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FOREWORD

“What is Calculus?” is a classic deep question. Calculus is the most powerful branch of
mathematics, which revolves around calculations involving varying quantities. It provides a
system of rules to calculate quantities, which cannot be calculated by applying any other branch
of mathematics. Schools or colleges find it difficult to motivate students to learn this subject,
while those who do take the course find it very mechanical. Many a times, it has been observed
that students incorrectly solve real-life problems by applying Calculus. They may not be capable
to understand or admit their shortcomings in terms of basic understanding of fundamental
concepts! The study of Calculus is one of the most powerful intellectual achievements of the
human brain. One important goal of this manuscript is to give beginner-level students an
appreciation of the beauty of Calculus. Whether taught in a traditional lecture format or in the lab
with individual or group learning, Calculus needs focusing on numerical and graphical
experimentation. This means that the ideas and techniques have to be presented clearly and
accurately in an articulated manner.

The ideas related with the development of Calculus appear throughout mathematical history,
spanning over more than 2000 years. However, the credit of its invention goes to the
mathematicians of the seventeenth century (in particular, to Newton and Leibniz) and continues
up to the nineteenth century, when French mathematician Augustin-Louis Cauchy (1789-1857)
gave the definition of the limit, a concept which removed doubts about the soundness of
Calculus, and made it free from all confusion. The history of controversy about Calculus is most
illuminating as to the growth of mathematics. The soundness of Calculus was doubted by the
greatest mathematicians of the eighteenth century, yet, it was not only applied freely but great
developments like differential equations, differential geometry, and so on were achieved.
Calculus, which is the outcome of an intellectual struggle for such a long period of time, has
proved to be the most beautiful intellectual achievement of the human mind.

There are certain problems in mathematics, mechanics, physics, and many other branches of
science, which cannot be solved by ordinary methods of geometry or algebra alone. To solve
these problems, we have to use a new branch of mathematics, known as Calculus. It uses not
only the ideas and methods from arithmetic, geometry, algebra, coordinate geometry, trigo-
nometry, and so on, but also the notion of limit, which is a new idea which, lies at the foundation
of Calculus. Using this notion as a tool, the derivative of a function (which is a variable quantity)
is defined as the limit of a particular kind.

In general, Differential Calculus provides a method for calculating “the rate of change” of
the value of the variable quantity. On the other hand, Integral Calculus provides methods for
calculating the total effect of such changes, under the given conditions. The phrase rate of
change mentioned above stands for the actual rate of change of a variable, and not its average
rate of change. The phrase “rate of change” might look like a foreign language to beginners, but
concepts like rate of change, stationary point, and root, and so on, have precise mathematical
meaning, agreed-upon all over the world. Understanding such words helps a lot in understanding
the mathematics they convey. At this stage, it must also be made clear that whereas algebra,

xiii



xiv FOREWORD

geometry, and trigonometry are the tools which are used in the study of Calculus, they should
not be confused with the subject of Calculus.

This manuscript is the result of joint efforts by Prof. Ulrich L. Rohde, Mr. G. C. Jain, Dr. Ajay
K. Poddar, and myself. All of us are aware of the practical difficulties of the students face while
learning Calculus. I am of the opinion that with the availability of these notes, students should be
able to learn the subject easily and enjoy its beauty and power. In fact, for want of such simple
and systematic work, most students are learning the subject as a set of rules and formulas, which
is really unfortunate. I wish to discourage this trend.

Professor Ulrich L. Rohde, Faculty of Mechanical, Electrical, and Industrial Engineering
(RF and Microwave Circuit Design & Techniques) Brandenburg University of Technology,
Cottbus, Germany has optimized this book by expanding it, adding useful applications, and
adapting it for today’s needs. Parts of the mathematical approach from the Rohde, Poddar, and
Boeck textbook on wireless oscillators (The Design of Modern Microwave Oscillators for
Wireless Applications: Theory and Optimization, John Wiley & Sons, ISBN 0-471-72342-8,
2005) were used as they combine differentiation and integration to calculate the damped and
starting oscillation condition using simple differential equations. This is a good transition for
more challenging tasks for scientific studies with engineering applications for beginners who
find difficulties in understanding the problem-solving power of Calculus.

Mr. Jain is not an educator by profession, but his curiosity to go to the roots of the subject to
prepare the so-called concept-oriented notes for systematic studies in Calculus is his
contribution toward creating interest among students for learning mathematics in general,
and Calculus in particular. This book started with these concept-oriented notes prepared for
teaching students to face real-life engineering problems. Most of the material pertaining to this
manuscript on calculus was prepared by Mr. G. C. Jain in the process of teaching his kids and
helping other students who needed help in learning the subject. Later on, his friends (including
me) realized the beauty of his compilation and we wanted to see his useful work published.

Tam also aware that Mr. Jain got his notes examined from some professors at the Department
of Mathematics, Pune University, India. I know Mr. Jain right from his scientific career at
Armament Research and Development Establishment (ARDE) at Pashan, Pune, India, where I
was a Senior Scientist (1982-1998) and headed the Aerodynamic Group ARDE, Pune in DRDO
(Defense Research and Development Organization), India. Coincidently, Dr. Ajay K. Poddar,
Chief Scientist at Synergy Microwave Corp., NJ 07504, USA was also a Senior Scientist
(1990-2001) in a very responsible position in the Fuze Division of ARDE and was aware of the
aptitude of Mr. Jain.

Dr. Ajay K. Poddar has been the main driving force towards the realization of the
conceptualized notes prepared by Mr. Jain in manuscript form and his sincere efforts made
timely publications possible. Dr. Poddar has made tireless effort by extending all possible help
to ensure that Mr. Jain’s notes are published for the benefit of the students. His contributions
include (but are not limited to) valuable inputs and suggestions throughout the preparation of
this manuscript for its improvement, as well as many relevant literature acquisitions. I am sure,
as a leading scientist, Dr. Poddar will have realized how important it is for the younger
generation to avoid shortcomings in terms of basic understanding of the fundamental concepts
of Calculus.

I have had a long time association with Mr. Jain and Dr. Poddar at ARDE, Pune. My
objective has been to proofread the manuscript and highlight its salient features. However, only
a personal examination of the book will convey to the reader the broad scope of its coverage and
its contribution in addressing the proper way of learning Calculus. I hope this book will prove to
be very useful to the students of Junior Colleges and to those in higher classes (of science and
engineering streams) who might need it to get rid of confusions, if any.
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My special thanks goes to Dr. Poddar, who is not only a gifted scientist but has also been a
mentor. It was his suggestion to publish the manuscript in two parts (Part I: Introduction to
Differential Calculus: Systematic Studies with Engineering Applications for Beginners and
Part II: Introduction to Integral Calculus: Systematic Studies with Engineering Applications
for Beginners) so that beginners could digest the concepts of Differential and Integral Calculus
without confusion and misunderstanding. It is the purpose of this book to provide a clear
understanding of the concepts needed by beginners and engineers who are interested in the
application of Calculus of their field of study. This book has been designed as a supplement to all
current standard textbooks on Calculus and each chapter begins with a clear statement of
pertinent definitions, principles, and theorems together with illustrative and other descriptive
material. Considerably more material has been included here than can be covered in most high
schools and undergraduate study courses. This has been done to make the book more flexible; to
provide concept-oriented notes and stimulate interest in the relevant topics. I believe that
students learn best when procedural techniques are laid out as clearly and simply as possible.
Consistent with the reader’s needs and for completeness, there are a large number of examples
for self-practice.

The authors are to be commended for their efforts in this endeavor, and I am sure that both
Part I and Part I will be an asset to the beginner’s handbook on the bookshelf. I hope that after
reading this book, the students will begin to share the enthusiasm of the authors in under-
standing and applying the principles of Calculus and its usefulness. With all these changes, the
authors have not compromised our belief that the fundamental goal of Calculus is to help
prepare beginners enter the world of mathematics, science, and engineering.

Finally, I would like to thank Susanne Steitz-Filler, Editor (Mathematics and Statistics)
at John Wiley & Sons, Inc., Danielle Lacourciere, Senior Production Editor at John Wiley &
Sons, Inc., and Sanchari Sil at Thomson Digital for her patience and splendid cooperation
throughout the journey of this publication.

AJjoy Kanti GHOSH

PRrROFESSOR & FacuLty INCHARGE (FLIGHT LABORATORY)
DEPARTMENT OF AEROSPACE ENGINEERING

IIT KANPUR, INDIA



PREFACE

In general, there is a perception that Calculus is an extremely difficult subject, probably because
the required number of good teachers and good books are not available. We know that books
cannot replace teachers, but we are of the opinion that good books can definitely reduce
dependence on teachers, and students can gain more confidence by learning most of the con-
cepts on their own. In the process of helping students to learn Calculus, we have gone through
many books on the subject and realized that whereas a large number of good books are available
at the graduate level, there is hardly any book available for introducing the subject to beginners.
The reason for such a situation can be easily understood by anyone who knows the subject of
Calculus and hence the practical difficulties associated with the process of learning the subject.
In the market hundreds of books are available on Calculus. All these books contain a large
number of important solved problems. Besides, the rules for solving the problems and the list of
necessary formulae are given in the books, without discussing anything about the basic concepts
involved. Of course, such books are useful for passing the examination(s), but Calculus is hardly
learnt from these books. Initially, the coauthors had compiled concept-oriented notes for
systematic studies in differential and integral Calculus, intended for beginners. These notes
were used by students in school- and undergraduate-level courses. The response and the
appreciation experienced from the students and their parents encouraged us to make these notes
available to the beginners. It is due to the efforts of our friends and well-wishers that our dream
has now materialized in the form of two independent books: Part I for Differential Calculus and
Part II for Integral Calculus. Of course there are some world class authors who have written
useful books on the subject at introductory level, presuming that the reader has the necessary
knowledge of prerequisites. Some such books are: What is calculus about? (By Professor WW
Sawyer), Teach yourself calculus (By P. Abbott, B.A), Calculus Made Easy (By S.P.
Thomson) and Calculus Explained (By W.J. Reichmann). Any person with some knowledge
of Calculus will definitely appreciate the contents and the approach of the authors. However, a
reader will be easily convinced that most of the beginners may not be able to get (from these
books) the desired benefit, for various reasons. From this point of view, both Parts (Part-I & Part-
IT) of our book would prove to be unique since this provide comprehensive material on Calculus
for the beginners. The first six chapters of Part-I would help the beginner to come up to the level,
so that one can easily learn the concept of limit, which is in the foundation of calculus. The
purpose of these works is to provide the basic (but solid) foundation of Calculus to beginners.
The books aim to show them the enjoyment in the beauty and power of Calculus and develop the
ability to select proper material needed for their studies in any technical and scientific field,
involving Calculus.

One reason for such a high dropout rate is that at beginner levels, Calculus is so poorly
taught. Classes tend to be so boring that students sometimes fall asleep. Calculus textbooks get
fatter and fatter every year, with more multicolor overlays, computer graphics, and photographs
of eminent mathematicians (starting with Newton and Leibniz), yet they never seem easier to
comprehend. We look through them in vain for simple, clear exposition, and for problems that

xvii
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will hook a student’s interest. Recent years have seen a great hue and cry in mathematical circle
over ways to improve teaching Calculus to beginner and high-school students. Endless
conferences have been held, many funded by the federal government, dozens of experimental
programs are here and there. Some leaders of reform argue that a traditional textbook gets
weightier but lacks the step-by-step approach to generate sufficient interest to learn Calculus in
beginner, high school, and undergraduate students. Students see no reason why they should
master tenuous ways of differentiating and integrating by hand when a calculator or computer
will do the job. Leaders of Calculus reform are not suggesting that calculators and computers
should no longer be used; what they observe is that without basic understanding about the
subject, solving differentiation and integration problems will be a futile exercise. Although
suggestions are plentiful for ways to improve Calculus understanding among students and
professionals, a general consensus is yet to emerge.

The word “Calculus” is taken from Latin and it simply means a “stone” or “pebble,” which
was employed by the Romans to assist the process of counting. By extending the meaning of the
word “Calculus,” it is now applied to wider fields (of calculation) which involve processes other
than mere counting. In the context of this book (with the discussion to follow), the word
“Calculus” is an abbreviation for Infinitesimal Calculus or to one of its two separate but
complimentary branches—Differential Calculus and Integral Calculus. Tt is natural that the
above terminology may not convey anything useful to the beginner(s) until they are acquainted
with the processes of differentiation and integration. What is the Calculus? What does it
calculate? Is Calculus different from other branches of Mathematics? What type(s) of problems
are handled by Calculus?

The author’s aim throughout has been to provide a tour of Calculus for a beginner as well as
strong fundamental basics to undergraduate students on the basis of the following questions,
which frequently came to our minds, and for which we wanted satisfactory and correct answers.

(i) What is Calculus?
(ii) What does it calculate?
(iii) Why do teachers of physics and mathematics frequently advise us to learn Calculus
seriously?
(iv) How is Calculus more important and more useful than algebra and trigonometry or
any other branch of mathematics?
(v) Why is Calculus more difficult to absorb than algebra or trigonometry?

(vi) Are there any problems faced in our day-to-day life that can be solved more easily by
Calculus than by arithmetic or algebra?

(vii) Are there any problems which cannot be solved without Calculus?
(viii) Why study Calculus at all?

(ix) Is Calculus different from other branches of mathematics?

(x) What type(s) of problems are handled by Calculus?

At this stage, we can answer these questions only partly. However, as we proceed, the associated
discussions will make the answers clear and complete. To answer one or all of the above questions,
it was necessary to know: How does the subject of Calculus begin?; How can we learn Calculus?,
and What can Calculus do for us? The answers to these questions are hinted at in the books: What
is Calculus about ? and Mathematician’s Delight, both by W.W. Sawyer. However, it will depend
on the curiosity and the interest of the reader to study, understand, and absorb the subject. The
author use very simple and nontechnical language to convey the ideas involved. However, if
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the reader is interested to learn the operations of Calculus faster, then he may feel disappointed.
This is so, because the nature of Calculus and the methods of learning it are very different from
those applicable in arithmetic or algebra. Besides, one must have a real interest to learn the
subject, patience toread many books, and obtain proper guidance fromteachers or the rightbooks.

Calculus is the higher branch of mathematics, which enters into the process of calculating
changing quantities (and certain properties), in the field of mathematics and various branches of
science, including social science. It is said to be the Mathematics of Change. We cannot begin to
answer any question related with change unless we know: What is that change and how it
changes? This statement takes us closer to the concept of function y =f(x), wherein “y” is
related to “x” through a rule “£.” We say that “y” is a function of x, by which we mean that “y”
depends on “x.” (We say that “y” is a dependent variable, depending on the value of x, an
independent variable.) From this statement it is clear that as the value of “x” changes, there
results a corresponding change in the value of “y” depending on the nature of the function “f” or
the formula defining f.

The immense practical power of Calculus is due to its ability to describe and predict the
behavior of the changing quantities “y” and “x.” In case of linear functions (which are of the
form y =mx + b), an amount of change in the value of x causes a proportionate change in the
value of y. However, in the cases of other functions (like y = x> - 5, y= X , V= XX+ 3,
y=sin x, y=3e* + Xx, etc.) which are not linear, no such proportionality exists. Our interest
lies in studying the behavior of the dependent variable y[= f(x)] with respect to the change in
(the value of) the independent variable “x.” In other words, we wish to find the rate at which “y”
changes with respect to “x.”

We know that every rate is the ratio of change that may occur in the quantities, which
are related to one another through a rule. It is easy to compute the average rate at which the
value of y changes when x is changed from x, to x,. It can be easily checked that (for the
nonlinear functions) these average rate(s) are different between different values of x. [Thus, if
X0 —xil=Ix3 =Xl =Ixy—x3l=...... , (for all xy, x5, X3, X4, .. .) then we have f(x,) — f(x,) #
Sx3) — flixn) #f(xg) —f(X3)F£ ..o .. ]. Thus, we get that the rate of change of y is different in
between different values of x.

Our interest lies in computing the rate of change of “y” at every value of “x.” It is known as
the instantaneous rate of change of “y” withrespect to “x,” and we call it the “rate function” of
“y”withrespect to“x.” Itisalso called the derived function of “y” with respect to “x” and denoted
by the symbol y'[=f"(x)]. The derived function f’(x) is also called the derivative of y[=f(x)] with
respect to x. The equation y' =f’(x) tells that the derived function f (x) is also a function of x,
derived (or obtained) from the original function y = f{x). There is another (useful) symbol for the
derivedfunction, denoted by dy/dx. This symbol appears like a ratio, but it must be treated as a
singleunit,as we willlearn later. The equationy’ = f’(x) gives us the instantaneousrate of change
of y with respect to x, for every value of “x,” for which f/(x) is defined.

To define the derivative formally and to compute it symbolically is the subject of Differential
Calculus. In the process of defining the derivative, various subtleties and puzzles will inevitably
arise. Nevertheless, it will not be difficult to grasp the concept (of derivatives) with our
systematic approach. The relationship between f{x) and f’(x) is the main theme. We will study
what it means for f’(x) to be “the rate function” of f(x), and what each function says about the
other. It is important to understand clearly the meaning of the instantaneous rate of change of
Sf(x) with respect to x. These matters are systematically discussed in this book. Note that we
have answered the first two questions and now proceed to answer the third one.

