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Preface

This special proceedings volume contains nine selected papers that were presented
in the International Symposium in Statistics (ISS) on Longitudinal Data Analysis
Subject to Outliers, Measurement Errors, and/or Missing Values, held at Memorial
University, Canada from July 16–18, 2012. Three years ago the ISS-2009 was
organized focussing on inferences in generalized linear longitudinal mixed models
(GLLMMs), and a special issue of the Canadian Journal of Statistics (2010, Vol. 38,
June issue, Wiley) was published with seven selected papers from this symposium.
These seven papers from ISS-2009 dealt with progress and challenges in the area
of discrete longitudinal data analysis. As a reflection of the theme of the ISS-
2012, the papers in the present volume deal with inferences for longitudinal data
with additional practical issues such as measurement errors, missing values, and/or
outliers. The inferences for this type of complex longitudinal data become more
challenging than the inferences for standard longitudinal data following generalized
linear longitudinal models (GLLMs). The present volume with nine papers makes
a significant contribution toward such challenging inferences. To make it as precise
and clear as possible, the papers are grouped into three parts along the theme of
the symposium. Part I contains four papers in longitudinal data analysis subject
to measurement errors, similarly Part II also contains four papers but they are in
longitudinal data analysis subject to missing values, and Part III has one paper
dealing with inferences for longitudinal data subject to outliers.

In a longitudinal setup, repeated responses along with a set of multidimensional
time-dependent covariates are collected over a small period of time. There are
situations where it is realized that the observed multidimensional covariates at a
given time point differ from the corresponding true covariates by some measurement
errors, but it is of interest to find the regression effects of the true covariates on
the repeated responses. The first paper in Part I, by B. C. Sutradhar, begins with
a discussion on this measurement error problem for scalar responses. This setup
with scalar responses is referred to as the independent setup. In the first part of
the paper, the author considers the independent setup and provides an overview
of the existing vast literature on inferences for various bias correction approaches.
In the longitudinal setup, repeated responses are, however, likely to follow a true
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time-dependent covariates-based correlation structure. Because the true covariates
are unobserved, this involvement of the true covariates in the correlation structure
makes the bias correction to the observed covariates-based regression estimator
very difficult, specially for longitudinal discrete such as count and binary data. In
the second part of the paper, the author gives a brief discussion on the existing
bias corrected generalized method of moments (BCGMM) and generalized quasi-
likelihood (BCGQL) approaches in the linear longitudinal models (LLMs) setup.
The author then discusses the progress and challenges in obtaining bias corrected
inferences in the generalized LLMs (GLLMs) setup, mainly for repeated count
and binary data. An overview is given on how to develop a BCGQL inference
approach for longitudinal count data when corresponding covariates are subject
to measurement errors. The bias correction inference for longitudinal binary data
appears to be extremely difficult. The author has discussed the progress and
emphasized on further investigations to resolve this challenging problem. In the
second paper of Part I, Laine Thomas, Leonard A. Stefanski, and Marie Davidian
consider a binary logistic regression model in independent setup where, on top
of baseline covariates, the binary responses are also influenced by the mean and
variance parameters of a scalar covariate which is repeatedly measured over a
period of time. The authors have used a moment approach for the prediction of the
variance components involved in the linear regression measurement error models
for the repeated values of the covariate, and these predicted variances are used in
turn in a conditional scores-based bias correction approach for the estimation of
the main regression parameters of the binary outcome model. As opposed to the
longitudinal setup, the third paper in Part I, by John P. Buonaccorsi, deals with
measurement errors in time series. The author assumes that the true time series
follows a dynamic model of interest but the series itself is unobserved. Instead, a
series with measurement error is observed. Thus, the observed response at a given
time is not necessarily the true response, rather, it follows a suitable distribution with
its conditional mean as a function of the true response. The author has discussed
various bias correction approaches including moments and likelihood methods for
the estimation of the parameters of the dynamic model for the true but unobserved
time series. In the fourth paper of Part I, Erik Meijer, Laura Spierdijk, and Tom
Wansbeek consider a linear dynamic mixed model in panel data setup, but the
true responses satisfying the underlying model are not observed. The observed
responses, which are subject to measurement errors, are used to obtain consistent
and efficient estimators for the parameters of the model for the true responses. Thus,
this paper considers the measurement error in responses, whereas the first and the
second paper in this part considered the measurement errors in covariates.

In many biomedical, clinical, and socioeconomic studies, a response and its
corresponding multidimensional covariates are collected repeatedly over time from
a large number of independent individuals. In this setup, it is assumed that the
repeated responses from an individual marginally follow a linear or nonlinear
regression model and jointly they follow a longitudinal correlation structure. It is
of interest to estimate the regression effects of the time-dependent covariates on the
repeated responses. For varieties of reasons it may, however, happen that a portion
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of responses are missing from some individuals. In practice, in general, there are
three types of missing mechanism such as missing completely at random (MCAR),
missing at random (MAR), or missing non-ignorably. Further the nonresponse may
occur in a monotonic fashion or they may be intermittent. The analysis of this
type of incomplete longitudinal data, specially the inferences for the regression
effects by using incomplete data, is complicated. This is because, to develop
proper inferences, one requires to accommodate both missing mechanism and the
correlation structure for the available longitudinal responses. The first paper in
Part II, by B. C. Sutradhar, provides an overview on incomplete data analysis both
in independent and aforementioned longitudinal setup. In the independent setup,
attempts are made to collect multidimensional responses from a large number of
independent individuals, but it may happen that a small portion of individuals do
not provide complete multidimensional responses leading to incomplete data. The
author first discusses some of the widely used existing estimation methods including
the imputation technique for such incomplete data analysis in the independent
setup. The author then discusses the progress made and the difficulties encountered,
by the existing inference techniques, which do not appear to accommodate the
missing mechanism and longitudinal correlations properly. Details are given for
some remedies to overcome this anomaly in order to develop proper estimating
equations for the regression effects. An unconditional as well as a conditional
approach is discussed to develop estimating equations for consistent regression
estimates. In the second paper of Part II, Taslim Mallick, Patrick Farrell, and
B. C. Sutradhar proposed a GQL approach along the lines of the first paper by
B. C. Sutradhar that provides consistent regression estimates. When the responses
are MAR, the authors have further demonstrated that the existing generalized
estimating equations (GEE) approach encounters serious convergence problems
specially when missing proportion is large. This breakdown shows the inconsistency
of the GEE-based approaches, whereas the proposed GQL approach does not
encounter such convergence problems unless the missing proportion is unreasonably
high, and it produces almost unbiased regression estimates with smaller standard
errors. In the third paper of Part II, Paul S. Albert, Rajeshwari Sundaram, and
Alexander C. McLain discuss a random effects approach to analyze longitudinal
data subject to missing. The authors introduce suitable random effects and assume
that they cause the correlations among repeated data and also determine the missing
mechanism. More specifically, they assume that conditional on the same random
effects, the responses do not dependent on the missing data status, also the repeated
responses are independent. This yields a simple probability model for the observed
random variables, that is, responses and missing indicators, which in turn leads to
fairly simple likelihood and/or conditional likelihood inferences for the regression
parameters. In the last paper of Part II, Michael A. McIsaac and Richard J. Cook
consider a two-phase sampling-based dropout model, where in the first phase a
vector of clustered or repeated responses along with a vector of multidimensional
auxiliary covariates are collected from a large number of independent individuals.
However, in the second phase, a vector of multidimensional expensive covariates are
collected only from a portion of individuals. It is of interest to examine the effects
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of both auxiliary and expensive covariates on the clustered responses. The authors
discuss the incomplete data-based likelihood, mean score, and weighted pseudo-
likelihood methods for the estimation of such regression effects.

Part III of the volume contains one paper by B. C. Sutradhar, on the inferences
for longitudinal data subject to outliers. It is known in the independent setup that
a few outlying responses mainly caused by the associated contaminated covariates
may adversely influence the valid inferences for the regression effects. The author
first gives an overview of the existing robust approaches in the independent
setup for the estimation of the regression effects in linear, count, and binary data
models. These approaches include a recently developed fully standardized Mallow’s
type quasi-likelihood (FSMQL) method that provides almost unbiased regression
estimates. The author then extends the overview to the longitudinal setup. The
robust inferences for longitudinal binary and count data are, however, not adequately
discussed in the literature. The author discusses a robust GQL approach for unbiased
regression estimation for count and binary longitudinal data models.

St. John’s, NL, Canada Brajendra C. Sutradhar

ISS-2012 Delegates
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ISS-2012 Welcome Address by Brajendra C. Sutradhar (Organizer)

With the name of Lord, we welcome all of you, to Memorial University, the
host for the International Symposium in Statistics, 2012 (ISS-2012) on Longitudinal
Data Analysis Subject to Outliers, Measurement Errors, and/or Missing Values.
It gives us a pleasure to note that we have been able to keep up the spirit of
the first symposium (ISS-2009) that took place here in Memorial University, in
organizing the present symposium covering extended and more challenging research
areas in the longitudinal setup, mainly for discrete data such as count and binary
data.We thank all of you for your interest and response to this symposium that has
attempted to attract the researchers deeply involved in the inferences for longitudinal
data those encounter practical difficulties due to measurement errors, nonresponse,
and/or outliers. We hope that you will find the symposium stimulating and will
derive spirits for doing more and more quality research in these challenging areas
as a service to the society and mankind at large. We also hope that the symposium
generates and enhances the spirit of collaborative research among the participants
which also might reconfirm our sense of achievement in a greater horizon of life, as
the proverb goes: “Life is a march from I to We to He (Sri Sathya Sai Baba, India)”.
It is indeed a pleasure to note that we have delegates in this specialized symposium
from many countries such as Australia, Bangladesh, Brazil, Canada, Mauritius, the
Netherlands, Saudi Arabia, Spain, and the USA covering a large part of the globe.
We extend our hearty welcome to all of you.

We also welcome you to St. John’s, the oldest city of North America, known as
the City of Legends, where you can view icebergs, watch whales, and experience
Newfoundland and Labrador’s unique culture. It is a progressive city and is the site
of many world class facilities. A mosaic of fishing villages, cultural festivals, and
wildlife tours bring variety to the city. Also, the Cape Spear, the most easterly point
of North America, is not far from the city, where one can experience the unique
beauty of sunrise. We hope that you have planned for an extended stay in St. John’s
following the symposium to enjoy these and other endless options!

St. John’s, NL, Canada Brajendra C. Sutradhar
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Longitudinal Data Analysis Subject

to Measurement Error



Measurement Error Analysis from Independent
to Longitudinal Setup

Brajendra C. Sutradhar

Abstract In a generalized linear models (GLMs) setup, when scalar responses
along with multidimensional covariates are collected from a selected sample of
independent individuals, there are situations where it is realized that the observed
covariates differ from the corresponding true covariates by some measurement error,
but it is of interest to find the regression effects of the true covariates on the scalar
responses. Further it may happen that the true covariates may be fixed but unknown
or they may be random. It is understandable that when observed covariates are
used for either likelihood or quasi-likelihood-based inferences, the naive regression
estimates would be biased and hence inconsistent for the true regression parameters.
Over the last three decades there have been a significant number of studies dealing
with this bias correction problem for the regression estimation due to the presence of
measurement error. In general these bias correction inferences are relatively easier
for the linear and count response models, whereas the inferences are complex for the
logistic binary models. In the first part of the paper, we review some of the widely
used bias correction inferences in the GLMs setup and highlight their advantages
and drawbacks where appropriate. As opposed to the independent setup, the bias
correction inferences for clustered (longitudinal) data are, however, not adequately
addressed in the literature. To be a bit more specific, some attention has been given
to deal with bias correction in linear longitudinal setup (also called panel data setup)
only. Bias corrected generalized method of moments (BCGMM) and bias corrected
generalized quasi-likelihood (BCGQL) approaches are introduced and discussed. In
the second part of this paper, we review these BCGMM and BCGQL approaches
along with their advantages and drawbacks. The bias correction inferences for
count and binary data are, however, more complex, because of the fact that apart
from the mean functions, the variance and covariance functions of the clustered
responses also involve time-dependent covariates. This makes the bias correction
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4 B.C. Sutradhar

difficult. However, following some recent works, in the second part of the paper,
we also discuss a BCGQL approach for longitudinal models for count data subject
to measurement error in covariates. Developing a similar bias correction approach
for longitudinal binary data appears to be difficult and it requires further in-depth
investigations.

1 Introduction

When responses along with covariates are collected from a group of independent
individuals in a generalized linear model (GLM) setup, in some practical situ-
ations the observed covariates may be subject to measurement errors differing
from the true covariates values. These imprecise observed covariates, when used
directly, the standard statistical methods such as likelihood and quasi-likelihood
methods yield biased and hence inconsistent regression estimates. Bias corrected
estimation for the regression effects involved in generalized linear measurement-
error models (GLMEMs) with normal measurement errors in covariates has been
studied extensively in the literature. See, for example, Fuller (1987), Carroll et al.
(2006), and Buonaccorsi (2010), and the references therein. In general, this type
of bias correction is studied under two scenarios. First, if for a sample of observed
responses and covariates, namely, {(yi,xi)(i = 1, . . . ,K)}, the true covariates {zi}
are independent and identically distributed random vectors from some unknown
distribution, a structural error-in-variables model is obtained; second if {zi} are
unknown constants, a functional error-in-variables model is obtained (Kendall and
Stuart 1979, Chap. 29; Stefanski and Carroll 1987; also known as Berkson error
model). Note that the second scenario is more challenging technically because
unknown fixed {zi} makes a large set of parameters and direct estimation or
prediction of each of them may be impossible, specially when K is large.

For discussions on structural models, especially for inferences, in addition
to the aforementioned references, namely, Fuller (1987), Carroll et al. (2006),
and Buonaccorsi (2010), one may consult, for example, an instrumental variable
technique to obtain bias corrected estimates for regression parameters in GLMs,
studied by Buzas and Stefanski (1996a) (see also Stefanski and Buzas 1995; Buzas
and Stefanski 1996b; Amemiya 1990; Carroll and Stefanski 1990), among others.
In this paper, we, however, mainly deal with functional models, and among many
existing studies based on such functional models, we, for example, refer to Stefanski
and Carroll (1985), Stefanski (1985), Armstrong (1985), Stefanski and Carroll
(1987), Carroll and Stefanski (1990), Nakamura (1990), Carroll and Wand (1991),
Liang and Liu (1991), Stefanski (2000), and Carroll et al. (2006). Some of these
studies address measurement error problems in various complicated situations such
as when the data also contain outliers, and regression function is partly specified.
But, they are confined to the independent setup.

As opposed to the independent setup, not much attention is given to the measure-
ment error models for longitudinal count and binary data. Sutradhar and Rao (1996)
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have developed a bias correction approach as an extension of Stefanski (1985) for
the longitudinal binary data with covariates subject to measurement errors. To be
specific, these authors have used a small measurement error variance asymptotic
approach to achieve the bias correction, which works well if the measurement error
variance is small or moderately large. Wang et al. (1996) considered a measurement
error model in a generalized linear regression setup where covariates are replicated
and the measurement errors for replicated covariates are assumed to be correlated
with a stationary correlation structure such as Gaussian auto-regressive of order 1
(AR(1)) structure. As far as the responses are concerned, they were assumed to be
independent, collected at a cross-sectional level from a large number of independent
individuals. Thus this study does not address the measurement error problems
in the longitudinal setup where responses are collected repeatedly from a large
number of independent individuals. With regard to the correlations for the repeated
responses, there, however, exit some studies for continuous responses subject to
measurement error, in time series setup. For example, we refer to the study by
Staudenmayer and Buonaccorsi (2005), where time series responses are assumed
to follow the Gaussian auto-regressive order 1 (AR(1)) correlation process subject
to measurement error. But, these studies are not applicable to the longitudinal setup,
especially for discrete longitudinal data such as for repeated count and binary data
with covariates subject to measurement error.

In this paper, first we review some of the widely used inference approaches
in the GLMs setup for independent responses, for the estimation of the re-
gression effects on such responses when associated covariates are subject to
mainly functional measurement error. The structural measurement error models
are discussed in Sect. 2.1.2. The advantages and drawbacks of each approach are
highlighted.

As pointed out above, the measurement error analysis is not so developed in
the longitudinal setup specially for binary and count data. For linear longitudi-
nal measurement error models, there exist some studies with concentration on
econometric data analysis. For example, Wansbeek (2001) (see also Wansbeek
and Meijer 2000) considered a measurement error model for linear panel data,
where on top of the fixed true covariates zi, some of the other covariates are
strictly exogenous. To be more specific, Wansbeek (2001) developed necessary
moment conditions to form bias corrected method of moments (BCMM) estimating
equations in order to obtain consistent generalized method of moments (GMM) es-
timates for the regression parameters involved including the effect of the exogenous
covariates. More recently, Xiao et al. (2007) studied the efficiency properties of
the BCGMM (bias corrected generalized method of moments) approach considered
by Wansbeek (2001). Note that the derivation of the efficient BCGMM estimators
by Xiao et al. (2007) may be considered as the generalization of the GMM
approach of Hansen (1982) to the measurement error models. In studying the
efficiency of the BCGMM approach, Xiao et al. (2007), however, assumed that
the model errors εi1, . . . ,εiTi are independent to each other. Also they assume
that the measurement errors collected over times are serially correlated. Recently
Fan et al. (2012) have developed a bias corrected generalized quasi-likelihood
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(BCGQL) approach that produces more efficient estimates than the BCGMM
approach.

As far as the measurement error models for longitudinal count and binary data
are concerned, in developing a bias correction method, one has to accommodate
both longitudinal correlations of the repeated responses and the measurement
errors in covariates. Recently, Sutradhar et al. (2012) have developed a BCGQL
approach so that the BCGQL estimating function is unbiased for the GQL estimating
function involving the true covariates. They then solved the BCGQL estimating
equation to obtain bias corrected regression estimates. These estimates are also
efficient. We describe this BCGQL approach in brief from Sutradhar et al. (2012).
As opposed to the small measurement error variance-based estimating equation
approach (Sutradhar and Rao 1996), developing a similar BCGQL estimating
equation for regression effects involved in longitudinal binary data models does not
appear to be easy. This would require further in-depth investigations.

2 Measurement Error Analysis in Independent Setup

For i = 1, . . . ,K, let Yi denote the binary or count response variable for the ith
individual and xi = (xi1, . . . ,xip)

′ be the associated p-dimensional covariate vector
subject to normal measurement errors. Let zi = (zi1, . . . ,zip)

′ be the unobserved true
covariate vector which may be fixed constant or random and β be the regression
effect of zi on yi. For discrete responses, such as for count and binary data, by using
exponential family density for yi given zi, the GLMEM is written as

f (yi;zi) = exp[{yiθi(zi)− a(θi(zi))}+ b(yi)] (1)

xi = zi + δvi with vi ∼ Np(0,Λ = diag[σ2
1 , . . . ,σ

2
p ]), (2)

where θi(zi) = h(z′iβ ), with a(·),b(·), and h(·) being known functional form,
yielding the first and second derivatives, a′(θi(zi)) and a′′(θi(zi)), as the mean
and variance of yi, respectively; vi is a random measurement error vector and δ 2

is a scalar parameter. Note that if for a sample (yi,xi)(i = 1, . . . ,K) the covariates
{zi} are unknown constants, a functional error-in-variables model (also known as
Berkson error model) is obtained; if {zi} are independent and identically distributed
random vectors from some unknown distribution, a structural error-in-variables
model is obtained (Kendall and Stuart 1979, Chap. 29; Stefanski and Carroll
1987).

Under the functional model, Nakamura (1990) has proposed a corrected score
(CS) estimation approach, where for given zi, the log likelihood function for β is
written by (1) as

�(β ;y,z) =
K

∑
i=1

[{yiθi(zi)− a(θi(zi))}+ b(yi)],
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and observed covariates xi-based corrected log likelihood function �∗(β ;y,x) is
written such that Ex[�

∗(β ;y,x)] = �(β ;y,z). The corrected score estimate of β , say
β̂CS, is then obtained by solving the corrected score equation

U∗(β ;y,x) =
∂�∗(β ;y,x)

∂β
= 0. (3)

This corrected score approach provides closed form estimating equation for β for
the Poisson regression model, but, the binary logistic regression model does not
yield a corrected score function which is a limitation to this approach.

Stefanski and Carroll (1987) proposed a method based on conditional scores
(CNS). In this approach, unbiased score equations are obtained by condition-
ing on certain parameter-dependent sufficient statistics for the true covariates
z, and the authors have developed the approach in both functional and struc-
tural setups. The conditional score equations have a closed form for GLMs
such as for normal, Poisson, and binary logistic models. Obtaining a closed
form unbiased equation for logistic regression parameter by this conditional ap-
proach is an advantage over the direct corrected score approach (Nakamura
1990) which does not yield corrected score function. To elaborate a little more
on the conditional score approach, consider, for example, the functional ver-
sion of the logistic measurement error model with scalar predictor zi so that
the measurement error vi in (2) follows N1(0,σ2

1 ) (Stefanski 2000, Sect. 4.1).
For convenience, consider δ = 1 in (2). In this case, the density of (yi;xi) is
given by

f (yi,xi;β ,zi) = [
exp(z′iβ )

1+ exp(z′iβ )
]yi [

1
1+ exp(z′iβ )

]1−yi
1

σ1
φ(

xi − zi

σ1
),

where φ(.) is the standard normal density function. The estimation of β also
requires the estimation of the nuisance parameters zi or some functions of zi’s
for i = 1, . . . ,K. However, Stefanski and Carroll (1987) have demonstrated that
the parameter-dependent statistic λi = xi + yiσ2

1 β is sufficient for unknown zi in
the sense that the conditional distribution of (yi,xi) given λi does not depend on
the nuisance parameter zi. This fact was exploited to obtain unbiased estimating
equation for β using either conditional likelihood method or mean variance function
models (based on conditional density of yi given λi) and quasi-likelihood methods.
For the scalar regression parameter β , the unbiased estimating equation has the form
(Sutradhar and Rao 1996, Eq. (2.10))

K

∑
i=1

(λi −σ2
1 β )(yi − p̃i) = 0, (4)

where p̃i = F [{λi−(σ2
1/2)β}β ] with F(t) = 1/[1+exp(−t)]. Let β̂CNS denote the

solution of (4) for β .
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In structural error-in-variables setup, there exists an instrumental variable tech-
nique to obtain bias corrected estimates for regression parameters in GLMs. For
this, for example, we refer to Buzas and Stefanski (1996a) (see also Stefanski and
Buzas 1995; Buzas and Stefanski 1996a; Amemiya 1990; Fuller 1987). We do not
discuss about this technique any further in this paper as our purpose is to deal with
functional models as opposed to the structural models.

Note that as in the absence of measurement errors, regression parameters in-
volved in GLMs such as for count and binary models, may be estimated consistently
and efficiently by using the first two moments-based quasi-likelihood (QL) approach
(Wedderburn 1974), there has been a considerable attention to modify the naive
QL (NQL) approach (that directly uses observed covariates ignoring measurement
errors) in order to accommodate measurement errors in covariates and obtain bias
corrected QL (BCQL) estimates. Some of these BCQL approaches are developed
for both structural and functional models, some are developed for the functional
models and others are more appropriate for structural models only. Stefanski (1985)
proposed a small measurement error variance-based BCQL approach for structural
models, Carroll and Stefanski (1990) have used a similar small measurement error
variance-based QL approach which is developed to accommodate either of the
structural or functional models or both. Liang and Liu (1991) have discussed a
BCQL approach for structural model, which was later on generalized by Wang
et al. (1996) to accommodate correlated replicates in covariates. Sutradhar and
Rao (1996) have used Stefanski’s (1985) small measurement error-based BCQL
approach for the longitudinal binary data, independent setup being a special case,
under functional model only. In the next section, we provide a brief review of
some of these existing simpler BCQL approaches which are suitable for functional
models.

In Sect. 2.1, we provide an alternative BCQL approach which yields the same
corrected regression estimates as the corrected score estimates (Nakamura 1990) for
the Poisson model in functional setup. In the binary case, the proposed alternative
approach provides a first order approximate BCQL regression estimates.

2.1 BCQL Estimation

Note that if zi were known, then one would have obtained a consistent estimator of
β by solving the so-called quasi-likelihood (QL) estimating equation

K

∑
i=1

[
∂a′(θi(zi))

∂β
(yi − a′(θi(zi)))

a′′(θi(zi))
] =

K

∑
i=1

ψi(yi,zi,β ) = 0 (5)

(Wedderburn 1974), where for θi(zi) = h(z′iβ ), both a′(θi(zi)) and a′′(θi(zi)) are
functions of β . For example, for the Poisson and binary data h(·) = 1, and

a′(θi(zi)) = exp(z′iβ ) for the Poisson data, and a′(θi(zi)) =
exp(z′iβ )

1+exp(z′iβ )
for the binary
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data. Thus, for both Poisson and binary models, the QL estimating (5) reduces to
∑K

i=1 zi(yi − a′(z′iβ )) = 0, where a′(z′iβ ) = μiz is the mean of yi. Note that this QL
estimating equation is also a likelihood estimating equation. However, because the
true covariate zi is not observed, one cannot use the estimating (5) for the estimation
of β .

2.1.1 Small Measurement Error Variance-Based QL (SVQL) Approach

Suppose that by replacing zi with xi in (5), one constructs a NQL estimating
equation, namely

K

∑
i=1

ψi(yi,xi,β ) =
K

∑
i=1

wi[yi − a′(h(x′iβ ))]h
′(x′iβ )xi

=
K

∑
i=1

gi(x
′
iβ )xi = 0, (6)

which is the naive version of the Eq. (10) in Stefanski (1985, 588), where wixi =
∂a′(h(x′iβ ))/∂β

a′′(h(x′iβ ))
. Let β̂ be the solution of this NQL estimating (6). But, because the

NQL estimating function in the left-hand side of (6) is a function of xix′i and because
xi = zi + δvi with E[xix′i] = ziz′i + δ 2Λ in the functional setup, β̂ obtained from (6)
cannot converge to β , it rather converges to a different parameter say β (δΛ). Thus,
the naive estimator β̂ is biased and hence inconsistent for β . As a remedy, assuming
that δ is small, by expanding the expected function

Ex

K

∑
i=1

ψi(yi,xi,β ) = Ex

K

∑
i=1

gi(x
′
iβ )xi =

K

∑
i=1

ψ∗
i (yi,zi,β (δΛ)), (say), (7)

about δ = 0, and then equating the expanded function to zero followed by replacing
zi with xi and β with β̂ , Stefanski (1985) obtained a SVQL estimator of β as a
function of δ as

β̂SVQL(δ ) = β̂ +
1
2

δ 2

[
K

∑
i=1

g′i(x
′
iβ̂ )xix

′
i

]−1

×
[

K

∑
i=1

g′′i (x
′
iβ̂ )β̂ ′Λβ̂ xi + 2g′i(x

′
iβ̂)Λβ̂

]
, (8)

where g′i(ηi) =
∂gi(ηi)

∂ηi
, and similarly g′′i (ηi) =

∂ 2gi(ηi)

∂η2
i

. Note that because in the

present independent setup, the mean and variance functions-based QL estimating (5)
is the same as the likelihood estimating equation based on GLM (1), Stefanski’s
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(1985) small variance-based bias correction to naive likelihood estimates is quite
flexible. See also Whittemore and Keller (1988) for a similar QL-based modification
to the NQL or likelihood estimates. Armstrong (1985) (see also Schafer 1987)
also has used QL approach but solved for bias corrected estimates numerically
as opposed to obtaining SVQL estimates. Based on small δ 2 approach, Carroll
and Stefanski (1990) have developed an approximate SVQL approach in a general
framework which can accommodate either structural or functional model or both.
In this paper, we, however, concentrate on the functional model only.

Note that as in the count data case gi(x′iβ ) = yi − μix = yi − exp(x′iβ ), the SVQL
estimator of β by (8) has the formula

Poisson case: β̂SVQL(δ ) = β̂ +
1
2

δ 2

[
−

K

∑
i=1

μ̂ixxix
′
i

]−1

×
[

K

∑
i=1

(−1)μ̂ixβ̂ ′Λβ̂ xi − 2μ̂ixΛβ̂

]
, (9)

where μ̂ix = exp(x′iβ̂). Similarly, for the binary data case with μ̂ix = p̂ix =

exp(x′iβ̂ )/[1+ exp(x′iβ̂ )], the SVQL estimator of β has the formula

Binary case: β̂SVQL(δ ) = β̂ +
1
2

δ 2

[
−

K

∑
i=1

p̂ixxix
′
i

]−1

×
[

K

∑
i=1

p̂ixq̂ix{1− q̂ix}β̂ ′Λβ̂ xi − 2 p̂ixq̂ixΛβ̂

]
, (10)

(see also Sutradhar and Rao 1996, Eq. (2.2), p. 181), where q̂ix = 1− p̂ix.

2.1.2 Conditional QL (CNQL) Estimation

In structural setup, there exists a QL approach, developed conditional on xi. Let the
true covariate vector zi be a stochastic variable, distributed as

zi ∼ Np(m,V ).

Next because xi = zi + δvi by (2), it then follows that conditional on zi, xi has the
conditional normal distribution

xi|zi ∼ Np(zi,δ 2Λ).

Unconditionally xi has the normal distribution given by
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xi ∼ Np[E(zi), E(δ 2Λ)+ var(zi)]

≡ Np[m,δ 2Λ +V ].

Furthermore,

cov(xi,zi) = Ez[cov((xi,zi)|zi)]+ covz[E(xi|zi),E(zi|zi)]

= covz[zi,zi] =V.

It then follows that zi and xi have the 2p-dimensional joint normal distribution given
as ⎛⎝ zi

xi

⎞⎠∼ N2p

⎡⎣⎛⎝m

m

⎞⎠ ,

⎛⎝V V

V δ 2Λ +V

⎞⎠⎤⎦ , (11)

yielding the conditional distribution of zi given xi as

zi|xi ∼ Np[m+V(δ 2Λ +V)−1(xi −m), V −V (δ 2Λ +V)−1V ]

≡ Np[{Ip −V (δ 2Λ +V)−1}m

+V (δ 2Λ +V)−1xi, {Ip −V(δ 2Λ +V)−1}V ]

≡ Np[ηz|x, V11.2]. (12)

The CNQL estimate of β , say β̂CNQL is then obtained by solving the QL estimating
equation

K

∑
i=1

∂{E[Yi|xi]}
∂β

[var(Yi|xi)]
−1(yi −E[Yi|xi]) = 0, (13)

(Liang and Liu 1991, Eq. (4.11), p. 51), where by applying (12), the conditional
expectation and covariance matrix may be computed by using the formulas

E[Yi|xi] = Ezi|xi
[Yi|zi] = Ezi|xi

[a′(z′iβ )],

var[Yi|xi] = Ezi|xi
[var(Yi|zi)]+ varzi|xi

[E(Yi|zi)]

= Ezi|xi
[a′′(z′iβ )]+ varzi|xi

[a′(z′iβ )].

Note that in this structural setup, Wang et al. (1996) have used a naive mean and
variance-based QL approach where QL estimating equation for β is constructed by
replacing the observed covariate vector xi with its mean obtained from a repeated
sampling. In fact this type of repeated samples is usually employed to estimate the
measurement error variances. Their approximate QL estimating equation has the
form
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K

∑
i=1

[
∂{a′(x′iβ )}

∂β
[a′′(x′iβ )]

−1(yi − a′(x′iβ ))
]
|xi=x̃i

= 0,

where x̃i is the mean computed from the replicates of xi. The relative performance
of this approximate QL approach with other existing approaches is, however, not
known.

Turning back to the functional setup, the CNQL estimating (12) may be modified
by using fixed zi and its relationship to xi given in (2), that is, xi = zi + δvi. It
follows in this case that one may still solve the CNQL (12) for β , but the conditional
expectation and variance are computed as

E[Yi|xi] = Evi [{a′(z′iβ )}|zi=xi−δvi
]

var[Yi|xi] = Evi [{a′′(z′iβ )}|zi=xi−δvi
]+ varvi [{a′(z′iβ )}|zi=xi−δvi

], (14)

where vi ∼ Np[0,Λ = diag(σ2
1 , . . . ,σ2

u , . . . ,σ2
p)].

2.1.3 An Approximate BCQL Approach Using Corrected Estimating
Function

We propose a bias correction approach along the lines of Nakamura (1990).
The difference between Nakamura’s and our approach is that Nakamura (1990)
developed a corrected score function �∗(β ;y,x) such that its expectation is the true
but unknown score function, that is, Ex[�

∗(β ;y,x)] = �(β ;y,z), and then solved the
corrected score (3) for β , whereas in our approach we develop a corrected quasi-
likelihood function, say Q∗(y,x,β ), such that

Ex[Q
∗(y,x,β )] = ψ(y,z,β ), (15)

where by (5), ψ(y,z,β ) = ∑K
i=1 ψi(yi,zi,β ) is the true QL function in unknown

covariates zi, and solve the corrected QL equation, that is, Q∗(β ,y,x) = 0 for β .
Also, this bias correction approach is different than the SVQL approach of Stefanski
(1985) as it does not require any small variance assumption to hold.

Poisson Regression Model

If the true covariates zi were known, then for the Poisson regression model it follows
from (5) that the QL estimating equation would have the form

ψ(y,z,β ) =
K

∑
i=1

ψi(yi,zi,β ) =
K

∑
i=1

zi(yi − μiz) = 0, (16)
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with μiz = exp(z′iβ ). For the purpose of developing a corrected QL function
Q∗(β ,y,x), by replacing zi with xi, we first write the NQL estimating equation as

Q(y,x,β ) =
K

∑
i=1

Qi(yi,xi,β ) =
K

∑
i=1

xi(yi − μix) = 0, (17)

where μix = exp(x′iβ ). Under the measurement error model (2), that is, when xi =
zi + δvi, it is clear that NQL function Q(y,x,β ) is not unbiased for the true QL
function ψ(y,z,β ). That is,

Ex[Q(y,x,β )] = Ex

K

∑
i=1

xi(yi − μix) �= ψ(y,z,β ) =
K

∑
i=1

zi(yi − μiz).

Note, however, that under the Gaussian measurement error model (2), that is
when xi ∼ Np(zi,δ 2Λ), one obtains Ex[exp(x′iβ )|zi] = exp(z′iβ + ξ ) = μiz exp(ξ ),
where ξ = δ 2

2 β ′Λβ , yielding

Exμix exp(−ξ ) = μiz. (18)

Further it may be shown that Ex[xi exp(x′iβ )|zi] = [zi +δ 2Λβ ]μiz exp(ξ ) (Nakamura
1990), yielding

Ex[xiμix exp(−ξ )] = ziμiz + δ 2Λβ μiz. (19)

Now by using (18), it follows from (19) that

Ex[{xi − δ 2Λβ}μix exp(−ξ )] = ziμiz. (20)

Consequently, one obtains the BCQL function

Q∗(y,x,β ) =
K

∑
i=1

[xiyi −{(xi − δ 2Λβ )μix exp(−ξ )}] (21)

which satisfies

Ex[Q
∗(y,x,β )] =

K

∑
i=1

zi(yi − μiz), (22)

yielding the BCQL estimating equation for β in the Poisson model as

K

∑
i=1

[xiyi −{(xi− δ 2Λβ )μix exp(−ξ )}] = 0. (23)
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We denote the solution of (23) by β̂BCQL. This estimator is consistent for β .
Remark that this BCQL estimating (23) is the same as the corrected score equation
derived by Nakamura (1990, Sect. 4.3). Thus, in the Poisson measurement model
setup, the BCQL approach provides the same regression estimate as the bias
corrected likelihood approach.

Binary Regression Model

In the binary regression case, the true but unknown mean function is given by μiz =
exp(z′iβ )/[1+ exp(z′iβ )], whereas in the Poisson case μiz = exp(z′iβ ). This makes it
difficult to find a corrected QL function Q̃(y,x,β ) such that

Ex[Q̃(y,x,β )] =
K

∑
i=1

zi[yi − exp(z′iβ )
1+ exp(z′iβ )

] = ψ̃(y,z,β ) (24)

in the binary case. However, a softer, that is, a first order approximate BCQL
(SBCQL) estimating function may be developed as follows. We denote this
SBCQL function as Q̃S(y,x,β ) which will be approximately unbiased for ψ̃(y,z,β ),
that is,

Ex[Q̃S(y,x,β )]� ψ̃(y,z,β ).

Recall from (18) and (20) that

Ex[exp(x′iβ − ξ )] = exp(z′iβ ), (25)

Ex[{xi − δ 2Λβ}exp(x′iβ − ξ )] = zi exp(z′iβ ), (26)

where ξ = δ 2

2 β ′Λβ . It then follows that

Ex

[{xi − δ 2Λβ}exp(x′iβ − ξ )
1+ exp(x′iβ − ξ )

]
� zi exp(z′iβ )

1+ exp(z′iβ )
. (27)

Next because the true QL function has the form

ψ̃(y,z,β ) =
K

∑
i=1

ziyi −
K

∑
i=1

[
zi exp(z′iβ )

1+ exp(z′iβ )
],

by using (27), one may write a softer BCQL (SBCQL) estimating equation as

K

∑
i=1

[
xiyi − {xi − δ 2Λβ}exp(x′iβ − ξ )

1+ exp(x′iβ − ξ )

]
= 0. (28)
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We denote the solution of the SBCQL estimating (28) by β̂SBCQL. Note that this
estimator may still be biased and on a more serious note it may not even converge to
β . This is because the expectation shown in (27) may differ to a great extent from the
actual expectation. However exploiting a better approximation for the expectation
as follows may remove the convergence problem and also may yield estimates with
smaller bias.

For the purpose, rewrite the expectation in (27) as

Ex

[{xi − δ 2Λβ}exp(x′iβ − ξ )
1+ exp(x′iβ − ξ )

]
� zi exp(z′iβ )

1+ exp(z′iβ )
=

μWz,N

μWz,D

, (29)

and improve the expectation as follows. To be specific, we first compute an improved
expectation as

Ex

[{xi − δ 2Λβ}exp(x′iβ − ξ )
1+ exp(x′iβ − ξ )

]
= Ex

[
Wx,N

Wx,D

]
� μWz,N

μWz,D

− ˆcov[Wx,N ,Wx,D]

μ̂2
Wz,D

+
μ̂Wz,N

μ̂3
Wz,D

ˆvar[Wx,D], (30)

where we use

μ̂Wz,N =
1
K

K

∑
i=1

[{xi − δ 2Λβ}exp(x′iβ − ξ )]

μ̂Wz,D =
1
K

K

∑
i=1

[1+ exp(x′iβ − ξ )]

ˆvar[Wx,D] =
1
K

K

∑
i=1

[1+ exp(x′iβ − ξ )]2 − μ̂2
Wz,D

ˆcov[Wx,N ,Wx,D] =
1
K

K

∑
i=1

[{(xi − δ 2Λβ )exp(x′iβ − ξ )}{1+ exp(x′iβ − ξ )}]
− μ̂Wz,N μ̂Wz,D (31)

We then rewrite (30) as

Ex

[{xi − δ 2Λβ}exp(x′iβ − ξ )
1+ exp(x′iβ − ξ )

+ tc

]
=

μWz,N

μWz,D

, (32)

where

tc =
ˆcov[Wx,N ,Wx,D]

μ̂2
Wz,D

− μ̂Wz,N

μ̂3
Wz,D

ˆvar[Wx,D].
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Thus, instead of (28), we now solve the improved SBCQL estimating equation
given by

K

∑
i=1

[
xiyi − {xi − δ 2Λβ}exp(x′iβ − ξ )

1+ exp(x′iβ − ξ )
− tc

]
= 0. (33)

3 Measurement Error Analysis in Longitudinal Setup

With regard to the correlations for the repeated responses, not much attention
is paid to model such correlations, where the associated covariates are subject
to measurement error. However, in time series setup, there exist some studies
for continuous responses subject to measurement error. For example, we refer to
the study by Staudenmayer and Buonaccorsi (2005), where time series responses
are assumed to follow the Gaussian auto-regressive order 1 (AR(1)) correlation
process subject to measurement errors. But, these studies are not applicable to the
longitudinal setup, especially for discrete longitudinal data such as for repeated
count data with covariates subject to measurement error.

In longitudinal setup, both repeated responses and measurement errors in
covariates are likely to be correlated. Because the repeated measurement errors
usually share a common instrument/machine/individual effect, in this study we
assume that this type of errors follow a familial correlation structure such as
mixed model-based equi-correlation structure. As far as the repeated responses are
concerned, it is likely that they will follow a dynamic relationship causing certain
auto-correlations among them as time effects. Thus, similar to Sutradhar (2011),
in this study we assume that the repeated responses will follow a general class of
auto-correlation structures. It is, however, known that the repeated linear, count, and
binary data exhibit similar but different auto-correlation structures especially when
the covariates are time dependent (nonstationary). For this reason, in this section,
we deal with the measurement error models for these three types of response data
separately and discuss them in sequence in the following three subsections.

3.1 Linear Auto-correlation Models with Measurement Error
in Covariates

In this section, we consider functional error-in-variables models for continuous
(linear) panel data. Let

yit = z′itβ +wiγ∗i + εit , for t = 1, . . . ,Ti,

xit = zit + vit , (34)
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represent such a measurement error model, where yit denotes a continuous response
for the ith (i = 1, . . . ,K) individual recorded at time t (t = 1, . . . ,Ti) with 2 ≤ Ti ≤
T , zit = (zit1 . . . ,zitu, . . . ,zit p)

′ be the p × 1 true but unobserved time-dependent
covariate vector, β = (β1, . . . ,βu, . . . ,βp)

′ be the p × 1 vector of regression pa-

rameters, γ∗i is the ith individual random effect with γ∗i
iid∼(0,σ2

γ ), and wi is a
known additional covariate for the ith individual on top of the fixed covariates zit .
Furthermore, εit in (34) is the model error such that marginally εit∼(0,σ2

ε ), but
jointly εi1, . . . ,εit , . . . ,εiTi follow a serially correlated such as AR(1) (auto-regressive
order 1) or MA(1) (moving average order 1) process. Furthermore, in (34),

xit = (xit1 . . . ,xitu, . . . ,xit p)
′, and vit = (vit1 . . . ,vitu, . . . ,vit p)

′,

with

vitu ∼ (0,σ2
u ), for u = 1, . . . , p

at any time point t = 1, . . . ,Ti. Here, as in Sect. 1, σ2
u is known as the mea-

surement error variance for the uth covariate. Because the measurement errors
vi1u, . . . ,vitu, . . . ,viTiu for measuring the same uth covariate values at different times
are likely to be correlated due to a common instrumental random effect mi|u, (say),
we consider

vitu = mi|u + aitu, for t = 1, . . . ,Ti (35)

and assume that mi|u
iid∼(0, σ̃2

u ) and aitu
iid∼(0,σ2

a ), and mi|u and aitu are independent. It
is then clear from (35) that the variance of vitu and the correlation between visu and
vitu are given by

var(vitu) = σ2
u = σ̃2

u +σ2
a , and corr(visu,vitu) = φu =

σ̃2
u

σ̃2
u +σ2

a
, (36)

for all s �= t,s, t = 1, . . . ,Ti.
By writing Zi=[zi(1), . . . ,zi(u), . . . ,zi(p)] : Ti×p,with zi(u)=(zi1u, . . . ,zitu, . . . ,ziTiu)

′;
Xi=[xi(1), . . . ,xi(u), . . . ,xi(p)] : Ti × p,with xi(u) = (xi1u, . . . ,xitu, . . . ,xiTiu)

′; and Vi =
[vi(1), . . . ,vi(u), . . . ,vi(p)] : Ti× p,with vi(u) = (vi1u, . . . ,vitu, . . . ,viTiu)

′, and expressing
the measurement error model (34) in matrix notation as

yi = Ziβ + 1Tiwiγ∗i + εi (37)

Xi = Zi +Vi (38)

with yi = (yi1, . . . ,yiTi)
′, εi = (εi1, . . . ,εiTi )

′, and 1Ti as the Ti-dimensional unit vector,
one can first write the so-called naive MM (NMM) estimating equation for β as
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ψ∗ =
K

∑
i=1

X ′
i (yi −Xiβ ) = 0, (39)

but its solution would produce biased and hence inconsistent estimate for β , because
Ex|y[∑K

i=1 X ′
i (yi − Xiβ )] �= ∑K

i=1 Z′
i(yi − Ziβ ), due to the fact that in the present

measurement error setup E[V ′
i Vi] �= 0 even though E[Vi] = 0. As a remedy, by

exploiting

E[V ′
i Vi] = Tidiag[σ̃2

1 +σ2
a , . . . , σ̃

2
u +σ2

a , . . . , σ̃
2
p +σ2

a ]

= Tidiag[σ2
1 , . . . ,σ2

u , . . . ,σ2
p ]

= TiΛ(σ2
1 , . . . ,σ

2
u , . . . ,σ

2
p),(say) (40)

that is,

E[X ′
i Xi] = Z′

iZi +E[V ′
i Vi] = Z′

iZi +TiΛ(σ2
1 , . . . ,σ

2
u , . . . ,σ

2
p),

one may obtain a BCMM estimator for β by solving the BCMM estimating equation

ψ(x,y;β ,σ2
1 , . . . ,σ

2
p) =

K

∑
i=1

X ′
i yi − [

K

∑
i=1

{X ′
i Xi −TiΛ(σ2

1 , . . . ,σ
2
u , . . . ,σ

2
p)}]β

=
K

∑
i=1

ψi(xi,yi;β ,σ2
1 , . . . ,σ

2
p) (41)

(Griliches and Hausman 1986) yielding the BCMM estimator as

β̂BCMM =

[
K

∑
i=1

{X ′
i Xi −TiΛ(σ2

1 , . . . ,σ
2
u , . . . ,σ

2
p)}
]−1 K

∑
i=1

X ′
i yi. (42)

This BCMM estimator is consistent for β but can be inefficient.
Recently, some authors such as Wansbeek (2001) (see also Wansbeek and

Meijer 2000) considered a slightly different model than (37)–(38) by also involving
certain strictly exogenous explanatory variables (in addition to Zi) and by absorbing
the random effects γ∗i into the error vector εi that avoids the estimation of
the variance component of the random effects σ2

γ . Wansbeek (2001) developed
necessary moment conditions to form BCMM estimating equations in order to
obtain consistent GMM estimates for the regression parameters involved including
the effect of the exogenous covariates. More recently, Xiao et al. (2007) studied
the efficiency properties of the BCGMM approach considered by Wansbeek (2001).
Note that the derivation of the efficient BCGMM estimators by Xiao et al. (2007)
may be considered as the generalization of the GMM approach of Hansen (1982)
to the measurement error models. In studying the efficiency of the BCGMM
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approach, Xiao et al. (2007), however, assumed that the model errors εi1, . . . ,εiTi

are independent to each other. Also they assume that the measurement errors
vi1u, . . . ,viTiu in (38) (see also (34)) are serially correlated.

More recently, by treating the model errors εi1, . . . ,εiTi as serially correlated with
a general auto-correlation structure

Ci(ρ) =

⎡⎢⎢⎢⎢⎢⎣
1 ρ1 ρ2 · · · ρTi−1

ρ1 1 ρ1 · · · ρTi−2
...

...
...

...
ρTi−1 ρTi−2 ρTi−3 · · · 1

⎤⎥⎥⎥⎥⎥⎦ , (43)

(Sutradhar 2003) and by considering a more practical familial type equi-correlation
structure (36) for the measurement errors, that is,

E[vi(u)v
′
i(u)] = σ2

u [φu1Ti1
′
Ti
+(1−φ)ITi], (44)

Fan et al. (2012) compared the efficiency of the BCGMM estimator with a new
BCGQL (also referred to as BCGLS) approach, the latter being more efficient.
These two approaches are briefly described in the following two sub-sections.

3.1.1 BCGMM Estimation for Regression Effects

Note that the BCMM estimating (41) is an unbiased estimating equation because of
the fact that

EyEx|yψ(x,y;β ,σ2
1 , . . . ,σ2

p) =
K

∑
i=1

EyiExi|yi
ψi(xi,yi;β ,σ2

1 , . . . ,σ2
p) = 0.

Consequently, the BCMM estimator for β in (42) was obtained by solving

ψ(x,y;β ,σ2
1 , . . . ,σ

2
p) = 0,

but this estimator can be inefficient. As a remedy, following Hansen (1982) (see also
Xiao et al. 2007, Eq. (2.4)), Fan et al. (2012) discuss a BCGMM approach, where
one estimates β by minimizing the quadratic form

Q = ψ ′Cψ (45)

for a suitable p × p, positive definite matrix C, with C = [cov(ψ)]−1 as an
optimal choice. In (45), ψ is an unbiased moment function given by (41). Note
that since the computation of the cov(ψ) matrix requires the formulas for the
third and fourth order moments of {xitu} as well, one cannot compute such a
covariance matrix provided the measurement error distributions for the model (34)
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are known. However, as argued in the independent setup, it is reasonable for many
practical situations that measurement errors are normally distributed. As far as their
covariance structure is concerned we assume that they follow the structure in (36).
Based on this normality assumption for the measurement error, we reexpress the
C matrix in (45) as CN and obtain the BCGMM estimator for β by solving the
estimating equation

∂ψ ′

∂β
CNψ = 0, (46)

where by (41)

∂ψ ′

∂β
= [

K

∑
i=1

{X ′
i Xi −TiΛ(σ2

1 , . . . ,σ
2
u , . . . ,σ

2
p)}].

It then follows that the solution of (46), i.e., the BCGMM estimator of β is given by

β̂BCGMM =

[
∂ψ ′

∂β
CN

∂ψ
∂β ′

]−1
[

∂ψ ′

∂β
CN

K

∑
i=1

X ′
i yi

]
, (47)

with its variance as

var(β̂BCGMM) =

[
∂ψ ′

∂β
CN

∂ψ
∂β ′

]−1

×
[

∂ψ ′

∂β
CN

K

∑
i=1

var(X ′
i yi)CN

∂ψ
∂β

][
∂ψ ′

∂β
CN

∂ψ
∂β ′

]−1

. (48)

Construction of CN Matrix

Note that CN = [var(ψ)]−1 under the assumption that the measurement errors {vitu}
and hence observed covariates {xitu} are normally distributed. For the purpose, we
first compute var(ψ) as follows where ψ is given as in (41):

var(ψ) = var[
K

∑
i=1

X ′
i yi −{

K

∑
i=1

X ′
i Xi}β ]

=
K

∑
i=1

[var{X ′
i yi −X ′

i Xiβ}]

=
K

∑
i=1

[var{X ′
i yi}+ var{X ′

i Xiβ}− 2cov{X ′
i yi,X

′
i Xiβ}], (49)
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which, in addition to the formulas for the covariance matrix of yi, requires the
formulas for all possible second, third, and fourth order moments of {xitu}.
The following two lemmas will be useful in computing the covariance matrices
in (49).

Lemma 3.1. Under the measurement error model (34)–(37), let var(Yi) = Σi =
w2

i σ2
γ JTi +σ2

ε Ri = (σi�m) denote the Ti×Ti covariance matrix of the response vector
yi, where JTi is the Ti × Ti unit matrix and Ri = (ρi�m) is the Ti × Ti correlation
matrix for the components of εi such as for AR(1) process ρi�m = ρ |�−m|, ρ being the
correlation index parameter. It then follows that

σi�m = cov[Yi�,Yim] =

⎧⎨⎩σ∗
i

2 for �= m = 1, . . . ,Ti

σ∗
i

2[θi +(1−θi)ρi�m] for � �= m,
(50)

where σ∗
i

2 = w2
i σ2

γ +σ2
ε , and θi =

w2
i σ 2

γ
w2

i σ 2
γ +σ 2

ε
.

Lemma 3.2. Let Δi(u) = (δi(uu)�m) denote the Ti × Ti covariance matrix of xi(u) =
(xi1u, . . . ,xitu, . . . ,xiTiu)

′, where by (36)

cov[xi�u,ximu] = δi(uu)�m =

⎧⎨⎩σ2
u = σ̃2

u +σ2
a for �= m = 1, . . . ,Ti

σ̃2
u = φuσ2

u for � �= m.
(51)

Under the assumption that vi(u) or xi(u) in (38) follows the Ti-dimensional normal
distribution with covariance matrix Δi(u) as in Lemma 3.2, the third and fourth order
corrected product moments for the components of xi(u) are given by

ηi�mt = E [(xi�u − zi�u)(ximu − zimu)(xitu − zitu)] = 0, (52)

and

ξi�mst = E [(xi�u − zi�u)(ximu − zimu)(xisu − zisu)(xitu − zitu)]

= δi(uu)�mδi(uu)st + δi(uu)�sδi(uu)mt + δi(uu)�tδi(uu)ms, (53)

respectively.
By applying the Lemmas 3.1 and 3.2, one may compute the covariance matrices

in (49). For example, by writing the p× 1 vector X ′
i yi as X ′

i yi = [∑Ti
t=1 xit1yit , . . . ,

∑Ti
t=1 xituyit , . . . ,∑Ti

t=1 xit pyit ]
′, one may compute its p× p covariance matrix as

var[X ′
i yi] =

⎧⎨⎩ var[∑Ti
t=1 xituyit ] for u = 1, . . . , p

cov[∑Ti
t=1 xituyit ,∑Ti

t=1 xitryit ] for u �= r, u,r = 1, . . . , p,
(54)
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where

var[
Ti

∑
t=1

xituyit ] = varyEx[
Ti

∑
t=1

xituyit |y]+Eyvarx[
Ti

∑
t=1

xituyit |y]

= vary[
Ti

∑
t=1

zituyit ]+Ey[
Ti

∑
t=1

Ti

∑
m=1

δi(uu)tmyit yim]

=
Ti

∑
t=1

Ti

∑
m=1

zituzimuσitm

+
Ti

∑
t=1

Ti

∑
m=1

δi(uu)tm[σitm +β ′zit z
′
imβ ] (55)

and

cov[
Ti

∑
t=1

xituyit ,
Ti

∑
t=1

xitryit ] = covy[Ex{
Ti

∑
t=1

xituyit |y},Ex{
Ti

∑
t=1

xitryit |y}]

+ Eycovx[{
Ti

∑
t=1

xituyit ,
Ti

∑
t=1

xitryit}|y]

= covy[
Ti

∑
t=1

zituyit ,
Ti

∑
t=1

zitryit ]+Ey[
Ti

∑
t=1

Ti

∑
m=1

yit yimδi(ur)tm|y]

=
Ti

∑
t=1

Ti

∑
m=1

zituzimuσitm, (56)

because two covariates (u �= r) are always independent, i.e., δi(ur)tm = 0 irrespective
of the time points of their measurements. The remaining two covariance matrices
in (49) may be computed similarly.

