used Criteria used for

Weight base weight for raking® trimming® Note

WOA Test center V1, V2,V3, V4 10 Results reported
WO0B Test center V1, V2, V3 10 Results reported
wocC Test center V1, V2 10 Results reported
WwoYY Test center V1, V3 10 Results reported
WwW0ZZ Test center V2, V3 10 Results reported
WO0X Test center V1 10 Results reported
woYy Test center V2 10 Results reported
w0z Test center V3 10 Results reported

4Symbols of the variables used in raking: V1 = gender, V2 =age, V3 =time of language study,
V4 =reason for language study

In trimming, the total of the weights was normalized to the size of each subsample. The default
trimming criterion was set at 2. For the base weights based on test center, the criteria used for
trimming ranged from 1.5 to 2.4 with an even interval of 0.1. The base weights based on native
language only used the default trimming criterion
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A Monte Carlo Approach for Nested Model
Comparisons in Structural Equation Modeling

Sunthud Pornprasertmanit, Wei Wu, and Todd D. Little

1 Introduction

Model selection is an important issue in structural equation modeling (SEM). Model
selection occurs when researchers have two or more competing research hypotheses
(or models) and would like to know which provides a better explanation to the
population behind the data. When the competing models are nested in a sense that
one model can be created by fixing or relaxing some parameters in the other model,
model selection can be done using likelihood ratio test (LRT, also termed chi-square
difference test). The model that has more parameters is called the parent model and
the model with fewer parameters is called the nested model. The LRT compares the
chi-square test statistic (an absolute model fit index) of the two models. A significant
LRT indicates that the nested model provides a poorer model fit than the parent
model, leading to rejection of the nested model.

A major disadvantage of the LRT is its sensitivity to large sample size. As a
result, even a trivial difference in fit between the parent and nested models could
lead to rejection of the nested model. For example, suppose the parent model is
a two-factor confirmatory factor analysis model (CFA) on six indicators with a
correlation of 0.95 between the two factors. The nested model is a one-factor CFA
on the same six indicators. The factor correlation is so high in the parent model that
it is reasonable to deem the one-factor model (nested model) as good as the two-
factor model (parent model). Unfortunately, the LRT would reject the nested model
with a large enough sample size.
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To solve the problem, many researchers have used difference in fit indices other
than chi-square test statistic for nested model comparisons. For example, Cheung
and Rensvold (2002) used a change in comparative fit index (CFI), gamma hat,
or McDonald’s noncentrality index to compare nested models with different levels
of measurement invariance across groups. They suggested a cutoff of 0.01 for
the change in CFI in keeping control of the Type I error rate. A later study by
Meade et al. (2008) argued that a cutoff of 0.002 for the change in CFI would
be more appropriate because the cutoff led to higher power to reject models
without measurement invariance. Although cutoffs have been suggested for the
multiple-group measurement invariance test, there are infinite types of nested
model comparison (e.g., longitudinal measurement invariance test or a comparison
between full and partial mediation models). It is unlikely that either of the cutoffs is
suitable for all of them. In addition, the LRT and change in CFI are used to test the
hypothesis that a nested model is equal to the parent model in model fit. In practice,
a null hypothesis that the nested model approximates the parent model in model fit
would be more realistic and meaningful.

We argue that a desirable method for nested model comparisons should have
the following characteristics. First, the method is applicable to all nested model
comparisons. Second, it should not be sensitive to sample size (Hu and Bentler
1999). Third, it should retain a nested model if it is only trivially different from
the parent model and reject a nested model if it deviates substantially from the
parent model. Taking the three criteria into consideration, we propose a Monte Carlo
approach for nested model comparisons. This approach is an extension of the Monte
Carlo approach for model fit evaluation developed by Millsap (2012). We argue that
the Monte Carlo approach can satisfy all of the three criteria outlined above. The
goal of the article is to demonstrate and evaluate the performance of the Monte
Carlo approach.

The rest of the article is organized as follows. We start with a brief introduction
of the Monte Carlo approach for model fit evaluation. We then illustrate how to
extend this approach to nested model comparisons followed by a discussion of ways
to account for a trivial difference between the nested models in the Monte Carlo
approach. A simulation study is conducted to evaluate the approach. We conclude
this paper by discussing the implications and limitations of the study and providing
suggestions for applied researchers.

2 Monte Carlo Approach for Model Fit Evaluation

The basic idea of the Monte Carlo approach to model fit evaluation is to create
an empirical sampling distribution of a fit index given the null hypothesis that the
hypothesized model is approximately correct (Millsap 2007, 2010, 2012; Millsap
and Lee 2008). A cutoff criterion for the fit index can be then derived from the
sampling distribution and used for testing approximate fit.
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To implement the approach, a target model is first fit to the original data and
fit indices (e.g., RMSEA) are recorded. Second, an alternative model is created by
adding trivial model errors to the target model such that the target model remains
a good approximation of the alternative model (below, we describe how a trivial
error can be added). A large number of simulated data sets (with the same sample
size as the original data) are then generated from the alternative model. Third,
the target model is fit to each of the simulated data sets. Target fit indices are
saved from each of the resulting analyses of fitting simulated data sets. The fit
indices are used to form sampling distributions. Because the target model is fit
to the data generated from the alternative model and the target model is slightly
different from the alternative model, the sampling distribution reflects the sampling
variability of a fit index assuming that the target model is only an approximation of
the population. Finally, after the sampling distribution of a fit index is established,
the cutoff of the fit index is derived as the critical value based on an a priori alpha
level (usually & = 0.05) in the sampling distribution. The fit index from the original
data is then compared to this cutoff to decide whether the target model should be
rejected. Using RMSEA as an example, the cutoff criterion is the 95th percentile
(one-tailed test) in the simulated sampling distribution of RMSEA. If the original
RMSEA is larger than the cutoff, then the target model would not be considered
a good approximation (it would be rejected in favor of the severely misspecified
alternative). In other words, given the null hypothesis is true that the target model
approximates the population, it is very unlikely to obtain such a large RMSEA in the
sample, indicating that the sample is probably not from the population defined by
the null hypothesis. Note that a plug-in p value can also be calculated to facilitate the
decision. The p value is estimated as the proportion of the fit indices from simulated
data that suggest worse fit than the observed fit index. The alternative model is
rejected if the plugin p-value is smaller than or equal to the a priori alpha level
(p < ) or vice versa.

3 Monte Carlo Approach for Nested Model Comparison

Now we describe how to extend the procedure to nested model comparisons.
Similar to the Monte Carlo approach to model fit evaluation, the purpose here is
to derive a sampling distribution. However, because nested model comparisons use
differences in fit indices, we derive the sampling distribution for the difference in
a given fit index. After the sampling distribution is established, the cutoff criterion
for the difference can be established correspondingly. To facilitate test of a more
realistic hypothesis regarding the difference in model fit between nested models, the
sampling distribution should be created based on the null hypothesis that the nested
model fits the data approximately as well as the parent model. In other words, the
difference between the nested and parent models or the parameter constraints in the
nested model should be trivial.
This approach involves the following steps:
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First, both nested and parent models are fit to the original data and the difference
in a fit index is recorded.

Second, an alternative nested model is created by adding trivial misspecification
to the nested model such that the target nested model is a good approximation
of the alternative nested model. For example, small amounts of noise can be
added to the constrained parameters in the nested model. Using a multiple-group
measurement invariance test as an illustration, suppose that the parent model is a
weak measurement invariance model (factor loadings are equal but intercepts are
different across groups) and the nested model is a strong measurement invariance
model (both factor loadings and intercepts are equal across groups). A good
candidate for the alternative nested model is a model with trivial group difference in
the intercepts.

Third, a large number of simulated data sets with the same sample size as the
original data are generated from the alternative nested model. Both nested and parent
models are then fit to each of the simulated data sets and the difference in a fit index
(e.g., CFI) is recorded. The differences in the fit index from the simulated datasets
form the sampling distribution of the difference. In this case, the parent model fits
the simulated data well (because it is an over-specified model) and the target nested
model fits the simulated data approximately well. The sampling distribution derived
in this way would be consistent with the null hypothesis that the nested model fits
approximately as well as the parent model.

Finally, the cutoff criterion for the difference in the fit index is the critical value
based on a priori alpha level (usually 0.05) in the simulated sampling distribution.
If the difference from the original sample exceeds the cutoff, the nested model
is rejected. Again, a plug-in p value can be calculated as the proportion of the
differences from the simulated data exceeds the observed difference to facilitate
the decision.

4 Imposing Trivial Misspecifications in a Nested Model

As can be seen above, creating an alternative nested model by adding trivial
misspecifications to the nested model is a key step in the Monte Carlo approach.
In terms of specifying a misspecification, both the type and severity of the
misspecification need to be considered. A misspecification can be considered as
trivial if it is not of central interest to researchers and its magnitude is small. In this
article, we focus on the case where the nested model underspecifies the population
model. We define the severity of a model misspecification using the magnitude of
the misspecified parameter or added noise following Millsap (2010) and Saris et al.
(2009).

There are three possible methods to add a trivial misspecification. Millsap (2010,
2012) proposed using an exemplar of maximally acceptable misspecifications (e.g.,
amisspecified cross loading of size 0.3). We refer to this method as the fixed method.
This method can be directly applied in nested model comparisons. An exemplar
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of maximally acceptable misspecifications can be added in a nested model (e.g.,
measurement intercept of 0.2 in standardized scale in the example above). The
major disadvantage of this approach is that it only considers one form and one
size of trivial misspecification out of a large number of possible misspecifications.
As a consequence, the result might be sensitive to the selected misspecification. To
take into account more variety of forms and sizes of potential misspecifications,
Pornprasertmanit et al. (2012) proposed two new ways to introduce the trivial
misspecification into the model: random and maximal methods.

The random method treats model misspecifications as random and assumes that
they have a distribution (e.g., all measurement intercepts have uniform distribution
from —0.2 to 0.2 in a standardized scale). In each replication, a set of values for the
trivial misspecified parameters is drawn from the distribution based on which data
set is generated. In other words, the set of values for the trivial misspecifications
would be different for each replication. By doing this, multiple exemplars of
possible misspecified models are taken into account.

The maximal method also accommodates the fact that there could be a range
of trivial misspecifications. However, instead of randomly assigning values to
misspecifications, the maximal method selects a combination of values that results
in maximum misfit and uses it to generate data. Suppose any measurement intercepts
fall in between —0.2 and 0.2 in a standardized scale are deemed as trivial, the
maximal method will go through all possible combinations of the measurement
intercepts within the range and pick the one that results in a maximum misfit. Note
that the amount of misfit can be defined by a fit index such as LR, RMSEA (Browne
and Cudeck 1992), or SRMR (Bentler 1995). This combination of values for the
measurement intercepts are then used for data generation in each replication.

5 Simulation Study

Having described the Monte Carlo approach to nested model comparison, we
now conduct a simulation study to evaluate this approach in comparison with the
traditional LRT and change in CFI approach with a cutoff of 0.002.

In the simulation study, the data generation model is a longitudinal CFA model
with three time points. At each time point, there was one latent factor indicated by
three observed variables (see Fig. 1). The analysis model examines the measurement
invariance of the single factor construct across time. The population values of
the parameters in the data generation model are specified as follows. All factor
loadings are equal to 1. Factor variances of each time point are 1, 1.2, and
1.4, respectively. The factor correlations between adjacent time points are 0.7
and the factor correlation between Times 1 and 3 is 0.49. All factor means and
measurement intercepts are fixed at 0. The error variances are 0.4. The error
correlation matrix follows a second-order autoregressive structure where the first-
order autocorrelations are 0.2 and the second-order autocorrelations are 0.04.
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Fig. 1 The longitudinal CFA model

The parent model is a configural factorial invariance model in which the factor
loadings are all freely estimated except that the loading of the marker variable
is fixed to 1 at each time point. Note that the marker-variable method is only
appropriate when the marker variable is known a priori to be invariant across time
(which we assume here). The nested model is a weak factorial invariance model
in which the factor loadings are constrained to be equal across time. Following
the procedure outlined above, an alternative model is created by adding trivial
misspecifications to the nested model. In this case, the trivial misspecifications are
imposed by allowing the factor loadings of Y and Z at the third time point to be
different from those at the previous time points.

Three factors are manipulated in this study. The first factor is the severity of
the misspecifications in the nested model which has three levels: none, trivial, and
severe. In the none condition, all factor loadings in the data generation model are
1. In this case, the nested model fits the data perfectly. In the trivial condition, the
factor loadings of Y and Z at the third time point are 0.9 while all of the other factor
loadings are set at 1. In this case, the nested model approximates the data generation
model, assuming that a difference of 0.1 in factor loadings is trivial. In the severe
condition, the factor loadings of Y and Z at the third time point are 0.4 while all
of the other factor loadings are set at 1. Now the two factor loadings are different
from those at the first and second time points by 0.6 points. We assume that this
difference is large enough to falsify the weak factorial invariance assumption. In
other words, the nested model would fit the data worse than the parent model. Note
that for all of the conditions, the parent model (configural invariance model) fits the
data perfectly.
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The second factor is sample size which has four levels: 125, 250, 500, and 1,000.
We consider both small and large sample sizes to examine whether the Monte Carlo
approach is sensitive to sample size.

The third factor is the way to impose trivial misspecifications to create the
alternative nested model in the Monte Carlo approach. This factor varied at four
levels: none, fixed, random, and maximal methods. For the “none” misspecification,
the simulated data in the Monte Carlo approach are created based on the nested
model (weak factorial invariance model). For fixed misspecification, the simulated
data are created based on the alternative nested model with the factor loadings of Y
and Z at the last time point subtracted by 0.1s. With random misspecification, the
factor loadings of Y and Z at all time points are subtracted by a random draw from
a uniform distribution ranged from —0.1 to 0.1. For maximal misspecification, the
factor loadings of Y and Z at all time points are subtracted by a value within the
range between —0.1 to 0.1 such that the population RMSEA would be maximized
comparing to the fitted parameters. Figure 2 shows examples of the simulated
sampling distribution for the different methods of imposing trivial misspecification.

One thousand replications are generated for each condition. The rejection rate
of the nested model is used to evaluate the performance of all methods. If the
population misspecification is none or trivial, the nested model should be preferred
and the rejection rate should be close to or less than 0.05. If the population
misspecification is severe, the parent model should be preferred and the rejection
rate should approach 1. We used the simsem package (Pornprasertmanit et al.
2012) in (R Core Development Team 2012) to conduct the simulation. The simsem
package calls the lavaan package (Rosseel 2012) in R for SEM.

6 Results

Figure 3 shows the rejection rates for each condition. For the chi-square difference
test, when there was no misspecification in the nested model, the rejection rate was
0.05, which is the nominal level of Type I error. When the misspecifications in
the nested model were severe, the rejection rate was 1. When the misspecifications
were trivial, the rejection rate increased as sample size increased (see Fig. 3a). For
the change in CFI with the cutoff of 0.002, the rejection rates were all close to 0
indicating low power to detect severe misspecifications (see Fig. 3b). Note that the
cutoff of 0.01 for the change in CFI (Cheung and Rensvold 2002) would lead to
even lower rejection rates.

In comparison, when trivial misspecifications are not taken into account in the
Monte Carlo approach, the Monte Carlo approach for the change in chi-square
test statistic was essentially identical to the chi-square difference test (see Fig. 3c).
However, with the trivial misspecifications taken into account, the Monte Carlo
approach is superior to the chi-square difference test by correctly retaining the
nested model with zero or trivial misspecifications while maintaining a sufficient
power to reject the nested model with severe misspecification. The different methods
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Fig. 2 The simulated sampling distribution of the difference in chi-square values between nested
models for the different methods of imposing trivial misspecification

to impose trivial misspecifications resulted in similar results under all of the
conditions with only one exception. When the sample size was small (N = 125), the
random and maximal methods tended to have lower power than the fixed method
to reject the nested model with severe misfit (see Fig.3d—f). The power from
both methods, however, was still greater than 0.8 which is generally deemed as a
sufficient power. Note that we only presented the simulation results for the change
in chi-square test statistic. The same result pattern was found for the Monte Carlo
approach for the change in RMSEA, CFI, TLI, or SRMR
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7 Discussion

The current study examined the performance of a Monte Carlo approach to
nested model comparison in the context of a longitudinal measurement invariance
test. Different ways to incorporate trivial misspecifications in the Monte Carlo
approach were also examined. The results suggest that the Monte Carlo approach
is superior to the chi-square difference test by correctly rejecting the nested model
with severe misspecifications without overrejecting the nested model with trivial
misspecifications. In general, the rejection rates associated with the Monte Carlo
approach were not influenced by sample size except that the nested model with
trivial misspecification had small difference in rejection rates across sample sizes
in the maximal method. The suggested cutoffs (either 0.002 or 0.01) for the change
in CFI turned out to be too lenient for longitudinal measurement invariance tests,
indicating that the cutoffs developed under one type of model might not work
for another. The Monte Carlo approach proposed in the article then provides an
excellent solution for researchers to develop the cutoffs appropriate for their target
models.

The Monte Carlo method requires researchers to define trivial misspecifi-
cation(s). The trivial misspecification(s) should be defined carefully based on
theoretical consideration, experience, or past research. In practice, researchers
may try out different trivial misspecifications to see how the result is sensitive to
the different trivial misspecifications. This would be analogous to conducting a
sensitivity analysis. Stronger evidence to support a decision would be obtained if
the different trivial misspecifications lead to the same conclusion. Although this
practice might be subjective, we believe that it is still better than applying the
suggested cutoffs blindly as they might lead to misleading statistical inference
regarding model selection. Note that although the different methods to impose
trivial misspecifications led to similar results in the current simulation study, their
performance might differ when the modeling context changes. More studies need to
be conducted to fully understand the advantages and disadvantages of the different
methods.

For all methods examined in this paper, the simsem package (Pornprasertmanit
et al. 2013) provides an automated script for evaluating model fit and model
selection using the Monte Carlo approach (see http://simsem.org/). The package also
implements the Bollen—Stine bootstrap approach (Bollen and Stine 1992), which
can be combined with the Monte Carlo approach to handle nonnormal data (Millsap
2012).
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Positive Trait Item Response Models

Joseph F. Lucke

1 Introduction

Measurement models from item response theory (IRT) (Embretson and Reise 2000)
have been recently and increasingly applied to measures of addictive disorders such
as alcohol use disorder (Keyes et al. 2011; Wu et al. 2009, and references therein),
nicotine use disorder (Liu et al. 2012, and references therein), illicit drug use
disorders (Saha et al. 2012; Wu et al. 2009, and references therein), and gambling
behavior disorder (Sharp et al. 2012, and references therein). All of the above-cited
studies have been concerned with the psychometric properties of various measures
of addictive disorders, usually the Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV, American Psychiatric Association 1994). The research has
primarily investigated whether a given disorder can be adequately represented as a
unidimensional continuum rather than the traditional categories of use, dependence,
abuse, and addiction (Orford 2001). Standard IRT models, including the above-
referenced models, posit the real trait assumption that the latent trait follows a
density, usually but not necessarily the standard normal density, whose support! is
the entire real line. Intuitively, the assumption claims the range of a trait 6 with
positive probability density is —ee < 6 < co. This assumption is appropriate for
the traits of ability, achievement, or attitude for which everyone can be assigned
a score, positive or negative, relative to an anchor at zero, representing the average
level of the trait. However, the assumption of real traits creates several problems for
addictions research.

IThe topological closure of the union of all open sets of positive measure.
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The first is that the assumption entrains trait scores that are not interpretable as a
level of disorder. While it makes sense to assert that a person has a below-average
ability in music or a right-of-center attitude towards gun control, it makes little or
no sense to assert that a person has a below- or above-average level of addictive
disorder. The more meaningful assertion is that person has a certain level of disorder,
always relative to the level of no disorder.

