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Preface

Each topical area in science has its own pioneers. Pioneers in science are typ-
ically people with unorthodox and original ideas, ideas that change our way
of thinking about the world that surrounds us. In the fields of geomechanics
and geohydrology, Gerard De Josselin De Jong is a typical example of such a
pioneer. His scientific career started in the late fifties of the previous century,
and from that time he produced a number of highly significant papers that
contributed to the basic understanding of the aforementioned topical areas. He
could achieve these results because of his rather unusual and unorthodox way
of solving scientific problems. First, he "visualized” the problem in his mind.
He always said: "I need to see a ”picture” of what’s going on”. Then he trans-
lated this virtual ”picture” into a mathematical model, and subsequently tried
to solve the resulting mathematical problem. In many cases, his strategy was
successful.

Visualization is maybe the key-word in De Josselin De Jong’s life. Not only
visualization of complex scientific problems, but also visualization of the world
surrounding him: as an graphical artist. He is able to capture the real world
in beautiful paintings, drawings, litho’s, etchings, etc. The real world brought
back to its basics: beautiful, exciting, and maybe most important: recognizable
and understandable. Abstract art is not his game, neither abstract science! ’'If
I am not able "see” what’s going on, I am not interested’.

Almost all graphs in his scientific papers were hand-drawn. No ruler was
ever used. Looking at these graphs is a pleasure, almost works of art. No
computer graphics tool is or will ever be able to produce such eye catching and
beautiful scientific graphs. Remarkable, but true.

In this volume we present a selection of Gerard De Josselin De Jong’s scien-
tific papers. The papers are reproduced in their original form: in the original
format (as they appeared in the journals or reports), including typo’s, errors,
and misprints. The volume consists of two parts. The first part is devoted to
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his scientific contributions to the topical field of soil mechanics, his main field
of interest as full-professor of Soil Mechanics (Geo-technics) at Delft University
of Technology. Although the subject of subsurface flow and transport processes
did not belong to the chair he hold as a full-professor, he was very interested in
these subjects. This interest resulted in a series of highly original papers, which
are still relevant for our basic understanding of flow and transport processes in
porous media. A selection of these papers can be found in the second part of
this volume.

The editors,
Ruud J. Schotting, Hans (C.J.) van Duijn and Arnold Verruijt
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Short Curriculum Vitae of
G. de Josselin de Jong

1915 Born in Amsterdam

1934 Gymnasium-£ in Haarlem

1941 Civil Engineering degree at Delft University of Technology

May 1941 - Sept. 1942 Engineer at Delft Soil Mechanics Laboratory (currently
Geo Delft)

Sept. 1942 Arrested by the German Navy during an attempt to escape to
England

Nov 1942 Sentenced to 15 years imprisonment in Germany

May 1945 Liberated by English troups in the northern part of Germany

1945 - 1947 Lived in Amsterdam, main activities drawing and painting

1947 - 1949 Lived in Paris, worked with different architects and for Bureau
d’Etude de Béton Précontraint

Nov. 1947 Marriage with Cara Waller

1949 - 1959 Researcher at Delft Soil Mechanics Laboratory

Febr. 1959 Ph.D. degree at Delft University of Technology

1959 - 1960 Visiting Research Assistant, University of California, Berkeley, USA
1960 - 1980 Full Professor of Soil Mechanics, Delft University of Technology
1980 Retirement
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"Jugendstil house at the Hooistraat seen from the Nieuwe Uitleg, The Hague",
by G. de Josselin de Jong, 1982. Washed pen, 38cm x 27,5 cm.
Property of Mrs. Lagaay-Govers.
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PART I

SOIL MECHANICS

Selected Works of G. de Josselin de Jong



Soil Mechanics

3.1 Introduction to Soil Mechanics

The most important papers by Professor G. de Josselin de Jong on soil me-
chanics can be subdivided into three main topics: consolidation of soils, the
stability of a vertical cut off, and the kinematics of granular soils in the plastic
zone. This last topic contains his main contribution to theoretical soil mechan-
ics, and has been rather controversial for some time, before being recognized
as an important fundamental frame work for the analysis of soil behaviour. He
also made significant contributions to the development of measuring techniques
in the laboratory and in the field. Some of these can be found in his theoretical
papers, some were published separately.

The first basic assumption of De Josselin de Jong’s model for plastic flow
is that plastic deformations are generated when the stresses satisfy the Mohr-
Coulomb yield criterion, which is a certain condition on the stresses, namely
that no plastic flow occurs if in all directions (i.e. on all planes) the shear stress
7 and the normal stress o satisfy the condition 7 < ¢+ o tan ¢, and that plastic
flow may occur if on any plane 7 = ¢ + otan¢. This is generally accepted as
a good basis for the description of the behaviour of isotropic materials with
internal friction.

The essential part of De Josselin de Jong’s model of plastic flow, the double
sliding free rotating model, is that the plastic deformation consists of three com-
ponents: sliding deformations on the two planes on which the Coulomb criterion
is satisfied, plus an arbitrary rotation. Essential in the model is that the inten-
sities of the two sliding deformations are unrelated, the only restriction being
that their signs must be such that positive amounts of energy are dissipated.
This indepence of the two sliding deformations leads to an important conse-
quence of the model, namely that the tensor of plastic strain rates need not be
coaxial with the tensor of stress. Another property of the original version of the
model is that it assumes that during plastic flow the volume remains constant,
which constitutes another form of non-coaxiality. A third essential property
of the model is that the two sliding deformations do not completely describe
the displacement field, but that the displacements may contain an arbitrary
additional (free) rotation.

This model, and in particular some of its consequences, initially met with
considerable opposition, although it seems that all of this has now vanished.
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The constant volume assumption, or, to be more precise, the possibility of con-
stant volume plastic deformation, violates an assumption derived from work of
Prager and Drucker that was used with great success in metal plasticity, namely
the assumption that the plastic potential, which governs the direction of plastic
flow, and the yield surface, are identical. This is now called the assumption
of an associated flow rule. It took some time before it was realized that this
is not a physical necessity, but simply a convenient property of certain mate-
rials. It is now generally accepted that for frictional materials, such as soils, a
non-associated flow rule describes reality much better, and that the constant
volume assumption often applies, especially for large strains. In modern mod-
els a volumetric component of plastic flow is often incorporated as a possibility,
depending upon the density of the material, but always with the constant vol-
ume case as the limiting situation for large deformations, or even the default
condition.

The independence of the two sliding components of the double sliding free
rotating model also met with some opposition, because it means that there may
also be a deviation of the principal direction of plastic strain with the principal
direction of stress in the plane of shear deformation. This may seem strange,
because it may be surmised that the coaxiality of the plastic strains and the
stresses is a necessary consequence of the isotropy of the material. The proof of
that property presupposes the existence of a unique relation between stresses
and strains, however, and this is just what De Josselin de Jong denies, at least
for a rigid plastic material. Although it is now widely acknowledged that this
type of non-coaxiality may indeed occur, in many modern numerical models that
include plastic flow, the coaxiality of stresses and incremental plastic strains
is still assumed, for definiteness or for simplicity. That there may indeed be a
deviation of these two pricipal directions was proved experimentally by Drescher
and De Josselin de Jong in 1971. In a contribution to the discussions at a
conference in Oslo De Josselin de Jong presented some interesting results from
large scale shear tests on sand, which also seem to indicate non-coaxiality.

Another important property of his model is the free rotation, which states
that while the deformations may be determined by the stresses, the displace-
ment field may include an arbitrary additional rotation. This may now seem
rather trivial, but at the time of the presentation of the model, which were the
days of analytical solutions of elementary problems, it gave rise to considerable
controversy. This was particularly evident in the analysis of the results of simple
shear tests. The classical interpretation of this type of test is that the critical
ratio of shear stress to normal stress is reached on horizontal planes, so that the
friction angle can immediately be determined from this ratio. De Josselin de
Jong realized that the uniform shear deformation is also consistent with shear-
ing along vertical planes, plus a rotation (the toppling book row mechanism),
and that this failure mode is much more likely to occur if the horizontal normal
stress is smaller than the vertical normal stress. It gave him great satisfaction
when one of the leading English scientists, Peter Wroth, appeared to support
his views. De Josselin de Jongs model could be used to explain the highly vari-
able results of shear tests. In modern finite element models that include plastic
flow the free rotation usually is automatically ensured, but it seems that the

4 Soil Mechanics and Transport in Porous Media
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assumption of coaxiality of stresses and strain rates may be an unsafe constraint
in many of these models.

Another somewhat controversial topic was the derivation of lower limits for
the maximum height of a vertical cut off in a uniform cohesive material, without
internal friction. An upper limit, on the basis of a circular slip surface, was
obtained by Fellenius in 1927: h < 3.83¢/v. Simple lower limits can be obatined
from equibrium fields as h > 2¢/v and h > 2,82¢/7v. Using his graphical
technique of constructing stress fields that satisfy the two equilibrium equations
and the yield condition De Josselin de Jong succeeded in gradually raising
this lower limit, reaching a value h > 3.39¢/v in 1978. Unfortunately, in the
same year Pastor obtained an even higher lower limit, h > 3.64¢/~, using a
completely different method. It has been conjectured that perhaps the existing
upper limit, h < 3.83¢/7, is also a lower limit, and it may seem that certain
variational techniques can be used to prove that. In the early 1980’s this lead to
considerable controversy in the pages of Géotechnique. De Josselin de Jong (and
others) argued, rather convincingly, that it is extremely difficult to avoid certain
hidden fallacies in the variational approach, and the hope on a breakthrough
seems to have vanished.

Among soil engineers De Josselin de Jong was one of the first to realize
that the three dimensional consolidation theory of Biot (and not the much
simpler heat conduction analogy) was the proper generalization of Terzaghi's
one dimensional theory. The theoretical proof is elementary, as Biots theory
incorporates elasticity theory as a special case, in the absence of pore water
pressures. Experimental support came from laboratory tests at the Delft Uni-
versity on spherical samples, although his friend Robert Gibson preceded him
in that respect by a few months. He published a series of papers on three di-
mensional consolidation, in Dutch, with some of his collaborators, presenting
analytical solutions to a variety of probléms. Plans to expand this into a book,
together with Gibson and Robert Schiffman never materialized, perhaps be-
cause the subject matter expanded faster than solutions could be derived, and
perhaps also because the development of numerical methods made analytical
solution methods somewhat obsolete. On the subject of consolidation it may
also be mentioned that his admiration of the pioneer of Dutch soil mechan-
ics, Professor A.S. Keverling Buisman, led him to try to generalize Buismans
theory of secular (or secondary) consolidation to a beautiful model including
viscoelastic deformation and an early version of a multiple porosity.

Selected Works of G. de Josselin de Jong



1.6 Lower Bound Collapse Theorem and Lack of Nor-
mality of Strainrate to Yield Surface for Soils

By
G. de Josselin de Jong

In soil mechanics practice there is a need for a lower bound collapse
theorem, which permits an analysis with a result on the safe side.
The usual analysis of slip surfaces may give unsafe results for a purely
cohesive soil, since it is based upon a kinematically admissable collapse
system and therefore constitutes an upper bound. It is therefore
necessary to investigate a great number of slip surfaces and the smallest
load is an approximation to the actual load which will produce collapse,
but it is never known how much the computed load exceeds the actual
one.

Upper bound theorems for a material possessing Couroms friction
have been treated by DruCKER (1954, 1961), but it is still necessary
to establish a lower bound theorem. Indeed a lower bound theorem
would seem to be of more practical value since it would lead to a result
on the safe side. Unfortunately the virtual work proofs of lower bound
theorems break down if the material does not obey the postulate of
DruckER: that additional loads cannot extract useful net energy from
the body and any system of initial stresses.

Now in soils there are two possible ways of extracting work, since
soils in general are friction systems. The first possibility was mentioned
by DruckER [1954] and is obtained by changing the isotropic stress
in the body with internal friction. The second way to extract work
is a consequence of the possible deviation angle between the principal
directions of strain rate and stress tensors. This can be shown by
considering the extreme case of deviation corresponding to the sliding

of the upperleft block in Fig. 1 along a slip surface at (45"—% 99)

to the direction of the major principal stress. The slip occurs under
constant volume conditions. Initially the stress state is represented by
the points 44 in the stress diagram of Fig. 2, lying just inside the
limit circle. The additional forces are the stresses 4B which bring
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1.6 Lower Bound Collapse Theorem 71

the system to a failure condition at BB. Let us consider the case
when the vectors 4 B make an angle f with the z-axis. The angle §
can be made as small as we please by letting 4 approach B.

The additional loads on the moving upper left block then consist
of stresses uniformly distributed along the vertical and horizontal
faces and acting at an inclination f to these faces, Fig. 3. The resultant
T of the additional forces on the upper left block is shown in Fig. 4 to

make an angle of (45° - %(p - ﬁ) with the wvertical.
Under the influence of the existing stresses the block slides in
a direction, at (45° - % (p) downwards. If the displacement of the block

is A8 in that direction, then the work done by the body and the system
of initial stresses on the added stress resultant 7' is equal to A4S times
the component of 7' in the direction opposite to AS. The work is there-
fore. '

A8 - T cos (90° — @ 4 ) = A8 - T'sin (p — f).

This is positive if § is smaller than ¢, thus positive work can be
extracted.

Work can be extracted from a yielding system if the plastic strain
rate tensor plotted as a vector in the corresponding generalised stress
space is not normal to the yield surface.

In order to show the lack of normality in the case of soil explicitly,
it is convenient to consider a stack of parallel cylinders which form a
two dimensional analogy of a grain system with internal friction. Then
the generalised stresses are the 4 stresses o, 0y, T4y, Tyz and the gene-
ralised stress space is therefore 4-dimensional. Fortunately 7, is equal
to 7,, and only the diagonal of length v ]/ZT is a relevant coordinate.
Therefore the generalised stress space can be reduced to the 3-dimen-
sional space of Fig. 6, with coordinates o, o0y, -r]/2_.

Let the material obey a CouroMs friction law, such that the yield
criterion is:

(0, — 0y)% 4 47% = [sin @ (0, + 0, + 2¢ cotg ¢)]2. (1)

To obtain a simpler expression for the yield surface, the coordinates
are changed in the orthogonal system p, ¢, ¢ according to

1 et
P =?V2(5x - Uy)’
1 i
q =§V2(ax + o, + 2c¢ cotg @),

t='rV?T

Soil Mechanics and Transport in Porous Media



72 G. pE JossELIN DE Joxg

P'; (z-0)VZ
=5V

Fig. 8.

Fig. 7.

Selected Works of G. de Josselin de Jong



10

1.6 Lower Bound Collapse Theorem 73

Then g is the bisectrix of ¢, and ¢,, and p is a coordinate in the o, 0,- .
plane perpendicular to ¢. In these coordinates the yield criterion is

2p% 4 282 = 2¢%sin? . (2)
This shows that the yield surface is a cone with ¢ as axis and which

intersects the planes for ¢ = constant by a circle with radius ¢ sin ¢.
The angle y is then related to ¢ by

tan 9 = sin ¢@. (3)
If the rod material is assumed to behave as the mechanical model
proposed by the author (1958, 1959) plastic shear strain rates consist
of volume conserving slip in the directions at (45° — % cp) with the

major principal stress. The two conjugate shear strain rates need not
be equal. If they are @ and b respectively as shown in Fig. 5, then
the deviation angle 4 between principal directions of strain rate tensor
is given by

a—b
tan =a+btan(p. (4)
Since @ and b can only be positive, this relation implies
—g=p=gp. ()

It can be shown by a straightforward but somewhat tedious
computation that the deviation angle « between the strain rate vector
and the normal to the yield surface is then given by:

COS X == COS Y COS /. (6)

Since the sliding motion is considered to take place at constant volume
the strain rate vector &,;, plotted in a coordinate system corresponding
to the generalised stresses, lies in the ¢ = constant plane. This plane
makes an angle  with the normal to the yield surface as shown in
Fig. 6. In order that the angle & between é,; and the normal obeys (6)
it is necessary that &,; is not normal to the circle in the g = constant
plane of Fig. 7, but makes an angle u with the radius of that circle.

According to the first collapse theorem a body is capable of support-
ing the external loads in any loading program, if it is possible to find
a safe statically admissable stress distribution o}i®. A stress distribu-
tion is called statically admissable if it obeys the equilibrium condi-
tions inside the body, if it satisfies boundary conditions on the part
of the boundary where surface tractions are given and if a yield ine-
quality is nowhere violated. For perfectly plastic materials the yield
inequality simply requires that U}'}(‘) lies inside the yield surface.
This requirement is clearly necessary and is also sufficient because
convexity of the yield surface and normality of the strain rate vector

Soil Mechanics and Transport in Porous Media
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to that surface ensure that the real collapse stress state g,; is such
that the quantity
[o; — 03] &

is always positive. The proof of the first collapse theorem follows then
by use of virtual work considerations [for a comprehensive deseription
of this theorem and related matter see f.i. Korter (1960)].

Since there is not always normality in the case of soils the yield
inequality condition has to be modified. The modification necessary
to take care of the angle u is only small if by some other means it is
possible to prove that ¢ cannot decrease below a certain value g*.

If the mechanical model of Fig. b is applicable, Egs. (4) and (5)
say that the absolute value of g cannot exceed ¢. Now let P represent
a real collapse stress state ¢{f?, then P lies on the circle with radius

g* sin @ in the plane ¢ = ¢*, Fig. 8. All stress states o{}" represented

1

by a point R lying below P @, the line at an angle (? 7 -+ ep) to the

normal in P, may be called statically admissable with respect to P,
because the angle, between any line PR and the vector &,; for u = ¢,

will be larger than % 7. Therefore the quantity
P R)7 2
[off” — o1&

will always be positive for 4 = ¢, and clearly this result is generally
valid in the interval 0 < u < ¢@.

Since the actual collapse stress will be everywhere on the circle,
the statically admissable stress state ¢}® is limited by all lines PQ
drawn from all points of the circumference. This means that the stress
states are limited by the dotted circle in Fig. 8, with a radius of length
g* sin ¢ cos @.

Since the coordinates p and ¢ actually are V§ times the deviator-
stresses 8, T,,, the requirement of the dotted circle can be represented
in the usual Mongr-diagram of Fig. 9 by the dotted circle whose radius
is equal to the shear stress at the tangent point of MomR-circle and
Courome envelope line. This means that a safe statically admissable
stress state is limited by the dotted cirele (Fig. 9) which is equivalent
to reducing the angle of shearing resistance to a value gp* given by:

sin p* = sin ¢ cos p.

Although by this modification of the definition for a statically
admissable stress state, the difficulties created by the uncertainty
about the deviation angle between principal directions of stress tensor
and strain rate tensor are circumvented, it must be emphasized that
this only applies if by other means it is established that g cannot

Selected Works of G. de Josselin de Jong
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decrease below the value g*. The region limiting the statically admis-
sable stress states is therefore given by a circular cylinder starting

Fig. 10.

on the base of the cone with height ¢* and running up to infinity with
a radius g¢* sin ¢ cos ¢.
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Discussion

Contribution de K. H. RoscoE: I would like to question the universal
application of Professor nE JoxG’s statement that the normality condition does
not apply to soils. The following remarks are very tentative since I have not
had an opportunity to make a proper study of pE Jona’s proposals. It does
however seem that he is considering soil to be a non-dilatant material possess-
ing constant cohesion and constant internal friction and he is concerned only
with states of failure of such a medium. I wish to make two observations regard-
ing these assumptions. Firstly soil is a dilatant medium and as it dilates the

Soil Mechanics and Transport in Porous Media



6 G. pE JOSSELIN DE JoNG

apparent cohesion and internal friction will change. Secondly the Monr-CovLoMB
envelope is not a true yield surface for soils. If yield is defined as permanent
irrecoverable deformation then soils yield, and of course dilate, at stress levels
well below those required to satisfy the Morr-Couroms criterion of failure.

The position can be made
clearer by referring to Fig. 1 which
represents our concepts of the yield
surface, obtained from triaxial tests
on samples of a saturated remoulded
clay, in p, q, e space; where p =
(o} + 203), ¢ = (0] — 0}), € is the
voids ratio and ¢} and o} are the
major and minor principal effective
compressive stresses respectively.
In Fig. 1 the curve N, N, is the
isotropic virgin consolidation curve
and X, X, is the critical state line.
The projection of the critical state
line on the (p, ) plane is the straight
line 0 X;. When a sample reaches a
state corresponding to a point on
the curve X, X, it will continue to
distort in shear without further di-
lation and without change of stress.

The (p, g, e) yield surface for
virgin and lightly over-consolidated
clays is represented by the curved
surface N, N, X,X, and in my

: ‘ paper to this symposium I have
Rk Isometricsu‘;}i:e :i;tei:l;:.ed Gicondl  davoursd bo show that there
is some experimental justification

for such a surface. Its precise shape is open to some doubt as discussed by
Roscor, ScHoFIELD and THURAIRATAH (1963), and Roscoe and SCcHOFIELD
(1963). Typical (p, g, €) state paths for undrained tests on normally consolida-
ted samples are represented by curves N, X, N, X, and N, X;, while a typical
path for a drained test is Ny X,. It is important to notice that whenever a sample
is at a state corresponding to a point on the surface N, N, X, X,, and the deviator
stress is increasing, it will be yielding. Consider for example a sample initially
at state N,. If it traverses any state path on the yield surface within the sector
N,N,X, it will work harden as it yields but it will not fail until the ecritical
state is attained. If the state change corresponds to the path N, X, which lies
vertically above the elastic swelling curve N, B then the sample will yield and
not work harden. The relevant plastic potential curve is then N;X;. We have
¢alled the curve N, X; an elastic limit curve. As a sample work hardens the re-
levant plastic potential curve continuously grows in size but remains geometri-
cally similar to curve N;X;. We have proposed that the form of the plastic

potential curves is governed by the equation ¢ = Mp le:;g‘,-%g where p, is the
initial consolidation pressure, and M is as shown in Fig. 1.

Let us now consider more heavily over-consolidated clays. The experimental
data that is available for such clays is much less reliable than for lightly over-
consolidated clays, hence the following remarks are extremely tentative. We
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suggest that the (p, g, €) yield surface for undrained tests is 4, 4, X, X, in Fig. 1.
Consider an over-consolidated sample initially in a state represented by the
point P. If it is subjected to an undrained test it will follow a state path which
may be idealised by the path P R X, in Fig. 1. During the portion P R the sample
behaves virtually elastically but it begins to yield at R and continues to yield
and work harden until it reaches the peak deviator stress, as well as the critical
state, at X, If the sample was allowed to dilate during a test then present
evidence suggests that the state path comes above the undrained surface. For
example an ideal representation of a p = constant test is given by the path
PRSX,. In such a test yield begins at R but the sample continues to work
harden over the range RS and attains the peak deviator stress at S. The sample
then becomes unstable and subsequent successive states correspond to SX,. I
suggest that some path above a line such as B X; may be found in which this
unstable portion is not present. For such a test the deviator stress would never
diminish as the state changed from P to X;. Hence as a sample, of initial state P,
traverses any state path between R X, and R X, it will continually work harden
until it attains the critical state when it fails. It is possible that a family of
plastic potential curves of the type shown by OX; apply during all the work
hardening processes undergone by over-consolidated samples. The curve 0 X
may have the same equation as N} X}, but adequate exerimental evidence is not
available to be able to see how such plastic potentials relate to the yield surfaces
for anything other than lightly over-consolidated clays. We have a little indirect
evidence on the heavily overcon-

solidated or ‘‘dense” side from <t Frajection of the

simple shear tests on steel balls.
This medium appears, during any
work hardening process, to have
plastic potential curves of the
type shownin Fig. 2. The equation

of these curvesis v = Molog, % s

where 7 is the maximum shear ¢ o
stress and ¢ the mean normal Fig. 2. Plastic potential curves for steel balls,
stress under conditions of plane

strain. This equation follows directly from the application of the normality con-
dition to the boundary energy equation which was discussed by PooRroosHASE
and Roscox (1961) for steel balls. Further work is still required to connect these
potential curves with the observed yield surfaces.

Finally I would like to make the point that far too much effort has been
made in soil mechanics to study failure conditions. Engineers design, and hope
their structures operate, at much lower stress levels. This is the region of yielding
that should be studied in detail. The MoHr-CoULOMB envelope may, or may not, be
shown to be valid for the failure of soils but it is not a yield surface in the true
sense of the word since the yielding of a sample cannot be related to a move-
ment on the envelope. With such a theory yield does not occur until failure
takes place.
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Réponse de G. pE JossELIN DE JoNG: It was not my intention to say that
for soils there never is normality, but that normality is not necessary. In the
cases studied by M. Roscor normality may have been observed, but these are
special cases, which are not representative for the situation in general.

That M. Roscok did not observe the deviation of the principal directions
of stress and strain rate tensors, is due to the fact, that the stress coordinates p
and g in his diagrams are not the complete set of generalised stresses. The sam-
ples were 3-dimensional, so the testresults require a representation in a 9 dimen-
sional stress space. Since shearstresses on perpendicular faces are equal the
amount of dimensions can be reduced to 6. The system I talked about this morn-
ing, is 2-dimensional and so there are 4 generalised stresses, from which 7, is 7.,
reducing the system to 3 stress coordinates.

Since M. RoscoE only considers the stress combinations p and g, his graphs
correspond in a way to the g,, o, plane which intersects the cone enclosed by the
yield surface along the axis. The deviation of the principal directions of the
tensors is only visible in the plane perpendicular to the axis.

Cf. aussi, p. 46, la citation de D. C. DRUCKER.
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PROF. G. DE JOSSELIN DE JONG (Netherlands):

In their paper (3/14) Roscoe, Bassett and Cole review
concepts pertaining to the coincidence of principal direc-
tions of stress and strain. Besides the points mentioned, it
must be noted that a case of non-coincidence isto be expected
if rupturc planes or rupture zones develop erratically
throughout the soil mass. Such planes or zones originate
if the material yields in these discrete regions before the rest
of the soil mass deforms excessively.

Since planes at an angle of -+ (7/4—@/(2) with the major
principal stress direction have to transmit a stress combina-
tion which is most unfavourable to support, it is approxi-
mately in these directions that the rupture planes or zones
develop. These directi incide with the stress char-
acteristics. Because the material is yielding in the rupture
zones the shear strain rate is undetermined and may be
unequal for the two conjugate directions. This inequality is
not yet sufficient to create non-coincidence; it is also neces-
sary that the angle g is unequal to zero.

For an ideally isotropic material it can be expected that
in a soil mass of sufficiently large dimensions the average
shear strain rate in the two conjugate directions will be the
same, thus resulting in coincidence of principal directions
of stress and strain. However, even the slightest deviation
from isotropy may result in a considerable difference
between these principal directions. The mechanism is in a
way similar to the instability of a rod under axial compres-
sion. If a perfectly straight cylindrical rod is compressed
by forces exactly along its axis, then theoretically the rod
should only reduce in length, but in reality it will always
buckle in some unpredictable sidewise direction.

It may be difficult to visualize the strain rate tensor in
this case where the strain rate is concentrated in discrete
zones, because a tensor essentially only can be defined for
a continuous deformation. The discrete rupture pattern
can be replaced, | , by a deformation
which averages the discrete jumps and the tensor associated
to this representative deformation is the one considered.
That this concept represents a physical reality was demons-
trated by the following test.

A sandblock (60 x 60 x 15 em) schematically represented
in Fig. 1 is enclosed on the sides by 12 loading elements

Fig. 1. Sand block loaded by normal and shear stress.

Selected Works of G. de Josselin de Jong

provided with teeths, and two thin plastic sheets along the
lower and upper plane. The air pressure in the pores was
reduced by 0.9 atm. in order to create an allround pressure.
Then forces were applied to the loading elements in the
direction of the sides, such that a system of pure shear
stress was added to the allround pressure. The principal
stress directions are then parallel to the diagonals. The sand
was deposited in layers parallel to one of the diagonals in
order to prevent that anisotropy created by deposition would
offer a preference for one of the two conjugate directions of
imminent shear.

The difference with Roscoe’s simple shear apparatus is
that in his apparatus deformation is enforced and stresses
are measured, whereas in our test the stresses are applied
and the sandblock is left to move in the manner it pleases.

The deformation was measured by photographing the
upper sheet, which being transparent showed the grains.

In Fig. 2 two photographs of the block representing a
loading from /o, =1.65 to 3.15 are superimposed. The
photographs are shifted and rotated in such a manner that
the particle traces form a family of curves with orthogonal
asymptotes. These asymptotes then have the direction of
the principal strain rate directions. The smoothness of the
curves which are approximately hyperbolas indicates that the
deformation was practically uniform, A detailed survey of the
deformation by use of a chartographi i
the International Institute for Aerial Survey and Earth
Sciences at Delft showed an average deviation angle between
principal stress and strain rate direction of 12°, with a
spread of about 3°.

In order to investigate whether this homogeneous defor-
mation field existed throughout the sample the sand was
mixed with a small amount of cement, enough to solidify the
sand mass by adding water after the test. The sand was
deposited in black and white layers.

After the bloc had solidified it was abrased to show the
successive sections at 2.5 cm intervals of the height. A typical
view of such a section is given in Fig. 3. The deformation
was concentrated in narrow zones which followed the direc-
tion of the stress characteristics. These rupture zones were
found in the same location for every section, which indicates

ometer at

Fig. 2. Superimpased photographs of sand block before and after
oading,

199

17



that vertical planes are f d throughout the sample, Some
originated in the middle of a loading element. The shear-
strain-rate differed for all the ruptive zones,

The reason that they were not observed in the photo-
graph was the relative rigidity of the plastic envelopping
sheet. The sheet averaged the deformation and showed
therefore a homogeneous deformation with deviating prin-
cipal directions because of the underlying mechanism of
unequal strain-rate in the erratic rupture zones.

The mechanism observed in the test was very similar to
the one proposed in ref, 1, p. 57, see Fig. 4 taken from that
publication.

The indeterminancy of the deformation created by this
mechanism needs not to be of too much concern for further
use in predictions of soil behaviour. It will anyhow not be
possible to predict deformation of soil masses in detail
because the initial stress conditions are mostly impossible to
ascertain, A more realistic approach to the determination of
stability analysis is the use of a lower bound theorem, which
gives an answer that is on the safe side and irrespective of
previous loading history. It has been shown in ref 2, that
the noncoincidence is taken care of by a small reduction of
@ to ¢*, such that

sing® wsing cosp

However, the noncoincidence is only a minor difficulty,
the major one is the ignorance with respect to the isotropic
stress, How a solution can be constructed which gives higher
and therefore more attractive values than the solution
mentioned in ref. 2, is beyond the scope of this discussion,
but amounts to the construction of a field of stress charac-
teristics taking the solution with the lowest isotropic stress
everywhere.

Fig. 4. Failure hanism for g ! jals,
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CHAIRMAN :

Thank you Professor de Josselin de Jong — I am sorry we
are short of time. The following speaker is Professor

Suklje.

PROF. L. SUKLJE (Yugoslavia):
Monsicur le Président,

. Je vous demande d'accorder I'hospitalité de la 3éme
Fig. 3. Discontinuities in interior of sand block. Section au sujet que j'ai traité dans mon rapport apparu
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THE DOUBLE SLIDING, FREE ROTATING MODEL
FOR GRANULAR ASSEMBLIES

G. DE JOSSELIN DE JonG*

INTRODUCTION

The sliding block model for the mechanism of deformation, in a body composed of grains, is
based on the concept that movements of grains with respect to each other occur along planes
that coincide preferably with the stress characteristic planes. In the case of plane strain these
planes intersect the two-dimensional plane of consideration along two characteristic lines called
Sl and Sg-

The object of this Note is not to consider the probable veracity of such a model, but to
establish the flow rule and the constitutive equations which follow from the special character
of the model. The properties are taken to be those that were proposed by de Josselin de Jong
(1958, 1959). In that model sliding can occur simultaneously in the S, and S, directions at
different shear strain rates, but limited in sense, and in addition the sliding elements are free to
rotate.

Geniev (1958) considered such a model, but restricted sliding to one of the two character-
istic directions. Most investigators reject this restriction and agree that it is desirable to
permit a double sliding motion. Mandl and Fernindez Luque (1970) reconsidered the double
sliding model and confirmed equations, obtained by Spencer (1964) and Zagainov (1967) for
the stationary case, that principal directions of stress remain fixed. However, the equations
refer to a model that is restricted in its rotation, as if the sliding elements are forced by an
external agency to conserve their orientation in space. Therefore these equations refer to a
different model from that of de Josselin de Jong. Their model is not free to rotate and so it
cannot execute motions which are commonly accepted to have been observed in reality, e.g.

* Professor of Mechanics, Department of Civil Engineering, Delft University of Technology, the
Netherlands.
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the rotation of the soil mass separated from an embankment by a circular slip plane. Another
kind of rotation was observed in a verification experiment by Drescher (1971).

Mandel (1966, p. 307) directed attention to this lack of freedom of rotation and re-estab-
lished equations obtained previously (Mandel, 1947). However, he remarks that the concept
of double sliding and rotation combined is void because every deformation without volume
change can be decomposed in such a manner. This remark is correct if sliding is free to occur
along each characteristic plane in both senses, i.e. either in the direction of the shear stress on
that plane or against it.

By restricting the sliding sense as proposed by de Josselin de Jong the model is made to
obey the thermodynamic requirement that energy is dissipated during sliding. The necessity
of this requirement is a consequence of the frictional character of the mechanism. The
grains of, say, a dry sand do not move with respect to each other because friction forces in the
contact points between them prevent this. Sliding can only occur if the friction is surmounted
and therefore shear strain will develop only in the direction of the shear stress in the plane o
sliding and never against it. De Josselin de Jong (1959, p. 57) called this the requirement off
direction and formulated it as

az0
b=20

By this restricting requirement the concept of double sliding and rotation combined is no
longer meaningless because, when introduced mathematically, a system of hyperbolic differential
equations is obtained with a limited range of solutions. This hyperbolic system is unusual,
because its coefficients, instead of being fixed for every point in the field, obey inequalities
which determine, instead of unique characteristic directions at every point, a fan of possible
directions for the characteristics. This has been shown graphically by de Josselin de Jong
(1959, pp. 72-80). The pertinent differential equation (de Josselin de Jong, 1959, p. 92) was
given in terms of the undetermined characteristics and their curvatures and is unattractive.

The object of this Note is to re-establish the constitutive equations as referred to a car-
tesian x, ¥ co-ordinate system. These co-ordinates are straight and so the curvatures of the
characteristics disappear from the equations, which simplifies their form. Since the consti-
tutive equation contains coefficients that obey inequalities, it can be presented as an inequality.

A common objection against the double sliding mechanism is that the principal directions
of stress and strain rate tensors can deviate. It is often proposed that such a deviation can
occur only if the material is not isotropic. However, the reasoning to substantiate this starts
with the assumption that an analytic functional relationship exlsts between the invariants
of the two tensors (see e.g. Eringen, 1962, p. 158).

Since for the double sliding model the constitutive law contains an inequality, no such
analytic function exists and therefore there is no need for coincidence of principal directions.
Nevertheless the requirements of isotropy (see Eringen, 1962, p. 139) are fulfilled because the
inequality is invariant for the full orthogonal group of co-ordinate transformations. This is
also true for three dimensions.

Mandl and Fernédndez Luque (1970) tried to remove the objection to non-coaxiality in
isotropic materials by mentioning that in two dimensions the co-ordinate transformations for
reflexion cannot be obtained from those for rotation simply by taking the negative of all matrix
components, as can be done in three dimensions. However, this only proves that a proof
based on such a sign inversion cannot be applied in two dimensions; it does not mean that
another proof might not exist. Another proof exists if there is a functional relationship
between the two tensors. The functional relationship does not exist in this case and therefore
non-coaxiality is acceptable in three as well as in two dimensions.
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k) (c)

Fig.1(a). Stress characteristics S, and S; in the ¥, y plane (bold arrows indicate directions of
principal stresses o; and o), (b) arrows showing directions in which stresses are taken as
positive, (c) limiting stress circle in Mohr diagram

STRESS CHARACTERISTICS AND RELATIVE VELOCITIES ALONG THEM
The directions of the stress characteristics §; and S, at a point P are given by the angles «;
and «, of their tangents with respect to the x axis such that (see Fig. 1(a))
o = Y—fn—i$
ay = Y+in+i
In these expressions i is the angle between the algebraically larger principal stress and the
x axis. Stresses are taken as positive in the direction of the arrows of Fig. 1(b) and so larger

algebraically means smaller compression stress. The angle of internal friction is ¢.
The limiting stress condition, supposed to be fulfilled in P, can then be written as

0, = —p+psin ¢ cos 2h+c cot ¢ }

S )

)

Tay = Tyx = P Sin $ sin 2
o, = —p—psin ¢ cos Zh+ccot ¢

In these expressions p is the distance between the centre of the Mohr circle and the intersection
point of the Coulomb envelope lines (Fig. 1(c)). According to the Coulomb theory stress
circles can exist only to the left of the intersection point of the envelope lines so that the
requirement on p is

P20 . . .. ... ®

In order to avoid the complication of differentiations along curvilinear co-ordinates the
constitutive inequalities are developed here for V, and V,, the x, y components of the velo-
cities. The velocities themselves are not of interest, but the relative velocities are, because
the physical properties of the model only provide considerations concerning the relative
velocities of points on stress characteristics. This leads to differential equations in the
velocity components.

The infinitesimal distance vector dlI; of length d/; from point P to point P, (see Fig. 2(a))
on the 5, stress characteristic has x, y components
dy, = cos e, di, @)
dy, = sine; d, }

The x, ¥ components dV%, dV1 of the relative velocity vector d¥* of point P; with respect to P
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can be written as a total differential
dVi =V, .dn+V, ,dy, }
dvi =V, . dn+V,,, d
where a comma indicates differentiation with respect to the variable following it.
Elimination of d¥; and dy,; from these equations gives
dVy = (Vi xcos e+ V. ysin ) dly
dV; = (V,, xcos oy +V, , sin o) dly
for the x, ¥ components of the relative velocity of two points on an S, stress characteristic.
By changing 1 into 2 the relative velocity components of two points at an infinitesimal dis-
tance d/, on an S, line are obtained.

The curvatures of the S, and S, lines give only second order terms in these expressions that
can be disregarded.

P )]

. e . . (8

SEPARATION OF DOUBLE SLIDING AND ROTATION

In order to introduce the physical properties of the double sliding, free rotating model, it is
necessary to decompose the relative velocity vector d¥? into two components: d¥} parallel to
Sz, the conjugate of S, and dV¥} perpendicular to S,. These vector components are taken as
positive if they are in the direction of the arrows in Fig. 2(a).

The special manner of decomposition results in the following relations between the magni-
tudes dV} and dV'} of these vectors and the x, ¥ components of the relative velocity between
P,and P

dV} = [—dV} cos «; —dV} sin «]/sin ¢ o v o o ow (0)
dV} = [+dVL sin ay—dV} cos ey)/sin ¢ T )]
The separation is such that d¥7} is due exclusively to the sliding mechanism and dV} is created
by the rotation.
A similar decomposition of the vector d¥?, representing the relative velocity with respect

to P of a point P, on the S, stress characteristic through P, gives a vector d¥3Z parallel to S,
and dV7 perpendicular to S, (see Fig. 2(b)). The special manner of decomposition gives

1
4

w@

=2

(a) b

Fig. 2(a). Decomposition of relative velocity dV! of point P, with respect to P into the compo-
nents dV} parallel to S; and dV} perpendicular to §,, (b) decomposition of relative velocity dV?2
of goint. P, with respect to P into the components dV? parallel to S; and dV? perpendicular
to S,
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for the magnitude of these vectors
dV2 = [—dV2 cos ey —dV3 sin ay)/sin ¢ o e v o (D)
dV2 = [+dV2sine;—dV2cosay]fsing . . . . . (10

The vectors are taken as positive if they are in the direction of the arrows in Fig. 2(b).

DOUBLE SLIDING

The components d¥} and d¥? are due to the character of double sliding of the model.

Considering first d¥}, because sliding occurs along the stress characteristics a line element
on an S, stress characteristic is not affected by a sliding along the S; family. Therefore the
double sliding contributes only a component d¥} parallel to S,. Curvature of the stress char-
acteristics does not affect the decomposition of the vectors or the sliding directions at point P.

In accordance with previous work, the quantity b is introduced to represent the magnitude
of the shear strain rate along the S, family by the definition

dVi=+bdlcos¢ . . . . . . . . (11)
Substituting this in equation (7) and using equations (6) gives
— Vw08t ay— (Vo y+Vy, o) COS ey sSiney—V, , sin® ¢, = +bsin¢cos
Elimination of «, with equations (1) gives
(Vi x+ V) =V, a=Vy, ) sin (Zh—) + (Ve + V), 2) cos (2h—¢) = +bsin2¢ (12)
Considering second d¥?2, the double sliding model infers that a shear strain rate along
the S, family can exist, with a magnitude dVZ, independent of slidings along the S,
family. A quantity a for the shear strain rate along the S, family was introduced in previous
work, which is defined by
dV2 = +adlycosd . . . . . . . . (13)

Substituting equation (9) and using equations (6) with 1 replaced by 2, and eliminating e,
from equation (1) gives

'_'(Vx. =t Vv.:.r} + [Vx.x_ VII'. v) sin {2',&"'?5} - (Vx. vt Vll’. x) cos (2';"‘"?") = +asin 2‘# (14)

Equations (12) and (14) were not mentioned by Mandel (1966) or Spencer (1964) although they
can be derived directly from their analyses. In Mandl and Fernindez Luque’s (1970)
notation ¢; = —b cos ¢, co= —a oS §, €., = — V. and so on and equations (12) and (14) can be
deduced from the first two of their equations (83).

ROTATION
The components d¥} and dV7 are due to rotation of the sliding elements. The representa-
tion of reality by the model is such that these elements, which can be visualized as infinitesimal
curvilinear rhomboids, slide and rotate but remain rigid during motion conserving their shape.
This means that every line of such an element rotates at the same rate, with an angular
velocity of magnitude £ anticlockwise. Then the relative velocity components (8) and (10)
perpendicular to the stress characteristics have a magnitude

dvi = Qdi,
dvz = Qdl,
Rigid body rotation of the elements can be generated by several situations. Spencer

(1964) mentioned two causes: sliding of the elements along stress characteristics that are
curved, and rotation of the principal stresses in a point, in the non-stationary case. These

(15)
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rotations are due to local circumstances, but are not the only reason for the occurrence of

rotation.
If the model is free to rotate, the local sliding elements will follow every rotation without

resistance, and also the rotations imposed by the surrounding elements up to the boundaries
of the body. These additional rotations can be different in every other situation and are in-
troduced as an unknown variable and arbitrary function of # and y. The locally generated
rotations mentioned by Spencer are submerged in the unknown magnitude of all those
rotations together.

The quantity £ introduced by equations (15) is the total rotation that includes all these
effects and whose magnitude, being an unknown variable of ¥ and y, cannot be specified from
local conditions only. Therefore flow equations containing £ cannot be considered as consti-
tutive equations.

Introducing equations (8) and (10) and combining them with equations (6) gives

+ Vi, 008 e Sin g+ V., 5iN @y Sin g — V), €OS o) €OS ey — V), , SN &; €OS ey = 2sin ¢
(16)

+V, xcosagsine, +V, ,sina;sina —V, , cosa;cosay—V, ,sinay cos ¢, = 2sin ¢

(17)

Elimination of £ from these equation gives
(Vx.x+vy. v) sin {“2_“1} =0

Since «y—ca; = 7+ ¢ this reduces to
VestVyy=0 Lo B R omo8 v o (18)

This is the relation for volume incompressibility, a property known to be exhibited by the
double sliding, free rotating model.
Adding equations (16) and (17) and substituting equations (1) gives

(Vx.x_h Vlrdf) sin 2‘:&_ (Vx. vt Vy.x) cos 2?"‘*' ('_ Vx.r"‘ Vﬂ.x) sin Ef’ = 2Qsin ¢’ * {19}
Equations (18) and (19) are identical to Spencer’s (1964) equations (3.20) and (3.21).

CONSTITUTIVE INEQUALITIES

In the previous sections flow rules have been derived that describe the behaviour of the
double sliding, free rotating model. In order to compute a velocity field from boundary con-
ditions, it is sufficient to know two relations concerning V, and V,, or their derivatives in
every point. However, the flow rules (equations (12), (14), (18) and (19)) also contain the
unknown sliding rates « and b, and the unknown rotation Q.

Spencer (1964), Zagainov (1967) and Mandl and Fernindez Luque (1970) use only equa-
tions (18) and (19) because in their opinion 2is a known quantity. Mandel (1966) realized that
£is unknown and concluded that the equations (18) and (19) are insufficient.

In this Note equation (19) is discarded because it contains the unknown £. This leaves
equations (12), (14) and (18) and the unknowns V,, V,, a and b. These three equations are
apparently insufficient for four unknowns. However, so far the thermodynamic requirement
of energy dissipation has not been used and when introduced it produces a treatable system,
although it consists of inequalities.

Adding equations (12) and (14) and substitution of equation (18) gives

(Vi,x—=Vy,y) cos 2 sin g+ (V. ,+V,, ) sin2psing = (a+b) cosdsing . (20)
Multiplication by p and substituting equations (2) gives
*{Vx, x= Vl!. :J) {aa"_ay] + (Vx. v + Vy. x}'rxv = P(a"'b) cos ¢ sin ¢
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Using equation (18) this gives
Ve x0ut Vi, 40yt Vi yTay+ Vi, x7yee = pla+b) cos $sin ¢ .. (21)

The terms on the left-hand side of equation (21) together form the energy produced by the
stresses on the strain rates. In order that no work is extracted from the system, this quantity
should always be positive, and this means that the term on the right-hand side of equation (21)
must be positive. The angle of internal friction lies between zero and = and $>0, so a+b
must be positive. Since the sliding rates @ and b are independent it follows from thermo-
dynamic considerations that & and b are both positive, so that equation (21) dictates the

requirements
0
: f 22

These requirements can be written in terms of ¥, and V,, and their derivatives by use of
equations (12) and (14). Using equation (14) and @ > 0 gives the first part of the consecutive
inequality (23) and using equation (12) with &> 0 gives the second part

{_ (Vx.x T Vlf. v) cos 2‘:"‘_ (Vx.r"' Vr.x) sin 2?”] sin ¢ }

WowW

a
b

< [_ (Vx, = Vﬁl.ﬂ} sin 2‘!"{' (Vx.1r+ V:r.x) cos 2'}!'] cos ¢ (23)

S[+ (Ve x—Vy,4) cos 26+ (V. y+Vy, ) sin 24] sin ¢

This inequality together with equation (18) gives the constitutive relations for the double
sliding, free rotating model of a granular assembly. It can be verified that (23) is invariant
for the full orthogonal group of co-ordinate transformations. This justifies the use of the
inequality (23) together with the invariant expression (18) as the constitutive law for an iso-
tropic material.

Introducing the angle £ between the x axis and the principal direction of strain rate with
the algebraically larger value gives

Viex—Vyy) = Weos2
Vo) St J O
with W=/[(V., »—Vy, )2+ (Ve y+ Vy, )] where W is twice the strain rate deviator, which
is always positive. Substituted into (23), these inequalities reduce to
—cos 2(§—y) sin ¢ < sin 2(§—y) cos d < cos 2(£—4f) sin ¢
which can be written as
—tan¢ < tan2(é—¢) < +tang . . . . . . (25)

by dividing the inequalities by cos 2(£—1), which is always positive because W cos 2(é—4) =
(a+5) cos ¢ according to equations (20) and (24), whereas (a+b) cos ¢ is positive because of
inequalities (22).

Introducing the deviation angle ¢ between the principal directions of the stress and strain
rate tensors by the definition

i=§—y s wower s w w e s w (20)
the inequality (25) shows that this deviation angle obeys
—M<i<+ . . . . L L L L (2

3+
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Possible velocity characterishics

=yria Wl

Aay

Fig. 3. Possible directions of velocity characteristics are
limited to the shaded fans

+ X

HYPERBOLIC CHARACTER OF CONSTITUTIVE RELATIONS

The constitutive inequality (23) and equation (18) form a system of differential equations
in ¥, and V,, by which the possible range of flow fields can be computed from boundary
conditions. The hyperbolic character of this system can be shown by the following analysis as
suggested by Strack (1970).

Substituting equation (26) into (24) the fundamental inequality is given by

(Vex—=Vy,o) sin 20 +1) = (Vi y+Vy, o) cos20+4) . . . (28)

This equation is an inequality because 7 obeys (27). The equations (28) and (18) concern the
derivatives of ¥, and V, and are of the form

AJ.Vx.x'i'BJ.Vx.v'FCIVv.:+D1Vv.v =0 } (29]
Anyx,x+BAVx,y+CHVn.x'i'Dler.u = 0
where
A, = —D; = sin 2(y+1)
B, = C; = —cos 2(p+1)
Ay =D, = +1 @0
Bg = C2 =0

From the theory of differential equations it is known that the system (29) is hyperbolic with
characteristic directions , and 8, if

tan 0, , = [b++/(6°—4ac)][2a oo e W on e (31)
isreal. In this expression
a=A,C;—Cy4, = cos 2{p+1)
b = A;D3+B,Co—C;B;— DA, = 2sin 2(+1)
¢ = B, D;—DB, = —cos 2($+1)
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It follows that the root of equation (31) is real as
A/ (b2 —4dac) = +4/[4 sin® 2(h+17) +4 cos? 2(h+1)] = 2

The system is therefore always hyperbolic regardless of the value of 4.
The characteristic directions #, and 6, follow from (31)

tan 0,5 = [sin 2 (y+4) + 1]/cos 2(p+1)
giving for the angles

0, = ¢+itin }

N £ '3
0, = p+i—}nm )
CONCLUSIONS

The velocity characteristics are everywhere perpendicular, because 8, — ,==(2, and this
is in agreement with the volume conserving character of the model.

The characteristic directions are limited by fans whose boundaries deviate by ¢/2 from
the bisectrices of the principal stress directions whose angles with the x axis are i+ =4

(see Fig. 3).
A boundary value problem which in the case ¢ =0 has a unique solution has a limited range

of solutions if ¢ 0.
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SUMMARY

THis PAPER describes experiments performed on an assembly of discs constituting a two-dimensional
analogue of a granular material. The use of photo-elasticity techniques allows the determination of
average stress and strain-rate tensors in the interior of the assembly. In this way, a comparison can
be made with the behaviour predicted theoretically on the basis of a mechanical model. Test results
indicate that the main features of the mechanical model, namely, the sub-division of the assembly
into sliding elements, a possible non-coaxiality of stress and strain-rate tensors, and a free rotation of
the elements are all indeed observed in practice.

1. INTRODUCTION

THE EXPERIMENTS described in this paper were undertaken in order to verify the flow
rules developed for granular assemblies. The test set-up actually is a two-dimensional
analogue of a granular medium because it consists of discs. The discs have different
sizes and are stacked between two glass plates that prevent the stack from buckling
side-ways. The assembly is loaded by bars to such an extent that the discs slide with
respect to each other, thus causing deformations of the stack.

When viewed in circularly polarized light the discs, being photoelastic sensitive,
show a pattern of isochromatics, from which can be deduced the forces that are
transmitted through the contact points between the discs. By averaging these forces
over a region in the interior of the assembly, it is possible to assign an average stress
tensor for that region.

From the photographs of successive stages during a deformation cycle it is possible
to determine the relative displacements of the individual discs. From these displace-
ments an average velocity-gradient tensor (and its symmetric part, the average strain-
rate tensor) can be deduced for the same region where the average stress tensor is
determined.

Verification of the flow rules consists in relating the average velocity-gradient
tensor to the average stress tensor that applies during the occurrence of the deforma-
tion. Because both tensors can be deduced from photographs the test results are not
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disturbed by the measurements. Also, the disturbances existing at the boundaries of a
test set-up can be eliminated in this case, because the region of consideration can be
selected from a part of the interior where the average stress tensor is homogeneous.

The two-dimensional analogue of a granular material was introduced by
ScHNEEBELI (1956) in the form of an assembly of metal rods. In such a test set-up
only the displacements of the rods can be observed. Tests executed with these models
have been reported by DE JosseLIN DE JonG (1959), Sturz (1963), DRESCHER,
KwaszcyNska and MROz (1967). In general, however, the interpretation of test
results is unsatisfactory because the force distribution in the interior has to be inferred
from the boundary conditions, without the possibility of eliminating the disturbances
at the boundaries.

Dantu (1957) and WaKABAYASHI (1957) suggested the use of optically-sensitive
material for the rods or discs in order that the forces in the discs could also be deter-
mined. Analysis of the force distribution in such a test was described by DE JOSSELIN
DE JoNG and VERRUDT (1969). Their procedure was adopted in the tests reported in
this paper.

By using photoelasticity techniques the forces in the interior of the disc assembly
can be measured without the introduction of disturbing foreign elements. A region
in the interior of the assembly can be selected in which the stress state is homogeneous
enough to serve as a test sample. Here, we shall call that region the representative
area. Thus, it is possible to avoid the usual unsatisfactory procedure of determining
the stress state from the boundaries and of inferring homogeneity, although that is
doubtful because the boundaries always contain disturbances.

Because the polarizator was not large enough to cover the entire disc assembly,
only a part of this was considered, from which only a circular area of 8 cm radius was
finally selected as the representative area, because the stress in that region was
sufficiently homogeneous. In that area the shear stress on a horizontal plane was not
zero, although the horizontal loading plate was free to move in a horizontal direction
and therefore the total horizontal force on the loading plate was zero. The reason for
this discrepancy is the disturbance from homogeneity that exists at the corners of the
total triangular disc assembly. These disturbances can be ignored by adopting the
suggested procedure, and there will be no discussion in this paper of the relation
between the forces to be measured on the three enclosing beams and the actual stress
state in the representative circular area.

Since both stresses and velocities can be determined separately and without the
interference of disturbing effects, an approximate check of the flow behaviour of the
disc assembly can be made. By flow is to be understood here the deformation
that takes place after the initial adjustment of stresses and strain rates has been
developed and the assembly continues to move with large deformations under
conditions of constant volume and constant stress.

It has been pointed out by P. W. Rowe (during the informal discussion after
K. H. Roscoe’s 1970 Rankine Lecture) that initial adjustment in the test reported
here is obtained after deformations that are small with respect to the total deformation
in every loading cycle, because the discs consist of rigid material. Since the test results
elaborated in this paper are taken from the end of the loading cycles, only the behaviour
of the material under conditions of flow is considered. So, the non-coaxiality being
reported here later on is not in contradiction to the observations of the Cambridge
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group of soil mechanics workers who observed coaxiality in the initial stage of the
deformation process.

Several theories have been proposed in the past to establish flow rules. Instead of
surveying all the proposals that have been made, we shall pay attention here only to
the mechanical model of double sliding, which is in accordance with Coulomb’s
initial ideas of internal friction. This model is based on the assumption that deforma-
tion of a granular assembly consists primarily of sliding movements along planes that
coincide preferably with the stress characterstics.

According to that model the system of grains is sub-divided into elements consisting
of many particles that remain as rigid bodies during deformation of the assembly
because the particles in the elements preserve their respective orientation and contact
points. The elements slide with respect to each other and are free to rotate as units.
For a more detailed description of this model and its properties see DE JOSSELIN
DE JoNG (1959).

The test results reported here can be used to verify the equations developed for this
double-sliding free-rotating model. In order to do so, the equations developed by
DE JOSSELIN DE JONG (1971) are adequate because with these formulae the sliding rates
and the rotation of the elements can be computed directly from the observed velocity-
gradient tensor. The mode of deformation interpreted in terms of the model as
obtained from test results turns out to be a sliding movement of elements that slide in
one of the stress characteristic directions combined with a rotation of the elements.

A detailed investigation of the manner in which the individual discs behaved
indeed shows that discs stayed together to form rigid elements that were elongated in
the predicted direction and that executed the movements suggested by the theory.

The double-sliding mechanism has been considered separately by several investi-
gators. MANDEL (1947), SPENCER (1964) and ZaGaNov (1967) have developed a set of
differential equations to describe the velocity field of that model. Their equations are
all similar, but they differ in the physical interpretation of the rotation term. According
to SPENCER (1964) this term is equal to the rotation of principal stresses, whereas
MANDEL (1966) also includes with this term the rotations of the elements. Because
there is no physical basis that substantiates Spencer’s assumption, the present writers
agree with the second interpretation which means according to MANDEL (1966) that
the equations mentioned above cannot be used to solve boundary-value problems
because the value of the rotation term is not known beforehand.

DE JOSSELIN DE JONG (1959, 1971) has developed an additional set of inequalities to
describe the velocity field of the model based upon the thermodynamic requirement of
energy dissipation. Since rotation is absent from these inequalities, the difficulty
pointed out by MANDEL (1966) is circumvented, and the solution of boundary-value
problems can be obtained with these formulae. Instead, however, of leading to a
unique solution, the inequalities only provide a range of possible solutions. This is
unattractive due to the lack of uniqueness, and it is of interest to know whether the
difficulty mentioned by Mandel really exists. Crucial in this regard is the question of
whether the elements can rotate separately from the principal stresses. The test results
provide a means of verifying this particular point and show that rotations of principal
stresses and elements can even be in opposite senses.

DE JOSSELIN DE JONG (1958, 1959) showed that a consequence of the double-sliding
mechanism is the possibility that stress and strain-rate tensors are not coaxial. All the
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workers mentioned above agree upon this consequence, but in the past doubts have
often been raised concerning this model, because non-coaxiality in isotropic materials
is apparently prohibited. This result, however, is based upon the assumption that
there exists a functional relationship between only stress and strain-rate tensors. Since,
for the flow stage considered here, such a functional relationship does not exist, the
result cited does not necessarily apply.

The test results presented here provide the possibility of verifying whether non-
coaxiality exists in reality, and they show that deviation actually occurred in the
experiments.

2. EXPERIMENTAL PROCEDURE AND TEST RESULTS

The detailed description of the technique of measurement, the test programmes,
and the results obtained will be given elsewhere. In this paper, only the main results
of the experiments will be briefly described.

Figure 1 presents schematically the system used for loading the disc assembly,
this consisting of a fixed beam and a rotating beam hinged at the bottom. The

FiG. 1. Scheme of loading system.

wedge-shaped area of 1755cm? was filled with approximately 1200 discs, made from
6 mm thick plate of CR-39 co-polymer, a relatively-sensitive photoelastic material.
Six different diameters of discs were used, ranging from 8 to 20mm. A movable
loading plate was placed horizontally on the upper surface of the assembly.

The experiments consisted of rotating the hinged beam such that its angle « with
the fixed beam changed slowly and gradually. The experiments began with a counter-
clockwise rotation through 10° of the hinged beam, which initially made approxi-
mately a right angle with the fixed beam. Next, a clockwise rotation backwards
through a similar angle was executed. During rotation of the hinged beam the loading
plate could move freely and follow the deformation mode of the disc assembly.
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Fi1G. 2. Photoelasticity picture of the granular assembly.

FiG. 5. Components of surface traction vector in discrete assembly,
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During each test, several photographs of the model for different stages of deforma-
tion were taken.

Owing to the initial pre-stressing of the discs by the loading plate the interaction of
the particles produced sufficiently high stresses within the discs during deformation to
procure a well-developed isochromatic pattern observable in circularly polarized light.
Figure 2 presents a portion of the tested model with the stressed discs at the moment
of maximum counter-clockwise rotation.

From the discs only the rims are visible as circles. Within these circles isochro-
matics are seen as a pattern of black regions. Greater black-intensity means larger
forces. From the pattern it can be deduced that forces are transmitted through the
disc assembly along chains of discs. The oblique orientation of the chains of heavily-
stressed discs, as shown in Fig. 2, remained virtually the same during the entire
counter-clockwise rotation in every test, while a clockwise rotation produced chains
positioned more or less vertically.

The magnitude and direction of the contact forces could be evaluated by measuring
the geometry of the isochromatics in the vicinity of the contact points. In order to
perform this evaluation, preliminary calibration tests were required. Using these
results the calculation of forces was executed for the entire inner region OABCD
(see Fig. 1) and for several stages of deformation. The correctness and accuracy of
the determination was verified by constructing a Maxwell diagram of forces, and
tracing the lines of action of the forces in the disc assembly. These two diagrams must
consist of closed polygons, in order that equilibrium both in horizontal and vertical
directions as well as equilibrium of moments is satisfied for each disc. All this was
executed according to the procedure described by DE JOSSELIN DE JONG and VERRUUT
(1969).

Figure 3 presents the Maxwell diagram (consisting of about 600 individual forces)
corresponding to Fig. 2. The fact that the Maxwell diagram obtained from the
isochromatics consists of closed polygons is an indication that, if buckling of the disc
assembly side-ways towards the glass plates created friction forces between glass
plates and discs, these forces were so small that they are submerged within the overall
accuracy.

Figure 4 shows the lines of action of forces throughout the assembly. The thick-
ness of the lines is proportional to the magnitude of the transmitted forces.

The points OABCD in Fig. 3 refer to those in Figs. 1 and 4. Hence, the distance
OA in the Maxwell diagram is equal to the resultant force acting on the sector OA
of the fixed beam, etc. The forces indicated by heavy lines in Fig. 3 are the forces
whose lines of action are intersected by the circle with radius 8cm around Q (see
Fig. 1). The more the whole heavy line approaches an ellipse, the more the force
distribution is homogeneous.

3. TRANSITION TO TENSORS

It is customary to present flow rules in the form of a relation between two second-
rank tensors, one describing the stress state and the other representing the velocity
gradient or the strain rate. Such tensors are in fact second-order averages. The first is
an average of the discrete forces acting on the discs, and the second is an average of
the individual motions of the discs. If forces and motions are distributed more-or-less
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continuously an averaging procedure gives a fair description of the situation in the
assembly. The photographs reveal, however, that reality cannot be compared to
anything continuous at all.

The forces transmitted through the contact areas depend on the geometrical
distribution of the contacts between adjacent particles. Chains of aligned contact
points form rigid columns of particles which attract large forces because of their
relative rigidity with respect to the surrounding particle groups. Since these columns
are created by chance in a random pack, and the probability of obtaining a chain is
small, the mutual distances between columns consist of several particles and as a
consequence the magnitudes of the transmitted forces vary very much in adjacent
contact points. This results in a discrete distribution of forces through the pack with
high forces at great distances apart. Such an arrangement of discrete forces is com-
pletely different from a continuous distribution of force inherent in the concept of
stress.

Similar discrete behaviour is observed in regard to the movements of the particles.
If the direction of the force at a contact point deviates more from the direction of the
normal to the contact area than friction allows, then a particular contact point will
yield. The yielding of one contact is enough to create a movement of a great number
of particles resulting in a possible re-orientation of many contact points and a re-
distribution of the forces. The movements of the particles have a discrete character,
which differs basically from a continuous displacement field which is inherent in the
concept of strain.

When soil engineering computations are to be executed for the prediction of the
behaviour of a soil structure, it is impractical to attempt a calculation of the discrete
forces and movements of individual particles and instead it is common practice to use
stress and strain tensors. Stresses and strains, however, are misleading concepts if the
basic properties determining the behaviour of a particle assembly are studied. They
are averages that blur the real physical entities responsible for the mechanical actions
working on the assembly.

If, however, stress and strain-rate tensors are ineffective averages of the discrete
force and displacement distributions of the particles, a more serious drawback in
dealing with a particle assembly is our incapacity to describe its geometry efficiently
with continuous concepts. It is a well-known practice in soil mechanics to mention
for a grain deposit only its density. Although a greater density entails the probability
of a greater number of contact points between grains, it is insufficient for a complete
description of contact-points distribution. This distribution of contact points is
actually the essential property of a granular deposit that has to be known in order to
be able to predict its deformation behaviour under action of forces. Presumably it will
prove impossible to introduce contact-point geometry effectively with the use of
tensors, which are averaging concepts only appropriate for continuous media.

Attempts have been made to improve the continuum concepts by introduction of
the Cosserat continuum (NIKOLAEVSKII and AFANASIEV, 1969) or higher-order gradients
of the velocity and multi-polar stress states. We shall not follow that approach here,
because it is not our present purpose to propose better concepts for the description of
the discrete distributions observed for forces, movements and contacts between
particles. In order, however, to deduce a flow rule from the experimental evidence
along the traditional lines, the discrete-force distribution and the movements of the
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discs have to be translated into a stress and a velocity-gradient tensor. It is irrelevant
how these tensors were obtained, because they are only averages that ignore the real
complexity of the aspects represented by them.

4. AVERAGE STRESS TENSOR

In a continuum, the stress is generally defined as the resultant force acting over a
unit area. In the two-dimensional case, this reduces to the resultant force acting on a
unit line. Since the forces acting in the tested disc assembly were not homogeneously
distributed and were of varying magnitudes, every other unit line in the assembly
would produce another value of stress, if defined on the basis of individual lines. This
would be an inappropriate measure for the averages. In the present paper the averaging
procedure over a representative elementary area is used, as proposed by HiLL (1963)
and WEBER (1966). Although the formulae introduced by these workers are different,
it can be shown that they lead to equivalent results. Their proposals amount to the
following.

If in a region V' there is a stress state o;; which is in equilibrium, but otherwise may
be arbitrarily distributed over ¥, then the average stress &;; is defined as

- 1
Oy = ﬁi[dljd"). (4‘1)

Because 0;; = 9;,04; = X; x0); and o;; satisfies the equilibrium condition o;; = 0,
(4.1) can be transformed by use of Gauss’s divergence theorem into

1
('J"b- = ;ixitjds (4'2)

where § is the boundary of ¥, x; is the i-coordinate of a point on S, and ; is the
Jj-component of the traction acting on § at that particular point. With (4.2) it is
possible to determine the value of the average stress tensor ;;in the region ¥ from the
tractions 7; acting on the boundary of that region. Tensile normal stresses are taken
as positive.

In our case the region ¥ was taken to be the area enclosed by a circle with radius
8 cm and centre at the point Q (Figs. 1 and 4). Considering this circle as the boundary
S of the region V, the tractions ¢ reduce to the discrete forces 7™, whose lines of
action are intersected by the circle (heavy lines in Fig. 3). The coordinates of the
intersection points are x{™ (Fig. 5). The surface integral of (4.2) is then replaced by a
sum over the y forces intersected by the circle to give

]
R (4.3)
4 m=1

If i # j the summation over x{™T™ represents the moment couple exerted on the
region V by the j~components of the forces acting on S. Since the determination of the
force polygon and the lines of force network is such that equilibrium of moments is
assured, this moment couple must be equal to Y x{™T{™, the moment couple of the
i~components of the forces. The consequence is that &;; = &; and the average stress
tensor is symmetric. Because they must be equal, a computation of ¥ x{™7T{™ and
Y x{™T{™ separately gives a verification of the accuracy of the calculation.
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Using (4.3), the average stresses &y, 7,5, 65, were determined. From these
stresses, the principal stresses &; and &y, as well as the angle  between the major
principal stress &; (the smallest in compression) and the horizontal 1-axis, were
computed. This was done for several steps of the experiment. Some results are given
below. During a counter-clockwise rotation of the hinged beam over an angle
Ao = 1-5°,

at o =905 =—T15Nem™!, Gy =—154Ncm™?, ¥ = 126'5",} (4.4)
at «=89°: G =—86Ncm™, Gy =—207Ncm™!, ¢ = 119-5°, -

During a clockwise rotation of the hinged beam backwards over an angle Ax = 1-5°,

at o =905 =—64Nem™!, &, =—118Nem™!, ¢ = 0°,} @5)
at =92 G =-—92Ncm™!, &;=—174Ncm™!, ¢ =6° '

These average stresses refer to the circular region with radius 8 cm around Q (see
Fig. 1). This region can be considered as a representative area with a homogeneous
stress state because a similar analysis, for seven areas of smaller size and covering
that region, produced practically the same value for the stresses, and the heavy line in
Fig. 3 resembles an ellipse.

5. AVERAGE VELOCITY-GRADIENT TENSOR

From two successive photographs, displacement increments can be obtained. In
the theory of flow of granular assemblies it is customary to use the term ‘velocity’
rather than “displacement increment’. This infers that time may have an influence, but
that is not the case here because movements were so slow that inertial effects can be
disregarded and the particles were dry so that viscous effects were absent from the
friction developed. The magnitude of the time lapse between photographs is therefore
irrelevant, and time is only introduced to fix the direction of motion with respect to
energy dissipation.

The particles moved individually and rotated. In order to obtain an average
velocity gradient from two photographs it is necessary to substitute for the observed
discrete displacement a continuous velocity field. This is done in the following
arbitrary way. :

The circular representative area, used above to determine the average stress
tensor, is sub-divided into triangles by joining the disccentresby straight lines (Fig. 6).
In each triangle the velocity is distributed linearly in such a manner that the velocity
in the corner points is equal to the displacement of the disc centres divided by unit
time. Such a velocity distribution is continuous at the sides of adjacent triangles.

In this procedure, both the rotations of the individual discs and the movements of
the contact points between discs are disregarded. Since both of these quantities may
be essential as regards the mechanical behaviour of the individual discs and the
assembly, the procedure followed here is arguable. However, every averaging pro-
cedure annihilates the discrete character of the real particle assembly and has for the
moment to be accepted.
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FiG. 6. Scheme of approximation of discontinuous velocity field.

Let u; be the components of the substituted velocity field. Because the field is
continuous the components have first-order derivatives u; ; at every point, which
together form the components of the velocity-gradient tensor. Averaging over the
representative area V gives the components of the average velocity-gradient tensor
i; ; according to

- 1

=3 i[ u; ;dv, (5.1)
which by use of Gauss’s divergence theorem can be written as

_ 1

iy = ; u;n; ds. (5.2)

Therefore, only the velocity distribution along the boundary as shown in Fig. 6 is
required for the computation of & ;.

The successive photographs, used for the computation of the average stress
tensors, showed the following values for the average velocity-gradient tensor compo-
nents. For the counter-clockwise rotation of the hinged beam over the interval
o = 90-5° to o = 89°,

lil,‘l = _0'w83g ﬁl_z = "‘0‘01?8,
i,, =+000425, i, =+0-09067.

For the clockwise rotation of the hinged beam backwards over the interval & = 90-5°
to a = 92°,

(5.3)

iy, =+000875, i,,= +0-01363,}

ii;,, =—0-0004, iy, =—0-00967. G.4)

6. VERIFICATION OF DOUBLE-SLIDING FREE-ROTATING MODEL

In order to verify the double-sliding free-rotating model with the aid of the test
results, relations will be used here that were developed for this model by DE JOSSELIN
DE JONG (1971). These relations express the shear strain rates a, b and the rotation of
the elements € as a function of the components # ; of the average velocity-gradient
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tensor, as follows:

asin 2¢) = —(iy,y +i13,2) + (g, —iz,5) sin QY + @) — (i, +i5, 1) cos 2P + ), (6.1)
bsin (2¢) = _(‘_‘1,1 + EZ,Z)_(EI.X _ﬁz.z) sin (2'}"_‘3’)"‘(51,2 + ﬂ2,1) cos 2y — ), (6.2)
2Q sin @ = (i, +1ii,,,) sin () — (i, +1i2,1) cOs () +(— i, , +i1, ) sin .  (6.3)
Since the sliding movements in the model are such that volume remains constant

during deformation, an additional requirement is that the volume increase is
iy, +ily =0. (6.4)

The model requires that the shear strain rates a, b satisfy the thermodynamic
requirements @ = 0, b > 0, whereas, according to the present writers, Q can have any
value irrespective of the changes in the value of .

In order to verify these relations, values have to be assigned to Y and ¢ (¢ is the
angle of internal friction of the disc assembly). For ¢, we shall take here the value of
32° because this value for ¢ (or even somewhat higher values) has been obtained by
several methods for assemblies of the same discs.

Let us first consider the counter-clockwise rotation of the hinged beam over the
interval & = 90-5° to o = 89°. Photographs were only taken at the beginning and at the
end of the interval, so we have no information of the stress history within the interval.

From motion pictures taken during many similar tests, it is known that the forces
in the discs increase up to a maximum, which is achieved at the moment that the discs
start to slide with respect to each other. Then, after the discs have re-adjusted, the
forces fall off to build up again to a new maximum.

The average stress tensors determined from the photographs do not correspond
to the maxima, because computation of angles of internal friction from the relation

sin ¢ = (—d;+ap/(o;+6w
gives values ¢ = 21-5° and ¢ = 24-5°, which are smaller than the known values for ¢.
The motion pictures further reveal that the direction of the predominant forces
remain essentially the same during these re-adjustments. Therefore, it may be assumed
that the principal directions of the average stress tensor oscillate over only a few
degrees.
The two photographs give two different values for , from which the mean is
¥ = $(126:5°+119-5°) = 123° (6.5)
This mean value for  will be used in verification by use of the formulae.
In the interval considered, y decreased, which means that the principal stresses
rotated over an angle Ay (positive for counter-clockwise rotation) given by
Ay = —126:5°+119-5° ==T7°, (6.6)
Using the values (5.3) for the components of the average velocity-gradient tensor
and the values § = 123° @ = 32° in (6.1) to (6.4), there results
a =+0-0204, b =-0-0002, Q =+0-0212, volume increase = +0-0014 (6.7)
These values are not in agreement with the theory, because & should be positive
and the volume increase should be zero.
‘We remark, however, that the absolute values of these two quantities are respec-

tively 1 and 7 per cent of @ and Q which predominate. Because they are only small
fractions of the predominant quantities, a small correction in the value of ¢ and the
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introduction of a small uplift angle in the sliding mechanism are sufficient to reduce
both b and the volume increase to zero. We shall not elaborate on that possibility
but consider only @ and Q whose values change but a little by such corrections.

The interpretation of the result based upon the values of 2 and Q from (6.7) is now
the following. Sliding occurs predominantly along s,-stress characteristics and super-
imposed on that sliding all elements rotate counter-clockwise.

This mode of deformation is shown schematically in Fig. 7. Figure 7(c) shows the
original position with the s,-lines, that divide the material into elements that are to

S5
J -
7 /
/
Jha
/
a b c 2

FiG. 7. Sequence showing how a counter-clockwise rotation of the hinged beam is responded
to in the material by a shear strain in s5,-direction (@ — b) plus a counter-clockwise
rotation (b — ¢).

slide with respect to each other. Figure 7(b) shows the sliding of the elements, which
creates a gap between the stationary beam at the left, because left-hand side elements
slide upwards over the right-hand elements to satisfy the thermodynamic requirements
of energy dissipation. This gap is closed by a counter-clockwise rotation of the
material and the hinged beam at the right together, as shown in Fig. 7(c). In reality,
the sliding and rotation occur simultaneously. The double-sliding free-rotating model
admits many other combinations of slidings in two directions combined with rotation
that satisfies the movements dictated by the boundaries. From all the possible
combinations the one observed here requires the smallest force on the hinged beam.
Since the disc assembly was forced to deform by that beam, the material seems to
respond with a minimum resistance deformation mode.

A similar analysis applied to the photographs of the clockwise rotation of the
hinged beam backwards over the interval o = 90-5° to o = 92° gives the following
results. Using a value of = 3° for the mean value of Y and ¢ = 32° gives
a =+00020, b =+00232, Q =-0-0187, volume increase =—0-0009, (6.8)
In this case again, one of the two shear strain rates dominates, because a is 10 per cent
of b. Being both positive, they satisfy the thermodynamic requirements of energy
dissipation. Volume change again is not zero, but only 4 per cent of the predominant
values of b and Q. The mechanism now is a sliding movement along s,-stress charac-
teristics, in combination with a rotation of elements clockwise. A schematic representa-
tion of this deformation mode is shown in Fig. 8.

FiG. 8. Sequence showing how a clockwise rotation of the hinged beam is responded to in the
material by a clockwise rotation of elements (@ — b) and a shear strain in s;-direction (b = ¢).
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7. CoMPARISON OF TEST RESULTS AND THEORY

7.1 Sub-division of the disc assembly into sliding elements

The test results presented in Section 6, both for the counter-clockwise and for the
clockwise rotation of the hinged beam, show a mode of sliding that has predominantly
the direction of one family of stress characteristics. The disc assembly can only
execute such a movement if the block-like elements, presumed in the sliding mechanism,
are actually formed by the discs. In order to verify this assumption the displacements
of the discs in the considered circular region were re-examined from the photographs.

By shifting and rotating the photographs for « = 90-5° and « = 89° with respect
to each other, it is possible to match the discs and to visualize their relative movements.
It turned out that sub-regions of many discs apparently stayed together as units and
that these units moved as rigid blocks with respect to each other. The sub-regions are
shown as shaded areas in Fig. 9 (which is a repetition of Fig. 4). It is seen that these

el A1l
,-/;;/ {:: Ty AT
.-)‘Iﬂ'/,// I,/,, = aib, ‘_’

FiG. 9. Block-like sub-regions.

units show a predominant elongation parallel to the s,-direction from Fig. 7. It
seems that the units are created by the larger forces if they are normal to the contact
surface. On the other hand, the impression exists that sliding of blocks along each
other is possible because contact points are broken that transmitted forces whose
directions deviate strongly from the normal to the contact area. As a consequence,
the borders of the rigid disc units transmit a resultant force that makes a large angle
with the border surfaces. This is in agreement with the observation that the division
lines between units coincide with one family of stress characteristics.

7.2 Non-coaxiality of stress and strain-rate tensors
From the theory of the double-sliding free-rotating model there follows the possi-
bility that stress and strain-rate tensors are non-coaxial. The strain-rate tensor is the
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symmetric part of the velocity gradient tensor and therefore its components are defined
by

ay; = 3+ iy
Being a symmetric tensor, its principal directions are orthogonal, and using the values
mentioned in (5.3) and (5.4) we find for £, the direction of major principal strain-rate,

for ¢ = 90-5° to o = 89°: ¢ = 108-5°,
for o« =90:5° to a=092°¢=175°

A comparison with (4.4) and (4.5) shows that there is a deviation angle i between the
principal axes of stress and strain rate of a magnitude, respectively, as follows:

i=&—F = 1085°—123° = —14:5°,
i=¢=f = 175°— 3° =+145°

where for i the mean is taken of the values given by (4.4) and (4.5).
According to the theory, this deviation angle, i, is limited to the region

—1p < i<+io,
and since ¢ is about 32°, the values found are acceptable within the theory.

7.3 Rotation of elements

The quantity © defined by (6.3) is the rotation executed by the sliding elements.
This can be seen by division throughout (6.3) by 2sin ¢, because the formula then
states that Q is the difference between the asymmetric part of the velocity gradient
tensor (i, ; —ii; ;) and a term of magnitude a—b. The term a—b is due to the
double-sliding mechanism, which according to DE JossELIN DE JoNG (1959) produces
an asymmetric velocity-gradient tensor of that magnitude by sliding of the elements at
different rates without rotation. If the asymmetric part of the velocity gradient is
greater than the factor a—»b, it means that the elements also execute a rotation here
called Q.

According to SPENCER’S (1964) interpretation, Q must be equal to Diy/Dt, the
rotation of the principal stresses either in time at a point or by convection. In DE
JosseLIN DE JonNG’s model, Q is free to have any value independent of .

In the experiments reported here, the change of Y by convection can be considered
to be zero because the stresses were homogeneous in the region considered, but there
was a change of y in time. According to (6.3) this change was Ay = —7° for the
interval & = 90-5° to « = 89°, indicating that the principal stresses rotated clockwise.
According to (6.7) it was found for that interval that Q = +0-0212, indicating that the
elements rotated counter-clockwise. This counter-clockwise rotation is also observed
by super-imposing the respective photographs in such a way that the shaded-disc
conglomerates shown in Fig. 9 match.

A similar analysis applied to the test interval o = 90-5° to o = 92° shows a
counter-clockwise rotation of the principal stresses over 6° and a clockwise rotation
of elements, because Q = —0-0187.

The conclusion drawn from these observations is that in both test intervals the
rotation of the principal stresses and the rotation of the disc conglomerates were in
opposite senses. So the tests indeed do indicate that Q can be independent of Dys/Dt.
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Elasto—plastic version of the double sliding model in
undrained simple shear tests

G. de JOSSELIN de JONG*

In this Paper it is shown how to use the double
sliding, free rotating model for materials with
internal friction to predict the stress history in
undrained simple shear tests. In its original rigid
plastic form this model could not be used, because
there was no unique failure mode. By adding some
elasticity to the prefailure stage (thus producing an
elasto-plastic version of the model) this unique
selection becomes possible. The extended model
leads to explicit expressions for the stress history
in a simple shear test. It is also shown how the
failure mode taken by the model depends on the
stress state at the start of the test. An active initial
stress state leads to a ‘toppling bookrow’ mode of
failure, while a passive initial stress state produces
horizontal sliding planes. With the exception of
elasticity, the other properties of the double sliding
model, including dilatancy, are taken in their orig-
inal form. The essential features of the stress
history obtained from the analysis resemble those
actually observed in tests.

KEYWORDS: constitutive relations; elasticity; plasti-
city; shear tests; strain rates; stress rates.

L’article montre comment utiliser le modéle a
glissement double et rotation libre pour preédire
Phistoire des contraintes dans des essais de cis-
aillement simple non-drainés. Dans sa forme plas-
tique rigide originale ce modéle ne pouvait pas
s’employer, car il n’y avait pas de mode unique de
rupture. En ajoutant de Pélasticité a Pétat prece-
dant la rupture, produisant ainsi une version élasto-
plastique du modéle, cette sélection unique devient
possible. Le modé¢le élargi conduit a des expres-
sions explicites pour Ihistoire des contraintes dans
un essai de cisaillement simple. On démontre
comment le mode de rupture choisi par le modéle
depend de Pl’état de contrainte au commencement
de P’essai. Un état de contrainte initial actif conduit
a un mode de rupture analogue a celui d’une
rangée de livres qui s’écroulent, tandis qu’un état
de contrainte initial passif produit des plans de
glissement horizontaux. A Pexception de Pélasticite
les autres propriétées du modéle a glissement
double, y compris la dilatance, sont prises dans
leur forme originale. Les caractéristiques essentiel-
les de I’histoire des contraintes obtenues a partir de
Panalyse ressemblent a celles observées au cours
des essais.

NOTATION
a, b conjugate shear strain rates (non-
dilatancy)
a*, b* conjugate shear strain rates
(dilatancy)
5 304+ 0),)
t 30 — 0,)? + (0, + 0,,)°]2

i angle of non-coaxiality
q,,q, initial vertical and horizontal
stresses in simple shear test
horizontal and  vertical
ordinates
elastic energy dissipation rate
(1 — sin? ¢ sin? v¥)!/2
elastic shear modulus
simplifying  strain rate com-
binations (see equations (79), (80))
time

X,y co-

A'e

M*, N*

Discussion on this Paper closes on 1 April 1989.
For further details see p. ii.
* Formerly with Delft University of Technology.
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V., V, velocity components
V,x» V,, linear strain rates in x, y-directions
V.y+ V, . shear strain rate
V,x — Vi, material rotation
a angle of potential sliding plane
0 teeth uplift angle
A angle between force and normal to
teeth
v Poisson’s ratio
v* angle of dilatancy
¢, n co-ordinates in principal stress
directions
0y, 0y, effective normal stresses, positive
for compression
g, 0,, shear stresses
a4, %y effective principal stresses, positive
for compression
¢ angle of internal friction
¢ apparent angle of internal friction
¢ auxiliary angle defined by equation
(40)
Y angle between x-axis and plane of
oy
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HV,.« — Vi,): material rotation
structural rotation, rotation of the
elements
* distinguishes dilatancy from non-
dilatancy
time derivative (d/dT)
v objective co-rotational (Jaumann)
stress rates

Qe

INTRODUCTION

In his article with Randolph (1981), his Rankine
Lecture (1984) and again more recently (1987)
Wroth considers the results of simple shear tests
on clay as obtained by different investigators. As
examples, the observation by Borin (1973) is
reproduced in Fig. 1 and the test results of Ladd
& Edgers (1972) in Fig. 20.

Wroth draws attention to the fact that the
observed deformation at the onset of failure is
apparently not the one with horizontal planes of
maximum stress obliquity, as is often believed (see
Fig. 1). Instead, failure appears to occur on verti-
cal planes of maximum stress obliquity and, in
addition to sliding on those vertical planes, a

de JOSSELIN de JONG

rigid body rotation is executed to meet the
boundary conditions. This failure mode is shown
in Fig. 2. It can be visualized as a row of books,
toppling over sideways when the left-hand
support is removed.

The possible occurrence of a ‘toppling book-
row’ mode of failure was predicted (de Josselin de
Jong, 1972) as a consequence of the double
sliding, free rotating (DSFR) model for materials
with internal friction. It was mentioned that the
toppling bookrow is one case in a set of possible
failure modes in a simple shear test. The usually
accepted mode with horizontal sliding planes is
another one of this set. The DSFR model admits
both modes and all transition modes between
these two extremes.

Considering simple shear tests with equal verti-
cal normal effective stress ¢’ on horizontal planes,
the two extreme modes possess different shear
stresses at failure. In the toppling bookrow mode
the shear stress is equal to ¢ sin ¢ cos ¢/
(1 + sin? ¢); in the horizontal sliding mode it is
o' tan ¢, with ¢ the angle of internal friction at
failure. Combinations of the two modes give
values between these two extremes. For ¢ = 23°
the apparent angle of friction, the tangent of

@ =23
03 .
0-2F B
oy rp)
01
o 02 04 / 06 08 1-0
ola’
Yo
—0-1F {ﬂ;. '.yj

i 0.2[ E
-0-3

Fig. 1. Effective stress paths and the failure state from an undrained simple
shear test on normally consolidated kaolin (data from Borin, 1973), test 10)

T Pole for

% ‘

Fig. 2. Toppling bookrow mechanism
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which is the shear stress divided by o', is only
17-3° for the toppling bookrow mode, while it is
23° for the horizontal sliding mode. Ignoring the
toppling bookrow mechanism leads to an under-
estimation of the angle of shearing resistance.

At that time it was not known how to select
between the various modes of failure. The DSFR
model cannot predict how a sample will behave
in a test: a behaviour that is presumably unique.
This created an uncertainty which was attributed
to an incompleteness in the model thus prohibi-
ting its practical use.

It was recognized by Vermeer (1980 and 1981)
that the incompleteness of the model is due to its
being rigid-plastic. By adding some elasticity in
the pre-failure stage he created an elasto-plastic
version of the DSFR model which produces
unique solutions at failure. In this version the
sample ‘selects’ between various modes according
to its initial stress state. In this respect the DSFR
model, which is based on internal friction, differs
from perfect plasticity, where the unique response
at failure is independent of the initial stress state.

It is the purpose of this Paper to demonstrate
the use of the elasto-plastic DSFR model by
examining the response of a sample in the
undrained simple shear test and establishing the
initial circumstances that lead either to the top-
pling bookrow mechanism or to horizontal
sliding planes. The toppling bookrow was
observed by Drescher (1976) in photo-elastic tests
on crushed glass. This material can be considered
as a model material with properties resembling
sand. The undrained simple shear tests mentioned
by Wroth were carried out on clays. In these tests
the average normal effective stress reduces during
the deformation. This indicates that the material
is contractive, i.e. negative dilatant. The dilatant
version of the elasto-plastic DSFR model has
recently been implemented for computer use by
Teunissen & Vermeer (1988). Their formulation is
in terms of matrices and therefore differs in nota-
tion from the analysis given here. The relevant
expressions are however, identical.

The DSFR model as developed by this Author
in 1958, 1959 was specified mathematically in
various later papers (de Josselin de Jong, 1971,
1977a and 1977b) and the principal features of
this model will be recalled again here. In the first
section of this Paper, the dilatant version of the
DSFR model, which was described by this
Author (1977a) using Rowe's (1962) stress dila-
tancy relation, is redeveloped using only the laws
of friction. This leads to the plastic constitutive
equations (14).

In the second section the elastic part of the
constitutive equations is developed. The com-
bined elasto-plastic constitutive relations are
equation (26). How to divide the total strain rates

into their plastic and elastic parts is presented
visually in terms of vectors in the stress and strain
rate spaces. The procedure using a minimum
energy principle is set out mathematically in
Appendix 2.

In the third section the response of an elasto-
plastic DSFR sample in an undrained simple
shear test is considered. The mathematical results
obtained consist of explicit solutions for the stress
paths in the Mohr diagram, the resemblance of
which to the test results already mentioned is the
reason for this publication.

SECTION 1

DOUBLE SLIDING MECHANISM WITH
DILATANCY

The double sliding model describes the plane
strain deformation of a material such as a soil,
possessing internal friction, at the limit stress
state. It is based on the simplification of sub-
dividing the soil by parallel planes, on which
sliding takes place, because on them the frictional
shear resistance is exhausted. These are the
potential sliding planes.

The sliding is called double, because there are
two conjugate directions for the potential sliding
planes, located symmetrically with respect to the
principal stress directions. In Fig. 3 the two con-
jugate directions have both an angle « with the
plane of the major principal compression stress,
o). In order to distinguish between the two conju-
gate sliding possibilities, they are called a-sliding
and b-sliding respectively as indicated in Figs
3(a) and 3(b).

The sliding planes divide a block of material
into elements, that are liable to slide with respect
to each other as shown in Fig. 3. The plastic
deformation of the soil as observed from the

@ - kind of sliding

b-kind of sliding

6"

Fig. 3. Sliding elements and potential sliding planes at
angle «
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outside is due to this mutual sliding. In the orig-
inal, rigid plastic version of the DSFR model the
elements were supposed to be rigid. In the elasto-
plastic version the elements are elastic and this
looks after the elastic part of the strain rates that
remain after the plastic part is accounted for by
sliding of the elements.

It is impossible to visualize the two conjugate
slidings occurring simultaneously without cre-
ating gaps or overlaps. Mathematically, however,
double sliding is introduced in order to take
account of conjugate slidings that occur suc-
cessively, as observed in reality.

Discrete sliding planes as presented in Fig. 3
form elements of finite size. Mathematically it is
complex to describe the discontinuous deforma-
tion of the soil created by their motions. By
decreasing the thickness of the elements to infini-
tesimally thin slices, the sliding becomes shearing,
and the deformation of a soil region can be
described in terms of shear strain rates.

The magnitudes of the two conjugate shear
strain rates are called a* and b* in this Paper.!
By allowing these variables to become infinitely
large, the discrete sliding of elements of finite size
can be formulated mathematically. An essential
feature of the DSFR model is that the values of
a* and b* can be different. This is due to the prin-
ciple that in the limit state of stress sliding dis-
placements have arbitrary magnitudes.

! In earlier papers the shear strain rates were denoted
by a and b. Throughout this Paper asterisks are used,
when dilatancy is involved. The notation a*, b* was
introduced earlier (de Josselin de Jong, 1977a) and is
used here to be consistent with that paper.
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Fig. 4. Sliding planes with saw tooth protuberances: (a) relative displacement ; (b) force on teeth

b)

By considering the sliding surfaces to be
smooth the deformation is volume conserving.
Dilatancy is obtained by assuming saw-teeth pro-
tuberances on the sliding planes, having uplift
angles 0 with the general direction a of the poten-
tial sliding planes (see Fig. 4(a)). The angles « and
0 are assumed to be constants throughout a soil
region.

The forces between the sliding elements are
assumed to be transmitted exclusively by the faces
along which the sliding occurs (see Fig. 4b)). All
forces on the teeth are taken to be parallel and
inclined at an angle A to the normal to the saw
teeth.

Information on «, @ is obtained by considering
the equilibrium of forces and the exhaustion of
the shear resistance on the sliding planes. This is
developed in the section ‘force equilibrium’ and
Appendix 1.