3.1.2 BCGQL Estimation for Regression Effects

In this approach, by pretending that the model (37)–(38) does not contain any
measurement error, we first write the naive generalized quasi-likelihood (NGQL)
estimating equation

Ψ∗ =
K

∑
i=1

X ′
i Σ−1

i [yi −Xiβ ] = 0, (57)
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where Σi is the covariance matrix of yi. Note that the estimating function Ψ∗ is
similar but different than the MM estimating function ψ∗ given in (39). The solution
of (57) yields an NGQL estimator for β as

β̂NGQL =

[
K

∑
i=1

X ′
i Σ−1

i Xi

]−1 K

∑
i=1

X ′
i Σ−1

i yi, (58)

which is also familiar as the generalized least squares (GLS) estimator for β . Note
that this NGQL estimator β̂NGQL = β̂GLS is not consistent for β . This is because,
Ψ∗ in (57) is not an unbiased function under the true model (37)–(38), that is,
E(Ψ∗) �= 0.

Now to obtain an unbiased and hence consistent estimator for β , it is necessary
to consider an unbiased GQL function under the present model. This would be
a generalization of finding the moment conditions for MM studied by Wansbeek
(2001) to the actual correlation setup for the panel data.

In order to obtain an unbiased function from the Ψ∗
i function in (57), we first

note that in probability (→p), X ′
i Σ−1

i Xi converges as

X ′
i Σ−1

i Xi →p [Z′
iΣ−1

i Zi + diag{tr(Σ−1
i Δi(1)), . . . , tr(Σ−1

i Δi(p))}], (59)

where for u = 1, . . . , p, Δi(u) is given in Lemma 3.2 (see also (36)). Now by
using (59), we may modify (57) to obtain an unbiased estimating function given by

Ψ =
K

∑
i=1

X ′
i Σ−1

i yi − [
K

∑
i=1

{X ′
i Σ−1

i Xi

− diag[tr(Σ−1
i Δi(1)), . . . , . . . , tr(Σ−1

i Δi(p))]}]β , (60)

that is, E[Ψ ] = 0 under the model (37)–(38). Consequently, for known measurement
error variances, it is now clear from (60) that one may obtain the BCGQL estimator
given by

β̂BCGQL =

[
K

∑
i=1

{X ′
i Σ−1

i Xi

− diag[tr(Σ−1
i Δi(1)), . . . , tr(Σ−1

i Δi(p))]}
]−1

K

∑
i=1

X ′
i Σ−1

i yi, (61)

which is consistent for β . Also, this BCGQL estimator would be more efficient than
the BCMM estimator given in (42). This is because, unlike the BCMM estimator,
the BCGQL estimator is constructed by using the covariance matrix Σi of yi as the
weight matrix in the estimating equation. In fact, in view of the comparative results
for GQL and GMM estimators in the linear panel data setup (Rao et al. 2012),
this BCGQL estimator (61) may also be more efficient than the BCGMM estimator
obtained in (47).
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Note that the asymptotic variance of β̂BCGQL may be estimated as follows. By
writing

Pi,x = X ′
i Σ−1

i Xi − diag[tr(Σ−1
i Δi(1)), . . . , tr(Σ−1

i Δi(p))],

and because

EyEx|y[X ′
i Σ−1

i yi] = [Z′
iΣ

−1
i Zi]β

is estimated by Pi,xβ , one obtains a moment estimator of var[β̂BCGQL] as

ˆvar[β̂BCGQL] = [
K

∑
i=1

Pi,x]
−1

K

∑
i=1

[X ′
i Σ−1

i yi −Pi,xβ̂BCGQL]

× [X ′
i Σ−1

i yi −Pi,xβ̂BCGQL]
′[

K

∑
i=1

Pi,x]
−1. (62)

A Two-Stage BCGQL (BCGQL2) Estimation of β

Instead of solving the first stage estimating (60) for BCGQL estimator, similar to the
BCGMM estimation (46), Fan et al. (2012) have solved the second stage estimating
equation

K

∑
i=1

[
∂Ψ ′

i

∂β
D−1

iN Ψi

]
= 0, (63)

where, for Ψ = ∑K
i=1Ψi (60), with Ψi = X ′

i Σ−1
i yi −Pi,xβ ,

DiN = cov[Ψi]

under the assumption of multivariate normality for the random covariates xi(u) =
[xi1u, . . . ,xitu, . . . ,xiTiu]

′. It then follows that the solution of (63), i.e., the two stage
BCGQL BCGQL2 estimator of β is given by

β̂BCGQL2 =

[
K

∑
i=1

∂Ψ ′
i

∂β
D−1

iN
∂Ψi

∂β ′

]−1 K

∑
i=1

[
∂Ψ ′

i

∂β
D−1

iN X ′
i Σ−1

i yi

]
, (64)

with its variance as

var[β̂BCGQL2] =

[
K

∑
i=1

∂Ψ ′
i

∂β
D−1

iN
∂Ψi

∂β ′

]−1 K

∑
i=1

[
∂Ψ ′

i

∂β
D−1

iN var(X ′
i Σ−1

i yi)D
−1
iN

∂Ψi

∂β ′

]

×
[

K

∑
i=1

∂Ψ ′
i

∂β
D−1

iN
∂Ψi

∂β ′

]−1

, (65)
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where var(X ′
i Σ−1

i yi) may be computed similar to that of var(X ′
i yi) in (54). Further,

the covariance matrix DiN can be computed in the fashion similar to that of CN in
Sect. 3.1.1.

3.2 Longitudinal Count Data Models with Measurement Error
in Covariates

When compared to the linear measurement error model for correlated data (34),
in the present case, one has to deal with a correlation model for repeated count
data yi1, . . . ,yit , . . . ,yiT , where yit marginally, as in Sect. 2.1.3, follows a count data
distribution such as Poisson distribution with mean μiz = exp(z′it β ). However, as far
as the measurement errors are concerned, they arise through the same relationship
xit = zit + vit , as in the correlated linear model setup.

For the correlation structure for count data, we consider a practically important
AR(1) model following Sutradhar (2010) (see also Sutradhar 2011). The model is
written such that conditional on the true covariate vector zit , the marginal means and
variances satisfy the Poisson distribution-based relationship

E(Yit |zit) = var(Yit |zit) = μiz,t = exp(z′itβ ), (66)

for all t = 1, . . . ,T . Note that these two moments are nonstationary as they depend on
the time-dependent covariates zit . As far as the AR(1) correlations among repeated
counts are concerned, they arise from the following dynamic relationships:

yi1 ∼ Poi(μiz,1)

yit = ρ ∗ yi,t−1 + dit =

yi,t−1

∑
j=1

b j(ρ)+ dit , t = 2, . . . ,T, (67)

where for given counts yi,t−1 at time point t − 1, ∑
yi,t−1
j=1 b j(ρ) denotes the sum of

yi,t−1 independent binary values with Pr[b j(ρ) = 1] = ρ and Pr[b j(ρ) = 0] = 1−ρ ,
ρ being the longitudinal correlation index parameter. Now under the assumptions
that yi,t−1 ∼ Poi(μiz,t−1), dit ∼ Poi(μiz,t − ρμiz,t−1), for t = 2, . . . ,T , and dit and
yi,t−1 are independent, it follows from (67) that yir and yit have nonstationary lag
t − r correlations given by

corr(Yir,Yit) = ciz,rt =

⎧⎨⎩ρ t−r[μiz,rμ−1
iz,t ]

1
2 , for r < t

ρ r−t [μiz,t μ−1
ir,t ]

1
2 , for r > t.

(68)

Note that the lag correlations given by (68) are nonstationary by nature as they
depend on the time-dependent variances through the covariates zit and ziu, whereas
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in the stationary case when zit = ziu for all u �= t, they reduce to ρ t−u, a Gaussian-
type AR(1) correlation structure satisfying (43). Further note that because E[Yit ] =
μiz,t = exp(z′itβ ) by (67), the regression parameters vector β measures the effects
of zit on yit for all t = 1, . . . ,T . But in the present setup, zit ’s are unobservable,
and hence they cannot be used to estimate β . Instead, one must use the observed
covariates xit , which are, however, subject to measurement error explained through
the relationship

xit = zit + vit ,

with vit = (vit1, . . . ,vitu, . . . ,vit p)
′ satisfying the following assumptions:

1. vit ∼ N(0,Λ = diag[σ2
1 , . . . ,σ2

u , . . . ,σ2
p ]) for all t = 1, . . . ,T .

2. Also,

corr[viru,vitm] =

⎧⎨⎩φu, for m = u;r �= t,r, t = 1, . . . ,T

0, for m �= u;r, t = 1, . . . ,T .

These two assumptions imply that the uth covariate has the measurement error vari-
ance σ2

u for u= 1, . . . , p, at a given time t for all t = 1, . . . ,T . Also, the covariate val-
ues for the same uth covariate recorded at two different times r and t are equally cor-
related with correlation φu for all r �= t. This correlation assumption is similar to that
of the time-dependent covariates considered by Wang et al. (1996). One may also
consider other correlation structures such as AR(1) among the repeated values for
the same covariate. More specifically, the above assumptions is equivalent to writing⎛⎝ xir

xit

⎞⎠∼ N2p

⎡⎣⎛⎝ zir

zit

⎞⎠ ,

⎛⎝Λ Λφ

Λφ Λ

⎞⎠⎤⎦ , (69)

where Λφ = cov(vir,v′it) = diag[φ1σ2
1 , . . . ,φuσ2

u , . . . ,φpσ2
p ].

3.2.1 Bias Corrected GQL Estimation

Suppose that by using the observed covariates one writes a NGQL estimating
equation given by

K

∑
i=1

∂ μ ′
ix

∂β
Σ−1

ix (yi − μix) = 0, (70)

where

μix,t = μiz,t |zit=xit
, and Σix = (σix,rt ) = Σiz|z=x

= ([ciz,rt
√

μiz,rμiz,t ]|zit=xit
).
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But, this NGQL estimating (70) will yield biased and hence inconsistent estimate
for β . This is because the NGQL estimating function in the left-hand side of the (70)
is not unbiased for the true covariates-based GQL estimating function. That is,

Ex

[
K

∑
i=1

∂ μ ′
ix

∂β
Σ−1

ix (yi − μix)

]
�=

K

∑
i=1

∂ μ ′
iz

∂β
Σ−1

iz (yi − μiz). (71)

Recently, Sutradhar et al. (2012) have proposed a bias correction to the NGQL
estimating function and developed a BCGQL estimating function which is unbiased

for the true covariates-based estimating function ∑K
i=1

∂ μ ′
iz

∂β Σ−1
iz (yi − μiz). This

provides the BCGQL estimating equation as

gx(x,β ,ρ ,Λ ,φ1, . . . ,φp|y) =
K

∑
i=1

[{M1φ X ′
i −M1φ B1φ (β ⊗ 1′T )}

× {A
1
2
ixQ̃ix(ρ)A

− 1
2

ix }yi −{M2φX ′
i −M2φ B2φ (β ⊗ 1′T )}

× {A
1
2
ixQ̃ix(ρ)A

− 1
2

ix }μix

]
= 0, (72)

where yi = (yi1, . . . ,yit , . . . ,yiT )
′ is the T × 1 vector of repeated count responses,

with its mean μix = exp(x′itβ ) in observed covariates; X ′
i =(xi1, . . . ,xit , . . . ,xiT ) is the

p×T observed covariates matrix; Aix = diag[μix,1, . . . ,μix,t , . . . ,μix,T ]; 1′T =(1 . . . ,1)
is the 1×T vector of unity, ⊗ denotes the well-known Kronecker or direct product,
so that β ⊗1′T is the p×T matrix containing β = (β1 . . . ,βp)

′ in each column of the
matrix; and

B1φ =
1
2
(Λ −Λφ ),B2φ =

1
2
(Λ +Λφ ),

M1φ = diag[m1, . . . ,m1] : p× p;M2φ = diag[m2, . . . ,m2] : p× p,

with

m1 = exp{−1
4

β ′(Λ −Λφ )β}, and m2 = exp{−1
4

β ′(Λ +Λφ )β}.

Furthermore, in (72), Q̃ix(ρ) = C̃−1
ix (ρ), with Cix(ρ) = (c̃ix,rt ) as an unbiased

correlation matrix for the AR(1) correlation matrix in true covariates, namely
Ciz(ρ) = (ciz,rt). The formula for the (r, t)-th element of the unbiased correlation
matrix is given by

c̃ix,rt = ρ t−r[exp(xir − xit)
′ β
2
− 1

4
β ′(Λ −Λφ )β ] (73)

satisfying
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Ex[c̃ix,rt ] = ciz,rt = ρ t−r{μiz,r/μiz,t} 1
2 . (74)

We reexpress the BCGQL estimating (72) as

gx(x,β ,ρ ,Λ ,φ1, . . . ,φp|y) =
K

∑
i=1

[Di1(x)yi −Di2(x)μix] = 0, (75)

where Di1(x) and Di2(x) are p× T matrix functions of observed covariates. Let
β̂BCGQL be the solution of (73). Now conditional on the observed covariates xi,
solving this equation for β is equivalent to use the iterative equation,

β̂BCGQL(r+ 1) = β̂BCGQL(r) −
[
{Êy(

∂gx(x,β ,ρ ,Λ ,φ1, . . . ,φp|y)
∂β ′ )}−1

×
K

∑
i=1

{Di1(x)yi −Di2(x)μix}
]

β̂BCGQL(r)

, (76)

where β̂BCGQL(r) denote the β estimate at the r-th iteration. Note that under the true
model involving covariates zi,

yi ∼ [μiz,Σiz = (σitm)] ,

where for t < m, σitm = cov(yit , yim) = (ρm−t μiz,t), and y1, . . . ,yi, . . . ,yK are T -
dimensional independent vectors. Thus, under some mild moment conditions, by
using Lindeberg-Feller central limit theorem (Amemiya 1985, Theorem 3.3.6, p.
92), it follows from (76) that as K → ∞, β̂BCGQL ∼ Np(β ,V ∗), where

V ∗ =

[
Êy(

∂gx(x,β ,ρ ,Λ ,φ1, . . . ,φp|y)
∂β ′ )

]−1 K

∑
i=1

Di1(x)ΣizD
′
i1(x)

×
[

Êy(
∂gx(x,β ,ρ ,Λ ,φ1, . . . ,φp|y)

∂β ′ )

]−1

, (77)

which may be consistently estimated by using the moment estimate for Σiz in (77).
For this moment estimate, when ρ is known, one estimates the (t,m)th element
(t < m) of this matrix by using

σ̂itm = ρm−t μ̂iz,t = ρm−t μix,t = ρm−t [exp(x′it β − 1
2

β ′Λβ )]|β=β̂BCGQL
.

3.2.2 A Simulation-Based Numerical Illustration

We consider two (p = 2) covariates with measurement error variances σ2
1 and σ2

2 ,
respectively. It is expected that these measurement error variances are small in



Measurement Error Analysis from Independent to Longitudinal Setup 29

practice. We, however, consider them ranging from 0.1 to 0.3 for σ2
1 ; and from 0.1

to 0.8 for σ2
2 . Note that these ranges are quite large, whereas in the independence

(ρ = 0.0) setup and for one covariate case (p = 1), Nakamura (1990) examined
the performance of the bias corrected score estimator for σ2

1 up to 0.1. We have
also included the independence case but for larger measurement error variances as
compared to that of Nakamura (1990).

The main purpose of this section is to illustrate the performance of the proposed
BCGQL estimator obtained from (72) (see also (76)) when AR(1) count responses
are generated with some positive correlation index, where the covariates are subject
to measurement error with variances σ2

1 and σ2
2 for the two covariate case. We

consider ρ = 0.5. As mentioned above we also include the independence case
(ρ = 0.0). In all these cases, we first show that if measurement errors are not
adjusted, the so-called NGQL approach (70) produces highly biased estimates and
the correction by using BCGQL approach performs well.
We consider 500 simulations and generate correlated count data following the AR(1)
Poisson model (67)–(68) for K = 100 individuals over a period of T = 4 time points.
The true covariates zit1 and zit2 were generated as

zit1
iid∼ N(0,1), and zit2

iid∼ χ2
4 − 4√

8

with their effects β1 = 0.3 and β2 = 0.1, respectively, on the repeated response
yit . Note that even though the true covariates zitu are generated following the
standard normal and standardized χ2 distribution, these values are treated as fixed
under all simulations. Further note that these true covariates are unobserved in the
present setup, instead xit1 and xit2 are observed. We generate the observed covariates
following the relationship

xitu = zitu + vitu, u = 1, . . . , p,

where vitu’s are generated by using a random effect model given by

vitu = ku + eitu, with ku
iid∼ N(0,σ∗

u
2) and eitu

iid∼ N(0,σ∗
e

2), (78)

yielding

var(vitu) = σ∗
u

2 +σ∗
e

2 = σ2
u

corr(vitu,viru) =
σ∗

u
2

σ∗
u

2 +σ∗
e

2 = φu, (79)

where σ2
u is the measurement error variance for the uth (u = 1,2). Notice that φu

represents the equi-correlations among the repeated values of the same covariate.
Thus, φu = 1 would represent the situation where covariate values are same over
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Table 1 Simulated regression estimates, and their standard errors (SSEs), with true
regression parameters β1 = 0.3, β2 = 0.1, under AR(1) count data model for selected
response correlation ρ , measurement error variances σ 2

1 , σ 2
2 , with K = 100; T = 4; and

measurement error correlations φ1 and φ2; and true covariate values Z1 ∼ N(0,1) and

Z2 ∼ χ2
4−4√

8

Estimates

NGQL BCGQL
ρ φ1 φ2 σ 2

1 σ 2
2 β̂1 β̂2 β̂1 β̂2

0.0 1.0 1.0 0.1 0.3 0.2683 0.0849 0.3025 0.1026
(0.0501) (0.0380) (0.0583) (0.0448)

0.3 0.3 0.2274 0.0800 0.3052 0.1033
(0.0462) (0.0383) (0.0680) (0.0468)

0.3 0.8 0.2221 0.0652 0.3068 0.1052
(0.0450) (0.0338) (0.0701) (0.0525)

0.5 1.0 1.0 0.1 0.3 0.2688 0.0900 0.3036 0.1085
(0.0689) (0.0535) (0.0803) (0.0634)

0.3 0.3 0.2286 0.0854 0.3069 0.1099
(0.0640) (0.0536) (0.0920) (0.0662)

0.3 0.8 0.2232 0.0707 0.3100 0.1138
(0.0623) (0.0493) (0.0979) (0.0786)

0.0 0.25 0.50 0.1 0.3 0.2680 0.0842 0.2772 0.0914
(0.0502) (0.0372) (0.0523) (0.0401)

0.3 0.3 0.2270 0.0793 0.2435 0.0871
(0.0461) (0.0372) (0.0499) (0.0402)

0.3 0.8 0.2218 0.0643 0.2404 0.0779
(0.0450) (0.0329) (0.0495) (0.0392)

0.5 0.25 0.50 0.1 0.3 0.2338 0.0751 0.2800 0.1050
(0.0617) (0.0484) (0.0764) (0.0652)

0.3 0.3 0.1687 0.0683 0.2525 0.1148
(0.0521) (0.0476) (0.0943) (0.1065)

0.3 0.8 0.1642 0.0492 0.2488 0.1097
(0.0506) (0.0406) (0.1314) (0.1579)

time and in this case we consider xitu = ku, which yields corr(xitu,xiru) = φu = 1.0.
But it does not mean though responses are same, rather responses follow the AR(1)
correlation structure. In the simulation study, we, however, consider both situations
where φu = 1.0 for u = 1,2, in one situation; and in the other situation φ1 = 0.25
and φ2 = 0.5.

The simulated estimates along with their standard errors are presented in Table 1
for all selected values of the parameters. As expected, the NGQL estimates appear to
be highly biased. For example, when φ1 = φ2 = 1.0, the response correlation index
is 0.5, and measure error variances are σ2

1 = 0.3, σ2
2 = 0.8, the NGQL approach

produces the estimates of β1 = 0.3 and β2 = 0.1 as 0.22 and 0.07, whereas the
BCGQL approach yields almost unbiased estimates as 0.31 and 0.11, respectively.
When φ1 = 0.25 and φ2 = 0.5, for this set of large measurement error variances,
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the NGQL approach produces useless estimates, 0.16 for β1 = 0.30, and 0.05 for
β2 = 0.10. In this case, BCGQL approach still appears to produce reasonably good
estimates, 0.25 for β1 = 0.30, and 0.11 for β2 = 0.10. The BCGQL estimates for
β2 appears to be unbiased in all selected situations. As far as the independence case
ρ = 0.0 is concerned, the BCGQL approach works similarly to the correlation case
with ρ = 0.5.
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Bias Reduction in Logistic Regression
with Estimated Variance Predictors

Laine Thomas, Leonard A. Stefanski, and Marie Davidian

Abstract We study the problem of modeling a response as a function of baseline
covariates and a primary predictor of interest that is a noisy measurement of a
subject-specific variance. The problem arises naturally in biostatistical joint models
wherein the subjects’ primary endpoints are related to the features of subject-
specific longitudinal risk processes or profiles. Often the longitudinal process
features of interest are parameters of a longitudinal mean function. However, there is
a relatively recent and growing interest in relating primary endpoints to longitudinal
process variances. In the application motivating our work longitudinal processes
consist of 30-day blood pressure trajectories measured between 91 and 120 days
post dialysis therapy, with the primary endpoints being short-term mortality. Often
the longitudinal risk processes are adequately characterized in terms of trends such
as the slopes and intercepts identified with the subject-specific biomarker processes.
Modeling of the trend lines results in subject-specific estimated intercepts and
slopes, thus inducing a heteroscedastic measurement-error model structure where
the estimated trend parameters play the role of measurements of the “true” subject-
specific trend parameters that appear as predictors in the primary endpoint model.
Our interest lies in models in which the residual variances of the longitudinal
processes feed into the model for the primary endpoint. These subject-specific
variance parameters are estimated in the course of trend-line fitting creating a
measurement error model scenario where variances are predictors and mean squared
errors are their noisy measurements. Background literature is reviewed and several
methodological approaches for addressing the resulting errors-in-variances problem
are studied.
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1 Introduction

In biological studies of health effects a primary endpoint is sometimes related
to the longitudinal profiles of a continuous secondary response (e.g., systolic
blood pressure). The subject-specific random effects that describe each individual’s
longitudinal trajectory are often included as covariates in an outcome model. It
is well known that using these estimates of these subject-specific random effects
results in biased inference. A variety of methods exist to correct this bias (see, for
example, Li et al. 2004). Longitudinal measurements also allow for assessment of
variability over time. Recent studies seek to quantify the relationship between a
disease outcome and subject-specific variability (Yang et al. 2007; Havlik et al.
2002). Substantial bias may occur when variance estimates are imputed for true
variances as covariates in the outcome model (Lyles et al. 1999). In the most general
setting both subject-specific random effects estimates and variance estimates can
enter into the primary-endpoint model. In this case, coefficient estimation should
account for both sources of measurement error. We focus on the case that only es-
timated variances enter the model (along with error-free baseline covariates), while
explaining how to generalize our methods to the more general modeling setting. In
particular we study three relatively simple approaches for the special case of logistic
regression when the subject-specific variances enter the model as precisions, i.e., as
inverse variances. In this case the conditional score method (Stefanski and Carroll
1987; Carroll et al. 2006) provides a nice solution to the problem that allows for
models with interactions between the variance predictor and baseline predictors.
We compare the conditional score estimator to two simple data-adjustment methods
that counter the measurement-error induced attenuation by shrinking the noisy
predictors. The first can be viewed as either a variant of regression calibration
(Carroll and Stefanski 1990; Rosner et al. 1989) or a simple linear measurement
error model correction for attenuation. We call it attenuation-corrected calibration.
The second is an extension of the first that imputes variance estimates adjusted
to have means, variances, and covariances (with baseline predictors) that are
asymptotically correct (Tukey 1974; Bay 1997; Freedman et al. 2004; Elliott 2009).
Both attenuation-corrected calibration (ACCal) and moment adjusted imputation
are attractive because of their simplicity—post adjustment, the adjusted values are
used in standard software without further modification to obtain parameter estimates
(accurate standard error estimation is more involved but can usually be done by the
bootstrap). We describe the methods and compare them via simulation.

Health outcomes are frequently modeled by logistic regression where the covari-
ates may include subject-specific random effects and/or residual variances which
characterize the longitudinal features of a continuous response. In this paper, we in-
vestigate the relationship between longitudinal blood pressure variability and short-
term mortality in hemodialysis (HD) patients. In healthy patients blood pressure
variability is often measured using 24-hour ambulatory BP monitoring. However
describing variability in HD patients is more complex since their treatment may
induce fluctuations over longer periods than 24 hours. For this reason, in a retrospec-
tive analysis of the Accelerated Mortality on Renal Replacement (ArMORR) cohort,
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Yang et al. 2007 measured blood pressure variability over a three-month exposure
window (90–180 days) before a six-month follow-up period (181–365 days) to
asses mortality. Thus they focused on relatively long-term variability and mortality
among patients who had survived at least 180 days after the introduction of HD
treatment. Blood pressure was not measured until 90 days in order to allow subjects
to “acclimate” to dialysis therapy. The ArMORR study includes adults (> 18 years)
who were incident to hemodialysis between June 2004 and August 2005. Blood
pressure measurements were obtained from 90 to 120 days, and patient follow-up
began at 120 days. The average number of replicates observed during this period is
12 with standard deviation of 1.5. Consequently the subject-specific estimates are
subject to substantial variability about the corresponding unknown parameters.

This problem has been thoroughly studied for outcome models which include
subject-specific random effects like longitudinal slope and intercept parameters.
Wang et al. (2000) characterize these joint models and show that a naive approach
that simply substitutes ordinary least squares estimates for the random effects leads
to biased inference. To adjust for this measurement error bias, they propose a
variety of structural methods including regression calibration (Carroll et al. 2006,
Chap. 4) and a psuedo-expected estimating equation approach. These methods
rely on normality of the underlying random effects. In order to avoid parametric
assumptions on the random effects parameters Li et al. (2004) use a conditional-
score approach for generalized linear models. They follow the strategy of Stefanski
and Carroll (1987) and derive unbiased estimating equations by conditioning on
sufficient statistics for the unknown random effects parameters. The common
feature in these joint models is that the estimated random effect parameters have
a normal distribution, conditional on the true random effects. In other words,
the measurement error is normally distributed. This is suitable for joint modeling
applications where interest focuses on longitudinal slope and intercept parameters.

Many recent studies define joint models where the primary outcome model
depends on subject-specific variance components. Yang et al. (2007) identified
an association between hemoglobin variability and mortality in patients with end
stage renal disease, even after controlling for the absolute level and temporal
trend in hemoglobin. Havlik et al. (2002) reported increased risk of late-life white
matter brain lesions for patients with higher variability in systolic blood pressure
during mid-life. Similar work is abundant (Brunelli et al. 2008; Liu et al. 1978;
Grove et al. 1997; Iribarren et al. 1995). These outcome models often include
both random effects and variance components to describe the longitudinal data.
Coefficient estimation should account for both sources of measurement error, which
are correlated. Moreover, the measurement error in the variance estimates is clearly
not normal (under normality assumptions for the longitudinal model the variance
estimates, appropriately scaled, have a chi-square distribution).

It seems that the problem of measurement error is not well appreciated in this
context since the aforementioned studies all take a naive approach to model fitting.
This is not surprising since, to the best of our knowledge, there is very little
methodology to address this problem. A key exception is a maximum likelihood
method proposed by Lyles et al. 1999. They note that variance estimates have
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high variability relative to estimates of a mean from a similar sample size, so
the problem of measurement error can be even more pronounced in the case of
estimated variances. They study a continuous outcome, decline in CD4 counts
after seroconversion, modeled by linear regression that depends on both the
subject-specific mean and variance of longitudinal CD4 counts measured before
seroconversion. They obtain a full likelihood for the observed data by assuming that
the subject-specific means are normally distributed and independent of log-normally
distributed subject-specific variances. Based on these assumptions they fit models by
maximum likelihood as well as a regression calibration-type approach. The methods
we study make less demanding assumptions about the distribution of the true
subject variances and therefore provide an alternatively to heavily parameterized
modeling.

In Sect. 2 we describe a general joint-effects model where primary modeling
can depend on both subject-specific longitudinal mean parameters and longitudinal
variance parameters. Then we narrow the focus to the case that the primary model
is logistic regression and that in addition to baseline covariates only subject-specific
variances enter the primary model. Estimators for that special case are derived in
Sect. 3. We derive the conditional score estimator and also the necessary adjustment
formulas for the attenuation-corrected calibration and moment adjusted imputation
estimators. Section 4 presents results from a simulation study. Section 5 presents
some extensions and their limitations. Section 6 concludes with summary remarks
and notes on possible future research.

2 Joint Model with Variance Predictors

In the general joint model of interest data (Zi,Si,Ti,Yi) are recorded for each of
i= 1, . . . ,n subjects. The outcome variable is Yi which we assume is binary; baseline
covariates are codified in Zi; the vector Si contains repeated measurements Si =
(Sit , . . . ,Siri)

T collected at times Ti = (ti1, . . . , tiri)
T . In the application motivating

our model the Sit are blood pressure measurements taken post dialysis after a
stabilization period, and Yi is an indicator of mortality in specified follow-up period.

The longitudinal component of our joint model is a linear random-coefficient
model

Si = Di�i +σiUi, Ui(0,Iri), (1)

where Di has jth row (1, ti j), j = 1, . . . ,ri and �i =(γ0i,γ1i)
T . The model has subject-

specific intercepts γ0,1, . . . ,γ0,n, subject-specific slopes, γ1,1, . . . ,γ1,n, and in its most
general form, subject-specific variances σ2

1 , . . . ,σ
2
n . We do not assume that the �i

or the σ2
i are random, choosing rather to work under the more general framework

that these are fixed unknown parameters. The latter assumption corresponds to the
so-called functional measurement error model, and thus our methods are functional
methods in the terminology of Carroll et al. (2006).
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We study the case in which the outcome is binary and is modeled via logistic
regression. The models studied in this paper are all submodels of the general form

P(Yi = 1| Zi,�i,σ2
i ;ˇ) = H

(
β0 +ZT

i ˇZ +�T
i ˇγ +βσ T (σ2

i )+ZT
1iˇZ2σ T (σ2

i )
)
,
(2)

where Z1i is a subvector of Zi, H(t) = 1/(1+ e−t), and T () is a transformation
applied to the subject-specific variance, e.g., identity, square root, logarithm,
reciprocal. In the models above ˇ =

(
β0, ˇT

Z, ˇT
γ , 0βσ , ˇZ2σ

)T
.

2.1 Longitudinal Model Summary Statistics

Assuming that the subject-specific longitudinal models are fit via ordinary least
squares we have that:

�̂i = (DT
i Di)

−1DT
i Si (3)

and

σ̂2
i =

(Si −Di�̂i)
T (Si −Di�̂i)

νi
. (4)

If we add to our the model the assumption that

Ui ∼ N(0,Iri), for i = 1, . . . ,n, (5)

then it follows that conditioned on (�i,σ2
i ) the estimators �̂i and σ̂2

i are indepen-
dently distributed as

�̂i ∼ N{�i,σ2
i (D

T
i Di)

−1}
νi

σ2
i

σ̂2
i ∼ χ2(νi), (6)

for i = 1, . . . ,n.

3 Outcome Model Methods of Analysis

3.1 Simple Substitution (aka the “Naive” Method)

In the case that νi = ri − 2 are large for all i, so that the estimation variation in
�̂i and σ̂2

i is small relative to the estimation variability inherent in the outcome
model, the parameter ˇ =

(
β0, ˇT

Z, ˇT
γ , βσ , ˇZ2σ

)T
in the outcome model in (2)
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is estimated by logistic regression of Yi on
(
Zi, γ̂i, σ̂2

i

)
. The validity of the simple

substitution method depends crucially on the aforementioned negligibility of the
estimation variability in the subject-specific estimated regression parameters and
variance parameters.

In many applications the subject-specific information is not large enough to
justify the use of the simple substitution method. Rather the estimation variability
in �̂i and σ̂2

i creates a measurement error model problem:

�̂i = �i +�γ, i,

σ̂2
i = σ2

i +�σ , i, (7)

where (
�γ, i
�σ , i

)
∼
{(

0
0

)
,

(
Vγ, i 0

0 Vσ , i

)}
, (8)

with Vγ, i =σ2
i

(
DT

i Di
)−1

and Vσ , i = 2σ4
i /νi for i= 1, . . . ,n. This measurement error

model is nonstandard in the sense that the measurement errors are heteroscedastic
(with possibly large differences in variation), and the usual normal error model is
clearly not appropriate for the errors in the variance estimates. The most natural
parametric model for the variance estimators is a scaled chi-squared, consistent with
the usual linear model assumptions.

3.2 Longitudinal Variance with Baseline Interactions Model

We focus on an analysis of a specialized submodel of (2) that includes only the
subject-specific variances and baseline covariates. Because the model does not
include the longitudinal regression parameters �i, it is limited to assessing the
marginal effects of variance σ2

i on the response, albeit with appropriate adjustment
for baseline covariates and for the estimation error variability in σ̂2

i . A further
restriction is to the case where T (σ2) = 1/σ2 so that the resulting model has logits
that are linear in the subject-specific precisions σ−2

i :

P(Yi = 1| Zi,σ2
i ;ˇ) = H

(
β0 +ZT

i ˇZ +βσ(1/σ2
i )+ZT

1iˇZ2σ (1/σ2
i )
)
, (9)

where for this submodel ˇ = (β0, ˇT
Z, βσ , ˇZ2σ )

T .
We also assume that the observed variances σ2

1 , . . . ,σ
2
n are independent, with

νiσ̂2
i /σ2

i ∼ χ2
νi

. With this assumption, the logistic outcome model coupled with
the χ2 error model possesses the exponential-family structure required to adapt
the conditional-score estimating approach of Stefanski and Carroll (1987) (see also
Carroll et al. 2006, Chap. 7, Wang et al. 2000; Li et al. 2004). The conditional
score is widely used to obtain consistent estimators for the logistic regression
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model parameters in the presence of measurement error. The sufficient statistics
are identified by factorization of the observed data likelihood. This involves
the measurement error distribution, which, in the present case, is not normally
distributed but chi-square. However, the general approach laid out in Stefanski and
Carroll (1987) applies. We present the extended version of the conditional score
developed by Dagalp (2001) for models with interactions between the error-prone
and error-free predictors.

In the exponential family form, the corresponding density of Y for a given true
predictor σ2 is

fY (y;σ2,ˇ) = exp [yη + ln{1−H(η)}] , (10)

where η = β0 +ZT ˇZ + βσ (1/σ2) +ZT
2ˇZ2σ (1/σ2). The observed variance esti-

mates σ̂2 have conditional density

fσ̂ 2(σ̂2;σ2) =
(ν/σ2)

2ν/2Γ (ν/2)

(
νσ̂2

σ2

)ν/2−1

exp

(−νσ̂2

2σ2

)
I(σ̂2 > 0). (11)

Under the surrogacy assumption that Y and σ̂2 are conditionally independent given
σ2, the joint density of the observed pair (Y, σ̂2) given σ2 and ˇ is the product
of (21) and (11),

fY,σ̂ 2(y, σ̂2;σ2,ˇ) =
2−ν/2

Γ (ν/2)
exp
{

yβ0 +(ν/2) ln(ν)+ (ν/2− 1) ln(σ̂2)
}×

exp

[(
2y(βσ +ZT

2ˇZ2σ )

ν
− σ̂2

)( ν
2σ2

)
+ ln

{
1−F

(
β0 +

βσ

σ2

)}
−ν ln(σ)

]
. (12)

If σ2 is viewed as a parameter in density (12), and βσ is regarded as known, then
the “statistic”

Δ = Δ(Y, σ̂2,βσ ) = σ̂2 − 2Y (βσ +ZT
2ˇZ2σ )/ν

is complete and sufficient for σ2. Of course, Δ is not statistic in the strict sense as it
depends on unknown parameters. However, it is true that the conditional distribution
of Y |Δ does not depend on the unknown σ2, and thus it can be used to construct
unbiased estimating equations for the unknown logistic regression parameters that
are free of the unknown nuisance parameters σ2

i as described in Stefanski and
Carroll (1987) and Carroll et al. (2006). Because Y is binary in our case we need to
only calculate Pr(Y = 1 | Δ = δ ). Straightforward manipulations reveal that

Pr(Y = 1|Δ = δ ) =
1

1+M
, (13)
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where

M =

{
1−P(Yi = 1| Zi,σ2

i ;ˇ)
}

fσ̂ 2(δ ;σ2)

P(Yi = 1| Zi,σ2
i ;ˇ) fσ̂ 2(δ + 2

(
βσ +ZT

2ˇZ2σ
)
/ν;σ2)

. (14)

Substituting the expressions in (9) and (11) for the corresponding probabilities and
densities in the expression above results in Pr(Y = 1|Δ = δ ) = Q(δ ,ˇ), where

Q(δ ,ˇ) =
I1

1+ I2 exp(−ZT ˇZ)R(ν/2−1)
, (15)

with

I1 = I {δ + 2(βσ +ZT
2ˇZ2σ )/ν > 0} ,

I2 = I {δ > 0} ,

R =
δ

δ + 2
(
βσ +ZT

2ˇZ2σ
)
/ν

. (16)

It follows that the score function defined as

ψCond(Y,Z, σ̂2,ν,ˇ) =⎡⎢⎢⎣{Y −Q(δ ,ˇ)}

⎛⎜⎜⎝
1
Z

1/δ
Z1/δ

⎞⎟⎟⎠
⎤⎥⎥⎦

δ = σ̂2 − 2Y
ν (βσ +ZT

2ˇZ2σ )

, (17)

is unbiased in the sense that

E
{

ψCond(Y,Z, σ̂2,ν,ˇ)
}
= E

[
E
{

ψCond(Y,Z, σ̂2,ν,ˇ)|Δ}]= 0.

We define the conditional score estimator, ˆ̌
Cond, as the solution to the conditional

score equations

n

∑
i=1

ψCond(Yi,Zi, σ̂2
i ,νi,ˇ) = 0. (18)

The conditional score function is conditionally unbiased for all ν = 1,2, . . .;
however, it is not smooth for small ν . This is best exemplified in the case ν = 2,
the conditional probability Q(δ ,ˇ) defined in (15) reduces to

Q(Δ ,ˇ) =
I
{

σ̂2 > (Y − 1)(βσ +ZT
2ˇZ2σ )

}
1+ I

{
σ̂2 > Y

(
βσ +ZT

2ˇZ2σ
)}

exp(−ZT ˇZ)
, (19)
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from which it is apparent that Q(Δ ,ˇ) is not a continuous function. At first blush,
it is not readily evident that in this case that E {Y −Q(Δ ,ˇ)} = 0. However, this
follows in just a few steps upon invoking the fact the χ2 distribution with two
degrees of freedom is exponential. The more important point for application is that
the estimating equations are not easily solved when all of the νi are small, because
the estimating equations can be discontinuous. In fact, there may not be an exact
solution to the conditional estimating equations (18) because of discontinuities. In
such cases it is necessary to redefine ˆ̌

Cond as

ˆ̌
Cond = argmin

ˇ

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

ψCond(Yi,Zi, σ̂2
i ,νi,ˇ)

∣∣∣∣∣
∣∣∣∣∣
2

. (20)

The applications motivating our work generally have ν large enough that the
nonsmoothness for small ν is not a problem. More to the point, it is likely the case
that if most estimated variances are based on just two or three or four measurements,
then no method of analysis is likely to perform well in sample sizes typically
encountered in biomedical studies. If such applications are encountered a possible
beneficial modification to the conditional score estimator would be to smooth the
indicator functions appearing in the expression for Q(δ ,ˇ) in (15).

Because ˆ̌
Cond is an m-estimator, large-sample approximate variances and stan-

dard errors can be derived using the either (conditional) model-based variance
formulas or the empirical sandwich formula variance estimator, see, for example,
Stefanski and Boos (2002). In the Monte Carlo study reported in the next section
sandwich formula variance estimates were studied and found to be adequate for
sample sizes common in large studies.

3.3 Attenuation-corrected Calibration/Moment Matching

In linear regression measurement error models much of the attenuation in regression
coefficients is due to the increased variability of the measured-with-error predictor,
which in our cases are the subject-specific estimated variances. A relative simple
and often versatile method is obtained by simply “shrinking” the observed variances
to obtain σ̂2

S,i in such a way that the σ̂2
S,i have sample mean and sample variance

converging to the mean and variance of the so-called true σ2
i . That is

σ̂2
S,· =

1
n− 1

n

∑
i=1

σ̂2
S,i

P−→ E(σ2),

and

1
n− 1

n

∑
i=1

(
σ̂2

S,i − σ̂2
S,·
)2 P−→ Var

(
σ2) .



42 L. Thomas et al.

For observed variances σ2
1 , . . . ,σ2

n that are independent, with νiσ̂2
i /σ2

i ∼ χ2
νi

, the
moment adjusted estimates are defined as

σ2
S,i = α̂σ̂2

i +(1− α̂)σ̂2· ,

where

α̂ =

√√√√S2
σ̂ 2 − 2˜̂σ4·

S2
σ̂ 2

with

σ̂2· =
1
n

n

∑
i=1

σ̂2
i ,

S2
σ̂ 2 =

1
n− 1

n

∑
i=1

(
σ̂2

i − σ̂2·
)2

,

and

˜̂σ4· =
1
n

n

∑
i=1

σ̂4
i /(νi + 2).

Note the average adjusted estimate satisfies

σ2
S,· =

1
n

n

∑
i=1

= σ̂2·
P−→E(σ2).

Now consider the sample variance of the adjusted estimates

S2
σ̂ 2

S
=

1
n− 1

n

∑
i=1

(
σ̂2

S,i − σ̂2
S,·
)2

= α̂2S2
σ̂ 2 = S2

σ̂ 2 − 2˜̂σ4·

Using the variance decomposition identity

Var
(
σ̂2)= E

(
Var(σ̂2|σ2)

)
+Var

(
E(σ̂2|σ2)

)
and moments from the χ2 distribution it can be shown that

S2
σ̂ 2 − 2˜̂σ4·

P−→ Var(σ2).

Thus asymptotically the adjusted estimates σ̂2
S,i have the same first- and second-

moments of the true subject-specific variances. If employed in a simple linear
measurement error regression model with σ2

i playing the role of the true predictor,
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the resulting estimator would be a heteroscedastic measurement error variance
version of the correction-for-attenuation estimator.

Once the adjusted estimates are calculated one proceeds acting as though they are
equal to the true subject-specific variance. That is, one fits the logistic regression

model (9) to the (imputed) data
{(

Zi, σ̂2
S,i, Yi

)}n

1
. At the expense of detracting

from the simplicity of the plug-in nature of data imputation, variance estimates,
and standard errors from the usual logistic regression model fit can be replaced
by estimates that properly account for the variability in the imputation step. In the
simulation study in Sect. 4 the usual standard errors were calculated and proved
to adequately reflect variability. The method described above does not account for
covariates Z, a deficiency that is addressed in the next section.

3.4 Moment Adjusted Imputation

A refinement of the approach in the previous section calculates adjusted measured
values that correct not only for the moments of the observed variances but also for
their covariances with other covariates (Z) in the logistic model.

Consider adjusted variance estimators of the form

σ̂2
i,MAI = γ1 + γσ σ̂2

i +� T
ZZi.

The parameter � = (γ1,γσ ,�
T
Z)

T is chosen so that the following moment equalities
are satisfied:

σ2
MAI,· =

1
n

n

∑
i=1

σ̂2
i,MAI = σ̂2· ,

S2
σ̂ 2

MAI
=

1
n− 1

n

∑
i=1

(
σ̂2

i,MAI −σ2
MAI,·
)2

= S2
σ̂ 2

S
,

and

SZσ̂ 2
MAI

=
1

n− 1

n

∑
i=1

σ̂2
i,MAI

(
Zi −Z·

)
=

1
n− 1

n

∑
i=1

σ̂2
i

(
Zi −Z·

)
.

So constructed, the adjusted subject-specific variances σ̂2
i,MAI asymptotically have

the same first-order moment properties (including covariances) as the true subject-
specific variances σ2

i . Adjusted estimators of this form have a long history in
statistics, starting with Tukey’s so-called named and faceless values Tukey (1974).
They appear in the Bayesian literature as modified empirical Bayes estimators
Louis (1984) and they have been studied (and extended) for measurement error
model applications by Bay (1997), Freedman et al. (2004), and Elliott (2009).
Additional variations on this theme are possible including use of an estimated best
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linear predictor of σ2
i derived from estimating the mean and covariance matrix of(

σ2
i , σ̂2

i , Zi
)
, i = 1, . . . ,n.

As with the simple moment adjusted estimators of the previous subsection, once
the adjusted estimates are calculated one proceeds acting as though they are equal
to the true subject-specific variance. In the simulation study in Sect. 4 the usual
standard errors were calculated and proved to adequately reflect variability.

4 Simulation Results

We now report on a simulation study designed to investigate the performance of the
conditional score estimator for models with and without interactions. Data for the
simulation study were generated as follows.

1. Baseline covariate: Z1,i and Z2,i are independent with Z1,i ∼ N(0,1) and Z2,i ∼
Bin(1,.5).

2. True subject-specific variances: σ2
i ∼ .25+ .25Z2,i+ζ 2

i where the ζi are N(0,1);
3. Response: Yi ∼ Bin(1, pi) with pi given by the logistic model (9) with βZ1 = 1,

βZ2 =−1, βσ = 1, and for cases with an interaction term (Tables 1 and 2), βσZ2 =
.5. The intercept was adjusted to achieve marginal mean responses of E(Y ) = .5
(Tables 1 and 3) and E(Y ) = .25 (Tables 2 and 4).

4. Estimated variances: σ̂2
i |σ2

i
D
= σ2

i χ2
νi
/νi where the degrees of freedom νi were

generated independently as νi
D
= 9+Round(20Ui) with Ui ∼ Unif(0,1).

Sample sizes of n = 1,000 and 5,000 were studied. The number of simulated
data sets was 10,000 in all cases. Results for the case n = 1,000 are reported in
Tables 1–4. The results for n = 5,000 are qualitatively similar and are not reported
here.

All three measurement error estimation methods reduce bias substantially rela-
tive to the naive estimator. However, only the conditional score estimator reduces
bias to levels comparable to biases in the true-data estimator. The statistically sig-
nificant biases revealed by the large Monte Carlo sample size (10,000 replications)
of the conditional score estimator are also manifest in the true-data estimator. These
biases are attenuated much more so in the n = 5,000 results not shown here. Thus
the biases in the conditional-score and true-data estimators are consistent with the
conclusion that they are finite-sample/nonlinear estimator biases, rather than biases
inherent with the method of analysis.

The table entries labeled AvgSD/MCSD are ratios of Monte Carlo mean standard
deviations calculated from m-estimator, sandwich-formula variance estimators to
the Monte Carlo standard deviation of the estimators. None of the ratios are
sufficiently less than one to be troublesome. Thus the m-estimator, sandwich-
formula variance estimators yield reasonable unbiased standard errors.

Confidence intervals were calculated using the usual large-sample
estimate ±1.96×(standard error)
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Table 1 Est, estimator; Int, intercept; Z1, coefficient for Z1; Z2,
coefficient for Z2; 1/σ 2, coefficient for 1/σ 2; H0 : Bias = 0, t-statistic;
AvgSE/MCSD, average standard error from sandwich variance esti-
mate divided by the Monte Carlo Standard deviation; 95% CI CP and
Length; coverage probability and length of nominal large-sample 95%
confidence interval

Case 1: Marginal mean E(Y ) = .5; No-interaction model; n = 1,000.

Est Int Z1 Z2 1/σ 2

Bias
True 0.00 0.01 −0.01 0.01
Naive 0.44 −0.04 −0.12 −0.36
Cond −0.01 0.01 −0.01 0.01
ACCal 0.17 −0.03 −0.15 −0.01
MAI 0.15 −0.03 −0.10 −0.01

AvgSE/MCSD

True 0.99 0.99 0.98 1.00
Naive 0.98 0.99 0.98 0.98
Cond 0.99 0.99 0.98 0.98
ACCal 0.98 0.99 0.98 0.97
MAI 0.98 0.98 0.98 0.97

95% CI CP

True 0.95 0.95 0.95 0.95
Naive 0.24 0.92 0.88 0.02
Cond 0.95 0.95 0.95 0.95
ACCal 0.83 0.93 0.84 0.94
MAI 0.86 0.93 0.89 0.94

95% CI Length

True 0.67 0.36 0.62 0.38
Naive 0.64 0.34 0.60 0.33
Cond 0.79 0.37 0.63 0.51
ACCal 0.68 0.35 0.61 0.42
MAI 0.68 0.35 0.61 0.42

formula. Coverage probabilities for the true-data estimator and the conditional-score
estimator are acceptably close to the nominal 95%. The lower coverages of the
other estimators (Naive, ACCal, and MAI) are due largely to their biases rather
than underestimation of variability. The near-nominal coverage probabilities of the
conditional-score estimator come at the price of increased confidence-interval length
of between 25% and 70%.

Finally we note that the computational algorithm for the conditional-score
estimator was very reliable. An internal check on (fast) convergence of the algorithm
was made for each data set. If that test failed, then that particular data set was
bypassed in the simulation study. Failure occurred in only six of 80,006 data sets
generated to obtain the results for both sample sizes (n = 1,000, n = 5,000). All six
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Table 2 Est, estimator; Int, intercept; Z1, coefficient for Z1; Z2, co-
efficient for Z2; 1/σ 2, coefficient for 1/σ 2; H0 : Bias = 0, t-statistic;
AvgSE/MCSD, average standard error from sandwich variance estimate
divided by the Monte Carlo Standard deviation; 95% CI CP and Length;
coverage probability and length of nominal large-sample 95% confi-
dence interval

Case 2: Marginal mean E(Y ) = .25; No-interaction model; n = 1,000.

Est Int Z1 Z2 1/σ 2

Bias
True −0.02 0.01 −0.01 0.01
Naive 0.68 −0.06 −0.26 −0.42
Cond −0.03 0.01 −0.01 0.02
ACCal 0.25 −0.05 −0.28 0.02
MAI 0.25 −0.05 −0.22 0.00

AvgSE/MCSD
True 1.00 1.00 1.01 0.99
Naive 0.98 1.00 1.00 0.96
Cond 0.98 0.99 1.01 0.97
ACCal 0.98 1.00 1.01 0.95
MAI 0.98 0.99 1.00 0.94

95% CI CP
True 0.95 0.95 0.95 0.95
Naive 0.06 0.89 0.73 0.00
Cond 0.95 0.95 0.95 0.94
ACCal 0.74 0.91 0.70 0.94
MAI 0.75 0.92 0.80 0.93

95% CI Length

True 0.85 0.41 0.76 0.37
Naive 0.72 0.39 0.73 0.30
Cond 1.11 0.44 0.81 0.53
ACCal 0.80 0.39 0.73 0.42
MAI 0.81 0.39 0.73 0.42

non-rapid convergent cases were for the case of n = 1,000 and the marginal mean
E(Y ) = 0.25. In all cases the estimation algorithms used the naive estimate as a
starting value (other starting values were not tried for the six exceptional cases).

5 Extensions and Limitations

A not-so-appealing feature of the conditional score method is the manner in which
it extends to models that include estimated longitudinal process mean parameters in
addition to variance parameters. The conditional score approach relies on obtaining
sufficient statistics for mismeasured covariates. For the model studied in this
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Table 3 Est, estimator; Int, intercept; Z1, coefficient for Z1; Z2, coefficient
for Z2; 1/σ 2, coefficient for 1/σ 2; Z2/σ 2, coefficient for interaction term;
H0 : Bias = 0, t-statistic; AvgSE/MCSD, average standard error from sandwich
variance estimate divided by the Monte Carlo Standard deviation; 95% CI
CP and Length; coverage probability and length of nominal large-sample 95%
confidence interval

Case 3: Marginal mean E(Y ) = .5; Interaction model; n = 1,000.

Est Int Z1 Z2 1/σ 2 Z2/σ 2

Bias
True −0.01 0.01 0.00 0.01 0.00
Naive 0.35 −0.06 0.37 −0.29 −0.43
Cond −0.02 0.01 −0.01 0.02 0.01
ACCal −0.01 −0.04 0.44 0.14 −0.50
MAI 0.01 −0.04 0.39 0.10 −0.41

AvgSE/MCSD

True 1.01 0.99 1.00 1.00 0.99
Naive 0.98 0.99 0.98 0.97 0.97
Cond 0.99 0.99 0.99 0.97 0.98
ACCal 0.99 0.99 0.99 0.97 0.99
MAI 0.99 0.99 0.99 0.97 0.97

95% CI CP

True 0.96 0.95 0.95 0.95 0.95
Naive 0.54 0.88 0.72 0.25 0.35
Cond 0.95 0.95 0.95 0.95 0.95
ACCal 0.95 0.91 0.69 0.84 0.40
MAI 0.95 0.91 0.74 0.89 0.55

95% CI Length

True 0.74 0.36 1.20 0.42 0.84
Naive 0.75 0.34 1.09 0.42 0.72
Cond 0.87 0.38 1.55 0.54 1.19
ACCal 0.81 0.34 1.19 0.54 0.89
MAI 0.80 0.34 1.19 0.53 0.90

paper this means modeling in terms of precision rather than variance, an arguable
reasonable strategy. However, we now show that for models that include estimated
longitudinal process mean parameters in addition to variance parameters, things are
not so palatable.