There are certain problems in mathematics and other branches of science, which cannot be
solved by ordinary methods known to us in arithmetic, geometry, and algebra alone. In
Calculus, we can study the properties of a function without drawing its graph. However, it is
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important to be aware of the underlying presence of the curve of the given function. Recall that
this is due to the introduction of coordinate geometry by Decartes and Fermat. Now, consider
the curve defined by the function y = x> — x* — x. We know that, the slope of this curve changes
from point to point. If it is desired to find its slope at x = 2, then Calculus alone can help us give
the answer, which is 7. No other branch of mathematics would be useful.

Calculus uses not only the ideas and methods from arithmetic, geometry, algebra, coordinate
geometry, trigonometry, and so on, but also the notion of limit, which is a new idea that lies at the
foundation of Calculus. Using the notion of limit as a tool, the derivative of a function is defined
as the limit of a particular kind. (It will be seen later that the derivative of a function is generally a
new function.) Thus, Calculus provides a system of rules for calculating changing quantities
which cannot be calculated otherwise. Here it may be mentioned that the concept of limit is
equally important and applicable in Integral Calculus, which will be clear when we study the
concept of the definite integral in Chapter 5 of Part II. Calculus is the most beautiful and powerful
achievement of the human brain. It has been developed over a period of more than 2000 years.
The idea of derivative of a function is among the most important concepts in all of mathematics
and it alone distinguishes Calculus from the other branches of mathematics.

The derivative and an integral have found many diverse uses. The listis very long and can be
seen in any book on the subject. Differential calculus is a subject which can be applied to
anything that moves, or changes or has a shape. It is useful for the study of machinery of all
kinds - for electric lighting and wireless, optics, and thermodynamics. It also helps us to answer
questions about the greatest and smallest values a function can take. Professor W.W. Sawyer,
in his famous book Mathematician’s Delight, writes: Once the basic ideas of differential
calculus have been grasped, a whole world of problems can be tackled without great difficulty.
It is a subject well worth learning.

On the other hand, integral calculus considers the problem of determining a function from
the information about its rate of change. Given a formula for the velocity of a body, as a
function of time, we can use integral calculus to produce a formula that tells us how far the body
has traveled from its starting point, at any instant. It provides methods for the calculation of
quantities such as areas and volumes of curvilinear shapes. It is also useful for the measurement
of dimensions of mathematical curves.

The concepts basic to Calculus can be traced, in uncrystallized form, to the time of the
ancient Greeks (around 287-212 BC). However, it was only in the sixteenth and the early
seventeenth centuries that mathematicians developed refined techniques for determining
tangents to curves and areas of plane regions. These mathematicians and their ingenious
techniques set the stage for Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716),
who are usually credited with the “invention” of Calculus.

Later on the concept of the definite integral was also developed. Newton and Leibniz
recognized the importance of the fact that finding derivatives and finding integrals (i.e.,
antiderivatives) are inverse processes, thus making possible the rule for evaluating definite
integrals. All these matters are systematically introduced in Part II of the book. (There were
many difficulties in the foundation of the subject of Calculus. Some problems reflecting
conflicts and doubts on the soundness of the subject are reflected in “Historical Notes” given at
the end of Chapter 9 of Part I.) During the last 150 years, Calculus has matured bit by bit. In the
middle of the nineteenth century, French Mathematician Augustin-Louis Cauchy (1789-1857)
gave the definition of limit, which removed all doubts about the soundness of Calculus and
madle it free from all confusion. It was then that, Calculus had become, mathematically, much as
we know it today.

Around the year 1930, the increasing use of Calculus in engineering and sciences, created a
necessary requirement to encourage students of engineering and science to learn Calculus.
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During those days, Calculus was considered an extremely difficult subject. Many authors came
up with introductory books on Calculus, but most students could not enjoy the subject, because
the basic concepts of the Calculus and its interrelations with the other subjects were probably
not conveyed or understood properly. The result was that most of the students learnt Calculus
only as a set of rules and formulas. Even today, many students (at the elementary level) learn
Calculus in the same way. For them, it is easy to remember formulae and apply them without
bothering to know: How the formulae have come and why do they work?

The best answer to the question “Why study Calculus at all?” is available in the book:
Calculus from Graphical, Numerical and Symbolic Points of View by Arnold Ostebee and Paul
Zorn. There are plenty of good practical and “educational” reasons, which emphasize that one
must study Calculus.

e Because it is good for applications;

¢ Because higher mathematics requires it;
e Because its good mental training;

e Because other majors require it; and

¢ Because jobs require it.

Also, another reason to study Calculus (according to the authors) is that Calculus is among
our deepest, richest, farthest-reaching, and most beautiful intellectual achievements. This
manuscript differs in certain respects, from the conventional books on Calculus for the
beginners.

In both the Parts of the book (Part-I & Part-1I), efforts have been made to ensure that the
beginners do not face such situations. The concepts related with calculus and the interrelations
between other subjects contributing towards learning calculus have been discussed in a simple
language in both part of book (Part-I & Part-II), maintaining the interest and the enthusiasm of
the reader. One such example is that of co-ordinate geometry, which is the merging of geometry
with algebra and helps in visualizing an equation as representing a curve and vice-versa
(Remember, calculus cannot be imagined without co-ordinate geometry.)

It is a fact that people can achieve many things in life even without learning calculus. It is
really a big loss to all those who had an opportunity to learn calculus but unfortunately missed it
for mere comfort and carelessness. Also, they would never know what really they have missed.
Itis hoped that this book will motivate the readers who may like to revise their basic knowledge
of calculus to achieve the delayed benefit now.

Organization

The work is divided into two independent books: Book I—Differential Calculus (Introduction
to Differential Calculus: Systematic Studies with Engineering Applications for Beginners) and
Book II—Integral Calculus (Introduction to Integral Calculus: Systematic Studies with
Engineering Applications for Beginners).

Part I consists of 23 chapters in which certain chapters are divided into two sub-units such
as 7aand 7b, 11aand 11b, 13a and 13b, 15a and 15b, 19a and 19b. Basically, these sub-units
are different from each other in one way, but they are interrelated through concepts. Also,
there are Appendices A, B, and C for Part-I.

Part II consists of 9 chapters in which certain chapters are divided into two sub-units such as
3a and 3b, 4a and 4b, 6a and 6b, 7a and 7b, 8a and 8b, and finally 9a and 9b. The division of
chapters is based on the same principle as in the case of Part I. Each chapter (or unit) in both the
parts begins with an introduction, clear statements of pertinent definitions, principles, and
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theorems. Meaning(s) of different theorems and their consequences are discussed at length,
before they are proved. The solved examples serve to illustrate and amplify the theory, thus
bringing into sharp focus many fine points, to make the reader comfortable.

Ilustrative and other descriptive material (along with notes and remarks) is given in each
chapter to help the beginner understand the ideas involved. The CONTENTS of each chapter are
reflected with all necessary details. Hence, it is not felt necessary to repeat the same details
again. However, the following two points are worth emphasizing.

The Part-1 (Introduction to Differential Calculus: Systematic Studies with Engineering
Applications for Beginners):

o The first six chapters of Part I are devoted for revising the prerequisites useful for both the
parts. The selection of the material and its sequencing is very important. The reader will
find it quite interesting and easy to absorb. Once the reader has gone through these
chapters carefully, the reader will be fully prepared to study the concept of limit in
Chapters 7a and 7b. The reader will not find any difficulty in absorbing and appreciating
the & — & definition of limit. This definition is generally considered very difficult by the
students and therefore it is mugged up without understanding its meaning.

o Chapter 8 deals with the concept of continuity that can be easily learnt, once the concept of
limit is properly understood. (Chapters 7a, 7b, and 8 are considered as prerequisites for the
purpose of understanding the concept of derivative.)

¢ Chapter 9 deals with the concept of derivative and its definition including the method of
computing the derivative, by the first principle of a given function using the definition of
derivative. (The concepts of limit, continuity, and derivative are discussed at length in the
above chapters and must be studied carefully and with patience.) Once the reader has
reached upto chapter-9, 50% ideas related with differential calculus is being understood.
Subsequently, the ideas related with the integral calculus will be found very simple for
understanding in Part-II of the book.

¢ Chapter 10 deals with the algebra of derivatives offering different methods for computing
derivatives of functions depending on their properties and the algebra of limits. The
concepts discussed in the remaining chapters do not pose problems to the reader since
every concept is introduced in a proper sequence suggesting its necessity and applications.

e Chapter 11 is sub-divided into two part (11a and 11b). Chapter 11a deals with basic
understanding of the trigonometric limits and its application for computing the derivatives
of these functions.

o Chapter 11b deals with the methods of computing limits of trigonometric functions.

o Chapter 12 deals with exponential form (s) of a positive real number and its logarithm(s):
Prerequisite for understanding exponential and logarithmic functions.

e Chapter 13 is sub-divided into two part (13a and 13b). Chapter 13a deals with the
properties of exponential and logarithmic functions including their derivatives.

o Chapter 13b deals with methods for computing limits of exponential and logarithmic
functions

e Chapter 14 deals with the inverse trigonometric functions and their properties including
derivatives of many other functions using trigonometric identities.

e Chapter 15 is sub-divided into two part (15a and 15b).

e Chapter 15a deals with implicit functions and their differentiation.

e Chapter 15a deals with parametric functions and their differentiation.
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o Chapter 16 deals with the concept of differentials dy and dx, and their applications in the
process of integration and for understanding differential equations. It is also discussed
how the symbol dy/dx for the derivative of a function can be looked upon as a ratio of
differential dy to dx.
Chapter 17 deals with the derivatives of higher order, their meaning and usefulness.
Chapter 18 deals with applications of derivatives in studying motion in a straight line.
o Chapter 19 is sub-divided into two part (19a and 19b). Chapter 19a deals with the
concepts of increasing and decreasing functions, studied using derivatives of first and
second order.

e Chapter 19b deals with the methods of finding maximum and minimum values of a
function using the concept of increasing and decreasing functions.

¢ Chapters 20, 21, and 22 are extremely important dealing with Mean Value Theorems and
their applications like L’Hospital’s Rule and introduction to the expansion of simple
functions.

o Chapter 23 deals with the introduction of hyperbolic functions and their properties.
Important advice for using both the parts of this book:

The CONTENTS clearly indicate how important it is to go through the prerequisites. Certain
concepts [like (—1) - (—1) = 1, and why division by zero is not permitted in mathematics, etc]
which are generally accepted as rules, are discussed logically. The concept of infinity and its
algebra are very important for learning calculus. The ideas and definitions of functions
introduced in Chapter-2, and extended in Chapter-6, are very useful.

The role of co-ordinate geometry in defining trigonometric functions and in the development
of calculus should be carefully learnt.

The theorems, in both the Parts are proved in a very simple and convincing way. The solved
examples will be found very useful by the students of plus-two standard and the first year
college. Difficult problems have been purposely not included in solved examples and the
exercise, to maintain the interest and enthusiasm of the beginners. The readers may pickup
difficult problems from other books, once they have developed interest in the subject.

Concepts of limit, continuity and derivative are discussed at length in chapters 7(a) & 7
(b), 8 and 9, respectively. The one who goes through from chapters-1 to 9 has practically learnt
more than 60 % of differential calculus. The readers will find that remaining chapters of
differential calculus are easy to understand. Subsequently, readers should not find any
difficulties in learning the concepts of integral calculus and the process of integration
including the methods of computing definite integrals and their applications in fining areas
and volumes, etc.

The differential equations right from their formation and the methods of solving certain
differential equations of first order and first degree will be easily learnt.

Students of High Schools and Junior College level may treat this book as a text book for
the purpose of solving the problems and may study desired concepts from the book treating
it as a reference book. Also the students of higher classes will find this book very useful
for understanding the concepts and treating the book as a reference book for this purpose.
Thus, the usefulness of this book is not limited to any particular standard. The reference
books are included in the bibliography.

T hope, above discussion will be found very useful to all those who wish to learn the basics
of calculus (or wish to revise them) for their higher studies in any technical field involving
calculus.
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Suggestions from the readers for typos/errors/improvements will be highly appreciated.

Finally, efforts have been made to ensure that interest of the beginner is maintained all through.
Itis fact that reading mathematics is very different from reading a novel. However, we hope that
the readers will enjoy this book like a novel and learn Calculus. We are very sure that if

beginners go through first six chapters of Part I (i.e., prerequisites), then they may not learn
Calculus, but will start loving mathematics.

DR. -ING. Ajay KUMAR PODDAR

CHIEF SCIENTIST,

SYNERGY MICROWAVE CORPORATION.

NJ 07504, USA.

FORMER SENIOR SCIENTIST (DEFENSE RESEARCH &
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INTRODUCTION

In less than 15min, let us realize that calculus is capable of computing many quantities
accurately, which cannot be calculated using any other branch of mathematics.

To be able to appreciate this fact, we consider a “nonvertical line” that makes an angle “6”
with the positive direction of x-axis, and that § # 0. We say that the given line is “inclined” at an
angle “6” (or that the inclination of the given line is “0”).

The important idea of our interest is the “slope of the given line,” which is expressed by the
trigonometric ratio “tan 6.” Technically the slope of the line tells us that if we travel by “one
unit,” in the positive direction along the x-axis, then the number of units by which the height of
the line rises (or falls) is the measure of its slope.

Also, it is important to remember that the “slope of a line” is a constant for that line. On the
other hand “the slope of any curve” changes from point to point and it is defined in terms of the
slope of the “tangent line” existing there. To find the slope of a curve y = f(xx) at any value of x,
the “differential calculus” is the only branch of Mathematics, which can be used even if we are
unable to imagine the shape of the curve.

At this stage, it is very important to remember (in advance) and understand clearly that
whereas, the subject of Calculus demands the knowledge of algebra, geometry, coordinate
geometry and trigonometry, and so on (as a prerequisite), but they do not form the subject of
Calculus. Hence, calculus should not be confused as a combination of these branches.

Calculus is a different subject. The backbone of Calculus is the “concept of limit,” which is
introduced and discussed at length in Part I of the book. The first eight chapters in Part I simply
offer the necessary material, under the head: What must you know to learn Calculus? We learn
the concept of “derivative” in Chapter 9. In fact, it is the technical term for the “slope.”

The ideas developed in Part I are used to define an inverse operation of computing
antiderivative. (In a sense, this operation is opposite to that of computing the derivative of
a given function.)

Most of the developments in the field of various sciences and technologies are due to
the ideas developed in computing derivatives and antiderivatives (also called integrals). The
matters related with integrals are discussed in “Integral Calculus.”

The two branches are in fact complimentary, since the process of integral calculus is
regarded as the inverse process of the differential calculus. As an application of integral
calculus, the area under a curve y =f(x) from x =a to x = b, and the x-axis can be computed
only by applying the integral calculus. No other branch of mathematics is helpful in computing
such areas with curved boundaries.

Pror. ULricH L. ROHDE
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1 From Arithmetic to Algebra

1.1 INTRODUCTION

Numbers are symbols used for counting and measuring. Hindu—Arabic numerals O, 1, 2,
3, .. , 9 are grouped systematically in units, tens, hundreds, and so on, to solve problems
containing numerical information. This is the subject of Arithmetic. It also involves an
understanding of the structure of the number system and the facility to change numbers from
one form to another; for example, the changing of fractions to decimals and vice versa.
A detailed discussion about the Real Number System is given in Chapter 3. However, it would be
instructive to recall some important subsets of real numbers, known to us.

Numbers, which are used in counting, are called natural numbers or positive integers. The
set of natural numbers is denoted by

N = {1,2,3,4,5,..}
1.2 THE SET OF WHOLE NUMBERS

The set of natural numbers along with the number “0” makes the set of whole numbers, denoted
by W. Thus,

W = {0,1,2,3,4,...}

Note: “0” is a whole number but it is not a natural number.

1.3 THE SET OF INTEGERS

All natural numbers, their negatives and zero when considered together, form the set of
integers denoted by Z. Thus,

Z={.,-3,-2,-1,0,1,2,3,...}
1.4 THE SET OF RATIONAL NUMBERS

The numbers of the form p/q where p and q are integers, and the denominator g # 0, form the set
of rational numbers, denoted by Q.

Examples: 3, </, 8- & 2 =121 "18and so on, are all rational numbers.

What must you know to learn calculus? 1-(The Language of Algebra)
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Remarks:

(a) Zero is a rational number, but division by zero is not defined. Thus, 5/0 and 0/0 are
meaningless expressions.

(b) All integers are rational numbers, but the converse is not true.
(¢) Positive rational numbers are called fractions.

Let us discuss more about fractions.

Generally, “fractions” are used to represent the parts of a given quantity, under consider-
ation. Thus, 3/7 tells us that a given quantity or an object is divided into seven equal parts and
three parts are under consideration. A fraction is also used to express a ratio. Thus, 2:5 is also
written as 2/5 and similarly 12:5 is written as 12/5. Since the ratio of two natural numbers can be
greater than 1, all positive rational numbers are called fractions. This definition suggests that
fractions could be classified more meaningfully as follows:

¢ When both numerator and denominator are positive integers, the fraction is known as a
simple, common, or vulgar fraction (Examples: 1/2, 3/5, 9/7).

o A complex fraction is one in which either the numerator or the denominator or both are
fractions (Examples: 3/(7/5), (5/9)/2, (7/3)/(11/4)).

o If the numerator is less than the denominator, the fraction is called a proper fraction
(Examples: 4/7, 3/5, 1/4).

o If the numerator is greater than the denominator, the fraction is called an improper
fraction (Examples: 7/4, 5/3, 9/2).

o A unit fraction is a special proper fraction, whose numerator is 1 (Examples: 1/7, 1/100).