In the section ‘kinematics’ the geometry of
the sliding motion is treated. These motions rep-
resent the plastic part of the deformations.
Expressions are developed for the velocity gra-
dients in terms of the shear strain rates a* and b*,
as required for establishing the plastic constitu-
tive equations.

The relations obtained in these sections allow
us to obtain expressions for the angles o, 8 in
terms of ¢ (the angle of internal friction) and v*
(the angle of dilatancy).

In this Paper only the homogeneous situation
is considered, pertaining to a soil body in which
the stresses and strains are constants over the
entire region. Such a situation occurs in the
simple shear test examined in this Paper. When
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Fig. 5. Resultant forces on potential sliding planes

the stresses and strains are not homogeneous the
expressions developed here are valid for an infini-
tesimally small region.

FORCE EQUILIBRIUM

A co-ordinate system (n, £) is taken as shown in
Fig. 5(b) in the direction of the principal stresses
o, and g}, positive for compression with o} > o.
The two conjugate potential sliding planes are
located symmetrically with respect to the n-axis;
both make an angle « with the &-axis.

Consider a portion of such a potential plane of
length m (Fig. 5(c)). The resultant force K on that
plane has vertical and horizontal components K, ,
K, created by the principal stresses on the hori-
zontal and vertical projections of m. Their magni-
tudes are

The angle ¢ of maximum stress obliquity in the
limit stress state is defined by!

K, =d\mcos a
Tl 00

K, = a’ym sin a

sin ¢ = (o) — 4)/(0} + o) @
Substituting K, , K, for ¢, o’ gives
iz (K, sin a — K= cos o) 3)

(K, sin a + K, cos a)

! For the case when cohesion is present, a term 2¢ cot ¢
has to be added to the denominator. The same results
are found in principle by assuming a cohesion ¢’ on the
saw teeth of magnitude

¢ = c[(1 —sin ¢ sin v*)/(1 + sin ¢ sin v¥)]'/2
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The force K makes an angle (x — § — 1) with »;
therefore

K,=K cos (x—0—4)
K=K sin(e—0-4)
and

sin ¢ = sin (f + A)/sin (22 — 0 — 4) (4)

Because of the mirror symmetry with respect to
the n-axis, the same force K acts at the same
angle A with respect to the normal on the saw
teeth surfaces of the conjugate planes (see Fig.
5(a)).

Equation (4) gives, for a fixed value of ¢, a set
of possible value combinations for « and (0 + A).

KINEMATICS

Let the regions represented in Figs 6(a) and
6(b) consist of many infinitesimally thin elements
(like the pages of a book) that are parallel, all at
an angle a. In Fig. 6(b) a constant shear strain
rate a* is assumed to occur, such that all elements
slide with respect to each other, causing a homo-
geneous deformation. All have the same kind of
protuberances making an angle @ with the poten-
tial sliding planes.

Considering only the plastic part of the defor-
mation, the elements remain rigid during sliding.
So the thin elements conserve their length and all
points of the potential slip-line through Q have
the same velocity ¥, relative to P. Thus ¥, makes
an angle (x — #) with the -axis, because of the
teeth uplift angle 0. The shear strain rate a* is
defined such that the magnitude of Fy is a*n,
where n is the perpendicular distance from P to
the slip-line.

Soil Mechanics and Transport in Porous Media
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(a)
Fig. 6. Velocities of sliding planes

Consider the line PQ at an arbitrary angle y
with the &-axis. This line makes an angle (x + y)
with the slip-line and so its length is n/sin (x + ).
The velocity Vg makes an angle (« + y — ) with
PQ. The effect of ¥, on PQ is that the line is
elongated with an extension rate &) and is
rotated with a tilting rate p(y) (positive counter-
clockwise) as given by the expressions

Ey) = + Vg cos (x + y — 6)/PQ

= +a*cos (x+y— 0)sin (@ + 7)
ply) = — Vg sin (2 + y — 0)/PQ

= —a*sin (x +y— 0) sin (a + y)

(5)

where a dot represents the time derivative d/dT.
A similar analysis applied to PR with R on the
conjugate slip-line in Fig. 6(a) gives

y) = + V¥, cos (m + a —y — O)/PR
= —b*cos(x—y—0)sin(y—a) ©)
py) = +Vgsin(n + 2 —y — 6)/PR

—b* sin (x —y — 0) sin (y — @)

Here b* is the shear strain rate in the conjugate
slip direction. This b* may be different from a*
according to the double sliding model. When
both shear strain rates a* and b* are active, the
total elongation rate &) and the total tilt rate
ply) are obtained by addition of the above expres-
sions.

The rates &y) and p(y) are functions of y. By
giving y the value zero, the above formulae give
the elongation and tilt rates for lines in the ¢&-
direction. Let V, ¥, be the velocities of material
points in the £, y-directions. Then the elongation
rate is 0V,/0¢ and the tilt rate is 9V, /3¢. These are
written as V¥, . and ¥, ; where a comma represents
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differentiation with respect to the subscript vari-
able following it. For y = 0 the addition gives

Ve = 80) = +(a* + b*) cos (x — ) sin «
V,.: = p(0) = —(a* — b*) sin (x — 6) sin

For y = 4n the extension and tilt rates of lines
in the n-direction are obtained. These are

Ve, = —p(37) = +(a* — b*) cos (x — 0) cos c:} ”

V,,= +&4n) = —(a* + b*) sin (x — 0) cos «
The derivatives V;, --+ etc. are the so-called
velocity gradients.

In addition to the mutual sliding in two conju-
gate directions, the elements can also execute a
rotation around P. This rotation is called the
structural rotation £ (positive counter-clockwise,
see Fig. 7). The indication ‘structural’ was pro-
posed to the Author by Drescher in order to dis-
tinguish Q from the well-known material rotation
@, which is defined by & = 4(V, . — ¥, ) and rep-
resents the rotation of the total material as
observed from the outside.

£ creates additional velocity gradients of the
form

l{!.f =0; K!-{ =4 VE-! = - Vl'-ll =0

Combining these results gives the strain rate com-
ponents, which are

Vie+ Vo =(a* + b*) sin 0
Vie—Vyp=(a* +b%sin 2z —60) 5 (9)
Vi, + V, ¢ = (a* — b*) cos (2x — )

and the rate of material rotation, which is

V.

me— Veg=—l(a*—b*cos 8 +2Q =20 (10)
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Equation (10) shows the difference between
material rotation ¢ and the structural rotation 2.
When only sliding occurs and the elements them-
selves do not rotate, so that 22 = 0, the total soil
body nevertheless appears to rotate, in the case
when a* is not equal to b*.

For example, when a* is larger than b*, the soil
gives the impression of rotating clockwise,
because @ is negative. Hence the material rota-
tion @ may consist of two parts. One component
is the effect of unequal shear strain rates, a* # b*;
the other component £ is due to rotation of the
structure, i.e. of the elements between the sliding
planes.

Dilatancy relation
The angle of dilatancy v* is defined by

sin v* = (Voo + Ve — Vo) (1)

where V. and V,, are the linear strain rates of
lines in the principal stress directions. Using
equations (9) we find that

sin v* = sin 0/sin (20 — @) (12)

This relation is independent of the shear strain
rates o* and b*. Equation (12) gives for a fixed
value of v* a set of possible combinations for the
values of « and 0.

Thermodynamic requirement of energy
dissipation

In the double sliding model it is assumed that
a* can differ from b*. This is due to the principle
in plasticity that, at failure, the strain rates are
not bounded in magnitude—they can have any
value. So also in the two conjugate directions
they can have unequal values.

The shear strain rates a* and b* are only
bounded by the requirement that the laws of fric-
tion are not violated. This would occur if the
sliding directions were opposed to the shear
stresses on the sliding planes. Considering Fig. 5
it is seen that a* and b*, as defined in Fig. 6,
should be positive in order that the directions of
the forces on the saw teeth correspond to the
sliding directions. So the requirement on the

shear strain rates is

a*=0

(13)
b*=0

and this is called the thermodynamic requirement
of energy dissipation.

Mathematically it is possible to show that
(a* + b*) cannot be negative. The stronger
requirements (13) are dictated by the above men-
tioned friction character of the system.

n

1
——
Vi

V- £-92
&l T
P“) —

Fig. 7. Structural rotation

PLASTIC CONSTITUTIVE EQUATIONS

The expressions (9) for the strain rates can
serve as constitutive equations for the plastic
stage of deformation. However, before they can
be used, the angles «, 0 have to be replaced by the
material properties ¢, v*. For this replacement,
equations (4) and (12) are available. Of these, (4)
contains the force inclination angle i, which can
be eliminated by using the rules of friction to
guarantee that the shear resistance is exhausted
on the surfaces of the teeth. This point is elabo-
rated in Appendix 1, leading to equations (76).
Using these in equations (9) results in the follow-
ing plastic constitutive equations

(Ve + V, )P = +(a* + b*) cos ¢ sin v*/F
(Vee— Von)” = +(a* + b*) cos ¢/F (14)
(Ve + V3. = —(a* — b*) sin ¢ cos v*/F

where F? =1—sin® ¢ sin® v* and the super-
script p denotes plastic.

Although not belonging to the plastic constitu-
tive equations proper, equation (10) for the rota-
tion can be added to complete the system, giving

(Vo.g = Ve) = —(a* — b*) cos v*/F 4+ 2Q = 2&
(15)

This is not a constitutive relation since the prin-
ciple of objectivity prohibits a relation containing
rotations to be constitutive. It is added here
because it allows determination of the structural
rotation at a later stage.

For solving a boundary value problem, equa-
tions (14) together with the limitations (13)on a*
and b* are sufficient. They form a complete
system of constitutive equations describing the
plastic behaviour.
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SECTION 2

ELASTIC PART OF THE ELASTO-PLASTIC
DSFR MODEL

In the elastic-plastic DSFR model the strain
rates that are imposed by the boundary condi-
tions are divided into an elastic part and a plastic
part. The plastic part consists of strain rates that
obey relations (13) and (14) when the material is
in the limit stress state. The remaining part is
taken account of by the elastic stress rates. When
the stresses are not at the limit state the plastic
part vanishes, ie. a* =0, b* =0, and the entire
strain rates are accounted for by an elastic
response to the stress rates. The elastic part is
developed as follows.

STRESS STATE AND LIMIT STRESS STATE

Under plane strain conditions in the (x, y)-
directions, the normal effective stress o, is a prin-
cipal stress and intermediate between the two
principal effective stresses in the (x, y)-plane. All
derivatives in the z-direction are zero.

The normal effective stresses o,, o}, are taken
to be positive for oompmisior:f In order to
abbreviate the notation, the variables s, t,  are
introduced, such that

g, =5—1cos 2y
Oy =0y, = —tsin 2 (16)
gy, =S5+ cos 2y

Here, s is the effective stress level, ¢ the radius of
the Mohr circle and y the angle between the
minor principal compression stress and the

! This sign convention is contrary to that generally
adopted in mechanics, but is used here to suit soil
mechanics readers.

Fig. 8. Stresses in elastic stage
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x-axis, positive counter-clockwise. The variable ¢
cannot be negative. These quantities are shown in
Fig. 8, where y is shown with the negative value,
occurring in the case of the simple shear test con-
sidered in this Paper.

The Coulomb-Mohr limit condition is adopted,
with limit lines at an angle ¢ to the ¢’-axis. Cohe-
sion is assumed to be zero for simplicity; the limit
lines pass through the origin of the ¢, 7 diagram.
In terms of ¢ the limit condition is expressed as
follows.

(a) The material behaves elastically
when 0 < t < s sin ¢, or
t=ssin¢and i <§sin ¢

then a* =h*=0,

(17)

(b) The material behaves elasto-plastically

} (18)

when t = s sin ¢ and f = § sin ¢
then a* =0and b* = 0.

Stress rates

Considering s, t and ¥ as time dependent vari-
ables, the expressions (16) become, when differen-
tiated with respect to time

& =5§—1fcos 2 +tsin 20 (2¢)
G,y = G,, = —I sin 2 — t cos 2 (24))
&, =§+ £ cos 2y — t sin 2y (2¢)
where a dot represents the time derivative d/dT.
When rotations of the material are involved,
the objective co-rotational (Jaumann) stress rates
&, ... ctc. are required. These are related to the

time derivatives &', ... etc. by replacing 2 by
(2¢ — 2@) where & is the material rotation.

(19)

£
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They are given by
&, =& —fcos 2y + tsin 2y (2 — 2d)
&, =&, = —isin 2y —tcos 20 (2 — 2) » (20)

¥, =5 +1icos 2y — t sin 2y (2 — 2d)

Elasticity

Although perfect elasticity is not a good
approximation for soils, it is adopted here for
convenience because the formulation of elastic
stress-strain relations is well known and undis-
puted. It reduces the validity of the model con-
sidered here to situations where the elastic strain
rates are small compared with the plastic strain
rates.

In plane strain the constitutive equations are

=V, =1 — V)&, — v&,]2G
—(P;’ + p;l‘}e == g;ny e gy.w'rG (21)
—V,, = [—v¥, + (1 — 8,126

where the superscript e denotes elastic. The terms
V.. V,,” are the extension rates &.° &,°;
(Vey + V,.,)° is the shear strain rate " The
shear modulus G is related to the modulus of
elasticity E and Poisson’s ratio v in the usual way
by G = E/2(1 + v). The minus signs arise from the
soil mechanics sign convention.

From the velocity gradients V, . ... etc. the
strain rates in the principal stress directions ¢, n
(which are rotated by  with respect to x, y) are
obtained from the following relations

Vg + Vo = +Vax + K
(Ve = Vo = +(Vex — V) cos 24
+(Ve, + V) sin 29 > (22)
Ve + Voo = (Voo = V)" sin 29
+(Vey + V2" cos 24
For the material rotation the transformation is

Mg = Ve = (Vx = Vo)) =20 (23

Elastic constitutive equations
Combining equations (20), (21), (22) gives the
elastic constitutive equations

(Vee+ V) = —5(1 — 2v)/G
(Ve — Vo) = +1/G (24)
(Voy + Vo = +t(2) — 20)/G

In the limit relations (18) apply and the elastic
constitutive equations become

(Veg + Vo) = —3(1 — 0)/G
(Veg— V)" = +5sin ¢/G (25)
(Vey + V, o = +5 sin o2 — 2Q)/G

In the last expression @ from equations (20) is
replaced by the structural rotation £ defined by
equation (15). The reason is that the rotation
which has to be introduced in the co-rotational
stress rate formulation must reflect the rotation of
the material that deforms elastically. In the
elasto-plastic version of the DSFR model it is the
elements between the sliding planes that deform
clastically. Thus, only their rotation, i.e. the struc-
tural rotation @, has to enter in the corotational
formulation and not the material rotation @,
which contains an apparent rotational part, when
a* is unequal to b*.

ELASTO-PLASTIC DSFR MODEL

The elasto-plastic concept is that in the limit
stress state, as defined by relations (18), the total
strain rates, as determined from boundary condi-
tions, are divided into elastic and plastic parts
such that the plastic constitutive equations (13),
(14), (15) are satisfied in the first place. The
remaining part of the strain rates is elastic and
obeys equations (25). The total strain rates are the
sum of elastic and plastic parts as follows

Vee+ Vo= +(a* + b*) cos ¢ sin v¥/F )
—3(1 — 2v)/G
Vie— Vo= +(a* + b*) cos ¢/F
+3 sin ¢/G
Vey + Vi.e = —(a* — b*) sin ¢ cos v*/F
+5 sin ¢(2) — 2Q)/G
Vye = Voy = —(a* — b*) cos v*/F + 2Q
=20 <

Equations (26) apply for a point in (x, y) where
the stress state (in the limit) is known. This means
that s and 2y are given quantities. The question is
then to establish how the total strain rates will
change the stress state in the course of time, ie.
how large § and 2 are, when Ve ... etc. are
given.

The first two relations of (26) give § explicitly
and 2Q can be eliminated from the last two. So
there remain two equations for the three
unknowns 2y, a*, b*. Additional information is
given by the requirements (13) which state that
the shear strain rates a* and b* cannot become

L (26)
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Fig. 9. Stress space with limit cone
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negative. So there are two equations and two
inequalities for determining three unknowns.

This is an unusual system. Vermeer (1980) pro-
posed to solve for the unknowns by requiring the
rate of elastic energy dissipation to be a
minimum. The corresponding procedure is exam-
ined mathematically in Appendix 2. Since that
analysis is rather complex, it is perhaps helpful to
present the procedure visually by means of
vectors in the stress and strain spaces in the fol-
lowing sections.

STRESS SPACE

The stress space is defined by three perpendicu-
lar axes, which have as co-ordinates: 3(c}, + 0},)
vertical; (o}, — o’,) and o, = g,, horizontal (see
Fig. 9). A point P in this space represents a stress
state. It is located in a horizontal plane at a
height s, at the end of a radius vector of length ¢
rotated through an angle 2. This corresponds to
equations (16). In this stress space the variables s,
t, 24 are in fact cylindrical co-ordinates.

In time, the stress point P moves through the
stress space and its path is called the stress path.
The material reaches the limit stress state when
the stress point reaches the limit cone. This cone
cuts the horizontal (t, 2y) co-ordinate plane in a
circle with radius t,,, = s sin ¢. Therefore, the
semi-vertex angle of the limit cone has a magni-
tude of arctan (sin ¢). When cohesion is zero, the
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vertex V of the cone lies in the horizontal plane
for ¥(a’, + a},) = 0(see Fig. 9).

STRAIN RATE SPACE

In a similar manner it is possible to define a
strain rate space with orthogonal co-ordinates:
(Vex + V) vertical, (V, . — V, ) and (V, , + V)
horizontal. Vectors in this space represent strain
rates. Fig. 10 shows such an example.

The origin of the strain rate space is usually
placed at the stress point P of the stress space,
wherever P may be located temporarily. Corre-
sponding stress and strain rate axes are oriented
parallel but opposite in direction because of the
sign convention adopted for the stresses.

Figure 10 demonstrates the combination of
stress and strain rate spaces. Point V is the origin
of the stress space and the vertex of the limit
cone. Point P is the current stress point. Since it
lies on the limit cone, this figure represents a limit
stress state in which the strain rate consists of a
combination of elastic and plastic parts. This
strain rate is plotted as the vector PQ in the
strain rate space with P as origin. It is shown how
this PQ is decomposed into its plastic and elastic
parts, respectively PR and RQ. It is assumed here
that PQ is a vector of known magnitude and
direction.

In the horizontal plane through P the axes
(Vee — Vo) (Vey + ¥, o) are shown. According to
equations (22) these are rotated through 2y with
respect 10 (Vey — V), (Viy+ V). They are
therefore respectively collinear with, and perpen-
dicular to, the t co-ordinate of the stress space.

In Fig. 10 the t co-ordinate is divided by the
shear modulus G in order that the stress rates
correspond to the elastic strain rates (see equa-
tions (24)). In the vertical direction the s co-
ordinate has to be adjusted by a factor (1 — 2v)/G.
By this adaptation of the stress space, the elastic
part of the strain rate vector coincides with the
tangent to the stress path.

The adapted limit stress cone is more obtuse;
its vertex angle is equal to arctan (sin ¢/(1 — 2v)).
The stress path through P cannot trespass outside
the limit cone. When the material deforms plasti-
cally it will remain in its tangent plane. So the
elastic part of the strain rate is a vector parallel to
the plane, that is tangential to the adapted cone
inP.

A vector in this tangent plane consists of two
components: one is in the direction of the line
connecting P to the cone vertex; the other is
tangential to the circular cross-section of the
cone. The first may be called the §-component,
because only s changes when the stress path has
that direction; the second is the dt—oomponem.
because y changes along it.
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to the left of R,. Decomposing PR vectorially in
directions at angle ¢ would give a component
R,R in the negative b-direction producing a
negative value for b. This is not allowed by the
thermodynamic requirement of energy dissipation
(13). Instead PR is the vectorial addition of the
vectors PR, and R,R, where R,R is a
J-component.

Before showing this it is necessary to return to
Fig. 10. A case (ii) is shown, where PQ represents
the known total strain rate. It is composed of a
plastic part PR in the horizontal plane and an
elastic part RQ in the plane through Q parallel to
the tangent plane through P. The point R lies on
the intersection line of these two planes. The
requirement of minimal elastic work is satisfied
when QR is the smallest distance between Q and
the intersection line. So the construction of R is
to project Q perpendicularly on to that line.

In Fig. 10 the projection R of Q lies between R,
and R,. So a case (ii) is involved and PR can be
decomposed into two positive shear strain rates a
and b. In that case the elastic stress path of P,
being parallel to RQ, consists only of an §-
component. Pointing downwards it means that s
decreases in the course of time.

Dilatant or contractive behaviour

In Fig. 12 the material is contractive, i.e. with a
negative angle of dilatancy v*. According to equa-
tions (14) the plastic shear strain rates a*, b*
produce vectors that are located in the plane
R,*PR,* at an angle arctan (sin v*) with the hori-
zontal plane. This plane may be called the plane
of the a* b* shearings. Since v* is negative

<Plane through Q) parallel
to the tangent plane in

Fig. 12. Strain rate space for dilatant double sliding (vector PQ of length f is strain rate in undrained simple shear test)

the plane tilts upwards, ie. in the negative
(Vs,e + V,,)-direction.

The shear strain rate a* produces a vector
along PR,* and b* along PR,*, but unfortunately
these vectors do not have the lengths of a* and
b*. It is the projections PR, and PR, of these
lines, in the horizontal plane, that have lengths a*
and b*, respectively. This follows from the last
two lines of equations (14) because F defined
there satisfies F? = cos® ¢ + sin? ¢ cos? v*. The
apex angle of triangle R, PR, has a magnitude of
2 arctan (tan ¢ cos v*).

In Fig. 12 the strain rate, imposed on the
material in the undrained simple shear test, is
shown. It is, as demonstrated in the section
below, the vector PQ of length f in the negative
(V;., + V, )-direction. In order to decompose PQ
into plastic and elastic parts, the plane is drawn
through Q, parallel to the tangent plane in P, and
the intersection line R,*R *R* of this plane with
the tilted plane for a*, b* shearings is constructed.
To determine a*, b* it is then necessary to project
R,* and R,* on the horizontal plane. This leads
to complicated mathematical expressions, since
planes at different angles are involved in this pro-
cedure. The formulae are somewhat simplified in
the sections below and Appendix 2 by calling M*,
N* the co-ordinates of point R in the horizontal
plane, such that M* = PT and N* = TR.

In Fig. 12 a situation is shown where the point
R* lies outside the allowable range R,*R,* and
its projection R outside the range R R,. This
situation resembles Fig. 11(b) and is accordingly
called a case ii).

Minimal elastic work is produced when the
elastic strain rate vector is the shortest distance
from Q to the allowable range R,*R;*. In this
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case the vector QR,* is the shortest distance and
s0 R,*Q is the elastic part of the strain rate. The
plastic part is the vector PR,* and that means
that only the shear strain mode a* is active and
b* = 0. How this decomposition may be derived
mathematically is shown in Appendix 2.

The elastic vector R,*Q can be decomposed
into a y-component R,*R* and an §-component
R*Q. The y-component is in the negative (V;,
+ ¥, ;)-direction, which according to the last line
of equations (25) produces a negative (2§ — 20).
The $-component is downward, which means a
decrease of s in the course of time. The vector
R,*Q is parallel to the tangent of the stress path
in P. That path is consequently a downward
turning helical line on the cone surface.

SECTION 3

EXAMPLE OF UNDRAINED SIMPLE SHEAR
TEST

The undrained simple shear test is used here as
an example to show how the elasto-plastic DSFR
model predicts stress paths. The deformations in
a simple shear test can be considered to be homo-
geneously distributed over the sample, when the
deformations are not too large. This leads to
simple equations for the imposed strain rates and
closed analytic solutions for the stress paths.

Figure 13 shows a typical result of a stress path
plotted from such a solution. The heavy line is
the path of the stress point, representing the effec-
tive stresses a,,, o, on horizontal planes, as
traced in the Mohr diagram. Initially the prin-
cipal stresses are vertical and horizontal, equal
respectively to g, and g,. These form the initial
conditions. The stress point is in Pg.

The dotted initial stress circle is smaller than
the limit circle. So the test starts with an elastic
stage. In this prefailure stage the Mohr circles
remain concentric, but expand, and the stress
point moves vertically upwards.

The end of the elastic and beginning of the

plastic stage is at P, when the corresponding
stress circle touches the limit lines. After P, the
sample behaves plastically; all stress circles
remain tangential to the limit lines.

During the plastic stage the total strain rates
consist of a plastic part and an elastic part. The
magnitude of the plastic shear strain rates a* and
b* is determined in such a way that the remaining
elastic strain rates dissipate a minimum amount
of energy. Applying the procedure developed in
Appendix 2 leads us to identify three cases, called
respectively case (ii), case (iii) and case (iv). The
location of P, on the limit stress circle determines
which of those cases is occurring. The relevant
regions are indicated in Fig. 13.

In all three cases that part of the total strain
rates which produces volume changes, is taken
account of by an elastic reduction of the effective
stress level. The model is assumed to be contrac-
tive (negative dilatant). Since the test is
undrained, the volume remains constant and the
porewater pressure increases to prevent the
sample from contracting. Accordingly, the effec-
tive stress level reduces in the course of time,
causing the stress path to turn left.

Case (ii) is obtained when P, lies on the middle
arc of aperture 2¢), where ¢ is an auxiliary angle
characteristic for the simple shear test, defined by
equation (40). In case (ii) both a* and b* will
develop. The non-coaxiality occurring in this case
is uniquely determined by the initial stresses gq,,
gy. The stress paths during the plastic stage are
straight lines (see Fig. 17).

Case (iii) is involved when P, lies on the right-
hand arc of aperture (3x — ¢). Then only a*-type
sliding occurs and b* = 0. The sliding planes are
vertical. This leads to a toppling bookrow mecha-
nism. The solution for s as a function of 2 leads
to curved stress paths from which one example is
shown in Fig. 13. More curves of this family are
given in Fig. 18. In case (iii) g, is larger than g,
an initial situation which may be called active.
The apparent angle of internal friction is smaller
than ¢.

:ﬂsg 1\1'*_ case 11 _*_c_gse m ;
1 Path for
| ByyrByx
&’

— e

- :‘Fv

Fig. 13. Example of stress path in undrained simple shear test
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o 11111

Fig. 14. Geometry of undrained simple shear test

Case (iv) arises when P, lies on the left-hand
arc of aperture (n — ¢). Then a* =0 and only
b*-type sliding occurs, with horizontal sliding
planes. The apparent angle of internal friction is
almost equal to ¢. In this case g, < g, initially, a
situation that may be termed passive.

IMPOSED STRAIN RATES IN UNDRAINED
SIMPLE SHEAR TEST

When the sample is completely saturated the
pore water prevents volume changes. In the
simple shear apparatus a plane strain condition
in the z-direction is maintained. Then the sample
cross-section in the (x, y)-plane conserves its area,
while deforming from a rectangle into a parallelo-
gram (see Fig. 14),

The deformation is assumed to be homoge-
neously distributed over the sample. Then the
upper plane remains horizontal and keeps its
height, h. Let the velocity of the upper plane be #
towards the left. The velocity components of
points in the sample are then given by

Vi,=—fy; V,=0 withf>0 (28)

In this analysis f is taken to be positive and
furthermore it is independent of x and y because
of the assumed homogeneity of the deformation.
The minus sign allows us to compare the com-
puted stress paths in the Mohr diagram with the
test results in Figs 1 and 20 (taken from Wroth et
al) and this is an advantage. A disadvantage is
that negative values of 2y occur in the analysis
below.

The terms that represent the velocity gradients
V. x = 0V, /0x ... etc. are obtained by partial dif-
ferentiation of V, and ¥, with respect to x and y.
It follows that

Vex=Vu=V,,=0; V,,=-§ ()

XX

The major principal direction of the strain rates
accordingly makes an angle @ with the x-axis,
where

¥, ¥,
tan 20 = 22T _ o,
s WV

ie. 0=—4n (30)

The combinations (22) and (23) of the strain
rates in the principal stress directions (£, #) are
given by

Vet V=0

Vig— Voy=—Bsin2y

Vet Vo= —Pcos2y

¢ & Vi_-! = ﬁ =2

L

(31)

Comparing the above results with the co-
ordinates in Fig. 12, it can be seen that the strain
rate vector imposed on the material in the
undrained simple shear test is the vector PQ of
length £.

Initial conditions

At time T = T; the test starts. At that moment
the principal effective stresses are vertical and
horizontal. They are positive and called respec-
tively g, and g, (see Fig. 14). So the initial stress
state is given by

00 =qy; 0,00=4q,; 0,=0,0=0 (32

ELASTIC STAGE
In the beginning the material is elastic and the
velocity gradients from equations (29) are
Ve = K=V, =0 V,  =—§ (33
Then equations (21) give
&“=§;’-o; 3”-3,,-=BG
In order to simp:if§’ the presentation, the co-
rotational stress rates 4, ... etc. are replaced here
by the time derivatives &, ... etc. The more com-
plicated, co-rotational solution is described else-
where. The difference is in the term (2 — 2&) and
2y in equations (19) and (20). Introducing the
strain rates (equations (31)) in the last line of
equations (24) gives during the elastic stage:
(2§ — 2d)) = —P(G/t) cos 2 with 2 = f. Since
(from relations (17)) t < s sin ¢ this indicates that
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2} exceeds 2 by a factor of the order of (G/s).
Disregarding 2d compared with 2y is reasonable
when G is large compared with the effective stress
level s.

The simplified equations are

G =0y =0; 6,,=0,=fG

These can be integrated directly and with the
initial conditions (equation (32)) give

a,, = constant = g,,(0) = g,

o), = constant = g, (0) = q,
pig r )‘J{ (34)
a.wzayxz‘l. .86 dT:sG(T"_ TEI)

To

It follows from the constancy of cr;, that the stress
path in Fig. 13 is a vertical straight line. In the
co-rotational solution it is slightly curved to the
right. From equations (34) and (16) it follows that

s=s50=4(g, + qn)
rcos 29 = $(q, — qu) (35)
tsin 2 = —fG(T — Tp)

Figures 15(a) and 15(b) show the behaviour of
the stresses in the elastic stage. In Fig. 15(a) an
active initial stress state is shown, where g, > g, .
The principal stresses turn clockwise, ie. ¥ < 0.
The angle ¥ is initially zero and enters the region
between 0 and — 4.

Figure 15(b) shows a passive initial stress state,
where g, <g,. The principal stresses turn
counter-clockwise, i.e. § > 0. The angle y starts
from —4n and enters the region between —in
and —4n. In the Mohr diagram the pole for
planes is indicated, and the heavy line is the stress
path for o}, 0,

A Active
Il
K -

———— 4y
Pt

la)

Considering the second of equations (35), the
values of i mentioned above are accounted for
by the expression

2 = —4n + arcsin [3(q, — gu)/]  (36)

where ¢ is limited by relations (17) to the values
0<t<ssin ¢,

End of elastic and beginning of plastic stage

At time T, the elastic stage ends. The point for
Gy Oy in Fig. 13 has reached P,, the stress point
for which the accompanying stress circle touches
the limit line. Then from relations (18) t; equals
s, sin ¢ and the stress state characterized by s,,
¥, is from equations (35)

8= 50 =34, + @)

cos 24, = ¥g, — qu)/s, sin ¢ (37
sin 2y, = _SG(Tl — Ty)/s, sin @)

Equation (36) then becomes

: Gy — Gn
2'&1 = —iﬂ + arcsin (m) {33)

SECTION 4

PLASTIC STAGE

After T, the material behaves elasto-plastically
and the equations developed in Appendix 2 are
then applicable. These are expressed in terms of
the quantities M* and N* defined by equations
(79) and (80). Using equation (31) with =y, at

q, Passive

“9h

(b}

Fig. 15. Stresses in elastic stage: (a) starting from active initial stress state, g, > g,; (b) starting

from passive initial stress state, ¢, < ¢,
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R
Fig. 16. Detail of Fig. 12 showing character of auxiliary angle ¢

time T; these quantities are in the beginning of
the plastic stage

(1-2v)
— 2v + sin ¢ sin v¥) (39)

M* = — B sin 2y, a

N* = +f cos 2y,

At this point it is convenient to introduce an
auxiliary angle ¢ defined by

tan § = tan ¢ cos v*(1 — 2v)

(1 = 2v + sin ¢ sin v¥) (40)

The auxiliary angle ¢ has no special meaning, but
is used here because it simplifies the mathematical
results. In Fig. 16, which illustrates a part of Fig.
12, it is the angle between PT and the lines PQ,
and PQ,. Further, it reduces to ¢ in the non-
dilatant case when v* = 0.

Using this angle ¢ the variables M* and N*
from equations (39) are

M* = —f sin 2y, tan @/tan ¢ cos v* }
(41)
N* = +f cos 2y,

and the combinations (M™* tan ¢ cos v* + N¥)
which are of particular significance in Appendix 2
are

M* tan ¢ cos v* + N* =
+ cos (2, + J)/cos §

M?* tan ¢ cos v* — N* =
—B cos (2, — )/cos ¢)

As sin 2y, is negative (equations (37)) M*
(equations (39)) is always positive here. This
means (see Appendix 2) that case (i) does not
occur. After T; the material behaves differently in

(42)

the three remaining cases (ii), (iii) and (iv) distin-
guished in Appendix 2. Only 3, the rate of the
effective stress level s, is the same for all three.

Effective stress level

According to equation (77) of Appendix 2, it is
found from equations (31) and (40) that for the
undrained simple shear test

s sin 2y tan ¢ tan v*
b —pG (I —2v) tan ¢ G

Since sin 2y is negative at time T, > T, (equations
37)), § has the sign of v*, the angle of dilatancy.
When the material is contractive, v* is negative
and so the effective stress level reduces in the
course of time.

The relevant parameters a*, b*, 2y differ for
the three different cases.

CASE (ii)
When gq,, g, satisfy the inequalities

—sin ¢ < (¢, — q/g, + ) sin g <sin & (44)
the value of 2y, is (according to equation (38))
limited by

“dn-<W, < —4n+ (5)

and this implies that —1 <sin 2y, < —cos ¢
and —sin ¢ < cos 2y, < sin .

Considering equations (41) it is found that M*,
N* satisfy the inequalities

M* tan ¢ cos v* = fi sin ¢ 46)
—fsing < N*<fsing
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So the condition of equation (85) is satisfied and a
case (ii) occurs.

Values of a*, b*, 2 in case (ii)

When case (ii) occurs the plastic behaviour is
described by equation (89). Using equations (42)
the strain rates are

a* = +fcos 2y, + &)

x F/2 cos ¢ sin ¢ cos v*
b* = —f cos (29, — §)

x F/2 cos ¢ sin ¢ cos v*

Considering relations (45) it is verified that both
a*, b* are non-negative and that therefore the
thermodynamic requirements (13) are satisfied.

The last line of equations (89) requires 2y to be
equal to 2Q and this latter can be determined by
the use of the last lines of equations (26), (31) and
(47), giving

20 = 2§ = f(1 +cos 2, sin §)  (48)

This shows that  is of the order of f. Equation
(43) shows that § is of the order fG. Since § is
negative and s reduces in time, its total change
will be smaller than s. So fG(T — T;) < s and the
total change of 2y will be of the order s/G which
is assumed to be small.

In order to simplify the analysis, 2¢y will be
taken to be zero. This means that 2y remains
constant and equal to 2, in the plastic stage. As
a consequence the stress paths are straight lines
directed towards the origin in the Mohr diagram.
A family of these case (ii) curves is shown in Fig.
17.

(@7

Non-coaxiality in case (ii)

From equation (30) the angle f between the
x-axis and the major principal direction of the
strain rate tensor equals — 4. The angle between

the x-axis and the minor principal compression
stress is . The angle of non-coaxiality (which
was called i in previous work) is therefore given
by i = @ — ¥ = —}m — y. Using equation (38) it
is deduced that

sin 2i = —cos 2if = —cos 2y,

= —(gq — @)/g. + @) sin ¢ (49)

This shows that the non-coaxiality (in case (ii)
plastic behaviour) is uniquely determined by the
initial principal stresses q,, qy.

Coaxiality (i.e. i = 0) is to be expected only in
the special case when g, = gq,, i.e. that the initial
principal stresses are equal (indicated in Fig. 17
by an arrow). An expression for i in terms of the
shear strain rates a*, b* is found by the use of
equations (78), (81) and (41). Since (2 — 20Q) is
zero in case (ii), it is found that

b* — a* —N*
b* +a* M* tan ¢ cos v*
As 2i = —4n — 2y, it follows that
tan 2i = tan ¢(b* — a*)/(a* + b*)

This relation reduces for the case of volume con-
serving non-dilatancy to the well-known

tan 2i = tan ¢(b — a)/(a + b)

= cot 2}, cot ¢

Apparent angle of internal friction in case (ii)
From Fig. 17 the stress paths for o}, 0,, are
straight lines towards the origin. These suggest
apparent angles of internal friction ¢, defined by
tan:ﬁ,_&: t sin 2y
o,, S+tcosy

= — sin ¢ sin 24/1 + sin ¢ cos 2¢

In this case 2y is constant and equal to 2y,.
Furthermore, 2y, can (depending on g,, g;) have
any value between (—imn —¢) and (—in + ¢)

Fig. 17. Family of case (ii) stress paths (arrow indicates coaxiality)
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(see relations (45)). Therefore tan ¢; can have
values between

tan ¢, = sin ¢ cos /(1 + sin ¢ sin @)
and (50)
tan ¢, = sin ¢ cos /(1 — sin ¢ sin ¢)

For v* = 0, ¢ = ¢, and these values for ¢, corre-
spond to the prediction mentioned earlier (de
Josselin de Jong, 1972).

By using equation (38) it is possible to express
the apparent angle of internal friction in terms of
q,, 4, only, showing the important influence of
the initial horizontal stress on the test results.

CASE (iii), ACTIVE CASE
When q,, gy satisfy the inequalities
sin ¢ < (¢, — Vg, + g sing <1 (51)
the value of 2y, is, according to equation (38),
limited by
(—in+d <2y, <0 (52)
and this implies that —cos ¢ <sin 2y, <0 and
sin ¢ < cos 2, < 1.
Considering equations (41) it is found that M*,
N* then satisfy the inequalities
M* tan ¢ cos v* < ff sin ¢
N* > fsin ¢

Therefore the condition (86) is satisfied and case
(iii) occurs.

Values of a*, b*, 2\ in case (iii)

When case (iii) occurs, the plastic behaviour is
described by equations (90). With M*, N* given
by equations (41) the strain rates are

a* = —f sin 2y tan ¢F/sin ¢ cos v*
(33)
b* =0

This is single sliding behaviour.

Using these values of a*, b* in the last of equa-
tions (26), with 2& = f from (31), gives

20 = (1 — sin 2y tan @/sin ¢) >0  (54)

The last of equations (90) with M*, N* from
equations (41) gives

2 = —B(G/s) cos (2 — P)/sin ¢ cos ¢ (55)

In this expression 20 is disregarded compared
with the other terms, because 20 is of the order
(5/G) smaller.

Solution for the stress paths in case (iii)
In order to establish 2y as a function of time,
equation (55) has to be integrated. This is,

however, not possible directly, because this
expression contains also the variable s. Elimi-
nation of f with equation (43) produces the fol-
lowing differential equation

sin2y  dQy) (1—2v)cotv* ds

=0 AT~ ckdmm e 29T Y

Since the variables s and 2y are separated, each
side can be integrated directly, giving

—cos ¢ log [cos (2 — @)] + 2¢ sin ¢

=(1-=2v log s + const. (57)

cot v*
cos ¢ sin ¢

Determining the integration constant by using
the boundary conditions at T; gives the solution

log I:mco—rs((zit __:;}:I +20¢ — ) tan ¢

cot v* 25
=1-2) cos ¢ sin ¢ cos ¢ log [q, + q..:l (58)

where , given by equation (38) is a function of
q,, gy alone.

The stress paths for @, o, of Fig. 18 are
plotted from this solution, using equation (16)
with t = s sin ¢. The material constants are taken
to be ¢ =23°; v* = —3°; (1 — 2v) = 0-1. These
values give ¢ = 28-05° (equation (40)). Curves
have been drawn for (g,/q,) = 1-45; 1-7; 1-96;
2-28, which correspond to 2y, = —61:95°;
—48-5°; —33-5°; 0° respectively.

Apparent angle of internal friction

As shown by equation (55) 2y vanishes for
2y = —4n+ $. So the curves of Fig. 18
approach this value asymptotically and the curve
for 2y, = —4n + ¢, which is a straight line, is
their asymptote. The apparent angle ¢, then has
the value

tan ¢ = —sin ¢ sin 24, /(1 + sin ¢ cos 24,)
=sin ¢ cos ¢/(1 +sin ¢ sin §)  (59)

This is one of the limits for ¢, in case (ii) (see
equation 50)).

Toppling bookrow mech,

The plastic behaviour in all case (iii) situations
is the toppling bookrow mechanism. This can be
seen as follows. According to relation (51) the
initial stress states in case (iii) are active, g, > g,
and so Fig. 15(a) applies to them. Since b* =0,
only a* sliding occurs (see equations (53)). Com-
parison with Fig 3(a) shows that then only verti-
cal sliding planes develop. This corresponds to
Fig. 2.
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i case i
s

Active

= “ gy
qh

Fig. 18. Family of case (jii) stress paths

. v, A
ease —%%-—
H [+ 4

Passive

Fig. 19. Family of case (iv) stress paths

03} Measured stress path.
Figures give values of
shear strain (%)

02

01f-

]
£
e
>
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h;. 0
=01
-02} \:_ e Hypothetical
‘failure’ circles

Fig. 20. Stress paths from simple shear tests on Boston blue clay (from Ladd & Edgers, 1972)
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Furthermore, the structural rotation £ given
by equation (54) is positive, because sin 2 is ini-
tially negative according to relation (52) and does
not change sign afterwards. This means a
counter-clockwise rotation of the sliding elements
as indicated in Fig. 2.

It might be noted that the structural rotation Q2
is opposed to the principal stress rotation . In
equation (55) cos (2 — ¢) is positive for 2y,
limited by equation (52) causing 2 to be negative
to start with. The principal stresses start to rotate
clockwise and continue to do so thereafter. This
falsifies the postulate that structural rotation and
principal stress rotation are to be identified.

CASE (iv), PASSIVE CASE
When g,, g, satisfy the inequalities

—1 < (g, — g)/(g, + a») sin ¢ < —sin ¢ (60)

a case (iv) situation occurs. An analysis similar to
that for case (iii) gives the results

a*=0
b* = —f sin 2y tan $F/sin ¢ cos v* (61)
2 = —B(G/s) cos (2¢ + P)/sin ¢ cos &

The solution for s as a function of ¢, giving the
stress paths, is

cos (29, + é) .
og [m:l + 2, —Y) tan ¢

2s
lo 62
¥ [q- + ‘Ih] 2

Now 2y vanishes for 2 = —in — &, so the
stress paths approach the line asymptotically at
an angle ¢, defined by

tan ¢, = sin ¢ cos ¢/{1 — sin ¢ sin §) (63)

Since ¢ differs only slightly from ¢, the apparent
angle of internal friction ¢, is almost equal to ¢
(see Fig. 19).

cot v*
cos ¢ sin ¢ cos ¢

=(1-=2)

Horizontal sliding planes

According to relation (60) case (iv) occurs when
the initial stress state is passive, ie. ¢, <g,. So
Fig 15(b) applies to them. Since a* = 0, only b*-
sliding occurs. Comparison with Fig. 3(b) shows
that then horizontal sliding planes develop.

This is the mechanism of sliding that is gener-
ally believed to be the only possible failure mode
to arise in simple shear tests.

CONCLUSION

Figures 17, 18 and 19 show the families of
stress paths in undrained simple shear tests for
hypothetical samples that obey the laws of the

contractive elasto-plastic DSFR model. The
material properties of the samples are the same
and they have the same angle of internal friction
¢. Their behaviour differs in the tests and this is
due only to the differences in their initial stresses,
i.e. the vertical and horizontal normal stresses q,
and q,.

Consider for simplicity the stress paths marked
by the arrows in Figs 17, 18 and 19. The marked
curve in Fig. 17 starts with g, = g,. In Fig. 18
where g, > g,,, the extreme active case is marked.
In Fig. 19 the extreme passive case with g, < g,, is
marked. There is a remarkable resemblance
between these three curves and the test results
from Ladd & Edgers (1972) reproduced in Fig.
20. In this figure the initial stresses are not indi-
cated, but the overconsolidation ratios of 1, 2, 4
suggest that the three curves correspond to g,
values that are, respectively, smaller than, equal
to and larger than g, .

The theoretical stress paths start with vertical
straight lines and have sharp bends at the tran-
sition from elastic to plastic. This is due to the
oversimplification of perfect elasticity in the pre-
failure stage. Introducing dilatancy and a gradual
decrease of the shear modulus G may soften the
sharp bends. It was, however, not the objective of
this study to try to match test results by matching
material properties.

The purpose of this study was only to show
that the original, unaltered DSFR model, if
extended to its elasto-plastic version, predicts the
unique failure behaviour observed and that the
chosen failure mode depends on the initial stress
state. Because of the preponderant influence of
the ratio q,/q,, it seems evident that in the execu-
tion of simple shear tests the horizontal stresses
should no longer be disregarded.

APPENDIX 1: DETERMINATION OF g, f, i FOR
GIVEN VALUES OF ¢, v*

The three parameters a, 0, 4 describe the geometry of
the sliding mechanism and the forces acting upon it.
The equations developed in section 1, relating these
parameters to the properties ¢, v* of the particle
assembly as a whole, are equations (4) and (12) which
repeated here are

sin ¢ = sin (# + A)/sin (22 — 0 — J) (64)
sin v* = sin f#/sin (22 — 6) (65)

These are only two equations for solving for the three
unknown parameters o, 8, A as functions of ¢, v*, which
are material properties observable from the outside. The
objective of the analysis below is to show how «, 6, 4
can be determined by use of the additional information
that the sliding mechanism is bound to obey the rules of
friction. In terms of the interparticle friction angle ¢,
these rules are
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(a) sliding will not occur when 4 is smaller than ¢,
(b) sliding can occur when 4 equals ¢,
(c) it is impossible for  to exceed ¢,.

From all sliding geometries having value com-
binations of «, 6 that produce v* according to (65), only
a particular set of «, f! combinations can be expected to
be active. That particular set is the set that introduced
into equation (64) gives the observed value ¢ for a value
of 4 which equals ¢,. However, since 4 cannot exceed
¢, this set of a, ¢ combinations is not allowed to
contain values of A exceeding ¢,. This means that 4
considered as a function of &, # must have an extreme
value A,,,, which is a maximum, such that 1., = ¢,..

Elimination of @ from equations (64) and (65) gives

tan A = (sin ¢ — sin v*) sin 2a/m (66)
with
m = (1 + sin ¢ sin v*) + (sin ¢ + sin v*) cos 2a

This gives 1 as a function of «. In establishing 1, by
differentiation of equation (66) with respect to a, only a
is a variable; the values of ¢ and v* are fixed quantities.
Taking the derivative then gives

(di/da)/cos?® A = 2(sin ¢ — sin v*)n/m? (67)
with
n=(sin ¢ + sin v*) + (1 + sin ¢ sin v*) cos 2a  (68)
A maximum occurs, when di/dx =0 or n= 0. This
gives
sin ¢ + sin v*

008 20 = — ———e—————r
1 + sin ¢ sin v*

(69)
Replacement of sin ¢, sin v* by use of equations (64)
and (65) gives

cos 2o cos 4 —cos (22 — 20— 4)
cos A — cos 2u cos (20 — 20 — )

cos 2o =

or
sin? 2x cos (20 — 20— A) =0 (70)
Since o cannot be zero (see Figs 3 and 4) the solution is
Aoe = 20— 20 — 4n (71)

This result is equivalent to Rowe’s stress dilatancy rela-
tion (1962).

In order to verify whether i, indeed produces a
maximum, the second derivative of 4 with respect to a is
required. The derivative d/dx as expressed by equation
(67) can be written in the form

dAfda = nf 12
with
f=2(sin ¢ — sin v*) cos® i/m* (73)

As ¢ is always larger than v*, f is positive. The
second derivative of 4 is

d*A  dn df
E—af-l-ﬂa (74)
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and since n =0 for A, this gives, with n given by
equation (68)

d!

(—i) = —2f(1 + sin ¢ sin v*) sin 2z
da* )i
As a is smaller than 4, this result shows that the

second derivative is negative. So the solution A, =
22 — 20 — 4= represents a maximum and this satisfies

the rules of friction. Introducing 4,,,, in equation (64)
gives

sin ¢ = —cos (22 — B)/cos (75)

Inversion from this relation and equation (65) gives
the following expressions for 6 and (22 — )

sin ! = cos ¢ sin v*/F
cos @ = cos v*/F

sin (22 — 6) = cos ¢/F

(76)
cos(2a — #) = —sin ¢ cos v*/F
with
F? =1 —sin? ¢ sin®v*
APPENDIX 2: DECOMPOSITION OF TOTAL

STRAIN RATES INTO PLASTIC AND ELASTIC PARTS

Equations (26) express the components of the total
strain rates in terms of a*, b* & and ( — Q). The
unknown § can be found directly from the first two by
elimination of (a* + b*). This gives

§(1 = 2v + sin ¢ sin v*)/G =
~(Vog+ V) + (Vog— W) sinve (77)

The connection of this relation with vectors in Fig. 12 is
that the right-hand side divided by (1 + sin ¢ sin v*/
(1 — 2v)) equals RR*, the vertical component of QR*,
which itself is parallel to VP.

Solving for a*, b*
From the first two of equations (26) it follows that
(a* + b*) cos ¢/F = M* (78)
with
_ W+ Wy )sin @+ (Veg — ¥y NI — 2)
(1 = 2v + sin ¢ sin v*)
Let a quantity N* be defined by
N*=—(V,,+ V. (80)
The third of equations (26) then gives
(a* — b*) sin ¢ cos v*/F
= N* + sin ¢(s/G)N2J — 2Q) (81)

Using equations (78) and (81) the shear strain rates a*
and b* can be expressed in terms of M* and N*. There
results

2a* sin ¢ cos v*/F — sin ¢(s/G)2) — 20)
=M* tan ¢ cos v* + N* (82)

M* (79)
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case ”l

Fig. 21. Horizontal plane of Fig. 12, showing regions of
R in the cases (i), (ii), (iii) and (iv)

2b* sin ¢ cos v*/F + sin @(s/GN2¢ — 202)
=M"* tan ¢ cos v* — N* (83)

Eliminating (a* — b*) between equation (81) and the
fourth of equations (26) gives

sin ¢ (s/GN2J — 20) = (2Q — 2i) sin ¢ — N* (84)

The quantities M* and N*, as defined by equations
(79) and (80), are the co-ordinates of R in the horizontal
plane of Fig. 12. It may be verified that M* = PT and
N* = TR. Fig. 21 shows this horizontal plane as viewed
from above. There are four regions in which the point R
can be located. These regions cortespond to the cases
(i), (ii), (iii) and (iv) mentioned in this Paper.

Case (i)
When the P of the imposed strain rate are
such that (V;,—V, N1 —2v) is smaller than

—(V;: + V,,) sin @, the value of M* is negative accord-
ing to equation (79) and ¢ is smaller than §sin ¢
(according to the first two of equations (24)). When the
stresses are in the limit state, then a situation occurs as
indicated by the second of equations (17): the stress
point P re-enters the elastic region and deformation is
purely elastic. The corresponding strain rate vector
points downwards in Fig. 21 into the region indicated
as case (i). In that case the stress history being purely
elastic is described by equations (24). Equations (26) are
not valid and (a* + b*) solved in the manner of equa-
tion (78) does not apply. Actually (78) with M* negative
is unacceptable, because that violates the thermodyna-
mic requirement (13).

In the undrained simple shear test as described by
equations (31) M* defined by (79) is always positive due
to the third line of (37). So case (i) does not occur and
there remain three cases—{ii), (iii) and (iv—which are
relevant to this study.

Cases (ii), (iii) and (iv)
M* and N* are the co-ordinates of R in the horizon-
tal plane in Fig. 12. As the apex angle of triangle R, PR,

is 2 arctan (tan ¢ cos v*) the magnitude of N* with
respect to M* tan ¢ cos v* determines how R is located
with respect to that triangle. The three different pos-
sibilities are indicated as cases (ii), (iii) and (iv) in Fig.
21. They are as follows.
(ii) When R lies on the section R, R, then

—M* tan ¢ cos v* < N* < M* tan ¢ cos v* (85)

{iij} When R lies to the left of R, then

N*> +M?* tan ¢ cos v* (86)
{ivi When R lies to the right of R, then
N* < —M?* tan ¢ cos v* (87)

Determination of (2§ — 2}

When the total strain rate is given, M* and N* are
known from equations (79) and (80). Then only two
relations—(82) and (83)—are available to determine the
three unknowns a*, b*, (24! — 202), since (84) does not
contribute any useful information, £ being also
unknown. Vermeer's proposal for solving this system is
to require that the rate of elastic energy dissipation A® is
a minimum.

Using this principle, together with the thermo-
dynamic requirement of energy dissipation, it is argued
below on logical grounds that ome of the three
unknowns is zero in each of the three cases (ii), (iii) and
(iv) mentioned above.

The quantity A° is defined by

At=— Vo' 3;: = V!.;!g'» —(Vey + Vy.x]lg&

and this can, by using equations (20) and (21) be trans-
formed into

A® = [(1 = 2w + £ + 32 - 20)*1/G
Comparing equations (24) with the limit values of
equations (25), A* becomes for the limit stress state
A® = [(1 — 2v + sin® @)i® + 5% sin® P(2) — 202)*)/G
(88)
Since relation (77) blishes § independently, a
minimum of A® is obtained by choosing the lowest -
sible value of (2 —2Q)%. This is tantamount to
requiring that the absolute value |20 —2Q| is a

minimum. Together with the thermodynamic require-
ment (13) the conclusions which follow can be drawn.

Resulting expressions

Case (i)). The minimum value for (2 —2Q)* is
obtained when (2 — 262) = 0. This value is acceptable,
when relations (85) hold, because then (82) and (83)
show that neither a* nor b* are negative. In this case
the solution is

a* = (M* tan ¢ cos v* + N*)F/2 sin ¢ cos v*
b* = (M* tan ¢ cos v* — N*)F/2 sin ¢ cos v*» (89)
2 -22=0

Case (iii). In this case {2@1 — 202) cannot be zero,
because (86) introduced into (83) would then produce a
negative b*, which violates requirements (13). A
minimum for |2y — 22| is obtained by choosing b* to
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be zero. So the solution is
a*=M*Fjcos ¢ >0
b*=0
2y — 29) sin $(s/G)
=(+M*tan ¢ cos v* — N*) <0

(90)

Case (iv). In a similar manner (87) and (81) require in
this case that a* be zero. So the solution is
a*t=0
* = M*Flcos ¢ >0
(2¢ — 20) sin $(s/G)
=(—M*tan ¢ cos v* — N*) >0

1)
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R. E. Gibson, Golder Associates (UK) Ltd

On p. 544 of this Paper the Author states that
the vector PQ (in Fig. 12) represents ‘... the
strain rate imposed on the material in the
undrained simple shear test’. It is, however, not
clear to me which of the three cases (ii), (iii) and
(iv), is referred to here.

Comparing Figs. 12 and 21 it would appear

that case (iii) is shown, since R in Fig. 12 lies in
the region indicated as case (iii) in Fig. 21. If this
is correct it implies that a stress path of the type
shown in Fig. 13 is followed, so that 2y,
decreases gradually from 0 to [ —(n/2) + ¢J. This
gives the impression that the stress point P moves
along the cone in Fig. 12 (as viewed from above)
in a counterclockwise direction. The following

1(6,+ 6,)(1-29)/G

6, /6 = 6, /G

6~ ny)/ G

.

Fig. 22. Adapted stress space with limit cone, similar to Fig. 12, but shown from

other side
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566 DISCUSSION

question then arises: what stress path will P
follow in the remaining cases (ii) and (iv)?
Perhaps the Author will favour us with one of his
elegant drawings to elucidate this point.

Authors’ reply

The case represented in Fig. 12 on p. 544 is
indeed a case iii. In order to demonstrate this
explicitly the situation of Fig. 12 is redrawn here
in Fig. 22. In this Fig. the adapted stress space
with the limit cone is shown from the other side
by rotating the space over 180 degrees to permit a
better view of the stress paths. The strain rate
vector, as imposed by the undrained simple shear
test, is a vector of length f, parallel to the axis of
0,,/G = 0,,/G and in its direction. So it points
towards tl,'te left, here. It is shown only once as the
vector P,Q for the case that the stress point is
located in P,.

Let the stress path P, P,P, be considered in
more detail, first. Point P, represents the initial
stress state, in which according to the stresses,
indicated on the co-ordinate axes, o,,(0)=
a,,(0) = 0 and 0,,(0) < ,,(0). According to equa-
tions (32) this implies g, > g, and so an active,
initial situation denoted as case iii in the paper, is
involved.

The part P, P, is the stress path during the
elastic stage. This part has the direction of the
imposed strain rate vector of length f. The elastic
stage ends when the stress point has reached the
limit cone in the point P,. This point corresponds
to the point P of Fig. 12 in the paper. The tilted
plane R,*P,R,* is the plane of the a*, b* shear-
ings. The imposed strain rate vector P,Q of

Selected Works of G. de Josselin de Jong

length £ is decomposed into a plastic component
P,R.*, consisting of only a* shear, and an elastic
component R,*Q, parallel to the tangent plane of
the cone in P,.

The elastic component R,*Q can be decom-
posed into a y-component R,*R* parallel to the
circular cross section of the cone and an 3-
component R*Q parallel to the line connecting P
to the cone vertex V. The vector R,*R* points
towards the left and that gives the stress point P a
motion in a counterclockwise direction as viewed
from above. This agrees with the correct impres-
sion of Professor Gibson.

The component R*Q points downward and
that produces a downward movement, in the
form of a helical line on the cone surface, that
spirals downwards. At point P, the tangent to
this line has the direction of the vector R *Q.
Two other of those helical lines are shown on the
far side of the cone surface. Both belong to case iii
initial stress states.

Case iv initial stress states produce similar
stress paths, that are shown on this side of the
cone surface. The helical lines on both sides of the
cone are similar, but they are each other mirror
image. When the centre angle 2y, of the radius
to P, has values between (—in+ $) and
(—3m — @), then case ii initial stress states are
involved, originally. For such a case ii the corre-
sponding dotted stress paths, after reaching the
cone rim, turn downward and follow a straight
line path towards the cone vertex. The curved
helical stress paths of the cases iii or iv initial
stress states have the border lines between case ii
and cases iii or iv as asymptotes.
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TECHNICAL NOTES

Improvement of the lowerbound solution for the
vertical cut off in a cohesive, frictionless soil

G. DE JOSSELIN DE JONG*

INTRODUCTION
One of the classical problems in soil mechanics is the determination of the depth A, to which a
soil can be excavated by a vertical cut off before collapse occurs. When the soil is rigid
plastic with cohesion ¢ and no internal friction, =0, and its flow properties obey normality,
the upper and lowerbound theorems of plasticity are applicable to . Let a parameter « be
defined by

h = acly
where y is the proper weight of the soil, and let «. be the value of « corresponding to the
collapse height h.,y. Then according to the upperbound theorem a value of « larger than
@ 1S Obtained by computing h with a kinematically admissible velocity field, and according
to the lowerbound theorem a value of « smaller than e, is obtained by using a statically
admissible stress field.

The solutions known from literature (Heyman, 1973) give «=2-83 for the lowerbound and
«=3-83 for the upperbound. The purpose of this Technical Note is to present a statically
admissible stress field corresponding to «=3-39, which improves the existing lowerbound value.

A stress distribution is statically admissible if it obeys the following requirements:

(a) The stresses are everywhere in equilibrium with the soil weight. With tension stresses
positive and y in negative y-direction, the equilibrium equations are
(Boxx/0X) +(Gayx[By) = O
(Poxy/0x) + (GoyyfOy) = ¥ T ¢
Oxy = Oyx
(b) Stress discontinuities are allowed, provided that equilibrium is not violated. With
local coordinates n, t normal and tangential to a discontinuity line separating regions
(a) and (b) this is expressed by
O™ = ™ g = gy cE s w8 v s O
(c) The stress state in every point of the interior is within or on the limits imposed by the
yield condition
(Oxx—043)* +(0xy +032)* S 4c? .o 3
(d) The stresses comply with loads applied to the boundaries. In the case of the vertical
cut off the stresses on all boundaries are zero.

LIMIT STATE OF STRESS EVERYWHERE
The idea was to use a computer for the generation of a statically admissible stress field in

Discussion on this Technical Note closes 1 September, 1978. For further details see inside back cover.
* Department of Civil Engineering, University of Technology, Delft, The Netherlands.
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Fig. 1. Discontinuity lines, when the entire region adjacent to the boundary is in the limit state of stress

order to avoid the usual procedure of predetermining intuitively stress distributions, which
restrict the analysis to a limited class of solutions.

The stress field was generated by using Kotter’s equations, which are based on equilibrium
and the limit state of stress everywhere. The equations are integrated numerically along
stress characteristics s, and s, giving the mean normal stress and the principal stress directions
in successive nodal points of the network of characteristics. The shape of the network is
obtained by computation of the locations of the nodal points assuming arcs of circles between
them. Being a solution of Kétter's equations the stress distribution satisfies requirements
(a) and (c). Where necessary stress discontinuity lines were introduced and the stresses on
them were made to satisfy (b).

The construction of the stress characteristic network starts from the boundaries, where the
stresses are known. On the boundary the solution has to be chosen to be either strong or
weak. Since shear stresses on the boundaries are zero in this case, the principal stresses are
parallel and perpendicular to the boundaries. The principal stress perpendicular to the
boundary is zero, but the principal stress parallel to the boundary can be either a tension or
a compression. When the stresses along the boundary are in the limit state, the tension or
compression have both the same absolute value, 2c.

The choice was made to start along AB with a compression of 2¢ for the principal stress
parallel to AB and along CD with a tension of 2¢ (Fig. 1). So below CD the stress state is
given by

O = YY+20; oy, = 0y = 0; oy, = yy S ()]
Satisfying (1) and (3) with the equality sign.

A first trial was made by assuming maximum tension 2¢ for the principal stress all along
BC, also. Constructing the field of characteristics leads in point C to overlaps, which resolve
by introduction of two stress discontinuities CE and CF, making angles =/8 with CB and CD
respectively in the corner point, C. The discontinuity line CE has a bended form and cuts
the vertical in a point B located at a depth 3,24 ¢/y. In this solution the entire region CEB
is in the limit state of stress.

In order to satisfy the requirements (a) and (c) in every point of the interior, it is necessary
to extend the stress field over the entire soil body. It proved impossible, however, to con-
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Fig. 2 (a). Field of stress characteristics, when the region adjacent to BC is not in the limit state of stress; (b) hori-
zontal and vertical principal stresses up to infinity in the region to the right of FHJK

tinue the solution in the region around B and downwards, because the sheet of stress character-
istics folded backwards. Therefore the solution mentioned above was not acceptable.

STRESSES IN CEB NOT IN LIMIT STATE

In order to render the situation in B better suited for adjustment to the passive Rankine
State in the region below AB, it seemed appropriate to consider a non limit stress state in the
region CEB expressed by

Oxx = 0; ogy = 0yy = 0; oyy = yy+2c e oo o« (5)

This stress state is statically admissible because it satisfies (1) everywhere, and for (—4c/y) <
y<0 the condition given by (3). Also (d) is satisfied because o,,=0,,=0. Since for (3)
the inequality sign holds for most of the region CEB, this region is not in the limit state of
stress.

The construction of the field of stress characteristics starts again in C with the same two
discontinuity lines at /8 mentioned above. The discontinuity line CEB is constructed by

70 Soil Mechanics and Transport in Porous Media



200 TECHNICAL NOTES

extending the stress characteristics s, from the line CF up to the region CEB, where the stress
state given by (5) exists. A next nodal point on CEB is found from a previous one by inter-
section with a subsequent s, stress characteristic and bending both in such a manner, that the
stress state required by Kotter’s equation along the s, line is in equilibrium across the dis-
continuity line with the known stress state (5) according to relation (2). The line CEB curves
and crosses the vertical through C in a point B located a a depth 3:39 ¢/y. The s; line through
B intersects the other discontinuity line emanating from C in the point F (see Fig. 2a).

For this solution it proved possible to continue below B with a field in the limit state of
stress by introducing two Prandtl wedges with their centres in B. The pattern of stress
characteristics obtained by starting from the line AB, the two wedges in B and the line BF,
can be extended downwards towards infinity. The pattern is bounded above by a s, line
shown in Fig. 2(a) as the dotted line, FG.

STRESSES BELOW FF’

A conflict arises in extending the solution in the region above FG, because the pattern of
stress characteristics will fold and solving K&tter’s equation beyond such a fold requires
complicated arrangements. The analysis was simplified by assuming a stress field with
principal stresses vertical and horizontal, in the region below the horizontal line FF' and to
the right of a discontinuity line FHJK, with K at infinity. Since shear stresses are zero on
vertical and horizontal planes, integration of the equilibrium equations (1) then give

Ogx = YYHI(Y); ogy = 0y =0; oy = }’Y+E(K) S ()
with f(y) and g(x) arbitrary, adjustable functions.

In order to have equilibrium on the line FF’, between the stress distributions (4) and (6),
the value of g(x) has to be zero along FF'. As a consequence g(x) is zero in the entire region
to the right of FHI'K'.

From F to H the value of f(y) is adjusted in such a manner, that equilibrium exists through
the discontinuity line between the stresses in the established field of characteristics BFG and
the stresses (6). In every point of BFG there is one possible direction for such a discontinuity
line, and FH follows as a trajectory by plotting successive tangents. The line FH is unique.

At point H the tangent is vertical and the discontinuity line is also principal stress trajectory.
From H to J the discontinuity line is arbitrarily chosen to continue as principal stress trajec-
tory. Then shear stress on HJ is zero and equilibrium across HJ requires that f=g on HJ,
because only then shear stress to the right of HJ is zero, the stress state being isotropic.

In order that (6) satisfies requirement (c) it is necessary, that

(f()—2X) = 2¢ Ce e W)
in the entire region FHIKK'J"H'F’. In Fig. 2(b) a plot of f(y) full line and g(x) dashed line is
given. A vertical line pp’ in the region HKK' has a constant value for g(x) and this gives a
vertical dashed line in Fig. 2(b).

The point J is at such a height, that the line J'J” is critical having (f—g)=2c. Below J the
discontinuity line JK is taken at =/4 with the horizontal giving values of f(y) and g(x) as
shown in Fig. 2(b). From this figure it follows that (7) is satisfied everywhere.

CONCLUSION

Constructing a stress field by characteristics with stresses in the limit state everywhere did
not lead to an acceptable solution. It was necessary to assume in the region CEB stresses
that were not in the limit state. The stress field obtained then, satisfies the requirements (a)
to (d) in the entire soil body and therefore it is statically admissible stress field. The value
a=3-39 is therefore a lowerbound to e
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That the solution gives a safe height follows from the consideration of the kinematics. A

potential slipline would be the s, line BFD. Slip cannot occur along this line, though, because
of the slope discontinuity in F.

The solution was verified in 1976 by C. H. Engels with a different computer program, based
on the relation for stress discontinuities developed in her graduation study.
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Application of the calculus of variations to the vertical
cut off in cohesive frictionless soil

G. DE JOSSELIN DE JONG

The collapse height of a vertical cut off is computed
by use of the variational calculus assuming the exis-
tence of a real slip line at collapse. A class of lines
containing the real slip line is defined by total and
local equilibrium conditions of the limit stress state.
The extremal of the class is found to be an involute.
Verification of the solution shows that the extremal
gives either an unsafe estimate of the collapse height
or corresponds to no extremum at all. These dis-
appointing results are a consequence of the inadequate
formulation of slope stability problems, when slip
lines are computed by the calculus of variations.

La hauteur, correspondant a4 la rupture d'un talus
vertical, est déterminée 4 I'aide du calcul de variations
en présupposant |'existence d’une ligne de glissement
unique en cas de rupture. La classe de lignes, con-
tenant cette ligne de glissement, est definie par
I'équilibre total et local sous condition d’état de
contraintes limites. L’extrémale de la class posséde
la forme d'une involute. En vérifiant la solution, il
est démontré que I'extrémale produit une hauteur de
talus plus élevée que la hauteur de rupture, ol une
hauteur qui ne correspond pas du tout A un extremum.
Ces résultats décevants sont engendrés par la formu-
lation inepte des problémes de stabilité, quand des
lignes de glissement sont déterminées & 'aide du
calcul de variations.

INTRODUCTION

The calculus of variations provides mathematical procedures to find the shape of an extremal,
the curve that maximizes or minimizes the value of an integral along that line. For the reader who
is not familiar with the subject the books by Bolza (1973) and Petrov (1968) are recommended
here. The first because it treats all aspects of the parametric solution employed in this article, the
second because it gives a comprehensive and convenient description of the subject matter and
its practical use.

Because it can be used for establishing the shape of a line with particular properties, the
calculus of variations seems of interest for soil mechanics, especially for solving slope stability
problems. Since Coulomb, it has become a standard procedure to solve plane strain stability
problems by using minimalization procedures in search for the line that represents a failure
plane. The variational calculus could be applied to determine the shape of such a line, if the
mechanical requirements of failure along the line can be formulated in the form of integrals,
whose extreme values are related to the stability. This idea has occurred to several investigators,
e.g. Revilla and Castillo (1977), Ramamurthy et al. (1977), Baker and Garber (1977, 1979). The
approaches proposed by these different writers differ and demonstrate that there is not one
unique manner to formulate the minimalization problem.

Also the Author was intrigued a few years ago by the possibility of using the variational calcu-
lus for establishing slip lines, but withheld the results from publication when it became clear
that the solutions were of a disappointing, unacceptable character. The reason for presenting
this work now however is that an analysis as published by Baker and Garber (1978) is incomplete
and produces results that prove to be not meaningful when the analysis is properly pursued. It
is the objective of this Paper to demonstrate an analysis that is concluded by investigating the

Discussion on this paper closes 1 June, 1980. For further details see inside back cover.
* Department of Civil Engineering, University of Technology, Delft.
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conditions for an extremum and to show the kind of disappointments that are encountered when
the calculus of variations is applied to determine slip lines.

In order to be specific and to deal with explicit results, the relatively simple case is treated here
of a vertical cut off in cohesive, frictionless, non-dilatant soil. The collapse behaviour of the
vertical cut off in such a soil has been studied by reliable procedures based on the rigorous proofs
of the theory of plasticity. The exact solution is not yet available, but it is known that the
collapse height k., , is unique and expressed in terms of the cohesion ¢ and the specific weight ¥,
is between the following limits

36dc/y<heo<3-83cfy

The upper limit corresponds to a Fellenius solution with a circular slip line, satisfying a
kinematically admissible velocity field. The lower limit corresponds to a statically admissible
stress distribution determined numerically by Pastor (1978). Because of this information on the
collapse height, the vertical cut off is an appropriate example for testing the determination of
slip lines by variational methods.

CONCEPTS BASIC TO THE ANALYSIS

In its simplest form the calculus of variations is used to determine the shape of one particular
line, which is called extremal, because it can produce an extreme value of a definite integral. The
analysis described in this Paper is an application of this simplest form of variational calculus to
the slope stability problem of establishing a safe estimate for the height 4 of a vertical cut off.

The one line analysis is based on a few concepts that are decisive for the formulation of the
problem and are determinative for the resulting solution. The first concept is the assumption
that at collapse, there exists one particular slip line, which is called here the real slip line. The
second concept is a class of potential slip lines, defined in such a manner that it includes the real
slipline. The third concept is the presumption that a safe estimate of & can be found by determin-
ing the extremal.

Real slip line

In the plane strain case of an embankment in z direction, the slip line in a vertical x, y plane
represents a failure plane perpendicular to x, y. Failure planes exist at collapse. They are
required to separate soil masses that slide with respect to each other and with respect to the
stationary soil mass below. When sliding occurs over the failure planes, the stresses along it are
in the limit state of stress. Since the soil is taken to be frictionless and non-dilatant, the lines
representing the failure planes in the two-dimensional x, y-plane are stress characteristics. There
are two families of conjugate stress characteristics.  For slip to develop, it is enough that sliding
takes place along one of the two conjugate lines. This line should intersect the boundaries in at
least two points in order to separate a soil mass that is free to move. For sliding it is necessary
that the slip line has a continuous slope.

The assumption is that at collapse there is at least one continuous smooth slip line which
corresponds to a stress characteristic and which intersects the boundaries in two points. This
line is called here the real slip line. The shear stress along the real slip line has the maximum
available value which is equal to the cohesion ¢ for a frictionless soil.

Class of potential slip lines

For the analysis a class of lines is required that contains the real slip line. This class is obtained
by selecting lines in such a manner that their stress distribution satisfies the same equilibrium
conditions as the real slip line. At incipient collapse, the separated soil mass that is about to slide
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is still in equilibrium. Its total weight is balanced by the stresses along the real slip line. This is
called the requirement of total equilibrium in the following sections. This requirement can be
formulated in the form of definite integrals along the line. Furthermore, the real slip line is a
stress characteristic. Therefore the stresses along it satisfy K&tter’s equation, which represents
local equilibrium for the limit stress state, in a direction tangential to the stress characteristic.
The requirement of local equilibrium is satisfied by introducing Kétter’s equation in the integral
expressions.

The requirements of total and local equilibrium produce three definite integrals as shown in the
section headed ‘ Determination of the integrals’. The value of one of these integrals corresponds
to the height of the cut off. The other two are zero. Alllines that give these values to the integrals
are called potential slip lines, because each of them might be the real slip line.

Extremal

The calculus of variations provides methods to find the extremal. That is a particular line of
the class of potential slip lines, computed in such a manner, that it can give an extreme value to
h, the height of the cut off. In the section headed * Determination of the extremal’, the solution
for this line is produced by standard variational procedures. The extremal of the potential slip
lines is not necessarily the real slip line. It can be any line satisfying the equilibrium conditions
imposed.

The value of h, computed for the extremal is called 4,,,, here. This value is an extremum for A,
if it is a maximum or a minimum. If it is a minimum, this indicates that A,,,; is smaller than the
values of & corresponding to all other lines of the class investigated. If this class is large enough
to contain the real slip line (the line that is assumed to correspond to h,,,), it may be concluded
that A, is smaller than or equal to A,;,. The analysis then procures a safe estimate for the build-
ing height of the embankment. The analysis presented here was initiated originally in the
supposition that a minimum would result.

Verification

The basic assumptions mentioned in this section may occur to be plausible for soil mechanical
investigators because they are commonly postulated in slip line analysis. There are two im-
provements with respect to common procedures: the shape of the line is a result of the analysis
and the stress distribution along the slip line satisfies limit stress state conditions by applying
Kétter's equation.

The assumptions are, however, not self-evident and are even debatable. This is revealed by a
verification of the solution using procedures that are standard in the calculus of variations. The
character of the extremum is established in the section headed * Investigation of the solution’
by use of these verification methods, showing that either a weak maximum or no extremum at
all is involved. This is disappointing because the conclusion can only be that the analysis was
not meaningful.

Unfortunately, it is not possible to establish, a priori, whether the basic assumptions underlying
the analysis will lead to a meaningful end result. It is only after the solution has been obtained
that its character can be verified. Therefore, first the analysis, based on the three plausible
assumptions mentioned in this section, is carried out in the following text. In the final section the
result is discussed and the basic assumptions are reconsidered.

DETERMINATION OF THE INTEGRALS
The vertical cut offis shown in Fig. 1. The soil is limited by the following stress free boundaries:

Selected Works of G. de Josselin de Jong 75



4 G. DE JONG

A< J .

Fig. 1. Vertical cut off with potential slip line

the vertical plane BC and the horizontal planes AB and CD. The problem is to determine an
acceptable height /i of the cut off. The soil properties involved are the specific weight y, the
cohesion ¢ and a vanishing angle of internal friction ¢ = 0. No external loads are acting on the
boundary ABCD. Failure is due only to the weight of the sliding soil mass.

Class of potential slip lines

If the class of lines considered is to consist of potential slip lines, the lines have to intersect the
free surface in two points, E and F. The lower point E will coincide with the lower corner point
B, and F is on the upper surface CD. So the lines in the analysis are lines BF.

The shape of the line BF will be treated in parametric form, such that the horizontal x co-
ordinate and the vertical y coordinate are both functions of a parameter « that increases from
ogin Btowgin F. This can be written as

x=x(a), y=y@) forog<a<er . . . . . . . (1)
In the analysis the parameter « will be taken to be the local angle between the line and the
x direction (see Fig. 1). Differentiation with respect to « is indicated by a prime such that
x' = dx/dx, y=dyld . . . . . . . . (2a)
X' =d%x|dx?, ' =d*y|da? N I )

A small element of BF with length ds subtends in horizontal and vertical directions distances dx,
dy (see Fig. 2) given by

dx=cosads, dy=sinads . . . . . . . . (3
In order to be a potential slip line, it is necessary that the shear stress acting on the line BF has
the maximum available value, which is equal to the cohesion ¢. The normal stress on BF will be

denoted as p and is taken positive for compression. These quantities will be used to evaluate the
integrals that are developed in the following.
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Fig. 2. Force dR (black arrow) acting on element ds is composed of a shear component ¢ ds and a normal com-
ponent p ds (white arrows)

Total equilibrium

In the state of incipient failure, the soil and all its subdivisions satisfy equilibrium. So the
forces acting on the part BCF, separated from the main soil body by the line BF in Fig. 1, form
an equilibrium system. This means that the force Q created by the weight of the part BCF isin
equilibrium with the resistive force R due to the stresses acting along BF. This equilibrium will
be called total equilibrium because it refers to the equilibrium of the total mass BCF, in contrast
to local equilibrium which is considered later and refers to the equilibrium at all points of the line
BF.

Total equilibrium is satisfied when the forces Q and R annihilate each other. Expressed in
their x, y components: X, ¥5; Xk, Y and their moments M,, My around the origin of co-
ordinates, this requires that

Xo+Xg=0, Yo+ Yg=0, Mg+Mg=0 . . . . . . (4

Since the soil weight acts only in vertical direction downwards, the horizontal component X,
of Q is zero and the vertical component can be obtained by integrating over slices of width dx

as shown in Fig. 1, this gives
F

Xy =0, YQ=—-J. yYye=»dx . . . . . . . (9

B
The moment of Q around the origin, positive for counter-clockwise rotation, is

F
Mgz—j.sy(yp-—y)xdx DO ()]

In these expressions x, y are the coordinates of the line BF and integration is along BF.

The components of the resistive force R can also be expressed in the form of integrals along
BF. Let dXg, dYy be the x, y components of the force dR (black arrow in Fig. 2) produced by
the stresses on the strip of unit width corresponding to the line element ds. This elementary force
dR consists of a component ¢ ds tangential to ds and a normal component pds (white arrows
in Fig. 2). Decomposed into x, y directions these give according to Fig. 2 and using equation (3)

dXg=ccosads—psinads=cdx—pdy . . . . . . (Ta)
dYp=csinads+pcosads=cdy+pdx . . . . . . (7b)

From these the components X, Y of R are obtained by integration along BF giving

F F
XR=J dXR=j (edx—pdy) . . . . . . . (8a)
B B
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Yz =-|.:d}’, =J: (cdy+pdx) . . . . . . . (8b)

The moment My of R around the origin is
Mg =Jt (xdYg—ydXyg) =.|.: [e(xdy—ydx)+p(xdx+ydy)] . . . (9)
The three equations (4), that represent total equilibrium, can now be expressed in the form of

integrals. The first two are transformed into the relations (10a) and (10b) by use of the equations
(5)and (8). The last becomes relation (10c) by using equations (6) and (9). This gives

F
j(cdx—pdy)=0 . . . (10a)
B
F
J[cdy+pdx—r(yp—y)dx]=0 - . . . (10b)
B
F
j[C(xdy—ydx)+p(xdx+ydyJ—?(ys—y)xdx]=0 .o o« (10c)
B

These relations represent total equilibrium and agree with the equation (5) in the paper by
Baker and Garber (1979). The analysis continues in the following sections by introducing
Katter’s equation along the line BF. This is an essential difference between that paper and the
analysis followed here.

Local equilibrium

In a frictionless material (for which ¢ = 0) a potential slip line coincides with a stress character-
istic. Local equilibrium along stress characteristics is expressed by two Kétter's equations, one
for each of the two conjugate stress characteristics. The equation corresponding to the line BF is

(dp|ds)—2c(dfds)+ysine=0 . . . . . . . . (II)

This is a differential equation that can be integrated along s. Adjustingthe integration constant
to fit the situation in point F gives after integration

(p—pp)—2cl@—og)+9(y—yp=0. . . . . . . . (12)

in which pg, ar and yg stand for values of the quantities p,  and y respectively in the point F.
Let f be defined by

Be=(@g—2cag)f2¢ . . . . . . . . . . (13
then p can be solved from equation (12) to give
p=2c(fe+)+y(ye—») . . . . . . . . . (14

It may be remarked here that it is impossible to solve for p in a similar manner from Kétter’s
equation, when the soil has internal friction, such that ¢ is unequal to zero. Therefore, the
analysis developed below cannot be applied directly for soils with internal friction.

Equation (14) is used to eliminate p from the integral expressions (10). This gives then

¥
L[fdx—2C(ﬁy+«)dy—?(yr—yldy]=0- .- (159)

F
j [cdy+2c(fe+a)dx]=0 . . . (15b)
B
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F
L[C(xdy—ydx)+2€{ﬁs+a)(de+ydy)+?(yp—y)ydy]=0- <. (150
Since (yg— yp) is equal to h, the height of the vertical cut off, the parts containing y become
F
J.r(h—y)dy=%?h’ f s o % f s % ¢ & (ita)
B
'F
J?Us—y)ydy=§?hzup+2yn) T ¢ (1))
B

By taking the origin of coordinates in point G on one-third of the height of the cut off (Fig. 1)
such that

ye=%h, yp=-3%h, =0 . . . . . . . (1D
the integral (16b) vanishes and the integrals (15) reduce to
*F
Fy=| [dx—2Bc+a)dy] = 1yh*/c e owow % o ow ow (18&)
JB
"F
I'y=| [dy+2Be+x)dx]=0 .« « « + +« . . (18b)
B
rF
=\ [(xdy—pd)+2(Be+0) (xdx+yd)]=0 . . . . (18
B

At this stage it is convenient to introduce the parametric manner of describing these integrals.
From the relations (2a) it follows that dx, dy can be written as functions of the parameter « in
the following manner

dx=x'da, dy=yde . . . . . . . . . (19

Further, relations (3) indicate that tan « = (dy/dx) and using relations (19) this can be written
astan o = (y'[x") or
ga=arctan(y'/x) . . . . . . . . . . (20

So the integral expressions (18) can be written as

F F

}55 =J Gola) du =j [x'—2(Be+arc tan y'[x")y')da = $yh*lc . (2la)
B B
F F

I, =J G, (o) da =-[ [ +2(Bp+arctan y'/x)xNde =0 . . (21b)
B B

F F
I, =J. G (o) dat =j [(xy' —x'y)+2(Bg+arc tan y'[x") (xx'+yy)]de =0 . . (2lc)
B B

The functions Go(x), G,(«), G,(%) introduced on the left-hand sides of equations (21) are func-
tions of x, y, x’, y’, defined by the integrals between brackets. Because of equations (1) and (2)
they can be considered to be functions of « only.

These three integrals represent the three equilibrium conditions for balancing the total driving
force Q and the total resistive force R. In addition, local equilibrium is guaranteed in all points
of the potential slip line BF in a direction parallel to the line, the line being a stress characteristic.

Selected Works of G. de Josselin de Jong 79



8 G. DE JONG

DETERMINATION OF THE EXTREMAL

The integral expressions (21) are suitable for application of the variational calculus in order
to find an extreme value of h, the height of the vertical cut off for given values of ¢ and y. The
analysis consists of determining the functions x(x) and y(x) that represent an extremal in para-
meter form. Such an extremal is the curve that produces an extreme value for I'y, the integral
defined by (21a), under the additional conditions that the integrals I, and I'; defined by (21b)
and (21c) vanish. In the calculus of variations this is a so-called isoperimetric problem that can
be solved by the use of Lagrange multipliers. The following analysis is based on the Weierstrass
theory for parameter problems as described by Bolza (1904).

General expression for the extremal

According to the theory, the curve x(«), y(«) is found by solving Euler’s differential equation,
which in Weierstrass’s form is

Hy—Hyo+ Ho Xy =XV =0. . . . . . . . (2
In this equation subscripts stand for partial differentiation with respect to the subscript variable,
H, = 8H|ox, etc. The quantity H is an auxiliary function given by
H=Gy+g,G+£.G;
where Gy, G,, G, are the integrands of the equations (21) and g,, g, are Lagrange multipliers
that are constants in this case. Written out, the function H has the form
H = [(g1+8:X)y + (1 —g29)x'1+2(Be+arc tan y'/x") [(g; +22¥)x" — (1= g20)y'] (23)
Performing the partial differentiations on function H required in equation (22), this equation
becomes
Y =x"y) (@ +&:¥y + (121 = &P+ . . . . . (29
The solution of this differential equation satisfying the parametric requirement »'/x' = tan «

(according to (20)) represents the extremal. It is not so simple to solve equation (24) ina straight-
forward manner. The solution, however, is as follows

x= —(g,/g;)—acosa+(b—aag)sina 3 & & o« & (253)

y=+(l/g)—asina—(b—aa)cose . . . . . . (25b)

This can be verified by substitution, using equation (2) which gives for, instance,
x' = dx|dx = (b—oa) cos o, y' = dy|dx = (b—oa)sina .. (26a)
X'y —x"y = (b—wa)?, (x)?+ (V') = (b—wa)’ : = .4 @ (26D)

Since equation (24) is a second-order differential equation, solution (25) possesses two integration
constants. These are the quantities @ and b that have to be determined from boundary conditions.

Shape of the extremal

Equation (25) represents a curve that is called an involute, with a circle as evolute. In Fig. 3
the line P,BP,QFP; . . . is such a curve. It is the path followed by the end point P of a string of
length NP, = b, attached in N,, and wound around the circle with radius NoM = a. For an
arbitrary value of « the part N,N, of the string with length aa is contiguous with the circle and
the remaining part of length (b —oa) is the straight line N,P,. The centre of the circle is the point
M, with coordinates

xmw=—(g/g), ywm=+0lg) . . . . . . . . @)
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Ny N,

Po

Fig. 3. Extremal BP,QF, satisfying boundary conditions and constraints. The line P,P,QP, is an involute with
circle NoN.QN; as evolute

The involute reaches the circle in the point Q, when the value of « is equal to
oo=bla . . . . . . . . . . . (28

Beyond that point, the line continues towards FP, . . . etc. asthe path of the end point of a string
that unwinds from the circle on the other side. At point Q the curve has a cusp.

Determination of the constants of the extremal

Of all curves that obey the relations (25), the relevant extremal is obtained by computing the
values of the integration constants a, b and the Lagrange multipliers g,,g,. Inaddition, the two
end points B, F are to be localized on the curve by establishing the value of the parameter « in
those points. These are ag and o. In total there are six constants a, b, gy, g,, o, o to be deter-
mined and this requires six relations between these six variables.

The first two relations are the constraints which are expressed by the requirement that both
Iy, T, given by the integrals (21b and c) are zero. Since x, y, x', J’ are all known goniometric
functions of the parameter by relations (25) and (26), it is possible to integrate the integrals
(21b and c) with respect to « from ag to «p. The resulting formulae are fairly long and therefore,
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not written out in full length here. They are known functions of a, b, g,, g,, o, &, though
which are called I',* and I',* for brevity. So the first two relations are

Fl‘ (ay b: £1: 82, %ps aF) =0 o W g v ¥ . . (293')
r*(@ab, g, g00:)=0 . . . . . . . . (29b)

The following two relations are obtained by requiring that the extremal passes through the
point B. The coordinates of B have the values (17) and combined with equations (25) there
results

Xp = — (g,/g2)—a cos ag+(b—apa) sin ap = 0 . . . . (30a)
yg=+(1/g;)—asin ag—(b—oga) cosag = —1h .. . (30pb)

The last two relations are obtained from the boundary conditions at the point F. This point is
located on the free upper surface and therefore the magnitude of yy. is known to be 4/ (see equation
(17)). Introduced into equation (25b) this gives

ye= +(l/g;)—asinag—(b—opa)cosag=+%h . . . . . . (3D

The location of the point F on the upper surface is not known, however, so xg is an unknown.
The second relation to be obtained from the boundary condition in F is due to the stress state in
F, which produces a value for the inclination of the potential slip line, by adapting limit stress
state to the requirement, that the horizontal upper surface is free of stresses.

There are two possible cases represented by the Figs 4(a) and 4(b), which correspond, respec-
tively, to maximum compression and maximum tension on vertical planes. In the compression
case (Fig. 4(a)) the value of p, the normal compressive stress on the potential slip line, is equal to
Pr = +cand the direction of the potential slip line is

Gt . v v o o2 om o omm om e AO2)

In the case of maximum tension (Fig. 4(b)), assuming a soil which can support a tension of
2c, the normal compressive stress on the slip line is pz = —c and the corresponding direction of
the potential slip line is x¢ = /4. It can be shown that a solution for this second value of ag,
satisfying all boundary conditions and the constraints (equation (29)), does not exist.

For the compression case in F we have py = +c¢ and o = (3n/4), which introduced in fg
defined by (13) gives

Be=31~32) . « & & = w e v = = (33)

This value is needed in the expressions,(29) for I';* and I',*. Finally, there are six equations
for the determination of the constants a, b, g,, g,, @y, ®. These are the relations (29a and b),
(30aand b), (31 and 32). Since these relations are implicit goniometric relations, it is not possible
to give explicit equations for the constants. A solution satisfying all six relations was obtained

numerically. The pertinent values of the constants are
a=0988h, g, =00424, oy=0604 34)
b=2140h, g, =0'6674(h, op=2-356

Equations (25) for the coordinates, with the values of the constants mentioned above, form
the solution for the extremal satisfying the Weierstrass-Euler condition (22), the constraints
(21b) and (21c) and the boundary conditions. This solution is unique.

The value for Ay, corresponding to this solution of the extremal, is obtained by introducing
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x‘{F 237/ oc,:nk ‘,\

2c 2c 2c’ 2c

(a) B B (b)

Fig. 4. Boundary conditions for stress characteristic at the point F on the upper surface CD: (a) maximumcom-
pression; (b) maximum tension

expressions (25) and (26) into the integral (21a) and integrating. The result is too long to repro-
duce here. Insertion of the values (34) finally gives

B =398 = w5 v 5 5 ow w w5 s (B9

Description of the solution for the extremal

The shape of the extremal computed is shown in Fig. 3 as the line BP,QF. This line contains
the point Q, which was mentioned above to be a cusp. That Q lies indeed within the interval BF
follows from a verification of the magnitude of ag. Using the relation (28) and the values (34)
it is found that

do=hla=2166 . . . . . . . . . . (36

and this is a value between g and o given in (34). Further it can be computed that Q lies outside
the soil boundaries. Using the value (36) in the expression (25b) for the y coordinate gives, with
the values (34) for the constants, yo = 0-68014. This shows that Q lies a distance 0-0134k above
the free surface which is located at y = 2A/3.