We consider logistic models, but for simplicity we assume that there are no
covariates Z (and thus no interaction term either). Assume that Pr(Y = 1|σ2;ˇ) =
F{β0 +βγ0

(
γ0/σ2

)
+βσ (1/σ2)} for ˇ = (β0,βγ0 ,βσ ). The corresponding density

of Y is

fY (y;γ0,σ2,ˇ) =

exp

[
y

(
β0 +βγ0

γ0

σ2 +βσ
1

σ2

)
+ log

{
1−F

(
β0 +βγ0

γ0

σ2 +βσ
1

σ2

)}]
,(21)
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Table 4 Est, estimator; Int, intercept; Z1, coefficient for Z1; Z2, coefficient for Z2;
1/σ 2, coefficient for 1/σ 2; Z2/σ 2, coefficient for interaction term; H0 : Bias = 0,
t-statistic; AvgSE/MCSD, average standard error from sandwich variance estimate
divided by the Monte Carlo Standard deviation; 95% CI CP and Length; coverage
probability and length of nominal large-sample 95% confidence interval

Case 4: Marginal mean E(Y ) = .25; Interaction model; n = 1,000.

Est Int Z1 Z2 1/σ 2 Z2/σ 2

Bias
True −0.02 0.01 −0.02 0.01 0.01
Naive 0.66 −0.07 0.36 −0.39 −0.48
Cond −0.04 0.02 −0.06 0.02 0.04
ACCal 0.12 −0.05 0.53 0.11 −0.60
MAI 0.16 −0.05 0.47 0.06 −0.51

AvgSE/MCSD

True 0.99 0.98 0.98 0.99 0.98
Naive 0.97 0.98 0.97 0.97 0.96
Cond 0.98 0.98 0.97 0.97 0.97
ACCal 0.97 0.98 0.98 0.95 0.99
MAI 0.97 0.97 0.98 0.94 0.97

95% CI CP

True 0.95 0.95 0.95 0.95 0.95
Naive 0.15 0.86 0.77 0.02 0.21
Cond 0.95 0.95 0.94 0.94 0.93
ACCal 0.90 0.90 0.67 0.87 0.27
MAI 0.87 0.90 0.73 0.92 0.42

95% CI Length

True 0.95 0.40 1.69 0.40 1.04
Naive 0.83 0.38 1.22 0.36 0.67
Cond 1.22 0.45 2.52 0.56 1.71
ACCal 0.96 0.38 1.42 0.51 0.91
MAI 0.95 0.38 1.42 0.49 0.93

where γ0 and σ2 are regarded as unknown constants. The observed variance
estimators σ̂2 have density

fσ̂ 2(σ̂2;σ2) =

(
ν

σ 2

)
2ν/2Γ (ν/2)

(
νσ̂2

σ2

)ν/2−1

exp

(−νσ̂2

2σ2

)
I(σ̂2 > 0).

The estimator γ̂0 has density

fγ̂0
(γ̂0;γ0,σ2) =

1√
2πσ2c

exp

{
− 1

2σ2c
(γ̂0 − γ0)

2
}
.
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and thus

fY,σ̂ 2,γ̂0
(y, σ̂2, γ̂0;γ0,σ2,ˇ) = g(Y, σ̂2, γ̂0)h(σ2,γ0)×

exp

[ −1
2σ2

{
(γ0 − yβγ0 − γ̂0)

2 − (yβγ0 + γ̂0)
2 + γ̂2

0 +νσ̂2 − 2yβσ
}]

.

By the Factorization Theorem, the two-dimensional statistic {Yβγ0 + γ̂0,−(Y βγ0 +
γ̂0)

2 + γ̂2
0 +νσ̂2 − 2Yβσ} is sufficient for (γ0,σ2).

This factorization relies critically on the specific form of the logistic model

Pr(Y = 1|σ2;ˇ) = F{β0 +βγ0

(
γ0/σ2)+βσ(1/σ2)}.

Otherwise, we are unable to factor the joint density of observed data. When γ0

is not in the model, i.e., βγ0 = 0, the resulting model in terms of the precision
1/σ2 is defensibly reasonable. However, with γ0 in the model the conditional score
approach requires modeling in terms of the precision 1/σ2 and the precision-scaled
mean γ0/σ2. Whether such transformations are useful for applied work will require
experience with many data sets for which subject-specific means and variances are
used as predictors.

For a logistic model that includes both a longitudinal intercept and slope
parameter � = (γ0,γ1)

T as covariates, a similar factorization reveals that the
requisite logistic model has the form

Pr(Y = 1|� ,σ2;ˇ) = F
(
β0 +(1/σ2)�T DT Dˇγ +βσ(1/σ2)

)
.

In this case, the model involves linear combinations of γ0/σ2 and γ1/σ2, and also
the design matrix D, which renders the model untenable. In future work we will
study moment-adjusted imputation methods for the full logistic model 2, as well
as hybrid methods that use moment-adjustment to account for measurement error
variability in some parameters and conditioning on sufficient statistics to account
for errors in the remaining parameters.

6 Summary

The conditional score method is an attractive approach that performed well for the
case studied in this paper, namely the model with the only error-prone predictor be-
ing the longitudinal process variance parameter. Depending on one’s point of view,
modeling in terms of precision rather than variance may be positive or negative. In
applications, this matter has to be considered in light of the available data—a heavily
left-skewed distribution of variance estimates can produce a heavily right-skewed
distribution of precisions. The precision-based model (9) should not be adopted
solely for its tractability and good performance with simulated data sets. Ultimately
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the decision to transform variances will be data dependent and thus general-purpose
methods such as moment adjusted imputation are attractive because in principle
they should work reasonably well for different model/transformations and thus
are useful for facilitating such modeling decisions. However, the possibility (and
likelihood) of transformation raises the possibility of doing moment-adjustment
on the transformed scale. For example, for the precision-based model studied in
this paper, moment-based adjustments could be made for the estimated precisions
using inverse χ2 moments. Moment adjustment could also be done on the standard
deviation scale as well. Such transformation-specific moment adjustment negates
some of the generality-grounded appeal of moment adjustment. Regardless, it may
prove useful in application. Finally, we showed in Sect. 5 that extensions of the
conditional score method to models that include estimated longitudinal process
mean parameters in addition to variance parameters is possible only for models of
questionable practical use. A strategy for dealing with models that include estimated
longitudinal process mean parameters in addition to variance parameters that is
worthy of future study is the approximate best linear predictor approach described
at the end of Sect. 3.4 wherein an estimated best linear predictor of σ2

i derived from

estimating the mean and covariance matrix of
(

σ2
i , σ̂2

i, Zi

)
, i = 1, . . . ,n.
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Measurement Error in Dynamic Models

John P. Buonaccorsi

Abstract Many time series contain measurement (often sampling) error and the
problem of assessing the impacts of such errors and accounting for them has been
receiving increasing attention of late. This paper provides a survey of this problem
with an emphasis on estimating the coefficients of the underlying dynamic model,
primarily in the context of fitting linear and nonlinear autoregressive models. An
overview is provided of the biases induced by ignoring the measurement error and
of methods that have been proposed to correct for it, and remaining inferential
challenges are outlined.

1 Introduction

Measurement error is a commonly occurring problem and is especially prominent in
many time series, where the variable of interest often has to be estimated rather than
observed exactly. There is a fairly diverse statistical literature which has addressed
the problem of measurement error in time series as well as a burgeoning ecological
literature, where the problem of modeling population dynamics in the presence of
the so-called observation error has garnered considerable attention. Included among
the many papers addressing this problem with real data are ones that account for
errors in series involving population abundances of waterfowl (Lillegard et al. 2008;
Saether et al. 2008; Viljugrein et al. 2005), voles (Stenseth et al. 2003), grouse (Ives
et al. 2003) as well as labor force statistics (Pfeffermann et al. (1998), retail sales
(Bell and Wilcox 1993), the number of households in Canada (Feder 2001), and
disease rates (Burr and Chowell 2006).

The main ingredients here are a dynamic model for the true (but unobserved)
values and a measurement error model. The time series of interest is denoted by
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{Yt , t = 1, . . . ,T}, where Yt is random and t indexes time. The realized true value at
time t is denoted by yt . Measurement error occurs where instead of yt we observe
the outcome of Wt , where Wt is an estimator or general index of yt . A particular
point of emphasis in our coverage is to allow the behavior of the measurement error
to depend on the underlying true value and/or sampling effort, as commonly occurs
in practice.

The two main questions are 1. What happens if we ignore the measurement
error? and 2. How can we correct for the measurement error? Of course, there are
many possible objectives of a time series analysis and we need to limit our scope.
The primary focus in this paper is on estimation of the parameters in the dynamic
model, autoregressive models in particular. This is a logical first step as these
parameters provide the building blocks for other objectives including forecasting
or estimating probabilities about the process in the future. Also, in many of the
ecological problems we discuss the estimation of the coefficients of the underlying
dynamic process is the main thing of interest (and for this reason our discussion has
a heavy ecological orientation to it).

Because of space limitations, there are a number of important related problems
that we mostly ignore. These include repeated sample surveys where the main ob-
jective is updated estimation of the current true value, predicting and/or filtering in
the presence of measurement error (e.g., Berliner (1991); Tripodis and Buonaccorsi
(2009)), direct estimation of trends, model identification and problems where there
are other variables in addition to the dynamic model. There are many examples of
the latter; see, e.g., Ives et al. (2003), De Valpine and Hilborn (2005), and references
therein for access to an extensive fisheries literature, Burr and Chowell (2006) in
fitting SIR model to disease dynamics and Schmid et al. (1994).

Within the above stated focus, the objective is to provide a broad survey of
modeling considerations, the effects of, and ways to correct for, measurement error
and some of the challenges in carrying out estimation and inference. The intent is
not to look at any particular model in great detail, although we do illustrate some
key concepts with linear autoregressive models and the Ricker model and present a
few new results. Dynamic models for the true values and measurement error models
are discussed in Sects. 2.1 and 2.2, respectively. This is followed by a discussion
about the performance of naive analyses that ignore measurement error in Sect. 3
and then a survey of correction methods in Sect. 4. Concluding remarks appear in
Sect. 5.

2 Models

2.1 Dynamic Models for True Values

There is of course a very rich class of dynamic models that can be used for time
series. As noted in the introduction the main interest here is in autoregressive
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Table 1 Some dynamic
models Name Model

AR(p) Yt = φ0 +φ1yt−1 + . . .+φpyt−p + εt

Ricker Yt = φ0 + yt−1 +φ1eyt−1 + εt

Beaverton-Holt Yt = yt−1 + log(φ0)− log(1+φ1nt−1)+ εt

Theta-logistic Yt = yt−1 +φ0 +(φ1nt−1)
θ + εt

Logistic Yt = yt−1 +φ0 + log(1− eyt−1)+ εt .

models with E(Yt |yt−1) = m(yt−1,�) and V (Yt |yt−1) = v(yt−1,�,� ), where yt−1 =
(. . . .,yt−2,yt−1) indicates past values and � contains additional variance parameters.
Alternatively we can write Yt |yt−1 = m(yt−1,�)+ εt , where E(εt) = 0 and V (εt ) =
v(yt−1,�,� ).

We allow the mean function to be linear or nonlinear in Y with some examples
given in Table 1. All of these models, with the last four being nonlinear in Y ,
arise in population ecology with Yt = log(Nt) where Nt is abundance, or density,
at time t. The εt is typically taken to be normal with mean 0 and V (εt) = σ2,
referred to as process error. There are, of course, numerous other models that can
be considered that we won’t discuss in any detail. For example, as noted briefly
later, measurement error has received some attention in an autoregressive integrated
moving average (ARIMA) and basic structural models (BSMs) used to model labor
variables, medical indices, and other variables over time. Another important model
in the economics literature is to extend the linear autoregressive model in Table 1
to allow conditional heteroscedasticity in the process errors; the so-called ARCH
model.

With Yt = log(Nt) where Nt is a count or scaled count, the usual assumption
on εt may not be appropriate and an alternate nonlinear models arise by working
explicitly if we work with Nt . These lead to another set of mean-variance models.
(It is worth noting that one can only move directly from a model for Nt |nt−1 to one
for Yt |yt−1 in certain special cases, e.g., when δt is log-normal.) For example with
the Ricker model, Nt = nt−1e(φ0+φ1nt−1)δt . If we assume δt has mean 1 and constant
variance σ2

δ , then E(Nt |nt−1) = m(nt−1,�) = nt−1e(φ0+φ1nt−1) and V (Nt |nt−1) =

m(nt−1,�)
2σ2

δ . For the multiplicative version of the AR(1) model we might just

work with E(Nt |nt−1) = eφ0nφ1
t−1. In general, if Nt |nt−1 is distributed Poisson, then

V (Nt |nt−1) = E(Nt |nt−1). For a full discussion of fitting dynamic models with
count data, possibly with the inclusion of time varying covariates, see Mallick and
Sutradhar (2008).

Turning to the linear AR(p) models we will assume the model is stationary (e.g.,
Box et al. 1994, Chap. 3), which for AR(1) model means |φ1| < 1. In general
for stationary models we denote E(Yt) = μY and V (Yt) = σ2

Y , both constant in
t, and Cov(Yt ,Yt+k) = γk, a function only of the lag k. In the population ecology
literature the AR models are referred to as the Gompertz model. There, based on the
multiplicative versions for the AR(1) and AR(2), the primary objective is estimation
of φ1 and/or φ2, usually interpreted as measures of density dependence and delayed
density dependence, respectively; see Stenseth et al. (2003); Solow (2001), and
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references therein. The AR(p) models can also be extended to multivariate autore-
gressive (MAR) models (also called vector autoregressive models or VAR); see Ives
et al. (2003) and Aigner et al. (1984), both which accommodate measurement error.

All of the models in Table 1 have the random walk model Yt = yt−1 + μ + εt

as a special case. If the εt ’s are assumed to be independent and identically
distributed (iid) with mean 0 and variance σ2, this is a moving average of order
1, which is non-stationary. In the ecological context, once again with Y = log(N),
it represents a density independent model and is commonly used in population
viability analysis and related trend analysis (Morris and Doak (2002)). There is a
fairly large literature on measurement error in this problem. While there are some
methodological connections to our discussion here we will not discuss it in detail
both for space reasons and the fact that with the difference there is no dynamic piece
left. See Buonaccorsi and Staudenmayer (2009) for a comprehensive treatment and
references.

For likelihood-based approaches, the joint density of Y1, . . . ,YT is denoted
f (y;�,� ), with the term density applying for either the continuous or discrete case.
For conditional likelihood approaches, assuming an autoregressive model (see Box
et al. (1994, Chap. 7) for extension) suppose the distribution of Yt |yt−1 depends on
the past p values. Then partition y into y′ = (y∗′1 ,y

∗′
2 ), where y∗1 = (y1, . . . ,yp)

′ and
y∗2 = (yp+1, . . . ,yT )

′. The conditional density of Y∗
2 given y∗1 is

f2(y∗2;�,� ,y∗1) =
T

∏
t=p+1

f (yt |yt−1,�,� ), (1)

where f (yt |yt−1,�,� ) is the density of Yt given yt−1. Here, y∗1 is treated as fixed.
Notice that we can also write f (y;�,� ) =

∫
y∗1

f2(y∗2;�,� ,y∗1) f (y∗1)dy∗1, where

f (y∗1) is the density of Y∗
1, which can depend on some parameters (suppressed in the

notation). If the Y ’s are discrete, then integration is replaced by summation above.

2.2 Measurement Error Models

The measurement error model describes the conditional behavior of the observable
random variables W = (W1, . . . ,WT )

′ given y = (y1, . . . ,yT )
′. Given the huge

number of sampling methods that can be used to estimate the yt’s, there are
many measurement error models that can be entertained here. The bulk of the
literature assumes that the measurement errors are conditionally uncorrelated and,
frequently, additive. The assumption of conditionally uncorrelated measurement
errors is reasonable when there is independent sampling at each time point. There
are settings, however, where some common sampling units occur over time, leading
to correlated measurement errors. This can occur, for example, in biological and
climatological monitoring and is also a key feature in large national repeated sample
surveys which use block resampling, where fairly general dynamic models have
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been used for the measurement error itself; see, for example, Pfeffermann et al.
(1998); Feder (2001), and references therein.

The conditional mean and covariance are E(W|y) and Cov(W|y), which usually
depend on unknown parameters, contained in � . A more convenient representation
is

W = y+u, E(u|y) = Bc, and Cov(u|y) =Cov(W|y) = ˙uc. (2)

The B′
c = (θ1c, . . . ,θT c) contains conditional biases, while ˙uc is the conditional

covariance matrix. The c here is a reminder that these are conditional on y and
this conditional behavior could be a function of the underlying true values or
sampling effort/design. This is elaborated on in more detail below when discussing
the measurement error variances.

The frequently used additive model assumes E(W|y) = y or E(u|y) = 0, but
models with bias have been considered including constant bias, E(Wt |yt) = yt +� ,
and proportional bias, E(Wt |yt) = θyt . The constant bias model arises in various
ways. For example, if N̂t is the estimated abundance at time t, Wt = log(N̂t),
Yt = log(Nt), and E(N̂t |nt) = ant with constant coefficient of variation, then
E(Wt |yt) = yt + θ , exactly or approximately (see Buonaccorsi et al. 2006). Often,
a constant bias term can be easily absorbed. The proportional bias model arises
from Poisson-type sampling where yt is abundance, Wt is a count, adjusted for
sampling effort, and θ is an unknown representing “catchability”; e.g., Stenseth
et al. (2003). There are certainly even richer bias models that can be considered.
For example, in calibrating aerial counts W versus ground counts Y of waterfowl,

Lillegard et al. (2008) build a model where W 1/2
t ∼ N(θ0 + θ1y1/2

t ,τ2), leading to

E(Wt |yt) = τ2 +θ 2
0 + 2θ0θ1y1/2

t +θ 2
1 y2

t .
Much of our coverage is around settings assuming conditionally uncorrelated

measurement errors with

Cov(W|y) = ˙uc = diag(σ2
u1c, . . . ,σ

2
uT c), (3)

a diagonal matrix with (t, t) element V (Wt |yt) = σ2
utc. Note that this allows for

heteroscedastic measurement errors where the conditional variance, σ2
utc, possibly

depending on yt , or on sampling effort, although the functional nature of that
dependence need not be specified. The unconditional (over random Y ) variance is
denoted by σ2

ut . Suppose, for example, that σ2
utc = h(yt ,�) and there is additive error

or constant bias. Then, unconditionally, σ2
ut = V (ut) = E[V (ut |Yt)]+V [E(ut |Yt)] =

E[h(Yt ,�)]. An important point here is that if the conditional variance only changes
over t as a result of yt and the process is stationary, then h(Yt ,�) is stationary
and unconditionally σ2

ut = σ2
u . Hence, we can have conditional heteroscedasticity

but unconditional homoscedasticity. As noted above, however, the conditional and
unconditional variance may also change as a function of sampling effort.

For assessing the properties of naive estimators and corrected estimators under
the additive model and (3) we assume that
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LimT→∞
∑T

t=1 σ2
ut

T
= σ2

u (4)

exists, where the limit is in probability if σ2
utc depends on Yt .

Returning to the general setting, the unconditional moments of the observable W
are given by E(W) = E[E(W|Y))] and Cov(W) = E[Cov(W|Y))]+Cov[E(W|Y)].
For additive measurement error this becomes E(W) = E(Y)(= μ1 under stationar-
ity) and Cov(W) = E[˙uc]+Cov[Y] = ˙u +˙Y .

For likelihood methods W|y is assumed to have density f (w|y,�), where �

includes any measurement error parameters. When � is a parameter vector of fixed
length (e.g., σ2

u , or (θ0,θ1,τ2) in the model of Lillegard et al. (2008)) there is no
difficulty in interpreting and using this density in standard fashion. The handling
of � is more delicate if we allow the conditional measurement error parameters
to change over time in some unspecified manner. For example, if we assume
Wt |yt ∼ N(yt ,σ2

utc) where no structure is given to σ2
utc, then � = (σ2

u1c, . . . ,σ2
uT c)

′,
which increases in size with T . Further, if σ2

utc involves yt , then unconditionally �

is random. There are two densities for W that will be used later,

fW (w;φ ,σ ,�) =

∫
y

f (w|y,�) f (y;�,� )dy (5)

and

f ∗W (w;φ ,σ ,�,y∗1) =
∫

y∗2
f (w|y,�) f2(y∗2;�,� ,y∗1)dy∗2, (6)

where the second conditions on y∗1 with f2(y∗2;�,� ,y∗1) as given in (1). As before,
integrals are replaced by sums for the discrete case.

3 Performance of Naive Estimators

An important question, especially in the absence of any specific information about
the measurement error, is the performance of the so-called naive analyses, which
ignore the measurement error and treat Wt as if it is Yt . Based on what we know from
regression models it is not surprising that the measurement error will lead to biases
in estimated coefficients as well as in the process variance parameters. However, we
will see that obtaining analytical expressions for asymptotic or approximate biases
is generally difficult here.

Of course the first question to ask here is “which naive analysis?”, since there are
a plethora of approaches to estimation in time series. For stationary normal models,
maximum likelihood (ML) and (more recently) restricted maximum likelihood
(REML) are the most popular. Conditional maximum likelihood (CML), which
maximizes L(�,� ,y∗1|y) arising from (1), is another choice. This drops making
an assumption about the marginal distribution of Y∗

1 and usually leads to easier
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Table 2 Selected papers assessing the performance of naive estimators via simulation

Author(s) Dynamic Model ME Model Method

Solow (1998) Logistic Poisson LS
De Valpine and Hastings (2002) Ricker and N(0,σ 2

u ) ML
De Valpine (2002) Beaverton-Holt ′′ ′′ ′′ ′′

SB (2005) AR(1) N(0,σ 2
utc) ML

Lele (2006) AR(1) Poisson ML
Hovestadt and Nowicki (2008) Modified Ricker N(0,σ 2

u ) LS
Barker and Sibly (2008) theta-logistic N(0,σ 2

u ) LS
Ives et al. (2010) ARMA N(0,σ 2

u ) REML
Resendes (2011) Ricker N(0,σ 2

u ) LS

computing. For a normal autoregressive model with the εt assumed iid N(0,σ2) this
leads to least squares, where �̂CLS minimizes ∑T

t=p+1(yt −m(yt−1,�))
2, and p is the

number of previous y terms in the m function. Obviously if m(yt−1,�) is linear in the
φ ’s, then this leads to simple least squares. More generally these lead to nonlinear
least squares with estimating equations of the form

t

∑
t=p+1

(yt −m(yt−1,�))Δ(yt−1,�) = 0, (7)

where the jth element of the Δ(yt−1,�) is ∂m(yt1 ,�)/∂φ j. Similar estimating
equations can arise from conditional maximum likelihood in other situations. For
example, if Yt |yt−1 is assumed to be Poisson with mean eφ0+φ1log(yt−1), then CML
leads to (7) with Δ(yt−1,�)

′ = [1, log(yt−1)].
A number of general strategies have been tried to investigate the performance of

naive estimators in the presences of measurement error. These include:

1. Use an explicit expression for the estimators, e.g., �̂ = g(W)), and determine the
limiting or approximate properties analytically. This is mainly used for the linear
autoregressive models, discussed in the next section.

2. View the naive estimators as solutions to estimating equations S(W,�,� ) = 0.
In this case the naive estimators (under some conditions) will converge to �∗ and
� ∗ which satisfy E�,� [S(W,�∗,� ∗)]/T → 0.

3. Find an “induced” model, or an approximation, for the behavior of Wt |wt−1. If
this is in the same class as the original with � and � replaced by φ∗ and � ∗, then
the naive methods are consistent (or approximately consistent) for φ∗ and � ∗.

4. Simulate the performance of the naive estimators. While it is difficult to gain a
good understanding of the nature of the biases from simulations alone, this is
often the only option. Even when analytical asymptotic properties are available,
as in linear AR models, simulations are needed to assess “small” sample
behavior; see the next section. Table 2 summarizes some of the papers that have
utilized simulation. SB (2005) refers to Staudenmayer and Buonaccorsi (2005),
an abbreviation used throughout.
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Table 3 Simulation means for naive least squares estimators from the Ricker model with εt ∼
N(0,σ 2) with K = 100 and σ = 0.2. From Resendes (2011), with permission

True φ0

0.2 0.75 1.5 2.4 2.6 σ 2
u

φ̂0 0.413 0.822 1.444 2.381 2.575 0.05
0.593 0.939 1.266 2.206 2.427 0.2
0.729 0.975 1.182 1.988 2.231 0.3
0.813 0.983 1.053 1.628 1.855 0.5

K̂ 97.537 100.093 100.007 100.188 100.035 0.05
94.771 102.044 102.324 101.516 101.668 0.2
96.631 104.456 104.028 102.375 104.261 0.3
100.686 113.058 113.294 111.585 112.367 0.5

σ̂ 0.202 0.206 0.205 0.226 0.231 0.05
0.301 0.291 0.294 0.456 0.536 0.2
0.387 0.371 0.379 0.617 0.720 0.3
0.586 0.566 0.573 0.906 1.069 0.5

While methods 2 and 3 have proved fruitful in many regression problems (see
Carroll et al. (2006) and Buonaccorsi (2010)) they are less useful in dynamic
situations. A simple example that illustrates the shortcomings of method 3 is the
linear AR(p) model with additive normal measurement error with constant variance.
This leads to an induced model which is an Autoregressive Moving Average
(ARMA) (p,p) (see Sect. 4.2.1), so the problem is one of model misspecification.
Method 2, an approach first used in regression contexts by Stefanski (1985),
is the only recourse for assessing bias analytically when the estimators do not
have a closed form. Expanding the estimating equations leads to �∗ ≈ � −
(LimT→∞ ∑t E[Ṡ(Wt ,�)]/T )−1Limt→T ∑t E(S(Wt ,�))/T , assuming the limits exist
and where Ṡ denotes partial derivatives with respect to the parameters. The problem
here is finding the expected values and limits. The best potential for this method
is with using conditional ML/LS approaches leading to estimating equations as
given in (7), but even there, the analysis is not straightforward. To illustrate we
consider the Ricker model, which was investigated by Resendes (2011). Although
nonlinear in Y , it is linear in the parameters, leading to simple linear least squares.
Defining, Dt = Wt+1 −Wt and Ct = eWt SDC = ∑T−1

t=1 (Dt − D̄)(Ct − C̄)/T and
SCC = ∑T−1

t=1 (Ct − C̄)2/T , then the naive estimators of φ1 is φ̂1,naive = SDC/SCC and
asymptotically φ̂1,naive ⇒ LimE(SDC)/LimE(SCC), provided the two limits exists.
We faced two problems here; the first in finding the expected values involving
nonlinear functions, the second in determining whether the sums converge, and
to what. If the process is assumed stationary, then these limits generally exist
but one needs to determine the stationary moments for the two series involved.
Resendes (2011) examined the biases of the naive estimators in the Ricker model
extensively, both via simulation and via the estimating equation just described
(on both additive and multiplicative scales). While clean final expressions for the
approximate biases proved elusive, his approximations did show how the direction
of the bias can change with the values of the parameters. This is also seen in his
simulations, a very small portion of which appear in Table 3 and highlight his main
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conclusions. These are based on parameter values similar to those in De Valpine and
Hastings (2002) but with some larger measurement error variances. The magnitude
and direction of the biases depend heavily on φ0 with naive estimators of φ0 tending
to be overestimates at small φ0 and underestimates as φ0 increases. The same thing
happens for the naive estimator of the carrying capacity K = −φ0/φ1 (the Ricker
model can be parameterized instead in terms of φ0 and K), but it is less sensitive to
the measurement error than naive estimators of φ0 are. It also shows overestimation
of σ , although modest at small measurement error variances.

3.1 Linear Autoregressive Models

Here we summarize and illustrate some results for the stationary linear AR models
under the additive error model with (2). This is one of the simpler settings, allowing
exactly analytical bias expressions, and is useful for illustrating some key points. We
concentrate on the coefficients, but it also can be shown that σ2 is overestimated.
The standard method of analysis here is traditionally maximum likelihood, but
there is increasing support for the use of REML given that it reduces small sample
bias (e.g., Cheang and Reinsel (2000)), REML estimators for the AR(1) model
can be easily obtained using most mixed models software. SB (2005) extended
earlier work and developed a general expression for the limiting values of the Yule-
Walker (YW) estimates allowing changing measurement error variances and under
the assumption in (4). For the AR(1) model this leads to φ̂1,naive ⇒ κφ1, where ⇒
denotes convergence in probability and

κ = σ2
Y/(σ

2
Y +σ2

u ). (8)

This shows asymptotic attenuation (bias towards 0) in the estimator of φ1. If, as in
ecological applications, the focus is on β1 = φ1 − 1, then β̂1,naive ⇒ κβ1 +(κ − 1),
which is greater than β1 if β1 <−1 but less than β1 if β1 >−1.

For the AR(2), we have(
φ̂1,naive

φ̂2,naive

)
⇒
(
(κρ1 −κ2ρ1ρ2)/(1−κ2ρ2

1 )

(κρ2 −κ2ρ2
1 )/(1−κ2ρ2

1 )

)
,

where ρ j = γ j/σ2
X for j = 1 and 2 with γ1 = (φ1σ2

X )/(1−φ2) and γ2 = (φ2
1 +φ2 −

φ2
2 )σ

2
X/(1− φ2). This leads to some more interesting results, as the bias in either

element of �̂naive can be either attenuating or accentuating (larger in absolute value),
depending on both the amount of measurement error and the other parameters.

It is well known that YW and ML/REML estimators have the same asymptotic
properties without measurement error. With measurement error the asymptotic
properties of the ML (equivalently REML) can be examined through their associated
estimating equations, see the Appendix. This leads to the same asymptotic behavior
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Table 4 Performance of maximum likelihood (ML), Yule-Walker (YW), and restricted maximum
likelihood (REML) estimators of φ1, using true and mismeasured values in the AR(1) model. φ ∗

1 =
κφ1 = limiting value of naive estimator

True (using Y ) Naive (using W )

φ1 σ 2
u n YW ML REML φ ∗

1 YW ML REML

0.2 0.15 10 0.023 0.029 0.176 0.169 0.006 0.009 0.152
0.2 0.15 30 0.140 0.146 0.187 0.169 0.116 0.120 0.161
0.2 0.15 50 0.161 0.164 0.188 0.169 0.136 0.139 0.163
0.2 0.15 100 0.179 0.180 0.192 0.169 0.149 0.150 0.162
0.2 0.6 10 0.031 0.040 0.185 0.116 −0.022 −0.020 0.120
0.2 0.6 30 0.151 0.157 0.199 0.116 0.074 0.077 0.116
0.2 0.6 50 0.171 0.174 0.198 0.116 0.090 0.092 0.115
0.2 0.6 100 0.185 0.187 0.199 0.116 0.101 0.102 0.113
0.8 0.15 10 0.356 0.435 0.623 0.749 0.290 0.354 0.536
0.8 0.15 30 0.648 0.686 0.750 0.749 0.586 0.619 0.681
0.8 0.15 50 0.710 0.731 0.768 0.749 0.650 0.669 0.705
0.8 0.15 100 0.756 0.765 0.783 0.749 0.701 0.709 0.727
0.8 0.6 10 0.357 0.444 0.641 0.630 0.195 0.235 0.410
0.8 0.6 30 0.652 0.689 0.753 0.630 0.463 0.487 0.542
0.8 0.6 50 0.709 0.729 0.766 0.630 0.526 0.540 0.572
0.8 0.6 100 0.756 0.766 0.785 0.630 0.574 0.582 0.598

as the YW estimators when ˙u = σ2
u I. Note that the ˙u is the unconditional

covariance of u and can have conditional heteroscedasticity arising through Yt ; see
the discussion in Sect. 2.2.

One question is how useful the bias expressions are for “small” samples. Even
without measurement error, the issue of bias in small samples is an important
one with time series. To illustrate data was generated from the AR(1) model with
Yt = φ1Yt−1 + εt and Wt = yt + ut , where the εt are iid N(0,σ2) and the εt are
iid N(0,σ2

u ). The process variance was held to σ2 = .8, while φ1 = .2, .5, or .8
and σ2

u = .15, .4 and .8. The case with φ1 = .5 and σ2
u = .15 is based roughly

on an analysis of mouse dynamics given in Buonaccorsi (2010, Chap. 12). For
each combination 1,000 simulations were run and YW, ML, and REML estimators
obtained, using the true Y ’s and the error prone W ’s. Partial results appear in Table 4.
The analysis with true values is given for two reasons. First it shows the clear
superiority of REML to ML estimation, especially at small sample sizes, with the
ML only being modestly better than the YW estimator. Notice that even using true
values all of the estimators are attenuated towards zero, sometimes dramatically
with n = 10. Second it gives a baseline to compare the performance of the naive
estimators to. The measurement error leads to further attenuation, increasing in σ2

u ,
as it should. The REML estimator obviously provides some extra protection against
measurement error compared to ML and YW, especially at small sample sizes.
The variable φ∗

1 is the limiting value of the naive estimator (whether YW, ML, or
REML). The asymptotic bias associated with this limiting value can be significantly
off compared to the simulated bias, sometimes even with samples of size 50.
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4 Correcting for Measurement Error

There are three general contexts within which measurement error corrections are
carried out. 1. Using only the observed W1, . . . ,WT ; 2. Using the observed W ’s and
estimated measurement error parameters leading to pseudo-methods. 3. Using richer
data than just Wt ’ from each time point t. We first comment on each of these three.

1. Unlike many other measurement error problems it has been shown that with
some assumptions on the measurement error (e.g., that the errors are independent
with mean 0 and common variance) all of the parameters can be identified (and
estimated) from the W data alone for a variety of dynamic models; see, e.g.,
some of the references in Sect. 4.2.1 and Aigner et al. (1984). The majority of
the work on correcting for measurement error in dynamic settings has attacked
the problem from this perspective. In the likelihood context these are state-space
models and the approach is standard in principle but can face computational
challenges as discussed later. The shortcoming of this approach is the potential
restrictive nature of the measurement error model and the fact that identifiability
does not guarantee good estimators. However, without any information about the
measurement error process the only option is to use this approach to estimate the
dynamic and measurement error parameters simultaneously.

2. There is often data that allows for estimating the measurement error parameters,
contained in �̂ , say. This may include estimated variances as well as biases
and/or correlations if they are part of the model. With additive uncorrelated
measurement errors, allowing changing variance over time then �̂ contains an
estimate of measurement error variances, σ̂2

ut , at each time point t, typically
arising from the same data that produces Wt . The pseudo-methods set � = �̂

and then estimate the parameters in the dynamic model. While it seems natural
to exploit estimates about the measurement error parameters, this strategy has
been seriously underutilized. Note that �̂ may be of fixed size or contain separate
estimates at each time point, depending on the assumed structure of �; see
the discussion in Sect. 2.2. We subsume under pseudo-methods approaches that
simply assume that the measurement error parameters are known. The difference
between viewing �̂ as estimated or known and fixed will come in trying to
account for uncertainty �̂; see Sects. 4.1 and 4.2.2.

3. The third approach has some richer “data,” denoted Qt , at time t with a model
for Qt given yt . The simplest example is where Qt contains replicate measures
of yt ; e.g, Wong et al. (2001); Dennis et al. (2010), and Knape et al. (2011).
The analyses here connect to the previous two approaches. If Qt |yt depends on a
finite collection of parameters � , then this is like approach 1 but with Wt replaced
by Qt . Or, the richer data can be used to first estimate the measurement error
parameters, in which case this reduces to a pseudo-method. In some cases those
two strategies concur. With these connections we won’t mention this method
in detail in the later sections.We do note that one advantage of using the full
Qt is that the uncertainty from estimating the measurement error parameters is
accounted for. It does, however, require that � be fixed and that a distribution is
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Table 5 Selected papers correcting for measurement error

Methods using W only

Author(s) Model for Y ME Model Method
De Valpine and Hilborn (2005) General,AR(1), N(0,σ 2

u ) ML
De Valpine and Hastings (2002) Ricker and
De Valpine (2002) Beaverton-Holt
Calder et al. (2003) Gen Gen Bayesian
Clark and Bjornstad (2004) Gen Gen Bayesian
SB (2005) AR(1) N(0,σ 2

u ) ML/ARMA
AR(p) (0,σ 2

ut) modified YW
Wang et al. (2006) RW, AR(1), AR(2) N(0,σ 2

u ) ML
Dennis et al. (2006) RW, AR(1) N(0,σ 2

u ) ML/REML
Lele (2006) Gen Gen ComML
Knape (2008) AR(1) N(0,σ 2

u ) ML
Ponciano et al. (2009) Gen Gen ML
Knape et al. (2011) AR(1) varied ML

Pseudo-methods
Solow (1998) “logistic” Poisson SIMEX
Williams et al. (2003) AR(1)+ trend N(0,σ 2

ut) ML
Ives et al. (2003) MAR(1) N(0,σ 2

u ) ML
Clark and Bjornstad (2004) Gen (0,σ 2

ut) Bayesian
SB (2005) AR(p) (0,σ 2

ut) CEE/ML
Wang (2007) Theta-logistic N(0,σ 2

u ) ML/Bayesian
Lillegard et al. (2008) MAR(1) (* below) Bayesian
Ives et al. (2010) ARMA N(0,σ 2

u ) ML/REML
Dennis et al. (2010) AR(1) N(0,σ 2

u )(reps) REML
Knape et al. (2011) AR(1) varied ML
Resendes (2011) Ricker varied SIMEX, MEE

∗√(Wt )∼ N(a+b
√

exp(Yt ),σ 2
u )

specified for the within time data. In many applications the within time sampling
can be very complex and the results will be reduced to Wt and σ̂2

ut , leading us
back to the pseudo-methods.

Table 5 contains a partial listing of papers addressing connection techniques,
many containing simulations evaluating the methods. A number of these will be
referred to in the later discussion, along with additional papers.

Within each of the three contexts described above, moment-based, maximum
likelihood, and Bayesian methods are all options. The pseudo-methods also open
the door for other methods including Simex, modifying the estimating equations
and what is known as “regression calibration” all of which have received limited, or
no, attention, in dynamic settings. Our survey below is categorized by the correction
technique (moment, likelihood, Simex, etc.) with the last subsection addressing the
use of bootstrapping.
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4.1 Moment Methods

Moment-based corrections are for the most part limited to linear problems including
the random walk model and linear autoregressive models, which we concentrate
on here. Working only with the Wt ’s, if the measurement error is additive and
conditionally uncorrelated but with possibly changing variances, modified Yule-
Walker estimators for � are available. These take advantage of the fact that the lag
covariances, which involve the φ ’s, are estimated consistently; see Walker (1960);
Sakai et al. (1979); Chanda (1996), and comments in SB (2005). While these
estimators are consistent and robust to changing measurement error variances, in
practice they are often very ill behaved even for moderate sample sizes and cannot
be recommended.

For a pseudo approach with uncorrelated additive measurement errors, but
possibly unequal variances, define

� =

⎛⎜⎝ γ0 . . . γp−1
...

. . .
...

γp−1 . . . γ0

⎞⎟⎠ and � =

⎡⎣ γ1

. . .

γp

⎤⎦ ,
where γk is the lag k covariance and γ0 = σ2

Y . SB (2005) proposed the simple
estimator �̂CEE = (�̂W − σ̂2

u I)−1�̂W , where �̂W and �̂W are naive estimates of
� and � using the sample variances and covariances of the observed Wt ’s and
σ̂2

u = ∑T
t=1 σ̂2

ut/T. The estimator can be viewed as arising from either correcting the
naive estimating equations so they have mean 0 (hence CEE for corrected estimating
equation) or from a simple correction based on the fact that the sample variance of
the observed Wt’s estimates σ2

Y + σ2
u . They show that �̂CEE is consistent as long

as (4) holds and in addition σ̂2
u converges in probability to σ2

u . They also establish
asymptotic normality and provide the asymptotic covariance of �̂CEE but only under
certain assumptions. An extension of their result is the following:

Proposition 1. Let G1 = ∂ �̂CEE/∂ �̂W |∗, G2 = ∂ �̂CEE/∂ σ̂2
u |∗, (with |∗ denoting

evaluation at γ̂W j = γW j and σ̂2
u = σ2

u ), X′
t = [W 2

t ,WtWt+1, . . . ,WtWt+p], and
X̄ = ∑t Xt/T . Assuming the following limits exist, Q1 = LimCov(X̄)T , Q12 =
LimCov(X̄, σ̂2

u )T and Q22 = LimV (σ̂2
u )T , then the asymptotic/approximate covari-

ance of �̂CEE is

ACov(�̂CEE) = (G1Q1G1 ++G1Q12G′
2 +G′

1Q′
12G2)/T +G2G′

2V (σ̂2
u ). (9)

The first term G1Q1G1/T = CK , say, is the approximate covariance of �̂CEE if
the σ̂2

ut ’s are treated as known. The terms involved in (9) get complicated, as
does estimation of them. We omit details (given in Buonaccorsi and Staudenmayer
(2012)) but the general result is useful for highlighting the difficulty in accounting
for the uncertainty in the measurement error parameters by needing to handle
the terms involving σ̂2

ut . The problem simplifies considerably when the σ̂2
ut ’s are
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assumed independent of the Wt’s, as would hold if the Wt and σ̂2
ut arise from using

normal replicate measures at time t. In this case ACov(�̂CEE) = CK +G2G′
2V (σ̂2

u )
(where Ck was defined above) so only η4 = ∑t E(u4

t )/T (= 3σ4
ut if ut is normal) and

V (σ̂2
u ) and estimates of them are needed. To illustrate (see SB (2005)), for the AR(1)

model, the approximate variance of φ̂1,CEE is

1
T

[
(1−φ2

1 )(2−κ)
κ

+
(1−φ2

1 )(∑t σ4
ut/T )+φ2

1 η4

σ2
Y

]
+

φ2
1 V (σ̂2

u )

σ2
Y

,

where κ is given in (8).
More broadly, the challenge is to accommodate the case where the conditional

variance (or higher moments) of ut |yt may depend on yt . Unconditionally this
leads to the σ̂2

ut ’s being correlated with the Wt ’s and expressions and estimates
for Q1 and Q12 are needed. It appears impossible to do this robustly using just
the Wt and σ̂2

ut in the most general setting, without some assumptions on the
measurement error variances. Buonaccorsi and Staudenmayer (2012) develop a
strategy for estimating the covariance matrix under the assumptions that either i) the
sampling effort is constant so the heteroscedasticity arises through the Yt only or ii)
the measurement error variance is inversely proportional to known sampling effort.
The methodology used considers the joint series (Wt , σ̂2

ut) and exploits time series
methods for estimating covariance structures robustly using consistent estimators of
the spectral density of a multivariate stationary process (e.g., the modified Bartlett
kernel estimator); see, e.g., Fuller (1996, Chap. 7).

4.2 Likelihood Methods

Likelihood and related Bayesian methods have dominated the correction ap-
proaches. There are two-likelihoods of interest, the full and conditional likelihoods
L(�,� ,�|w) = f (w|�,� ,�) and L∗(�,� ,�,y∗1|w) = f ∗(w|�,� ,�,y∗1), based on
the densities in (5) and (6), respectively. For stationary normal linear models, an
alternative is to use the REML likelihood in place of L(�,� ,�|w).

4.2.1 Using W Values Only

Assuming � is of fixed size, these methods maximize either the full or conditional
likelihood, or their REML versions. Of course, they are only used when all of the
parameters are identifiable. This is a classical state-space formulation and there is
a fairly large literature on fitting these models, whether linear or nonlinear using
maximum likelihood, and in a few cases, REML. While this is straightforward in
principle, there are a number of challenges in using these techniques, including
needing to dealing with local maxima and/or the maximum occurring on the
boundary of the parameter space and, general difficulty in computing the likelihood
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function and an associated covariance matrix of the estimates for use in inference.
However, as discussed below, there have been recent advances tackling some of the
computational challenges.

Normal linear stationary models: Assuming u|y ∼ N(0,˙u) where ˙u depends
on a fixed number of parameters, the full likelihood approach can be used based
on W ∼ N(μ1,˙Y +˙u). (It is important to note that if the measurement error
variances (or covariances if present) are changing with y, then even if u is
conditionally normal and unconditionally Cov(u) = ˙u, W = Y+u is not normal
since it involves mixtures of normals with changing variances. This same comment
applies for the pseudo likelihood methods in the next section.) Often ˙u is taken to
be σ2

u I, while ˙y is a function of the parameters, depending on the specific model for
the true values. Computational methods here typically use the Kalman filter or some
variation on it; see, e.g., Harvey (1990), Brockwell and Davis (2002), Ives et al.
(2010, 2003) and, for the AR(1) models, Dennis et al. (2006) and Knape (2008).
These last two papers touch on the important problem that even in the simple AR(1)
model there may be issues with local maxima and/or the maximum occurring on
the boundary. Knape (2008) also zeros in more on the fact that, not surprisingly,
it can be difficult to separate the process error variance and the measurement error
variance. These models can also be cast as mixed models which may employ other
computational techniques (e.g., the EM algorithm and modifications of it), although
only the AR(1) model is typically available in canned mixed model routines (e.g,
proc Mixed in SAS and lmm in R).

For normal autoregressive (and more generally ARMA models) there is another
quick and easy option. If the model for true values is ARMA(p,p) and the
measurement error model is an MA(q) process (q = 0 corresponding to ut’s being
iid N(0,σ2

u )), then it is well known that the model for W is an ARMA(p,p + q)
and the autoregressive parameters are unchanged (Box et al. 1994, Sect. A4.3, Ives
et al. 2010). This means we could estimate the autoregressive coefficients in � by
simply fitting an ARMA(p,q) model. This is the hybrid approach of Wong and
Miller (1990) used in an ARIMA setting. For the AR(p) models with measurement
errors being iid N(0,σ2

u ), this means we can estimate the autoregressive coefficients
in simply fitting an ARMA(p, p) model. In the case of p = 1 this yields the ML
estimator of �1 and using results on fitting ARMA models (see Brockwell and Davis
(2002)) an exact, but somewhat complicated, expression for the asymptotic variance
of φ̂1,ML can be obtained; see SB (2005). When p > 1 this does not yield the ML
estimate for �, since there are restrictions involving the moving average parameters.
There is an older literature that attacked this problem by first fitting the ARMA
model and then bringing in the restrictions in various ways to get approximate MLEs
(e.g., Lee and Shin (1997); Pagano (1974)).

General Models. The computational challenges are more severe for nonlinear
models both in the integration required to obtain the likelihood, and in getting
the information matrix or other quantities for use in inference. Note that the
full likelihood function L(�,� ,�|w) also requires specifying a marginal distri-
bution for Y1, while in working with the conditional likelihood y∗1 is treated as
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another parameter. This would seem to argue more for the use of the conditional
approach. For overviews and references, see De Valpine and Hastings (2002), De
Valpine (2002), De Valpine and Hilborn (2005), and Wang (2007) (who assumes the
measurement error parameters are known but the basic algorithms are the same).
Recently, some new methods have been developed to try and overcome some of
the computational challenges. These include the Monte Carlo Kernel Likelihood
(MCKL) (De Valpine (2004)), a method called data cloning, which borrows from
Bayesian computing (Lele et al. (2007); Ponciano et al. (2009)) and composite
maximum likelihood estimation (ComML) (Lele 2006).

4.2.2 Pseudo Likelihood Methods

The pseudo ML estimates maximize either L(�,� , �̂ |w) or L2(�,� , �̂,y∗1|w), or
an REML modified version, where �̂ contains estimated, or assumed known,
measurement error parameters. These methods also have a long history of use in
modeling with repeated samples surveys where the true values are ARIMA (and
special cases thereof) or follow a basic structural model (BSM) and the sampling
error also may follow a dynamic model (AR, MA, etc.), which is first estimated
and then held fixed. See Bell and Wilcox (1993); Koons and Foutz (1990); Wong
and Miller (1990); Miazaki and Dorea (1993); Lee and Shin (1997); Feder (2001),
and references therein. Many pseudo-approaches treat stationary normal models
assuming W ∼ N(μ1,˙Y + ˆ̇u), but see the caution in the previous section about
non-normality of W if the measurement error covariance change with Yt .

For the most part, the pseudo-likelihood approaches face the same computational
demands as the non-pseudo-likelihood methods. An added challenge lies in finding
the covariance matrix for the estimated dynamic parameters which accounts for
uncertainty in �̂ . To illustrate, let ω ′ = (�′,� ′) for the collection of dynamic
parameters and I(!) the corresponding information matrix, with submatrices Iφ , etc.
If �̂ is treated as fixed, the asymptotic covariance matrix of !̂ML is I(!)−1, leading
to an asymptotic covariance matrix of �̂ML of Acov(�̂ML,K) = (Iφ − Iφ ,σ I−1

σ I′φ ,σ )
−1,

K for known. This covariance can be estimated in standard fashion, computational
issues aside.

What about accounting for the uncertainty in �̂ , say with covariance ˙θ̂ ? This
part has been essentially ignored, an exception being SB (2005). If � is of fixed
dimension and �̂ is consistent and asymptotically normal with covariance matrix
˙θ̂ , then as shown by Parke (1986), often

Acov(!̂ML) = I(!)−1 + I(!)−1Iω,θ ˙θ̂ I′ω,θ I(!)−1. (10)

Hence, Acov(�̂ML) = Acov(�̂ML,K)+Q, where Q is the upper left p× p block of
the second matrix in (10) and p is the size of �. If θ̂ = σ̂2

u , then ˙θ̂ is the exact or
approximate variance of σ̂2

u . SB (2005) used this result for the AR(1) model with
additive constant measurement error variance and compared the asymptotic variance
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of the pseudo-MLE and that of the CEE estimator in Sect. 4.1. As expected, under
normality the pseudo-MLE is more efficient but in many cases the moment-based
CEE did not lose much and in finite sample simulations the performances were
similar.

The expression in (10) depends on �̂ being asymptotically uncorrelated with
!̂ (if computed at the true �). This certainly holds if �̂ is independent of W.
Besides possibly violating these conditions on �̂ , we also need to worry about the
case where the pseudo method uses the individual measurement error parameters
(e.g., the σ̂2

ut’s) and not a simple function of them, such as the mean, so �̂

increases in dimension as T increases. Suppose that �̂ can be written as solving
equations S2(�) = 0 and the ! arises from solving S1(!, �̂) = 0; e.g, score
equations. Note that both S1 and S2 depend on random quantities which have been
suppressed in the notation. Use of a standard first order expansion of the estimating
equations and results on the inverse of a partitioned matrix lead to an approxi-
mate covariance matrix: Cov(!̂)≈ Acov(!̂ML,K)+H−1

11 H12˙
�̂

H′
12H−1′

11 −P, where
H11 = E(∂S1(!,�)/∂!), H12 = E(∂S1(!,�)/∂�), H22 = E(∂S2(�)/∂�), C12 =
E(S1S′

2), and P = H−1
11 (H12H−1

22 C′
12 +C12H−1

22 H′
12)H

−1
11 . This is a bit daunting and

we are faced with many of the same issues faced in using the CEE estimator in
the linear autoregressive models; see Sect. 4.1. This is a case where bootstrapping
will help. Also, the approximate covariance above comes from simply using a first
order approximation to the estimating equations. Work remains to be done, however,
to carefully examine asymptotics in this setting where the size of �̂ is increasing
with T . Notice that treating the asymptotics for the CEE estimator was easier since
only the average estimated measurement variance was used.

4.3 Bayesian Methods

Bayesian methods begin with the same structure as the likelihood methods above but
utilize priors for the parameters (�,� , and �) and base inferences on the posterior
distribution of the parameters with the main focus being on estimating �. The
formulas are standard so we won’t repeat them here. Some of the computational
challenges are similar to those in the likelihood setting, but there are some
formulations that can be easily fit using Winbugs (see, e.g., Bolker (2008, Section
11.6.2) and Viljugrein et al. (2005)) General discussion of the Bayesian approach
can be found in Calder et al. (2003); Clark and Bjornstad (2004); Wang (2007), and
Jungbacker and Koopman (2007). Viljugrein et al. (2005) use a pseudo-approach
by using estimated measurement error variances from each point in time. Clark
and Bjornstad (2004) is notable for its treatment of unequal measurement error
variances by incorporating different priors on each of the σ2

utc to reflect the amount
of information about them. Additional applications of the Bayesian method can be
found in Stenseth et al. (2003); Saether et al. (2008), and Lillegard et al. (2008),
among others.
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4.4 SIMEX, MEE, and RC

Here we briefly discuss three other correction methods, Simex (simulation-
extrapolation), modifying estimating equations and regression calibration, all of
which have been successful in treating standard regression settings; see Carroll
et al. (2006) and Buonaccorsi (2010) for background and details. All of three use
information about the measurement error parameters and are designed to both ease
the computational burden and, more importantly, relax some of the distributional
assumptions underlying likelihood and Bayesian techniques.

SIMEX. Originally due to Stefanski and Cook (1995), it has been used mainly
with additive measurement error but can also accommodate multiplicative errors
(e.g, Solow (1998); Resendes (2011)). Briefly it proceeds by simulating different
amounts of additional measurement error to the observed W ’s, estimating the mean
behavior of the naive approach at each of these levels of measurement error (by
simulating multiple samples at that level of measurement error), then fitting a curve
relating the mean behavior to the level of measurement error and projecting back
to the case of no measurement error. It has seen some, but rather, limited use
in dynamic settings; see Solow (1998); Ellner et al. (2002), and Bolker (2008,
Chap. 11). While certainly not bullet proof, Simex has proven itself to perform quite
well across a variety of regression models. Its great advantage is the need to only
have to be able to fit the naive estimator. Getting analytical standard errors is more
challenging and has not been examined in dynamic contexts. This is another place
where the bootstrap will come in handy. Resendes (2011) evaluated the performance
of SIMEX in fitting the Ricker model via simulation and obtained bootstrap standard
errors and confidence intervals. He found that except for large (and unreasonable)
levels of measurement error, SIMEX was quite successful in removing bias and
bootstrap-based inferences performed fairly well. One problem with SIMEX in
combination with the bootstrap was the huge number of fits that need to be done.
This was easy for the version of the Ricker model that leads to linear least squares
but was more problematic when needing to use root finding methods for solving
nonlinear equations for the multiplicative version.