The second problem arises from assigning the proper score to no disorder.
A person with no disorder must be distinguished from one at risk for the disorder
but endorses no items. The former is identified independently of the diagnostic test
(e.g., one who never drinks alcohol cannot have an alcohol use disorder), whereas
only a person at risk for the disorder is given the diagnostic test. The anchor for the
scale should therefore be no disorder, and as there is no trait level less than that of
no disorder, the anchor should be located at the infimum of the density’s support.
A person with a potential for the disorder but endorses no items should have a trait
score bounded away from the infimum. Under the assumption of real trait, the trait
representing no disorder must be located at —eo with probability zero, effectively
excluding such persons from measurement. This problem could be remedied by
allowing positive probability at —ee, but the remedy would create a scale such that
no disorder would be infinitely distant from any disorder.

The third and most important problem is that the assumption violates current
theories regarding the etiology of addictions. Theories of addictive disorders, from
neuropharmacology to social psychology, hold that “[an addictive disorder] can
be usefully viewed as a behavioral manifestation of a chronic condition of the
motivational system in which a reward-seeking behavior has become out of control”
(West 2006, p. 174). The excessive behavior exhibited by the disorder is presumed
to be caused by the motivational system’s being subjected to ampliative effects that
are inadequately regulated by impaired constraints such that the current level of the
disorder is proportional to cumulative previous effects (Orford 2001). Conceptual-
izing the state of a motivational process as a latent trait and modeling the partially
constrained, ampliative effects as infinitesimal multiplicative processes, Gibrat’s
“law of proportional effects” implies that the trait should follow a nonnegatively
supported, right-skewed density that is asymptotically lognormal (Johnson et al.
1994, Chap. 14).

One of the advantages of IRT models is that they can be formulated to more
realistically represent the underlying psychological processes that may explain an
individual’s response to items. Here I introduce a class of IRT models that attempts
to account for a person’s response to items on a diagnostic test by representing
the latent trait according to our understanding of addictive disorders. The proposed
positive trait item response model (PTIRM) posits that the trait for an addictive
disorder follows a mixed density comprising a point-supported probability at zero
representing the absence of disorder and the lognormal density representing the
presence of disorder. The functions linking the trait to the response are formulated
as multiplicative, rather than additive, models. IRT models with positive traits
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are not new. The original Rasch model posited fixed positive traits (Rasch 1966).
Recently, van der Maas et al. (2011) proposed a positive ability model derived
from cognitive information processing principles, but did not directly estimate the
positive trait.

2 Positive Trait Item Response Models

Random variables are underlined (Hemelrijk 1966). Let Vs Vg be observable
Bernoulli random variables denoting K items on a diagnostic test such that y, =1
if a person i endorses the item and y, = 0if not. Let 0;,i=1,...,1, be nonnegative
latent random variables denoting i- th person’s level of addlctlve dlsorder such that
0, = 0if i has no disorder and 6, > 0 otherwise. Let F' be an absolutely continuous
distribution function with positive support, and let y4 denote the indicator function
for a set A. The PTIRM posits that the probability (Pr) that person i endorses
item k is”

0%
7.(6;) = Pr (Xk: 116, = 9i7Bk705k) = X0 (6) F ( B > M

The parameter f8; > 0 is the (multiplicative) intercept for the k-th item denoting
the probability of endorsement f3 ! for @ = 1. The parameter oy > 0 is the
(multiplicative) slope or discriminability of the k-th item with respect to severity,

~1

with larger o4 denoting finer discriminability. The derived parameter & = Bka *
is the severity of the disorder as revealed by item &, and setting 6 = J; gives the
probability F(1) of endorsement. If the sample contains a person i with no disorder,
then 6; = 0, so that xjg...[ (0) = 0, and from Eq. (1), m(0) = 0. In this case, the
parameters f3;, o, and §; have no meaning.

Three specific PTIRMs are readily available. First is the log-logistic:

LL efak
e (6:) = Xj0:eo[ (61) Bt 0% @

Second is the lognormal (Johnson et al. 1994, Chap. 14):

(@) = 10-1(0) @ [l (%) ]. G

2To conform with the more common parameterization, the item parameters o and 3 in original
presentation have been reversed to f and ¢, and the person parameter z has been replaced with 6.



202 J.F. Lucke

And third is the Weibull (Johnson et al. 1994, Chap.21):

6%
o (6:) = Xjo: (61) [1 —exp <—[’3—)} : 4

k
As previously mentioned, the log-logistic with 8 > 0 and o4 = 1 is a version of
Rasch’s original item response model (Rasch 1966). The log-normal with 6 > Ois a
statistical version of a psychophysical stimulus—response function (Thomas 1983).
The Weibull model with 6 > 0, although used in other fields, is, I believe, new
as a psychometric model. For 6 > 0, these three models can also be expressed
as a log-linear extension of generalized linear item response models (Mellenbergh
1994), namely as i [m(0)] = alog(6) — log(B), where A is the logit, probit, or

complementary log—log link function.

The item characteristic curves (ICC’s) are given by Egs. (2)—(4) for all nonnega-
tive 0. The point 8 = 0 supplies no additional information, so from here on out we
assume 6 is positive. The trait quantile 7, ! (p) for a given endorsement probability
p toitem k is

1
7 (p) = [BeF ' (p)] % .
Dropping the item subscript k, log-logistic quantile function is

1

mip (p) = {B%p} “ )

the lognormal quantile function is

RI=

min(p) = {Bexp[®@ ' (p)]} *; 6)

and the Weibull quantile function is

7y (p) = [~Blog(1— p)]< . 7

For the log-logistic and lognormal PTIRMs, the median trait quantile for a
specific item occurs at the item’s severity, that is,

1

n (5)=B* =& and m(8)=5

The equality between the median trait quantile and severity does not hold for the
Weibull PTIRM. In this case

771 (5) = [log(2)Bd % but m(8)=1—¢' ~.63.

One could restore the equality by additionally scaling the severity for the Weibull
1
model as [log(2)B] % , but that not pursued here.
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The item (Fisher) information function provides an index of item precision as
a function of the latent trait. For a given item k and dropping subscripts, the item
information function for the general model (1) is

el (5 -1 (5) )
()
(]

The log-logistic item information function is

2

1(0)=E

2no—2
I ()= fﬁﬁ—"@)z = (%) zo)11 - m(0)]. ®)

The log-normal item information function is

) P )
T ) A

where ¢ is the standard normal density function. The Weibull item information
function is

™) =

; 9)

(10)

W age-11? P (_%) 00117 1 - ()
o= ]1_exp<_%“):{ 5] o)

3 Inference

Bayesian inference was used to obtain parameter estimates. Let [y;] be the I x K
matrix of observed binary outcomes denoting the i-th person’s response to item k.
Under the standard IRT assumptions of independence among subjects and local
independence among items along with no missing data and prior independence
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among parameters, the joint posterior density (pr) of the model parameters given
the observed responses is

pr(élu"'7EK7g17"'7QK7Q17"'7Q1|y117"'7y1K7 "'7y117"'7y1K)

oc Hpr H 7 (6:)% [1— 7(6;))' ™ pr(B,)pr(oy).

Markov chain Monte Carlo (MCMC) methods were used to obtain the 2K + I
marginal parameter distributions (Fox 2010, Chap.4). The parameters were given
mutually independent, low information prior densities, namely 8 P gamma(.1,.1)
and o ~ gamma(.1,.1), so that Pr(0 < B, < 6) = .95 and Pr(0 < o < 6) = .95
for all k. Following the reasoning given in Sect. 1 on page 199 the prior density
for the trait was 0, ~ lognormal(0, 1) for all i. The analyses were conducted in R
(R Development Core Team 2012) under Rstudio (RStudio, Inc 2012) using JAGS
(Plummer 2011) and the R2jags package (Su and Yajima 2012) for the MCMC
analyses and the lattice package (Sarkar 2008) for graphics.

4 Data Set

The data sources were two public-use files from the Clinical Trials Network for
the methadone and non-methadone maintenance trials for abstinence-based contin-
gency management (Peirce et al. 2006; Petry et al. 2005) which had previously
been analyzed using a standard IRT model (Wu et al. 2009). The data comprised
854 subjects responding to the seven alcohol dependency items of the DSM-IV
(American Psychiatric Association 1994) at baseline, prior to any intervention. Of
the 854 subjects, 167 (19.6 %) reported they had never used alcohol in the past nor
were currently using alcohol. These subjects were given a trait score of 6 = 0. The
remaining 687 were assumed to be potentially addicted to alcohol and assumed to
have a trait score 6 > 0. The DSM-IV items were

. toler—increasing tolerance of alcohol,

. wdraw—experience withdrawal symptoms,

. amount—using larger amounts,

. unable—unable to control use,

. time—large amount of time spent in acquiring alcohol,
. giveup—giving up important activities, and

. contin—continued use despite accompanying problems.

~N N BN =

Two MCMC simulations were run to obtain the marginal densities of the 2 X
7item + 687 person parameters. The first comprised three chains with a burn-in of
1,000 replications followed by estimation based on 1,000 replications. The Brooks—
Gelman—Rubin (BGR) potential scale reduction statistic was less than 1.1 for all
parameters (Gelman et al. 2004). The final 1,000 samples from each of the three
chains became the estimated marginal densities for the analysis.
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S Results

Figure 1 presents the ICC’s for the three models according to Egs. (2)—(4). The
curves, constrained to the positive real line, are not symmetric around any trait
score. Although the curves showed, as would be expected, slightly different
forms, the ordering of the curves along the latent trait axis (Alcohol Disorder
Score) was the same for all three models. Visual inspection revealed that six of
the seven characteristic curves showed roughly the same item severity (&) and
discriminability (og) with the exception being the item wdraw, which had the
greatest severity the least discriminability.

Table 1 on page 207 presents for each item the posterior means of the intercept,
discrimination, and severity parameters along with their respective standard errors.
The mean severity across items within each model induced the same rank ordering
among models, so the items are ranked by increasing mean severity. For each item,
the log-logistic tended to generate the smallest severity estimates, the lognormal
the next largest, the Weibull the largest. As there is no intrinsic scale, only the
ordering of the items is meaningful. The deviance information criterion (DIC), a
Bayesian measure similar to the Akaike information criterion (Spiegelhalter et al.
2002), indicated that all three models had similar goodness of fit, with the lognormal
model showing the best fit and the Weibull the worst.

The item unable indicated the least severity and wdraw indicated the greatest
for all three models. Also, as previously mentioned, all of the items except wdraw
showed similar estimates of severity. The mean discriminabilities of the items
were not consistent across the three models. The item wdraw showed the least
discriminability for the log-logistic and lognormal models, whereas unable showed
the least for the Weibull. For item analysis, the relative severity of the items appears
independent of the model, but the relative discriminability depends on the model.

Figure 2 on page 208 presents the item information curves for the three models
according to (8)—(10). The item information curves are not consistent across
models. The log-logistic model shows greatest precision for unable, followed by the
precisions for contin and giveup. In contrast, the log-normal model shows greatest
precision for giveup followed by unable and next contin. In further contrast, the
Weibull model shows greatest precision for giveup followed by contin then by time
and amount. However, all models show the least precision for wdraw.

Figure 3 on page 209 presents the total item information curves, the sum of
all seven item information curves, for each model. The log-logistic and lognormal
models showed similar curves, but with the lognormal peak being slightly lower and
skewed further to the right. The Weibull curve was considerably lower and more
right-skewed than the other two.

Apart from item analysis, the goal of a PTIRM is to provide person scores.
Figure 4 on page 210 presents the posterior person score densities, obtained from
the MCMC analysis, for eight selected item response patterns under the log-logistic
model. The thin line appearing the same in each panel displays the prior standard
log-normal density for the person score. The thick line presents the posterior density
of the score for that pattern. The upper left panel presents the posterior score density
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Fig. 1 Item characteristic curves of the seven dependence items of the DSM-IV for the log-
logistic, log-normal, and Weibull PTIRMs
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Fig. 2 Item information curves for the seven dependence items of the DSM-IV for the log-logistic,
lognormal, and Weibull PTIRMs

for a person endorsing none (0000000) of the seven items and the lower right panel
presents that for one endorsing all (1111111) of the items. The upper right panel
presents the posterior density for a person endorsing only the seventh item contin
(0000001) and the lower left panel presents that for one endorsing all but the second
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Fig. 3 Total item information curves for the seven dependence items of the DSM-IV for the log-
logistic, lognormal, and Weibull PTIRMs

item wdraw (1011111). The remaining panels have similar interpretations. Also
given are the mean score and its standard error for each response pattern. The upper
six panels have posterior densities with standard errors smaller than the prior, but
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Fig. 4 Posterior distribution of trait scores for eight selected response patterns with posterior
means and standard errors from the log-logistic PTIRM

the lowest right panel has a density with large standard error, possibly associated
that score’s being the extreme along with the poor discriminability of the second
item wdraw.
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6 Discussion

The purpose here was to introduce a class of item response models that more
realistically represent traits such as addictive disorders. This new class of models
was proposed on theoretical rather than empirical grounds. Theories of addictive
disorders emphasize the increasingly ampliative effects worsening the disorder
over a baseline of no disorder. This theoretical premise is not consistent with
the standard IRT assumption that the trait can lie anywhere along the real line.
The PTIRM introduced here assumes the trait representing an addictive disorder to
be positive with the baseline of no disorder fixed at zero. Three PTIRM models were
introduced—the log-logistic, the lognormal, and the Weibull—as special cases of a
general PTIRM. Subsidiary derivations yield the trait quantile functions and item
information functions.

These models were applied to a data set measuring alcohol use disorder. Bayesian
inference via MCMC methods provided a satisfactory method for obtaining poste-
rior distributions for item parameters and the person trait. Different PTIRMs yielded
differently shaped ICC’s that nonetheless retained the same ordering of items
across models. The item severity parameters were ranked in the same order across
all three models, but the discriminability parameters were not similarly ranked.
Likewise, different PTIRMS yielded different item information curves, with some
items showing greater precision under one model but other items showing greater
precision under another. Also presented were the densities of a selected subset of
person scores.

PTIRMs are a multiplicative transformation of standard IRT models. For purely
item analyses, the ranking of items in terms of severity scores from a PTIRM should
correspond to the ranking of severity from the corresponding IRT model. Indeed,
analyzing these data with standard IRT models yielded the same ordering of items
with respect to severity which was, in turn, the same order as in the original analyses
(Wu et al. 2009). One can also estimate the moments of the trait scores for PTIRM
from the moments of trait scores from a standard IRT model that assumes a standard
normal trait density. An occasional question is whether the PTIRM fits the data
better than a standard IRT model. Although I consider the empirical question of fit
secondary to the theoretical properties of the PTIRM, I note that the logistic IRT
with a standard normal density for the trait applied to these data yields a DIC of
2,341, which is only slightly worse than the DIC of 2,325 of the corresponding
log-logistic PTIRM.

PTIRMs provide a viable alternative to the standard IRT models for phenomena
such as addiction disorders.
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A Comparison of Algorithms for Dimensionality
Analysis

Sedat Sen, Allan S. Cohen, and Seock-Ho Kim

1 Introduction

Item response theory (IRT) models have been widely used for various educational
and psychological testing purposes such as detecting differential item functioning
(DIF), test construction, ability estimation, equating, and computer adaptive testing.
The main assumption underlying these models is that local independence holds with
respect to the latent ability being modeled (Lord and Novick 1968). It is important,
therefore, to show that the unidimensionality assumption holds before any unidi-
mensional IRT modeling is applied. Otherwise, violations of the unidimensionality
assumption may have a considerable and negative effect on parameter estimation
(Ackerman 1989; Reckase 1979). Ackerman (1992) also showed that the presence
of multidimensionality may also cause DIF. Correct identification of the internal test
structure also helps to examine how well the test measures the underlying structure.
Tate (2003) noted that strict dimensionality and essential dimensionality are two
types of dimensionality in the traditional IRT context. The former refers to the
minimum number of examinee latent abilities required to estimate a monotone and
locally independent model (McDonald 1981; Stout 1990) while the latter refers to a
test with a single dominant factor and one or more minor factors (Stout 1987, 1990).

Because of the centrality of the unidimensionality assumption to many app-
lications of IRT, the dimensionality assessment problem has been the focus of
considerable study. Excellent reviews are provided by Hattie (1984) and Tate (2003).
Dimensionality assessment is more problematic for categorical variables than
continuous variables. When the variables are continuous, traditional factor analysis
techniques can be used to identify factors that may be used to explain the observed
data. Data in social science are often categorical in nature (e.g., dichotomous
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and polytomous item responses). These types of data normally fail to meet the
distributional requirements of the traditional linear factor analysis. As a result, factor
analysis may not be directly applicable to categorical variables because spurious
factors (called difficulty factors) may emerge when using Pearson product-moment
correlations (Ackerman et al. 2003; McLeod et al. 2001). As a result, the number
of dimensions may be overestimated (Bock et al. 1988). In order to deal with this
situation, tetrachoric correlations can be used instead of Pearson correlations to deal
with dichotomous nature of item scores (Hulin et al. 1983; Knol and Berger 1991;
Parry and McArdle 1991). However, it should be noted that tetrachoric matrices
for item-level data may not always be positive definite, as required for modern
factor analysis techniques. Another problem with this method is the estimation of
tetrachoric correlations which can be difficult to implement when correlations are
very close to unity (Thissen and Wainer 2001).

A number of different methods have been proposed to assess test dimensionality
for item-level, beginning with work by Christoffersson (1975) and Muthén (1977).
Some relatively new methods based on item factor analysis (IFA) have also been
proposed. There are a wide range of IFA models within structural equation modeling
(SEM) and IRT including full-information maximum-likelihood (FIML) estimation
(Bock et al. 1988), the algorithm in the software package LISCOMP (Muthén 1978),
nonlinear factor analysis (McDonald 1982), and factor analysis of the tetrachoric
correlations between all item pairs (Knol and Berger 1991). The FIML estimation
method is based on analyzing the entire item response pattern while the other
three use bivariate information. These parametric approaches also differ in the
estimation algorithms used. There are several methods available for IFA model
parameter estimations. Among these are FIML, unweighted least squares (ULS),
weighted least squares (WLS), and its modified extensions such as modified WLSM
and WLSMV. In addition to these parametric approaches, there are also some
nonparametric approaches for dimensionality assessment such as the algorithm in
the computer software DIMTEST (Nandakumar and Stout 1993) and in the software
DETECT (Kim 1994; Zhang and Stout 1999a,b). These techniques are designed to
test essential dimensionality of a set of test items.

More recently, a number of studies of dimensionality have focused on compari-
son of different methods (e.g., Nandakumar 1994; Nandakumar and Yu 1996; Tate
2003), the effect of applying unidimensional IRT to multidimensional items (e.g.,
Ackerman 1989), and the effect of guessing parameter (Tate 2003; Stone and Yeh
2006). Although it has been more than three decades since Lord’s (1980) call for
a statistical significance test for assessing dimensionality of a test, there is still
no general test for dichotomous items. Hattie (1984) noted that most indices were
inappropriate for dimensionality assessment for the case of dichotomous variables.

Even though substantial work has been done on techniques used for dimen-
sionality checking, there has been a lack of study on the effectiveness of different
software packages implementing these techniques. The purposes of this study were
to (1) compare two popular software packages, Mplus and TESTFACT, with respect
to their effectiveness for checking dimensionality in multiple-choice tests and
(2) compare different criteria used in these programs. We also included SAS in our
empirical analyses to examine what would happen if Pearson correlations instead
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of tetrachoric correlations were used. In addition to use of Pearson correlations, we
also analyzed the empirical data set with SAS to provide a tetrachoric correlation for
completeness. Guessing parameters and the size of correlations between dimensions
were manipulated to explore possible interaction between these effects. Three
indices based on the proportion of variance, RMSR reduction, and a chi-square
difference test were used to examine dimensionality. The research included two
parts, a simulation study using a Monte Carlo approach and an application with data
from a large midwestern university mathematics placement testing program.