The fact that the extremal BF contains the point Q, where the curve has a cusp and which lies
outside the soil mass, indicates that the solution does not represent the real slip line. For a real
slip line it is physically illegitimate to form a cusp and to exceed the soil body. Therefore the
solution (35) is not the collapse height. It is either too high or too low, that depends on the
character of the extremum, whether it is a maximum or a minimum.

INVESTIGATION OF THE SOLUTION

The solution of the Weierstrass-Euler equation (22) is a unique curve given in parameter
form by the expressions (25) with the values (34) for the relevant constants. This curve is called
an extremal because it satisfies condition (22) and that is necessary for the curve to produce an
extremum for &. However, satisfying condition (22) is not yet sufficient. Before it can be con-
cluded that the value (35) computed for &, with the extremal, indeed represents an acceptable
extreme value, there are three additional investigations to be made. These verifications are
required for establishing the character of the solution and completing the analysis.

In the first place the Legendre condition has to be verified because that condition indicates
whether the solution represents a maximum or a minimum of the height 4. In the second place
the Jacobi condition has to be verified because that condition indicates whether there exists an
extremum at all. In the last place the Weierstrass E function has to be investigated because that
function shows whether the extremum (if it exists at all) is strong or weak.
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Legendre condition

The first point to investigate is the Legendre condition. This condition is satisfied if the sign
of a quantity H,, defined below, is the same for every point of the extremal, x(a), y(x), between B
and F. For a maximum to be involved it is necessary that H, is negative, for a minimum that H,
is positive. The definition of the function H, can be written in three different ways which because
of homogeneity are equivalent, i.e.

Hy=Hyppl) = —Hey Xy =HylX? . . . . ., 3D
where H is the function described by (23). Elaboration gives
Hy = —4{(g, +&23)" + (1 —:)X)[(x')* + ("))
and using relations (24) and (26b) this can be written as
Hy = —4g,/(x'y"—x"y') = —4g,/(b—0a)’

According to the solution (34), the value of g, is positive and this indicates that H, is negative
for every point of the extremal. So the result is

H <0, foreverya . . . . . . . . . . (38

Therefore, the Legendre condition is satisfied and the extremum involved is presumably a
maximum. However, compliance with the Legendre condition is not yet sufficient for the
solution to be a maximum. It is also necessary that the Jacobi condition is satisfied.

Jacobi condition

The second point of investigation is to verify whether the Jacobi condition is satisfied. Ac-
cording to the theory no extremum, maximum or minimum, exists when a function u, defined
below, vanishes in a point of the extremal between B and F. The function « is defined by

u= Cyuy+ Csu, Goe o s oW e ¢ o« (39a)

with
Wy =YX=xYy . . . . . . . . . (39D)
Uy =yP'Xp—=XYy . . . . . . . . . (39%)

where x,, etc. are partial derivatives of the functions (25) with respect to the integration constants
aand b. The constants C, and C, are to be chosen in such a manner that for the point B, com-
mon to all extremals, the values of w and «’ are as follows:

ug=0, wp'=1 . . . . . . . . . (40
Elaboration of ¥, and u, with equation (25) gives
u=(—aC;+C,) (b—ua)
in which the constants C;, C, can be solved by use of relations (40). It is then found that
u=(u—ag) (b —aa)/(b—oga) . . . . . . . . (41)

The function u expressed by equation (41) vanishes in the cusp point Q, because there o equals
g =b/a) (see equation (28)). If, therefore, the extremal BF contains the cusp Q, the Jacobi
condition is violated and neither a maximum nor a minimum exists at all.
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Weierstrass condition

The third point of investigation is the Weierstrass £ function, which indicates whether an
extremum is weak or strong. For the curve determined here, this investigation could be omitted
because the violation of the Jacobi condition already showed that no extremum for A is involved
atall. However, the analysis of the E-function is mentioned here for completeness.

The Weierstrass’s E function is defined by

o

E(x, y; x', ' %, §) = X[Ho(x, p; X, §) = Holx, y; X', )]
+F[Hy(x, y; %, 7)) = Ho(x, y; X', p)]
where x', ' are the derivatives of the computed extremal and ¥, §" are the derivatives of another
comparison curve. The extremum is strong when the sign of E is independent of the magnitude
of (# —x’) and (7" —)’). It is weak when the sign of E is constant only for small values of
(X' —x")and (7' — »), but changes if the values are large. A negative value of E corresponds to a
maximum, a positive value to a minimum.
Elaboration of the E function for H defined in equation (23) results in

E = [(g)+82X)x" —(1~g,y)y'] [arc tan (J'/%) —arc tan (y'/x') + (7' = x'y") (x" 24y H)]
+(gy +g2%) (X —x")— (1 —g,) (7 —y")] [arc tan (j'/X")—arc tan (3'/x")]

For small values of (¥ —x) and (§'— ") it is found that E is negative. This indicates that a
maximum is involved. However, the presence of the term arc tan (7'/%') creates the possibility
that the sign of E changes for a comparison curve with arbitrary %', j’ values. Therefore, the
computed curve would produce a weak maximum for A, if the Jacobi condition had not been
violated.

DISCUSSION OF THE RESULT

The result of the variational analysis is an extremal in the form of an involute. Its mathematical
expression is given in parameter form by equations (25). The constants a, b, g,, g, in these
expressions have the values (34). The shape of the line is shown in Fig. 3 as the line BP,QF.

The involute is an extremal because it satisfies in every point the Euler condition (equation 22).
Itis an extremal of the class of potential slip lines that contains the real slip line. This is achieved
by defining integrals that impose similar conditions of total and local equilibrium in the limit
stress state on the lines of that class as are satisfied by the real slip line.

The extremal, represented by the line BP,QF, is unique. It is the only involute that satisfies
the constraints (21b and ¢) and the boundary conditions in B and F. The corresponding height
of the vertical cut off has the value A, = 3-783¢/y, which is high, but could be a valid bound for
the collapse height, /.. All these points are in favour of the analysis and suggest that it is an
attractive method of slip line determination. There are, however, some disappointments.

Verification of the conditions for the extremum in the previous section (Investigation of the
solution) shows that the analysis produces a weak maximum in general, whereas in the special
case that the extremal contains the cusp point Q, there is no extremum at all. These verification
results indicate that the analysis is apparently not meaningful. But before this conclusion can
be drawn, it is necessary to consider these two points in more detail.

Weak maximum

When a maximum is involved, this means that the value of A,,,, is higher than every value of A
corresponding to any line of the class investigated. When this class contains the real slip line,
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then A, islarger than the height corresponding to the real slip line, which presumably is the col-
lapse height, A.,,,. So being a maximum, the computed height 4., is an unsafe estimate for /,,.

It is essential for this conclusion that the class contains the line that produces A . If, for
instance, a class is considered that gives for all lines values lower than A, it would be interest-
ing to establish the maximum of that class. This would give the best, safe value for 4. In the case
considered here, the real slip line, if such a line exists, is still in the class because the stress distri-
butions of the lines in the class satisfy the same equilibrium conditions as the stress distribution
along the real slip line. Therefore a maximum corresponds here to an unsafe estimate.

The maximum is called weak in variational terms. This means that it is a maximum with
regard to comparison lines that deviate from the extremal only in such a manner that their
inclination is almost the same. As a consequence another maximum or even a minimum could
exist for completely different lines. In textbooks examples are given of unexpected shapes in
this respect, consisting of discontinuous solutions.

The examination of discontinuous solutions has not beer ™acted exhaustively for the
problem of the slip line analysis. Only the case was consider. " two involutes with a dis-
continuous second derivative, forming a smooth S-shaped curve. Such a curve has piecewise
different values for the circle centres xy, yy and so according to (27) the Lagrange multipliers
g1, g2 are not constant along the line. Since these multipliers have to be constants, such an
S shaped curve cannot be an extremal. There are other possibilities for discontinuous solutions.
It could be envisaged to study a combination of slip lines consisting piecewise of conjugate stress
characteristics. However, such explorations were not pursued.

No extremum at all

In the previous section (Investigation of the solution) it is established that an extremal con-
sisting of an involute violates the Jacobi condition if the line contains the cusp point Q. It is
possible that for embankments or slopes with other boundary conditions the cusp is avoided.
For the particular case of the vertical cut off, the cusp is not avoided and is located within the
integration interval of the extremal.

This indicates that in this particular case no extremum is associated with the extremal. Being
an extremal means that the line satisfies in every point the Euler condition (22). This is necessary
for the line to give an extremum, but not yet sufficient. It is also necessary that the line satisfies
the Jacobi condition and if that second condition is violated, then according to the variational
calculus no extremum is involved at all.

Since this conclusion seems curious, it is revealing to mention some additional computations
that can be reproduced readily to verify the lack of extremum. To that end it is convenient to
consider smooth $ shaped lines, consisting of two circles, that have the same tangent in their
meeting point. The integrals (21a—c) can be evaluated in closed form for such curves. For
every height of the meeting point there is one unique combination of circles that satisfies the
constraints (21b and c) and the boundary conditions in B and F. The values of / corresponding
to these S shaped lines are above or below /., for lines with a meeting point respectively above
or below y~0-33h.

By this verification it is established that the class of potential slip lines is not limited in a
meaningful manner. Apparently the conditions of total and local equilibrium of the limit stress
state along a line are not restrictive enough. This is further substantiated by an examination of
the stress state in the vicinity of the point B. The stress state in the line should be compatible
with the stress-free vertical boundary BC. Compatibility can be verified by introducing a fan
of stress characteristics centred in B. The result is that the S shaped lines with a meeting point
above y = 0-17h are unacceptable because the stresses near B surpass the limit stress state, and
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this limits the height for S shaped slip lines to < 3-69¢/y. We will not elaborate this point here
further because S shaped curves have no special status. They were arbitrarily chosen for con-
venience to verify the absence of an extremum.

Another example of a line that might be called an extremal because an Euler equation is
satisfied, but apparently produces no valid extreme value for h, is encountered in the analysis of
Baker and Garber (1978). In that analysis the procedure is to determine the critical slip line by
considering an extremal, with the location y(x) and the normal stress distribution ¢’(x) as the
two relevant variables. The stationary value of the integral is determined with respect to these
two variables, by two Euler equations. The first involves ¢ and ¢’, the second involves y and y".
The authors surmise that satisfaction of the first Euler equation only is enough for a line to form
auseful bound for the critical slip line. Their solution reduces to a circle for the case of a friction-
less soil.

In fact, this solution is only a regular extremal if also the second Euler equation is satisfied.
Introducing the circle in this relation gives a differential equation for the normal stress o which
determines the distribution of . Now the curious situation occurs that for the vertical cut off it
is impossible to find a circle that satisfies the boundary conditions and the constraints, possessing
in addition a normal stress distribution that corresponds to the second Euler equation. So there
exists no circle that can be claimed to be a regular extremal.

It is possible to indicate circles that satisfy moment equilibrium only and to adjust the normal
stress distribution in such a manner that the other two constraints of vertical and horizontal
force equilibrium are satisfied. But then the second Euler equation is violated. This class of
circles has a minimum height corresponding to A, = 3-8¢/y. From the theory of plasticity it is
known that this height is an upper bound based on a kinematically admissible velocity field. So
all circles correspond to heights that are above A,,;;. This result indicates that the class of circles,
which are lines that satisfy the first Euler equation only, does not contain the critical slip line.

It is difficult to infer directly from the variational calculus that the real slip line is outside the
class of extremals determined by the first Euler equation only. An indication could be that there
are no terms with ¢’ in the integrands. Therefore, all derivatives with respect to ¢’ vanish,
also the second derivatives required in the Legendre condition. This indicates that a degenerated
extremum for A is involved.

Real slip line

Up to this point it has been assumed that there exists a real slip line and that the collapse state
is sufficiently characterized by considering the stresses along that line only. For the variational
analysis it is a convenient assumption because the analysis is then restricted to the determination
of the shape of one line and the elementary variational calculus provides all tools for such a
determination. The one-line assumption is, however, questionable because satisfying equilib-
rium and limit stress state along one line does not guarantee that the stress states in all other
points of the soil body are within acceptable limits. An example of considering regions outside
the line was mentioned above with regard to S shaped curves and the region in the vicinity of B.
But one small region is not enough. For aline to be considered a potential slip line it is necessary
to verify the entire soil body.

Possibly the disappointments revealed by evaluating the results of the variational analysis in
this study are due to an inadequate formulation of the problem. The collapse state may be
associated with a distribution of stress characteristics and regions of slip lines of a more complex
character than assumed so far. Characterizing the stress state and the sliding mechanism may
require the formulation of a more sophisticated system of integrals before the calculus of
variations can be used meaningfully.
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CONCLUSION

The variational calculus seems an intriguing tool for investigating slope stability problems.
The formulation of the problem by defining a class of lines satisfying total and local equilibrium
and assuming that the extremal of that class is the real slip line is unsatisfactory. The class is not
specified in such a manner that a bound is found for the real slip line, and it is even questionable
whether or not there exists one single real slip line at collapse. The analysis based on total and
local equilibrium of a single line leads to a weak maximum (or no extremum at all) and therefore
it produces unsafe predictions for slope stability problems.
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A variational fallacy

G. DE JOSSELIN DE JONG*

It is unfortunate that valuable information con-
cerning fallacies in soil mechanics can get lost in the
course of time. This has happened with the use of
variational calculus in slope stability problems.

The variational method, for determining the
critical slip surface as the surface that minimizes the
load at rupture, was presented in soil mechanics by
Kopacsy (1957, 1961). He published in the 1957
London conference a three-dimensional solution,
and in the 1961 Paris conference the two-dimen-
sional version of it. The shape of the surface is
suitably established in the 1957 paper by vector
analysis and described by equation (16) of that
paper which, with @ defined by equation (20), can
be expressed in words as follows.

The normal to the critical slip surface shown in
Fig. 1 at some generic point P, has a constant angle
¢ with a plane through the line PQ, which connects
P to its projection Q on an axis along a vector g
fixed in space. This plane is further tilted with
respect to ji by an angle, which is equal to the angle
between the lines PQ and PR, with R located on the
axis of g at a constant distance of magnitude
(Z. /L. @) from Q.

The location in space of the surface and of the
axis of 1, and the coefficients of the vectors /4 and g
are obtained from equilibrium and boundary con-
ditions. In the conclusion of the 1957 paper it is
remarked that equation (16) defines a screw surface
and, in the 1961 paper, it is shown that this solution
reduces to a logarithmic spiral in the two-dimen-
sional case.

This elegant result shows that the variational
method is worthy of attention. But, although
available for many years and apparently useful for
solving a basic problem in soil mechanics, the
method was not pursued by leading scientists. The
reason for this, which may be unknown to the
general soil mechanics public, is that the minimiza-
tion aspect of Kopécsy’s analysis was shown to be
false in 1961.

The falsification concerns not Kopéacsy's papers

* University of Technology, Delft.

89

directly, but an independent study by Gibson &
Morgenstern, which was rather similar in character
and also resulted in logarithmic spirals. Their
analysis was examined by a mathematician who
drew attention to a subtle fallacy in their reasoning.
It was shown that such curves are not limitative, but
only have the property that the moment is indepen-
dent of the normal stress distribution. It was pointed
out that the method breaks down, but how this is
related to a defect in the variational sense was not
explained. Neither their work nor the refutation ofit
was ever published, but reference to it was given by
Morgenstern (1977) in his general report at the
Tokyo Conference.

The essence of the defect is that a degenerate
functional is involved. This can be readily verified
since Petrov's (1968) book appeared. In this book,
Sections 29 and 30 are devoted to degenerate cases
(which are hardly considered in other textbooks)
and their properties are extensively treated. The
degenerations are classified according to the theory
of Krotov, who distinguishes five kinds. Petrov's
description is followed here. For the details of the
slipline analysis it is convenient to refer to Baker
& Garber’s (1978) paper.

Their treatment is a modification of Kopécsy's
1961 analysis, improved by the introduction of a
safety factor. The essential defect is not removed
and the result is still a logarithmic spiral.

The intermediate function g, defined by equation
(9.1) in the paper by Baker & Garber, has two
variables: the normal stress distribution o(x) and
the height of the slip surface y(x). The functional is
degenerate, because g does not contain ¢’ (a prime
indicates a derivative with respect to x) and is linear
in y'. In the Krotov sense this creates a degeneration
of the third kind with respect to both ¢ and y.

In Petrov’s book the simultaneous occurrence of
two degenerations is not treated, but it can be
expected that such a combination reinforces the
degenerate character, rather than ameliorating the
situation. Consider therefore only ¢. Because of the
absence of ¢' the functional G, defined by equation
(9.1), has its extreme value only for particular
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Fig. 1. Kopicsy's solution
distributions of o, and the possibility exists that
discrete jumps between these distributions are
involved. In order to establish these distributions it
is necessary to investigate g,, (the second partial
derivative with respect to ¢). But g is only linear in
0, S0 g,, vanishes. In that case there is only an
extremum of G (maximum or minimum) il ¢ is
bounded, and the extreme value is obtained by
giving ¢ one of the bounding values. In the
mechanical sense o is not bounded, because stress
states are limited in stress space by a cone, which
widens with increasing values of . There is no
maximum value for ¢ and there is no upper bound.
Therefore, no extremum exists and the method
breaks down. There is a lower bound for o, which is
zero for cohesionless soils or tensile if there is
cohesion. This lower bound is irrelevant here,
because it produces no valid solution for the entire
slip surface.

At this point it can be concluded that Kopdcsy's
analysis is not meaningful, because a functional is

eritical slip surface

considered which has a degenerate character and
possesses no minimum. This is due to his particular
formulation of the slope stability problem in terms
of the variational calculus. It is unfortunate that the
falsification remained unknown. It would have
prevented the recent revival of this variational
fallacy.
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Reap\mse of pore pressure meter on variations in loading conditions of su.rmundmg soil i is retarded by the
coeffi-

necessity that pore water has to enter the instrument. This property is introd

ed as an instr

cient influencing the boundary conditions. With regard to the surface of the instrument, two types are

considered : a rigid type and a cavernous type. At #=0 for unit step loading, consolidation has not yet started

and the response of the mstmmﬁnt depends on shea: modulus of seil only. Calculation of response as a func-
th 3

1

tion of time

n theory and is established with the aid of spherical

solutions for simple harmonic and unit step Ioad.m,g cond.mons

1. INTRODUCTION

HE newest type of pore pressure meter in use with

the Delft Soil Mechanics Laboratory* consists of

a cylindrical instrument of about 20 cm in length and

3.6 cm in diameter embedded in the soil mass. The body

of the instrument contains a diaphragm-type pressure

transducer connected by a coaxial flexible cable with the
measuring apparatus above soil surface.

The response time of previous nonelectronic types
amounted to several days, because of the compliance
of the diaphragm and the very great flow resistance
encountered in the soil by the water that has to actuate
the manometer. By constructing the diaphragm as rigid
as practically feasible the response time was reduced to
15 minutes.

A further reduction of the response time to a fraction
of a second was obtained by a device resulting from an
analysis of pore-water movement and soil deformation.
This study forms the subject of this paper.

We shall treat the influence of simple harmonic load-
ing conditions of the surrounding soil mass and by
integration over the whole range of frequencies, using
Fourier’s integral, obtain the influence of unit step
loading.

‘CaPm:in've pressure-transducer and electronic circuitry de-

1 S. L. B Consulting Engi Delft, The
Netherlands.

To simplify the mathematical treatment the instru-
ment is idealized and instead of cylindrical symmetry a
spherical symmetry is assumed. If idealized in this way,
the pore pressure meter consists of a sphere with radius
7o (cm). The following two types will be considered.

1.1 The Rigid Type

Here the diaphragm is in contact with a water volume
enclosed in a rigid chamber. Holes in the wall form the
connection between this water volume and the water
in the pores of the soil.

We shall represent this schematically as a rigid, pervi-
ous sphere (Fig. 1a).

1.2 The Cavernous Type

Here the diaphragm is in contact with a water volume
that fills a cavity in the soil. The connection between
this water volume and the pore water is direct.

We shall represent this schematically as a spherical
cavity (Fig. 1b).

Indicating by AV (em®) the quantity of water neces-
sary to account for the deformation of the diaphragm
under water pressure, we introduce analogous to the
compressibility coefficient a of the soil (see Sec. 5.1) a
coefficient b (cm?*/kg) for the instrument in such a
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way that

AV/ (§)rred= bawo, (1.1)
in which wy (kg/cm?®) indicates the pressure in the water
enclosed in the sphere.

When the surrounding soil mass is loaded, water
pressures are generated in the pore water and in order
that the pore pressure meter may register this, a volume
of water AV must enter the chamber.

For the rigid type the volume of water enters by
percolation through the holes in the wall. This water
can only be supplied by the pore water squeezed out of
the surrounding soil mass. For the cavernous type the
volume AV arises principally from the deformation of
the cavity, while an additional part is furnished by pore
water coming out of the surrounding soil.

We shall proceed to formulate this action mathe-
matically by first establishing the boundary conditions.

2. BOUNDARY CONDITIONS AT r=r,
2.1 Water pressure at r=rg

The rigid type. If we may apply Darcy's law of perco-
lation. The water volume (), cm® entering through the
pervious wall with a surface area 4mr¢® is related to the
pressure gradient in the pore water dw/dr in the soil at
r=ro, by the expression:

7 (801 81) = kdwre (9w/ or), (2.1.1)
in which v, (kg/cm?®) denotes the density of water and
k (cm/sec) the permeability of the soil (the permeability
of the wall of the pore pressure meter is considered large
in comparison with % of the soil).

Since for the rigid type AV=(,, we obtain by
using (1.1)

ibro(dw/ol)= (k/vyw) (Bw/or) at r=r. (2.1.2)

It is assumed here that wy, the pressure in the meter,
is equal to w, the pore pressure in the soil directly sur-
rounding the meter, w;(r=ry—0)=1(r=r,+0).

The cavernous type. Here the water amount AV is the
sum of (O and the volume change produced by the
deformation of the cavity Q.. If we introduce the dis-
placement #, (cm) of the surface of the cavity in a
radial direction, this volume is given by Qs= —4wrou,.
Thus we obtain

Ybro(8w/at)= (k/v.) (8w/dr)— (3u./31)
i at r=r. (2.1.3)
These expressions relate to the spherically symmetrical
case,
In the case when the variables w and u, are axially
symmetrical and are functions of ¥ (Fig. 2) the second
member of Egs. (2.1.2) and (2.1.3) must be integrated
over the range 0< <. (See Sec. 4.)
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spherical
cavity

Fig. 1. Pore pressure meters of two different types.

rigid pervious
gphew

2.2 Soil skeleton at r=r,

In the rigid type the boundary condition at r=r is im-
posed on the soil skeleton by the rigidity of the sphere:

(2.2.1)

In the cavernous fype the wall of the cavity can dis-
place itself freely and the stresses are determined by
the condition that there is equilibrium between the
water pressure wy in the cavity and the radial stress in
the soil mass o,* (negative sign for compression).

W= —g,*

u,=0 at r=r,

at r=r, (2.2.2)
0=74* *

Here —o,* indicates the total radial stress acting on
the soil skeleton and water combined, so we can divide
—a,* into — ¢, the radial stress on the grains only, and
w the water pressure in the pores} by putting

#*

—o*=—otw. (2.2.3)
These stresses act in the soil, that is to say for r>ry,
while 1y is the water pressure in the cavity r<ro.

T We shall use an asterisk to denote stresses and elastic con-
stants associated with the combined system, water and soil
skeleton, and omit it in the case of the grain skeleton alone.
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Fie. 2. Definitions of symbols used.

It follows from (2.2.2) and (2.2.3) that
wy(ro—0)= —a,+w(re+0). (2.24)

Normally there is no difference between w(ro—0) and
w(ro+0), except when the loading conditions are dis-
continuous with regard to time, as for instance at the
moment {=0 for unit step loading. We shall treat this
special situation in Sec. 4 and use condition (2.2.2) then.
For the case of continuous loading conditions w (r—0)
equals w(r,4+0) and the boundary stress condition
becomes

(2.2.5)

ar=7u=0 at r=r.

3. BOUNDARY CONDITIONS AT r—=

We shall assume that the dimensions of the pore
pressure meter are so small in comparison with the
distance to the boundary of the soil mass wherein it is
embedded that we may consider the stress conditions of
the soil as homogeneous. To simplify the formulas we
shall also suppose that this homogeneous stress condi-
tion holds up to r—e. As the disturbing effect di-
minishes proportional to r—* the errors introduced by
these assumptions are negligible.

In addition we shall suppose that in the surrounding
soil mass the rate of squeezing out of pore water is slow
in comparison with the response studied here. We may
therefore simplify the condition for r—e= to an im-
permeable coat, upon which the exterior loads act. Thus,

we may write
dw/dr=0 at (3.1)

Regarding the stresses on the boundary at r—e= we
must consider the general case where there are three

r—roo,
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principal stresses of unequal magnitude: §,, S,, S;. If
we know the influence of one principal stress we may
obtain by superposition their combined influence. Tak-
ing the principal stress S in the direction ¢=0, = we
obtain as boundary condition:
o f=—Scosy oyF=—Ssiny e¢*=0

=5 sing cosy Tt=r1e*=0.

at r—ree.

(3.2)

Because of the simpler treatment involved we shall
finally derive a solution to the case where a uniform
pressure P acts in all directions. In such a case we have

Tt =Tt =T*=0,
at r—oo,

o t=g*=0*=—P,

(3.3)

The conditions (2.1.2), (2.1.3), (2.2.1), (2.2.2),
(2.2.5), (3.1), (3.2), and (3.3) are necessary and suffi-
cient to determine the solution to the problem explicitly
in the different cases indicated.

4. SITUATION AT (= -+0 FOR UNIT STEP LOADING

Because of its elucidatory character we shall first
determine the response of the pore pressure meter to
unit step loading at the moment of loading (¢=+0).
This is very simply feasible by virtue of the following
considerations.

By neglecting mass acceleration and viscous retarda-
tion, we shall suppose, as is usual in the literature on
consolidation, that any loading increases instantane-
ously the stresses in the soil mass, generating elastically
the deformations that are therefore instantaneous too.

Assuming that in comparison with the compressibility
of the grain skeleton of the soil the pore water is incom-
pressible, at the instant of loading no volume change
of the soil will take place. This may be expressed by
putting

w=} for t=+40, (4.1)

where »* is'the Poisson’s ratio of the combined system,
water and soil skeleton. As the water is gradually ex-
pelled from an element at any point in the loaded soil,
the Poisson’s ratio »* at this point decreases and tends
to the value of », where »(<}) is the value of the
Poisson’s ratio of the grain skeleton alone.

A result of some importance concerning the value of
E* may be derived in the following way. The water
enclosed in the pores can prevent volume changes from
occurring, but not shearing strains. This implies that
shear stress in the combined system is carried by the
grain skeleton alone. It follows directly that +*=r, and
hence that the shear moduli G* and G are equal. Then
by a well-known relation in elasticity theory,

G*=E*/2(14+v*)=E/2(14v)=G at all times, (4.2)
and in particular

$E*=E/(14+v) at t=+40, (4.3)
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The relations (4.1) and (4.3) enable us to describe
the condition at {=+0 as a function of the elasticity
constants of the grain skeleton E and v.

The relations between the stresses in the combined
system and grain skeleton only, which have already
been stated, may be condensed to

(@.4)

By adding the normal stresses in three perpendicular
directions we obtain

— (o1 os* 4 05%) = — (01400t 03)+ 3w,
As the volume dilatation e, which is known to be

equal to
e= (1=2) (o1t o9t03)/E, (4.5)
is zero at {=+0, we obtain, by virtue of the fact that
v }!
— (o1t oo+ o*) = Iw= — (er*+ onr*+o1r®)
at i=40.

—g*=—g+w and r*=r7,

(4.6)

ro\* [(6=35v*)+5(4v*—3) cos¥1(ro/r)*—[3—9 cos®¥](ro/r)*

PORE PRESSURE METERS

in which o;* etc., indicate the principal stresses in the
combined system.

With the aid of these general considerations we shall
proceed to determine the conditions at {=--0 in our
special case,

Under the influence of the stress system (3.2) and
the boundary condition for the cavity (2.2.5), the stress
distribution in the soil can be determined by the aid of
stress functions.! We shall not enlarge on these compu-
tations because they are easy to carry out and by apply-
ing the following expression for the radial displacement
as derived from a stress function, &:

*

1+ P .
E’I —*) cosy

=
a4 adb 1o0d

e e i —“ @)
ar ar rar

the reader may verify that . is given by

1+»* [ v* 006\0]54-'} (
i ¥ oy wol —
T °{ 1+ \r

In this expression wy is the pressure in the water
contained in the cavity and caused by the volume
change AV, which is, in turn, caused by the displace-
ment of the wall of the cavity. We may obtain AV by
integration over the surface of the sphere

—AV= fﬂ 2xrg sing - te,rodiy. 4.9)
—AV={[(1+v*)/2E*}(—}5+w)
—[(1=20%)/3E*]S)daré.  (4.10)
By the use of (4.1) and (4.2) it follows that
— AV=4ar[—§S+w,]/4G*
=dmrd[—354we]/4G.  (4.11)

However, we have a relation (1.1) between AV and
wq, by which we may eliminate AV obtaining:

wy=18/(1+4$5G). (4.12)

This result indicates that the cavernous pore pressure
meter registers a pressure of nearly 15 so long as b is
small in comparison with 1/G. As in the newest type b
is of the order of 1/100G, where ( is the shear modulus
of the stiffest clay we have to deal with, the error in-
volved is less than 1 or 2 percent.

We have shown in (4.6) that the water pressure in
the pores of the soil is one-third of the sum of the

2(7—5v%) _S]' @)

effectively the actual water pressure in the pores of
the soil.

In the case of spherically symmetrical stress P at
infinity all expressions have a simpler form, and it is
easy to verify that the boundary conditions (2.2.2) and
(3.3) are satisfied, together with those of equilibrium
and compatibility, by taking

= —[(1+9*)/2E*)(P—wi) (ro*/r*)

—[(1=20*)/E*]Pr=— (P—wo)ry/4Gr, (4.13)
a¥=— P4 (P—u) (ro/7), (4.14)
og*=—P—4(P—wo) (ro/r)". (4.15)

By virtue of the identity of (4.10) and (4.13) the
resulting water pressure w, in the instrument is the
same as given by (4.12) with P=4S.

The water pressure in the soil mass itself is
w=—4(0,*+204*)=P. There is therefore a jump in
the water pressure at r=ry with a magnitude of ¢ PIG.
It follows therefore that, the water gradient dw/dr
is infinite at that surface and percolation starts with
infinite velocity giving a vertical slope of the water
pressure registered by the meter as a function of time.
The same effect occurs in the rigid type, but in this case
the starting point for the water pressure at i=+0 is
zero, because no increase of water pressure has been
possible before water entered the holes by percolation.
In Fig. 3 an account is given of the stresses around the
instruments in the different cases.

principal stresses. Therefore, neglecting the influence of
the denominator of (4.12), it follows that the water
pressure, as measured by the cavernous type meter, is
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! 8. Timoshenko, Theery of Elasticity (McGraw-Hill Book Com-
pany, Inc., New York, 1934), p. 326.

Soil Mechanics and Transport in Porous Media



G. DE JOSSELIN DE JONG

926

LT A
[t>0]

o)
T %

T=
=)

F1G. 3. Stresses and water pressure arauml pcr\rluus sphere and spherical cavity
).

(arrow pointing up

5. DETERMINATION OF THE CONSOLIDATION
PROCESS AROUND THE PORE
PRESSURE METER

To determine the water pressure registered by the
meter as a function of time we need a consolidation
theory in 3 dimensions. Such a theory has been de-
veloped by Biot.? For the case of saturated soil the basic
equation is derived in the form

(k/ay.e)Vie= e/, (5.1)
where
a=compressibility coefficient=(1—2¢)(14»)/(1=»)E
(em®/kg,)
k=permeability (cm/sec), <y,=density of water

e=volume dilatation of grain skeleton, and /= time.

The physical meaning of this result may be appreciated
if we consider the well-known relation from elasticity®
in which equilibrium and compatibility conditions are
taken into account,

(1/a)V*e+ (60X /ax)+ (8Y /ay)+ (0Z/8z)=0. (5.2)
The body forces X, ¥, Z in our case are furnished by
the water gradients X' = — dw/dx etc., so that

(1/a)Ve= V. (5.3)

Now, by extending Darcy’s law of percolation to the
case of 3 dimensions it is easy to deduce that the rate
of increase of volume d¢/d! necessary to store the excess
of water at a certain point is given by

B¢/ dt= (k/vw) V0. (5.4)
A combination of (5.3) and (5.4) gives the basic equa-
tion (5.1).

In order to obtain an agreeable treatment of the
problem we shall consider simple harmonic loading
conditions for r—e,

P=P exp(iwt) in cond. (3.3).

2 M. Biot, J. Appl. Phys. 12, 155 (1941).
# See reference 1, p. 198,
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All variables influenced by this harmonic effect as for
instance ¢, will be written e=¢exp(iwt). So we can
divide all expressions throughout by exp (iwf) and retain
the overdashed characters. We get for (5.1) in the case
of axially symmetrical stress distribution

V’“a a,( a,,) @;(S%)]“Q’ "

where
(T
=iw(—),
¥ k

which has the solutions
e=r LA Ty (igr)+ AN agy (igr) s, (5.6)

where J and N denote, respectively, Bessel and Neu-
manns functions,! and ¥ Legendres polynomials.® To fit
this solution to the purpose of our problem we need such
a combination of J and N that for r—e the expression
vanishes. From the theory of Bessel functions it is
known that this is accomplished if As=i4,. We then
obtain from (5.6)

= A,i " [rig 14 exp(—gr) Sy (2gr) ¥,

in which S are polynomials in (1/¢r).®

This equation for & permits us to compute the solution
to the axial symmetrical problem that arises when
introducing the true form of boundary conditions. For
instance location of the holes on rigid type, upper part
of the cavity formed by the instrument, etc. Computa-
tion would then require a treatment with many stress
functions @ derived from (5.7) by

e=[(1—2»)(14-v)/E]{cos¢d/ar
—singr'a/ap} VP,  (5.8)

4 Jahnke and Emde, Tables of Functions (Dover Publications,
New York, 1945), pp. 144, 146,
5 See reference 4, p. 107,
* See reference -1, p. 136.

6.7
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Fic. 4. Graphical representation of formula (6.6) : response of pore pressure meter on simple harmonic loading.
Assumptions: b/3a=10"2, ro=1 cm, aye k=107 sec/cm?, »=14.

In general: in all cases, where the solution of stress
distribution under static loading is known as derived
from stress functions, the consolidation problem is
solved by replacing the dilatation-stress functions which
satisfy V*V%b=0 by corresponding functions of the
form (5.7). The functions V=0 need no alterations,
because #=0 also satisfies (5.5), neither the rotation-
stress-functions.

We shall limit ourselves, however, to the solution of
complete spherical symmetry, because this leads to a
simplification in the treatment. The same solution for wy
asa function of time is then obtained for 3 equal stresses
(P=14S) at r—e as well as for 1 principal stress (5)
there. This conclusion has already been proved for the
situation at /=0 for unit loading (see the identity of
(4.10) and (4.13)) and that it holds here may be ac-
cepted without proof.

6. SPHERICAL SYMMETRY
The solution needed is that of order n=0
(6.1)

We shall not use a stress function now, but %, as basic
variable as all stresses and boundary conditions can be
written as functions of %, by virtue of the symmetry.
For instance &=r—2d/dr(ii+*), which gives after in-
tegration:

.= —AL(g) "+ (gr) T exp(—gr)—Br=. (6.2)

In order to describe the boundary conditions with #, we
must firstly dispose of . This is simple by virtue of (3.3)
which can be written (1/a)d*/dr*(ér)=a*/0r(fr), and
which after integration becomes (1/a)e=®—C,—Cor L
We may omit the term Cy—!, which contributes a water-
flow radiating from a point source at the origin and is
irrelevant here. Therefore, it follows that

(1/a)i=a—C or @=C+(1/a)r2a/dr(fi ). (6.3)

Also &, and &.* may be written in terms of @, in the
following way :

G =7, —@=E/(14v)[oa./ar+ e/ (1—2v)]—w. (6.4)

e=Artexp(—gr).

96 Soil

We can now express the boundary conditions in terms
of #I,. For the rigid type we need: (2.1.2), (2.2.1), (3.1),
and (3.3). For the cavernous type: (2.1.3), (2.2.5), (3.1),
and (3.3). The condition (3.1) is already satisfied by
making As=14,, in (5.6). There then remain three con-
ditions to be satisfied for each type. The integration
constants to adjust are 4 and gpm (6.2), and C in
(6.3). It can be verified that their values are

A=—Pidgrs exp(gro)/N,
B=Pbro'[ (pa—m) (gro)*+- (gro)+11/N,
C=F with N="[ulgro)™+(gro)+1],

(6.5)

where

p=p, for rigid type=>4/3a,

p=u, for cavernous type=>5/3a+[(1—»)/2(1—2v)].
With these values we obtain finally for the water
pressure iy at r=rq (that is the pressure registered by
the meter)

@y=P(1— (b/3a) (gre"/N)}. (6.6)

The complex value of ¢ [see (5.5)] leads toa complex
value of 1, @y being out of phase with P. In Fig. 4 is
shown the relation between P and @ in the complex
plane as a function of the frequency w/2x. The range of
frequencies where the rigid type can be used is from 102
Herz down to zero, while the cavernous type can be
used for all frequencies,

The response of the pore pressure meter on unit step
loading is obtained by using the Fourier integral

wn=--f erp(wt)

Putting i in a more manageable form
b ¢ 1 }
3a (q+a) (g+8)

(6.7)

I—-——

1 [ 1 1 } ©8)
30 u (a—Blg+8) (g+a) ’

2|
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F16. 5. Graphical representation of formula (6.9). Response of pore pressure meter on unit step loading. Rigid
pervious type with some typical values of (3a/4b).

the integral may be expressed in terms of tabulated o
functions in the form (see Fig. 5): erfcg=2r1 f; exp(—XN)dx,
wy=P{1— (5/3a)r0(1~ ) exp(a’e) erfc(a®t)} k= k/aye (see (5.1)).
—B exp(8a) exfe(B)V]), (6.9)
o 3 For the definition of p see (6.5) and of b/3a see (1.1)
which is valid for all £>0, and (5.1).
Putting u=p, and {=0 the expression (6.9) reduces
where P=value of step loading at r— to (4.12), Since b is small in comparison with 3a the ex-
pression (6.9) for the rigid type becomes approximately
a=[1+(1—4u)1/2uro, wo=P{1—exp(y’l) erfc(vt)})
with
B=[1— (1—4u))/2ur,, v=(3a/br). (6.10)
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Application of Stress Functions to Consolidation Problems

Application des Fonctions d’Airy aux Problémes de Consolidation

by G. pE JosseELIN DE Jowg, Ir., Sub-director of the Soil Mechanics Laboratory, Delft, Netherlands

Summary
The number of stress functions neoessary and sufficient for the
of p n axial try is three: one
for icn, one for i :l.nd.:l i ViIF=0.

The boundary conditions referring to the grain skeleton, as well as
to the pore water, are then accounted for.

The use is shown for the case of a rigid sphere embedded in an
infinite soil mass and loaded with a vertical force, and for the case
of a semi-infinite solid loaded uniformly over a circular area of its
surface, considering both an impervious and a pervious boundary.

A useful method in elasticity for determining stress-distri-
butions is the application of stress functions. In order to
satisfy the conditions of equilibrium and compatibility these
functions, F, must be solutions of the equations

ViV2F=0 or VIF=0 (D
From these functions the stresses and strains are obtained by
differential operations (Love, 1892).

When body forces act inside an elastic medium, the basic
equations for the stress functions change, and it has been shown
(by RayLEiGH, 1894; Lamn, 1895) in the case of vibrations that
two types of stress function are needed, one for compression
and the other for rotation.

When pore water is present in a soil, this water causes hydro-
dynamic pressures which, by their gradients, act as body forces
on the soil.

1t has been shown (D JosseLin pe JonG, 1953) how this con-
ception leads to Biot's (1941) basic equation for consolidation
in three dimensions

Ve = defor L@
where ¢ = kfay,. = consolidation coefficient; k= permea-
blhly e = density of water; a = compressibility of grain
;e = vol dilatation of grain skel yand r = time,

For the water pressure w we then find
(1/a)Vie = Viw RPERO £ |

These formulae refer to the compression and are based on the
supposition that the pore water is incompressible compared
with the soil skeleton. The pore water therefore takes part
of the normal stresses, and because of its viscosity the dissi-
pation of superfluous water is slow and the water pressure
decreases gradually.

Similarly the viscosity of the water may influence the defor-
mations of the skel itself, especially when the stresse
between the soil parliclcs are supported by bounded water of
gmaler \uscosmf (as in clay). We will, however, in this study

1 the time d d of the defi ion moduli and

suppose that all strains of the r;ram skeleton take place simul-
ly with the by these simplifying sup-
positions the shear strains are not retarded, the stress functions
for the rotation are equal to those in elasticity and we will, in
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Sommaire
Le mmbm dc fammns de tension necessaire et suffisant pour
les p de fation, en symétric axiale, est de
trois. La se ala la de 4 la
rotation et la troisié 4la dition V2F = 0.

conditions aux limites sont alols satisfaites, aussi bien pour la phase
solide gue pour I'eau interstitielle.

Une application est faite au cas d’une sphére rigide, placée au sein
d’un massif de terre indéfini, et chargée verticalement, d'une part, et
au cas d’un massif semi-infini supportant une charge circulaire uni-
forme, & sa surface, d'autre part. Ces cas sont traités dans les deux
hypothéses de surfaces de contact perméables ou imperméables.

our results, obtain i
strains.

By separating the effects of shear and compression we can
appreciate their importance and decide which of the two must
be studied the more according to the soil properties.

Tan (1954) has shown how the time depeudence nf lhe
deformation moduli can be introduced from the 1
However, the computations become too intricate even with
over-simplified flow properties of the soil.

Finally we will suppose the grain skeleton to be an elastic
medium with shear modulus G and Poisson®s ratio p.

Thus the previous introduced compressibility coefficient, a,
is equal to

defor due to shear

a={1- 207201 — WG

In reality there is no resilicnce and the relationship between
stresses and strains is not linear.

Axial Symmetry
For brevity we will treat here the case of axial symmetry,
In terms of displacements u, and w. (wy; = 0 because of sym-
metry) we can express the volume dilation € and the rotation
. 835
18
€=~ -—(ru,} + (8u,/éz) ce. (4)
vz = (Bugfor) — (Bu,/8z)
‘We now introduce the stress functions E and 2 in the follow-
ing way:

2Gu, = (| — 2uN@2Eférez) — 2(1 — p)(#0(erdz)

26u, = (4 — 2)@Efozt) + 201 — ) 2] %?]) wine 19
By inserting these expressions for the d in expres-
sion 4 we obtain:
2Ge = (1 — 2,;)3\'-25
(]

26w, = Al = p Wﬂ

which mdlcale how the stress functions are separated according
to pression € and 1 Wep




The operator V2 in the case of axial symmetry is equal to

rala) + 22

The determination of the stresses from the stress-functions
is obtained by application of the usual expressions for the
stresses in terms of displacements, as given by the theory of
elasticity:

oy = 26[(pf(1 — Zp))e + du.féz], ete.

Elaboration of these relations then gives

3 -

0= ZVARE + 21 — W] + (1 — 2E — 2(1 —)Q)
a a @2

o= -a—vzvf{yE] + E;,_P[{! — 2pE — 201 — )i

)]

a g1é

0o = ZVARE] + 7 ZI(1 = 20E — 21 — 2]

é

T = 2V = 2] + 2Ll = 2E — 201 — )2
So far compatibility and elasticity have been accounted for.

The further consideration of equilibrium necessitates that

(@o,fér) + [(o, — ogfr] + (@rJéz) = R ...
(fo,/0z) + (7 .fer) + (r,.fr) = Z
where R and Z are the body forces cxerted by the water
gradients in radial and axial directions respectively, so that

R = 8wjér and Z = 8w/éz.
A combination of expressions 7 and 8 gives

8)

(- ,‘)[a‘!i;ws 2 a_a‘-wg] =awfer ... ()

a- -“)[azz" i+ 1 2(rzv20)] = owjoz

If V2¥20Q2 = 0, it is easily verified that equations 9, 3 and the
first of 6 are satisfied by

w= (1l — p)[(8/ez) VIE — (8fez) V2] .... (10)

In equations 5, 7 and 10 all displacements and stresses in-
volved are expressed in terms of the stress functions E and £2.
In addition, we need the basic equations which have to be
satisfied by E and £2 in order to know which forms of stress
function are applicable. From equations 2 and 6 it can be seen
that E has to satisfy

VIE, = (2E;/21) or V2E; =0 . (an

A~ ~“th respect to the we use an for w,;

deri from 8 by elimination of R and Z, and by introduction
oftl  splacements we obtain:

=0

& (1 ey FLIT
Er(r ar)+ az2

Introduction of equation 6 shows that this condition may be
satisfied if £ is a solution of onc of the two following equations:

VIV =0 or VAL =0 .. 12

From these basic equations 11 and 12 we obtain 4 types of
stress function: E;, E;, £, £25. The two functions E; and 2,
are not different from the function F; satisfying V2F; = 0, and
if we take E; = 12;, the strains and stresses derived from them
are identical to those derived from F), as is easily verified. So
there are ially 3 stress functions to satisfy the boundary
conditions.
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In elasticity there are always, for axial symmetry, two stress
functions and two boundary conditions: 2 stresses are given,
or 1 stress and 1 displ or 2 displac In the
consolidation problem there is one additional boundary con-
dition which refers to the pore-water; so the third stress function
is not superfluous but is y for the analysis to be uniquel
determined.

To show the use of the stress functions we will first give the
solution for a rigid sphere embedded in an infinite soil mass and
loaded with a vertical force, and then the solution for a semi-
infinite body loaded over a circular area of its surface. In both
problems we will consider two different boundary conditions
with respect to the pore-water: (A) the boundary is pervious
and the pore-water pressure there is zero; (B) the boundary is
impervious so the gradient of water pressure normal to the
surface is zero.

Rigid Sphere Embedded in Soil

For the case of a spherical body embedded in a soil mass we
need solutions of equations 11 and 12 in the form of spherical
harmonics, which are of the type:

Ey = AR-1e-985, (g R)¥F,
2, = BR-7VY,
=0, = CR-n-D¥,

We adoptcd the follo'wmg notations R = (r? + z2)* = spherical
3 Suit = pol ial in gR as defined by Tan (1954,
p. 136); ¥, = Legendre polynomial of first kind, Tax (1954,
p. 107); 4, B, C = arbitrary constants, adjustable according to
boundary mnd.nmns, qg= }c)l where 5 is the variable intro-
duced in H le or op lus to replace &/ér.

‘The solution for E; “has been introduced by Rayleigh in
dealing with vibration problems. Below we will indicate the
Laplace transformations of the displ and by a
bar over the symbol. Loads are supposed to be applied step-
wise at ¢ = 0, so the load P when transformed equals P/s.

Considering a rigid sphere with radius Ry, loaded at time
t = 0 with a force P in the Z-direction, we have to satisfy the
following boundary conditions at R = R, The rigidity of
the sphere gives

. (13)

i, =0 . (14)

The force P is supported by the sum of all the stresses from
water and soil acting together on the surface. This gives

i, = constant

(Pls) = ZJ- 2aR2sin W d Wsin V.5, + cos ¥ (g, — w)]
. (15)

These two conditions refer to the grain skeleton and are suffi-
cient in the case of an elastic medium to determine the stresses
uniquely. The additional condition referring to the pore-water
is: (A) the sphere is pervious; (B) the sphere is impervious
giving respectively

(A)y w=10

(B) éwféR =0 . (18)

These three boundary conditions are satisfied by taking the
solutions 13 with n = 0, giving

E, = AR-'e~9R, 0, = BR, E,=,=CR1

waas EETD

Comp of the displ and stresses may be

performed by the introduction of these stress functions in the

expressions 5, 7 and 10. By introduction of these stresses and
displacements further in the conditions 14, 15 and 16, it is easy

a
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to verify that the boundary conditions are satisfied by the
following values for the constants:
B = Pf8a(l — p)s
A = 2BeaRo[g?N
C = 3B{(1 —pRe® + (1 — 2u)(3 + 3¢Ro + (gR))Vg®N
where N = 1 4 gR, for the case (A); N =1+ gRo + 1(gRo)*
for the case (B). Inserting these in the expression for the
vertical displacement gives finally

2Ga, = (P[3mRes)1 + (1 — 2p)/4(1 — p)N]
From this result the reaction of the sphere to a stepwise loading
of P is obtained by the inverse transformation giving for case (A)

26u, = (P3R)1 + (1 = 2){4(1 — p))[1 — e’ferfdf)(*]} |
18a

and for case (B)
2Gu, = (Pf3=R}{1 + (1 — 2p)f4(1 — p))
[1 — cos (27)(1 — S(27)) + sin (27}1 — C2™N]} (18b)

where § and C indi Is (MANDEL, 1953,
p. 35) and T = 1c/Rg%

Fresnel's i

(] 8

~— U, (PIEGATR, )

125

o 25 é 75
/Ry
The vertical displacement of a vertical loaded rigid sphere
which is, (A) pervious, (B) impervious
Déplacement vertical d'une sphére rigide sous charge
verticale (A) perméable, (B) imperméable

Fig. 1

Fig. 1 shows these displacements as a function of time, for
e =10. The term between the square brackets in equation 18
in both cases (A) and (B) equals 0 for ¢+ = 0, increases rapidly at
first and then gradually attains a value of 1 at f = o (without
oscillating). So the displacements become: in cases (A) and (B)

2Gu, = (P37 Ry) t=0
2Gu; = (P[3aR[(5 — 6p)/4l — p)] 1= =

We notice that there is an i t and
an after-effect, which is zero if p = ¥ (i.e. the medium is in-
com, essible), and which attains a maximum value of } of the
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instantaneous settlement for g = 0 (i.e. the extreme case of
compressibility for a material). The instantancous displace-
ment is due to the shear deformation which, by our initial sup-
position, can take place unhindered by the enclosed water.

We see, therefore, that for the embedded sphere the shear
properties of the soil dominate the course of the displacement
and the consolidation effect is very small,

Surface Loading of a Semi-infinite Body

For the case of a circular loaded area on the surface of a
semi-infinite body, the boundary conditions at z = 0 are as
follows: A total load P uniformly distributed over a circle of
radius ry gives a distribution of normal stress o, as a function
of r equal to

& = — (Pf2mre) f:.r.,(ar).r.(ﬁw.,)da el (19)

This expression implies that the stress is zero outside the loaded
area, J, is Bessel's function of first kind, order n. The con-
dition may be that there are no shear stresses over the whole
surface, giving

Te=0

vea (20)

The third boundary condition refers to the pore-water and we
will consider two different cases: (A) the surface is pervious
and the drainage of squeezed out water is so effective that the
pressure is zero.  This gives

w=0 ceee (21)
(B) the surface is covered with an impervious layer, so that
owfoz =0 ceee (22)

‘The stress functions that may be used are now (see also MANDEL,
1953)
Ey = de~=lyAr)  (8[22)2) = BeyAr)
E; = {2, = Ce%Jy(Ar) ... (23)
‘where
al =)+ g2 = A+ sfc

Again displacements and stresses can be computed using
these stress functions, and the boundary conditions are applied
in order to determine the values of the constants A, B and C.
‘We then obtain

A = (Pfsmrg) f: Ty ale — )M

B = Aa¥(e? — A)[222
C = A(l = 2p)a?(2l — p)A?

with M = [(1 — p)e + A) — (1 — 2p)A] (for the case A), and
M =[(1 — p)e + AWefd) — (1 — 2p)A] (for the case B). So

the displacement of the surface becomes

2Ga, = (Plsnrg) J: (N + (1 = 20/ MM Qrghdd
)

The inverse transformation leads finally to the reaction of the
soil to stepwise loading and gives with the aid of solutions from
the operational calculus
1-2p p
26u; = (Plrrof(l — ORLO.0) — LONT+ kL= o)}
«n. (252)
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26u, = (Plar)(l — WI2LO.0) = LO.D)
et D= Q= Bl (£ 40— 4,0)

. (25b)

—L(pE +n-gn-4)]

"’Ff"_*]3:(1—#}1-(1—2,,“"‘5‘”‘*1‘)}

where n = 3{(5 — 9;5);‘{1 — )it and
T f-”ff(qﬂ(fff’o’)’}-h( )’ 1 g

Because for r = 0, L(p, g) equals | for r = O and zerofort = w0
(if —p<g? and L(0,0) = | independently of time, both

1,

U, /(P26 Ty

23 10 20 30 40 50

Fig. 2 The vertical displacement of the centre of circular area loaded
by a unif distributed p (A) pervious surface,
(B) impervious surface
Déplacement vertical du centre d'une aire circulaire, chargée
Mognbe]'cmm' (A) surface perméable, (B) surface im-
perm:

expressions 25a and 25b give the same settlement for the
centre of the loaded areaat r = O and 1 = o, being respectively

2Gu, = Plrrg and 2Gu, = 2(1 — p)Pfarg
Here ag;un an i 1 is ob d in the
di defi ion of the soil under

shear. The after-effect is a,gmn zero for an incompressible soil
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(1 = 4) and has a maximum value for . = 0 which, at r = o,
becomes equal to the immediate displacement.

Fig. 2 shows how the settlement of the centre of the loaded
area progresses with time, for a soil having i = 0, in both cases
A and B, indicating the retardation due to the impermeability
of the surface.

Conclusion
In the cases considered the solm.lons for the va.rlallon of
settlement with time show an at

the moment of load application (r = 0) and an after-efect.

In the extreme case of compressibility (i = 0), this after-
effect is equal to 4 of the initial movement for the rigid sphere,
and is equal to the initial movement for the loaded surface.
The after-effect consists of a ive strain which is
retarded by the enclosed water but shows no great influence on
the way in which superfluous water can escape.

The instantaneous settlement is due to shear deformation
caused by shear stresses which, according to the previous sup-
position of clasticity of the soil, appear immediately. In
realir.y the shear deformation has a character resembling
viscous flow, aml n. is lbemforc retarded by a :nne effect.

As a ion of ion and viscous
flow properties n:eessrtatcs a still more complex mathematical
1 it seems prefe to

both effects and to
determine first the lick has an ap i
effect, and if not (as in the case of the rigid sphere) to con-
centrate on the viscous flow properties only, which are in-
dependent of the geometry of the loaded soil mass.

The author wishes to acknowledge the kindness of Dr R. E.
Gibson for his helpful discussion of this study.
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CONSOLIDATION MODELS CONSISTING OF AN ASSEMBLY OF
VISCOUS ELEMENTS OR A CAVITY CHANNEL NETWORK

PROFESSEUR DR IR G. DE JOSSELIN DE JONG*

SYNOPSIS

A cavity channel network consisting of many
cavities with different compressibility intercon-
nected by channels with different conductivity can
serve as a model for a consolidating soil in both the
primary and the secondary periods of consolidation.

The abundance of the constituting elements is
introduced as a continuous frequency function using
the spring dashpot assembly as a model because it
produces similar effects. It is shown how this
frequency function can be determined from test
results.

Un résean de cavités et de canaux comprenant de
nombreuses cavités & compressibilités différentes
reliées entre elles par des canaux 4 conductivités
différentes peut servir de modéle pour un sol de con-
solidation aux deux périodes, primaire et secondaire
de consolidation.

L’abondance des éléments prenant part 4 la con-
stitution est introduite comme fonction de fréquence
continue en utilisant l'ensemble & amortisseur
comme modéle parce qu'il produit les mémes résul-
tats. On montre comment cette fonction de fré-
guence peut étre établie 4 partir des résultats

'essais.

INTRODUCTION

In his book Grondmechanica, Keverling Buisman (1940) describes his observation that
soils show time settlement effects which differ from the original Terzaghi theory of consolida-
tion and which are especially pronounced in the secondary period. This discovery was men-
tioned in his paper to the 1936 Conference, but in his book and other publications (1938) he
develops in more detail the possible causes and the consequence of this phenomenon. Since,
however, all this was written in Dutch and never translated, some of his ideas which formed
the basis of the present considerations are reproduced here.

Buisman called the secondary settlement the ‘secular effect’, from the Latin ‘seculum’
which means century. He coined the word ‘secular’ to point out to engineers that settlement
could continue to develop after excess pore pressure had disappeared, and could continue to
do so for a long time, perhaps centuries.

Because his work is only thirty years old a centennial verification is not available. How-
ever, for practical purposes his suggestion to extrapolate the settlement time curve as a straight
line, when settlement is plotted on a linear scale and time on a logarithmic scale, gives an
estimate which was verified to be reasonable in many instances. He called the corresponding
settlement time relation the logarithmic time law and gave it the mathematical form

¢ = ph(e,+ o log ) i ow o oo ow (B
where { is the settlement, p the effective stress increase by loading, % the layer thickness,
«, and o, the settlement parameters, and ¢ is the time in days after loading.

It was his opinion that the soil skeleton follows such a time settlement law, starting from the
moment when an effective stress increase is created. Therefore the secular settlement also
operates during the primary period of consolidation when excess pore pressures still prevent
the effective stress from carrying the total load. Keverling Buisman suggested as a first
approximation to use Terzaghi’s theory for the determination of excess pore pressure and the
effective stresses as a function of time. From these he calculated the settlement as produced
by the gradually increasing effective stresses by adopting the validity of a superposition
principle. He assumed that the response to unit step loading always conforms to equation (1).

* Professor of Soil Mechanics, Civil Engincering Department, Technological University, Delft.
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His analysis to include this secular settlement within the framework of the hydrodynamic
theory of consolidation was only a crude approximation, because at that time the powerful
method of integral transforms was not available for the solution of consolidation problems.
The importance of his analysis, however, is in the introduction of a time retarded soil skeleton
in both primary and secondary periods of consolidation.

To give credit to Keverling Buisman, the word ‘secular’ could be reserved for those effects
and mechanisms which delay settlement both in the primary and secondary periods of con-
solidation, and are responsible for deviations in time-settlement behaviour from Terzaghi's
linear theory. In this Paper ‘secular’ is used in this sense.

Another important aspect of consolidation which he examines in his book is the explicit
description of two mechanisms that could be responsible for the time-delayed reaction of the
soil skeleton. One secular mechanism could be the viscous character of the pore water bound
by the particles, the other mentioned is the size difference of the pores which have to transmit
the expelled water in order to allow settlement to occur.

Both these mechanisms will be shown in this Paper to lead to the deviations from Terzaghi’s
theory which are frequently observed in tests after the excess pore pressure has reduced to
zero. It will be seen that the pore system with different channel widths is to be preferred as a
model to the viscous soil skeleton, for the former will allow the data to be fitted to the theory
over a wider time range than is possible with the latter.

Taylor and Merchant (1940) introduced secular effects in their consolidation theory. As
Barden (1965) has pointed out they obtained results which are representative for spring
dashpot systems, but they did not specify the mechanism in terms of a rheological model.

Tan (1957) substituted a specific spring dashpot system for the grain contacts in order to
introduce a secular effect according to Keverling Buisman’s viscous secular mechanism.
Tan (1957) and Gibson and Lo (1961) give solutions for discrete values of the relaxation pro-
perties of the spring dashpot combination. By taking three kinds of elements with enough
difference in the relaxation time, Schiffman, Ladd and Chen (1964) obtained for the secondary
period a time settlement curve, which on a semilogarithmic scale has an undulating shape with
three successive waves. Barden (1965) introduced the non-linear behaviour of the viscous
soil skeleton and using a power law for the relation between shear stress and shear strain rate
he obtained a secondary time settlement curve. By plotting the difference between the final
value of settlement and the settlement at an intermediate time, a power time law is obtained,
which differs from the power time law used in this Paper.

These workers have therefore developed mathematically the first mechanism proposed by
Keverling Buisman. The viscous character of the soil skeleton has been incorporated in the
consolidation process and exact solutions have been obtained. It may be worth mentioning
that the cases considered by Schiffman obey differential equations of so complicated a character
that only electronic computers can solve them.

In this Paper the notion of a viscous grain skeleton represented by elements containing
springs and dashpots is reconsidered. Instead of introducing a limited number of discrete
parameters for the elements as was done in the previous work, the treatment will be concerned
with a distribution of element parameters which is continuous and stochastic. This means
that the properties of the individual elements vary randomly and that by their abundance it is
possible to represent the frequency of occurrence of their parameters by a continuous
function.

Besides the introduction of a continuous frequency function, the object of this study is to
determine the form of this frequency function for a particular soil by analysing its settlement
time response to loading. Actually this is the inverse analysis of the previous investigators,
who determined settlement time response for a given element distribution. The motive for
such an inverse procedure is the opportunity it offers us to study soil structure on a microscale.
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Detailed information is not to be expected from a settlement observation which is the
combined reaction of all elements working simultaneously. Besides this general reason for
inaccuracy, the inverse analysis provides limited information, because the settlement time
curve is only known by a finite number of observations in a limited time period and the viscous
retardation mechanism acting at the grain contact point is only surmised.

In order to execute the inverse analysis, it is necessary to choose a functional relationship
between settlement and time which is mathematically convenient and describes test results
closely enough. In this case the choice was to approximate the settlement time curves by
straight lines if plotted in a double logarithmic diagram. Since a straight line at a slope « in
such a diagram gives a power law for the settlement time relationship, such that { is propor-
tional to #%, the corresponding law can be called a power time law. In order to include also
settlement time curves that are not exactly straight lines in a double logarithmic diagram and
settlements that reach an end value within a reasonable time, the more general case is con-
sidered that the observed curve can be approximated by a succession of straight line portions.
Depending on the mathematical forms adopted below, these settlement time laws are called
the sectional power time law and the product of power time law.

Although mathematical convenience was the main reason for adopting power time laws,
the choice was inspired by finding that several settlement time observations gave better
straight lines when plotted in a double logarithmic diagram than in the single logarithmic dia-
gram used by Keverling Buisman. For practical use the power time law has the additional
advantage of giving a safer prediction of settlement than the logarithmic time law because
straight line extrapolation on a double logarithmic diagram gives greater values for the
settlement than on a single logarithmic diagram.

The determination of the frequency function pertaining to the occurrence of spring dashpot
elements proved possible by an inverse analysis of power time settlement curves in the secon-
dary period of consolidation, i.e. after excess pore pressure had vanished. The corresponding
theoretical considerations are developed in the following two sections.

In the subsequent section the consolidation process is considered which occurs when the
spring dashpot assembly is considered to be immersed in pore water. The stochastic distribu-
tion of elements can be introduced in the consolidation theory by use of the frequency func-
tion. The result is a differential equation which resembles the original Terzaghi equation
sufficiently to use the well known solutions as is shown by an example.

In the final section the cavity channel network suggested by Keverling Buisman as a second
possibility to account for secular effects is considered in detail. This second secular mechanism
seems never to have been developed theoretically. While studying settlement curves from
peat in 1941 the Author observed in the secondary period an undulating time settlement
behaviour on double logarithmic plots, similar to the curves obtained mathematically by
Schiffman, Ladd and Chen (1964). For different load increments three successive waves were
found, and for each increment these were repeated at the same times after loading. It was
conjectured that interconnected channel systems of different size could be responsible for this
behaviour (de Josselin de Jong, 1942). It is reasonable to suppose that the stems and veins
of foliage have left larger channels embedded in more degraded material containing smaller
pores. At the time a crude graphical procedure was used to separate the action of several com-
municating channel systems. By means of thisanalysis the observed settlement behaviour
could be described by three different interconnecting systems.

For clay the undulating character of the settlement curve in the secondary period was not
so pronounced. It was, therefore, not possible to separate in clays the action of discrete
channel systems. However, it is reasonable to imagine that in natural clays also, channels of
different size and conductivity exist. The concept of unequal pore size was used by Olsen
(1960) to account for discrepancies observed in the permeability of clays. His work does not
cover, however, the consolidation process.
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In the subsequent analysis the possibility of describing secular effects by a model of cavities
with various compressibility interconnected with channels of various conductivity will be
examined. Again, the properties of the cavities and the channels will be considered to be
stochastic and their occurrence will be described by continuous frequency functions.

The curious result obtained will be that mathematically the cavity channel elements
behave very similarly to the spring dashpot elements. Their time-delaying effect on com-
pressibility is in fact identical. The consequence is that, in order to match test results for;
large ¢ by secular mechanisms, the same frequency functions are required for the two different
systems.

The essential difference between the two systems is the interpretation of excess pore
pressure and permeability. In the spring dashpot model the concept of excess pore pressure
is the same as in the original consolidation theory of Terzaghi. Excess pore pressure has a
well defined value at every moment and at every point of the body. This value is computed
in the analysis. Discharge of pore water obeys Darcy’s law with a well defined permeability
coefficient.

In the cavity channel model excess pore pressure is a stochastic variable. Tt is not possible
to compute the excess pore pressure for the individual cavities since the equations do not
describe these various individual pore pressures explicitly. Instead an average excess pore
pressure 4 appears in the analysis, which is a weighted average of the pore pressures in the
surrounding cavities. The weighting function turns out to be proportional to the conductivity
of the connecting channels. This quantity # will be called the average ambient excess pore
pressure. A pore pressure weighted in this manner may be closely related to the pore pressure
measured by a piezometric device, although it is probably not the same.

The difierential equation governing the average ambient excess pore pressure has the
same structure as the original Terzaghi consolidation equation and resembles the consolidation
equation obtained for the spring dashpot assembly. This permits use of all the results ob-
tained for spring dashpots for the cavity channel network as well. The difference is in the
permeability, which in the consolidation equation appears now as a time dependent entity.

The effect of a difference in permeability is apparent only at the beginning of the settlement
process. The normal theory of consolidation gives for small values of £ the familiar root time
law as a first approximation. According to the theory with secular effects developed here,
the approximation is of the form #*~€'2, where e includes time dependence of both compres-
sibility and permeability.

This approximate solution was verified with test results obtained from spherical samples
loaded by an all round pressure (de Josselin de Jong and Verruijt, 1965). It turned out
that a positive value for € of 0-1 gave a close fit of test results with an accuracy of the third
order of refinement in the approximation. The coefficients in the terms of the approximate
expression were determined by use of Biot's theory of three dimensional consolidation. The
fact that e is positive according to observations rules out the model of a spring dashpot
assembly submerged in pore water, and therefore favours the cavity channel model.

The tests on spherical samples gave for the settlement, in the secondary period, power time
laws of the form #* with « equal to about 0-1. The values for @ and ¢ mentioned above as
obtained from the spherical compression tests are used as examples. The spherical compres-
sion test is specifically adapted to the study of settlement increase during long time periods
because the test results are not obscured by side friction as may occur in oedometer tests.

STOCHASTIC ASSEMELY OF SPRING DASHPOT ELEMENTS

The analysis developed in this Paper departs from previous theories primarily by the
introduction of stochastic elements, whose abundance permits us to consider them as being
distributed according to a continuous frequency function. In order to explain the theory this
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I© Fig. 1 (left). Spring dashpot |} F®Y
T element
r e A Lo ” :
Fig. 2 (right). Retardation func- 1
tion for linear spring dashpot (4) ° . >t

o {-
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special aspect is treated first by demonstrating how a continuous distribution of spring dashpot
elements can produce a time dependent settlement.

Physical mechanism of spring dashpot element

The spring dashpot analogy has been introduced to simulate the response of the solid phase
of a soil to an increase of the effective stresses. The dashpot in parallel with the spring (Fig. 1)
retards its compression and can therefore be considered to produce a retarding effect similar
to that which the physico-chemical bonds between soil particles exercise on the deformation
of the grain skeleton.

For mathematical convenience the mechanical properties of spring and dashpot are
assumed to be linear, This may be a crude approximation to reality, and better mechanisms
could be substituted without difficulty when the real phenomena are better understood; a
revised formula for the retardation function would then result, but the considerations developed
in this Paper would not be altered substantially.

Let » be the compressibility of the spring and / the fluidity of the dashpot. A reduction in
height £ of the element requires a force [ in the spring and a force (1/I)(dZ/d!) in the dashpot.
The total force P acting in the element is then

_t, 1dg
P = ;+E &I - . . . - . - . . (2)
which can be solved directly. If the initial condition is {=0 for =0, then
t=Prll—exp(—p)] . . . . . . . . (3

where p=I/r.
The bracketed expression, the retardation function, will be called F(ut), because it is this
function which represents the retarding effect of the spring dashpot element (see Fig. 2).

Therefore
Flut) = l—exp (=) . . . . . . . . (4
By taking the values of (u#) to be zero and infinite in this expression it is seen that
F(ut) =0 for wt =0 5)
F(ut) =1 for pt = co | °

In general F(uf) can be any non-decreasing function which exhibits retarding properties. But
whatever the mechanism, the possible retardation function will have to obey equations (5) in
order to ensure that the settlement is zero at the start and reaches a terminal value at infinity.
In order to include also other possible secular mechanisms, we will retain the generality of
F(ut) in the analysis as long as the treatment allows. In general, therefore, the settlement of
the element will be
I=PrF() . . . . . . . . . (8

The variable of the function F is the product (uf), which is dimensionless, so p always has the
dimension of reciprocal time. Actually p is the retardation parameter whose reciprocal is a
measure of the timescale involved in the retardation process. In equation (4) a small value
of p indicates[that fthe element needs a long time before its compressibility is completely
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mobilized, because F(pt) — 1 only if exp (— ui) is reduced to a small number, and this is the
case if (pf) has become large.

The grain skeleton can be considered to consist of rigid grains connected by many retarding
elements at the contact points. The elements are orientated randomly in all directions, each
having its own 7 or / value. In order to give expression to this randomness, the clements will
be considered as stochastic entities. Since the analysis presented in this Paper deviates from
previous theories primarily by the introduction of randomness, this aspect will be examined
first.

Stochastic distribution of elements

The constituent elements are called stochastic because their occurrence is arbitrary. The
probability of finding an element with special properties at a certain location is proportional
to the number of elements possessing that property, expressed as a fraction of the total
number of elements present. The frequency of occurrence of elements possessing a certain
material property expressed as a fraction of the total is by definition the frequency function
of that property.

In this analysis it will be assumed that the number of elements is so great that the fre-
quency distribution can be considered to be a continuous function. This assumption is
justified if it is possible to subdivide the soil mass into volumes in which the stress condition
is nearly homogeneous but the number of elements large. Such a volume will be called a
representative elementary volume and its size will be L% This volume will be considered to
contain N? elements with N a large number.

The block in Fig. 3 is loaded by a vertical pressure p. This load is transmitted primarily
by the elements located at the vertical contact points between the grains. For simplicity the
elements are thought of as being arranged in columns, which transmit the force in a vertical
direction. This is an over-simplification because the cross links between the columns are
ignored. The effect of the cross links would be to redistribute the forces between the columns,
but incorporating them in the analysis leads only to a second order refinement. The forces in'
the columns are therefore considered to be equal throughout their height.

AL
m{m

Fig. 3. The representative elementary volume L% is
subdivided in columns of grains. At the contact
points between the pring dashpot el t
are distril A stochastically

-
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On the average there are N2 columns in a cross section of area L2, so the columns occupy
on the average an area

AdA=IN* . . . . . . . ..(@
P=p(LAN?) . . . . . . . .. @®

Deviations from the average are also ignored in this study because they also require a second
order refinement.

and carry a force

Seltlement of a stochastic assembly of retarded elements

Let the 7th element of an assembly have a spring compressibility r; and a dashpot fluidity
1, while its retardation parameter is p;=//f7;, The height reduction of the ith element is then,

using equations (6) and (8)
L =p(L3AN*F(ut) . . . . . . . . (9

Introducing the volume compressibility p; of the element instead of the spring compres-
sibility #,, the settlement of a soil block of height / can be written as

{= ﬁh(N“;’Ls)i;%lp‘F(plt) N 4 1)

The justification of this expression is explained in the marked! paragraphs.

The volume compressibility p; is defined as the volume reduction 4V, of the sth element
divided by the vertical pressure p acting on it. If the element is prohibited from expanding
laterally, the entire volume reduction is created by the height reduction { only, and
obtained by multiplying {; by the cross section area occupied by the columns 44. This
gives

AV = [ d4 = Cl(f-”fm)
By definition p,=AV/p and #;={/P, therefore it follows from equation (8) that
_ AV, LL3N? _  L*

P= g = PN T TR
Changing equation (9) to include the volume compressibility p;, the height reduction of the

ith element is
& = p(N?[L2)p,F(pit)

The height reduction of the total column is the summation of all the height reductions of
the elements in the column. For a soil block of height %, the columns contain as an average
N#K|L elements. The summation contains therefore Ni/L terms and the height reduction
of the block is

NhIL NniL
gz‘glgt“P(N’.’Lz)’-ZXP:F(FIﬂ T (8

It is assumed that the number of elements in a column, of any length considered, is so
large that although the elements are distributed at random their combined response is a
fair representation of the average. This assures that the NA/L elements contained in A
produce a response which is z/L times the response of N elements. So the summation in
equation (11) over NA/L terms is equal to k(L times the summation over N terms, and this
changes equation (11) into equation (10).

Final settlement for a stochastic assembly

In this section an expression for the final settlement of the soil block is developed as
equation (15), which contains 4, the overall compressibility of the soil. This entity 4 is

! The reader can at first omit the marked paragraphs without impeding comprehension of the subject

matter,
4
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expressed in relation to the volume compressibility of the individual elements p, by equations
(13) and (14).

Because the dashpot continues to retard the process for an infinitely long time, the final
settlement is only reached for =00 when exp (—p) is zero and F(ut)=1. Therefore the
end value of the settlement is

N
Uoo) = pHNYLY 3 o0 - - o . - - (19
The same formula is obtained for any other retardation function provided it obeys equation
(5)-
At this stage g, the mean® compressibility, is introduced, defined by

F=UM a1

The only requirement on N is that it is sufficiently large to ensure that the sample contains
a representative distribution of p;. Inserted in equation (12) this becomes

{(c0) = pPHN®/L%)p

The compressibility 4 of the entire block is now introduced as the average value of the
compressibility g of its component elements multiplied by the number of elements per unit
volume, N®/L?, namely

4 = (N3[L3)p e e e e s (19
which then gives for the final settlement
{(oo) = pdh v omow o ow s o ow o« (A5)

Frequency function of the element distribution

The settlement of an assembly of elements was obtained in equation (10) as a summation
over many elements with different values of p; and ;. Because of their abundance, the ele-
ments can be considered to be distributed according to a continuous frequency function. This
allows the settlement equation (10) to be converted from a summation into an integral.

How the transition from summation to integral can be developed is explained in the
subsequent marked paragraphs, with equation (20) as a result. Fig. 4 helps to visualize
the concept of the frequency function in this case.

In order to construct a frequency function the large number of N® elements are sub-
divided into J portions, labelled by 7, a number running from O to J. Each portion contains
the elements possessing a retardation parameter with a value between p;and p,+4p,. The
number J of the portions depends on the manner of subdivision. It is irrelevant here how
many there are and also how the total interval between p,=0 and p;=oc0 is subdivided.
The size of Ay, can, for instance, be different. The number of elements in the jth portion
is called AM; and so

J
,EAM,=N° o o w o oo s a k18)

=0
This summation includes all the values of p that are to be found in the N® elements from
o to p;.  The terms of the summation in equation (10) will now be rearranged in ascending
order of p. This means that the serial number 7 is re-allocated in a manner such that ;<
Bis1- Alsolet M, be the number of elements with u values smaller than y, The interval
Ay, is then covered when the serial number ¢ runs from M, to M, , =M, +4M, according to
the definition of 4M, above.

1 The circumflex ( ~ ) on a quantity is used to denote some average value of it, defined on each occasion.
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In equation (10) the summation contains N terms, and is after that multiplied by N2.
So it contains N*® terms, from which 4M; terms have the required values for p,in the interval
Ap;. Equation (10) can therefore be rewritten as

£~ HI) 3, [‘:’_%:“’p.m] cee )

The interval Au, will be taken small enough to allow the approximation of considering
F(ut) a constant in that interval and equal to F(pf). Then
M+ AM, M, +AM,

‘Eé pF(pt) = F (Pft) Z Pi

As a consequence the number AM; is only a small fractmn of N3, It is assumed, however,
that N3 is so large that although 4M, is only a small fraction of N3, it is still a large number.
Further it is assumed that there is no correlation between p, and u;. Then the 4M, elements
contain by their abundance a fair sample of the p, distribution in the entire system. One is
then justified in using the average compressibility g according to equation (13) with 4M,
substituted for N, and writing
M+ AM,
ZM P = pAM,
=y
If there is correlation between p, and g this correlation can be taken care of in the frequency
function defined below. It is assumed here that there is no correlation. These considera-
tions applied to equation (17} yield
M +Al!’ I
¢ = (ph/L?) z Fpd) 3 o= (PHLp 3 FluhdM,
or using equation (14) !
L = pdh 2 Flud)(1N3)4M, . . . . . . (18)

This expression suggests an mtegral over py, because all values of p, are moorporated
while § ranges from 0 to J. In order to obtain an integral a frequency function m(y) is
introduced in such a manner that m(u,)4p,=AM,/N®. Then equations (16) and (18) become

Fi
3 mlu)duy =1 and = ph 5 ) Flupn,
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If now dp is diminished to an infinitesimal quantity, du, the summation becomes an
integral which extends over all values of x from 0 to co.
The last two expressions then become

J;wm(p)dy.=l s i om s w5 ¢ o B
and

§=pdhfumm&;}F(;d}dp )

The frequency function m(y), as defined above to be related to 4M; can be considered as the
fraction of elements whose values of i cover the interval between w and p+dp, divided by the
size of the interval du. It indicates how the elements are distributed with respect to u (see
Fig. 4(a)). Equation (20) describes how the settlement is created by an assembly of elements
that are distributed according to m(u), all having the same retardation function F ().

TIME DEPENDENT SETTLEMENT PRODUCED BY SPRING DASHPOT ASSEMBLY
DURING THE SECONDARY PERIOD OF CONSOLIDATION

Equation (20) gives the relation between settlement () and m(u) the frequency function
of the spring dashpot assembly as an integral expression with ##(u) in the integrand. If one
wants to know m(u) explicitly to study the soil structure, it is necessary to solve equation (20)
for m(p).

In the subsequent sub-sections two different procedures will be treated which permit
determination of m(u). The first procedure gives a crude approximation but simple expres-
sions. The second is more refined and gives a better approximation, but more complicated
expressions.

Both procedures require a particular mathematical structure for the settlement-time
relationship observed in the secondary period of the oedometer test after excess pore pressures
have vanished. Both these will be treated in the next sub-section and in the subsequent
sub-sections they will be used for the determination of m(u).

Settlement time law in the form of a combination of power terms

The two mathematical procedures required in'the subsequent analysis for the determination
of m(p) demand a curve fitting which in both cases will consist of approximating the settlement
time curve plotted in a double logarithmic diagram by portions which are straight lines.

These straight line portions give power terms of the form of equation (22).

Let 6,, 6,,... be the times corresponding to the points where the straight lines intersect
and let o, B, y. .. be the slopes of the sections (see Fig. 5(a)). Then, if x=log{and y=log
are the co-ordinates in the double logarithmic ¢—{ diagram, these straight lines are

y=oav+logd O<t<ty
y=px+log B 0, <t< b, Lo .. (21)
y=yx+logC 0, <t < 8;...etc.

The first two lines intersect at {=#6,, if ¥ in the first two expressions is equal for x=log 8,.
This gives «log 6, +log A=plog 0,+log B or B=A0,"%. So all successive coefficients,
B, C, and so on, can be expressed in terms of A. Since 4 has an inconvenient dimension,
introduce 8, such that 4 =5h6,-% with % being the thickness of the sample. That the
forms in (21) are power time laws can be seen by reintroducing ¢ and {, instead of
x and y. For instance, the first then gives {=A{*=ht*0,~%. Written in terms of { and ¢
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Fig. 5. (a) Settlement time curve in double logarithmic diagram. Dashed line is sectional
power time law, solid line is product of power terms time law
(b) The cumnulative distribution function n(u) has tionally the same slope in the double
logarithmic diagram as the corresponding settlement

the equations (21) give a combination of power laws valid in successive time intervals,
as follows:

2t = ht=6,-= 0<t<b
U(t) = ht?0,~=0,%-# 0, <t<b, (22)
L) = b8, 20,5 28,5 B, <t < B5...etc.

The way in which this expression for () was obtained shows that an arbitrary settlement
observation, plotted against time on a double logarithmic diagram, can provide the values of
all the parameters by approximating the actual curve by a few straight lines. The slopes of
the lines give the parameters «, B, y,...and so on, the intersection points the parameters
6,, 0,,...and so on. The parameter 6, is equal to the time corresponding to a settlement of
magnitude % on the extrapolated first straight line.

The form (22) may be called the sectional power time law because it represents a curve
consisting of sections, from which each obeys a power law. This representation by power
laws will allow a crude approximate determination of m(u) valid for any retardation function.

A more refined theory based on integral transforms is possible only if the retardation
function is known. The special function pertaining to the linear spring dashpot element will
be considered as an example. The analysis then requires for (/) a function that can be con-
tinued analytically in the complex ¢-plane enclosed by —# < argé < +m.

A function that satisfies this condition and resembles (22) satisfactorily is the following
equation which will be called the product of power terms time law

c(z}=h(ﬂio)“(ii'e%)_m(‘;f“)_w...etc. R )

This product power law is approximated by (22) if the intervals between 8,, 8,, 0;. . .
and so forth on the logarithmic diagram are large enough, such that

fewhelheoete. o . 0 L L . L (24
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This can be seen by considering first a time ¢ which is small with respect to 6, Then the
term (¢ + 6,)/6, is almost unity, and so also are the subsequent terms. Thus the settlement
curve is practically

i) = h*6,~ Ocbal . oo« « (29
If ¢ is large compared with §;, but small compared with #,, then the second term in the

product becomes (¢/8,) ~%*+#, whereas the rest remains unity. So the product is approxi-
mately

L(t) = htP0,~«0,%~* 0, «t«x by ... (26)

These results show that equation (23) coincides with (22) for the greater part of each of
the intervals. Again, the parameters «, 8, y. .., #;, 65, and so on can be obtained directly
from the double logarithmic ¢—{ plot. In the vicinity of {=6,, {=40,, and so on functions
(22) and (23) differ. The product power law is a smooth curve, which blends the sharp inter-
sections of straight lines appearing in a double logarithmic diagram, if (22) is plotted (see Fig.
5(a)).

The reasons for introducing the sectional power time law or the product power time law
are mathematical convenience and convertibility of test results into formulae. The adoption
of the equations is not dictated by the physics of the problem.

In the subsequent sub-sections the Laplace transform of the settlement will be needed.
This will be denoted by a bar over the particular variable and be defined as

E(s):f:l_,’(:)exp(—st)dt N 7/

It is not possible to give an explicit expression for the transform of the product of power terms
settlement time law. For the sectional power time settlement law, however, the transform
can be obtained directly.
This gives by integrating sectionally
{(s) = hs™1=%0,~*[I(1+a) — I'{(1+e;s6,}]
+hs 180,20, %A I{(14B;s0.} —T{(1+B;s0. 1]+ ... . . . (28)
where I'(x) is the complete gamma function and I'{x;y} is the incomplete gamma function,

both defined in the appendix. Using the approximations (125) and (126) this can be
simplified to

i(s) = hs~1-%0,~“T'(1 +«) O<stx b,
£(s) = hs=1-20,~%0,*SI'(14-B) 0 s lx 9,} (29)
.. etc.
and if a final settlement {(¢) = hdp is reached for # — co the last term of this row will be
Us) = hdps~? s> . . . . . (30)

The approximations used to obtain this result are valid over the entire region of the complex
s-plane required in the elaboration of equation (76).

Approximate determination of frequency function and cumulative distribution function
for general retardation mechanism

It is stated above that, if the settlement time relation is represented by a power law, m(u)
can be determined for any F(ut). The result is a power law for m(u) given by equation (42).
However, in order for the analysis to be executed the retardation function cannot be
completely arbitrary. Physically a retardation function should be a non-decreasing

| function that is zero at {=0, and unity at {=co as indicated by equation (5). Moreover,
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the analysis also imposes requirements on E, the first derivative of F. The following, not
so severe, conditions have to be satisfied:

0 < F(A) < a;A E(A) < a, Ax1 (31)
1> F(d) > 1—azA~? E(}) < ad~* laf "~ 7
where @, and a, are positive numbers and
EQ) =dFQNf@a . . . . . . . . (8
From (31) it can be deduced that
F(a) =0 E\) < a, A=0 (33)
F(y) =1 EX =0 A=o0 I

The retardation functions of linear spring dashpot elements and cavity channel elements
obey these requirements.

The analysis is based on the fact that the time derivative of the settlement contains the
settlement itself, when a power time settlement law is valid. From (22) it is seen, for in-
stance, for the second interval, that

atfdt = hptP=10,~%0,*¢ = B(L[t) 6 xtx b, .. (34)

In order to bring in m(p), the variable £ in equation (34) is replaced by the expression (20).
Since in this expression F(uf) is the only function containing {, differentiation of { with
respect to # requires only the time derivative of F(uf). Using equation (32) this derivative

is
AF (ut)|dt = pldF (pt)[d(ud)] = pE(ut)
and so expression (20) gives for the left side of equation (34)

dejat = pékj: pm(WE@de . . . . . . (35)

On the other hand it is possible to obtain from equation (20) by integration by parts an
expression for ({[f), which resembles equation (35). In order to obtain this expression it is
convenient to introduce the cumulative distribution function n(u) (see Fig. 4(b)), defined by

?&(_u]=f:‘m{p')dp' Ca o v s o5 o 08

By this definition #(y) is the probability that an element possesses a relaxation parameter
larger than p. From equation (19) it is seen that

nip) =1 for p=20
n(p) =0 for p=c ow e v w oy 8
Differentiating equation (36) with respect to p gives
dn(p)fdp = —m{p) . . . . . . . . .(38)

So integration by parts of equation (20) using equation (32) gives
t = pan[~n )|+t [ EG0]

The first term between the brackets is zero, because (33) and (37) indicate that the pro-
duct is zero on both limits. So it follows that

(1) = pah _" : n@WE@de . . . . . . (39)
A combination of equations (34), (35) and (39) gives
[ i EGan = B[ n@EGa .

and this relation is only valid in the time interval 8, « # « 0.
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Although the integrals extend from zero to infinity, only the range 1/8, < p « 1/8, of
the integral contributes to its value. It would take too much space to enter here into all
the details of the proof, but with (24), (31) and (43) it is possible to obtain the following
conclusions.

The part of the integral from 1/6, to infinity gives a small contribution, because E(ut) is
small there. The part of the integral from zero to 1/6; gives a small contribution, because
the interval is small. This means that, using the values of m(y) and n(y) valid for 1/8,« p<
1/6,, but extending the integrals over 0 <pu< o0, an error is introduced which can be
disregarded if 8, «#<«8,.

So equation (40) is satisfied for every E(ut), and F(ut), if

o) = () = B [~ )
Differentiating with respect to u gives
uldm ()] +m(p) = —Pm{u)

dm(p) _, | dp
miy ~ 1P
m(p) = Cop=1-# e 23]
This argument can be repeated for every interval of (21) giving for the frequency function
mu) = Cou=1-¢ 1/6, « p < o0
Cop~1-4 18, < p < 1/6, } (42)
Cou~1-7 1/0; « p« 1/0,. .. ete.
From these the cumulative distribution function defined by (36) is obtained as
n(p) = (Cyfa)p™" 18, <« p <o
(CalB)p? 1/0; <« p < 1/8, } (43)
(Cafy)p=7 1/0, « p< 1/8;. .. etc.

The constants C;, Cg, Cy . .. cannot be determined unless the function F(uf) is specified, as
shown in the next sub-section. There is, however, the general restriction on these constants
that equation (19) has to be satisfied.

In Fig. 5(b) #(u) is plotted in a double logarithmic diagram such that the p-axis runs in the
opposite direction to the f-axis, Then the line sections have the same slope as the correspond-
ing intervals of the settlement curve. This remarkable result is not unexpected. The reason
is that the retardation mechanisms are considered to be the same for all elements, so that the
value of (pt#), for which the retardation function reaches a certain large part of its end value, is
the same for all. Let this be for pf = a. The elements that have completed their task at
time ¢ have then retardation parameters which are larger than aft. Since settlement is the
cumulative reaction of all these elements, it is proportional to the cumulative distribution
function of these elements whose p is inversely proportional to .

More refined determination of frequency function for retardation mechanism consisting of
linear spring dashpots

If the retardation function is the special function (4) valid for linear spring dashpot ele-
ments, a more refined analysis is possible, using a Laplace transform. The result is equation

(46), a complicated formula that is approximated by equation (47), an expression resembling
(42). This result is obtained as follows.

With equation (4) the settlement expression (20) can be written as

20 = pa | m(u){1—exp (—)du
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For ¢ infinite, exp (—puf) reduces to zero and (o) =pdh [§ m(u)dp, which by equation (19)
coincides with equation (15).

The difference between the terminal value {(co) of the settlement and an intermediate
settlement {(¢) is therefore

Ueo) =20 = pah [ G exp (~uthdp . . . . ()

This shows that [{(c0) —(#)] is the Laplace transform of m(x). Then the theory of integral
transforms gives as a solution for ()
ct+im
m) =gy [ e hpa L )

The fact that [{(c0) —£(f)] is a Laplaoe transform limits the class of functions that can
be used as representations of {(f). In particular, {(t) must be a function of # that is analytic
for all complex values of  whose real part is larger than ¢, i.e. to the right of line AB in Fig. 6.
In this case ¢ can be taken as zero.

In practice the information about () will con-
sist of { values for a limited number of {-values. ‘xm
These values of ¢ are all real and positive. From :
this information an analytical function has to be
constructed which obeys the condition of regularity
to the right of AB.

The sectional power time law, which by its sim- ...
plicity was convenient in the previous analysis, is %
not suitable here because the discontinuities in
t=40,, 6, and so on introduce singularities to the
right of AB.

The more complicated power product law equa-
tion (23) is preferred here. This function has its
singularities in £=—6,, —0, and so on, which are, I8 Integrall ;faf::‘m In sowmle
actually, branch points.

Evaluation of the integral is obtained by shifting the integral path from the vertical
line AB towards the line CDEF which runs as a hairpin on both sides of the negative -axis.
The integral paths AC and FB give no contribution, because [{(c0)—{(#)] tends towards
zero for large values of ¢

By this shift the integral is brought into a form which leads to tabulated hypergeo-
metric functions, if the power product consists of two terms. If the product (23) contains
more terms, two adjacent terms are separated out in the way (26) was obtained from (23).
There, one term, ¢!, remained by considering 8, <i{<6,. Here, two terms, ({+6,)%,
(t+65)~#*7, can be dealt with simultaneously by considering 0 <i«#,. In virtue of (24)
all other terms of equation (23) become constants. The consequence is that the values of
{(¢) in the vicinity of ¢ = 0,, are represented more accurately, and therefore also the values
of m(u) in the vicinity of p = 1/8,. The result is

al(1—a+p) (6, 018
mip) = P‘ﬂ T—-aI'2+p) \d ( ) 01 1 Fy(1+e;2+8; —pb)
Br(1—B+y) (6 )
+ gt () (7) e i +8i247i -t

et 48 v

.. etc. .. . (48)
where , F, is the hypergeometric function (see equation (127)).
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This summation of terms reduces to a simple form because of (24). By use of the
approximation formulae for ,F,; (equations (128) and (129)) it can be shown that for
values of p between (1/8,) and oo the first term exceeds all other terms and reduces to
1=« multiplied by a constant. In the interval between (1/6,) and (1/8,) the second term
is the largest, giving 4=2~# and so on. The frequency function (46) can therefore be
approximated by

AW e
] 8 ¥
3?131”""(1}:1}3 (.g,;) (.‘gf) (31;) u1- 1/8, < p < 1/6;. .. etc.(47}

A comparison with (42) shows that this is the same function of p, a result that was to be ex-
pected, because F(X) = 1—exp (—A) satisfies the conditions (31) required in the analysis
there. The difference is that the coefficients C;, C, . . . are obtained explicitly now.