Modified estimating equations. This is closely related to finding corrected scores
and is also motivated by minimizing distributional assumptions. The idea is to
use the estimated measurement error parameters and try to modify the naive
estimating equations so the corrected equations have asymptotic mean 0. For
linear autoregressive models modifying the Yule-Walker equation leads to the CEE
estimator while under normality modifying the score equations leads to pseudo-
ML estimators. For many other cases however, it is difficult to implement this
method for the same reasons associated with using the estimating equations to
assess bias (Sect. 3), although approximate corrections can be found for least
squares-type estimators. An advantage of an explicit set of corrected estimating
equations is the ability to build off of them to get analytical expressions for the
approximate covariance matrix of the estimators. While a promising approach in
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general, an extensive investigation into its use for the Ricker model (the easiest of
the “nonlinear” models) by Resendes (2011) found that the resulting estimator could
be erratic, was outperformed by SIMEX and it was difficult to get good standard
errors, either analytically or via the bootstrap. Further fine-tuning of the correction
term might alleviate some of these issues.

Regression calibration. Finally we briefly speculate on regression calibration, an
extremely popular method in regression contexts, which has not yet explored at all
in the dynamic contexts. For an autoregressive model, consider

E(Wt |Wt−1) = E[E(Wt |Wt−1,Yt−1] = E[E(Wt |Yt−1|Wt−1)]

= E[m(�,Yt−1)|Wt−1]≈ m(�,E(Yt−1|Wt−1)),

where the approximation is exact if the model is linear in the Y ’s. (The last step
of running the expectation through the m function is what motivated RC methods
in regression.) This suggests finding an estimate Ŷt−1 of E(Yt−1|Wt−1) and then
estimating � by regressing Wt on Ŷt−1. Notice that this is not the same as running
the usual naive analysis but replacing Wt with Ŷt since we are leaving Wt as is when
it is the “outcome” but modifying “predictors” by using Ŷt−1 in place of Wt−1.
For normal stationary models and using estimated best linear predictors, it can be
shown that this leads essentially to the CEE estimator in Sect. 4.1. A fruitful line of
future work would be to examine the procedure above for nonlinear but stationary
models and also to consider modifications to handle non-stationary models without
an explicit expression for E(Yt) and V (Yt) which enter the best linear predictor of Yt .

4.5 Bootstrapping

The preceding discussions provide a number of reasons why the bootstrap will
be useful, both for getting standard errors and for assessing bias. The parametric
bootstrap, based on an assumed distribution for both the measurement errors and the
true values is relatively easy to implement. For an autoregressive model depending
on the past p values, for each bootstrap sample b (= 1 to B), we can set yb1 =
(yb1, . . . ,ybp)

′, where yb j =Wj for j = 1 to p. We would then generate (sequentially)
Ybt = m(�̂,yb,t−1)+ ebt , where ebt is based on the distribution of εt with estimated
parameters. Measurement error is then added to generate Wb from yb according
to the estimated model for W|y. If a pseudo-method is being used and we want to
account for uncertainty from estimating the measurement error parameters, then we
also would generate �̂b, based on a distributional assumption. For each bootstrap
sample, the corrected estimators are obtained and standard bootstrap inferences
obtained using the B bootstrap values.

Notice that we need to resample from the dynamic model explicitly. (There are
some methods that bootstrap via block resampling, e.g., but these are of limited
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value with short series and their use needs to be carefully considered if there are
measurement errors present with changing properties over time). The difficulty
in using a nonparametric bootstrap is getting an estimate of the process error
distribution; i.e., the distribution of the εt . To see the problem suppose we knew
the dynamic parameters exactly and examine residuals rt = Wt − m(�,Wt−1) =
Yt + ut − m(�,Yt−1) + (m(�,Yt−1)− m(�,Wt−1) = εt + ut + εt + (m(�,Yt−1)−
m(�,Wt−1). This is contaminated by the measurement errors and some type of
“unmixing” (related to deconvolution) is needed to get a nonparametric estimate
of the distribution of εt . This is not an easy problem and is especially challenging
with short series. The problem is even more difficult if the last term is nonlinear in
Y and exacerbated further, of course, when an estimated �̂ is used. There is no work
on unmixing in this particular context and so the nonparametric bootstrap remains
undeveloped here, as it still does for many regression problems with measurement
error.

5 Discussion

The main goal here was a broad overview of modeling and methodological issues
when accounting for measurement error in fitting dynamic models. Much of the
work in this area has tended to focus on likelihood methods involving distributional
assumptions under fairly limited measurement error models. While these may
provide good approximations in some settings, in general methods that drop the
distributional assumptions and/or allow for richer measurement error models are
often required; as are methods that explicitly exploit estimated measurement error
parameters, which may be changing with time. While some important strides
have been made in addressing these problems, the only problem with a somewhat
complete solution is for additive errors in the linear autoregressive models. Of
course one question still to be answered thoroughly is whether using the estimated
measurement error parameters always improves the situation. More generally, a
number of possible approaches to correcting for measurement error were described
in Sect. 4. While a few papers have compared a couple of techniques (e.g.,
SB (2005) and Resendes (2011)) the majority of papers assess the performance
of a single method often in comparison with a naive approach which ignores
measurement error. A more comprehensive understanding of the pros and cons
of the different methods is still needed. Future work is needed to explore the
performance and robustness of the various procedures under a variety of assump-
tions; in particular the robustness of likelihood-based methods to distributional
violations.

We identified a number of other problems that need further attention. One is in
the treatment of nonlinear models without distributional assumptions. This turns out
to be a challenge both for assessing bias and correcting for measurement error, even
with fairly simple measurement error models; see Sects. 3 and 4.4 and Resendes
(2011). Simex in combination with the bootstrap appears to be the best option here,
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but as noted in Sect. 4.4 currently only the parametric bootstrap is available. The
development of the nonparametric bootstrap would be helpful, although this will
be very difficult with short series. Modifying the estimating equations does not
seem all that promising here, but the regression calibration approach is worthy of
investigation.

Two other areas needing attention, even when working under distributional
assumptions, are allowing for richer measurement error models (such as letting the
measurement error variance be different at each point in time) and accounting from
uncertainty from the estimated measurement error parameters. The latter is of added
difficulty when the number of estimated measurement error parameters is changing
in time. In that context some avenues worth pursuing are just using the average
measurement error variance for each t (there is theoretical justification for this if
the process is stationary and the variance is changing as just a function of Yt) or
smoothing the variances in some way.

Lastly we note that in addition to other problems put aside for space reasons in the
introduction, there is the problem of simultaneously fitting models to multiple series.
This is an important topic where the use of series from many different locations
which exploit the spatial structure or other assumptions about common dynamic
parameters can help with the ever present problem of short series. There has been
some work on measurement error in these contexts (e.g., Lillegard et al. (2008),
Ives et al. (2003)), but a number of the issues raised above in treating a single series
remain of interest.

Appendix

Assessing bias via estimating equations. Suppose Y ∼ N(μ1,˙Y ). The estimating
equations for the ML estimators of the parameters in ˙Y (say ψ1, . . . ,ψJ) can be
written McCulloch et al. (2008, p. 165) as tr(˙−1

Y G j)− (y−μ1)′˙−1
Y G j˙

−1
Y (y−

μ1) = 0, for j = 1 to J, where J is the number of parameters in ˙Y and G j =
∂˙Y/∂ψ j. Replacing y with W and taking the expected value, but denoting the
arguments of the estimating equations denoted with a ∗ leads to an expected value
of the jth estimating equation of E j = tr(˙ ∗−1

Y G∗
j)− tr(˙ ∗−1

Y G∗
j˙

∗−1
Y ˙W ). If we

can find Σ∗
Y of the same form as ˙Y so that each E j is 0, then the naive estimators

of the parameters in ˙Y are consistent for the parameters in ˙ ∗
Y . Obviously E j

is 0 if ˙ ∗
Y = ˙W but this only provides the asymptotic bias immediately if ˙W

is of the same form as ˙Y . If the measurement errors are additive with constant
(unconditional) variance σ2

u , then ˙W = ˙Y + σ2
u I, and we can take ˙ ∗

Y = ˙W .
This means the naive estimator or σ2

Y asymptotically estimates σ2
Y +σ2

u while the
naive estimators of the off-diagonal covariance terms in Y are correct and the ML
estimators are asymptotically like the YW estimators.

Allowing unequal unconditional variances (as can occur with changing sampling
effort) ˙W =˙Y +Diag(σ2

u1, . . . ,σ
2
uT ) the question, which we have not investigated,

is whether E j → 0 as T increases if we take ˙ ∗
Y =˙Y +σ2

u , where σ2
u =∑T

t=1 σ2
ut/T .
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Measurement Error in the Linear Dynamic
Panel Data Model

Erik Meijer, Laura Spierdijk, and Tom Wansbeek

Abstract We study measurement error in the simplest dynamic panel data model
without covariates. We start by investigating the first-order effects, on the most
commonly used estimator, of the presence of measurement error. As was to be
expected, measurement error renders this estimator inconsistent. However, with
a slight adaptation, the estimator can be made consistent. This approach to
consistent estimation is ad hoc and we next develop a systematic approach to
consistent estimation. We show how to obtain the most efficient estimator from
this class of consistent estimators. We illustrate our findings through an empirical
example.

1 Introduction

In econometrics, the analysis of panel data is a rapidly expanding research area.
Frequently, the models formulated are dynamic models in the sense that the
lagged dependent variables is among the regressors. Especially the linear dynamic
panel data model (LDPDM) is hugely popular. This model typically has both
the lagged dependent variable and an individual effect on the right-hand side.
Its estimation is not entirely straightforward since the least-squares estimator is
inconsistent.
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Consistent estimation of the LDPDM has inspired many researchers, and the
number of publications on the topic is still growing. The leading idea is to transform
the model equation into first differences over time, and next use the twice lagged-
dependent variable as an instrumental variable (IV). Under the crucial assumption
that the error term is not correlated over time, it is easy to see that this approach gives
a consistent estimator of the regression coefficient. The idea is due to Anderson and
Hsiao (1981, 1982). Arellano and Bond (1991) pointed out that all preceding values
of the dependent variable, not just the directly preceding one, can be used as IVs,
leading to more IVs and smaller asymptotic variance, if there are more than three
periods. The estimator due to Arellano and Bond (1991) has found application on a
very large scale.

Little attention has been paid to issues around measurement error in the LDPDM.
This comes not entirely as a surprise, as the situation for the much simpler static
model is not vastly more favorable. But at least, there is a line of literature for the
static model. The pioneering contribution there is Griliches and Hausman (1986).
Much of the literature for the static model is reviewed by Meijer et al. (2012), where
also a number of new ways are described for consistent estimation.

As to the literature on the LDPDM with measurement error, an early contribution
is Wansbeek and Kapteyn (1992). For the model without exogenous regressors, they
derive the probability limit of the within estimator and the OLS estimator after
first-differencing the model and suggest to use the result to construct a consistent
estimator of the autoregressive parameter. In an empirical study on income dynam-
ics, Antman and McKenzie (2007) consider a dynamic panel data model where the
current value depends on a cubic function of the lagged value. Their estimator is
based on outside information on the reliability of the income variable, that is, on the
ratio of the true variance and the observed variance. Chen et al. (2008), in their study
of the dynamics of students’ test scores, construct consistent estimators through IVs
derived from within the model, adapting an approach due to Altonji and Siow (1987)
to the dynamic case. Komunjer and Ng (2011) consider a VARX model with all
variables contaminated by measurement error and exploit the dynamics of the model
for consistent estimation. Biørn (2012) presents a thorough treatment of the topic,
with IVs based on the absence of correlation between regressors and disturbances
for some combinations of time indices.

In this paper we contribute to the literature on the LDPDM with measurement
error in two ways. In the first place we derive, in Sect. 2, the effect of measurement
error on the Arellano–Bond (AB) estimator. For the simple case of a panel with
three waves, we investigate the inconsistency of this estimator in the presence
of measurement error. We provide some interpretation and further elaboration in
Sect. 3. Next, we move over to consistent estimation. In Sect. 4 we consider a wide
class of estimators that are consistent, and in Sect. 5, we study efficiency within
this class. An illustrative example is given in Sect. 6. In Sect. 7 we make some
concluding remarks.
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2 The Effect of Measurement Error

In this section we consider the simplest possible LDPDM and investigate the effect
of measurement error when it is estimated in the usual way. The model is represented
by the following two equations,

ηnt = γηn,t−1 +αn + εnt (1)

ynt = ηnt + vnt , (2)

for n = 1, . . . ,N and t = 1, . . . ,T . In this model, ηnt is an unobserved variable,
according to (1) subject to an autoregressive process of order one. The error term
in (1) consists of two components, a time-constant one, αn, and a time-varying one,
εnt . The link between the unobserved variable ηnt and the observed variable ynt is
given by the measurement equation (2), where vnt represents the measurement error.
All variables have mean zero over n, possibly after demeaning per time period thus
accounting for fixed time effects. The parameter of interest in the autocorrelation
parameter γ . We restrict ourselves to the case where −1 < γ < 1.

It is assumed that αn, εnt , and vnt are uncorrelated over n. Moreover, εnt and
vnt are assumed uncorrelated over t. This is quite a simplification but, somewhat
surprisingly, these assumptions are commonly made. The various error terms are
taken homoskedastic, with means zero and variances σ2

α , σ2
ε , and σ2

v , respectively.
As is usual in econometrics, these parameters, in particular the absolute or relative
measurement error variance, are taken to be unknown. Finally, it is assumed that
the process has been going on since minus infinity, and −1 < γ < 1, so that the
distributions of all variables are stationary.

We take N to be large relative to T and hence, in our asymptotic results, keep T
fixed and let N go to infinity. So our perspective is cross-sectional. For a time-series
perspective on measurement error, see Aigner et al. (1984, Sect. 6) and Buonaccorsi
(2010, Chap. 12).

Even if ηnt would be observed, estimation of (1) is not straightforward as (1)
implies that αn is correlated with ηnτ for all τ , including the case τ = t−1. So, since
ηn,t−1 is the regressor, the regression model (1) has an error term that is correlated
with the regressor. Hence least squares gives an inconsistent result for the parameter
of interest, γ .

The Anderson–Hsiao (AH) estimator (Anderson and Hsiao 1981, 1982) first
transforms (1) into first differences over time, and next uses ηn,t−2 as an IV. Under
the crucial assumption that εnt is not correlated over time, it is easy to see that
this approach gives a consistent estimator of γ . The Arellano–Bond (AB) estimator
(Arellano and Bond 1991) is a generalization that uses all preceding values of the
dependent variable, not just the directly preceding one, as IVs, leading to more
instruments and smaller asymptotic variance, if the number of observed periods is
larger than three. In the derivations in this section we restrict ourselves, for reasons
of tractability and emphasis on the essentials, to three periods, so our estimator is
the AH estimator.
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This is all about the case where ηnt is observed and not clouded by measurement
error. If there is measurement error, so if (2) enters the stage, the consistency of
the AH estimator is at peril. We now have measurement error twice in the model.
It evidently enters both the dependent variable and the regressor. As is well known
from the measurement error literature, measurement error in the dependent variable
does not affect consistency, but measurement error in a regressor does, in most cases
in the form of a bias towards zero of the estimator. Here the measurement error
in both variables comes from the same source, that is, from (2), and the effect of
measurement error is not straightforward.

In order to gain insight into the effect of measurement error on the AH estimator,
we transform the model into first differences over time and substitute out the
unobserved variable η from the model. This gives us

ynt − yn,t−1 = γ(yn,t−1 − yn,t−2)+ unt , (3)

where the error term unt is defined as

unt ≡ (εnt − εn,t−1)+ (vnt − vn,t−1)− γ(vn,t−1 − vn,t−2).

The AH estimator of γ is obtained by estimating (3) with yn,t−2 as the IV. In the
presence of measurement error this estimator is not consistent, because the IV is not
valid as it is not orthogonal to the error term in (3):

E(yn,t−2unt) = E{(ηn,t−2 + vn,t−2)[(εnt − εn,t−1)

+(vnt − vn,t−1)− γ(vn,t−1 − vn,t−2)]}
= γσ2

v .

In order to derive the probability limit of the AH estimator, we first notice that,
through repeated substitution, the unobserved variable can be expressed as

ηnt =
αn

1− γ
+

∞

∑
s=0

γsεn,t−s. (4)

Hence

E(ηntηn,t−τ) =
σ2

α
(1− γ)2 + γτ σ2

ε
1− γ2 . (5)

Consequently,

ωτ ≡ E(yntyn,t−τ)

=
σ2

α
(1− γ)2 + γτ σ2

ε
1− γ2 + I(τ = 0)σ2

v , (6)
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−1

1
→ γ

−1

1

1

1 + 2λ

γ∗
↑

Fig. 1 Probability limit of
the Anderson–Hsiao
estimator with λ = 1

2

where I(·) is the indicator function, which is 1 if its argument is true and 0 otherwise.
The AH estimator is given by

γ̂ =
1
N ∑n yn,t−2(ynt − yn,t−1)

1
N ∑n yn,t−2(yn,t−1 − yn,t−2)

.

Let λ ≡ σ2
v /σ2

ε be the ratio of the measurement error variance to the equation error
variance. Under weak assumptions, the probability limit of the AH estimator is

γ∗ ≡ plimN→∞γ̂

=
ω2 −ω1

ω1 −ω0

=
(γ2 − γ) 1

1−γ2

(γ − 1) 1
1−γ2 −λ

=
γ

1+(1+ γ)λ
. (7)

This result is depicted in Fig. 1. Clearly, measurement error causes the estimator to
be biased towards zero. The bias towards zero is a well-known phenomenon from
the literature on measurement error in a single cross-section.

The figure is made for the case of λ = 1
2 , so σ2

v = 1
2 σ2

ε . With decreasing
measurement error, so with decreasing λ , the hyperbola will become closer to the
45◦ line. It is also striking how asymmetric the biasing effect is: the bias is much
larger for positive values of γ (which are arguably more likely in most applications)
than for negative values, both absolutely and in a relative sense.
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3 Interpretation and Elaboration

Another view of the result (7) can be obtained as follows. Due to the stationarity and
the absence of serial correlation in the measurement errors, and with Δ denoting the
first-difference operator, we have

E∑
n

yn,t−2(ynt − yn,t−1) = E∑
n

ηn,t−2(ηnt −ηn,t−1)

= γ E∑
n

ηn,t−2(ηn,t−1 −ηn,t−2)

= − 1
2 γ ∑

n
(ηn,t−1 −ηn,t−2)

2

= − 1
2 γσ2

Δη

and

E∑
n

yn,t−2(yn,t−1 − yn,t−2) = −1
2

E(yn,t−1 − yn,t−2)
2

= − 1
2 σ2

Δy.

We thus obtain

γ∗ =
σ2

Δη

σ2
Δy

γ.

The bias factor is the “reliability” of Δy as a proxy for Δη . The situation closely
resembles the situation in the classical measurement error model for a single cross-
section, where the same result holds but then in levels, not differences. Also, in that
case the reliability does not mathematically depend on γ , because it is the reliability
of the exogenous variable. In the LDPDM, it depends on γ , causing the curvature
depicted in Fig. 1.

As mentioned above, the AH estimator is a special instance of the AB estimator.
Nowadays, researchers often use the “systems” generalized method-of-moments
(GMM) estimator (Arellano and Bover 1995; Blundell and Bond 1998), which
combines the building blocks of the AB estimator with those that can be derived
when the correlation between ynt and the individual effect αn does not depend on t.
Usually, the systems GMM estimator greatly outperforms the AB estimator. In the
present setup we have from (4) that

E(yntαn) =
σ2

α
1− γ

, (8)

establishing this equicorrelation here. It can be used to estimate γ in a way that in
a sense is the mirror image of AB. There, previous values of y are used as IV for a
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model in first differences. Here, we keep the model in levels but use previous values
of y in first-difference form as IV. Then

γ̃ =
1
N ∑n(yn,t−1 − yn,t−2)ynt

1
N ∑n(yn,t−1 − yn,t−2)yn,t−1

p−→ ω1 −ω2

ω0 −ω1

= γ∗.

Thus, the inconsistency is the same as with the AH estimator.
So, with measurement error, we encounter the inconsistency issue well known

from the cross-sectional case. A major difference, though, is that the latter case, in
its simplest form of linearity, normality, and independence of observations (LIN),
results in an identification problem that precludes the existence of a consistent
estimator (e.g., Wansbeek and Meijer 2000, p. 79). In the LDPDM, LIN does not
apply and the situation is more favorable. In fact, a consistent estimator is easily
found; instead of using yn,t−2 as an IV, we can use yn,t−3 (assuming T > 3). (Bond
et al. 2001, make the same observation.) We call this estimator the Anderson–Hsiao
lagged (AHL) estimator. Its probability limit is

plimN→∞γ̂AHL =
plimN→∞

1
N ∑n yn,t−3(ynt − yn,t−1)

plimN→∞
1
N ∑n yn,t−3(yn,t−1 − yn,t−2)

=
ω3 −ω2

ω2 −ω1

=
(γ3 − γ2) 1

1−γ2

(γ2 − γ) 1
1−γ2

= γ.

So AHL is a consistent estimator, due to the assumed lack of correlation over time
of the measurement error. Analogously, the Arellano–Bond lagged (ABL) estimator
is obtained by removing yn,t−2 from the list of IVs of the Arellano–Bond estimator,
which is also a consistent estimator in our setup. Arellano and Bond (1991) mention
this estimator in the context of autocorrelation resulting from a moving average
process in the errors, so it serves a dual purpose.

This approach to consistent estimation is of course somewhat ad hoc. Moreover,
it breaks down when the measurement errors are autocorrelated. To gain some
insight here, we assume that the measurement errors are subject to an autoregressive
process of order one, AR(1), so

vnt = ρvn,t−1 +wnt ,

with wnt white noise with variance σ2
w. Instead of (6), we now have
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ωτ =
σ2

α
(1− γ)2 + γτ σ2

ε
1− γ2 +ρτ σ2

w

1−ρ2 .

With λ redefined as λ ≡ σ2
w/σ2

ε , the probability limit of the AH estimator now
becomes

γ∗ =
(γ2 − γ) σ 2

ε
1−γ2 +(ρ2 −ρ) σ 2

w
1−ρ2

(γ − 1) σ 2
ε

1−γ2 +(ρ − 1) σ 2
w

1−ρ2

=
γ(1+ρ)+ρ(1+ γ)λ
(1+ρ)+ (1+ γ)λ

.

So the effect of measurement error is now more complicated. The measurement
error in the dependent variable, which in the classical case has no effect on the
estimator of the regression coefficient, now plays a role due to its correlation with
the measurement error in the regressor. The estimator is consistent (γ∗ = γ) if ρ = γ
or λ = 0. The estimator has a positive bias if ρ > γ and a negative bias if ρ < γ . In
the most likely case that 0 < ρ < γ , we see the usual attenuation bias towards zero.
Note that we can write γ∗ = φγ +(1−φ)ρ , with

φ =

σ 2
ε

1+γ
σ 2

ε
1+γ +

σ 2
w

1+ρ

,

so γ∗ is a weighted average of γ and ρ . Although the weights themselves depend on
γ and ρ , they are always between 0 and 1.

Using a similar derivation, it follows that the AHL estimator, or in general using
previous values of y as an IV, does not yield a consistent estimator anymore. We
now turn to a more systematic approach to consistent estimation, for general values
of T . We first investigate what consistency implies and derive a class of consistent
estimators. We next consider issues of optimality.

4 Consistent Estimation

Our approach to consistent estimation extends Wansbeek and Bekker (1996) by
taking measurement error into account. They derive an instrumental variable that
is linear in the values of the dependent variable across time and that results in
an IV estimator that has minimal asymptotic variance. Harris and Mátyás (2000)
extend this approach to include exogenous regressors. They compare the estimator
thus defined with the Arellano–Bond estimator and some estimators based on Ahn
and Schmidt (1995) and find that Wansbeek and Bekker’s estimator “generally
outperformed all other estimators when T was moderate in all of the situations that
an applied researcher might encounter” [italics in original]. We adapt the Wansbeek
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and Bekker (1996) approach also in another way, in that we assume stationarity
throughout.

We now turn to the model and derive our estimator. For general T , it is convenient
to move over to matrix notation. With observations ynt , n = 1, . . . ,N, t = 0, . . .T , we
define

yn ≡

⎛⎜⎝ yn1
...

ynT

⎞⎟⎠ yn,−1 ≡

⎛⎜⎝ yn0
...

yn,T−1

⎞⎟⎠ yn,+ ≡

⎛⎜⎝ yn0
...

ynT

⎞⎟⎠ .

For η , v, and ε , we use analogous notation. Note that the number of observed periods
is T + 1 now, as opposed to the T used before. The model can now be written as

ηn = γηn,−1 +αnιT + εn, (9)

where ιT is a T -vector of ones, and εn ∼ (0,σ2
ε IT ). The measurement equation is

yn = ηn + vn, (10)

with

vn = ρvn,−1 +wn,

where wn ∼ (0,σ2
wIT ), thus allowing for measurement errors correlated over time

according to an AR(1) process.
One way to estimate the model parameters consistently is through GMM.

From (5) we obtain

Ση ≡ E(ηn,+η ′
n,+)

=
σ2

α
(1− γ)2 ιT+1ι ′T+1 +

σ2
ε

1− γ2Vγ ,

where Vγ is the AR(1) correlation matrix of order (T + 1)× (T + 1), that is, the
matrix whose (t,s)th element is γ |t−s|. So the second-order implication of the model
for the observations, taking the measurement error into account, is

Σy ≡ E(yn,+y′n,+)

= E
(
(ηn,++ vn,+)(ηn,++ vn,+)

′) (11)

= Ση +
σ2

w

1−ρ2Vρ

=
σ2

α
(1− γ)2 ιT+1ι ′T+1 +

σ2
ε

1− γ2Vγ +
σ2

w

1−ρ2Vρ . (12)
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From this, an essential identification problem with the model is immediately clear.
The model is locally identified but not globally. The parameter set (σ2

ε ,γ) can be
interchanged with the parameter set (σ2

w,ρ) as they play a symmetric role in Σy,
and the data do not provide sufficient information to tell which is which. Hence we
restrict ourselves to the case where the measurement error has no autocorrelation
and have ρ = 0 from now on.

The GMM estimator of the parameters is obtained by minimizing the distance
between

σy ≡ vech Σy,

the vector containing the non-redundant elements of Σy, and its sample counterpart

sy ≡ vech Sy,

where Sy ≡ ∑yn,+y′n,+/N. For an appropriate choice of the weight matrix in
the distance function, the GMM estimator is asymptotically efficient among all
estimators based on Sy.

A drawback of the GMM estimator in this case is that it will be cumbersome to
compute as Σy depends on the parameter of interest, γ , in a highly nonlinear way.
Hence we consider a simpler way to obtain a consistent estimator, focusing on γ .
The price for this simplicity is that this estimator does not exploit all the structure
imposed by the model on Σy and hence will be asymptotically inefficient.

As a start, we eliminate ηn from the model by substitution from (10) into (9) to
obtain

yn = γyn,−1 +υn (13)

υn ≡ αnιT + εn + vn − γvn,−1. (14)

We consider IV estimation of γ . As an IV, we consider a general linear function of
yn,+ of the form A′yn,+ for some (T + 1)×T -matrix A. Below we will also use the
form

a ≡ vec A.

Given A, our IV estimator of γ is

γ̂ =
∑n y′n,+Ayn

∑n y′n,+Ayn,−1

= γ +
∑n y′n,+Aυn

∑n y′n,+Ayn,−1
. (15)

We now investigate the conditions under which this estimator exists and, if so, if it
is consistent. In order to do so, we need the following notation. Let C′

0 ≡ (IT ,0T )
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and let C′
1, . . . ,C

′
T be a series of matrices of order T × (T +1), where C′

1 ≡ (0T , IT ),
in C′

2 the ones are moved one position to the right, and so on, ending with C′
T , which

is zero, except for its (1,T + 1) element. For example, for T = 3, we have

C′
0 =

⎛⎝1 0 0 0
0 1 0 0
0 0 1 0

⎞⎠; C′
1 =

⎛⎝0 1 0 0
0 0 1 0
0 0 0 1

⎞⎠; C′
2 =

⎛⎝0 0 1 0
0 0 0 1
0 0 0 0

⎞⎠; C′
3 =

⎛⎝0 0 0 1
0 0 0 0
0 0 0 0

⎞⎠.
Next, let

C ≡ (vec C0, . . . ,vec CT ).

We now consider the requirements that A has to satisfy.
In the first place, A should be such that γ̂ exists. More precisely, the expression

for γ̂ should be meaningful in the sense that neither numerator nor denominator is
identically equal to zero. For example, if T = 2 and

A1 =

⎛⎝ 0 0
0 1

−1 0

⎞⎠ and A2 =

⎛⎝ 0 1
−1 0

0 0

⎞⎠
we have y′n,+A1yn = 0 and y′n,+A2yn,−1 = 0. To exclude such cases, consider

yn,+⊗ yn,+ = DT+1(yn,+ ⊗̄ yn,+),

where the bar over the Kronecker product indicates the omission of duplicate
elements. The duplication matrix DT+1, of order (T + 1)2 × (T + 1)(T + 2)/2
restores them (see, e.g., Magnus and Neudecker 1986). Next, let

Fτ ≡ (C′
τ ⊗ IT+1)DT+1, τ = 0,1,

and note that

sy =
1
N ∑

n
(yn,+ ⊗̄ yn,+).

Using yn,−1 =C′
0yn,+ and yn =C′

1yn,+, we can now write the estimator of γ as

γ̂ =
a′ ∑n(yn ⊗ yn,+)

a′ ∑n(yn,−1 ⊗ yn,+)

=
a′(C′

1 ⊗ IT+1)DT+1 ∑n(yn,+ ⊗̄ yn,+)

a′(C′
0 ⊗ IT+1)DT+1 ∑n(yn,+ ⊗̄ yn,+)

=
a′F1sy

a′F0sy
. (16)



88 E. Meijer et al.

So for a meaningful estimator, we should have both F ′
0a �= 0 and F ′

1a �= 0.
We next turn to consistency. From (14) and (15) we see that it requires

0 = E
(
y′n,+Aυn

)
= E

(
αny′n,+AιT

)
+ tr
(
E
[
(εn + vn − γvn,−1)y

′
n,+

]
A
)
, (17)

where tr indicates the trace. First, we have the equicorrelation property from (8),

E(αnyn,+) = c · ιT+1

with c = σ2
α/(1− γ). So one requirement for consistency is ι ′T+1AιT = 0 or

ι ′T (T+1)a = 0. (18)

Since

E(εny′n,+) = σ2
ε

T

∑
τ=1

γτ−1C′
τ , E(vny′n,+) = σ2

v C′
1, E(vn,−1y′n,+) = σ2

v C′
0, (19)

we conclude from (17) and (19) that consistency is obtained when we let A be such
that tr(C′

t A) = 0 or (vecCt)
′a = 0 for t = 0, . . . ,T . This means that a should satisfy

C′a = 0T+1. (20)

Any estimator of the form (16) that satisfies (18), (20), and the existence conditions
is consistent.

5 Efficient Estimation

To find an estimator that is not only consistent but also asymptotically efficient we
have to distinguish between two kinds of efficiency, which we may label as local
and global. We call γ̂ locally efficient if it is in the class of estimators defined
by γ̂ , with a properly restricted. A globally efficient estimator is as efficient as
the GMM estimator discussed at the beginning of the previous section. There
we saw that GMM on the covariance matrix was a daunting task. This task is
greatly simplified when we already have estimators that are consistent without
any further optimality qualities. We can then adapt these estimators such that
we get asymptotically efficient estimators in just a single step. This approach is
called linearized GMM (see, e.g., Wansbeek and Meijer 2000, Sect. 9.3). It requires
initial consistent estimators not just of γ but also of the other model parameters,
σ2

α , σ2
ε , and σ2

v . Given a consistent estimator of γ , such estimators can be easily
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constructed by employing some appropriately chosen moment conditions implied
by the structure of Σy.

We now turn to local efficiency. To that end we write the restrictions on a, which
are all linear, in the condensed form a = Qb, where Q is full column rank, and b
can be chosen freely, subject to the numerator and denominator of γ̂ not becoming
identically zero. So we now have

γ̂ =
a′ ∑n(yn ⊗ yn,+)

a′∑n(yn,−1 ⊗ yn,+)

=
b′Q′F1sy

b′Q′F0sy
.

With

Ψy ≡ plimN→∞
1
N ∑

n

[
(yn,+ ⊗̄ yn,+− sy)(yn,+ ⊗̄ yn,+− sy)

′] ,
we obtain

AVar(γ̂) =
b′Φyb

(b′Q′F0σy)2 , (21)

where Φy ≡Q′F1ΨyF ′
1Q. If Φy were nonsingular, we could use the Cauchy–Schwarz

inequality to derive the lower bound (σ ′
yF ′

0QΦ−1
y Q′F0σy)

−1 of the asymptotic
variance, with equality for b = Φ−1

y Q′F0σy. Hence, (16) would become

γ̂ =
b̂′Q′F1sy

b̂′Q′F0sy

=
s′yF ′

0QΦ̂−1
y Q′F1sy

s′yF ′
0QΦ̂−1

y Q′F0sy
,

where b̂ denotes b with sample counterparts for Ψy and σy substituted. Unfortu-
nately, however, it turns out that Φy is singular, and it is not immediately clear
whether there exists a feasible optimal estimator, and if so, what this estimator
would be. We leave this problem for future research. However, from the analysis
here, an appealing consistent estimator is obtained by replacing the regular inverse
with the Moore–Penrose generalized inverse. Thus, we propose the estimator

γ̂MP ≡
s′yF ′

0QΦ̂+
y Q′F1sy

s′yF ′
0QΦ̂+

y Q′F0sy

=
s′yF ′

0Q(Q′F1Ψ̂yF ′
1Q)+Q′F1sy

s′yF ′
0Q(Q′F1Ψ̂yF ′

1Q)+Q′F0sy
, (22)
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and we call this the Moore–Penrose (MP) estimator. Its asymptotic variance can be
estimated by the sample counterpart of (21), that is

ÂVar(γ̂MP) =
1

s′yF ′
0Q(Q′F1Ψ̂yF ′

1Q)+Q′F0sy
.

6 Illustrative Example

To illustrate the application of these estimators, we study the persistence in
household wealth in the Health and Retirement Study (HRS; Juster and Suzman
1995). The HRS started in 1992 with a sample of individuals born in 1931–1941
and their spouses and interviewed them biennially afterward. Over time, additional
cohorts have been added. We select all individuals who participated in all ten waves
from 1992 to 2010 and who were either single across all waves or married to the
same spouse across all waves. (We treat cohabitation the same as marriage, as is
common in HRS analyses.) Because wealth is reported at the household level, we
select only one respondent per household. This leaves us with a sample of 2,668
households.

We use the RAND version of the HRS, version L (St. Clair et al. 2011), including
the imputations, and study total household wealth excluding the second home
(HwATOTA), because information about the second home is not available in all
waves. We compute the inverse hyperbolic sine transform of this variable and then
subtract the wave-specific average, which captures macro effects and age effects. We
then estimate the simple LDPDM for this transformed variable. We computed the
standard Anderson–Hsiao estimator (by 2SLS), the Arellano-Bond estimator (using
two-step GMM), the consistent “lagged” versions of these introduced earlier (AHL
and ABL), and the MP estimator.

Table 1 shows the results. We clearly see the attenuation in the AH and AB
estimators. Unfortunately, the standard errors increase substantially for the AHL
and ABL estimators, compared to the AH and AB estimators. Meijer and Wansbeek
(2000) showed this phenomenon for a cross-sectional regression model, but here it
is even more dramatic. The MP estimate is close to the AH estimate, but its standard
error is much smaller, though still almost four times as large as the standard errors
of the (inconsistent) AH and AB estimators. Nevertheless, the MP estimate is highly

Table 1 Estimates of γ for transformed household wealth in the HRS

AH AB AHL ABL MP

γ̂ 0.107∗∗∗ 0.119∗∗∗ 0.424 0.264∗ 0.417∗∗∗

(s.e.) (0.022) (0.020) (0.224) (0.112) (0.078)

AH Anderson–Hsiao, AB Arellano–Bond, AHL Anderson–Hsiao lagged, ABL Arellano–Bond
lagged, MP Moore–Penrose estimator (22)
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001
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significant and indicates a much stronger persistence in household wealth than we
would conclude from the standard AH and AB estimators.

7 Discussion

Measurement error is a common problem in economic data, and this may have
especially grave consequences in dynamic models. We study this and show the
inconsistency of standard estimators for dynamic panel data models. We then
develop a characterization of a class of consistent estimators and study efficiency
within this class. Based on efficiency considerations, we propose an estimator, the
Moore–Penrose (MP) estimator that has attractive statistical properties, although we
have not been able to conclude whether it is the most efficient estimator in its class.

We apply the theory to the study of persistence of household wealth. We show
that the attenuation bias of estimators that do not take measurement error into
account can be quite large, and that our proposed estimator is much more efficient
than two consistent estimators that are ad-hoc adaptations of the Anderson–Hsiao
and Arellano–Bond estimators.

The results here are still quite limited. The set of model specifications needs
to be expanded. Adding exogenous covariates is relatively straightforward, and
weakly exogenous covariates can also be accommodated without much trouble. Our
derivations thus far assume homoskedasticity, which is too strong in many economic
applications. Relaxing this assumption adds restrictions that the estimator must
satisfy, but does not conceptually change much. As indicated by Arellano and Bond
(1991), a moving average process of the errors can be accommodated by dropping
the first few lags of the dependent variable. Within our framework, this translates
into additional linear restrictions. Although in the example, our estimator appears
to work well, further efficiency gains may be obtained by GMM estimation based
on (12). Fan et al. (2012) pursue such an approach for the static panel data model
with measurement error and obtain even better results with a generalized quasi-
likelihood-based estimator. We leave the development of the specifics to further
research.
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Inference Progress in Missing Data Analysis
from Independent to Longitudinal Setup

Brajendra C. Sutradhar

Abstract In the independent setup with multivariate responses, the data become
incomplete when partial responses, such as responses on some variables as opposed
to all variables, are available from some individuals. The main challenge here is
obtaining valid inferences such as unbiased and consistent estimates of mean param-
eters of all response variables by using available responses. Typically, unbalanced
correlation matrices are formed and moments or likelihood analysis based on the
available responses are employed for such inferences. Various imputation tech-
niques also have been used. In the longitudinal setup, when a univariate response is
repeatedly collected from an individual, these repeated responses become correlated
and the responses form a multivariate distribution. In this setup, it may happen
that a portion of responses are not available from some individuals under study.
These non-responses may be monotonic or intermittent. Also the response may be
missing following a mechanism such as missing completely at random (MCAR),
missing at random (MAR), or missing non-ignorably. In a longitudinal regression
setup, the covariates may also be missing, but typically they are known for all
time periods. Obtaining unbiased and consistent regression estimates specially
when longitudinal responses are missing following MAR or ignorable mechanism
becomes a challenge. This happens because one requires to accommodate both
longitudinal correlations and missing mechanism to develop a proper inference tool.
Over the last three decades some progress has been made toward this mainly by
taking partial care of missing mechanism in developing estimation techniques. But
overall, they fall short and may still produce biased and hence inconsistent estimates.
The purpose of this paper is to outline these perspectives in a comprehensive manner
so that real progress and challenges are understood in order to develop proper
inference techniques.
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1 Introduction

Missing data analysis in the independent setup with multivariate responses has a
long history. For example, for an early work, we refer to Lord (1995) who consid-
ered a set of incomplete trivariate normal responses collected from K independent
individuals. But all components of all three variables were not available from the K
individuals. To estimate the mean parameters consistently, instead of dropping out
the individuals with incomplete information, Lord (1995) has utilized the available
information and constructed unbalanced (bivariate and trivariate) probability func-
tions for individuals toward writing a likelihood function for the desired inference.
Note that this technique for consistent estimation of the parameters and other similar
inferences by using incomplete data have been used by many researchers over the
last six decades. See, for example, Mehta and Gurland (1973), Morrison (1973),
Naik (1975), Little (1988), and Krishnamoorthy and Pannala (1999), among others.

In the independent setup, techniques of imputation and multiple imputation
(Rubin 1976; Rubin and Schenker 1986; Meng 1994) have also been widely used.
Some authors such as Paik (1997) used this imputation technique in repeated
measure (longitudinal) setup. The imputation at a given time point is done mainly
by averaging over the responses of other individuals at that time who has the same
covariates history as that of the individual concerned. Once the missing values are
estimated, they are used as data with necessary adjustments to construct complete
data based estimating equations for the desired parameters.

In a univariate longitudinal response setup, when T repeated measures are
taken they become correlated and hence they jointly follow a T -dimensional
multivariate distribution. However, unlike in the Gaussian setup for linear data,
the multivariate distributions for repeated binary and count data become complex
or impractical. However if a portion of individuals do not provide responses
for all T time points, then adopting likelihood approach by blending missing
mechanism and correlation structure of the repeated data would naturally become
extremely complicated or impossible. As a remedy, either imputation or estimating
equation approaches became popular which, however, work well if the missing
data occur following the simplest MCAR mechanism. When the missing data
occur following the MAR mechanism, writing a proper estimating equation by
accommodating both longitudinal correlations and missing mechanism becomes
difficult. Robins et al. (1995) proposed an inverse probability weights based
generalized estimating equations (WGEE) approach as an extension of the GEE
approach proposed by Liang and Zeger (1986) to the incomplete setup. Remark
that as demonstrated by Sutradhar and Das (1999) and Sutradhar (2010), for
example, the GEE approach can produce less efficient regression estimates than the
well-known simpler moments or quasi-likelihood (QL) estimates, in the complete
data setup. Thus, to be realistic, there is no reason how WGEE approach can
be more efficient in the incomplete longitudinal setup as compared to simpler
moments and QL estimates. In fact in the incomplete longitudinal setup, the WGEE
approach constructed based on working correlations as opposed to the use of
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MAR based correlation matrix may yield biased and hence inconsistent regression
estimates (Sutradhar and Mallick 2010). Further remark that this inconsistency
issue was, however, not adequately addressed in the literature including the studies
by Robins et al. (1995), Paik (1997), Rotnitzky et al. (1998), and Birmingham
et al. (2003). One of the main reasons is this that none of the studies used
any stochastic correlation structure in conjunction with the missing mechanism
to model the longitudinal count and binary data in the incomplete longitudinal
setup. Details on this inconsistency problem are given in Sect. 3, whereas in
Sect. 2 we provide a detailed discussion on missing data analysis in independent
setup.

Without realizing the aforementioned inconsistency problems that can be caused
because of the use of working correlations in the estimating equations under the
MAR based longitudinal setup, some authors such as Wang (1999) and Rotnitzky
et al. (1998) used similar estimating equations approach in non-ignorable missing
mechanism-based incomplete longitudinal setup. Some authors such as Troxel et al.
(1998) (see also Troxel et al. 1997) and Ibrahim et al. (2001) (see also Ibrahim
et al. 1999) have used random effects based generalized linear mixed model to
accommodate the longitudinal correlations and certain binary logistic models to
generate the non-ignorable mechanism based response indicator variables. In gen-
eral expectation-maximization (EM) techniques are used to estimate the likelihood
based parameters. These approaches appear to encounter similar difficulties as
the existing MAR based approaches in generating first the response indicator
and then the responses so that underlying longitudinal correlation structure is
satisfied. Thus the inference validity of these approaches is not yet established.
This problem becomes more complicated when longitudinal correlations are not
generated through random effects and writing a likelihood such as for repeated count
data becomes impossible. For clarity, in this paper we discuss in detail the successes
and challenges with the inferences for MAR based incomplete longitudinal models
only. The non-ignorable missing data based longitudinal analysis will therefore be
beyond the scope of the paper.

2 Missing Data Analysis in Independent Setup

Missing data analysis in the independent setup with multivariate responses has
a long history. For example, for an early work, we refer to Lord (1995) who
considered a set of incomplete trivariate normal responses collected from K
independent individuals. To be specific, suppose that y = (y1,y2,y3)

′ represents a
trivariate response, but all components of y were not available from K individuals.
Suppose that y3 was recorded from all K individuals, and either y1 or y2 was
recorded for all individuals, but not both. For j = 1, . . . ,3, let Kj denote the number
of individuals having the response y j. It then follows that

K1 +K2 = K, K3 = K.
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Further suppose that the K1 individuals for whom y1 is recorded will be denoted
collectively as group 1 (G1); and the K2 individuals with y2 will be denoted as
group 2 (G2). Now because y1 and y2 are correlated, it is obvious that the data for G2

contain some information relevant for estimating the parameters of variable y1, and
that the data for G1 contain some information relevant for estimating the parameters
of y2. The problem is to use the available data as efficiently as possible for estimating
the parameters concerned. Denote the distribution of y = [y1, y2, y3]

′ as

y ∼ N(μ ,Σ),

with μ = [μ1,μ2,μ3]
′ and

Σ =

⎛⎜⎜⎜⎜⎝
σ11 ρ12[σ11σ22]

1
2 ρ13[σ11σ33]

1
2

σ22 ρ23[σ22σ33]
1
2

σ33

⎞⎟⎟⎟⎟⎠ .

Note that in this setup, there are no data available to estimate ρ12. For the likelihood
estimation of all the other parameters, define

ȳ∗1 =
1

K1

K1

∑
i=1

y1i, ȳ∗2 =
1

K2

K2

∑
i=1

y2i, ȳ3 =
1
K

K

∑
i=1

y3i, ȳ∗3 =
1

K1

K1

∑
i=1

y3i, ȳ∗∗3 =
1

K2

K2

∑
i=1

y3i

s∗11 =
1

K1

K1

∑
i=1

[y1i − ȳ∗1]
2, s∗22 =

1
K2

K2

∑
i=1

[y2i − ȳ∗2]
2, s33 =

1
K

K

∑
i=1

[y3i − ȳ3]
2,

s∗33 =
1

K1

K1

∑
i=1

[y3i − ȳ∗3]
2, s∗∗33 =

1
K2

K2

∑
i=1

[y3i − ȳ∗∗3 ]2

r13 =
1

K1

K1

∑
i=1

[(y1i − ȳ∗1)(y3i − ȳ∗3)]/[s
∗
11s∗33]

1
2 ,

r23 =
1

K2

K2

∑
i=1

[(y2i − ȳ∗2)(y3i − ȳ∗∗3 )]/[s∗22s∗∗33]
1
2 . (1)

The maximum likelihood estimators for the means are then given by

μ̂1 = ȳ∗1 − b13[ȳ
∗
3 − ȳ3], μ̂2 = ȳ∗2 − b23[ȳ

∗∗
3 − ȳ3], and μ̂3 = ȳ3, (2)

where

b13 = r13
s∗11

s∗33
, and b23 = r23

s∗22

s∗∗33
.
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These estimators in (2) are unbiased and consistent for μ1, μ2, and μ3, respectively.
The remaining parameters may also be estimated similarly (Lord 1995).

Note that the aforementioned technique for consistent estimation of the pa-
rameters and for other similar inferences by using incomplete data has been
subsequently used by many researchers over the last six decades. See, for ex-
ample, Mehta and Gurland (1973), Morrison (1973), Naik (1975), Little (1988),
and Krishnamoorthy and Pannala (1999), among others. This idea of making
inferences about the underlying model parameters such that the missing data
(assuming a small proportion of missing) may not to any major extent negatively
influence the inferences has also been extended to the analysis of incomplete
repeated measure data. For example, one may refer to Little (1995), Robins
et al. (1995), and Paik (1997), as some of the early studies. This inference
procedure for incomplete longitudinal data is discussed in detail in the next
section.

In the independent setup, techniques of imputation and multiple imputation
(Rubin 1976; Rubin and Schenker 1986; Meng 1994) have also been widely used.
Later on some authors also used this imputation technique in repeated measure
(longitudinal) setup. For example, here we illustrate an imputation formula from
Paik (1997) in repeated measure setup. The imputation at a given time point
is done mainly by averaging over the responses of other individuals at that
time who has the same covariates history as that of the individual concerned.
Once the missing values are estimated, they are used as data with necessary
adjustments to construct complete data based estimating equations for the desired
parameters.

In a univariate longitudinal response setup, when T repeated measures are taken
they become correlated and hence they jointly follow a T -dimensional multivariate
distribution. Now suppose that Ti responses are observed for the ith (i = 1, . . . ,K)
individual. So, one requires to impute T − Ti missing values which may be done
following Paik (1997), for example. Interestingly, a unified recursive relation can be
developed as follows to obtain the imputed value ỹi,Ti+ki at time point Ti + ki for all
ki = 1, . . . ,T −Ti. For this, first define

ỹ(0)j,Ti+ki
= y j,Ti+ki (3)

for the jth individual where j �= i, j = 1, . . . ,K. Also, let DiTi denote the covariate
history up to time point Ti for the ith individual, and

D∗
i,Ti+ki

= (xi,Ti+1, . . . ,xi,Ti+ki)

is the covariate information for the ith individual from time Ti + 1 up to Ti + ki

for ki = 1, . . . ,T −Ti. Further let, r jw = 1,or,0, for example, indicates the response
status of the jth individual at wth time. One may then obtain ỹi,Ti+ki by computing

ỹ(ki)
i,Ti+ki

, that is, ỹi,Ti+ki ≡ ỹ(ki)
i,Ti+ki

, where
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ỹ(ki)
i,Ti+ki

=

[
K

∑
j=1

ỹ(0)j,Ti+ki
Π ki

u=1r j,Ti+uI(D jTi = DiTi ,D
∗
j,Ti+ki

= D∗
i,Ti+ki

)

+
ki−1

∑
mi=1

K

∑
j=1

ỹ(mi)
j,Ti+ki

Π ki
u=ki−(mi−1)(1− r j,Ti+u)

× Π ki−mi
u=1 r j,Ti+uI(D jTi = DiTi ,D

∗
j,Ti+ki

= D∗
i,Ti+ki

)
]

×
[

K

∑
j=1

r j,Ti+1I(D jTi = DiTi ,D
∗
j,Ti+ki

= D∗
i,Ti+ki

)

]−1

. (4)

Note that ỹi.Ti+ki ≡ ỹ(ki)
i,Ti+ki

is an unbiased estimate of μi,Ti+ki as the individuals used
to impute the missing value of the ith subject has the same covariate history up to
time point Ti + ki, unlike the covariate history up to time point Ti (Paik 1997).

3 Missing Data Models in Longitudinal Setup

Let Yit be the potential response from the ith (i = 1, . . . ,K) individual at time point
t which may or may not be observed, and xit = (xit1, . . . ,xit p)

′ be the corresponding
p-dimensional covariate vector which is assumed to be available for all times
t = 1, . . . ,T . In this setup, K is large (K → ∞) and T is small such as 3 or 4.
Suppose that β = (β1, . . . ,βp)

′ denote the effect of xit on yit . Irrespective of the
situation whether Yit is observed or not, it is appropriate in the longitudinal setup
to assume that the repeated responses follow a correlation model with known
functional forms for the mean and the variance, but the correlation structure may be
unknown. Recall that in the independent setup, Lord (1995) considered multivariate
responses having a correlation structure and incompleteness arose because of
missing information on some response variables, whereas in the present longitudinal
setup, repeated responses from an individual form a multivariate response with
a suitable mean, variance, and correlation structures, but it remains a possibility
that one individual may not provide responses for the whole duration of the study.
As indicated in the last section, suppose that for the ith (i = 1, . . . ,K) individual
Ti responses (1 < Ti ≤ T ) are collected. Also suppose that the remaining T − Ti

potential responses are missing and the non-missing responses occur in a monotonic
pattern.

As far as the mean, variance, and correlation structure of the potential responses
are concerned, it is convenient to define them for the complete data. Let yi

c =
(yi1, · · · ,yit , · · · ,yiT )

′ and Xi
c = (xi1, · · · ,xit , · · · ,xiT )

′
denote the T × 1 complete

outcome vector and T × p covariate matrix, respectively, for the i-th (i = 1, · · · ,K)
individual over T successive points in time. Also, let
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E(Yi
c|xi

c) = μi
c(β ) = (μi1(β ), · · · ,μit(β ), · · · ,μiT (β ))

′
(5)

where μit(β ) = h−1(ηit ) with ηit = x
′
itβ , h being a suitable link function. For

example, for linear models, a linear link function is used so that μit(β ) = x′itβ ;
whereas for the binary data a logistic link function is commonly used so that
μit(β ) = exp(ηit)/[1+ exp(ηit)], and for count data a log linear link function is
used so that μit(β ) = exp(ηit). Further let

Σ c
i (β ,ρ) = Ac

i
1
2 (β )C̃i(ρ ,xc

i )A
c
i

1
2 (β ) (6)

be the true covariance matrix of yc
i , where Ac

i (β ) = diag[σi11(β ), · · · ,σitt (β ), · · · ,
σiT T (β )] with σitt (β ) = var(Yit), and C̃i(ρ ,xc

i ) is the correlation matrix for the
ith individual with ρ as a suitable vector of correlation parameters, for example,
ρ ≡ (ρ1, . . . ,ρ�, . . . ,ρT−1)

′, where ρ� is known to be the lag � auto-correlation.
Note that when covariates are time dependent, the true correlation matrix is free
from time-dependent covariates in linear longitudinal setup, but it depends on the
time-dependent covariates through Xc

i in the discrete longitudinal setup (Sutradhar
2010). In the stationary case, that is, when covariates are time independent, we
will denote the correlation matrix by C̃(ρ) in the complete longitudinal setup, and
similar to Sutradhar (2010, 2011), this matrix satisfies the auto-correlation structure
given by

C̃(ρ) =

⎡⎢⎢⎢⎢⎢⎣
1 ρ1 ρ2 · · · ρT−1

ρ1 1 ρ1 · · · ρT−2
...

...
...