1.1 Software

There are a number of computer programs used for both parametric and nonpara-
metric approaches. Because the focus of this study is on parametric approaches,
software packages designed for nonparametric approaches (e.g., DIMTEST) are
not discussed in detail. [IFA-based procedures for applications with dichotomously
scored items can be implemented in software programs, including Mplus (Muthén
and Muthén 2010), NOHARM (Fraser and McDonald 1988), and TESTFACT
(Wilson et al. 2003). Although the goal of these three programs is the same, the
methods employed by each are different. They differ in sample statistics, estimation
methods, and how guessing is handled (Stone and Yeh 2006).

1.1.1 Mplus

Mplus can handle categorical, continuous, and ordinal types of data. The software
permits users to perform both exploratory factor analysis (EFA) and confirmatory
factor analysis (CFA) to estimate unidimensional or multidimensional models.
Estimation of dichotomous data is done using tetrachoric correlations via the
following methods: ULS, WLS, WLSM, and WLSMV. Mplus also provides several
fit indices including chi-square test statistics, root mean square residuals (RMSR),
root mean square error of approximation (RMSEA), and comparative fit index
(CFI). In addition, both orthogonal (varimax) and oblique (promax) rotations of the
initial solution are available. There is no option for handling the guessing parameter
in the three-parameter model. The Mplus manual also indicates that the relationship
between the extracted factors and the observed indicators is provided using probit
regression of items on factors.

1.1.2 TESTFACT

TESTFACT was designed to perform nonlinear, exploratory full-information IFA
on dichotomous items. This software uses marginal maximum likelihood (MML)
estimation in combination with an expectation-maximization (EM) algorithm.
The estimates are obtained in TESTFACT using all of the information in the
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item responses rather than use of an item covariance or correlation matrix as is
implemented in Mplus, and TESTFACT can handle the guessing parameter for
factor analyses. TESTFACT prompts the user to specify the number of factors
and the guessing parameters, if guessing is assumed in the model. The guessing
parameter can be input by either assuming a single value or providing estimated
guessing parameters for each item from another software package such as BILOG
or MULTILOG. TESTFACT calculates chi-square statistics which can be used for
model comparison. However, TESTFACT requires nonzero frequencies for each
item pattern in order to calculate this value. Problematic correlations due to extreme
proportions are replaced with admissible values using Thurstone’s centroid method
(Tate 2003). A smoothing option is also available if the correlation matrix is
nonpositive definite. Although TESTFACT can produce the output of a residual
matrix, there is no residual-based fit index. RMSR value can be calculated from
residual matrix. As with Mplus, varimax and promax rotations of the initial solution
can be obtained in TESTFACT.

1.1.3 SAS

SAS provides a way of doing common-factor and component analysis using the proc
factor statement. It offers a range of methods in EFA to select the number of factors,
extraction and rotation methods. These analyses can be done using either raw data
or correlation/covariance matrix. SAS is often used for continuous variables with
Pearson correlation coefficients. Although it is not very practical, one can conduct
factor analysis for dichotomous type data by providing a tetrachoric correlation
matrix. The extraction methods available in SAS include principal component
analysis, principal factor analysis, iterated principal factor analysis, ULS factor
analysis, maximum likelihood (canonical) factor analysis, alpha factor analysis,
image component analysis, and Harris component analysis. Proc factor produces
the residual correlation matrix and the partial correlation matrix. EQUAMAX,
ORTHOMAX, QUARTIMAX, PARSIMAX, and VARIMAX; and two oblique
rotation methods, PROCRUSTES and PROMAX, can be obtained with proc factor
statement. In order to help in determining the number of components or factors, the
scree plot, percentage of variance, and Kaiser’s rule can be obtained from output.

2 Method

Dimensionality assessment results for the simulated data are given first, followed
by results for the real data. Only the results of applying Mplus and TESTFACT
are presented in the simulation study. Additional results from SAS are reported for
the real data study. As mentioned earlier, number of dimensions, correlation, and
guessing parameter were manipulated. Results from uncorrelated factors and those
from correlated (r = 0.3) factors are presented for both Mplus and TESTFACT in
results section. Values in the each cell represent the correct number of identifications
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out of ten replications. First rows of two tables are the same since only the
uncorrelated condition is possible for unidimensional data. EFA was carried out
using WLSM for all Mplus analyses. Similarly, exploratory analyses in TESTFACT
were conducted using FIML for one to five factors. Hereafter, we refer Mplus as
it is applied with WLSM and TESTFACT as it is applied with FIML in simulated
data analyses. Maximum likelihood extraction method was used for SAS analyses
in empirical data set.

2.1 Simulated Data

Examinees’ responses to ten different 60-item tests were simulated based on the
dichotomous, multidimensional logistic IRT model. Each of the ten tests was
replicated ten times. One-, two-, and three-dimensional data sets were simulated
for each replication. Two guessing conditions were simulated in which the guessing
parameter was set at 0 and 0.25. There is a certain amount of correlation among
factors in most educational tests. To simulate this, a correlation of 0.3 was used
in addition to correlations of 0 between factors. Data were generated for 2,000
respondents for each test using WINGEN 3.0 (Han 2006) software. Following
the conditions in (Yeh 2007), distribution of latent traits was normal with mean
of zero and standard deviation of 0.1 for unidimensional data. While mean of
latent traits remained the same for each dimension, different values for standard
deviations were used to obtain the desired correlation (» = 0.3) between dimensions.
Because this was the only way to obtain correlated dimensions in WINGEN. Item
parameter distributions were N(1, 0.36) and N(O, 1.43) for discrimination and
difficulty parameters, respectively. Ten data conditions were simulated by changing
correlation, guessing, and the number of dimensions.

2.2 Real Data

The data used in this study were from a test designed to measure calculator
proficiency in pre-calculus mathematics. A total of 765 students took a special,
experimental form of this 28-item test. Each item had five choices. Students were
allowed to use a calculator on the first 14 items, but were not allowed to do so
on the second 14 items. Only the second 14 items, which allowed no calculator use,
were analyzed for this study. The test was originally constructed as a unidimensional
instrument.

The multidimensional item response theory (MIRT) model for dichotomously
scored items with a guessing parameter (Bock et al. 1988) was used to analyze the
data. The probability of a correct response to item j can be given as

2;(0)
PU;j=1[0)=g;+ (1 —g;)@[z;(0)] = g;j+ (1 - gj)\/% /700 exp(—t*/2)dt,
(1)
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where

K 8+ X4 i,
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gj is the guessing parameter, c; is the intercept or easiness parameter, a ;s are

the slopes, 6;s are latent variables equivalent to the vector 0, 6j is the standard

difficulty or negative threshold (i.e., —7;), ajs are items regression coefficients

or factor loadings to the respective dimensions from 1 to K (i.e., Ajk), and o; =

1 =38 o If we let dj = | /1+ 3 a3, then o = aji/d; and 8; = ¢;/d;
(cf. McLeod et al. 2001, p. 199).

TESTFACT was used to obtain the a s and c; for each item under MMLE. The
gj parameters are not estimated with other parameters in TESTFACT and must be
specified by the user. BILOG-MG (Zimowski et al. 2002; see also Mislevy and Bock
1990) was used to obtain the lower asymptote estimates using all default options
with an exception of the option for items with five choices.

2.3 Decision Criteria

Several methods for determining the number of factors have been proposed.
Eigenvalues, fit indices, and proportions of variance are typically used to examine
the factor structure of a set of items. Scree plots involve plotting the eigenvalues for
all possible numbers of factors and looking for the elbow in the plot (i.e., the point
at which the eigenvalues tend to stop decreasing). The number of factors is taken as
one fewer than the solution corresponding to the elbow. This approach is criticized
as being very subjective because the location of the elbow is not always very clear.
Kaiser (1960) proposed a heuristic rule called the eigenvalue-greater than-one (K1)
rule in which each eigenvalue greater than one is taken to indicate a component,
and his rule was applied by some to common-factor analysis (Mulaik 2009, p. 186).
The proportion of variance is an index for the substantive importance of factors.
This procedure is fairly straightforward and suggests keeping the number of factors
needed to account for a specified percentage of the variance (e.g., 80% or 90%).

In addition to using eigenvalues, there are several residuals and fit indices that
can be used for dimensionality assessment such as chi-square fit statistics, RMSEA,
and RMSR. These statistics indicate the differences between observed values and
estimated values. Smaller values are taken to indicate better fit. A cutoff value of
0.05 or less for the RMSR and RMSEA statistic has been suggested as a guide
indicating an acceptable number of factors (Browne and Cudeck 1993). Hu and
Bentler (1999) offer different cutoff values for these indices, specifically RMSR <
0.08 and RMSEA < 0.06. The chi-square test evaluates whether the observed data
correspond to the expected data. The chi-square statistic is dependent on sample
size, but RMSEA is not. Thus, for larger samples, it may be more appropriate to
use RMSR and RMSEA to assess the model fit. In addition to using cutoff values,
the model fit decision can be made based on the percentage of reduction of the
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RMSR (Tate 2003). Tate (2003) suggests that factors be added to the model until
the percent of RMSR reduction is less than 10%.

Dimensionality decisions in this study were based on the following three criteria:
percentage of the RMSR reduction, chi-square difference test, and proportion of
variance. As mentioned earlier, the assessment of test dimensionality in TESTFACT
can be done using a test of the change of the chi-square fit statistic due to adding
a factor to the model. In Mplus, RMSR reduction approach was used. However,
proportion of variance criterion was used for all of the software packages.

3 Results

3.1 Simulated Data Results

3.1.1 One-Dimensional Tests

One-dimensional data with two guessing situations were analyzed in Mplus and
TESTFACT programs. The fit statistics of the bifactor model were compared with
those for the 1-factor model. As can be seen in the first rows of the two tables,
TESTFACT and Mplus did not correctly identify the unidimensional structure when
no guessing was simulated. When guessing was simulated, however, TESTFACT
performed better than Mplus as expected (Table 1).

3.1.2 Two-Dimensional Tests

Within each test form, the correlations between factors were fixed at either O or
0.30. Mplus provided no correct identification when no guessing was simulated
regardless of the simulated correlation. TESTFACT correctly identified 80% and
50% in the no-guessing simulation, however, for uncorrelated and correlated cases,
respectively. As in the one-dimensional case, TESTFACT did better than Mplus,
when guessing was simulated for two-dimensional data. Mplus correctly identified
four cases when two-dimensional uncorrelated data were simulated with a guessing
effect.

Table 1 Number of correct identification for TESTFACT and Mplus for 1- to
3-factor models (r = 0)

c=0 c=0.25
# of dimensions TESTFACT Mplus TESTFACT Mplus
1 0/10 0/10 10/10 6/10
2 8/10 4/10 5/10 4/10

3 4/10 2/10 10/10 10/10
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Table 2 Number of correct identifications for TESTFACT and Mplus for 1- to
3-factor models (r =0.3)

c=0 c=0.25
# of dimensions TESTFACT Mplus TESTFACT Mplus
1 0/10 0/10 10/10 6/10
2 5/10 0/10 8/10 0/10
3 9/10 1/10 7/10 0/10

3.1.3 Three-Dimensional Tests

The results from applying the 3-factor models indicated that TESTFACT performed
better than Mplus in each of the four conditions. Correct identification rates range
for TESTFACT ranged from 40% to 100%. Similar rates for Mplus were low in each
of the three conditions except for the case for which guessing with zero correlation
was simulated (Table 1).

3.2 Real Data Results

3.2.1 Full-Information Item Factor Analysis with TESTFACT

Summary indices for TESTFACT, Mplus, and SAS are presented in Table 3 for
1- to 4-factor solutions. The TESTFACT/BILOG rows show indices for the MIRT
model with the g; estimates from BILOG-MG since TESTFACT cannot estimate the
lower asymptote. The TESTFACT/C rows show the results from the same MIRT
model but the g; were assumed to have a fixed value of 0.20 (because all items
had five choices). The g; parameters in this case are not separately estimated. The
TESTFACT rows contain MIRT models without the g; term.

The difference between the chi-squared goodness of fit values from the 1-factor
solution to 2-factor solution was not significant for all the three cases with
TESTFACT. (The critical value at the 0.05 level is x?(13) = 19.19.) The respective
critical values at the 0.05 nominal level are y%(12) = 21.20 and x2(11) = 8.52
for the 2-factor to 3-factor solution and for the 3-factor to the 4-factor solution.
Although the 2-factor solution to the 3-factor solution shows a significant reduction
in the goodness of fit values, the 1-factor solution seems to be a reasonable choice
for the data.

The cumulative proportions of the variance accounted for appear to increase as
the number of factors increases. The 1-factor solution for TESTFACT/C yielded a
higher proportion of variance accounted for than was observed for a higher number
of factors. Table 3 contains the summary of items with high Promax loadings (i.e.,
o or Ajx > 0.30). Although all TESTFACT methods yielded proper extraction
results for the 4-factor solution for the TESTFACT/BILOG, TESTFACT/C, and
TESTFACT cases, the Promax rotation failed to yielded reasonable loading results
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Table 3 Numbers of items with high promax loadings and correlations between factors
One factor ~ Two factors Three factors Four factors
I I I 1 I I I I m 1v

Mplus/WLSMV 14 6 6 6 3 4 Heywood case
Mplus/WLS 14 6 7 Heywood case due to over-factoring
Mplus/ULS 14 8 5 4 3 4 8 1 3 1
TESTFACT/BILOG 14 10 1 6 2 3 Not available
TESTFACT/C 14 10 1 6 2 3 Not available
TESTFACT 14 9 1 6 1 3 Not available
SAS 13 8 7 7 5 6 4 6 4 4
SAS/Tetrachoric 14 9 7 7 3 6 7 4 4 3

Correlation between factors

Mplus/WLSMV

I 0.71 0.58

I 0.70 0.53

1AY Heywood case

Mplus/WLS

I 0.68

I Heywood case due to over-factoring

v

Mplus/ULS

I 0.64 0.57 0.48

I 0.68 0.52 0.75 0.51

v 0.39 0.34 0.32

TESTFACT/BILOG

I 0.65 0.66

I 0.73 0.59

v Not available

TESTFACT/C

I 0.65 0.67

I 0.73 0.59

v Not available

TESTFACT

I 0.64 0.68

I 0.75 0.61

v Not available

SAS

I 0.31 0.25 0.25

I 0.27 0.17 0.28 0.11

v 0.16 0.07 0.17

SAS/Tetrachoric

I 0.43 0.42 0.38

I 0.36 0.33 0.20 0.31

v 0.22 0.33 0.30
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Table 4 TESTFACT/BILOG loadings for 1- to 4-factor solutions

One factor Two factors Three factors Four factors
Item I 1 1 1 1 111 I I 1 1v
1 0.50 0.55 —0.09 0.56 —0.09 —0.04 Not available
2 0.44 0.21 0.29 0.27 0.31 —0.07
3 0.45 0.48 —0.04 —0.03 —0.12 0.59
4 0.34 —0.22 0.60 —0.18 0.62 —0.05
5 0.49 0.35 0.19 —-0.02 0.16 041
6 0.49 0.49 0.01 0.29 —0.02 0.26
7 0.47 0.27 0.25 0.19 0.25 0.09
8 0.44 0.47 —0.04 0.54 —0.03 —0.07
9 0.48 0.25 0.29 0.16 0.28 0.12
10 0.47 0.54 —0.09 0.50 —0.10 0.06
11 0.42 0.41 0.01 0.37 0.00 0.07
12 0.49 0.43 0.09 0.03 0.04 0.39
13 0.50 0.32 0.23 0.34 0.24 —0.05
14 0.50 0.52 —0.03 0.49 —0.04 0.04
Correlation between factors
Factor
11 0.65 0.66
I 0.73 0.59
v Not available

and, therefore, are reported as “Not available.” For the 2-factor solution, one item
consistently loaded on the second factor while other items mainly loaded on the first
factor. High correlations were obtained between pairs of the factors under the 2- and
3-factor solutions.

Tables 4-6 contain the loadings for the 1-factor, 2-factor, and 3-factor solutions
for TESTFACT/BILOG, TESTFACT/C, and TESTFACT, respectively. In Table 4,
the 2-factor solution yielded only one item, Item 4, on the second factor. This item
asks for the complete factoring of 12ax> — 9ax — 3a. The same item as well as Item
2 yielded relatively high loadings on the second factor. Items 3, 5, and 12 had high
loadings on the third factor for the 3-factor solution. Also for the 3-factor solution,
the number of items loading on the first factor decreased from ten on the 2-factor
solution to six on the 3-factor solution. Similar patterns of loadings were observed
for the TESTFACT/C and TESTFACT solutions.

3.2.2 Factor Analysis with Mplus

Summary results are presented in Table 3 for results from Mplus for each of the three
different estimation methods. For the EFA, WLSMV (i.e., weighted least squares
parameter estimates using a diagonal weight matrix with standard errors and mean-
and variance-adjusted chi-square test statistics that use a full weight matrix) is the
default estimation in Mplus (Muthén and Muthén 2010, pp. 531-532). Two other
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Table 5 TESTFACT/C loadings for 1- to 4-factor solutions
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One factor Two factors Three factors Four factors
Item 1 1 1 1 11 111 I I 1 1v
1 0.50 0.56 —0.11 0.56 —0.19 —0.05 Not available
2 0.44 0.21 0.29 0.27 0.30 —0.08
3 0.44 0.46 —0.03 —0.05 —0.12 0.59
4 0.34 —0.23 0.61 —0.18 0.63 —0.06
5 0.49 0.34 0.20 0.00 0.16 0.38
6 0.49 0.48 0.01 0.29 —0.02 0.25
7 0.47 0.27 0.26 0.18 0.27 0.09
8 0.44 0.47 —0.04 0.53 —0.02 —0.07
9 0.49 0.25 0.30 0.16 0.29 0.11
10 0.49 0.55 —0.09 0.52 —0.10 0.05
11 0.42 0.42 0.01 0.37 0.00 0.07
12 0.47 0.41 0.09 0.03 0.04 0.35
13 0.50 0.32 0.23 0.33 0.25 —0.04
14 0.49 0.50 —0.04 0.47 —0.04 0.03
Correlation between factors
Factor
11 0.66 0.67
I 0.73 0.59
v Not available

Table 6 TESTFACT loadings for 1- to 4-factor solutions

One factor Two factors Three factors Four factors
Item 1 1 I I 11 I I I 1 1v
1 0.50 0.56 —0.10 0.57 —0.07 —0.03 Not available
2 0.42 0.27 0.21 0.31 0.26 —0.09
3 0.41 0.43 —0.03 —0.06 —0.12 0.58
4 0.31 —0.19 0.60 —0.19 0.63 —0.04
5 0.47 0.35 0.16 0.00 0.15 0.37
6 0.46 0.47 —0.00 0.27 —0.03 0.26
7 0.41 0.28 0.18 0.19 0.19 0.08
8 0.41 0.48 —0.09 0.57 —0.09 —0.08
9 0.46 0.30 0.22 0.17 025 0.12
10 0.45 0.53 —0.11 0.51 —0.12 0.04
11 0.40 0.42 —0.02 0.39 —0.01 0.03
12 0.50 0.45 0.07 0.03 0.04 045
13 0.40 0.28 0.16 0.28 0.19 —0.01
14 0.43 0.45 —0.03 0.37 —0.03 0.10
Correlation between factors
Factor
I 0.64 0.68
1 0.75 0.61
v Not available
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estimation methods used in this study were WLS and ULS. The proportions of
variance accounted for by the respective factors were based on the varimax rotated
loadings instead of the initial extraction. The total variance accounted for is reported
as sum (see Table 7).