Power time law with an asymplotic value
In order to demonstrate the use of these results, they can be applied to the example of a
settlement curve which follows a power law up to the time #; and then levels off towards a
final value. This is a type of settlement observed in tests. In a double logarithmic time
settlement diagram the curve can be shown diagrammatically by two straight lines, the first
at a slope, say «, the second horizontal, at a slope zero (see Fig. 7(a)).
The product power law in that case would be

P\%(t+0,\ "¢
;(z}nh(e—)(T‘) £ 8 B 5k oa oz (E8
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Fig. 7. (a) Settlement
(b) Cumulative distribution function n(u)
(c) Frequency functionm(u)
All solid lines are from refined theory, dashed lines from crude analysis
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because B, y and so on are all zero. The end value for the settlement is obtained for 3> 6,
giving {(co) =h(6,/6,)°, and so according to equation (15)

(8,/8)% = pd Gow ow on o ow v ow (48)
From (46) the frequency function is, since f=y=.--=0and I'(2)=1
m(p) = afy Fy(l4e;2;—p0) . . . . . . (50)

This is a tabulated function plotted in Fig. 7(c). The following approximations for =(p)
for large and small values of p are obtained using equations (128) and (129):

m(p) = [o/I'(1—a)]f,~“p=2"" 1/, «< p
m(p) = afy{l —[(1+e)/1120](0,) - (51)
+[(1+e)(2+e) /213 (0,)%— ...} px 1/8;
and for the cumulative distribution function
n(p) = [1/I(1 —a)](nb;) ¢ 1/6, < p
) = [ m)aw = 1= [ meaw . 62
= {l—afpb) +[e(l+«)/2! 2] (ub,)%—. ..} px1/6,

The values for large p correspond well with (42), (43) and (47). The values for small p are
irregular in so far as they do not fit in the pattern of (42), (43) and (47). It could be sur-
mised that the slope being zero, m(u) would be proportional to x~!. Instead m(u) tends
to af;. The reason for this irregularity is that the analysis based upon equation (40) is
not valid for zero slope. The analysis of the past sub-section, on the contrary, remains
valid whatever the slope is.

From this result it can be seen that if an end value of the settlement is reached beyond a
time 6, the frequency function and the accumulative distribution function are defined as

mip) = C,
n(p)=1-c,p}f°”‘<<”"n R

with C, a constant, which can be evaluated if the retardation function F(uf) is known.

It is instructive to use the example of this sub-section to show how the constants
C;, C;and so on of (42) can be evaluated if F(uf) is known. From the analysis there, to-
gether with the information on how tfo treat an end value with zero slope, with (42) and
(53) it is possible to write immediately that

mfp) = Cip~t-* n(p) = (Cile)p™® 1/, « p < o0 . (54)

mip) = Cy n(p) = 1-Cap O<px1/6 . (55
‘We will now make the crude but simple approximation that (54) and (55) are valid up
tou=1/8,. TItisthen possible to determine the settlement, because the retardation function

is known and given by equation (4), being F(uf) = 1—exp (—ut), E(ut) = exp (—pb).
Using equation (39) to avoid unsatisfactory integrals gives

) = (g) [+ G- (145 +52) exo (—5) + Coperia-a o] . 9
Using the approximation (125) for small values of ¢ gives
L) = h(8,/60)%1%C,[T'(1 —a) tx 6, s w e ADT)
From equation (48) it follows that this should equal (/8,)* so that C, should have the value
C, = [e¢/T(1—«)]b7* N 23]
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This is exactly the same as equation (51).

The next step is to evaluate C,. This can be done by use of the requirement (19) on
m(p). By integrating m(p) of equation (55) from zero to (1/6,) and of (54) from (1/6,) to
infinity the result must be unity. This gives

(CofO)+(Cafe)lE =1 . . . . . . . (59
which together with equation (58) requires that
Co={-[UT(1—c}b; . . . . . . . (60)

According to equation (51) this should be «f,. In a typical test result « is 0-1, then
I'(1—«)=1-0682, and so C, is 0-0638 6, instead of 0-1 #,. In order to show the difference
between this crude analysis and the more refined theory, Fig. 7 contains the settlement, the
frequency function and the cumulative distribution functions as determined in this sub-
section. The difference is small enough to permit the use of the simpler analysis.

Conclusion

The above analysis allows us to determine from the secondary period of an oedometer
test how the relaxation parameters of an assembly of spring dashpots have to be distributed
in order to show a settlement time behaviour similar to that of the soil under the influence of
effective stress. Consolidation effects created by excess pore pressures have not been intro-
duced here.

The approximate result is that the frequency function (42) and the cumulative function (43)
are power laws of p, if the settlement obeys a power law of £, (22). These power laws have
the same coefficients but a reciprocal character. The more refined theory gives as a result (46),
a complicated formula for the frequency function, which reduces to the same power law by
approximation. It may be emphasized here that the information about the frequency
function, to be extracted from test results, is limited to values of u that are the reciprocal
of the observation times.

The example of the past sub-section shows that the difference between the crude analysis
and the more refined is small. This suggests that the simpler analysis may be preferred in a
study of soil structure where uncertainties about the retarding mechanism obviate the
necessity for mathematical refinements.

CONSOLIDATION OF SPRING DASHPOT ASSEMBLY

So far the settlement considered was caused by an increase of the effective stress with a
magnitude $ for all elements starting at #=0. If the spring dashpot elements are immersed
in water, the effective stress gradually increases as the excess pore pressure decreases, and
during the consolidation process the effective stresses differ at different elevations.

In this section the basic equation of consolidation is developed for the one dimensional
case, taking account of excess pore pressure and the retarding response to effective stresses
caused by the secular mechanism of spring dashpot elements.

The effect of secular mechanisms on consolidation is discussed by use of an example.

Basic equation of consolidation for retarded elements immersed in pore water
To develop the basic equation for one dimensional consolidation a layer of thickness H
is considered, which is compressed in the z direction. The differential equation will be de-
veloped for a slice of thickness 4z which, although of infinitesimal thickness, will contain
enough elements to permit the use of the integral expression (20) for evaluating its settlement.
Assuming that Darcy's law applies to the excess pore pressure, « (where kis the permeability
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and y,, is the specific weight of water), the amount of water AV expelled from the layer over an
area, A, during a time, d¢, is equal to

AdAV) = —(klyo)(@ujoz?)dzdtA . . . . . . (61)

If the soil is completely saturated this amount of water is equal to the reduction in volume of
the grain system. In one dimensional consolidation the elements are prohibited from ex-
panding laterally so the volume reduction AV divided by the area A is equal to the height
reduction d(4¢) of the slice 4z, so equation (61) becomes

AAT) = — (kly.)(@ufoz2)Azdt

Introducing the time rate of settlement 8(4¢)/ét, which is equal to the height reduction d(4Z)
divided by the time interval df necessary to produce that settlement, gives

Ay ot = —(kly)@PuloR)az . . . . . . (62)

In establishing Terzaghi's equation for consolidation the next step is to relate the rate of
settlement 8(4Z)/of to the increase of effective stress by introducing the compressibility as a
coefficient which is time independent. In the analysis here, however, the compressibility
is time-dependent. From the moment when the effective stress increases a mechanism begins
to operate which produces settlement in a retarded manner.

By using the Laplace transform the analysis can be simplified, because the rble of time in
the problem is then incorporated in the transformation parameter, s, which can be considered
as a constant parameter in the following procedure.

A bar over a variable denotes its Laplace transform, which is a variable in s instead of
the original variable in ¢ (see equation (27)). The transform of equation (62) then becomes

sAls) = —(Rly)@ale)dddz . . . . . . (63
For the transformation of 8(4{)/@¢ use is made of the fact that the settiernent is zero at time
t=0.

The next step is to produce the relation between the transform of the settlement and the
transform of the effective stress. This can be obtained by starting from equation (2), the
differential equation for one element. Instead of a time-independent force P, the load on one
element will now be a time variable effective stress o’ which acts over an area 44 given by
equation (7). The Laplace transform of equation (2) then becomes for the sth element,

2
6"[3) L Cl(s) ci(s.]
7 b
Since s is an inert parameter, this equation, with p=I/r, becomes
R
{i(s) = () Nis+p,
That this expression is the transform of equation (9) can be verified by substituting, in place
of ¢'({) the time independent pressure, p. The transform of such a time invariant quantity is
$/s, so equation (64) for this case becomes

LI I o
C;(s)_ﬁﬁis(sh‘u) PN“ '[s St

s oo oz owme oz (B

The inverse of this is
4(e) = p(L2IN*)n{1 —exp (—pt)]
and this is the same as equation (9) with F(wt) given by equation (4).
In a similar way the transform of equation (10) gives

U = HOVILY) 3 [pwls(sn)] - . o . o ()
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By introducing the frequency function m(u), expression (20) was finally obtained. In that
analysis neither p nor F(ut) changed, so all the manipulations involved can be applied to the
transformed settlement £,(s) from equation (64) as well, without changing &'(s), which stands
for pfs, or p/(s+p) which stands for s times the transform of F(u#). The transformed
settlement of the layer of thickness 4z can then be written

AL(s) = &(s)adz j am()f(s+@ldp - - . . . (60)

The time dependence of the compressibility caused by the stochastically distributed elements
is incorporated in the integral over x. This will be denoted by g(s), so

g(8)=f:{»’”(#)1(5+#)1dp e v o8 ow w w0 ow (B

and equation (66) becomes
4i(s) = &'(s)dg(s)d= . . . . . . . . (68)

This expression describes the transformed relation between settlement and effective stress and
involves the use of a compressibility dg(s) which incorporates the time dependence by the
function g(s).

Although g(s) is defined here by equation (67) as a function of the frequency function
m(p), it is not necessary to know m(u) if g(s) is required. The direct way to obtain dg(s) is
by use of settlement observations during a period when the effective stress does not vary
any more, i.e. after excess pore pressure has disappeared. Expressed in a sectional power
law this settlement has a Laplace transform given approximately by equations (29) and (30).

Use of equation (68) with &'(s)=2/s and dz=4h, then gives

&(s) = ?id (g;)“S"“P(l+a] 1/6, « s &

gls) = 513(;#;)“ (ﬂll)‘s-ﬂ TU+8) b «s<1/6, % . . (89)
e et i

gls) =1 s—>0

It is now possible to continue the development of the differential equation for the con-
solidation process, by substituting equation (68) into equation (63), which gives
s&'(s)ag(s) = — (kly)(@*a(s)/dz?)
The effective stress can be expressed as the difference of the load $ and excess pore pressure
#, which becomes after Laplace transformation

&'(s) = (p[s) —ii(s) ¢ i om o ow o ow w A70)
So, finally, the transformed consolidation equation can be written
(klyo)(@ajaz®) =dg(s)lsa—p] . . . . . (71)
and using (k/y,4) =¢, this becomes
Ele@I@ald?) = sa—p . . . . . . . (72)

D on of the consolidation equation by use of an example

The expression (72) is a differential equation for (z, s), which can be solved for particular
boundary conditions. While d(z, s) is solved as a function of z, the other quantities in-
cluding s remain constant. Therefore the factor [k/y,dg(s)] in equation (71) is a constant
coefficient at this stage, and actually it plays the réle of the consolidation coefficient ¢, of
the normal consolidation theory. Therefore (k/y,d) was indicated by ¢, in equation (72),

Selected Works of G. de Josselin de Jong 121



CONSOLIDATION MODELS 215

and so the consolidation factor there is [£,/g(s)]. This factor excepted, equation (72) is
identical to the Laplace transform of the Terzaghi consolidation equation. The complete
secular effect is incorporated in the coefficient of consolidation, because this coefficient con-
tains the function g(s), which introduces the retardation mechanism as is seen from its defini-
tion (67). The value of g(s) is obtained directly from test results in the form (69).

Solution of the geometric part of the problem requires no specification of g(s) because s
is inert at that stage. Only at the end, when the solution of %(z, s) is inverted to obtain the
excess pore pressure #(z, ) as a function of ¢, is the form g(s) required. This means that all
known transformed solutions of boundary value problems in normal consolidation can be used.
Only in the last operation of inversion will the result deviate from the known results.

How this works out will be shown by a one dimensional example of a layer of thickness H,
resting on an impermeable base at z=0 and loaded at ¢=0 with a pressure .

The transformed boundary conditions are

i=0, z2=H
ditjdz =0, z=0
The solution of equation (72) gives

a9 =£[1- S ] 73)
with
g=[@&r® . . . . . . . . (14
The settlement is {=J¥ 5'dz which, using equations (70) and (73) becomes
I(s) = (pé/sq)g(s) tanh (¢H) . . . . (75)

This solution of the transformed settlement is identical to the solution obtained in the
normal case. The final step is to construct from {(s) the settlement {() by use of the in-
version integral

20 = (paf2mi) [ (go)fs tauk () exp (s . . . (76)

Evaluation is effected by determining the location of the poles of the integrand. Besides
the branch point at s,=0 these are given by

Gn = +4im(@m—1), m=1-o . . . . . (77)

so that the poles all lic on the imaginary { axis.

Up to this point the analysis is identical to the procedure followed in a normal consolida-
tion problem, and solutions that are worked out along these lines can be used without any
revisions. The difference comes out in the tran-
sition from § to s. In the consolidation theory Im(s)
without secular effects g(s) is unity and according
to equation (74) g is (say,/k)!/2, a function which
contains s only as a square root. Therefore the
imaginary g-axis is mapped into the negative s-axis
and all poles lie on the negative s-axis.

In the case of a secular effect, g(s) is some com-
plicated function approximated by the simpler ex-
pressions (69). Therefore the relation (74) between
¢ and s is an intricate function which maps the im-
aginary ¢-axis on to two undulating lines symmetric
to the negative s-axis. These lines, indicated as ;
dotted lines in Fig. 8, carry the poles. i - ;?aﬁ:m o comelex

»Rels)
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Instead of integrating from c—ico to ¢+ico along the straight line AB, it is more
convenient to shift the integration path to ACDEFB. The parts AC and FB give no
contribution, but there remains the hairpin around the negative s-axis and the residues of
the poles on the undulating dotted lines. There are no other singularities in the region
swept by the shifting of the integration path because it can be shown that the function g(s),
as obtained from the time settlement observations, behaves regularly up to the line CDEF.
The solution then becomes

1) = (pa2ni) j [g(s)/sd] tanh (H) exp (s)ds

8 2 1 £(s%) exp (s*t) g(s™) exp (s~¢)
—HHG 2 (2m—1}2{1+s+rg'(s+ng(s+)1+1+s~£g'{s~)fg(s-n (78)

s*g(s*) = &[+}im(2m—1)]*H?
s7g(s™) = &[—Yin(2m—1)]2/H*?
&'(s) = dg(s)/ds
In the normal solution g(s) =1, then from the integral over CDEF in equation (78) only
the circle around the branch point in s=0 survives to give 2miH, because the integrand

becomes equal on both sides of the negative s-axis, CD and EF. The summation over the
residues of the poles finally gives the well-known solution

8 2 1 2m—17)\?
w=pit{1-5 3 goen (M 7) ]} - @
The solution (78) can be evaluated numerically after separating the real and imaginary
parts of s* and s—; the result is not shown here.

An impression of the structure of {(f) can be obtained conveniently by considering the
solutions for large and small £, These solutions follow directly from approximations of
equation (75) for small and large s respectively and taking the inverse of these approxima-
tions. This yields:

Approximation for large t is obtained by developing tanh (§H) from equation (75) in a
series expression for small values of §H, which, because of equation (74) corresponds to small
values of s, The transformed settlement then becomes

i) = (pd/sflg(s)(¢H) —3(¢H)*+...] . . . . . (80)
The first term between brackets gives pdHs~*g(s). This has the form of equation (68) and
represents the transformed settlement as created by an effective stress of magnitude p,
because the transform of $ is pfs. Its inversion gives the settlement time relation, when
excess pore pressure has vanished, as explained in the past sub-section.

From the second term can be deduced when excess pore pressure has diminished enough
to permit disregarding its influence, by considering the value of s that makes the second
term small with respect to the first.

Approximation for small ¢ is obtained by developing tanh (§H) from equation (75) in an
expression valid for large values of §H. This expression is [1—2 exp (—2¢H)]. So retain-
ing only the first term, which is equal to unity, the transformed settlement in the first
approximation becomes

with

Us) = (pd[sdlg(s) = pa[eg(s))* s~ . . . . . (81)
This can be evaluated by taking g(s) from equation (69). Considering the region 1/6,«s < w
Us) % [6T(1+0) [paby]s -+
The inverse of this is

L) = [6T(1+0)[pa0 3+ 2 ME +3a) . . . . (82)
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According to this solution the settlement for small ¢ follows a power time law with ¢ to the
power (§+4a). In the spherical compression test it was observed that the power of ¢ was less
than a half. So matching of test results requires a negative value of «, i.e. a positive power of
sin g(s).

The mathematical implications of this requirement cannot be explained here in detail, but
from the theory of Stieltjes transforms it can be deduced that no physically acceptable fre-
quency function s (u) exists which introduced in equation (67) produces a positive power of s in
g(s). Thisincompatibility of theory and test results indicates that the present model of spring
dashpot elements immersed in pore water is incapable of reproducing reality.

Conclusion

The basic equation of consolidation in its Laplace transform for a spring dashpot assembly
is identical to the transform of the original Terzaghi equation, except the coefficient of con-
solidation, which contains the compressibility dg(s) as a function of s. Solution of boundary
value problems with secular effects therefore follows the same lines as for consolidation without
secular effect as long as only geometry is involved. Only the final inversion of the result is
more elaborate because of dg(s).

For large values of ¢ the solution reduces to the case when the load is carried entirely by
effective stresses, as treated in the third section. For small values of ¢ the solution reduces to a
form which contradicts test results, and, therefore, indicates that the present model of spring
dashpot elements immersed in pore water is not entirely acceptable.

In the following section a model will be treated that consists of cavities interconnected by
channels. For this model the transformed basic equation of consolidation is shown to be
slightly different, in so far as the permeability also is a function of s. This second function of
s opens the possibility to choose frequency functions for the physical entities involved in a
manner such that for small ¢ the settlement also will conform to the test results.

CONSOLIDATION OF STOCHASTIC ASSEMBLY OF CAVITY CHANNEL ELEMENTS

The second secular mechanism proposed by Keverling Buisman (1938) consists of a network
of compressible pores interconnected by channels. In the following analysis the stochastic
character of such a system will again be introduced by considering the cavities to possess
different compressibilities and the channels’ different conductivities. The difficulty now arises
that the pore pressure itself becomes a stochastic variable, because every pore has its own pore
pressure. This difficulty is overcome by introducing an average pore pressure, which is not
a physical quantity that can be determined in a test, but a convenient mathematical device
that permits the continued use of the classical theory of consolidation.

For further treatment of consolidation problems the time dependence of compressibility
and conductivity are involved.

Physical mechanism of cavity channel element

In a system of cavities interconnected by channels, every cavity is connected by a number
of channels to cavities surrounding it (Fig. 9). Consider a sample cavity with a number &,
‘When finally a great number, N, of cavities is considered, a summation is effected where & runs
from 1 to N. The compressibility of the kth cavity is called p,; this means that the cavity
expels a volume p,, of fluid when there is a unit pressure decrease of fluid pressure u, in this
cavity.

From the kth cavity v channels emanate and these channels connect the kth cavity to
surrounding cavities numbered m. In a summation m will run from 1 to v, » having an order
of magnitude of 10 in a three dimensional channel network.

124 Soil Mechanics and Transport in Porous Media



218 G. DE JOSSELIN DE JONG

Fig.9. Cavity channel net k ting of
sible pores interconnected randomly

The conductivity of a channel connecting the kth cavity to an mth cavity will be denoted
by Aym-  This means that a volume of fluid A, will flow per unit time through this channel if
the pressure difference of the fluids in these cavities (#,—u,) is unity.

If the fluid pressure in the kth cavity changes by an amount du, = (8u,[df)d¢! during dt,
the volume of fluid expelled from the cavity during that time is

AV = —puduy, = —pe(Ewfétydt . . . . . . (83)
The volume of fluid that can be discharged through the surrounding channels during dt is,
Wo= 3 Denli=wlllt . . . (B0

If there is no gas in the fluid, continuity requires that &V, =dV,,. This gives
oo = 3 Mnltm=t) . . . .. . (8)

In this expression #, and #,, can be considered to represent the excess pore pressure. Let
the initial excess pore pressure be the same for the different pores, and equal to 4. Then the
Laplace transform of equation (85) is

Pulst=p) = 3 Nenlln=) . . . . .. (80)
Solving for #,, the transformed excess pore pressure, yields
s+ (1lp) 2 Meml = p+lpd 2 mtw) . . . . (8])

In this equation two summations of different character appear. In order to simplify the
notation the following abbreviations are introduced

=) X Mmoo oo . (89)
d,,=[m'§1,\,mam]/[z:am] )

These two quantities have a physical meaning.

The character of p,, as defined by equation (88), is understood by considering the case when
the kth cavity has an excess pore pressure p at time £=0, and all the surrounding cavities are
maintained at zero excess pore pressure. Then equation (87) reduces to

. = pf(s+pm)

we=pexp(—md) . . . . . . . . (90)

with the inverse
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From this result it is seen that p, is a relaxation parameter similar to p introduced for the
spring dashpot elements, It represents the relaxation occurring in the kth cavity, during the
decrease of excess pore pressure by discharge of fluid from that cavity towards its surroundings.
The character of #;, defined by equation (89) is a pore pressure experienced in the kth cavity
as a weighted average of the pore pressures in the surrounding cavities. The weighting func-
tion is A, the conductivity of the connecting channels.
The quantity 4, as defined by equation (89) will be called the ambient excess pore pressure.
Substituting equations (88) and (89) in (87) gives

(stme) = p+mefhe « . . . . . . . (91)
This expression indicates the relation between the transformed excess pore pressure in
the kth cavity, 4, and the transformed ambient excess pore pressure, #,, which is a weighted
average of the excess pore pressures in the adjacent cavities.

Settlement of a stochastic assembly of cavities and channels

The expression (91) permits determination of the settlement of a layer that is composed of
an assembly of cavities. It will be assumed that the entire settlement consists of the reduction
in volume of the cavities, and that the volume reduction 4V, of the kth cavity is equal to its
compressibility p, multiplied by the decrease in excess pore pressure ($—u,) after the moment
of loading, so that

AV = pep—w) . . )

The number of cavities, present in a volume L? will be N3, th N a large number and L a
length as defined in the sub-section on stochastic d.istribution of elements. These N? cavities
will generate a volume reduction equal to

Na

V= 3 plp—w) - - . ... (99

If N is large, a number N cavities gives a fair representation of the average, and so a
summation over N® elements is equal to N? times the summation over N elements. Therefore
equation (93) can be written as

AV=N2kg:1p,¢(p—ﬂ,‘) (<7}

Consider now a layer of small thickness 4z. This layer covers an area 44 = L3[4z, if its
volume is L3, When this layer is compressed in a manner such that lateral expansion is
prohibited, the height reduction 4 of the layer is

AL = AV|AA = AV (42/L?)
or, using equation (94) the settlement is
N
AL @niPILR) 2 ki)

Transforming this with the Laplace operatlon gwes [(#/s) —1,] for (p—u,). So the trans-
formed settlement Af(s) for a layer of thickness .dz is
AY(s) = 4z(N*|L?) kz . pel(P]5) =]

If now the excess pore pressure in the kth cavity #, is replaced by its ambient excess pore
pressure #, using equation (91) there results

il Prthe 2 -
aye -2y 3 L [g]
In this summation ($/s) is a constant, mdependent of &, because it was stated that the

excess pore pressure at the moment of loading, £=0, is equal for all cavities. So (p/s) can be

126 Soil Mechanics and Transport in Porous Media



220 G. DE JOSSELIN DE JONG
taken out of the summation, and the transformed settlement becomes

a=ag 2 B (L8]] - - - - @

The ambient excess pore pressure i is different for every cavity, because it is a weighted
average of the surrounding excess pore pressures, with the conductivity of the connecting
channels as weighting function. Make the assumption now that the correlation between i,
and the properties p, p, of the particular cavity can be disregarded.

It is not obvious that this is a reasonable assumption, since the conductivity of the ad-
jacent channels Ay, is incorporated in both 4, and p, (se¢ equations (88) and (89)). That the
correlation will be weak follows from the fact that the excess pore pressure 4, in the adjacent
cavities is practically independent of the conductivity of the connecting channel A, because
that channel being only one of the v channels emanating from the smth cavity contributes
only a portion (1/v) in the value of #,. So #, can be considered nearly random with respect
to the kth cavity.

Now rearrange the second summation in equation (95) such that all cavities with practically
the same value for [pyu./(s+m,)] are taken together, so that they form K subgroups, each
containing AN cavities. Let AN still be a large number such that the f, of a subgroup
represents a fair sample of the total, which is possible because there is no correlation between
4, and py or .. Then the summation of these AN values for 4, is AN times the average value
4, if the average ambient excess pore pressure 4 is defined as

a=(1;N;§1a,, )

According to the definition of the volume L2 in the section on stochastic distribution of
elements the stress condition in the layer with thickness 4z is nearly homogeneous. This
means that the excess pore pressure in a continuous reference soil subjected to the same
loading as the cavity channel assembly would have been practically a constant throughout this
volume. The averaging procedure, applied to obtain #, smoothes out the difference in excess
pore pressures encountered in the individual pores, but does not obliterate pore pressure
differences caused by consolidation.

It is now possible to extract the constant # from the last summation term in equation (95),
because it can be removed from every subgroup. All subgroups give the same # because of the
lack of correlation mentioned. The result is

JZ(s}=Azg§(1:-—a)[él%] R

It may be remarked from this analysis that in general the summation over a product of
two stochastic variables is equal to the average of one of these variables multiplied by the
summation over the other, if there is no correlation between them. This property is used in
the next sub-sections.

Similarity belween seltlement of cavity channel assembly and spring dashpot system

There is a great similarity between expression (97) for the transformed settlement of a
cavity channel assembly and equation (65), the transformed settlement of a spring dashpot
system whose retardation function obeys equation (4). The similarity appears by altering
the height % of the block into the thickness 4z of the layer, and changing p/s into [(p/[s) —4].
A similar change was made to obtain equation (66) from equation (65) where, however,
instead of [(p/[s) — #] the effective stress &'(s) was substituted. Since &' = (p/s) —4 (see equation
(70)) the similarity is complete if # can be identified with 4. For mathematical convenience
this identification will be made, but this should not be done thoughtlessly, because there is a
fundamental physical difference between i and 4. The quantity % stands for an excess pore
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pressure acting inside a grain skeleton with spring dashpot retardation at the grain contact
points. This pore pressure is a deterministic quantity, whose computed value is the physical
pore pressure present at the point of consideration. This pore pressure # does not interfere
with the secular retardation mechanism.

On the other hand in a cavity channel system the pressures in the individual pores are
stochastic. They may vary substantially between adjacent pores, and therefore it is impos-
sible to determine the pore pressure at a point. Only a mathematical quantity # can enter
into the computations as an average ambient excess pore pressure. This is the average of a
complicated quantity, the ambient excess pore pressure, which interferes with the secular
mechanism, and is also a stochastic variable. This means that it is not possible to assert the
exact magnitude of it at a point, but only the average of the values that might occur there,
weighted according to their frequency of occurrence.

The definition of the ambient excess pore pressure as given in the sub-section on physical
mechanism of cavity-channel element indicates that 4 is an average over many cavities, in the
same way as a pore pressure measured by a piezometer is an average. Such a device is usually
large with respect to the individual pores, and therefore it cannot determine the pressure in a
particular pore but senses some average of the pressures in the surrounding pores. It is
plausible to assume that this average is weighted according to the conductivity of the con-
necting channels. A similar weighting procedure was obtained for #,, the ambient excess
pore pressure. Since a piezometer is connected to many pores it senses some average; this
average is somewhat different from # but may be related to it.

This complicated notion of an average ambient excess pore pressure is also reflected in the
effective stress and hence in the transformed effective stress in the cavity channel system.
Since this quantity will also involve an averaging it will be denoted by &', and be defined as

) =(ps)—4s) .« . + « + « « . (98)
A physical meaning is not assigned to &, but it is used as a mathematical entity which takes
the place of ' in the sub-section on basic equation of consolidation for retarded elements
immersed in pore water. Since the similarity has now become complete the transition from
equation (65) to equation (68) can be used and applied to equation (97) to obtain

AYs) = F(ag(s)dz . . . . . . . . (99
with

&) = L) 3 punllsi) = 4 [ lum@@lls+ild . . (100)

Here 4 has the same meaning as given by equation (14), namely an average compressibility
of the cavities. The frequency function m(u) and the retardation parameter p also have the
same meaning.

This justifies the conclusion that it is not possible to decide from test results in the secon-
dary period of consolidation which model gives a better description of a soil behaviour: the
spring dashpot model or the cavity channel model. Both give a similar expression for the
transformed compressibility dg(s).

Basic equation of consolidation for a stochastic assembly of cavities and channels

So far the settlement has been expressed in a form which accounts for the stochastic and
time dependent compressibility if the effective stress 8’ =(p/s) —4 is known. Since the load p
is given, it remains to determine 4, the average ambient excess pore pressure. This can be
done with the normal procedures used in the theory of consolidation, because, as is shown, the
quantity 4 obeys a partial differential equation which is similar in structure to the basic equa-
tion governing Terzaghi’s consolidation theory.

After the Laplace transformation, the basic equation of consolidation contains only
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Fig.10. The cavity k is the centre
of v surrounding cavities, label-
ledm. Every cavitymis again
the centre of v surrounding
cavities, labelled n. The num-
ber v may vary with the cavi-
ties. That kis again one of the
n is disregarded in the text

derivatives with respect to the space co-ordinates, and in the one dimensional case it has the
form

(Rfyw)(@*@fdz?) = a(sa—p) . . . . . . . (101)
A comparable equation is obtained by starting from equation (86) which relates the trans-
formed excess pore pressure, 4, in the kth cavity to 4, the transformed excess pore pressures
in the surrounding cavities, labelled m. This equation is

3 Menlla— ) = pulst=p) - . . . . . (102

The space co-ordinate will come in by considering the location of the mth cavity, which is
one of the set of » cavities surrounding the kth. Every mth cavity is in turn the centre of its
own set of cavities, labelled #, which surround it and are connected to it by channels with con-
ductivity A, (see Fig. 10). The mth cavity then has an ambient excess pore pressure i,
which has a definition analogous to equation (89) and is related to 4, by an equation analogous
to equation (91), being

(S + ) = P+ pnfin o ¢ {1)]
By considering the orientation in space of the centres of these ambient excess pore pressures,
1, with respect to the kth cavity, the space derivative of the ambient excess pore pressures
can be introduced.

The establishment of the basic equation of consolidation requires two steps. The first is
to rearrange equation (102) in a manner such that the right hand side becomes comparable to
the right hand side of equation (101). The second step is obtained by rearranging the left
hand sides.

The first step starts by rearranging equation (102) in a manner such that a relation be-
tween the ambient excess pore pressures #, and 4, is obtained, instead of the relation be-
tween @, and #@,, the actual pressures in the pores. Introducing equations (91) and (103)
for 4, and 4, in (102) yields

4,
P3 et Shn el L B 0 — (o)l (5 )]
Rea.rrangement gives, with equation (88),
At
ES"- a dz)(km_ st‘i'f-"'m
which can be simplified by addmg the factor s, 2 (Aim/S+ pr) to both sides. The result
is then

(104)

A Aim
3 [t (-] = oty 3 22

If an equation of the form (101) is to be obtained, the right hand side should contain the
compressibility, which in the cavity channel case is dg(s) (see equation (100)). In order to
produce this here, it is necessary to bring equation (104) into a shape which permits mani-
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pulation aswas done with equation (95). This requires multiplication of both sides by a factor

R
(:+ m)/ (3532 to yierd

z“km z‘\km
Nembn Aem L2
{phetin gty [3 =) Em(ot-p B 09

Summing over the volume L3 which contains N® cavities gives, per unit volume, on the

right hand side
2 Aem 2 Mem
[ (s+.u;f"i ) ’5; (S+#)]

The similarity of this expression with the greater part of equation (95), (if equation (88) is
used), shows that the analysis of the past two sub-sections is applicable to it up to equation
(100).

So (N?/L3) times the summation over % from 1 to N brings the right hand side of equation
(105) into the form dg(s)[si—p]. That summation applied to the entire equation (105)

finally gives
Z{ *m#m(am-a,,)/ > "”} Ge()ish—p] . (106)

m=15+p =1 S5+pn) St

The second step is to show that the left hand side of equation (106) represents something
similar to the left hand side of equation (101), i.e. the second derivative of # multiplied by
the permeability. In order to obtain this result use will be made of the property that
the sum of a product of two non-correlated stochastic variables is equal to the product of the
average over one of them and the sum of the other. Since #, and #,, are not correlated to
Aims e OT jiy it is permissible to extract the average of (f,,—#,) from the summation over »
and N on the left hand side of equation (106).

In order to bring in the space co-ordinate we introduce the centre of gravity of the volume
occupied by the N? elements as the location to which the average ambient excess pore pres-
sure is referred. In a soil body, where a one dimensional consolidation process is occurring
in the z direction, this location is indicated by its z co-ordinate.

The assumption will be made, that the average ambient excess pore pressure #(z) is a
gradually varying function of the co-ordinate z. Then, in view of the one dimensional
character of the consolidation process the average ambient excess pore pressure in the
neighbourhood of z, can be expressed by its Taylor expansion in z-direction only, as

i(z) = A(z0) + (z—20) (dh|dz) + 3 (2 — 2,) (@A [d=2+ . . .) .. (107)

Let z, be the centre of gravity of the volume occupied by the set of N2 cavities, labelled k.
From this set select a subset of cavities which possess adjacent cavities m connected by
channels of a length between I and [+ 41, and orientated with respect to the z direction at
an angle between ¢ and +4y (see Fig. 11). The centre of gravity of the mth cavities
belonging to this subset lies at a distance / cos ¢ above z,. If this subset contains enough
cavities, the average ambient excess pore pressure of the corresponding mth cavities is
representative for the # at that height. So the average of (i, —#,) for this subset is with
equation (107)

subset average (f,,—#,) = fi(z,+1 cos ) —4(z,)

= (lcos )(dfi[dz) + &( cos )2 (d*hfdz+...) . . (108)
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Fig. 11. From the set of a repr tative elerx y volume, a subset is

selected for which the distance between the cavities k and m is lin ‘a direction P

Averaging over all the subsets means averaging over ({ cos ) and (I cos )2, since (df/dz)
and (d24i/dz?) are fixed quantities at the height z,. In this averaging procedure it is assumed
that I and ¢ are not correlated and that the soil is isotropic so that the distribution of the
channels is homogeneous with respect to direction. By this assumption the average of
(Z cos #) is the average of / multiplied by the average of (cos #). This is zero for cos ¢ is an
odd function if ¢ ranges from 0 to . So the term with (d#/dz) in equation (108) vanishes
by taking the average of the subsets. The term with (424/dz?) does not vanish, because the
average of (cos® i) over a sphere is

(1;4W)L'cosz¢2usm¢d¢=§ S .. (109)

If [? denotes the average of /2 the last term of (108) becomes (1/6){2(d%#/dz?) by averag-
ing and this is the average of (#,—1,) over the v cavities of the summation in equa-
tion (106).

Therefore equation (106) can be written as

1 22 dgd N:; ‘W é [)‘kﬂlf"nu"(s'l'f"'m)] %Akm

& ELEN S Dualls ] (54

The part of the equation in the braces is a function of s whose dimensions are those of A,
because s and p both have the dimension (1/time). Since A is a conductivity with dimension
[length‘,’foroextune] multiplication by ({2/L?) brings the dimension to [length*/force x time]
which is the same as the dimensions of the permeability term (k/y,,) in equation (101).

Therefore, by analogy with the time dependent compressibility dg(s) introduced in equation
(68), we can introduce here a time dependent permeability (kfy) f(s), such that

= ag(s)lsh—-p] . . (110)

3 Dbt + )] 3 A
2 1, N2 & )%™ - (1)

% Dol (s +1m)] (54 122)

where the time dependence is incorporated in f(s). Substituting this in equation (110) gives
finally

(blyaf(O)@h)d) = dgls)lsh-p) . . . . . (12
If again use is made of a coefficient of consolidation
Lowlive + v v o v 8 o v o« (119)
This equation becomes
&L (5)lg(s))(@adz®) = sh—p . . . . . . (114)

Equations (112) and (114) have the same structure as the classical consolidation equation (101).
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Solution of boundary value problems and the consequence of the time dependent permeability

The settlement equation and the basic equation of consolidation for a cavity channel
network (equations (99) and (112)) have the same structure as the corresponding equations
for a spring dashpot assembly (equations (68) and (71)) as well as for the classical theory of
consolidation without secular effects. The difference from the equations for sprini dashpots
isin the permeability, which for the cavity channel network is a function of s, being (kfy,,) f(s).

Solution of boundary value problems follows therefore the same lines as indicated in the
sub-section on discussion of the consolidation equation. There it was mentioned that the
geometric part of the problem remains identical to the solution for normal consolidation
without secular effects. Only in the last operation of inversion will the result deviate from
the known solutions.

Because the basic equations are similar, so also most of the results in equations (73) to (82)
developed for the solution of the boundary value problem pertaining to a layer of thickness H,
will be valid here. Apart from a few differences that are described below, the settlement for
small ¢ will be considered because the function f(s) in the permeability will enable the fitting of
test results at the beginning of consolidation.

The difference in the solution is primarily in ¢, which instead of equation (74) will for
a cavity channel system be defined as

Q=[2@fOL® . . . . . . . (119

This entails a few changes in equation (78). The denominators of the terms between braces
in the summation become

260 _F6) gts™)_f(s0)
Lre [g(s*) .f(S")] R 1) f(s-)]

s*g(s*)[f(s*) = (&/H?) & im(2m—1)]?
For small ¢ and large s the solution is the same as the first of (81), which by use of ¢
from equation (115) gives

with

{(s) = (pasqle(s) = palé,f(s)g(9)]**s~* . . . . (116)
If again g(s) is taken from (69) with 1/6, « s < co the result is
&s) ~ [6,7(1+0)f(s)[pdf,<]¥2s~@+aN2 N (8 V)

Test results show that the settlement for small ¢ follows a law of the form #!~9/2, when ¢
is positive. The transformed settlement is then a function of s of the form s=®@-<2 for
large s. For this f(s) must be a function which contains s in the form s%+¢,

Since f(s) is already defined by the summation (111), it remains to establish that the sum-
mation can provide a function with s in the form s**¢. Since the form of equation (111) is
rather involved, it is neither obvious from its structure that this possibility exists, nor is it easy
to prove. Only the outlines are traced of a proof that was used to verify that f(s) indeed
satisfies the requirements.

The summation is over many kth cavities, and contains a quotient of two summations
over the mth cavities that surround the kth cavities. If it is assumed that there is no cor-
relation between the cavities £ and m, the property of a product of non-correlated sto-
chastic variables is used to write the right hand side of equation (111) as

i[akmiu'm“s-l-!u'm)] N2 XN Prle (1 8}
T e oS . 1

-I—Z“ average of 3 s
S Dunllstmal] | | FFFHe

6
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where use is made of equation (88). From equation (100) we see that the last summation
is dg(s), a function which contains s in the form s~¢. This means that the average of the
quotient between the braces should be of the form s?**¢.

For one value of % both numerator and denominator of the quotient consist of » terms,
each a quotient. If all these terms are multiplied by the product of the » factors (s+ p,,) both
numerator and denominator become polynomials of the order (v—1)in s. By subtracting
a term [ 2% An/2% (Aim/itm)] @ reduced quotient remains whose numerator is s times a poly-
nomial of order (v—2) and that is one order lower than the denominator. To this reduced
quotient Heaviside's expansion theorem can be applied, which allows us to split up the
reduced quotient in s times a summation of (»—1) terms of the form C,[(s+p,). Since all
Axm and p,, are positive, it can be shown that C, is a positive quantity, related to A., and
Mm, and that the (v—1) values p, lie in between the v values p,,.

The quotient of (118) between braces for one particular value of k can therefore be
written as

Shim _
I SR ﬁ .
Shalmg T

The first term in (119) can be shown to be small with respect to the second for those
values of s which correspond to the beginning of the consolidation process as follows.
In the summation of (An/p,) the terms with small y,, dominate, and this means that the first
term is of the order of » times the smallest value of y1,,. The smaller values of p produce the
end value of the settlement and are reciprocal to the time that the final value setsin. Since
also s is the reciprocal of the time considered, the first term of (119) is small compared with
the second, if the end value is reached at a time large compared with the time when the
consolidation process is at its starting period.

So, finally, the average of the quotient in the brace of equation (118) equals approxi-
mately (v—1) times the average of sC,/(s+ p,) over many values of p,. Since the p, lie in
between the actual values u,, their distribution is a fair representation of the actual distri-
bution of the retardation parameters. Averaging over many cavities suggests the introduc-
tion of an integral of the form

(119)

o I P ¥

This integral should yield a function of s of the form s2**¢, and this is possible since the
factor s preceding it requires that the integral itself leads to a function s~1*2¢¥¢, Since
both « and € are of the order 0-1 in the tests observed, this means that s is raised to a negative
power.

As is mentioned above, the use of the theory of Stieltjes transforms to obtain a solution
for C(p) requires a negative power of s. The power (—1+2a+¢) is therefore in agreement
with the requirements of the theory and the solution gives for C(y) a function of the form

=1l+3a+e

It is too long to develop here the relation between A, and p, which will give this C(u).
It turns out to be possible to find a suitable relation, but as it is complicated its presentation
is omitted here. The purpose of establishing C () was to see whether this theory is a realistic
possibility, and it turned out to be so.

Concluston

The basic equation of consolidation in the form of its Laplace transform for a cavity channel
network is identical to the transform of the original Terzaghi equation, except that the co-
efficient of consolidation is itself a function of s, containing as component parts the compres-
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sibility and the permeability equal respectively to dg(s) and (kfy,,)f(s). Solutions to boundary
value problems with secular effects therefore follow the same lines as for consolidation without
secular effect as long as only geometry is involved. Only the final inversion of the result is
more elaborate because of the term (k/dy,)[f(s)/g(s)]. At the geometric stage of the solution,
when integration is performed with respect to the co-ordinates, the results are identical to the
solutions for normal consolidation. Solutions to Biot's three dimensional equations can also
be used without modification.

For large values of time (#) the solution reduces to the case when &' is practically equal to
the load p, the situation treated in the third section for the spring dashpot assembly. During
this secondary period of consolidation the average ambient excess pore pressure is practically
zero, but nevertheless in a certain number of cavities, connected by badly conducting channels
to the rest of the network, the excess pore pressure may still be appreciable. Release of water
from these badly connected cavities gives the long term settlement in the secondary period of
consolidation. During that period the cavity channel model behaves identically with the
spring dashpot model, and therefore the frequency distribution of the retardation parameters
of the constituent elements is the same for both models.

For small values of time (f) the solution reduces to a form which can be made to match
test results by a proper choice of the distribution of conductivities of the channels.

This possibility, of arranging the cavity channel model in a manner such that it reproduces
observed settlement behaviour of soils, indicates that the model contains the required proper-
ties. It is not a verification though that the model is the correct description of the physical
mechanism at work. Other mechanisms may lead to identical effects, in the same way as the
cavity channel network produced an identical behaviour to the spring dashpot assembly in
the secondary period. The adoption of any mechanism can only be assumed to reflect reality
if it has been established that the physics of the microstructure produces that particular
mechanism.

It is surmised that in a consolidating soil the secular mechanism is basically of the same
kind as the spring dashpot and cavity channel systems examined. This may be the case as
well in the microstructure consisting of the assembly of individual particles as on the macro-
scale, when cracks and channels run through a soil mass. Therefore the concepts developed
in this study may serve the future study of micro- and macrostructure of soils.
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APPENDIX

Some functions used in the text and their approximations for large and small values of their argument
are given,

Complete gamma function: I'(x)

I = J' ® A== exp(—NdA sl s s owsew o (80
o
The complete gamma function is related to other functions by
#I(x) = I(1+2) = ! o e W W v o s W (129)
sin{xw) 1 £

w  T@I(—x I0+A)I(1-2) (123)

I plete g function: I'ix, )

I'{x, ¥} = I: A¥=1 exp(—A)dA s s s s oa o (124)
Expansion of exp(— A) in a series expression and integrating gives approximation for small y
Iz, ¥} = I'(x)—y*lx+y** 1 x+14...) yal . . . (125)
Continued partial integration gives approximation for large 3
I{r, 7} = y*=2 exp(— )1+ (r— Dy + (=) (x =2y +...] y»1 . (126)
Hypergeometric function: Fi(p;q.:2)
10i8) = o) a7 pp-1(zm ye-r-
1Falpigis) = TATC=5 7 'jo AP -1z A)9-7-1 exp(A)dA .. (127
Approximations
P 2, ppt])
1Fulpigis) = 1+ Cat Tl g fl . . . . (128)

Pt = s (o1 - plo- 240, 4 r(q),.-,exp(,,[, M.
:»1 . . . (129)
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Verification of Use of Peak Area for the Quantitative
Differential Thermal Analysis

by G. de Josselin de Jong

Research Department, Soil Mechanics Laboratory, Delft, Netherlands

The amount of reacting material in a sample
investigated by differential thermal analysis
can be determined from the peak area accord-
ing to the Boersma equation, which accounts
for heat flow through sample and thermocouple
wires. This relation has been checked by ex-
periment and it has been found that the use of
different thermocouples for the calibrations may
lead to variations of about 309,. The values
obtained for heat transfer through a sample and
thermocouple have been checked by compari-
son of computations and observation of base-line
offset at the beginning of a run and exponential
decay of the amount of heat dissipating out of a
sample. It is shown that according to the equa-
tion it is not the total amount of reacting mate-
rial that determines the peak area but merely
the density of the material near the thermo-
couple. The sensitivity of the method for
quantitative analysis is discussed in relation
to the possible variations in the factors in-
volved, namely, density and heat conductivity
of the sample and heat transfer through the
thermocouple.

I. Introduction

HE use of differential thermal analysis for quantitative

measurements is of great importance and several workers

have studied its possibilities. In this paper the writer
considers in particular the method in which the peak area is
used to indicate the quantity of reacting material in a sample.

In differential thermal analysis the temperature difference
between an inert sample and the reacting material is recorded
while the sample holder which contains both samples is heated
at a constant rate. The peak area is the area enclosed by the
base line and the curve of the differential temperature (6) as
recorded versus time (£). When the heat of reaction begins
after # and dissipates before t,, the mathematical representa-
tion of the peak area is

t:
Peak area = j: "o dt
1

having the dimension of deg. sec.

That this peak area should be related to the amount of
heat of reaction released during a test was experimentally
established by Kracek et al.,! Alexander et al.,? Schafer and
Russell,? Berg,* Grimshaw and Roberts,® and McLaughlin.®

Received March 4, 1956; revised copy received May 7, 1956.
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36 [3] 913-26 (1932); Ceram. Abstr., 11 [5] 325 (1932).

2 1. T. Alexander, S. B. Hendricks, and R. A. Nelson, ‘“Min-
erals Present in Soil Colloids: II, Estimation in Some Repre-
sentative Soils,” Soil Sci., 48 [8] 273-79 (1939); Ceram. Abstr.,
19 [7] 173 (1940).
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Verification of this relation becomes possible if the heat
dissipation occurring during a test is analyzed and if equa-
tions are available which describe this process explicitly.
The first theory was advanced by Speil,” who deduced that

Peak area = fl “9dt = wh/gn o)
\

w

heat of reaction per gram of sample (cal./gm.).
M

total mass of sample (gm.
= geometrical factor (cm.) ‘which accounts for temperature-
gradient distribution in sample.
A = heat conductivity of sample (cal./deg. cm. sec.).

[N}

By using this equation the unknown quantity of the heat
of reaction per gram of sample, w, can be computed from the
peak area if the factor M/g\ is known. This factor is in
fact the calibration value of the test device, but for brevity
here the calibration factor ¢ is introduced and equation (1)
is rewritten as follows:

_ beakarea _ M
Y2 T

In the derivation of this equation the writer assumes that
¢ has a constant value throughout the whole process of heat
dissipation, an assumption not consistent with reality.
Moreover, the value of g is not given in its physical com-
ponents and therefore the equation is still incomplete for
verification purposes, although it already shows the influence
of the heat conductivity, \, on the calibration value.

The correct derivation of the calibration factor was given
by Kronig and Snoodijk.! They described in detail how the
heat dissipates out of a sample, using the theory of heat con-
duction. From this, they determined the differential tem-
perature rise originating in the center of the sample and
brought about by the heat produced in various small zones
within the sample; these individual contributions differ, de-
pending on the place where they originate. By dissipation,
the differential temperature will decrease in the course of time
and tend toward zero, giving an area in the temperature-time
graph which contributes to the total peak area.

3 G. M. Schafer and M. B. Russell, “Therma.l Method as a
Quantitative Measure of Clay Mineral Content,” Soil Sci., 53
[5] 353-64 (1942); Ceram. Absir., 21 [9] 199 (1942).

+L. G. Berg, ‘“Area Measurcments in Thermograms for
Quanutatwe Estimations and the Determination of Heats of
Reaction,” Compt. rend. acad. sci. U.R.S.S., 49, 648-51 (1945)
(in English).

5 (a) R. W. Grimshaw, E. Heaton, and A. L. Roberts, “‘Consti-
tution of Refractory Clays: II, Thermal-Analysis Methods,”
Trans. Brit. Ceram. Soc., 44 [6] 76-92 (1945); Ceram. Abstr.,
1946, April, p. 66.

(b) R. W. Grimshaw and A. L. Roberts, ‘“Quantitative Deter-
mination of Some Minerals in Ceramic Materials by Thermal
Means,”’ Trans. Brit. Ceram. Soc., 52 [1] 50-67 (1953); Ceram.
Abstr., 1954, April, p. 78d.

6 R. J. McLaughlin, ‘‘Quantitative Mineralogical Analysis of
Clay and Silt Fractions by Differential Thermal Analysis’’; pre-
sented at meeting of the Mineralogical Society, London, March
26, 1953.

7 Sidney Speil, “Applications of Thermal Analysis to Clays
and Aluminous Minerals,” U. S. Bur. Mines Rept. Invest., No.
3764, 36 pp. (1944); Ceram. Abstr., 23 [11] 200 (1944).

8 R. Kronig and F. Snoodijk, ‘“‘Determination of Heats of
Transformation in Ceramic Materials,” Appl. Sci. Research, A3
[1] 27-30 (1951); Ceram. Abstr., 1953, January, p. 17a.
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During a test, the temperature at any place in the sample
will pass the reaction temperature zone; all the elementary
parts of the whole sample therefore will gradually produce the
heat of reaction and their individual contributions to the peak
area will gradually accumulate,

Mathematically, this means an integration versus lime,
and over the whole of the sample, to obtain their calibration
factor, which iz as follows:

For eylindrical symmetry

¢ = pal/dh = A dxh) (2)
For spherical symmetry

¢ = pat/Br = M/8xak (3)

p = density of sample (gm. fem.?).
a = radius of sample holder (em. ).
k = height of sample (em. ).

De Bruyn and van der Marel,® among others, pointed out
that these equations complete the equation obtained by Speil
(equation (1)} because the geometrical factor g is shown to be
4wk or 8xa, according to the equations for eylindrical or spheri-
cal symmetry.

Kronig and Snoodijk's equations (2) and (3) deseribe the
temperature difference between the center of the reacting
sample and the center of the inert sample, if the thermocouple
which these is of very small dimen-
sions.

Boersma' reaches an identical result elegantly avoiding
the use of potential functions. This derivation cnables
him to introduce in a simple way the influence of heat loss

All dimensions in mm.

Somple Spoce

this laboratory to verify calibrations for other experimental
work. Since agreement Imd been found, the different factors
in these ions were Iy and their effects
were studied. For ecalibration, the method used was the
method advanced by Ba.rshad" and by de Bruyn and van
der Marel,? who determined the peak area for chemical com-
pounds with well-known heats of reaction.

Another way to obtain the calibration value directly from
the differential thermal analysis curve was demonstrated
by Vold.** She analyzes the exponential decay of the curve
after the reaction has ceased and obtains therefrom the value
of ¢. This value is determined mainly by heat transfer
through the air surrounding the sample holder; the relaxa-
tion time therefore has such a large value that after the
chemical reaction has ceased, the temperature relaxes over a
range large enough to be interpretable.

In the apparatus used in the present tests, where the heat
is drained away through the nickel block, which is a good
econduetor, the relaxation time is too short for such an analysis,
as will be shown later,

In addition to calibration methods, the author studied the
dnft of l'lle base line wherl the heating rate is suddenly

the eq! deseribing this phenomenon
contains & factor identical to the calibration factor ¥

To verify these equations and study the effects of the dif-
ferent physical components, several tests were run under
varying conditions. All the tests deseribed in this paper
were run with the apparatus constructed and described by
de Bruyn and van der Marel® and which has been used in this
laboratory since 1952, It was provided with an amplifier and
a Brown recorder. The furnace contained six holes. Five

through the thermocouple junction and wires. He obtar
the following:

For cylindrical symmetry

4,-3‘;-’”:1—- (1+2|n—)]/[1+ n—]} @

For spherical symmetry
_m
Ol

-8l - 2622420

ry = radius of lllermowup!ejumtm{tm I8
A = heat for pl
cm, sec. ),

The length and the cross-sectional area of the leads and their
thermal conductivity are accounted for in A.
Equahnns (4) and (5) take into account all the physical

of heat dissipation during a test and were used in
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les could be Iyzed ly; the ¢ hole

was reserved for the inert reference sample (usually AlLO,
previously heated for a number of hours at about 1300°C.).

Figure | shows the furnace with the nickel sample holder

mounted on a quartz stem which guides the thermocouple

* C. M. A. de Bruyn and H. W. van der Marel, "Minmlnriml
Analyslsm‘SmI Clays: I, Introduction and Differential Therma!
Analysts Geal, en Mgn aw, [N.S.], 16, 60-83 (1954); “II

of Mi , by ¥-Ray Diffraction and Daﬂl'_r—
l:ntml “Thermal Analysis,” ibid., pp. 407-28.
w8, L. Boersma, “Thtory ol Differential Thermal Analysis
and New Methods of D and P ion," J. Am,
Ceram. Soc., 38 [8] 281-84 (1956).

" Isanc Barshad, “Temperature and Heat of Reaction Cali-
bration of the Differential Thermal Analysis Apparatus,” Am,
Mamhgut, 37 i? and 8] 667-94 (1952),

T M. J. Vi “Differential Thermal Analysis,” Anal. Chem,, 2
ll}]m 88(1949] Ceram. Abstr,, 1950, February, p. 3le.
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leads down and out of the furnace. Enlarged diagrams of
the sample holder show its dimensions and the placement of
the thermocouples.

. Arrl- liiiw of B Eq .
(1) Heating Rate During Test
Equations (4) and (5) do not contain the heating rate as a
fw:tor w]m-.h influences the calibration values. This is theo-
i lerstood by r ing as follows:
In the denivation of equatmns (2) and (3) and (4) and (5)
the classical heat-conduction theory is employed, where use
is made of the superposition principle and the
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{2) Physical Comp ts of B Equati

For the normal test the dimensions of the sample are height
= 10mm,, radiusa = 4 mm, The thermocouple junction is a
sphere with radius rp = 1 mm.; the thermocouple wires (Pt—
Pt-Rh) are 0.5 mm. in diameter (see Fig. 1). These wires
enter two holes in the ceramic tube which isolate them from
the nickel bottom of the sample holder.

When, during an exothermic reaction,* heat is lost through

that the heat conductivity and heat capacity of the sample
are constants during the process. The distribution of heat
during the time of the test therefore should not influence the
total peak area because each heat quantity has a fixed dissi-
pation time and a contribution to the total peak area that is
uninfluenced by the other contributions.

Speil et al.** found that the areas of the first endothermic
reaction of kaolinite (near 600°C.) are reproducible to within
3% for heating rates varying from 5° to 20° per minute,
This is in accordance with the theoretical considerations
above and was verified in this laboratory by tests on CuS0,.-
5H:0 and Na:S:0;-5H0 diluted with a-ALOs (heating rates,
6° to 22° per minute). Figure 2 shows that the heating rate
has no effect. Only for dilution ratios of the thiosulfate
higher than 30% do the values of the peak areas vary con-
siderably. This is explained by changes in the heat con-
ductivity of the sample, as will be considered later, and is
not associated with the different heating rates.

12 Sidney Speil, L. H. Berkelhamer, J. A. Pask, and Ben Davies,
“Differential Thermal Analysis, Its Application to Clays and
Other Aluminous Minerals,” U, S, Bur. Mines Tech. Paper, No,
664, 81 pp. (1945); Ceram. Abstr., 24 [8] 153 (10435).

the ther ple wires, the heat must travel from the junc-
tion to the place where these wires touch the ceramic tube;
the tube then conducts it toward the nickel sample holder.
The length, /, of this travel through the wires therefore de-
pends on the location of the wires in the holes and may vary
with each renewal of the thermocouples. From Fig. 1 it is
clear that this travel distance may be about 5 mm. The
value of A, the heat-transfer coefficient, is, according to
Boersmal®;

For eylindrical symmetry
A = Adp/2xlh
(6)
For spherical symmetry
A = Adpfixin
A = cross 1 area of ther ple wires = 0.0039 sq.
cm.

kgt = heat conductivity of Pt—Pt-Rh = 0.166 cal. /deg. cm. sec.
I = traveldistance = about 0.5 cm.
k= height of evlinder, which may be taken as 2r, = 0.2 em.

* During an endothermic reaction the heat flow is reversed
without changing the considerations in the text,
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Test results for CuSOy-5HO diluted with a-Al:Os [weight ratio, 1: 7).

803 |

A) Samples of different diameter and equal height, and (B) samples of

different height and equal diometer.

‘Thus, for both cylinders and spheres, one obtains
A = 103 ¥ 10~ cal./deg. cm. sec.

This, however, is an approximate value because of the un-
certainty about the length of 1.

The cross-sectional area, A, of the thermocouple leads in-
fluences the value of A in a direct way, A reduction of the
diameter of these wires would therefore reduce A appreciably.
B of the ac ¢ decrease of mechanical strength,
the variation of this dm.meler could not be studied and only
a diameter of 0.5 mm. was used.

The density, p, and the heat conductivity, A, of the sample
appear in equations (2) and (3) and (4) and (5). The density
is easily evaluated if the packing has been carefully done and
a homogeneous sample has been obtained, To determine the
heat ouuductivity, A, separate tests were carried out, as de-
scribed in Appendix I (p. 49), in which a stationary heat
flow through sample powders was studied. P],gu.re 3 shows
the results which were obtained on in
density from about 0.4 to 1.4 gm. per em.%, The lemperatu.re
in the samples varied from 20° to 25°C. At higher tem-
peratures the value of A decreases, as shown by Kingery
and McQuarrie's; it diminishes about 0.6 times when the
temperature increases from 20° to 200°C. The variation
of A is nearly inversely proportional to T, the absolute tem-
perature.

In Fig. 4 are shown the values of A for different dilutions
of CuS0,-5H.0 in «-ALD; and different densities valid at
room temperature. The test results may be schematized
to the following linear relation:

A= [(6.96 — 1.25) p — (1.00 — 1.125)]10~* cal./deg. em. see. (7)

where § = weight fraction, i.e., weight of CuS0.-5Hy0 divided
by weight of mixture,
For the interpretation of the differential thermal analysis
calibration tests the values of A for the sample were computed
with this equation valid at room temperature and thereupon

W (a) W, D, Kingery and M. C. McQuarrie, “Thermal Con-
ductivity: I, Concepts of Measurement and Factors Affecting
Thermual Conductivity of Ceramic Materials,” J. dm. Ceram.
Soc., 37 [2, Part IT) 67-72 (1954).

(b) Malcolm MeQuarrie, *Thermal Conductivity: V, High-
Tem ture Method and Results for Alumina, Magn!sn and
Beryllia from 10007 to 1800°C.," sbid., pp.

(e) W. D. Kingery, "Thcrmal Conduclnrlty VI, Deter-
mination of Cond ity of Al:Oy by 1 Envelope and
Cylinder Methods,” ibid., pp. 88-80.
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converted mversely proportional to the absolute temperature
T in order to adapt them to the temperature of the reaction.

. D ination of Calik Factor

For the calibration experiments, CuS0,-5H,0 was chosen.
At the heating rate of 10° per minute as applied here this
compound loses four H.0 molecules in the range 80° to 190°C.
and the remaining one Hy0 in the range 250° to 330°C. The
loss of four Hy0) molecules corresponds to about 220 cal. per
gm., as was shown by de Bruyn and van der Marel?

With the same thermocouple (No. 5), several tests were
run with samples of different dimensions in order to verify
the equations, Figure 5 shows the results of tests on samples
of equal height and different diameter and of equal diameter
and different height.

The table under the diagrams shows the results of tests on
CuS0y-5H.0 diluted with a-AlO; (weight fraction § = 1/8).
The peak areas gwen m the first two rows of the table were
determined by a p from the diag where each
square centimeter “has the value of 49.7 deg. X sec. The
involved heat of reaction per gram of sample was because of
the weight fraction; w = 220/8 = 27.5 cal. per gm. for the
release of four Hy() molecules near 150°C. By dividing the
peak areas by this value of w = 27.5 cal, per gm., the cali-
bration factor ¢ (third rew) was obtained.

Equations (2) and (4) were then applied to the samples
of Fig. 5 (A) (samples 6, 8, and 11 mm. in diameter). The
density, p, is given in the fourth row of the table, and with
equation (7) it was possible to compute A, the heat conduc-
tivity of the sample at 20°C. This factor was thereupon
reduced inversely proportional to the absolute temperature
of 150°C., giving the values in the fifth row of the table. The
factor ¢ for a cylinder is then easily computed, giving the
values in the sixth and seventh rows. These values indicate
that ignoring the heat loss through the thermocouple (equa-
tion (2)) gives values of ¢ which are five or six times too large,
whereas introducing the heat transfer through the thermo-
couple wires in the form of A = 9.5 X 1074 cal. per deg. cm.
see, gives values which correspond to the values for samples
of different diameter.

A comparison of the value of A obtained from these tests
and the value predicted theoretically in the previous section
shows that there is no great difference. They become equal
if the value I = 0.55 em. is adopted for the travel distance.

Figure 5 (B) shows the results of tests on samples 4, 10, and
20 mm. high. In these tests the density, p, was kept nearly
constant, but the total mass, M, of the reacting material
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according lo Boersma's equations (4] and

(5) for AfA = 2 and for different rafios of

thermocouple junction, ry, verss sample
diameter.

varied from 21.8 to 126.1 mg. Note that the samples 10 and
20 mm. high show practically the same peak area, which
indicates that it is not the total amount of the reacting ma-
terial that counts but only the amount of the material present
in a disk of unit height. This was predicted by equations
(2) and (4) because the sample height in the c}]indrica! case
cancels out and instead of M, the total mass, pa® is encoun-
tered. Therefore if the sample height surpasses a certain
limit, the surplus of material does not influence the peak
area, apparently being out of the influence zone of the thermo-
couple (see also Barshad"). For the very small sample
heights the peak area becomes too small because the geometry
of the heat flow no longer resembles a part of an infinite cyl-
inder.

From the graph in Fig. 6, which shows the variations of the
calibration factor ¢ when different diameters of thermo-
couple junction are used, it is deduced that a ratio n/a =
about 0.2 gives the largest peak areas. To decrease the diam-
eter of the junction in order to avoid the effect of heat loss
through the thermocouple leads is therefore meaningless.
It is seen in Fig. 6 that the difference between spherical and
cylindrical symmetry for ro/a = 0.2 is not great; this study is
therefore continued with the equations for cylindrical sym-
metry.

IV. Verification of A and A by Base-lLine Drift and
Exponential Decay
To check the values of A and A obtained from the calibra-
tion, tests were devised to verify these values by differential
thermal analysis. These tests comprised the determination
of base-line offset at the beginning of an experiment and ex-
ponential decay at the end of a chemical reaction.

In Appendix II (p. 49) it is derived that the base-line
offset, Af, corresponding to a change in the heating rate of

V degrees per second is
- 3u)/ (e an)]

o
a0 = vae[ (3
¢ = capacity of sample.
Here are encountered the same terms as in equation (4).

In Fig. 7 are shown the results of a test on samples of a-
AlO, with pc = (.2 cal. per cm.? deg.; the reference couple
was in contact with the nickel block. For the change of
heating rate V' = 10° per minute (& = 0.4 cm., rp = 0.1
cm,, A = 52 X 107¢ cal. per deg. cm. sec., and A = 9.5 X
10-4 cal. per deg. cm. sec.) one obtains theoretically a base-
line offset of A? = 1.55°. This value for A? agrees with the
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Fig. 7. Base-line offset for samples of a-AkO; for change
in heating rate from 0° to 10°C. per minute.

values determined experimentally. Without the thermo-

couple effect, this offset would have been five times larger.
This test could verify the calibrating properties of the test

device for every test and wm.lld be useful zspecuail)' at the

end of a run,  Its practical af ion fails, b

of other uncontrollable d.nftmg of the base line.

{2) Exponential Decay

The exponential decay at the end of a chemical reaction
ecan be approximated by the first and dominating term of the
series which represents the dissipation of heat out of a sample.
This term prevails regardless of the place or time of the pro-
duction of heat in the sample.

If the effect of the thermocouple is introduced, one obtains
for the exponential part of this term, according to Carslaw
and Jaeger,*

o Datt/pc)
with a the first root of
Ju(aa} Molars) + AaroSi(are) @
Nolaa) = ANo{are) + A aroNi{ars)

Joand J, = Bessel functions.
Neand N, = Neumann's functions of zero and first order, re-
spectively,

Figure 8 shows the results of a test where corundum powder
of about 60°C. was suddenly introduced into the sample
holder. The relaxation time in this test turned out to be 5
to 10 seconds,

A computation of relaxation time with equation (9) gives
avalueof @« = 9em. ' with @ = 04 em., g = 0.1 em,, X =
5.2 ¥ 1074 cal. per deg. em. sec,, and A = 9.5 X 1074 cal.
per deg. em. sec. and thus for the relaxation time about 5
seconds. This value agrees with the test value. If the
thermocouple effcet had been negleeted, a value four times
larger would have been obtained.

‘The shortest relaxation time observed for clay minerals is

*Withky =0, k=1, k' = —Arg/A, by’ = 1 (see H. 8. Carslaw
and J. C. Jaeger, Conduction of Heat in Solids, paragraph 126,
page 278, formula (5), and paragraph 137, IV, page 307. Oxford
University Press, London, 1947 ),
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given by metahalloysite. According to Speil e al.'? and to
de Bruyn and van der Marel,? the endothermic reaction at
about 600°C. ends abruptly because this mineral has an un-
ordered structure, However, small quantities of kaolinite,
which are always present, diminish the abruptness and the
relaxation time is therefore always more than for the appara-
tus itself, as is revealed by Fig. 0.

Here it may be remarked that Vold's method of determin-
ing heat-transfer coefficients for a sample during differential
thermal analysis as based on the relaxation period at the end
of a thermal reaction may lead to unsatisfactory results when
applied to an apparatus such as that considered here. The
relaxation time of this apparatus is so short that no thermal
reaction ends abruptly enough to show this relaxation devoid
of the interference of an expiring reaction.

Neither base-line offset nor relaxation time is therefore
sensitive enough to form a basis for peak-area interpretations,
but they do verify that heat loss through the thermocouples
is of the order of magnitude determined, so as to reduce the
peak areas by a factor of about 5.
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Fig. 11. Peak areas for ilite ond a-ALO; mixtures at about
00°C. [sample density, 1.1 gm.fem.%; total weight, 400 mg.).

V. Sensitivity of Differential Thermal Analysis
Apparatus for Quantitative Analysis

From the foregoing it is deduced that the factors that may
vary in the different tests, and by this variation influence the
calibration of the test device, are principally the density, p,
of the sample, the heat conductivity, A, of the sample, and the
heat-transfer coefficient, A, for the thermocouple. The heat-
ing rate does not alter the calibrations if the heat conduction
of the sample does not change during the reaction.

The heat transfer through the thermocouple, A, predomi-
nates over the heat conductivity of the sample, its influence
being four to five times greater.  In Fig. 10 the calibration of
CuS0y-5H.0 diluted with e-AlLO; (1:7) is shown as measured
with different thermocouples. A difference of about 15%
hetween two thermocouples is observed.

Differences of about 309 are observed in Fig. 11 for several
dilutions of illite in «-Al:O;; each thermocouple has a
marked tendency to follow a calibration curve of its own.
After repl t of the ther ples, the results with
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Fig. 12, Peak areas for kaolinite and a-AliOy mixtures ot about
600°C. (somple density, 1.1 gm.fem.?; total weight, 400 mg.).

kaclinite and montmorillonite diluted with «-AlO; (Figs.
12 and 13) show that the d.IEerem:es are less pronounced.
Each 1 of the ther A,

Several tests were run with thcnmcouptt No. 5 without
renewal, giving a standard deviation of 2.0 to 3.0% for 24
tests for & mean peak area of 1380 deg. ¥ sec. (see Fig. 14).

The heat transfer through the samples varies from test to
test because their heat conductivity may differ for several
reasons. Figure 3 shows how A differs for various materials;
there the results of heat conduction tests at room temperature
are given for e-AlO;, CaS0,, CuS0,-5H:0, a kaolinite, an
illite, a bentonite, quartz, and feldspar. Figure 15 shows the
results from some dilutions. It is worth noting that the
kaolinite and a-AliO; and the dilution (1:1) of these mate-
rials show nearly the same A for corresponding densities.

Tests with different dilutions of kaolinite and a-AlO; at
equal density therefore have the same calibration value, re-
sulting in a linear relationship between peak area and weight
fraction. This is shown in Fig. 12 by the straight lines for
each thermocouple. This proportionality for kaolinite mix-
tures has been found by several investigators. Grimshaw and
Roberts,* de Bruyn and van der Marel,* and Wittels® have
found the same proportionality for caleite.

Illite, however, has a A differing considerably from the A of
a-Aly0y, as shown in Fig. 15. Therefore, the dilutions of illite
and a-AlO; at equal density show no linear relationship (see
Fig. 11) for each ther ple, but a tendency toward
greater peak areas for higher illite concentrations, This
agrees with the theory, for more illite in the mixtures de-
creases the ), and A figures in the denominator of equation
(2). The same is observed for copper sulfate (see Fig. 2).
Figure 3 also reveals that the A is nearly proportional to the
density, p, in the region considered. The proportionality
proposed by Arens' does not hold rigorously but is not far
from reality. In the Boersma equation p and A appear as
the fraction p/[» + A In (a/r)]. The peak area therefore
would be unaffected by density if A In (a/ry) were small com-
pared with A. In reality, however, A In (a/r) is four or five

18 Mark Wittels, “Some Aspects of Mineral Calorimetry,” Am.
lfmmlagm‘ 36 [9 and 10] 760-67 (1951).
L. Arens, “Study on Differential Thermal Analysis of
Clays and Clay Mmemls doctor’s thesis, Agricultural Univer-
sity of Wageningen, Netherlands, 1951.
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Fig. 14. Distribution of peak areas from 24 tests on
CuS0, - SH/O with thermocouple No. 5 without renewal.

times the \. The equalizing effect of A on p is therefore partly
eliminated. Tests in this respect proved that a higher
density increased the peak area, although the difficulty of
obtaining a constant density throughout the sample confused
the results and made them inexact,

Another complication caused by the heat conductivity of a
sample is the possibility of its changing during a test. This
might be caused by losses of weight (see Norton” and Berg?)
or by the appearance of a liquid phase (see Berg¥). When the
sample melts, the heat conductivity is increased owing to
better contact between grains; the peak area is consequently
reduced. On the other hand, loss of weight and especially
loss of volume may decrease the heat conductivity because
the sample shrinks and loses contact with wall or thermo-
couple; the peak area then is larger. The results of the
tests with several concentrations of thiosulfate in a-AliO,
as shown in Fig. 2 show that these effects begin to show
only bevond dilution ratios of 307

Wittels™ abserved, when working with a vacuum differen-
tial thermal analysis apparatus, that the heating rate influ-
ences the peak area of caleite. Here again one may en-
counter the effect of the heat conductivity of the sample; in

U R, H. Norton, “Critical Study of Differential Thermal
Method for Identification of the Clay Minerals,” J. Am. Ceram.
Soc., 22 [2] 54-63 (1939).
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Fig. 15. Heat conductivity, &, of dilutions of a kaclinite, a bentonite, and an filite in a-ALOy at 20°C. packed under
different conditions.

this instance it decreases during the reaction. At higher
heating rates the dissipation of previously produced heat,
w]uch at a er heatmg rate could haw dlsmpated under
more fi may be

Grimshaw and Roberts* propose to test samples when they
are diluted with an inert material, e.g., a-Al:0y, in such a con-
centration that the heat-conducting properties of the mixture
will equal those of the a-Al:O;.  That it is possible to elimi-
nate the effects of sintering and shrinking of the test material
when the oAl is preponderant is verified by the fore-
going.

VI. Conclusion
The most serious errors in itative

density and the same volume will always be obtained and
thus the heat flow near the thermocouple will follow the same
geometrical pattern. Furthermore, the sample should be
diluted with the reference mert material (usually a-Al:O;} to
such a degree that the pach and heat- | g proper-
ties will be determined pnmpal'[y by the diluter and will re-
main the same during the test regardless of shrinking, sinter-
ing, or liquefaction of the test material. Dilution, however,
must not prevent the material investigated from giving
enough thermal effect (see the dilution technique of Grimshaw
and Roberts®). To minimize the effect of the thermocouple,
it is necessary to calibrate the test device each time the ther-
mul.'mlplc |s rencwl.d. This calibration may be done with
of well-k n heats of d ition,

with the differential thermal alla]y.sis apparatus are caused by
possible differences in the heat transfer through the samples

and through the thermocouple wires.  Thus, for a dependabl

interpretation of the test results, it is necessary to take pre-
cautions to minimize this disturbing factor. This can be
done by standardizing the packing method so that the same

This investigation was undertaken in collaboration with H. W,
van der Marel, Agricultural Experiment Station, Groningen,
Netherlands. The author is indebted to H. Labrie and A. van
der Wende for conducting the tests,

APPENDIX |

The heat conductivity of the sample powders was determined
from the stationary heat Aow through the sample the
ellipsoidal wall of the contamu the heat was generated by an
trically heated coil of confoeal ellipsoidal shape. The wall

of the container was kept at a constant temperature (20°C.)
in a water bath and the temperature of the coil was registered
by a thermistor (resistance with negative temperature coeffi-
cient}. The coil was wound on a copper core so that the tem-
perature of the surface of the inner cllipsoid was constant.
The interior of thiz ellipsoid therefore had the same tempera-
ture as the boun er stationary conditions as potential
theory reveals, the region being simply connected and with-
out heat-generating sources, The temperature registered by
the thermistor therefore equaled that of the coil and the heat
generated by the electric current moved outward only.

According to potential theory the temperature difference
48 (°C.) between coil and container wall is related to the heat
flow, (@ (eal. pe'rsncnm‘l) by the equation

= 4zh-1-Q (cosh™ & — cosh™! &)

heat eomlucli\rity of sample at 22.5°C.
foeal distance.

eccentricity of inner ellipsoid.
eccentricity of outer ellipsoid.

&8>

The electrie energy involved was 0.31 watt, and the di-
mensions of the ellipsoids were ] = 1,25 cm., ¢ = 4.33, and & =
1.18. A calibrating control was made with gelatin, which has the
same heat conductivity as pure water (1.37 % 1074 cal. per deg.
sec. em.) but is without the d!sadvnmaae cn‘ heat loss through
convection. The of 5.2% was

ered.
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APPENDIX I

‘When the nickel block is heated at a rate V degrees per second,
the temperature of the sample will lag behind, giving a constant
temperature difference A% between the nickel block and the center
of the sample, when the process has become stationary.

The heat per second that must enter the volume of the sample of
height &, between the radii rp and r, is #(r? — r?)hpcV. Part
of this heat crosses the area 2xrk at a temperature gradient 28/0r
50 that this quantity is, per seco

Z2arh-h-08/0r
‘The other p@:t flows through the thermocouple wires with cross-
sect:;lmbu.ren , length I, and heat conductivity hy at a rate of
A8 Adg/l.

Therefore one obtains, if A = Ak, /2xlk

a0
or = "N T2 aer (a)

Vpc!’—rb' A- a8

with boundary conditions
Birma) = B jrary = 4F (b)
Integrating equation (a), one obtains

a-l’“(——inr+4) ‘”|m+c

and afterward by introduction of equntiun (b)

v [5G raud)]

143



A Capacitive Cell Apparatus
L'Appareil 4 Cellule Capacitive

1a/13

by G. DE JossELIN DE JONG, IR., Sub-director, and E. C. W. A. Geuze, Professor, Delft Soil Mechanics Laboratory,

Delft, Netherlands
Summary

The article describes a test device which permits the d i
of the horizontal strain of cylindrical samples under loading con-
ditions without touching the sample by means of an electrical

capacitive method. Tests on samples to stud'_r at rest p
ression and shear separately are outli

of shear ing to the sample

behaviour as determined by this test device, is discussed.

Introduction

The study of cylindrical soil samples under the influence of
stresses as effected in test devices such as the Dutch cell or
British triaxial apparatus becomes more interesting if the
strains may be determined separately and without disturbing
the applied stresses.

The capacitive cell apparatus described here permits the
measurement of lateral deformation of the sample without
touching it, so the horizontal stress applied by air pressure on
the rubber envelope of the sample is not disturbed by the dis-
placement determination. After a description of the test
device and interpretation of the results, @ discussion of typical
test results in ion with the ption of shear
will be given.

Description of the Lateral Strain Determination

In Fig. 1 the apparatus is schematically represented. The
cylindrical sample is loaded vertically by weights and hori-
zontally by air pressure on the rubber envelope and the vertical
movement is read on the dial gauge, these contrivances being
of the conventional type.

The measurement of the horizontal strain is effected by using
the sample surface as one of the two electrodes of a condenser,
the metal housing being the other electrode.

If the sample dilates the distance between sample and outer
wall will decrease, thus increasing the electrical capacity of this
condenser because the wpaaty is inversely proportional to the

the i By determination of this
electrical capacity the horizontal strain may be deduwd

In order to this a
installed in the base of the apparatus which can be madc
electrically equivalent to the sample-wall combination. In
Fig. 1 this reference condenser is shown in a substitute circuit
consisting of a fixed condenser C,, which represents the main
part of the capacity from the sample and connecting metallic
parts, a resistance R, as a substitute for the sample resistance
and an adjustable condenser C, which accounts for the remain-
ing variable part of the sample-wall capacity.

To equalize this electrical substitute to the sample-wall
capacity these two circuits are alternately connected to a zero
indicator.

For this purpose use is made of an electronic device (type
Boersma C.V.M. III, frequency ca. 1 Mc) which is sensitive to
very small capacity variations: 0-002 pF gives a visible deflection
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Sommaire
Cette ication décrit un dispositif d'essai permettant de
déterminer la déf i d'ép cylindriques
ées axial et SANS MOoyens
mais en éval la variation de capacité électrique du systéme.
Au cours d'une série d'essais avec | gn étudgﬁ‘

la pression au repos, la compression et le cisaillement.
signification de la résistance au cisaillement est discutée en
fonction du comportement de I'échantillon, pendant les essais.

on the Amp. scale. This sensitivity determines the possible
accuracy for horizontal strain With a le:
height (#) = 10 cm, diameter = 2r, = 6-35 cm and the dia-

Metal 73 Quter elecirode

Metal 23

Sample EZI} Inner elecirode
0 Porous plate
= Rubber enveiope

Au' pressure
mﬁmzonm load

e’ 1

+o—Substitute eirceuit

Fig. 1

Schematic representation of test device
Schéma de I'appareil

meter of the inside of the housing wall 2r, = 8-4 cm the
capacity of the coaxial condenser amounts to

h
€= I Shog, trulryy = 20
An_Inm:ase of this capacity by 0-002 pF corresponds to a
horizontal strain of ey = 0-03 per cent, being the accuracy of
the measurement.
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The apparatus was calibrated by the introduction of metal
cylinders of different diameter and height. The :xpen.mmml
values for the capacity agreed with the values computed using
formula 1: also, as a control, samples deformed in different
stages were measured by an optical device of great accuracy
again giving agreement with the capacitive measuring method.

Because of the rigid end plates the deformation of the sample
in the horizontal direction will be larger in the middle if the
friction between sample and end plates is large enough to pre-
vent horizontal movement. By wetting the surface this friction
is reduced and the barrel form is less pronounced, the disturb-
ance being limited to small zones of the height of the sample,
the rest deformi; ly and ining cylindrical.

e}

L

c

Fig. 2 Typical test result from capacitive cell apparatus
Résultats caractéristiques obtenus avec I'appareil

The capacity measuring system determines the summation
of all horizontal displacements over the whole of the sample
height and would therefore give the mean value if the capacity
was proportional to the distance of the sample to the wall.
However being inversely proportional to this distance, the parts
that approach the wall most closely will dominate. The
deformations studied did not give a strain greater than 5 per
cent and if the sample had become a barrel with a wall in the
form of a sinusoid, which is very exaggerated, the error in the
mean value would amount to 0-05 per cent strain, which is a
negligible part of the mean strain. So we can assume that the
capacitive measuring system gives the mean horizontal strain.
This may be compared with the vertical displacement obtained
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from the dial gauge readings which is proportional to the mean
vertical strain over the sample height.

When a sample loses water during the test this water is
captured in the hollow end plates (see Fig. 1). By surrounding
these water storage rooms with metal connected to the sample
this water is enclosed by a Faraday cage and so does not in-
fluence the capacity of the condenser.

Representation of Test Results

The test results consist of the variations of four variables
namely the principal stresses o and oy and the principal
strains e and ey (the subscripts correspond to vertical and
horizontal).

For the interpretation of the data however it is easier to
consider compression and shear distinct from one another.
We will therefore present the results in terms of the hydrostatic
and deviational increments of stress and strain, oy, 7p and e,
¥o, which are related to the principal stresses and strains by:

oy = Yoy + oy 70 = H— oy + og)

€ = (ey + €p) vo=(— ey + €y)
Thus the quantities o and € relate to compression only and
7o and ¥, to shear, the last two being the radii of respectively
stress and strain circles in Mohr's diagram (see Fig, 2a).

-  Digmeter mm
02 [ &05 002 G0 0005 o002
T T T T T

4

s &

§

1ot

&

A7 1

00

Fig. 3 Grain size distribution of test material
Granulométrie du matériau

In Fig. 2b, and c a typical test result is shown in these
coordinates.  The strain diagram (Fig. 2b) is plotted from
dial readings and capacity determinations. In the same
diagram the coordinates for ¢ and y, are also given. Com-
paring the result in these ¢, and y, with the applied
stresses in the opry diagram we observe a remarkable re-
semblance. (The negative sign indicates pressure in accordance
with the notations in elasticity.)

‘This sample showed resiliency for the compression strain
which could be accounted for by the presence of air in the clay.
The air content amounted to about 4 per cent of the volume.
The test duration was not long and the sample being very
impervious to water movement, practically no consolidation
was obtained during the test.

Some Tests E: I with the Cay Cell

To show the use of the apparatus we describe some typical
tests on Gouda clay. The grain size distribution of this illite
clay is given in Fig. 3. Liquid limit 45 per cent, plastic limit
18 per cent. The samples were moulded and cast with a water
content of 34 per cent of dry weight and left for four days to
regain their strength.

At-rest pressure test—The study of horizontal stress caused
by horizontal confinement is facilitated by the apparatus as it
permits horizontal strain measurement.

During the test the stresses are adjusted in such a way that
€y remains zero. In Fig. 4 two tests are shown: one in which
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the vertical stress is increased at a rate of 0-01 kgfem? per
minute and the horizontal stress is adjusted, and in the other
the hori 1 stress is i d gradually and the vertical
stress is adjusted. Both test procedures give rise to a similar
value for 7y, The value of vy depends on the rate of stress

inmease, but tends to a minimum value when one of the stresses
is kept constant for a long time.
During this test the sample preserves the same d:amm over

by projection on the ¥, axis. Another possibility is to load the
sample in such a way that the compression strain is not varied.
This is realized by increasing the vertical stress and at the same
time decreasing the horizontal stress by an amount equal to one
half the vertical change, thus keeping the sum of the three
stresses constant.

Tests performed in this way proved that the strain consisted
only of shear deformation and no compression component was

its whole height. So deformation is h

4, stepwise increased
o, odfusted

-

=06 0

: o owu.sred
| a,_. stepwise increased
|

| 1 |
07 0z 03 04 05 06 %

Fig. 4 Result of at-rest pressure test
Résultats de l'essai de compression au repos

Comparison of the shear deformation obtained in this way
with that in cases where the compression was present showed
no appreciable difference for this typical impervious clay. We
will therefore in the subsequent discussion leave compression
influences out of our considerations.

Shear Separated

Representation of shear influences is most effectively given
in 7y curves. However, clay being a material with flow
properties, the value of y is not distinct for a certain value of 7
as y will increase gradually in course of time under the influence
of the shear stress.

For a test where 7 is increased in steps we therefore obtain
a curve as indicated in Fig. 5a by the dotted line. The
vertical parts of the curve are pursued in course of time and the
heights of the steps in the graph therefore depend on the

g =—s———""" duration of each step.

The increase of ¢ with time is given in Fig. 5b. From this
plot we determined the flow rate (2y/2f) and incorporated this
flow in the vy curve by joining points of equal flow rate in
Fig. 5a (full lines).

The family of flow rate curves is typical for a clay sample and
different ways of testing reveal the same situation of these
curves on the 7—y plane as is shown in Fig. 5 (c, d, €). When =
isd d during the test, lines of smaller flow-rate are passed

the sample and also the stress distribution tk its
volume is homogeneous. This is the most favourable con-
dition for the study of the sample.
Compression and Shear Combined

The curves of Fig. 5 represent the effect of oompressmn and

indicating that the sample decreases its flow rate. Below a
certain value this flow rate becomes smaller than zero, which
means that the sample is resilient to shear strain. The family
of negative flow rate curves however is very narrow, just like
the band ol’ positive flow rates which is characteristic for the
of T (see thin lines in Fig. 5a). When the

shear stresses applied simultaneously in various

For the study of shear properties we can leave the com-
ponents of strain in €, direction out of consideration and direct
our attention to the movement of the strain in the y, direction

1, kgkm?
o1 0125

Time min.
i 5 6 7 8 9 10

pmwnus maximum value of T is reassumed this thin band joins
the primary family of flow rate curves whose situation in the
7 field is not seriously affected.

o4

2
=9

T s W ow

7

Mo, ot s W b o

R

B - N S VR VR Y

(e}

Fig. 5§ Comparison of families of v—y-D curves as obtained from different test procedures

loaded, (¢) cell test loaded in steps, (f) rigidity of cell apparatus

(a) Capacitive cell, (c) triaxial test with unloadings, (d) cell test

Comparaison des familles de courbes r—y—D obtenues par différentes méthodes expérimentales
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An attractive way of representing this behaviour is the block
diagram shown in Fig. 6 where the vertical coordinate is the
flow rate D = &y/ér.

‘When the soil is in the condition represented by the point 4
on the slope of the curved plane the material will yield with a
velocity indicated by the height above zero level. Starting
from this point A different paths may be followed depending on
the conditions imposed by the test procedure.

A horizontal path 4B is pursued if the flow rate is kept
constant, This condition is realized by the triaxial test pro-
cedure when there is no consolidation during the test.

The path AC corresponds to a constant value of the shear
m:mduobmnedmthatastdesmbedahove.

The path AD of steep is foll difad of r
is accompanied by an increase of . This happens in an
apparatus such as the Dutch-cell where the horizontal displace-
ment of the sample is restricted by an increase of horizontal
stress, When the vertical stress is kept constant this signifies

D=ty

shique 4 trois d lati

Fig. 6 Block diagram for =D relation
des

~y-D

a decrease of 7. The rigidity of the apparatus determines the
direction of the descent path which is more nearly parallel to
the D plm for greater rigidity.

In Fig. 6 is demonstrated, by the aharp pointed zig-zags, the
path followed by the ple fora d loadm.s
as executed in the Dutch-cell test. The primary sheet is im-
mediately rejoined, there being no serious deviations. The
conception of this 7—y—D sheet is of great help in the interpre-
tation of admissible shear resistance.

Study of Shear Resistance
The resistance offered by the soil to shear is of primary

mpwianoewhenthesmgthofsoﬂoonstmctmmuwbe
judged. For if the soil stresses are divided into c

However in certain instances it is not the total failure that is
of interest but the deformations which may assume intolerable
values, causing overloading in other parts of the construction.

In a test of short duration (in comparison to the life of civil
engineering construction) the flow properties of the soil under
loading conditions have to be considered because continual
flow may cause the unwanted deformations. As a criterion for
admissibility of shear stress the flow rate has to be introduced.

In a test such as the triaxial test where only one velocity is
induced we obtain an insight of the situation of one contour of
D, but the slope of the sheet does not enter into the test result.
This slope however determines how much the observed = has
to be reduced in order to obtain an admissible value. Pre-
ferable therefore is a test which by exploration of the sheet slope
gives this information.

Such a test is a Dutch-cell test. The rigidity of the cell
apparatus in the horizontal direction lsrepresenwd in Fig. 5f
which shows how the horizontal p as the pl
dilates laterally. As the vcmeal stress is increased in steps
7 also increases in steps, but during the time the vertical stress
is left constant the sample strains and a gradual increase of Ep
occurs, thus decreasing =. This produces the oblique lines
in the = plane shown in Fig. Se where a test result is repre-
sented. All oblique parts together form lha rigidity line
of the us being parallel to of
Fig. 5. The corresponding movements in the D sheet
of Fig. 6 follow lines such as 4D, which turn out to be nearly
perpendicular to the contour lines (D = constant) and so
follow the direction of greatest slope on the sheet. Require-
ments for a good test performance are that each loading step
should last long enough for observation of the small velocities
and that the loading steps should be small enough not to disturb
the sample.

The cell is constructed so rigidly that although a great many
steps of loading and unloading are executed and a broad band
of the family of velocities is explored, the total shear strain y is
still limited and shows no large values.

This reveals the intention of the cell tests to obtain infor-
mation about the flow properties of the soil in an equilibrium
state, that is with small deformations.

Conclusion

The capacitive cell apparatus permits the study of different
conditions of stress and strain, and by measuring the vertical
and horizontal strains separately compressive and shear strains
may be obtained. The relation between shear stress and shear
strain is only uniquely determined if the flow rate is considered.
The family of curves for different flow velocities in the vy plane
seems to be characteristic of the sample and is not shifted
seriously when loadings are repeatedly applied if the total shear
strain does not exceed too great a value.