...
ρT−1 ρT−2 ρT−3 · · · 1

⎤⎥⎥⎥⎥⎥⎦ , (7)

where for � = 1, . . . ,T , ρ� is known to be the �th lag auto-correlation. Note that
when this correlation structure (7) will be used in the incomplete longitudinal setup,
it would be denoted by C̃i(ρ) as it will be constructed for Ti available responses.

As far as the missing mechanism is concerned, it is customary to assume that a
longitudinal response may be missing completely at random (MCAR), or missing at
random (MAR), or the missing can be non-ignorable. Under the MCAR mechanism,
the missing-ness does not depend on any present, past, or future responses. Under
the MAR mechanism, the missing-ness depends only on the past responses but not
on the present or future responses, whereas under the non-ignorable mechanism
the missing-ness depends on the past, present, and future possible responses. In
notation, let Rit be a response indicator variable at time t (t = 1, · · · ,T ) for the i-th
(i = 1, · · · ,K) individual, so that

Rit =

{
1, if Yit is observed

0, otherwise.
(8)
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Note that all individuals provide the responses at the first time point t = 1. Thus, we
set Ri1 = 1 with P(Ri1 = 1) = 1.0 for all i = 1, · · · ,K. Further we assume that the
response indicators satisfy the monotonic relationship

Ri1 ≥ Ri2 ≥ ·· · ≥ Rit ≥ ·· · ≥ RiT . (9)

Next suppose that rit denote the observed value for Rit . For t = 2, . . . ,T, one may
then describe the aforementioned three missing mechanisms as

MCAR Model : Pr(Rit = 1 | yi
c,xi,ri,t−1 = 1) = Pr(Rit = 1 | ri,t−1 = 1)

MAR Model : Pr(Rit = 1 | yi
c,xi,ri,t−1 = 1)

= Pr(Rit = 1 | yi1, · · · ,yi,t−1,xi,ri,t−1 = 1)

Non-ignorable Model : Pr(Rit = 1 | yi
c,xi,ri,t−1 = 1)

= Pr(Rit = 1 | yi1, · · · ,yi,t−1,yit , . . . ,yiT ,xi,ri,t−1 = 1)

(Little and Rubin 1987; Laird 1988; Fitzmaurice et al. 1996). Furthermore, it
follows under the monotonic missing pattern (9) that Pr(Rit = 1|yc

i ,xi,ri,t−1 = 0)= 0
irrespective of the missing mechanism. Note that the inferences based on the non-
ignorable missing mechanism may be quite complicated, and we do not include this
complicated mechanism in the current paper.

3.1 Inferences When Longitudinal Responses Are Subject to
MCAR

When the longitudinal responses are MCAR, Rit does not depend on the past,
present, or future responses. In such a situation, Rit and Yit are independent, implying
that

E[Rit(Yit − μit(β ))] = E[Rit ]E[Yit − μit(β )] = 0, (10)

because E[Yit −μit(β )] = 0. It is then clear that the inference for β involved in μit(β )
is not affected by the MCAR mechanism. Thus, one may estimate the regression
effects β consistently and efficiently by solving the GQL estimating equation

K

∑
i=1

∂ μ ′
i (β )

∂β
Σ−1

i (β , ρ̂)(yi − μi(β )) = 0, (11)

where for Ti-dimensional observed response vector yi = (yi1, . . . ,yiTi)
′,

μi(β ) = E[Yi] = (μi1(β ), · · · ,μit(β ), · · · ,μiTi(β ))
′

Σi(β , ρ̂) = A1/2
i (β )C̃i(ρ ,xi)A

1/2
i (β ),
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with Ai(β ) = diag(σi,11(β ), · · · ,σi,tt (β ), · · · ,σi,TiTi(β )), where σi,tt (β ) = var[Yit ].
Note that the incomplete data based estimating equation (11) can be written in
terms of pretended complete data. To be specific, by using the available responses
yi = (yi1, . . . ,yiTi)

′ corresponding to the known response indicators

Rc
i = rc

i =

[
ITi 0
0 0,

]
one may write the GQL estimating equation (11) under the MCAR mechanism as

K

∑
i=1

∂ μc
i
′
(β )

∂β

[
{I− rc

i }+ rc
i Σ c

i (β , ρ̂)r
c
i
′]−1

rc
i (y

c
i − μc

i (β )) = 0, (12)

where yc
i = (y

′
i,y

′
im)

′
with yim representing the T −Ti dimensional missing responses

which are unobserved but for the computational purpose in the present approach
one can use it as a zero vector, for convenience, without any loss of generality.
Let β̂GQL,MCAR denote the solution of (11) or (12). This estimator is asymptotically
unbiased and hence consistent for β .

Note that the computation of C̃i(ρ̂ ,xi) matrix in (11) in general, i.e., when co-
variates are time dependent, depends on the specific correlation structure (Sutradhar
2010). In stationary cases as well as in linear longitudinal model setup, one may,
however, compute the stationary correlation matrix C̃i(ρ̂), by first computing a
larger C̃(ρ̂) matrix for �= 1, . . . ,T − 1, and then using the desired part of this large
matrix for t = 1, . . . ,Ti. Turning back to the computation for the larger matrix with
dimension T = max1≤i≤KTi for Ti ≥ 2, we exploit the observed response indicator
rit given by

rit =

{
1 if t ≤ Ti

0 if Ti < t ≤ T.

for all t = 1, . . . ,T . For known β and σitt , the �th lag correlation estimate ρ̂� for the
larger C̃(ρ̂) matrix may be computed as

ρ̂� =

∑K
i=1 ∑T−�

t=1 rit ri,t+�[
(

yit−x′it β
σitt

)(
yi,t+�−x′it,t+�β

σi,t+�,t+�

)
]/∑K

i=1 ∑T−�
t=1 rit ri,t+�

∑K
i=1 ∑T

t=1 rit [
yit−x′it β

σitt
]2/∑K

i=1 rit

, (13)

(cf. Sneddon and Sutradhar 2004, eqn. (16)) for � = 1, . . . ,T − 1. Note that as this
estimator contains β̂GQL,MCAR, both (11) and (13) have to be computed iteratively
until convergence.

Further note that in the existing GEE approach, instead of (11), one solves the
estimating equation

K

∑
i=1

∂ μ ′
i (β )

∂β
V−1

i (β , α̂)(yi − μi(β )) = 0, (14)
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[Liang and Zeger 1986] where Vi(β , α̂) = A1/2
i (β )Qi(α)A1/2

i (β ), with Qi(α) as
the Ti × Ti “working” correlation matrix of yi. It is, however, known that this
GEE approach may sometimes encounter consistency breakdown (Crowder 1995)
because of the difficulty in estimating the “working” correlation or covariance
structure, leading to the failure of estimation of β or the non-convergence of β
estimator to β . Furthermore, even if GEE β estimate becomes consistent, it may
produce inefficient estimate than simpler independence assumption based moment
or quasi-likelihood (QL) estimate (Sutradhar and Das 1999; Sutradhar 2011). Thus,
one should be clear from these points that the GEE approach even if corrected
for missing mechanism may encounter similar consistency and inefficiency in
estimating the regression parameters.

We also remark that even though the non-response probability is not affected
by the past history under the MCAR mechanism, the respective efficiency of GQL
and GEE estimators will decrease if Ti is very small as compared to the attempted
complete duration T , that is, if T −Ti is large. As far as the value of Ti is concerned,
it depends on the probability, P[Rit = 1] which in general decreases due to the
monotonic condition (9). This is because under this monotonic property (9) and
following MCAR mechanism, one writes

Pr[Rit = 1] ≡ Pr[Ri1 = 1,Ri2 = 1, . . . ,Rit = 1]

= Π t
j=2P[Ri j = 1], (15)

which gets smaller as t gets larger, implying that Ti can be small as compared to T
if P[Ri j = 1] is far away down from 1 such as P[Ri j = 1] = 0.90, say.

3.2 Inferences When Longitudinal Responses
Are Subject to MAR

Unlike in the MCAR case, Rit and yit are not independent under the MAR
mechanism. That is

E[Rit(Yit − μit(β ))] �= 0 under MAR. (16)

This is because

E [Rit(Yit − μit(β )) | Hi,t−1(y)]

= EYit E [Rit(Yit − μit(β )) | Yit ,Hi,t−1(y)]

= EYit [{(Yit − μit(β ))|Hi,t−1(y)}E{Rit |Yit ,Hi,t−1(y)}]
= EYit [{(Yit − μit(β ))|Hi,t−1(y)}E{Rit |Hi,t−1(y)}] (17)

as Rit does not depend on Yit by the definition of MAR.
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Next due to the monotonic property (9) of the response indicators

E [Rit | Hi,t−1(y)]

= P [Ri1 = 1,Ri2 = 1, · · · ,Ri,t−1 = 1,Rit = 1|Hi,t−1(y)]

= P(Ri1 = 1)P [Ri2 = 1 | Ri1 = 1;Hi1(y)] · · ·
× P [Rit = 1 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)]

=
t

∏
j=1

gi j(yi, j−1, · · · ,yi, j−q;γ)

= wit{Hi,t−1(y);γ}, (18)

and

EYit [(Yit − μit(β ))|Hi,t−1(y)] = (λit(Hi,t−1(y),β ,ρ)− μit(β )), (19)

where λit(Hi,t−1(y),β ,ρ) is the conditional mean of Yit . In (18), one may, for
example, use gi j(γ) as

gi j(γ) = Pr[(Ri j = 1)|Ri1 = 1, . . . ,Ri, j−1 = 1,Hi, j−1(y)]

=
exp(1+ γyi, j−1)

1+ exp(1+ γyi, j−1)
. (20)

Now because both wit{Hi,t−1(y);γ} and λit(Hi,t−1(y),β ,ρ) are functions of the
past history of responses Hi,t−1(y), and because

EHi,t−1(y)[λit(Hi,t−1(y),β ,ρ)− μit(β )] = 0, (21)

it then follows from (17), by (18) and (19), that

E[Rit(Yit − μit(β ))] = EHi,t−1(y)E [Rit(Yit − μit(β )) | Hi,t−1(y)] �= 0, (22)

unless wit{Hi,t−1(y);γ} is a constant free of Hi,t−1(y), which is, however, impossible
under MAR missing mechanism as opposed to the MCAR mechanism. Thus,
E[Rit{Yit − μit(β )}] �= 0.

3.2.1 Existing Partially Standardized GEE Estimation for Longitudinal
Data Subject to MAR

Note, however, that

E

{
Rit

wit{Hi,t−1(y);γ} (Yit − μit(β ))
}

= EHi,t−1(y) [(λit(Hi,t−1(y),β ,ρ)− μit(β ))] = 0. (23)
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Now suppose that

Δi = diag[δi1,δi2, · · · ,δiTi ] with δit = Rit/wit{Hi,t−1(y);γ}

implying that E[Δi|Hi(y)] = ITi , and where Hi(y) is used to denote appropriate
past history showing that the response indicators are generated based on observed
responses only.

By observing the unconditional expectation property from (23), in the spirit of
GEE [Liang and Zeger 1986], Robins et al. (1995, eqn. (10), p. 109) proposed a
conditional inverse weights based PSGEE for the estimation of β which has the
form

K

∑
i=1

∂EHi(y)E[{Δiμi(β )}′|Hi(y)]

∂β
V−1

i (α̂){Δi(yi − μi(β ))|Hi(y)}

=
K

∑
i=1

∂{μi(β )}′
∂β

V−1
i (α̂){Δi(yi − μi(β ))} = 0, (24)

(see also Paik 1997, eqn. (1), p. 1321). Note that we refer to the GEE in (23) as
a partly or partially standardized GEE (PSGEE) because Vi(α) = ˆcov(Yi) used in
this GEE is a partial weight matrix which ignores the missing mechanism, whereas
cov[Δi(yi − μi(β ))] would be a full weight matrix.

Note that over the last decade many researchers have used this PSWGEE
approach for studying various aspects of longitudinal data subject to non-response.
See, for example, the studies by Rotnitzky et al. (1998), Preisser et al. (2002), and
Birmingham et al. (2003), among others. However, even if the MAR mechanism is
accommodated to develop an unbiased estimating function Δi(yi −μi(β )) (for 0) to
construct the fully standardized GEE (FSGEE), the consistency of the estimator of
β may break down (see Crowder 1995 for complete longitudinal models) because of
the use of “working” covariance matrix Vi(α), whereas the true covariance matrix
for yi is given by cov[Yi] = Σi(ρ). This can happen for those cases where α is not
estimable. To be more clear, Vi(α) is simply a “working” covariance matrix of yi,
whereas a proper estimating equation must use the correct variance (or its consistent
estimate) matrix of {Δi(yi − μi(β ))}.

To understand the roles of both missing mechanism and longitudinal correlation
structure in constructing a proper estimating equation, we now provide following
three estimating equations for β . The difficulties and/or advantages encountered by
these equations are also indicated.

3.2.2 Partially Standardized GQL (PSGQL) Estimation for Longitudinal
Data Subject to MAR

When Vi(α) matrix in (24) is replaced with the true Ti × Ti covariance matrix of
the available responses, that is, Σi(ρ) = cov[Yi], one obtains the PSGQL estimating
equation given by
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K

∑
i=1

∂{μi(β )}′
∂β

Σ−1
i (ρ̂){Δi(yi − μi(β ))} = 0, (25)

which also may produce biased and hence inconsistent estimate. This is because
Σi(ρ) may still be very different than the covariance matrix of the actual variable
{Δi(yi − μi(β ))}. Thus, if the proportion of missing values is more, one may not
get convergent solution to the estimating equation (25) and the consistency for β
would break down (Crowder 1995). The convergence problems encountered by (24)
would naturally be more severe as even in the complete data case Vi(α) may not be
estimable.

3.2.3 Partially Standardized Conditional GQL (PSCGQL) Estimation
for Longitudinal Data Subject to MAR

Suppose that one uses conditional (on history) variance

cov{Δi(Yi − μi(β ))}|Hi(y) = Σ∗
ich(Hi(y),β ,ρ ,γ), (26)

to construct the estimating equation. Then following (25), one may write the
PSCGQL estimating equation given by

K

∑
i=1

∂{μi(β )}′
∂β

Σ∗
ich

−1(Hi(y),β ,ρ ,γ){Δi(yi − μi(β ))} = 0 (27)

It is, however, seen that

Σ∗
ich

−1(Hi(y),β ,ρ ,γ)[Δi(Yi − μi(β ))]

→ Σ∗
ich

−1(Hi(y),β ,ρ ,γ)E[{Δi(Yi − μi(β ))}|Hi(y)]

= Σ∗
ich

−1(Hi(y),β ,ρ ,γ)[λi(Hi(y))− μi(β )] (28)

But,

EHi(y)

[
∂{μi(β )}′

∂β
Σ∗

ich
−1(Hi(y),β ,ρ ,γ)

× [λi(Hi(y))− μi(β )]] �= 0, (29)

even though

EHi(y)[λi(Hi(y))− μi(β )] = 0.

Thus, the PSCGQL estimating equation (27) is not an unbiased equation for 0, and
may produce bias estimate.
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Computational formula for Σ∗
ich(β ,ρ ,γ)

For convenience, we first write

Δi = W−1
i Ri, with

Wi = diag[wi1,wi2, . . . ,wiTi ], and Ri = diag[Ri1, . . . ,RiTi ].

It then follows that

Σ∗
ich(β ,ρ) = cov[{Δi{(yi − μi(β ))}}|Hi(y)]

= W−1
i cov[{Ri(yi − μi(β ))}|Hi(y)]W

−1
i . (30)

Now to compute the covariance matrix in the middle term in the right-hand side
of (30), we first re-express Ri(yi − μi(β )) as

Ri(yi − μi(β )) = [Ri1(yi1 − μi1), . . . ,Rit(yit − μit), . . . ,RiTi(yiTi − μiTi)]
′,

and compute the variances for its components as

var[{Ri1(yi1 − μi1)}|yi1] = 0, (31)

because Ri1 = 1 always and yi1 is random . In the Poisson case σi,11 = μi1 and in the
binary case σi,11 = μi1(1− μi1), with appropriate formula for μi1 in a given case.
Next for t = 2, . . . ,Ti,

var[Rit(yit − μit)|Hi,t−1(y)] = var[Rit |Hi,t−1(y)]var[yit |Hi,t−1(y)]

+ E2[Rit |Hi,t−1(y)]var[(yit)|Hi,t−1(y)]+ var[Rit |Hi,t−1(y)]E
2[(yit − μit)|Hi,t−1(y)]

= wit (1−wit)σic,tt +w2
itσic,tt +wit(1−wit){λit − μit}2

= wit [σic,tt +(λit − μit)
2]−w2

it(λit − μit)
2, (32)

where, given the history, λit and σic,tt are the conditional mean and variance of yit ,
respectively.

Furthermore, all pairwise covariances conditional on the history Hi,t−1(y) may
be computed as follows. For u < t,

cov[{Riu(yiu − μiu),Rit (yit − μit)}|Hi,t−1(y)]

= E[{RiuRit(yiu − μiu)(yit − μit)}|Hi,t−1(y)]−E[{Riu(yiu − μiu)}|Hi,t−1(y)]

× E[{Rit(yit − μit)}|Hi,t−1(y)]

= (yiu − μiu)E[{Rit(yit − μit)}|Hi,t−1(y)]− [wiu(yiu − μiu)][wit(λit − μit)]

= [(yiu − μiu)(1−wiu)][wit (λit − μit)] (33)
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3.2.4 A Fully Standardized GQL (FSGQL) Approach

All three estimating equations, namely PSGEE (24), PSGQL (25), and PSCGQL
(27) may produce bias estimates, PSGEE being the worst. The reasons for the
poor performance of PSGEE are two fold. This is because it completely ignores
the missing mechanism and uses a working correlation matrix to accommodate the
longitudinal nature of the available data. As opposed to the PSGEE approach, PS-
GQL approach uses the true correlation structure under a class of auto-correlations
but similar to the PSGEE approach it also ignores the missing mechanism. As far
as the PSCGQL approach it uses a correct conditional covariance matrix which
accommodates both missing mechanism and correlation structure. However, the
resulting estimating equation may not unbiased for zero as the history of the
responses involved in covariance matrix make a weighted distance function which
is not unbiased.

To remedy the aforementioned problems, it is therefore important to use the
correct covariance matrix or its consistent estimate to construct the weight matrix
by accommodating both missing mechanism and longitudinal correlations of the
repeated data. For this to happen, because the distance function is unconditionally
unbiased for zero, i.e.,

EHi(y)E[{Δi(Yi − μi(β ))}|Hi(y)] = 0,

one must use the unconditional covariance matrix of {Δi(Yi − μi(β ))} to compute
the incomplete longitudinal weight matrix, for the construction of a desired unbiased
estimating equation. Let Σ∗

i (β ,ρ ,γ) denote this unconditional covariance matrix
which is computed by using the formula

Σ∗
i (β ,ρ ,γ) = cov{Δi(Yi − μi(β ))} = EHi(y)[cov{Δi(Yi − μi(β ))}|Hi(y)]

+ covHi(y)[E {Δi(Yi − μi(β ))}|Hi(y)]. (34)

In the spirit of Sutradhar (2003), we propose the FSGQL estimating equation for β
given by

K

∑
i=1

∂EHi(y)E[{Δiμi(β )}′|Hi(y)]

∂β
[cov{Δi(yi − μi)}]−1{Δi(yi − μi(β ))}

=
K

∑
i=1

∂ μ ′
i

∂β
[Σ∗

i (β ,ρ ,γ)]
−1{Δi(yi − μi(β ))} = 0, (35)

where Σ∗
i (β ,ρ ,γ) is yet to be computed. This estimating equation is solved

iteratively by using
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β̂FSGQL(m+ 1) = β̂FSGQL(m)+

[
K

∑
i=1

∂ μ ′
i (β )

∂β
[Σ∗

i (β ,ρ ,γ)]
−1 ∂ μi(β )

∂β ′

]−1

m

×
[

K

∑
i=1

∂ μ ′
i

∂β
[Σ∗

i (β ,ρ ,γ)]
−1Δi(yi − μi(β ))

]
m

(36)

Computation of Σ∗
i (β ,ρ ,γ) = cov[Δi(yi − μi)]

Rewrite (34) as

Σ∗
i (β ,ρ ,γ) = EHi(y)[cov{Δi(Yi − μi(β ))}|Hi(y)]

+ covHi(y)[E {Δi(Yi − μi(β ))}|Hi(y)]

= EHi(y)[Σ
∗
ich(β ,ρ)]+ covHi(y)[Eich(β ,ρ)], (37)

where Σ∗
ich(β ,ρ) is constructed by (30) by using the formulas from (31) to (33), and

Eich(β ,ρ) has the form Eich(β ,ρ) = [(yi1 − μi1),(λi2 − μi2), . . . ,(λiTi − μiTi)]
′.

It then follows that the components of the Ti×Ti unconditional covariance matrix
Σ∗

i (β ,ρ ,γ) are given by

cov[δiu(yiu −μiu),δit(yit −μit )] (38)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

varyi1(yi1 −μi1) = σi11 for u=t=1

EHi(y)[w
−1
it {σic,tt +(λit −μit )

2}− (λit −μit )
2]+EHi(y)(λit −μit )

2, for u=t=2,. . .

EHi(y)[(yi1 −μi1)(λit −μit)] for u=1,t=2,. . .

EHi(y)[(w
−1
iu −1){(yiu −μiu)(λit −μit)}]

+EHi(y)[(λiu −μiu)(λit −μit)], for u=2,. . . ; u < t

(a). Example of Σ∗
i (β ,ρ ,γ) under linear longitudinal models with T = 2

Note that Ri1 = ri1 = 1 always. But Ri2 can be 1 or 0 and under MAR, its probability
depends on yi1. Consider

Pr[Ri1 = 1] = gi1 = wi1 = 1.0

P[Ri2 = 1|ri1 = 1,yi1] = gi2(γ) =
exp{1+ γyi1}

1+ exp{1+ γyi1} (39)

by (20), yielding
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wi2 = E[Ri2|Hi1(y)] = P[Ri1 = 1,Ri2 = 1|Hi1(y)]

= P[Ri1 = 1]P[Ri2 = 1|Hi1(y)] = gi1gi2(yi1),

(see also (18)). With regard to the longitudinal model for potential responses yi1,yi2,
along with their non-stationary (time dependent covariates), consider the model as:

yit ∼ (x′itβ ,
σ2

1−ρ2 ), corr(Yit ,Yi,t+�) = ρ�. (40)

Assuming normal distribution, one may write

E[Yit |Hi,t−1] = x′itβ +[cov(yit ,yi,t−�)][var(yi,t−�)]
−1(yi,t−�− x′i,t−�β )

= x′itβ +[
σ2ρ�

1−ρ2 ] = x′itβ +ρ�[yi,t−�− x′i,t−�β ]. (41)

When the response yit depends on its immediate history, the conditional mean has
the formula

E[Yit |yi,t−1] = λit = x′itβ +ρ(yi,t−1 − x′i,t−1β ),

implying that the unconditional mean is given by μit = E[Yit ] = x′itβ , which is the
same as the mean in (40), as expected.

Now following (38), we provide the elements of the 2× 2 matrix Σ∗
i (β ,ρ ,γ) as

σ∗
i11 =

σ2

1−ρ2

σ∗
i12 = σ∗

i21 = ρvar[Yi1 − xi11β ] = ρ
σ2

1−ρ2

σ∗
i22 = Eyi1 [w

−1
i2 {var(Yi2|yi1)+ (λi2 − μi2)

2}]

= Eyi1 [{1+
1

exp(1+ γyi1)
}{σ2 +ρ2(yi1 − xi11β )2}]

=
σ2

1−ρ2 +σ2E1 +ρ2E2, (42)

where

E1 =

∫
[

1
exp(1+ γyi1)

]gN(yi1)dyi1, and

E2 =
∫
[
{yi1 − xi11β}2

exp(1+ γyi1)
]gN(yi1)dyi1,
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gN(yi1) being the normal (say) density of yi1. Thus, Σ∗
i (β ,ρ ,γ) has the formula

Σ∗
i (β ,ρ ,γ) =

σ2

1−ρ2

[
1 ρ
ρ {1+(1−ρ2)E1 +

ρ2(1−ρ2)

σ 2 E2}

]
, (43)

Note that in the complete longitudinal case wi2 would be 1 and σ∗
i22 would reduce

to σ 2

1−ρ2 , leading to

Σ∗
i (β ,ρ ,γ) = Σi(β ,ρ) =

σ2

1−ρ2

[
1 ρ
ρ 1

]
, (44)

which is free from β in this linear model case, and the PSGEE (24) uses a “working”
version of (44), namely

Vi(α) =
σ2

1−ρ2

[
1 α
α 1

]
, (45)

whereas the FSGQL estimating equation (35) would use Σ∗
i (β ,ρ ,γ) from (43). This

shows the effect of missing mechanism in the construction of the weight matrix for
the estimating equation.

(b). Example of Σ∗
i (β ,ρ ,γ) under binary longitudinal AR(1) model with T = 2

Consider a binary AR(1) model with

λit = E[Yit |yi,t−1] = μit +ρ(yi,t−1 − μi,t−1), t = 2, . . . ,T, (46)

where μit =
exp(x′it β )

1+exp(x′it β )
, for all t = 1, . . . ,T .

Now considering yi1 as fixed, by using (31)–(33) we first compute the history-
dependent conditional covariance matrix Σich(β ,ρ) = cov[{Δi(yi − μi)}|Hi(y)] as:

var[δi1(yi1 − μi1)] = 0

var[{δi2(yi2 − μi2)}|yi1] =
1

wi2
[λi2(1−λi2)+ρ2(yi1 − μi1)

2]−ρ2(yi1 − μi1)
2

cov[{δi1(yi1 − μi1),δi2(yi2 − μi2)}|yi1] = 0, (47)

yielding

EHi(y)[Σich(β ,ρ)] (48)

=

⎧⎪⎪⎨⎪⎪⎩
Eyi1 [σich,11] = Eyi1 [0] = 0

Eyi1 [σich,22] = Eyi1 [
1

wi2
[λi2(1−λi2)+ρ2(yi1 − μi1)

2]−ρ2(yi1 − μi1)
2]

Eyi1 [σich,12] = Eyi1 [0] = 0
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Next because

Eich(β ,ρ) = E{Δi(yi − μi)}|Hi(y)] = [(yi1 − μi1),(λi2 − μi2)]
′,

one obtains

covHi(y)[Eich(β ,ρ)] (49)

=

⎧⎪⎪⎨⎪⎪⎩
varyi1 [yi1 − μi1] = μi1[1− μi1]

covyi1 [(yi1 − μi1),(λi2 − μi2)] = ρvaryi1 [yi1 − μi1] = ρμi1[1− μi1]

varyi1 [λi2 − μi2] = varyi1 [ρ(yi1 − μi1)] = ρ2[μi1(1− μi1)].

By combining (48) and (49), it follows from (38) that the 2× 2 unconditional
covariance matrix Σ∗

i (β ,ρ ,γ) has the form

var[δi1(yi1 − μi1)] = μi1[1− μi1]

var[δi2(yi2 − μi2)] = Eyi1 [
1

wi2
{λi2(1−λi2)+ρ2(yi1 − μi1)

2}]

= [μi2(1− μi2)]E[w
−1
i2 ] (50)

+ρ(1− 2μi2)E[w
−1
i2 (yi1 − μi1)]

= [μi2(1− μi2)]E1y +ρ(1− 2μi2)[E2y − μi1E1y]

cov[δi1(yi1 − μi1),δi2(yi2 − μi2)] = ρ [μi1{1− μi1}], (51)

where

E1y = E[w−1
i2 ] = {1+ exp(−1)+ μi1 exp(−1)(exp(−γ)− 1)}

E2y = E[
yi1

wi2
] = μi1{1+ exp(−γ − 1)}.

General formula for Σ∗
i (β ,ρ ,γ) under the binary AR(1) model

In general, it follows from (38) that the elements of the Ti × Ti unconditional
covariance matrix Σ∗

i (β ,ρ ,γ) under AR(1) binary model are given by

cov[δiu(yiu − μiu),δit (yit − μit)] (52)

≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ∗
i,11 = μi1[1− μi1]

σ∗
i,tt = EHi(y)[w

−1
it {μit(1− μit)+ρ(1− 2μit)(yi,t−1 − μi,t−1)},(for t = 2, . . . ,Ti)

σ∗i,ut = ρρ t−1−uμiu(1− μiu), (for u = 1 < t)

σ∗
i,ut = ρ2ρ t−uμi(u−1)(1− μi(u−1)), (for 1 < u < t).
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3.3 An Empirical Illustration

First, to illustrate the performance of the existing PSGEE (24) approach, we refer
to some of the simulation results reported by Sutradhar and Mallick (2010). It was
shown that this approach may produce highly biased and hence inconsistent regres-
sion estimates. In fact these authors also demonstrated that PSGEE(I) (independence
assumption based) approach produces less biased estimates than any “working”
correlation structures based PSGEE approaches. For example, we consider here
their simulation design chosen as

Simulation Design

K = 100, T = 4, p = 2, q = 1, γ = 4, ρ = 0.4,0.8, β1 = β2 = 0 along with two
time-dependent covariates:

xit1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 for i = 1, · · · , K

4 ; t = 1,2

0 for i = 1, · · · , K
4 ; t = 3,4

− 1
2 for i = K

4 + 1, · · · , 3K
4 ; t = 1

0 for i = K
4 + 1, · · · , 3K

4 ; t = 2,3
1
2 for i = K

4 + 1, · · · , 3K
4 ; t = 4

t
2T for i = 3K

4 + 1, · · · ,K; t = 1, · · · ,4

and

xit2 =

⎧⎪⎪⎨⎪⎪⎩
t−2.5

2T for i = 1, · · · , K
2 ; t = 1, · · · ,4

0 for i = K
2 + 1, · · · ,K; t = 1,2

1
2 for i = K

2 + 1, · · · ,K; t = 3,4

Details on the MAR based incomplete binary data generation, one may be
referred to Sutradhar and Mallick (2010, Sect. 2.1). Based on 1,000 simulations, the
PSGEE estimates obtained from (24) and PSGEE (I) obtained from (24) by using
zero correlation are displayed in Table 1.

These results show that the PSGEE estimates for β1 = 0 and β2 = 0 are highly
biased. For example, when ρ = 0.8, the estimates of β1 and β2 are −0.213 and
−0.553, respectively. These estimates are inconsistent and unacceptable. Note that
these biases are caused by the wrong correlation matrix used to construct the PSGEE
(24), whereas this PSGEE provides almost unbiased estimates when data are treated
to be independent even if truly they are not so. However the standard errors of
the PSGEE(I) estimates appear to be large and hence it may provide inefficient
estimates. In fact when the proportion of missing values is large, the PSGEE(I)
will also encounter estimation breakdown or it will produce biased estimates. This
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Table 1 Simulated means (SMs), simulated standard errors (SSEs), and simulated mean squared
errors (SMSEs) for “working” correlations based PSGEE (24) estimates, when the incomplete
longitudinal responses were generated based on MAR mechanism (20) with γ = 4.0 and a
longitudinal AR(1) correlation structure with correlation index parameter ρ ; β1 = β2 = 0; based
on 1,000 simulations

Estimation approach

PSGEE(AR(1)) PSGEE (I)

ρ Statistic β̂1 β̂2 ρ̂ β̂1 β̂2

0.4 SM −0.076 −0.224 0.404 0.015 0.015
SSE 0.361 0.544 0.062 0.384 0.587
SMSE 0.136 0.346 0.004 0.148 0.344

0.8 SM −0.213 −0.553 0.802 0.007 0.017
SSE 0.257 0.381 0.038 0.378 0.614
SMSE 0.112 0.450 0.001 0.143 0.377

is verified by a simulation study reported by Mallick et al. (2013). The reason
for this inconsistency encountered by PSGEE and PSGEE(I) is the failure of
accommodating MAR mechanism in the covariance matrix used as the longitudinal
weights.

As a remedy to this inconsistency, we have developed a FSGQL (35) estimating
equation by accommodating both MAR mechanism and longitudinal correlation
structure in constructing the weight matrix Σ∗

i (β ,ρ ,γ). This FSGQL equation would
provide consistent and efficient regression estimates. For simplicity, Mallick et al.
(2013) have demonstrated through a simulation study that FSGQL(I) approach
by using ρ = 0 in Σ∗

i (β ,ρ = 0,γ) produces almost unbiased estimates with
small variances. This provides a guidance that ignoring missing mechanism in
constructing the weight matrix would provide detrimental results, whereas ignoring
longitudinal correlations does not appear to cause any significant loss.
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Consistent Estimation in Incomplete
Longitudinal Binary Models

Taslim S. Mallick, Patrick J. Farrell, and Brajendra C. Sutradhar

Abstract It is well known that in the complete longitudinal setup, the so-called
working correlation-based generalized estimating equations (GEE) approach may
yield less efficient regression estimates as compared to the independence assumption-
based method of moments and quasi-likelihood (QL) estimates. In the incomplete
longitudinal setup, there exist some studies indicating that the use of the same
“working” correlation-based GEE approach may provide inconsistent regression
estimates especially when the longitudinal responses are at risk of being missing
at random (MAR). In this paper, we revisit this inconsistency issue under a longitu-
dinal binary model and empirically examine the relative performance of the existing
weighted (by inverse probability weights for the missing indicator) GEE (WGEE),
a fully standardized GQL (FSGQL) and conditional GQL (CGQL) approaches. In
the comparative study, we consider both stationary and non-stationary covariates, as
well as various degrees of missingness and longitudinal correlation in the data.

1 Introduction

Consider a longitudinal binary data setup where yit is the Bernoulli response for
the i-th (i = 1, · · · ,K) individual at the t-th time point (t = 1, · · · ,T ) and xit =
(xit1, · · · ,xitu, · · · ,xit p)

′
is the associated p-dimensional covariate vector. When the

longitudinal data are complete (that is, there are no missing responses from any
of the individuals in the study), an estimating approach such as generalized quasi-
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likelihood (GQL) can be used to obtain an estimate of the regression parameter
vector, β , that is both consistent and efficient, provided that the correlation structure
associated with the repeated binary responses is known (see Sutradhar 2003).
In order to describe the longitudinal correlation in the data, it seems reasonable
to assume deterioration in the association between observations on the same
individuals that are further apart in time. Thus, to achieve this, we let ρ be a
longitudinal correlation parameter and consider a conditional linear binary dynamic
(CLBD) model proposed by Zeger et al. (1985) (see also Qaqish 2003), which is
given by

P(Yi1 = 1) = μi1, and

P(Yit = 1 | yi,t−1) = μit +ρ(yi,t−1 − μi,t−1) = λi,t|t−1(β ,ρ) = λit , for t = 2, · · · ,T
(1)

with μit = exp(x
′
itβ )/[1+ exp(x

′
itβ )] for t = 1, · · · ,T . According to model (1), the

marginal means and variances of yit are

E(Yit) = μit (2)

and

Var(Yit) = σi,tt = μit(1− μit), (3)

while the correlations between Yit and Yi,t+l for l = 1, · · · ,T −1, t = 1, · · · ,T − l are
given by

corr(Yit ,Yi,t+l) = ρ l
[

σi,tt

σi,t+l,t+l

]1/2

. (4)

The means, variances, and covariances defined by (2) through (4) are nonstationary,
since they are all functions of time-dependent covariates {xit}. However, if the σi,tt

are not extremely different, the correlations given by (4) assume a behavior that
is analogous to an autoregressive process of order one, AR(1). Under the present
model, the correlation parameter ρ must satisfy the range restriction

max

[
− μit

1− μi,t−1
,−1− μit

μi,t−1

]
≤ ρ ≤ min

[
1− μit

1− μi,t−1
,

μit

μi,t−1

]
. (5)

Suppose that we let μi and Σi(ρ) represent the mean vector and the covariance
matrix of the complete data vectorYi, where μi =(μi1, · · · ,μit , · · · ,μiT )

′
and Σi(ρ)=

A1/2
i Ci(ρ)A

1/2
i . Here, Ci(ρ) is the T ×T correlation matrix based on (4), and Ai =

diag(σi,11, · · · , σi,tt , · · · ,σi,T T ). An estimator for β that is both consistent and highly
efficient can be obtained by solving the GQL estimating equation
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K

∑
i=1

∂ μ ′
i

∂β
[Σi(ρ)]−1(yi − μi) = 0, (6)

(Sutradhar 2003).
In practice, it is typically the case that some of the responses associated with

each of a number of individuals in the study may be missing. To acknowledge
this phenomenon during the data collection process, we introduce an indicator
variable Rit , that takes on a value of one if Yit is observed, and zero otherwise. For
purposes of our investigation here, we adopt the not-so-unreasonable assumption
that all individuals provide a response at the first time point, so that Ri1 = 1 for
all i = 1, · · · ,K. We also assume monotonic missingness, suggesting that the Rit

satisfy the inequality Ri1 ≥ Ri2 ≥ ·· · ≥ Rit ≥ ·· · ≥ RiT . Thus, if responses are no
longer observed for the i-th individual after the j-th time point, for this individual
we would have available yit for t = 1, · · · ,Ti = j.

Regarding the missing data mechanism, at this time we distinguish between
responses that are missing completely at random, MCAR, and those that are missing
at random, MAR (see Fitzmaurice et al. 1996; Paik 1997; Rubin 1976). When the
responses are MCAR, the indicator variable Rit reflecting the presence or absence
of Yit does not depend on the previous responses Yi1, · · · ,Yi,t−1. In this instance, if
we define Ri = diag(Ri1, · · · ,RiT ) and incorporate this matrix into the estimating
equation given by (6) to yield

K

∑
i=1

∂ μ ′
i

∂β
[Σi(ρ)]−1Ri(yi − μi) = 0, (7)

it is still possible to obtain an unbiased estimator for β that will be consistent
and efficient. Note that Σi(ρ) is a T × T matrix with appropriate variance and
covariance entries in the first Ti rows and Ti columns and zeroes in the last T −Ti

rows and columns. On the other hand, when the missing data mechanism for the
responses is assumed to be MAR (implying that Rit does depend on the previous
responses Yi1, · · · ,Yi,t−1), it can be shown that E[Rit(Yit −μit)] �= 0. In this situation,
the estimator for β based on (7) will be biased and inconsistent. Upon realizing this
to be the case, many studies have attempted to correct for this problem by using a
modified inverse probability-weighted distance function

w−1
it {Hi,t−1(y);α} [Rit(Yit − μit)] , (8)

where Hi,t−1(y) ≡ Hi,t−1 = (Yi1, · · · ,Yi,t−1), so that the expectation of (8) is zero.
Following Robins et al. (1995), for data that are MAR, we can write the proba-
bility weight wit {Hi,t−1(y);α} = wit as a function of past responses as follows.
Specifically, imagine that the probability that the i-th individual responds at the
j-th time point depends on the past lag q responses, where q ≤ j − 1. Letting
gi j(yi, j−1, · · · ,yi, j−q;α) represent this probability, we can write gi j(yi, j−1, · · · ,yi, j−q;
α) = P(Ri j = 1 | Ri1 = 1, · · · ,Ri, j−1 = 1;yi, j−1, · · · ,yi, j−q), which can be modeled as
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gi j(yi, j−1, · · · ,yi, j−q;α) =
exp(1+∑q

l=1 αlyi, j−l)

1+ exp(1+∑q
l=1 αlyi, j−l)

, (9)

where αl is a parameter that reflects the dependence of Ri j on yi, j−l for all l =
1, · · · ,q. Robins et al. (1995) set

wit = P(Rit = 1,Ri,t−1 = 1, · · · ,Ri1 = 1 | Hi,t−1)

= P(Rit = 1 | Ri,t−1 = · · ·= Ri1 = 1;Hi,t−1)×
P(Ri,t−1 = 1 | Ri,t−2 = · · ·= Ri1 = 1;Hi,t−2)×
·· ·×P(Ri2 = 1 | Ri1 = 1;Hi1)P(Ri1 = 1)

=
t

∏
j=1

gi j(yi, j−1, · · · ,yi, j−q;α). (10)

Since monotonic missingness is assumed

E [RitYit | Hi,t−1] = P [Ri1 = 1,Ri2 = 1, · · · ,Rit = 1;Yit = 1 | Hi,t−1] , (11)

or, alternatively

E [RitYit | Hi,t−1] = P(Ri1 = 1)P [Ri2 = 1 | Ri1 = 1;Hi1] · · ·
P [Rit = 1 | Ri1 = 1,Ri2 = 1, · · · ,Ri,t−1 = 1;Hi,t−1]

P [Yit = 1 | Hi,t−1] . (12)

Using model (1) and gi j(yi, j−1, · · · ,yi, j−q;α) given in (9), (12) becomes

E [RitYit | Hi,t−1] =
t

∏
j=1

gi j(yi, j−1, · · · ,yi, j−q;α)λit

= wit λit , (13)

which implies that

E

[
RitYit

wit
| Hi,t−1

]
= λit , (14)

thus giving

EHi,t−1E

[
RitYit

wit
| Hi,t−1

]
= EHi,t−1 [λit ] = μit . (15)

Similarly
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EHi,t−1 E

[
Rit μit

wit
| Hi,t−1

]
= μit , (16)

suggesting that combining (15) and (16) yields

EHi,t−1E

[
Rit(Yit − μit)

wit
| Hi,t−1

]
= 0. (17)

This unconditional unbiasedness property of the weighted distance or estimating

function
[

Rit(Yit−μit)
wit

]
motivated many researchers to write a weighted generalized

estimating equation (WGEE) and solve it for the β involved in those μit . The
WGEE, first developed by Robins et al. (1995), is reproduced in brief, in Sect. 2.1.
Note that to construct the WGEE, Robins et al. (1995) suggested the specification of
a user-selected covariance matrix of {(Yit − μit), t = 1, . . . ,Ti} by pretending that as
though the data were complete. Recently, Sutradhar and Mallick (2010) have found
that this widely used WGEE approach produces highly biased regression estimates,
indicating consistency break down. In this paper, specifically in Sect. 3, we carry
out an extensive simulation study considering various degrees of missingness and
examine further the inconsistency problem encountered by the WGEE approach.

In Sect. 2.2, we consider a simpler version of a fully standardized GQL (FSGQL)
approach discussed by Sutradhar (2013, Sect. 3.2.4) by constructing the weight

matrix, that is, unconditional covariance matrix of {
[

Rit(Yit−μit)
wit

]
, t = 1, . . . ,Ti} using

longitudinal independence (i.e.,ρ = 0). We will refer to this as the FSGQL(I)
approach. In the simulation study in Sect. 3, we examine the relative performance
of this FSGQL(I) approach with the existing WGEE as well as WGEE(I) (indepen-
dence assumption-based WGEE) approach.

Further note that if the correlation model for the complete data were
known through λit in (14), one could exploit the conditional distance function[

Rit(Yit−λit)
wit

| Hi,t−1

]
to construct a conditional-weighted GQL (CWGQL) estimating

equation and solve such an equation to obtain consistent regression estimates. We
discuss this approach in Sect. 2.3 and include it in the simulation study in Sect. 3 to
examine its performance as compared to the aforementioned approaches.

2 Estimation

2.1 WGEE Approach

Robins et al. (1995, Eq. (10), p. 109) used the result in (17) to propose the WGEE

K

∑
i=1

∂ μ ′
i

∂β
[Vi(α∗)]−1 Δi(yi − μi) = 0, (18)
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(see also Paik 1997, Eq. (1), p. 1321) where Δi = diag(δi1,δi2, · · · ,δiT ) with δit =
Rit/wit{Hi,t−1(y);α}= Rit/wit . The quantity Vi(α∗) is a working covariance matrix
of Yi (see Liang and Zeger 1986) that is used in an effort to increase the efficiency
of the estimates. Of note is the fact while Robins et al. (1995) suggested a WGEE,
they did not account for the missingness in the data when specifying Vi(α∗); they
simply based their working covariance matrix on the complete data formulae. For
this reason, this WGEE approach may be referred to as a partially standardized GEE
(PSGEE) approach. See the previous article by Sutradhar (2013) in this chapter for
details on the use of PSGEE. Note that a user-selected covariance matrix based on
complete data that ignores the missing mechanism leads the WGEE to be unstable,
in particular, when the proportion of missing data is high, causing breakdown in
estimation, i.e., breakdown in consistency. However, this inconsistency issue has
not been adequately addressed in the literature including the studies by Robins
et al. (1995), Paik (1997), Rotnitzky et al. (1998) and Birmingham et al. (2003).
One of the main reasons is that none of the studies used any stochastic correlation
structure in conjunction with the missing mechanism to model the binary data in the
incomplete longitudinal setup.

In this paper, in order to investigate the effect on the estimates of the regression
parameter vector, we propose to replace the working covariance matrix Vi(α∗)
in (18) with a proper unconditional covariance matrix that accommodates the
missingness in the data. The proposed approach is presented in the next section.

2.2 FSGQL Approach

The unconditional unbiasedness property in (17), that is,

EHi,t−1E

[
Rit(Yit − μit)

wit
| Hi,t−1

]
= EHi,t−1E [δit(Yit − μit) | Hi,t−1] = 0

motivates one to develop a FSGQL estimating equation for β , which requires the
computation of the unconditional variance of δit(Yit −μit). Thus, for all t = 1, . . . ,Ti,
we now compute the unconditional covariance matrix, namely

cov[Δi(yi − μi)] = Σ∗
i (β ,ρ ,α), (say),

by using the formula

Σ∗
i (β ,ρ ,γ) = EHi(y)[cov{Δi(Yi − μi(β ))}|Hi(y)]

+covHi(y)[E {Δi(Yi − μi(β ))} |Hi(y)],

where Hi(y) denotes the history of responses. For computational details under
any specified correlation model, we refer to the previous article by Sutradhar
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(2013, Sect. 3.2.4). For the binary AR(1) model in (1), the elements of the Ti ×Ti

unconditional covariance matrix Σ∗
i (β ,ρ ,α) are given by

cov[δiu(yiu − μiu),δit(yit − μit)]

≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ∗
i,11 = μi1[1− μi1]

σ∗
i,tt = EHi(y)[w

−1
it {μit(1− μit)+ρ(1− 2μit)(yi,t−1 − μi,t−1)},(for t = 2, . . . ,Ti)

σ∗i,ut = ρρ t−1−uμiu(1− μiu), (for u = 1 < t)

σ∗
i,ut = ρ2ρ t−uμi(u−1)(1− μi(u−1)), (for 1 < u < t). (19)

Note that the formulas in (19) under the present AR(1) binary model may
be verified directly. For example, we compute the t-th diagonal element of the
Σ∗

i (β ,ρ ,α) matrix as follows. Since δit = Rit/wit{Hi,t−1(y);α} = Rit/wit , we can
write

Var

[
Rit(Yit − μit)

wit

]
= VarHi,t−1E

[
Rit(Yit − μit)

wit
| Hi,t−1

]
+EHi,t−1Var

[
Rit(Yit − μit)

wit
| Hi,t−1

]
, (20)

where

VarHi,t−1E

[
Rit(Yit − μit)

wit
| Hi,t−1

]
= VarHi,t−1

[
1

wit
wit(λit − μit)

]
= EHi,t−1

[
(λit − μit)

2] (21)

since
[
EHi,t−1(λit − μit)

]2
= 0, and

EHi,t−1Var

[
Rit(Yit − μit)

wit
| Hi,t−1

]
= EHi,t−1

[
1

wit
(1−wit)

{
λit(1−λit)+ (λit − μit)

2}+λit(1−λit)

]
= EHi,t−1

[
1

wit
λi(1−λit)+

1
wit

(λit − μit)
2 − (λit − μit)

2
]

(22)

Substituting (21) and (22) into (20) gives

Var

[
Rit(Yit − μit)

wit

]
= μit(1− μit)EHi,t−1

(
1

wit

)
+ρ(1− 2μit)×[

EHi,t−1

(
Yi,t−1

wit

)
− μi,t−1EHi,t−1

(
1

wit

)]
(23)
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since λit = μit + ρ(yi,t−1 − μi,t−1) by (1). The conditional expectations given the
response history, Hi,t−1, in (23) are evaluated as follows:

EHi,t−1

(
1

wit

)
= ∑

yi1,yi2,··· ,yi,t−1

1
wit

μyi1
i1 (1− μi1)

1−yi1
t−1

∏
j=2

(λi j)
yi j (1−λi j)

1−yi j (24)

and

EHi,t−1

(
Yi,t−1

wit

)
= ∑

yi1,yi2,··· ,yi,t−1

(
yi,t−1

wit

)
μyi1

i1 (1− μi1)
1−yi1

t−1

∏
j=2

(λi j)
yi j (1−λi j)

1−yi j

(25)

2.2.1 FSGQL(I) Approach

Note that in a complete longitudinal setup, one may obtain consistent regression
estimates even if longitudinal correlations are ignored in developing the estimating
equation but such estimates may not be efficient (Sutradhar 2011, Chap. 7). By
this token, to obtain consistent regression estimates in the incomplete longitudinal
setup, we may still use the independence assumption (i.e., use ρ = 0) but the
missing mechanism must be accommodated to formulate the covariance matrix for
the construction of the estimating equation. Thus, for simplicity, we now consider
a specialized version of the FSGQL approach, namely FSGQL(I) approach, where
the GQL estimating equation is developed by using the independence assumption
(ρ = 0)-based covariance matrix. More specifically, under this approach, the covari-
ance matrix Σ∗

i (β ,ρ = 0,α) has the form

Σ∗
i (β ,ρ = 0,α)

≡

⎧⎪⎪⎨⎪⎪⎩
σ∗

i,11 = μi1[1− μi1]

σ∗
i,tt = EHi(y)[w

−1
it {μit(1− μit)}],(for t = 2, . . . ,Ti)

σ∗i,ut = 0, (for u �= t), (26)

where EHi(y)[w
−1
it ] is computed by (24).

Now by replacing the “working” covariance matrix Vi(α∗) in the WGEE given in
(18) with Σ∗

i (β ,ρ = 0,α), one may obtain the FSGQL(I) estimate for β by solving
the estimating equation

K

∑
i=1

∂ μ ′
i

∂beta
[Σ∗

i (β ,ρ = 0,α)]−1 Δi(yi − μi) = 0. (27)
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2.3 CWGQL Approach

Note that instead of using the distance function with unconditional zero mean,
one may like to exploit the distance function with zero mean conditionally. This
is possible only when the expectation of the binary response conditional on the past
history is known. In this case, by replacing μit with λit in (17), one may construct
the distance function which has mean zero conditional on the past history, that is,

E

[
Rit(Yit −λit(β ,ρ))

wit
| Hi,t−1

]
= 0, (28)

where for binary AR(1) model, for example, the conditional mean has the form

λit(β ,ρ) = μit +ρ(yi,t−1 − μi,t−1), (29)

for t = 2, . . . ,T .
Suppose that

λi(β ,ρ) = [λi1(β ),λi2(Hi,1(y),β ,ρ), . . . ,λiTi(Hi,Ti−1(y),β ,ρ)]′

with λi1(β ) = μi1(β ). To develop a GQL-type estimating equation in the conditional
approach, one minimizes the distance function

K

∑
i=1

[{Δi(yi −λi(β ,ρ))}′{cov(Δi(yi −λi(β ,ρ)))|Hi(y)}−1{Δi(yi −λi(β ,ρ))}′]
(30)

with respect to β , the parameter of interest. Given the history, let the conditional
covariance matrix {cov(Δi(yi − λi(β ,ρ)))|Hi(y)} be denoted by Σich(β ,ρ). Then
assuming that β and ρ in Σich(β ,ρ) are known, minimizing the quadratic distance
function (30) with respect to β is equivalent to solving the equation

K

∑
i=1

∂ [E{Δiλi(β ,ρ)|Hi(y)}′]
∂β

Σ−1
ich (β ,ρ){Δi(yi −λi(β ,ρ))}

=
K

∑
i=1

∂λ ′
i (β ,ρ)
∂β

Σ−1
ich (β ,ρ){Δi(yi −λi(β ,ρ))}= 0. (31)

Computational formula for Σich(β ,ρ ,γ)

For convenience, we first write

Δi = W−1
i Ri, with

Wi = diag[wi1,wi2, . . . ,wiTi ], and Ri = diag[Ri1, . . . ,RiTi ].
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It then follows that

Σich(β ,ρ) = cov[{Δi(yi −λi(β ,ρ))}|Hi(y)]

= W−1
i cov[{Ri(yi −λi(β ,ρ))}|Hi(y)]W

−1
i . (32)

Now to compute the covariance matrix in (32), we write

Ri(yi −λi(β ,ρ)) = [Ri1(yi1 −λi1), . . . ,Rit(yit −λit), . . . ,RiTi(yiTi −λiTi)]
′.

It then follows that for u < t, for example,

cov[{Riu(yiu −λiu),Rit(yit −λit)}|Hi,t−1(y)] = 0, (33)

and for t = 1, . . . ,Ti,

var[Rit(yit −λit)|Hi,t−1(y)] = var[Rit |Hi,t−1(y)]var[yit |Hi,t−1(y)]

+ E2[Rit |Hi,t−1(y)]var[yit |Hi,t−1(y)]+ var[Rit |Hi,t−1(y)]E
2[(yit −λit)|Hi,t−1(y)]

= wit(1−wit)σic,tt +w2
itσic,tt

= witσic,tt , (34)

where σic,tt is the conditional variance of yit given the history. For example, in the
binary case, σic,tt = λit(1−λit).

2.3.1 CWGQL Estimating Equation

Now by substituting (34) and (33) into (32), one obtains

Σich(β ,ρ) =W−1
i WiΣicW

−1
i =W−1

i Σic, (35)

where Σic = diag[σic,11, . . . ,σic,TiTi ]. Consequently, when this formula for Σich from
(35) is applied to the conditional GQL (CGQL) estimating equation in (31), one
obtains

K

∑
i=1

∂λ ′
i (β ,ρ)
∂β

Σ−1
ic (β ,ρ)Wi{Δi(yi −λi(β ,ρ))}= 0, (36)

which is unaffected by the missing MAR mechanism. This is not surprising, as con-
ditional on the history, Rit and yit are independent. However, this fully conditional
approach requires the modeling of the conditional means of the responses, which is
equivalent to modeling the correlation structure.
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2.3.2 Conditional Likelihood Estimation

In fact when conditional inference is used, one can obtain likelihood estimates for
β and ρ by maximizing the exact likelihood function under the condition that Yit

and Rit are independent given the history. This is easier for the analysis of longi-
tudinal binary data as compared to the longitudinal analysis for count data subject
to MAR.