Note (1): A fraction is said to be in lowest terms, if the only common factor of the numerator
and denominator is 1. Thus, 3/4 is in lowest terms, but 6/8 is not in lowest terms since 6 and
8 have a common factor 2, other than 1. We say that a/b, 2a/2b, 3a/3b, . .. all belong to the
same family of fractions, described by a/b.

In fact, we use the fraction in lowest terms to describe the family of fractions. We define the
set of all fractions by F = {a/b|a,b € N}

1.5 THE SET OF IRRATIONAL NUMBERS
There are numbers that cannot be expressed in the form p/q, where p and g are integers. They are
called irrationalnumbers, and the setis denoted by Q' or Q°. (More details are givenin Chapter3.)

Examples:

V2, V5, 63/3, 7V/11, e, m, 1.101001 ..., 5.71071007100071, ... and so on.

1.6 THE SET OF REAL NUMBERS

The set of rational numbers together with the set of irrational numbers, form the set of real
numbers, denoted by R."

M The square roots of negative numbers (i.e., v/— I or v/—7, etc.) do not represent real numbers, hence we shall not discuss
about such numbers at this stage.
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1.6.1 Arithmetic and Algebra

In arithmetic, there are four fundamental operations, namely, addition, subtraction, multiplica-
tion, and division, which are performed on the set of natural numbers to make new numbers,
namely, the number zero, negative integers, and rational numbers. For the formation of irrational
numbers, we have to go beyond the four fundamental arithmetic operations given above.

The subject of algebra involves the study of equations and a number of other problems that
developed out of the theory of equations. It is in connection with the solution of algebraic
equations that negative numbers, fractions, and rational numbers were developed. The number
“0” could enter the family of numbers only after negative numbers were developed.

In arithmetic, we deal with numbers that have one (single) definite value. On the other hand,
in algebra we deal with symbols such as X, y, z, ..., and so on, which represent variable
quantities and those like @, b, ¢, . . ., and so on, which may have any value we chose to assign to
them. These symbols represent variable quantities and are hence called variables. We may
operate with all these symbols as numbers without assigning to them any particular numerical
value. Note that, both numbers and letters are symbols, which were developed to solve various
problems.

In fact, traditional algebra is a generalization of arithmetic. Hence, the symbols used in
arithmetic have the same meaning in algebra. Thus, we use + (plus for addition), — (minus
for subtraction), x and - (cross and dot for multiplication), / (slash for division), = (equals for
equality), > (for greater than), < (for less than) and so on, in algebra also.

Before we enter the true realm of algebra, it is useful to recall some more subsets of real
numbers, which will be needed in various discussions.

1.7 EVEN AND ODD NUMBERS

Every integer that is exactly divisible by 2, is called an even number, otherwise it is odd. Thus, an
even number is of the form 2n, where # is an integer.

An odd number is of the form (2n =+ 1). If number “a” is even, then (¢ &= 1) is odd and vice
versa. It follows that 0 is an even integer.

1.8 FACTORS

Natural numbers that exactly divide a given integer are called the factors of that number. For
example, the factors of 12 are 1, 2, 3,4, 6, and 12. We also say that 12 is a multiple of 1,2, 3,4, 6,
and 12. Similarly, the factors of 6 are 1, 2, 3, and 6, and the factors of zero are all the natural
numbers.

Remark: The number “0” is not a factor of any number.®

1.9 PRIME AND COMPOSITE NUMBERS

A natural number that has exactly two unique factors (namely the number itself and 1) is
called a prime number. A natural number that has three or more factors is called a composite
number.

@ Factors are considered from natural numbers only. Besides, note that division by zero is not permitted in mathematics.
This is explained at the end of this chapter.
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Some examples of prime numbers are 2, 3, 5,7, 11, 13, 17,19, ...... , and so on.

o Each prime number, except 2, is odd.

o The number 1 is neither prime nor composite. Six is a composite number since it has four
factors, namely 1, 2, 3, and 6.

A given natural number can be uniquely expressed as a product of primes.

1.10 COPRIME NUMBERS

Two natural numbers are said to be coprime (or relatively prime) to each other if they have no
common factor except 1. For example, 8 and 25 are coprime to one another. Obviously, all prime
numbers are coprime to each other.

Remark: Coprime numbers need not be prime numbers.®

1.11 HIGHEST COMMON FACTOR (H.C.F.)

The highest common factor (H.C.F.) of two or more (natural) numbers is the greatest number
which divides each of them exactly. It is also known as the greatest common divisor (G.C.D.).
[The H.C.F. of any two prime numbers (or coprime numbers) is always 1.]

1.12 LEAST COMMON MULTIPLE (L.C.M.)

The least common multiple (L.C.M.) of two or more (natural) numbers is the smallest number
which is exactly divisible by each of them. To find the L.C.M. of two (or more) natural numbers,
we find prime factors. If two (or more) numbers have a factor in common, we select it once. This
is done for each such common factor and the remaining factors from each number are taken as
they are. The product of all these factors taken together, gives the L.C.M. of the given numbers.

(Product of two numbers = their H.C.F. X their L.C.M.)

1.12.1 Continuous Variables and Arbitrary Constants

A changing quantity, usually denoted by a letter (i.e., x, y, z, etc.), which takes on any one of the
possible values, in an interval, is called a variable. On the other hand, the set of letters «, b, ¢, d,
and so on are used to denote arbitrary constants.

In the case of arbitrary constants, though there is no restriction to the numerical values a
letter may represent, it is understood that in the same piece of work, it keeps the same value
throughout. For example, in the expression, f{x) = ax® + bx + ¢, (0<x<5), xis a contin-
uous variable in the interval [0,5] and a, b, c are arbitrary constants. (The concept of an interval
is discussed in Chapter 3.)

© There is one more term used in connection with prime numbers. A pair of prime numbers which differ by 2, are called
twin-primes (Examples: 3 and 5, 5 and 7, 11 and 13, 17 and 19, and so on).

Remark: It is proved that the number of primes is infinite, but it is not yet proved whether the number of twin-primes is
finite or infinite. This is because of the fact that, so far there is no formula that can generate all primes.
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1.13 THE LANGUAGE OF ALGEBRA
Let us now recall the terminology used in algebra:

¢ an algebraic expression;

e factors, coefficients, index/exponent (or power) of a quantity;
¢ positive and negative terms;

o like and unlike terms;

e processes involving addition, subtraction, multiplication, and division among algebraic
expressions;

e removal and insertion of brackets;
o simplification of an algebraic expression;
¢ polynomials and related concepts.

It is assumed that all these terms and processes are known to the reader. However, it is proposed
to extend the terminology and concepts related to polynomials, since the same will be useful to
us, in our discussions to follow.

1.13.1 Polynomials

A polynomial in x is an expression of the form
pX) = ap-X"+a, - X"+ ... fa-x+a

where ay, ay, as, ..., a, are real numbers called the coefficients of p(x) and n in x" is a non-
negative integer.(4)

Usually, we write a polynomial in either descending powers of x or ascending powers of x.
The form of a ploynomial written in this way is called the standard form. From the definition of a
polynomial, it is clear that polynomials are special types of algebraic expressions involving
only finite number of terms and one variable.”

1.13.2 Degree of a Polynomial

The exponent, in the highest degree term of a nonzero polynomial is called the degree of the
polynomial. Thus, if a,, #0, then n (in x") is the degree of the polynomial. In particular, the
degree of 3x° 4+ 2x® — x + 7 is 5 and the degree of (3/2)y* — v2y — 1is 3.

A polynomial having only one term is called “monomial”.

@ By definition, the power of x in each term of a polynomial must be a whole number. If the power of any term is a negative
integer or a fraction, then such an expression is not called a polynomial. Note that the power of x in p(x) can be zero. Such a
polynomial is called a constant polynomial. Another way for getting a constant polynomial could be to make all the
coefficients (except ap) equal to zero, so that we get p(x) = ag, ag # 0. If each of the coefficients ag, ay, aa, . . ., a, in p(x) is
zero, then such a polynomial is called the zero polynomial.
Remark: The zero polynomial is included in the definition of a polynomial.
) A polynomial may have more than one variable but our interest lies in the polynomials involving only one variable.
© If n = 1, it is a linear expression [Example: f{x) = 2x + 5].

If n = 2, it is a quadratic expression [Example: f(x) = x> + 3x + 1].

If n = 3, it is a cubic expression [Example: f{x) = x4+ 3x7 4 2x + 1]

If n = 4, it is a quartic or biquadratic expression. If n = 5, it is a quintic expression.
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1.13.3 The Zero Polynomial

We know that a polynomial having all coefficients as zero is called “the zero polynomial”.
Zero polynomial is unique and it is denoted by the symbol “07."

The degree of “zero polynomial” is not defined. (Note that, 0 = 0-x = 0-x° ... = 0-x'",
and so on. These are all zero polynomials and obviously, their degree cannot be defined.) In what
follows, a polynomial will mean a nonzero polynomial (in a single variable) with real
coefficients.

1.13.4 Polynomials Behave Like Integers

Many properties possessed by integers are also possessed by the polynomials. Therefore, we
extend the terminology, used in the algebra of numbers, to the algebra of polynomials. Thus, if
p(x) and g(x) are two polynomials, then the expression p(x)/g(x), where g(x) is a nonzero-
polynomial, is called a rational expression.

A rational expression must be expressed in its lowest terms, by canceling the common
factors in the numerator and denominator. For this purpose, one has to learn the process of
factorization of a polynomial.

1.13.4.1 Factors of a Polynomial A polynomial g(x) is called a factor of polynomial p(x),
if g(x) divides p(x) exactly; that is, on dividing p(x) by g(x) we get zero as the remainder.

1.13.4.2 Division Algorithm (or Procedure) for Polynomials On dividing a polynomial
p(x) by a polynomial g(x), let the quotient be g(x) and the remainder be r(x), then we have
p(x) = g(x) - g(x) + r(x), where either r(x) = 0 or degree of r(x) < degree of g(x).

Remark: When a polynomial p(x) is divided by a linear polynomial (x — ) then the
remainder is a constant, which may be zero or nonzero. The value of the remainder can be
obtained by applying the remainder theorem.

1.13.4.3 Remainder Theorem If a polynomial p(x) is divided by a linear polynomial
(x — a), then the remainder is p(«). (This theorem can be easily proved using the division
algorithm.)

Remark: If p(x)isdivided by (x + «), then the remainder = p(— «). Similarly, when p(x) is
divided by (ax + b) then the remainder = p(— b/a).

It is sometimes possible to express a polynomial as a product of other polynomials, each of
degree > 1. For example, X=X 4+9%x-9=(x—-1)(x*+9) and 3x°—6x—-9 =
3(x* —2x—3) = 3(x—3)(x + 1).

1.13.5 Value of a Polynomial and Zeros of a Polynomial

We know that for every real value of x, a polynomial has a real value. For example, let
px) = 3x*—2x> + x + 5. Then, for x = 1, we have p(1) =7 and for x = 0, p(0) = 5.

) The role of zero polynomial can be compared with that of number “0”, in arithmetic. The symbol “0”, in polynomial
algebra represents the zero polynomial whereas in arithmetic it represents the real number “0”.

® Every polynomial may be regarded as a rational expression but the converse is not true. Note that (x 4 3)/(x — /X) is
not a rational expression. It is an irrational algebraic expression.
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An important aspect of the study of a polynomial is to determine those values of x for which
p(x) = 0. Such values of x are called zeros of the polynomial p(x). Consider the quadratic
polynomial ¢(x) = x> — x — 6. It may be seen that ¢(3) = O and ¢(— 2) = 0.If x = aisazero
of the polynomial p(x) then (x — a) is a factor of p(x). This is known as the factor theorem
of algebra.

Thus, the factor theorem helps in finding the linear factors of a polynomial, provided such
factors exist. There are no standard methods available for finding linear factors of polynomials
of higher degrees, except in some very special cases.

Every quadratic polynomial can have at most two zeros, a cubic polynomial at most three
zeros, and so on. Some polynomials do not have any real zero. In other words, there may be no
real number “x” for which the value of the polynomial becomes zero. For example, there is no
real number “x” for which x* + 3 will be zero.

Now the following question arises: How do we determine the zeros of a given
polynomial p(x)?

This leads us to the question: How to solve the equation p(x) = 0?

1.13.6 Polynomial Equations and Their Solutions (or Roots)

If p(x) is a quadratic polynomial, then the equation p(x) = 0 is called a quadratic equation. If
p(x)is acubic polynomial, then the corresponding equation p(x) = 0is called a cubic equation,
and so on. If the numbers « and 3 are two zeros of the quadratic polynomial p(x), we say that o
and B are the roots of the corresponding quadratic equation p(x) = 0.

Note: The fundamental theorem of algebra states that a nonzero nth degree polynomial
equation has at most 7 roots, in which some roots may be repeated roots.

Thus, starting from the concept of an algebraic expression we have revised the concepts of
polynomials, zeros of a polynomial, and the solution of simple polynomial equations.

1.14 ALGEBRA AS A LANGUAGE FOR THINKING

‘We know that algebra has a set of rules; but we should not feel satisfied to have learnt algebra
merely as a set of rules. It is more important to have some understanding of: What is algebra all
about? How does it grow out of arithmetic? And how is it used to convey concepts of
arithmetic? For instance, the following statements belong to arithmetic:

32 is 1 bigger than 2 x 4

4% is 1 bigger than3 x 5

52 is 1 bigger than4 x 6

) 1t is easy to solve equations of degree one and two. Thus, we get from ax + b = 0, (@#0), x = — b/a and from a
X4 bx+c=0,x = (—b+/(b? —4ac))/2a. Mathematicians also solved a number of particular equations of

degree three but were finding it difficult to express x in terms of general coefficients , b, ¢, and d. This problem was finally
solved by the Italian mathematician Tartaglia (1499—1557). Later Lodovico Ferari (1522-1565) solved the general fourth
degree equation. It seemed almost certain to the mathematicians that the general fifth degree equation and still higher
degree equations could also be solved. For 300 years this problem was a classic one. The Frenchman Evariste Galois
(1811-1832) showed that the general equation of degree higher than the fourth cannot be solved by algebraic operations
including radicals such as square root, cube root, and so on. To establish this result Galois created the Theory of Groups, a
subject that is now at the base of modern abstract algebra and that transformed algebra from a series of elementary
techniques to a broad, abstract, and basic branch of mathematics. [Mathematics and the Physical World by Morris Kline
(pp. 71-72).]
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These results suggest that “the square of any natural number is 1 bigger than the result of
multiplying two numbers of which one is less by one and the other is more by one, than the given
number”. Thus, we should guess that 87> would be 1 bigger than 86 x 88.

The general result is stated most conveniently in the language of algebra. Let n be any natural
number. Then “the number before n” will be written as (n — 1) and “the number after n” is
(n + 1). We shall now say, #* is 1 bigger than (n — 1)(n + 1), or, completely in symbols,

”=1+n-Hn+1) (1)

Note that, the above equation holds not only for natural numbers but also for all numbers. It
expresses what we guessed at by looking at particular results in arithmetic. The beauty of
algebra lies in its utility. Here, it enables us to prove that our guess is correct. By the usual
procedures of algebra, we can simplify the expression on the right-hand side of Equation (1) and
see that it equals the left-hand side.

In algebra itself, we often pass from particular results to more general ones. For example,
we get from Equation (1)

”—1=m-1)(n+1)
but we know that w—1=n-12=m-1)(n+1)

In general, we have a> —b?> = (a — b)(a+b)

ord® = (a—b)(a+b)+ b (2)

This result is more general than the one expressed by Equation (1).
We can make use of Equation (2) in simple calculations. For example,

27* = (27 — 3)(27 +3) +3?
= (24 x 30)+9
=720+9 = 729

Similarly, 103 x 97 = (100 + 3)(100 — 3)
= (100)* — 3% = 10000 — 9
= 9991
Now consider the following products:
(x+3)(x+4) = X2 +7x+12
=x*+(3+4)x+3-4
(x+5)(x+3) = x> +8x+15
=x+(5+3)x+5-3

In algebraic symbols, we guess that:
(x+a)(x+b) = x>+ (a+b)x+a-b

We can easily prove that our guess is correct. This type of thinking is very useful in the study of
mathematics.
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1.14.1 Algebra is the Best Language for Thinking About Laws

Consider the following table

x: 0 1 2 3 4 5
¥ 0 2 4 6 8 10

We can easily guess the law that lies behind this table. Each number in the bottom row is twice

the number that lies above it. The law behind the table is y = 2x. In the same way, the law

behind the following table is y = x°.

X: 0 1 2 3 4 5
v 0 1 4 9 16 25

Incidentally, as a rule, there is little point in putting a law into words. It is far easier to see what
the formulay = 2x*> — 5x + 7means (by preparing a table, as given above) than to understand
the same formula expressed in words.

1.15 INDUCTION

In mathematics, it is not always wise to proceed by analogy and draw conclusions. The process
of reasoning from some particular results to general one is called “induction”.

As we know, induction begins by observation. We observe particular result(s) and use our
intuition to arrive at a tentative conclusion—tentative, because it is an educated guess or a
conjecture. It may be true or false. If the general result is proved by systematic deductive
reasoning, then it is accepted as true. On the other hand, the result will be considered false if we
are able to show a counter example where the conjecture fails.

Remember that, a conjecture remains a conjecture no matter how many examples we can
findto support it. The great French mathematician Pierre de Fermat (1601-1665) observed that:

(2 +1) = (22+1) = 5 is a prime number.

(222 +1) = (2*+1) = 17 is a prime number.