The exploration of the velocities in different stages of strain
is most effectively obtained by an apparatus such as the Dutch-
nell apparatus which, by rigidity against strain, limits the

of the ipl when large velocities have been

applied.

The authors wish to thank Mr Boersma for suggesting the use
of a capacity method for the measurement of lateral strain, Mr
Winkel for carrving out the tests and Mr Van der Beld and Mr’t
Hart for their e in the develoj of the app

and shear, it is well known that soil can withstand every com-

stress at the of certain deformations, but that
the shear stress, exceeding a certain value, causes unlimited
deformations, which bring about a break down of the con-
struction.
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ETUDE PHOTO-ELASTIQUE D’UN EMPILEMENT DE DISQUES

par G. DE JOSSELIN DE JONG et A. VERRULJIT
(UNIVERSITE TECHNIQUE, DELFT, PAYS-BAS)

RESUME

Des essais exécutés sur un empilement de disques, constituant un modéle de milieu pulvérulent, sont
décrits. Les disques ont été fabriqués avec un matériau photo - élastique, ce qui permet d'étudier les
contraintes a 1'intérieur des disques. Il est montré comment |'analyse des essais conduit a la détermination
des forces de contact entre les disques, aussi bien en grandeur qu'en direction. Les conditions d'équilibre
des disques individuels sont vérifiées a 1'aide d'une épure des forces.

I. — INTRODUCTION

Les propriétés mécaniques des milieux pulvérulents, comme le sable, sont souvent étudiées a 1'aide
d'un modéle analogique constitué d'un assemblage bidimensionnel de rouleaux ou de disques cylindriques.
DANTU (1957) a été le premier a appliquer la photo- élasticité a 1'étude d'un tel assemblage. Il a exécuté
des recherches qualitatives sur la répartition des forces intergranulaires, aussi bien dans un empilement
régulier gue dans un empilement quelconque. Il résulte des recherches de DANTU, ainsi que de celles
d'autres chercheurs ( WAKABAYASHI, 1957: DE JOSSELIN DE JONG, 1960; WEBER, 1966), que la
distribution des forces intergranulaires dans un milieu pulvérulent n'est pas du tout homogéne, mais qu'il
existe des chainons de disques (ou de rouleaux) qui transmettent la plupart des forces, tandis qu'un grand
nombre de disques reste non chargé.

Les recherches rappelées ci-dessus ont toutes été effectuées en utilisant de la lumigre polarisée
circulaire, les forces intergranulaires restant si petites qu'a 1'intérieur des disques chargés, on ne constate
qu'un effet photo-élastique dit du premier ordre. Alors, les disques ne transmettant aucune force ne se
distinguent pas du fond obscur, tandis que les disques transmettant une certaine force deviennent lumineux.

En utilisant un empilement de billes de verre entre deux parois de verre paralleles, dont les vides ont
été remplis par un liquide de méme indice de réfraction que le verre, on peut observer la transmission des
forces dans un milieu tridimensionnel. L'assemblage est transparent pour un certain type de lumiére mono-
chromatique. On a l'impression (DANTU, 1957: WARABAYASHI, 1957) que les lignes formées dans un
tel milieu par I'illumination des billes chargées sont dirigées selon la direction de la contrainte prineipale
majeure. Il est remarquable que, parfois, on voie aussi un réseau de lignes orthogonales noires, c'est-a-dire
un réseau de lignes a4 peu prés dirigées selon la direction de la contrainte principale mineure (DE JOSSELIN
DE JONG, 1960).

-3 -
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Par les méthodes décrites ci-dessus, il est impossible de déterminer individuellement les forces inter-
granulaires. Le présent article décrit une méthode, qui, en utilisant CR 39, un matériau photo- élastique
plus sensible que le verre utilisé auparavant, donne des possibilités d'analyse plus prononcées. L'assem-
blage consiste en disques assez minces soutenus latéralement par deux panneaux de Perspex. En agran-
dissant les photographies des disques, il a été possible d'en étudier les arabesques photo-élastiques plus
en détail. Le résultat est une détermination des forces individuelles agissant entre les constituants de
I'assemblage. On a pu déterminer ces forces en valeur absolue aussi bien qu'en direction.

Aprés avoir déterminé toutes les forces de contact, il a été possible de construire un diagramme de
forces qui, étant fermé, prouve que toutes les conditions d'équilibre sont satisfaites. Quelques exemples de
résultats expérimentaux et d'épures dérivées des photographies sont présentés ci-dessous.

II. — CONSEQUENCES PHOTO-ELASTIQUES DU CHARGEMENT DES DISQUES

Ce paragraphe sera consacré & 1'effet photo - élastique d'un disque circulaire chargé & sa périphérie par
des contraintes exercées par les disques voisins. Ces résultats seront utilisés pour indiquer comment on
peut analyser la distribution des forces dans un assemblage de disques.

Considérons d'abord un seul disque en contact avec un certain nombre de disques voisins. Si les
dimensions des plans de contact sont suffisamment petites, on peut considérer les forces agissant au bord
du disque comme des forces concentrées. Pour assurer 1'équilibre du disque, il est nécessaire que la résul-
tante de toutes ces forces soit nulle et que ces forces ne produisent pas de moment résultant.

Bien que la distribution des contraintes & 1'intérieur d'un disque chargé par des forces concentrées
agissant 4 sa périphérie puisse étre calculée par les méthodes de la théorie d'élasticité, il est instructif de
commencer par des considérations approximatives. Prés du point d'application d'une force concentrée, la
distribution des contraintes s*approchera de celle d'un plan semi-infini chargé par une force concentrée. Ce
dernier cas est un probleme classique de la théorie d'élasticité, résolu par FLAMANT (1892) pour le cas
spécial d'une force dirigée perpendiculairement au bord, et généralisé par BOUSSINESQ (1892) pour le cas
d'une force oblique.

De la solution de ce probléme, on peut déduire que les isochromes (courbes a différence constante des
deux contraintes principales) sont des cercles. Ces cercles passent par le point d'application de la force
concentrée et leurs centres se trouvent sur une ligne dans le prolongement de la force (FROCHT, 1948).

On peut comparer cette approximation avec les résultats obtenus par PORITSKY (1850), qui a résolu
rigoureusement le probléme de deux disques élastiques en contact. Puisque le point de contact, dans ce cas,
s'est étendu sur une petite surface, les isochromes ne sont plus des cercles, mais la déviation est assez
petite. La figure 1, ci-contre, présente, dans le cas particulier ol la tangente de 1'angle de la force avec
la normale au plan de contact est égale a 1/3, les isochromes données par PORITSKY et les isochromes
empruntées a FROCHT.

11 ressort de la figure 1 que les deux systémes d'isochromes sont a peu prés identigues. Cela justifie
I'application au probléme des deux disques en contact, de certains résultats obtenus pour une force agissant

sur un plan semi-infini. En particulier, le fait mentionné ci-dessus que les centres des cercles isochroma-
tiques sont situés dans le prolongement de la force, conduit & la détermination du diamétre commun des

- T4 —
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Figure 1 - Isochromes pour le cas d'une force concentrée agissant sur un demi-plan,
comparées aux isochromes pour le cas de deux disques en contact.

D'aprés FROCHT (1948), resp. PORITSKY (1950).

cercles isochromatiques pour en déduire la direction de la force. Les lignes photographiées sont exactement
les isochromes et il n'est pas difficile de localiser la direction du diamétre commun.

La détermination de la valeur absolue de la force transmise d'un disque & 1'autre peut 8tre obtenue
4 1'aide d'une formule donnée par FROCHT (1941). Si l'expérience est exécutée sur champ clair, la diffé-
rence des contraintes principales, o, = o,, le long d'une ligne isochromatique est donnée par :

(1)
A est la longueur d'onde de la lumiére,
t I'épaisseur du modéle,
o}

la constante optique du matériau,
n

1'ordre de 1'isochrome (égal & un nombre entier au centre des franges lumineuses).

a

D'autre part, il résulte de la linéarité des propriétés mécaniques du matériau que o, — o, est propor-
tionnel & la valeur absolue P de la force. Alors, on peut écrire :
1 a

5 P [(x, ¥),

[¢3]
ou f(x,y) estune fonction exprimant la forme géométrique des isochromes. Cette fonction, en général, est
également dépendante d'un certain nombre de paraméctres liés au mode d'application de la force ( par exemple !
I'angle d'inclinaison de la force ).

— 5 —
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Les formules (1) et (2) expriment une relation linéaire entre la force P et l'ordre de 1'isochrome n.
Cette relation permet de comparer les résultats de deux essais photo-élastiques. En effet, on peut déterminer
1a valeur absolue de la force dans 1'un des deux essais, si 1'on connait la force dans 1'autre essai, par compa-
raison des ordres des lignes isochromatiques en un certain point.

Il est connu ( FROCHT, 1948) que, pour le cas d'une force concentrée agissant sur un plan semi-infini,
la fonction f(x, ¥) est donnée par la formule :

2
f(x, B 3
(x, ¥) e 3)

Dans cette fraction, t est encore 1'épaisseur du modeéle, et d est le diamétre du cercle passant par
le point (x, ¥) et le point d'application de la force, le centre de ce cercle étant situé dans l'axe de la force.
Lorsqu‘on compare les résultats de deux essais (désignés respectivement par les indices 1, 2), il résulte des
formules (1), (2) et (3) que :

[e34 rrtd‘ Ct :'rt.t:l2

d'oi 1'on obtient :

g e (@)

Si I'on dispose des résultats d'un essai, dont on connait la force P; et l'ordre n,; d'une isochrome
de diamétre d,, on peut facilement calculer la force P, d'un second essai avec la formule (4). Il suffit de
mesurer le diamiétre d, d'une isochrome de I'ordre
n,. De ce que la fonction f(x, y) est donnée par la
formule (3) quelle que soit la direction de la force P,
il résulte qu'il n'est méme pas nécessaire que les
forces Py et P, aient méme direction.

Naturellement, la mesure du diamétre d'une
isochrome circulaire (ou & peu prés circulaire) ne
présente pas de difficulté sérieuse, mais la méthode
- - permettant de déterminer 1'ordre d'une telle isochrome
n'est pas évidente. Considérons pour cela un disque
soumis a l'influence de quelques forces concentrées,
appliquées a sa périphérie. Il a été montré par
FROCHT (1948) que, dans le cas d'un disque chargé
par deux forces diamétralement opposées, toutes les
contraintes s*annulent au bord du disque. Alors, la
différence des contraintes principales s*annule aussi
dans ce cas, et, par conséquent, le bord du disque
constitue 1'isochrome d'ordre zéro.

Des calculs assez simples, analogues aux
calculs de FROCHT, montrent que, dans le cas d'un
disque chargé par deux forces colinéaires, opposées
et dirigées selon une corde arbitraire AB (figure 2),

Figure 2 - Disque chargé par deux forces colinéaires
et opposées,

==
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la différence des contraintes principales en un point C du bord, déterminé par 1'angle @ de la ligne BC
avec la corde AB est donnée par la formule :

( ) P sin 2« -
o, —0g = —_——_—_—__
1 e rRt sin« + sin(«+ 26)
ol : R est le rayon du disque,
o 1'angle de la direction OB avec la direction AB,

Les angles « et € sont considérés positifs s'ils sont orientés comme indiqué sur la figure.

En posant = = 0 dans la formule (5), on obtient la relation obtenue par FROCHT, ¢, -0, = 0,
valable pour un couple de forces diamétrales.

m
Au point D, situé symétriquement par rapporté A et B, ol 26 =T— «, OnA&:

P sin 2o

—_— 6
Rt 1 + sin« e

o, = a,) =
(o, 2y

En utilisant la formule générale (1), n étant maintenant un nombre pas nécessairement entier, on
obtient :

PC sin 2«
#RA 1 + sins

Cette formule montre que, dans le cas présent, 1'ordre isochromatique ne s'annule pas au bord.
Néanmoins, cela n'empéche pas 1'analyse, parce que la valeur de n, est, en pratique, limitée pour les
raisons suivantes.

L'angle = est également 1'angle de la force P avec la normale au plan de contact. Il ne peut donc
dépasser 1'angle de frottement, qui est d'environ 20¢ pour le matériau utilisé dans les essais. Lorsque
I'angle = varie entre —20° et +20°, la quantité sin 2«/(1 + sin «) varie entre —0,98 et + 0,48.

Dans les essais les forces P sont au maximum de 'ordre de 300 N et agissent sur des disques de
1,5 cm de rayon. Pour le matériau utilisé (CR 39), la constante C est d'environ 3 x 10-7 cm?/N. La
longueur d'onde ) étant d'environ 600 x 10 =7 cm, la quantité PC/(xRA) est toujours inférieure & 0,3.

La formule (7) conduit donc & la conclusion que la valeur absolue de np, c'est-a-dire de 1'ordre iso-
chromatique en un point du bord du disque équidistant des points d'application des forces, est toujours
inférieure & 0,3. Ainsi, puisque le nombre entier le plus proche de la valeur de np est toujours zéro, il
est & prévoir que la recherche de 1'isochrome d'ordre zéro ne présentera pas beaucoup de difficulté dans le
cas d'un disque chargé par deux forces dirigées selon une corde arbitraire. On notera que ce type de solli-
citation est le cas le plus général de systéme équilibré composé de deux forces seulement.

En extrapolant ce résultat, on peut admettre qu'il est probable que les contraintes & la périphérie d'un
disque chargé par plusieurs forces concentrées (cf. la figure 3, au verso, qul présente un certain nombre de
disques chargés de cette fagon) seront également trés petites, et que 1'isochrome d'ordre zéro sera située
& proximité du bord du disque.

-7 -
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‘ : = Figure 3 - Détail de la photographie d'un empilement
ol Pt B chargé, montrant les isochromes & l'intérieur des
/ disques,

YD)

Quand 1'isochrome d'ordre zéro est repéré, il est facile de déterminer 1'ordre d'une autre isochrome
(par exemple, une isochrome située prés du point d'application d'une force), puisque 1'on sait que 1'ordre
croft ou décroit d'une unité en passant d'une isochrome a la suivante. L'ordre n, et le diamgtre d, d'une
telle isochrome étant ainsi déterminés, on peut alors, par la formule (4), calculer la force P, transmise au
point de contact.

III. — ANALYSE DES FORCES SUR LES DISQUES

Comme nous 1'avons vu, la direction d'une force de contact est déterminée par le lieu des centres des
cercles, et sa valeur absolue est déterminée par le diamatre et 1'ordre d'une courbe isochromatique. Alors,
toutes les forces transmises & 1'intérieur de 1" bl sont en direction aussi bien qu'en valeur
absolue.

1l est ainsi possible de vérifier que les résultats satisfont aux conditions d'équilibre des disques
individuels. Le procédé de vérification va &tre décrit & 1'aide des figures 3, 4 et 5. Les figures 3 et 4
montrent le détail d'un certain empilement chargé, et la figure 5 représente le diagramme des forces y
correspondant.

Figure 4 - Les quatre disques au centre de la figure 3
avec leurs forces de contact. L'épaisseur des lignes
est proportionnelle & la valeur absolue des forces.

-8 —
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Pour que 1'équilibre d'un disque soit satisfait,
il faut que les forces agissant sur ce disque consti-
tuent un polygone fermé. Par exemple, 1'équilibre du
disque situé a l'extréme gauche de la figure 4 est
satisfait, puisque le chemin AJHGFA de la figure 5,
chemin composé des forces AJ, JH, HG, GF et FA, est
un polygone fermé. Les points d'intersection des
forces de la figure 5 ( par exemple, les points A et J),
correspondent sur la figure 4 & des régions. Ces
régions ont été désignées par les mémes caractéres (A
et J). La frontiére commune & deux régions estla
ligne d'action de la force, correspondant dans
la figure 5 au segment joignant les points A et J.

Ces figures donnent également la possibilité de
vérifier 1'équilibre des moments des disques. Pour ce
faire, les directions des forces de contact (déduites
de la figure 3 et déja utilisées pour construire la
figure 5) ont été tracées sur la figure 4 a partir des
points de contact correspondants. 8'il s'agit d'un
disque chargé par trois forces, il est nécessaire que
les trois directions passent par un méme point.

Dans le cas d'un disque chargé par plus de trois
forces, par exemple quatre, il faut plusieurs étapes.
D'abord, on compose la résultante de deux forces
(quelconques parmi les quatre) et on construit sa ligne
d'action qui passe par l'intersection de ces deux
forces. Ensuite, on vérifie qu'elle passe par l'inter-
section des deux forces restantes. De la méme fagon,

on vérifie 1'équilibre des moments d'un disque chargé H

par cing forces ou davantage encore. La figure 4

montre que 1'équilibre des moments de tous les disques Figure 5 - Diagramme des forces correspondant aux

est effectivement satisfait. Fig. 3 et 4, illustrant 1'équilibre des disques.
IV. — DESCRIPTION DES ESSAIS

L'appareil utilisé pour les essais est composé d'une « cuvette» formée par deux panneaux de Perspex,
d'environ 30 x 30 cm?, paralléles et placés a une distance de 0,8 cm.

Entre les panneaux se trouve placé l'assemblage de disques circulaires, fabriqués & partir du matériau
photo - élastique CR39. La répartition détaillée de ces disques était la suivante : 6 avaient un diamétre de
40cm; Tde35¢cm; 16de30Ocm; 33de25cm; 33de20cm; 36de1,Bcm; 28de 1.5¢cm et 31 de
1,0 em.

Ces disques sont disposés au hasard dans la cuvette, & 1'exception de chacun des quatre coins de
I'assemblage carré, ol 1'on a mis, pour des raisons pratiques, un grand disque. Pour éviter 'apparition, au
cours de la fabrication, de contraintes initiales aux bords des disques, il a fallu opérer avec beaucoup de
soin.

L'assemblage peut &tre chargé horizontalement et verticalement par des plaques rigides de méme
épaisseur que les disques. La plague inférieure est fixée rigidement: les trois autres plagques sont libres de
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Figure 6 - Photographie d'un empilement chargé. Force verticale : 1380 N. Force horizontale : 540N.
Le détail de la figure 3 se trouve légérement au-dessous du centre.

se déplacer dans leur plan. Les plagues latérales sont chargées par des forces purement horizontales, égales
et opposées. La plaque supérieure subit une force purement verticale.

La cuvette est placée dans un appareil photo - élastique de type normal, composé successivement d'une
source de lumiére, d'un polariseur, de deux lames quart-d'onde et d'un analyseur. Le modile se trouve entre
les deux lames quart- d'onde.

Le modéle étant trop grand pour que 1'on puisse en obtenir une photographie intégrale en une seule fois,
il & été placé dans un batl mobile qui permet de déplacer le modéle chargé. Au total, quatre prises de vue
sont nécessaires pour obtenir 1'image photographique de tout 1'assemblage.

— 80 —
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Figure 7 - Photographie d'un empilement chargé, Force verticale : 1440 N. Force horizontale : 480 N,

La figure 6 ci-contre présente le résultat d'un essal ol la force verticale était égale & 2,556 fois la
force horizontale. Le systéme de lignes orthogonales superposées est un réseau tracé sur 1'une des deux
parois de la cuvette. La distance mutuelle de ces lignes est de 0,5 cm.

La figure 7, ci-dessus, montre le résultat d'un autre essai sur le méme assemblage, la seule différence
avec l'essai de la figure 6 étant que la force verticale est augmentée de 4,348% et que la force horizontale
est réduite de la méme quantité, Ceci veut dire que le déviateur des contraintes, déja assez grand dans
I'essai de la figure 6, a encore été un peu augmenté. En comparant les deux photos, on observe que 1'assem-
blage a un peu changé, du fait de la rupture de quelques plans de contact. D'autres plans de contact ont été
créés durant la transition d'un systéme d'équilibre & 1'autre.

R
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V. — LES FORCES

A partir des photographies du modéle chargé, telles que celles des figures 6 et 7, les forces de contact
peuvent étre déterminées de la manlére décrite plus haut. On voit qu'aux bords de tous les disques, il y a
une certaine région qui ne se distingue pas du fond clair. A cette région, 1'ordre isochromatique zéro a été
assigné, eu égard aux considérations ei-d . Le résultat d'un étalonnage exécuté sur un disque de 5 cm
de diamétre, chargé par une force de 300 N., a été utilisé comme base de comparaison.

Les forces ainsi déterminées ont été utilisées pour construire les épures des forces. Les épures
correspondant aux photographies 6 et 7 sont représentées sur les figures 8 et 9. L'expérience nous a montré
qu'il n'est pas trop difficile d'obtenir une épure fermée. Les corrections qu'il est parfois nécessaire
d'apporter aux valeurs des forces, sont assez petites et 1'on peut légitimement les attribuer aux erreurs
inévitables pouvant provenir de 1'exécution des essais, des relevés de mesure (détermination du diameétre
d'une isochrome), des écarts d'arrondi, ete... Il n'est pas impossible non plus que ces corrections soient
partiellement dues & de petites forces de frottement entre les disques et les parois de la cuvette.

Les figures 10 et 11 montrent le réseau des lignes de force. L'épaisseur des lignes a été choisie propor-
tionnelle & la valeur absolue de ces forces. De ces figures, il résulte que les forces agissant sur un seul
disque réalisent 1'équilibre des moments, car partout trois forces passent par un méme point.

Le fait que les forces déterminées & partir des photographies de l'assemblage obéissent aux conditions
d'équilibre des disques individuels, indique que la méthode utilisée pour déterminer les forces de contact

Figure 8 - Epure des forces correspondant Figure 9 - Epure des forces correspondant
dl'empilement dela Fig. 6. La lettre A cors a l'empilement de la Fig. 7.
respond & celle de la Fig. 5
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est correcte. De méme, on constate que le rapport de la hauteur totale d'une épure & sa largeur correspond
bien au rapport de la force totale verticale & la force horizontale. Cependant les dimensions absolues des
épures dépassent en général les valeurs des charges extérieures d'environ 10 %. Ceci doit &tre le résultat
d'une erreur systématique, par exemple d'une différence entre les propriétés mécaniques des disques de
1"empilement et celles du disque de comparaison, Cette erreur a é(é compensée par une modification des
échelles des épures.
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Figure 10 - Empilement de la Fig. 6 avee les forces Figure 11 - Empilement de la Fig. 7 avec les forces
de contact, L'épaisseur des lignes est proportionnelle de contact, L'épaisseur des lignes est proportionnelle
i la valeur absolue des forces.Lalettre A correspond i la valeur absolue des forces,

4 celle de la Fig. 4.

VI. — DISCUSSION DES RESULTATS

Normalement, la description du comportement mécanique des matériaux est basée sur les principes de
la mécanique des milieux continus. Pour cela, le matériau est remplacé, en imagination, par un matériau
fictif, dont toutes les propriétés sont des variables continues. La transmission des forces dans un tel maté-
riau continu se déerit 4 1"aide de la conception du tenseur des contraintes, et les changements de la géométrie
sont décrits, au cas le plus simple, par un autre tenseur du deuxiéme ordre, le tenseur des déformations. Les
composantes de ce dernier tenseur sont obtenues par dérivation partielle des déplacements. Le comportement
mécanique du matériau est décrit en choisissant, entre les tenseurs des contraintes et des déformations, une
relation fonctionnelle telle que 1'on obtienne la meilleure correspondance avec des résultats expérimentaux.

Le comportement mécanique d'un empilement de disques possede un caractére tout-a-fait différent de
celui d'un matériau continu. La transmission des forces de contact, aussi bien que les déplacements relatifs
des disques, qui prennent la place, respectivement, du tenseur des contraintes et du tenseur des déformations
d'un milieu continu, sont des phénoménes essentiellement discontinus.

La transmission des forces est discontinue parce qu'elle ne s'effectue, d'un disque & un autre, que par
les points de contact. D'autre part, chaque déformation est produite par un glissement, qui n'a liew qu'en
quelques points de contact, pourvu que la déformation ne soit pas excessive. Ces quelques points de contact
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disparaissent et d'autres sont créés, tandis que la plupart des points de contact est conservée. La géométrie

du systéeme de disques change, et la description de ce changement posséde un caractére discontinu & cause
de la rigidité des disques.

11 est trés difficile de remplacer ce comportement trés compliqué d'un empilement de disques par des
phénoménes continus caractérisés par des tenseurs de contraintes et de déformations.

On peut essayer de caractériser la transmission des forces par un tenseur de « contraintes moyenness.
Les composantes de ce tenseur peuvent 8tre obtenues en tracant une ligne droite & travers 1'empilement, et
en divisant la résultante des forces transmises par le matériau & travers cette ligne, par la longueur de celle-
ci. En général, la valeur d'une telle composante dépend de la longueur de la ligne & travers les disques, et
oscille autour d'une valeur moyenne. Si ces oscillations sont trop fortes, il est inepte d'introduire ce tenseur
comme mesure de la transmission des forces. C'est seulement lorsqu'on peut indiquer des longueurs de
lignes correspondant & des composantes assez constantes qu'il est raisc ble de considérer le t de
contraintes moyennes comme mesure des forces intergranulaires. On appelle « volume élémentaire représen-
tatifs le plus petit volume qui contient des lignes & composantes raisonnablement constantes.

Un procédé algébrique pour le calcul des composantes d'un tenseur de contraintes moyennes a été
donné par WEBER (1966).

On peut obtenir une idée qualitative de la variation de la contrainte moyenne avec la longueur de la
ligne élémentaire & 1'aide de 1'épure des forces, Pour cela, il faut noter que 'empilement et 'épure sont
géométriquement duaux. Un certain noeud, jonction de trois lignes d'action de forces dans 1'empilement,
correspond, dans 1'épure, au triangle formé par ces trois forces. D'autre part, chaque nceud de 1'épure,
réunion de plusieurs forces, correspond, dans 1'empilement, au domaine polygonal limité par les lignes
d'action de ces forces. Par exemple, le point A de la figure 8 (page 82 ) correspond au domaine A de la
figure 10 (page 83 ). Ainsi, une ligne arbitraire, tracée a travers l'empilement et passant par un certain
nombre de ces domaines, se projette sur I"épure, en un chemin qui suit les nceuds correspondant aux
domaines. Si la projection d*une ligne droite, tracée a travers 1'empilement, consiste en un chemin tortueux
dans 1'épure, cela indique que les forces agissantes sur la ligne droite sont distribuées d'une fagon inhomo-
géne et, en ce cas, on ne peut pas représenter, avec suffi nt de précision, les forces concentrées par
une contrainte moyenne.

L'information donnée par les figures 8, 9, 10 et 11 est suffisante pour vérifier la conclusion que les
chemins obtenus dans 1"épure comme projections de lignes droites & travers 1'empilement sont trés tortueux,
surtout s'il s'agit de lignes éloignées du bord. Les tortuosités consistent en déviations par rapport & une
ligne droite dans 1'épure, déviations qui sont d'un ordre de grandeur égal aux dimensions de 1'épure. Ceci
indique que les valeurs des composantes du tenseur des contraintes moyennes dépendent de la longueur de
la ligne considérée, pour toutes les longueurs inférieures & la dimension de 'empilement. C'est pour cela
qu'en ce cas-ci, le tenseur des contraintes moyennes n'est pas une bonne mesure pour la transmission des
forces. Puisque la distribution des forces aux bords de 1'empilement était bien homogéne, il s'ensuit que
le nombre de disques, que doit contenir une région élémentaire pour que 1'on puisse parler d'un tenseur des
contraintes moyennes représentatif, sera au moins égal au nombre de disques présents dans les essais
décrits ici, c'est-a-dire environ 200. Ceci confirme une remarque de WEBER (1966).

Pour décrire les déformations, il faut partir des déplacements des disques individuels. Ces déplace-
ments peuvent &tre assemblés dans un hodographe, qui posséde une dualité avec 1'empilement de disques
semblable 4 la dualité qui existe entre 1'épure des forces et les lignes d'action des forces dans 1'empilement.
Par conséquent, il est possible de construire la projection sur 1'hodographe d'une ligne quelconque tracée
4 travers l'empilement, ce qui donne le déplacement relatif des extrémités de cette ligne. La construction
d'un tenseur des déformations pour un point de 1'empilement exige la division des déplacements relatifs par
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la longueur de la ligne considérée, pour un certain nombre de lignes passant par ce point. Puisque 1'empile-
ment ne contient pas assez de disques, et puisqu'il est assez difficile de mesurer les déplacements des
disques avec suffisamment de précision, les résultats que 1'on peut obtenir des photographies de 1'empilement
ne sont pas d'une trés grande valeur. C'est pour cela que nous ne donnerons pas ici de considérations plus
détaillées.

Des difficultés essentielles se produisent lorsque 1'on veut déduire théoriquement, en partant du
systeme élémentaire de deux disques en contact, le comportement mécanique d'un empilement de disques,
exprimé en termes des tenseurs de contraintes et de déformations. Actuellement, nous ne disposons pas
d'un procédé mathématique qui permette de prévoir le mouvement d'un empilement de disques sous l'influence
d'une variation des charges extérieures, en partant du comportement de 1'unité élémentaire (deux disques en
contact). Il est néanmoins possible de décrire, qualitativement, les effets qui se produisent dans I'empile-
ment de la fagon suivante.

Dans un empilement en équilibre, les forces de contact sont distribuées de telle fagon que 1'angle de
la force avec la direction normale au plan de contact ne dépasse 1'angle de frottement en aucun des points
de contact, Lorsque les charges extérieures varient, les angles d'inclinaison des forces varient, et dés
qu'en un certain point cet angle atteint I'angle de frottement, ce point quitte le régime élastique. En ce
point de contact des déformations irréversibles auront lieu, c'est-a-dire que les deux disques glisseront I'un
par rapport & 1'autre, ou encore que le contact entre les deux disques disparaitra complétement. 11 est
possible que 1'empilement retrouve son équilibre aprés une déformation irréversible trés petite, mais il est
également possible que la déformation irréversible devienne si grande, que la redistribution des forces
qu'elle entraine, améne un autre point de contact & passer au régime irréversible, etc... L'empilement ne
présentera des déformations importantes que si une telle déformation irréversible a lieu en au moins un point
de contact. Il est & noter que des nouveaux points de contact peuvent &tre créés pendant que 1'"empilement
tend vers sa nouvelle position d'équilibre. Il est possible aussi que 1'empilement ne parvienne pas & une
nouvelle position d*équilibre, mais que le décrochement des points de contact constitue une réaction en
chaine, Dans ce cas, on dit que 1'empilement a dépassé 1'équilibre limite.

La description mathématique du comportement de 1'empilement décrit ci-dessus ne nous est pas possible.
La difficulté primordiale & surmonter nous semble &tre la description géométrique des changements de struc-
ture de I'empilement. Par ce fait, nous nous abstiendrons d'un exposé plus détaillé de ces difficultés.

VI. — CONCLUSION

1l a été montré que, par I'emploi des méthodes de la photo-élasticité, il était possible de déterminer,
avec suffisamment de précision, les forces de contact dans un empilement de disques. Les photographies
permettent de reconstruire les déplacements relatifs des disques, qui constituent les déformations géomé-
triques de 1'empilement. La mesure de ces déformations a déja été faite par beaucoup de chercheurs, &
1'aide de 1"étude d'un empilement de rouleaux en aluminium. Cependant, des expériences sur un empilement
de rouleaux ne donnent aucune information sur les forces a I'intérieur de 1'empilement. Nous avons l'impres-
sion que des recherches, telles que celles décrites ici, sont nécessaires pour comprendre le comportement
mécanique d'un empilement de disques.
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PART II

FLOW AND TRANSPORT IN POROUS MEDIA
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4

Flow and Transport in Porous Media

4.1 Introduction to Flow and Transport in Porous Media

When studying a certain problem, Gerard de Josselin de Jong's way of approach
was to create a clear visual concept of the mechanism of the underlying physical
process. Each time this was the most important step in his research. He could
make no progress without it. In the early days of his career only quite primitive
two dimensional visualization techniques, basically Hele - - Shaw models, were
available to see what actually goes on inside a porous medium. Nowadays,
advanced three dimensional computer aided techniques have been developed to
study flow processes in porous media. An example is given in Figure 1. Tt shows
snap shots of a fluorescent dye which was injected into a homogeneous porous
medium, occupied by a single fluid moving at constant average velocity. The
tracer, initially present in a small ball, clearly develops into an ellipsoid which
is elongated in the direction of flow and symmetric in the transverse directions.
Also note that the ellipsoids are perturbed by the micro structure of the porous
material.

Jos must have had this picture in mind when he developed the concepts of
tracer dispersion in the mid fifties. In his Dijon (1957) and AGU (1958) papers
he was the first to present a quantitative analysis of the observed longitudinal
and transverse dispersion. As a first characteristic step he visualized a porous
medium as a network of randomly oriented tubes (canals) of fixed length. Of
course he supported this concept by adding a number of artistic impressions
of pore systems in the paper. Further he introduced a probability distribution
- a choice of path - in the analysis. This second critical step asserts that
a particle arriving at a junction between tubes has a probability to move in
a certain direction. He supposed that this probability is equal to the ratio
of water flowing in that direction. The combination of these two steps leads
to a scattering mechanism which resembles a Brownian motion with a super-
imposed convection in mean flow direction. Following the classical work of
Chandrasekhar he then developed a probability density function describing the
probability that a particle, after N steps, arrives in a given infinitesimal volume
during a given infinitesimal time interval. Once this probability density function
is known, he computed the longitudinal (flow direction) and transverse standard
deviations and thereby quantifying the longitudinal and transverse dispersivities
in terms of the system parameters.
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4.1 Introduction to Flow and Transport in Porous Media 1
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Figure 4.1: Dispersion in a porous medium. The tracer experiment was carried out by
Michael Rohr of the Institute for Environmental Physics of the University of Heidelberg
(2001). We acknowledge Professor K. Roth for allowing us to use this material.

From his approach it is clear that he considers tracer transport in porous
media as a discrete process. Unlike many of his colleagues in the field, Jos
was never very much in favor of a partial differential equation of convection -
diffusion type for the tracers. He describes transport in terms of integrals based
on probability density functions describing the local phenomena.

Much later, in his Socorro (1970) report, he considered tracer dispersion
again. In this unpublished work he introduced the concept of Elementary Con-
veyer Unit (ECU) as opposed to the well-known and much used Representative
Elementary Volume (REV). An ECU carries the direction of flow and is char-
acterized by repetition and by independence. The latter means that a tracer
or fluid particle has a choice of path at the exit of the elementary unit, which
is independent of the situation at the entrance of the unit. As a result, again a
scattering mechanism results. Using ECU’s as elementary units he considered
in the Socorro report tracer dispersion in fissured rock and he was able to give
a complete description of the dispersion mechanism.

Salt-water intrusion arises naturally in many coastal regions, and in partic-
ular in a sub sea-level country as The Netherlands. As a consequence a certain
tradition was established in the Dutch hydrological community, in which vari-
ous kinds of fresh-salt groundwater models were developed and studied. One of
the issues in the fifties was the existence or non-existence of a potential. It was
known that single phase flow of constant density can be considered as potential
flow, in the sense that the specific discharge is proportional to the gradient of
a potential (Darcy Law). Also interface models, with an abrupt transition be-
tween the densities of fresh and salt groundwater, can be handled by a (pseudo)
potential. But the general case of a smoothly varying density could not be put
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4.1 Introduction to Flow and Transport in Porous Media 12

in potential form, in spite of several severe attempts.

In his AGU (1960) paper on 'singularities in multiple fluid flow’, Jos was
one of the first to give a proper mathematical formulation of variable density
fluid flow in porous media. In this paper he derived his famous stream function
equation

Av+ B9 g
p Or

for two dimensional incompressible flow. He gave an equivalent formulation in
terms of pressure as well. In particular he pointed out that a sharp interface
approach leads to a vortex distribution along the interface. This explains quite
elegantly the interface shear flow and the resulting motion of the fluid bodies.
Further he introduced the complex potential as a tool to obtain the specific
discharge in a more direct way. In this way he was able to formulate and solve
initial boundary value problems for variable density and for variable viscosity
fluid flow. In particular he treated the case of an initially vertical fresh-salt
interface in a horizontal porous layer (aquifer): he computed the corresponding
discharge and was able to make a quantitative statement about the evolving
rotating interface. Later, Euromech (1981), he used some of these results to give
a justification of the Dupuit-Dietz approximation in the case of flat, horizontally
extended interfaces.

Since Polubarinova-Kochina it is known that many two dimensional, sta-
tionary groundwater flow problems can be solved by the hodograph method.
In this method one introduces a complex potential and a complex discharge
and one studies the relation between the original two dimensional flow domain,
the complex potential plane and the complex discharge plane (the hodograph).
In particular fresh-salt interface problems, with stagnant salt water below the
moving fresh water, can be treated by the hodograph because the interface
translates simply into a circle in the complex discharge plane. Bear and Dagan
(1964) observed that the presence of wells or drains leads to many-valuedness
of the hodograph. A specific problem of this nature, a drain intercepting part
of the fresh water discharging into the sea, was considered by Jos in his WWR
(1965) paper. There he solved this extremely complicated problem by finding
a way of handling the many-valuedness of the hodograph. This paper is one of
his best in the mathematical as well as artistic sense. Beautiful drawings were
made to support the idea of the construction and the transformations involved.

Sofar we only discussed theoretical issues. However going through his pa-
pers, one finds that each theoretical concept is verified by an experiment. The
dispersion paper comes with salinity breakthrough curves to verify the longitu-
dinal spreading and in the discussion that followed he showed two dimensional
results to support the idea of transversal spreading. The multiple fluid paper
shows a Hele-Shaw experiment of the rotating interface and finally in the hodo-
graph paper a Hele-Shaw experiment confirms his elaborated construction of
the flow pattern and the position of the stagnation point.

Jos had no aim to solve so-called real life problems, in which many phenom-
ena and complexities are mixed. He was also not an isolated theoretician. He
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had the rare talent to select a characteristic feature out of the complex reality,
to create an innovative idea which was then confirmed by experiment. That is
true science and that is what we have to teach our students.
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Singularity Distributions for the Analysis of
Multiple-Fluid Flow through Porous Media

G. e JossELIN DE Jong!

Institute of Engineering Research
University of California, Berkeley, California

Abstract. In Part 1 the simultaneous flow of fluids of different properties is treated by sub-
stituting these fluids by one hypothetical fluid and applying singularities at those points where
the properties of the actual fluids change. Their magnitude is chosen so that the specific dis-
charges in the hypothetical fluid are everywhere identical to the specific discharges in the
actual fluids. The flow in the hypothetical fluid can be determined by potential theory from the
transformed boundary conditions and the influence of the singularities.

For the determination of the discharge a stream function is used which contains singulari-
ties in the form of vortices. For the determination of the fluid pressures a multiple-fluid po-
tential is defined which contains singularities in the form of source and sink distributions. The
stream and the potential functions each combine with auxiliary, many-valued functions to
form complex potentials. These permit solutions in the form of one integral in complex vari-
ables, valid for any point in the entire field, irrespective of the fluid present. The solution for
the transition zone between fluids as well as the abrupt interface is elaborated.

In Part 2 the two-dimensional example of an infinite, confined aquifer with an initial verti-
cal interface between two fluids of different specific weight is elaborated, giving as a result the
movement of the fluids in the entire field at the first moment and a first approximation for
the rotation of the interface around the center as a function of time.

These results are verified by a parallel plate model and an electric resistance model. In the
latter model the vortices are replaced by sources for the tracing of streamlines and by source-
sink combinations forming doublets for the potential lines.

NoraTion
a Time dependent coefficient describing inclination of interface in
example
b 12] Breadth of stream channel
c (L] Half height of aquifer
d ] Slot width of parallel plate model
I ) Thickness of two-dimensional aquifer
¥ L] Thickness of two-dimensional electric resistance model
1= 4/—1 Imaginary unit
i [Amp L-% ILlectric current density vector
k 15 Specific permeability of aquifer
m Integer number
n L] Coordinate perpendicular to the interface
P [FL-%] Pressure in the fluids
q [LT-Y] Specific discharge
Gy Tny Goy Dy [LT-1] Specific discharge components in s, n, z, y directions
ey Ga LT~ Continuous, discontinuous components of ¢ on interface
= q.— 1, [LT-Y] Complex specific discharge
8 [L) Coordinate along the interface
t [T Time
bl LT Mean velocity of the fluid
z (L) Horizontal coordinate

1 8ince August 1960 at Technische Hogeschool, Delft, The Netherlands,
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y [L] Vertical coordinate

z=z+ [L) Complex coordinate

A, dA [L1] Area

A,B,C,D,E, F Points on boundary

E [Voli] Electric potential

E* [Volt) Electric potential in current supply system

I [Amp] Electric current

Im Imaginary part of complex expression

J, K Intersection points of interface and boundary

M Center point of interface in example

N Image of M in { plane

P Arbitrary running point

P Arbitrary running point in { plane

Q [L3T-1] Discharge in aquifer

S [L) Contour or path of line integral

vV, W Unspecified functions of z and y

o Inclination of interface to horizontal

B Auxiliary variable

v [FL-9 Specific weight of fluid

8" [L] Doublet distance

€ Porosity of aquifer

t=£Et41 Complex coordinate of transformation

K [T Strength of source per unit area

A [LT-Y Strength of doublet per unit area

[ [FTL~?]  Dynamic viscosity of fluid

p [Ohm L]  Specific electric resistance

¥ Exterior angle BP;E

w 171 Strength of vorticity in z, ¥ plane per unit area

(8} [L2T-1] Multiple fluid potential

A" [LAT-1] Doublet discharge

L3 [L2T-1] Auxiliary funetion

b4 [L:T-1] Specific discharge stream function

Q=&+ ¥ Complex specific discharge potential

Subscripls

0 Point, where a singularity is present, or point of interface containing
a singularity

I Part of complex potential accounting for singularities

I Part of complex potential accounting for boundary conditions

1,2 Pertaining to fluid 1, 2 (1 is light, 2 is heavy)

B Potential functions convenient for the study of viscosity influences
with electric resistance analogy

Superscripts

4 Inversion for electric resistance model (tracing of stream lines)

“ Doublets in electric resistance model (tracing of potential lines)

Parr 1. DErtvaTION voted their attention to this subject, because

Introduction. In the study of ground-water
flow a theory of the interaction between differ-
ent fluids needs to be developed so that any
arbitrary boundary value problem may be
solved rigorously. Many hydrologists have de-
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in several fields of hydrology important prob-
lems are created by the presence of two fluids.
The solutions obtained, however, are mainly
limited to cases which yield certain geometri-
cal approximations. It is the purpose of this
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paper to deseribe a method which permits the
determination of the behavior of two or more
fluids, for any form of distribution over a field
with arbitrary boundary conditions.

Badon Ghijben [1888] and afterwards Herz-
berg [1901] stated the hydrostatie equilibrium
for a fresh water lens floating on top of salt
water in a porous aquifer. Since then several
authors have considered the more relevant case
that either one of the two fluids or both are in
movement. The first to have given a correct ac-
count of how the movement of the fluids in-
fluences the behavior of the interface seems to
have been Lorentz [1913]. His discussion of the
upeoning of salt water under a well was later
investigated experimentally by Muskat [1937].
Hubbert [1940] established a general descrip-
tion of the flow of two fluids at either side of a
steady interface between fluids. By application
of these considerations to a stationary oil de-
posit above an underlying body of flowing
water, the tilt of the interface was derived for
a one-dimensional flow system [Hubbert, 1953].

Edelman [1940] determined the shape of the
interface between moving fresh water and
stationary salt water in a dune area adjacent
to the sea by use of a graphical flow net analysis.
A mathematical solution was obtained for the
case in which vertical flow components eould be
ignored, adopting the Dupuit-Forchheimer as-
sumption. Todd and Huisman [1959] applied
Edelman’s method for determining the influence
of recharge and pumping operations to limit
overdraft in the drinking water supply area of
Amsterdam.

If only one fluid is in motion, the hodograph
method can be applied because the interface is
circular. Applications of this technique for
particular solutions have been carried out by
Harder, Simpson, Lau, Hotes, and McGauhey
[1953], Kidder [1956a, b], Glover [1959], and
Henry [1959]. When both fluids are moving,
the interface, when mapped into the hodograph
plane, takes the form of an unpredictable curve,
so that the mapping procedure cannot be ap-
plied. An approximate method based on the
Dupuit-Forchheimer assumptions was developed
for one case by Dietz [1953].

Model studies provide the only means of
studying the location and movement of inter-
faces for general problems involving movement
of both fluids. A parallel plate model has been
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employed for this purpose by Santing [1951],
and sand models have been used by Harder,
Simpson, Lau, Hotes, and McGauhey, [1953]
and Keulegan [1954].

None of the publications indicated above con-
tains & mathematical method by which the cor-
rect computation of the movement of both
fluids as derived from given boundary condi-
tions ean be made. The first work which sug-
gested a solution to this problem was an un-
published study by Edelman in 1957, ‘Grond-
waterstroming van een niet homogene vloeistof.’
In this study he introduced a concept which
proved inspiring for the development of the
present theory: the replacement of the two
fluids with their own characteristics by one
hypothetical fluid with the same properties over
the entire field. In this hypothetical fluid a row
of sources coinciding with the position of the
interface takes care of the change in properties
of the two fluids. Edelman determined the source
distribution in such a way that the veloeity
field created by these sources is equal to the real
velocity distribution in one of the two fluids.
The velocities in the other fluid can be obtained
from the velocities created by the sources by
the addition of a fictitious veloeity. This con-
cept was developed only for a horizontal inter-
face, and the absence of sources along a verti-
cal interface was inferred without further proof.

The present work [de Josselin de Jong, 1959]
was based on this concept of replacing the two
different fluids by one hypothetical fluid and of
introducing the different fluid properties by
singularities along the interface. In determining
the character of the singularities, however, the
aim was a singularity distribution that would
directly create the actual veloeity distribution
in both fluids. By this approach the treatment
of the two fluids becomes equivalent, and be-
cause of this equivalency the extension to more
fluids can be made without further complica-
tions. The present theory shows that it is pos-
sible to meet these requirements with two kinds
of singularities, vortices or sources and sinks.
The choice of the kind to use depends on the
objective of the study. If the objective is the
determination of the discharges, it is convenient
to introduce vortices. If the pressure in the fluids
is to be determined, it is more convenient to use
the sources and sinks. Furthermore, in the pres-
ent study any inclination of the interface and
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the case of a gradual transition zone are con-
sidered, as well as the introduction of boundary
conditions.

The important advantage of the singularities
is the possibility of solving any boundary value
problem involving two or more fluids by appli-
cation of the established methods of potential
theory for the solution of boundary value prob-
lems of one fluid. Although the singularity
method is completely general with regard to
differences of fluid properties, the present work
deals mostly with the influence of differences in
density only. The effect of differences in viscosity
can also be represented in terms of singularities,
as indicated, but the procedure is not amenable
to mathematical treatment. How an electric
analogy can be used to account for viscosity
differences in connection with singularities for
the density differences will be shown at the
end of Part 2.

Physical assumptions and basic equations.
This study is eoncerned with the behavior of
miscible fluids filling the pores of a porous
medium. The distribution of the fluids over the
aquifer is given as initial information, and the
value of the specific weight v and the dynamic
viscosity p is known as a function of position.

The geometry of the pore space is the same,
irrespective of the prevailing fluid; therefore,
the specifiec permeability % is identical over the
entire field. Both fluids obey Darey’s law while
flowing through the porous medium, as all
velocities remain in the laminar region.

For the derivation of the formulas the tran-
sition zone between two fluids will be considered.
Such a zone exists between two miseible fluids.
To simplify the mathematical treatment of a
special case, which will serve as a demonstra-
tion of the method, the transition zone will be
reduced to an abrupt interface. Such an inter-
face will not occur in reality, because of effects
of dispersion and miseibility. Changes in per-
meability created by entrapment of fluids and
pressure jumps resulting from surface tension
differences, both oceurring with immiscible
fluids, will be ignored in this study. For the
sake of simplicity only the two-dimensional
case will be treated here, because the third
dimension adds no important differences.

Two basic assumptions are inherent in the
following derivation. One is that there shall be
continuity of incompressible fluids; thus, no
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TFig. 1. Coordinate system.

gaps can exist in either fluid or at the inter-
face. The second is that the pressure distribu-
tion in the interior of the system shall be con-
tinuous. This condition, in which the oceur-
rence of steps in pressure is avoided, is dictated
by equilibrium conditions.

It is convenient to consider only those vari-
ables which possess magnitudes to be determined
independently of the fluid properties. The
variables are pressure in the fluid p and specific
discharge q (q is e times the mean velocity 7 of
the liquid, where e is porosity).

To relate p and q, the forces which drive the
fluid through the ground will be equated to
the resistance offered by the pore system. Con-
sider in a vertical section of a two-dimensional
aquifer of thickness f, a small cube (ds dn f),
where s is arc length along an arbitrary but
fixed curve, n is the perpendicular to that curve,
and e« is the direction to the horizontal z co-
ordinate (Fig. 1).

The force acting on the fluid in the s diree-
tion consists of a pressure component

—(3p/ds) ds dn |
and a gravity component
—v(9y/9s) ds dn |

By Darcy’s law this force is counteracted by
a resistance offered by the pore system, which is
proportional to g,, the s component of q. This
requires a driving force of magnitude

+/8) g, ds dn |

The equation for these three forces, after divi-
sion by the elementary volume, is

(u/k)g. = —(9p/0s) — v(3y/9s) (1)

Similarly, in the n direction

(u/K)g. = —(3p/an) — v(dy/on)  (2)

Soil Mechanics and Transport in Porous Media
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The two requirements mentioned above can be
written in terms of the variables q and p. The
condition of continuity requires that

divq = (3¢./95) + (9g./on) 3

The condition of equilibrium requires that p be
a single-valued function containing no jumps.
This may be written in two ways:

— (3"p/on ds) =

9§s(ap/as) b =6

(@'p/as on)

9

The contour integral applies to any eclosed
contour S.

Solution with vortices. If the objective is the
determination of the discharge g, it is convenient
to introduce a stream function ¥, whose deriva-
tives are the components of q according to

(0%/on) = +a (9

¥ is merely a function which generates the
specific discharge without the material properties
4 or u being involved. Therefore, its influence on
the fluid motion is equivalent to whatever
fluid is present and may therefore be considered
to be related to the hypothetical fluid.

Introduction of (5) into the continuity equa-
tion (3) shows that

—(3™¥/an 3s) + (8™ /ds an) = (6)

which implies that ¥ is a single-valued function
without jumps.

The condition of equilibrium may be used in
the contour integral form of (4). Writing (1)
as a similar contour integral results in

~§ @hads = § @p/09) as

—¢  (0%/3s) =

+ gﬁs-rtay/as) ds

Substituting for g, with (5) and using (4) reduces
this to

$ w/maw/om) as = ¢ Aou/09) as
8 8
The contour integrals in this equation may be

replaced by surface integrals by use of Green's
theorem, which in two dimensions has the form

O]
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oW
éx ¥ on da
_ __U (avaw
dr dz

- ff V VW dz dy
A

avaW)
3y 9 dz dy

The surface integral extends over the whole
area A enclosed by the contour S. If the quantities
V and W, which represent any two functions of z
and y, are applied to the ¥ term of equation 7
withV=pand W=7,

pno¥

gkan

_ 1 ([ (3uov a_@)
= kff(6z6z+6y6 dece

*%fLyV"dedy (8)

To apply Green's theorem to the v term of
(7) it is neccessary to convert dy/ds into an
expression involving the partial derivation of n.
As s and n are perpendicular in such a way
that n makes the same angle with y as z makes
with s, dy/0s is equal to —dz/dn. Therefore

the v term of (7) becomes, with V = v and
W=z,
oz
5Tan %
_ dydz , Oy g)
+.U (6:: a:c dy 9y dzdy
+ [[ ¥ Vizasay ©
A

This reduces to [[4 (9v/0z) dxr dy because

(0x/9z) = 1 and (9z/dy) = Viz = 0.
Combining (7), (8), and (9) results in, for

any small area A, ie., for every point of the

interior,

k oy

Ve = —=

_1(@6_‘1_'
oz

du 6;1’)
dz dx + (10)

dy 9y

This is known in potential theory to represent
a singularity of vorticity w.

_&6_7_1(638_2
oz dz dz

ou 0¥

+6y ay

) (11)
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Tig. 2. Vortices on interface between two fluids
(v1<C:), clockwise rotating in points where ¥
increases in # direction.

The first term on the right side represents
the tendency of an interface between two fluids
of different specific weight to rotate toward the
horizontal position in such a way that the
heavier fluid underlies the lighter fluid. This is
clarified in Figure 2, where the heavier fluid s,
represented by the darker area, is to the right of
the lighter fluid y,. Here (dy/dx) is positive. At
all points of the transition zone between the
two fluids, vorticity of negative sign exists,
which, according to potential theory, imposes
clockwise rotation.

The second term on the right side of (11)
describes the vorticity caused by differences in
viseosity of the two fluids. For simplicity in
the subsequent treatment it is convenient to
consider only those eases in which the gravity
term dominates the viscosity term. A compari-
son of their respective contribution to the vor-
ticity may be made by writing (11) as

"_hﬂlny_(alnu _dlnp )
w u Oz ax dy

In the study of problems of sea water intrusion
the properties of fresh water (fluid 1) and salt
water (fluid 2) are given approximately by the
ratios

Yo/yy = 1.025  p/u, = 1.070
The components of the gradients (8 In y/dz),
(@ In pu/8z), (3 In u/dy) are therefore of the same
order of magnitude, and the relative importance
of the terms depends on the magnitude of q
with respect to the value of (kvy/g).
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Now (ky/u) is the specific discharge for a
head gradient of 1. In general, such high dis-
charge velocities are not present; in problems of
sea water intrusion, gradients in head will be
of the order of (y: — #¥:)/7v:, which are small
with respect to 1. Therefore, an analysis in
which the viscosity differences are ignored is
justified in such problems. Because, however,
the magnitude of the terms also depends on the
orientation of the interface with respect to the
horizontal and the vector q, it should be verified
that their relative importance is not changed
because of the sine of the angles involved.

In those cases in which the wvariation of u
may be disregarded, equation 11 reduces to

VY = —(k/u)(dv/d2) (12)

Since the distribution of + is known, the right-
hand side of (12) is a known function of position
and this relation for ¥ is of the type called
Poisson’s equation, whose solution in terms of
vortices is known from potential theory. The
solution can be written as

v = — [ @2md@v/e mraa (19
A

where r is the distance between the point of

consideration and the point where the vortex

of strength — (k/u)(9v/0x) is present. Integra-

tion has to be effected over all vortices, i.e., the

entire area A, where (3v/dz) # 0.

¥ is regular in the entire field and also at a
point containing a vortex. This is true because,
although In r becomes infinite for r approaching
zero, the product In r-dA reduces to zero, since
dA is of the order of 7%

The magnitude of the vortex at a point of
the field depends only on the change in prop-
erties of the fluids present at that point. The
number of fluids involved in the problem is of
no importance, and the method is therefore
suitable for computing the flow of several fluids
and the zones of gradual transition between
them.

Treatment of vortices by complex potential.
To adapt this flow problem to a treatment by
complex variables the stream function ¥ may
be combined with an auxiliary function ®, so
that

P alr
i E;;_ __a; = (]4)
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The condition of continuity (3) then gives

Ve =0 (15)

and from the condition of equilibrium, which
finally resulted in (12), it follows that

8*®/9s dn — 9°®/an s = V¥

—(k/w(dv/oz)  (16)
Equation 16 shows that & is not single-valued
and therefore has no particular physical mean-
ing. However, the complex combination, to be
called ‘complex specific discharge potential,

Q=3+ v 1"

is convenient because the solution (13) ean be
written as a function of the complex variables
z = x + 1y, as follows:

Q = (—ik/2mp)

ff4 (@v/32)., In (z — 2,) A (18)

Here z is the point of consideration and z, the
point containing the vortex. The integration
extends over all points z,, where dy/dz = 0.

The expression (18) gives the correct value
for ¥, since In (z — z) can be separated into
real and imaginary parts as [In 7 4 6], where r
is the distance between z and z, and @ the angle
with the horizontal. Therefore, In r appears in
the imaginary part of  in the same way as in
(13). The real part of Q consists of the angles #
and is therefore many-valued. This many-
valuedness, however, only reflects on the auxiliary
function ®.

From Q the movement of the fluid is obtained
as the complex specific discharge § by taking
the derivative with respect to 2, because

_ ) e . av
ol Tl Tl vl -y
dQ 9z aQ
e T4 9

The kind of fluid present at the point z is irrele-
vant in this computation.

Although ® is many-valued, its derivatives
are single-valued and constitute no difficulties
for the determination of §. Since the discharge is
the objective of the study, the awkwardness of
the auxiliary function ¢ is of no importance in
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the analysis. The expression (18) for © and its
derivative are therefore usable instruments in
the analysis and give correct answers for every
point in the entire field, even though the point
contains vorticity.

Vortices on an abrupt interface. An abrupt
interface may be considered to be the degener-
ation of a transition zone between two fluids
of specific weight y, and ys, respectively. The
gradient of y in the zone tends to infinity as the
thickness of the zone approaches zero in such a
way that in the limit

l:_li% @y/on) dn = —(v2 —v)  (20)

Let s be the coordinate along the interface, and
n the normal; then the elementary length ds
of the interface corresponds to an area d4 =
dsdn (shaded part of Fig. 3). The contribution
to the complex potential created by this part
of the interface is

a2 = (—ik/2rp)(dy/02)., In (z — 2,) ds dn

where 2, is the complex coordinate of the eenter
of the area.

If « is the angle of ds with the horizontal
T axis, (dy/0r) is equal to — sin a (dy/dn). By
use of (20) the complex potential becomes

dQ = (—ik/2xp)(v: — 7))

‘[(6ina)., In (2 — 2) ds]
The term between brackets varies along the

interface, so that the complex potential origi-
nated by the whole interface is given by

= (—ik/21l’#)('\"3 - 'Yl)

L (sina),, In(z —z)ds (21

Fig. 3. Interface of infinitesimal thickness dn.
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The integral is a line integral running along a
line S, which coincides with the interface; the
distance ds represents an incremental length
along this line and 2z is any point on the inter-
face. The interface can be represented as a
vortex sheet composed of vortex lines. The
intersection of this interface with the z, iy plane,
which is perpendicular to it, is the line 8. As
(sin @),, ds is equal to dy,, the vertical component
of ds (see Fig. 3), the strength of the vortex
contained in ds is equal to

wds = (k/u)lv2 — 71) duo (22)

and the complex specific discharge potential
may be simplified to

Q = (—ik/2rp)(yvs — 70)

-Lln(z—zu)dyu

Treatment of a boundary value problem. The
foregoing introduction of the stream funection ¥
permits the solution of boundary value prob-
lems. Besides the knowledge of conditions along
the boundary, the position of the interface be-
tween the fluids also has to be known in order
to specify ¥ over the entire field. Then the mo-
tion of the fluids can be derived for a time in-
terval short enough to neglect the displacement
of the interface. From the motion of the fluids
the movement of the interface, and subsequent
positions, each having a different flow pattern,
can be determined.

For the computation of ¥ at a given moment
it is convenient to treat the influence of the
conditions along the boundaries and the velocity
created by the interface separately. The super-
position principle allows the addition of the
particular solutions afterwards.

The boundary conditions are generally given
in terms of pressures or discharges. Let s be a
coordinate running along the boundary with n
perpendicular to it.

If the boundary condition consists of dis-
charge, the component ¢. is known, and, from
equation 5, (dy/ds) is determined. Integration
along s gives the value ¥ for every point along
such a boundary.

If the boundary condition consists of pres-
sure, it is possible to determine ¢, along that
boundary with (1), since p, y, y are known
functions of the coordinate s. The knowledge
of q., with (5), gives (9% /on).

(23)
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Once the boundary conditions are translated
in terms of the stream function ¥, the solution
of the problem can proceed as follows. The
actual solution ¥ is broken down into two parts,
to be called I and I, respectively.

V=¥, + ¥y, (24)
Part I takes care of the vortices
V¥ = —(k/p)(dv/d2) (25)

with the solution (13). From this solution the
values of ¥; and (3%;/dn) can be computed
along the boundaries. In general, these values
will not coincide with the boundary values ¥ or
(0%/an) required in the problem. The differences
(¥ — ¥,) and [(9%/dn) — (9%/9n)] then con-
stitute new boundary conditions which can be
satisfied by part IT of the solution.

The quantity ¥;; must satisfy the deficiencies
of part I at the boundaries and

Vg‘I'n =0 (26)

over the entire field. The determination of ¥y,
constitutes a boundary value problem, with a
unique solution to be obtained by known methods
of potential theory.

The addition of (25) and (26) shows that the
superposition (¥; + ¥,;) satisfies the requirement
(12). It will prove convenient to use image
vortices of opposite sign in order to create
values of ¥; = constant along impermeable
boundaries so that, for part II of the solution
also, these boundaries remain impermeable.

The shear flow at an abrupt interface. A
sheet with singularities is known to contain dis-
continuities. Instead of showing this by evaluat-
ing the principal Cauchy value of the integral
expression in (23) as the interface is approached
from either side, a shorter presentation may be
given, using equation 12 as a starting point.
Gauss’s gradient theorem applied to ¥ for a
small rectangle dsdn straddling the interface
gives, for a vanishingly small width of dn,

ffv“\pdsdn-:

[ @e/an) as,
+ [ @¥/on) as (1)

where n, and 7. are the normals to the faces
ds, and ds: pointing toward the exterior of the
rectangle. These coordinates are related to n
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with a direction (Fig. 3) according to

+n=+4n  +n=—n
From the surface integral of (12) and the re-
sults of the abrupt interface analysis it follows

A ACER LT

&)
—E (y2 — 71 fsina ds

As this applies to any portion of the line s,
it may be written, using (5), as

9 — @, = (k/B)y2 — 7)) sina  (28)
This relation shows that there is a disconti-
nuity in discharge parallel to the interface. It
is a function of the inclination & and the differ-
ence in specific weights of the fluids on either
side.

The discontinuity is restricted to the dis-
charge parallel to the interface. Perpendicular
to it the discharge is continuous, because other-
wise a gap in the fluids would occur and would
violate the continuity principle; hence

O = . (29)

The continuous part of the discharge, however,
is not restricted to the normal direction. Super-
imposed on the discontinuous discharge there
may be a continuous component parallel to the
interface.

The discontinuous component of the discharge
(gs in Fig. 4) is created by the vortex at the
point of consideration on the interface. The
continuous component g,, which ean have any
direction with respect to the interface, is created
by all the vortices outside the point of consid-
eration and outside the boundary conditions.

The normal component g. is responsible for
an advance of the interface, which, for com-
plete displacement of one fluid by the other, is
equal to the mean velocity g./e.

Solution with sources and sinks. In problems
of irrotational flow the pressure in the fluid can
be determined from the potential function,
which is defined in the same way as ® is defined
by (14). Since, however, in this case, ® is many-
valued, it is an unsuitable function for the de-
termination of the pressure. If the pressures
are the objective of the study, it is therefore
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w‘ws

Fig. 4. Discharge discontinuity at an interface.

convenient to introduce a quantity which has
the character of @ but does not have its many-
valuedness. Let this quantity be called ©, the
multiple fluid potential, and be defined as

/B)® = p + vy (30)
where the values of p, y, y are those of the
point under consideration. Since all these quan-
tities are single-valued also, © is a single-valued
function of position in the entire field.

Taking the derivative in an arbitrary direc-
tion s, it follows for u = constant that

(u/k)(36/0s) = (3p/ds) + v(3y/ds)

+ y(3v/3s)
Application of (1) reduces this to

w/B)g = —(u/k)(30/3s) + y(8v/ds)

which may be written

(w/B)a = —(u/k) grad © + y grady  (31)

since s is any direction. A comparison with (14)
shows that the relation between © and & is

grad ® = grad ® — (k/py grady  (32)

where the last term takes care of the many-
valuedness, so that © can be single-valued in the
entire field, including the region of vorticity. At
the points, where grad v is zero, i.e., the points
of no vorticity, the quantities & and © are the
same.

Application of the condition of continuity (3)
to (31) gives
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Tig. 5. Doublets on interface between two fluids
(v1<v2). Doublet strength increases with height
of position.

divg = =V’
+ (k/p) div [y grady] = 0 (33)

This is a Poisson’s equation showing singulari-
ties in © of magnitude (&/p) div [y grad ¥].
Since © has the character of a potential in the
hypothetical fluid, the singularities may be
termed sources for negative and sinks for posi-
tive values of their magnitude.

Application of the condition of equilibrium,
by using the first expression of (4) and the
condition that the function (yy) is single-
valued, gives

3°0,/ds an = 8°0/on as

which confirms the single-valuedness of ©. The
solution for © ecan be written in analogy to (13):

0 = (k/2wu) fj; div [y grady] Inr-dA (34)

Again ‘@ can be combined with an auxiliary
function having the character of a stream fune-
tion in order to form a complex potential. In
this case the stream function is many-valued
and unsuitable for the determination of the
discharges, but it reduces to ¥ for points of no
vortieity. The sources and sinks can be ex-
pressed in terms of the complex potential by
replacing In r in (34) by In(z—z,).

Doublets on an abrupt interface and boundaries.
That the expression div [y grad ] reduces to a
doublet layer if the transition zone reduces to
an abrupt interface (Fig. 5), is recognized as
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follows. Consider a line » perpendicular to the
interface pointing from the v, fluid to the v,
fluid (Fig. 3). At the point of intersection with
the interface, y is a constant y., and the source
distribution is ¥ div grad ¥ = y V2y. Since ¥
varies in the n direction only, V*y is equal to
d*y/dnt. Let the interface consist of two infin-
itesimal bands of width dn at a mutual distance
8'’, Let (0v/9n) in the region between the bands
be constant and equal to —(y: — v1)/8", and
let (9%y/9n?) dn in the two bands be equal to
= (y: — v1)8"". Then the value of v will indeed
decrease from v to 7, in the region of the
interface.
The ‘quantity (34) then becomes

0 = (i/2m0) [[ u@*/0n%)(1n ) dm ds
= Uhrs = v /2w 8]

- fs wl+lnr —lnr]ds  (35)

where r, and r, are the distances from the point
of consideration to the two sides of the inter-
face. This expression describes a source and a
sink at either side of the mutual distance §”,
their strength being equal to d ¥” = [k (y. —
v.)/n8”] yuds. If 8” is allowed to shrink to
zero, the [In r] term becomes [8”/r] cos @,
¢ being the angle between n and the radius r to
the point under consideration. This is known to
be the potential of a doublet oriented perpen-
dicularly to the interface. The expression (35)
therefore represents a doublet layer, containing
a doublet of strength.

d\’ = §"-dk" = [klys — v1)/ulye ds  (36)

for each line segment ds of the interface.

For the determination of boundary value
problems the solution ean again be broken down
into two parts, ©; and Oy, where ©; accounts
for the sources and sinks and ©,, satisfies the
deficiences at the boundaries. For boundaries
with known pressure, the value of © can be
computed with (30). For boundaries with dis-
charge information, the value of g, is known,
and from (31) the value of (9©/8n) can be
determined, since (dy/dn) can be obtained from
the y distribution, which is assumed to be avail-
able as initial information. Sinee either © or
(8©/8n) is known along the boundaries, ©;
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and ©y can be evaluated with the usual meth-
ods of potential theory.

ParT 2. MATHEMATICAL EXAMPLE AND
ExPERIMENTAL VERIFICATION

Introduction. The application of the fore-
going basic results may be demonstrated by an
example of a two-fluid system enclosed by im-
permeable boundaries on all sides. By this dis-
position the movement of the fluids is due
exclusively to the weight differences of the
fluids and can be computed by use of the
singularity method.

This example is treated mathematically, with
the result that the movement of every point in
the entire field is given. Since the distribution of
the movements is the objective here, the treat-
ment with vortices will be used. From the move-
ments obtained as the solution the initial dis-
placement of the interface can be derived. The
subsequent rotation of the interface in course
of time cannot be computed rigorously, but an
approximate evaluation of the rotation of the
center part is developed.

As the singularities permit the application of
electric resistance analog models, the potential
and streamlines for the same example were de-
termined by the method of electric analogy. In
addition to this verifieation, parallel plate model
tests were run in order to obtain photographs
of the streamlines traced by particles in the
fluids. Both verifications are treated.

Given conditions for the mathematical ex-
ample. The example consists of a two-fluid
system contained in a confined infinite aquifer
of thickness 2¢ (Fig. 6). The interface has, at
time = 0, a vertical position BME, and it ro-
tates in a clockwise direction from there under
the influence of the differences in specific weight
of the fluids at either side (fluid 1 is considered
to be lighter than fluid 2).

From the two parts of the solution (equation
24), the first part, corresponding to the vortices
along the interface, will include images which
provide a flow parallel to the boundaries. The
second part of the solution then has to satisfy
V*¥; = 0 in the interior and ¥;; = constant
along all the boundaries. From potential theory
it is known that ¥;; must be constant if it is
to satisfy these conditions. If the arbitrary value
zero is assigned to the constant, the solution
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consists only of the first part, and the suffix I
may be omitted in the subsequent treatment.

Movement of the entire field at t = o. In-
stead of computing Q from the vortices in the
z = = + iy plane of Figure 6, it is more con-
venient first to introduce a transformation in
order to obtain a simpler arrangement of the
images than to work with the infinite series
necessitated in the z plane. By the transforma-
tion funetion,

z=(2/r) In ¢ (37
the infinite strip of Figure 6, is mapped into
the half plane corresponding to positive real
values of { = £ 4 in (Fig. 7). The boundaries
are mapped into one vertieal line, the % axis AF.
The interface is transformed into a half circle
BME with radius 1. Fluid 1 occupies the region
of the half plane inside the cirele and fluid 2 the
rest of the half plane outside the circle. The
images are located on the left half circle BNE
and have the opposite sign, in order to make AF
an impermeable boundary.

The subseript zero will indieate that the in-
terface is concerned. A line segment dz, of the
interface contains, according to (22), a vortex
of strength

(®/w)yzs = 1) dyo (38)
Therefore the vortex strength associated with
the line segment dy, has to be applied in the
transformed field to the line segment d, which
is the image of dy,. Since z, = 0 is the equa-
tion for the interface, a line segment dz, is
equal to dz, + idy. = idy.. Application of the
transformation (37) gives

dzy = idy, = (30/‘"')3'0_] dfo (39)
which represents dy, as a function of &, The
strength of the vortex associated with the line
segment df, of the transformed interface is
therefore, according to (38) and (39), [2ck
(y: — 7)/implo]ldE,. The complex specific dis-
charge potential in the ¢ plane is the integral
of the influences of these elementary vortices,
each of which is a contribution to the potential
of magnitude dQ = (i/2%) In (£ — &) times
the vortex strength in &,. This gives

_i 2ckly, — v))
2r ngn

[ ln(r—ru)éf—“ (40)
EMB 1]

ﬂ(f}(vouu part) =
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Fig. 6. Infinite confined aquifer in z plane.

The integration extends over the values of {,
along the half circle EMB, counterclockwise.

The image vortices have opposite sign and
the path of integration is the half circle BNE,
counterclockwise. If the direction of integration
is inverted, a second sign inversion is obtained,
giving a value for 2(Z) of the image part, which
has the same sign as (40). The result after
addition is

ﬂ(r)tnu'l = 9(“)vortiul + n(r)lmnn

_ _chkly: — m)
Teﬂ-

'[VLHB ln (r - rn) g}g-;g
+Lmh&—m%ﬂ (41)

This integral has no solution in closed form,
and, sinece the aim of the computation is the
movement of the fluid, the specific discharge
might as well be introduced at this moment
because it facilitates the evaluation of the in-
tegral. The specific discharge, according to (19),
is obtained by a differentiation, and, since it is
permissible here to carry this out under the
integral sign, (41) yields

__amdr _ _de@®
d¢ de dt 2

¢
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Fig. 7. Transformed infinite confined aquifer in
t plane.

¢ db

[Lus (= b

¢ df
+ Iﬂu (f - ;o)fu]

Now integration with respect to &, gives the
solution

s __I_k(‘hz = ‘Tl)
T

(42)

7=+ gy — 1 ¢ — 2

+ [In ¢ — In (¢ — ¢o)lews) (43)
The real part, the z component of the specific
discharge, is obtained from In || and In |{ —
Z,|, corresponding to the limits B and E. As the
interface circle has radius 1, In || = 0 and

- kg’l’: — ) ST

L

remains. Here P; is the point in the { plane
corresponding to the point P of consideration
in the z plane. The loci of points P; for which
(BP;/EP;) is a constant are circles in which
the points £ and B are inverse points. These
circles for equal values of g, are shown in Figure 8.
The imaginary part, the y component of the
specific discharge, is obtained from angle (&)
and angle (£ — £,). The first of these two is the
angle swept by the vector £, with starting point
at the origin, as its end point traces the half
circle EMB and ENB. The angles are += and

F&
EPr

g = (44)
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—m, respectively, which cancel each other.

There remains, therefore, the angle (¥ — o),
which is the angle swept by the vector with
starting point on the half circle and end point
at the point P;. The total value of this angle
depends on the location of P;. If Py, is located
in fluid 1, the paths of integration BME and
BNE pass on either side, giving (—y,) and
(2r — ) for the angle swept, respectively,
where Y, is the exterior angle EP. B (Fig. 7).
Therefore, the vertical component in fluid 1 will
be

i = BT g g (e - )

i _I_k('f? ; ‘}’l)_(\bl ;‘ ) (45)

If P;, is located in fluid 2, the paths of integration
both pass on the left side, and the angle swept
is for both (2r — y1). The vertical component

in fluid 2 will therefore be
Qe = _H’Y! b Tl) (2’. s @ (46)
B L3

On the interface the angles y, and y, both have
the value 37/2, so the difference of the parallel
discharge at either side of the interface is

{9-. = qh)lhﬂullu) =i (kfﬂ)('h - 7!) (41)

which is the value expected for the shear flow
at & vertical interface (@ = l4w) according to
(28).

The expressions (45) and (46) show that on
the lines of equal value for g, the angles ¢, or
s are constants; these lines, therefore are arcs
of circles through the points B and E (Fig. 8).

Transformed to the z plane these lines for
equal g, and g, form the pattern of Figure 9.
For each point of the aquifer the specific dis-
charge vector can be determined from the
components ¢, and g,, as is shown in Figure
10, where arrows represent the flow in magni-
tude and direction.

The advance of the interface dz,/dt at the
moment ¢ = 0 is equal to the component of the
mean veloeity perpendicular to the interface;
ie., in this case, the z component of the spe-
cific discharge divided by the porosity. From
(44) it follows, therefore, that
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iz_n e Ty kly: — 7)) i |EP{0
dt € ET[L BP;o
. k(“)’z o ’Tl) I |f¢ + il
= n .
€y |fn - ‘l

By use of {0 exp (mz/2c) = exp (imy./2c) this
reduces to

% _ vy, — v1) { [T(C — !f'u}:l}
= —('—-——m In { ot | ZEH0 [0 (48)

Figure 11 shows this velocity as a function of
1o, an S-shaped curve which is representative
of the shape of the interface a small time after
t = 0.

Displacement of the interface at t > 0. As
the interface turns, the shape continues to be
in the form of an S which is tangent to the im-
permeable boundaries. For all subsequent posi-
tions a different flow pattern applies, because
the vortices, which generate the flow pattern,
shift position with the interface.

The determination of the advancement of the
interface necessitates the computation of the
specific discharge component perpendicular to
the interface. Also this component changes with
the shifting interface. Since an exact mathemati-
cal solution of this displacement was not ob-
tained, a first approximation is given here,
treating the rotation in the center point of a
straight-lined interface.

Let the inclination of the interface with the
horizontal be @ = are cot a, so that the inter-
face equation is

Ty = 1o cob @ = ayp (49)

Then a line segment dz, of the interface is equal
to

dog = dzo + idyo = (a+ D dyo (50

A comparison with (39) shows the only dif-
ference to be the replacement of ¢ by a factor
(a +1). The vortex strength associated with a
line segment dZ, becomes, by similar reasoning,

F[2ck(v: — v1)/(a + Dmpgo) df  (51)
The image interface is given by the equation
(m = integer)

7o = a[(4m + 2)c — yo)
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Fig. 9. Lines of constant g. and gy in z plane.
Values indicate 12 g« p/k(vey) and 12 gy p/k(yem), respectively.

Fig. 8. Lines of constant ¢ and g, in ¢ plane.

B e e

S w b R e R e
P T /"E (VRN
T I }" AR SR
A A NI IR
ST I I B B
Fupgs + ¢+ 4 4t § ¢ ¢ ¥ v v rFRUD2
PO T T A : : TR R
PR T !I N 2 A
v v ow v mK Ve R 3
« owowomomom W f-‘ R R
S e ‘-.";-.. e de w4 o -
............................. e e e e e e R A e A

Fig. 10. Discharge vectors at time ¢ = 0.

Elaboration of the complex specific discharge
potential, as demonstrated previously, gives the

+e G :
: complex specific discharge in a form similar
*3f to (43):
R i .
J*-h 4 a6 0 il..r(—?“-— _ k(‘YE e Tl)
. tege = 12-30) = 21““
!c

&

3
.{ﬂ_'f'—?: [iﬂ Foars= lﬂ(f - fﬂ)]sam

Fig. 11. Distribution of discharge perpendicular z
to interface. 2
o miertace =i T s“n)]ms} (53)

and 2 line segment; dz, of the image interface is where the minus sign for the second term between
dzy = dzo + 1 dye = —a@ — 1) dyo braces is due to the path inversion from BNE

Since the image vortices have opposite signs, © ENB.
their strength associated with a line segment The dc'nvatlon (da/ dz). represents th_e comp lex
d{, of the transformed image interface is deformation of the fluid and the imaginary
part of [e71(d§/dz) e*i], the clockwise rotation

+[2k(y: — v1)/(a — Dwuts) dio (562) of a line of fluid particles oriented at an angle
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a with the horizontal. If computed for the point
z = 0, it represents the rotation of the interface
at the center point M of the confined layer.
This rotation is equal to the decrease of the
interface inclination a with time, or

—dafdt = ¢ Im [(dg/d2)e’ |0 (54)
By use of (53) the result forz =0 ({ = 1) is

a9 dea. Mys—w)
dz df dz 4puc

i 1 i 1 |®
{ G+£1_§'o+f‘_£1_§'o}s

For the inclined interface the point B corres-
ponds to z, = (a + i)c and the point E to z,
—(a + 1)e. Therefore, the integration limits
for ¢, are, respectively,
fo=c¢e
and

dag - kly: — 1) [Sinh (mra/2c) — i]

dz ~ 2uc(d® + 1) cosh (ra/2c)
By introduction of 8 = are cot [sinh (wa/2c)]
and @ = cote the expression is simplified to

di/dz = [ky. — Tl)/2#£]'[35-11, ﬂ’s—'—ﬂ]
This value for d§/dz used in equation (54) gives
de/dt = —[k(ya — v1)/2euc]

-sin” & sin (2a — ) (55)

The right side of (55) being a function of a
only, the relation between e and ¢ may be
written as

tleuc/k(va — v1)]

[1/2 sin® a-sin (22 — )] da (56)

(/2w

. —wafle
= ie ra

wla+i)e/2e = ‘-s'nﬂe and fo

Because of the intricate function relating 8 to
@, a solution of the integral is not available in
closed form. The curve of Figure 12 was ob-
tained by numerical step-by-step evaluation
of (56), and it represents as the final result of
this analysis the decrease of the interface in-
clination at the center point M with time in a
first approximation.

Verification with parallel plate model. To
verify the mathematical solution a parallel plate
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model test was earried out, with the results as
represented in the photographs (Figs. 13 and
14). These pictures show the center part of a 15
¥ 60 em Lucite model, with a slot width of d
= 1 mm. Since in the beginning the movement
is primarily concentrated in the center part,
the deviation between this model of limited
length and the infinite confined aquifer treated
theoretically can be disregarded.

The fluids at either side of the originally
vertical interface were, to the left, a glycerine
with y, = 1.23 g/em® and, to the right, 60 to
40 per cent mixture of glycerine and phos-
phoric acid with y, = 1.40 g/em®. The viscosity
for both fluids at 24°C was p = 0.005 g sec/
em®. Since ¢ the porosity, is 1 for a parallel
plate model, the value of the half-aquifer height
¢ 18 7.5 em, and the specific permeability is k =
d*/12 = 83 X 10™ cm®, the factor associated
with ¢ in (56) has the value

eue/kly: — 1) = 265sec

The white particles showing in the photo-
graphs are flakes of gold leaf, which by their
large surface-thickness ratio had a small settling
veloeity with respect to the motion of the fluid
itself. During the 90-sec exposure time the
flakes traced lines which are representative of
the fluid motion. Figure 13 is therefore the
experimental representation of the specific dis-
charge vectors shown in Figure 10. The re-
semblance of both patterns is apparent.

Figure 13 covers the period 0 < ¢ < 90 see,
Figure 14 the period 120 < ¢ < 210 see. Ac-
cording to the graph (Fig. 12), the inelination
of the interface is expected to be approximately
90° > e« > 80° for Figure 13 and 77° > «
> 68° for Figure 14. In the pictures the area
swept by the interface can be observed as a
lighter band, ecovered by particle tracings of
crossing directions. These eross paths are created
by the shear flow at the interface and are also
present in the analytically obtained flow pat-
tern of Figure 10. In both figures the S-shaped
interface predicted by Figure 11 is distinguish-
able, and the inclination at the center follows
the computed values approximately.

Electric analogy. In the electric models,
which are particularly appropriate for the
plotting of potential lines and streamlines
[Malavard, 1956], it is impossible to simulate
differences of specific weight directly. However,
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Fig. 12, Slope of rectilinear interface as a function of time.

Fig. 13. Photograph of parallel plate model test, with gold leaf flakes tracing streamlines; left side
light fluid, right side heavy fluid; exposure time 0<t<90 sec.

Fig. 14. Photograph of parellel plate model test of Figure 13 at a later stage;
exposure time 120<¢<C210 sec.
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by the replacement of the fluids with different
properties by the hypothetical fluid and the in-
troduction of property changes by singularities,
a concept is obtained which has electric analogies.

In the electric resistance model, where lines
of equal electric potential can be traced, sources
and sinks can be simulated by electrodes which
discharge or withdraw electric current from the
model. In this model the electrie resistance body
with homogeneous specific resistance can rep-
resent the hypothetical fluid.

If the multiple fluid potential © is to be de-
termined, the strength of the source or sink in
the area dA must be proportional to (k/p)
div [y grad y]dA, according to (33). Lines of
equal electric potential are then lines of equal
0, and they are called potential lines. For
a gradual transition zone the source-sink distri-
bution is continuous. Exact simulation by a
continuous electrode arrangement would give
the correct potential lines in the entire field,
including the transition zone. In practice, a dis-
crete number of electrodes will be used, giving
an eventual distortion of the potential lines. At
an abrupt interface the source-sink distribution
redueces to a line of doublets whose strength per
line element ds, according to (36), is equal to

N’ = [k(y2 — 1)/ lyo ds (57)

1f the stream function ¥ is to be determined,
vortices must be simulated. Actually, vortices
have no analogy in the electric resistance model,
but this presents no difficulties because the in-
verted model must be used for tracing the
streamlines. With the inversion, where stream-
lines are simulated by electric potential lines,
the vortices are inverted to sources or sinks.
For the gradual transition zone the strength of
the source in an area dd is — (k/p) (dy/0x)
dA, according to (12).

For the abrupt interface the strength for a
line segment ds corresponding to an elevation
inerement dy, is, according to (22),

& dyo = (k/B)(v2 — m) dyo (59

The correct streamlines would be obtained in
the entire field, including a gradual transition, if
the exact arrangement of continuous electrodes
could be applied.

Sinee © is equal to @ in the region outside the
zone containing the singularities, and since @
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and ¥ satisfy the Cauchy-Riemann equations
(see equation 14), the © and ¥ lines form an
orthogonal, equilateral grid in this outside re-
gion. Inside the gradual transition zone, © and
¥ no longer form squares because © is unequal
to @, and therefore the Cauchy-Riemann rela-
tions no longer hold between © and ¥.

For completeness it may be mentioned that
vortices are encountered in the theory of mag-
netism, because any wire conducting an electric
current ereates a magnetic field around it, which,
according to the law of Biot and Savart, obeys
the same formulas as the potential around the
vortex filament. To make a model in which the
magnetic analogy is used is difficult from a
practical standpoint. The application of bound-
ary conditions, the determination of the flux,
and the direct current necessary for the elimi-
nation of eddy current losses all create unat-
tractive complications. The elaboration of this
type of model is therefore omitted in this study.

Verification with an electric resistance analogy
model. In the previous section it was demon-
strated how streamlines and potential lines can
be determined by means of an electric resist-
ance analogy model. A test by this means was
conducted for the vertical interface situation
investigated previously by analytie and paral-
lel plate model procedures. Conducting paper
was used to simulate the porous medium. Instead
of applying the continuous sink and doublet
distribution as required theoretically for an
abrupt interface, a limited number (10 for the
half height ¢) was used.

For the streamline determination in the in-
verted model, each sink, according to (59), re-
quires a discharge of

Q' = «'f(c/10) = Kf(ya — 7)ec/10u

where f is the thickness of the aquifer.

The eleetric eurrent I flowing through the
electric model of thickness f. is considered rep-
resentative of the discharge flowing through the
aquifer of thickness f. Ohm’s law for the cur-
rent flowing through a stream channel of
breadth b, perpendicular to the potential gradi-
ent (dE/ds), with p the specific electric re-
sistivity, gives I = — (bf./p) (dE/ds).

With (5) the discharge through a breadth b
in the hydraulic case is Q@ = — bf (3¥/an).
Because of the inversion d/ds is similar to d/dn,

(60)
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supplied with a potential difference of o7 E
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and the relation between model and aquifer is

(1.E/ p)[amperes] — f¥[em®/sec]  (61)
The intervals for the streamlines A¥ were
chosen at the arbitrary value of

AV = k(ys — v1)c/20 (62)
By (61), these were simulated by electric po-
tential intervals of magnitude AE, according to

(1./p) AE — | &¥ = [k{yv: — v:)cf/20u] (63)

A 500-volt a-c source (E*) was used to supply
current to the point sources. With a 500-kQ
resistance, the current at each source was E*
/500,000 [amp] which, according to (60), simu-
lates & (y: — v1) ¢f/10 p. The resistance of the
conducting paper in the model was negligible
with respect to the 500 k. Because the con-
dueting paper used in the model has a specific
resistivity per unit area of (p/f,) = 1625 Q,
the electric potential intervals to be traced were

AE = § X 1625 X E*/500,000
= 1.625 X 107°E*
potential divider with 1000 subdivisions was
E*. The intervals AE of the streamlines were
represented by 39 subdivisions of the potential
divider.

For the determination of the potential lines
the continuous distribution of doublets was re-
placed by ten doublets of equal strength. Since,
according to (59), the doublet strength in-
creases with height y,, the strength distribution
is triangular. The ten doublets were therefore
placed at heights

[2¢/3V10){[(m — D' + m'?]

= [lm = D™ + w7
where m represents the integers from 1 to 10,
their positions corresponding to the centers of

gravity of the 10 equal subdivisions of the
triangle. Each doublet had a strength

&7 = (/100 = 1) [ 0 d

= (kf/208)(v: — v)c" (64

The doublets were represented by a source

and a sink with discharge @” at a mutual dis-

tance 8” = ¢/40, and their strength was A”

= @”c/40. To meet the requirement (64), the

discharges of the sources and sinks were given
by

G. pe JOSSELIN pe JONG

Q" = 2kf(y: — yie/n (65)
The required current for the sources was ob-
tained by replacing the 500-kQ resistance by a
smaller one of 250 kQ. For the sinks a counter-
phase potential E* of equal magnitude with a
250-kQ resistance was used. So E*/250,000
[amp] was equivalent to 2kf (y: — 71) ¢/p.
To obtain potential lines at similar intervals
as in (62)

A8 = klys — v)e/20p
the electric potential intervals AE had to be
taken as

AE = (p/1)(f AG/Q"")(E*/250,000)
= 1.625 X 107'E*

In Figure 15 the full lines are streamlines
and the dotted lines are the potential lines ob-
tained with the electric resistance model. This
corresponds to the half-aquifer height, and the
streamline pattern is therefore comparable with
the upper half of Figure 13. The abrupt change
of direction of the streamlines created by the
shear flow is again visible.

Because of the replacement of continuous
sources and doublet distributions by discrete
sources and source-sink combinations, the pat-
tern is distorted along the interface. In Figure
15 the distortion of the streamlines by the dis-
crete sources is shown to the left; the potential
distortion by the discrete doublets is shown in
Figure 15 to the right.

Outside this region the lines form squares.

Difference in viscosity. If, besides specific
weight differences, variations of viscosity also
have to be considered, the vortex strength de-
pends on the gradient of ¥ according to (10).
This excludes mathematical treatment along the
lines developed, but the electric resistance model
offers a possibility for determination of the flow
characteristics. A slightly different stream fune-
tion ¥, and corresponding multiple-fluid po-
tential ©, must be introduced. Their definition
is given by

6, = kp + kyy
pg. = —(30,/05) + ky(dv/ds) = —(a%,/dn)
Bg. =—(36,/n) + ky(dy/dn)= (3%, /ds)

Elaboration of the conditions of equilibrium
then gives

V&, = —kay/dz)

Soil Mechanics and Transport in Porous Media
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Fig. 15. Result of eleciric resistance model test, showing lines for constant ¥ (full lines) and constant
O (dotted lines).

an expression devoid of the g term. The condition
of continuity remains divq = 0.

In the electric resistance model Ohm’s law
gives
—grad E
where i is the current density vector, and p,
the specific resistance, is now a variable function
of position. The relation between hydraulic and
electric quantities may now be as follows:

For the tracing of potential lines

6,— E; [q— (ky/p) grady] = i; p—p
For the tracing of streamlines
grad ¥, = —i; g, — (3E/ds);

q. — (—0E/dn); p—1/p
Application of the conditions of continuity
and equilibrium to the hydraulic system gives
the following conditions for the electric quan-
tities:
For the case of potential lines
—k div [(y/u) grad v] — div i
[0°6/3s an — 8’0 /an ds] = 0
— [0°E/ds on — 8°E/on 8s] = 0
For the case of stream lines

pi =

divq = 0— [0°E/0s an — 3°E/dn 3s] = 0
—k(dy/dz) = div i

These equations show that E is a single-valued
function. The values of div i indicate a source
and sink distribution which differs but slightly
from the previous results. In the first case the
specific resistance must be directly proportional
to the viscosity, in the second case inversely

Selected Works of G. de Josselin de Jong

proportional. As the total resistance in the
electric model consists of p multiplied by the
thickness, it is sometimes more convenient to
use & fluid of constant resistivity as conducting
material and to vary the layer thickness of the
fluid to meet the differences in viscosity.

ConNcLUsION

This investigation has shown that it is pos-
sible to determine the flow pattern in a porous
medium which is saturated by several fluids of
different specific weight by the use of singulari-
ties. All the fluids are replaced by one hypo-
thetical homogeneous fluid. The motion of the
hypothetical fluid will be identical to the move-
ments of the different fluids, for which it is
substituted, if singularites are applied at all
the points where the original fluids show change
in specific weight.