Since the Rit ’s satisfy the monotonic restriction given in Sect. 1, and because Rit

and Yit are independent conditional on the history under the MAR mechanism, the
likelihood function for the ith individual may be expressed as

Li(β ,ρ ,α) = fi1(yi1) fi2|1{(yi2,ri2 = 1)|ri1 = 1,yi1} . . .
× fiTi |Ti−1

{(yiTi ,riTi = 1)|ri1 = 1,ri2 = 1, . . . ,ri(Ti−1) = 1,Hi,t−1(y)}
= μyi1

i1 [1− μi1]
1−yi1Π Ti

t=1[{git}{λ yit
it (1−λit)

1−yit}], (37)

where, by (9),

git(α) = P[(Rit = 1)|ri1 = 1, . . . ,ri,t−1 = 1,Hi,t−1(y)] =
exp(1+αyi,t−1)

1+ exp(1+αyi,t−1)
.

3 Simulation Study

3.1 Comparison Between WGEE (AR(1)), WGEE(I)
and FSGQL(I) Approaches: Multinomial Distribution
Based Joint Generation of R and y

In this section, we describe and report the results of a simulation study that centers
on a comparison of the WGEE approach of Robins et al. (1995) for estimating
the regression parameter vector with the proposed FSGQL approach. Recall that
the WGEE in (18) was constructed by using a “working” covariance matrix

Vi(α∗) = A
1
2
i R∗

i (α∗)A
1
2
i , of the response vector yi. Note that this weight matrix

was chosen ignoring the missing mechanism. Furthermore, there is no guideline
to choose the “working” correlation matrix R∗

i (α∗). In the simulation study, we will
consider a non-stationary longitudinal binary AR(1) model with true correlation
structure Ci(ρ) given by (4), for the responses subject to MAR. To examine the
performance of the WGEE approach (18), we choose the best possible stationary
AR(1) correlation form, namely,

R∗
i (α∗) = (r∗ut(α∗)) = (α∗|t−u|),
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as compared to using MA(1) and EQC-based “working” correlation matrices. We
will refer to this WGEE as the WGEE(AR(1)). Also we will consider the simplest
version of the WGEE approach, namely WGEE(I), which is obtained based on the
independence assumption by using α∗ = 0 in the “working” correlation matrix
R∗

i (α∗). These two versions of the WGEE approach will be compared with the
FSGQL(I) approach in (27) which was constructed by accommodating missing
mechanism but by using longitudinal independence assumption, i.e., ρ = 0 or
Ci(ρ) = ITi . For simplicity, in the present simulation study, we do not consider the
true complete covariance matrix Σ∗

i (β ,ρ ,α)-based FSGQL approach in (19).

3.1.1 Joint Generation of (R and y) Incomplete Binary Data: Multinomial
Distribution Based

In order to generate an incomplete longitudinal binary data set subject to MAR, we
follow the approach of Sutradhar and Mallick (2010). Specifically, the procedure
initially assumes that every individual provides a response at time t = 1. Thus,
since Ri1 = 1 for all i = 1, · · · ,K, a binary response yi1 is generated with marginal
probability μi1. Subsequently, yit is only observed for the i-th individual (i =
1, · · · ,K) at time t (t = 2, · · · ,T ) when Rit = 1 conditional on having observed
the previous t − 1 responses for that individual; in other words, conditional on
Ri1 = 1, · · · ,Ri,t−1 = 1. Therefore, at time t (t = 2, · · · ,T ), both Yit and Rit are
random variables conditional on the observed history up to time t − 1, and, as such,
one of the following three events occurs:

E1 : [Rit = 1,Yit = 1 | Ri1 = · · ·= Ri,t−1 = 1,Hi,t−1(y)] ,

E2 : [Rit = 1,Yit = 0 | Ri1 = · · ·= Ri,t−1 = 1,Hi,t−1(y)] ,

or E3 : [Rit = 0 | Ri1 = · · ·= Ri,t−1 = 1,Hi,t−1(y)] , which implies that yit

is not observed.
Let zits = 1 for any s = 1,2,3 indicate that Es has occurred. Then, for l �= s,

zitl = 0, and it must be the case that ∑3
s=1 zits = 1. Let pits = P(zits = 1) for s= 1,2,3.

If we set q = 1 in (9), and use the resulting equation in conjunction with model (1),
the pits may be expressed as

pit1 = P(zit1 = 1) = P [Rit = 1,Yit = 1 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)] ,

pit2 = P(zit2 = 1) = P [Rit = 1,Yit = 0 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)] ,

and

pit3 = P(zit3 = 1) = P [Rit = 0 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)] ,

which can be written as
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pit1 = P [Rit = 1 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)]P [Yit = 1 | Hi,t−1(y)]

= git(yi,t−1;α)λit , (38)

pit2 = P [Rit = 1 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)]P [Yit = 0 | Hi,t−1(y)]

= git(yi,t−1;α)(1−λit), (39)

and

pit3 = P [Rit = 0 | Ri1 = 1, · · · ,Ri,t−1 = 1;Hi,t−1(y)] = 1− git(yi,t−1;α), (40)

where

git(yi,t−1;α) = exp(1+αyi,t−1)/[1+ exp(1+αyi,t−1)]. (41)

Thus, Sutradhar and Mallick (2010) summarize the data generation routine for the
i-th individual, i = 1, · · · ,K, as follows:

1. Generate yi1 from a Bernoulli distribution with parameter μi1.
2. For any t > 1, the values of zits for s = 1,2,3 are realized according to the

multinomial probability distribution

P(zit1,zit2,zit3) =
1!

zit1!zit2!zit3!
pzit1

it1 pzit2
it2 pzit3

it3

with ∑3
s=1 zits = 1. For zits = 1, allocate the response yit following Es.

3. If zits = 1, stop generating yit for this individual; otherwise repeat steps (1) and
(2) for t ≤ T .

3.1.2 Comparison Under Various Designs

Regarding the simulation study, for each of four designs, we set K = 100 and
T = 4 and performed 1,000 replications. We considered three different values
of longitudinal correlation parameter, setting ρ = 0.2, 0.5, and 0.8 in turn. In
order to investigate the effect of the degree of missingness on the estimates of
the regression parameter vector, for Δi = diag(δi1,δi2, · · · ,δiT ) in (18) with δit =
Rit/wit{Hi,t−1(y);α} = Rit/wit , we set wit = ∏t

j=1 gi j(yi, j−1;α) according to (10)
with q = 1. We then studied two levels for α , namely α = 1, and α = −3 (We
assume throughout the simulation study that both ρ and α are known; hence, we
do not concern ourselves with estimating these quantities). Note that, according to
(41), P[Rit = 0 | yi,t−1 = 1] = 0.12 and P[Rit = 0 | yi,t−1 = 0] = 0.27 for α = 1, while
P[Rit = 0 | yi,t−1 = 1] = 0.88 and P[Rit = 0 | yi,t−1 = 0] = 0.27 for α = −3. Thus,
when α =−3, the rate of missingness is extremely high, as expected.
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Table 1 (Based on data using joint generation approach) Simulated means (SM) and standard
errors (SSE) based on 1,000 simulations for β = 0.5 and selected values of ρ and α , selected
design

WGEE(AR(1)) WGEE(I) FSGQL(I)

Design α ρ Statistic β̂ # β̂ # β̂ #

No −3 0.2 SM 0.574 231 0.471 174 0.501 1,000
covariate SSE 0.284 0.293 0.196

0.5 SM 0.551 361 0.250 233 0.502 1,000
SSE 0.295 0.311 0.204

0.8 SM 0.556 500 −0.052 345 0.503 1,000
SSE 0.270 0.286 0.219

1 0.2 SM 0.478 1,000 0.502 1,000 0.501 1,000
SSE 0.144 0.146 0.141

0.5 SM 0.434 1,000 0.503 1,000 0.504 1,000
SSE 0.164 0.172 0.169

0.8 SM 0.372 1,000 0.499 1,000 0.500 1,000
SSE 0.190 0.206 0.200

p = 1 −3 0.2 SM 0.503 440 0.514 383 0.499 1,000
stationary SSE 0.348 0.358 0.292

0.5 SM 0.504 593 0.508 464 0.521 999
SSE 0.351 0.380 0.294

0.8 SM 0.509 663 0.518 559 0.529 999
SSE 0.361 0.408 0.325

1 0.2 SM 0.500 1,000 0.501 1,000 0.500 1,000
SSE 0.190 0.192 0.185

0.5 SM 0.496 1,000 0.499 1,000 0.498 1,000
SSE 0.234 0.241 0.233

0.8 SM 0.516 1,000 0.514 1,000 0.515 1,000
SSE 0.271 0.291 0.282

Note that # refers to the number of simulations where convergence is achieved

Initially, we compared the WGEE(I) and FSGQL(I) approaches using a sta-
tionary design that essentially contained no covariates. For this design, we simply
had a single β1 = 0.5, while the associated xit1 = 1 for all i = 1, · · · ,100 and
t = 1, · · · ,4. Table 1 presents the means and standard errors of the WGEE and
FSGQL(I) estimates over the 1,000 replications for each of the six combinations
of ρ and α . The number of replications that converged is also reported. When
the degree of missingness is not overly severe (α = 1), there is little difference
in the WGEE(I) and FSGQL(I) estimates. Both approaches produce essentially
unbiased estimates, and all replications converge. However, when the degree of
missingness is more pronounced (α =−3), the WGEE(I) estimates are significantly
biased. In addition, regardless of the value of ρ , more than half of the replications
did not converge. On the other hand, the FSGQL(I) estimates are still unbiased,
and all replications continue to converge. We investigated the WGEE approach
further by considering an AR(1) type “working” correlation structure instead of
an independence assumption-based “working” correlation matrix. This WGEE



Consistent Estimation in Incomplete Longitudinal Binary Models 131

T
ab

le
2

(B
as

ed
on

da
ta

us
in

g
jo

in
tg

en
er

at
io

n
ap

pr
oa

ch
)

Si
m

ul
at

ed
m

ea
ns

(S
M

)
an

d
st

an
da

rd
er

ro
rs

(S
SE

)
ba

se
d

on
1,

00
0

si
m

ul
at

io
ns

fo
r

β 1
=

β 2
=

0.
5

an
d

se
le

ct
ed

va
lu

es
of

ρ
an

d
α

,s
el

ec
te

d
de

si
gn

(D
)

w
it

h
p
=

2
st

at
io

na
ry

(S
)

an
d

no
n-

st
at

io
na

ry
(N

S)
co

va
ri

at
es

W
G

E
E

(A
R

(1
))

W
G

E
E

(I
)

FS
G

Q
L

(I
)

D
α

ρ
St

at
is

ti
c

β̂ 1
β̂ 2

#
β̂ 1

β̂ 2
#

β̂ 1
β̂ 2

#

S
−3

0.
2

SM
0.

59
8

0.
59

8
12

2
0.

50
6

0.
59

3
85

0.
51

2
0.

52
0

99
9

SS
E

0.
28

4
0.

38
9

0.
30

1
0.

38
0

0.
20

0
0.

28
7

0.
5

SM
0.

55
0

0.
51

0
27

7
0.

24
3

0.
48

5
14

6
0.

51
0

0.
51

8
1,

00
0

SS
E

0.
27

6
0.

37
6

0.
29

0
0.

35
9

0.
21

3
0.

29
9

0.
8

SM
0.

54
4

0.
52

7
40

3
−0

.0
46

0.
51

5
23

9
0.

50
4

0.
51

6
99

9
SS

E
0.

27
3

0.
34

2
0.

30
1

0.
38

3
0.

21
9

0.
31

7
1

0.
2

SM
0.

47
7

0.
50

8
1,

00
0

0.
50

1
0.

50
9

1,
00

0
0.

50
3

0.
50

9
1,

00
0

SS
E

0.
13

9
0.

20
2

0.
14

1
0.

20
3

0.
13

7
0.

19
9

0.
5

SM
0.

43
1

0.
50

0
1,

00
0

0.
50

0
0.

50
0

1,
00

0
0.

49
9

0.
49

9
1,

00
0

SS
E

0.
16

6
0.

24
6

0.
17

1
0.

25
8

0.
16

6
0.

24
8

0.
8

SM
0.

38
6

0.
51

6
1,

00
0

0.
51

6
0.

52
0

1,
00

0
0.

51
5

0.
51

9
1,

00
0

SS
E

0.
20

5
0.

29
7

0.
22

2
0.

32
2

0.
21

6
0.

31
1

N
S

−3
0.

2
SM

0.
49

7
0.

28
4

19
0.

44
9

0.
04

5
20

0.
51

4
0.

42
8

95
5

SS
E

0.
50

9
1.

23
4

0.
50

3
1.

08
2

0.
45

3
1.

40
6

0.
5

SM
0.

63
5

−0
.6

93
31

0.
17

4
−0

.7
89

36
0.

50
7

0.
52

0
96

2
SS

E
0.

51
2

0.
88

6
0.

49
5

1.
15

1
0.

45
9

1.
38

8
0.

8
SM

0.
84

4
−1

.1
22

12
0

0.
02

1
−3

.7
64

51
0.

49
1

0.
47

7
94

8
SS

E
0.

54
5

0.
66

5
0.

62
3

1.
38

7
0.

46
8

1.
44

7
1

0.
2

SM
0.

48
1

0.
45

3
99

9
0.

50
3

0.
51

1
99

9
0.

50
4

0.
50

6
1,

00
0

SS
E

0.
39

0
0.

59
8

0.
39

1
0.

60
7

0.
38

4
0.

60
0

0.
5

SM
0.

43
9

0.
32

4
1,

00
0

0.
50

9
0.

49
5

1,
00

0
0.

50
9

0.
49

2
1,

00
0

SS
E

0.
37

4
0.

56
2

0.
40

6
0.

64
0

0.
40

2
0.

63
1

0.
8

SM
0.

38
6

0.
20

1
99

9
0.

50
2

0.
53

7
99

6
0.

49
9

0.
53

2
1,

00
0

SS
E

0.
29

0
0.

44
2

0.
40

8
0.

69
3

0.
41

7
0.

68
6



132 T.S. Mallick et al.

Table 3 (Based on data using conditional approach) Simulated means (SM) and standard errors
(SSE) based on 1,000 simulations for β = 0.5 and selected values of ρ and α , selected design

WGEE(AR(1)) WGEE(I) FSGQL(I)

Design α ρ Statistic β̂ # β̂ # β̂ #

No −3 0.2 SM – 0 0.565 912 0.495 1,000
covariate SSE – 0.238 0.200

0.5 SM – 0 0.550 910 0.495 1,000
SSE – 0.250 0.206

0.8 SM – 0 0.523 907 0.495 1,000
SSE – 0.261 0.218

1 0.2 SM 0.402 6 0.471 1,000 0.495 1,000
SSE 0.293 0.151 0.139

0.5 SM 0.323 4 0.478 1,000 0.505 1,000
SSE 0.374 0.170 0.166

0.8 SM 0.391 4 0.466 1,000 0.493 1,000
SSE 0.201 0.199 0.205

p = 1 −3 0.2 SM 0.472 415 0.479 375 0.497 998
stationary SSE 0.585 0.598 0.275

0.5 SM 0.511 571 0.528 458 0.505 999
SSE 0.621 0.647 0.287

0.8 SM 0.489 696 0.503 574 0.515 1,000
SSE 0.606 0.643 0.330

1 0.2 SM 0.498 1,000 0.499 1,000 0.499 1,000
SSE 0.537 0.538 0.198

0.5 SM 0.513 1,000 0.512 1,000 0.509 1,000
SSE 0.568 0.571 0.245

0.8 SM 0.509 1,000 0.514 1,000 0.514 1,000
SSE 0.579 0.595 0.290

Note that # refers to the number of simulations where convergence is achieved

approach is referred to as the WGEE(AR(1)) approach. Specifically, we set Vi(α∗)=
A1/2

i R∗
i (α∗)A1/2

i , where R∗
i (α∗) is a T ×T correlation matrix with corr(Yit ,Yi,t+l) =

α∗l and Ai = diag(σi,11, · · · ,σi,tt , · · · ,σi,TiTi ,0, · · · ,0) with σi,tt = μit(1− μit). To
avoid estimation of α∗ we have used α∗ = ρ . The results obtained for each of the
six combinations of ρ and α (the missing dependence parameter) are also presented
in Table 1. For α = −3, the WGEE(AR(1)) estimates based on an AR(1) type
structure are significantly better than those based on independence, and the number
of replications that converged is also notably higher. Nonetheless, the independent
FSGQL(I) estimates are still noticeably better than either of the WGEE estimates.
Also of note is the fact that the WGEE(AR(1)) estimates based on the AR(1)
structure for α = 1 are outperformed by their independent covariance structure
counterparts.

We also considered a stationary design consisting of one covariate with asso-
ciated parameter β1 = 0.5. Specifically, for all t = 1, · · · ,4, we set xit1 = −1 for
i = 1, · · · ,K/4, xit1 = 0 for i = (K/4)+ 1, · · · ,3K/4, and xit1 = 1 for i = (3K/4)+
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1, · · · ,K. The simulation results associated with this design are presented in Table 1
for each combination of ρ and α . When α = 1, the performance of WGEE(AR(1)),
WGEE(I) and FSGQL(I) are very similar. It is also important to note that when
α =−3, despite the fact that the average estimates for the regression parameters are
better for WGEE under relatively higher longitudinal correlations of ρ = 0.5 and 0.8,
the estimated standard errors are significantly smaller for the proposed FSGQL(I)
technique. In addition, WGEE experiences convergence problems on a significant
number of simulation replications; when an independent covariance structure is
assumed, convergence rates ranged between 40% and 60%, approximately, and were
only slightly better when an AR(1) structure was specified.

Two designs consisting of two covariates with associated regression parameters
β1 = β2 = 0.5 were also studied; one consisted of two stationary covariates, the other
of nonstationary ones. For the design consisting of two stationary covariates, we set
xit1 = 1 for all i = 1, · · · ,100 and t = 1, · · · ,4 as in the design with no covariate,
and xit2 according to the values specified for the single covariate design described
above. The two covariates in the nonstationary design were set as follows:

xit1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 , for i = 1, · · · , K

4 ; t = 1,2

0, for i = 1, · · · , K
4 ; t = 3,4

− 1
2 , for i = K

4 + 1, · · · , 3K
4 ; t = 1

0, for i = K
4 + 1, · · · , 3K

4 ; t = 2,3
1
2 , for i = K

4 + 1, · · · , 3K
4 ; t = 4

t
2T , for i = 3K

4 + 1, · · · ,K; t = 1, · · · ,4

and

xit2 =

⎧⎪⎪⎨⎪⎪⎩
t−2.5

2T , for i = 1, · · · , K
2 ; t = 1, · · · ,4

0, for i = K
2 + 1, · · · ,K; t = 1,2

1
2 , for i = K

2 + 1, · · · ,K; t = 3,4

The results for both the stationary and non-stationary two-covariate designs are
presented in Table 2. For both designs, when α = 1, the performance of WGEE(I)
under an independent covariance structure and FSGQL(I) is very similar. The
estimates obtained using WGEE(AR(1)) with an AR(1) structure appear to be
biased. When α =−3, and there is a significantly higher degree of missingness, the
estimates obtained under WGEE are biased regardless of the assumed covariance
structure and the level of longitudinal correlation; this is particularly the case in the
nonstationary design. Also of note is the fact that the convergence rates under the
WGEE approach are very poor, with the majority under 5% for the nonstationary
design.
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3.2 Comparison of WGEE(AR(1)), WGEE(I), and FSGQL(I)
Approaches: Generating R and y conditionally

Because Rit and yit are independent conditional on the history Hi,t−1(y), instead of
generating them by using a multinomial distribution discussed in Sect. 3.1.1, one
may generate them by using a conditional approach as follows:

1. Generate yi1 from bin(μi1) for all i, i = 1, . . . ,K.
2. For i-th individual, generate Ri2 from bin(gi2), where git is given by (9) for

t = 2, . . . ,T .
3. If Ri2 = 0, consider Ri j = 0 and stop generating yi j ( j = 2, · · · ,T ).
4. If Ri2 = 1, generate yi2 from bin(λi2), where λit is the mean of Yit conditional on

yi,t−1 for t = 2, . . . ,T , as given by (1).
5. Repeat from step 2 for j = 3, · · · ,T .

The estimates for the same designs are obtained as in Sect. 3.1.2, and the
simulation results are reported in Tables 3 and 4. The results are similar to those
of Tables 1 and 2, except that WGEE approaches appear to encounter more
convergence problems especially when proportion of missing values is large.

3.3 Performance of CWGQL Approach: Multinomial
Distribution-Based Joint Generation of R and y

As opposed to the marginal approach where the unconditional mean function μit(β )
is modeled, in the longitudinal setup it is more appropriate to model the conditional
regression (mean) function. When complete longitudinal binary data follow an
AR(1)-type correlation model, as pointed out in (1), the conditional regression
function may be modeled as

λit(β ,ρ) = μit +ρ(yi,t−1 − μi,t−1), for t = 2, . . . ,T.

Furthermore, as pointed out in (28), because in the incomplete longitudinal setup
with MAR mechanism one finds

E

[
Rit(Yit −λit(β ,ρ))

wit
| Hi,t−1

]
= 0,

the regression parameter β in μit(β ) modeled through λit(β ,ρ) can be estimated
by solving the CWGQL estimating (36). For the same design parameters used in
Sect. 3.1.2 for Tables 1 and 2, by generating incomplete data using the multinomial
distribution discussed in Sect. 3.1.1, we have obtained the CWGQL estimates for β
under different scenarios as for the results shown in Tables 1 and 2. The CWGQL
estimates along with their standard errors are reported in Tables 5 and 6.



136 T.S. Mallick et al.

Table 5 (Based on data
using joint generation
approach) Simulated means
(SM) and standard errors
(SSE) for CWGQL approach
with β = 0.5 and selected
values of ρ and α , based on
1,000 simulations

No covariate p = 1 (stationary)

α ρ Statistic β̂ # β̂ #

−3 0.2 SM 0.505 1,000 0.494 1,000
SSE 0.178 0.247

0.5 SM 0.505 1,000 0.509 1,000
SSE 0.188 0.256

0.8 SM 0.507 1,000 0.517 1,000
SSE 0.204 0.291

1 0.2 SM 0.500 1,000 0.499 1,000
SSE 0.138 0.183

0.5 SM 0.501 1,000 0.493 1,000
SSE 0.158 0.224

0.8 SM 0.497 1,000 0.514 1,000
SSE 0.183 0.265

Note that # refers to the number of simulations where conver-
gence is achieved

Table 6 (Based on data using joint generation approach) Simulated means (SM) and standard
errors (SSE) for CWGQL approach with β1 = β2 = 0.5 and selected values of ρ and α , based on
1,000 simulations

Stationary covariates Nonstationary covariates

α ρ Statistic β̂1 β̂2 # β̂1 β̂2 #

−3 0.2 SM 0.522 0.513 1,000 0.517 0.515 789
SSE 0.185 0.260 0.429 0.992

0.5 SM 0.516 0.510 1,000 0.507 0.645 770
SSE 0.201 0.278 0.410 0.903

0.8 SM 0.506 0.508 1,000 0.497 0.730 597
SSE 0.203 0.298 0.370 0.837

1 0.2 SM 0.501 0.507 1,000 0.503 0.503 1,000
SSE 0.133 0.193 0.372 0.581

0.5 SM 0.498 0.500 1,000 0.502 0.471 901
SSE 0.160 0.232 0.350 0.515

0.8 SM 0.506 0.509 1,000 0.449 0.423 302
SSE 0.195 0.281 0.254 0.455

Note that # refers to the number of simulations where convergence is achieved

In order to examine the relative performance of the CWGQL approach with
those of WGEE(AR(1)), WGEE(I), and FSGQL(I), it is sufficient to compare
the CWGQL approach with the FSGQL(I) approach only. This is because it
was found from the results in Tables 1 and 2 that the WGEE approaches may
encounter serious convergence problems (showing consistency breakdown) and also
may produce highly biased estimates, where the FSGQL(I) approach, in general,
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does not encounter such convergence problems and produces almost unbiased
estimates even if a large proportion of values are missing. Now as compared
to the FSGQL(I) approach, the CWGQL approach appears to produce slightly
more efficient estimates than the FSGQL(I) approach. For example, when α = 1
(moderate missing) and ρ = 0.5, in the no-covariate case, the FSGQL(I) approach
(Table 1) produces an average estimate of β = 0.5 as 0.504 with standard error
0.169, whereas the CWGQL approach (Table 5) produces β estimate as 0.501 with
standard error 0.158. Similarly when ρ = 0.8 and α = −3 (high missing), in the
stationary one-covariate case, FSGQL(I) produces an estimate with standard error
0.325 as compared to 0.291 for CWGQL. Similar results are found for the stationary
two-covariate case. Also in these stationary cases, the CWGQL approach does not
encounter any convergence problems even if the proportion of missing is high. In the
non-stationary cases however, the CWGQL approach encounters some convergence
problems when the proportion of missing is high, but the problem is less serious
than the WGEE and WGEE(I) approaches.

4 Conclusion and Discussion

It was found that the existing WGEE (Robins et al. 1995) and WGEE(I) approaches
in general encounter convergence problems when the proportion of missing is
high, and the WGEE approach may produce highly biased estimates even when
the proportion of missing is moderate or low. These results agree with the recent
study reported by Sutradhar and Mallick (2010). The WGEE(I) approach, however,
produces almost unbiased estimates and consequently this approach produces
consistent estimates when the proportion of missing is moderate or low. However, it
can be inefficient. The proposed FSGQL(I) approach does not appear to encounter
any serious convergence problems even when the proportion of missing is high and
the covariates are non-stationary. Also, it produces unbiased estimates similar to
the WGEE(I) approach but with smaller standard errors, showing that FSGQL(I)
is more efficient as expected than the WGEE(I) approach. Thus even with high
proportion of missing, one may reliably use the proposed FSGQL(I) approach for
regression estimation whether the covariates are stationary or time dependent. The
general FSGQL approach is supposed to increase the efficiency as compared to
the FSGQL(I) approach when correlations are large, but this will be studied in the
future.

We have also reported some results on the performance of a conditional
estimating equation, namely CWGQL estimating equation approach. This approach
was found to produce regression estimates with more efficiency than the FSGQL(I)
approach. However as compared to the FSGQL(I) approach it encounters conver-
gence problems when covariates are time dependent and the proportion of missing
is high. However, it experiences less convergence problems than the WGEE(I)
approach.
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Innovative Applications of Shared Random
Parameter Models for Analyzing Longitudinal
Data Subject to Dropout

Paul S. Albert, Rajeshwari Sundaram, and Alexander C. McLain

Abstract Shared random parameter (SRP) models provide a framework for analyz-
ing longitudinal data with missingness. We discuss the basic framework and review
the most relevant literature for the case of a single outcome followed longitudinally.
We discuss estimation approaches, including an approximate approach which is
relatively simple to implement. We then discuss three applications of this framework
in novel settings. First, we show how SRP models can be used to make inference
about pooled or batched longitudinal data subject to non-ignorable dropout. Second,
we show how one of the estimation approaches can be extended for estimating
high dimensional longitudinal data subject to dropout. Third, we show how to use
jointly model complex menstrual cycle length data and time to pregnancy in order to
study the evolution of menstrual cycle length accounting for non-ignorable dropout
due to becoming pregnant and to develop a predictor of time-to-pregnancy from
repeated menstrual cycle length measurements. These three examples demonstrate
the richness of this class of models in applications.

1 Introduction

Modeling longitudinal data subject to missingness has been an active area of
research in the last few decades. The missing-data mechanism is said to be
missing completely at random if the probability of missing is independent of
both the observed and unobserved data. Further, the mechanism is not missing
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at random (NMAR) if the probability of missingness depends on the unobserved
data (Rubin 1976; Little and Rubin 1987). It is well known that naive methods
that do not account for NMAR can lead to biased estimation. The use of shared
(random) parameter models has been been one approach that accounts for non-
random missing data. In this formulation, a model for the longitudinal response
measurements is linked with a model for the missing-data mechanism through a
set of random effects that are shared between the two processes. Wu and Carroll
(1988) proposed a model whereby the response process, which was modeled with
a linear mixed model with a random intercept and slope was linked with the
censoring process by including an individual’s random slope as a covariate in a
probit model for the censoring process. When the probit regression coefficient for
the random slope is not zero, there is a dependence between the response and
missing-data processes. Failure to account for this dependence can lead to biased
estimation of important model parameters. Shared-parameter models (Follmann
and Wu 1995) induce a type of non-randomly missing-data mechanism that has
been called “informative missingness” (Wu and Carroll 1988). For a review and
comparison with other methods, see Little (1995), Hogan and Laird (1997), and
Vonesh et al. (2006). More recently Molenberghs et al. (2012) have discussed a
fundamental non-identifiability of shared random effects models. Specifically, these
models make non-verifiable assumptions about data not seen and there are multiple
models in a wide class that can equally explain the observed data. Thus, shared
random parameter (SRP) models make implicit assumptions that need to be justified
from on a scientific basis and cannot be completely verified empirically.

This article discusses some applications of SRPs to some interesting novel
applications. In Sect. 2, we set up the general model formulation and show how this
mechanism induces a special type of nonignorable missingness. We also discuss
both a full maximum-likelihood approach and conditional approach for parameter
estimation that is easier to implement. We discuss some examples where a single
longitudinal measurement is subject to non-ignorable dropout. Section 3 shows an
example of batched laboratory data and how a SRP model can be used to account
for the apparent non-ignorable missingness. In Sect. 4 we provide an example of the
joint modeling of multiple or high dimensional longitudinal biomarker and time-to-
event data. Section 5 shows an example of jointly modeling complex menstrual
cycle data and time-to-pregnancy using a SRP approach. Lastly, we present a
discussion in Sect. 6.

2 Model Formulation and Estimation

Let Yi = (Yi1,Yi2, . . . ,YiJ)
′ be a vector of longitudinal outcomes for the ith subject

(i = 1,2, . . . , I) observed on J occasions t1, t2, . . ., tJ , and let Ri = (Ri1,Ri2, . . . ,RiJ)
′

be a vector of random variables reflecting the missing data status (e.g., Ri j = 0
denoting a missed visit). Further, let bi = (bi1,bi2, . . . ,biL)

′ be an L-element vector
of random effects for the ith subject which can be shared between the response and
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missing data mechanism. We assume that bi is multivariate normal with mean vector
0 and covariance matrix Σb. Covariates Xi j are also measured which can influence
both Yi j and Ri j.

The joint distribution of Yi,Ri,bi can be written as

f (yi,ri,bi) = g(yi|bi,ri)m(ri|bi)h(bi).

We make the assumption that conditional on the random effects, the responses do
not depend on the missing data status, thus g(yi|bi,ri) = g(yi|bi). Furthermore, the
elements of Yi are conditionally independent given bi. By conditional independence,
the density for the response vector Yi conditional on bi, g(yi|bi) can be decomposed
into the product of the densities for the observed and unobserved values of Yi.
Namely, g(yi|bi) = g(yo

i |bi)g(ym
i |bi), where yo

i and ym
i are vectors of observed and

missing data responses, respectively, for the ith subject. The density of the observed
random variables can be expressed as

f (yo
i ,ri) =

∫
ym

∫
b

f (yo
i ,y

m
i ,ri)dbdym

i

=

∫
ym

∫
b

g(yo
i |bi)g(y

m
i |bi)m(ri|bi)h(bi)dbdym

i

=

∫
b

g(yo
i |bi)m(ri|bi)h(bi)

{∫
ym

i

g(ym
i |b)dym

i

}
dbi

=

∫
b

g(yo
i |bi)m(ri|bi)h(bi)dbi. (1)

Although the conditional independence of Yi|bi is easy to verify when there is
no missing data, it is difficult to verify for SRP models. Serial correlation could
be incorporated (conditional on the random effects) using autoregressive or lagged
responses (see, Zeger and Qaqish 1988; Albert 2000; Sutradhar and Mallick 2010).
These lag-response modeling components can be formulated with the addition
of a shared random effect that links the response and missing data mechanism
together. Alternatively, Albert et al. (2002) link together the response and missing
data mechanism with a shared latent process where the subject-specific random
effect b is replaced by a random process bi = (bi1,bi2, . . . ,biJ)

′. They consider a
random process that follows a continuous-time exponential correlation structure
since observations are not equally spaced. Although the shared latent processes
model is an attractive approach, it requires computationally intensive techniques
such as Monte-Carlo EM for parameter estimation. In the remainder of this article,
we focus on the SRP rather than the shared latent process model.

Tsiaits and Davidian (2004) provide a concise discussion of how the joint density
is obtained for the case where missingness is monotone (i.e., patients only drop out
of the study) and measured in continuous time.

The choice of a density function g depends on the type of longitudinal response
data being analyzed. For Gaussian longitudinal data, g can be specified as a Gaussian
distribution, and the model formulation can be specified as a linear mixed model
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(Laird and Ware 1982). A simple linear mixed model which can be used as an
illustration is

Yi j|Xi,bi = β0 +β1Xi + bi + εi j, (2)

where Xi is a subject-specific covariate such as treatment group, bi is a random
effect which is often assumed normally distributed, and εi j is an error term
which is assumed normally distributed. Alternatively, for discrete or dichoto-
mous longitudinal responses, g can be formulated as a generalized linear mixed
model (Follmann and Wu 1995; Ten Have et al. 1998; Albert and Follmann
2000).

The choice of the density for the missing data indicators, m, depends on the type
of missing data being incorporated. When missing data is a discrete time to dropout,
a monotone missing data mechanism, then a geometric distribution is often used for
m (Mori et al. 1994). For example, the probability of dropping out is

Φ−1{P(Ri j = 0|Ri j = 1)}= α0 +αXi +θbi. (3)

Various authors have proposed shared random effects models for the case in
which dropout is a continuous event time (Schluchter 1992; Schluchter et al.
2001; DeGruttola and Tu 1994; Tsiatis et al. 1995; Wulfson and Tsiatis 1997;
Tsiatis and Davidian 2001; Vonesh et al. 2006). When missing data includes only
intermittently missed observations without dropout, then the product of Bernoulli
densities across each of the potential observations may be a suitable density function
for g. Alternatively, when multiple types of missing data such as both intermittent
missingness and dropout need to be incorporated, a multinomial density function
for g can be incorporated (Albert et al. 2002).

The shared random effects model accounts for a MNAR data mechanism, which
can be seen with the following argument. Suppressing the index i for notational
simplicity, suppose that the random effect b is a scalar with R j indicating whether
Yj is observed. MAR implies that the conditional density of R j given the complete
data Y does not depend on Y m, while a MNAR implies that this conditional density
depends on Y m. The conditional density of R j given Y = (Y o,Y m) is

f (r j |ym,yo) =

∫
g(r j|b)g(ym,yo|b)h(b)db∫

g(ym,yo|b)h(b)db∫
g(r j|b)h(b|yo,ym)db.

A MNAR data mechanism follows since the conditional density depends on ym and
since h(b|yo,ym) depends on ym. It is interesting to note that for models (2) and (3)
when the residual variance is very small, error is very small, h(r j|ym,yo)≈ h(r j|yo)
since h(b|ym,yo) ≈ h(b|yo). In this situation, the missing data mechanism will be
close to MAR, so simply fitting a likelihood-based model for yo will result in valid
inference.
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Albert and Follmann (2007) discuss various SRP modeling formulation for
analyzing binary longitudinal data with applications to an opiates clinical trial.

There are various approaches for parameter estimation. First, maximization of
the likelihood L = Π I

i=1 f (yo
i ,ri), where f is given by (1) can be used to obtain

the maximum-likelihood estimates (MLEs). Maximizing the likelihood may be
computationally intensive since it involves integrating over the random effects
distribution. For a high dimensional random effects distribution, this involves the
numerically difficult evaluation of a high dimensional integral. Approaches such as
Monte-Carlo EM or Laplace approximations of the likelihood (Gao 2004) may be
good alternatives to direct evaluation of the integral. Fortunately, many applications
involve only one or two shared random effects where the integral can be evaluated
more straightforwardly with Gaussian quadrature, adaptive Gaussian quadrature, or
other numerical integration techniques. Various statistical software packages can be
used to fit these models including procedures in SAS and specialized code in R.

An alternative approach for parameter estimation, which conditions on Ri, has
been proposed (Wu and Carroll 1988; Follmann and Wu 1995; Albert and Follmann
2000). In developing this approach, first note that the joint distribution of (Y o

i ,Ri,bi)
can be re-written as

f (yo
i ,ri,bi) = f (yo

i ,bi|ri)m(ri)
= f (yo

i |bi,ri)h(bi|ri)m(ri)
= g(yo

i |bi)h(bi|ri)m(ri).

Thus, the conditional likelihood for yo
i |ri is given by L = Π I

i=1

∫
g(yo

i |bi)h(bi|ri)dbi.
Note that this approximate conditional model can be directly viewed as a pattern
mixture model as

f (yo,r) =
∫

g(yo|b)h(b|r)db m(r)

= p(y|r)m(r),

Little (1993).
For illustration, we can estimate the treatment effect β1 in the non-random

dropout model (2) and (3) by noting that bi|di can be approximated by a normal
distribution with mean ω0 +ω1di. The conditional model can then be characterized
by a linear mixed model of the form Yi j = β ∗

0 +ω1di +β ∗
1 + bi + εi j. An important

point is that the parameters of this model are conditional on the dropout time di and
are easily interpretable. What is of interest are inferences on the marginal distribu-
tion of Yi j. To estimate β1 in model (2), we need to marginalize over the dropout time
distribution. Specifically, E(Y |x) = E(E(Y |d,x)) = β ∗

0 + β ∗
1 x +ω1E(d|x), where

E(d|x) is the conditional distribution of dropout given the covariate x. We can
estimate this conditional distribution in a two group comparison with Ê(d|x) = dx.
Thus, β1 = E(Y |x = 1)−E(Y |x = 0) = β ∗

1 +ω1(d1 − d0). Variance estimation for
the MLE approach can be obtained through standard asymptotic techniques (i.e.,
inverting the observed Fisher information matrix). For the conditional modeling
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approach, the simplest approach is to perform a bootstrap procedure (Efron and
Tibshirani 1993) where all measurements on a chosen individual are sampled with
replacement.

3 An Analysis of Longitudinal Batched Gaussian Data
Subject to Non-random Dropout

Due to cost or feasibility, longitudinal data may be measured in pools or batches
whereby samples are combined or averaged across individuals at a given time point.
In these studies, interest may be on comparing the longitudinal measurements across
groups. A complicating factor may be that subjects are subject to dropout from the
study. An example of this type of data structure is a large mouse study examining
the effect of an experimental antioxidant on the weight profiles over time in mice.
It was suspected that animals receiving the treatment would reach a lower adult
weight than control animals and that the decline in weight among treated animals
would be less than that for control animals. Ninety-five genetically identical animals
were enrolled into the treatment and control groups, respectively (190 total animals).
Within a group, five animals were placed in each of the 19 cages at birth. Due to the
difficulty in repeatedly weighting each animal separately, the average weight per
cage was recorded at approximately bi-weekly intervals over the life span of the
animals (2–3 years). At each follow-up time, average batch weight was measured as
the total batch weight divided by the number of animals alive in that batch.

Albert and Shih (2011) proposed a SRP model for each of the two groups
separately. Initially, we present the model when individual longitudinal data are
observed and then develop the model for batched longitudinal data. Denote Yi j as
the jth longitudinal observation at time t j for the ith subject. As described in Sect. 2,
for a dropout process where an individual dies between the (d − 1)th and the dth
time point, Ri1 = Ri2 = . . . = Rid−1 = 1 and Rid = 0. The dropout time for the ith
subject is denoted as di.

We assume a linear mixed model in each group of the form

Yi j = β0 +β1t j + b0i+ b1it j + εi j, (4)

where bi = (b0i,b1i)∼ N(0,Σb) and εi j ∼ N(0,σ2
ε ) is independent of bi. Further, we

denote

Σb =

(
σ2

b0 σb0b1

σb0b1 σ2
b1

)
.

Model (4) can be made more general by including a change point or additional
polynomial functions of time to the fixed and random effects. Similar to (2)
and (3), the dropout mechanism can be modeled with a geometric distribution in



Analyzing Longitudinal Data Subject to Dropout 145

which, conditional on the random intercept b0i and random slope b1i, Ri j|(Ri j−1 =
1,b0i,b1i) is Bernoulli with probability

P(Ri j = 0|Ri j−1 = 1,bi0,b1i) = Φ(α(t j)+θ1b0i +θ2b1i), (5)

where α(t j) is a function of follow-up time t j. As discussed in Sect. 2, incorporating
SRPs between the response and dropout process induces a non-ignorable dropout
mechanism.

For the longitudinal animal study, interest is on estimating changes in the
longitudinal process over time while accounting for potential informative dropout.
For batched samples, we do not observe the actual Yi j, but rather the average
measurement in each batch. At the beginning of the study, subjects are placed into
batches, and these batches are maintained throughout. Since subjects are dying over
time and the batch structure is maintained, there may be very few subjects in a batch
as the study draws to an end. Define Bl j as the set of subjects who are alive in the
lth batch at the jth time point. Define nl j as the number of subjects contained in
Bl j. Further, define Xl j =

1
nl j

∑
i∈Bl j

yi j, where in each group, l = 1,2, . . . ,L, and where

L is the number of batches in that group. Animals are grouped into batches of five
animals that are repeatedly weighed in the same cage. In this study, there are 19
batches in each group (L = 19 in each of the two groups).

When individual longitudinal measurements Yi j’s are observed, maximum-
likelihood estimation is relatively simple as described earlier in Sect. 2. Estimation
is much more difficult when longitudinal measurements are collected in batches. In
principle, we can obtain MLEs of the parameters in model (4)–(5), denoted by η ,
by directly maximizing the joint likelihood, where the individual contribution of the
likelihood for the lth batch is

L(Xl ,dl;η) =
∫

bl

f (Xl |bl) f (dl |bl) f (bl)dbl , (6)

where Xl = (Xl1,Xl2, . . . ,XlJl )
′, Jl is the last observed time-point immediately before

the last subject in the lth batch dies (nl j = 0 for j > Jl) and bl and dl are a vectors
of all the random effects and dropout times, respectively, for individuals in the lth
batch. In the application considered here, bl is a vector contain ten random effects
and dl is a vector containing the dropout times for a batch size of five mice per cage.
In (6), f (Xl |bl) = Π Jl

j=1 f (Xl j |bl), where f (Xl j |bl) is a univariate normal density

with mean given by β0 +β1t j +
1

nl j
∑

i∈Bl j

(b0i + b1it j) (see (4)) and variance σ2
ε /nl j.

Further, f (bi) is a multivariate normal with block diagonal matrix (under an ordering
where random effects on the same subjects are grouped together) and f (dl |bl) is the
product of geometric probabilities.

One approach to maximize the likelihood is to use the E–M algorithm. In the
E-step we compute the expected value of the complete-data log likelihood (the
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log-likelihood we would have if we observed bl) given the observed data Xl and
dl , and in the M-step, we maximize the resulting expectation. Specifically,

maxη

L

∑
l=1

E[logL(Xl ,bi,dl;η)|Xl ,dl ]), (7)

where η is a vector of all parameters of the shared parameter model and logL(Xl ,bl ,
dl;η) is the log of the complete data likelihood for the lth batch. The standard
E–M algorithm is implemented by iterating between an E- and an M-step, whereby
the expectation in (7) is evaluated in the E-step and the parameters are updated
through the maximization of (7) in the M-step. Unfortunately, the E-step is difficult
to implement in closed form. As an alternative Albert and Shih (2011) proposed
a Monte-Carlo (MC) EM algorithm where the E-step is evaluated using the
Metropolis–Hastings algorithm; the details are included in this paper.

Although the shared parameter modeling approach is feasible, it can be compu-
tational intensive due to the Monte-Carlo Sampling. An alternative approach that
is simpler to implement for the practitioner is the conditional model discussed in
Sect. 2. The conditional approach can easily be adapted for approximate parameter
estimation for the shared random effects model with batched longitudinal data.

The approximate conditional model approach discussed for unbatched longitu-
dinal data can be applied to the batched data (i.e., observing Xl j’s rather than Yi j’s).
Since Yi|di in (4) is multivariate normal, Xl |dl is also multivariate normal. Denote

Σc =

(
σ2

c0 σc0c1

σc0c1 σ2
c1

)
.

The conditional distribution of Xl |dl is multivariate normal with means and covari-
ance matrix given by

E(Xl j|dl) = ω0 +ω1t j +ω2 ∑
i∈Bl j

di/nl j +ω3 ∑
i∈Bl j

dit j/nl j, (8)

Cov(Xl j,Xl j′ |dl) =
min(nl j,nl j′)

nl jnl j′
(σ2

c0 + t jt j′σ2
c1 +(t j + t j′)σc0c1), (9)

for j �= j′, and

Var(Xl j|dl) =
1

nl j
(σ2

c0 + t2
j σ2

c1 + 2t jσc0c1 +σ2
ε ). (10)

The multivariate normal likelihood with mean and variance given by (8)–
(10) can be maximized using a quasi-Newton Raphson algorithm. This has been
implemented in R using the optimum function. Once the MLEs of the conditional
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model are computed, inference about the average intercept and slope can be
performed by marginalizing over the dropout times. Similar to what was described
for un-batched longitudinal data in Sect. 2, the average intercept and slope can be
estimated by ω̂o + ω̂2d1 and ω̂1 + ω̂3d2, respectively. Similar to variance estimation
for the SRP model, standard errors for the estimated mean intercept and slope can
be estimated using the bootstrap by re-sampling cage-specific data.

We examined the statistical properties of the maximum-likelihood and the
approximate conditional approach using simulations. First, we simulated data
according to the SRP model (4) and (5) and fit the correctly specified SRP model,
the approximate conditional model (APM), and an ignorable model (IM) that simply
fit (4) without regard to the dropout process. Data are simulated under model (4)
and (5) with σb0 = σb1 = σε = 1, σb0b1 = 0, α(t j) = −1, θ1 = θ2 = 0.25, and an
intercept and slope of 0 and 1, respectively. The average estimated slopes under
the SRP model, ACM, and the IM were 0.99 (SD = 0.12), 1.07 (0.11), and 0.83
(0.08), respectively. Not surprisingly, the SRP model is unbiased under the correct
specification and the IM is highly biased. The ACM is approximately unbiased
which is consistent with our previous theoretical discussions. Second, we simulated
data according to the ACM. In this case, the ACM is unbiased, but both the SRP
model and IM are severely biased. These simulations suggest that the ACM model
may be more robust (under different model formulations) than the SRP model.

A detailed analysis of these data is presented in Albert and Shih (2011). We will
summarize the analysis here. Scientific interest was on estimating and comparing the
weight in animals at full growth (15 months) and subsequently the decline in weight
in older age (slope) between the treatment group (an agent called Tempol) and a
control group. Table 1 shows estimates and standard errors for the IM (simply fit the
longitudinal model and discard the relationship between the two processes), SRP,
and conditional approximation approaches. All methods show that Tempol treated
animals have a statistically significant lower early adult weight (intercept) and a
slower decline in weight into later adulthood (slope) as compared with genetically
identical control animals.

4 Jointly Modeling Multivariate Longitudinal Measurements
and Discrete Time-to-Event Data

An exciting area in biomedical research is investigating the relationship between
biomarker measurements and time-to-event. For example, developing a predictor of
the risk of pre-term birth from biomarker data is an important goal in obstetrical
medicine. SRP models that link the two processes provides a nice way to do this.
Unfortunately, this is problematic in relatively high dimensions.

Denote Y1i=(Y1i1,Y1i2, . . . ,Y1iJi)
′, Y2i=(Y2i1,Y2i2, . . . ,Y2iJi)

′, . . .YPi=(YPi1,YPi2,. . . ,
YPiJi)

′ as the P biomarkers measured repeatedly at j = 1,2, ..,Ji time points.
Further, define Y ∗

pi = (Y ∗
pi1,Y

∗
pi2, . . . ,Y

∗
piJi

)′ as the longitudinal measurements without
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Table 1 Batched mouse data example

Method Parameters Est. tempol Est. control

Ignorable Intercept 28.1 38.4
(0.24) (0.76)

Slope −1.81 −2.47
(0.19) (0.28)

Shared random parameter Intercept 27.9 36.9
(0.24) (0.42)

Slope −1.87 −2.20
(0.17) (0.20)

Conditional Intercept 27.9 38.3
(0.23) 0.72)

Slope −1.48 −2.36
(0.19) (0.31)

The shared random parameter model and conditional model estimates of intercept and slope in the
Tempol and control groups. Estimates are presented with standard errors in ( ). Standard errors were
estimated using 250 samples of a non-parametric bootstrap

measurement error for the pth biomarker and Y ∗
i = (Y ∗

1i,Y
∗
2i, . . . ,Y

∗
Pi). We consider a

joint model for multivariate longitudinal and discrete time-to-event data in which
the discrete event time distribution is modeled as a linear function of previous
true values of the biomarkers without measurement error on the probit scale.
Specifically,

P(Ri j = 0|Ri j−1 = 1;X∗
i ) = Φ(α0 j +

P

∑
p=1

αpY ∗
pi( j−1)), (11)

where i = 1,2, . . . , I, j = 1,2, . . . ,Ji, Ri0 is taken as 1, α0 j governs the baseline
discrete event time distribution and αp measures the effect of the pth biomarker
(p = 1,2, . . . ,P) at time t j−1 on survival at time t j.

The longitudinal data is modeled assuming that the fixed and random effect
trajectories are linear. Specifically, the multivariate longitudinal biomarkers can be
modeled as

Ypi j = Y ∗
pi j + εpi j, (12)

where

Y ∗
pi j = βp0 +βp1t j + γpi0 + γpi1t j, (13)

where βp0 and βp1 are the fixed effect intercept and slope for the pth biomarker, and
γpi0 and γpi1 are the random effect intercept and slope for the pth biomarker on the
ith individual. Denote
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β = (β10,β11,β20,β21, . . . ,βP0,βP1)
′

and

bi = (b1i0,b1i1,b2i0,b2i1, . . .bPi0,bPi1)
′.

We assume that bi is normally distributed with mean 0 and variance Σb, where Σb is a
2P×2P dimensional variance matrix and εpi j are independent error terms which are
assumed to be normally distributed with mean 0 and variance σ2

pε (p = 1,2, . . . ,P).
Albert and Shih (2010b) proposed a two-stage regression calibration approach

for estimation, which can be described as follows. In the first stage, multivariate
linear mixed models can be used to model the longitudinal data. In the second
stage, the time-to-event model is estimated by replacing the random effects with
corresponding empirical Bayes estimates. There are three problems with directly
applying this approach. First, estimation in the first stage is complicated by the
fact that simply fitting multivariate linear mixed models results in bias due to
informative dropout; this is demonstrated by Albert and Shih (2010a) for the case
of P = 1. Second, parameter estimation for multivariate linear mixed models can
be computationally difficult when the number of longitudinal measurements (P) is
even moderately large. Third, calibration error in the empirical Bayes estimation
needs to be accounted for in the time-to-event model. The proposed approach will
deal with all three of these problems.

The bias from informative dropout is a result of differential follow-up whereby
the longitudinal process is related to the length of follow-up. That is, in (13), patients
with large values of Y ∗

pi j are more likely to have an early event when αp > 0
for p = 1,2, . . . ,P. There would be no bias if all J follow-up measurements were
observed on all patients. As proposed by Albert and Shih (2010a) for univariate
longitudinal data, we can avoid this bias by generating complete data from the
conditional distribution of Yi = (Y1i,Y2i, . . . ,YPi) given di, denoted as Yi|di. Since
Yi|di under model (11–12) does not have a tractable form, we propose a simple
approximation for this conditional distribution. The distribution of Yi|di can be
expressed as

P(Yi|di) =
∫

h(Yi|bi,di)g(bi|di)dbi. (14)

Since di and the values of Yi are conditional independent given bi, h(Yi|bi,di) =
h(Yi|bi), where h(Yi|bi) = Π P

p=1h(Ypi|bpi0,bpi1). The distribution of Yi|di can be
expressed as a multivariate linear mixed model if we approximate g(bi|di) by a
normal distribution. Under the assumption that g(bi|di) is normally distributed with
mean μdi = (μ01di ,μ11di , μ02di ,μ12di , . . ., μ0Pdi ,μ1Pdi)

′ and variance Σ∗
bdi

, and by
re-arranging mean structure parameters in the integrand of (14) so that the random
effects have mean zero, Yi|di corresponds to the following multivariate linear mixed
model
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Ypi j|(di,b
∗
ip0di

,b∗ip1di
) = β ∗

p0di
+β ∗

p1di
t j + b∗ip0di

+ b∗ip1di
t j + ε∗pi j, (15)

where i = 1,2, . . . , I, j = 1,2, . . . ,Ji, and p = 1,2, . . . ,P. The parameters β ∗
p0di

and β ∗
p1di

are intercept and slope parameters for the pth longitudinal measure-
ment and for patients who have an event time at time di or who are censored
at time tJ . In addition, the associated random effects b∗idi

= (b∗i10di
,b∗i11di

,b∗i20di
,

b∗i21di
, . . . ,b∗iP0di

,b∗iP1di
)′ are multivariate normal with mean 0 and variance Σ∗

bdi
, and

the residuals ε∗pi j are assumed to have an independent normal distribution with mean
zero and variance σ∗2

ε p . Thus, this conditional model involves estimating separate
fixed effect intercept and slope parameters for each potential event-time and for
subjects who are censored at time tJ . Likewise, separate random effects distributions
are estimated for each of these discrete time points. For example, the intercept and
slope fixed-effect parameters for the pth biomarker for those patients who have
an event at time di = t3 is β ∗

p0t3
and β ∗

p1t3
, respectively. Further, the intercept and

slope random effects for all P biomarkers on those patients who have an event
at time di = t3, b∗it3 , is multivariate normal with mean 0 and variance Σ∗

bt3
. A

similar approximation has been proposed by Albert and Shih (2010a) for univariate
longitudinal data (P = 1).