In terms of the model selection using the various indices from Mplus-type
computer programs, Hu and Bentler (1999) recommend a model with a value of
RMSR less than 0.08 for selection of a model. That recommendation, however, was
not based on analysis of binary variables. The values of RMSR’s from the Mplus
runs using Hu and Bentler’s RMSR < 0.08 suggested 1-factor solution provided
reasonably good fit under all estimation methods. Stone and Yeh (2006) suggested
a model with a value of RMSR less than 0.05 could be chosen in conjunction with
factor analysis for a set of dichotomously scored items. Using the Stone and Yeh
suggestion, then WLSMYV and ULS estimation methods yielded a 2-factor solution
rather than a 1-factor solution.

Hu and Bentler (1999) suggested a value of an RMSEA less than 0.06 as
indicating good fit. Using this criterion, WLSMYV and WLS both would suggest
a 1-factor solution. Stone and Yeh (2006) recommended an RMSEA of less than
0.05. Using this criterion, a 1-factor solution would be recommended. In addition
to RMSR and RMSEA, Stone and Yeh also suggested a chi-square divided by its
degrees of freedom of less than 1.4 as an indicator of reasonable fit. Using this
latter criterion, the 1-factor solution would be selected based on WLSMV and
WLS estimates. Tate (2003) recommended a 10% reduction. Using this criterion,
WLSMYV would have yielded a 3-factor solution, WLS a 2-factor solution; and ULS
a 4-factor solution.

As can be seen in Table 3, Heywood cases resulted for both WLSMV and WLS
estimation, possibly due to over-factoring. The patterns of factor loadings were
different from those with TESTFACT although high correlations were obtained
between pairs of the available Promax factors. Tables 8—10 contain the factor
loadings for 1- to 4-factor solutions for the three estimation methods using Mplus.
The 2-factor solution presented in Table 8 shows six items as loading on the first
factor (Items 1, 6, 8, 10, 11, and 14) and six items on the second factor (Items 2, 3,
4, 5,9, and 12). For the 3-factor solution, six items (Items 1, 6, 8, 10, 11, and 14)
loaded on the first factor, three items (Items 2, 4, and 9) on the second factor, and
four items (Items 3, 5, 6, and 12) on the third factor. Similar patterns were observed
for WLS and ULS.

3.2.3 Factor Analysis with SAS

Two different sets of SAS results are reported based on Phi coefficients (Table 11)
and Tetrachoric correlations (Table 12). Adding factors increased the cumulative
proportions of variance (see Table 7). Using the 20 % criterion suggested in Reckase
(1979), results for both coefficients yielded a 1-factor solution.

The 2-factor solution shown in Table 11 indicated nine items loaded on the first
factor (Items 1, 3, 4, 6, 8, 10, 11, 12, and 14), and seven items on the second factor
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Table 7 Indices for item factor analyses

One factor Two factors Three factors Four factors

I I I I I 111 1 o o 1
Mplus/WLSMV
x2df) p 73.7(65) 0.22  55.7(55) 0.45  40.4(46) 0.70 Heywood case
RMSEA 0.013 0.004 0.000 Heywood case
RMSR 0.0540 0.0462 0.0377 Heywood case
Mplus/WLS
x2(df) p 97.7(77) 0.06  67.1(64) 0.37 Heywood case due to over-factoring
RMSEA 0.019 0.008 Heywood case due to over-factoring
RMSR 0.0649 0.0570 Heywood case due to over-factoring
Mplus/ULS
RMSR 0.0538 0.0457 0.0371 0.0318
TESTFACT/BILOG
x%(df) 1533.46(736)  1512.80(723)  1488.25(711) 1478.97(700)
Ay (df) 20.66(13) 24.55(12) 9.28(11)
TESTFACT/C
x%(df) 1540.08(736)  1519.16(723)  1493.91(711) 1485.50(700)
Ay (df) 20.92(13) 25.25(12) 8.41(11)
TESTFACT
x%(df) 1538.78(736)  1519.59(723)  1498.39(711) 1489.87(700)
Ay (df) 19.19(13) 21.20(12) 8.52(11)
Proportion of variances accounted for by factors
Mplus/WLSMV
Proportion ~ 0.27 0.16 0.14 0.14 0.09 0.11 Heywood case
Sum 0.27 0.30 0.34 Heywood case
Mplus/WLS
Proportion  0.30 0.17 0.16 Heywood case due to over-factoring
Sum 0.30 0.33 Heywood case due to over-factoring
Mplus/ULS
Proportion  0.27 0.18 0.12 0.14 0.09 0.11 0.15 0.06 0.11 0.07
Sum 0.27 0.30 0.34 0.39
TESTFACT/BILOG
Proportion ~ 0.22 0.21 0.02 0.19 0.02 0.02 0.17 0.02 0.02 0.01
Cumulative  0.22 0.21 0.23 0.19 0.21 023 0.17 0.19 0.21 0.22
TESTFACT/C
Proportion  0.30 0.20 0.02 0.18 0.02 0.02 0.17 0.02 0.02 0.01
Cumulative  0.30 0.20 0.22 0.18 0.20 0.22 0.17 0.19 0.21 0.22
TESTFACT
Proportion  0.17 0.18 0.02 0.17 0.02 0.02 0.17 0.02 0.02 0.01
Cumulative  0.17 0.18 0.20 0.17 0.19 0.21 0.17 0.19 0.21 0.22
SAS
Proportion  0.21 0.21 0.08 0.21 0.08 0.07 0.21 0.08 0.07 0.07
Cumulative  0.21 0.21 0.29 021 0.29 036 0.21 0.29 0.36 0.44
SAS/Tetrachoric
Proportion ~ 0.32 0.32 0.08 0.32 0.08 0.07 0.32 0.08 0.07 0.07

Cumulative  0.32 0.32 0.40 0.32 040 047 032 040 047 0.54
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Table 8 Mplus/WLSMYV factor loadings for models with 1- to 4-factors

One factor  Two factors Three factors Four factors
Item I 1 I 1 1 11 I I I 1v
1 0.67 0.73 0.01 0.81 0.03 —0.11 Heywood case
2 0.48 0.21 0.31 0.27 0.39 —-0.07
3 0.45 0.08 0.41 0.01 —0.08 0.57
4 0.33 —0.13 048 —0.17 0.65 0.01
5 0.57 —0.01 0.63 —0.00 0.23 045
6 0.57 0.34 0.27 0.33 —0.01 0.30
7 0.46 0.20 0.29 0.20 0.25 0.10
8 0.48 0.61 —0.08 0.58 —0.06 —0.01
9 0.57 0.14 047 0.17 040 0.12
10 0.53 0.55 0.03 0.55 —0.07 0.09
11 0.47 0.41 0.11 0.42 0.07 0.04
12 0.68 0.07 0.68 —-0.05 0.12 0.76
13 0.44 0.26 0.22 0.26 0.24 0.02
14 0.48 0.37 0.15 0.34 0.02 0.17
Correlation between factors
Factor
I 0.71 0.58
1 0.70 0.53
1AY Heywood case

(Items 2, 4,5, 7,9, 12, and 13). For the 3-factor solution, seven items loaded on the
first factor (Items 1, 2, 4, 8, 10, 11, and 14), five items on the second factor (Items
2,3, 5, 6, and 12), and six items (Items 2, 4, 5, 7, 9, and 13) on the third factor. For
the 4-factor solution, four items loaded on the first factor (Items 3, 5, 6, and 12), six
items loaded on the second factor (Items 1, 2, 4, 8, 10, and 11), four items loaded
on the third factor (Items 4, 7, 13, and 14), and four items (Items 2, 4, 5, and 9)
on the fourth factor. Results in Table 12 yielded complex patterns similar to those
in Table 11. The lower part of Tables 11 and 12 contains the correlations between
promax factors for SAS and SAS/Tetrachoric, respectively.

4 Discussion

The primary purpose of this study was to compare two popular software pack-
ages, Mplus and TESTFACT, on their capabilities for checking dimensionality
in multiple-choice tests. Consistent with previous research (Stone and Yeh 2006;
Tate 2003), analyses of the guessing condition indicated that TESTFACT was
more accurate at detecting the simulated number of dimensions than Mplus. Both
TESTFACT and Mplus, however, failed to detect unidimensionality, when no
guessing was simulated. TESTFACT detected unidimensionality, when guessing
was simulated, but Mplus overestimated the number of factors, because it has no
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Table 9 Mplus WLS factor loadings for models with 1- to 4-factors

One factor Two factors Three factors Four factors
Item 1 1 1 I I III I I I 1
1 0.68 0.72  0.05 Heywood case due to over-factoring
2 0.53 0.27  0.28
3 0.49 0.17  0.37
4 0.36 —-0.17 0.54
5 0.61 0.07  0.57
6 0.60 046 0.19
7 0.50 0.09 0.44
8 0.50 0.67 —0.10
9 0.61 0.05 0.60
10 0.54 0.55 0.04
11 0.52 034 0.24
12 0.72 0.10 0.68
13 0.44 0.13  0.36
14 0.50 035 0.21
Correlation between factors
Factor
11 0.68
I Heywood case due to over-factoring
v

option for handling guessing. With respect to the estimated number of dimensions,
TESTFACT generally was more accurate than Mplus for both guessing and no
guessing conditions. Mplus with WLSM using RMSR criteria tended to over
estimate the number of dimensions when guessing was simulated. Similarly, Mplus
performed less well when factors were correlated. TESTFACT performed similarly
with correlated and uncorrelated factors.

In the real data analysis example, both TESTFACT and Mplus yielded similar
results. Although the true underlying factor structure of the data was unknown, the
mathematics test itself was designed to be unidimensional. According to results for
both algorithms, a 1-factor solution appeared to be a reasonable choice for the data.
In addition, results for SAS were consistent with those for TESTFACT and Mplus.
The results for TESTFACT were consistent with previous research by Stone and
Yeh (2006) and Tate (2003).

A second purpose of this study was to compare different indices used for
detection of dimensionality for dichotomous items. The main finding was that the
proportion of variance was not a good indication of dimensionality. The RMSR
reduction in Mplus, recommended by Tate (2003), also did not appear to work well,
whereas the chi-square test was successful in most conditions. The RMSR reduction
criterion of 10% (Tate 2003) was more sensitive, overestimating the simulated
dimensionality under most conditions. RMSR reduction yielded a 3-factor solution
for the real data. The RMSR criterion of < 0.08 proposed by Hu and Bentler (1999)
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Table 10 Mplus/ULS factor loadings for the models of one factor, two factors, three factors, and
four factors

One factor Two factors Three factors Four factors

Item I I 1T 1 1T 1 I 1T 1 v

1 0.67 0.71 —0.01 0.83 0.00 —0.08 0.87 —0.11 —0.16 0.11
2 0.48 0.19 0.35 0.29 0.44 —0.14 0.12 0.03 0.03 0.69
3 0.44 0.32 0.15 —0.04 —0.07 0.61 0.10 —0.05 0.49 —0.11
4 0.33 —0.23 0.66 —-0.20 0.61 0.06 —0.14 0.91 —0.08 0.03
5 0.57 0.22 0.42 —0.00 0.29 0.41 0.04 0.07 0.17 0.14
6 0.56 0.48 0.12 0.26 —0.02 0.39 0.46 0.05 0.19 —0.14
7 0.46 0.22 0.29 0.14 0.23 0.18 0.31 0.20 0.08 —0.07
8 0.48 0.57 —0.06 0.52 —0.03 0.04 0.57 —0.05 —0.05 0.03
9 0.57 0.19 0.47 0.19 0.44 0.08 0.22 0.13 0.19 0.22
10 0.53 0.60 —0.04 0.49 —0.05 0.15 0.57 —0.07 0.03 0.01
11 0.48 0.44 0.08 0.42 0.09 0.03 0.42 -0.05 0.14 0.14
12 0.67 0.37 0.37 —-0.05 0.17 0.69 —0.10 —0.07 0.93 0.05
13 0.44 0.25 0.24 0.23 0.22 0.07 0.38 0.18 —0.01 —0.04
14 0.48 0.43 0.08 0.28 0.03 0.22 0.38 0.01 0.14 —0.04

Correlation between factors

Factor

I 0.64 0.57 0.48

I 0.68 0.52 0.75 0.51

I\ 0.39 0.34 0.32

seemed to work well, given the conditions simulated, but the criterion of < 0.05
recommended by Stone and Yeh (2006) suggested a 2-factor solution. Results for
RMSEA using the criteria from both Yeh and Stone and Tate yielded a 1-factor
solution. Overall results provided no clear-cut answer to the practical question of
which method should be used in all circumstances. Results from the chi-square test
in TESTFACT were similar to previous research by Stone and Yeh and by Tate
whereas results for the RMSR reduction index with Mplus were not consistent with
these studies.

Although Mplus is easy to use and provides more fit indices, one suggestion
is that using the chi-square test in TESTFACT might be more useful based on
the higher number of correct identifications. Additionally, it would seem wise at
this point to use a combination of these indices rather than relying on a single
one. Substantive theory also should be considered as a meaningful explanation is
more important than simply fitting a statistical model (Cudeck 2000). Finally, factor
loadings should also be examined when determining the number of factors.
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Table 11 SAS/Phi factor loadings for 1- to 4-factor solutions
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One factor Two factors Three factors Four factors
Item I 1 1 1 1 111 1 11 111 v
1 0.52 0.53 0.07 0.59 0.06 0.06 0.12 0.57 —0.07 0.22
2 0.36 0.03 0.46 0.34 —0.32 0.50 —-0.16 0.34 —0.16 0.70
3 0.40 0.42 0.04 —0.09 0.73 —0.05 0.78 —0.09 —0.09 —0.11
4 0.30 —0.30 0.79 —0.30 0.03 0.78 —0.01 —0.35 0.43 0.53
5 0.51 0.24 0.41 0.01 0.39 0.35 0.51 0.00 —0.08 0.36
6 0.50 0.50 0.09 0.17 0.52 0.02 0.54 0.16 0.03 —0.01
7 0.44 0.21 0.35 0.10 0.23 0.31 0.11 0.04 0.47 0.11
8 0.44 0.56 —0.08 0.65 0.01 —0.08 —0.09 0.60 0.25 —0.05
9 0.52 0.15 0.53 0.12 0.14 0.51 0.21 0.10 0.08 0.50
10 0.49 0.58 —0.03 0.47 0.25 —0.06 0.21 0.44 0.14 —0.04
11 0.43 0.42 0.08 0.54 —0.04 0.08 —0.02 0.51 0.04 0.20
12 0.61 0.44 0.30 0.11 0.54 0.23 0.53 0.08 0.18 0.13
13 0.41 0.21 0.32 0.19 0.12 0.30 —0.11 0.11 0.71 0.02
14 0.44 0.46 0.04 0.33 0.27 0.01 0.07 0.27 0.52 —0.18
Correlation between factors
Factor
I 0.31 0.25 0.25
11 0.27 0.17 0.28 0.11
v 0.16 0.07 0.17

Table 12 SAS/Tetrachoric factor loadings for the 1- to 4-factor solutions

One factor Two factors Three factors Four factors
Item I 1 1 1 1 111 1 11 111 v
1 0.70 0.68 0.11 0.66 0.12 0.08 0.61 0.13 0.26 —0.01
2 0.53 0.13 0.53 0.37 —0.21 0.55 0.30 —0.18 0.80 —0.10
3 0.49 0.50 0.04 —0.10 0.86 —0.11 —0.07 0.87 —0.11 —0.07
4 0.37 —0.33 0.89 —0.28 0.02 0.86 —0.36 —0.02 0.46 0.60
5 0.61 0.29 0.45 0.00 0.49 0.35 —0.02 0.51 0.44 —0.06
6 0.61 0.59 0.09 0.20 0.60 —0.02 0.19 0.59 —0.03 0.08
7 0.51 0.24 0.39 0.15 0.20 0.34 0.09 0.15 0.05 0.50
8 0.53 0.65 —0.08 0.76 0.07 —0.07 0.70 —0.09 0.00 0.16
9 0.62 0.18 0.59 0.14 —0.16 0.54 0.08 0.17 0.58 0.09
10 0.58 0.68 —0.05 0.57 0.23 —0.09 0.54 0.22 0.06 —0.02
11 0.53 0.50 0.10 0.60 —0.05 0.10 0.54 —0.04 0.28 —0.02
12 0.70 0.50 0.32 0.14 0.59 0.21 0.11 0.58 0.17 0.12
13 0.50 0.24 0.36 0.32 —0.02 0.36 0.23 —0.11 —0.08 0.76
14 0.53 0.54 0.04 0.47 0.18 0.01 0.41 0.13-0.18 0.40
Correlation between factors
Factor
11 0.43 0.42 0.38
1 0.36 0.33 0.20 0.31
v 0.22 0.33 0.30
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Evaluating CTT- and IRT-Based
Single-Administration Estimates
of Classification Consistency and Accuracy

Nina Deng and Ronald K. Hambleton

1 Introduction

In many testing contexts, it is necessary to classify the examinees into mutually
exclusive performance categories based on a set of performance standards (e.g.,
the pass—fail decisions on the credentialing exams and the advanced, proficient,
basic, and failing classifications on the achievement tests). The classification often
provides an appropriate and convenient way to report and interpret the candidates’
test performance. For tests designed for such purposes, the classical approach to
reliability estimate may not be particularly useful. It has been agreed that the
consistency and accuracy of such classifications, rather than the test scores, are of
more concern. The Standards for Educational and Psychological Testing (AERA
et al. 1999, p. 35) calls that “when a test or combination of measures is used to make
categorical decisions, estimates should be provided of the percentage of examinees
who would be classified in the same way on two applications of the procedure.”

A couple of methods have been proposed to determine the consistency and
accuracy of the proficiency classifications (Hambleton and Novick 1973; Swami-
nathan et al. 1974) and substantial amounts of research on these and other methods
have continued. Of special interest are the methods that are capable of providing
single-administration decision consistency and accuracy (DC/DA) estimates given
that the parallel administrations of assessments are rarely possible in practice.
Among the limited comparative studies, the Livingston and Lewis (1995) method
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was found to outperform several other classical test theory (CTT) model-based
methods (Wan et al. 2007). Furthermore, the item response theory (IRT) model-
based methods were found, generally, having a better fit than the beta-binomial
model-based methods to the real data (Lee et al. 2002). Additionally, the IRT-based
DC/DA estimates were found to be slightly higher than the beta-binomial model-
based DC/DA estimates in several studies (Lee et al. 2002; Li 2006; Lee 2010), as
well as with our own experiences with these methods (Deng 2011). Nevertheless, it
is not clear which method provides more accurate estimates. Given the discrepancies
found between the CTT- and IRT-based DC/DA estimates, and the fact that the IRT-
based methods are comparatively new, further comparative studies of these methods
seem highly desirable.

A series of simulation studies were conducted in this paper to investigate: (1) how
accurate these CTT- and IRT-based DC/DA methods are. The accuracy could poten-
tially be assessed given that the “true” scores are possibly known in the simulation;
(2) how robust these DC/DA methods are to various less-standard testing conditions.
The most widely used CTT model-based Livingston and Lewis method (denoted as
“LL”) and the newly developed IRT model-based Lee (2010) method were com-
pared and investigated under a variety of simulated conditions by varying the test
length, shape of true score distribution, and degree of local item dependence (LID).