It is proved to be convenient to give the
singularities the character of vortices, if the
motion of the fluids is to be determined. If the
emphasis is on the pressure determination, it is
better to use a distribution of sources and
sinks. In the case of the vortices, a stream func-
tion is the basic variable; in the case of the
sources and sinks, it is a multiple-fluid potential.
QOutside the region of the singularities the po-
tential and stream functions obey the Cauchy-
Riemann equations; inside they are not ortho-
gonal.

The magnitude of the singularities is related
to the gradients in specific weight. If the initial
position of the interface is known, the action of
the singularities on the fluids contained within
boundaries with known conditions ean be de-
termined from potential theory. The solution
is given in the form of an integral for which
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the region of integration is that part of the
aquifer where weight differences are present.

In most practical cases the interface or the
mixing zone will have a form which prohibits a
mathematically convenient calculation of the in-
tegral in closed form. There are, however,
methods available for approximation of the in-
tegrals involved to any desired degree.

The method requires a knowledge of the
position of the interface at a certain moment,
and, from that and the known boundary condi-
tions, the subsequent motion of the boundary
can be computed from the specific discharge
perpendicular to the interface. The displace-
ment of the interface creates a new position of
the singularities, with specific discharge changed
accordingly, from which a gradual or step-wise
movement of the interface can be computed.

A special feature of the singularity distribu-
tion is the possibility it offers for the use of the
electric resistance model, which is especially
useful because it makes possible the direct
tracing of potentials and streamlines. Actually,
weight differences of fluids have no analogy in
electric resistance models, but the hypothetical
fluid with homogeneous properties and the sin-
gularities applied to this fluid can be simulated
by the use of sources and sinks with different
distributions for the determination of both
potential lines and streamlines.

By introducing a small change in the defini-
tion of the potential and stream function, the
influence of viscosity differences may also be
studied with an electric resistance analogy.
Then similar sources and sinks take care of the
specific weight variations, but differences in the
specific resistance of the model are needed to
simulate the viscosity variations.
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Moiré Patterns of the Membrane Analogy for
Ground-Water Movement Applied to Multiple Fluid Flow
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Introduction. In the membrane analogy for
flow through porous media, contour lines of a
deflected membrane represent either streamlines
or equipotential lines. The membrane was used
by Prandtl [1903] to solve torsion problems.
Hansen [1952] gave a description of the applica-
tion of the analogy to solve the flow patterns
resulting from systems of sources and sinks.
Multiple fluid flow through porous media may
be treated by considering a suitable distribution
of sources and sinks [de Josselin de Jong, 1960]
and therefore the membrane analogy is also
applicable to this problem.

The object of this letter is to point out that
such problems may be solved by a moiré method,
gince this technique provides a convenient
procedure for establishing contour lines of a
deflected membrane. The procedure is a slight
modification of the method initiated by Ligten-
berg [1955], who superimposed two photographie
exposures of a loaded and an unloaded model.
Ligtenberg used the reflection of the grid as
seen in the mirrored model surface to obtain a
moiré pattern which is a measure of surface
rotation. The modified procedure differs in that
a grid pattern is projected on the nonreflecting
model and the moiré pattern obtained by the
superimposed images is a measure of the normal
displacement. Otlo [1954] mentioned this kind of
experiment in connection with the study of
hanging roofs.

Membrane-moiré test setup. The membrane is
a thin rubber sheet placed vertically to eliminate
its own weight and stretched uniformly by a
unit force S. Sinks or sources are simulated by
concentrated point loads P normal to the plane
of the membrance as shown in Figure 1.

A horizontal beam of parallel light rays, at an
angle of incidence « with the normal to the
unloaded membrane, is projected through a grid
s0 as to throw a shadow image on the membrane.
The grid consists of a ruling of parallel black

lines on a glass plate, oriented in such a way that
the lines are vertical.

When the membrane is given a small displace-
ment, w, normal to its plane, the shadow image
of the grid is displaced. If the axis of the camera
is placed normally to the unloaded membrane
the apparent normal displacement, u, of the
projected grid lines is

%= wiana

With b the pitch of the shadow lines in the
unloaded condition, a displacement of n spacings
corresponds to a deflection w, equal to

w, = nb cota

If the spacing of the grid lines is such that the
pitch is twice the width of the lines, photographic
superposition will produce complete exposure in
those regions where w’ is given by

w = (n+ b cot (1)

therefore these regions are black in the negative
and show up as white bands in the positive prints.

These bands indicate the desired contour lines
for the deflected membrane. An example of the
results which can be obtained by this method is
given in Figure 2. This figure shows the stream-
lines for a confined aquifer filled with two fluids
of different specific weight at the moment the
fluid motion starts from an abrupt vertical
interface. Since this is the same problem as
treated previously by the author (1960), the
upper half of Figure 2 can be compared with the
full lines of Figure 15 of the article quoted,
wherein the results of the electric resistance
model are represented.

Computation of analogous quantities. The
dimensions of the test setup were determined as
follows. The relation between the deflection w
and the normal load per unit area p of a mem-
brane uniformly stretched by a unit foree S is

3625
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given by the well-known equation
Viw = —p/S (2

[e.g. see Timoshenko and Goodier, p. 269, 1951.]
This equation is analogous to the basic equation
for multiple fluid flow given by the author in the
reference quoted. Equating (10) to (11) from this
reference gives

VYV =w (3)

where ¥ is the specific discharge stream function
and w is the vorticity. Therefore, a vortex of
strength wdA acting in the region d4 can be
represented by a distribution (—p/8)dA over
the region dA of the membrance. The force
distribution p may be approximated by a concen-
trated force, P = —pdA, applied at the centroid
of the region dA. The vortex strength for an
abrupt interface is given by equation 22 of the
article quoted in corrected form:

wdA = wdsdn = (k/u)lv. — v1) dyo
From (2) and (3) the relationship between
analogous quantities is therefore established:

w _ —p/8_ —pdA/S
¥ w wdd

B P/8
= (/W) — m) dye
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Top view of test arrangement and detail of displaced membrane.

For the electric resistance model the stream-
line interval was arbitrarily selected as (eq. 62)

AY = (k/p)(y2 — 11)(e/20)

To permit comparison of test results the contour
interval for the moiré test was therefore chosen
to be

= AT P / S —. v Pe
(k/w)va — 71) dyo 208 dyo
Since nine point loads were used, for a half

aquifer height ¢ in the membrane, dy, equals
¢/9, and

Aw

Aw = 9P/208 C))]

In order that Aw correspond to one interval,
nis 1 in (1), and Aw of (4) should be equal to
b cot a. Thus it follows that

P = (20/9)Sh cot &

Using a stretching force 8 = 200 g/em, a
projected grid width 4 = 0.22 ¢m and an angle
of incidence & = 45°, point loads of magnitude
P = 98 g were required. Since the theory is
only valid for small values of w a correction
had to be made for regions of deviation.

Figure 3 gives the pattern for the instantaneous
streamlines corresponding to a subsequent posi-
tion of the interface occurring at a time ¢t = Y4euc/

Soil Mechanics and Transport in Porous Media
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k(2 — %) see, after the initial vertical position
of the interface given in Figure 2. The position
of the interface at a subsequent instant may be
approximated from the streamline pattern for
the previous instant, assuming steady-state flow
during the time interval.

In the membrane analogy it is then necessary
to shift the point loads to the new position of
the interface. For a complete investigation of
the movement of the fluids, a succession of
photographs representing the instantanebus
motion in the entire field at each of the time
intervals selected is required.

The membrane moiré results of Figures 2 and
3 are comparable to the parallel plate test results
given in Figures 13 and 14 of the article quoted.
Their agreement is demonstrated by the super-
position shown in Figures 4 and 5.

Equipotential lines may also be obtained by
the moiré method. Point load moment couples
are then applied to the membrane to represent
the doublets in the analogy.

The principal advantage of the membrane
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moiré method is the convenient way of obtaining
a photograph of streamlines and equipotentials.
This procedure eliminates the need for point to
point plotting of contour lines, which is required
with the electrical resistance analogy.
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Abstract. The hodograph method for determining patterns of flow of groundwater in a
coastal aquifer with a drain requires the treatment of double-sheeted hodograph planes. This
many-valuedness does not prohibit the use of Schwarz-Christoffel analysis if the hodograph
domain is simply connected. In the two-fluid case of fresh water flowing over stationary salt
water the hodograph is simply connected, and the hodograph method is shown to give a
solution. This solution was verified by a test that showed a stable interface in the predicted

position.

INTRODUCTION

In solving several problems of two-dimen-
sional groundwater flow encountered in a coastal
region, Bear and Dagan [1964] used the hodo-
graph method successfully to cope with the
difficulties created by the freshwater-saltwater
interface. The hodographs treated in that study
were all single-valued, There are, however, cases
of practical importance where the hodograph is
many-valued. An example is a drainage well lo-
cated in the vicinity of the seacoast to recover
part of the fresh water that flows out to the sea.

In their progress report Bear and Dagan
[1962] suggested the possibility of many-valued-
ness of the hodograph in that ecase. This drain-
age problem will be treated here to show how
to deal with hodographs when they are many-
valued.

Many-valuedness oceurs when the same spe-
cific discharge vector is encountered in several
different places of the aquifer. Polubarinova-
Kochina [1952] shows the shape of a double-
valued hodograph in the case of seepage through
a dam, without further mathematical elabora-
tion (see 1962 translation, p. 46).

To show the character of a double-valued
hodograph first in a simplified form, the one
fluid cast of water flowing around a wall while
a drain intercepts part of that water will be
treated here (Figure la). Double-valuedness is
a consequence of the inflection points of the
streamlines in the region CSGFD.

The two-fluid case of fresh water flowing over
a stationary salt water region with a drain

shows a similar pattern of the streamlines (see
Figure 2a). The interface has inflection points
in the region of upeoning created by the drain.

ONE-FLUID CASE

The one-fluid case (Figure 1a) ean be solved
without the use of a hodograph, because it is
possible to map the complex potential @ = & +
i¥ (Figure 1l¢) directly on the z = z + iy
plane, which is a section of the aquifer (Figure
la).

The potential @ is zero along the seabottom,
i.e., the positive x axis, the line GE up to in-
finity. The stream function ¥ is zero along the
line €S, which beyond S separates in the two
lines 84, and SG. The discharge of the drain is
@, so that the value of ¥ is —@, along 4,B.

The real axis of z, the line BE, is a line of
symmetry.

With these specifications the region of the Q
plane corresponding to the lower half of the
z plane can be drawn as in Figure l¢. Only the
location of the stagnation point § is unknown.
The situation of the drain is known and given
by

Z4 = ae = —a

Since the flow region is bounded in the Q
plane by straight lines, mapping can be affected
by the Schwarz-Christoffel formula. Because
this formula maps on the upper half of a plane,
the z plane is turned into the ¢ plane, repre-
sented in Figure 1b, by multiplying z with

ir

e = —1. The relation between Q and ¢ can

543

191



DETAIL OF REGIoN
AROUND M

) i T
A“_ = LA Ut irwni ;ll'.'.’n..I|ll|||||.'I'I'I‘llll'.llllmlllIllll'll.l.llfll.nll.l.lw"ll 1 IF“‘”‘HH

v @?uNl

Fig. 1. One-fluid case of a drain at 4 intercepting water flowing underneath the impermeable
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then be written as

) = & %_"3—;?‘,—2 + 8
s [T ‘la=9 d\
= f N2 + = a) N2 +8

Il

a — 8
20, 1'% + o, g‘;ﬁj“

tl.’? — ah’!

Introduction of the boundary conditions

on A,B: Im[201)] = —@
for Re(f) >a Im() =0
at G: Q) =0 for t =0

permits evaluation of the constants
oy Qla];’/’r(a -9

B = —ig,

Turning ¢ into ze' finally gives the complex
potential as a funetion of z,

Q) = % |:2£ é‘% + log (M)]

ia”? — 2
)

In (1) only s is unknown. If the discharge of
the drain @, is kept constant, the value of s
changes, if the strength of the flow field from
infinity to the boundary GE is varied.

Without drain the flow around a wall is given
by the complex potential

Q@) = iQz(z/e)'” (2

where Qy is the discharge through the line GE
with length e. For large values of z the two
potential fields (1) and (2) will tend to coincide
if

(a — 8 = 2@:(a9""/(Qx)

This defines s.
In Figure 1 all drawings correspond to the
case a = e and Qs = 2 Q..

Hodograph in one-fluid case. The hodograph
is represented in Figure 1d, where the endpoints
of the specific discharge vectors q are mapped

(3
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in the complex w plane. Here w is defined as

By this definition the relation between @ and w is

w =

w = —dQ/dz (5)
because ¢ = —grad ® and the harmonic fune-
tions & and ¥ obey the Cauchy-Riemann

cquations,
To obtain the complex specific discharge w (5)
is applied to (1)

__‘& (z_[_s) El/ﬁ
=Tt (a — s)(z + a) [s:l ®)

The w plane is drawn in Figure 1d with its
positive imaginary axis v downward, because
then according to (4) the specific discharge
vector g in the hodograph plane has the same
direction as the corresponding vector in the
z plane.

In the representation of Figure 1d, the map
turns out to be double-sheeted, as can be seen
by following a path that encircles the lower
half of the z plane once, by starting in 4, to the
left of the drain encircling the drain counter-
clockwise to A., then going over SGF to E,
encircling the aquifer at infinity clockwise from
E to B, and returning to A,.

The endpoints of the corresponding specific
discharge vectors then trace the following path.
In A, of z this vector points to the right, so that
A, is mapped on the positive  axis. Encircling
the drain the vector endpoint turns over a large
circle counterclockwise to A.. The point S being
a stagnation point, the velocity is zero there
and its map in the w plane is the origin. In the
point G the velocity is infinitely large and
changes direction pointing to the right in G,
and upward in Gy, so that the vector endpoint
traces = of a large circle.

Since all along G.E the velocity is upward
and decreasing in strength, in the hodograph the
endpoint of the vector follows the negative
v axis toward the origin. The origin of the
hodograph corresponds to the infinity of the z
plane EDCB, because the velocity reduces to
zero there. From B to 4, the veloeity vector
points to the right, so that BA, is mapped along
the positive u axis of the hodograph plane.

If the path BA,A.SGFEDCB is traveled in
the aquifer (Figure 1la), the total flow region is
encircled once and lies at the right-hand side

193



546

of that path. In the hodograph (Figure 1d) the
relevant part of the plane lies to the left of the
traveler, because there is a reflection by drawing
the positive v axis downward. Figure 1d shows
that the hodograph path makes a double loop,
and therefore the encircled region is double-
sheeted.

Because the single-valued z plane is turned
into a double-sheeted w plane, the w plane must
contain a branch point of order 1. This point M
can be found because, as will be shown pres-
ently, a point of w is a branch point of order 1
if the first derivative vanishes there and the
second derivative is not zero. In the symbols

_{ wy' = (dw/d2),us,, = 0 @)

wy'! = ("w/de") s, 70

The validity of this statement can be shown
by expanding w in a Tavlor series around wy as

w = wy + wu'(z - zn)

+ dwa''e — 2)" + -
Because of (7) this reduces to

w—wy =}w"e— 2"+ -0 (8)

If (z — zu) = pe'® with p a small, constant
length, the point z describes a small circle with
radius p around zy. A complete revolution is
traced when ¢ increases from 0 to 2. The point
w then traces approximately a small circle with
radius r = B|wy”|p’ (see Figure le), which is
a detail of Figure 1d. If we call w — wy = re*,
then according to (8) ¢ is equal to 2p + arg
(wy™). If therefore ¢ increases from 0 to 2,
the angle ¢ increases by 4w, indicating that the
point wy is encircled twice if the point zy is en-
circled once.

A branch of higher order, say =, is ob-
tained if all derivatives up to w.™ vanish and
wy™? is not zero. For more information about
branch points the reader is referred to the
textbooks on function theory. A detailed de-
seription of branch points is, for instance, given
by Nehari [1952], pages 78 and 152. This de-
seription will be helpful in understanding the
representation in Figure 1d, which may be
difficult to visualize since it is impossible to
build a correct paper model of such surfaces.

From (6), wy’ = 0 if
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P i_Q,_ [en” + (35 — a)zy + as]
T 2(a — §)(za + a)°

1/2
[—%:I =0
2

2y + (35 — a)zae + as = 0
giving the roots
2w+ a= 3(a— 9"
[3(a — 9)'* &£ (9s — )] (9)

It can be verified by direct computations that
wy” 18 mot zero for zy given by (9). Therefore
2x as defined by (9) is mapped into the branch
point of the w plane. If DF is the streamline
passing through the point M in the z plane
given by zy, then only the streamlines between
DF and CSG have inflection points. In the
hodograph (Figure 1d) these streamlines make
loops around the branch point (see, for in-
stance, the streamline for ¥ = 1% Q).

The = sign in (9) reflects the symmetry with
respect to the z axis. Since the lower half of the
z plane is considered here, only the — sign is
needed.

Because of the branch point the hodograph
is not only double-valued but also double-
connected. The location of the branch point in
w cannot be inferred beforehand, and therefore
it is impossible to indicate the eut (as shown
in Figure 1d) that makes the hodograph simply
connected. In the two-fluid case this difficulty is
avoided because the hodograph is itself simply
connected.

War

This is the case for

TWO-FLUID CASE

In the two-fluid case the presence of a drain
that intercepts part of the fresh water that
flows toward the sea will cause upconing of the
interface between the fresh water and salt
water. The flow pattern in the aquifer for this
case is shown in Figure 2a. All pictures in Fig-
ure 2 represent the values of the test described
in the last section. In Figure 2, however, the
points F, M,, M., and § are shifted somewhat
in the horizontal direction in order to make
them discernible.

Figure 2a shows that in the aquifer the drain
is located at a distance a, from the seashore.
The interface between the moving fresh water

Soil Mechanics and Transport in Porous Media
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Fig. 2. Two-fluid case of a d:mntdmt.emepl.gfreshwt.erﬂwmg nderneath the
impermeable line BG toward t.ha sea bottom over stationary salt water, All figures are drawn
for the case Q:/K'as = 0.304, Qs/K'as — 0.0416 except 2e, which is out of scale.
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and the underlying stationary salt water (hori-
zontal shading) is the line DM.M,F. This line
has two inflection points, M, and M,. The hump
between these two points can be considered as
the upconing.

If the salt water is stationary, the interface is
known to map in the hodograph plane as a
circle with diameter

K' = k(vs — 1)/m

with & = hydraulic conduetivity, y. = specific
weight of salt 1 ater, and y, = specific weight
of fresh water. The hodograph is represented
in Figure 2b. It is left to the reader to verify
that the path BA,A.SGFM,M.DCB that encir-
cles the region of the aquifer occupied by the
fresh water is mapped in the hodograph by the
path BA,A.SG,G.FM,M.DB. The areas 4,4 and
GG, in the hodographs are circles with large
radii.

In the same way as in Figure 1 the relevant
region of the aquifer lies to the right of the
traveler and in the hodograph to the left of the
traveler, The points FM,M.D from the interface
lie on the ecircle with diameter K’. Since M, and
M, are inflection points on the interface in the
aquifer, these points are turning points on the
circle of the hodograph. This makes, for ex-
ample, the line FM,M., a slot in the sheet that
is shaded vertically in Figure 2b. There is a
narrow bridge between the points SM, that con-
neets the region FG.G, to A.. From A. over the
large circle to A, and farther toward B there is
an overlap encireling the slot at M.. This over-
lap ends in the white beak that contains the
points B and D. The relevant region in the
hodograph is double-sheeted in such a way that
it cannot be cut out of one piece of paper. By
gluing two pieces together it is possible to make
a model that is simply connected. It is therefore
possible to map the hodograph on a half infinite
plane, for example, the ¢ plane (Figure 2e),
which is also simply connected.

The complex potential is shown in Figure
2d. The discharges @, and @, through the drain
and the sea bottom F({, respectively, are con-
sidered known. The location of the stagnation
point S is as yet unknown.

The shape of the interface in the z plane can
be computed by mapping the pertinent domains
in both the © and w planes (Figures 2b and 2d)
on the upper half of the same ¢ plane (Figure
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2e). By using relation (5), z can then be ex-
pressed as a function of the parameter ¢, which
forms a solution because for every point of z
the value of @ and w can be computed through
the intermediary of ¢.

Complex Potential in the Two-Fluid Case

The mapping of © on the upper half of the
t plane is obtained by the Schwarz-Christoffel
formula as follows:

A= 3) dh

R(t} = a = a) RM’(R F f)us + 8

R T
T ﬂ’zf )\”2(?\ + nus

* (a — s) d\
to | G TR

() = allog § — (a — §)a**
@+ N2t 1, Q)+ 8 (10)
where
£ ="+ ¢+ N1/
£(t, f, a) = 2 log [¢*(a + N -

+ (t+ N"%a"*] — log f(a — ¥)

The value of the constants a., 8: and a rela-
tion between the as yet unknown values of a,
f, 8 can be obtained from the boundary condi-
tions.

From (11) it can be verified that for ¢ on the
real axis the imaginary parts of log ¢ and £(¢, f, a)
have the following values:

Im [log¢] =0 for 0<ti< ®
Im [log ¢] = ir for —o = we'”
<t< —f={f'"
Jand (12)
Im[2(¢, f,a)] =0 for 0<t<a

Im[£(t,f,a)] =ir for a<t<

and
—o <t < —f

The boundary conditions for Q@ can be taken

Soil Mechanics and Transport in Porous Media
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from Figure 2d to be for ¢ on the real axis

on 4,B: Im [Q(f)] = —iQ,

for a <t < @
on FD: Im [Q()] = +iQ.

for —w <t<—f (13)
at G: () =0

for =10

Introduction of (12) and (13) in (10) per-
mits evaluation of a, and B, and deduction of the
following relation between a, f, s and the dis-
charges:

(@ + Q)/Q = (a4 0)"/(a—9 (14)
The final expression for Q(t) is then

) = 7 '[(@ + @) log ¢
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— @&t f,9]  (15)

Hodograph in Two-Fluid Case

To apply the Schwarz-Christoffel formula for
the mapping of the hodograph on the ¢ plane
it is convenient to transform the w plane into
the w* plane by the inversion

w* = 1/w

(16)

because the boundaries then become straight
lines. As is seen in Figure 2¢ particularly, the
cirele DM.M.F maps into a line parallel to the
real axis, at a distanee 1/K* above it.

The mapping of w* on ¢ is then given by the
expression

"t m)\ A my) A
3 (h e s)l}‘l,’Z(A + f /2
which after integration becomes

w* = a + 8

(m + )(my + "7t + )

A “’[‘”g b= s(s + Nt — o)

s (my + 8)(m,

+ 96+ 3f) — (m + my + 29s(s + f)

83!2(3 + j):i/)

The boundary conditions are now from Figure
2c:

on GS and SB: Im [w*(f)] = 0
for 0<t<
; in 4 and G: w*() = 0
for t=a and t=0 (18)
on FD: Im [w*(f)] = 1/K’
for —o Lt < —f

According to (12) the imaginary part of
£(t, f, 8) changes by = if ¢ passes the point S.
The first of (18) indicates that such a jump is
not required. Therefore the coefficient of &(Z, f, )
in (17) must vanish, giving the condition

(my + 8)(ms + 9)(s + 3f)

=(m+ m+ 26+ (19

Since both log £ and £ vanish for ¢ = 0,
the condition in G indicates that 8; = 0. In the
point 4, ¢ is equal to a and the value of £ is

Selected Works of G. de Josselin de Jong

£(t, f, 8)] +8 (7

fo= [+ (a+ DT/ (20

The condition in A is fulfilled if

_ (m 4 9)(my + 9a?(a + 1)
log §o = s(3 + Nla — s)
(21)

With (14), (19), (21) it is possible to express
8, My, m. as functions of @, Q. a, and f as
follows:

s=a— [@/(Q& + Q)[ala + NI"*
m +s =36+ 3) — [+ 3
— 4G+ NAT} (22)
my+s=3A{G+ 3+ s+ 3)°
— 4s(s + HAT']?)
where
A= [@/(Q + Q)] log ¢, (23)

Finally the condition along FD makes ay
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1/=K’. Therefore the expression for w* reduces
to

w* = (I/rK’)I:log Iy

1/2 /2
s E:”‘ :)):mgi-:_ ?)‘172 log fa] (24)
Relation between z and t. The two expres-
sions (15) and (24) permit computing z as a
function of ¢. Writing (5) in a slightly different
way and introducing (16) gives

dz = —w™ dQ = —w* dQ

(25)
z = —f w*(dQ/dt) dt + B
From (15) we obtain
aQ _ [9.:::&
dt T

9_:“1;2(& +ﬂ1fn:l 1

o (t — a) tl{B(t + }(}I{R
Insertion of this result and (24) in (25) gives
with (14)

+

z =

G. DE JOSSELIN DE JONG

The expression (27) can be further adjusted
so that the points A and G in z correspond to
these points in t. In order that G lie in the
origin of 2, B, should be zero, because £ be-
comes 1 and log £ vanishes for £t = 0.

Let the distance GA in the aquifer be a,; then
the condition that 4 coincides in both planes is
z = — a, for ¢ = a. This condition gives

a = %(lug &)+

el [(5) (55 e

+ (=°/8) — 2Lix(1/¢,) + sz{llr.’)} (29)

If for the aquifer the distance a,, the discharges
Q., Q., and the value for K’ are given, it is
possible to determine a/f with (29), since it is
the only unknown there. It is not feasible to
give an explicit expression for a/f except when
it is very large. (All the cases mentioned by
Bear and Dagan [1962] have very large a/f
values). From (29) it follows that for a/f 3> 1
there resnlts

~1@, + /") [ t0g ¢ attog 1) + (0w nox 2. [ (1= o)

~ [t pre = o o 48 G2

Integration of this expression gives

Q + Q. a— i
2’ K’ a

[log ¢1° + ;z% {log

1 —

log £, + log [%[ log ¢

1= (8

= La(¥/8) + Li(1/8a) + Li(ita) — Liz(i'..}} +8, (27

where Li,(o) stands for the dilogarithm defined
by

Lis(o) = — f A log (1 — N d\  (28)

The terms consisting of dilogarithms in (27)
are derived from the last integral of (26). Since
the integration of this term is not so easily
verified, a further justification of the result is
given in the appendix. The other terms of (26)
have a more elementary character.
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log {. =& log (4a/1)
= w[(2K'a - 3Q.)/ Q.1

This relation is represented in Figure 3.

The region of applicability of Figure 3 is
limited, because the analysis developed is only
valid if the interface in the aquifer contains
inflection points M, and M,. From (22) it is
seen that the expressions for m, and m, contain
roots. These roots are only real if

(30)

Soil Mechanics and Transport in Porous Media
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Fig. 3. Plot of log {. as a function of Q: and Q. according to equation 30.

(s + 3" > 4s(s + NA™ 31)
If (31) is not satisfied, the roots are imaginary
and there are no inflection points. Then the
hodograph contains a branch point as shown
in the one-fluid case. If (31) is not satisfied,
the formulas are not valid because the Schwarz-
Christoffel analysis as used here is not applica-
ble if a branch point is involved. The condition
(31) sets an upper bound to the ratio Q./Q:
which has the form

Q |G+ _
@ < |:433(s Fh o8 ‘“'] 1 e

This line limits the zone of validity in Figure 3
to the left.

The region of applieability in Figure 3 is also
limited at the bottom. This condition is visu-
alized by considering the case that the discharge
through the drain @, is kept constant while the
supply from infinity decreases, so that Q.
diminishes and eventually reduces to zero. Dur-
ing this process a moment will come when the
interface becomes unstable and the drain starts
to discharge salt water.

By diminishing @, the points M, and M, will
move along the circle in the hodograph in a
counterclockwise direction. Instability oceurs for
that part of the interface that maps in the
hodograph on points of the cirele that lie to the
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left of the vertical. This is understood if it is
realized that a velocity vector pointing to the
upper left means an interface with fresh water
below salt water.

When the slot (M.M,) moves over the top
of the cirele, M, is the first to pass the vertical.
For instability not to occur the ecriterion is
therefore that the real part of w at M, remains
positive. This implies in the inverted hodograph
that

Re [w*(M2)] > 0 (33)
The criterion (33) ecan only be represented
in a simplified form if a > f, K'a, > @, and
Q, > @Q., as is true for the region of Figure 3.

In that case the requirement for the lower
bound is

14 mq + logmg — [@/12K’as] > 0 (34)
with

¢ = (2Q.K'ap)'"*/Q,
On the scale of Figure 3 the lower limit is so
close to the horizontal axis that it is not to be
distinguished from it.

Shape of the interface for a/f >> 1. For large
values of a/f the formulas describing the inter-
face can be given in a more compact form. The
interface is the line DM.M,F in the z plane (see
Figure 2a), which will be represented by z, =
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%, + 1. This line corresponds to a part of the
negative real axis in the ¢ plane. Let &, be de-
fined by ¢ = t.e'"; then i, is a positive quantity
along DM,M,F.

For points to the left of M, the value of
is large with respect to f (because m. is of the
order a). Therefore the quantity &, defined by
¢ = E&e* is then approximately & = 4&/f.
Inserting these quantities in (27) and separating
real and imaginary parts of z, yields

K’ Re(z) = w°K'z,

G. DE JOSSELIN DE JONG

the fluids was v = 0.34 cm®/seec. From these
values K’ can be deduced to have been K’ =
[(ys —y:)/7:1(gb*/12v) = 254 cm/sec. The
drain distance a, was 37.5 cm. The discharge
through the drain (per unit width) was @, =
290 cm'/sec. The amount of fluid flowing
through FG per unit width was @ = 3.97
em®/=ee.

With these specifications it can be deduced
that a/f 3> 1 and log {. = 21.2 (see Figure 3).

= Q,{3og (Cof £ — log (£o/L.) log [(Fo + £/ ] + 3Lia(8.7/ 567 — Liz(t./80) + (=°/6))

K’ Im () = 7 K'yo = —7{Q log [({o + $.)/8a] + Q: log fo}

These expressions can be simplified for &, > ..
In the formula for z, the dilogarithms can be
approximated by Li(1/z) =~ 1/z for z > 1
and they then drop out. The remaining terms
permit elimination of & by squaring ¥, and
comparing the terms obtained with 2(Q: +
Q.)x,/K’. The following relation between .
and v, is the result:

_‘2(91 + Qz)xo/K’
— @ Q:[log {.J'/@K')

+ (@ + @)(3Q. + Q)/3K"”

By using the approximation (30) for log &, this
reduces to

w' = —2(Q + @Q)2o/K’ + [2Q" + 40:Q:

+ 3Q," — 6@.K'a]/3K"”  (37)
This is the shape of the interface for the quan-
tity of water (@, + @.) coming from infinity
and streaming around a wall with its edge lo-
cated at a distance

[@/(Q + Q2)]la0 + (& + 2Q.)/6K']

to the left from the actual edge.

Test result. To verify the above formulas a
test was run in a parallel plate model, with a
slot width of & = 2.1 mm. Figure 4 is a photo-
graph of the resulting flow pattern. The two
fluids were resin oil (y; = 0.864 gf/em®) and
glycerine (ys» = 1.071 gf/em®). The viscosity of

yoz e

(38)
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+ Q.{ —3[log 3':!]2 =k ‘h’!} (35)

(36)

From (22) it then follows that s = 0.12a, m; =
0.00645a, my = 2.0a. Inserting these values in
(27) gives the location of points S, M., and M,
in the z plane:

z(s) = —29.3 cm
z(M,) = —20.02 — 8.05¢{ cm (39)
z(M,) = —36.44 — 14.9¢ cm

From (24) the inclination of the interface at
M, and M, can be computed, because the angle
of the interface with the horizontal is equal to
the angles M.AB and M.AB in the inverted
hodograph (Figure 2¢). These angles can be
obtained from the complex values for w* at
M, and M., which are

w*(M,) = (4.85 + §)/K’

w*(M,) = (1.28 + i)/K’

The streamlines obtained from the photograph
of Figure 4 are reproduced in Figure 5. In this
drawing the points surrounded by a square give
the computed location of the points 8, M,, and
M, aceording to (39). The computed inclination
of the interface at M, and M. according to (40)
is represented by the dashed lines through these
points. The agreement between test result and
theory can be considered satisfactory. The point
S coincides with the stagnation point that sepa-
rates the water flowing to the well, 4, and the
water flowing to the sea, GF. The points M,

(40)
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Fig. 4. Photograph of test in parallel plate model. Distances between scale indices on top are
5 and 10 cm.

¥
g o IO =t . S S * 2 GtL-x
"

G computed from theory

Fig. 5. Plot of interface and streamlines of test in parallel plate model, Verification
between theory and experiments consists of the stagnation point S and the inflection points
M, M; with the local inclinations of the interface.
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and M, coincide with the inflection points, and
the dashed lines are practically tangent to the
observed interface. The interface to the left of
M, is approximated by the parabola (37) which
by application of the parameters becomes

Yoo + 25.9% + 740 = 0
The deviation between the shape computed with
this formula and the observed interface is too
small to be reproducible in Figure 5.

From the agreement between test results and
theory, it mry be deduced that the equations
developed do represent the upconing of the salt
water-fresh water interface under a drain in a
coastal area. The test showed that the shape
of the interface was stable, in the sense that
small disturbances disappeared without ap-
preciably changing the location of the interface.

APPENDIX

Equation 26 requires the integration

_ j' [a ala+ 1) ]
tt+ 1
log {[? + (t + N)'*T'/1} dt
' (t— a)
Consider the variable ¢ introduced in (11). The
following relations between ¢ and { exist:

t={lt — 1*/4{]
at = f[¢* — 1/48") d¢
[et + NI* = 11" — 1)/48)
The domain of ¢ corresponding to the domain

of ¢ is given in Figures 2f and 2g. The result of
substituting ¢ in (Al) is

" 4la(a + f)/f]" log ¢ dt

L {1 = 2+ 4e/N)E + 1}
Using the constant £, introduced by the rela-
tion (20), [2 + 4(a/f)] is equal to [ +
(£.)*]. The denominator of the integrand in
(A2) can therefore be written as

(¢ = &) = @)

(A1)

J= (A2)

Because [{, — (£)™] = 4[a(a + f)/f1", the
integral J falls apart into two pieces
J=Jh+ J.

_ [flogrdr log ¢ df

= f. & — £ f F-G) I
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Consider J, and substitute p =
integral then becomes

f“" (log u + log ¢.) du

1fa (l T l“')
Partial integration of this integral gives

¢/8.; this

Jy = log p log (1 — w)[7/fe

+ log ¢, log (1 — w)[iVf:

t/fe 5
— f u log (1 — p) du
1/fa
log ¢ log (1 - "’;—)

fh‘l‘
o

1/fa
+ f plog (1 = p) du
(1]

log ¢ log [1 — (§/¢)]

+ Lix(¢/¢.) — Lis(1/5.)
A similar operation applied to T. gives as a final
result for (A3)

7 = 1o | L8882 | 1og ¢ 4 1oz

= Liy(1/%.) — Lis(¢t) + Lis(te)
This result is used in (27).

In these expressions the notation Li(o)
stands for the dilogarithm as indicated in (28).
This funetion is tabulated for the real positive
values of o in the region 0 < o < + 1 (see
for instance Lewin [1958]), which also indicates
how to deal with complex values of o.

In this analysis only real values of o are con-
sidered. For values of o outside the region
0 < o < + 1 the following recurrence formu-
las exist:

w7 log (1 — p) du

Jy

(A9)

Liy(0) = —Liy(1/0) + (x°/3) + ir log o
— Hloge) for 1 <o < @ (A5)
Liy(0) = 3Lix(0") — Lis(—0)
for —1<o<0 (A6)
Lij(o) = —}Lis(1/0") + Lis(—1/0)
— (x’/6) — }[log (—a)]”
for —o <o<—1 (A7)
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The expression (A5) differs from the value
given by Lewin with respect to the sign of the
term iw log o, as a consequence of an alteration
applied in this analysis to the definition ~f the
dilogarithm. At variance with Lewin, the do-
main of validity of ¢ is limited to —7 < arg
{1 — o) < + . These limits are chosen so that
the positive real axis of £ can correspond to
arg £ = 0.
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1. Introduction

In this study the flow of fluids through porous media is considered
for the case in which fluid and porous medium are inhomogeneous.
The properties that may differ from place to place in the field are the
density and viscosity of the fluid and the intrinsic permeability of the
medium. These inhomogeneities are responsible for rotations in the
flow pattern. Since the Darcian flow of fluids through porous media
is usually irrotational, it was considered instructive in this presentation
to elaborate especially the character of these rotations.

For the determination of the distribution of the pressure and the
specific discharge vector it is convenient to make use of potential and
streamfunctions. These functions may be called generating functions,
because their gradients generate the specific discharge vector. For
incompressible homogeneous fluids these functions obey Laplace
equations of the type

ViF =0
377
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378 G. DE JOSSELIN DE JONG

where & is the relevant function. The solution of a problem is obtained
by selecting from the functions that obey this basic equation those
that satisfy the boundary conditions.

In this study, functions will be determined that in a similar way
generate the specific discharge vector by differentiation if inhomo-
geneities are present. The basic equations obeyed by these generating
functions will turn out to be Poisson equations. These are equations
of the type

ViF =9

where % is a function of place.

If the value of ¢ is known everywhere, it is possible to solve % in
a region enclosed by boundaries along which either the value of % or
its derivative normal to the boundary is known. The solution of the
Poisson equation will be given in the form of an integral which has to
be extended over all points where ¥ has a nonvanishing value. This
method of solving may be called the solution by singularities. In addition,
solutions of the Laplace equation have to be applied to satisfy the
remaining boundary conditions.

If  is an unknown function (for instance, if ¥ depends on %),
it is not possible to use the solution by means of the singularities
mentioned. It may be possible that other kinds of singularities are
able to cope with Poisson equations where & is a linear function of %,
This possibility is not investigated here and only functions obeying
a Poisson equation with known values for % are considered.

The generating functions appropriate for flow of fluids with varying
properties may be called multiple fluid functions. It will be required that
the multiple fluid functions are single valued in the entire field irre-
spective of how many fluids are involved. The multiple fluid functions
will be chosen such that they resemble as closely as possible the potential
and streamfunctions for the single fluid case.

The multiple fluid functions developed here are essentially the same
as those described in a previous article (de Josselin de Jong, 1960).
In that paper Poisson’s equations were established for the streamfunction
¥ and a multiple fluid potential, ®. Yih (1961) arrived at the same
result with respect to ¥. Knudsen (1962) showed that the pressure
obeys a Poisson equation of a kind very similar to that for 7.

Lusczynski (1961) suggested several types of heads for multiple
fluid flow. De Wiest (1964, 1965) reviewed this work and selected
H,, , the type called “‘point water head” by Lusczynski, as the most
suitable physical quantity to use. It will be shown here that Lusczynski’s
“point water head” H;, is directly related to ©. By elaborating the
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9. GENERATING FUNCTIONS 379

second-order differential equation governing H,, and @, it turns out,
however, that H,, obeys a Poisson equation that is less convenient to
solve than the relation governing 6.

The name chosen by de Josselin de Jong (1960) to indicate ® may
be confusing because @ is not a potential in the sense that grad @ is
proportional to the specific discharge vector. Because there is a rotation
in the fluid with varying density, the specific discharge cannot be
derived from a potential. Until a better name is suggested, the term
multiple fluid potential will be used here, with the stipulation that it is
not a velocity potential in the usual sense.

In Sections 2-8, the case of a two-dimensional aquifer is treated.
In Section 9, formulas are given for the three-dimensional case.

The density is considered variable throughout the entire chapter.
The viscosity of the fluids and the permeability of the porous medium
are taken constant, except in Section 8. In that section, an electric
analogy is described which provides a means of treating variability of
these other properties.

All fluids will be considered to be incompressible. This means that
fluid elements will preserve their density during displacement. The
variability of density considered is the difference in density between
fluid elements at different places in the field. No surface tension will
be assumed to exist between fluids of different properties. The porous
medium is isotropic.

The multiple fluid functions generate the fluid displacement at
a given instant. It is assumed in this analysis that the distribution of
the fluids and their properties is known at that moment. From the
multiple fluid functions it is then possible to determine the displacement
of fluid particles during a small time interval. By taking into account
the manner in which the properties of the fluids are convected by this
displacement, the distribution of the properties after that time interval
can be determined. This creates a new situation which requires new
multiple fluid functions. It is not the objective of this study to pursue
what is happening at successive time intervals, but only to describe the
instantaneous flow situation.

2. Basic Properties of the Flow

Since the fluids are assumed to be incompressible, conservation
of mass requires that the specific discharge vector q obeys the con-
tinuity equation

04z

; a
divg =22+ 2 —0 (1)
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The second requirement is Darcy’s law which can be written in terms
of an equilibrium of forces. When the forces acting on the fluid per unit
volume of the fluid are equated, the equilibrium equation results:

(w/k) @ = —grad p — pgrad F @

The left side of (2) expresses the force per unit volume of fluid necessary
to drive a specific discharge q through the porous medium according
to Darcy’s law. In (2) pis the dynamic viscosity, & is the intrinsic perme-
ability, and p is the density of the fluid. The two terms on the right
of (2) represent the two forces that can work on the fluid and produce
the driving action. The first term is obtained from the gradient of the
pressure p. The second term represents a body force which can be
derived from a potential ' acting per unit mass of the fluid.

If only gravity works, F is equal to gz, in which z is measured vertically
upwards. The equilibrium equation becomes in this case

(n/k) q = —grad p — pg grad z A3)

Equations (1) and (2) are the basic relationships sufficient for the
establishment of the multiple fluid functions. They are relations
describing the fluid behavior in a point. Because (3) describes a point
relationship it is irrelevant for the last term whether the density is
a constant or a variable in the field.

Since this point was questioned, it may be helpful to derive this term
by integrating the forces acting on the fluid in an infinitesimally small
circular disc with radius r, (Fig. 1).

Let ¢ be a coordinate running in the direction of grad p and let
{ be a coordinate perpendicular to £. Further, let the subscript zero in
the expressions p, , (9p/@€), ,..-, etc., indicate the value of these quantities
in the center of the circle. Then the density in the circle is approximated
by its Taylor series:

p = po + £(8p|0€) + 1EX(0%0]0E%),
+ EU(2%p/0 BL)y + L3(2%p/OL%)y + @

The force acting on a unit of mass in the gravity field is —g grad 2.
In order to find the total force on the fluid element, the mass of that
fluid amount has to be evaluated by integration over the volume of
the disc. If f is the thickness of the disc and n the porosity, this gives

i‘lvf:J:J‘:ﬂp-nfodr-r.dB )
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where p can be replaced by the series in (4). Let the series be split in
three parts, giving for the integral three contributions M,, M,, M,,
respectively, such that M, is obtained from the first term in the series,
M, from the second term, and M, from the third, fourth, and fifth

terms together.
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The result is
M, = ponf - m71?, M, =0
M, = [(8%p[08%)y + (&%p/OL%)) nf - frrry*

Since Mj is of the order 7,4, its value may be disregarded with respect
to M, which is of order 7,2, because in the limit 7, tends to zero.

To obtain the force per unit volume of the fluid, (6) has to be multiplied
by g grad z and divided by nf - 77,2, the volume of the fluid in the disc.
Thus, the force on the infinitesimal element finally becomes —pyg grad =
as indicated in (3). The second term from the series expression for p does
not contribute to a force on the element because M, is zero.

In the diagram for p in Fig. 1, (8p/@€), is the inclination of the line
EFG, the tangent to the curve for p. The second term, £(8p/8£), , covers
the triangles BFE and CFG, which being similar and opposite give
cancelling forces. However, they contribute a clockwise torque which
can be written as

(6)

T=gcosa f: Jl:ﬂ & - £(0p|0E)y nf dr - v dO

where « is the angle between £ and x. By evaluating this integral it is
found that

T = g cos o(0p|0€), - tmry* - mf
Since cos a = (0£/0x), the torque can be written as
T = }mry'g(9p]0x)o nf ™

This torque is responsible for the rotational properties of the flow
fields, as will be shown in Section 6.

The expressions (1) and (2) are therefore point relationships which
only require p, , the value of p at the point considered. The variability
of p with location only contributes if higher order differential equations
are established. This actually happens in the subsequent treatment.

3. Single-Valuedness of the Functions
For the multiple fluid functions to be applicable in the analysis it

is of importance that they be single-valued because otherwise they
have no physical meaning and may become misleading in computations.
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The single-valuedness of a function @ is established if according to
Young’s theorem,

#|ox 6z = Doz ox (8)

This theorem can be proved by starting from the contour integral
expression

J'C (8®[2s) ds = 0 ©)

which indicates that for every closed contour C, the value of @ will
return to its original value. After changing to x, » coordinates, and
introducing M = é®[/éx, N = 0P[dz, this contour integral can be
converted into a surface integral by use of Green’s theorem

f (o@/es) ds = j _[(@0]2x) dx + (20]03) de)
- fC(Ma‘x + N dz)
- j f [(eNjax) — (2M]22)) dx d=
= J‘ J‘ [(@/os ox) — (@0fox 02)] dA = 0 (10)

Since (9) applies for every contour C in the field, (10) applies for every
area A enclosed by that contour. By reducing the contour to as small
a circle as one wishes, the last integral of (10) indicates that (8) applies
to every point in the field.

Wherever expression (8) will occur in the sequel, it will be concluded
that single-valuedness of the relevant function is established.

4. Multiple Fluid Functions for . and k Constant, p Variable

Of the multiple fluid functions, the stream function ¥ resembles
most the conventional stream function. It will be defined in two-
dimensional flow as

4. = —(0¥]02), g, = +(0¥]ox) (11)

This means that the specific discharge vector has the magnitude of the
gradient of ¥ and runs perpendicular to grad ¥ such that the angle 3=
from q to grad ¥ is traced clockwise (Fig. 2).

Soil Mechanics and Transport in Porous Media
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grad ¥

Fic. 2.

Application of the continuity Eq. (1) gives
—(6*P|0z ox) + (6*¥/ox 0z) = 0 (12)
which shows that ¥ is a single-valued function irrespective of the
properties of the fluids involved.

More information about ¥ may be obtained with the equilibrium
Eq. (2). This equation written in its x,  components gives

(ulk) 9o = —(2p[ox),  (u/k) ¢ = —(9p[0z) — pg (13)

From the physical viewpoint the pressure p must be single-valued
because it is a physical scalar quantity which has one value in every
point of the field. Therefore, the relation

—(&%p|ox ) + (8%p]0z &x) = 0 (14)
is satisfied everywhere in the field.
The identity (14) can be used to eliminate p from (13). Since (u/k)

is a constant, differentiating Eqgs. (13) with respect to 2 and «, respec-
tively, and subtracting gives

(/k)(2g,/0z) — (0g.[0x)] = —(&%p|0x 02) + (&°p[0= ox) + [(pg)]0x]
= &pg)/ox (15)
Applying expressions (11) to this result gives

—(6*¥[0=%) — ("F[0x®) = (k[u)[&(pg)/0x]
or

VI — —(kfp)[2(pg) 2] (16)
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This relation, obtained previously (de Josselin de Jong, 1960), permits
computation of ¥ with the aid of singularities of rotational type if the
distribution of p is known. This will be shown in Section 5.

Applying the continuity Eq. (1) to (13) gives

(k) div q = —(8%p/ox®) — (&°p|0z®) — [6(pg)/02] = O
or

V= *3(Pg)fazJ (17)

This relation for p was obtained by Knudsen (1961). The two Poisson
Egs. (16) and (17) are very similar because they contain the derivatives
of the density in the x and 2 directions, respectively. For p, solutions
of boundary value problems can be obtained by use of singularities in
a similar way as used for ¥.

In a previous article (de Josselin de Jong, 1960), a function was
introduced which can be considered the equivalent of the potential
function for the flow of homogeneous fluids. This function © was
called the multiple fluid potential, although it is not a potential in the
sense that grad @ is proportional to the discharge vector. This function @
is related to pressure p and elevation z by the expression

(u/k) © = p + pg= (18)

Here p is the density of the fluid at the point of consideration. Since
b, p, and 2 are single valued, @ is also single valued. From (18) it follows
that the relation between @ and H,,, the point water head as defined
by Lusczynski (1961), is

(k) @ = pigHy, (19)
Taking the gradient of (18) gives, since (u/k) is constant,
(u/K) grad © — grad p + = grad(pg) + (pg) grad = (20)

A comparison with (3) shows that this expression contains one term

more than the expression for (u/k)q. Therefore, ® is not a regular
potential.

By use of the equilibrium Eq. (3), the pressure can be eliminated
to give

(n/k) @ = —(u/k) grad @ + = grad(pg) (e2y)
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Taking the divergence of the expression in order to establish continuity
gives
(ufk) div q = 0 = —(u/k) V?O + div[z grad(pg)] (22)

This finally gives for @ the Poisson equation

V20 = +(k/p) div[z grad(pg)] (23)

The Poisson equation (23) shows that @ can be solved by use of
singularities,

Since Hy, , the “point water head,” is so closely related to @ it might
be expected that H, also obeys some convenient Poisson equation.
Elaboration along the same lines as above gives

V2H,, = (pg)!{div[z grad(pg)] — 2 grad H,, - grad(pg) — H, V¥(pg)}

Since the right-hand side contains H,,, this equation is inconvenient
in the analysis. H;, is therefore less suitable then ©.
The results of this section are summarized in Table 1.

TABLE 1
Multiple Fluid Functions

Multiple fluid

functions: b4 P 0 = (Elu)(p + pgz2)
- i i R )
k== k oz ox k ox ox
LIP- ... .S _r 26 )
k u k ox az k 8z oz
Single-valuedness Physical Physical
established by: divg = 0 necessity necessity

Poisson equation

established by: Elimination of p divg =0 divg =0
ko @ k
Gives: VW= R oo XD g L ivle grad(es)]
uoOx &z ®
Type of singularity Vortex Source or sink Source-sink dipole
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5. Velocity of the Flow Field

The Poisson equation (16) indicates that the flow contains rotation
in those points where the gradient of the fluid density has a horizontal
component. Although reasons can be found in textbooks why this
equation represents vorticity, it is helpful for the subsequent treatment
to show this here,

Consider the case that in a circular area 4, with radius r, (Fig. 3),
the following relation holds

VW =20, O<7<r, (24)

‘;-CI', o

Vo

Fic. 3.
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with w = constant, and that outside A4, it is
V3 =, ry < ¥ << 00 (25)
Let S be a circular contour, concentric with 4, and with a radius r
that can be either larger or smaller than , .

Consider first the case where r is smaller than r, , Then only (24) is
relevant. Integration of (24) over the area 4 gives

V¥ d4 = 2wdA =2 dA = 2wmr? 26
I1, [l it =2 [[ it 28
By Gauss’ theorem the first integral can be written

V2WdA = | (6¥/én)dS 27
I, I

In this expression # is the outer normal to the circle S, which is related
to the radius 7 in such a manner that (8¥/dn) = (8¥/or). Because the
system is axial symmetric, (8¥/dr) is constant over the circle S, and

(27) becomes

IIA V¥ dA = (&¥]or) j . dS = (8¥|or) 2nr (28)

Combination of (26) and (28) gives
@jor) =wr, 0<r<m (29)

From Fig. 2 it is seen that (0%¥/dr) represents a discharge g5 tangential
to the circle S. Hence, (29) can be written

gs=or, 0<r<nm (30)

and this indicates that « in the region A creates a tangential flow
circulating around this region with a discharge velocity proportional
to the distance to the center. w is called the zorticity.

The second case to consider is r larger than 7, . Since according to
(25), the value of V2¥ is zero outside 4, , integration of V¥ over the
area A now only consists of a contribution over the area 4, . This gives

'[L VI 44 = f | VA = dwmy? 31)
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Again, the first integral of (31) can be elaborated by the Gauss theorem
as (27) to yield a result (28) with » now the radius larger than 7, . By
combining (28) and (31), there results

BW)or = w(ry2lr)
which shows that the discharge circulating around 4, is
gs = w(rr), r<r<ow (32)

This expression indicates that the discharge outside the region A4,,
which contains the vorticity, circulates around that region with a
velocity which is inversely proportional to the distance from the center.

The distribution of the specific discharge as given by the Egs. (30)
and (32) is represented in Fig. 3. In that figure it is seen that on the
boundary of the region A, containing the vorticity, the circulating
discharge ¢, is continuous. This follows from (30) and (32) which give
the same value for g, if » is made equal to r, . The continuity of ¢, is
a direct consequence of the above analysis, which shows that a dis-
continuity can only exist in a place where w is infinite.

From (16) and (24) it follows that the vorticity is equal to

w = — 3(k/w)[%(pg)/0x] (33)

This expression shows that w is only infinite if dp/¢x is infinite. This
is the case if p changes abruptly, as is encountered at a sharp interface
between two different fluids. Since this aspect was treated extensively
by de Josselin de Jong (1960), its treatment will be omitted here. Only
gradually changing densities (grad p = finite) will be taken into account
in the sequel.

A further conclusion from (33) is that every small region, where
the density varies in the horizontal x direction, contributes a vorticity
similar to the region 4, in the example. Around every elementary region
44, containing density variation, a circulating discharge dgg is created
which obeys Eq. (32). The influence of the density variations in the
entire field is thus obtained by adding vectorially all elementary discharges
Aqg created by all elementary areas 44, . By choosing the elementary
areas 4A, infinitesimally small, the discharge 4gs in the area itself
obeying Eq. (30) can be disregarded.

If this reasoning is correct it is also necessary that the discharge (30)
be obtained in this way by integrating discharges of the character (32)
as generated by infinitesimally small vortices over the region 4, .

This may seem contradictory because it requires that the result

216 Soil Mechanics and Transport in Porous Media



390 G. DE JOSSELIN DE JONG

obtained for the region outside 4, (which differs from the solution
inside), when applied to the region inside, actually gives that different
inside solution. A lengthy but straightforward evaluation of the integral
involved shows, however, that the solution (30) is indeed obtained. The
verification is an entertaining exercise in elliptic integrals.

It may seem to be a difficulty that the discharge according to (32)
becomes infinite for » = 0. This means that the vortex at the point
of consideration contributes an infinitely large discharge. However,
this difficulty disappears since the magnitude of the vortex at a point,
being proportional to the area, becomes infinitely small of the same
order. Therefore, the integral remains finite. This exorbitant behavior
at a point containing vorticity is the reason we apply the word singularity.
Using the solution (32) for the discharges around points containing
vorticity and adding those in an integral is called the integral solution
with singularities.

Instead of adding vectorially elementary discharges, it is mathe-
matically more convenient to add the elementary streamfunctions which
generate them. This gives an integral expression for ¥ which is explained
in Section 6.

6. Solutions with Singularities

If a small region of the size dx, dz, around the point x, , 2, contains
vorticity w(xy , 2,), the discharge is rotating around that point according
to (32) with a magnitude

gs = 2e(xy » 20) dxy dzy|2mr (34)

where r is the distance from the point of vorticity. Written in terms of
the streamfunction ¥, this is

(0¥]or) = 2w(x, , 2y) dxy dzy[2nr
which by integration gives
¥ = (1/7) w(xgy , 2) In 7 dxy dz, + constant (35)

The constant is not a function of f, because ¢, = 0 since the discharge
only rotates around the point of vorticity. Thus, ¥/88 = 0. Since we
are only interested in the derivative of ¥, the constant is irrelevant and
can be taken as zero without loss of generality.
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Because all the regions containing vorticity contribute to ¥ in this
manner, the total expression for ¥ as created by all the vortices is the

integral
W(x, 5) = (1/7) j f w(xy » %0) In 7 dxy dz, (36)

where
r = [(x — x)® + (z — 20)*]"/? (37

In the multiple fluid case where density variations create vorticity
according to (33), the expression for ¥ becomes

Wilw, 2) = (—k[2m) [ [ [0(pg)/ex)o In 7 dx, d, (38)

The surface integral for ¥, covers the entire region between the
boundaries containing fluids. This expression for ¥ forms the vortex
part of the streamfunction.

In general, the values of ¥; on the boundaries differ from the values
required by the boundary conditions. These differences form a new
boundary value problem to be satisfied by a harmonic streamfunction
¥, obeying the Laplace equation V2¥}; = 0. The function ¥; forms
the second part of the solution. The final solution to the boundary
value problem is ¥ = ¥, 4 ¥,,.

This way of solving the problem is known in potential theory as
the solution of Poisson’s equation by singularities. In this case the
Poisson equation for ¥ is (16) which has (38) as its solution.

In a similar way, a solution for the pressure p or the multiple fluid
potential @ can be given because they obey similar Poisson equations
i.e., (17) and (23). This gives

pr = (—1/2m) [ [ [o(pg)/esly In 7 dixo dzq (39)

O1 = (++k/27) [ [ [ V2(pe) + 2pg)/@alo In 7 dixy d, (40)

Also in these cases, additional functions p;; and @;; obeying Laplace’s
equation must be introduced to complete the solution and to satisfy all
boundary conditions.

An alternative way of decomposing the solution of Poisson’s equation
for boundary conditions is pointed out by De Wiest (1969). Instead of
In» which can be considered as a Green’s function for the infinite
domain, Greens functions can be introduced which have zero conditions
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along the boundaries of the domain considered in each specific problem.
(The function or its normal derivative is zero along the boundary.) The
differences with the required boundary values are then those boundary
values themselves, creating a boundary value problem with a solution
satisfying Laplace’s equation.

Since, however, a boundary value problem has to be solved anyway,
the method proposed here seems less laborious because it circumvents
the construction of a Green’s function, which in contradistinction to
In r is different for every boundary geometry and for every point in the
field.

We are now ready to compare the torque, caused by density variation
in a circular area as determined in Section4, to the driving force
necessary for the circulating discharge caused by the vorticity. If,
however, the vorticity is limited to the circular area, the available torque
is not sufficient to support the discharge outside the area. This outside
discharge requires a torque of infinite magnitude.

This discrepancy is a consequence of the vorticity, being caused by
density variations. In other instances vortices exist which can be limited
to isolated regions. In this case it is impossible to visualize an isolated
region containing a density gradient. Isolation means that it is surrounded
by a field which, up to infinity, has the same density. The gradient
actually means that the field contains fluids of different density. If this
difference exists up to infinity, this entails also a torque which is infinitely
large.

In order to circumvent this difficulty and to obtain a realistic situation,
the case of a circular aquifer of finite dimensions and surrounded by
an impermeable boundary will be considered (see Fig. 4). The radius
is 75 , the thickness f, and the porosity =.

For the analysis to remain simple the density will be taken to vary
linearly over the field according to

p = pot &py (41)

where p,’ is a constant.
For this situation, (dp/dx) is constant over the field and equal to

9 dp 0O s
== s “2)
From (33), the vorticity is

w = — y(klp)opg)fox]), 0 <r<m
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Fic. 4.

which is also constant. As explained above, an integration of the influence
according to (32) of all the vortices in the entire region gives the solution
similar to (30)

gs = wr = — (k[u)[&(pg)/0x] ¥ (43)

Since this gives directly a discharge perpendicular to the radius, this
solution satisfies the boundary conditions which have actually been
chosen in this example in such a way that the discharge obeys the
simple formula (43). Therefore, the second part of the solution is zero.

Since in Fig. 3, ¢¢ is positive for counter clockwise rotation, (43)
gives a clockwise rotation for positive py . In order to show that the
clockwise torque (7) is apt to create this circulating flow, the torque
will be computed here by considering the required forces.
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The force necessary to drive fluid through the ring between r and
r 4 dris
(ulk) gsn2err dr f

Hence the total torque clockwise in the circular region is

7= [, ()26 %

— gt [208)] oy (44)

rn2mrf dr

A comparison with (7) shows that if r = r,, the two torques are equal.

From this analysis it follows that the rotational flow within the
circular area is possible because a torque created by density variations
acts on the fluid of this region. This is comparable with the general
concept that forces of the boundaries cannot create rotations in the
interior of the fluid. Vorticity can only occur in those places where
body forces act in the form of torques on the fluid.

The geometry of Fig. 4 gives a flow pattern, which by its simplicity
permits us to predict the rotation of the fluid at all subsequent times.
The discharge is such that the fluid rotates as a rigid body. Therefore,
regardless of dispersion and diffusion, the fluid conserves its density
distribution (41) if the coordinate { is allowed to rotate clockwise with
the fluid. This means that the angular velocity is equal to

-t b

Integration gives for o = 0, ¢t = 0,

tan(}m - jo) = exp[§(k/pn)(pog/n) 1] (45)

7. Multiple Fluid Potential for Variable p, p, and £

Equation (46) is not correct. Since (0is defined by (18) to be

CRE- Kogz (46)

we find with (21)

% .-1.{1:) grad (k@){» (Ea) grad (pg), 47)
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therefore the continuity equation should be

divi=0= -divl(%)grnd (& @)]+ diu[(‘ﬁﬁ) grad {og)]- (48)
It is impossible to build a Poisson equation in@ from this expression and
therefore also it is impossible to construct an intepral expression fcr@lof
the form (48).

which represents the rotational part of the solution.
For ¥ and p, the equations are

__kog) k AW
L) TSR e grad ( Z ) grad ¥ (49)
a
Vip = — 2 grad (%) [grad p + pg grad ] (50)

Both these expressions contain ¥ and p, respectively, on the right sides.
Therefore, the solution cannot be evaluated with the integral expression
because the integrand still contains unknown terms.

A possible way to obtain a solution is by electric analogy. [See
Malavard (1956).] Although this manner of solving a multiple fluid
problem may only be of academic value, it will be given here for the
sake of completeness.

8. Electric Analogy for Variable y, p, and %

8.1. POTENTIAL LINES

If the objective is to determine the pressure in the fluid, the electric
potential can be identified with the multiple fluid potential multiplied
by (u/k). This slightly revised function will be called 6%,

The analogy between fluid and electric quantities is

0% = (p + pgs) o E (1)
(ulk) q — = grad(pg) < peie (52)
(u/k) > po (53)
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in which the electric quantities are: E, the electric potential, p,, the
specific electric resistance, and i, , the specific electric current vector.

Because p, 2, i, p, and k are single-valued functions, @* is single-
valued and therefore, the single-valuedness of E is assured. In the
electrical model the current will flow according to Ohm’s law, which
can be written as

pele = —grad E (54)

which holds also if p, is variable in the field. For the fluids this means
that the following relation is supposed to hold

(n/k) q — = grad(pg) = —grad p — = grad(pg) — (pg) grad = (55)

A comparison with (3) shows that this is indeed required.

Application of the continuity equation for the fluids can be effected
after dividing (52) by (u/k) at the left side and by p, at the right side.
Taking the divergence then gives

div q — div(kz/p) grad(pg) < div i (56)

Requirement (1) indicatés that div i, must be made equal to the electric
analogy of —div(kz/u) grad(pg). Since div i, is the amount of electric
current that has to be injected into the electric flow field, it means that
in those places where p or k or u and p vary, current has to be fed into
the model.

In an electric model, only electric potential can be observed or for
that matter, equal potential lines may be drawn. From these lines the
values of the pressure can be found by means of (51).

8.2. STREAMLINES

If the objective is to determine the streamlines in the fluid, the
electric model must be used in an inverse way such that electric potential
lines are related to the streamlines of the fluid. The inversion of stream-
lines and potential lines is obtained by inverting the boundary conditions.
But besides that, in the interior, the inversion also has its consequences
because the analogy of the resistance must be made reciprocal.

The analogy between fluid and electric properties will now be taken as

go > —(0E(ez), g, +(E]ax) (57)
ik 1jpe (58)
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Continuity of the fluids requires that

—(8*E|0z 8x) + (8Eéx 2) = 0

which indicates that E is single-valued.

Ohm’s law applied to the electric system gives with (57), (58), and
(13) the following relation between the specific electric current and the
specific discharge of the fluids

1B a0
‘ea_—_'o_e axH_EQS_—f—az—i_Pg
1 oE 2 &%)
N— IR
o= T am O TRET T

Taking the divergence of i, and using the single-valuedness of p then
gives
div i > [2(pg)] 2] (60)

From (60) it follows that also in this case an injection in the electric
flow field is necessary with a magnitude of the electric current equivalent
to [@(pg)/dx]. Because of the inversion, injection in this case has the
effect of vorticity.

From (57) it follows directly that lines of equal electric potential
will trace streamlines.

9. Variable Density Flow in Three Dimensions

For three dimensions, Poisson equations similar to the two dimen-
sional case can be derived. For the pressure p, this was done by Knudsen
(1962). Writing the equilibrium equation (3) in vector notation gives

(u/k) @ = —Vp — pgk (61)

where the vector k indicates the unit vector in the z direction, vertically
upward. Continuity applied to this expression if u and k are constant,
leads to the following result in view of (1),

(u/B)V +q = —Vip — Vp gk =0
or
Vip = —g(@p|oz) (62)
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For O, the Poisson equation is already stated in general coordinates
by (23) giving
V20 = +(kfu) V * [z Vp] 63)

For the streamfunction it is more complicated since the transition to
three dimensions requires the introduction of two streamfunctions. How

this can be done was described by Yih (1957), who showed that the
discharge can be written as

q = (V¥) x (Vx) (64)

Since the establishment of the appropriate Poisson equations for ¥
and y was too difficult to achieve, it will be shown here that the discharge
itself obeys a Poisson’s equation which permits a direct computation
with the solution by singularities.

Application of the curl operation to (61) gives, if 1 and % are constant,

RV xq=—VxXVp—VXpk (65)
Expansion of the first term to the right side gives
V % Vp = i[(&%[0y 0z) — (&°p|9= 2y)]

+ i[(&%p/ 0= 0x) — (8°p/0x 0x)]
+ k[(&%p/0x 9y) — (&°p|2y ox)]

For physical reasons p is single-valued, hence by use of (10), all three
vectors are zero and the term vanishes. Thus, (65) becomes

(u/k)V % q = —V X pgk ==g[i(p/2y) — i(%p[0x)] (66)

Since V X q represents a vortex, this expression shows that the axis of

the vortex lies in the horizontal plane and has the direction of lines for p

constant in that plane. Further, since i(dp/dx) + j(dp/@y) is the horizontal

component of the density gradient, the expression (66) shows that the

vortex strength is proportional to this horizontal component of grad p.
The curl operation on (66) gives

(k) V % (V % q) = =V X (V X pgk)
The first term can be written as
VX (Vxq)=V(V-q)—Viq
Continuity requires that V + q be zero so there remains

Viq = (k) V X (V X pgk) (67)
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This is Poisson’s equation for q. Solutions of this equation can be
given in the form of the integral

= H(kfdm) [ VX (V% pgk) r-t a¥ (68)

This integral describes the part of the discharge vector that is created
by the vortices caused by density variations. A second part, q;;, that
is irrotational has to be added to satisfy the boundary conditions. The
integrand of (68) contains the density variations because the development
of the curls gives

V X (V X pgk) = +(@p|x 0z) i +(e%]oy o)
= [(@p]0x%) = (p]er%)] k

surfoces of equal density

light

N

Fic. 5.
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The behavior of the discharge is represented in Fig. 5 where a three-
dimensional picture is given of surfaces of equal density. In the region
where the density varies continuously, many of these sheets can be
visualized as lying perpendicular to the density gradient. According
to (66), the discharge vortex created by the density gradient has its
axis in the direction of horizontal lines on these sheets.

The vortex axis, which is horizontal, is perpendicular to the vertical
direction of gravity; it lies in the isopicnic (of equal density) sheet and
is perpendicular to the gradient of density. Therefore, the vortex axis
is perpendicular to the plane through the vertical and the density
gradient (shaded area in Fig. 5).

The discharge from the vortex rotates in a plane perpendicular to
the vortex axis. Hence, finally, the discharge vortex in a point is rotating
in the plane through the vertical and the density gradient in that point.
The strength of the vortex is proportional to the horizontal component
of the density gradient.
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The specific discharge in a pore fluid with speeific weight, Y, that is
variable in space, is a rotational flow possessing vorticity in those regions,
where Y varies in horizontal direction. The vortices have horizontal axres
parallel to lines of eomstant y. They create a circulating flow in the agquifer
around them. On a sharp interface the contourlines of equal height form vortex
lines, that enclose reentrant vortex ribbons of constant strength. Formulas are
given for the specifie discharge in an arbitrary point of the aquifer, created
by the vortices in a triangular part of an interface. These relations are
suitable for determining the displacement of an interface in time. Finally the
specific discharge in a point of the interface, as created by the vortices in
a small eireular region of the interface around that point, is demonstrated to
consist of a shear flow only, similar to the shear flow occurring in the two
dimensional case.

Introduction

The wvortex theory, for the simultaneous flow of fluids with different specific
weight through porous media, was reviewed in this journal (ref. 3). for the

two dimensional case. In an adjoining article Haitjema (Ref. 1) published the
possibilities offered by a computer program based on the two dimensional vortex
theory. The extension towards three dimensions of this work turned out to be
involved and to require more than trivial elaborations. Therefore it was
considered appropriate to present the three dimensional vortex theory here in
some detail, starting from the basic equaticns, allthough the basis of the
theory was already published prewviously (Ref. 2).

For collateral reading, chapter 5 of the book "Hydrodynamics" by Lamb is

recoumended.
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1. Basic equations for pressure and stream functions

Darcy's law and continuity

The fluid flow through the pores of an aquifer is governed by Darcy's law
and the requirement of continuity. Darey's law can be obtained by considering
equilibrium of forces acting on the pore fluid. The specific weight of the
fluid, y, and the gradient of the pressure, p, produce forces, that drive the
fluid through the pores. These driving forces equalize the resistance force of
magni tude (u/x)a, ecountered by the fluid when a specific discharge E is
flowing through the pores.

Expressed in terms of the components qx. qy. qz. of the vectorla the

pertinent relations are (see f.i. Verruijt, 1970)

Ly, (k/n) (3p/3x)
g, &= (k/n) (3p/3y) (1.1)
q - (e/p){(3p/3z] + v}

z

L[]

where x is the intrinsic permeability of the aguifer and p is dynamic viscosity
of the fluid. The x, y coordinates are in the horizontal plane and z is
vertical upwards. In the following treatment, x and p will be considered to be
constants throughout the aquifer, but y is variable in space.

The requirement of continutity is expressed by

(3qx/3x} + (qulay] + (aquaz) =10 (1.2)

Poisson equation for pressure
By introducing Darcy's law (1.1) into (1.2), the specific discharge

components can be eliminated and there results, if (k/u) is a constant,
V2p = - (3y/32) (1.3)

This relation is due to Knudsen (1962) and shows that the fluid pressure p
ocbeys a Poisson type equation. Such an equation describes the distribution of
the potential created by sources of strength, (3y/3z). Every volume dV,where y
varies with height contributes to the distribution of p. This contribution
has in an infinite medium the magnitude (1/4wR) (3y/3z)dV, where R is the
distance between the volume dV and the point, where p is considered. The total

result is an integral over the entire region, where y is wvariable,

p = (1/4w) ”J(av/az) rR! av (1.4)
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Since this wvalue of p occurs in an infinite medium, adjustments p;
necessary to comply with boundary conditions have to be added. These
adjustments obey the usual Laplace equation

v2p; = 0 (1.51

The solution (1.4) may be of interest in problems, where the emphasis is on
pressure. The specific discharge vector can then be obtained from the gradient
of the pressure by use of (1.1). In the case, where the d;splacements of saline
pore wat?r or other contamminants are of principal importance, it is convenient
éggglséosatof a method to determine the specific discharge directly. This is
possible, since the solution for discharge can be written in the form of
integrals similar to (1.4). These integrals are obtained by considering stream

functions that obey Poisson equations of the type (1.3).

Stream funetions

In the two dimensional case only one stream function is sufficient for
describing the flow behaviour. In the three dimensional case it is necessary
to introduce three stream functions, called F, G, H here. These stream

functions generate the specific discharge components as follows
q, (3H/3y) - (2G/3z)

qY = (3F/3z) - (3H/3x) (1.6)
(3G/3x) - (3F/ay)

9

The partial derivatives of F, G, H not mentioned in (1.6) are still free and

are assumed to satisfy the additional requirement
(aF/3x) + (aG/ayi + (3H/3z) =0 (1273

The functions F, G, H are mathematically acceptable, only if they are single
valued in the entire region. Then their mixed derivatives are commutative. In

particular we have

32F/3ydz = &’F/azdy
32c/2z8x = 31G6/3xdz (1.8)
32H/2%3y = 82H/dyax

The equalities (1.8) are sufficient to ensure continuity, as can be verified
by introducing (1.6) into (1.2). For the equivalence of singlevaluedness and the
commutative property of partial derivatives see f.i. the appendix of the

previcus article (de Josselin de Jong, 1977).
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Vortieity vector

At this point it is appropriate to introduce the vorticity wvector § with
components ﬂx, ny, nz in x, y, 2z directions. These components are related to
the specific discharge components qx. qy, q, by

m = (aqzlay) - (3qy/az)
Zﬂy = (aqxlaz) - (aqz/ax) 1.10)
29.z = ('dqylaxl = (3:5(/35?)

(In Lamb's notation: an =E; EQY = 1; znz =4E5)
The components Qx, Qy, ﬂz correspond to a rotation around the respective
coordinate axis in the direction of a right handed screw. The components are
drawn as double pointed arrows in fig. 1 and their mode of rotation is shown
by the circular arrows.

The components of vorticity can be expressed in terms of the stream

functions by eliminating aQ, qY a, from (1.10) by use of (1.6). This gives

20 = (326/axdy) - (32F/3y2) - (32F/322) + (32H/3xdz)
my = (32n/3ydz) - (32G/23z2) - (32G/3x?%) + (32F/3ydx) (1.11)
20, = (32F/3z3x) - (32H/3x2) - (328/3y?) + (32G/3zdy)

These expressions can be simplified by use of the additional requirement (1.7).
By taking the x-derivative of (1.7) it follows that

(826/9yax) + (32H/32z3x) = - (32F/3x2) (1.12)

Since the stream functions F, G, H are single wvalued everywhere in the aguifer,
their mixed derivatives are commutative. So (1.12) can be used in the first of
(1.11) to elinminate G and H. By similar operations on the other two of (1.11)

there results

20 = - V2F

X
:m!!r = - v2g (1.13)
20 = - v2H

z

[
2

Fig. 1. Compoments of vorticity /D
and their mode of rotation. v R’C Ly
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Poisson equation for the stream functions

The equations (1.13) have the character of Poisson equations. Their solution
can be given in the form of integrals if the vorticity components ﬂx, ily, ﬂz
have a known magnitude. Actually this is the case, because their value can be
obtained by eliminating qx, qy. qz from (1.10) by use of Darcy's law (1.1).
Since the pressure p is a physical quantity, that has only one value in a

point, p is single valued and its mixed derivatives are commutative. So we have

azp/axay = sz/ayax
32p/aysz = 3lp/azdy (1.141
32p/azax = alp/axadz

Therefore introducing (1.1) in (1.10) also results in eliminating p and there

remains

20 = - (k/u) (3y/3y)

an =+ (k/u) (3y/3x) (1.15)

2 =0

z

Therefore the stream functions F, G, H obey Poisson type equations of the
form

V2F = - 20 =+ (k/u) (3y/3y)

V26 = - 2@ = - (x/u) (3y/3%) (1.16)

Vg =- 20 =0

Since the right hand sides are known quantities, the solution of F, G, H can
be written in the form of integrals similar to the expression (1.4) for p.

These solutions are

F = (1/4m) IJf 20, ®1 av'= - (e/4m) J[J (3y/3y") R7! av’

(1.17)

(2]
[

(1/4m) JJJ 2ﬂy' Rl av'= + (k/4my) JJJ (3y/ax") r™! av'

H = (1/4m) HJ 20, rR7l gv'= 0

2. Physical interpretation

Local coordinate system

According to (1.15) the specific discharge has vorticity(and therefore
rotates)in those points of the aquifer, where the specific weight y varies in
x and/or y direction. Everywhere else, where y is a constant,the flow is
irrotational. In order to specify the character of the motion it is appropriate

to introduce a local orthogonal, right handed coordinate system n, s, t,
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Fig. 2. Local n, s, t coordinate -
system ortented normal and plane

n
tangent plane
tangent to the y-constant plane.

A
h

Y -« \ 1
tangent to the plane of constant y fig. 2. The origin of the n, s, t
coordinates is in the centre of an infinitesimal volume dV containing y-
variation and therefore vorticity.

Let n be normal to the plane of constant y, pointing upwards. Then n has
the direction of gradient y. Since however the lighter fluid will be above the
heavier, the positive direction of n corresponds to y decrease and therefore
with —Vy. The coordinates s, t are orthogonal to n and ly both in the y-

constant plane. We then have
3y/an = - Vy ; ay/ds = 0 ; 3y/3t = 0. (2.1)

The coordinates s, t are chosen in such a manner, that t is horizontal and
s is in the direction of steepest ascent. The angle between s and its
projection on the horizontal plane is o, while the angle between this
projection and the x-axis is B, see fig. 3. With x', y', 2' the coordinates
of the centre of 4V, the transformation relations between the coordinates

X, ¥, 2 and n, s, t are

(x - x')=-n sinacos B+ s cos acos B~ t sin B
(v = y")=-n sin o sin B + s cos a sin 8 + t cos B (2.2)

(z -z')=+ncos a+ s sin «

n=-(x-x") sinacos - (y -¥') sina sin B + (2 - 2') cos a
s =+ (x - x'") cosacos B+ (y -y') cos a sin B + (z - 2') sin a (2.3)
t=-(x-x") sinpf+ (y -vy') cos B

Direetion of verticity

Using the chain rule
(3y/3x) = (3y/3n) (3n/3x) + (3y/3s) (Bs/3x) + (3y/3t) (3t/3x) (2.4)

and similarly for y, it is found by use of (2.1)(2.3) that

(3y/9x) = + Vy sin a cos B
(3y/3y)
(ay/d8z)

+ ¥y sin a sin 8 (2.5)

- Vy cos a ,
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s Fig. 3. Orientation of n, 8, t
e z coordinates by angles o and B.
A Vorticity vector parallel to t.

4

T4+

Y o=

Application of this result to (1.15) gives for the components of the vorticity

29x = - (k/p) Vy sin a sin B
ggy =+ (k/p) Vy sin a cos B Sl
2 =0,

z

The components of vorticity nn fls ﬁt in the n, s, t directions can be found by
application of similar transformation formulas as (2.3) giving

nn=—nxsinmcosB-ﬁysinusin8+ﬁzcosu
=+ 0 cosacos B+ N cos asin B+ 0 sin a (2.7)
s X Yy z
= Rx sin B + RY cos B

and this results with (2.6) in
= - = . - - 2.8
Zﬂn 0; 204 =0 ; 2ﬂt (k/p) Vv sin a. ( )

This result indicates, that the vorticity in a point created by a specific
weight gradient in the pore fluid, has its axis tangent to the intersection line
of a horizontal plane and the plane of constant y. This vorticity is
represented by the double pointed arrow in fig. 3. Its mode of rotation is
such as to revolve the y-constant plane towards a horizontal position, a

physically plausible action.

Sharp interface

A sharp interface between two fluids, of specific weight y;, y; respectively,
can be considered to be a zone of thickness h of gradually decreasing y from
¥1 to ¥z, in the limit that h is reduced to zero. The zone contains sheets of
planes for y-constant,that are locally parallel and in the limit are sgeezed
together into one plane.

Consider an infinitesimal area dA of the interface. This area corresponds
to a volume hdA of the zone of thickness, h. In this volume the vorticity is

according to (2.8) and the total strength of the vortex acting is

2Qt dv = (k/u) Yy sin a hda (2.9)
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Since y is assumed to decrease gradually within the zone we have
Vy = (y2 - y1)/h (2.10)
and so the vortex acting in an area dA of a sharp interface has the magnitude
Zﬁt av = (k/u)(y2 - v1) sin a dA (2.11)

The direction of the vortex corresponds to the positive t-coordinate, which
is locally tangent to the line of intersection between planes of constant y
and the horizontal plane. In this case the planes of constant y form a stack,
that is sgeezed into the sharp interface plane. So the vortex has its axis
parallel to the horizontal contourlines of the interface plane.

A sharp interface plane between two fluids of different density actually is
a vortex sheet. The horizontal contour lines are the vortex lines on that sheet
fig. 4. The ribbon cut out by two adjacent horizontal contour lines forms a
reentrant vortex tube. Let the height distance between the contour lines be Az.
Then Az is an constant for these two contour lines and the width of the ribbon
is Az/sin a.So unit length of the ribbon has an area dA = Az/sin a, and
therefore the total strength of all vortices per unit length of ribbon is with
(2.11)

20,0V = (x/u) (y2 = v3) Az (2.12)

This is a constant and so (2.12) shows that the ribbon cut out from a sharp
interface by two horizontal contour lines with constant height difference, is

a reentrant vortex tube with constant strength.

%‘:f‘ fresh water exttaction point

salt waler, 13

Fig. 4. The eontourlines on a sharp interface are vortex lines. The ribbons
between econtourlines are vortex tubes with constant strength.
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3. Circulation of the pore fluid

Specifie discharge created by tsolated vortex

The vortices in the regions, whem y varies, produce a rotation of the fluid
in those regions. Besides that,each vortex induces a motion of the fluid around
its region of action up to infinity. This motion consists of a circulation of
the fluid around the axis of the vortex. The character of this motion can be
shown by deducing the specific discharge created in a point x, y, z outside
the region of vorticity ¥from the solutions (1.17) for the stream functions.

The solutions (1.17) consist of integrals over the entire region of the
aquifer, where y variations occur. Consider the contributions 4F, 4G, dH to
the stream functions F, G, H produced by the infinitesimal volume dV', only.
These contributions are, taking account of (1.15) which specifies that Q, = 0,

ar = (1/4m) 22, rR™! av'
dG = (1/4w) 2ny, r™! av' (3.1)
ds =0,
with
R={(x-x"12+ (y-y)2+ {z-z')zli. (3.2

The quantity R is the distance between the point x', y', z',where the vortex
ﬁ is located, and the point x, y, z ,where the specific discharge is to be
computed. '

Introducing (3.1) into the relations (1.6], the contributions dqx, dqy, dqz
to the specific discharge components Lr %, q, in the point %, vy, 2z are
found to be

dq = (1/4m) {+ 20, (z - z')} R°3 av
= (1/4m) {- 22, (z - z")} R°3 av’ (3.3)
= 53 - L - . _3 L]

dg, = (1/4m) { zny, (x - x") + 29x.fy ¥y )1} rR3 aur.

These relations are simplified by transforming them into n, s, t directions.

By substituting the relation (2.8) for ﬁt into the equations (2.6) it is found
that

20 , = - 20 _sin B
* & (3.4)
+ 25'1t cos B

™
=]
[}

Further the terms (z - z2'") etc. can be transformed by use of (2.2].
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So (3.3) becomes

dq = (av' /avr3) 20, (n cos @ cos B + s sin a cos ]
dq = (av'/4wRr3) 20, (n cos a sin B + s sin a sin B (3.5)
dqz- (av'/4nr3) 2nt (n sin a — s cos a).

From these the components of a in n, s, t directions are found by using
relations derived from (2.3)

dqn= - dqx sin a cos B - dqy sin a sin B + dqz cos a
dqs= + dqx cos a cos B + dqy cos a sin B + dqz sin a (3.6)

dqt= = dqx sin B + dqY cos B

which give with (3.5)

= 3 —2q »
dqn (av'/4nr?) { ZRt s)
dg_= (av'/4mr3) (+20 -n) (3.7

dq = 0

Form of flow pattern

The result (3.7) represents the specific discharge created around a vortex
of strength ZRt dYﬂ with its axis in t-direction. The specific discharge wector
d_& lies in a plane perpendicular to the axis of the vortex, because r.'iqt is zero
see fig. 5. Further, the vector dE; is perpendicular to the line, that projects
the point of consideration x, y, z on the t-axis. So the flow is a circulating
motion around the t-axis as executed by points on the rim of a wheel. Actually
all points on a sphere around the vortex have specific discharges, that have
their direction and magnitude coinciding with the motions of points on the
sphere, when it rotates as a rigid body around the axis of the vortex. This
applies to all concentric spheres revolving with angular wvelocities that

decrease proportional to R-3.

Fig. 5. An isolated vortex
creates a eirculating flow

perpendicular to its aris.
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Completion of the solution

The result (3.7) is derived from the relations (3.1}, that are solutions of
the relevant Poisson equations (1.16), which for the case of an isolated wvortex
28 av' have the form

2 _f-2a_, av' within av'
v ear) {0 x outside 4v*
2 _(-2Q , dvV' within av'
viae) '{0 v outside av' ¥3:8)
v2(aH) = 0 everywhere

In order to constitute the solution to the problem also the equation (1.7) has
to be satisfied, which in this case has the form

3(aF) /ox + 3(dG) /3y + 3(am)bz = 0 (3.9)

It can be shown (see f.i. Lamb, pg. 209) that in order to satisfy also (3.9),
it is necessary to combine isolated vortices into reentrant vortex tubes,
whose surfaces consist of closed vortex lines. In fact this situation is
encountered in the case of a sharp interface, that is subdivided into vortex
ribbons by horizontal contour lines. So the solutions (3.7) are complete only
after integration over an entire interface. It is possible to show, that also
in the case of gradually changing y the entire region of y variations can be
subdivided into reentrant vortex tubes, with constant vortex strength in their
cross sections. So also in that case the solution is complete only after

integration over the entire region of varying y.

4. Motion of a sharp interface

Subdivision in triangles

The solution (3.7) with (2.11) is suitable to determine the motion of a
sharp interface. Let the interface position be given at a certain instant.
Then a surface element dA contains a vortex of known strength and direction.
The direction is parallel to the contour line in dA and its strength is
proportional to sin a , with a the local inclination angle of the interface.
The displacement of the interface during a time step is obtained by determining
the specific discharge in points of the interface surface as an integration of
the individual contribution of all area's dA.

For an arbitrary shape of the interface, this is executed by choosing a
number of nodal points and schematizing the gradually curved interface by a
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diamondshaped surface consisting of flat triangles between nodal points.

From the coordinates of the naodal points, the angles a and § are determined that
specify the local coordinate system n, s, t. Since the triangles are flat,

o and B are constants for each triangle. Let g be the vortex strength per unit
area, such that according to (2.11)

g = (x/W) (y2 - v1) sin a. (4.1)

Then also g is a constant for each triangle.

Each triangle contributes a specific discharge a with components 9, 9o I
in a point P, whose coordinates in the local n, s, t coordinates of the triangle
are np, sp, tp' The origin of the local coordinates is in the centre of
gravity of the triangle. By use of (3.7) and (2.11) the specific discharge

components created by a triangle are

8, = le/4m) ” (-sg+s™) RT3 ds'at!
q_ = (g/am ” (+n_) R™3 as'at' (4.2)
# P

: gl

where integration is over s' and t*' throughout the area of the triangle and
R=1{n2+ (s.-8")2 + (t-t")2}} 4.3
{ 5 ( 5 ) ( 5 ¥ 1* , ( )

the distance between the point of integration (0, s', t') and P, the fixed
point of interest, see f£ig 6.

The components Qs 9gr 9, are to be converted subsequently in x, y, z
directions by use of transformation relations with the coefficients of (2.2).
Summation of the contribution of all triangles gives the specific discharge
in every desired point P of the aquifer. Especially the specific discharge in
the nodal points are of interest. Dividing these discharges by the porosity
gives the advancing velocity of the interface. s n

Fig. 6. Triangle abe on
interface with local n, 8, t
coordinates. P ig projected

: ” ]
on the s, t plane in point P’. \,/ ~y
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When the distance R, between the centre of gravity of a triangle and the
point P is larger than 25 times the smallest triangle side, an error smaller
than 0,02% is introduced by concentrating vorticity of the triangle in its
centre of gravity. Then the integrals of (4.2) simplify, because s' = 0 and
R = %a' The result is

2 = -3

q, = (g/4m (-s ) R A

9 = (g/4m (n) K3 a (4.4)
9 =0 J

with A ='er5’dtf = the area of the triangle. However, if P is closer to the
triangle, integration has to be performed with s"and t'variable. This amounts

to a cumbersome analysis with the following result.

Result of integration over triangle

Let the cornerpoints a, b, ¢ of the triangle be located such, that viewed
from above the triangle is at the left,when traversing the sides from a to b,
b to ¢, ¢ to a, see fig. 6. Let P' be the projection of the point P of
consideration on the s, t plane (the plane of the triangle). The distance from
P to P' is equal to np the coordinate of P normal to the s, t plane; n_ is
positive for P above the plane, negative below. The projection of P' on the
line ij is P

J
The specific discharge components 9, 9, created by the triangle abc then are
g (t,-t,) |ip| + ip
a =-—-Z{ 13 4a i3 } (4.5)
4m [43] 32| + 37,5
g nP ]np|-i?ij lnp!'jpij
e 2nf + {- arc tan|———__-_| + arc tan (4.6)
ar |n_| |ip|<p'p |sp|+p'p. .
P L ij ij

Summation is over the sides of the triangle, such that ij are subsequently
ab, bc, ca. The line pieces between 1 | are always positive. The line iPij
is postive, if the direction of going from pij to i is in the arrow directions
as indicated in fig. 6. In fig. 6 the line a?ab is therefore negative.

The line P'Pij is positve if P' is located to the left when going from i

towards j. In fig. G,P'Pa is positive, but P.pbc is negative. The factor £

b
equals 1, if all P.pij are positive. Then P' is located within the triangle
abc. The factor f is zero, if one of the lines P'Pij is negative. Then P' is
located outside the triangle. The factor f is introduced in order to limit the

arc tan [] to values between —iﬂ and +£'rr.
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Singular behaviour in a nodal point
The expression (4.5) becomes infinite, when the point P approaches one of
the sides of the triangle, because either numerator or denominator in the

logarithm becomes zero,when P and P conincide. This interferes unacceptably

with the determination of the speciéic discharge in a nodal point, since all
adjacent triangles then contribute infinite normal components. In order to
establish the influence of these triangles a special procedure has to be
followed, based on a detailed analysis of the specific discharges encountered
in the wvicinity of the interface.

At a nodal point several triangles meet, in a diamondshaped interface
schematisation. Therefore the substitution by triangles is not appropriate at
a nodal point, because instead of the top of a pyramid the shape of the
interface is a smoothly rounded surface. A better representation is to
substitute the region,around a nodal point by a little disc tangent to the
surface and to subdivide the remaining area's of the adjacent triangles into
a number of triangles, that together fit in the rest of the diamondshaped
interface. The remaining triangles contribute acceptable specific discharges,
that can be obtained by use of the eguations (4.5) (4.6). Only the vortices
in the little disc have to be considered seperately.

Speeific discharge in centre of dise
Consider a circular flat disc of radius
r at an angle a with the horizontal plane.