Recall that by generating complete data from (15) we are able to avoid the
bias due to informative dropout. However, when P is large, direct estimation of
model (15) is difficult since the number of elements in b∗idi

grows exponentially
with P. For example, the dimension of the variance matrix Σ∗

bdi
is 2P by 2P for

P longitudinal biomarkers. Fieuws and Verbeke (2005) proposed estimating the
parameters of multivariate linear mixed models by formulating bivariate linear
mixed models on all possible pairwise combinations of longitudinal measurements.
In the simplest approach, they proposed fitting bivariate linear mixed models
on all

(P
2

)
combinations of longitudinal biomarkers and averaging “overlapping”

or duplicate parameter estimates. Thus, we estimate the parameters in the fully
specified model (15) by fitting

(P
2

)
bivariate longitudinal models that only include

pairs of longitudinal markers. Fitting these bivariate models is computationally
feasible since only four correlated random effects are contained in each model.
(i.e., Σ∗

bdi
is a four-by-four dimensional matrix for each discrete event-time di.)

Duplicate estimates of fixed effects and random-effect variances from all pair-
wise bivariate models are averaged to obtain final parameter estimates of the
fully specified model (15). For example, when P = 4 there are (P − 1) = 3
estimates of β ∗

p0di
, β ∗

p1di
, σ∗2

ε p for the pth longitudinal biomarker that need to be
averaged.

Model (15) is then used to construct complete longitudinal pseudo data sets
which in turn are used to estimate the mean of the posterior distribution of an indi-
vidual’s random effects given the data. Specifically, multiple complete longitudinal
data sets can be constructed by simulating Ypi j values from the approximation to
the distribution of Yi|di given by (15) where the parameters are replaced by their
estimated values. Since the simulated data sets have complete follow-up on each
individual, the bias in estimating the posterior mean of bi caused by informative
dropout will be much reduced.
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The posterior mean of distribution bi given the data can be estimated by fitting
(11)–(13) to the generated complete longitudinal pseudo data. However, similar to
fitting the conditional model (15), fitting model (11)–(13) is difficult due to the high
dimension of Σb. Thus, we again use the pairwise estimation approach of Fieuws
and Verbeke (2005), whereby we estimate the parameters of (2)–(3) by fitting all
pairwise bivariate models and averaging duplicate parameter estimates to obtain
final parameter estimates. For each generated complete longitudinal pseudo data
set, the estimate of the posterior mean, denoted as b̂i= (b̂1i0, b̂1i1, . . . , b̂Pi0, b̂Pi1)

′ can
be calculated as

b̂i = ΣbZ′
iV

−1
i (Xi −Ziβ̂ ), (16)

where Zi is a PJ × 2P design matrix corresponding to the fixed and random effects
in (11)–(13), where Zi = diag(A′,A′, . . . ,A′)︸ ︷︷ ︸

P Times

,

A =

(
1 1 . . . 1
t1 t2 . . . tJ

)
,

and Vi is the variance of Xi. Estimates of Y ∗
pi j, denoted as Ŷ ∗

pi j, are obtained by

substituting (β̂p0, β̂p1, b̂pi0, b̂pi1) for (βp0,βp1,bpi0,bpi1) in (13).
To account for the measurement error in using b̂i as compared with using bi in

(11), we note that

P(Ri j = 0|Ri( j−1) = 1;Ŷ ∗
i ) = Φ

( α0 j +
P
∑

p=1
αpŶ ∗

pi j√
1+Var

{ P
∑

p=1
αp(Ŷ ∗

pi j −Y ∗
pi j)
}), (17)

where Var
{

∑P
p=1 ωp(Ŷ ∗

pi( j−1)−Y ∗
pi( j−1))

}
= C′

i jVar(b̂i − bi)Ci j , Ci j = (ω1,ω1t j−1,

ω2,ω2t j−1 , . . . ,ωp,ωpt j−1), Var(b̂i − bi) = Σb −ΣbZ′
i{V−1

i −V−1
i ZiQZ′

iV
−1
i }ZiΣb,

and where Q = ∑I
i=1(Z

′
iV

−1
i Zi)

−1 (Laird and Ware 1982). Expression (17) follows
from the fact that E[Φ(a+V)] = Φ

[
(a+ μ)/

√
1+ τ2

]
, where V ∼ N(μ ,τ2).

In the second stage, α0 j ( j = 1,2, . . . ,J) and αp (p= 1,2, . . . ,P) can be estimated
by maximizing the likelihood

L =
I

∏
i=1

[ Ji

∏
j=1

{1−P(Ri j = 0|Ri( j−1) = 1;Ŷ ∗
i )}
]
P(Ri(Ji+1) = 0|RiJi = 1;Ŷ ∗

i )
Ji<J, (18)

where P(Ri j = 0|Ri( j−1) = 1,Ŷ ∗
i ) is given by (17). Thus, we propose the following

algorithm for estimating α0 j and αp (p = 1,2, . . . ,P).
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1. Estimate the parameters of model (15) by fitting
(P

2

)
bivariate models to each of

the pairwise combinations of longitudinal measurements and averaging duplicate
parameter estimates. The bivariate models can be fit in R using code presented in
Doran and Lockwood (2006).

2. Simulate complete longitudinal pseudo measurements (i.e., Ypi j for p= 1,2, . . . ,P,
i = 1,2, . . . , I, j = 1,2, . . . ,J) from model (15) with model parameters estimated
from step 1.

3. Estimate the parameters in model (12)–(13) without regard to the event time
distribution from complete longitudinal pseudo measurements (simulated in
step 2) by fitting all possible

(P
2

)
bivariate longitudinal models and averaging

duplicate model parameter estimates.
4. Calculate b̂i using (7) and Ŷ ∗

pi j using (13) with bi replaced by b̂i and β being

replaced by β̂ estimated in step 3.
5. Estimate α0 j ( j = 1,2, ..,J) and αp (p = 1,2, . . . ,P) using (17) and (18).
6. Repeat steps 2 to 5 M times and average α̂0 j and α̂p to get final estimates.

We choose M = 10 in the simulations and data analysis since this was shown
to be sufficiently large for univariate longitudinal modeling discussed in Albert
and Shih (2010a). Asymptotic standard errors of α̂0 j and α̂p cannot be used for
inference since they fail to account for the missing data uncertainty in our procedure.
The bootstrap (Efron and Tibshirani 1993) can be used for valid standard error
estimation.

This approach is most useful in situations where the number of longitudinal
measurements is very large (e.g., panels of cytokine measurements followed
longitudinally). For computational simplicity, we focus on a simulated example
where three biomarkers are measured longitudinally at five time points on 300
individuals. Table 2 shows the results of these simulations. The results show that
simply using the observed longitudinal data will result in severely biased estimation.
The proposed approach results in unbiased estimation for the parameters of the joint
model. The table also includes estimates for the situation in which we observe the
biomarkers without measurement error (only possible to do in simulations). This
strawman case simply shows us that we could do better in terms of efficiency if the
biomarkers could be assessed with less measurement error.

Table 2 Simulation shows estimates for a method that uses the true values of the markers without
measurement error (NoME), the proposed method (Proposed), and an approach that uses the
observed biomarkers (Observed)

Parameters True values NoME Proposed Observed

α0 −1.75 −1.77 (0.115) −1.76 (0.180) −1.37 (0.089)
α1 0.40 0.408 (0.060) 0.405(0.089) 0.221(0.042)
α2 0 0.00 (0.058) 0.00(0.0.077) 0.001(0.042)
α3 0.40 0.405 (0.062) 0.400(0.0.092) 0.229(0.043)

We simulate according to (11)–(13) with α0 j = α0 for all j and with stated values of α1, α2, and
α3. Remaining values are given in Table 1 of Albert and Shih (2010b)
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5 Jointly Modeling of Menstrual Cycle Length
and Time-to-Pregnancy

An important scientific problem in reproductive epidemiology is both to char-
acterize the menstrual cycle patterns in women who are attempting pregnancy
and to develop predictive models for time-to-pregnancy. A SRP model that links
together the complex menstrual cycle pattern with time-to-pregnancy is important
for valid statistical analysis in both problems. Specifically, when interest focuses on
characterizing longitudinal changes in the menstrual cycle, it is important to account
for the dependence between the two processes since failure to do so results in
informative dropout in the longitudinal process. Further, incorporating dependence
between the two processes is important for developing a flexible class of prediction
models of time-to-pregnancy.

The menstrual cycle pattern is complex since it is well known to be long
tailed with a proportion of cycles being unusually long while a majority appear
within normal ranges. Various authors (e.g., Guo et al. 2006 and references within)
have proposed two component mixture models with one component reflecting a
distribution with a long right tail and the other reflecting a normal distribution.
McLain et al. (2012) propose a class a mixture model with a normal distribution
for “normal” cycles and a long tailed distribution (reflecting the possibility of both
extremely long and short irregular cycles). Further, McLain et al. introduce random
effects which are shared between the two models as well as with a discrete time
survival model characterizing time-to-pregnancy.

For illustration, we present a simplified version of McLain et al.’s modeling
approach without external covariates. The menstrual cycle is modeled as a mixture
of two components. First, for normal cycles

YN,i j = μi + εN,i j (19)

= β0 + bN,i + εN,i j, εN,i j ∼ N(0,σ2
i ),

where σ2
i = σ2

0 exp(b+ bS,i). For abnormal cycles, the following representation is
assumed

YA,i j = β0 + bA,i+ εA,i j, εA,i j ∼ EVD(0,η), (20)

where EVD(0,η) denotes an extreme-value type I distribution with location 0 and
scale η . Further, for implementation it was assumed that bA,i j = εbN,i j , that the
between subject heterogeneity is a scalar shift between the normal and abnormal
cycles. The distribution of the menstrual cycle length Yi j is completed through the
specification of the mixture, Yi j = gi jYN,i j +(1− gi j)YA,i j, where gi j is an indicator
that the ith women’s jth cycle is normal, and p = P(gi j = 1). Finally, time-to-
pregnancy is specified with a discrete-time survival model as in (5) and (11) with a
different link function,
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P(Ri j = 0|Ri j−1 = 1,bN,i,bS,i) = 1− exp(−Vi j exp(ω +φμbA,i +φσ bS,i)), (21)

where Vi j is an indicator of whether the ith subject had sexual intercourse during
the fertile window (period in which they can conceive) during the jth cycle. The
parameters φμ and φσ characterize the dependence between time-to-pregnancy
and the mean structure and variance structure (among normal cycles), respec-
tively. Negative values of these parameters characterize positive associations be-
tween the two processes in terms of mean and variance of the longitudinal
process.

Parameter estimation was conducted by maximizing the joint likelihood as
described in their manuscript. The major complication was evaluating the bi-variate
integral in the joint likelihood (integrating over the bi-variate random effects).
McLain et al. used Gaussian quadrature (Abramowitz and Stegun 1972) for this
numerical integration.

McLain et al. (2012) fit this model to interesting time-to-pregnancy cohort data.
Of interest is that they found estimates of φμ which were positive and estimates
of φσ which were negative (φσ estimates were significantly different from zero),
reflecting that women with shorter cycles and more normal cycle variability had a
longer time to pregnancy.

6 Discussion

This paper presents a summary of methodology and approaches for using SRP
models to analyze longitudinal data subject to missingness. The basic approach
which started with Wu and Carroll (1988) has been expanded in many directions. In
this paper we reviewed some of these expansions focusing on making inference in
batched or pooled longitudinal data subject to missingness, joint modeling of high
dimensional longitudinal data and time-to-event data, and in the joint modeling of
time-to-pregnancy and complex menstrual cycle patterns.

We discuss both a direct maximum-likelihood approaches and approximating
approaches for fitting SRP models. The direct modeling approaches, although
feasible for univariate longitudinal responses, can be very computationally intensive
for either batched or high-dimensional longitudinal data. In fact, direct maximum-
likelihood approach would be infeasible for joint modeling of high-dimensional and
time-to-event data with all known approaches. The approximate conditional model,
although not ideal in certain cases, provides a feasible solution to this difficult
problem.

Most SRP models assume that the random effects are normally distributed.
Various authors have investigated the robustness of inferences for different settings.
Davidian et al. have shown that for a joint model of longitudinal and survival
inferences on joint model parameters are relatively insensitive to random effects
misspecification, particularly when the number of longitudinal measurements is
relatively large.
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Selection models where the non-ignorable missing data mechanism is incorpo-
rated by modeling the probability of missing as a direct function of the missed
observation had it been observed are alternatives to SRP models. Pattern mixture
modeling, another commonly used technique for analyzing longitudinal data with
missingness, is one where we condition on the missing data pattern and make
inference marginalized over the missing data pattern. In spirt, the pattern mixture
model is the similar to the conditional model which is proposed as an approximation
to the SRP model.

We recommend that model adequacy be examined in traditional ways such as the
examination of residuals and fitted values as well as through goodness of fit tests.
However, as pointed out by Molenberghs et al. (2012), SRP models (as well as other
models for missing data) require assumptions about underlying mechanism that are
impossible to fully verify empirically. Knowledge about the subject at hand needs
to be incorporated in model development for proper inference.
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Response-Dependent Sampling with Clustered
and Longitudinal Data

Michael A. McIsaac and Richard J. Cook

Abstract Prospective cohort studies typically involve repeated assessment of
individuals to determine whether they have a particular health condition. The usual
goal in such studies is to relate the presence of the condition to disease markers or
exposure variables. Disease markers are often too difficult or costly to measure for
all individuals in a sample. In such settings, two- and multi-phase sampling designs
are routinely adopted to enable researchers to select individuals on whom these
expensive markers are to be assessed. In this article we review the rationale and
format of two-phase sampling designs in retrospective and cross-sectional studies.
We then develop frameworks for multi-phase designs in the context of studies with
clustered or longitudinal responses. Model-based and semi-parametric methods are
discussed for estimation and inference.

1 Introduction

Two-phase sampling designs have proven useful in epidemiology for ensuring
efficient use of resources when estimating the effect of expensive or otherwise
difficult to measure exposure variables on a response. Under such designs, a
regression model is often specified with a binary response indicating disease status
and a covariate vector recording the exposure variable of interest along with possible
auxiliary covariates. The first phase of sampling generates data on the response and
auxiliary covariates. A sub-sample of these individuals is chosen at a second phase
of sampling, and the expensive exposure variable is measured for these individuals.
Viewed as a whole, the full sample features missing exposure data in individuals
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selected in phase I but not selected in the phase II sub-sample, with the missing data
mechanism determined by the nature of the phase-II sampling probabilities.

There is a wide range of statistical approaches for regression with incomplete
covariate data, including methods based on maximum likelihood (Lawless et al.
1999), mean score equations (Reilly and Pepe 1995; Reilly 1996), inverse proba-
bility weighted estimating functions, and augmented inverse probability weighted
estimating functions (Robins et al. 1994; Tsiatis 2006). These approaches differ
in the nature of the assumptions required and the extent to which data from
individuals with incomplete exposure data are utilized. Maximum likelihood, while
potentially optimally efficient, requires one to model the distribution of the exposure
variable given any auxiliary variables, and misspecification of this model can lead
to an inconsistent estimator (Horton and Laird 2001). The mean score method
involves specification of unbiased estimating functions by nonparametrically esti-
mating the conditional distribution of the exposure variable given the response and
auxiliary variables based on the phase-II sample (Reilly and Pepe 1995). In their
simplest form, inverse probability weighted estimating equations restrict attention
to individuals in the phase-II sample and hence do not require modelling of the
covariate distribution. The resulting estimates are consistent provided the weights
are correctly specified, but they are typically less efficient than maximum likelihood
estimates (Lawless et al. 1999). Augmented inverse probability weighted estimating
equations aim to improve efficiency by exploiting information in the individuals
who only provide information in the phase-I sample (Robins et al. 1994; Tsiatis
2006).

When planning studies, the challenge is to specify the phase-II selection model
which will lead to the most efficient estimators of the parameters of interest; this
is typically the coefficient of the exposure variable. To do this one must adopt a
response model and a framework for inference which accommodate the incomplete
exposure data. Factors influencing the choice of the framework for inference include
the kinds of assumptions one is willing to make, the degree of importance placed
on robustness, and efficiency. Given any particular framework, the asymptotic
distribution of the resulting estimators is then required to inform the design (i.e.
specification of the phase-II sampling probabilities).

Much of the work to date on two-phase designs involves univariate outcomes
reflecting disease status. The purpose of this article is to consider statistical issues
in two-phase designs with more complex disease outcomes, motivated by our
involvement in the following two studies.

Example 1 (A Study of Genetic Risk in Psoriatic Arthritis). The Centre for Prog-
nosis Studies in the Rheumatic Diseases maintains a clinical registry of patients at
the Toronto Western Hospital with psoriatic arthritis. Patients have been recruited
and followed since its inception in 1976 and it is now the largest cohort of patients
with PsA in the world. Upon entry to the clinic patients undergo a detailed clinical
and radiological examination and provide serum samples which are subsequently
stored. Follow-up clinical and radiological assessments are scheduled annually
and biannually, respectively, in order to track changes in joint damage. Disease
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progression can be modelled in a number of ways including the development
of newly damaged joints (Sutradhar and Cook, 2009), the involvement of new
types of joints (Tolusso and Cook 2009; Chandran et al. 2010), and the onset of
a particular condition. These approaches, however, involve composite outcomes
because they aggregate information over multiple joints. We consider analyses
based on models for the onset of damage in the sacroiliac (SI) joints, which
signals the onset of spondyloarthritis. Damage of the SI joints is determined by
radiological examination with the extent of damage in each joint graded using a
standardized scale (Rahman et al. 1998). Serum biomarkers and genetic factors can
play important roles in identifying patients at high risk for developing psoriatic
spondyloarthritis (Rahman et al. 1998), and as a consequence, biomarker studies
are of considerable importance.

We consider data from patients from the first assessment at which serum samples
are taken which can be used for genetic testing. We restrict attention to individuals
who have not experienced damage in their sacroiliac joints as of this assessment and
a clustered (paired) response is based on the onset of damage in the left and right
sacroiliac joints between the baseline and a follow-up assessment. The candidate
genetic risk factor in this setting is the human leukocyte antigen B27, a factor
known to be associated with progression of other diseases involving connective
tissue and joints, and the auxiliary variable is a marker of inflammation called C-
reactive protein (CRP) (del Rincon et al. 2003). Genetic typing is costly and it is
desirable to carry this out for a subset of individuals in the cohort.

Example 2 (The Canadian Longitudinal Study of Aging). The Canadian Longitudi-
nal Study on Aging (CLSA) involves the establishment of a pan-Canadian cohort
to enable estimation of the incidence rates of several chronic diseases and to study
associated risk factors. It involves 50,000 individuals aged 45 to 85 years old who
are to be followed for 20 years or until the time of death. All participants in the
CLSA will provide some information to the study, while a subset of 30,000 will be
chosen for additional, in-depth examination. This sub-cohort will undergo a more
intensive clinical examination, provide imaging data, and give biological specimens
every three years; specimens will be stored in biobanks in a controlled environment
to facilitate subsequent testing. Thus the biobank will serve as a valuable resource
for affiliated investigators to study risk factors predictive of disease onset and
progression. Samples will be too expensive to process for all 30,000 individuals
in the cohort undergoing intensive follow-up, so it will be of central importance
to determine how individuals should be selected for testing of stored specimens
(Raina et al. 2009). We therefore explore the extension of the two-phase sampling
problem to longitudinal data. Since interest lies in the onset of disease, we focus on
transitional models and formulate the exposure effects on transition probabilities.
We study various designs for sampling and analysis to investigate how optimal
selection procedures can be derived at a particular time point given the available
partial histories. Specifically, we examine the improved precision in estimation
that can result when more information is used in deriving optimal selection
probabilities.
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The remainder of this article is organized as follows. Notation is defined and the
format of two-phase response-dependent sampling schemes is described in Sect. 2.
In Sect. 3 we consider the setting of clustered responses with cluster-level exposure
and auxiliary variables. Marginal models (Liang and Zeger 1986) are adopted in
this setting with analysis frameworks based on maximum likelihood, mean score
estimating functions, and inverse probability weighted pseudolikelihood. In Sect. 4
we give a framework for two-phase designs in longitudinal studies where interest
lies in modelling the effect of an exposure variable on the onset of disease under a
first-order Markov model. Asymptotic theory and optimal designs are provided for
each setting. Concluding remarks and topics for further research are given in Sect. 5.

2 Response-dependent Sampling with Correlated Data

2.1 Notation and Study Design

Two-phase sampling has been widely used to enhance precision of estimators of
key parameters with resource constraints (Chatterjee et al. 2003; Pickles et al. 1995;
Whittemore and Halpern 1997). This sampling framework is particularly appealing
whenever the measurement of a covariate of central importance incurs considerable
cost relative to the cost of associated auxiliary variables. Two-phase sampling
involves the collection of outcome and inexpensive auxiliary data in a large phase-I
sample, which is exploited to determine how individuals should be selected into a
phase-II subsample for measurement of the expensive covariate (Reilly and Pepe
1995; Zhao et al. 2009). The efficiency gain that comes from such a two-phase
sampling framework depends on the parameter of interest, the method of analysis,
and the way in which the phase-I data are exploited in the design of the phase-II
selection probabilities (Reilly 1996).

We begin with a discussion of likelihood-based inference which requires full
model specification but enables optimal efficiency. To cover the case of clustered
and longitudinal data simultaneously, we adopt a general formulation whereby
Yi = (Yi1, . . . ,YiK)

′ denotes a K × 1 response vector for individual i; we let Xi and
Vi denote the expensive exposure variable and the auxiliary variable, respectively.
Let f (Yi|Xi,Vi;β ) denote the conditional joint density or mass function for Yi given
(Xi,Vi) indexed by a p × 1 parameter β . Let g(Xi|Vi;α) denote the conditional
distribution of Xi|Vi indexed by a q× 1 parameter α and let the r × 1 parameter γ
index the marginal distribution of V . The random variables are governed by the joint
model f (Y,X ,V ;β ,α,γ) = f (Y |X ,V ;β )g(X |V ;α)h(V ;γ), but (α,γ) are nuisance
parameters which are routinely eliminated by conditioning on (X ,V ) when data are
complete.

In a two-phase study, {(Yi,Vi), i = 1,2, . . . ,N} are observed for all N individuals
selected in the phase-I sample and Xi is observed in the n individuals selected for
inclusion in the phase-II sample. If Ri = I(Xi is observed ), then selection into the
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phase-II sample is governed by the phase-II selection probabilities π(Y,V ;δ ) =
P(R = 1|Y,V ;δ ), where δ indexes this distribution. Note that within this two-phase
sampling framework, we consider missingness by design, so we can be confident
that data are missing at random (MAR)—i.e. P(R= 1|Y,X ,V ;δ ) = P(R= 1|Y,V ;δ )
(Little and Rubin 2002). If the phase-II selection probabilities do not exploit the
phase-I data—i.e. P(R = 1|Y,V ;δ ) = P(R= 1;δ )—then individuals are selected for
the phase-II sample by simple random sampling and the expensive exposure variable
will be missing completely at random (MCAR). Phase-two selection probabilities
which exploit phase-I data can result in more efficient estimators.

2.2 Methods of Analysis

A variety of frameworks are available for the analyses of clustered data (Neuhaus
1992). Mixed-effect models (Laird and Ware 1982; Stiratelli et al. 1984) are
effective when one wishes to assess the effects of within-cluster covariates. These
models account for the dependence of responses within clusters by introducing
unobservable, cluster-specific latent variables. When one wishes to explore the
effects of cluster-level covariates on marginal means, analyses are often more
naturally carried out via population-average approaches which may involve full
model specification (Heagerty and Zeger 2000; Heagerty 2002); first order gener-
alized estimating equations can also be adopted (Liang and Zeger 1986) or second
order generalized estimating equations could be used, the latter being most often
considered for clustered binary responses (Prentice 1988; Zhao and Prentice 1990).
Autoregressive models are appropriate when response data arise serially and it is of
interest to determine how changes occur over time (Zeng and Cook 2007; Sutradhar
2008). These methods of analyses can be extended in different ways to account for
data which are incomplete (Lawless et al. 1999; Robins et al. 1995; Troxel et al.
1997).

We consider three likelihood-based methods for estimation of regression coef-
ficients in marginal mean models and conditional means when covariate data are
incomplete due to a MAR mechanism.

2.2.1 Maximum Likelihood

The full likelihood for these data is

LF(β ,α,γ,δ ) =
N

∏
i=1

[
f (Yi,Xi,Vi;β ,α,γ) P(Ri = 1|Yi,Vi;δ )

]Ri

× [ f (Yi,Vi;β ,α,γ) P(Ri = 0|Yi,Vi;δ )
]1−Ri .

One may restrict attention to the partial likelihood
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L(β ,α,γ) =
N

∏
i=1

[
f (Yi,Xi,Vi;β ,α,γ)

]Ri
[

f (Yi,Vi;β ,α,γ)
]1−Ri

provided δ is functionally independent of (β ′,α ′,γ ′)′. In the special case that data
are complete, orthogonality of the parameters enables focus on the partial likelihood

L(β ) =
N

∏
i=1

f (Yi|Xi,Vi;β ) (1)

(Breslow and Chatterjee 1999; Lawless et al. 1999). More generally however, if Xi

is not observed for some clusters and the missing data mechanism is MAR, then the
observed data partial likelihood is

L(θ ) =
N

∏
i=1

[
f (Yi|Xi,Vi;β )g(Xi|Vi;α)

]Ri
[

EX |V
{

f (Yi|X,Vi;β )
}]1−Ri

, (2)

where it can be seen that estimation of the parameters of interest, β , must occur
jointly with the estimation of the nuisance parameter α in θ = (β ′,α ′)′.

Parameter estimates can be found by maximizing the likelihood in (2) directly,
or by implementing an EM algorithm (Dempster et al. 1977) and iteratively
maximizing the complete-data likelihood

Lc(θ ) =
N

∏
i=1

[ f (Yi|Xi,Vi;β )g(Xi|Vi;α)]Ri [ f (Yi|Xi,Vi;β )g(Xi|Vi;α)]1−Ri (3)

(Little and Rubin 2002). The expectation step involves computing Q(θ ;θ k) =
EX |Y,V [logLc(θ );θ k], where θ k is the estimate of θ at the kth iterations and
EX |Y,V [logLc(θ );θ k] is

N

∑
i=1

{
Ri [log f (Yi|Xi,Vi;β )+ log g(Xi|Vi;α)]

+ (1−Ri)
[
EX |Y,V {log f (Yi|X ,Vi;β );θ k}+EX |Y,V{log g(X |Vi;α);θ k}

]}
.

The maximization step yields updated estimates θ (k+1) obtained by solving

∂Q(θ ;θ k)

∂β
=

N

∑
i=1

{
RiUβ (Yi|Xi,Vi)+ (1−Ri)EX |Y,V [Uβ (Yi|X ,Vi);θ k]

}
= 0 (4)

and

∂Q(θ ;θ k)

∂α
=

N

∑
i=1

{
RiUα(Xi|Vi)+ (1−Ri)EX |Y,V [Uα(X |Vi);θ k]

}
= 0,

whereUα(Xi|Vi)= ∂ logg(Xi|Vi;α)/∂α , and Uβ (Yi|Xi,Vi)= ∂ log f (Yi|Xi,Vi;β )/∂β .
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Note that this method simultaneously estimates β and α and hence if X |V
is not correctly modelled, estimates of β will be inconsistent. We therefore
consider alternative methods of analysis which, while motivated by the likelihood
approach, do not require specification of the model for X |V . These pseudolikelihood
approaches are potentially less efficient, but can provide consistent estimators of β
without making any model assumptions about the covariate distributions.

2.2.2 The Mean Score Method

Each step in the iterative EM procedure involves using (4) to update β by estimating
the conditional expectation of the pseudoscore function Uβ (Y |X ,V) for individuals
with incomplete data. This expectation can alternatively be estimated empirically in
a single step (Lawless et al. 1999) rendering the so-called mean score equation of
Reilly and Pepe (1995):

U(β ) =
N

∑
i=1

{
RiUβ (Yi|Xi,Vi)+ (1−Ri)ÊX |Y,V [Uβ (Yi|X ,Vi)]

}
= 0. (5)

The problem then reduces to obtaining a robust nonparametric estimate of g(X |Y,V)
in order to compute ÊX |Y,V (·). When data are MAR and (Y,V ) is discrete, the
conditional distribution can be consistently estimated nonparametrically using the
phase-II sample since g(X |Y,V,R = 1) = g(X |Y,V ).

2.2.3 Weighted Pseudolikelihood

Recall that with complete data on all individuals we would want to maximize the
likelihood function (1) or, equivalently, solve the score equations

U(β ) =
N

∑
i=1

Uβ (Yi|Xi,Vi) =
N

∑
i=1

∂ log f (Yi|Xi,Vi;β )/∂β = 0. (6)

When the data are incomplete, rather than making auxiliary distributional as-
sumptions, we may wish to restrict attention to individuals who provide complete
information. Such complete-case estimators often induce bias when data are not
MCAR (Little and Rubin 2002), but if contributions to (6) are weighted by the
inverse of the probability Xi is observed, the resultant estimators will be consistent
(Lawless et al. 1999; Robins et al. 1994). That is, we can maximize the weighted
log-pseudolikelihood or, equivalently, solve the weighted pseudoscore equations

U(β ) =
N

∑
i=1

Ui(β ) =
N

∑
i=1

Ri

π(Yi,Vi;δ )
Uβ (Yi|Xi,Vi) = 0. (7)
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Solving U(β ) = 0 yields a consistent estimator of β since (7) is an unbiased
estimating function. To see this, we take the expectation of a single term in the sum
and drop the subscript i for convenience to get

EY |X ,V

[
ER|Y,X{R}
π(Y,V ;δ )

Uβ (Y |X ,V )

]
= EY |X ,V

[
Uβ (Y |X ,V)

]
= 0 ,

since R ⊥ X |(Y,V ) if X is MAR and Uβ (Y |X ,V ) is an unbiased estimating function.
We now turn our attention to the particular problems of optimal two-phase design

with clustered and longitudinal data and restrict attention to the case of binary
responses.

3 Response-dependent Sampling with Clustered Binary Data

3.1 The Response Model for Clustered Data

Let Yi = (Yi1,Yi2)
′ denote the bivariate binary response for cluster i, and let Xi

and Vi be the univariate expensive and auxiliary covariates, respectively, defined
at the cluster level (i.e. all subjects in a given cluster have the same values of these
covariates). In the context of the study from the University of Toronto Psoriatic
Arthritis Clinic, the responses correspond to the status of the left and right sacroiliac
joints. The expensive covariate represents the human leukocyte antigen (HLA)
marker B27 and the auxiliary variable is the inexpensive marker of inflammation,
CRP, measured at the baseline visit. We consider a regression model for the marginal
mean and let μi j = E[Yi j|Xi,Vi] = P(Yi j = 1|Xi,Vi). Specifically we adopt the logistic
model

logit μi j = β0 +βxXi +βvVi, (8)

where the covariates are assumed to have a common affect on both responses. We
adopt the model of Lipsitz et al. (1991) and so account for the association between
Yi1 and Yi2 given (Xi,Vi) via a common conditional odds ratio. That is, we let μikl =
P(Yi1 = k,Yi2 = l|Xi,Vi;β ), where β = (β0,βx,βv,ψ)′, with

ψ =
P(Yi1 = 1,Yi2 = 1|Xi,Vi)/P(Yi1 = 0,Yi2 = 1|Xi,Vi)

P(Yi1 = 1,Yi2 = 0|Xi,Vi)/P(Yi1 = 0,Yi2 = 0|Xi,Vi)
=

μi11/μi01

μi10/μi00

the odds of subunit 1 in cluster i responding given Xi and Vi when subunit 2 responds,
versus the respective odds when subunit 2 doesn’t respond, Then

P(Yi1 = 1,Yi2 = 1|Xi,Vi;β ) =

{
ci−[c2

i −4ψ(ψ−1)μi1μi2]
1/2

2(ψ−1) if ψ �= 1

μi1μi2 if ψ = 1,
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where ci = 1− (1−ψ)(μi1 + μi2). The marginal means and the odds ratio com-
pletely specify the bivariate distribution of the clustered binary responses. We
consider binary covariates X and V which arise so that

logit P(Xi = 1|Vi;α) = α0 +αvVi

and

logit P(Vi = 1;γ) = γ.

The discrete nature of the covariates (X ,V ) means there is no issue of misspecifica-
tion in this part of the model.

3.2 The Selection Model

We specify the second-phase sampling design for these bivariate data through the
choice of selection parameters δ in the probabilities π(Yi,Vi;δ ) =P(Ri = 1|Yi,Vi;δ ),
where we consider the selection model

logit π(Yi,Vi;δ ) = δ0+δ1Yi1+δ2Yi2+δ3Vi+δ4Yi1Yi2+δ5Yi1Vi+δ6Yi2Vi+δ7Yi1Yi2Vi.

Note that since the covariate V and the responses Y1 and Y2 are binary, the use of
this saturated selection model is equivalent to specifying stratum-specific sampling
probabilities which indicate the selection probabilities that should be used within
each of the eight strata defined by the phase-I data (Y1,Y2,V ).

3.3 Mean Score Method with Discrete Phase-One Data

When both Y and V are discrete variables and g(X |Y,V )= g(X |Y,V,R= 1), a natural
estimate of the conditional distribution g(X |Y,V) is

ĝ(X |Y,V ) =
n(1)X ,Y,V

n(1)Y,V

,

where n(1)Y,X ,V = ∑i:Ri=1 I(Yi =Y,Xi = X ,Vi =V ) and n(1)Y,V = ∑i:Ri=1 I(Yi =Y,Vi =V ).
The conditional expectation of the pseudoscore is then estimated as

ÊX |Y,V [Uβ (Yj|X ,Vj)] = ∑
x

Uβ (Yj|X ,Vj)
n(1)Yj ,X ,Vj

n(1)Yj ,Vj
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so

∑
j:R j=0

ÊX |Y,V [Uβ (Yj|X ,Vj)] = ∑
i:Ri=1

Uβ (Yj|Xi,Vj)
n(0)Yj ,Vj

n(1)Yj ,Vj

,

where n(0)Y,V = ∑i:Ri=0 I(Yi = Y,Vi = V ). Therefore the mean score estimating equa-
tions (5) reduce to

U(β ) =
N

∑
i=1

Ri

(
1+

n(0)Yi,Vi

n(1)Yi,Vi

)
Uβ (Yi|Xi,Vi) = 0,

which can be seen to be a weighted pseudolikelihood approach (7) where the
selection probabilities are estimated empirically using

π(Y,V ; δ̂ ) =

(
1+

n(0)Y,V

n(1)Y,V

)−1

=
∑i I(Ri = 1,Yi = Y,Vi =V )

∑i I(Yi = Y,Vi =V )

(Lawless et al. 1999; Zhao 2005). The weighted pseudolikelihood approach will re-
main consistent if known weights are replaced with consistently estimated weights,
as is done here with the mean score method. In fact, it is often advantageous to
utilize estimated weights even when the true weights are known since the estimation
of weights in (5) incorporates information from all individuals available at the first
phase of sampling, while (7) only considers the completely observed individuals
selected at phase two; therefore, this mean score approach will generally be more
efficient than the weighted pseudolikelihood approach that incorporates the known
selection probabilities (Lawless et al. 1999; Robins et al. 1994).

3.4 Frameworks for Analysis and Design Criteria

Different designs can exploit phase-I data in different ways. The different second-
phase sampling designs will result in different levels of efficiency of the resultant
estimators, and the optimal designs will depend on the chosen method of analysis.
We consider five sampling designs: simple random sampling, balanced sampling,
optimal maximum likelihood sampling, optimal weighted pseudolikelihood sam-
pling, and optimal mean score sampling. These designs (which are described in
more depth below) require different amounts of information at phase-I. Simple
random sampling ignores all phase-I data. Balanced sampling designs require only
the size of the phase-I strata. The optimal designs are derived to minimize the
asymptotic variance of the estimator of βx and they require knowledge of the
parameter values at the design stage. In practice, these parameter values would be
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unknown; however, it would be possible to base these optimal design derivations on
initial parameter estimates found using a small pilot study. This process has been
shown to work well in several settings (Reilly and Pepe 1995; Reilly 1996; Pepe
et al. 1994; Whittemore and Halpern 1997).

We consider the problem where N, the size of the phase-I sample is fixed and
budgetary constraints require that the expected number of individuals selected at
phase-II, P(R = 1)∗N, is also fixed. Optimal designs aim to minimize the variance
of the estimator of βx subject to this budgetary constraint. We consider Bernoulli
sampling (Lawless et al. 1999) wherein all N individuals are observed at phase-I and
selection decisions for inclusion in phase-II are made independently and according
to pre-specified selection probabilities π(Y,V ;δ ).

Truly optimal designs are not always feasible as they may sometimes result in
selection probabilities that exceed one (Reilly and Pepe 1995) and may degenerate
and result in selection probabilities that are near zero for some strata (Breslow and
Cain 1988). In general, small selection probabilities are problematic as they may
preclude testing of certain interactions, and both the mean score method and the
weighted pseudolikelihood require selection probabilities be bounded away from
zero. We, therefore, constrain all of our selection probabilities to be in the range
(0.05,1). As in Reilly and Pepe (1995), when optimal selection probabilities fall
outside of this range, we fix the offending selection probability at the boundary
and optimize the remaining selection probabilities. The balanced design can suffer
from a similar problem in that a truly balanced design can often require selection
probabilities that are larger than 1 in smaller strata. In this situation, we fix the
offending selection probabilities at 1 and select the remaining individuals in a
balanced way from the other strata.

3.4.1 Simple Random Sampling

Simple random sampling uses phase-II selection probabilities that are the same
for all individuals irrespective of their phase-I data: i.e. π(Y,V ;δ ) = PR for some
constant PR. The data that arise from this design are MCAR. This naive sampling
scheme does not exploit information available in the phase-I data and so it will be
used as a baseline to assess the efficiency gains of more sophisticated designs.

3.4.2 Balanced Sampling

Breslow and Cain (1988) and Breslow and Chatterjee (1999) advocate a balanced
sampling design. Phase-I data are used to stratify the sample, and the phase-II
sample is chosen to contain the same number of individuals from each stratum. This
design is not optimally efficient but is thought to offer a “reasonable compromise
between the competing demands of efficiency and the need to check model
assumptions” (Breslow and Chatterjee 1999).
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It is not always clear how the phase-I data should be used to stratify the sample.
For the clustered data problem, we will consider two balanced sampling designs. In
the first balanced sampling design, the phase-I sample will be divided into the eight
classes defined by all possible values of (Y1,Y2,V ). However, since we are defining
efficiency in terms of the variance of the estimator of βx, and (8) assumes a common
effect of X on either response, it may be more in the spirit of the balanced design
to sample equally from the six strata defined by (Y1 +Y2,V ); therefore, we also
consider this second balanced design when analysing the clustered data. Note that
in our asymptotic calculations, these designs are based on expected phase-I stratum
sizes, which come from having knowledge of the true parameters at the design stage.

3.4.3 Optimal Likelihood Sampling

If θ̂ is the estimator of θ = (α ′,β ′)′ which maximizes (2) and is estimated from data
obtained with phase-II selection probabilities defined by δ , then asymptotically

√
N(θ̂ −θ )∼ N(0,I −1

θ ;δ Γθ ;δI −1
θ ;δ ),

where Iθ ;δ = E
[− ∂Si(θ )/∂θ ′], Γθ ;δ = E

[
Si(θ )S′i(θ )

]
and Si(θ ) is the score

function corresponding to the observed-data likelihood in (2). We say that this
estimator has asymptotic variance I −1

θ ;δ , since Iθ ;δ =Γθ ;δ (Cox and Hinkley 1974).
The expected information is affected by the choice of the phase-II selection

parameter, δ , so optimal maximum likelihood designs, π(Y,V ;δ opt), can be found
for any specified θ . This is done here by numerically identifying the phase-II
selection probabilities that minimize the asymptotic variance of the maximum
likelihood estimator of βx subject to the budgetary constraints. The budget limits
how many individuals can be sampled in the second phase; we set

P(R = 1) = ∑
Y,V

π(Y,V ;δ )P(Y,V ) = PR (9)

so that given the size of the phase-I sample, N, the expected phase-II sample size
is fixed at N ·PR, for some prespecified sampling fraction PR. This sampling design
will be optimally efficient for maximum likelihood estimation of βx whenever the
covariate model and the parameters used in the design are correctly specified, as
they are in the asymptotic calculations in the next section.

3.4.4 Optimal Mean Score Sampling

Reilly and Pepe (1995) show that the mean score estimator is asymptotically normal
with an asymptotic variance that can be written as

I −1
β +I −1

β Ωβ ;δ I −1
β ,
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where

Iβ = E
[− ∂Uβ (Y |X ,V )/∂β ′],

and

Ωβ ;δ = ∑
Y,V

P(Y,V )[π(Y,V ;δ )−1 − 1] · varX |Y,V [Uβ (Y |X ,V )],

with varX |Y,V [Uβ (Y |X ,V )] given by{
EX |Y,V

[
Uβ (Y |X ,V )U ′

β (Y |X ,V )
]−EX |Y,V

[
Uβ (Y |X ,V )

]
EX |Y,V

[
U ′

β (Y |X ,V)
]}

.

Therefore, the optimal second-phase selection probabilities, which give the
greatest precision in estimating βx subject to the budgetary constraint (9), can be
written as

π(Y,V ;δ opt) =
PR
{
I −1

β varX |Y,V [Uβ (Y |X ,V )]I −1
β
}1/2
[k,k]

∑Y,V P(Y,V )
{
I −1

β varX |Y,V [Uβ (Y |X ,V )]I −1
β
}1/2
[k,k]

,

where
{

A
}
[k,k] refers to the entry of the asymptotic variance matrix corresponding

to βx (Pepe et al. 1994; Reilly and Pepe 1995; Reilly 1996).

3.4.5 Optimal Weighted Pseudolikelihood Sampling

Asymptotically, the weighted pseudolikelihood estimator, β̃ , is distributed as

√
N(β̃ −β )∼ N(0,I −1

β Γβ ;δ I −1
β ),

where

Γβ ;δ = E

[
Ri

π(Y,V ;δ )2 Uβ (Y |X ,V )U ′
β (Y |X ,V )

]
(Lawless et al. 1999; Robins et al. 1994). The asymptotic variance of the weighted
pseudolikelihood estimator, I −1

β Γβ ;δ I −1
β , can be written explicitly as a function

of the selection probabilities by noting that Iβ is functionally independent of δ , and

Γβ ;δ = ∑
Y,V

P(Y,V )π(Y,V ;δ )−1EX |Y,V
[
Uβ (Y |X ,V )U ′

β (Y |X ,V )
]
.

Therefore, as in Reilly and Pepe (1995), a Lagrange multiplier approach can
be taken to minimize the asymptotic variance matrix entry corresponding to the
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estimator of βx subject the budgetary constraint in (9). These optimal second-phase
selection probabilities are

π(Y,V ;δ opt) =
PR
{
I −1

β EX |Y,V
[
Uβ (Y |X ,V )U ′

β (Y |X ,V )
]
I −1

β
}1/2
[k,k]

∑Y,V P(Y,V )
{
I −1

β EX |Y,V
[
Uβ (Y |X ,V )U ′

β (Y |X ,V )
]
I −1

β
}1/2
[k,k]

,

where again
{

A
}
[k,k] refers to the entry of the asymptotic variance matrix corre-

sponding to βx.

3.5 Asymptotic Relative Efficiencies

In order to assess the efficiency gain that can result from exploiting available
auxiliary data in the selection of individuals for measurement of expensive covariate
information, balanced and optimal phase-II sampling designs were derived for a
range of parameter values. The asymptotic efficiencies of the estimators resulting
from these designs were calculated relative to the asymptotic efficiency of a simple
random sampling design. We considered the three methods of analysis: maximizing
the observed data likelihood (ML), the mean score method (MS), and maximizing
the weighted pseudolikelihood (WP). For each of these methods of analysis we
considered four designs: simple random sampling (SRS), balanced sampling over
all eight strata defined by (Y1,Y2,V ) (BAL 8), balanced sampling over the six strata
defined by (Y1 +Y2,V ) (BAL 6), and the sampling design which is asymptotically
optimal for precise estimation of βx with the given method of analysis (OPT).

The efficiency of each design D was calculated relative to simple random
sampling through

REx(D,A) =
asvarD(β̂ A

x )

asvarSRS(β̂ A
x )

, (10)

where, for example, asvarBAL8(β̂ ML
x ) represents the asymptotic variance of the

estimator of βx that comes from using ML analysis with the BAL 8 design. We
also consider the relative efficiency of the designs for estimating the effect of the
auxiliary variable βv and ψ . Note that the “optimal” design will not necessarily be
efficient for estimation of parameters other than βx, although Reilly (1996) reported
that in their examples optimal designs for one parameter “achieved an improvement
in the precision of almost all parameters”.

The asymptotic relative efficiencies of the different sampling designs is presented
in Figs. 1, 2, and 3, for estimation of βx, βv, and ψ , respectively. The relative
efficiencies are presented for a range of values of the association parameter ψ while
the other parameters were chosen so that E[Y1] = E[Y2] = 0.2;E[X ] = 0.25;E[R] =
0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25). The fourth panel in each of
these figures presents the asymptotic variance of the estimators that result from
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Fig. 1 Asymptotic efficiency of estimators of βx under balanced and optimal designs relative to
simple random sampling when using ML, MS, and WP. The asymptotic efficiencies are shown
relative to the asymptotic variance of the SRS estimators which are shown in the fourth panel.
E[Y1] = E[Y2] = 0.2;E[X ] = 0.25;E[R] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)

using SRS. Therefore, each of the first three panels within Figs. 1–3 leads to
a comparison of efficiency amongst phase-II sampling designs for the specified
method of analysis, while the fourth panel allows for a comparison of efficiency
between methods of analysis.

It can be seen that the optimal design allows for a great increase in the efficiency
of estimation of βx; implementing an optimal phase-II sampling strategy can result
in efficiency gains of 30–50 % over SRS, depending on the method of analysis
(Fig. 1). In fact, for all methods of analysis, the optimal design results in more
efficient estimators than SRS for all parameters, not just βx (Figs. 1–3). This is
similar to that which was reported by Reilly (1996), where optimizing for efficient
estimation of one parameter led to efficiency gains everywhere.

The balanced designs sometimes result in efficiency gains and sometimes result
in a loss of efficiency. In the estimation of ψ using WP analysis (Fig. 3, panel 3),
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Fig. 2 Asymptotic efficiency of estimators of βv under balanced and optimal designs relative to
simple random sampling when using ML, MS, and WP. The asymptotic efficiencies are shown
relative to the asymptotic variance of the SRS estimators which are shown in the fourth panel.
E[Y1] = E[Y2] = 0.2;E[X ] = 0.25;E[R] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)

the balanced designs are both more efficient than the optimal design. However, for
estimation of βx (Fig. 1), a balanced design can be seen to be much less efficient than
the naive SRS for both MS and WP analysis. The BAL 6 design is generally more
efficient than the BAL 8 design, but neither design is consistently more efficient
than SRS.

Estimators of βx from SRS designs are very similar for ML, MS, and WP analysis
(Fig. 1, panel 4), but use of WP is very inefficient for estimation of the other
parameters (Figs. 2 and 3, panel 4).

It can also be seen that there is little difference amongst the designs for estimating
ψ or βv when using ML or MS (Figs. 2 and 3, panels 1 and 2). However, SRS is
severely inefficient for estimating these parameters with WP analysis (Figs. 2 and 3,
panel 3). So, the efficiency of estimators of ψ and βv using WP analysis is greatly
affected by the choice of sampling design, but even with the most efficient phase-II
sampling design, WP estimators will still be less efficient than ML or MS estimators.
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Fig. 3 Asymptotic efficiency of estimators of ψ under balanced and optimal designs relative to
simple random sampling when using ML, MS, and WP. The asymptotic efficiencies are shown
relative to the asymptotic variance of the SRS estimators which are shown in the fourth panel.
E[Y1] = E[Y2] = 0.2;E[X ] = 0.25;E[R] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)

4 Response-dependent Sampling with Longitudinal
Binary Data

4.1 The Response Model for Longitudinal Data

Here we consider the analysis of binary data arising from a longitudinal study where
the binary response variable is measured at baseline and at each of two prespecified
follow-up timepoints. We assume that Yi0 = 0 and denote the response vector for
individual i as Yi = (Yi0,Yi1,Yi2)

′. We again consider binary covariates Xi and Vi,
where Vi is known for all individuals at time 0, but Xi will only be collected for
individuals selected into a phase-II sample. This setting is a simplified version
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of the kind of data collected in the CLSA when interest lies in estimating the
effect of a risk factor for the onset of a disease. Here Yik indicates the presence
of disease at the assessment k, k = 1,2, and interest lies in the effect of covariates
on P(Yik = 1|Yi,k−1 = 0), the probability of disease developing between the (k−1)st
and kth assessments, where we assume an irreversible disease process with P(Yik =
0|Yi,k−1 = 1) = 0. Specifically, here it is of interest to examine how the change in
disease status (e.g. onset of diabetes) is affected by a time-invariant and expensive
binary covariate Xi (e.g. a genetic factor), after accounting for an available baseline
auxiliary covariate Vi.

We again consider analyses through maximization of the observed data likeli-
hood (ML), the mean score method (MS), and weighted pseudolikelihoods (WP).
For these data, we are not interested in estimating marginal parameters as in (8),
rather we are primarily interested in the transitional effect of the covariate X in the
response model

logit P(Yik = 1|Yi,k−1 = 0,Xi,Vi;β ) = β0 +β1I(k = 2)+βxXi +βvVi, k = 1,2.

Due to the irreversible nature of the disease process, the joint response model on
which the likelihood methods are based is

P(Yi|Xi,Vi;β ) = I(Yi,1 = 1)P(Yi,1 = 1|Yi,0 = 0,Xi,Vi;β )I(Yi,1 = 0)I(Yi,2 = 0)

× [1−P(Yi,1 = 1|Yi,0 = 0,Xi,Vi;β )][1−P(Yi,2 = 1|Yi,1 = 0,Xi,Vi;β )]

× I(Yi,1 = 0)I(Yi,2 = 1)[1−P(Yi,1 = 1|Yi,0 = 0,Xi,Vi;β )]

× P(Yi,2 = 1|Yi,1 = 0,Xi,Vi;β ).

4.2 The Selection Model

Here we consider balanced and optimal designs for the selection of a phase-II
sample at each of the three timepoints. This allows us to examine how the efficiency
of designs is affected by the amount of auxiliary information available at phase-I for
choosing the phase-II sample. Note that simple random sampling is not affected by
the time at which the phase-II sample is chosen as this design does not exploit the
data available at phase-I.

The selection model at time t can be expressed as P(Ri = 1|Yi1, . . . ,Yit ,Vi;δ (t)). At
each progressive timepoint, more phase-I information is available for exploitation
in deriving efficient phase-II selection probabilities. At timepoint 0, the phase-I
sample can be divided into two strata based on the available information on V ,
so π(Y,V ;δ (0)) = π(V ;δ (0)); at timepoint 1, the phase-I sample can be stratified
into four classes based on the available information on V and Y1, so π(Y,V ;δ (0)) =
π(Y1,V ;δ (0)); at timpoint 2, the phase-I sample can be stratified into six classes
based on the available information on V , Y1, and Y2, where it is known that
P(Y2 = 0|Y1 = 1) = 0.



Response-Dependent Sampling with Clustered and Longitudinal Data 175

Simple random sampling is the same at each timepoint, but the efficiency of
the balanced and optimal designs will be affected by the amount of information
available at phase-I. Therefore, for this study of transitional effects, we consider
7 designs for each method of analysis: simple random sampling (SRS), balanced
sampling using the phase-I data available at each timepoint (call these BAL 0, BAL
1, and BAL 2 at timepoints 0, 1, and 2, respectively) and the sampling designs which
are optimal for estimating βx given the specified method of analysis and the data that
are available at the time of selection (call these OPT 0, OPT 1, and OPT 2). We will
again present the efficiencies of the designs relative to simple random sampling, as
calculated in (10).

The asymptotic variances and optimal designs can be found as in the previous
section; however, summations are no longer over strata defined by (Y1,Y2,V ), but
rather over strata defined by the data that are available at the time of selection.
This decrease in phase-I data essentially places added constraints on the optimal
sampling designs derived in the previous section; for example, at timepoint 0, when
only V is available for phase-II sampling decisions, then π(Y,V ;δ ) = π(V ;δ ) for
all Y = (Y1,Y2) ∈ {(0,0),(0,1),(1,1)}.

4.3 Asymptotic Relative Efficiencies

We derived optimal designs for a range of values of PR, which defines the budgetary
constraint in (9). Other parameters were chosen so that E[Y1] = 0.2;E[Y2] =
0.4;E[X ] = 0.25;E[R] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25). The
relative efficiencies of the different sampling designs is presented in Figs. 4, 5,
and 6, for ML analysis, MS analysis, and WP analysis, respectively. We consider
the relative efficiency of each of the considered designs for estimating β0, β1, βx,
and βv.

As expected, the optimal sampling design offered large efficiency gains over
simple random and balanced designs when estimating βx. As before, these optimal
designs also added efficiency to the estimation of other parameters (Figs. 4, 5,
and 6). Having more information at the time of sampling increased the efficiency
of the optimal design for the estimation of all parameters. However BAL 2, the
balanced design at timepoint 2, was generally less efficient than BAL 1, the balanced
design which was based only on the auxiliary information available at timepoint 1.
This indicates that, as was seen in the comparison of BAL 6 and BAL 8 in the
previous section, having more phase-I information does not necessarily improve the
efficiency of balanced designs.