(223 +1) = (28 +1) = 257 is a prime number.
Accordingly, ke conjectured that(2*" + 1)is a prime number for every natural number » and had
challenged the mathematicians of his day to prove otherwise. It was several years later that the

Swiss mathematician Leonhard Euler (1707-1783) showed that (225 +1) = 4,294,967,297
is not a prime number since it is divisible by 641. Another interesting example is the following:

We observe that the absolute values of the coefficients of various terms in each of the following
factorization are equal to 1

x'—1=(x-1); X—1=(x-1)(x+1)

X1 =(x-D)E>+x+1); X —1=x-Dx+DEE+1)

X —1=(x-1D)*+x*+x2+x+1)

Therefore, it was conjectured that when x” — 1 (n, a natural number) is expressed into factors,
with integer coefficients, none of the coefficients is greater than 1, in absolute value.
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All attempts to prove this general statement failed, until 1941, when a Russian
mathematician, V. Ivanov came up with a counter-example. He found that one of the
factors of x'°>—1 violates the conjecture. This factor is a polynomial of degree 48, as
given below.

X8 AT (46 A3 A2 9 Al (A0 (39 4 036 4 (35 4 (34 (33 L (324 (10)
a3l X2 26 24 20 020 (17 4 (16 4 (IS L d4 (02 9 8

2T =X =X+ x4 x+1.

In mathematics, we have several such conjectures, which have remained conjectures for lack of
proof, even though literally thousands of examples have been found in support of them. Having
employed intuition and arrived at a conjecture, the very difficult task of proving the conjecture
begins. If the conjecture is in the form of a statement, say P(n), involving natural numbers, a
method of proof is provided by the principle of mathematical induction.'V [For example, let
P(n) represent the statements: (i) n(n + 1) is even or (ii) 3" > n, or (iii) n® + nis divisible by 3,
or (iv) 2*" — 1 is divisible by 7, etc.]

1.16 AN IMPORTANT RESULT: THE NUMBER OF PRIMES IS INFINITE

There is no known formula that relates successive primes to successive integers. Therefore, it is
not possible to use the principle of mathematical induction to prove this result. Yet, algebra
provides a simple method to prove it. An indirect approach is needed.'*

1.17 ALGEBRA AS THE SHORTHAND OF MATHEMATICS

Algebra can be compared to writing shorthand in ordinary life. It can be used either to make
statements or to give instructions in a concise form. Mathematical statements in ordinary
language can be translated into algebraic statements and similarly statements in algebra can be
translated into ordinary language. For example, consider the following instructions translated
into the language of algebra:

A0 A Textbook of Mathematics for Classes XI-XII (Book No. 1, p. 100) NCERT Publication, 1978.
(D To prove that a statement P(n) is true for all natural numbers, we have to go through two steps.

Step (1): We must verify that P(1) is true.

Step (2): Assuming that P(k) is true for some k € N, we must prove that P(k + 1) is true. For this purpose, we obtain an
algebraic expression for P(k + 1) and put it in desired form (if possible) to show that P(k + 1) is true. If this is
achieved the result is proved to be true for all n.

Remark: If P(1) is not true, the principle of induction does not apply. [See Example (iii) above.]

(12) We assume that every natural number greater than 1, which is not prime can be represented by a product P,, P,, Ps,
Py, ..., P, of prime integers P;. This is known as the fundamental theorem of arithmetic.

Proof: Assume that there is but a finite number of primes and hence a last (largest) prime, P.

Let Nbe the product of all primes up to P:i.e.,N = 2,3,5,7,11,...,P.Now consider N + 1 = (2,3,5,7,11,...,P) + 1.
Let r be one of the prime numbers 2, 3, 5, ..., P. If we divide (N + 1) by r then we will always get the remainder 1.
Therefore, N + 1 itself must be a prime, which is larger than P. This contradicts the assumption that P is the largest prime.
[The largest known prime as of March 2011 is (2**!'6% _ 1)_ It has about 700 digits and a modern computer was used to
perform the necessary computation. Mathematics can be Fun by Yakov Perelman (p. 288), Mir Publishers, Moscow,
1985.]
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Statements in Ordinary Language Equivalent Statements in the Language of Algebra
(i) Think of a number, 2(x + 7)

add 7 to it and double the result.
(ii) Choose a number, multiply it by 5, add 2, (5x + 2)*/8

square this expression, and divide the result by 8.

Algebra puts mathematical statements in a small space. The statement is shorter to write,
easier to read, quicker to say, and simpler to understand, than the corresponding sentence in
ordinary English.

Next, though it is easy to say that 2n (where n is a natural number) represents an even
number, it is not obvious that the number (0> & n) also represents an even number. Yet, algebra
tells us that (n> £n) = n-(n+ 1) must always be even (Why?).

When we say that algebra is a language, we mean that it has its own words and symbols for
expressing what might otherwise be expressed in ordinary language such as French or German.
However, we do not look at algebra from this point of view. For us, algebra is a special kind of
language for the following two reasons:

(a) Algebra is concerned primarily with statement(s) about numbers, items, symbols, or
quantities.

(b) The language of algebra uses symbols in place of words.

For example, to discuss about a class of numbers (say the class of natural numbers) a
mathematician may say: Let “o.” be any natural number. Thereafter, in the entire discussion
whenever he wishes to refer to an arbitrary natural number, he will use the letter o, and thus
save words and space. Of course, he will have to be careful because any statement(s) he makes
about o applies to all natural numbers.

1.18 NOTATIONS IN ALGEBRA

One important difference between the notation of arithmetic and algebra is as follows.

In arithmetic, the product of 3 and 5 is written as 3 x 5, whereas in algebra, the product
of a and b may be written in any of the forms a x b, a - b, or ab. The form ab is the most useful. In
arithmetic, this is not permitted since 35 means (3 x 10) + 5 and is read as “thirty-five”.
Acceptance of such notations in algebra may be treated as a special feature of algebra.

There are many notations in algebra with which the reader is familiar. For example,

ed'"=a-a-a-a-a...(ntimes)
Example, 3° = 3-3.3.3.3 = 243
We know that, ¢’ /a* = ' * = &

a'/a* = @ = a® = 1, (provideda # 0)

@=1),a = 0, since, 0° is not defined.

¢ Product of first » natural numbers is given by
n=nmn-1)-(n-2)-(n=3)...3-2-1
Example, 7! = 7-6-5-4-3-2-1
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Number of permutations (arrangements) of n different things taken r at a time is given by

! 51 51
= Example, *p; = ==
Pr= Gy TRAPE Py = TR T g

Product of first 5 natural numbers

" Product of first 2 natural numbers

5.4-3.2-1
=———— =060
2-1
o ntml_ Product of first # natural numbers
P = (n—mn)! — 0! Product of first “zero” natural numbers
= n!

It follows that 0! = 1. (This is taken as the definition of 0!)

e Number of combinations of » different items taken r at a time; is given by
!
VlCr = r!(:;r!)'

7! 7 7654321
3(7-3)!  (3HY4)!  (32.1)(432.1) T

nCr:ﬂC(nfr% nCO =1, nCn =1

Example: 'C; =

Note that in all these notations, n is a natural number and r is a whole number, with n > r.

A beginner may complain about some difficulty in learning the language of algebra. However,
one who has mastered this language of mathematics and has grasped the ideas and reasoning,
does appreciate the mathematical symbolism. 1t is a relatively modern invention and math-
ematicians should be complimented for designing “symbols” and “notations”, out of necessity.

It is important to realize that, while all the languages of the world are quite different
from one another, the language of algebra is a common one (as is the language of mathematics)
and serves the purpose so well.

1.19 EXPRESSIONS AND IDENTITIES IN ALGEBRA

The basic function of algebra is to convert expressions into more useful ones. For example,
the sum.

i:kzzn:1+2+3+4+ ...... +n
k=1

was converted by Gauss to the more useful form (n(n+1)/2).
How do you prove this?

The method is not obvious and yet a simple idea does the trick, as follows:

LetS = 1424344+ ...... +(n—1)+n (3)

Also,S=n+m—-1)4+m—-2)+...... +2+1 (4)
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Adding corresponding terms in (3) and (4), we get

28

m+1)+n+)+m+1)...... (n times)
= n(n+1).Hence, S = (n(n+1)/2)
The ideas in this proof must arouse some excitement in the reader’s mind. Here, it is important
to realize that by simple means we have converted the cumbersome expression to a simpler and
readily computable expression.
Similarly, using algebra, many such useful expressions can be obtained easily. For example,
o S = 12422432447+ . 0P
~_ n(n+1)2n+1)
- 6
o " =134 2343834484+
~ P(n+ 1)
- 4

{Note that Y n® = (Z n)z}

o atar+arr+ar+ ... +ar!

_a(l =) .

- o <)
_a("—1)
T , (r>1)

It is sometimes possible that a question may have two answers which at first sight appear
different, but which are actually the same. This can be checked by simplifying both the
algebraic expressions. An important part of algebra therefore consists in learning how to
express any result in the simplest form. Algebraic identities,"'® and methods available for
factorizing polynomials, are helpful in simplifying algebraic expressions.

Some important identities are given below:"'¥

o (xty)(x—y) = X2y

Thus, (a+b)(a—b) = &® — b*.
o (x+y) = X2y +2xy.

Thus, a* +b* = (a+b)* — 2ab.

U3 An algebraic statement expressed in two (or more) forms with a symbol of equality ( =) between them is called an
algebraic identity. Obviously, an identity is true for all real value(s) of the variable(s) involved.

(9 For some purpose, the expression a* — b? is useful as it stands, but for others it may be better to write it in the equivalent
form (@ + b) (a — b). This statement is also applicable for other expressions to follow.
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o (x—y)7 = x4y —2xp.

Thus, a® + b2 = (a — b)* + 2ab,
(a+b)’+(a—b)? = 2(a®+b?),
and (a+b)* — (a — b)* = 4ab.

o (x4+y) = ¥y F3w(x+y).
Thus, @® +b° = (a+b)* — 3ab(a+b),
or  @+b = (a+b)(a®—ab+b?).
o« (=)} ==y =3 - ).
Thus, @® — b> = (a — b)* +3ab(a — b),
or & —b = (a—b)(d®+ab+ D).

From the expression(s) for (a £ b)® and (a £ b)? many useful identities can be obtained.
For example,

a3+b3 a3fb3
P —ab (a+), b tab (a—b)
(@+b)+(a—b?  2a+b) 5
(a®+b?) (a2 b)) 7
(a+b)* = (a—b)* 4ab _ A
ab T ab 7

Next, observe that,

2
1 1
(a—i—) =a+ 5 +2
a a , ,

1
2
a +6172_2

/
IN]
|
| —
~—
5]
I
/N
N
+
|
D
‘N
/N
IS
|
|
N
(5]
Il
N

o (a+b+c)* = >+ b2+ +2(ab+ be+ ca)
e B +b+ —3abe = (a+b+c)(@*+b*+c* —ab — be — ca)
e Ifa+b+c =0, thena® + b+ = 3abc.
1 1 1 1
e — = — | = — —
ab b—ala b
o If n is a natural number, then the expansion
(x+)" ="Cox"+"C X"y +"Co,x"2y? + ... +"Cy" is called the binomial
expansion, where x and y can be any real numbers.
— This expansion has (n + 1) terms.
— The general term is of the form " C,x"~"y" and it is the (r 4 1)th term in the expansion.
— In each term, the sum of the indices of x and y, is n.

o If m is a negative integer or a rational number, then the binomial expansion is
m(m—1)
2!
mm—1)m—-2)...(m—r+1)
r!

(b+x)" = P"+mb" 'x+ PN

+

) + ... (5)

provided |x| < b
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Remark (1): Note that the coefficients m, (m(m — 1)/2!), and so on, look like combinatorial
coefficients (i.e.,"C,, "C,, "C,, ..., "C,, and so on). However, recall that "C,is defined for
natural number n and whole number r (with n > r), and as such has no meaning in other cases.

Remark (2): When m is a negative integer or a rational number, there are infinite number of
terms in the expansion of (b + x)™.

Remark (3): The following results are very useful and can be easily obtained by using the
expansion in Equation (5).

1
. % = (1+x)71 = 1—x+x27x3+...; |x] <1
1
. T = (1+x) 7 =1-2x+43x%> 4>+ ... x| < 1
+Xx
1 1 2 3
o (1-x)" =1+x+xX+x+...; x| <1
1 _
o — = (1—x) 2 = 1+2x432+4 + .. s x| < 1
(1-x)?

1.20 OPERATIONS INVOLVING NEGATIVE NUMBERS

A good deal of the machinery of elementary algebra is concerned with the solution of equations
involving unknowns. However, we should note that this simple machinery can lead directly to
useful results in numerous other types of problems.

The most difficult item in algebra is that devoted to operations involving negative numbers.
The difficulty is twofold:

(1) Why introduce negative numbers?

(i) Why does multiplication of two negative numbers (or division of a negative number by
another negative number) yield a positive number?

In fact, it is in connection with the solution of equations, that both questions can be answered.
For example, note that if we do not accept negative numbers then even a simple equation, like
2x 4+ 5 = 0 cannot be solved. Next, consider the equation

Tx—5 = 10x— 11 (6)

To solve this equation, we can transpose the terms in two ways so that the unknowns are on one
side and the knowns are on the other side. (Of course, we will expect that in both the cases the
solution should be same.)

Thus, we get

11-5 = 10x—7x
or 6 =3x so x =2
Also, we get

Tx—10x = —11+5
—3x = —6.
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=6 (=6 (=) 6 (=1
R Sl s o Sl B S Sl S ™
-6 ol o111 (=)
) ®)

= (1) (1) 5 = (1) (=12

Now in order that the solution of the Equation (6) should be same, it is necessary that (— 1)/
(=1)=1in(7)and (—1)(—1) = 1 in (8).

1.21 DIVISION BY ZERO

The question, “Why is division by zero not permitted in mathematics?” is answered through
algebra.

In arithmetic (or more generally in algebra), the operation of division is defined in terms of
the operation of multiplication. Thus according to the existing rule, the division of an arbitrary
number “a” by another number “»” means to find a number x such that

—_

a-—=x where b #0

b
b-x

=d

or
Let us see what happens if division by zero is permitted. If b = 0, then we must consider the
following two cases.

(i) when a # 0, and

(i) whena = 0

Case (i): We try to solve the equation

b-x = a, (whereb = 0, buta # 0)
We get 0O-x =a

It follows that @ = 0, which is against our assumption that a # 0. This situation arises because
there is no number x, which could be multiplied by “0” to get a fixed (nonzero) number “a”. It
follows that if a nonzero number is divided by zero than we get a meaningless result.

Case (ii): We try to solve the equation

b-x = a, (whereb = 0, anda = 0)
We get 0-x=0

Unfortunately, this is true. Here any number x satisfies this equation. Let us see the consequence
of this situation.

If division by zero is permitted, then we get from the equation 0-x = 0, x = 0/0. Similarly from
0-y = 0, we gety = 0/0, where x, y, . .. are all different (nonzero) numbers. From the above, it
follows that 0/0 = x = y = z ..., which means that all different numbers are equal.



DIVISION BY ZERO 17

Thus, if @ = 0, and b = 0, then we have a/b = 0/0 and it represents any number whatever we
choose. But mathematicians require that the division of “a” by “b” should yield a unique
number as a result. But this is again not achieved.

From the above, we observe that division by zero leads either to no number or any
arbitrary number. (Note that this is the consequence of permitting division by the number
zero.) Thus, division by zero leads to meaningless results and hence it is not permitted
in mathematics.



2 The Concept of a Function

2.1 INTRODUCTION

The concept of a “function” is one of the most basic in all of mathematics. The meaning of the
word “function” has evolved and changed during the last three centuries.Its modern meaning is
much broader and deeper than its elementary meaning from earlier days. The statement: “y is a
Sfunction of x” means something very much like ““y is related to x by some formula”. In fact,
this statement gives some idea about a function, but it is incomplete. In traditional algebra, x and y
stand for numbers. But today, functions can be defined that have nothing to do with numbers.

In our study of calculus, we shall be mostly concerned with functions, which are related to
numbers. Like any other mathematical concept, the concept of function is nicely expressed
through the language of sets. Therefore, it is useful to revise “Elementary Set Theory” (see
Appendix “A”).

Assuming the knowledge of Elementary Set Theory, we define two important terms:
(i) ordered pairs and (ii) Cartesian product of sets. These terms are needed to define a
“function” on the basis of set theory. Let us discuss:

(i) Ordered Pairs: When we wish to consider a pair of things as a whole, we may use the

terms couple or just pair. IfA = {1,2,3,4} thenthe subsets {1,2}, {1,3}, {1,4}, {2, 1},
{3, 1} are some examples of pairs. Here we have listed some pairs twice; for example
(1,2} = {2, 1} and {1, 3} = {3, 1}.
We know that the order, in which the elements of a set are written, is immaterial. If in a
pair we wish to single out one element as being the first, then the other element becomes
the second. Once we define the procedure of fixing the position of first element (in a
pair), we have example of an ordered pair. To denote an ordered pair we use the
following notation:

The ordered pair consisting of the element 1 and 2, in which 1 is the first element
will be written as (1, 2), whereas the ordered pair consisting of the elements 1 and
2 in which 2 is the first element will be written as (2, 1). Obviously, then
(1,2)#(2, 1)V

What must you know to learn calculus? 2-The concept of function (Relations and functions, one-to-one correspon-
dence, equivalent sets, infinite sets, the notion of infinity, and its algebra)

@ Tt is necessary to consider the sets of elements in which order is important. For example, in analytic geometry of the
plane, the coordinates (x,y) of a point represent an ordered pair of numbers. The point (3, 4) is different from the point
(4, 3). Similarly, in 3D geometry, an ordered triplet (@, b, ¢) gives the coordinates of a point in 3D space. There are some
authors who use the notation <(a, b) for the ordered pair, and (a, b) for the open interval, but the ambiguity need not cause
any alarm because it will always be made clear by context and we will know which role the symbol (a, b) is to play.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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(ii) Definition: Cartesian Product of Two Sets A and B: Let A and B be two sets. We define
the Cartesian product of A and B, written A X B, to be the set of all ordered pairs (x, y)
where x€A and y € B.