2 Decision Consistency and Accuracy Methods

The DC/DA indices were proposed for the purpose of describing the reliability and
validity of the proficiency classifications. The DC index refers to the percentage
of candidates who are classified into the same proficiency category across two
independent administrations (or parallel forms) of the same test. The DA index
refers to the percentage of candidates who are classified into the same proficiency
category as that classified based on their “true” or criterion scores. Specifically, the
DC/DA indices can be expressed in Eq. (1)

J
P=3 pj ey
=1

where J is the number of proficiency categories. When pj; stands for the proportion
of examinees consistently classified into the j* proficiency category across the two
independent administrations, the summed percentage P stands for the DC index. If
one administration is replaced with the examinee’s “true” score or another criterion
score, the summed percentage P stands for the DA index. Kappa (Cohen 1960) is an
alternate way of calculating the DC index by correcting for the chance agreement.
It is defined as

k=L P ®)
1—pe
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where p. is the agreement percentage expected by chance and is computed as
J
Pe=2,PiP; (3)
j=1

where p; and p ; are the marginal proportions of the j™ proficiency category in the
two independent administrations, respectively.

The notion of DC/DA indices is appealing and the calculation is straightforward.
However, the requirement of two administrations is not attractive. Therefore,
the single-administration based methods were introduced to overcome the
two-administration restriction (Huynh 1976; Subkoviak 1976). The single-
administration based methods call for an underlying measurement model to
estimate the true and the observed score distributions of a parallel form (or a re-
administration) of the test without actually administering it. Based on the underlying
measurement model, the available DC/DA methods can generally be divided into
two categories: the CTT model-based method and the IRT model-based method.
The former assumes a binomial or an extension (Huynh 1976; Subkoviak 1976;
Hanson and Brennan 1990; Livingston and Lewis 1995; Lee et al. 2009) and the
latter assumes a family of IRT models (Huynh 1990; Wang et al. 2000; Rudner
2001, 2005; Bourque et al. 2004; Li 2006; Lee 2010).

The Livingston and Lewis (1995) method, denoted as “LL” in this study, is the
first and so far the most widely used binomial model-based method for handling
tests with a mixture of polytomously and dichotomously scored items. By creating
a concept of “effective test length,” denoted as n, the LL method converts the
original test into a new scale of n discrete, dichotomously scored, and locally
independent items necessary to produce the total scores having the same precision
(i.e., reliability) as the observed scores being actually used in the real test to classify
the candidates. The formula to solve n suggested by the authors is shown in Eq. (4)

(Mx — Xmin) (Xmax — Hx) — rG,\?

"= o2(1—1) “)

where Xy, is the lowest possible score, Xpax is the highest possible score, iy is the
mean Score, G% is the test score variance, and r is the classical reliability estimate
of the test. It can be implied from the formula that three types of inputs are required
to calculate n: (1) the observed test score distribution (mean and variance), (2) the
possible maximum and minimum test scores, and (3) the reliability estimate of the
test. The Cronbach’s coefficient alpha (Cronbach 1951) is the most commonly used
reliability estimate and was used by the authors in the LL method. Lastly, the cut-off
scores are needed for computing the DC/DA indices.

Adopting a different approach, Lee (2010) proposed to compute the DC/DA
indices based on the conditional observed score distribution derived from IRT
models. Specifically, provided with IRT models, the probability of a vector of item
responses (Uy, Uy, ...U,) given the true score O can be expressed as
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P(UI,UQ,...,UH

n
o) =1 (uje) 5)
i=1

where P(U;| 0) is the probability of endorsing the response U; for item i conditional
on the latent ability 0, as defined in the IRT models. The conditional probability
is summed up for all possible vectors of item responses which have a sum
equal to the test score X, which in turn, becomes the conditional probability of
having an observed summed score X, denoted as P(X|6). The summed conditional
probability is then integrated across the true score distribution to obtain the observed
score distribution. There are generally two approaches to providing the true score
distribution: (1) the estimated quadrature points and weights provided in the IRT
calibration outputs are used to approximate the true score distribution. It was called
the D-method by the author since a distributional assumption for the true scores was
made and (2) the classification indices are calculated for each candidate and then
averaged over the population. It was called the P-method. The author found that
the two approaches produced very similar results. To implement the Lee method,
the item parameter estimates from the chosen IRT model(s), and the true score
distribution are needed for computing the observed score distribution. And again
the cut-off scores are needed for computing the DC/DA indices. The software
BB-CLASS (Brennan 2004) and IRT-CLASS (Lee and Kolen 2008) were used to
implement the LL and Lee methods, respectively.

3 Simulation Studies

3.1 Data

The data were generated using the item parameter estimates from an item pool
in a US statewide standardized achievement test (an English Language Arts test
at the grade 10 level). The pool had 84 dichotomously scored multiple-choice
items and 12 polytomously scored open-response items (scored 0—4 per item). The
three-parameter logistic (3PL) IRT model (Birnbaum 1968) and the two-parameter
graded response model (GRM) (Samejima 1969), which were used to calibrate the
operational test, were used to generate the unidimensional data for the dichotomous
and polytomous items, respectively. The 3PL and GRM Testlet Response Theory
(TRT) models (Wainer et al. 2000) were used to generate the data with various
degrees of LID to study their effects on the DC/DA indices estimates. Adopted
from the operational test, three cut-off scores on the theta scale (—1.75, —0.81,
and 0.58) were used to classify the candidates into four proficiency categories.
The percentages of candidates in the four proficiency categories observed from the
operational test were 4, 17, 51, and 28 %, respectively, which were the same as the
percentages found in a normal distribution using the three cut-off scores.
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3.2 Study 1: Test Length

The DC/DA methods were found sensitive to the test length in the previous studies
(Wan et al. 2007; Li 2006). Therefore, four different test lengths were studied: 10/1,
20/2, 40/4, and 80/8 (the numbers before the slashes denote the total number of
items in the test and the numbers after denote the number of polytomously scored
items in the test). These lengths are in the range typically found with the educational
and psychological tests and subscales. And their Cronbach’s alpha estimates were
0.73,0.85,0.92 and 0.96, respectively, which are in the range of reliability estimates
found acceptable in practice. The proportion of polytomous items in each test was
fixed to eliminate the possible effects of the proportion of polytomous items on the
DC/DA indices. For each test length condition, the designated numbers of items
were randomly drawn from the item pool described above.

3.3 Study 2: Ability Distribution

Different from the test length, there is less known about how robust the DC/DA
methods are to the different shapes of score distributions. All of the research to
date has been carried out with normal score distributions. Therefore, five different
score distributions were investigated: one normal distribution (mean of O and
standard deviation of 1) and four skewed beta distributions. Specifically, the four
beta distributions were B(ox=2, f =4), B(a=2, f =3), B(a=3, B =2), and
B(a =4, B =2), representing positively skewed, slightly positively skewed, slightly
negatively skewed, and negatively skewed distributions, respectively. The means
of scores were £1 for the negatively/positively skewed distributions and £0.6 for
the slightly negatively/positively skewed distributions. The standard deviations of
scores were all around 1.0. A graphic illustration of the five distributions is displayed
in Fig. 1. The skewed distributions may be less atypical with educational tests but
are more common with psychological and social behavior tests. (The ability scores
were later linearly transformed back onto a scale of mean of 0 and standard deviation
of 1 so that they were on the same scale as the IRT score estimates. More details
were provided in the section of Evaluation Criterion).

3.4 Study 3: Local Item Dependence

Although both the underlying CTT- and IRT-based measurement models assume
that the items are conditionally independent given the candidates’ true scores, it is
not unusual in practice to have items interrelated with each other due to reasons other
than the measured latent trait, such as a common format, stimuli, or sub-domain. The
consequence of having interrelated items is called LID. It is of interest to study the
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Fig. 1 Five simulated true score distributions

impacts of LID when it comes to the DC/DA indices. The TRT model was used to
simulate the data with four degrees of LID by varying the variance of testlet effect
parameters to 0, 0.2, 0.5, and 1, where 0 means no LID and 1 indicates a high level
of LID among the items within the testlets. It was not clear what values might be
typically seen in practice, thus a wide range of values were chosen for the study. The
3PL and GRM TRT models were used to generate the data which had two testlet
effects associated with the item format, one associated with the multiple-choice
questions and the other associated with the open-response questions. The principal
component analysis (PCA) was used to double check the test dimensionality.

3.5 Evaluation Criteria

A main advantage of simulation studies is that the truth is known and can be used
as a criterion for evaluating the results of interest. To calculate the “true” DA index,
the classification based on the simulated data was compared with that based on the
“true” scores, and the percentage of candidates consistently classified across the two
classifications was computed as the “true” DA index. It deserves a special note for
the LID study in which the general factor was regarded as the “true” score, while
the testlet factors were regarded as the method effects and thus were not taken into
account in computing the “true” score. To calculate the “true” DC index, a second
data set was simulated using the “true” scores and “true” item parameters, which
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was considered a parallel form of the first simulated data set, and the percentage
of candidates who were consistently classified across the two classifications based
on the two parallel forms was computed as the “true” DC index. The “true” Kappa
index was computed accordingly based on the classification contingency table.

Biases of the DC/DA indices estimates were calculated to reflect both the
systematic error (by the sign of the statistic) and the random error (by the absolute
value of the statistic). The statistic of bias is given by

BIAS (13) —P_P (6)

where P is the “true” DA/DC/Kappa index and P is the DA/DC/Kappa estimate.
Since sample size was eliminated as a factor in this study, rather than calculating
P across a number of replications and taking the average, a large sample size of
50,000 examinees was used to essentially eliminate the sampling error as a concern
in the interpretation of the results. For the IRT-based Lee method, all the 50,000
examinees were used to obtain the item parameter estimates, which were in turn
read as the input for the Lee method.

A special note on the “true” DA index for the conditions of skewed ability
distributions should be mentioned. Because the software PARSCALE (Version
4.1) (Muraki and Bock 2003), which was used in this study for IRT calibration,
arbitrarily rescales the ability estimates to a scale of mean of 0 and standard
deviation (SD) of 1 to eliminate the indeterminacy problem, therefore, the “true”
scores in the skewed ability distributions were rescaled to mean of 0 and SD of 1
to put them on the same scale as the IRT score estimates for computing the “true”
DA index. The cut-off theta scores were rescaled accordingly too. This problem is
resolved in practice by the test score equating process.

4 Results

4.1 Test Length

The “true” DC/DA/Kappa indices with different test lengths are plotted in Fig. 2.
As we expected, a longer test resulted in greater “true” DC/DA/Kappa indices due
to a greater degree of score reliability. The biases of DC/DA/Kappa estimates of the
LL and Lee methods are plotted in Fig. 3. It shows that the biases were reasonably
small across different test lengths. That said, the biases for both methods decreased
as the test length increased. Comparatively speaking, the Lee method had smaller
biases and was more robust to the short tests. On the contrary, the LL method had
much larger biases of the DC and Kappa estimates with the short tests, e.g., the LL
method had biases of —0.04 and —0.06 for the DC and Kappa estimates with 10
items, versus both biases of —0.01 with 80 items.
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4.2 Ability Distribution

The “true” DC/DA/Kappa indices with different ability distributions when the test
had 40 items are displayed in Fig. 4. The labels of “++47, “+47, “0”, “-7, “—=7
on the x-axis stand for the positively skewed, slightly positively skewed, normal,
slightly negatively skewed, and negatively skewed distributions, respectively. In-
terestingly, it is found that the “true” DC/DA/Kappa indices with the negatively
skewed distributions were higher than those with the normal and positively skewed
distributions. This is suspected due to the effects of the location of cut-off scores
relative to the ability distribution. Since the cut-off scores (—1.75, —0.81, 0.58)
were more on the lower end of the ability scale, there were more candidates in
the positively skewed distributions around the cut-off scores, which in turn had a
greater chance of misclassification and lower DC/DA indices. The biases of the
DC/DA/Kappa estimates with different ability distributions are illustrated in Fig. 5.
Two findings are clear—(1) the biases in the estimates are generally small and (2)
the LL. method had consistently larger biases than the Lee method, especially with
the negatively skewed distributions.

Combining the previous results, it seemed reasonable to assume that the LL
method was more sensitive to both short tests and skewed distributions. Some
further efforts were attempted to investigate the potential negative effects of a
joint condition of short test length and skewed ability distribution on the DC/DA
estimates. Figure 6 displays the biases with different ability distributions when the
test had ten items. It was found that the LL. method had generally larger biases with
those non-normal distributions in a short test. Specifically, the LL. method over-
estimated the DA index in the positively skewed distributions and under-estimated
in the negatively skewed distributions. Furthermore, the LL method consistently
under-estimated the DC/Kappa indices across all distributions, having especially
large biases with negatively skewed distributions. In contrast with the LL. method,
the Lee method performed relatively consistently and had reasonably small biases
across the different ability distributions. Additionally, the findings that the LL
method performed very differently across the five ability distributions suggested
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a negative interaction between ability distribution and cut-off score location on the
LL method for the short tests. In fact, using another set of cut-off scores (—0.414,
0.384, and 1.430), the differences of bias of the LL method across the different
distributions diminished but still were larger than the Lee method (plots not shown).
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4.3 Local Item Dependence

The PCA was conducted as a validity check of the test dimensionality with various
degrees of LID. The first five eigenvalues are summarized in Table 1 (in the order of
increasing LID levels). It shows that along with an increasingly high level of LID,
the tests presented from strong unidimensionality to moderate multidimensionality
(with an emerging stronger second factor). Table 1 also suggests that the ratio of
the first factor to the second factor was much more sensitive to the LID than the
proportion of total variance explained by the first factor.

Figure 7 displays the “true” DA/DC/Kappa indices at various levels of LID. It
was found that the “true” DA index decreased noticeably when the test had a higher
level of LID. By contrast, the “true” DC and Kappa indices stayed more or less
stable across the various levels of LID. When it comes to the bias of the estimates
(Fig. 8), both methods excessively over-estimated the DA index when the test had a
moderate or high level of LID (e.g., bias close to 0.2 for a high level of LID). Yet,
the biases of the DC and Kappa indices were much smaller and less consequential.
Comparatively speaking, the Lee method was more sensitive to the LID and had
larger biases of the DC/Kappa indices when the test had a high level of LID (e.g.,
when the variance of testlet parameters was equal to 1).

5 Conclusions

A series of comprehensive simulation studies were conducted to compare a widely
used CTT-based method and a newly developed IRT-based method (the LL and Lee
methods) for computing the single-administration decision consistency and accu-
racy (DC/DA) estimates under various standard and nonstandard testing conditions.
Both methods had reasonably small biases when the conditions were standard,
that is, when the tests were reasonably long, the ability scores were normally
distributed, and the data were unidimensional without the LID. In the less-typical
or nonstandard situations, in general, we found that the Lee method provided more
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accurate estimates than the LL method. One exception was the condition of LID,
where the underlying assumption of IRT was violated, and here, the LL method
outperformed the Lee method when the test had a high level of LID. In addition,
there was a negative interaction between the ability distribution and cut-off score
location with the LL method for the short tests, and this finding was not observed
with the Lee method.

The simulation results also confirmed a sometimes reported finding in the liter-
ature on the discrepancies between the CTT- and IRT-based single-administration
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Table 1 Eigenvalues of tests with different levels of local item dependence (40 items)

First five eigenvalues

LID Variance (%) explained  Ratio of first to
level 1 2 3 4 5 by first eigenvalue second eigenvalues
0 152 089 085 079 079 38.1 17.2

0.2 157 1.07 087 082 0.78 393 14.7

0.5 165 174 085 079 073 413 9.5

1 177 239 082 0.75 0.68 443 7.4
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DC/DA estimates. Specifically, the LL method consistently under-estimated the
decision consistency indices across the simulated conditions, while the Lee method
reduced the under-estimation in many conditions by providing somewhat higher
values of the estimates. This is an important finding because it suggests that the
often reported DC/DA findings using the LL method for the tests are probably
underestimates of the true DC/DA results. Recall too, that many tests today are
using IRT models in the test development and analyses.

This study has important implications for both methods in practice. First, for the
LL method, it suggested that it provided poor estimates with both short tests and
skewed ability distributions. In addition, the results suggest the under-estimation of
the LL method for the decision consistency indices. Given that there are a couple
of reliability estimates available (e.g., Cronbach’s alpha, stratified alpha, test—retest
reliability, parallel-form reliability, etc.), the practitioners may want to evaluate and
pick the most suitable available reliability estimate before applying the LL method.
For the Lee method, it is important that the assumptions of IRT models, namely,
the unidimensionality and local item independence, be met to ensure the accurate
DC/DA estimates. The IRT model fit is also assumed with the Lee method and
therefore should always be checked. Finally, the IRT parameter estimates need to
be precise since they are used in computing the observed score distributions. When
the assumption of local item independence was violated as illustrated in this paper,
interestingly, it was found that the DA estimates were much more negatively affected
than the DC and Kappa estimates. One possible explanation could be that the
problems with the LID were consistent with the two parallel forms, which made the
effects on the decision consistency indices much less consequential. Nevertheless,
the testlet factors can vary from form to form, and from testlet to testlet in the real
world, and the content- or paragraph-related testlet factors could have more negative
effects on the DC estimates than the format-related testlet factors as simulated in
this study, and thus deserve further research. The effects of multidimensionality,
although related with the LID but having a more complex factor structure, provide
the possibility of future investigation too. Lastly, there are fewer works investigating
the effects on the DA estimate than on the DC estimate and more such studies would
be desirable.
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One criticism of the study could be that the data were simulated within the IRT
framework. This could result in a bias in favor of the Lee Method. Nevertheless,
the IRT models often show more than adequate fit with many tests in use and these
models are widely used in test development, equating, and the study of differential
item functioning. More studies using the Lee method with IRT models that fail to fit
the data well would be worth carrying out. Another possible limitation is associated
with the assumption of the random parallel forms made for the CTT-based method,
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which would in turn have lager error variances than the strict parallel forms (namely,
the parallel forms have exactly the same items) assumed for the IRT-based methods.
Future simulation studies using a large item pool to randomly generate the parallel
forms may facilitate a more in-depth understanding of the discrepancies between the
two approaches. Lastly, the comparison with other existing DC/DA methods, e.g.,
the IRT-based Rudner (2005) method, is of interest and should be included in the
future studies.
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Modeling Situational Judgment Items
with Multiple Distractor Dimensions

Anne Thissen-Roe

Multiple choice situational judgment items (SJI) are often used in employee
selection assessment. Such SJIs pair an item stem describing a realistic on-the-
job problem scenario with response options describing specific problem-solving
actions. In addition to information about problem-solving skills and job-related
procedural knowledge, SJIs may contribute information about personality traits, as
in Motowidlo et al.’s (2006) implicit trait policy (ITP) model. Schmitt and Chan
(2006) advised that SJIs be modeled so as to obtain information about multiple dis-
tinct personality antecedents of work behaviors, independent of contextual behavior
effectiveness. Both development and scoring processes for SJIs stand to benefit from
the application of item response theory (IRT), and specifically from the use of a
diagnostic item response model capable of distinguishing the effects of multiple
latent traits on response option selection, which may vary across distractors. The
multidimensional nominal response model (MNRM; Bolt and Johnson 2009) fits
intrinsically multidimensional items, e.g., where response sets or skill component
information are present (Bolt and Newton 2010, 2011). Appropriately constrained,
the MNRM can model differential personality antecedents to SJI response options
as continuous latent variables, as well as in-context problem solving. The present
study demonstrates an application of the MNRM to employee selection SJIs.

1 Situational Judgment Items in Employee Selection
Assessment

When considering candidates for employment, a hiring organization may be
interested in predicting their performance on a job. Making that prediction is
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not always as simple as administering an intelligence test; it may be as complex
and multidimensional as the evaluation metrics, and the behavioral antecedents,
of job performance itself. In service of such a prediction, assessments taken
during the application and hiring process can provide information about candidates’
knowledge, skills, and abilities as well as their preferences, inclinations, beliefs, and
behavior patterns.