The asymptotic variance of the ML and MS estimators under SRS was very
similar; however, the optimal design offered a greater increase in efficiency for the
ML estimator of βx than for the MS estimator (Figs. 4 and 5, panel 3). The balanced
designs were often less efficient than the naive simple random sampling approach to
gathering data for estimation of βx (Figs. 4, 5, and 6). The use of a balanced design
appears to be particularly inefficient when analysis is to be carried out through the
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Fig. 4 Asymptotic efficiency of estimators under balanced and optimal designs relative to simple
random sampling when using maximum likelihood analysis to estimate transitional effects.
E[Y1] = 0.2;E[Y2] = 0.4;E[X ] = 0.25;E[V ] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)
Note: the asymptotic variance of the ML estimators of β0, β1, βx, and βv under SRS with P(R =
1) = 0.5 are, respectively, 9.86,12.99,33.00, and 16.58

mean score method or the weighted pseudolikelihood (Figs. 5 and 6). Note that
as the sampling fraction increases, smaller strata are selected in their entirety by
the balanced designs (the selection probabilities must be capped at 1, as discussed
previously); this accounts of the lack of smoothness in the change in asymptotic
efficiency of the balanced designs. Some lack of smoothness can also be seen in the
plot of the optimal ML designs; this occurs because these optimal ML designs are
found numerically.

5 Discussion

To our knowledge this article was among the first to study the two-phase sampling
designs involving clustered or longitudinal data. Given the increased interest in
studies involving cross-sectionally clustered data and the recent trend towards the
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Fig. 5 Asymptotic efficiency of estimators under balanced and optimal designs relative to simple
random sampling when using the mean score method for analysis to estimate transitional effects.
E[Y1] = 0.2;E[Y2] = 0.4;E[X ] = 0.25;E[V ] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)
Note: the asymptotic variance of the MS estimators of β0, β1, βx, and βv under SRS with P(R =
1) = 0.5 are, respectively, 9.86,12.99,33.00, and 16.58

design of massive cohort studies of health and disease, the insights that result from
this work are important.

For the setting of clustered data, the first decision to make is typically on the
method of analysis and there are a variety of frameworks one can adopt. We
restricted attention to bivariate response data and marginal models for characterizing
the effects of exposure. In this setting, maximum likelihood and the mean-score
methods can be more efficient than weighted pseudolikelihood for estimation of
the exposure effect (with maximum likelihood generally being the superior of the
two) but this comes at the expense of making assumptions and modelling the
covariate distribution. Interestingly, the three analysis methods have approximately
the same efficiency when using simple random sampling. When covariates change
within clusters an alternative model formulation could be based on random effects
models. To our knowledge, there has been no work on two-phase designs within the
framework of random effect models for clustered data and this is an area of current
interest.
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Fig. 6 Asymptotic efficiency of estimators under balanced and optimal designs relative to simple
random sampling when using a weighted pseudolikelihood analysis to estimate transitional effects.
E[Y1] = 0.2;E[Y2] = 0.4;E[X ] = 0.25;E[V ] = 0.25;βx = log(1.25);βv = log(1.25);αv = log(1.25)
Note: the asymptotic variance of the WP estimators of β0, β1, βx, and βv under SRS with P(R =
1) = 0.5 are, respectively, 17.37,25.97,33.00, and 33.00

We have adopted a very simple response model with a binary X and binary auxil-
iary variable. When the exposure variable is continuous, a robust implementation of
the mean score method may be more appealing, and weighted pseudolikelihood
would also have more appeal since no modelling of exposure is required. In
ongoing work (not reported here) we found that optimal designs based on maximum
likelihood analyses may be more sensitive to small changes in the parameters used
at the design stage than optimal mean score designs. So, if models for exposure
variable are difficult to formulate with confidence, the robustness of the mean
score and weighted pseudolikelihood approaches may be more appealing. When
the auxiliary variable is continuous, discretizing seems the most practical approach
to addressing the curse of dimensionality and this has been recommended by several
authors (Lawless et al. 1999).

When comparing the effect of different frameworks for analysis and design, it
is interesting to note that the conclusions about optimality bear only on the criteria
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adopted for the optimal design. The intercept, effect of the auxiliary variable and
association parameters do not necessarily behave in the same way.

The pragmatic approach of using balanced sampling designs as a compromise
between robustness and efficiency does not yield clear and consistent recommen-
dations; the resulting estimators sometimes perform well and sometimes perform
poorly. It is therefore unclear what auxiliary information should be considered when
implementing a balanced design in the more complex settings we consider here.

There are several directions of future research that are natural to consider. We
focus on clusters of size two because of interest in the two sacroilliac joints among
patients with psoriatic arthritis. However, clusters can naturally be much larger as
would be the case if all joints were to be modelled. Dealing with larger cluster sizes
is in principle straightforward but may suggest the use of second-order generalized
estimating functions rather than likelihood analyses. One may elect to retain the
robustness of a first order analysis by refraining from higher order assumptions, or
invoke fourth moment assumptions to try to optimize efficiency at the expense of
robustness in the estimating equation framework.

We have also restricted attention to a first order Markov model in the longitudinal
context with only three assessments. Longer term follow-up, as is planned for the
Canadian Longitudinal Study in Aging (Raina et al. 2009), raises questions about
the need for more elaborate response models, the need for greater collapsing of
strata, and issues surrounding time-varying covariates. These and other issues are
subject to further research.
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Part III
Longitudinal Data Analysis

Subject to Outliers



Robust Inference Progress from Independent
to Longitudinal Setup

Brajendra C. Sutradhar

Abstract In practice one may not have always smooth data. When bulk of the
data are smooth but the complete data set apparently contains a few contaminated
observations or outliers, one encounters difficulties to choose an inference technique
because of the fact that the traditional inference techniques developed for smooth
data analysis may no longer provide unbiased and consistent estimates for the
desired parameters such as regression parameters in linear or generalized linear
models (GLMs) setup. In this paper, we first briefly review some of the widely
used bias corrected techniques in linear model setup. But, as opposed to the linear
models in normal or other continuous exponential family based variables, the
robust inference for discrete data in the GLMs setup, such as for count and binary
data, is, however, not adequately discussed in the literature. The advantages and
drawbacks of an existing outliers resistant Mallow’s type quasi-likelihood (MQL)
estimation approach in GLMs setup are reviewed in brief. We then discuss a
recently proposed fully standardized MQL (FSMQL) approach that provides almost
unbiased estimates ensuring its higher consistency performance. One encounters
further challenges when the data in GLMs setup are repeatedly collected over a
period of time. This is mainly because one then requires to modify the FSMQL
type estimation approaches such that the modified approach also accommodates the
correlation structure of the repeated data. A recently proposed robust generalized
QL (RGQL) approach is reviewed for the purpose.

1 Introduction

In a regression setup, the responses whether linear, count, or binary, are generated as
a function of certain suitable covariates. If bulk of the responses appear to be close
to the mean function of the responses with a few remaining responses appearing
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at a significant distance from the mean function, then these latter few responses
are considered to be potential outliers. In general these outliers occur because of
the corresponding covariates which may be contaminated in some ways, and they
are referred to as the mean shifted outliers. In some situations, a response may be
considered as an outlier because of its inflated variance as compared to the bulk of
the responses. It is of main interest to understand the regression model appropriate
for bulk of the good responses. But the use of few outlying responses may distort
the inference for the bulk of the responses. There are at least two ways this inference
problem has been tackled in the literature.

First, it is attempted to detect the outliers and exclude them for the overall
inference. For some justifications on this, one may be referred to Hampel et al.
(1986, Sect. 1.4) among others. For the purpose, many researchers have discussed
the so-called maximum studentized residual (MSR) and maximum normed residual
(MNR) tests for detection of outliers in a linear regression setup for independent
data. For example, one may refer to the work of Srikantan (1961), Stefansky (1971,
1972), Tietjen et al. (1973), Prescott (1975), Lund (1975), Bailey (1977), Johnson
and Prescott (1975), Ellenberg (1973, 1976), Cook and Prescott (1981), Doornbos
(1981), and Beckman and Cook (1983, Sect. 4), among others. The powers of
these two statistics in detecting outliers may also be affected by the ways the
parameters of the regression models are estimated. For a discussion on this, see, for
example, a relatively recent work by Sutradhar et al. (2007). In second approach, a
robust weighted distance function is constructed such that the suspected outliers
get smaller weights. Next the distance function is minimized for the estimation
of the regression effects. Some of the existing widely used robust procedures are:
Minimax estimation, M-estimation, L-estimation, and R-estimation. For details on
these procedures, see, for example, Hampel et al. (1986), Rousseeuw and Leroy
(1987), and Huber (2004), and the references therein.

In the independent setup, some authors such as Cantoni and Ronchetti (2001),
among others, have suggested a Mallow’s type quasi-likelihood (MQL) robust
estimation approach to obtain a consistent estimate for the regression effects
involved in the model. For the MQL construction, they use the Huber’s robust
function but did not use the inverse of the variance of such a function to make
the MQL standardized. Recently, Bari and Sutradhar (2010a) have improved this
estimating equation and introduced a fully standardized MQL (FSMQL) estimating
equation that provides regression estimates with smaller bias. In this paper, we
review these MQL and FSMQL approaches for the estimation of the regression
effects involved in generalized linear models (GLMs), for example for binary and
count data.

Also, there have been some studies using QL or generalized estimating equations
(GEE) approaches for robust regression estimation in the longitudinal setup. For
example, Preisser and Qaqish (1999) have used a resistant GEE (REGEE) approach,
which was improved by Cantoni (2004) (see also Sinha 2006 for a random effects
approach) by using a semi-standardized MQL (SSMQL; see also Bari and Sutradhar
2010b) approach. In the second part of the paper, we review these approaches
including the robust GQL (RGQL) approach discussed by Bari and Sutradhar
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(2010b) and point out their advantages and drawbacks. Both count and binary
longitudinal models are considered.

2 Robust Inference in Regression Models
in Independent Setup

2.1 Inference for Linear Models

There exists a vast literature for robust inference in linear models for independent
data in the presence of one or more outliers. See, for example, Rousseeuw and Leroy
(1987), Huber (2004, Chap. 7), and a relatively recent paper by Sutradhar et al.
(2007). These studies mainly deal with outliers in normal responses. For simplicity
consider a simple linear regression model

y = Xβ + ε, (1)

where y = (y1, . . . ,yi, . . . ,yK)
′ is a K × 1 response vector, X is known design matrix

of order K × p, β is a p× 1 vector of unknown parameters, and ε is an K × 1 error
variable distributed as ε ∼ N(0,σ2IK), IK being the K × n identity matrix. Usually,
each observation in a realization (y,X) contributes to the evaluation of the regression
coefficient β . The contribution of one observation, however, may be discordant
to the point of sensibly determining the value of a regression parameter. Such an
observation is said to be an outlier. To see how an outlier can perturb the linear
model (1), two types of outliers are generally considered. They are (a) mean shifted
outliers, also referred to as the additive outliers, and (b) variance inflated outliers,
also referred to as the innovative or multiplicative outliers.

To construct an additive outlier model, one can perturb the linear model (1) and
write

y = Xβ + ε̃, (2)

where ε̃ = (ε̃1, . . . , ε̃i, . . . , ε̃K)
′ is related to ε in (1) as

ε̃ j =

⎧⎨⎩ ε j + δ1, for j = i

ε j, for j �= i,
(3)

where for |δ1|> 0, yi = x′iβ + ε̃i is certainly a discordant observation when compared
to the other K − 1 observations. It is clear from (1) and (3) that

ε̃ ∼ N(δ ,σ2IK),
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where

δ = [01′i−1,δ1,01′K−i]
′.

To construct a variance inflated outlier model, one can perturb the model (1) as

y = Xβ + ε∗, (4)

where ε∗ = (ε∗1 , . . . ,ε∗i , . . . ,ε∗K)′ is related to ε in (1) as

ε∗j =

⎧⎨⎩ ε j/
√

ω , for j = i

ε j, for j �= i,
(5)

where for ω → 0, the ith observation yi will have large variance leading this
observation to be an outlier. It is clear from (1) and (5) that

ε∗ ∼ N(0,Vω = σ2diag[1′i−1,1/ω ,1′K−i]).

Thus, under model (2), bulk (K − 1) of the error variables follow N(0,σ2)
distribution and 1 follows N(δ1,σ2). This is equivalent to say that the ε̃i in model
(2) are independent, identically distributed with the common underlying distribution

F(ε̃) = (1− 1
K
)Φ
(

ε̃ − 0
σ

)
+

1
K

Φ
(

ε̃ − δ1

σ

)
,

(Huber 2004, Example 1.1) where Φ(·) is the standard normal cumulative. Simi-
larly, one may say that ε∗i under model (4) are independent, identically distributed
with common underlying distribution

F(ε∗) = (1− 1
K
)Φ
(

ε∗ − 0
σ

)
+

1
K

Φ
(

ε∗ − 0
σ/

√
ω

)
.

2.1.1 Robust Estimation of Regression Effects

It is understandable that the ordinary least square (LS) estimator

β̂LS = [X ′X ]−1X ′y (6)

is biased for β under model (2)–(3) and will be unbiased but inefficient under model
(4)–(5). There exist various robust approaches for the consistent estimation of β
irrespective of the underlying model whether it is (2)–(3) or (4)–(5). Here we briefly
describe two of the approaches, for example.
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Huber’s Robust Weights Based Iterative Re-weighted Least Square Approach

This estimate is obtained via an iterative re-weighted least squares (RWLS) method
(Street et al. 1988). For p components of β , in this approach one solves the robust
weights based estimating equation

K

∑
j=1

ξ jx ju(y j − x′jβ ) = 0, u = 1 . . . , p, (7)

where x ju is the uth component of the x j vector, and

ξ j =
ψ(r j)

r j
, (8)

with ψ(r j) as the Huber’s bounded function of r j given by

ψ(z) = max [−a,min(z,a)] , with a = 1.25,

where r j = (y j − x′jβ ∗
r(0))/s̃ for j = 1, . . . ,n, with β ∗

r(0) as an initial robust estimate

of β which may be obtained by minimizing the L1 distance ∑K
j=1 |y j − x′jβ |, and s̃

as a robust estimate of σ given by

s̃ = Median
{

largest K-p+1 of the
|y j − x′jβ ∗

r(0)|
0.6745

}
.

Note that if r j = 0, one uses ξ j = 1. The solution to (7) may then be obtained as

β ∗
r(1) = (X ′ΩX)−1X ′Ωy, (9)

where Ω = diag[ξ1, . . . ,ξK ]. This β ∗
r(1) replaces β ∗

r(0) and provides us with a new
start and new weights for an improved estimate of β to be obtained by (9). This
cycle of iterations continues until convergence. Let the final solution be denoted by
β̂r(1).

An Alternative Weights Based Iterative RWLS Approach

Rousseeuw and Leroy (1987, Chap. 5) suggest a least median of squares (LSM)
approach where the scale parameter to compute the residual is estimated using
robust weights different than Huber’s weights used in the last section. In fact
one can use the iterative least square approach discussed in the last section by
replacing Huber’s weights with these new weights suggested by Rousseeuw and
Leroy (1987, p. 202). See, for example, Sutradhar et al. (2007) for a comparison
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between RWLS approaches using Huber’s and Rousseeuw and Leroy weights. To
be specific, Rousseeuw and Leroy robust weights are defined as

w̃ j =

⎧⎨⎩1, if |d j(β ∗
r(0))

/s̃0| ≤ 2.5

0, otherwise,
(10)

where d j(β ∗
r(0))

= y j − x′jβ ∗
r(0) and s̃0 is given by

s̃0 = 1.4826(1+ 5/(K− p))
√

Median d2
j(β ∗

r(0))
.

These robust weights in (10) are then used to compute an Ω̃ matrix as

Ω̃ = diag[w̃1, . . . , w̃ j , . . . , w̃K ],

which is then used to obtain a first step improved robust estimate for β as

β ∗∗
r(1) = (X ′Ω̃X)−1X ′Ω̃y. (11)

The cycle of iterations continues until convergence. Let this final RWLS estimate
be denoted by β̂r(2).

2.1.2 Robust Estimation of Variance Component

Note that in the linear model setup, the LS estimate of σ2 is obtained by computing
the residual sum of squares based on the least square estimate of β . That is, σ̂2

ls =

∑K
j=1(y j − x′jβ̂ls)

2/(K − p). Under the linear model in the presence of outliers, one

may obtain LS estimate of σ2 simply by replacing β̂ls with β̂r(1) or β̂r(2) obtained in
the last section. Thus the LS estimator for σ2 has the formula

σ̃2
ls(1) =

K

∑
j=1

(y j − x′jβ̂r(1))
2/(K − p), (12)

or

σ̃2
ls(2) =

K

∑
j=1

(y j − x′jβ̂r(2))
2/(K − p). (13)

Huber’s Robust Weights Based Iterative RWLS Estimator for σ2

Following Street et al. (1988), one obtains this estimator as
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σ̂2
r(1) =

K

∑
j=1

ξ j

[
y j − x′jβ̂ls

]2/( K

∑
j=1

ξ j − tr{(X ′Ω 2X)(X ′ΩX)−1}
)
, (14)

where ξ j ( j = 1, . . . ,K) is the jth robust weight to protect the estimate against
possible outliers, and Ω = diag(ξ1, . . . ,ξ j , . . . ,ξK). To be specific, ξ j is defined as
ξ j = ψ(r j)/r j with r j = (y j − x′β̂ls)/s∗, where

s∗ = Median

{
largest K-p+1 of the

|y j − x′jβ̂ls|
0.6745

}
.

Note that the ψ function involved in ξ j in (14) is the same Huber’s robust function
used in (8).

Rosseeuw and Leroy Weights Based Robust Estimator for σ2

This robust estimator is computed following Rousseeuw and Leroy (1987, p. 202,
Eq. (1.5)). More specifically, in this approach, robust weights are defined as

wj =

⎧⎨⎩1, if |d j(β̂ls)
/s0| ≤ 2.5

0, otherwise,

where d j(β̂ls)
= y j − x′jβ̂ls and s0 is given by

s0 = 1.4826(1+ 5/(K− p))
√

Median d2
j(β̂ls)

.

Next, these weights are exploited to compute the estimator, say σ̂2
r(2), as

σ̂2
r(2) =

( K

∑
j=1

wjd
2
j(β̂ls)

)/( K

∑
j=1

wj − p
)
. (15)

2.1.3 Finite Sample Performance of the Robust Estimators:
An Illustration

Sutradhar et al. (2007) conducted a simulation study to examine the performance of
the robust methods as compared to the LS method in estimating the parameters in a
linear model when the data contain a few variance inflated outliers. Here, we refer
to some of the results of this study, for example. Consider a linear model with p = 2
covariates so that β = (β1,β2)

′. For the associated K × 2 design matrix X , consider
their design configuration:
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Fig. 1 Mean squared error (MSE) of β̂ls,1 (LS estimator of β1), β̂r(1),1 (first robust estimator of

β2), and β̂r(2),1 (second robust estimator of β1)

D2 : x1 = 1,x2 = 0,all other x(s) at 0.5.

With regard to the sample size, consider K(≡ n) = 6,8,10, and 20 to exam-
ine the effect of small as well as moderately large samples on the estimation.
Furthermore, select two locations for the possible outlier, namely locations at
i = 2 and 3 for K = 6; i = 2 and 4 for K = 8; i = 2 and 6 for K = 10; and
i = 2 and 11 for K = 20. Also, without any loss of generality, choose σ2 = 1,
β1 = 1, and β2 = 0.5. For variance inflation, eight values of ωi, namely ωi =
0.001,0.005,0.01,0.05,0.10,0.25,0.50,and 1.0, were considered. Note that ωi =
1.0 represents the case where the data do not contain any outliers, whereas a small
value of ωi indicates that yi is generated with a large variance implying that yi can be
an influential outlier. The data were simulated 10,000 times. Under each simulation,
the LS estimate of β and σ2 were obtained, which are denoted by β̂ls = (β̂ls,1, β̂ls,2)

′
and σ̂2

ls, respectively. As far as the robust estimation of β and σ2 is concerned,
these parameters were estimated by using two robust approaches. More specifically,
β̂r(1) = (β̂r(1),1, β̂r(1),2)

′ is obtained by using (9), β̂r(2) = (β̂r(2),1, β̂r(2),2)
′ is obtained

by using (11), and similarly σ̃2
r(1) and σ̃2

r(2) are obtained from (14) and (15), respec-
tively. The mean squared errors (MSEs) of these estimators based on 10,000 simu-
lations are displayed in Figs. 1–3, for the estimates of β1,β2, and σ2, respectively.
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Fig. 2 Mean squared error (MSE) of β̂ls,2 (LS estimator of β2), β̂r(1),2 (first robust estimator of

β2), and β̂r(2),2 (second robust estimator of β2)

In summary, the results of this simulation study indicate that in the presence of
a variance inflated outlier, the second robust approach performs worse as compared
to the first robust and LS methods in estimating β1 and β2. In estimating σ2, the LS
method performs very poorly when compared with the robust methods.

2.2 Robust Estimation in GLM Setup For Independent
Discrete Data

As opposed to the linear models in normal or other continuous exponential family
based variables, the robust inference for discrete data in the GLMs setup, such as
for count and binary data, is, however, not adequately discussed in the literature. For
i = 1, . . . ,K, let yi be a discrete response, such as count or binary, collected from the
ith individual, and xi = (xi1, . . . ,xiu, . . . ,xip)

′ be the corresponding p-dimensional
observed covariate vector. Note that when the data contain a single outlier, any of
the K responses y1, . . . ,yi, . . . ,yK can be that outlier. Now, in the spirit of the mean
shifted linear outlier model (2)–(3), suppose that we consider y j, j �= i, i = 1, . . . ,K,
for example, to be the outlier because of the covariate for the jth individual, namely
x j is contaminated. Note that if x̃i = (x̃i1, . . . , x̃iu, . . . , x̃ip)

′ denotes the p-dimensional
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Fig. 3 Mean squared error (MSE) of σ̂ 2
ls (LS estimator of σ 2), σ̃ 2

r(1) (first robust estimator of σ 2),

and σ̃ 2
r(2) (second robust estimator of σ 2)

uncontaminated covariate vector corresponding to yi for all i = 1, . . . ,K, then for a
positive vector δ , the observed covariates {xi} may be related to the uncontaminated
covariates {x̃i} as

x j = x̃ j + δ ,

but xi = x̃i, for i �= j, i = 1, . . . ,K. (16)

It is of primary interest to estimate β = (β1, . . . ,βu, . . . ,βp)
′, the effects of uncon-

taminated covariates x̃i on the response yi. But, as not all the x̃i’s are observed, one
cannot use them to estimate β , instead the observed contaminated xi’s are used,
which causes bias and hence inconsistency in the estimators.

2.2.1 Understanding Outliers in Count and Binary Data

K Count Observations with a Single Outlier

First assume that in the absence of outliers, y1, . . . ,yi, . . . ,yK are generated following
the Poisson density P(Yi = yi) = [exp(−μi)μyi

i ]/yi!, with μi = exp(x̃′iβ ) with x̃i =
(x̃i1, x̃i2)

′. Suppose that the values of these two covariates arise from
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x̃i1
iid∼ N(0.5,0.25) and x̃i2

iid∼ N(0.5,0.5),

respectively, for all i = 1, . . . ,K. Suppose that j is the index for the outlying
observation that takes a value between 1 and K.

Now, to consider y j as an outlying value, that is, to have a data set of size K with
one outlier, one may then shift the values of x̃ j1 and x̃ j2 as

x j1 = x̃ j1 + δ and x j2 = x̃ j2 + δ , δ > 0,

respectively, but retain xi1 = x̃i1 and xi2 = x̃i2, for all i �= j. As far as the shifting
is concerned, suppose that δ = 2.0. Thus, y1, . . . ,yK refer to a sample of K count
observations with y j as the single outlier.

K Binary Observations with a Single Outlier

Note that the existing literature (Copas 1988, p. 226; Carroll and Pederson 1993;
Sinha 2004) does not provide a clear definition for the outliers in binary data.
Remark that Cantoni and Ronchetti (2001) have suggested a practically useful MQL
robust inference technique for independent data subject to outliers in GLM setup.
However even though GLMs include count and binary models, since the concordant
counts (bulk of the observations of similar nature) in the Poisson case and the
concordant success numbers in the binomial case can be exploited in a similar way
to recognize any possible outliers in the respective data sets, Cantoni and Ronchetti’s
(2001) definitions of outliers are appropriate only for the Poisson and binomial
cases. Thus, even though binary is a special case of the binomial setup, Cantoni and
Rochetti’s (2001) robust inference development does not appear to be appropriate
for the binary data. In view of these difficulties with regard to the robust inferences
for the binary case, Bari and Sutradhar (2010a) have provided a new definition for
the outliers for the binary data. More specifically, they dealt with one and two sided
outliers in the binary data. For convenience these definitions are summarized as
follows.

One sided outlier For

Pr[Yi = 1] = E[Yi] = μi =
exp(x′iβ )

1+ exp(x′iβ )
,

and

psb = max{μi}, plb = min{μi},

suppose that the bulk (K − 1) of the binary observations occur with small
probabilities such that

Pr[Yi = 1] =

⎧⎨⎩≤ psb for i �= j, i = 1, . . . ,K,

> psb for i = j,
(17)
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or, with large probabilities such that

Pr[Yi = 1] =

⎧⎨⎩≥ plb for i �= j, i = 1, . . . ,K,

< plb for i = j,
(18)

Here the binary y j, whether 1 or 0, satisfying (17) is referred to as an upper
sided outlier or satisfying (18) is referred to as a lower sided outlier, whereas
the remaining K − 1 responses denoted by yi for i �= j constitute a group of
“concordant” observations.

Two sided outlier It may happen in practice that probabilities for the bulk of the
observations lie in the range psb ≤ P(Yi = 1)≤ plb, leading to a situation where
one may encounter a two sided outlier. To be specific, y j = 0 or 1 will be an
outlier if either P(Yj = 1)> plb or P(Yj = 1)< psb.

Generation of K binary observations with an outlier We now illustrate the gen-
eration of K binary observations including one outlier. For the purpose one
may first generate K binary responses y1, . . . ,yi, . . . ,yK assuming that they do
not contain any outliers. To be specific, generate these K “good” responses
following the binary logistic model P(Yi = 1) = [exp(x̃′iβ )]/[1+ exp(x̃′iβ )], with
two covariates so that x̃i = (x̃i1, x̃i2)

′ and β = (β1,β2)
′. As far as the covariate

values are concerned, similar to the Poisson case, consider two covariates x̃i1 and
x̃i2 as

x̃i1
iid∼ N(−1.0,0.25) and x̃i2

iid∼ N(−1.0,0.5),

respectively, for i = 1, . . . ,K.

Next, to create an outlier y j where j can take any value between 1 and K, change
the corresponding covariate values x̃ j1 and x̃ j2 as

x j1 = x̃ j1 + δ1 and x j2 = x̃ j2 + δ2, δ1,δ2 > 0,

respectively. Note that for large positive δ1 and δ2, these modified covariates will
be increased in magnitude yielding larger probability for y j = 1. One may then treat
y j as an outlier. For convenience, suppose that one uses δ1 = 3.0 and δ2 = 4.0. As
far as the remaining covariates are concerned, they are kept unchanged. That is, for
i �= j (i = 1, . . . ,K), consider xi1 = x̃i1 and xi2 = x̃i2.

2.2.2 Naive and Existing Robust QL Estimation Approaches

Naive QL (NQL) Estimation of β

Had there been no outliers, one could have obtained the consistent estimate of β by
solving the well-known QL (quasi-likelihood) estimating equation
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K

∑
i=1

[
∂ μ̃i

∂β
V−1(μ̃i)(yi − μ̃i)

]
= 0, (19)

(see Wedderburn 1974; McCullagh and Nelder 1989; Heyde 1997) where, for
example, μ̃i = E[Yi] = exp(x̃′iβ ) and V (μ̃i) = var[Yi] = μ̃i for Poisson count data;
and μ̃i =E[Yi] = exp(x̃′iβ )/[1+exp(x̃′iβ )] andV (μ̃i)= var[Yi] = μ̃i(1− μ̃i) for binary
data. But, as the uncontaminated x̃i’s are unobserved, it is not possible to use (19)
for the estimation of β . Now suppose that following (19) but by using the observed
covariates {xi}, one writes the naive quasi-likelihood (NQL) estimating equation for
β given by

K

∑
i=1

[
∂ μi

∂β
V−1(μi)(yi − μi)

]
= 0, (20)

where, for example, μi = exp(x′iβ ) and V (μi) = μi for Poisson count data; and μi =
exp(x′iβ )/[1+exp(x′iβ )] and V (μi) = μi(1−μi) for binary data. Since β is the effect
of x̃i on yi for all i = 1, . . . ,K, it then follows that the quasi-likelihood estimator
obtained from (20) will be biased and hence inconsistent for β .

Partly Standardized Mallows Type QL (PSMQL) Estimation of β

As a remedy to the inconsistency of the quasi-likelihood estimator obtained from
(20), Cantoni and Ronchetti (2001) (see also references therein), among others, have
suggested a Mallow’s type quasi-likelihood (MQL) robust estimation approach to
obtain a consistent estimate for the regression effects β . For the purpose, for ri =

yi−μi√
V (μi)

, they first define the Huber robust function as

ψc(ri) =

⎧⎨⎩ ri, |ri| ≤ c,

c sign(ri), |ri|> c,
(21)

where c is referred to as the so-called tuning constant. This robust function is then
used to construct the MQL estimating equation given by

K

∑
i=1

[
w(xi)

∂ μi

∂β
V− 1

2 (μi)ψc(ri)− a(β )
]
= 0, (22)

where a(β ) = 1
K ∑K

i=1 w(xi)
∂ μi
∂β V− 1

2 (μi)E[ψc(ri)], with μi = E(Yi), V (μi) = var(Yi),
and w(xi) = 1 for the binomial data as in Huber’s linear regression case, but
w(xi) =

√
(1− hi) for the Poisson data, where hi is the ith diagonal element of the

hat matrix H = X(X ′X)−1X ′, with X = (x1, . . . ,xi, . . . ,xK)
′ being the K× p covariate

matrix.
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Note that in order to minimize the robust distance function ψc(ri), the MQL
estimating (22) was constructed by using the variance V (μi) = var(Yi) as a weight
function and ∂ μi

∂β as a gradient function, whereas a proper estimating equation should

use var(ψc(ri)) and ∂ψc(ri)
∂β as the weight and gradient functions, respectively. One

may therefore refer to the estimating (22) as a partly standardized MQL (PSMQL)
estimating equation. This PSMQL estimating (22) provides regression estimates
with smaller bias than the traditional maximum likelihood or NQL estimating (20).
But, as discussed in Bari and Sutradhar (2010a), this improvement does not appear
to be significant enough to recommend the use of the PSMQL estimation approach.
Moreover, this PSMQL approach is not suitable for inferences in binary regression
models.

FSMQL Estimation of β

As an improvement over the PSMQL estimation, Bari and Sutradhar (2010a) have
proposed a FSMQL estimation approach where the regression effects β is obtained
by solving the FSMQL estimating equation

K

∑
i=1

[
w(xi)

∂
∂β

{
ψc(ri)− 1

K

K

∑
i=1

E (ψc(ri))

}
{var (ψc(ri))}−1

×
{

ψc(ri)− 1
K

K

∑
i=1

E (ψc(ri))

}]
= 0. (23)

Note that this FSMQL estimating (23) is constructed by replacing the “working”
variance and gradient functions V (μi) and ∂ μi

∂β in (22), with the true variance and

gradient functions var(ψc(ri)) and ∂ψc(ri)
∂β , respectively. Also, w(xi) =

√
(1− hi) is

used in both binary and Poisson cases. Furthermore, the specific formulas for the
true weight function var(ψc(ri)) and the gradient function ∂ψc(ri)

∂β for the count and
binary cases are available from Bari and Sutradhar (2010a, Sects. 2.1 and 2.2).

Bari and Sutradhar (2010a) also considered another version of the FSMQL
estimating (23), which was developed by using the deviance ψc(ri)− E(ψc(ri))
instead of ψc(ri)− 1

K ∑K
i=1 E(ψc(ri)). This alternative FSMQL estimating equation

has the form

K

∑
i=1

[
w(xi)

∂
∂β

{ψc(ri)−E (ψc(ri))}{var (ψc(ri))}−1 {ψc(ri)−E (ψc(ri))}
]
= 0.

(24)

For convenience, one may refer to (23) and (24) as the FSMQL1 and FSMQL2

estimating equations, respectively.
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Robust Function and Properties for Count Data

For the count data, consider the Huber robust function ψc(ri) as in (21). The
expectation and variance of this function are available from Cantoni and Ronchetti
(2001, Appendix A, p. 1028). The gradient of the robust function and its expectation
may then be computed as follows (see also Bari and Sutradhar 2010a, Appendix):

∂ψc(ri)

∂β
=

⎧⎨⎩− μi

V
1
2 (μi)

xi, |ri| ≤ c,

0, |ri|> c,
(25)

and

∂E(ψc(ri))

∂β
= −c

[
∂

∂β
FYi(i2)+

∂
∂β

FYi(i1)

]
+

μi

V
1
2 (μi)

[{
xiP(Yi = i1)+

∂
∂β

P(Yi = i1)

}

−
{

xiP(Yi = i2)+
∂

∂β
P(Yi = i2)

}]
, (26)

where

∂
∂β

P(Yi = i1) = P(Yi = i1)(i1 − μi)xi,
∂

∂β
P(Yi = i2) = P(Yi = i2)(i2 − μi)xi,

∂
∂β

FYi(i1) =
i1

∑
j=0

∂
∂β

P(Yi = j), and
∂

∂β
FYi(i2) =

i2

∑
j=0

∂
∂β

P(Yi = j).

Robust Function and Properties for Binary Data

(a) Robust function in the presence of one sided outlier

Suppose that the bulk of the binary observations occur with small probabilities. In
this case, the robust function ψc(ri) (i = 1, . . . ,n) may be defined as

ψc(ri) =

⎧⎪⎪⎨⎪⎪⎩
yi−μi

V
1
2 (μi)

, P(Yi = 1)≤ psb, i �= j, i = 1, . . . ,K,

yi−μ(c1)
i

V (c1)
1
2 (μ(c1)

i )

, P(Yi = 1)> psb, i = j,
(27)

where μi =
exp(x′iβ )

1+exp(x′iβ )
, V (μi) = μi(1− μi) for all i = 1, . . . ,K, and psb = max{μi},

i �= j, is a bound for all K − 1 small probabilities.
Note that as opposed to the case given in (27), if the bulk of the binary

observations occur with large probabilities, then the robust function ψc(ri) (i =
1, . . . ,K) is defined as
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ψc(ri) =

⎧⎪⎪⎨⎪⎪⎩
yi−μi

V
1
2 (μi)

, P(Yi = 1)≥ plb, i �= j, i = 1, . . . ,K,

yi−μ(c2)
i

V (c2)
1
2 (μ(c2)

i )

, P(Yi = 1)< plb, i = j,
(28)

where plb = min{μi}, i �= j, is a bound for all K − 1 large probabilities.

(b) Robust function in the presence of two sided outlier

In this case, the robust function ψc(ri) (i = 1, . . . ,K) may be defined as

ψc(ri) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yi−μ(c1)
i

V (c1)
1
2 (μ(c1)

i )

, P(Yi = 1)> plb, i = j,

yi−μi

V
1
2 (μi)

, psb ≤ P(Yi = 1)≤ plb, i �= j, i = 1, . . . ,K,

yi−μ(c2)
i

V (c2)
1
2 (μ(c2)

i )

, P(Yi = 1)< psb, i = j,

(29)

where μ (c1)
j and V (c1)(μ (c1)

j ) are defined as in (27), whereas μ (c2)
j and V (c2)(μ (c2)

j )
are defined as in (28).

(b(i)) Basic properties of the robust function ψc(ri): Binary case

It is convenient to write these properties for the two sided outlier case. The results for
the one sided outlier may be obtained as a special case. The expectation, variance,
and gradient of the robust function in the presence of a two sided outlier are available
from Bari and Sutradhar (2010a, Appendix). For convenience, these properties are
summarized as follows.

Let ψc(ri) denote the robust function defined as in (29). The expectation and
variance of ψc(ri) are given by

E(ψc(ri)) =
μi − μ (c1)

i

V (c1)
1
2 (μ (c1)

i )
P1 +

μi − μ (c2)
i

V (c2)
1
2 (μ (c2)

i )
P3, (30)

and

var(ψc(ri)) =
(1−2μ(c1)

i )μi +μ(c1)
i

2

V (c1)(μ(c1)
i )

P1 +P2 +
(1−2μ(c2)

i )μi +μ(c2)
i

2

V (c2)(μ(c2)
i )

P3 − [E(ψc(ri))]
2 ,

(31)

where P1, P2, and P3 are the probabilities for a binary observation to satisfy the
conditions P(Yi = 1)> plb, psb ≤ P(Yi = 1)≤ plb, and P(Yi = 1)< psb, respectively.
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In practice, the probabilities P1, P2, and P3 may be computed from the data by using
the sample proportions given by, for example,

P1 =
Number of observations satisfying P(Yi = 1)> plb

Total observation (K)
.

The gradient of the robust function ψc(ri) [defined in (29)] and its expectation
are given by

∂ψc(ri)

∂β
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, P(Yi = 1)> plb, i = j,

−μi(1−μi)xi

V
1
2 (μi)

, psb ≤ P(Yi = 1)≤ plb, i �= j, i = 1, . . . ,K,

0, P(Yi = 1)< psb, i = j,

(32)

and

∂E(ψc(ri))

∂β
=

(1− μi)μixi

V (c1)
1
2 (μ (c1)

i )
P1 +

(1− μi)μixi

V (c2)
1
2 (μ (c2)

i )
P3. (33)

To illustrate the finite sample based relative performance of the competitive
robust approaches, namely PSMQL (22), FSMQL1 (23), and FSMQL2 (24) ap-
proaches, we refer to some of the simulation results from Bari and Sutradhar
(2010a). In the presence of a single outlier, the count and binary data were generated
as in Sect. 2.2.1. With K = 60 observations including an outlier, the relative bias
(RB) of an estimator, for example, for βk (k = 1, . . . , p) given by

RB (β̂k) =
|β̂k −βk|
s.e. (β̂k)

× 100, (34)

were computed based 1,000 simulations. The results are shown in Table 1.

Table 1 (For count and binary data with one outlier) Simulated means (SM), simulated standard
errors (SSE), and relative biases (RB) of the PSMQL, FSMQL1, and FSMQL2 estimates of the
regression parameters β1 = 1.0 and β2 = 0.5, for sample size 60 and selected values of the tuning
constant c = 1.4 under the Poisson model, and tuning constant μc1 = 0.9 under the binary model,
in the presence of one outlier

Estimation method

PSMQL FSMQL1 FSMQL2

Model K Tuning constant Statistic β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

Count 60 c = 1.4 SM 0.507 0.600 0.899 0.517 0.893 0.488
SSE 0.206 0.188 0.307 0.239 0.279 0.210
RB 240 53 33 7 38 6

Binary 60 μc1 = 0.9 SM 1.161 0.194 0.994 0.503 1.003 0.486
SSE 0.777 0.760 0.782 0.777 0.779 0.764
RB 21 40 1 0 0 2
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The results of the table show that both fully standardized robust procedures
FSMQL1 and FSMQL2 perform much better in estimating β as compared to the
existing PSMQL robust approach.

3 Robust Inference in Longitudinal Setup

3.1 Existing GEE Approaches for Robust Inferences

Let μi(xi) = E(Yi) = (μi1, . . . ,μit , . . . ,μiT )
′ denote the mean, and Σi(xi,ρ) : T × T

be the true covariance matrix of the response vector yi where xi represents all
true covariates, i.e., xi ≡ xi1, . . . ,xit , . . . ,xiT . For convenience, the covariance matrix

Σi(xi,ρ) is often expressed as Σi(xi,ρ) = A
1
2
i Ci(ρ)A

1
2
i , where Ai = diag[σi11, . . . ,σitt ,

. . . ,σiT T ] and Ci(ρ) is the correlation matrix for repeated binary or count data.
Note that if the longitudinal data do not contain any outliers, then one may obtain
consistent and highly efficient estimate of β by solving the GQL estimating equation

K

∑
i=1

[
∂ μ ′

i (xi)

∂β
Σ−1

i (xi, ρ̂)(yi − μi(xi))

]
= 0, (35)

(see Sutradhar 2003) where ρ̂ is a suitable consistent, for example, a moment
estimate of ρ .

Note that in practice it may, however, happen that a small percentage such as 1%
of longitudinal observations are suspected to be outliers. Suppose that m of the KT
responses are referred to as the outliers when their corresponding covariates are
shifted by an amount δ , δ being a real valued vector. For convenience, we denote
the new set of covariates as

x̃it =

⎧⎪⎨⎪⎩
xit for (i, t) �≡ (i′, t ′)

xit + δ for (i, t)≡ (i′, t ′)
,

and use these observed covariates x̃it for the estimation of β . It is, therefore, clear
that since β is the effect of the true covariate xit on yit , the solution of the observed
covariates x̃i based naive GQL (NGQL) estimating equation

K

∑
i=1

[
∂ μ ′

i (x̃i)

∂β
Σ−1

i (x̃i, ρ̂)(yi − μi(x̃i))

]
= 0, (36)

will produce biased and hence inconsistent estimate for β . To overcome this incon-
sistency problem, Preisser and Qaqish (1999), among others, have proposed to solve
a resistant generalized quasi-likelihood estimating equation (REGEE) given by
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K

∑
i=1

[
∂ μ ′

i (x̃i)

∂β
V−1

i (x̃i,α)(ψ∗
i − ci)

]
= 0, (37)

where ψ∗
i is a down-weighting function, ci = E(ψ∗

i ), and Vi(x̃i,α) is a “working”
covariance matrix (Liang and Zeger 1986). Note that the REGEE in (37) does not
appear to be a proper weighted estimating equation. This is because, first, Vi(x̃i,α)
is only a substitute of Σi(x̃i,ρ) matrix, whereas in the presence of outliers, one needs
to use Ω ∗

i = var(ψ∗
i ) in order to obtain efficient regression estimates. Secondly, the

REGEE (37) uses ∂ μ ′
i (x̃i)

∂β as the gradient function, whereas the consistency of the
estimates may depend on the proper gradient function constructed by taking the
derivative of the ψ∗

i − ci function with respect to β .
Cantoni (2004) has provided an improvement over the REGEE by introducing

the proper gradient function in the estimating equation. To be specific, as compared
to Preisser and Qaqish (1999) (see also Eq. (36)), Cantoni (2004) constructed an
improved resistant generalized estimating equation (IREGEE) given by

K

∑
i=1

[
E

{
∂ (ψ∗

i − ci)

∂β ′

}′
V−1

i (x̃i,α)(ψ∗
i − ci)

]
= 0, (38)

where E
[

∂ (ψ∗
i −ci)

∂β ′
]

is a proper gradient of the robust function ψ∗
i − ci, with

E

[
∂ (ψ∗

i − ci)

∂β ′

]
= E

[
∂ (ψ∗

i − ci)

∂ μ ′
i (x̃i)

]
∂ μi

∂β ′ = Γi
∂ μi

∂β ′ .

Note that the estimating (38) still uses a “working” covariance matrix Vi(x̃i,α),
whereas an efficient estimating equation (Sutradhar and Das 1999) should use the
proper covariance matrix of the robust function, namely Ω∗

i = var(ψ∗
i ). Further,

similar to Cantoni (2004), Sinha (2006) has attempted to develop certain robust
inferences to deal with outliers in the longitudinal data. But, Sinha (2006) has
modeled the longitudinal correlations through random effects, which, therefore
addresses a different problem than longitudinal data problems.

Recently, Bari and Sutradhar (2010b) has proposed an auto-correlation class
based robust GQL (RGQL) approach for inferences in binary and count panel
data models in the presence of outliers. This RGQL approach produces consistent
and highly efficient regression estimates, and it is a generalization of the FSMQL
approach for independent data to the longitudinal setup. The RGQL approach is
summarized in the next section.

3.2 RGQL Approach for Robust Inferences
in Longitudinal Setup

Note that when the covariates are stationary, that is, time independent, one may
develop a general auto-correlation class based robust GQL estimation approach.
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Bari and Sutradhar (2010b) have considered non-stationary covariates and exploited
the most likely AR(1) type correlation structures for both count and binary data.
These correlation structures are discussed in detail in Sutradhar (2010), see also
Sutradhar (2011). For convenience we summarize these correlation structures as
follows.

Recall that xit = (xit1, . . . ,xitu, . . . ,xit p)
′ is the p× 1 vector of covariates corre-

sponding to yit when the data do not contain any outliers, and β denote the effects
of the covariate xit on yit . The AR(1) correlation models for repeated responses
yi1, . . . ,yit , . . . ,yiT based on the uncontaminated covariates xi1, . . . ,xit , . . . ,xiT , for
binary and count data are given below.

AR(1) model for repeated binary data

For μit =
exp(x′it β )

1+exp(x′it β )
, for all t = 1, . . . ,T , the AR(1) model for the binary data may

be written as

yi1 ∼ bin(μi1) and

yit |yi,t−1 ∼ bin[μit +ρ(yi,t−1 − μi,t−1)], (39)

(Zeger et al. 1985; Qaqish 2003) where ρ is a correlation index parameter. The
binary AR(1) model (39) has the auto-correlation structure given by

corr(Yiu,Yit) =

⎧⎪⎪⎨⎪⎪⎩
ρ t−u

[
σiuu
σitt

]1/2
, for u < t

ρu−t
[

σitt
σiuu

]1/2
, for u > t

, (40)

where σiuu = μiu(1−μiu), for example, is the variance of yiu. Note that ρ parameter
in (39)–(40) must satisfy the range restriction

max

[
− μit

1− μi,t−1
,−1− μit

μi,t−1

]
≤ ρ ≤ min

[
1− μit

1− μi,t−1
,

μit

μi,t−1

]
. (41)

AR(1) model for repeated count data

As opposed to the binary AR(1) model (39), the AR(1) model for the count data is
defined as

yi1 ∼ Poisson(μi1)

yit = ρ ∗ yi,t−1 + dit , t = 2, . . . ,T, (42)

(see McKenzie 1988; Sutradhar 2003), where yi,t−1 ∼ Poisson(μi,t−1) and dit ∼
Poisson(μit − ρμi,t−1), with μit = E(Yit) = exp(x′itβ ). In (42), dit and yi,t−1 are
assumed to be independent. Also, for given count yi,t−1,
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ρ ∗ yi,t−1 =
yi,t−1

∑
j=1

b j(ρ),

where b j(ρ) stands for a binary variable with P[b j(ρ) = 1] = ρ and P[b j(ρ) = 0] =
1−ρ . The AR(1) model (42) for count data has the auto-correlation structure given
by

corr(Yiu,Yit ) = ρ t−u
√

μiu

μit
, (43)

with ρ satisfying the range restriction

0 < ρ < min

[
1,

μit

μi,t−1

]
, t = 2, · · · ,T. (44)

3.2.1 RGQL Estimating Equation

For ξi = [ψc(ri1), . . . ,ψc(rit), . . . ,ψc(riT )]
′, its expectation λi is available from

Cantoni and Ronchetti (2001) for the count data, and from Sect. 2.2.2 for the binary
case. Recall from (38) that based on “working” covariance of the responses (Liang
and Zeger 1986), Cantoni (2004) has suggested an IREGEE approach for estimating
β in the presence of outliers. One may obtain consistent β estimate by solving a
slightly different equation than (38) given by

K

∑
i=1

[
Wi

∂
∂β

{
ξi −K−1

K

∑
i=1

λi

}′
V−1

i (α)

{
ξi −K−1

K

∑
i=1

λi

}]
= 0, (45)

where Wi = diag[wi1, . . . ,wit , . . . ,wiT ] is the T × T covariate dependent diagonal
weight matrix so that covariates corresponding to the outlying response yield less
weight for the corresponding robust function. To be specific, the t-th diagonal
element of the Wi matrix is computed as wit =

√
1− hitt , hitt being the t-th diagonal

element of the hat matrix Hi = X̃i(X̃ ′
i X̃i)

−1X̃ ′
i with X̃i = [x̃i1, . . . , x̃it , . . . , x̃iT ]

′. See,
for example, Cantoni and Ronchetti (2001). Also in (45), Vi(α) = cov(Yi) =

A
1
2
i R(α)A

1
2
i is a “working” covariance matrix of yi, with R(α) as the associated

“working” correlation matrix. Note that there are twofold problems with this
estimating equation. First, for efficiency increase, it would have been appropriate
to use cov(ξi) = cov[ψc(ri1), . . . ,ψc(rit), . . . ,ψc(riT )] as the weight matrix instead
of the true covariance matrix Σi(α) = cov(Yi). Secondly, Cantoni (2004) did not
even use Σi, rather has used a “working” covariance matrix Vi(α) = cov(Yi).

To overcome this inefficiency problem encountered by Cantoni’s approach, Bari
and Sutradhar (2010b) have suggested a robust function based GQL (RGQL)
estimating equation for β as
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K

∑
i=1

[
Wi

∂
∂β

{
ξi −K−1

K

∑
i=1

λi

}′
Ω−1

i

{
ξi −K−1

K

∑
i=1

λi

}]
= 0, (46)

where

Ωi = cov(ξi) = (ωiut), (47)

with

ωiut = E [ψc(riu)ψc(rit )]−{E(ψc(riu))E(ψc(rit))} , (48)

where, as mentioned above, the formulas for E[ψc(rit )] are available for both count
and binary data.

Computation of Ωi for the Binary Data

Note that the computation of the product moment E [ψc(riu)ψc(rit)] in (48) is
manageable for the binary case, but it is extremely difficult for the count data. For
example, suppose that yit , t = 1, . . . ,T , used in the robust functions ψc(rit ), follow

an AR(1) type correlation structure given by (40), where μit =
exp(x′it β )

1+exp(x′itβ )
and ρ

is a correlation index parameter. Next, suppose that the binary data contain two
sided outliers. One may then follow (29) and compute all nine combinations for the
product term ψc(riu)ψc(rit ) and compute the expectations of all these nine terms,
and derive the formulas as

E [ψc(riu)ψc(rit)] = ρ t−uσiuuaiut +[E(ψc(riu))E(ψc(rit))] , (49)

where

aiut =
P2

1√
σ (c1)

itt σ (c1)
iuu

+P1P2

⎡⎣ 1√
σitt σ

(c1)
iuu

+
1√

σ (c1)
itt σiuu

⎤⎦

+ P1P3

⎡⎣ 1√
σ (c2)

itt σ (c1)
iuu

+
1√

σ (c1)
itt σ (c2)

iuu

⎤⎦+P2P3

⎡⎣ 1√
σ (c2)

itt σiuu

+
1√

σitt σ
(c2)
iuu

⎤⎦
+

P2
2√

σitt σiuu
+

P2
3√

σ (c2)
itt σ (c2)

iuu

,

for u < t. We may then easily compute ωiut by using (49) and (48).
Further note that for the one sided outlier case, the E [ψc(riu)ψc(rit )] can be

obtained from (49) as follows. For the one sided down-weighting function ψc(rit)
given in (28), one may compute the expectation of ψc(riu)ψc(rit ) from (49) by
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changing the limits obtained by replacing plb with 0. Similarly, the product moment
based on the down-weighting function ψc(rit ) given in (27), can be obtained from
(49) by changing the limits obtained by replacing psb with 1.

Under the AR(1) binary correlation structure (40), the outlier based moment
estimation formula for ρ derived from (49), is given by

ρ̂M =

∑K
i=1 ∑T−1

u=1 [ψc(riu)−E(ψc(riu))][ψc(ri,u+1)−E(ψc(ri,u+1))]wiuwi,u+1
K(T−1)

∑K
i=1 ∑T

u=1[ψc(riu)−E(ψc(riu))]
2/var[ψc(riu)]

KT

∑K
i=1 ∑T−1

u=1 σiuuaiut wiuwi,u+1
K(T−1)

. (50)

Alternatively, for any lag 1 dependent [irrespective of the correlation structure such
as AR(1) or MA(1)] binary or count data with possible outliers, the lag 1 correlation
index parameter ρ may be estimated as

ρ̂M =

∑K
i=1 ∑T−1

u=1 [ψc(riu)wiu−ξ̄u,w][ψc(ri,u+1)wi,u+1−ξ̄u+1,w]

K(T−1)

∑K
i=1 ∑T

u=1[ψc(riu)wiu−ξ̄u,w]2

KT

, (51)

where ξ̄t,w = 1
K ∑K

i=1 ψc(rit)wit .

Computation of Ωi for Count Data

Note that as opposed to the binary case, the construction of the Ωi matrix is difficult
for the count data case. One may, however, alternatively compute this Ωi matrix by
using the general formula

cov(ξi) = Ωi = A
1
2
iξCiξ A

1
2
iξ , (52)

where Aiξ = [var(ψc(ri1)), . . . ,var(ψc(rit)), . . . ,var(ψc(riT ))] and Ciξ = (ciξ ,ut),
with ciξ ,ut = corr[ψc(riu),ψc(rit)] for u, t = 1, . . . ,T . For (52), the formulas for
var[ψc(rit)] for the binary data are given in Sect. 2.2.2, and for the count data
they are available from Cantoni and Ronchetti (2001, Appendix). As far as the
computation of the Ciξ matrix is concerned, one may approximate this matrix by a
constant matrix C∗

ξ , say, by pretending that the covariates are stationary even though
they are non-stationary (i.e., time dependent). Under this assumption, the (u, t)th
component of the constant matrix C∗

ξ may be computed as

C∗
ξ = (c∗ξ ,ut),
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where

c∗ξ ,ut =
1
K ∑K

i=1[ψc(riu)− ξ̄u][ψc(rit)− ξ̄t ]√
1
K ∑K

i=1[ψc(riu)− ξ̄u]2
1
K ∑K

i=1[ψc(rit )− ξ̄t ]2
, (53)

with ξ̄t =
1
K ∑K

i=1 ψc(rit ), for all t = 1, . . . ,T .
Note that the REGEE approach encounters convergence problems and also this

approach produces regression estimates with much larger relative biases than the
RGQL approach. See, for example, the finite sample relative performance of the
RGQL and REGEE approaches shown through intensive simulation studies reported
in Bari and Sutradhar (2010b).
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