Thus, A x B = {(x, y)lx€A and y € B}

Example: Let A = {1, 2,3} and B = {5, 6}
Then A x B = {(1, 5), (2, 5), (3, 5), (1, 6), (2, 6), (3, 6)}

Note: It is important to note that in the product A x B the first element in each ordered pair
belongs to A and the second element to set B. Also note that if set A contains 7 elements and set
B contains n elements, then the set A x B will have m-n ordered pairs.(z)

2.2 EQUALITY OF ORDERED PAIRS

Two ordered pairs (@, b) and (c, d) are equal if a = ¢ and b = d.

2.3 RELATIONS AND FUNCTIONS

‘We know that if set A contains 7 elements and set B contains n elements, then the set A x B will
have m-n ordered pairs. Any subset of these ordered pairs is called a relation from A to B.
Consider the following example:

Example: LetA = {1,2,3,4}and B = {2, 4,5}

Then, A x B = {(1,2),(1,4),(1,5),(2,2),(2,4),(2,5),(3,2),(3,4),(3,5), (4, 2), 4, 4, 4, 5)}
Now there are many relations from A to B as follows:

Ry ={(1,2),(1,5),(22),3,4), (3, 5), (4, 5)}
Ry ={(1,4), 4,2), 4 5)}

Ry ={(3,2),(3,4), 3,5, (1,4}

Ry ={(1,4),(2,5),3,2), 4 b}

Rs ={(1,2),(2,5),3, 4, 4}

However, if we select the ordered pairs in such a way that:

(i) their first elements constitute the entire set A, and
(i1) no two distinct pairs have the same first element,

then such a collection of ordered pairs (from the set A x B) constitute a special relation from A
to B, which is called a function from A to B.

@ Here is a tricky situation: Let A = {1,2,3}, B = ¢ then A x B = ¢ (Why?) Note that A x B is not defined as a set of
ordered pairs if either A or B is empty. However, A x {¢} = {(1, @), (2, ¢), (3, ¢)}. But this set of ordered pairs is of no use
to us.
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2.3.1 Domain of a Relation

In any relation (in the form of a set of ordered pairs), the set consisting of the “first” element of
each pair constitutes the domain of the relation. Let us consider the above relations.

e The domain of Ry = {1, 2, 3,4} = A. But there are two ordered pairs (1, 2) and (1, 5) in
which the first element is same. Hence, R, does not represent a function.

e Thedomainof R, = {1,4} # A. Also, there are two ordered pairs (4, 2) and (4, 5) in which
the first element is the same. Hence, R, is not a function, from A to B ® Obviously, R3 is
also not a function.

e The domain of Ry, = {1, 2, 3, 4} = A. And no two distinct pairs have the same first
element. Hence, R4 represents a function. Similarly, Rs represents a function.

We can still define many functions from A to B, as follows:

H=1{(1,2),(2,2),3,2), 4 2},
HL=1{1,4),2,2),3,95), 4 H},
H=1{1,5),2,4), 4 2), 3,2},
fa={(1,5),(2,5), 4,5), (3,5)}, and so on.

We are now in a position to define a “function” on the basis of set theory.

2.4 DEFINITION

Let A and B be two nonempty sets.

A function ffrom A to Bis a subset of A x B (involving the entire set A) with the property that
each “a” belonging to A, belongs to precisely one ordered pair (a, b), in the subset of A x B,
under consideration. In other words, a function f from set A to set B consists of a set of ordered
pairs (a, b) € A x B such that no two ordered pairs have the same first element.

2.4.1 Alternative Definition of a ‘“Function”

A function ffrom set A to set B (written as f: A — B) is a rule of correspondence that associates
to each element of A, one and only one element of B.

(A function is also called a mapping from A to B.)

We observe that

(i) Eachelement of B need not be in the association, but every element of A must be involved
in it. Hence, a function is a one way pairing process. (Every element of A pairs off with
some element of B but not conversely.)

(i1) One element of A cannot be associated to more than one element of B, but one element of
B may correspond to two or more elements of A.

The correspondence from the elements of set A to set B, shown in Figures 2.1-2.4 represents
function(s) whereas that shown in Figures 2.5 and 2.6 does not represent functions. (Why?)
To study functions in details, itis useful to fix certain terms, which will be needed frequently.

® Note that there are two reasons due to which R, is not a function. In fact, any one reason is sufficient for this conclusion.
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FIGURE 2.6

2.5 DOMAIN, CODOMAIN, IMAGE, AND RANGE OF A FUNCTION
Let f be a function from set A to set B (f: A — B), then

e The (entire) set A is called the domain of f.

 The (entire) set B is called the codomain of f.

¢ Anelement of B that corresponds to some element x of A is denoted by f(x), and it is called
the image of x under f.

¢ The set of all images constitute the range of f. The range of fis denoted by f(A) and it is a
subset of set B. In other words f{A) C B.

2.6 DISTINCTION BETWEEN “f”” AND “f(x)”

Consider a function f: A — B, and let (x, y) be an arbitrary ordered pair belonging to f. Then,
instead of writing (x, y) € f, we usually write y = f(x) to mean thaty is related to x, through “f”,
and we read it as y [or f{xx)] is a function of x. In this notation, x represents an arbitrary element
of the domain and y represents the corresponding element of the range. Remember that the
element “f(x)” is selected by the rule of correspondence defined by the function “f”. Thus, “f”
represents the rule of correspondence.

It is important to distinguish between the symbols f and f(x). It may be emphasized that a
single letter f (or g, or h, or ¢, etc.) is used to name a function. Remember that “f” represents the
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rule of correspondence (which may be a statement™® or a method or a formula) relating the
elements of set A to the elements of set B. The symbol f(x) represents the result of applying
“f” to “x”. We call it the value of “f” at x. If “f” is the function defined by the formula
x> — 2x + 3, then we usually write

y = f(x) = x* =2x+3, (x €A) T

Equation (I) tells that the rule of correspondence is the formula “x*> — 2x + 37, which
converts every number x €A, into a new number “f(x)” belonging to B, using the above
formula. Thus, the formula “x° — 2x + 3” must be identified with the function “f”. For
computing the value “f(x)”, we use the formula defining “f”. Thus, if we choose x = 0 €A,
we get the corresponding element y € B as f{0) = 3. Similarly, for x = 1 we get y = 2, and
for x =5,y =18.

To avoid the confusion, possibly caused due to equation (I) [wherein f(x) is equated to
X — 2x + 3], we should write it as f x — X2 —2x + 3, which clearly states that “f” is a
function that converts each x into x> — 2x + 3.

2.7 DEPENDENT AND INDEPENDENT VARIABLES

When the rule for a function is given by an equation of the form y = f(x) (for example,
y = x* — 2x + 3,0ry = sinx, ory = &%, etc.), then x is called the independent variable and y
[or f(x)] is called the dependent variable. Note that for the dependent variable y [or f(x)], we
look at the expression for f(x). (For more details see Chapter 6.)

2.8 FUNCTIONS AT A GLANCE

(1) A function consists of three things:
(i) A set known as the domain of the function.
(i1) A set known as the range of the function.

(iii) A correspondence (arule or amethod or a procedure), which associates with each
member of the domain, precisely one member of the range.

(2) If we conceive of a function as being specified by a set of ordered pairs, then we must
insist that no two selected distinct pairs may have the same first element.

2.9 MODES OF EXPRESSING A FUNCTION

A function is completely known if the objects and corresponding images are known. There are
many ways in which this can be done. We give below four methods for describing a function.

(i) Statement of the Rule of Association (By Formula or Otherwise): If the domain of the

function is known and rule(s) of association between objects and images are known, the
images can be found out and the correspondence is completely known.

“ For example, nth digit in the decimal expansion of 7, is a function, which has no formula.
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As we go through the other modes of expressing a function, it will be realized that this
mode of expressing a function is the most accurate and complete, when the domain is an
infinite set.

(i1) Description by Tables: When the domain of a function consists of a small number of
elements (say 10-20 numbers), it may be described by tabulating the objects and their
corresponding images.

This is specifically useful when the objects and images cannot be connected by a fixed
rule due to irregular variations, and so on. (This mode of expressing a function
however, is not useful when the domain has a large number of elements.)

(iii) Description in Terms of Ordered Pairs: A function is expressible as a set of ordered
pairs. In fact, the set-theoretic definition of a function is the basis for this mode of
expressing a function. We have already discussed about this mode earlier. In general,
this mode is not useful in handling problems in calculus.

(iv) Description by Graphs: We know that a function is a set of ordered pairs, and each
ordered pair is liable to be represented as a point in the plane. Therefore, the function
itself is represented by the set of these points. If £ A — B is a function then the set
{(a,fla))|a € A} is called the graph of fand is a subset of A x B.In particularif A, B CR,
the graph of f can be represented by points in the plane. The graph of a function may be a
set of distinct points or it may be a (continuous) curve.

Example: Consider the function: fix) = 2x + 1, x€ {0, 1, 2, 3}

Here, A = {0, 1, 2, 3}.

The graph of this function consists of four isolated points with the coordinates (0, 1), (1, 3),
(2,5),(3,7) and is not a continuous curve. However, the graph of the function fix) = 2x + 1,
X €R is a continuous curve (line) passing through the above four points.

2.10 TYPES OF FUNCTIONS

We know that a relation f: A — B, which satisfies the following two conditions, will be called a
function:

(I) Each element of the domain A is involved in the relation.

(II) Each element of A is associated to exactly one element of B, and not more than one
element of B.

Remarks:

(a) Note that both the specifications are imposed on the elements of A, and that no restriction
is imposed on the elements of the codomain B.

(b) If we make restrictions (I) and (II) on the codomain B, we get two special kinds of
functions namely (1) one—one function and (ii) onto function as discussed below in (A)
and (C), respectively.

(A) One—One Function: A function is one-one provided distinct elements of the domain are
related to distinct element of the codomain. In other words, a function f: A — B is
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(a) (b)

FIGURE 2.7

defined to be one-one if the images of distinct element of A under fare distinct, that is,
for every ay, a, €A, fla;) = flay) = a; = a,. [It also means that, fla,) #fla,) = a,
#ay.] A one—one function is also called injective function (Figure 2.7a and b).

Note: If there is at least one pair of distinct elements, a,, a; €A, such that

fla1) = f(ay) [thougha; # ay]

then, such a function is called many—one. We define many-one function as follows:

(B) Many—One Function: If the codomain of the function has at least one element, which is
the image for two or more elements of the domain, then the function is said to be
many—one function (Figure 2.8a and b).

A constant function is a special case of many—one function (Figure 2.9).

(C) Onto Function: A function f: A — B is called an onto function if each element of the

codomain is involved in the relation.

(Here, range of f = codomain B.)

In other words, a functionf: A — Bis said to be onto if every element of B is the image of
some element of A, under f, that is, for every b € B, there exist an element a € A such that
fla) = b (Figure 2.10a and b). Onto function is also called surjective function.

The most important functions are those which are both one—one and onto. In a function
that is one—one and onto, each image corresponds to exactly one element of the domain

A f B

(a) (b)

FIGURE 2.8
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One-one and onto function

FIGURE 2.11

and each element of codomain is involved in the relation as shown in Figure 2.11.
Such a function is also called one-to-one correspondence or a bijective function.

(D) Bijective Function (or One-to-One Correspondence):

Definition (1): Consider a function f: A — B with “A” as the domain of definition (i.e., the
admissible set of the values of x) and “B” as the range (i.e., the set of corresponding values of y).
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We say that the function y = f(x) specifies a mapping of the set “A” onto the set B: if two
different points of the set A, there correspond different points of the set B, and the entire set B is
the range of “f”. Such a mapping is called one-to-one onto mapping.”

Definition (2): Let A and B be two nonempty sets. A rule f, which, associates with each
element “a” of the set A, exactly one element “b” of the set B, and under which, each element
“b” of set B corresponds to exactly one element “a” of the set A, is called a one-to-one
correspondence between the sets A and B.®

Example (1): Consider the function y = f(x) = x°. Here, for every value of x € R, there
corresponds a single value of y, and, conversely, to each y € R, there corresponds a single value
of x given by /y. Therefore, f specifies a one-to-one mapping, from R onto R.

Example (2): Consider the function y = g(x) = x%. Here, for every value of x €R, there
corresponds a single value of y € (0, 00). However, to every y > 0, there correspond two values
of x: x = +,/y. Therefore, “g” is not one-to-one correspondence.

Example (3): Consider the exponential function y = f(x) = e*. It can be shown that the
function f{x) = e” is one-to-one mapping from (—oo, 0o) onto (0, o). Note that for x; # x,, we
have e # e%, where x|, x, €R, and e",e” € R". Consider e*' /e®> #1=>¢e¥ "% £ or
ef1 " 7ée0 (since e = 1) = x; — x, #0= x; # x,. In other words, e* # €% = x| # X».
Thus, x| # x, < e*t #£ e,

Therefore, “f” defines a one-to-one correspondence from (—oo, 0o0) onto (0, co). (Here it is
important to note that a one-to-one mapping has been defined from the entire real line on to the
positive part of the real line.)”

) We distinguish between one—one mapping (which need not be onto mapping and one-to-one correspondence, which is a
one-to-one and onto mapping). In the case of one—one mapping

X1 # X2 = f(x1) # f(x) (1)

On the other hand, in the case of one-to-one onto mapping

X1 # X2 & f(x1) # f(x2) Iv)

© Ifafunctiony = f(x) performs a one-to-one mapping of a set A onto a set B, then the same correspondence considered in
the reverse order assigns to every y belonging to the set B, a corresponding element x belonging to the set A. This reverse
correspondence may be looked upon as defining a function x = ¢(y), whose domain of definition is the set B and range the
set A. Such a reverse correspondence has a special name—the inverse of f, to be discussed shortly.

™ If we have two sets A and B, each with infinite number of elements, then it is possible to define one-to-one and onto
mapping on them, irrespective of the observation that the one might appear smaller than the other. This will be clear shortly
when we discuss the concept of infinity and define such functions on infinite sets.
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2.11 INVERSE FUNCTION f*

If a function “f” is one-to-one and onto, then the correspondence associating the same pairs
of elements in the reverse order is also a function. This reverse function is denoted by f~',
and we call it the inverse of the function f. Note that, f ' is also one-to one and onto.

Remark: A function f has an inverse provided that there exists a function, ' such that

(i) the domain of f~' is the range of f and
(i) fix) = yifandonly if f~'(y) = x for all x in the domain of “f”” and for all y in the range
of “f”.

Note (1): Not every function has an inverse. If a function f: A — B has an inverse, then f:
B — A is defined, such that, the domain of ' is the range of f, and the range of f~' is the
domain of f, associating the same pairs of elements.

A 7 B A 7! B

2
4 | [
- 8 - 8

fiA—>B Y
One-one and onto One-one and onto

It can be shown that if f has an inverse, then the inverse function is uniquely determined.
Sometimes, we can give a formula for f .

For example if y = f(x) = 2x, then x = f~'(y) = (1/2)y. Similarly, ify = fix) = x> — 1,
then x = f'(y) = ¥y + 1, In each case, we simply solve the equation that determines x in
terms of y. The formula in y expresses the (new) function f .

We cannot always give the formula for f~'. For example, consider the function
y = fix) = x° + 2x + 1. It is beyond our capabilities to solve this equation for x. (Why?)®

Note that, in such cases, we cannot decide whether a given function has an inverse or not.
Fortunately, there are criteria that tell whether a given function y = f(x) has an inverse,
irrespective of whether we can solve it for x.°

In the case of simple functions (/ike linear functions, etc.) there is a three-step process that
gives a formula for the inverse.

Step (1): Solve the equation y = f(x) for x, in terms of y.
Step (2): Use the symbol F71(y) to name the resulting expression in y.
Step (3): Replace y by x to get the formula for £~ (x).

® A general polynomial equation of degree >5 cannot be solved in terms of the coefficients involved (see the relevant
footnote in Chapter 1)

©) A practical criterion is that “f” be strictly monotonic (i.e., either strictly increasing or strictly decreasing). For this
purpose the simple and practical way is to check the sign of derivative of the function f. This will be clear when we have
discussed the concept of derivative of a function (In Chapter 9 to follow) and its applications in Chapter 19a.
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Example (1): Consider the function y = fix) = 3x — 2, x€R, and let us find its inverse
function.

Solution:
Step (1): y = f(x) = 3x—2 .',x:%
Step 2):f~'(y) = #
Step (3): £~ (x) = XT”
Example (2): Let us find the formula for f~'(x) if y = f(x) = 1 o "

X
Step (1): y = 1=

S(l=x)y=xory—yx=xory=x+yx = x(1+y)

LY
’ 1+y
Step (2): f ~'(y) = %ﬂ (y #-1)

Step (): /! (x) = 1 (x # 1)

Whenever a functiony = f(x) (i)

has an inverse function, that we can solve for x, then we can write it as
—1 ..
x=f"'0) (i)

We see that in this expression (of the inverse function) the roles of variables x and y are
interchanged: Both the functions at (i) and (ii) describe one and the same curve in the xy-plane,
and they are said to be mutually inverse functions.