The vortex strength per unit area is g

from (4.1). The question is to determine
the specific discharge at a point P on the
normal in the centre of the disc, when P
approaches the disc from above or below.
The coordinates of P are taken npzl, 5P=0,
tp=0,with A a small positive or negative
quantity for P approaching the disc centre
from above or below,respectively, see fig /-

Specifie discharge in P on normal chrough centra.
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Integration is over a ring shaped area with radius p and width dp, Then in
equations (4.2) (4.3) we have s'=pcos8; t'=psinf; ds'dt'=pdpde, ‘R={I\2+p2)
and the specific discharge in P has components

r (2w
a, = (g/4m) J I (p cos 8) (A2 + p2)~3/2 papae ,
o ‘o

r 2w (4.7)
q, = (g/4m) J I A(A2 + p2)73/2 papan .
=]

o
Integration with respect to 8 gives
qQ, = 0
a = ig A E(nz +p2)73/2 pap . (4.8)

So that finally only the component qs remaines, giving

x A A
= %g T -rl 2 (4.9)
(A2)2 (A2 + rZJ’J

-A
(22 + 92) }

a, = ig

o
For A»*0 this reduces to
a, = ig /A, (4.10)
with in the denominator the absolute value of X, because the root of A? is
always positive.
For A + +0 the point P is above the disc in the lighter fluid with y = y;.
For A + -0 the point is in the fluid with y;. Let the discharges in the two

fluids be indicated as 2;1 and 32 respectively. Then reintroducing (4.1) the
result (4.10) can be written as

q; =+ 3{k/n) (y2 = y1)sin a,for P just above interface in fluid 1
qi = - 3(e/u) (yz - v1)sin a,for P just below interface in fluid 2 (4.11)
Further according to (4.2) and (4.8)
) R - 1) 1 _ .2 o
q =q 0; q, =aq, 0 (4.12)

These relations are identical to those found
in the two dimensional case as presented
previously (de Josselin de Jong, 1977). They show,
that the vortices, in a flat, disc shaped area of
a sharp interface between two fluids, only create
a shear flow parallel to the interface. Above
the interface,the flow is in the direction of

steepest ascent, and below it in opposite

direction,as demonstrated in the adjacent fig. B.
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Conclusion

An interface between two pore fluids of different specific weight is
according to the three dimensional extension of the vortex theory a vortex
sheet. The vortices have horizontal axes and the contourlines of equal height
on the interface are vortex lines. The ribbons between contourlines are
reentrant vortex tubes. Every vortex on the interface creates a circulating
flow around it and the specific discharge, in an arbitrary point of the
aquifer, is obtained by integration of the influences of all vortices over the
entire interface using equations (3.3}, (3.4) and (2.B).

The three dimensional vortex theory was applied to produce a computer
program for determining the movement of an interface with time. This work was
initiated by Haitjema as an extension of the computer program he developped
for the two dimensional case and reported in this journal (Haitjema, 19771.
The three dimensional elaboration was continued by Luger, who elaborated the
use of equations (4.5), (4.6) after they became available.

In the computer program the real, smoothly curved shape of an interface is
replaced by a diamondshaped plane consisting of flat triangles. Each triangle
is a vortex sheet with vortices homogeneously distributed over it. The corner
points of the triangles are the nodal points, whose displacements with course
of time are determined by computing the specific discharge created by all
vortices in all triangles and dividing this discharge by the porosity. Only
the triangles adjacent to the nodal points are exempted because their influence
becomes infinite according to (4.5). These adjacent triangles are replaced
partly by a little circular disc, tangent to the interface at the nodal point,
whose contribution to the specific discharge in its centre is shown in section
4 to consist of a shearflow parallel to the disc, only. This shear flow is
disregarded in the computation, because it does not contribute to the

displacement of the interface.
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The simultaneous flow of fresh and salt water in aquifers of large

horizontal extension determined by shear flow and' vortex theory

G.DE JOSSELIN DE JONG
Retired from University of Delft, Netherlands

SUMMARY

An interface motion equation is derived,
taking into account the complete Edelman
shear flow conditions and the Dietz-Dupuit
approxiretions. A solution is verified with
a result from exact vortex theory.

1 INTRODUCTION

Shear flow

When two fluids (1,2) of different specific
weight Yy, Y, respectively, occupying an
aquifer, are separated by a sharp interface
there exists a shearflow at every point of
the interface, where it has a tilt angle o
with the horizontal. The first description
of this phenomenon is by Edelman (19k0),
who showed that a difference in qg4, qg5,
the specific discharge components parallel
to the interface, must occur in order to
puarantee that along the interface the pres-
sures in the two fluids at either side is
equal. A small error, unfortunately, crept
into the end of the derivation, leading to
the tnecorrect expression
[ag-{v2/v{)as )= (k/u) (yo-yy)sine  (1.7)
where:k is intrinsic permeability,

Y is dynamic viscosity.

In a later publication, Edelman (1947,
pg 59), removes the error and gives the
eorreet equation:
(qs1-q52)=(:</u)(‘rg—y1)sina (1.2)
Also Edelman (1940, 1949) mentions, that at
every point of the interface, the normal
specific discharge components qp4, Qp2 in
the two fluids at either side must be equal
in order to satisfy continuity. In formula

(a,-2,5) = O (1.3)

75

Edelman's work has escaped international
attention, because it was written in Duteh.
Better known is the work of Hubbert (1940),
who also describes shear flow at a sharp
interface. His treatise starts with a
clarifying deseription of the mechanism of
groundwater flow and its relation to pres-
sures, expressed in terms of equilibrium
of forces. From page BL2 on, however, the
analysis is confused by the presupposition,
that groundwater flow is always subject to po-
tentials and the treatment continues with
a form of Darey's law, that is uncapable to
deseribe variable density flow, correctly.
Applying en apparently rigourous reesoning
an equation (192) is derived for the shear-
flow, similar to (1.1) here.lt would be inte-
resting to know, when this was corrected.
At the time it waes not recognised,that
density differences create rotation in the
flow and that therefore a description with
potentials is impossible. Lusczynski (1961)
attempted to formulate heads, that could
serve as potentials, Here, heads are not re-
commendable for practical use, because they
are pseudo-potentials whose gradients are
related to the flow only in particular di-
rections., This is shown by Bear (1975) in
his equation (9.5.19).

Using the formulation of Darcy's law in
terms of pressures (9.5.6), Bear (1975) de-
rives a correct expression for the shear-
flow (9.5.7) in the case of combined densi-
ty and viscosity difference. The same flow
relations in terms of pressures served as a
basis to the vortex theory for variable den-
sity flow, de Josselin de Jong (1960). In
this and later papers (1977, 1979) it is
shown, that rotation exists proportional to
the horizontal component of the density gra-
dient and how the specific discharge can be
computed in the ¢ntire aguifer by locating
vortices in the regions of rotation. By
this theory it is possible to treat any
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distribution of densities, also of the gra-
dual transition zones, that exist between
miscible fluids becauwse of diffusion and
dispersion. The theory is wverified in the
papers by reducing a gradual transition
zone to a sharp interface and establishing
the magnitude of the shearflow. The solu-
tions then become singular and produce
discontinuities of magnitudes as given by
the equations (1.2) and (1.3}, here.

Horizontally extended aguifers

Dietz (1953) treats the combined flow of
fluids with different properties in elon-
gated, confined aguifers. The analysis
starts with the concept of shearflow crea-
ted by the equality of pressure on either
side of a sharp interface. Then the cor-
rect values of the shearflow components,
parallel to the aquifer boundaries, are at-
tributed with a Dupuit assumption to the
specific discharge components parallel to
the aquifer in every plane normal to the
aquifer. Finally the partial differential
equation (21.a) is obtained for the motion
of the interface in course of time.

Bear (1975) pg 535 improves the Dietz-
Dupuit analysis by removing a small inac-
curacy mentioned by Dietz (1953) pg 88.
This leads to Bear's eq.(9.5.64) which is
similar to Dietz's (21.a) except for a com-
mutation of & number of terms with the se-
cond 3/3x of 3°n/9x*. Comparison of the
two papers is somewhat impeded, because in
Bear's (9.5.64) the numerator between bra-
ces is misprinted. The reader can readily
perform the correction by reworking the
analysis. Such a correction can be verified
with Bear's (9.7.20), which is obtained
with a similar analysis.

The work of Dietz and also eq.(9.5.6L) of
Bear describes an aguifer, that is tilted
with respect to the horizon, and the coor-
dinate system is parallel and normal to the
aquifer.Other, horizontal coordinates are
used in Bear's treatment leading to (9.T7.20)
and that equation is therefore better sui-
ted for comparison with relations developed
in this paper.

In the analysis of Dietz (1953) and
Bear's (1975) version of it, the disconti-
nuous character of the flow at the inter-
face is only accounted for in a direction
parallel to the aquifer. It is an cbjec-
tive of this paper to show, how the analy-
sis is changed by considering relations of
the kind (1.2) (1.3), such that the charac-
ter of the discontinuities in the flow,
both parallel and normal to the interface,
is taken into account. It appears, that
f.i. introduetion of aquifer anisotropy
changes the interface motion equation onlv
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slightly. As example the solution for the
interface motion is considered, when the
interface starts as a straight line.

A second objective of this paper is to
compare this approximate solution, with an
exact solution cbtained by vortex theory.
For a confined aquifer this theory requires
the introduction of an infinite series of
image vortices, which is sometimes belie-
ved to impede practical application, when
the aquifer is elongated and the interface
inclination angle is small, because of the
integrations required in the analysis. It
will be shown here that for the case of
parallel, impervious boundaries, the solu-
tion is simplified, because the integrals
have closed solutions.

The use of vortex theory is required,
when the interface inclination angle is not
small, as f.i. in the wviscinity of wells,
and the Dietz-Dupuit approximation is in-
sufficient. In that case a computer is in-
dispensable for establishing the integra-
tions numerically. A deseription of the
spplication of vortex theory to computer
analysis is given by Haitjema (1977). Other
programs are in course of development.

The general objective of this paper is to
reconcile the Dietz-Dupuit approximation
with the complete Edelman shearflow condi-
tions and vortex theory.

2 FLOW CONDITIONS AT AN INTERFACE

The case is considered here of a sharp inter-
face between fresh and salt water, fluid 1,2
respectively. The specific weights are then
¥1<Yz and the viscosities are W<up. The
difference in both properties isof the order
of several procents. The intrinsic permea-
bilities of the anisotropic aquifer are
Ky, Ky in horizontal and vertical directicns
respectively, and these are considered to be
the prineipel directions. The fluids are
miscible and replacement in the pore space
is complete such that k, and Ky are the
same for both fluids.
Shear,
tflow?

n

\ s .7
A7 “Tar
fluid 1_.--F ax

e c

fluid 2

Fig.1. Interface line with coordirates n,s
and specific discharges q,1=qpo 3 95172gp+

¥
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The z-coordinate is vertical, the x,y coor-
dinates are horizontal. The height of the
interface is called L. So the equation for
the interface is z=g(x,y,t), where Z(x,y,t)
is in general a function of %,y and the
time t.

First the two dimensional case is consi-
dered that the situations in all planes,
y=constant,are equal. The interface has
then a cylindrical surface, whose intersec-
tion line with the arbitrary z,x plane is
called the interface line here. This line
is represented by z=C(x,t).

The angle of the interface line with the

x-coordinate is a (see fig. 1), =nd so
relations exist of the form

tano=(32/3x) ” (2.1)
sina=(8z/3x) /[ 1+( 0z /3x) %1% (2.2)
cosa=1/[1+(3z/3x) % 14: (2.3)

At the interface local, orthogonal coordi-
nates n,s respectively normal and along
the interface line are considered (fig.1).
The coordinates n,s are taken positive,
when pointing in positive =z,x directions
respectively. The components qp, qg of the
specific discharge in the n,s directions
are related to the components gy, qg in
horizontal and vertical directions by

Qp=-q,5 int+g e 080 (2.4)
gg=+qyc0s0+gsina (2.5)
and the inversion

qx=qscosa-qnsinu (2.6)
qz=agsinatgpcosa (2.7)
Continui ty

In order to satisfy eontinuity,the normal
specific discharge components gnq, Qn2 on
either side of the interface are equal.
This is expressed by (1.3), a relation that
is not changed by differences in fluid pro-
perties or anisotropy of the pore space.
So the normal component can be called qn
and with (2.4) can be written as

qn=q'n 'I:-qx'l s in(xd-qz 1(: osa=
=qn2=-q£sina+q22cosa (2.8)

Multiplication with Hys By respectively
gives

e il

+uya, 4,0, )eosa (2.9)
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Equilibrium

In order to satisfy equilibrium the fluid
pressures p4q, po in the fluids at either
side of the interface are equal, if they
are miscible in the manner of fresh and
salt water. So the relation exists
p,-p,=0 (2.10)
Since this is true for all points along the
interface line, also the derivatiwve of
(2.10) with respect to s has to be zerc or

(3pllas}-(3p2/as}=0 (2.11)

Trans forming (2.11) in x,z directions gives

[(Bp.lli)x)-la'p?/ax) Jeosot

[(3p,/82)-(3p,/82) ]sina=0 (2.12)

In order to express this relation (2.12)
in terms of specific discharge components,
the relaticns between flow and pressure de-
veloped from equilibrium of forces are
used. These are for the ith fluid:

(2.13)
(2.14)

(ui/xh)qﬁh(apifax)
(ui X:v1qzi=-( api;az} =Y

Eliminating pq, po from (2.12),(2.13) and
(2.14) gives

(u,qx1—u2qx2}(cosath)+
(u.Iqm-ugq_za)(simxfxv)=h'2—1r1)sinu (2.15)

Discontinuities in the flow components

The relations (2.9),(2.15) can be solved to
gve

(Mya,4-40,,) [(cos®a/k, ) +(sin®a/k )]=
=(‘r2-‘r1]sinucosa-(u1~112)qn(sina/|cv) (2.16)

(u 19, ,—-112!122) [(cos zath)'ﬂ:sinza/l:v} 1=

={1«2-T‘)sin2a+(u1—u2)q_n(cosuhch} (2.17)
These relations give an impression of the
discontinuities in the specific discharge
components at the interface.

The normal specific discharge component
qp is somewhat alien in these relations.
In section 3 it turns out, that it is con-
venient to have g, converted into a term
vwhich contains 3z/8t, the vertical velo-
city of the interface, in the following
manner.

Soil Mechanics and Transport in Porous Media



When the interface moves upwards with a
velocity 9L/9t, a surface of area A of the
interface plane moves during a time inter-
val dt, through a volume of the aquifer of
magnitude cosa(dy/dt)dt.A. (see fig. 2).
The amount of fluid in this aqui fervolume
is ¢ times the volume, when € is the poro-
sity of the aquifer. So the amount of fluid
displaced is scosaldrg/ot)dt.A.

The specific discharge q is defined as
the volume of fluid passing normal te the
interface, through a unit area during unit
time. So the amount of fluid passing
through the area A during a time dt is
gpAdt. Comparing the two volumes gives

q_n-'—ecosu(ac/at) (2.18)
Using this value for g, in (2.16),(2.17)
and applying (2.2),(2.3) results in
(uya,-1p0,,)= §£
[ (=) =elu -u2) 1 (2.19)
K, at (é&}
(u1qz1—u2qzej= 3L ( )
[(Te—v,)w(urue}—%_;—a (2.20)

T n, 97,2
h'9x 1+K—v{ax)

At this point it msy be remarked, that the
relations (2.19),(2.20) are velid for any
value of a in the interval -m/2gagm/2.
Beyond that interwval the interface is un-
stable, because heavier fluid is above
lighter.

When the viscosities are egual, such that
M1=Ho=H, egquations (2.16),(2.17) reduce to

(¥,-Y,)sinaccsa

(e i Tees oz einTaze )T (22"
(¥,~v,)sin’a
(qzl z2 ].l[Tcos u/nc_]+(sm Zulk )] (2.22)

Using the tensor character of permeability,
it is possible to show that the term

[(cos L‘:/Kn)+{sin 2a/ky)] represents the re-
ciproval of the intrinsie pernﬁab:.l:.ty, 1( 5
in s-direction. Using further (2.5) it is®
found,that

(a, 1=a55)=(Ks/u) (Yo-Yq)sina, (2.23)

a relation for the shearflow reminding of

(1.2).
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3. INTERFACE MOTION EQUATICN
Continuity in x-directien

Let the aquifer have its upperboundary at
z=Z4 and its lower boundary at z=Zp. The
height occupied by fluid 1is (Z;-z) and
for fluid 2 it is (-E5), see fig. 3.

The horizontal .specific discharge compo-
nents qyq, Qo &re As an approximation as-
sumed to be constant in a vertical plane.
Per unit width the discharges Qyq, Qyz of
fluids 1,2 resp. are then

(3.1)
(3.2)

(28
Q =0, (5-2,).

The total discharge of both fluids together
over unit width is called, Q,. Then we have
1M
=q,(2,-0)+q ,(8-7,). (3.3)
Let there be infiltration of fluid 1
through the upperboundary adding a volume
51, per unit horizontal area and unit time
to the discharge Qxq and simirlarly 85 to
Qyo from below. Continuity requires then,
that the total discharge Q, satisfies the
relation

(3Q, /3x)=5 45, (3.4)

When the interface moves upwards with a
velocity (8%/3t), the wolume of fluid 1
added to the discharge Qyq over & unit ho-
rizontal area and unit time is e(3g/9t),
with € the aquifer poreosity. The same vo-
lume is subtracted from Q.». Continuity of
each fluid separately requires

(3.5)
(3.6)

(3q,/3x)=s 1+a(3¢‘;/3t)
(BQ,E/Bx]=SE,~E(3§/3t}

Equation in £ alcne

When Qy, 54, So are known from boundary
conditions, a relation in the unknown varia-
ble ¢ alone is obtained by eliminating aui,
from equations (2.19) and (3.1) through
.6). This was the reason to replace qp
by expression (2.18) involving T.
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Fig. 3. Aquifer with discharges.

By using the abbreviations

I={y,=v, )k, /1y (3.6)
h=e [1-(uy/u ) My /e Y(3T/3t) (3.7
F(nhfxv){a-';lax)z (3.8)
equation (2.19) becomes

118,y e, )=, (T-0)25/(140) (3.9)

and solving with (3.3) for 9 9 gives

Q¢ [y (8=25) 4, (2 -r,)]-

=H,Q 40 (I‘—n)(c-zz) 25/(140) (3.10)
Qi (8-2,) 4, (2 -2) 1=
=,Q, -1, (T-A) (2, -0) 35/ (1+0) (3.11)

It is now possible to obtain a relation
in [ alone, either by eliminating gqyq and
Qg1 by (3.10) in (3.1) and using (3.5), or
by el)nunatmg q. and Qx? by (3 11} in
(3.2) and using ﬁ The two expressions
are similar but not :.dentical. Averaging
them gives

e(dz/3t)+i(s -5,)=
3{ u, (2, -2)-n,(2-2,)
ax °§cu2( -L)+u (c-zz)
(7.,-2)(£-2,) (3r/3x)
iy (T-h) [u2(Z -t)+u, (c—z Y10 1+8)

(3.12)

This is the interface motion equatiom, com—
parable with Bear's (9.7.20). When the lo-
cation of the interface is known at a par-
ticular moment, £is known as a function of
x and the upwards motion 37/9t of the inter-
face can be determined with (3.12) for
every point of it.

In the case of fresh, salt groundwater
the difference between uy and Yy is small
and 1ntroduc:|.ng Hi=Ha=1 glves

e(dz/at)+i(s -8, )=

79
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(2,-2)(5-2,) 4 }
(z ) )(T+¢)3x (3.13)

a{ Q{z,'i.ze-er.)

S +(T-A
axl “x 2(z -2,)

In this last expression A is not reduced
to zero, since from (3.7) it appears that
the difference [1- (u22u1)] may be overruled
by the anisotropy 'proportl on (ky,/ky), which
can be gquite large in horizontally deposi-
ted aquifers. However, since A contains
[ag/3t), it is inappropriate to incorporate
it in a first determination of (37/3t).

The procedure is to consider A as a cor-
rection term, set equal to zero at first
and adjusted iteratively afterwards.

The factor ¢ in (3.13) also depends on
snisotropy, according to (3.8). Here the
proportion (ky/k,) may be large enough to
balance the interface inclination factor
(3r/3%)? and to reguire that ¢ is taken in-
to account from the beginning.

Three dimensional and axial symmetric cases

In the general threedimensional case, the
two horizontal coordinates x,y are inyolved.
The total discharge is then a vector Q with
components Qx, Qy Continuity of the total
discharge requires instead of (3.1)

VQES 1"'52 y
where V stands for (8/9x)+(3/3y).
The shear flow equations are

%1 %2
ag -ag,=T1 V5] (1+]9g])* /(1+-IVEI”

Q17220

vhere t is the horizontal direction on the
interface. The same analysis as above pro-
duces the following interface motion equa-
tion for Wqi=ps=y @

e(ag/3t)+3 (s -5,)=

v[d(z +2,-20) /2(2,-2,)] +
S(Z -C)(C z2,)vg } (3.1)
{(z ) }[1+(r<h!1c vz ]*] H

In the axial symmetric case, with r the ho-
rizontal radial coordinate, the interface
motion equation, with §,=8,%0, is

e(az/at)=(q_/2mr) 2| (21+25-27) /2(2,-2,) I+
N ( z,-t) (z-2,)(3z/ar)

(z - }[‘H(Kh/lc j(ac/ar)?]

A di f‘rerence between the equations here
and those developed in literature is in the
term containing snisotropy: (thltv).

1

= =2
r ar

} (3.15)
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Character of the interface motion equation

The equations (3.12), (3.13), (3.14), (3.15)
describing the motion of the interface in
different cases, have the character of non-
linear diffusion equations with a convec-
tion term. The character of solutions satis-
fying such equations have been studied by
Peletier and van Duyn (1977), ven Duyn
(1979). For & detailed account of the ma-
thematical aspects concerning solutions,

the reader is referred to the contribution
of van Duyn in these proceedings.

L EXAMPLE OF A SOLUTION

In order to show a solution of the inter-
face motion equation (3.12), this equation
is reduced by considering a simplified
case. The aquifer boundaries are at con-
stant heights: 2,=H and Z5=0. There is
neither infiltration, nor convection, so
51=52=Q,=(9%4/9x)=(325/3x)=0 (L.1)
The viscosity differences are small enough
to disregard A throughout. Then (3.12) is

end® = r 2 {-0)ede/1 u—t—"z) 1

3t (L.2)

The motion is considered of an interfa-
ce, that at time t is a straight line with
inclination angle o=arc tan f,such that it
is represented by the relation
olt)=fx+ii (4.3)

Its intersection points §71, S2 with the

(k)

boundaries have coordinates

xg1==(H/2f) ;  xgg=+(H/2f)

For all x<x.q the aquifer is filled with

fresh water, with salt water for x>xg2.
Since from (4.3), 8L/3x=f=constant with

respect to x,relation (4.2) gives

K,
eH(dz/3t)=-2T1x/(1+-21%) (L.5)
v

This result shows,that the increase of the
interface height £ is linear in x and there-
fore the interface apparently turns as a
rigid line. This means,that in equation

(4.3) for the interface, the time dependen-
ce is only in T, being f(t) a function of
t alone. So differentiating (4.3) with res-
pect to t, gives

(dg/at)=(ar/at)x (4.6)
Combining with (4.5) gives a differential
equation in f and t

e(ar/as)=—2Te?/[1+(k, /k ) £7]. (b.7)

Solving by separation of variables gives

Kh —F

l“_‘ BF 57

2, (.8)

L
- it-te)

where integration constants are added,such
that at time t,, f equals f,. The result
(4.8) shows, that the inclination angle a
decreases in course of time.

Using (3.10),(3.11) gives, for pi=us=u end

QX=J\=0, the values of qy1, q,p at the inter-
face
a =T (b)) o/ [ 1+ (i, /i ) £7] (h.9)
o 2
a H=T(£x-3) £/ [1+(k, /i ) £%) (4.10)

These values are assumed to be constants
over every vertical.

In order to find the components Qz1s Q2
at the interface, (2.18) is combined with
(2.8) to give e(3g/3t)=-fayi+q,; and use
of (4.5) gives with (4.9), ﬂ 10), for z=

-I'(—f‘x+2H)f2f[1+[K Ji )f’] (k.11)

‘1;1

qCQ (4.12)

=I(-fx-3H) £2/[14(k /) 1?]

In order to satisfy continuity in the
fresh and selt water regions, the components
Qpys qpp 8TE distributed linearly over the
heights: L<z<H and 0<z<f respectively. Using
(4.3) it is found that
Q, 1, T 114k, /6 ) 2]

21:}[_!?1 (k.13)

o1
‘izz -l”—f2K{1+(thK 1£2]

The relations (4.9),(L.10) and (4.13)(4.14)
were used to construct fig. L.

(4. 14)

80
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EXACT SOLUTION BY VORTEX THEORY
Vortices in confined aquifer

According to vortex theory the speeifie
discharge distribution, associated with a
section ds at a point S8 of an inclined in-
terface, can be determined by locating a
vortex of strength Tdz, in §, with dzg the
vertical height d:LfferP.nce spanned by ds.
The vortex has a horizontal axis parallel
to the interface and creates a rotation,
that turns the interface towards the hori-
zontal.

Each vortex contributes to a stream func-
tion ¥, whose derivatives are the specific
discharge components
ax=-(8¥/82) 5 q =+(3¥/3x) {5.1)
The contribution of the vertex in ds to ¥
is in two dimensions:

(T/2m)azgln(ryg) (5.2)
In this expression r,_. is the distance, be-
tween P and S, d.eﬁned ‘by

rpsm[(xp-xs) +( -2g) %13, with x5,z the
coordinates of the point S, where the vor-
tex is located, and Xp the coordinates
of a point P, vhere the glscharge is consi-
dered. The contribution (5.2) to ¥ is re-
minding of the contribution to a potential
$ by a two-dimensional well of magnitude
ldzg.

In a confined aguifer, with impermeable
boundaries at z=0 and z=H, an infinite row
of image vortices has to be introduced in
the manner of image wells. Using a result
of Muskat (1937),sect 9.8 concerning an in-
finite row of wells, each vortex contribu-
tes to ¥ by an amount d¥ given by

cosh(X -X_)-cos(Z -2 )
cosh(Xp—Xs)-cos{Z +Zs)
where }(j='n‘x‘i/H H Zj=nzjﬂ{

An interface element between S' and
requires integration of (5.3) over zg
21 to Z 2 Using Euler's relation to
i}' (5. 3}, gives for ¥ the value (A.1) in
table A. Since x; is a function of z; inte-
gration of (A.1) is difficult. In order to
simplify integration, the discharges in P
are combined as fc)vllc(ms } { |

-ig,=-(3¥/dz,)-1(3Y¥/3 5.5
Ué?ng %R 1) th:l:pg:l.ves (Ax)s). Subtracting
1 from the first term between braces and
a.dding 1 to the second term, (A.3) is pro-
duced.

Let the interface interval between S1 and
52 have the inclination angle a=arctanf.
Then the infinitesimal distance dxa along
the interface equals dz./f and using (5.4)
it is possible to write dzg in (A.3) as
dzg=(H/7) (A 2idZ ) (£/141 1) (5.6)
Using this in (A.3) permits integration
producing the result (A.L).

The right side of (A.b4) is separated in
a real and an imaginary part by applying
Euler's equation twice. This gives (B.1)
in Table B, using abbreviations R,c, @ 5
Eps s Mps deﬁned there. The rosulgs
contains the valLes for 9x and gy in &
point P, separately and in terms of real
quantities ,For a straight section of the
interfare, the wvalue of f is constant and
are found by introducing the integra-
mit points§1, 82, with coordinates

d¥=—l- }1n az (5.3)

(5.4)
32
from
modi -

Cl Oﬂ Jz:l

TAELE 7 ol sE‘ (xpuz ) _(xgHe ) (X -2 ) (X -izs]] th
Thmfo T (X HE ) (xs-izslue(xn-i?. ) (x +i7, ], g *
q:@"qu%ﬂy{[ (% *iz )/{ Rz ) (X 4200y (Xo#iz) ) (Xo42 ) (X -z }”}dz
.82 : : : ; ; (a:2)
qm-iqu%[s1{[e(xs+"zs)/(e{Kpth)-e(xsﬂzs) ) ]-[e(xs"lzs)/{e(xpﬂzp)—e(Xs_lzs) ) ]} dzgj;
( ) ) ( ) 982 )
I' X_+i7 X 4-13 )( + Z X =-iZ
419,75 l+1i‘1n[e L ] 1"[‘3 . 5™ ]}s‘ B Y
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TABIE ) g _qp 24 2
ps °ps  ps

dona Eoog u Ty
1%; RE=[€ 24ngl1%; 0 =arcten(n /€ ); 0k =arctan(ni /€ )

ps' “ps

with
X X o . Xerson 1. vx of Koot X .
Eps—{e pcoszp-e cosZs), rlps—(expsmzp-e SBst), I‘L";s (expsmzp+e 551:125)
. T % . i - . 52
qm—lqw-gﬂ(ﬁ—){—(nf}mﬁmﬂ1-r)1nH;5+(1-1r)eps—{1+1f}a;3}s1 SR R )
qxp-iqz;(I‘fﬂ](f/ii-f’-){-fln(npeg.«'nm,}-irapsg+iraps1+<(1-ir)w}} semesseessiniee e (BL2)

qxp-iqu={ T/HIM( £/ 1+f2){-=.‘;]i+fxp+irzp+{( 1_if)ﬁ>} R DT SR R A

......._.{3_3}

Xz 1y Zg1 @nd xg2, Zg2 the result (B.1) is
comparable to Haitjema's (1977) equation
(9) derived for a straight interface ele-
ment AB in an intinite aquifer. The proce-
dure for combining such elements to analy-
se a curved interface, described by
Haitjema, can be applied similarly to (B.1)L

In (B.1) angles @ are involved, defined
by arcs of tangents. These angles have to
be chosen in the interval 0<f<m, when 8%g
is concerned and @5, when P is in fluid 2.
When P is in fluid 1, and y, is between
¥g1 and ¥.2, the value of { 52‘_—695_1)_11&.5
to be increased with 2w. For a justifica-
tion see De Josselin de Jong (1960), p3750-
3753.

Comparison with exanple of section b

In the example the interface is & straight
line with limit points 5152 on the bounda-
ries, such that z4=0, z,2=H and x4 , X52
given by (L.L) The boundary values for
£ps and nps are then:
Ep51 mxpcgzzpwe“?'ﬂff
Ep52=exllc osZpte /T
npﬁ-mn;s': =np52=r;;sg=expsinzp
Because of the identity of the n's, (B.1)
reduces to (B.2), where the term between
{)has to be added, if fluid 1 is concer-
ned. The values of (B.2) were used to con-
struct the specific discharge distribution
of fig. 5.

When the point of consideration P is lo-
cated in the region xgl (%p(xg2 such that

1 1
eI f 4% et T, (5.8)
the variables can be approximated by
R p=edT/f, R 1=¥p; 0 ,x0; 8 4=
ps? 3 Bpgt=e™®3 0,00%05 001 =7,
and using (5.4), (B.2) reduces to (B.3).
Separation of real and imaginary parts
shows, that the result (B.3) gives the same
values as (%.9), (L.10) and (b.13),(L.14),

when Kp=k, and the meaning of the brackets
{ » is taken into account. In the case of

(5.7
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anisotropy, such that K #%, , the vortex
theory is similar, only the z-coordinate
has to be multiplied by a factor (Kh/lcv}a
throughout. The only consequence is, that
the factor (1+f%) in (B.3) is replaced by
[+ e, ) £21.
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Extrait de la Publication n°® 41 de U Associalion Internationale d’Hydrologie
(de 'U.G.G.F.). Symposia Darcy (Dijon, 1956 )

L’ENTRAINEMENT DE PARTICULES
PAR LE COURANT INTERSTICIEL

par

Ir. G. de JOSSELIN de JONG
(Laboratoire de la Mécanique des Sols, Delft

Summary

The pore system of a packed bed is schematized to a system of canals in order to permit
probability-computations for a strange particle carried by the pore water movement to
arrive at a certain place in a certain time.

& The computations lead to explicit values for the coefficient of longitudinal and transversal
diffusivity.

A te};t device is described which permits determination of longitudinal diffusivity.
Relation between test result and theory is discussed.

1. Introduction

Dans la loi de Darcy tous les phénoménes physiques qui déterminent le mouvement du
liquide intersticiel dans un tassement de grains, sont rassemblés d’une fagon ingénieusement
simple et pratique permettant le calcul rapide de nombreuses applications techniques.

11 existe néanmoins des problémes relatifs aux mouvements de ces liquides qui demandent
a ce que I'on considére d’une fagon rigoureuse les phénoménes micro-structurels qui
constituent la loi de Darcy.

Un de ces problémes micro-structurels se pose quand on veut étudier le mouvement
d’une particule étrangére entrainée par le courant intersticiel. Par exemple, ’'introduction
d’eau salée dans un massif saturé d’eau douce peut amener & se poser la question de la répar-
tition de salinité quis’en suit aprés que cette quantité salée ait été entrainée pendant un cer-
tain temps a travers le tassement de grains. Dans un pays comme la Hollande qui est bordé
par la mer et doit protéger 1'eau douce nécessaire 4 la vie de sa population, son cheptel et ses
végétaux, contre I'infiltration involontaire d’eau salée, ce probléme se rencontre maintes fois.

D’autre.part, les problémes qui se présentent dans les opérations chimiques quand un
liquide qui se trouve dans une colonne a remplissage est remplacé par un autre produit,
ne se résolvent gu’en considérant les mouvements micro-structurels exécutés par les particules
individuelles.

Les expériences ont démontré qu'une quantité de particules étrangéres introduite se
disperse en toute direction relativement au mouvement moyen du liquide intersticiel par
leur mouvement entre les obstacles des grains. Par analogie avec la diffusion moléculaire
qui engendre une dispersion semblable I’on a introduit les conceptions de diffusion longitu-
dinale et de diffusion transversale pour indiquer ce phénoméne. (Klinkenberg (1), Baron (2)).

Mous voulons démontrer dans cet article comment on peut déterminer les coefficients
de diffusion relatifs 4 ces deux différents modes de dispersion en considérant le mécanisme
du mouvement du liquide & travers les pores.

Le calcul complet étant trop long pour &tre publié ici, nous nous limiterons a la présen-
tation des points de départ, du mode de calcul et des résultats obtenus en réservant la
démonstration rigoureuse i une autre publication.

La description d'un essai avec lequel nous avons déterminé le coefficient de diffusion
longitudinale, et des résultats obtenus qui démontrent I’applicabilité de la théorie
complétera ces considérations.

2. Le mouvement d’une particule étrangére

Nous voulons considérer une particule étrangére qui, entrainée par le courant intersticiel,
est assez petite pour n’avoir par sa présence aucune influence sut ce courant.
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La question qui se pose est la détermination du déplacement de cette particule aprés
qu'elle ait été entrainée un certain temps. Comme dans un systéme de grains tassés
arbitrairement les interstices ont une forme arbitraire, le parcours que la particule suivea
n’est pas a fixer. On ne peut prédire que la probabilité pour la particule d’arriver a un certain
endroit.

Le calcul de cette probabilité est le but de notre recherche, car le coefficient de diffusion
peut se déduire de Ja déviation standard de la répartition de la probabilité.

Dans ce calcul la variable stochastique sera déterminée par le passage d’un interstice
a un autre, car la longueur du parcours total se compose de la somme des longueurs
individuelles de ces passages parcourus et le total du temps passé est la somme des temps
de séjour passés dans les divers interstices.

De cette fagon des calculs ont été effectués par Danckwerts (%), Klinkenberg (1) qui,
en considérant I'effet de la probabilité, ne se basent pas sur un mécanisme phénoménologique
et ont recours a la détermination d’un coefficient numérique qui ne s’obtient que par I’expé-
rience (essais de Kramers (), Klinkenberg (1).

Les mécanismes introduits par Baron (diff. transv.(®) et Kramers (diff. Longt. (5)
donnent déja une impression de ce coefficient mais sont d'une autre nature trop simple,
introduisant une distribution discréte pour le choix d'un déplacement + [ ou — I

Nous voulons traiter ici le cas ol la variable stochastique aura une distribution continue,
dépendant d’un mécanisme idéalisé.

Il y a trois effets principaux qui déterminent la distribution du variable.

1. Dans la section d’un pore, la vitesse du liquide n’est pas constante mais plus grande
vers le centre.

2. Les interstices sont de différentes grandeurs.

3. La direction du courant dans un interstice peut avoir un angle quelcongue avec la
direction moyenne du courant principal.

ad. 1) Perpendiculairement a4 la direction du courant dans un pore, les vitesses du
iquide ne sont pas les mémes et il semble nécessaire de considérer a laquelle de ces vitesses
la particule prendrait part.

A cause du mouvement Brownien et 4 grande vitesse 4 cause de la turbulence, il existe
dans le pore une diffusion radiale qui rend la vitesse de la particule égale a la vitesse moyenne
du liquide dans certaines conditions.

Le calcul numérique de cet ettet cst possible avec les résultats de van Deemter (5).

Nous avons supposé dans les calculs suivants que cette diffusion radiale soit compléte
et que le mouvement de la particule soit égale a la vitesse moyenne dans un pore.

ad. 2) En observant la forme d’un interstice qui se produit entre quatre grains de forme
a peu prés sphéroidale (fig. 1), on voit que le courant entre par un canal triangulaire assez
étroit, arrive dans un ample tétraédre, se partage en trois et quitte le pore par des canaux
également triangulaires.

Ces canaux triangulairés se retrouvent partout dans le tassement de grains et forment
la résistance principale dans toutes directions. Si les grains sont tous des sphéres et de méme
grandeur, ces canaux triangulaires ne seront pas égaux a cause du tassement ircégulier.

Nous avons, en premiére approximation, supposé que la diffusion provenant de 1'inégalité
de ces résistances serait petite en comparaison du troisiéme effet et nous avons schématisé
notre systeme par des canaux comme indiqués par-la fig 2.

ad. 3) Nous voulons supposer que les deux effets précédents sont négligeables en
comparaison avec les différences de vitesses qui s’en suivent de la direction des canaux
élémentaires.

Plus la vitesse moyenne dans un canal sera grande, plus sa direction correspondra
avec la direction principale Z.

Pour la distribution de ces directions, on supposera que le tassement des grains a été
tel qu’il n’y a pas de directions de préférence.
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quatre sphéres. par des canaux. particule a travers les canaux.

3. Déduction de la probabilité

Selon ces 3 considérations précédentes, le systéme de canaux dans lequel la particule
est entrainée sera schématisé de la fagon indiquée par la figure 3.

Il consiste en des canaux de méme longueur — / — de méme résistance au courant,
orientés uniformément dans toutes directions.

La particule suit une route tortueuse & travers ces divers canaux & une vitesse égale
a la vitesse moyenne du liquide dans les canaux différents.

Plagons la coordonnée Z dans la direction principale du courant intersticiel total, et
moyen sur beaucoup de canaux. Nomons |'angle entre cette direction et la direction du
canal élémentaire (j): f); et t,-';j I'angle de sa projection avec la coordonnée X (fig. 3).

Supposons que le temps de séjour dans ce canal soit
tj = tyfcos B
oll #, est le temps de séjour minimal possible et qui est obtenu dans un canal orienté dans la
direction Z.
Quand la particule a passé par N de ces canaux, elle est arrivée 4 un endroit XY Z
et dans un temps T donnés par
X = X xj = 2 Isin 0 cos ;
Y = X »j = X Isin §; sin L!Jj
n Z=sz=2:fcosﬁj
T =2t = X tofcos O;
ol les sommes sont effectuées pour j =1 a N.
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Dans ces expressions les angles f; et (); sont maintenant les variables stochastiques
Nous voulons supposer que la probabilité que la particule prenne une direction {;, tf;_,' au
moment, qu’arrivée a une bifurcation, elle doit choisir un nouveau canal a suivre, est donnée
par la fraction du liquide total qui coule dans cette direction : 0;, ;.

Un calcul simple indique que cette probabilité est donnée par
(#)] F(0;, U) d0 db = (1/7) sinf cosO df d
ou I'on vérifie que

-7 (2 25
[T a0 [Tavro b =1

Pour la détermination de la probabilité, Wy (X Y ZT)dX dY dZ dT que la particule
arriverait aprés le passage de N canaux arbitraires dans ’endroit X Y Z et dans un temps
T, nous appliquons maintenant le théoréme de Markoff (voir p. ex. Chandrasekhar (7).

En considérant T comme 1'un des composants du vecteur stochastique équivalent aux
autres composants (X Y Z), on obtient alors

+ = 4 4+ = + =
) wN(xvzndxdedT=4x_‘g‘;fi“T f f [T aganagar x
2% — p—- ] — ‘I__ﬁ
% expy — i (EX 4+ NY + [Z + 7T} x Ax

avec

/2 2
Av=17" a0 [T abr® e+ iy + s+ L+ o)l

Toutes les intégrations sont faisables par la méthode du col et nous arrivons enfin a
une expression pour la probabilité Wy (R Z T) ol R est égale a (X2 + Y2)1/2, déplacement
dans une direction perpendiculaire a la direction principale Z. Toutefois cette probabilité
Wy n’est que la probabilité que cet effet soit obtenu en N passages. Mais il est bien possible
que la particule arrivera & R, Z, dans un temps T avec différents nombres de passages dépen-
dant de la route qu’elle a prise. Il nous faut donc, pour obtenir la probabilité totale, que la
particule arrive dans l'endroit voulu et dans le temps posé, intégrer Wy pour toutes les
valeurs possibles de N, c.-a-d.

N2
WI(R,Z,T) dRAZdT =deZde Wy dN.
Ny

Il est possible d’effectuer encore cette derniére intégration par la méthode du col et
nous obtenons alors trés approximativement

4 WI(R,Z,T) dRdZdT =

RdR .dZ.dT [ C ]m
8 [l (ac — 6312 LA + A)
X exp {1 —2(A + A)'2 Cl2 4 B}
dans laquelle nous avons introduit les notations suivantes :
a=(—5/4) 1,

b=—1/611=1/2(tj.2 — 1j. z})
() c=+1362=12@E%—z
d=21,=1
e=2/31=z
f =182 =120%—7r) =0
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A = [aZ% — 20ZT + cT%)/4 (ac — b?)
B = [ae Z— b (dZ + €T) + edT)/4 (ac — b%)
C = [ae% — 2b de + cd?)/4 (ac — b)?
A’ =R¥4f.
Un trait indique la valeur moyenne d’une variable qui se détermine aisément avec (2).
Par symétrie on attendrait pour a une expression contenant ¢2;, mais parce que cette
valeur est infinie elle est évitée dans le résultat du calcul, oli I’on rencontre A qui est défini
par
(5" yer i 4+ 1) =4 Z/I
oil v est la constante de Euler.
L’expression pour W (R, Z, T) n’est pas, mais ressemble beaucoup a une répartition
normale de Gausz.
Le maximum se trouve 4 R = 0 et T = dZfe = 3Z i,/l.
La répartition autour de ce maximum est définie par les déviations standards suivantes :
or = VZ 2z =1/3Z8l
®) or = VZI2 P —22t.z.1 + 22 @A+ 32)/E = 1o VIZ (O — 1/4)!

De ce résultat se déduisent les coefficients de diffusion longitudinale (D) et transversale

(Dyg) qui décrivent la diffusion par rapport au mouvement moyen de vitesse vo = Z/T = /310,
car selon Einstein D = ¢%/2T. Donc

o) Dz = 6,2/2T = 3 v [ (A — 1/4)
DR = 6x2/2T = 3/16 v, /.

Si les canaux élémentaires ne sont pas égaux, comme nous |'avons supposé au début
de cette dérivation, les valeurs de

2,22 2 et ozt
différeront de ce que nous avons donné plus haut. La répartition de rj, zj et #; connue, il

n'est pas difficile d’en tenir compte dans le résultat (6) ot 'on remarque que les déviations
standard augmenteront.

L’Essai

Un essai de contrdle fut effectué avec un dispositif de percolation (fig. 4).

Un cylindre (e 6 cm, hauteur 20cm) fut rempli de boules de verre, sensiblement
sphéroidales et d’un diamétre de 0,2 mm (déviation standard 0,05 mm). Le remplissage
controlé soigneusement procura une porosité uniforme de 38,5 %.

D’abord le systéme fut saturé d'une eau distillée dans laquelle on ajoutait une quantité
de NaCl correspondant 4 une concentration de 0,02 normal. Le liquide sous le filtre fut
remplacé par de I’eau ayant une concentration de 1,0 normal NaCl et on fit ensuite percoler
e systéme de bas en haut par ce liquide, 2 une vitesse de 6 cm®/minute. Tenant compte de
a porosité, la vitesse moyenne dans les grains fut

1
(6/ 3 70- 6%) X (1/0,385) = 0,55 cm/minute.

A différentes hauteurs 2,5-7,5-12,5-17,5 cm du fond, la paroi était percée par des élec-
trodes qui permettaient de mesurer la concentration de salinité du liquide intersticiel. Ces
électrodes consistaient en des fils de platine couverts de noir en platine (diamétre 0,7 mm,
3 mm long). La résistance électrique que ces pointes éprouvérent en appliquant un courant
alternatif (1000 Hz, 50 micro amp.) fut mesurée par le pont de Wheatstone indiqué dans la
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figure 4. Un étalonnage dans les liguides de diverses concentrations de NaCl avait donné
la relation entre cette résistance électrique et la salinité.

L’étalonnage fut exécuté aussi bien dans le liquide seul qu’aprés remplissage avec des
boules de verre, donnant des valeurs qui correspondaient avec le calcul théorique.

Au moyen des lectures de ces résistances on pouvait donc suivre les changements de
la salinité dans ’entourage de ces électrodes au fur et 4 mesure que la frontiére des concen-
trations passait de 0,02 normal & 1,0 normal.
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Fig. 4
Dispositif de I'essai.
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Salinité enrégistrée par les électrodes.
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Cette frontiére était brusque au début de la percolation, elle se dispersa en montant
dans les grains. Dans la figure 5 sont présentés les résultats des observations avec les électrodes.

1,

Interprétations des ré: s d’essai

Dans la figure 5 nous avons dessiné la salinité enregistrée par les électrodes au moment
ou une particule, voyageant 4 la vitesse moyenne, est arrivée a la hauteur indiquée par
I’abscisse.

Pour démontrer I'influence de 1'épaisseur de I'électrode, nous avons dessiné au-dessus
ce qu'une électrode enregistrerait si une frontiére brusque passait. Cette ligne obtenue
théoriquement montre que la frontiére brusque n’est déformée que trés faiblement et que
les électrodes sont assez minces pour négliger cette influence.

Les lignes obtenues par les électrodes démontrent sensiblement une distribution normale,
On observe que leur pente augmente 4 mesure que leur emplacement est plus élevé. Cette
pente est une mesure pour la déviation standard, comme nous I’avons calculée, et doit donc
suivre une loi comme indiquée par g de la formule 6.

Dans la figure 6 est présentée la relation entre \/ Z la racine de la hauteur des électrodes
et la déviation standard g, observée.

Pour obtenir la déviation standard g: qui ne dépend que de la diffusion longitudinale,
il faut encore soustraire I’influence de la diffusion moléculaire. Cette influence a été déter-
minée par 'expérience. Dans un essai, le front passa d’abord par les électrodes inférieures,
puis la percolation fut arrétée pendant 24 heures et fut 1établie ensuite pour faire passer
le front des électrodes restantes.

Les lignes observées, pointillées dans la figure 5, montrent un basculement additif
qui correspond & un coefficient de diffusion moléculaire de

D, = 0,7 x 10—5 cm?/sec.

Les essais normaux ne prenant que 30 minutes, 1'influence de la diffusion moléculaire
fut assez petite comme 1'indique la fig. 6 ol nous I’avons rapportée.
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Fig. 6
Déviations standards observées comparées avec la théorie.
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Dans cette figure sont données également les lignes théoriques obtenues avec la formule 6
pour [ étant 0,008, 0,004 et 0,002 cm.

Comme les boules de verre employées ont un diamétie moyen de 0,02 cm, on supposerait
que la longueur d’un canal élémentaire ne serait pas plus petite que 0,008 cm étant la distance
des centres de deux pores tétraédriques comme dessinés dans la figure 1. Or la valeur de
la déviation standard est en 1éalité plus petite que celle déduite de la théoric. Nous sommes
amenés a croire que la suppression de I'effet de la diffusion radiale (ad. 1¢) est responsable
pour cette anomalie.

Quand nous appliquons les résultats de van Deemter (5) 4 notre essai avec le sel, nous
obtenons une diffusion radiale compléte pour un canal de diamétre égal aux pores entre
les grains et de longueur égale & la distance des électrodes. Mais pour un canal a longueur
égale a la longueur élémentaire — [— cette diffusion radiale n’a pas eu le temps de s’effectuer.
Or le sel n’arrive que retardé aux abords et est propagé par préférence au centre des pores.
Il s’en suit que dans la route prise par la particule entre les grains les canaux dans la direction
Z seront favorisés encore plus que cela a été exprimé par la distribution (formule 2).

Nous ne voulons pas aller plus loin sur ce point mais conclure que les abstractions
faites dans la théorie n’affectent son applicabilité qu’a tel point que la prédiction des diffusions
longitudinale et transversale en ordre de grandeur est possible.

Nous voulons remercier le professeur Timman pour son concours a surmonter certaines
difficultés mathématiques, le professeur Kramers pour ses suggestions dans le domaine
physique et M. Mostertman pour sa collaboration.
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Longitudinal and Transverse Diffusion in Granular Deposits

G. DE JOSSELIN DE JOoNG

Abstraci—The pore system of a packed bed is represented by a system of canals in order
to permit probability computations for a foreign particle carried by the pore liquid move-
ment to arrive at a certain place in a certain time. The computations lead to explicit values
for the coefficient of longitudinal and transversal diffusion. A test device is described which
permits the determination of the longitudinal diffusivity. The relationship between test

result and theory is discussed.

Iniroduction—The flow of liquids through
porous media is defined by Darcy’s law when bulk
movement is considered. In several cases, however,
it is of interest to know how elements of volume or
discrete particles carried by the liquid will travel.
For instance, in the study of ground-water move-
ment, radio active salts are injected into the soil.
The salt will travel through different pores and
after a given interval of time will arrive at dif-
ferent places, their distance from the starting
point being dependent upon how tortuous was the
path they followed.

This results in a dispersion of the injected salt
which is additional to the molecular diffusion.
This dispersion caused by the geometry of the pore
canal system also has the character of a diffusion
with a greater value in the mean direction of flow
than perpendicular to this direction, Therefore the
two different concepts longitudinal diffusion
|Klinkenberg and Sjemitzer, 1956] and transverse
diffusion [Baron, 1952] have been introduced in
order to indicate this phenomenon.

The passage of the fluid between the grains con-
sists of the summation of a great number of
random phenomena, every single phenomenon
being represented by the transition from one pore
to another. The randomness is originated by the
geometry of the pore canals around the grain,
which is determined by the adjacent grains whose
positions have a random character. This suggests
the application of probability calculus in order to
obtain an impression of the diffusion coefficients.
Many workers have undertaken such probability
computations, Danckwerls [1953), Scheidegger
[1954], Klinkenberg and Sjemitzer [1956] obtain
diffusion coefficients by application of probability,
without defining the microstructural mechanism
of the particle movement. Therefore their result
contains a numerical constant, describing the
granulometric properties of the porous medium
which can only be determined by experiment
(tests of Kramers and Alberda [1953] and Kiinken-
berg and Sjenitzer [1956]). Also Day [1956] de-
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scribes such an approach, using the results of
Scheidegger [1954]. The latter introduces an equal
magnitude of transverse and longitudinal diffusion.
Tests, however, pointed out that there is a marked
difference (6 to 8 times).

In the determination of the diffusion coefficients
presented here the starting point is a schematized
pore canal system and the movement of the
liquid through the canals is accounted for in detail.

Previously, others have applied mechanisms
which introduced the grain dimensions (for trans-
verse diffusion, Baron [1952]; for longitudinal
diffusion, Kramers in a private communication,
and Rifai and others [1957]). These mechanisms
show a probability distribution of discontinuous
character, the traveling particle being able to
choose only between movements of +1, 0, or —1.

We preferred an approach where the probability
distribution is continuous with respect to the
direction of the path and proportional to the dis-
charge of all the canals oriented in the direction
considered. This approach enables derivation of an
expression, which contains both transverse and
longitudinal diffusity combined in one formula, and
shows the observed difference of the diffusion
coefficients in transverse and longitudinal direc-
tion.

This result was published by the author [de
Josselin de Jong, 1956] in Dijon for brevity’s sake
without detailed mathematical explanation. Be-
cause of a regrettable computational mistake and
some printing errors the formulas shown there are
incorrect; so this article serves as a rectification
and a justification of the mathematical treatment.

Notation—The following notation is used.

{ length of elementary canal

%, ¥, %, r coordinates of the exit of an ele-
mentary canal, when the entrance is placed
in the origin
residence time for particle in elementary
canal
1 residence time for elementary canal in prin-

cipal direction of flow

i
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5

B fennenannnsnnracnn,

F16. 1 - Diagram of pore space, (a) tetrahedral pore between four spheres; (b) pore schematized
by a canal bifurcation; (¢) random path chosen by a foreign particle through the canal system

{x), (2% ---etc, mean values of x, 2®..-

0, ¥ angles describing direction of elementary
canal

gs¢ + §o, Q liquid discharge

7, mean velocity of liquid flow

g0y » £0, gy distribution functions for choice of
paths

P probability function

X, ¥, Z, R coordinates of arrival point of a
particle, starting in the origin

T time of travel of the particle

N number of canals covered by the particle

Xo, Yo, Zo, R0 coordinates of the maximum
number of particles traveling during the
time T

Ty arrival time of the maximum number of
particles covering a distance Z,, Ry

No number of canals covered by the maximum
number of particles

oz, O, op standard deviations of proba-
bility function with respect to Z, R, T

D; longitudinal diffusion coefficient

Dy transversal diffusion coefficient

£, m, &, T integration variables

262

a* @, b, ¢, d, e, f functions of the first and
second moments of the stochastic variables
given by (9) and (12)

A, A’, B, C functions given by (15)

A function of distance Z, given by (13) and
(23), represented graphically in Fig. 4

In 4 = Euler's constant = 0.577

Schematization of canal system—The pores
between grains of spherical form consist of nearly
polyhedral cavities connected by triangular
shaped canals (Fig. 1a). The resistance to the
waterflow is principally determined by the narrow
passages, these being oriented at random.

We will schematize this pore system by a net-
work of canals linked together as indicated in
Figure 1b. The orientation of the canals is at
random, but uniformly distributed in all directions.

We will further suppose that the pressure
gradient in each canal is proportional to cos 6, @
being the angle between its direction and the direc-
tion of principal flow, Z (Fig. 1c). If for a first
approximation the lengths and the conductivity of
all elementary canals are taken to be equal, the
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mean velocity of the liquid in each canal is pro-
portional to cos 6.

The velocity of flow in the canal varies over its
section, so that if a foreign particle moves at a
velocity equal to that of the fluid in its immediate
vicinity, its velocity will be depended on its radial
distance from the center. Brownian motion, how-
ever, causes a radial diffusion in the canal [see
van Deemler and others, 1955], so that if the canal
section is small enough we may assume that the
velocity of the foreign particle is equal to the mean
velocity in the canal.

With these assumptions the residence time #; in
the canal 7 is given by

m

where # is the shortest residence time possible,
oceurring in a canal oriented in the Z direction.
If the length of an elementary canal is {, the
distance covered in the x, ¥, z directions by a canal
is

¥ = u/cos 0;

x5 = (sinﬁ;msvh

Y= {sin B 8in (2)

Choice of path—A foreign particle carried by the
current through the canals has to choose a new
direction of motion every time it arrives at a
junction. We will assume that the choice of direc-
tion between @,y and 6 + d8,y + dy isdistributed
in proportion to the gquantity of water flowing in
these directions taken as a fraction of the total
discharge of the canals.

This fraction is computed as follows: From a
large number A4 of canals there are by virtue of the
uniform distribution with respect to direction

A sin 8 (2x)t d9 dy canals

z = fuosﬁ;

oriented in a direction between 8, Y and 8 + d@,
¥ + dy. The discharge of these canals is
gop = Ago(27)7 cos 0 sin @ df dy where gq is the
discharge of an elementary canal oriented in the
Z direction. The total discharge of the 4 canals is

2x /2
Q= (Aqur)j dﬂ"{ sinfcos 0d8 = %Aq‘,
o
So the fraction of discharge in the § — 8 + 48,
¥ — ¥ + dy direction is
Loy A = qpu/Q = wlcosBsinddidy  (3)

The path followed by the particle is determined by
the subsequent choices, each being distributed
according to the distribution function ggy .

In order to show the scattering effect let us con-
sider how far a particle is deviated when it follows
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a canal in direction @, ¥ for a time Af (<u). Fhe
velocity in this canal is (£/%) cos 8, so that the
deviations Az and Ar are

As = Al (£/u) cos? @ = (At £/u)(1 + cos 26)
Ar = Al (£/u) sin 6 cos & = }{at-£/u) sin 26

These deviations lie on a sphere with radius
At-£/2u and center at 5 = Al-{/2u. The distri-
bution function gay = (2)™ } sin 20 d(26) dy also
shows that the arrival points on the sphere are
uniformly distributed over its surface. This
scattering therefore bears a resemblance to
Brownian motion super-imposed on a translation,
and the problem has become one of random flight.
However, there is a difference in that the residence
time in the free paths for Brownian motion is in-
dependent of the orientation. For the problem
considered here, the residence time is inversely
proportional to cos f, so that its value is infinite in
the extreme case § = m/2.

For the determination of the diffusion coefficient
we can, with some alterations, make use of the
probability calculus developed for Brownian
motion [Chandrasekhar, 1943, pp. 8-16]. ;

Iniroduction of probability—When the particle
has passed through a large number, N, of canals,
it has arrived at a point X, ¥, Z where

X = Dx = 2, Lsin0cosy
¥ = Ey;= E!sind;sinf«,- 4)
Z = D,z = 2, Lcost

The summation being from j = 1 to N. The time of

travel is

T = 24 = Dujeos b ©)
With the aid of Markoffs theorem [Chandrasekhar,
1943, p. 9] we can determine the probability
Px(X, ¥, Z, T) dX -d¥ -dZ.dT, that the particle
after V passages has arrived in the volume between
(X, ¥, Z) and (X + dX, ¥ + d¥, Z + d2)
during the time interval T to T + dT, as

Px(X,¥,Z,T)dX dY dZdT
ax dy dzdr 1™ o e +eo
deriza (o, (P e [

N (2x)4
X exp {— iltX + 9V + tZ + T} X Ax (6)
where

Ay = [j;m

2
a9 Y gay
0

N
cexp |+ gy + a5+ rt,-)I:I
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By introduction of T as the fourth component of
the vector whose probability is determined, the
dependence of the residence times on the stochastic
variables is accounted for. The result Py, how-
ever, is not yet sufficient because the particle may
arriveat X, ¥, Zin a time T in different ways with
different numbers of passages N. For instance, the
particle may choose a path which, being oriented
in the z direction, brings it quickly very near to
XY¥Z and then take a canal nearly perpendicular
to Z with such a long residence time that the rest
of T is consumed there. In that case the number of
choices, is very small in comparison to the mean
number of passages necessary. It is therefore
necessary to integrate Py over all possible values
of N to obtain the required probability.

Ng
PX,V,7,T) = f Py(X, ¥,2,T, N) dN (T)
Ny

For points on the Z axis (X = ¥ = 0) the extreme
values for N are Ny = Z/£ and N2 = (ZT/ul)}.

Standard deviations—The probability distribu-
tion P(X, ¥, Z, T) for the arrival of one particle is
a measure for the concentration distribution when
a great number of particles is injected.

The dispersion may be described by diffusion
coefficients which according to Einstein equa

D = ¢*/2T (8)

where o is the standard deviation of the proba”
bility distribution. As P(X, ¥, Z, T) is a function
of X, ¥, Z, and T we may derive for a given T,
the place X, ¥, Z where the probability is a
maximum, and the standard deviation ey, oy, o,
in the directions perpendicular and parallel to the
principal stream around this maximum. But also
we can take a fixed point in space and determine
the standard deviation or describing the changes
of concentration in course of time at the moment
when the maximum concentration passes,

In order to determine these standard deviations
from the probability described by (6), several
integrations have to be executed.

Integration of the expression for the probability—
First the value of Ay has to be determined, which
may be effected in a way similar to that shown by
Chandrasekhar [1943]). We encounter here, however,
the difficulty that {; becomes infinite for § = 7 /2
acrording to (1).

We will not enter into the mathematical details,
which can be obtained by request to the author,
but infer, that to the neglect of small terms for
N > 1, the following result is obtained.
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Ay = exp [Nlird + dte — (a** + 2brf + cf?

+ f2 + f#l} )
with
e* = [In (ifyru) — 42
b = =) — (=) = — ul/f6
¢ = §[(g?) — (2] = + £2/36
d={=2u e=(z)=2{3
@) = (9)=1{r) =0
J= 3% =107 = 3 = £/8
where ({ ) indicates the mean value.
Introduction of this value for Ay into (6) for
Py shows that next integrations versus r, {, £,
and n have to be executed. With respect to {,

and 7 this is readily performed by the use of the
well known result

o
[0 G = 0 s = w5 exp (e 10)

For the £, 5 part of the integral this gives, using
polar coordinates, a result which yields the
probability, that the particle should arrive in the
ring between R and R + dR

(2xR dR/4xNf) exp|—R:/4N]) an

From the 7, { part of the integral only the integra-
tion versus { may be treated according to (10)
giving

+
(2m)2 dT dZ(x/cN ) [ dr X exp [— i7[T — dN]

+ i(b/c)7lZ — eN] — (1Z — eNJt/4cN)
— Nra* — (83/0)])

The subsequent integration with respect to r
shows the difficulty that a* is a function of . Here
again we cannot extend upon the mathematical
details, (which can be obtained by request) by
which may be proved that a very good approxima-
tion is obtained by substitution of the constant a
instead of ¢* according to

e=(0—}—Ilnyw (12)
with A the root of
N=ieM/A—3=Iny) (13)

The relationship between A and N according to (13)
is represented in Figure 2. Again the larger N, the
better the approximation. With this substitution,
the coefficient of 7% in the integrant is independent
of v, and (10) may be used. Then finally the
following result is obtained for Py .
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Fi6. 2 - Graphical representation of Eq. 13 combined
with Eq. 21; M as a function of Z, the distance
of the maximum concentration, and { the
elementary canal length

Px(T, Z,R) dT dZ dR = (dT dZ RdR/8xN*(ac — b))
Xexp|{—(d+AIN'+B—CN| (14)

wherein

A = [eT? — BTZ + aZ?)/4ac — ) ]

B = 2[edT — b(eT + dZ) + aeZ]/4(ac — b%) ||

C = [cd* — 2b de + ae?)/4({ac — B?) (a9

A" = R4S

In order to obtain the diffusion coefficients as
the final result of our considerations, the subse-
quent treatment of (14) for the probability Py,
that a particle after N choices arrives at a point
Z, R in a time T, involves an integration with
respect to N, and the determination of the stand-
ard deviations with respect to Z, R, or T. These
operations become easy to perform if it is realized
that according to the central-limit theorem the
different probabilities involved will approach a
normal law for N > 1. Therefore, if a result is
obtained for the probability distribution of a
variable u given by
Plu) dp = exp [F(u)] du

we can replace the function F of u in the exponent
by

Flp) = Fluo) + #lu — po)?F"(w)  (16)

where pg is the value of u for which F(u) has its
maximum,. Because the distribution of P(p) is
approximately normal the higher order terms in
the Taylor expansion of F(u) may be neglected.
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From (16) it is obvious that the standard deviation
of P(u) approaches the value

ou = |— F"(uo)]t

The evaluation of an integral of the form

(1

B Bz
[ Ply) du = [ exp [Flu)} du
tH il

can by virtue of the substitution (16) be ap-
proximated by

40
[ explfilus) — = Fluo)lp — w)?) dlp — m )

= [2x/ — F"(u)]! exp {Fluo)} (18)

The error introduced by the additional integrals
over the intervals — % — uyand p: — + = is
negligible if the integrand in these intervals con-
sists of an exponential of large negative value.
In the case of the integration with respect to N,
which has to be performed on (14) according to
(7), the values of Ny, Nz, and F(¥) are such that
in agreement with this condition the extension of
the boundaries to + = and — = is permissible.
Therefore the result of the integration versus N
can be obtained by determining the value of N,
for which F(N) in (16) is a maximum and sub-
sequently F"(Ng). These determinations necessi-
tate only differentiations en F(N) being operations
which are always feasible. Neglecting terms of
small order, there results

No = [{4 + 47)/C)H a = [No/C] (19)

and the probability for the particle to arrive in
time T at a point with coordinates Z, R is
_dTdZRdR ¢ ?
Sflrlac — BB (4 + 4')°

X exp |B — 2[1 4+ Cl4 4+ A"}

P(T,Z,R)dT dZdR =

(20)

wherein A, A', B, C are given by (15) and a, b,
¢, d, e, f by (9) and (12).

Character of the probability P(T, Z, R)—From
(20) for the probability several conclusions may be
drawn with respect to standard deviations. The
expression is a function of T, Z and R because the
factors 4, 4’ and B contain them. The maximum
of P(T, Z, R) lies in Ty, Zo, Ry given by

Ty = dZofe = 3uZy/l Ry =0

This means that the maximum concentration of an
injected substance travels at a wvelocity 7, equal
to the mean velocity (z)/{(t) = 3f/u. That the
maximum also follows the axis R = 0 is evident.

The standard deviations about the maximum
may be derived with (17). We obtain then

(2n
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[2Zuf/e]t = [Zaolr)/ ()] = (13Z0/8L)
[2Z4(cd* — 2bde + ae?) /&)

1Zo((22)e) — 2{at)(s) ()

+ 3+ 2 — In pu? (5)/{EP)

ul3Zoh + 3 — In 7)/€))

(e/day =} LBZu(N + 1 — In 3) /L]

a 9
- E]
[

(22)

&r

ez

In these expressions Z, is the distance along the
z axis, where the maximum is at the moment T .
The maximum number of choices Ny for the
maximum at Z, is given according to (19) by

No = Zo/e - 320/2{ {23)

The length of £ is given by the geometry of the
pore canal system, while A can be read from
Figure 2 as a function of N, or computed by (13}.

The standard deviation o, applies to the change
of concentration registered at a point on the axis
when the maximum passes by. The approximated
value of o, as given in (22) is applicable for the
case of a point injection as well as for the break-
through curve of a plane front. Exact computation
of these two different cases from (20) would yield
a slightly different result.

The standard deviations o, and ¢, represent
the dispersion of a point injection in longitudinal
and transverse directions at a certain moment.
From these values the diffusion coefficients
D and Dz may be computed by (8) and give

Dy = op/2Te = 3 1,{/16

S v a
z o7/2T0 = 1, + 3 — In+)/6

From this result we deduce that the interrelation
between these diffusion coefficients is

Dz/Dp = 8+ { — Inv)/9 (25)

which according to (13) is dependent on the
distance, since A is a function of Ny and Ny =
3 Zy/2L. The order of magnitude of Dz/Dg would
be 6.5 for Ny = 105

In the foregoing computations £ the length of
the elementary canals was invariable. The intro-
duction of a statistically distributed canal length
in the given analysis, entails no essential dif-
ficulties. We did not represent its influence because
we assumed that for the example given by the
experiment this influence was small in comparison
to the scattering effect produced by the orienta-
tion of the canals.

Experiments—Several experiments have been
run with the percolation apparatus represented
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FiG. 3 — Test device

10005

100082

OSCILLATOR
1000 cps

diagrammatically in Figure 3. The cylinder (¢ 6 cm,
height 20 cm) was packed with glass spheres of 0.2
mm diameter (standard deviation 0.05 mm). The
packing was carefully controlled to procure a
uniform porosity of 38.5 volume pct.

The system was saturated with distilled water
with NaCl to a concentration of 0.02 normal. The
liquid under the filter was replaced by water with
a 1.0 normal NaCl concentration. Next the water-
flow was started at a filter velocity upwards of
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Fic. 5 - Observed standard deviations
as related to theory

6 cm?®/minute. The mean velocity through the
pores {z}/{l} was
(6/4x6%) X (1/0.385) = 0.55 cm/min

At different distances from the bottom (2.5, 7.5,
12.5, 17.5 cm) electrodes were inserted into the
grain material, and permitted salinity measure-
ments of the interstitial liquid. The electrodes con-
sisted of a platinum wire ¢ 0.7 mm, length 3 mm
and were covered with platinum-black. The
electrical specific resistance of the material around
these electrodes was determined with the Wheate-
stone bridge (1000 cps, 50 pA) represented
diagrammatically in Figure 3. Calibration in dif-
ferent NaCl concentrations gave the relation be-
tween salinity and electric resistance in the
circuit. Calibration in the liquid alone as well as
after introduction of the grains gave values which
correspond with theoretical computations based
on potential distribution around ellipsoids and
reduction of conductivity by the grain material.
By measuring the resistivity wvariations with re-
spect to time the break-through curve as the
saline front passed by, could be determined.

In Figure 4 is given the salinity as registered by
the electrodes at the moment that a particle
traveling at the mean velocity would have arrived
at the distance indicated by the abscissa. The
error introduced by the finite dimension of the
electrodes is shown by the curve at the top of
Fig. 4 where, based on theoretical calculations of
the potential distribution round ellipsoids, the
apparent concentration variations measured by an
electrode have been drawn for the passing of an
abrupt front. '

The observed curves show a distribution that is
nearly normal. Their inclination increases with the
distance from the bottom indicating that also the
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standard deviations o, increase with Z. In Figure
5 the relation between o, and ‘\/2 is shown.
In the same figure we inserted a line for { = 0.08
mm computed with (22).

For £ the value 0.08 mm agrees best. This value
is about } of the main grain diameter. In a close
packing this is the distance of the centers of two
neighbouring tetrahedral pores (see Fig. la).
Here the packing was looser, but the difference in
sizes of the spheres may account for the small
value of f since the number of smaller spheres
present was not negligible.

In Figure 5 the molecular diffusion has also been
shown because in the total observed difiusion the
effect of Brownian motion is present. Molecular
diffusion was determined in the percolation ap-
paratus as follows.

The percolation test was executed as above for
the front passing the two lower electrodes. Then
the liquid flow was stopped during 24 hours and
started again in order to let the front pass the two
upper electrodes. The additional inclination of the
break-through curves correspond to an acceptable
diffusion coefficient of

Dy, = 07 ¥ 107* cm¥/sec.

The normal runs lasted about 30 minutes, so the
influence of molecular diffusion was not sufficient
to affect the interpretation of the test results (see
Fig. 5).

Conclusions—The introduction of a continuous
probability distribution for the random choice of
travel direction at a bifurcation in the pore canal
system permits the computation of longitudinal
and transversal diffusion from a formula which
contains both together as a probability expression
(20). Both diffusion coefficients are proportional
to the mean velocity, as has previously been
found by several other workers in this field. Further
they are proportional to £ which is of the order of
the grain size, but depends on the grain-size dis-
tributions and packing. In the glass beads packing
investigated £ amounted to about } of the mean
diameter of the grains.

The longitudinal diffusion coefficient moreover
depends on the distance Zo, which has been
covered by the particle traveling at the mean
velocity. This dependence is nearly proportional to
In \f Z; In experiments, where Z, varies over a
small range this dependence will remain unob-
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served, but the effect may be of importance when
scale test results have to be interpreted.

The test results represented by Rifai and others
[1956] seem not to be in contradiction with this
result, that Dz should be a function of Z; .

Since the transverse diffusivity does not depend
on £y, the ratio between Dz and Dy increases as
the mean distance of travel increases. From the
few experimental data available values of Dz/Dg
from 6 to 10 have been reported. According to our
theory this would correspond to a traveling
distance of 10% to 108 times the elementary canal
length.
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TrANBACTIONS, AMERICAN GEOPHYBIOAL Union

Decomber 1958

Discussion of “Longitudinal and Transverse Diffusion in Granular
Deposits”

BY G. DE JOSSELIN DE JonG

|Trans., 39,

J. A. Cole (Department of Geodesy and Geo-
physics, University of Cambridge, Cambridge,
England)—The writer finds the paper most valu-
able, because he [Cole, 1957] has made experiments
with columns of granular material, basically similar
to those described by the author, in order to de-
termine the relative importance of: Effect (a)
radial molecular diffusion in each pore combined
with a velocity gradient across the pore, and
Effect (b) the geometry of the pore system, in
producing a longitudinal dispersion of an injected
substance.

The author mentions Effect (a), but makes the
assumption that it may be neglected if the pore
section is small enough. Though valid, such an
assumption is not often realized, as the following
numerical examples illustrate. Tavier [1953,
1954ab] has shown that the diffusion coefficient
Ds of Effect (a) with streamline flow in straight
cylindrical tubes of radius a is

Ds = a%/48 D,, (26)

when

4Lfa 3> voa/Dm 3 6.9 27

L being the distance along the tube in which the
concentration of the injected substance has an
appreciable gradient, and is approximately equal
to 4 gz The first condition in (27) can easily be
met by using large enough values of Z. Figure 6 is
a presentation of Dg versus vy on a log-log graph,
for two values of a. Where the two lines are broken
the second condition in (27) does not hold, and
(26) is only an approximation. In applying (26) to
granular materials, which do not have cylindrical
pores as a rule, one uses a mean pore radius (see
@ below) in computing Dg. The random orientation
of the pores results in one's observing not Ds,
but Ds/g = a*({g)/{t))?/48D,, where (2)/{t) =
no/£.
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Fic. 6 - Comparison of D, observed in the granular
materials listed in Table 1 with theoretical values of

TABLE 1 — Properties of porous col
Ma- iti N
| rmism | o | o | s
il = ; i m
A | Glass beads 0.020 | 0.385 0.0086
B | Glass beads 0.047 0.35 0.018
C | Glass beads 0.027 | 0.33 0.0105
D | Clean quartz | 0.034 | =0.33 =0.013
sand

Clearly a line corresponding to Ds/8, for a
given value of a, plotted versus ((z)/{t))? is
coincident with that of Ds versus v, for the same
value of a.
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DISCUSSION

The author gives for his measurements in a
glass-bead column, ¢z = 0.6 cm when Z = 17.0
cm and (2) [I(I} = 055 cm/min = 0.0092
cm/sec. Accordingly Dz = 0.60 X 0.0092/34
cm?*fsec = 9.6 X 107% cm/sec.

This value of Dz is shown (as the point for
Material A) on Figure 6. Also shown are some
values of Dz in columns of glass beads and of clean
quartz sand, which were obtained by the writer.
Materials A, B, C, and D have the properties
specified in Table 1, where d = mean grain
diameter, p = coefficient of volume of porosity,
and & = (d/2)[p/(1 — $)]' = the mean radius of
the pores, approximating the polyhedra to spheres.

These values of @ correspond to values of Ds/£
which are far from negligible. In Material A, the
case quoted by the author, it is likely that Effect
(a) was appreciable (one tenth of the observed
Dz say). In the other examples Effect (a) was of
major importance, amounting to a quarter of the
observed Dz in Materials B and D, and almost all
thereof in material C.

In contrast to the above laboratory experiments,
the writer [Cole, 1957) also made field experiments
with tracers flowing in chalk aquifers. These
showed values of Dz some hundred times greater
than would have been expected from Effect (a)
alone, and it was presumed that Effect (b) was
predominant. Even that was not certain, owing to
possible chemisorption effects within the aquifer.

There is thus scope for development of a fuller
treatment of longitudinal dispersion in granular
materials. Besides Effects (a) and (b), such a
treatment would ideally include the work of de
Vault (1943), Thomas [1944], and Goldstein [1953]
on chemisorption processes in porous columns.

Further laboratory work would profit by the
determination of the pore radii in the granular
material, by measurement of its water content
over a range of negative pressures |[Foster, 1048].
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G. de Josselin de Jong (Laboratorium Voor
Grondmechanica, Postbox 69, Delit, The Nether-
lands, Author’s closure)—In his discussion Cole
gives further information on the deviation from
our theory to be expected in experiments for
which the basic assumption of piston flow in the
elementary canals is unsatisfactory so that the
influence of holdback can not be neglected. Ac-
cording to the conception of Van Deemter and
others [1955], this holdback amounts to H = 0.02
in the test described, because the factor
(D t/a%)} =11, where D,, = molecular diffusion =
0.7 ® 107% cm¥fsec, { = time to cover the
distance 4 o. with mean velocity = 2.4 cm/
0.0092 cm/sec = 270 sec,and a = radius of pores =
0.004 cm.

For the interpretation of the test results in the
article this amount of holdback was considered as
negligible. According to his theory Cole obtains a
somewhat larger influence about one tenth of the
longitudinal diffusion.

As the principal point of our considerations was
to show the interrelation between longitudinal and
transverse diffusion and the possibility to de-
scribe these two phenomena in one mathematical
expression, the influence of holdback and molecular
diffusion both were omitted in the theoretical
considerations for simplicity's sake. But we do
agree that these two effects and the chemisorption
as mentioned in the discussion may have an over-
whelming influence in certain circumstances.

In order to show the phenomenon of longitudinal
and transverse diffusion we add here some photo-
graphs of a Christiansgen filter (Fig. 7). This is a
deposit of crushed optical glass (grain diameter
.42 to 1.19 mm) saturated with a solution of
NH.]J in water of such a concentration that both
refraction indices of grains and pore liguid are
equal for sodium light.

As the light is not dispersed by deviation of its
direction at the interfaces of grains and liquid the
svstem becomes perspicace. (We are indebted to
the Shell Laboratory, Amsterdam, for this device.)

The pore liquid runs vertically through the
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Fi6. 7—Christiansen filter showing longitudinal and transverse diffusion

deposit. Ap analine dye is introduced with an
injection needle. The molecular diffusion of the
dye is about D,, = 107 cm? sec. The photographs
show the dispersion originated at two velocities,
0.0008 cm/sec and 0.008 cm/sec, which induce a
holdback over a distance of 0.5 cm of respectively
0.025 and 0.10. The standard deviations originated
by molecular diffusion in combination with
longitudinal and transverse diffusion as computed
from the theory are added in the figure for com-
parison.

Selected Works of G. de Josselin de Jong

At the lower velocity the elongation of the
standard deviation ellipsoid is principally de-
termined by the longitudinal diffusion, while at the
higher velocity the influence of the holdback enters
into the observation.
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ABSTRACT

De Josselin de Jong, G. and Van Duijn, C.J., 1986. Transverse dispersion from an originally
sharp fresh—salt interface caused by shear flow. J. Hydrol., 84: 55—79.

In this paper the influence of transversal dispersion and molecular diffusion on the
distribution of salt in a plane flow through a homogeneous porous medium is studied.
Since the dispersion depends on the velocity and the velocity on the distribution of salt
(through the specific weight) this is a nonlinear phenomenon. In particular for the flow
situation considered, this leads to a differential equation which has the character of
nonlinear diffusion.

The initial situation (at £ = 0) is chosen such that the fresh- and salt water are
separated by an interface, and each fluid has a constant specific weight 7y; and 7,,
respectively. For this initial situation, the solution of the nonlinear diffusion equation has
the form of a similarity solution, depending only on {/\/t_ , where { denotes the local
coordinate normal to the original interface plane and ¢ denotes time.

Properties of this similarity solution are discussed. In particular it is shown how to
obtain this solution numerically. The interpretation of these mathematical results in
terms of their hydrological significance is given for a number of worked out examples.
These examples describe the distribution of salt, as a function of { and ¢, for various flow
conditions at the boundaries { =t Also examples are given where the molecular
diffusion can be disregarded with respect to the transversal dispersion.

INTRODUCTION

When fluids of different densities are present in an aquifer and the
density varies in horizontal directions, the fluid motion contains rotation. In
the case of a sharp interface this rotation results in a shearflow, which is
proportional to the density difference and the interface inclination. Its
magnitude was established by Edelman (1940). The rotations and shearflows
resulting in the more general case of gradual density variations were treated
by De Josselin de Jong (1960).

Specific discharges in an aquifer are accompanied by dispersion. Therefore
it can be expected, that at an inclined interface dispersion occurs, which
results in changing the abrupt transition from one density to the other, in a

0022-1694/86/$03.50 © 1986 Elsevier Science Publishers B.V.
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gradual transition zone. Since dispersion can be described in terms of
differential equations (see Bear, 1975) it must be possible to express the
spreading from an abrupt interface mathematically in terms of the dispersion
parameters.

The governing relations form a coupled system, consisting of equations
describing the specific discharge rotations, due to the gradual density
variations, and the dispersion, caused by the specific discharge distribution.
Solving this system analytically in the general case of arbitrary density
distributions and additional superimposed specific discharge distributions
seems rather tedious. For practical purposes, therefore, Verruijt (1971)
proposed to introduce a new parameter to describe the spreading, without
specifying its relation to the dispersion parameters and the density variations.

The purpose of this paper is to show, that it is possible to describe the
spreading process analytically, when starting from an abrupt interface in
certain simple circumstances, such that the discharge remains parallel and a
plane flow situation occurs. For that simplified problem the coupled system
can be reduced to one ordinary differential equation of diffusion type. The
properties of solutions of this equation are known, because they have been
studied extensively from the mathematical standpoint, by Gilding and
Peletier (1977), Van Duijn and Peletier (1977) and Van Duijn (1986a).

How these solutions are applied to describe the spreading of density
variations from an abrupt interface is shown in this paper.

SIMPLIFIED PROBLEM

In this paper the case is considered of a dispersion zone developing from
an originally flat, inclined interface, that extends in all directions to infinity.
In order to simplify the analysis, the conditions at the boundaries of the
infinite aquifer are assumed to be such, that the flow is constant in planes
parallel to the original interface plane.

Let coordinates £,  be in the original interface with i horizontal and £
pointing upwards at an angle o with the horizontal, see Fig. 1. The co-
ordinate { is normal to the original interface plane and points upwards. Flow
conditions then are such, that the specific discharge components gy, g,,
q; satisfy:

9, = qr =0 0qg/0f = 0dg¢/on = O (1)
indicating that only g, is nonzero and a function of only { and the time ¢,
ie. g = q(§, 1)

At time ¢ = 0 the interface is assumed to be sharp, such that the plane
¢ = 0 separates the aquifer into two regions in which the density of the
fluids is a constant. Above it is freshwater with density p; and below it salt

water with density p,. In the description below the specific weight v = pg is
used instead of density p. So in formula the situation is initially:
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e X

horizontal plane

Fig. 1. Interface plane at angle & with horizontal, separating freshwater above it from salt
water below it, at time t = 0.

Y =7 for §>0,t
Y = 72 for ¢<0,t

Under influence of this specific weight difference, initially an Edelman
(1940) shear flow g exists at the interface of magnitude:

0
0

(2)

q = (g¢, —q¢,) = (K/u)(y2 —7,)sin« (3)

(see e.g. De Josselin de Jong, 1981). In this expression g, , ¢ are the
specific discharge components parallel to the interface in the fresh- and salt
water regions, respectively. k is the intrinsic permeability of the aquifer,
considered to be a constant, and u is the dynamic viscosity of the fluids.
For fresh- and salt water the viscosity differs by an amount small enough to
disregard its influence on the results of the analysis below: for a justification
see e.g. Verruijt (1980).

Superimposed on the shear flow an average specific discharge in £ direction
of magnitude (g is considered to occur in this paper, with § a number, that
remains constant in time. The initial flow conditions are then in accordance
with eqn. (3) given by:

q;, = B+1)ag for >0t =0
g, = B—1)a for £<0,t =0
The following situations are to be distinguished, see Fig. 2:

B<—31  both fresh- and salt water flow downward

Il

(4)

I

B = —3% the fresh water is stationary
-3 <p<4 fresh flows up, salt flows down
B =1 the salt water is stationary
B>1% both fresh- and salt water flow upwards.

As time proceeds the transition from v, to v,, which originally is sharp at
¢ = 0, will spread by hydraulic dispersion and molecular diffusion. Salt water
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Fig. 2. Distribution of gy at time ¢ = 0 for different values of B.

will mix with freshwater, and the specific weight will become a variable
function of position and time. Because of the plane character of the case
considered, v will be a function of ¢ and t only, i.e. v = (£, t), which
implies that:

dy/dk = dy/on = 0 (6)

At infinity the specific weights will tend towards the original values 7,
at{ = tocandy, at { =+ —oo,

The mathematical description of the spreading process is developed below
from basic equations, describing the changes in specific weight and specific
discharge g; in course of time. The boundary conditions at infinity are
assumed to be such, that the specific discharges remain constant there and
equal to the initial values eqn. (4). Thus:

Y =7, q = B+ for ¢{>+o0,t>0 0
Y =7, @ = B—1)a for {>—o0, t>0

The result of the analysis will be a distribution of specific discharge and
specific weight as functions of { and ¢. An example is shown in Fig. 3 for the

Fig. 3. Distribution of specific discharge (a) and specific weight (b) for the case m = 0,
B =1/4 at some time, t > 0.
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case B =1 at some later time, t > 0. A more detailed description of this
figure is given in the sections below.

BASIS EQUATIONS
Flow rule

When an aquifer contains fluids of different specific weight, the flow rule
is obtained by considering equilibrium of forces. Let K, be the force
required to act on a unit volume of pore fluid in order to maintain the
specific discharge g through a porous medium. According to Darcy’s experi-
ments this force equals K, = (u/k)q. Let K, be the force exerted on a unit
volume of pore fluid by the gradient in the pressure p and the influence of
gravity on the specific weight, . This force equals K, = —grad p + e,
where e is a unit vector in the direction of gravity, i.e. downward. Equating
K, and K, results in:

(u/k)q = —gradp + ve (8)
By taking the curl of this relation, the pressure p is eliminated. This leads

to:

(u/k) curlg = curl (ye) (9)

which, accounting for eqns. (1) and (6), reduces to:

(M/Kk)(3ge/3E) = — (9v/d%) sin « (10)

Integration of eqn. (10) is possible, because ¢ is the only independent
variable. This gives:

q¢ = — (k/p) v sin « + constant

where the integration constant can be determined by use of eqn. (7). This
gives, taking account of eqn. (3):

q¢ = (k/u)(y, —v)sina+ (B +4)q
or: (11)
9:/q = B+ (71 + 72— 27)/2(y2 — 1)

In this equation g; and v are the variables, which are both functions of
¢ and t. It may be remarked here, that eqn. (11) is a linear relationship
between these two variables. This is reflected in Fig. 3, where the curves
for g; and v, respectively, are shown to be each others mirror image, when
drawn on appropriate scales.
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Continuity of fluids

When both fluid and porous medium can be considered to be incompress-
ible, continuity of fluid is satisfied, when div g is zero. Using eqn. (1) it can
be verified, that all terms of div ¢ vanish and so continuity of fluid is
guaranteed, identically.

Continuity of salt

In stationary groundwater salt is spread by molecular diffusion. In
addition, this spreading is enhanced when the fluid moves, because inhomo-
geneities in the pore space scatter and recombine fluid elements. In the
periods of being adjacent, salt is transmitted by molecular diffusion to
neighbouring streamlines and carried off in directions deviating from the
average flow paths. This process is called mechanical dispersion (see e.g.
Bear, 1975).

Averaged over the pore space a salt flux F occurs, which expressed as
weight transport per unit time and unit area of the aquifer is:

F = —Dgrady (12)

where D is a second rank tensor. It is the dispersion tensor consisting of
terms due to molecular diffusion and mechanical dispersion.

Continuity of salt is satisfied, when the divergence of the exchange flux
is balanced by the local rate of change of the specific weight dy/dt and its
convective rate of change div(gy). When n denotes the porosity of the
porous medium, this balance is expressed by:

n(9y/dt) + div(qy) = —divF = div(D grad v)
Taking account of eqns. (1) and (6) this expression reduces to:
n(3y/dt) = 8[(nDmo1 + arlgl) 9v/38] /0§ (13)

where D, is the molecular diffusion coefficient and oy is the transverse
dispersion length in the direction of ¢ (i.e. in the direction perpendicular
to g;). A special feature of the dispersion is, that not the specific discharge
itself, but its absolute value has to be taken into account.

Equation (13) can be simplified by taking advantage of the linear relation-
ship (11) between 7y and g . This permits to write it in terms of g; only as:

n(9gy/dt) = oy d[(gm + lgl) 9g¢/38]/08 (14)

where m is a dimensionless parameter representative for the ratio between
the influence of molecular diffusion and mechanical dispersion. It is given by:

m = ano}faTé (15)

Expressed in these terms the salt flux vector F given by eqn. (12) has only
one component F; of magnitude:
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Fe = +ap(y2 —7:)l0m + |g¢1/q) 8g¢/35] (16)

Equation (14) has to be solved subject to the initial and boundary
conditions, eqns. (4) and (7). The mathematical implications of this system
of equations is treated in the next sections.

SIMILARITY TRANSFORMATION

The partial differential equation (14) can be converted into an ordinary
differential equation with simple boundary conditions, by subjecting it
to the Boltzmann (1894) similarity transformation. This means, that the
two variables ¢ and t are replaced by the independent similarity variable
r according to:

r = ¢laxgt/n)'? (17)

Introduction of this variable implies that 9/d¢ = (dr/d{)d/dr .. .etc., so
that eqn. (14) is transformed into the following ordinary differential
equation:

—4 r(dgy/dr) = d[(m + |g¢l/q) dg¢/dr]/dr (18)

A solution of eqn. (18), which only depends on r is called a similarity
solution of the original equation (14). Let the new variable w = w(r) be
defined by:

w = qld (19)
Then eqn. (18) reduces to:
1 r(dw/dr) + d[(m + |w|) dw/dr]/dr = 0 (20)

This is a nonlinear, ordinary differential equation in which the relevant
coefficient has the form (m + |w|). By its dependence on the absolute
value of w, this coefficient creates a special nonlinear character of the
problem.

The boundary conditions (4) and (7) reduce by introduction of eqns. (17)
and (19) to:

w=p8+13 for r—>+oo

w=pf—14 for r—>—o

(21)

Problem P(m, )

The problem, defined by the differential equation (20) with the boundary
conditions (21), will be referred to as P(m, f8), indicating that m and (8 are
the essential parameters. Since these parameters are related to the molecular
diffusion (see eqn. 15) and to the specific discharge at infinity (see eqn. 7),
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it is justified physically to assume that they are real numbers, satisfying:
0sm<e and —oo o0 (22)

Using the substitutions (17) and (19) it is possible to write the salt flux
from eqn. (16) in the form:

Fe = (v2 —y1)(oxgn/t)’? [(m + lwl)dw/dr] (23)

Application of similarity solution

A solution of P(m, () is called a similarity solution of eqns. (14), (4)
and (7). In Fig. 4 it is shown, how such a solution w as a function of r
is related to the curves for g; as a function of { and ¢. The heavy curve in
Fig. 4a is the solution w(r) of P(0, }), determined in a manner that is
explained in example 3-ii in the section on practical application.

This curve intersects the axis r=0 in wy, = 0.372. This means that
according to eqns. (17) and (19) g; = 0.372 q at { = 0 for every time, ¢ > 0.
Thus, all the curves in Fig. 4b, which represent the distribution of g, over
the height ¢ at different time ¢ > 0, have the intersection with the axis { = 0
in common.

The heavy curve in Fig. 4a intersects the axis w = 0 in ryp = —0.503. This
means according to eqgns. (17) and (19) that the plane where the discharge
g is zero, is located in {, = —0.503 (arqgt/n)!’2. As a consequence this
plane descends with time proportional to ¢!’ as shown in Fig. 4c. The
curves in Fig. 4b all have the same shape as the heavy curve in Fig. 4a but are
stretched with a factor, that is proportional to t'/2.

Fig. 4. Relation between a solution w(r) in (a) and the specific discharge g (€, t)in (b).
The plane, where gz = 0 descends in course of time according to \/t— , see (c). The curves
are for thecasem = 0,3 = 1/4.
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AUXILIARY PROBLEM @

The problem P(m, ) is not explicitly solvable, because of its nonlinear
character, although much is known about its solutions. A special difficulty
mentioned already is the occurrence of the absolute value |w|, which causes
solutions to consist of combinations of parts, where w > 0 and w < 0.