Situational judgment tests are often used in employee selection assessment.
SJI pose realistic on-the-job problem scenarios and offer specific problem-solving
responses. They can be developed to assess problem solving, job-related procedural
knowledge, work styles, work preferences, and/or personality expression. Relative
to general measures of ability and personality, they provide a distinct measurement
of contextual reasoning, potentially capturing interactions between person and role
(Gessner and Klimoski 2006; Swander 2001; Motowidlo and Beier 2009). An
additional benefit of SJIs in an employee selection context is that they are capable
of functioning as a realistic job preview. After taking a situational judgment test
tailored to the job to which they are applying, candidates’ expectations of the job
align better with the hiring organization’s. A candidate who fits the role well might
be motivated to apply, while one likely to be quickly dissatisfied is encouraged to
self-select out of the application process. Such self-selection is beneficial in cases
where the candidates, if hired, would quit too quickly for the organization to recoup
hiring and training costs.

An example of a multiple choice SJI is as follows:

On one of your breaks some of your co-workers start gossiping about an apparent romance
taking place between a supervisor and another employee. Which of the following would
you most likely do?

A. Tell your co-workers that they should not be gossiping.

B. Join the conversation so that you can change the topic to something more appropriate.
C. Tell your supervisor about the conversation.

D. Listen to the conversation, but don’t say anything.

This item was administered to candidates for entry-level, customer-facing hourly
retail jobs. It functions as a realistic job preview, in that it presents a situation
an hourly retail employee may encounter that isn’t covered in the recruitment job
description, a situation that is uncomfortable to some degree.

Not all SJIs are alike. Some SJIs, such as this one, tap “other duties as required”:
dealing with rude customers, frustrating co-workers, unglamorous tasks, inter-
task conflict, and encroachment of work on personal time. Despite such duties
being captured only in the catch-all portion of a job description, the SJIs are
designed to measure the same attributes, such as diligence and social skills, that
help with primary task performance. They are not intended to make demands on
the candidate’s fluid reasoning or creativity. By contrast, SJIs used for specialized
professions, such as military or medical jobs, sometimes look for good intuitions
about unfamiliar situations, or practical solutions to novel problems (McDaniel et al.
2001; Gessner and Klimoski 2006).

The development of SJI content and scoring methods tend to be pragmatic
and practically rooted. The purpose of this article is to advance the psychometric
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science of SJIs through application of a flexible item response model. To that end,
the following sections briefly review the state of measurement theory and existing
scoring methods for SJIs; then, the MNRM (Bolt and Johnson 2009) is presented as
an alternative. Finally, as a demonstration, the model is applied to real job candidate
responses to a situational judgment test, and compared with the fit of a simpler
alternative model.

2 Measurement Theory for Situational Judgment Items

Over the years, some theoretical understanding has developed of the psychology of
SJI responses. Some of this understanding is general, while some is specific to one
presentation or response format. This article concerns itself with SJIs formatted as
multiple choice items, having K response options.

Responses to K-option multiple choice items have K — 1 degrees of freedom, and
can distinguish respondents on up to K — 1 dimensions (Cronbach 1946). Although
Cronbach’s early conception of secondary measurement dimensions within multiple
choice items involved nuisance dimensions such as response sets, there is no reason
items cannot be written to simultaneously address multiple constructs.

The first axis of differentiation within an SJI is usually considered to be
effectiveness. One of the responses is, or several of the responses are, more effective
work behavior than the others. However, Schmitt and Chan (2006) recommend
coding responses for personality antecedents, independent of effectiveness. If
personality traits are not strongly related to effectiveness, they constitute secondary
measurement dimensions, about which the remaining axes of differentiation in
each SJI may provide information. In a related approach, Stemler and Sternberg
(2006) wrote seven-response SJIs in which each response endorsed one of seven
categorically differentiated interpersonal strategies, which were more or less effec-
tive in the context of the situation given, but could also be preferred or avoided
across items independent of context. In both of these cases, SJIs are meaningfully
multidimensional at the item level.

Motowidlo et al. (2006) presented an ITP model, in which SJI responses reflect
personality expression in an interactionist sense. An ITP is defined as an implicit
belief about the contextual effectiveness of trait expression. I'TPs moderate the
effect of the latent trait on behavior choices. Although the traits in question are
personality traits, the policies are implicit cognition and contingent on the situation,
and can be a form of procedural job knowledge. By their situational context and
cognitive framing, SJIs measure ITPs directly and traits indirectly, via dispositional
fit (Motowidlo and Beier 2009) and, presumably, familiarity with the results of
personality-consonant actions. Again, multiple traits and policy moderators may
affect responses to a single item, leading to differentiation on multiple axes.

Based on these descriptions, it appears that a model of SJI responses should
permit intrinsic multidimensionality within each item. It is illuminating, further, to
consider the distinction between these joint effectiveness-approach models of SJIs



254 A. Thissen-Roe

and cognitive diagnostic models of skill items. Cognitive diagnostic models such
as DINA (Junker and Sijtsma 2001) also call for a primary latent trait that permits
problem-solving effectiveness, along with a set of individual component skills that
may be present or absent. However, no underlying theory of SJI response requires a
personality trait, an ITP, or even a preference for or against an interpersonal strategy
to be explicitly two-valued. Most of them are better conceptualized as continua.

Returning to our example SJI, its four responses can be divided along two axes of
general behavioral expression, each of which has an unknown degree of relationship
to effectiveness overall and within the given context. One axis reflects an orientation
toward active (versus passive) responses. Another axis is a relative prioritization
of either the needs of the team or the rules of the organization—an ITP axis,
reflecting a choice between two possible trait expressions. One response reflects
each combination of the two ends of the two axes:

On one of your breaks some of your co-workers start gossiping about an apparent romance
taking place between a supervisor and another employee. Which of the following would
you most likely do?

A. Tell your co-workers that they should not be gossiping. (Active, rule priority)

B. Join the conversation so that you can change the topic to something more appropriate.
(Active, team priority)

C. Tell your supervisor about the conversation. (Passive, rule priority)

D. Listen to the conversation, but don’t say anything. (Passive, team priority)

3 Scoring Situational Judgment Items

To date, SJIs have been scored with a variety of methods, from the ad hoc to the
theory driven. There are dichotomous and polytomous variations on the assignment
of credit for the selection of effective or ineffective responses. The simplest,
dichotomous version involves assignment of one point for the best response and no
points to any other; partial-credit variations include assigning each response points
equal to its mean effectiveness rating or according to a regression model derived
empirically from validation data. In both of these cases, simple accumulation of test
scores over items is implied (Weekley et al. 2006; Zu and Kyllonen 2012).
Realistic SJIs are not written in a vacuum. Commonly, the situations are obtained
through a critical incidents methodology, in which anecdotes of real job situations,
capable of provoking good or bad job performance, are distilled into an appropriate
length and level of specificity (Weekley et al. 2006). Given that practical, largely
atheoretical origin for the stem and sometimes response text, the issue of key
provenance merits some attention. Rationally derived keys may be obtained through
incumbent consensus; based on the ratings of “subject matter experts” including
supervisors, trainers, customers, and outside stakeholders; or based on psychologist
review according to a theory of job performance (Weekley et al. 2006; McDaniel
et al. 2009; Motowidlo and Beier 2009). Empirical models, in addition to regression
derived from concurrent or predictive validation, may include models of group
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membership and nonmembership. Finally, hybrid keys combine elements of rational
and empirical keying, use multiple sources to generate the keys, or use multiple
sources to eliminate inconsistently keyed items.

An alternative to accumulative scoring algorithms is latent trait estimation
according to IRT. The use of IRT to score SJIs is relatively novel. Zu and Kyllonen
(2012) tested five item response models in comparison to non-IRT methods on
two skill-focused situational judgment tests, and found the nominal response model
(NRM) to produce more reliable and valid scores than the alternatives, particularly
in cases of ambiguous or multiply keyed responses, the same type of cases that led
to recommendations for partial credit summed-score methods.

Both of the assessments studied by Zu and Kyllonen (2012) were unidimen-
sional, written to assess single latent traits: the ability to manage emotions, and
teamwork. By contrast, Mangos et al. (2012) studied SJIs written to assess both abil-
ity and work style traits simultaneously, and considered one- and three-dimensional
IRT models. Most of the models addressed only the multidimensionality of the test,
allowing for differences in measurement between items; Mangos et al. suggested
the MNRM as an effective alternative for modeling intrinsic multidimensionality in
SJIs. Except for issues of dimensionality, Mangos et al. generally corroborated Zu
and Kyllonen’s findings.

The use of IRT models to score SJIs, in general, reduces but does not eliminate
the problem of initial keying. An imprecise key according to expected trait-response
relationships is sufficient to orient an IRT model for calibration, but the initial key
still determines which of two or more ultimate models emerge from the calibration
process. (The minimum is two models: every IRT model has a trivial counterpart
where the latent trait’s high and low anchors are exchanged.)

4 The Multidimensional Nominal Response Model

The MNRM (Bolt and Johnson 2009) can be written as:

ezik

Zhezih

T (i,k) =

where
Zik = Ziaij * Sijk * 0+ Cir

for item i, dimension j, and category k. T(i,k) traces the probability of a response
in category k as a function of the j-dimensional latent variable 8. The parameter
cik 1s an intercept parameter for each response category, while discrimination for
each dimension j is decomposed into a slope a; and a set of scoring functions
sijik. This decomposition is consistent with Thissen et al. (2010, p. 59) and (prior
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to the imposition of cross-item equality constraints) Johnson and Bolt (2010, p. 99).
The scoring functions for each dimension can be thought of as giving the order of
response categories; spacing is determined by s;j jointly with a;;.

A more constrained multidimensional form of the NRM (Thissen et al. 2010) is
usually used, for example, in the estimation software IRTPRO (Cai et al. 2011). In
this version,

Zik = Z,-aij * ik * 0 + Cik

for item i, dimension j, and category k; a single vector sj applies across all
dimensions. While an NRM item may measure in a multidimensional space relative
to other items, it has only one dimension of intrinsic measurement.

The constraint imposed by the NRM upon the general form of the MNRM,
and conversely, the advantage offered by MNRM, is particularly salient in the
case of SJIs. Multiple scoring functions s allow the MNRM to fit intrinsically
multidimensional items, e.g., where response sets or skill component information
are present (Bolt and Newton 2010, 2011). SJIs have the potential to be intrinsically
multidimensional as well. A K-response SJI can differentiate applicants on up to
K — 1 dimensions, with the responses in a different order on each. Recall that in
our recurring example, two responses were coded active and two passive; two were
coded for rule priority and two were coded for team priority. The effectiveness judg-
ments of subject matter experts produced a third response ordering, corresponding
exactly to neither work style dimension. Appropriately constrained, the MNRM can
model differential personality antecedents to SJI response options as continuous
latent variables, as well as in-context problem solving.

While the intrinsic unidimensionality constraint may be excessive, some iden-
tification constraints are needed to fit the MNRM to [ items, J dimensions, and
K categories. It is sufficient, as an alternative to the identification practices used by
Bolt and Johnson (2009), to constrain J of the discrimination parameters a;;, leaving
J(I — 1) free; to constrain one intercept parameter c; per item, leaving K — 1 free;
and to constrain two scoring function parameters s;j per item per dimension, leaving
K — 2 free. For example, one may use structural zeroes: cjy =0 for all 7, intended
lowest s;j =0 and intended highest s;x =K — 1 for all ij. (The remaining s;; are
expected to fall between 0 and K — 1 but can vary outside that range if the expected
order is not supported by the data.) Further constraint may, of course, be needed for
practical identification; that is, to obtain convergence of item parameter estimates
given a real dataset.

The practice of constraining two scoring function values in a particular direction,
and also constraining discrimination parameters a;; to be greater than zero, has
consequences for the factor rotation. As with the intrinsic unidimensionality
constraint, a positive discrimination parameter constraint is theoretically significant,
potentially useful and potentially too constricting for the data.

Here, in Table 1, initial parameters are presented for our example SJT under NRM
and MNRM. In this example, the three dimensions measured, in order, are expected
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Table 1 Initial parameters for calibration of an example item, under NRM and

MNRM
NRM MNRM
ap=1,a;=1, Jj=0 j=1 j=2
ap=1 ap=1 ap =1 ap=1

(A) k=0 Cio = 0*; Si0 = 2 Cio = 0* Si00 = 2 Si10 = 3% §i20 = 1
(B)k: 1 Cil :0; Si1 =3%* Ci():O Si01 =3%* Si11 =2 Si21 =2
O k=2 cp=0;sp=1 co=0 sip=1 spp=1  s52:=0*%
(D) k=3 Ci3 = 0; Si3 = 0* Cio = 0 §i03 = 0* Si13 = 0* 8§23 = 3*
Subscript i indexes the current item. Starred values are fixed; others are starting
values for calibration

to be effectiveness or problem solving, active (versus passive) response orientation
(initiative), and team (versus rule) priority. Judged effectiveness was used to set the
scoring function order for NRM and the first dimension of MNRM; if appropriately
scaled, average SME ratings could be used directly, as could trait level estimates,
but the value of conferred precision in scoring function values is unknown.

On one of your breaks some of your co-workers start gossiping about an apparent romance
taking place between a supervisor and another employee. Which of the following would
you most likely do?

A. Tell your co-workers that they should not be gossiping. (Active, rule priority)

B. Join the conversation so that you can change the topic to something more appropriate.
(Active, team priority)

C. Tell your supervisor about the conversation. (Passive, rule priority)

D. Listen to the conversation, but don’t say anything. (Passive, team priority)

5 Empirical Study

SJI response data were collected from four million individuals’ job applications to
22 organizations in the United States over a 3-year period. Job candidates took one
of several forms of a screening assessment as a part of the initial application process,
following minimal screening. The screening assessment in question is designed to
predict customer service performance in hourly jobs in industries such as retail, by
way of measuring work styles and preferences. It is a multiple-section assessment
that includes SJIs as well as other item formats.

Responses were collected from each job candidate to some, but not all, of a
set of 20 SJIs. Candidates were presented a minimum of 4 and a maximum of 15
SJIs, on average 7.3. The number of SJIs presented to any particular job candidate
was limited out of respect for the candidate’s effort in completing the application,
but candidates were not permitted to skip items presented. Missing responses are
considered to be missing at random, because the presence or absence of response
data was under the control of the assessment’s creator, not the job candidate.
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Fig. 1 Difference in BIC between MNRM and NRM for each sample, with cross-fit range

Some individuals applied to more than one job; subsequent repeat applications
after the first, from the same individual, were discarded in order to satisfy the
assumption of local independence between response patterns. The remaining re-
sponse data was divided into four replication samples of approximately one million
response patterns each, based on the remainder of a unique database key attached to
the application after division by four.

The NRM and MNRM were separately calibrated against each of the four
samples, using the same starting parameters, and the Bayesian Information Criterion
(BIC) was calculated for model comparison. In addition, the obtained MNRM
parameters from each sample were cross-validated against the other three samples;
the BIC was calculated for each set of parameters on the three samples not used
to obtain them. These cross-fit values give a sense of the degree of overfit or
capitalization on chance due to the larger number of free parameters in MNRM,
separately from variable success in calibration when using different samples.

In all cases, MNRM fit the data better than NRM. Figure 1 shows the difference
in BIC between MNRM and NRM for each sample; black lines represent the
difference in fit for models calibrated on the same sample, whereas the gray
represents the range of differences resulting from cross-validation. (In order to
account for small variations in sample size, differences were always calculated
between fit statistics for the same sample, no matter on which sample the parameter
calibration was done.)

It is readily apparent from Fig. 1 that the obtained improvement of MNRM on
NRM varies considerably by calibration sample; differences in BIC for models
calibrated and fit on the same sample range from 7,721 to 18,516. (With 50
additional free parameters, a significant xz, at o =0.05, is at least 71.4.) The narrow
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MNRM

Fig. 2 Rotational indeterminacy in practice. Obtained factor loading configurations differed more
between calibration samples under MNRM than under NRM

cross-fit ranges suggest that model overfit, or capitalization on chance, is not a large
determinant in the obtained improvement; the mean advantage in BIC conferred
by MNRM calibration and fit evaluation on the same sample was 380. Instead,
calibration on certain data samples resulted in universally better or worse parameter
vectors. This pattern could result from local minima in the loglikelihood surface
for the model in parameter space, but it might also simply indicate large nearly
flat regions in the same surface, over which minimization algorithms do not readily
traverse. Either way, the loglikelihood surface is not well suited to minimization.
Further evidence toward rotational near-indeterminacy, as suggested by Bolt and
Johnson (2009), is provided by comparison of the configurations of loadings of four
representative items across two dimensions, as shown in Fig. 2. NRM generated
much more consistent patterns of loadings between calibration samples than did
MNRM.

The problem of rotational indeterminacy can, at least some of the time, be
ameliorated through the use of anchor items which can be constrained to load on
particular dimensions, or in general modeled with fewer free parameters. In this
case, six additional items were drawn from the assessment’s paired preference
section, and modeled with the two-parameter logistic model (2PL; Birnbaum 1968).
As shown in Fig. 3, the improvement of MNRM over NRM was much more
consistent when anchor items were used, although the anchor items themselves were
modeled identically in both conditions. Differences in BIC for models calibrated and
fit on the same sample, with anchors, ranged from 17,621 to 22,000, less than half
the range of the models fit without anchors.

Figure 4 shows that, while less dramatic, the problem of rotational indeterminacy
has not been eliminated. In the third replication sample, but not the first, second
or fourth, one plotted item loads only on the second dimension (vertical axis).
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Fig. 3 Difference in BIC between MNRM and NRM for each sample when anchor items were
used, with cross-fit range

MNRM

Fig. 4 Less configural variation was observed between MNRM factor loadings derived under
different calibration samples when six anchor items were used

Furthermore, under both the NRM and MNRM, two of the anchor items “stole
theta” on the second dimension; that is, a relatively high correlation between those
two items manifested not as local dependence, but as high loadings on that trait
while all other items’ loadings were suppressed. This might be a case where more
or better-chosen anchors could do a better job of stabilizing the models. In short,
anchor items are a practical amelioration strategy, not a panacea.
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Returning once again to our example item, Fig. 5 compares the trace lines under
NRM and MNRM. Under NRM, the item loads mostly on the third dimension; its
trace lines correspond closely to MNRM'’s third dimension, but left—right reversed.
The difference is a side effect of the choice of initial high and low categories for each
dimension on MNRM; the third dimension category anchor orders were sufficiently
opposed to the first dimension category anchor orders (used for all three dimensions
under NRM) that the two models fit that dimension with high and low ends reversed.

In addition, the other two dimensions of MNRM picked up a lower-
discrimination pattern. The first two dimensions in this case correspond closely,
although they are distinct from the third dimension, team priority. This is visible in
the first two trace lines in the second panel of Fig. 5.

Another way of visualizing the two patterns is to look at the latent trait regions
where each item response is dominant, jointly on two axes of differentiation. In
Fig. 6, dominant response regions are plotted on a composite of dimensions 1 and 2
(horizontal) against team priority (vertical). It is immediately apparent that the four
item responses do not fall in a line, as NRM enforces.

NRM'’s intrinsic single dimension of measurement is generally aligned with the
vertical axis. In the two-dimensional display of Fig. 6, it is apparent that the vertical
axis, team priority, differentiates three response options that don’t involve getting
one’s teammates in trouble from one response option that does—and the option to
be a “supervisor proxy” ends up in the middle. Contrary to expectations, initiative
or action orientation appears to be primarily relevant in distinguishing between the
two high team priority options.

6 Discussion

At least in the case of the screening assessment studied, the intrinsic multidimen-
sionality of the MNRM allows better fit to SJI response data, compared to the NRM,
even when extrinsic (between-items) multidimensionality is permitted in both cases.
It further appears from the preceding empirical study that the “exploratory-like”
flexibility of the MNRM, and even NRM, allows some data-driven rotation of the
latent measurement axes.