For the function f, the axis of the independent variable is the x-axis, while for the function f '
this role is played by the y-axis. If we want to construct the graphs of mutually inverse functions
so that the axis of arguments (i.e., the axis of independent variables) for both of them is the
Xx-axis, then we should denote the independent variable in formula (ii) by x and express the
inverse function in the form: y = f'(x).

In this notation, the letter x designates the independent variable and the letter y the
dependent variable for both the mutually inverse functions. Thus the functions y = x° and
y = /X, represent a pair of mutually inverse functions. Also y = 10 and y = log o x are
mutually inverse functions.

There is a simple relationship between the graphs of two mutually inverse functions y = f
(x) and y = £ (x): They are symmetric with respect to the line y = x.

A little thought convinces us that to interchange the roles of x and y on a graph, is to reflect
the graph across the line y = x (see Figure 2.12b and c).
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Caution: The symbol stands for inverse function.

Here we are using the superscript “ —1” in a new way. The number f ~!(x) is almost always
different from [f(x)] ' = 1/(f(x)). Thus, the symbol f ' does not stand for 1/f. This may be clear
from the Examples (1) and (2) above. All mathematicians use the superscript “ —1” to name the
inverse function.

Each pair of inverse functions (i.e., fandf ') behave in such a way that one function undoes
(or reverses) what the other does, that is, suppose that f{x) = y, then f'(f{x)) = x, and if

') = x, then fif ') = .

Remark: From the definition of one-to-one correspondence between the sets A and B, one
might get the feeling that the number of elements in both the sets must be same. Of course
this is true if the number of elements in their domains is finite. With the same line of
thinking, when considering a pair of mutually inverse functions defined on intervals one
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might expect that the length of the domain interval and that of range interval should be the
same, but this need not be true. For example, recall that the exponential function y = e,
defines a one-to-one mapping from (—oo, o) onto (0, 0o). The inverse of exponential
Sfunction y = e is called logarithmic function (expressed by x = log,y), which is defined
from (0, co) onto (—o0, 00).

Remark: This is possible due to the fact that infinite sets can have proper subsets (which are
also infinite) such that a one-to-one mapping can be defined from one set on to the other. Such
sets are said to be equivalent, and they are said to have “in a sense” same number of elements.
These matters are discussed below at length.

2.12 COMPARING SETS WITHOUT COUNTING THEIR ELEMENTS

The concept of one-to-one correspondence helps in comparing sets (for their sizes) without
counting their elements. It also helps in distinguishing between infinite sets and in
answering a query whether all infinite sets share the “same degree of infinity” or whether
some infinite sets are “larger” than others. This discussion also helps in defining the notion
of “Infinity.”

Let A and B be two nonempty sets. We say that these sets are equal (A = B) if and only if
they contain the same elements [For example, if A = {1, 2, 3,4} and B = {1, 2, 3, k} then
A # B.] Suppose A and B are not equal, then it is natural to ask whether or not the number of
elements in these sets is the same? The number of elements in a set is known as cardinality of
the set. "9

In the case of finite sets, we can count the elements of each set and then observe whether or
not the numbers obtained as a result of counting are same. However, this question can also be
answered without actually counting the elements of the sets. This is possible by using the
concept of one-to-one correspondence as explained below.

2.13 THE CARDINAL NUMBER OF A SET

Let A be a set of Latin letters, thatis, A = {a, b, ¢, d, e}, and B be a set of Greek letters, that is,
B = {a, B, v, 8, &}. Itis clear that A # B (why?). We can arrange these sets as shown below.

Sets Elements
A a b c d e
B o B Y o

Now we can say without counting that both the sets A and B, have the same number of
elements. What is the characteristic of this method of comparing sets? For each element of one
set, there appears one and only one element corresponding to it in the other set, and conversely.

19 One does not talk about the number of elements in a set. One only talks about the cardinal number of a set. The cardinal
number of afinite set is the number of elements in the set. (The cardinal numbers for infinite sets are discussed later in this
chapter.)



FINITE SET (DEFINITION) 33

Observe that in this example both the sets A and B have only a finite number of elements. The
strength of this method lies in that it can be applied even when the sets to be compared have an
infinite number of elements."' "

In the case of infinite set(s), though it is not possible to count their elements entirely, yet it is
possible to compare them using the concept of one-to-one correspondence as in the above
example of sets A and B that have finite number of elements.

Now, consider the set N of all natural numbers and M is the set of all numbers of the form 1/n
where n € N, then the second method of comparison shows at once that the number of elements
in both the sets is the same (in some sense) though the process of counting is endless and
accordingly it is never completed. More clearly, it is sufficient to arrange our sets as follows:

N: 1 2 3 4 5 6
! ! ! ! ! !
M: 1 12 13 1/4 1/5 1/6

and pair off the numbers n and 1/n. We now turn to precise definition.

2.14 EQUIVALENT SETS (DEFINITION)

If it is possible to establish a one-to-one onto correspondence between two sets A and B, then
these sets are said to be equivalent (or to have the same cardinality) and we write A ~ B.

Note: If two finite sets are equivalent then it means that both the sets have the same number
of elements. Infinite sets can also be equivalent. For example, N = {1, 2, 3, 4, 5, ...},
W=1{0,1, 2, 3, 4,5, ...} are equivalent sets, since the function f defined by f(1) = 0,
f2) =1, fin) = n — 1is a one-to-one correspondence between N and W.

Now, comparing with the case of finite sets, these two sets N and W can be thought to have the
same number of elements. In mathematics, one says that they have the same cardinal number.

2.15 FINITE SET (DEFINITION)
A set S is called finite and is said to contain n elements, if

S~{1,2,3,....n}

Remarks:

o The empty set is considered finite.

o Itis easily seen that two finite sets are equivalent if, and only if, they consist of the same
number of elements. So the concept of equivalence is a direct generalization of the
concept of having same number of element, for finite sets.

(D We have not yet introduced the notion of “infinity”. However, we define a finite set as the one for which the process of
counting the elements ends for some number 1 € N. Also, for the time being we agree to define an infinite set as the one,
which is not finite. Though this is a negative definition of an infinite set, it coveys that in the case of infinite set the process of
counting the elements must be endless. These observations will become clear shortly, when we try to count the elements of
an infinite set using the concept of one-to-one correspondence.
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2.16 INFINITE SET (DEFINITION)

Sets that are not finite are called infinite.
We now give a few examples of pairs of equivalent infinite sets.

Example (1): LetA and B be the sets of points on two parallel sides of a rectangle. It is easy to
see that A ~ B.

A
A

Example (2): Let A and B be the sets of points of two concentric circles. Here also it is clear
that A ~ B. This example is less trivial than the earlier. If we cut and straighten out our circles,
one of them is transformed into a shorter line segment than the other. It would seem that there
ought to be more points on the longer segment. We see that this is not so.

B A

Y

Example (3): Here is an example that is more surprising. In a right angle triangle, let A be the
set of points of the hypotenuse and B the set of points of a base. From the figure, it is clear that
A ~ B, despite the fact that the base is shorter than the hypotenuse. If we lay off the base on the
hypotenuse, the set B appears to be a proper subset of the set A, and hence different from A itself.
In this example, we encounter a set A containing a proper subset B, which is equivalent to
A itself.
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B

‘We know that a finite set cannot contain a proper subset, which is equivalent to the given (finite)
set. It is thus the infiniteness of the set A that produces this curious phenomenon. Let us
consider one more example.

Example (4): Let N be the set of all natural numbers and let M be the set of all even natural
numbers, then we can show that N ~ M.

We have N ={1,2,3,4,5,...}
and M=1{2,4,6,8,10,...}

Let us define a one-to-one correspondence f: N — M given by f(x) = 2x, for each x € N. This
function “f” makes N and M equivalent. Observe that M is a proper subset of N. We may
therefore say that there are as many positive even numbers as there are natural numbers.
Similarly,

e N~{1,4,9, 16, ...}, where the one-to-one correspondence is defined by the function.
flx) = x*, VYxeN

e N~{1, 8,27, 64, ...}, where flx) = x>,V xeN
e W~N, where f(x) =x+ 1,VxeW
e Let Z be the set of all integers and consider the correspondence shown below:

Here the function f: Z — N is defined by two formulas.
f(n) = 2nforalln >0, andf(n) = —2n+1forn <O0.

The function is a one-to-one correspondence from Z to N.
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2.17 COUNTABLE AND UNCOUNTABLE SETS

Definition (1): If a set A is equivalent to a subset of all positive integers, then A is said to be
countable. Thus, by definition « finite set is countable.

Remark: Itisimportant to note that even an infinite set will be called a countable set provided
its elements can be put in one-to-one correspondence with the set of natural numbers. Thus, the
sets {2,4,6,8,...},{1,4,9,16,...},{1,8,27,64, ...}, and so on, all are countable infinite sets.
A set that is not countable is called uncountable. For instance, the set of all points on a line
segment is an uncountable set. Another useful definition that distinguishes countable and
uncountable sets is given below:

Definition (2): For any positive integer n, let J,, = {1,2,3,4,5,...,n}.LetJ = {1, 2, 3,4,
5 ...} =N.

(Note that J,, is a finite subset of the set of natural numbers.)

Then, for any set A, we say

(a) A is finite if A~ J,, for some n. (The empty set “¢” is also considered finite.)
(b) A is infinite if it is not finite.
(c) A is countable, if A ~ J. (In fact, we may call the set A as countably infinite if A~ J.)

Remark: A finite set is always countable. Those infinite sets, which are equivalent to set J, will
be called countably infinite sets.

(d) A is uncountable if A is neither finite nor countable.

(e) A is at most countable if A is finite or countably infinite.

Note (1): It is clear that the definition (1) is equivalent to the statement (e) above, of the
definition (2).

Note (2): Countable sets are sometimes called enumerable or denumerable.

Note (3): If A~ B, then we say that A and B have the same cardinal number or the same
cardinality.

Remark: All countable infinite sets are equivalent among themselves and hence all of them
have the same cardinality. One might ask whether all infinite sets have the same cardinality that
is whether they share the “same degree of infinity,” or whether some infinite sets are “larger”
than others?

2.18 CARDINALITY OF COUNTABLE AND UNCOUNTABLE SETS

The cardinality of any countable infinite set is denoted by the symbol X, read as “aleph-null.”
The symbol “c” is used to denote the cardinal number of the set R of all real numbers (or of all
points on the real line) that is uncountable. (An uncountable set is necessarily infinite.)

Note: “c” is the cardinal number of R and of any set that is numerically equivalent to R. 1t can be
demonstrated that ¢ is the cardinal number of any open interval, or any subset of R that contains
an open interval.
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Thus, our list of cardinal numbers has grown to 1, 2, 3, 4, ..., N,, c. Just as the positive
integers, we can order the cardinal numbers, and they are related to each other by 1 <2 <3
< --- <N, <c. At this stage, the following question arises.

Are there any infinite cardinal numbers greater than “c”? Yes, there are; for example, the
cardinal number of the class of all subsets of R. This answer is the outcome of the axiom that if X
is any nonempty set, then the cardinal number of X is less than the cardinal number of the class
of all subsets of X. [If A is a finite set with n elements, then the set of all subsets of A, denoted by
P(A), has 2" elements. P(A) is called the power set of A.]

We also have a cardinal arithmetic. One can add, multiply, exponentiate cardinal numbers.
For example, the cardinal number of the power set P(X) of a set X, with cardinal number |X] is
known to be 211, Thus, the cardinal number of the power set of natural numbers P(N) is 2% and it
can be shown that 2% = ¢.

If we follow up the hint contained in the fact that 2% = ¢ and successively form 2, 2% e
we get a chain of cardinal numbers

1<2<3< - <Ny <e<20<2®< 0.

in which there are infinitely many infinite cardinal numbers. Clearly, there is only one kind of
countable infinity, symbolized by XN,, and beyond this there is an infinite hierarchy of
uncountable infinities that are all distinct from one another.

At this point we bring our discussion to a close. However, with a view to introduce the
“Notion of Infinity,” which will be frequently needed in our study of Calculus, we state below
one more definition of an infinite set.

2.19 SECOND DEFINITION OF AN INFINITE SET

A set A is infinite if, and only if, it is equivalent to one of its proper subsets.

2.20 THE NOTION OF INFINITY

In the history of mathematics the term “infinite” was obscure for a long period. The symbol for
infinity is “oo0”. In modern mathematics, the symbol “co” is not a number, and not all algebraic
operations are defined for this symbol.'?

Often we shall have to study the behavior of functions of x, as x becomes infinitely large, that
is, when x is permitted to attain larger and larger values exceeding any bound K, no matter
how big K is chosen. For example, take f(n) = 1/n. Then if n takes the values 1,2, 3, . . ., 100, we
have an aggregate (i.e., the class, or set, consisting of the values of f(n), for various values of n
consisting of the fractions 1, 1/2, 1/3, ... 1/100.

We wish to discuss the behavior of this function for very large values of ». It is immediately
obvious that 1/n becomes very small when n is very large.

Note: It is wrong to say that 1/n = 0 when n = co. Remember that oo is not a number, so it
cannot be equated to any number, howsoever large. Further, 1/n can never be equated to zero,
however big n is chosen, since 1 # 0. However, it makes sense to say that the functionfin) = 1/
n tends to zero for values of » that tend to infinity. Now, we define precisely what we mean by
this statement.

(2) The symbol “co” for “infinity” was proposed by the English mathematician and theologian John Wallis (1616-1703).
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Suppose we take a positive real number &, however small, then we can certainly choose a
number N so that whenever n > N, the function 1/x is less than . For example, if we choose
£ = 0.001, then f(n) = 1/n can be made less than & by choosing N>10>. (Note that if
n>N>10% then 1/n < 0.001.) Similarly if we choose & as 0.00000001, then f{in) = 1/n can
be made less than this by choosing n > N > 10%.(?

If we now consider the function f{n) = n?, itis clear that this function can be made as large as
we please by taking sufficiently large values of n. We may therefore, say that the function f
(n) = n* tends to infinity when # tends to infinity.

Now, let us consider the function

In this case, we say that f{n) tends to — oo when n tends to co. We would usually write these
statements briefly as given below:

I124>OO asn— oo

and

—n2—>—oo asn— oo

(These notations will be used when we introduce the concept of limit, in Chapter 7.)

2.21 AN IMPORTANT NOTE ABOUT THE SIZE OF INFINITY

We must not confuse the word “infinite” with the “very large finite”. For example, think of
the number of inhabitants of the earth at any particular instant, or the number of leaves on all
the trees of the earth at any instant, or the number of blades of grass on the earth at any instant or
the number of all these things put together. These are all very large numbers, yet they are finite.
That s to say, given sufficient patience and manpower, we could set out to count the numbers of
these large classes with the assurance that we could finish the job.

As an example of an infinite set we have the set of “natural numbers.” If we set out to count
the natural numbers, 1,2, 3,4, .. ., we cannot do so with the assurance that if we continue until
we die and pass the job on from generation to generation, neither we nor any of our descendants
will ever exhaust the supply. Also we know that there is the infinite in algebra, the infinite in
geometry, the infinitely small, the infinitely large, and so on. Again, there is not only one
infinite, but a whole hierarchy of infinites.

2.22 ALGEBRA OF INFINITY (c0)

We accept the following properties of oo.

(1) If x €R, then we have
X + (4+00) = +00, X + (—00) = —o0
X — (400) = —00, x — (—00) = +00
x/(400) = 0 = x/( —00)

U3 The Greek letter & (epsilon) has become a standard notation for an arbitrarily small positive number.
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(ii) If x>0, then we have
X(+00) = +00, X(—o0) = —0

(iii) If x <0, then we have
xX(+o0) = —o0, X(—00) = +00

(iv) (00) + (00) = (+00) (+00) = (—00) (—00) = +00
(—00) + (—00) = (400) (—00) = —00

(v) If x €R, then we write —oo0 < x < 400

or x € (—00, 00)

Remark: Compare the above properties of oo with those of real numbers, and note the
distinction. Besides, it may be mentioned that there are expressions involving oo
fi.e., like(co/oo), (00)°, (00 — 00), etc.] that are not defined and such expressions are called
indeterminate forms. Later on, it will be seen that limiting values of such expressions can be
found by L’ Hospitals Rule (Chapter 21).



3 Discovery of Real Numbers:
Through Traditional Algebra

3.1 INTRODUCTION

Calculus is based on the real number system and its properties. But what are real numbers and
what are their properties? To answer this question, we start with the simplest number system
consisting of Natural Numbers or Counting Numbers. In fact, the first numbers known to the
man were counting numbers.

In arithmetic, the four fundamental operations, namely addition, subtraction, multiplica-
tion, and division are used to make new numbers out of old numbers—that is, fo combine two
numbers to create a third. Accordingly, these operations are called binary operations.

Ordinary algebra (or so-called traditional algebra) is a branch of mathematics, in which
symbols are used to represent numbers (or quantities), in all the arithmetical operations. In fact,
ordinary algebra is a generalization of arithmetic."

The subject of algebra involves the study of equations and a number of other problems that
developed out of the theory of equations. It is in connection with the solution of algebraic
equations that negative numbers, fractions, rational numbers, and irrational numbers were
discovered. The set of rational numbers together with that of irrational numbers make the
set of real numbers.

Itis interesting to study the history of development of the real number system. For example,
it took a long time for the zero to enter the family of numbers. The reason for this delay was due
to the fact that zero has a physical meaning of “nothing”, and therefore, in order to consider it as
a number, we had to wait for negative numbers to appear and be accepted.