This difficulty is solved by considering first the auxiliary problem @,
which is defined by the differential equation:

1s(du/ds) + d[u(du/ds)]/ds = O (24)
with boundary condition:

u=1 for s>+ o0 (25)
and the additional condition:

0<u(s)<1 for —oog<+ oo (26)

In this section the solution set of this problem @ is considered. In
subsequent sections it is shown, that with these solutions it is possible to
produce the solutions of P(m, ) for all m and B by application of an
appropriate rescaling procedure.

Solutions of @

The solutions required in this paper are given by the family of curves
represented in Fig. 5.

Solutions of equations similar to eqn. (24) were studied extensively by
Gilding and Peletier (1977), Van Duijn and Peletier (1977), Gilding (1980)
and Van Duijn (1986a). They gave rigorous mathematical proofs about
existence and uniqueness of solutions and they studied their behaviour. Using
ideas developed in these papers, the following basic facts about solutions of
@ can be established, see Appendix A.

All the curves from Fig. 5 are strictly increasing, with du/ds > 0, at points
where u > 0. Different curves cannot intersect. Further, all curves approach
the upper boundary u = 1 as a complementary error function such that:

1—u = Oferfc (+ }9)] for s>+ o0 (27)

Expressions for the curves in Fig. 5 cannot be given in closed form. They
were constructed with a shooting method, which was executed by using a
finite difference approximation of eqn. (24), described in Appendix B.

The curves are indicated by type numbers I and II, such that type I curves
are located above the heavy line in Fig. 5, and type II curves below that line.
The separation line is called separatrix. In the description below a few
remarks are inserted on the construction of the curves. These are included
for those readers who wish to dispose of more accurate values than can be
inferred from Fig. 5.
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05

Fig. 5. Family of curves representing solutions of problem Q. Triangles are for example
3-i, where m = 1/4, = 1/4. Dashed lines are for example 3-ii, where m = 0, § = 1/4.

Type I curves
These remain strictly positive in the entire interval for s, such that u tends
to a positive value ¢ as a lower boundary, i.e.:

u =¢ with 0<¢<1 for §—+—o0 (28)

This lower boundary is also approached as a complementary error function,
in this case such that:

u—¢ = Olerfc (—4s/¢'?)] for g —m (29)

The numerical procedure for establishing the type I curves is to start from
different values u, on the vertical axis, s = 0. Next ug, the value of (du/ds),
in each starting point, is chosen in such a manner that constructing the curve
to the right, it reaches the value u = + 1 asymptotically as a complementary
error function according to eqn. (27). Subsequently starting with these
values uo and u, the curves are constructed to the left. The asymptotic value
¢ mentioned in eqn. (28) is established using again the complementary error
function approximation, now with eqn. (29).

For every value of ¢, the corresponding starting values are assembled in
Fig. 6, uo on the left-hand scale and u, on the right-hand scale. For example,
the value ¢ = 0.580 corresponds to uy = 0.8, ug = 0.132.

Type II curves
These remain zero for all values of s below a value s, specific for each
curve, i.e.:

u=20 for —oo<s<3g, (30)

At sy the curves start on the base line, u = 0, with a vertical tangent u’' - + oo,
such that:
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Fig. 6. Startvalues ug and ug = (du/ds) in s = 0 corresponding to different endvalues ¢
for type-I curves.

2u(du/ds) = A u=2~0 in 8§ = § (31)

with A a value specific for each curve.

The numerical procedure for establishing the type II curves is to start
from different s, values on the base line, to choose a A and to use the series
expansion in terms of A mentioned in Appendix C for small values of (s — s,).
Subsequently, the curves are constructed towards the right, using the finite
difference scheme of Appendix B. The asymptotic end value of u is
established by use of the complementary error function approximation
(eqn. 27). The value of A is finally chosen in such a manner that the end
value equals u = 1. The A values corresponding to different start values s,
are assembled in Fig. 7.

A =2u(du/ds)

F3365 10 = 0 5 10 4
Fig. 7. Startvalues sy and A = 2u(du/ds) on u = 0 for type-II curves ending in u =1,
§=+ oo,
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Separatrix

The separatrix is the limiting case between the two types of curves. It is
a type I curve with ¢ reduced to zero, and a type II curve with A reduced to
zero. The series expansion for small values of (s —sy) of the separatrix
differs from the series applicable to the type II curves (see Appendix C).

PRACTICAL APPLICATION

In this section it is shown how curves of Fig. 5, representing the solutions
of problem @, can be used for solving problem P(m, ) in practical situations.
It is assumed here, that the relevant hydraulic parameters m and f, defined
by eqns. (15), (4) and (7) are known. The situations where [§|>4 and
|8] < % are distinguished.

When [§| = 4 the boundary conditions (eqn. 21) show that either w(e) >0
and w(— %) = 0 (case 1) or w(ee) < 0 and w(— =) < 0 (case 2). In both cases
the corresponding solution of P(m, ) does not change sign on the entire
interval (— o0, o0). It will be shown that in both cases a solution of P(m, ()
can be obtained from a solution of problem @ (i.e. a curve from Fig. 5 for
that matter) by applying an elementary transformation involving rescaling
and displacing the curve in u-direction.

When |8] <} the boundary conditions (eqn. 21) have opposite sign such
that w(—o) <0 and w(—) >0 (case 3). Consequently, the solution w
changes sign on the interval (—oo, o0). This introduces an additional
difficulty caused by the absolute value of w in the differential equation (20).
Let ry be the value of r where the solution vanishes: i.e. w(ry) = 0, then
w(r) <0 for r <ry and w(r) > 0 for r > r,. The solution thus consists of two
parts (w > 0 and w < 0). Each part is an appropriate transformed solution of
problem Q. They are joined together at r, using the continuity of the
concentration (or velocity g;) and the continuity of the salt flux.

The treatment here is aimed to describe the required procedure of
rescaling and combining the curves appropriately, without too much mathe-
matical details. For more detailed information the reader is referred to Van
Duijn (1986b).

Case 1: f =4

When f is larger than 4, both fresh- and salt water flow upwards. When §
equals 4, only the freshwater flows upwards while the salt water is stagnant.
Both situations are shown in Fig. 2. Now let u(s) be a solution of problem @
and consider for ¢ > 0 the transformation:

r = os (32)
w(r) = c*u(rfo) —m (33)
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This transformation consists of a rescaling (caused by ¢) and a displacement
(over m) of a relevant curve from Fig. 5. By the transformation the
differential equation (24) becomes:

ir dw/dr + d[(m + w) dw/dr]/dr = 0 (34)

because the o cancels.
Next let u(s) be a solution of problem @ of type I or the separatrix. Then
u(e°) = 1 and u(— ) = ¢ = 0. Using this in eqn. (33) gives:

w(ee) = 0> —m (35)
and:

w(—=) = o’p—m (36)
Thus when choosing o such that:

B+4+ = 02—m or o= @B+i+m? (37)
and ¢ such that:

B—1 = o’p—m or ¢ =(@B—3+m)B+1}+m) (38)

it follows that the function w(r) satisfies the boundary conditions (eqgn.
21). Moreover w(r) = 0 for all — oo <r < oo, implies w(r) = |w(r)|. Therefore
eqn. (34) is identical to egn. (20). Thus the function w(r), defined according
to eqns. (32), (33) and (37), (38) is a solution of P(m, ).

Example 1-i: m = 1 and 3 = 0.881

Then from eqns. (37) and (38) there results ¢ = 1.543 and ¢ = 0.580.
Using Fig. 6, the value of ¢ indicates that the relevant curve is a type I curve
of Fig. 5 passing through the point u, = 0.8, s = 0 with inclination uy =
0.132. Transformed with egns. (32) and (33), the u, s values of this type I
curve produce the following w, r values:

w=o0*u—m = 2381u—1

and:
r = 1.54s

These values form the curve of Fig. 8, which is readily verified to satisfy
the boundary conditions (eqn. 21). The curve in Fig. 8 resembles a comple-
mentary error function. Indeed this kind of function is to be expected as a
solution of problem P(m, ) in the limit-case where m is large with respect
to one.

Example 1-ii: m = 0 and 8 = %

Then the molecular diffusion can be disregarded with respect to the effect
of the lateral dispersion and the salt water is stagnant. This situation can be
considered as the limit of the case where § >4 and m > 0. From eqns. (37)
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Fig. 8. Similarity solution for m = 1, § = 0.881.

and (38) it follows that:
o= and =0 (39)

As mentioned above, this value of ¢ indicates that the relevant curve is the
separatrix of Fig. 5 and the value of o shows, that the similarity solution is
the undeformed separatrix. Since this simple result produces a clarifying
example, the corresponding specific weight and specific discharge distribu-
tions are shown in Fig. 9. This figure is to be interpreted in the manner as
explained for Figs. 3 and 4.

In Fig. 5 the separatrix is specified by the intersections with the co-
ordinate axes. These are:

s =0 uo= 0.5873
s = —1.23675 u=20

These values are reencountered in Fig. 9 in the following manner. Since the
scale factor in this case is 0 = 1, see eqn. (39), the s, u values are directly the
r, w values, which are related to physical quantities by egns. (17) and (19).

Using these relations it follows that s = 0 corresponds to { = 0 for all time
t which is the original height of the fresh—salt interface. The first line of
eqn. (40) therefore indicates that the specific discharge at the original
interface height is constant for all ¢ and equal to q; = 0.5873 g, see Fig. 9b.

The second line of eqn. (40) indicates that the depth {,, below which the
groundwater is still stationary and the specific weight is not yet reduced,
equals —1.28675 (apqt/n)!’?. This means that this depth increases
proportional to root time, see Fig. 9c.

(40)

Case 2: < —14

When f is smaller than —4, both fresh- and salt water move downwards.
When § equals —%, only the salt water flows downward while the freshwater
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Fig. 9. Example 1-ii, case m = 0, § = 1/2. Development of brackish zone, when molecular
diffusion can be disregarded and the salt water is stationary.

is stagnant. Both situations are shown in Fig. 2. Now the appropriate trans-
formation is:

r = —os (41)
—w(r) = c*u(—rlo)—m (42)
Applying this transformation, eqn. (24) becomes:

irdw/dr + d[(m —w) dw/dr]/dr = 0 (43)

Let again u(s) be of type I or the separatrix. Then eqgns. (41) and (42)
imply that:

—w(—) = g2—m (44)
and:

—w(+ ) = 0%¢p—m (45)
Now o must be chosen such that:

—B+3+ =02—m or o= (—pf+1+m'? (46)

and ¢ such that:
—B—2 =0d%—m or ¢=(—BF—L+m/—B+L+m) (47)
in order that w(r) satisfies eqn. (21). Moreover, w(r) <0, implies that
—w(r) = lw(r)|l. Thus eqn. (43) is identical to eqn. (20), showing that w(r)
in this case is in fact a solution of P(m, ().

Summarizing, for this case the solution of P(m, () again consists of a type
I or separatrix curve from Fig. 5. Since both egns. (41) and (42) contain a

minus sign the relevant curve from Fig. 5 is rotated over 180° to produce the
similarity solution in the r, w plane.
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Case 3: —4 <p<+1%

In this case fresh- and salt water flow in opposite directions (see Fig. 2)
and so g; and therefore also w from eqn. (19) change sign in the region of
integration. The positive part of the solution is denoted by w* and its
negative part by w™. Then w* resembles case 1 and w™ resembles case 2,

Before showing the practical elaboration of two examples in the sub-
section ‘‘use of Fig. 10" below, a few concepts required in the procedure are
mentioned here first. The positive part of w(r) is defined according to:

w*(r) = o**ut(r/o*)—m with ot = (m+8+43)"2 (48)
and the negative part by:
—w(r) = 0% (—r/o))—m  with o” =—(m—f+1H'"? (49

In eqns. (48) and (49), u* and u~ are parts of two different curves from
Fig. 5. Because of the minus signs in eqn. (49), the part u~ is rotated over
180° in the rescaling process. By choosing o according to eqns. (48) and
(49), it follows that w*(ec) = + 4 and w™(— ) =p — 4.

It remains to organize the solution in such a manner that the two parts
w* and w™ match together at the point where w = 0. More precisely, it
remains to select r, and curves u*(s) and u~(s) from Fig. 5 so that the
composite function:

w*(r) for r>r,
w(r) = (50)
w(r) for r<rg

satisfies certain continuity properties.

In a study of the more general nonlinear partial differential equation
ou/dt = 02 (Jul* ~'u)/dx? with k > 1, it is shown by Van Duijn (1986a) how
to join the solutions on the base line, u = 0 in his case. He points out, that
the fitting conditions are to be deduced from additional physical considera-
tions. In the present problem the condition to be satisfied is that the salt
flux should be continuous. Using expression (23) this condition can be
written as:

2(m + whdw*/dr = 2m —w )dw /dr = A for
wr=w =0 at r =r, (51)

Elaboration of this condition is rather involved, since the relation between
A and r, cannot be determined directly. In order, however, to provide a
first approximation of the solution, Fig. 10 is added here, in which A and r,
values are assembled for a relevant region of m, § values.
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=1-23675 =1

Fig. 10. Values for ro and A for different m, § combinations.
Use of Figure 10

Example 3-i: m =3 and =14

The similarity solution in r, w coordinates is the dashed line in Fig. 11.
This curve is obtained as follows. From Fig. 10 the appropriate values for
this example are found to be A =0.292, ro = —0.699. The value of r,
means that the dashed curve in Fig. 11 intersects the axis w = 0 in the point
r=ro =—0.699.

The value of A indicates with eqn. (51) that the inclination of the curve
is:
dw/dr = A/2m = 0.585 in w =0, ro = —0.699

This information is sufficient to construct the two parts of the curve with
the finite difference scheme of Appendix B, by extending them from the
starting point r = ry, w = 0 in both directions up to infinity.

It is also possible to obtain the curve by transforming two curves from
Fig. 5. From eqns. (48) and (49) it follows that the scale factors are ¢* = 1
for the positive part and ¢~ = — (4)!"2 = —0.707 for the negative part,
respectively. Again from eqns. (48) and (49) it can be deduced that the
starting points of the corresponding curves in Fig. 5 are:

ut =4 and sy = ro/ot = —0.699
and:
u =14 and sg = ro/o” = + 0.989

The points are indicated by two triangles in Fig. 5. It is readily verified,
that the upper part of the dashed curve in Fig. 11 is identical to the unde-
formed curve starting in the left triangle in Fig. 5, undeformed because
¢* = 1. The other one is rescaled by ¢~ = —0.707.
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Fig. 11. Similarity solutions for the example 3-i, case m = 1/4, § = 1/4 (dashed line) and
example 3-ii, case m = 0, § = 1/4 (full line).

Example 3-ii: m = 0and § = }

The solution in r, w coordinates is the full line in Fig. 11. This curve is
obtained as follows. From Fig. 10 the appropriate values for this example
are found to be A = 0.183 and r, = — 0.508. The value of r, indicates that
the full line in Fig. 11 intersects the w = 0 axis in the point r = r, = —0.503.

The value of A being nonzero, it follows from eqn. (561) in this case where
m = 0, that dw*/dr and dw~/dr are infinite. The two parts of the curve have
a vertical tangent in the intersection point with the axis w = 0. They can be
constructed, however, by starting on either side of the intersection point
with the series expansion of Appendix C because 2w*dw*/dr = — 2w(r)
dw™/dr = A is finite and known in this case. Using the finite difference
scheme of Appendix B the curve can be extended towards r = * oo,

It is also possible to obtain the curve by transforming two appropriate
curves of Fig. 5. From eqns. (48) and (49) it follows that the starting points
of the curves are:

ut =0 and sq = rofot = —0.503/(3/4)'* = —0.581
and:
u" =20 and sg = ro/o” = —0.503/—(1/4)V? = +1.006

The corresponding curves are indicated by dashed lines in Fig. 5.

It may be remarked, that u* intersects the axis s =0 in u* = 0.496.
Rescaled with eqn. (48) this point becomes r = 0,w, = 0.372. This value and
ro = —0.503 mentioned above are reencountered in Fig. 4, which was
dicussed in the subsection “Application of Similarity Solution.

ANISOTROPY

From the practical standpoint the case of anisotropy is of importance.
The results of the analysis presented here are still valid in that case. Only the
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coefficients k for the intrinsic permeability and oq for the transverse
dispersion, have to be adjusted. It was shown (De Josselin de Jong, 1981)
that for the case of a soil with a horizontal permeability k;, deviating from k.
the vertical permeability, the relation (3) for the shear flow, g, remains valid.
Only k has to be replaced by k, the intrinsic permeability in the direction of
the interface, such that (1/k,) = (cos®a/ky,) + (sina/k,).

With respect to the transverse dispersion it may be remarked here, that the
custom to attribute aipy a value of one tenth of the longitudinal dispersion
length oy, which is common in these days, is not justified in general. It is
certainly an overestimation in the case of anisotropy created by lenses of
more permeable material, that are elongated in horizontal direction.

The longitudinal dispersion length in the direction of the lenses may be
of the order of the lens lengths and/or their mutual distance. The longitudinal
dispersion length perpendicular to the lenses, may be of the size of the lens
thickness and/or spacing. But the transverse dispersion may be much smaller
because that effect is due to the possibility for the groundwater to exchange
salt with fluid elements in neighbouring streamlines. Since the elaboration of
streamline patterns and the ensuing exchange possibilities is rather involved,
this point is not pursued in detail here. For practical use it may suffice to
mention, though, that it is more realistic to envisage a value much smaller
than one tenth for the ratio between op and oy, .

RECAPITULATION OF THE RESULTS

In the preceding sections, the mixing process of fresh- and salt ground-
water due to molecular diffusion and transverse dispersion was discussed.
This was done for plane flow under several different conditions. In all cases,
the initial distribution (at time ¢ = 0) of the specific weight is that the fresh
and salt fluids have constant specific weights, v, and vy, respectively, and are
separated by a sharp interface. The difference is in the specific discharges
g; of the two unmixed fluids. These are considered to have a constant value
in each of the two regions above and below the interface at ¢ = 0, and to
keep that same magnitude at infinity both above and below, { = * oo, for all
later times ¢t = 0. For ¢t > 0 the fluids become more or less mixed and the
specific weight -y becomes a function of the local height { and the time t.
The specific discharge g; changes accordingly because it depends linearly on
v, see eqn. (11).

Because of the plane flow and other simplifying assumptions, the system
of partial differential equations, that describes the spreading process can be
reduced to the single differential equation (20). This is achieved by
introducing the similarity variables w and r. From these, w is related to the
specific discharge g; by eqn. (19) and to the specific weight v by using eqn.
(11). The variable r is related to the height { and the time ¢ by eqn. (17).

The governing equation (20) has as relevant solutions the family of curves
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shown in Fig. 5. By rescaling, displating and combining in various manners
the appropriately chosen curves of this family, it is possible to construct the
solution for various values of molecular diffusion and flow conditions at

infinity. Molecular diffusion in comparison to dispersion is described by the
parameter m, see egn. (15), the flow conditions originally and at infinity by

the parameter (3, see eqns. (4) and (7).

The differential equation (20) is a nonlinear diffusion equation with
(m + |w]) as diffusion coefficient. The absolute value of w in this coefficient
is unusual and requires a special treatment when w changes sign in the
integration interval. By egn. (19), this occurs when the fluids flow in
opposite directions.

In this paper three cases are considered that differ in the way the two
unmixed fluids flow. In the cases 1 and 2 both fluids flow initially and at
infinity in the same direction. In case 1, the choice §=>4 guarantees that
both fluids flow upwards or only the freshwater flows upwards and the salt
water is stagnant (g;=0). In case 2 (B<—1%), both flow downwards or
only the salt water flows downwards and the freshwater is stagnant (g; < 0).
In case 3 (—4 < <%), the two fluids flow in opposite directions.

When 82>4 or §<—14, it follows from eqn. (21) that the function w is
nonnegative (w = 0) or nonpositive (w < 0), respectively. In these two cases
the solution consists of one rescaled and displaced curve of Fig. 5 from the
subfamily called type I curves. In the section ‘‘Practical Application” two
numerical examples (1-i and 1-ii) are elaborated to demonstrate the
procedure.

Mathematically of more interest is case 3 where w changes sign according
to egn. (21) and —4 < < 4. The solution then consists of two rescaled and
displaced curves of Fig. 5. The procedure is now more involved because the
curves have to be selected in such a manner that they fit together correctly
in the point, where w = 0. The transition condition is derived from the
requirement of continuity of salt flux. In case 3 both curves of type I and
type II from Fig. 5 can be required to produce the end result. Examples 3-i
and 3-ii show these results explicitly.

In practical situations the flow conditions are in general not as simple as
assumed in this study. Plane flow is an exception, the interface is generally
not flat and flow is not necessarily parallel to the original interface.
However, being an exact solution of a simplified situation, the results of this
analysis may be useful for verifying numerical procedures that describe
variable density flow with dispersion of a more general purpose character.
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APPENDIX A

In this appendix, some elementary properties of solutions of problem @ are discussed.
For convenience, the notation u = du/ds is being used here.

Uniqueness

Consider eqn, (24). Suppose that at some point sg the values:
u(sg) = Cy and u'(sg) = C; (A1)

are prescribed, where Cy and C, are given constants. Taking C, > 0, it was shown by
Atkinson and Peletier (1971) that for any — o < Cy <o, there exists a unique solution
of eqn. (24), which satisfies the conditions (A1) and which exists on the largest possible
interval, where it is positive. A consequence of the uniqueness is monotonicity of
solutions of Q.

Monotonicity

Let u be a solution of problem @ and suppose that there exists a point so where:
u(so) = Cy with 0<c, <1 and u'(sp) = 0 (A2)

Now observe, that the constant function é(s) = C; for —o° <s < ° also satisfies eqns.
(24) and (A2). Then the uniqueness requires, that the solutions u and & must be identical,
which implies that u(s)=C; for all —e=<s< e, This contradicts the boundary
condition (25). Therefore the only solution of @, which is not strictly increasing is the
constant 4 = 1. All other solutions with 0 <u <1 must satisfy u' > 0 in order to satisfy
the boundary condition (25).

Intersection

Next it is shown, that two solutions of @ cannot intersect. Let u; and u, be two
solutions of @ and suppose, that there exists an intersection point sg, where u,(sg) =
u,(sp). By the uniqueness, u;[so]qéu;(so), because otherwise u; and u; would be
identical. Without loss of generality it is assumed here, that uj(sg) > u3(so). Then two
situations can arise:

(1) There exists an other intersection point s, such that:

uy(sy) = us(s;) and uy(s) > uz(s) for 50 <s<s
(2) u1(s) > uz(s) for all s > sg and both solutions satisfy eqn. (25).

Ad (1)
Integration of eqn. (24 ) with respect to s from s to s, gives for u, and u,, respectively:
51

ui(s)uy(s1) —ui(s0)u(s0) + dsyua(sy) — dsous(s0) — 4 I“l‘ﬂds =0 (A3)

and: ‘gl

ua(s1)ua(s1) — ua(s0)ua(so) + 4syua(sy) — dsoua(so) — 3 J' uz(s)ds = 0 (A4)

Subtracting these equations gives: 51 50

uy(sy){uy —uz)(s1) —u(so)[ui—uz)(s0) — % I [u1(s) —ua(s)lds = 0 (A5)
However, by the above assumptions [:f'l —u3](s1)< 0, '{u'l -—u;](so)>0 and

:f [u;(s) —uz(s)]ds > 0. This contradicts the equal sign in eqn. (A5). Therefore case (1)

o

cannot arise.
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Ad (2)
A similar argument gives for this case also a contradiction. Thus both (1) and (2)
cannot arise and thus no intersection point exists.

Asymptotic behaviour
Next an argument due to Peletier (1970) is used to obtain eqns. (27) and (29). The

starting point is the following observation. At points where u >0, eqn. (24) can be
written as:

Yem)?) + @' =0 (A8)
which can be integrated to gives:
) (s) = () (s0)exp {—1 j [2/u(z))dz} (AT)

50
Here s is an arbitrary chosen point, where u(sg) > 0.
Since u(s) < 1, it follows from eqn. (A7), that:

()'(s) < () (s0) exp [— 4 (s> — 53)] for  s=sp (A8)
Using u'(s) > 0 and thus u(s) > u(so) for s > s, in eqn. (A8) gives:
0<u'(s)<u'(so) exp [— 3(s* —53)] for §=so (A9)

Integration of eqn. (A9) with respect to s from a point § = s to °° gives:
1 —u(@) < u'(so) exp (%s%)jexp (—2s%)ds = u'(so) exp (355)\/7 exfe (35) (A10)
where erfe (x) = (2\/T) | exp (—2?)dz.
x

From eqn. (A10), condition (27) follows when § — °°, A similar argument gives eqn.
(29), whenever ¢ > 0.

APPENDIX B

A finite difference method to obtain the solutions of problem @ as shown in Fig. 5,
is discussed here.

The solutions of problem @ were distinguished in type-I curves, type-II curves and a
separatrix. In all three cases, first a value of u and du/ds was chosen at a point where u
is positive. For curves of type I this was done at s = 0 and the appropriate values for
u(0) and du/ds(0) were found by a try and error method. For curves of type II and for
the separatrix a series expansion was used to approximate the value of u and du/ds at a
point s, which was chosen sufficiently close to the point s; where the solution vanishes,
see Appendix C.

Thus for the finite-difference approximation one has to solve an initial value problem
of the form:

' +su' =0 s>5 (B1)
u@d) = 4 (B2)
u'(s) = o' (B3)

where eqn. (B1) is a rewritten yversion of eqn. (24) and where s, u and &' are three given
numbers such that u >0 andu > 0.
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Let s; =5 + iAs, where As denotes the discretization interval. Integration of eqn. (B1)
from s; to s;,; gives: i
) (541)— (@) (s) + I su'(s)ds = 0 (B4)

& ' .
Integrating the third term lin eqn. (B4) by parts and setting u = p gives:
Siv1

2u; 1 Pisy = 2up;tosiu; — S Ui+ J‘ u(s)ds (B5)
] 8
where u; = u(s;) and p; = u (s;).
A second eguat:on is needed to solve eqn. (B5) and this can be:
i+1

wiey = u+ j D(s)ds (B6)

The integrals m eqns. (B5) and (B6) are approximated by a third-degree Hermite poly-
nomial, see Ralston (1965, p. 60). Using the notation u” =g this leads to the finite-
dlfference scheme:

As As?
2uiy 1 Pisy = 2up;tsiU; —Sip Uiey T E(“i tup,)t ']'E(PI_PHI} (B7)
and:
As As?
Upsy = U; (P:"'P.n)"’ —(9i —Gqi+1) (B8)

12

This scheme has a local truncation error of O(As ), see Ralston (1965, p. 212), and it is
therefore expected that the global accuracy is of 0(As*).
The values of g at s; and s;,,; are obtained by using the differential equation (B1) at
s = s; and s = 57 . For g; this gives:
p} p;

_ _Pi_ P (B9)

qi u i 2u;

Substituting this expression and the corresponding expression for g;4, into egn. (B8)
yields:

(B10)

As? [ p pi Pt Pi+1
Uipy = (P:+P:+1] ( L i St L

—
12 2up Uy 1 2u,,

Thus for given values of s;, s;41, ¥; and p;, the two nonlinear equations (B7) and (B10)
have to be solved to obtain u;,; and p;,;. However, because of the nonlinearity this
cannot be done directly and the following iteration process was used to obtain approxi-
mate values for u;,; and p;;;. Let ujy; = u;. Substituting this value into eqn. (B7) and
solving the resulting linear equation for p; ,, gives the approximate value pi(f 1.

This value in turn is substituted into eqn. {BIOE. The resulting quadratic equation in
U;4+; can be solved directly to obtain the value u,i 1 as a next approximation for u;,,.
Since this process converges rapidly only a few of these iteration steps were needed at
eachvalueof i=10,1,2, ...

APPENDIX C

In this appendix an approximation is considered of curves of type II and the separatrix
from Fig. 5 for small values of u. This approximation has the form of a series expansion
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which solves the initial value problem defined by the differential equation (24) for
s > 8¢ and the initial conditions (eqn. 31).

Type-II curves

For type-II curves, A > 0 and a series expansion of the form:
a(s) = [Ns—s0)]"? +a(s —s0) + b(s —80)>'? + ¢(s — o)’ (C1)

is chosen as an approximation in a sufficiently small neighbourhood of sg. Clearly, any
approximation of the form (C1) satisfies eqn. (31). The values of the constants a, b and
¢ are obtained by substituting egn. (C1) into the differential equation (24). This gives
the following set of equations:

from the term with (s —so)™/%:  2av/A = — sV
from the term with (s —s)°: a* + 26N = —}asg
from the term with (s —s)"/*: 2ab + 2e/A = i —Ebsg — 2/
from the term with (s —sp): b2+ 2ac = 4e—3a
from the term with (s —30)3;2: 2be = —4b
from the term with (s —s0)*: e® = —%¢
Thus for A > 0, the choice:
a = —14so b = 53/36+/A ¢ = (s3/270N) — (1/15) (C2)

guarantefs, that the approximation (C1l) satisfies equation (24) up to terms with
(s —s0)"".

The first point on the curve (u;, 8§;) is chosen in such a manner, that (s; —sp) is a
sufficiently small number for approaching the value of u; by the series expansion. The
value of u;, which represents (du/ds) in the first point, is taken from the derivative of the
series expansion. The values u;, u '1, s; are the starting values for establishing the rest of
the curve upwards and to the right by applying the finite-difference procedure of
Appendix B. The parameter to adjust in this case is A from eqn. (31).

Separatrix

For the separatrix, an approximation of the form (C1) is chosen with A =0 and
50 < 0. Then the following two sets of values for a, b and ¢ occur:

a=0 b=o0 c=0 (C3)
and:
a = —4sg b=0 ¢ = —so/(3s0+ 1) (C4)

The set of values (C3) leads to an approximation, which is identically zero. This solution
corresponds to the part of the separatrix in the region s < sy. In the region s > s, the set
(C4) gives:

#(s) = — $s0(s —s0) —so(s —50)*/(3s0 + 1) (C5)

and this approximation satisfies eqn. (24) up to terms with (s —sgjau. To obtain
numerically the solution, that starts at this value of sy an identical procedure as for the
case of type-II curves was used. The parameter to adjust in this case is sg. It is found, that
for sg = — 1.23675 the corresponding solution reaches the value u = + 1 asymptotically,
when s > + oo,
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THE TENSOR CHARACTER OF THE DISPERSION
COEFFICIENT IN ANISOTROPIC POROUS MEDIA

G. DE JOSSELIN DE JONG

INTRODUCTION

In their attempt to describe dispersion phenomena in mathematical form
several authors arrived at the conclusion, that a porous medium possesses
a coefficient of dispersion, which has the character of a tensor. This tensor
is formulated in such a manner, that it represents the geometrical aspects of
the porous medium responsible for the scatter of tracer particles, when carried
by a fluid flowing through it. It is therefore a property of the porous medium
alone, and can be considered to materialize the tortuosity of the particle trails
caused by the random arrangement and the interconnectivity of the channels
constituing the pore space.

Nikolaevskii (1959) originated the tensor. He constructed it with a dimension
of length and predicted the magnitude of this length to be in the order of
particle size. He obtained a tensor of the fourth rank for an isotropic porous
medium by postulating, that the random modification of the velocity vector,
from mean velocity to local velocity, is a tensor of second rank.

This postulate requires that the velocity vectors considered possess the
property of linear superposition. It will be shown subsequently that this
requirement is not always fulfilled, and that, for instance, Nikolaevskii’s
result for the isotropic medium cannot be extended to the general case of an
anisotropic medium. Nikolaevskii states that the rank of the tensor must be
even, but includes the possibility of any number for that rank.

Bear (1961) started with the results of the dispersion computations proposed
by the author (De Josselin de Jong, 1958). These computations were executed
for an isotropic model material exhibiting a particular manner of scattering
tracer particles. The basic scattering mechanism adopted was apparently
realistic enough to reproduce mathematically the dispersivity phenomena
observed in tests and especially the difference in longitudinal and transverse
dispersion.

The specific problem treated was the determination of concentration
distribution developing from a point injection of tracer particles if these were
carried away by the fluid flow through the porous medium. The resulting
concentration distribution turns out to be almost normal (Gaussian), in all
directions, with the points of standard deviation lying on an ellipsoid.
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This concentration distribution can be uniquely defined by its mean point
and the variances or second central moments with respect to the three space
coordinates. By superposition of point injections and rotation of coordinates,
Bear (1961) showed that the variances can be considered as the components
of a second rank tensor, and he developed the relation between this tensor and
Nikolaevskii’s fourth rank tensor.

Inspired by the work of Nikolaevskii and Bear, Scheidegger (1961) suggested
that the dispersion constant is also a fourth rank tensor in the general anisotro-
pic case. This assertion was not substantiated by considering the physics of
the scattering mechanism underlying the dispersion phenomenon. Therefore
his suggestion is not imperative.

It is the purpose of this paper to reestablish the dispersion tensor for the
anisotropic medium starting from the basic scattering mechanism. Since the
mechanism used by the author, (De Josselin de Jong, 1958) proved realistic
enough for the isotropic case it was considered to be acceptable for the
anisotropic case as well.

SCATTERING MECHANISM

The scattering mechanism adopted previously consists of assigning a choice
to every tracer particle when arriving at a junction point in the pore channel
system. It was suggested that the probability for a particle to choose a certain
direction is proportional to the discharge in that direction considered as a
fraction of the total discharge through all junction points and in all directions.

Once a particular channel has been chosen in junction 4 the particle travels
a certain distance in a certain direction to the next junction point B. This
distance is described by its space coordinates x, y, z with origin in 4. The

>/
I M=

x

YL

f\r’_\

Fig. 1.

~
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travel time required for the particle to travel from A to B is called the residence
time, 1.

The components x, y, z, t are stochastic variables with a probability distribu-
tion determined by the adopted flow mechanism in the channels and in the
junction points. In this work use will be made of the mean values of these
stochastic variables and their squares. These mean values are indicated by a bar
and combinations by a circonflex.

¥ = mean value of x

x? = mean value of x?

) =

xy = mean value of x - y
xx = x2 — 2 = mean value of square minus square of mean value
Xy =xy—%"J.

The summation of the stochastic components x, y, z, t of each individual
channel over the many channels covered by a tracer particle form its total
travel path and travel time. The probability for a particle to arrive at a certain
point X, Y, Z, after time T, is the combined probability for that particle to
travel through a certain combination of channels. The probability distribution
P(X, Y, Z, T,) in space of the arrival points is the tracer concentration dis-
tribution at time T, after the moment that an amount of particles was injected
in the origin of the X, Y, Z coordinate system.

n
A

injection point 4o - x

Fig. 2. Ellipsoid of standard deviation
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By use of Chandrasekhar’s analysis of Markoff processes and a special
form of saddle point analysis this probability turns out to be given in good
approximation by

@ P(X,Y,Z,Ty) = é—,;';%exp[- e

In this expression &; and &; are space coordinates with their origin in the point

'-.l‘w:l

e Taé- (see Fig. 2).

This is the point of average displacement of the tracer particles during travel
time T,. Throughout this paper subscripts can have three values 1, 2, 3
corresponding respectively to x, y, z, if they are Roman, and if they are Greek
they run over 4 values corresponding to x, y, z and .

| /] is the determinant of a matrix f with the components f;;. These 9 com-
ponents f; are related to the mean squares and square means of the stochastic
variables, by the following expressions given here witlout proof.

o __i (bi}bﬂv"binbh)juf-
(3) fU B TO bnvj#iv '

In this formula b,, are components of matrix b, which is the inverse of a matrix
o given by
xx xy xz x1
(4) b—l == xy yy yz y‘
Xz yz zz zt
xt oyt ozt 1t
By the inverse of «, it is meant that the components of b and « are related by
the expressions
&) by, = 0,,.

The form (2) for the probability distribution is Gaussian in all directions,
and the ellipsoid of standard deviation centered in the mean point is given by

(6 Jiffily =1

Since the distribution is Gaussian it is uniquely defined by the second moments
of the concentration around the mean point. These second moments can be
combined as the components of a matrix a such that
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J.'Hl $p8eP(X, Y, Z, Ty)d¢ dEzd¢,

(7 “pe

”J P(X, Y, Z, T)dE & déE,.

By taking the partial derivative of (2) with respect to f,, it is possible to estab-
lish, that the matrix a is the inverse of the matrix f, so that their components
are related by

()] ApgSor = Spe-
By use of (3) and (4) elaboration of a,, gives the following expression

|&

a,, =

R
- F [HE %, = xR0 — X A%, 0 + x %, 0]

-

By introduction of (1) this can be reduced to

To 5= =
©) ap = 7 [PR% — x,

of = X%, 7 + X%, %]

The variances a are the components of a sccond rank
tensor, It was shown by BEAR (1961) that the relation between
the variapces and the components B#fnx‘_ of the hydraulic gradient
V4 is

il
a =p 5 (-3 |y
Pq Pqrs Bx B
r s
Since the expression between braces is a second rank tensor,

the constant .fJP is a fourth rank tensor, representing the mediun's

digpersivity. grzs 4 sealar equal to the distance travelled by the
centre of gravity of the injected particles.

In the anisotropic case the dependance of the variances on the
hydraulic gradient vector is not that simple, because products of
the gradient components appear of the order (In+2), where n covers
the range [rom zero to infinity. These products form tensors of even
but infinite rank.

Since the constant of dispersiviiy relates these tensors of
infinite rank to the vaciances a_ which are the cenponents of a
second rank tensor, the medium's dispersivity can only be exprassed
in terms of a tensor of infinite rank in the anisotropic case.

In order to verify the dependunce of apq on the hydraulic
gradient vector it is nacessary......
necessary to elaborate the mean values of the stochastic variables as occurring
in expression (9). For the two-dimensional anisotropic case this will be done in
the next section with %, 7, 7 and x2, providing the possibility to consider the
form of a,,.

R
-

Fig. 3.
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ELABORATION OF MEAN VALUES
Let n(6)df be the amount of channels having an angle between 6 and 6 + df
with the positive x-direction, such that the total amount of channels con-
sidered: N = [X1/2*n(6)d6 is a large number. The integral only covers half
the circle, because every channel has two opposite directions.

Let A(6) be the conductivity of the channels n(8)df. Anisotropy is obtained,
if n(0)A(6) varies with 6.

Let I(6) be the length of the channels n(6)df. We will take for I(0) a constant
length I here, because it simplifies the computations without effecting the result
essentially.

Let c(0) be the cross sectional area of the channels n(6)d0.

In the fluid a gradient of head, V®, is assumed to exist which is everywhere
equal and makes an angle o with the positive x-direction. This means that the
gradient in each of the channels is equal to | Vd)l » cos (#— «). The discharge
of such a channel is then

(10) q(8) = A(0)| V®| - cos( — a).

According to the assumption, that the probability for a particle to choose
a certain direction is proportional to the amount of fluid flowing in that direc-
tion, that probability is for a direction between 0 and @ + df equal to

n(6)q(6)do

Q0

In this expression Q is the total amount of fluid passing through all the N-
channels. Using (10) this becomes

(1) P(0— 0 + df) =

+1/2n+a

+1/2x+a
(12) Q= J n(0)g(0) - do = l V(D| n(0)A(6)cos (0 — a)db.
—-1/2n+a

-1/2x+a

Integration is performed over the range—4n + « < 6 < + n + «, because
only channels in those directions carry water away from the junction points.
That only discharge departing from the junction points is counted, is a require-
ment for the probability calculus. The choice is made forward in time and not
backward.

The x-component of one step in the Markoff process is the projection of the
channel in x-direction. For each of the n(6)df channels, this is /cos@. The
mean value % of these x-components is this value [cos@ multiplied by its
probability of occurrence P(6 —6 + d0) integrated over all possible directions.
This gives with (10), (11), (12)

J.”z'“'“ n(8)lcos 6g(6)do I_["(a)l(ﬁ)cosams(e_“)de

—-1/2x+a

i

(13)
Q In(e)A(a) cos(0 — a)do
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For the y-component, which is Isin 8, this gives

1j2n+a
J n(6)!sin 0 q(6)do IJ n(6)A(6) sin O cos (0 — «)do
=1/2n+a

(149 5= -
Q J‘u(ﬁ)l(ﬂ) cos (0 — )8

The residence time ¢ of one step in the Markoff process, is the time a particle
stays in one channel. If the discharge is ¢(0) and the volume of the channel is
1+ ¢(8) then this residence time is 1 = (I * ¢(0)/q(6)). The mean value 7 of the
residence time is this value multiplied by its probability of occurrence,
P(6 - 0 + df), integrated over all possible directions. This gives with (10)

1), (12),
1/2n+a
j n(®)! - c(6)do IJ. n(0)c(6)do
(15) i= -1f/2x+a —
0 | Vo |J n(6)A(0)cos (6 — a)db.
In the same manner we find
— [ n(®)AB)cos?0cos(0 — a)d0
6 = _ P/ n®x0) (0—a)do
[ n(8)A(6)cos (6 — a)d6

The general case of anisotropy is obtained by assigning to the n(8)d(0 channels

an arbitrary distribution with respect to 8 of the combined conductivities

n(0)A(6)dd and the combined cross sectional areas n(0)c(6)df. Every possible
distribution can be expressed as a Fourier series. Let these be

.n(ﬁ)
N

A0 = E A,,cos 2n(0 — o)
(17) n=0
f@.:(ﬂ) = X B,,cos2n(6 — B,,).
n=0

Only the even terms appear, because every channel figures in two oppposite
directions.

Execution of the integrals in (13), (14), (15) and (16), all between the limits
—4n + a and 7 + o gives finally

7= 4 i[Aocosoc + 4 A, cos(20, — a)]
R 2
(18) j= % %[Aosino: + 4 A;sin (20, — «)]
l n
A 1 |Vm[3°

1/2n+a
with R =J I’_@l A(B)cos(0 — a)db.

=1/2n+a
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The real mean velocity v has x- and y-components given by », = %/f and
v, = Jfi. With (18) this is

_ JE _ Ao Az e
v, = % = [ECOSOH- 2B, cos (20, —oc)] | vo|
(19) _
=7 _ Aoy Az —ol -
b, = % = [230 sino + a5, sin (2a, rx)] | ve|.

Since the gradient of ® has the direction «, the partial derivatives of ® can be
introduced as 8®/dx = | V®| - cosa, d®/dy = | V®|sina. Then (19) becomes

Ag A, ) oo A, 0P

= | — e 2 —_ _— ——

2365 v, (ZB[, + 4B, cos2a; |== + 4B, sin 2a, 3y
_ A4A; od Ag A, ) od
Uy, = 4Bo 511'121'12 % + (2—80—‘74-5:0052a2 E-

These expressions form the relation between the real mean velocity vector, v
and the gradient vector, V®. Because the vector components are obtained by
linear superposition of the four coefficients at the right of (20), these coefficients
form the components of a second rank tensor.

This tensor is the anisotropic permeability tensor divided by the porosity,
because specific discharge is equal to real mean velocity multiplied by the
porosity. This result is in agreement with the concept developed by Ferrandon
(1948).

In the permeability tensor expressed by (20) only A,, B, and A, appear,
showing that the other terms of the infinite series (17) are of no importance to
the permeability. In contrast to this simple result the dispersion phenomenon
cannot be described without using all the terms in the infinite series. This will
be seen by elaborating a,, for the case that the conductivity distribution is
expressed in an infinite series as given by (17).

Introduction of v, and v, in (9) gives for the coefficient a,; = a,,, corre-
sponding to x, = x, = x, the form

(21) Gy = Ay, = %[Fv,z - 2xtv, + x2].

Consider as an example the last term be_t_ween brackets. Elaboration of the
integral (16) with (17) gives the value of x2. Because of T,/f before brackets,
this has to be multiplied by (RTo[ vo |,v‘nfB0), to give finally
T _ Tl

2 5 7B,

| ve-

. n, L(4n” + 3)cos2a + (8n° — 10n)sin 2a — 4n* + 9]
an(—l) Azn (4n2 — 9)(4n2 — 1)
- cos2n(a — a,,)

304 Soil Mechanics and Transport in Porous Media



The Dispersion Coefficient in Anisotropic Porous Media 267

Considered as a polynome in (cosa) and (sina), this term of a,, contains
(cos)***? and (sine)*>**2. The contribution of the other two terms in (21)
does not reduce the order of the polynome.

This means, that s, can be considered as the components of an even tensor
of rank (2n + 2). S% n can run up to infinity it is an even tensor of infinite

BEE: the Apendence of apy on the hydtaulic gradeet

Adependence o the CONCLUSION onthe hyddandic gradiont

Since the}variance of dispersion for the general anisotropic caselis a tensor
of infinite rank the dispersion constant is also a tensor of infinite rank. As a
consequence of this fact the differential equation for dispersion developed
for the isotropic case can only be generalised to the anisotropic case by intro-
ducing a dispersion coefficient, whose dependence on the direction of flow is
expressed by a scries of infinite terms.
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Introduction

It is the purpose of this study to show that the
dispersion of particles, transported by a fluid flowing
through a system of fissures in rock, can be treated as
a special case of the general theory for dispersion,
dcveloped by use of the probability theory
(DE JOSSELIN DE JONG, 1969).

A case study of the dispersion of a large amount of
locally injected particles will first be presented
computation wise. It will be computed how the particles
are partitioned at each intersection of the fissures, how
the subgroups of particles are transported through the
fissures and where the subgroups will be located at
successive time intervals. The result consists of a
distribution of particles at a certain time, T , after
injection, with discrete amount$ of particles at discrete
points.

In the second place the general theory developed on
the basis of probability concepts will be applied to the
same case. This theory gives as a result a continuous
distribution of particles, which is essentially Gaussian.

In order to show that the discrete distribution obtained
from the computation and the continuous distribution obtained
from the probability have the same general form, a figure
(Fig.4a) will be used. Numerically, the two results will
be compared by considering the centre of gravity of the
dispersed particles and the second moments of the distribution
around that centre.

The case study is simplified by considering a system
of two intersecting families of fissures. Let the fissure
planes be parallel to 2 (Fig.l), and let the conditions
in all planes perpendicular to Z be identical. Thus the
problem to be treated is two-dimensional and only the
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X,y coordinates are essential. Fluid flow through the

fissures proceeds parallel to the xy plane.
are per unit deoth in the Z-direction.

Discharges

Sections 1, 2, 3, 4 deal with the computational

experiment. Sections 5, 6, 7, 8 deal with the theoretical

prediction. The two resulting particle distributions will
be compared in Section 9.
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l. Particle Bechaviour in Fissures

and their Intersections

The behaviour of particles in passing through the
individual fissures and their intersections is partly
deterministic, partly random.

Let us first consider, what happens within a fissure

In the following the discharges through fhe'fissures
are divided in lamellae. Each lamella carries the same
amount of discharge per unit depth. Since the fluid velocity
in a fissure cross scction is not uniform, the velocity
in the different lamellae is not the same,

It is assumed here, that the length, 4‘ , of the
individual fissure segments between intersections, and
the average fluid velocity, V. , through them are known.
The index, p , refers to the particular family of fissures
(characterized by their dircction, length, conductivity,...etcl.

In the case considered here, there are two different
kinds of fissures, so ¢ has the value I , Z , see Fig.l.

Furthermore it is assumed that the width, ¢. , of
the fissure is small with respect to its length, !F , and
molecular diffusion, D,,, large enough for the quantity

qfvp/lhdlpto be small with respect to one. Then Brownian
motion will force a particle to visit all fluid stream
lamellae within a fissure, such that the overall particle
veloéity corresponds to the average fluid velocity. The
time, tn , that a particle will reside in a fissure segment
is then equal to

(1.1) te= Lu/ Ve

This influence of Brownian motion on the particle behaviour

creates a deterministic effect, because the residence tinme,

tw , has a known value for every particle travelling through
the fissure.

Selected Works of G. de Josselin de Jong 309



Brownian motion, however, also has a second probabilistic
influcnce on the particle behaviour. Because a particle
is scattered over all stream lamellae it has an equal
probability to be found at any point of the cross scction
at the exit of a fissure, irrespective of its location in
the cross section at the entrance. The choice of stream
lamellae that carries the particle at the exit is probabilistic
and not correlated to the entrance stream lamellae.

Let us now consider, what happens at an intersection.

Redistribution of particles at an intersection of
fissures is again deterministic, if the fluid and the particles
behave in the manner proposed by SNOW (19? ). He assumes,
that there is no turbulence and that the time a particle
spends within an intersection is too small to permit a
particle to switch stream lamellae.,

.According to SNOW the redistribution of stream lamcllae
at an intersection can be de£ermined from the discharges
in different directions. 'Since the particles stay with
the stream lamellae and they are equally distributed over
the stream lamellae by Brownian motion in their preceding
travel through the fissure, the redistribution of particles
at an intersection is the same as'the redistribution of
the fluid. And since the fluid distribution is determinable,
also the particle distribution is deterministic.

310 Soil Mechanics and Transport in Porous Media



2. Regular Array of Fissures

The example considered is a system of cracks, consisting
of two intersecting families of fissures indicated by
subcripts 7 and 7 (see Fig.l).

The angles of the fissures with respect to the x-axis
are respectively: #; and &; . Their lengths between
intersections are: J/; and 4y - The projections of the
fissure segments on the x- and y-coordinate axes are

xI = ’?I (0501 XI = jz (c.rﬂzz
(2.1)
3/1 = ,(,1 Sin 01- yI = /pZ Sin 91

The case considered here consists of a system of parallel
and ecquidistant fissures, such that for each family the
fissure length and direction angle are constant throughout
the field,

A uniform hydraulic gradient J at an angle & with
respect to the x-axis is acting throughout the flow field
(Fig.1l). Because of the regularity of the crack systen,
the gradients in the two families of cracks are respectively

(2.2) Jp =Jcstx-¢;) and T =T cios(<£-6z)

If the hydraulic conductivity per unit depth of the
fissures is x;and Ay, the discharges ¢, and ¢, per unit
depth of the fissures are
71 — )\Ij,-z' - )\IJ'CO_{ (L-81)

(2.3)
2= XgJr = Ag Jces (et =8f)

If the width of the two kinds of fissures are respectively

¢, and ¢ , then the average velocities will be

(2.4) U_:r = __.?L and \)’1 = __?_J_I._
, Cx Cx
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The corresponding residence times are using (1.1)

'p.f l,r Cz ,p / e
2.5 ) = — = ad = 2z —_ 4z tr
( iz Vz Tz an z Vy 7y

Computations will be performed for the special case,
vhere (see Fig.3)

(2.6) O =30" ; Oy =-30° i o« =30°
Furthermore all fissures are equal, such that
(2.7) p=lp=47 CG=G=c i Az=xg =X
then formula (2.3) becomes

(2.8) .71—‘-"—/\7('05(0") =T e = AT Cos b0y = LT

and formula (2.5) becones

(2.9) tr:% : f1=z_){i_j°_
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3. Continuation Probability

In the case considered, the ratio of 9 to 7 is
2 to 1, see (2.8). 1In Fig.2, the discharges are represented
in a ratio 5 to 2, in order to avoid ambiguity resulting
from the equal subdivisions, %:%. The discharges are
represented by stream lamellae: a, b, ¢, d, e, £, g, each
of which carries the same amount of fluid per unit depth.
Since there is no mixing or turbulence at an intersection,
the lamellae do not interchange position. Let us determine
first the probability éi' , that a particle carried through
a fissure of direction ¢ will continue after the intersection
R in direction & , This probability will be called the
continuation probability.
The lamellae a, b, carrying the discharge ¢ through
the fissure AC in #z-direction, continue their path beyond
C in the #r-direction. At C, therefore, certainty exists,
that a particle arriving along ¢y will continue along ¢y,
and not along ¢y .As a consequence the continuation

probabilities f;; and j;az have the values

I

(4 c
(3.1) fooz =1 : Foag = °

The five lamellae c, 4, e, £, g, carrying discharge
4: through fissure BC are divided into two groups. The
lamellae ¢, d, e, continue along ¢; , the lamellae £, g,
continue along #r . As can be seen from the figure this
subdivision is such that

ctd+e = ¢ -9 /-fg =9

Particles entering fissure BC at B are evenly
distributed over the lamellae by Brownian motion when
arriving in ¢, This is independent of their entrance
position at B. Therefore, the continuation probability,
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j;;l, for a particle started at B along #; to continue
in the #z-direction is proportional to c+d+e, and {;;z'to
continue in the & -direction is proportional to f+g.

Since the particles started at B in the ¢,-direction
are certain to continue in some direction, it is necessary,

that
4 . c

f

I>I * fI-’I =1

Combining these results, the following values for

the continuation probabilities are obtained

c -
(3.2) ¢ = Lk : 4 =k
I>z Ir >z 7z
In this case where all intersections have the same
characterestics, the letter C in the expressions for the

continuation probabilities {: ..s.etc can be replaced

>z !
by the letter indicating any other intersection.

< [4
fI—»I =1 ](F”I =
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4, Computational Experiment

The computational experiment consists in pursuing
the travel paths of a large amount of particles injected
élong a line in.Z-direction. This line intersects the
Xy plane in a point P, which will be called the injection
point.

As shown in Section 3, the amount of particles passing
an intersection is subdivided into subgroups that continue
their path in different directions. The probability to
continue in a certain direction was expressed as a ratio
given by the forrulae (3.1) and (3.2). Using for the
specific discharges % and % the values (2.8),

the continuation probabilities becone

(4.1)

The atios of Subdivision of the injicted amownt are reprosented in Fis 3. wheie
the location of the subgroups is shown after time intervals
The initevad

*
of magnitude at , 24t , 34t , 4at, S4t,, AL is equal to the

residence time in fissures I , such that according to (2.9)

- = Qe
(4.2) st =ty = 5T
~ Since according to (2.9) the residence time in fissures
I is twice ?y , subdivision of the particle groups only
occurs at time intervals, which are integer multiples of
AT
After continuing the procedure of subdivision, (shown
for the first 5 timesteps in Fig.3) over a time interval
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T , consisting of 40 timesteps, such that
Le

4 3

(4.3) ] 40 4T =40 57

the result of Fig.4 is obtained. The particle groups are
indicated by solid circles, whose areascorrespond approximately
to the sizeSof the subgroups. The numbers accompanying
the circles are the ratios of subdivision, from total
amount of ?articles to subgroups. The circles do not represent
a spatial distribution, because all particles are considered
to be located at the centre of each circle. All centres
are located on the dash dot line at an angle Y¥°= 60°,
see Fig.4.

In Fig.4a the distribution of particles along the
line of spread is shown by the stepwise solid line, which
represents the cumulation curve.

Numerically the results of this experiment are expressed
.by the coordinates of the centre of gravity of the particles
and the second moment around that centre. The origin of
the coordinates X , Y used for the centre of gravity
is located in the injection point, P, sec Fig.4.

Using a supersaipt © for the experimental values, it
is found that after T = 40;§§-the centre of gravity has
the coordinates

(4.4) X*=2593 2 5 Y= 4914

The second moment is taken in the direétion of the
line of spread at 60°, the result will be called aj .
The spread perpendicular to the line at 60° will be called
a?, . Since there is no spread in that direction, the
second moment, Q& is zero. So we find

(4.5) a. =390 2° i ah = o
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5. General Theory of Dispersion

The general theory of dispersion basd on waabﬂ474&wu
Uging CHAIDRASEKHARS  gomoralisatine of MARKoFF'S methed ~ (DE JOSSELIN
DE JONG, 1969), predicts that a point injection of particles,
after being transvorted during a time interval T ,
spread into a spatial Gaussian distribution with the points
corresponding to the standard deviation in any direction
located on an ellivsoid. If the flow system is two-dimensional,
points of sfandard deviation are located on an ellipse.
We present here the two dimensional case only, because
extension to 3 dimensions is obtained by adding terms of
a similar character as those presented here.

The centre of the ellipse has coordinates X , Ef .

Cwith origin in the injection point) given by
(x> &%
(5.1) X=T3 =T

The quantities (x>, (y> are the averages of the
displacement coordinates X, , Y» corresponding. to the
passage through elcmentary-conveyor units (defined in
Section 6) and (t> is the average of the residence time

tm spent in an elementary conveyor unit. The quantities

Xm s Y o Tm are the stochastic variables, subject to a
probabilistic choice, because the elementary conveyor units
have different magnitude and orientation and particles
chooSe to enter them according to probabilistic rules.

The size, shape and orientation of the ellipsoid can
be computed from the variances or second moments g, , axy .
ayy , whose magnitude according to the general theory is

given by o
T -
0 = 5 [<xx> -2 ¢xt> T35 (t) +(tt> m*J
= T [ > _ x> x2<y>
(5.2) { ay = 5 [0 - v 5 - T e ao 5T ]

T . <Y {(*
= — Yy> — 2¢yt> == tt> -
Ty <t>[“ 2t w T ¢ <t>‘~]
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The quantities (X%, (X}y>, (Yy>, (xt>, Ly&>, {tt> are the
averages of the products of the stochastic variables %, ,
Y» + tm @s combined between the brackets, (> . By introducing
the second moments of the stochastic variables and indicating
them

Xx = (xx> = Lap¥
(5.3)

Xt = (1> —<x><t> .. .. efc

the expressions for the variances obtain the form

T ¢~ A x> A%
= — | xx - 22t & + =z
Uxx = t> [ o > e <t *
' : T (2 IR LA A x>y
(5.4) gy o [xy xt o yt o * tt e ]
T (4 Ao At
ay = — [Y§ — At =5 + tt 22
T (95~ 24 @> <t>‘]

The relation between the variances and the size, the
shape and the direction of the ellipse is as follows (see
BEAR, 1961, by 1191). The quantities daxx, dy, dyy are the
components of a second rank tensor whose principal

values are q, , a given by

22

1
ay = 7 (Gx t+ Qyy) + % (00 - gy )+ 4 agy

] 1
A, = 7 (0t Qyy) = J,J(an—a_.,,)",.‘;g:,

The roots of these principal values are equal to the

(5.5)

magnitudes of the principal axes of the ellipse, 5/ and
6. according to

(5.6) 6, = [0 5 6, =Jla,.

The angle, V¥ , between the major principal axis, ¢; ,

and the x-axis is given by

(5.7) fan V= —‘;f;T—T:i::;:zzzzj
(axx - “y.-.') T (4 - ”‘V)’) T+ 4 “?j
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6. Elementary Conveyor Units

The results mentioned in Section 5 are theoretically
obtained as a distribution of the probability to find a
particle in a certain location at a certain time. A
particle can arrive there following different paths. The
analysis consists in deriving the probability for a particle
to choose a certain path and to select from all possible
paths only those, that end up in the desired location at
the ‘desired time. Mathematically this produces an integral
expression with a closed solution.

It does not fit in the framework of this presentation
to expose-all the details of this analysis (a separate
report deals with this aspect). It is, however, necessary to
mention here that the analysis requires,that the particle
path be subdivided into elementary steps of a special nature.

In the first place the steps must be such that it is
possible to determine the magnitude of the probability for a
particle to choose a step of a particular kind.

In<ﬂw/5amndﬁhw it is necessary that the steps are not
correlated, the reason for noncorrelation is that the
individual steps must be combined into a product. It is
known that according to probability theory the probability
for the subsequent occurence of several events consists
of the multiplication of the probabilities of the seperate
occurence of the individual events, only if the events
are not correlated. In order to be able to apply the
mentioned product, it is therefore necessary that the
steps are not correlated.

Whenfparticleé are transported by a fluid through
a porous system, the above mentioned analysis can be applied
to predict their dispersion if the paths followed by

Selected Works of G. de Josselin de Jong 319

13



14

the particles can be subdivided into steps that satisfy
the requirements imposed by the theory. We will use the
form ( orobabilistic step» , if the steps do indeed satisfy
these requirements.

Pnysically the particle path consists of a number of
traverses through pores, cavities or fissures, depending
on the nature of the porous system. In general there is
not necessarily a coincidence between the probabilistic
steps of the particle path and the traverses through
individual pores, cavities or fissures. It can be any
combination of them,

In order to indicate the physical counterpart of
the mathematical steps, the term«elemeany conveyor unit }
is proposed here. An elementary conveyor unit can be any
part of the porous medium traversed by transported particles.
It can be one channel between grains or any combination
of channels or fissures up to complete lenses or layers
of soil. The combinations of conduits constituting
elementary conveyor units can be different for different
directions and magnitudes of the hydraulic gradient.

- In order to constitute an elementary conveyor unit

the combination of conduits must satisfy the four
requirements listed below. These requirements guarantee
that the passage through the elementary conveyor units
from their entrances to their exits, coincide with the
probabilistic steps. In the following the parameter, m,
will be used to indicate the properties of an elementary
conveYor unit of the mth kind.

The requirements are
a particle, travelling from entrance to exit through
an elementary conveyor unit of the mth kind, covers a
distance, whose coordinate components X, ¥m , Zm , have
a known magnitude.
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a particle, travelling from entrance to exit through
an elementary conveyor unit of the mth kind, remains within
the unit during a residence time, ¢, , with a known
magnitude.
the choice being made by a particle to enter the
nekt unit after having completed its travel through a
previous unit has a prqbab?lity distribution, 2, , which
is a known function of th%barameter, m, of the unit it
will enter.
@ the probability distribution of choice, g, , does
not depend on the parameter, m, of the previous unit.
This independence guarantees that subsequent steps are
uncorrelated,

.:Because the values of Xn, Y%, , Z»n , tmn as chosen
successively by the particle during its travel through
the porous system are subject to a probabilistic choice,
these quantities are called the stochastic variables.

In the case considered here, there are two Kinds of

elementéry conveyor units. Therefore m has the values
l; 2. In order that the distribution of choice represents
a correctly mormalized probability it has to satisfy the
condition

(6.1) 2 dm =1

The averages (x>, (Y>3, (>, (xx>, (XY> ;eees0000..€tc mentioned
in the results obtained from the general theory are defined
as follows by summations of the stochastic variables
multiplied by the corresponding probability of choice

m n 4
(X} = Z xh’?/}l (XI> bl Z z[n y/n
m m
(6.2) &> = Z Xy> = 2 Xl G
m
(t> = Z tm gm « s sa ele
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If m, instead of consisting of a finite number of
discrete values, is continuously distributed, then the

requirement on 9, is

+00
(6.3) j 2 dn = 1
-0

In this case the averages are defined as follows by

integrals over all possible values of m

Xy = fm Xn Fndm 1499 =\£1 x: Dm dm
(6.4) = [ Yo g = [ Fn Yo o
(t> -_—‘_[m tln 7/» dm Y
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7. Combination of Fissures into

Elcmentary Conveyor Units

In order to assign the status of elementary conveyor unit
to fissure segments or combinations of fissure segments, the
4th requirement provides the decisive criterion. Therefore,
we have to examine first, where in the particle transportation
system the correlation disappears between local decision of
subsequent path direction and the preceding path direction.
This can be done by considering the stream lamellae of
Fig.2 again.

Particles entering the fissure CE at C are carried
by either of the two lamellae, £ or g. Both those lamellae
were previously in the fissure BC., Therefore fissures CE
and BC are correlated and cannot be considered as two
seperate elementary conveyor units, but have to be combined.
Furthermore at E both stream lamellae, f and g, will continue
in the §;-direction as can be deduced from the behaviour
of the stream lamellae, a and b, as they pass intersection
C.

Particles entering the fissure BC at B are transported
by one of the lamellae c, d, e, £ or g. If entering with
c or d the particle had previously the ¢j-direction, if
entering with e, £ or g the particle had previously the

9;-direction. Molecular diffusion scatters particles
randomiy over the lamellae such that arriving in C, the
location of a particle is no more influenced by which
lamellae carried them at B. One could say that the
particle has forgotten its past history. At C,part of
the particles continues along §¢; (those carried by ¢, 4,
e) and part continues along ;. The continuation probabilities
at C are, because of molecular diffusion, independent of
the particle location at B and therefore not correlated
to the travel direction of the particle before arriving
at B.
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Since the rupture in correlation is produced by
molecular diffusion within the §#; fissure (such as BC)
the transition points between elcmentary conveyor units,
where cxits and entrances of subsequent units meet, must
be located halfway along these fissure segnents.

The discharge of particles is subdivided in C. The
lamellae c, d, e continue through CD in the {¢;-direction
and rcecach an exit of an elementary conveyor unit halfway
along CD. The lamellae £ and g continue first along 6y
through CE and then, in E, procede along ¢; through EF,
reaching the exit of an eclcmentaty conveyor unit halfway
between E and F,.

This is represented by the shaded fluid flow in figure

5a. The elementary conveyor units are represcnted in figure

5b by the solid arrows overlying the dotted fissures.
There are two kinds of elementary conveyor units labeled
m=1 and m=2,

-The conveyor unit, m=1, consists of two halves of
fissure segments in the g -direction, such as going from
a point halfway between B and C to a point halfway between
C and D. This distance has a length J/; and a direction

8 . '

The conveyor unit, m=2, consists of one half of a
fissure segment in the &-direction, a full length of
fissure segment in the ¢;-direction, and again a half
in the ¢~ dircction, such as going from halfway between
BC over C to E upto halfway between L and F.

The first two requirements on elementary conveyor
units are satisfied, because it is possible to compute
the displacements and residence times. These are, using
(2:1) and (2.5)

For m=1
— 1 + 1
Xy = 7 Xz z Xz =-,PI Cos O
(7.1) y::,!-y +'Ly=!5'0
1 2 JI z Jz z 2" %1
t = %’tz %tz = &G

7
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For m=2
= L 7 =
12»—- ZII +Z’z +2—2’I = II(.,_;QI -+ jz(osgz
. 1
(7.2) Yo= Y2 + Yg t EYr = Lrsno; + 4y sney
fz,f'rz',-t,z '*.tf‘f'j':t_t—.: .-LIC"' + lzc’

7z 7
In order to show that finally also the third requirement

is satisfied and ¢, , J, can be computed, it is necessary

to determine the probability that a particle, starting
halfway between B and C, will end up either halfway between
C and D or halfway between E and F. These probabilities

can be obtained by considering the continuation probabilities
in C and E.

A particle can be considered to traverse an elementary
conveyor unit, m=1l, if arriving in C from the ¢ -direction
it will continue in the 4~ direction. The probability
for a particle to do so is j;:z.as defined in Section 3,
and therefore with (3.2) we obtain

€ %~ %
7.3 = = —
( ) #1 f;+z 7
A particle can be considered to traverse an elementary
conveyor unit, m=2, if arriving in C from the ¢r-direction,
it will continue along &7y and subsequently, arriving in E
from the #z-direction it will continue along ¥ér . The
probability for a particle to do so consists of two
. s s c . . E
consecutive probabilities, /1_,1 coml_nned with ’{-Hz .
According to the rules of probability theory these two
probabilities have to be multiplied. This gives for the
probability, 4, , that a particle chooses an elementary
conveyor unit, m=2, with (3.2) and (3.1)
. < E < [4
72."){1,,1 *{ =/ *][z-)z

z+x I

(7.4)

- 7z = 7
7 7z * 7r

|
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The two probabilities of choice 71 and jz satisfy
the requirement (6.1), because
(7.5) ?,+f/‘;.,=j‘—§';75+—gf—=1
Because the combination of fissure segments as combined
above into the units, m=l1 and m=2, satisfy the four requirements
imposed by probability calculus, these units represent
the elementary conveyor units in this case. Computation
of the averages x> , &y>, (t> , (xx>, <Yy¥y>,...etc. amounts
to the use of (7.3) and (7.4), (7.5) in the expressions
(6.2). This gives the following result.

for the averages

I

( (X> = X9 t+ % g, (LpcosO 9 + Ly oty Gr) /9,
> = Yo fo + Bfa = (Lrsin6: 9 t by Sinbr %) /9;
> = 9t LG = (£ G+ fpcp) /e,
x> = XY v GG = (4] ls, 9+ 2 by sty e Yy

t Ay o6 %) /9

e EA
X = X §y + X Y9, (L Cos 6y Sinty 9, + Ky Py Cos O $iny Gy

(7.6)
<
t Ar A Cosbp 5in 02 Gy + Ly Cosbp 500, ) /9,

YY) = y,"y, t y:‘ 9. = (J’f:,;,zoz T+ 24 Xy Sin&; Sin Oy I

2
t Az $5?’z %21/ 9z
jz fdﬁz &—%—'{L—[ﬂ) +II (b;ﬂz (’&'(}217':‘?[(!‘7}/

L
Vel o+ Sy G 75
2

xty = X1t1?4 + thz?

3

1

Grdsc
Yt = Yty Gy + YotaGy = by 5inby {-/5—‘%——:”" + Lty Sinég
z

LE kGG | IiG
tr= 1 o + tz = = +2 *
< A % e
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for the second moments, as defined by (5.3)

;} = (x> - ():72' = f: Ccszﬂz _________71"(‘71&__—2:'/
7
2, (9, -
x/:‘/ = (1])—(1)(5} = ,(‘.;‘ [asgl 5/11671_ Z 71‘2‘ )
7z
(7.7) A‘J = <yy> - (5>1/ - ,(; Sl'nzﬂz 74 (%2:»71)
7z
At = LXt> —(OKEr = j;’ Cosoy Cp (71?—&7;/
P
2 -
b= <YE> — <> = Sy Sinbg Cg (7:7 o)
T
b= ety —cert = gF o Pe?e)
7 7x
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8. Application to the Example

The example, considered for the experiment, had the
following values for the direction of the fissures and
the direction of the overall hydraulic gradient (Fig.3)

(8.1) 8z = +30° , O = -30° . oL = +30°

All lengths were equal, and all cross sections were equal,
so that

(8.2) 'FI _.—_-jz =—‘j ' (:z = CZ = C N )\1. =>‘E =\
The discharges are according to (2.8)
(8.3) G =T Cos(0) =T , Qg =XTCos(b0Y =27

Using these values in (7.6) and (7.7) gives

Xy = —;r.ﬂ
o= 7 X
(tr = 2 %§
(X2 == % 2
(8.4) ay> = %—— 2~
Gp= 5 1’“2
atr = 22 £
(4> = o f\-‘;
(tt> = & ;f;:

328 Soil Mechanics and Transport in Porous Media



The angle V Dbetween x-axis and path followed by the centre
of gravity is given by

_ -1 <y o
(8.5) YV = ftagn 2;7 = 10.9
Applying the results (8.,4) to the formulae of Section 5

developed from the general dispersion theory gives:
for the coordinates of the midpoint displacement

(8.6) x-_-_ésfiz\zl Yy=L2IT

for the second moments

3 22 NT

O = ;75 T ZE

(8.7) Oy = /_iig, T 14%%'
9 e a2 AT

(l_.,, - ;5 r 1 :E_Z

With T , the time after injection equal to

Lc
(8.8) T =40 557
. . . ., th .
this gives, with a superscript for theoretical:
th 2
= o. 4
Oxe 4 £ X* =2599 2
(8.9) az = 162 L* 2®
® 2 Y = 500 2
Ay = 2,81 «
U@ing these values in (5.5), (5.6) and (5.7) gives
£ # d "
" = 3.75 ZL a.u, = o Y} = 6o
(8.10)
.
6" = 194 £ &=
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The values (8.9) and (8.,10) are used to produce the dotted
continuous cumulation curve in Fig.4a', which according to
the theory has the form of a Gaussian distribution.
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9. Discussion of Results, Conclusions

and Further Development

The results of the computational experiment and of
the theory, expressed in the values of the coordinates
of the center of gravity and the second moments as obtained
in (4.5), (4.6) and (8.8), (8.10), are summarized as

follows
X* = 25932 x* = 2598 2
Yt = 4912 y“—_- So00 2
a; = 3.9_0!;" an = 375 2"
(9.1) @ = o ai= o
¥* = 6o° Y’ﬁ:-—: 6o°
5,‘:: 19754 6,": 1944
6, = o 5,,"= 0

Both experimental computation and theory predict a
dispersion ellipse, whose major principal axis has a direction
of 60° with the X;axis and a minor principal axis equal to
zero. This means, therefore, that particles are spread
in a line at 30° with respect to the hydraulic gradient.

(see Fig.4).

The values of the centre of gravity coordinates and
the standard deviation disagree by less than 2%. The
experimental centre of gravity lies below the theoretical
prediction.

These errors are largely due to the arbitrariness
of the condition of injection., If the injection point
had been chosen at a point Q along ¢; , halfway between
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the fissure intersections, rather than at P (Fig.6), the
experiment would have given the same spread of particles
with the same experimental values for the second moments
as injection at P.

By displacing the injection point, also the origin of
the X Y coordinates used for locating the centre of gravity
is desplaced. Since the displacement consists of components
PR=} £/3 and RQ=%{, the coordinates X , Y have to be
increased by these amounts respectively. The result of
the experiment starting from Q therefore is:

A <

X, = 25.93 +0433 = 2636 % G, = 19754
(9.2)

Yo = 491 +025 = 5164 é:=°

The travel time to obtain the values given by Fig.4 starting
from Q is longer than starting from P by half the residence
time in a ©; fissure. So T must be taken to be

)l\\ﬁ
Yin

(9.3) T, =T+4t: =40z

Using this value T in (8.6) and (8.7) gives the
theoretical prediction

Xa = 2634 o”a = 1954
(9.4)

Yo = 56t 5"

Q : 20 T 9

The error in centre of gravity location is again less than
2%, but the experimental centre of gravity now lies above
the theoretical prediction. The error in standard deviation
6; is now about 1%.

These errors can still be reduced by starting the
injection in a more balanced way. This means that the
distribution of particles over the two kinds of fissures
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at the injection point is chosen in such a manner that
this distribution remains unaltered, although after every
time interval 4¢ , particles are redistributed. Then

the centre of gravity coordinates of the experiment will

not follow the tortuous path as shown in Fig.6 but a
straight line that matches the theoretical values exactly
and the error in standard deviation reduces to less than

1%. We will not elaborate this refinement further because
explanation of a balanced injection may confuse more than

its contribution warrants.

Besides: this numerical comparison, Fig.4a pernits
a visual comparison of the cumulation curves of the particle
distributions from computational experiment (solid, stepwise
curve) and theory (dashed, continuous curve). The two
curves fit everywhere within the mesh width of the fissure
pattern.

Since experiment and theory agree numerically and
visually within values that are smaller than the mesh width
of the fissure pattern, the concluéion may be drawn that
the theory is capable of predicting the outcome of the
experiment within acceptable limits.

The theory is expressed in terms of averages of the
stochastic variables. The prediction formulae can therefore
be used in every case where the stochastic variables and
their probability distribution is known. As an example
of further development it will be shown here how to apply
the theory if the lengths of the fissure segments are not
equal (as in the previous treatment), but are randomly
distributed . Then the distribution of choice 2, must be
changed to include the variability of length, £ .

' Let the distribution of the lengths for both fissure
families be Gaussian with the same mean value J% and the
same standard deviation, /{, . The probability of choice
will then contain a term
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1 2 2
(9.5) Yo exp{ - 4-£0%/247 ] d2

which represents the probability that a fissure segment
has a length of magnitude between [ and f+d4 .

The previously obtained values for g, given by (7.3)
and (7.4) then becone

a,
Tz -z 1
51 = S }__,,.EE 2xp {—(!—Jﬂ)z/cl;} dz

(9.6)

— 7z 1 2/ 2
4,= 5 T {-ct-20% 43} de

i
The factor ];ﬁi is added in order to normalize the
probability of choice properly, satisfying the requirement

o
L#ta

Besides a summation of the form (6,2), this requirement

* 2y [ &= 7
= i Lo f-eeqorreni) [ B ] e = o

contains an integration over all possible lengths. In order
to obtain simple results from the integration, it is common
practice to integrate [f over the range from -« to o .
This means, that unreleastic negative values of / are
included. However, if /s is small with respect to A,
the error introduced is small with respect to the convenience
of:simpler expression.

The averages of the stochastic variables are obtained
by formalae similar to (6.2) and (6.,4). For the average
of the x-component of the displacement this gives with
(7.1) and (7.2)

1 « s, .2
(on = p= e {-te-0.0°7227 ] *

x{[[(a 0; (% =) + (LcesOr t+ LcesOr) 7,]/7,}6/1 =

= ,({‘ (Cos O G + Ces O %) /9;
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and for the average of the x-component squared

. 1 ol
(99 axr = g [ [~ 0-h) e g} )

*{[12(“21 (%:-72) + (£cCos b7 + j(ﬂ,&)‘&]/ﬁ}dz =

2 2z
= +S5)[cos™0, 9, + 2¢cby cosoy 95 + ca’y 971/9,

and similar expressions for the other averages.
Considering the example of Section 8 and introducing
the following values for the mean length and its standard

deviation
9.9 b= 2 by = AJET

the averages become (to be compared with (8.4))

303 /5
(9+10) x> = I xx> =106z 14* &t = B 55
3 L2 ( c
y> = —"; £ xy> =11 ‘%‘1 Q> = Lt
1 192
(t> = 25 yr =13 |5 £ <tt>=@*;’\—‘;—ﬁ
hreck m{,[l\v:ll by
From this the second moments become " %1 & o
3 2 AT
(p) O = 72 g TA e
33 22T
Gy = 1 725 T4 e
9 - 22T
oy = 13 25 TS -
:r’{ju., frcfjubﬁ

and this gives for T=4a§%¢, a dispersion ellipse with Teect it bk

major principal axis: &y =W 5= 2.021
minor principal axis: 6y = ,,_{5‘/77/—\ 6,20
direction of major principal aXis: ¥ = 622°

Dispersion in this case spreads the particles in two

directions because 6,# 0 , instead of along a line as was

the case when all fissure segments had the same length.
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Orientation of the two families of fissures and

of the hydraulic gradient, j .
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Subdivision of the discharges at intersections of fissures.
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NIEUW ARCHIEF VOOR WISKUNDE (4), Vol.3, (1985) 207-208

Cube in Tessaract
An Introduction to the Following Article

J.H. de Boer & J. van de Craats
(Section Editors)

Tessaract (or four-dimensional measure polytope) is the four-dimensional analo-
gue of cube. In the November 1966 issue of “Scientific American”, Martin
Gardner devoted his column “Mathematical Games” to higher dimensional
polytopes (“polytope” is the general term in the sequence: point, segment,
polygon, polyhedron, ... ). He raised the question of “finding the largest cube,
that can be fitted in a unit tessaract”. This problem was inspired by the
three-dimensional phenomenon, that inside a unit cube a square may be con-
structed with sides larger than unity, leading to the surprising result, that it is
possible to cut a hole in a unit cube such that a cube with edges larger than 1
can pass through it (the hole must be cut in a direction perpendicular to the
square). Pieter Nieuwland (1764 - 1794) found the maximum edge length for
such a cube (cf. Section 3 of the following article). The weaker result that a
cube can be perforated in such a way that the second cube of the same size
may pass through the hole, is ascribed by John Wallis (1616 - 1703) to Prince
Rupert, Count Palatine of the Rhine (1619 - 1683) (cf. D.J. Schrek: Prince
Rupert’s problem and its extension by Pieter Nieuwland, Scripta Mathematica
16 (1950) pp. 73-80 and pp. 261-267).

In 1971, G. de Josselin de Jong (professor of Soil Mechanics, now retired
from Delft University of Technology) sent a letter to Gardner containing a
description of the construction of a cube with edges b in a tessaract with edges
a, where b >a. He also expressed his opinion that this cube might be the larg-
est cube that can be fitted in the tessaract. He did not have a proof of this
conjecture, which he based on visual intuition only.

Martin Gardner answered, that he did not feel competent to judge the mer-
its of this result, and he recommended to send it to a mathematical journal.
To find out wether the result was worth publishing, de Josselin de Jong asked
the advice of H.S.M. Coxeter who proposed to formulate it as a problem in
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the American Mathematical Monthly. It appeared as problem 5886 in 1972
(vol. 79, p. 1140). No reactions were received. However, in 1974 (vol. 81, p.
294) the result of Section 6 of the following article was given, but without any
explanation how it was obtained.

Nine years later, de Josselin de Jong, still welcoming an adequate opportun-'
ity for showing the geometrical aspects of the result, came in contact with one
of the editors of our section “Recreational Mathematics”. Upon seeing the
material we asked him to publish his construction in our journal. The result is
the following article.

We expect that many will enjoy reading it, and, of course, we also hope that
some will find it a challenge to improve upon the results by constructing a
larger cube, or to supply a proof that in fact the cube is the largest possible.
Also the general n-dimensional case might be worth considering.
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NIEUW ARCHIEF VOOR WISKUNDE (4), Vol.3, (1985) 209-217

Cube with Edges Larger than those of
the Enclosing Tessaract

G. de Josselin de Jong

Ary Schefferstraat 227
2597 VT Den Haag
The Netherlands

1. INTRODUCTION

The purpose of this paper is to show, how inside a tessaract (four-dimensional
measure polytope, or hyper-cube) a three-dimensional cube can be constructed
with edges larger than those of the enclosing tessaract. As an example of a tes-
saract consider in euclidian four-space R* the polytope

1 1
T = {(x1,X2,X3,X4)€R® | —5a<x|,x3,x3,x4<+7a}.

T has 16 vertices (in coordinates (t%a, t%a,i%a,i-}a)), 32 edges (of

length a), 24 two-dimensional faces and 8 three-dimensional cells.

To show that T contains a cube with edges larger than g, it may suffice to
give the coordinates of the eight vertices of the cube (see (10) in Section 7) and
leave it as an exercise to the reader to verify the claim by linear algebra. How-
ever, it might be of interest to show, how the result was found by rotating a
rectangular parallelepiped around an axis, adjusting the lengths of its edges in
such a manner, that its vertices are on the bounding surface of the tessaract
and its edges are of equal length. The procedure results in producing the larg-
est cube, that can be constructed by this particular rotation. Since all other
rotations the author could imagine, did not produce a larger cube, it is conjec-
tured that the maximal cube is found. This conjecture is based on visual intui-
tion only, and still requires a rigourous proof.
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2. A NOTE ON THE FIGURES ;

Let it first be shown how a tessaract can be represented visually as in Fig. 2.
The construction of this figure is understood by starting with the oblique
parallel projection of a three-dimensional cube, as in Fig. 1. Two faces of the
cube are undistorted and presented as two congruent squares. The four other
square faces appear as oblique parallelograms.

In an analogous way an oblique parallel projection of a (four-dimensional)
tessaract in three-space may be produced by presenting two boundary cells
undistorted as two congruent cubes. From these the front cube is drawn with
heavy lines in Fig. 2. The back cube is displaced with respect to the front cube
in an arbitrary direction backwards. Then corresponding vertices are con-
nected by 8 parallel edges. The six remaining boundary cubes appear as six
oblique parallelopipeds.

Figure 2 gives a plane picture of the three-dimensional projection of a tes-
saract. This figure should be visualized as a three-dimensional model. It is
instructive to locate on this model all 8 boundary cells, which in R* are cubes.

Before treating the problem of finding a cube with edges larger than those of
the enclosing tessaract, it is helpful to consider first the problem of construct-
ing the largest square in a cube. This problem is treated here in a circumstan-
tial manner, unnecessary for such a trivial case. This is done in order to intro-
duce the elements of the reasoning which, being obvious in three dimensions,
can be extended by analogy to the less obvious four-dimensional case,

3. SQUARE IN CUBE

Visual insight suggests, that the most favourable position for the square is
obtained by choosing its plane through the centre M of the cube. This centre
lies (Fig. 3) halfway on the line connecting the midpoints n and n’ of two
opposite vertical edges of the cube. Consider this line to be the axis of rota-
tion for a plane a, that will contain the square. Note that in a cube two edges
are opposite when, although being parallel. they are not in a common boun-

dary face.

‘ \
\
Fig. 1. Cube projected in Fig. 2. Projection of tessaract in R?,
plane of paper projected in plane of paper
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The plane « intersects the upper and lower faces of the cube by lines paral-
lel to the diagonals in these faces. The lengths of these lines is limited by the
edges of the cube, giving symmetrically located vertices for the square.

Let the edges of the cube have lengths a and those of the square b. Intro-
ducing a parameter A according to Fig. 3, gives the relation

mm’ =b = aV2-2\ (1)

The upright edges of the square are located in a plane normal to the axis of
rotation. This plane intersects the cube in the dotted rectangle with sides 2A
and g, such that with Pythagoras’prime theorem

b? = (20 +a> (2)

Elimination of A gives the relation

aV2—b = (b*—a?’ 3)
with the root b /fa = 3/ 2V2=1.0607, showing that b can be larger than a.
This is Pieter Nieuwland -psime’s solution mentioned in the editor prime’s

introduction. Visual insight in this case clearly indicates that it is impossible
to manoeuvre the square in a position which produces a higher value for b / a.

T

=
S

— - —

A

L% ke

Fig. 3. Largest flat square in cube
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4. CUBE IN TESSARACT

A similar procedure is now applied to the construction of a cube with edge
length b, that can be inserted in a tessaract with edge length a, such that b >a.
The tessaract is the body represented in Figure 4 by '

ABCDEF GHABCDE FGH

The cube, that has to fit in it, is shown in Fig. 6as P Q R S P Q' R’ §'.

Visual intuition suggests that the most favourable position for the cube is
obtained, when its centre coincides with the centre of the tessaract. Let m and
m’ be the intersection points of the diagonals of the opposite faces P Q R S
and P’ Q' R’ S’ of the cube (Fig. 6). The centre M of the cube lies halfway
mm’. For the tessaract its centre M lies halfway the centres n and n’ of the two
opposite faces B F F' B’ and D H H' D’ (Fig. 4). These faces are opposite,
because, although being parallel, they are not in a common cubic boundary
cell.

In order to position the cube in the tessaract the choice is now made to
superimpose the lines mMm' and nMn’ so that the points M coincide. Further,
the line nmMm’n’ is considered to be the axis of rotation for a plane B, that
will contain the diagonal plane PRR’P’ of the cube.

The plane B intersects the upper and lower faces of the tessaract (E'F'G'H’
and A B C D in Fig. 4) in lines parallel to the diagonals in those faces. The
segment R R’ in face E' F' G’ H’ is shown separately in Fig. 5. Its position is
specified by the parameters A and p. Its length b then satisfies the relation

RR = PP =b =aV2 -2\ @)

The symmetric positions of PP’ and R R’ in the upper and lower faces
guarantee that P R R’ P’ is a rectangle. The lengths of the upright edges of
this rectangle are bV2 and with Pythagoras’ theorem it follows from Fig. 4
that

(PR): = (PR’ = 2b% = 24% + 4. (5)

(Note that the distance between the faces ABCD and E' F' G’ H' is equal to
a \/E.)

Rotation of the plane 8 around the axis n m M m’n’ varies the parameter p.
In Fig. 5 the situation p<<A is assumed. It might be expected that in the most
favourable position, i.e. the position for which b is maximal, p would be equal
to A. Then the points R and R’ would be on the edges F’ G’ and G' H' of the
upperface E' F’ G’ H' (as in Fig. 3). However, it is shown below (eqs (9)) that

the solution requires p to be smaller than A. This prevents the other vertices
0,0Q',5",8 of the cube to exceed the limits imposed by the tessaract.
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Fig. 4. Tessaract with axis of rotation n’m’Mmn and e b
vertices PRR’P’ of the cube R’ i W
4
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o
a
----- ~ Qv
El
e
Fig. 5. Location of RR’ as conditioned by the
parameters A and p
Fig. 6. Cube with edges of length b, that W

Selected Works of G. de Josselin de Jong 349



214 G. de JOSSELIN de JONG

5. THE REMAINING FOUR VERTICES

The plane P R R’ P’ is kept fixed in the tessaract during the procedure to
locate the other diagonal plane S Q @’ S’ of the cube. Unlike in three-space,
where the position of a cube is completely determined by one diagonal plane,
in four-space it is possible to rotate the other diagonal plane: S Q O’ §’
around the axis nm M m’n’, while keeping it perpendicular to the plane
PRR P.

In order to study the possibilities offered by this second kind of rotation, it
is helpful to construct the intersection of the tessaract with the three-
dimensional space through m normal to nm M m’n’. The line PR is located in
this space and S Q can rotate freely in the plane normal to P R in this space.
After choosing the most favourable position for § Q the cube is determined
completely.

In Fig. 7 the dotted orthogonal parallelepiped is the intersection body of the
tessaract with the space through m perpendicular to nm M m’n’. This assertion
can be verified by noting that the dotted lines, being mutually orthogonal, are
all normal to the diagonals F’ H' or BD , which in turn are parallel to
nmM m’'n’. Moreover, all dotted lines are situated in faces of the tessaract
and therefore on its boundary.

The dotted intersection body is shown separately in Fig. 8. It has eight edges
of length a, one set of four being parallel to B F, the other set parallel to
F F’. The remaining four edges, from which two carry P and R, have lengths
2\. This is verified in Fig. 5, where the dotted line through R (perpendicular to
R R’) is the upper edge of the intersection solid in Fig. 8.

The diagonal S Q of the inserted cube is situated in the dotted intersection
body of Fig. 8, and more specifically in a plane y through m normal to P R.
This plane vy intersects the dotted body in the heavy lined hexagon in Fig. 8.
The segment SQ has to remain within this hexagon which is presented undis-
tortedly and with its dimensions in Fig. 9.

The most favourable position for S Q is as shown in Fig. 9. S Q is a diago-
nal in the cube and therefore its length is bV2. Using the values shown in
Fig. 9 gives

2
(SQP = 202 = (aV2 — -2-"-‘-‘;‘/—2:)1 + 4)\1(1+24:7). (©)
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Fig. 7. Tessaract intersected by three-space through m,
perpendicular to the rotation axis

Fig. 9. Hexagon, limiting the size of SQ in
plane y through m normal to PR

normal to PR

Fig. 8. Shape of intersection body with plane
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6. RESULT
Solving (6) for A, after p has been eliminated by means of (5), gives

2 = +aV2(b*—a?)? /(bV2TFa).

Only the upper sign is applicable, since A cannot be negative. Use of (4) then
gives

el
@V2 — bYbV2 —a) = aV2 (b2 —a?)*. %)
There is only one root, viz.
b/a=1.007435. t))

This result shows, that there exists indeed a cube with edges larger than those
of the tessaract. From (4) and (5) it follows that

A/a=~02034 , p/a=~00864. )

In the solution of the problem in the Am. Math. Monthly, mentioned in the
editor prime-s introduction, the ratio (8) was given as a root of an equation of
degree eight, instead of the more simple equation (7). This was due to a less
adequate elimination of A and p from (4), (5) and (6).

Fig. 10 shows how the cube fits into the tessaract. It may be noted that the
point Q of the cube is located in the face B C G F of the boundary cell
A BCDEFG H. Since both P and P’ are situated in the face A B C D of
that boundary cell the entire face P Q @’ P’ is located in that cell. Similarly,
the face SRR S is a subset of the opposite boundary cell
ABCDEF GH.

Only the two faces P Q @’ P’ and S R R’ S’ of the cube are located in the
boundary space of the tessaract. All other planes of the cube are in the inte-
rior. The vertices, however, are all situated on the boundary of the tessaract.
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E‘
G
A
c
Fig. 10. Cube placed in the tessaract & A

7. COORDINATES

In order to facilitate verification of the result, the coordinates of the vertices of
the i::ube are giv?n belqw as located in the tessaract of Section 1 with vertices
(£754a,+754a,+5a,+75a). The lower signs in these expressions relate to the
coordinates of the points R, §', P/, Q'.

PR = (=(3a—TA+WV2),F5a,F(3a —3(A — HV2),F50a)
0,8 = (£5a,+(5a — 2—?1),1(%0 — \V2),¥7a)
RP' = (x(3a—3A — pV2), 2750, F(3a—3A+p)V2),=7a)

5,0' = (=(3a—A\V2),F(3a —z—z"i),-.—-—l',a. +a).

It is possible to verify by linear algebra that the conditions guaranteeing
PQRS P QR S tobe a cube, lead to equations (4), (5) and (6).
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