Starting parameters for the study were based on the expectation of problem
solving (overall effectiveness), action orientation (initiative), and team priority
factors. The measures actually obtained were better labeled as customer priority
(attentiveness), initiative, and team priority. Customer priority can be described as a
willingness to drop routine tasks in order to attend a customer, and does not appear
to be a general problem-solving measure. Several items do not load on the first
factor; if that latent trait were problem solving, they should.

All of the obtained measures can be characterized as work styles contrasts, not
ability components. Is situational performance in retail jobs then more a matter of
ITP than ability? Such a finding would be consistent with Motowidlo and Beier’s
(2009) findings that novice-derived SJI keys contained only ITP information,
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Fig. 5 Trace lines for an example item under NRM (fop panel) and MNRM (bottom panel). Under
NRM, the horizontal axis is aligned to the item’s intrinsic single dimension of measurement; under
MNRM, three orthogonal axes are shown for the three modeled dimensions, in each case with the
other two thetas held constant at zero

whereas experienced employees produced keys with additional performance-
relevant information; Motowidlo and Beier labeled that information job-relevant
knowledge. However, as a practical matter, the selection of critical incidents to
translate into SJIs acts as a filter on the types of performance and performance
determinants represented by a set of SJIs. The present study is by no means
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Fig. 6 Dominant response regions for an example ittem under MNRM. The horizontal axis is a
composite of two constructs, customer priority and initiative; the vertical axis is team (as opposed
to rule) priority

sufficiently broad or deep to determine conclusively whether and under what
conditions problem-solving ability remains relevant to situational performance in
retail jobs. It merely suggests the question.

7 Conclusions

The MNRM can be used to model multiple constructs antecedent to situational
judgment item responses; for example, K — 1 work styles contrasts within a K-
response SJI, which jointly predict an overall assessment of job performance.
However, due to the complexity of the MNRM, when modeling SJIs with it, it is
a good idea to constrain the model according to theory, anchor it to constructs with
non-SJIs, or both.
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Theory Development as a Precursor
for Test Validity

Klaas Sijtsma

The two classical main themes in psychological measurement are reliability and
validity. The other topics psychological measurement addresses are directly or
indirectly concerned with investigating aspects of reliability and validity or con-
tribute directly to making measurements more reliable and more valid. For example,
equating of different scales assumes that the scales measure the same attribute, thus
producing a common scale that is a valid representation of the attribute. Adaptive
testing aims at selecting the items for the measured individual from the item bank
that produce the most reliable measurement of the individual using the smallest
number of items. Differential item functioning research identifies items that measure
different attributes in different populations in addition to the dominant attribute,
hence suggesting removing the items that threaten test validity. Person-fit analysis
identifies respondents whose responses were driven by the intended attribute (e.g.,
intelligence) but also by attributes the test was not constructed to measure (e.g., test
anxiety) or that even replaced the intended attribute (e.g., guessing, cheating), and
person-fit analysis suggests studying such aberrant respondents or removing their
data from the dataset. Componential item response models and cognitive diagnosis
models hypothesize theories explaining how respondents produce item scores, thus
providing a more solid basis for understanding what the test measures and thus
improving its validity.

Reliability is a more technical subject and a narrower concept than
validity; hence, it is a less problematic concept even though the estimation of
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reliability (group-level characteristic) and measurement precision (individual-level
characteristic) is not devoid of discussion (Mellenbergh 1996). The broader and
less technical, hence more problematic validity concept has been debated since it
originated in the 1920s (Sireci 2009; for a discussion of the validity concept, see
Zumbo 2007) and has proven to be more intangible than reliability. The ongoing
debate about validity’s main issue still is the same as it was then: What is valid,
the test or the test score? If the focus is on the test the question is what the test
measures, and if the focus is on the test score the question is for which purposes the
test score can be used. Present-day validity conceptions predominantly focus on the
practical usefulness of the test score and the question of what the test measures is
largely suppressed. This contribution discusses the necessity to do research aimed
at establishing what the test measures and touches upon the surprisingly modest
role psychometrics plays in the validation of measurement.

1 Brief History

In the 1920s, the psychological attribute was considered the causal agent of
responses persons provide to items and a test was considered a measurement instru-
ment of such a causal agent. The novel technique known as factor analysis that had
been introduced recently (Spearman 1904) played a crucial role, and psychologists
saw factors not so much as summaries of variance but more as representing entities
with an ontological status. The view on validity strongly influenced the early ideas of
Cronbach and Meehl (1955). Their nomological network describes the relationships
of the test score with other variables and represents the attributes’ theory. Soon
attention shifted from what (i.e., a “construct”) the test measures to studying
relationships in the nomological network from which the meaning of the test score
could be derived, and with this shift the view of an attribute as a causal agent
disappeared and was replaced by studying relationships with other variables. The
meaning of measurement was derived from these relationships, thus weakening the
role of theory as a guiding principle in the development of tests and questionnaires.

In the 1920s already another viewpoint emerged, which was that a test can be
valid for many different purposes. This view was inspired by the use of tests for
selecting military personnel in WWI and in personnel selection in civil society. The
idea developed that a test is valid to the degree to which it relates to a criterion. For
example, a criterion may operationalize an applicant’s suitability for a particular
job and for each job one may define a different criterion. As there are many
different criteria, a test can have many different validities. For each criterion, the
test’s validity was expressed in the product—-moment correlation, which like factor
analysis at the time was still quite new (Pearson 1896). Soon the need emerged to
distinguish different types of criteria and consequently different types of validity,
such as convergent, divergent, incremental, differential, concurrent, and synthetic
validity. Finally, Messick (1989, p. 13) proposed that “Validity is an integrated
evaluative judgment of the degree to which empirical evidence and theoretical
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rationales support the adequacy and appropriateness of inferences and actions
based on test scores and other modes of assessment.” Thus, validity became both
an encompassing but also a fuzzier concept that referred to the degree to which
available sources support a particular interpretation or a particular use of the test
score. As a result, what the test measures moved to the background and validity
focused on technology, emphasizing that a test fulfilling its practical purpose is a
good test and that in principle one does not need to know what the test measures.

The technological approach to validity is a practical approach that avoids difficult
questions for which one would need an elaborate founding theory of the attribute of
interest, as if such a theory does not matter. The approach reminds one of a consumer
who simply wants an apparatus to work and is uninterested in the mechanics
responsible for its successful performance. But test constructors are not consumers
and it is difficult to imagine that test constructors do not purposefully construct tests
as measures of a particular attribute. The idea that one would assemble a set of
items only because they seem to have predictive power for one or two criteria, at
the same ignoring what the items measure in common, seems preposterous. It is as
if scientific curiosity no longer is of interest. The Standards for Educational and
Psychological Testing (AERA et al. 1999, p. 9) indeed shows that the question what
a test measures does not seem to play a role in modern views on validity.

2 Modern Resistance

Recently, several authors have expressed their concern about the technological
approach to validity. Michell (1999) posited that psychological measurement must
be based on a theory about the attribute but also noticed that very few measurement
instruments are based on this point of departure. The basic problem in psychological
measurement is the absence in most cases of well-founded and well-tested theories
about attributes. If theories are available, the problem usually is that there are
too many competing theories for the same attribute, and that there are no crucial
experiments that allow a decision that favors one theory with respect to the others.
Intelligence is an excellent example for which several theories exist next to one
another so that different tests for intelligence can be based on different theories, such
as Spearman’s 2-factor theory, Thurstone’s 7-factor theory, and Guilford’s three-
dimensional 120-factor theory, whereas other tests are based on binary distinctions
between verbal and performal intelligence and crystallized and fluid intelligence.
The richness of the field in fact signifies its weakness as different intelligence
conceptions continue to exist next to one another. However, for many personality
traits such as leadership and social intelligence the situation is much grimmer, as
propositions, hypotheses, and guesses replace theories and are often expressed by
inaccurate associations between the test score and other variables.

The general complaint is that many tests and questionnaires are based on vague
“theories” that are not well founded and well tested. As a result, test construction
often entails the selection of a set of items that define what the test measures instead
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of a theory that guides the operationalization of the attribute into a set of items.
The psychometric analysis of the collected data and the analysis of the correlations
of test score and a limited number of other variables then serve as the basis for
establishing validity. The researcher relying on psychometrics to find out what his
test measures thus interprets the structure that factor analysis or item response theory
reveals and in hindsight accepts this interpretation as the explanation of how the re-
spondent answered the items. The Achilles heel of this approach is that in hindsight
one is always able to interpret structures found in data. On the contrary, the availabil-
ity of a theory prior to data collection enables one to formulate hypothesis that can
be tested using the data. The dominant approach using items to define what the test
measures rather than theory about the attribute is known as operationism. Following
operationism, the attribute coincides with the operations used to measure it.

Cronbach and Meehl (1955) proposed investigating a test score’s validity through
the relations a test score entertains with the other variables in the test’s nomological
network. Borsboom et al. (2009) noticed that in psychology nomological networks
do not exist; hence, they cannot be investigated. Thus, it is unclear which variables
would have to be investigated to ascertain test-score validity and how a selection of
variables can give rise to a correct inference of what the test measures. Indeed, in
much practical validity research the test score is correlated with one or two other
similar test scores, which is supposed to give evidence of convergent validity, while
correlations with a limited number of other, dissimilar variables should provide
evidence of discriminant validity. These two pieces of information together are
important aspects of a methodology for the investigation of the nomological network
known as the multi-method multi-trait approach (Campbell and Fiske 1959).

Can a few correlations be a sound basis for the inference of what the test
measures? The abundance of theories for some attributes and the absence of theories
for other attributes necessitate the reliance on the nomological network or whatever
is available (see Cronbach’s 1988, weak program), and much test construction work
reports correlations with variables that are available and replace convergent and
discriminant validity. Borsboom et al. (2009) argue that the development of attribute
theories is necessary to know what a test measures, and for this purpose one has to
investigate what persons do when they respond to items: Which cognitive processes
are activated? Which affective processes are activated? Psychometrics can lend a
helping hand by means of cognitive processing models (e.g., De Boeck and Wilson
2004) and cognitive diagnostic models (Rupp et al. 2010). A relatively simple
example of a cognitive processing model is the linear logistic test model (Fischer
1995), which explains item locations from contributions of different operations
that students have to perform when they attempt to solve a cognitive problem.
Psychometric models contribute to theory development in the intelligence domain,
for example, investigating solution strategies in Raven’s Progressive Matrices test
(Verguts and De Boeck 2002) and competing theories for transitive reasoning
(Bouwmeester et al. 2007), and in the emotion domain for investigating the process
structure of guilt (Smits and De Boeck 2003).
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3 Cycle of Measurement

Sijtsma (2012) extensively discussed how either the presence or the absence of
a well-developed theory affects the construction of a test. Figure 1 shows a
cycle the development of a test goes through. I assume that one starts the test
construction by selecting the theory for the attribute for which one intends to
construct a measurement instrument. In rare cases a well-developed theory is
available, such as for proportional reasoning and transitive reasoning; in other cases
the researcher has to choose one from multiple, possibly well-developed theories,
as with intelligence; and in many cases theory takes the appearance of notions,
abstractions, and traditions, intuitions and educated guesses, that define hypotheses
at best but no well-developed theory supported by sound empirical research and
replicated on several research occasions. The dashed box “Attribute Theory” in
Fig. 1 represents this initial state of theory development, and the solid box “Attribute
Theory” represents the other two, better-developed states.

Theories define attributes at a high abstraction level, but attributes only become
“tangible” in behavior. Hence, the theoretical attribute structures need to be
translated into observable behaviors that are typical of the attribute. This process
is known as operationalization (Fig. 1); that is, the specification of the operations
needed to measure the attribute. The typical behaviors are provoked by well-
chosen items that require respondents to provide solutions or give answers that are
informative of the attribute. This only works well with a strong, well-developed
attribute theory but not with a weak, immature attribute theory when subjectivity
guides the operationalization. For example, with weak theory one has little more
“theory” available than general statements referring to weak relations, such as
“depressive people are inclined to sleep shorter and worry more.” Even though this
may be true, people sleeping shorter and worrying more often are not depressive.
Hence, these are behaviors that are not typical of depression and a better-developed
depression theory would provide more guidance for operationalization and test
construction.

Attribute
Theory

l

Attribute

| |
Operationalization +1: Theory i
l | _? _________
Data
Fig. 1 Cycle of test Analysis
construction
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Does not Applies
apply
Items: I sometimes feel gloomy O O O ] O
I wish I were cheerful more often O O [} [} O

Now and then I have pessimistic thoughts O u] ] ] u]
I am not always as gay as I should be O O O ] O

Fig. 2 Imaginary four-item questionnaire for measuring melancholy

After a set of items has been defined irrespective of the status of the underlying
theory, next a preliminary test is constructed, administered to a representative
sample from the population of interest producing qualitative responses, and the
responses are transformed into numbers or item scores constituting the data (Fig. 1).
The transformation follows the general principle that a higher score reflects a
higher level of the attribute. This is a hypothesis, which may be proven wrong by
data analysis, for example, using item response theory models. The psychometric
analysis (Fig. 1) of the data produces results that are informative about the structure
of the data and the quality of the test, but which may also be fed back to the
theory of the attribute. The feedback loops in Fig. 1 show that outcomes of
psychometric analysis have more repercussions for better-developed theories than
for immature theories. It is important to notice that without a theory that guides the
operationalization data analysis can only provide information about the data, not
about the non-existing theory.

A generally accepted idea among test constructors seems to be that in the absence
of a well-developed attribute theory the analysis of the collected data helps to
develop the attribute theory. This way theory is inferred from data. Why do people
believe that data can provide such information? I contend that they are misguided
by the structure data always display (unless a computer generated random data),
and which is revealed by clever statistical modeling. Statistical modeling always
comes up with “something” but why would that “something” be informative about a
theory? All that was revealed is the structure of the data. I use an example to clarify
my point. The example is made up for didactical purposes, and not based on a real
questionnaire that was used to collect real data.

The example concerns the measurement of the inclination to having feelings
of melancholy. Figure 2 shows four items that each are hypothesized to represent
different aspects of melancholy. My prediction is that a principal components
analysis or a confirmatory factor analysis of data collected in a sample of re-
spondents supports a 1-factor model. I have not done this experiment and may
be wrong but the point I want to make is that a researcher may readily infer the
existence of a causal attribute from the 1-factor solution, and that this is what
happens in the absence of a theory for melancholy that guides the construction of
the items. The 1-factor structure simply suggests that an underlying trait caused
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the responses to the items. This practice led Kagan (2005) to conclude that self-
descriptions rely too much on “the semantic structures activated when participants
answer questionnaires.” Thus, respondents reflect on the situation in which they find
themselves answering questions and tend to come up with a consistent picture. But
is this trait measurement? Or is this a linguistic phenomenon? Or something else?
Without theory one cannot know this.

This discussion serves to emphasize the importance of having a theory available
when one constructs a measurement instrument. In the absence of theory, all efforts
should be invested in the development of such a theory. Only if test construction is
based on theory guidance can tests be decided to be valid.

4 Conclusion

My advice to researchers is to use whatever theory about the attribute in question
that is available to design a first draft of the test. However, the best they could do is
to actively contribute to the development of the theory, provided a theory is absent or
in its infancy. Then, researchers may use psychometric cognitive processing models
to study the psychological processes that subjects employ to solve or answer the
items and to use the results of the statistical data analysis to amend the test and
the theory that stood at the basis of the test construction. The flexibility of modern
cognitive processing models including variations on item response theory models,
latent class models, and factor models suggests that one has much leeway to describe
such processes well and make huge contributions to better measurement. The end
result is a test that measures the intended attribute. Finally, after the test has been
constructed it should be investigated how well it can be used to predict a particular
criterion, such as an applicant’s suitability for a particular job or the classification
of persons for treatment. The degree to which the test produces valid positives and
valid negatives qualifies the test for the particular purpose but does not say anything
about what the test measures; this was established in the previous stage of test
construction.

The discussion about validity has become too complex. There are basically two
problems that have to be tackled. First, one has to establish whether a test is a valid
measurement instrument for the intended attribute. Second, one has to establish
whether the test can be used effectively for a particular practical usage. Both aspects
of validity are essential; constructing a test to measure an attribute without intending
to ever use it in practice is a useless enterprise, and using a test in practice without
having established what it measures is bad science.
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Bayesian Methods and Model Selection
for Latent Growth Curve Models
with Missing Data

Zhenqiu (Laura) Lu, Zhiyong Zhang, and Allan Cohen

1 Introduction

There has been widespread interest in the analysis of change in social and
behavioral sciences (e.g., Singer and Willett 2003). Growth modeling, in particular,
is becoming increasingly important in these areas. Among the most popular growth
models, latent growth curve models (LGCMs) are statistical models designed to
study individuals’ latent growth trajectories by analyzing the variables of interest
on the same individuals repeatedly through time (e.g., Bollen and Curran 2006).
With an increase in complexity of LGCMs, comes an increase in difficulties
estimating such models. First, missing data are almost inevitable with longitudinal
data (e.g., Jelicic et al. 2009). Second, using conventional likelihood procedures
may be challenging when estimating model parameters in complex models with
complicated data structures. And third, even with effective estimation methods,
model selection in such complex situations becomes difficult.

1.1 Missing Data

As LCGMs involve data collection on the same participants through multiple waves
of surveys, tests, or questionnaires, missing data are almost inevitable. This is
because some students may miss a test because of absence or fatigue or research
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participants may drop out of a study (e.g., Schafer 1997). Missing data can be
investigated from their mechanisms, that is, by examining why missing data occur.
Little and Rubin (2002) distinguished two mechanisms for missing data, ignorable
and non-ignorable. For ignorable missingness, estimates are usually asymptotically
consistent when the missingness is ignored (Little and Rubin 2002). This is because
parameters that govern the missing process either are distinct from the parameters
that govern the model outcomes or depend on the observed parameters in the fitted
model. The non-ignorable missingness is also referred to as missing not at random
(MNAR), in which the missing data probability depends on unobserved outcomes or
on some unobserved latent variables in the model.

With the appearance of missing data comes the challenge in estimating growth
model parameters. Although there is a large literature addressing the problems of
missing data in applied and quantitative psychology (e.g., Yuan and Lu 2008; Roth
1994), particularly in longitudinal studies (e.g., Jelicic et al. 2009), the majority
of the literature is on ignorable missingness. This is mainly because (1) analysis
models or techniques for non-ignorable missing data are traditionally difficult to
implement and not yet well suited for widespread use (e.g., Baraldi and Enders
2010); and (2) missingness mechanisms are not testable (Little and Rubin 2002).
At the same time, however, the analysis of non-ignorable missingness is a crucial
and a serious concern in applied research areas, in which participants may be
dropping out for reasons closely related to the response being measured (e.g., Enders
2011). Not attending to the non-ignorable missingness may result in severely biased
statistical estimates, standard errors, and associated confidence intervals (e.g.,
Schafer 1997), and thus poses substantial risk of leading researchers to incorrect
conclusions. Accordingly, this paper focuses on non-ignorable missingness and
investigates its influences on model estimation for different types of missingness.

In a recent study of latent growth models, Lu et al. (2011) investigated non-
ignorable missingness. However, the missingness in that study was only allowed to
depend on latent class membership. In practice, the non-ignorable missingness in
latent growth models can depend on many other latent variables such as individual
starting level and growth rate. Furthermore, Lu et al. (2011) did not discuss how to
identify the missingness mechanisms.