It was nearly 150 years ago that mathematicians adopted the correct viewpoint toward these
various types of numbers. They recognized that the concept of numbers could be extended to
include negative and irrational numbers.

When the negative numbers were accepted as respectable members of the number
community, the remaining numbers were named as positive numbers. Thus, the concept of
positive numbers was developed from that of negative numbers and then “0” (zero) was

What must you know to learn calculus? (3-Real numbers and their properties)

M Other forms of higher algebra also exist. These are connected with mathematical entities other than numbers. For
example, algebra of matrices, algebra of vectors, algebra of sets, and so on. Definitions of different entities, their properties,
and the rules for combining them are of course different in different algebras, but consistent with the physically observed
facts.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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accepted as a number that must neither be positive nor negative. Thus, the development of
algebra has contributed (in a way) to the development of the Number System.®

In Chapter 1, we have introduced certain important subsets of real numbers (namely, natural
numbers, whole numbers, integers, rational numbers, fractions, and irrational numbers). Also,
we have introduced even and odd numbers (as subsets of integers), prime and composite numbers
(as subsets of natural numbers), and certain important concepts useful in selecting pairs of
coprime numbers or finding factors and computing H.C.F. (from a set of natural numbers).

Now, it is proposed to throw some more light on the following subsets of real numbers.

3.2 PRIME AND COMPOSITE NUMBERS

A natural number which has exactly two (different) factors, namely the number itself and 1, is
called a prime number. Some examples of prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, .. ..
Each prime number except 2 is odd.

The number 1 is neither prime nor composite, since it has only one factor.

Natural Nos. Factors Set of Factors No. of Factors Remark
1 1=1x1 {1} 1 Neither prime nor composite
5 5=1x5 {1,5} 2 Prime number
12 12=1x12 {1,2,3,4,6,12} 6 Composite number
=2x6
=3x4

A number that has three or more factors is called a composite number.

There is no formula that generates prime numbers. However, the number of primes is infinite
and this can be easily proved using algebra. The method of proofis indirect but it is beautiful and
surprisingly simple, as we have already seen in a footnote in Chapter 1.

Remark(s):

(i) By definition, no negative integer is prime.”’

(ii) Every composite natural number can be expressed as a unique product of its prime
factors.

We recall the following subsets of real numbers, which will be needed frequently in our
discussion.

@ In the process of solving certain algebraic equations (such as x> 4+ 1 = 0), new type of numbers were discovered. These
numbers have the property that their squares are negative numbers (here x*> = —1). The solutions of this equation were
denoted by x = £++/—1. Thus v/—1was born, as a strange mathematical entity. Then the contemporary mathematicians

2

thought that such a number was “useless”, “imaginary”, and “impossible.” Euler thought that expressions like v/—1 were
“neither nothing”, “nor greater than nothing”, “nor less than nothing”, which necessarily makes them “imaginary” or
“impossible”. Euler used imaginary numbers in some of his works and he was apparently the first to use the symbol
for v/—1. It was not until Gauss adopted them, that imaginary numbers finally acquired legitimate status. Subsequently,
by combining real numbers with so-called imaginary numbers using the operation of addition, complex numbers came into
existence. [The Spell of Mathematics by W.J. Reichman (p. 156), Pelican Book.]

3«0 is a composite number. Since zero is divisible by all natural numbers, so that all natural numbers are the factors of
zero. Recall that factors are only natural numbers, thus zero is not a factor of an integer. Also, since division by zero is not
permitted in mathematics, the expressions like 1/0 and 0/0 are meaningless expressions.

i
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3.3 THE SET OF RATIONAL NUMBERS

0= {g |p, gbelong o Z, g # 0}

70 -3 5 24
Examples: —, -, —, —, —, —, and so on, are all rational numbers.

Zero is a rational number but division by zero is not permitted.

Also, 0/0 (i.e., zero divided by zero) is a meaningless expression, which is nothing more
than a mathematical drawing. Decimal representation of a rational number either terminates
(as in 3/8 = 0.375) or else repeats in regular cycle, forever (asin 13/11 = 1.18181818. .. orin
3/7 = 0.428571428571...). A little experimenting with the long division process will show
why this happens. (Note that, there can be only a finite number of different remainders.)

Note: In the decimal form, a number of the type 3.2613261326132613 ... or 6.32537537 ...
or 7.000 .. ., and so on with nonterminating but repeating string of digits, in the decimal part
from anywhere onwards represents a rational number and it can be expressed in the form p/q,
where p and ¢ are integers, and the denominator q# 0. (Positive rational numbers form the
set “F” of fractions. F = {a/bla, b € N}.)

If a number has a decimal representation which ends in zeros, for example, '/, = 0.2500000 . . .
then it can also be written in another decimal expansion that ends in nines. For this purpose, we
must decrease the last nonzero digit by one and write the subsequent digits as 99999 .. .. Thus,
we have '/, = 0.2499999 .. .. Similarly 7.000 ... = 6.9999 ... Except for such substitution,
decimal expansions are unique.

3.4 THE SET OF IRRATIONAL NUMBERS

Those real numbers, which are not rational, are called irrational numbers. (They cannot be
expressed in the form p/q, where p, g are integers with ¢ # 0.) We denote the set of irrational
numbers by Q° or Q'. Irrational numbers too can be expressed as decimals.

Note : Irrational numbers: In the decimal form, a number of the type 5.7101001000100001 . . .,
or 7.3030030003 ..., or * = 3.141592653589793 ... with nonterminating and nonrepeating
string of digits, in the decimal part, represents an irrational number. Obviously, it cannot be
expressed in the form p/q. Check this.

The numbers v/2, v/3, ..., \/n where nis a natural number which is not a perfect square, have
got decimal forms like that of = wherein no pattern is noticed (\/i =
1.4142135623 ..., /3 = 1.7320508075 .. ., ). These are all irrational numbers. Indirect
methods of algebra are available to prove that /2, v/3, ..., and so on are irrational numbers.

mande (e = 2.7182818284 . ..) are special types of irrational numbers (called transcendental
numbers), which arise naturally in geometry and calculus, respectively.

3.5 THE SET OF REAL NUMBERS

The set of rational numbers together with the set of irrational numbers forms the set of real
numbers denoted by R. Thus, R = QU Q°.
Now, we define a real number.
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3.6 DEFINITION OF A REAL NUMBER

A real number is one that can be written as an unending decimal, positive or negative or zero.”

3.7 GEOMETRICAL PICTURE OF REAL NUMBERS

We use the term real line very frequently without any explanation, and of course what we mean
by it is an ordinary geometric straight line whose points have been identified with the set R of
real numbers.

We use the letter R to denote the real line and the set of all real numbers. We say that, to every
real number there corresponds a unique point on the number line, and conversely, to every point
on the number line there corresponds a real number. It is due to this one-to-one correspondence
that we often speak of real numbers as if they were points on the number line and we speak of the
points on the real line as if they were real numbers. Yet, the fact remains that, a real number is an
arithmetical object, whereas, a point is a geometric object.

For the purpose of representing rational numbers by points on a straight line, we label any
point on the line with “0” (zero) and any other point to the right of “0” with “1”. This fixes
the scale. With this scale as unit length, we can easily plot on the number line all those points,
which represent rational numbers. For this purpose we use the four fundamental operations
of arithmetic (namely addition, subtraction, multiplication, and division). With regards to the
irrational numbers, we have to go beyond these operations.

Shortly, we will learn that between any two rational numbers, there is always another
rational number. A similar statement is true in the case of irrational numbers. (This is known as
the property of denseness, which is studied later in this chapter.) Thus, if we plot only rational
numbers on the number line, then there will be infinite number of holes throughout the line. These
unoccupied positions must represent irrational numbers. Geometric constructions can be used to
find points corresponding to certain irrational numbers, such as V2,3, V5,V , and so on.
Points corresponding to other irrational numbers can be found by using decimal approximations.

Every irrational number can be associated with a unique point on the x-axis, and every point
that does not correspond to a rational number can be associated with an irrational number. This
fact is guaranteed by the axiom of completeness and is discussed later at the end of this chapter.

Note: We are familiar with the simpler properties of real numbers. It is now proposed to discuss
some other properties of real numbers, which are not obvious. (This study will be found
useful for building up necessary terminology, required for defining the “concept of limit” in
Chapters 7a and 7b.)

The beauty and power of mathematics can be appreciated only if the properties of real numbers
are properly understood. We give below the necessary material to make the study systematic and
interesting. This material should be sufficient to meet the study requirements of this book and
also serve as a good background for studying these concepts at higher levels.

3.8 ALGEBRAIC PROPERTIES OF REAL NUMBERS

These properties are associated with two basic operations on real numbers, namely addition and
multiplication. [The operations of subtraction and division (by nonzero numbers) can be

@ Caleulus with Analytic Geometry by John B. Fraleigh.
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defined respectively in terms of addition and multiplication.] We assume that the following
statements in real numbers are both well defined and true.
If a, b, and ¢ are real numbers, then, we have

1. Commutative Property
a+b=b+a a-b=b-a
2. Associative Property
(a+b)y+c=a+b+o) (a-by-c=a-(b-c)
3. a+0=0+a=a a-l=1-a=a
Additive identity is “0” Multiplicative identity is “1”
4. a+(—a) =0 a-(l/a)y =1ifa#0
Additive inverse of a is (—a) and Multiplicative inverse of a is (1/a) and
vice versa vice versa
Remark: Multiplicative inverse of the real number “0” does not exist.>
5. Multiplication distributes over addition

a-(b+c)=a-b+a-c

The other algebraic properties of real numbers can be proved from these five properties.
For example, a-b =0, iffa = 0or b = 0, (—a)-(—b) = a- b, and so on.
At this stage, however, we are not proving these properties.

3.9 INEQUALITIES (ORDER PROPERTIES IN REAL NUMBERS)

Between any two unequal real numbers a and b, there is a relation (called the order relation)
which states whether a is less than b (a < b) or b is less than a (b < a).

Hence, for any two real numbers a and b, we have exactly one of the following statements
true.

1. Eithera = bora < b or b < a. This property is called the Law of Trichotomy. A relation
of the form a < b (read “a is less than b”) or b > a (read “b is greater than a”) is called
an inequality.

Other properties of inequalities are as follows:

2. If a< b and b < c, then a < c. This is known as the Transitive Property.

3. If a< b and c is any real number, then a+c<b+c.

4. Ifa<band ¢>0,thena-c<b-c.

Ifa<band c =0, thena-c=b-c.
Ifa<band c<0,thena-c>b-c.

Note (1): If ¢ < 0, and we multiply both sides of an inequality by ¢, then the direction of the
inequality changes.

Note (2): If >0, b >0, with a < b, then 1/a > 1/b.
5. Ifa<band c<d thena+c<b+d.
6. If a, b, ¢, d are all positive and a < b, c<d,thena-c<b-d.

© Division by “0” leads to contradictions as was seen in Chapter 1.
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The properties (5) and (6) tell us that,

two (similar) inequalities can always be added, and

two (similar) inequalities (involving positive numbers) can be multiplied.

Note(s):

If either a < b or a = b, then we write a < b.

If either a > b or a = b, then we write a > b.

If a > 0, then we say that a is non-negative.

Ifa < xand x < b, then we write a < x < b and in this case we say that x is between a and b.

If x is a real number between @ and b (where a < b) and x may be equal to a or b, we write
a<x<b.

3.10 INTERVALS

If we wish to consider all the real numbers between a and b (with or without including one or
both the end points @ and b) then such sets are called intervals as discussed below:

Open Interval (a, b): If a and b are real numbers with a < b, we denote by (a, b) the set of
all real x such that a<x<b. We call (a,b) an open interval. Thus (a,b) =
{x|x € R, a < x < b}. It consists of all real numbers between a and b. Obviously
a and b are not included in the set.

- D,

a\ Jb

Closed Interval [a, b]: If a < b, then [a, b] denotes the set of all real numbers x such that
a <x<b. Thus [a,b] = {x|x €R, a < x < b}-]a, b] is called a closed interval. It
consists of all real numbers between a and b, including the end points a and b.

[ 1
[ 7
a b

We occasionally need to use “half-open” intervals. For example, (a, b] denotes the set of
reals denoted by the interval a < x < b, which is open at @ and closed at b. Similarly [a, b)
denotes the interval a < x < b.

- 1 [ A
N 1 [ 7
a b a b

By (a, 00), we mean the set of all real x such that x > a.
Thus, (a, 00) = {x|x € R, x > a}.
C >
N

a

By (—o0, b), we mean the set of all real x such that x < b.
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Thus, (—o0, b) = {x|x €R, x <b}.

>

~
J
b
The set of all real numbers is sometimes denoted by (—o0, 00).

Note: An open interval can be thought of as one that contains none of its end points, and a
closed interval can be regarded as one that contains all of its end points. Consequently, the
interval [a, +00) is considered to be a closed interval, because it contains its only end point a.
Similarly, (—oo, b] is a closed interval, whereas (a, +00) and (—oo, b) are open. The intervals
(a, b] and [a, b) are neither open nor closed. The interval (—o0,00) has no endpoints and it is
considered both open and closed.

3.10.1 Bounded and Unbounded Intervals

The intervals in which the symbol “co” (infinity) does not appear, are called bounded intervals,
(They occupy a limited length of the real line.) The sets like (a, 00), (—o0, b), (a, 00), (—o0, b),
and (—oo, 00) are called unbounded intervals. (The usefulness of the concept of boundedness of
sets is discussed later, in different contexts, in various chapters.)

3.10.2 Usefulness of Intervals

The usefulness of intervals can be seen from the following examples.

(i) The values of x for which the expression /(12 — x) is a real number, are given by

x <12,i.e., (—00, 12) and those for which /(16 — x?)is a real number, are given by the
interval —4 < x <4.

(i) The function f{x) = 1/(x — 2) is not defined for x = 2, but for all other real values of x,
it is well defined. Thus, we say that f(x) is defined for x € (—o0, 2) U (2, 00).

In calculus, we study the behavior of functions on intervals, which are defined using the absolute
value of a real number. Hence, we introduce the concept of the absolute value of a real number.

3.10.3 Definition of Absolute Value of Real Number(s)

If a is any real number, the absolute value of a, denoted by |a| is a, if a is non-negative, and —a if
a is negative. Thus, with symbols we write,

la| = a ifa>0
| —a ifa<O

Examples: |7| = 7,

0 =0,

3] =—(-3)=3

It is clear that |a| is never negative; that is |a| > 0.

© Since |a| is never negative [i.e., |a| > 0], it follows that x < |x| for any x, positive, zero, or negative. This observation will
be useful in proving the triangle inequality, i.e., |x + y| < |x| + |y|, discussed later [as Theorem 3], in this chapter).
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The absolute value of a real number can be considered as its distance (without regard to
direction, left or right) from the origin.

3.10.4 The Geometric Interpretation of [a — b|

From the definition of the absolute value, we have,

a—b ifa>b

a—b if(a—b)>0 .
la—b| = or equivalently, | — b| = .
—( b—a ifa<bd

a—>b) if(a—b)<0

On the real line, |@ — b| units can be interpreted as the distance between a and b without
regard to direction. In other words, the distance between a and b is said to be either (a — b) or
(b — @), whichever is non-negative.

Distance = a — b Distance =b —a
—r— —r—
b a a b
Examples:

1. |7-3| =4 =4

2. 5-12|=|-7=—-(-7=7

3. 8—(=3)|=1[8+3] =|11| =11

4. |-2— (-7 =247 =15=5

5 1-9-(=6)|=|-946|=1]-3=—-(-3)=3

Let us consider equations involving absolute values.
Example (6): Solve the equation |x| = 5

If x>0, then x| =x =35
If x<O, then |x| =—x =5 . x =-5.
Hence the solution set is {5, —5}.

Example (7): Solve the equation |x — 8| =7

If (x—8)>0, then [x—8 =x—8=7
Sox =15
If (x—8)<0, then [x—8| = —(x—8) =7
So—x+8=7o0rx=1.
Thus, the solution set is {1, 15}.
It turns out that the simplest way to describe an interval at the origin (or any other point) is by
using absolute value inequalities.
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3.10.5 Intervals Defined by Absolute Value Inequalities

The connection between absolute values and distance permits us to describe intervals using
absolute value inequalities. An inequality like |a| < 5, says that the distance from “a” to the
origin is less than 5 units. This is equivalent to saying that a lies between —5 and 5.

“«—5—><«—5——>

L | |
s | |
=5 0 5

A\

Thus, the set of numbers “a” with |a| <5 is the same as the open interval —5 to 5.
Accordingly, the inequality |x|< @, where a > 0, states that on the real number line the distance
from the origin to the point x is less than “a” units; (Figure 3.1) that is,

—a< x<a ey

The inequality |x| > a, where a > 0, states that on the real number line the distance from the
origin to the point x is greater than ¢ units (Figure 3.2). that is, either

x>aorx < —a (I1)

‘We state the above results (I) and (II), formally. The double arrow <> is used here and throughout
the text to indicate that the statements on both sides of < are equivalent.

|x| < a & —a < x < a, wherea > 0 (1)
x| > a & x > aorx < —a, wherea > 0 (2)

Example (8): Find

(i) The end points of the interval determined by the inequality

x—al<ec.
(ii) What is the geometric meaning of the inequality |x — a|> ¢?

Solution: (i) To find the end points of the interval |x —a| <c¢, we change |x —a|<c to
—c<x—-a<c adding “a” throughout, @ — c < x <a+c. The end points are
a—c and a+ ¢ (Figure 3.3a).
(ii) The points that satisfy the inequality |x —a| > ¢ are the points on the x-axis
whose distances from a are greater than ¢ (Figure 3.3b).
These are the points outside the closed interval, | x — a| < ¢, thatis, the points that lie on the right
of a + c and to the left of a —c.