1.2 Bayesian Approach

In this study, a full Bayesian approach is used for parameter estimation. Previously,
maximum likelihood methods were adopted for most of the studies, and statistical
inferences were carried out using conventional likelihood procedures (e.g., Yuan
and Lu 2008). Recently, Bayesian methods have been proposed as an alternative
approach (e.g., Muthén and Asparouhov 2012) to estimate complex models. The
advantages of Bayesian methods include their intuitive interpretations of statistical
results, their flexibility in incorporating prior information about how data behave
in similar contexts and findings from experimental research, their capacity for
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dealing with small sample sizes (such as occur with special populations), and their
expandability in the analysis of complex statistical models with complicated data
structure (e.g., Lee 2007).

In a Bayesian approach, when the joint distribution is complex or unknown but
the conditional distribution of each variable is available for each set of variables,
Gibbs sampling algorithm (Geman and Geman 1984) can be adopted. The Gibbs
sampling generates Markov chains which can be shown to be ergodic (Geman
and Geman 1984), and thus the sequence of samples after convergence can be
viewed from the joint probability distribution of all parameters. It is also shown
that each variable from the Markov chain converges to the marginal distribution of
that variable (Robert and Casella 2004).

1.3 Model Selection Criteria

Model selection criteria can be used to compare models to identify the best-fit
model. Akaike (1974) proposed the Akaike’s information criterion (AIC). AIC
offers a relative measure of the information lost. For Bayesian models, the Bayes
factor is used for hypothesis testing. But the Bayes factor is usually difficult or even
impossible to calculate, especially for models that involve many random effects,
large numbers of unknowns parameters, or improper priors. To approximate the
Bayes factor, Schwarz (1978) developed the Bayesian information criterion (BIC)
or Schwarz criterion. To obtain more precise criteria, Bozdogan (1987) proposed the
consistent Akaike Information Criterion (CAIC) and Sclove (1987) proposed the
sample-size adjusted Bayesian information criterion (ssBIC) which is based on
the Rissanen Information Criteria (RIC, Rissanen 1978) for auto-regressions. The
deviance information criterion (DIC) (Spiegelhalter et al. 2002) is a recently
developed criterion designed for complex hierarchical models. It is based on the
posterior distribution of the log-likelihood, following the original suggestion of
Dempster (1974) for model choice in the Bayesian framework, and it is particularly
useful in Bayesian model selection problems where the posterior distributions of
the models have been obtained by Markov chain Monte Carlo (MCMC) simulation.
DIC is usually regarded as a Bayesian version or generalization of the AIC and BIC.
For all these criteria, the model with a smaller value is better supported by data.

In a Bayesian context, currently there are no well-defined model selection criteria
for latent growth models with missing data (e.g., Celeux et al. 2006). The problem
is mainly due to random effects and missing data. For random effects models, the
likelihood function can be an observed-data likelihood, a complete-data likelihood,
or a conditional likelihood. Briefly speaking, an observed-data likelihood does
not explicitly include latent variables, such as random-effects; a complete-data
likelihood includes all auxiliary variables in the model; and a conditional likelihood
is the joint likelihood function of the observed outcomes and the missingness
indicator conditional on the random-effects, and thus the likelihood only includes
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random-effects, with no fixed-effects involved (e.g., Celeux et al. 2006). Also, the
missing data part can be either included in or excluded from the log-likelihood
functions.

1.4 Goals and Structure

The goals of the paper are to propose latent growth models with non-ignorable
missingness, to estimate the models via a Bayesian approach, and to evaluate the
performance of model selection criteria.

The rest of the paper consists of six sections. Section 2 describes the pro-
posed growth models. Three non-ignorable missingness selection models are
presented and formulated. Section 3 presents a full Bayesian method to estimate the
latent growth models through data augmentation and Gibbs sampling algorithms.
Section 4 proposes model selection criteria in a Bayesian context for growth
models with missing data. Section 5 conducts simulation studies. Estimates from
models with different non-ignorable missingness and different sample sizes are
summarized, analyzed, and compared. Conclusions based on the simulation studies
are drawn. Section 6 discusses the implications and future directions of this study.
In addition, the Appendices present some technical details.

2 Latent Growth Models

The LGCMs can be expressed by a regression equation with latent variables being
regressors. Specifically, for a longitudinal study with N subjects and 7 measurement
time points, let y; = (yi1,vi2,---,vir) be a T x 1 random vector, where y;, stands
for the outcome or observation of individual i on occasion t (i = 1,2,...,N;
t=1,2,...,T), and let n; be a g X 1 random vector containing g continuous latent
variables. A LGCM for the outcome y; related to the latent 7); can be written as

yi=An;+e (D
n;,=B+¢&, (2)

where A is a T x g matrix consisting of factor loadings, e; is a T x 1 vector
of residuals or measurement errors that are assumed to follow a T-dimensional
multivariate normal distribution, i.e., ¢; ~ MN7(0,0), and §; is a ¢ x 1 vector that is
assumed to follow a g-dimensional multivariate distribution, i.e., & i~ MNq(O, ¥).
In LGCMs, B is a vector of fixed effects and &; is a vector of random effects (e.g.,
Fitzmaurice et al. 2004). The vector 3, n7;, and the matrix A determine the growth
trajectory of the model.
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2.1 Selection Models for Non-ignorable Missingness

To address the non-ignorable missingness, there are two general approaches,
pattern-mixture models (Little and Rubin 1987) and selection models (Glynn
et al. 1986). In both cases, the statistical analysis requires joint modeling of
dependent variable and missing data processes. In this research, selection models
are used, mainly because (1) substantively selection models seem more natural for
considering the behavior of the response variable in the full target population of
interests, rather than in the sub-populations defined by missing data patterns (e.g.,
Fitzmaurice et al. 2008), and (2) the selection models formulation leads directly
to the joint distribution of both dependent variables and the missingness (e.g.,
Fitzmaurice et al. 2008):

p(yi,mi|v,0,x;) = p(yilv,x;) p(my]y;, v, ¢,x;)

where Xx; is a vector of covariates for individual i, y; is a vector of individual
i’s outcome scores, 0 = (v,¢) are all parameters in the model, in which v are
parameters for the growth model and ¢ are parameters for the missingness, and
m; is a vector m; = (m;;,myp,...,m;7) that indicates the missingness status for y;.
Specifically, if y; is missing at time point ¢, then m;; = 1. Otherwise, m;; = 0.

Let 7; = p(m; = 1) be the probability that y; is missing, then m; follows a
Bernoulli distribution of 7, and the density function of m; is

plmi) = " (1 =)'~ 3)

For different non-ignorable missingness patterns, the expressions of 7; are different.
In Lu et al. (2011), 7; is a function of latent class membership and thus the miss-
ingness is latent class dependent (LCD). However, the non-ignorable missingness
mechanism could be much more complex in reality. For example, the missingness
may be related to the latent intercept, the latent slope of growth, or the potential
outcome variables. In these cases, the missing data probabilities depend on latent
variables, and thus missingness is non-ignorable. We propose three basic non-
ignorable missingness models in detail as follows.

(1) Latent Intercept-Dependent (LID) Missingness: This pattern assumes that the
missingness depends on individual’s latent intercept, or initial level, /;, and some
observed covariates x;. The rate of missingness 7j;; is expressed as a probit link
function of /; and x;

Tir = D (Yor + Li¥ir +X;Y)d) = q"'(w;i Yie)s 4
where x; is an r-dimensional vector, @z = (1,1;,x;)" and v, = (Yor, Vi, V)’ Note

that if the vector y;, = 0, then the missingness is ignorable. A path diagram of
the LGCM with an LID missingness is illustrated in Fig. 1.
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A Constant

2_ 2 _ 2
Cp1=¢ Cpn=¢ C,r=¢

2
Oyl [9%) Oy

Fig. 1 Path diagram of a latent growth model with latent intercept-dependent missingness (LID),
where the rate of missingness p(m;) depends on covariates x,s and individual’s latent intercept, or
initial level, I

(2) Latent Slope-Dependent (LSD) Missingness: This pattern assumes the miss-
ingness depends on the latent slope of individuals, S;. The missing data rate 7 is
expressed as a probit link function of S; and covariates x;,

Tsi = P(Yor + Si¥se +X1Yy) = PO Vs, ®)
with wg; = (1,S;,x;)" and Y5, = (Yor, Ysr, V) - Its path diagram is drawn in Fig. 2.
(3) Latent Outcome-Dependent (LOD) Missingness: This pattern assumes that the

missing data rates depend on the potential outcomes that may be missing. With
covariates X;, we express T;; as a probit link function as follows.

Tyir = P (Yor + YieYor + X{Yu) = Q)(a);i, sz)a (6)

with @y = (1,yir,x})" and ¥, = (Yor, ¥« Vy,)'- The path diagram illustrating the
LGCMs with LOD missingness is illustrated in Fig. 3.
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O Latent variable

[J Observed variable

O Observed variable with possible missing value
A Constant

Fig. 2 Path diagram of a latent growth model with latent slope-dependent missing data where
p(my) depends on covariates x,s and the latent slope S

3 Bayesian Estimation

In this research, a full Bayesian estimation approach is used to estimate growth
models. The algorithm is described as follows. First, model-related latent variables
are added via the data augmentation method (Tanner and Wong 1987). By including
auxiliary variables, the likelihood function for each model is obtained. Second,
proper priors are adopted. Third, with the likelihood function and the priors, based
on the Bayes’ Theorem, the posterior distribution of the unknown parameters
is readily available. We obtain conditional posterior distributions instead of the
joint posteriors because the integrations of marginal posterior distributions of
the parameters are usually hard to obtain explicitly for high-dimensional data.
Fourth, with conditional posterior distributions, Markov chains are generated for
the unknown model parameters by implementing a Gibbs sampling algorithm
(Geman and Geman 1984). Finally, the statistical inferences are conducted based
on converged Markov chains.
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O Latent variable

[l Observed variable

O Observed variable with possible missing value
A Constant

2_ 2_ 2
Gel_(p 6(’2_¢ GeT:(p

Fig. 3 Path diagram of a latent growth model with potential outcome-dependent missing data
where p(m;) depends on covariates x,s and the outcome y

3.1 Data Augmentation and Likelihood Functions

In order to construct the likelihood function explicitly, we use the data augmentation
algorithm (Tanner and Wong 1987). The observed outcomes yf.‘bs can be augmented
with the missing values y” such that y; = (y¢**,y”*)’ for individual i. Also, the
missing data indicator variable m; is added to models. Then the joint likelihood
function of the selection model for the ith individual can be expressed as

Li(n;,yi,my) = [p(n;) p(yi|n,)] p(milyi, n;,xi).
For the whole sample, the likelihood function is specifically expressed as
~ 1/2 1 g1
Liyanm) < T[§ 191 2exp |~ (- B)¥ (n,— )

i=1

1
< 18] exp [—ﬁ@i—Am)'(yi—Am)} )

T

x T [ (1= i)' ] } ;

t=1
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where 7 is defined by Eq. (4) for the LID missingness, (5) for the LSD missingness,
and (6) for the LOD missingness.

3.2 Priors, Posteriors, and Gibbs Sampling

We assume that all posterior distributions exist in this study. Commonly used
proper priors (e.g., Lee 2007) are adopted. Specifically, (1) an inverse Gamma
distribution prior is used for ¢ ~ IG(vy/2,s0/2) where vy and sy are given hyper-
parameters. The density function of an inverse Gamma distribution is p(¢) o<
¢~ (0/2 " exp(—s9/(2¢)). (2) An inverse Wishart distribution prior is used for .
With hyper-parameters mg and Vo, ¥ ~ IW (mg, Vy), where my is a scalar and Vj is
a ¢ x ¢ matrix. Its density function is p(¥) o< ||~ ("0+a+1)/2exp[—tr(Vo¥ 1) /2].
(3) For B a multivariate normal prior is used, and 8 ~ MN,(B,Xo) where the
hyper-parameter B, is a g-dimensional vector and Xy is a ¢ X ¢ matrix. (4) The
prior for ¥, (t =1,2,...,T) is chosen to be a multivariate normal distribution Y, ~
MN41)(Y10,Dr0), where 7, is a (2 +r)-dimensional vector, Dy isa (2+7) x (2+7)
matrix, and both are pre-determined hyper-parameters.

After constructing the likelihood function and assigning the priors, the joint
posterior distribution for unknown parameters is readily available. Considering the
high-dimensional integration for marginal distributions of parameters, the condi-
tional distribution for each parameter is obtained instead. The derived conditional
posteriors are provided by the equations for parameters in the Appendix. In addition,
the conditional posteriors for the latent variable 1; and the augmented missing
data y;"is (i=1,2,...,N) are also provided by their corresponding equations in the
Appendix.

After obtaining conditional posteriors, the Markov chain for each model param-
eter is generated by implementing a Gibbs sampling algorithm (Geman and Geman
1984). Specifically, suppose 6 = (0;,6,,...,0)) is a vector of model parameters,
latent variables, and missing values. We start with a set of initial values for 0s.
At the sth iteration, 8() is generated. To obtain 60+ each 66T js generated
from its corresponding posterior distribution, derived in the Appendix, with renewed
parameters.

3.3 Statistical Inference

After passing convergence tests, the generated Markov chains can be viewed as from
the joint and marginal distributions of all parameters. The statistical inference can
then be conducted based on the generated Markov chains.

For different loss functions of 0, the point estimates are different. For example,
if a square loss function, LF = (6 — é)z, is used, then the posterior mean is the
estimate of 0; but if an absolute loss function, LF = |0 — é|, is used, then its estimate
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is the posterior median. There are other function forms, such as 01 loss function,
but in this research we take the square loss function.

Let 6 = (61,6,,...,6,)" denote a vector of all the unknown parameters in
the model. Then the converged Markov chains can be recorded as Gm,s =
1,2,...,S, and each parameter estimate 6; (j = 1,2,...,p) can be calculated as

6, =5, G}S)/S with standard error (SE) s.e.(8;) = \/25:1(9,@ —0;)2/(S—1).
To get the credible (confidence) intervals, both percentile intervals and the highest
posterior density intervals (HPD, Box and Tiao 1973) of the Markov chains can
be used. Percentile intervals are obtained by sorting GJ(-S) . HPD intervals may also
be referred to as minimum length confidence intervals for a Bayesian posterior
distribution, and for symmetric distributions HPD intervals obtain equal tail area

probabilities.

4 Model Selection Criteria

Model selection criteria play an important role in comparing competing models.
In this section, Bayesian model selection criteria are proposed for latent growth
models with missing data.

The general mathematical forms of selection criteria are closely related to each
other. Almost all of them try to find a balance between the accuracy and the
complexity of a model. First, the accuracy of a model can be measured by deviance,
which is defined as D(0) = —2log(p(y|6)) + C for some constant C. In a Bayesian
context, the most popular way to calculate the deviance is to plug the expectation
of 6. So we have D(6) = —2log(p(y|Ee|y[0])) + C, which can be estimated by
D(6) ~ —2log(p(y|6)) + C. For latent growth models with missing data, D(8) can
be calculated as

[(1 = mie) i (v]6) + 1 (m§)] (8)

M~

D(§) = —2%

1

I
—
oy

Il

in which m; is the missing data indicator for individual i at occasion ¢, 0 is
the posterior mean of parameter estimates across S converged Markov iterations,

and ' (y) and 1" (m) are the conditional likelihood functions of y; and m;,
respectively, for individual i at occasion t. When y; is missing, m; = 1, the
likelihood of y; is excluded. When y;; are normally distributed, the log-likelihood

function is
(vie — I; — 15;)*

1
lit(yN)Z—zlog(27T|¢|)— 20
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Table 1 Model selection

T Criterion(Index) = Deviance +  Penalty

criteria ~
Dhat.AIC D(0) 2p
Dhat.BIC D(6) log(N) p
Dhat.CAIC D(6) (log(N)+1) p
Dhat.ssBIC D(6) log((N+2)/24) p
DIC D(6) 2(D(6) — D(6))
rough DIC (0) var(D(0))/2

where [; and S; are obtained from the random effect model. For the missing data
indicator m;,, the log-likelihood function is

li(m) =mylog(ty) + (1 — my)log(1 — 1),

where T;; varies for different missingness models.

The second part of a criterion is the complexity of a model, which is also
called a penalty term. For AIC, the penalty is 2 p, where p is the number of model
parameters. As the penalty of AIC is sometimes considered to be too lenient in that
it selects saturated models in large samples (e.g., Janssen and De Boeck 1999), BIC
uses log(N)p as the penalty, where N is the sample size. CAIC is another improved
version of AIC. Compared with BIC, CAIC adds an extra p in penalty, which makes
CAIC favor smaller models slightly more than BIC. Also, ssBIC improves BIC. The
penalty in ssBIC is log((N +2)/24) p. For DIC, the penalty takes the difference
between Eg|,[D] and D(Eg,[0]), where Eq|,[D] = Egy[—2log(p(y|6))]+C is a
Monte Carlo estimation of the expectation deviance and can be estimated as the
posterior mean across the converged Markov chain,

M=
Mﬂ

s

s=1i

VJI[\)

(=)t )+ 18 (m) ©)

11

Il
4

InDIC, pD = Eg,[D] — D(Eg|,[0]) is a measure of the effective model parameters or

the complexity of the model, and it is approximated by pD = W - D(é) In prac-
tice, rough DIC (RDIC, sometimes called DICV in some literature, e.g., Oldmeadow
and Keith 2011) is an approximation of formal DIC (e.g., Sturtz et al. 2005). It takes
D(0) as its deviance and pV = Var(D(0))/2 as its penalty.

In summary, the model selection criteria for latent growth models with missing
data in this study are listed in Table 1.
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5 Simulation Studies

In this section, simulation studies are conducted to evaluate the performance of
the proposed latent growth models and the model selection criteria in a Bayesian
context.

5.1 Simulation Design and Implementation

In the simulation we focus on linear LGCMs to simplify the presentation. Higher
order LGCMs can be easily expanded by adding quadratic or higher order terms.

First, four waves of complete LGCM data y; are generated based on Egs. (1) and
(2). The random effects consist of the intercept I; and the slope S;, with Var(I;) =1,
Var(S;) =4, and Cov(I;,S;) = 0. The fix-effects are (I,S) = (1, 3). The measurement
errors are assumed to follow a normal distribution with mean O and standard
deviation 1. In the simulation we also assume there is one covariate X generated
from a normal distribution, X ~ N(1,sd = 0.2). Missing data are created based on
different pre-designed missingness rates. We assume the true missingness is LSD
(also noted as the XS missingness in this study because the missingness depends on
the latent individual slope S and covariate X). With LSD, the bigger the slope is, the
more the missing data. For the sake of simplicity in the simulation, the missingness
rate is set the same for every occasion. Specifically, we set the missingness
probit coefficients as % = (—1,—1,—1,—1), n = (-1.5,—-1.5,—1.5,—1.5), and
¥s = (0.5,0.5,0.5,0.5). With the setting, missingness rates are generated based on
Eq. (5). If a participant has a latent growth slope 3, with a covariate value 1, his or
her missingness rate at each wave is T ~ 16%; and if the slope is 5, with the same
covariate value, the missing rate increases to T ~ 50%; but when the slope is 1, the
missingness rate decreases to T~ 2.3%.

Next, we fit data with LGCMs with different missingness. Specifically, the model
design with different missingness is shown in Table 2, where the symbol “v"”’ shows
the related factors on which the missing data rates depend. For example, when both
“X” and “I” are checked, the missingness depends on the individual’s latent intercept
“I” and the observed covariate “X.” Four types of missingness are studied: LID
(also noted as XI in Table 2), LSD (XS), LOD (XY), and ignorable (X). The shaded
model, LSD (XS), is the true model we used for generating the simulation data.
Five levels of sample size (N = 1,000, N = 500, N = 300, N = 200 and N = 100)
are investigated, and for each sample size, 100 converged replications are analyzed
and summarized.

The simulation studies are 