—a<x<a
. :
- 0
—a [x|<a a

FIGURE 3.1

<

N
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IxI>a IxI>a
< N - 5
o, <
x<—a x>a
FIGURE 3.2
(a)
|x — al<c
Radius = ¢
—
< 4 | A >
\ I /
a—c a a+c
i Center
(b) ;
|x — al>c
x<a-c o\ | [/ a+tc<x
J [ \ -
a—c a a+c

FIGURE 3.3 (a) and (b).

Geometrically, these points make up the two infinite open intervals x <a—c and x >a + c.

Example (9): Find the values of x that satisfy the inequality

3x+1
<1 3
- o)
3 1 3 1
Solution: Change‘x+ <lto—-1< Al <lto —2<3x+1<2to -3<3x<1 to

1 1
-l1<x< 3 Thus the inequality (3) represents the open interval (—1, 5)'

3.10.6 Absolute Value Inequalities Used in Calculus

et

(a) The inequality |x — a| < 8 means that the distance between “x” and “a” is less than the
positive real number, 6. This in turn means that,

—0<x—a<bdora—o6<x<a+¥é

i.e., x € (a — 6, a+ 6), which is an open interval containing x whose distance from a is
less than &.
Thus, the following four statements have one and the same meaning.

@ |x—al<d

(i) a—d6<x<a+4é
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(iii) x€(a—¥6,a+d)
(iv) The distance between x and « is less than 6.

(b) The double inequality 0 < |x — a| < 8 may be broken up in two inequalities as 0 < |x — a|
and |x — a| < 8. We know that the value(s) of x satisfying |x — a| <8, lie in the interval
(a—8, a+6). Next, 0 < |x — a| means that the distance between x and a is positive,
which in turn means that x # a.

These two observations tell us that x € (a— 8, a+8) and x #a. In other words, if we
remove the midpoint from the interval (a — 8, a + 8), then x belongs to the remaining set.

Thus, 0 < |x — a| < & means x € (a — 8, a) U (a, a + 8). Therefore, the following four
statements have one and the same meaning.

i) 0<|x—al<d

(i) a—d<x<aora<x<a-+¥é
(iii) x€(@a—46, a)U(a, a+9d)

(iv) x# a and the distance between x and « is less than 8.

[The inequality [f(x) — /| < &, (¢ > 0) and the double inequality 0 < |x — a| < &, (6 > 0) both
will be used in the definition of limit of a function in Chapters 7a and 7b.]

3.11 PROPERTIES OF ABSOLUTE VALUES

Recall from algebra that the symbol \/a, where a > 0, is defined as unique non-negative number
x, such that x*> = a. We read \Va as the principal square root of a (which is the positive square

root of a).
/9 3
4=2,V0=0,4/= ==
V4 ’\/_ V25 5

For example,
Note: Since /4 denotes only the positive square root of 4, therefore v/4 # —2, even though
(-2 =4
The negative square root of 4 is designated by —v/4.

Remark (1): Since we are concerned only with real numbers, /a is not defined for a < 0.

Remark (2): From the definition of 1/a, it follows that v/ x> = |x|, (since | x| is always non-
negative by definition).

Examples: /5 = |5], \/(—3)> = |-3] = —(-3) = 3

The properties of absolute value given in the following theorems are useful in calculus.

Theorem (1): Given a, b€R

la-b| = |a|-|b]
and |a| _ |a
bl bl

(We shall prove the second result as Theorem 2.)
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Proof: |a-b| = (ab)z[ VX2 = |x\]

— Vi
= Va*Vp?
= |a|-|b| (Proved)
Remark: The absolute value of a product is equal to the product of the absolute values of the
factors:

Peyz| = |x[ Iyl [z

In particular, |b-b| = |b| - |b| = |b*| = |b|* and |a - a-a| = |a| |a| |a| = |a|’.

Theorem (2): Given a, b GR’%’ = %
Proof:
2
4 _ a
b| b
(Proved)
|2 _vE
GG

In other words, the absolute value of a quotient is equal to the quotient of the absolute values of
the dividend and divisor.

Theorem (3): The Triangle Inequality

Given x, y € R
X +y[ < |x[+ Iyl

To prove this result, it is important to recall the definition of absolute value of a real number x
denoted by |x|.

We know that |x| is a non-negative real number x that satisfies the conditions:

|x| = x,ifx>0.

|x| = —x, ifx < 0.

From the definition, it follows that the relationship x < |x| holds for any x. Now we consider
the following two cases.

Case (i): Let x+y >0, then

|x+y| = x+y<|x|+]y| (since x <|x| and y < |y|)
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Case (ii): Let x +y <0, then
x4y = —(x+y)
= (=x) + (=y) < x| +[y[ (since (—x) <|x| and (—y) <|y]). Thus, [x +y[ < |x|+ [y|.

Remark: The absolute value of an algebraic sum of several real numbers is no greater than the
sum of the absolute values of the terms.

Examples: Of |a +b| < |a| +|b|:

10. 043 =3<[0[+[3] =0+3 =3
1. |-5+40] =5<|-5|+/0] =5+0 =5
12. 3+5 =8<[3]+]5| =3+5 =8
13. |[-3-5| =8<|-3|+|-5| =3+5=8
In all four cases, |a + b| equals |a| + |b|. On the other hand,
14. [-345) = [2| = 2<|-3[+5] = 3+5 = 8 (Hence, 2<8)
15. 3-5| = |-2| = 2 <3|+ |-5] = 3+5 = 8 (Hence also, 2<8)

The general rule is that |a + b| is less than |a| + |b| when a and b differ in sign. In all other cases,
|a+b| equals |a] + |b|.

Note that the absolute value bars in expression like | —3 + 5| also work like parenthesis. We
do addition before taking the absolute value.”

Using theorem (3), we can easily prove the following theorem (4).

Theorem (4): Given a, b€R

() |a—b| < |a| + |b]
(i) |a| — [b| <a—b

Proof of (i):
la—b| = la+ (=b)| < |a| + [(=D)]

= la| + 18]

sla=b|<|a|+|b]| (Proved)

Proof of (ii):
Consider |a| = |[(a—=b)+b|<|a—b|+|b|

@ The numbers |a — b | and |b — a| are always equal and give the distance between a and b on the number line. This is
found to be consistent with the square root formula for distance in the plane between the two points whose coordinates are
(a, 0) and (b, 0).

Via=62+0-02 = Jla=? = la—p| (I
VO-02+0-a = /-0 = b—adl ()

(We shall be studying the square root formula for distance in Chapter 4, on Coordinate Geometry.)
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Thus from, subtracting | b | from both sides of the inequality, we have
la|—1b|<|a—b]|(Proved)

Note: In calculus, we often want to replace one inequality with an equivalent inequality, which
is simpler, as in the following example.

Example (11): Show that the inequality | (3x +2) — 8| <1 is equivalent to | x — 2 |< 1/3.

Solution: The following inequalities are equivalent:

I3x+2)—8| < 1

I3x — 6] < 1

3(x—2)| <1

1Bl ]x—2| <1
1

-2l <=
-2 <5

3.12 NEIGHBORHOOD OF A POINT

Many times we are interested in the values of a function near a point “a” (say) of the domain and

not in the values throughout the domain. Hence, all the points which are close to the point “a” on
both sides of “a” are of interest to us and we shall call it a neighborhood of “a”.

3.12.1 Definition

Let (a, b) be any open interval and let “c” be its midpoint then, we say that (a, b) is a
neighborhood of c. Specifically, if € is any positive number, the open interval (¢ — &, a + €) is
called the g-neighborhood of “a.” Thus, e-neighborhood of a = {x|a—e<x<a+¢&}.

When we say that x is in the e-neighborhood of “a”, we write |x — a| < & and it means that,
the distance of the point x, from the point “a” (on the number line) is less than &.

3.12.2 Right Neighborhood and Left Neighborhood of “a”

Definition: The open interval (a, a + ¢) is called a right-hand e—neighborhood of “a”, and
the open interval (@ — &, a) is called a left-hand e-neighborhood of “a”.

We know that any neighborhood of “a” is an open interval containing “a” as the midpoint of the
interval. Note that, in the case of one-sided neighborhood of “a” the point “a” is not included
in the neighborhood. Thus, one-sided neighborhood of “a” is also an open interval.

3.12.3 Deleted Neighborhood of “a”

Definition: If the point “a” is deleted from a neighborhood of “a”, then the remaining part of
the open interval is called deleted neighborhood of “a”.
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Thus, the deleted d-neighborhood of “a”
={x|la-6<x<a+8,x#a}, (6>0)

This neighborhood is defined by the inequality 0 < |x — a|< 8, as already discussed above.

3.12.4 A Useful Statement

If k < x <K, then there is a positive number M, such that |x| <M.

Of the numbers k and K, consider the one, which is farther away from the origin. Let
its distance from origin be M. Thus, M is the larger of the numbers |k| and |K|. Since x lies
between k and K, its distance, from the origin, denoted by |x| must be less than M.
Therefore, |x | <M.

Example (12): If —6 < x <3, then —6 < x < 6. Hence |x| <6.

3.13 PROPERTY OF DENSENESS

This is a very important property of real numbers. It states that between any two different real
numbers, there is always a third real number. It follows that between any two real numbers
there are infinitely many real numbers. Observe that between any two real numbers a and b, the
numbers, (a + b)/2, (2a+b)/2, (3a+b)/2, ..., all lie between a and b. It is important to
consider the following problem: What is the smallest real number greater than 3? Note that this
question cannot be answered since there is no such real number.

To see this, suppose c is the smallest real number greater than 3. Then we can always find a
number ¢’ between 3 and c. Thus, ¢ will not be the smallest number. Similarly there is no
greatest real number less than 3. Of course, there is nothing special about 3. We could replace it
by any other real number.

This property is also found to hold for rational numbers. But in integers, we can find the
smallest number greater than 3. It is 4. Thus, the property of denseness does not exist in the set
of integers.

Note: The property of denseness will be significant when we discuss the completeness property
(or the least upper bound property) of real numbers.

3.14 COMPLETENESS PROPERTY OF REAL NUMBERS

Roughly speaking, this property says that the real number system is complete in itself, in the
sense that it consists of rational and irrational numbers only and that no other type of number
exists in R.® (Of course, this property of real numbers is very important and useful, but a
beginner may skip it at this stage. He may read it later after completing Chapter 7.)

To understand this property we introduce the concept of bounded and unbounded
subsets of R.

® Technically speaking, the axiom of completeness states as follows. . .. If § is any nonempty set of real numbers, which
has an upper bound in R, then S has the least upper bound in R.
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3.14.1 Bounded and Unbounded Subsets of R

Upper Bound of a Set (Definition): LetA C R, we say that A is bounded above if there exists a
real number u such that for every x € A, x <u. Such a number u is called an upper bound of A.

Lower Bound of a Set (Definition): The subset A is said to be bounded below if there is a real
number / such that for every x € A, / < x. Such a number / is called a lower bound of A.

3.14.2 Bounded Set (Definition)

If A is both bounded above and bounded below then we say that A is bounded.
Remark:

(i) A is bounded, iff, A C [/, u] for some interval [/, u] of finite length.

(i1) A is bounded, iff, there is a positive integer K such that1 x 1< K for all x €A. Such a
number K is called a bound of the set A.

(iii) Set A is said to be unbounded if A is not bounded.

(iv) An upper bound, a lower bound, and a bound of a set are not unique.

(v) A setmay or may not have an upper bound (and/or a lower bound) and even if it has one
(or both), the bounds may not belong to the set.

(vi) Any real number is an upper bound for the empty set and any real number is a lower

bound for the empty set. Therefore, the empty set is bounded. (Here, the empty set ¢
must be looked upon with reference to the set of real numbers.)

Example (16):

(a) Consider the finite set B = {2,12,0,5, —7, —2}. Here, 12 is an upper bound and -7 is a
lower bound. Hence, B is bounded. From this example, it is clear that every finite set is
bounded.

(b) The set N of natural numbers is bounded below but not bounded above.

(c) The interval [0,1] is bounded. (These examples show that the boundedness has nothing
to do with countability.)

(d) ConsiderthesetA = {1, 1/2,1/3,......}. This set consists of all numbers of the form
1/n where n € N, the set of natural numbers. We observe that all the numbers in A are less
than or equal to 1. In this case, 1 is an upper bound of A and thus A is bounded above.
Also, we observe that no number of A is less than “0”. Therefore, we shall say that “0”
is alower bound of A, and that A is bounded below. Thus, for any element x € A, we have
0 <x < 1. We therefore say that A is bounded.

We have mentioned above that a set “A” is unbounded if it is not bounded. To discuss about
unbounded sets recall that a set is bounded iff it is bounded above and also bounded below.
Therefore, we define unbounded set.

3.14.3 Unbounded Set

A set is unbounded if either it is not bounded above and/or it is not bounded below.
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Now we ask the question: When will you say that u is not an upper bound of A ? We know that
anumber u is an upper bound of A if the relation x < u holds for all x € A. Hence, u will not be an
upper bound of A if there is some member of A, say a € A such that a > .

Example (17): Consider the sets

C=1{4,68,10,...},D=1{0,-1,-2,-3,...}

Observe that each element of C is greater than or equal to 4. Hence, 4 is a lower bound of C
and thus C is bounded below. Is C bounded above?

From the nature of the elements of C, we note that for any number u, however large, there are
always elements of C greater than u.

Therefore, u cannot be an upper bound of C. Hence, no real number can be an upper bound of C.
Thus, C has no upper bound"'?.

Similarly, it can be seen that the set D is not bounded below although it is bounded above.
Hence, both the sets C and D are unbounded sets.

Remark: If a set is bounded above, it has infinitely many upper bounds [because if u is an
upper bound so is (u+1)] and similarly if it is bounded below, it has infinitely many lower
bounds.

Example (15): Consider the set A = {1, 1/2, 1/3, 1/4, ...}. It is bounded above and has 1 as
an upper bound. But, 2, 3, 4, ... are also its upper bounds. In fact, any number greater than 1
is an upper bound. Similarly, zero and any number less than zero is a lower bound of A.

Now we may naturally ask whether there is the smallest (or the least) of all the upper bounds.
This leads us to the concept of least upper bound of a set.

3.14.4 Definition: The Least Upper Bound (l.u.b.) of a Set

Let the subset A of R be bounded above. A number M is called the least upper bound (l.u.b.)
for A if

(a) M is an upper bound for A, and
(b) No number smaller than M is an upper bound for A.

If such a number M exists, we write M = Lu.b. A. [The lLu.b. for a set is also called the
supremum of A and is denoted by (sup) A.]

As in the case of upper bounds, we see that if a set is bounded below, it has infinitely
many lower bounds. If there is the largest of these lower bounds, we call it the greatest lower
bound (g.L.b.) of the set.

3.14.5 Definition: The Greatest Lower Bound (g.l.b.) of a Set
Let the subset A of R be bounded below.

© Note that the considerations of such negations are useful, as they throw a new light on concepts and help us to understand
them better.

(9 Geometrically, it means that the “set of points of C” keeps on extending indefinitely on the right of 4 on the real line.
Thus, no finite segment of the real line can contain all the points of an unbounded set.



58 DISCOVERY OF REAL NUMBERS: THROUGH TRADITIONAL ALGEBRA

A real number m is called the greatest lower bound (g.L.b.) of set A if

(a) m is a lower bound for A, and

(b) No number greater than m is a lower bound of A.
We write,m = g.L.b.A.[The g.Lb. for asetis called infimum of the set and is denoted by (inf) A.]

Remark: If a set has Lu.b., then it is unique. That is, a set can have only one Lu.b.

Proof: Suppose M and M’ are two Lu.b.s, then we get

M <M (since M is a Lu.b.) and M’ <M (since M’ is a Lu.b.)

It follows that M = M'.

This explains why in the definition we say the Lu.b. (and not “a Lu.b.”) of a set.

Note: We know that the empty set ¢ is bounded. Further, since every real number is an upper
bound for ¢, so ¢ does not have a Lu.b. Similarly, ¢ does not have a g...b.

Example (18):

(a) ConsiderA = {1,1/2,1/3,...}. Here, the Lu.b. is 1 and it belongs to A. But, the g.Lb. is
0, which is not in A.

(b) IfB = {1/2,3/4,7/8, ...,(2—1)/2,...}. It can be shown that the g.Lb. = 1/2 € B and
the Lu.b. = 1€B.

(c) The set (3, 4) is an open interval. It does not contain its g.Lb. or its Lu.b., which are 3
and 4, respectively.

(d) The g.Lb. and the Lu.b. for {5} are both equal to 5.

(e) The empty set ¢ is bounded. However, ¢ has neither the least upper bound nor the
greatest lower bound.

(f) ThesetN = {1,2,3,...} hasthe g.Lb., 1 € N. There is no Lu.b., since N is not bounded
above.

Note: We have seen that,

(a) a set has the Lu.b. only if it is bounded above and

(b) the empty set ¢, which is bounded (and hence bounded above), has no Lu.b. So now
the question is: If a nonempty set is bounded above, does it necessarily have the Lu.b.?

3.14.6 Discovery of Real Numbers

On the basis of the algebraic properties of real numbers, it is difficult to answer this question.
However, we can answer this question for the set of rational numbers. We will show that this set
does not possess the Lu.b. property. For the moment, let us assume that we know only rational
numbers. 'V

(D We recall the terms an upper bound and the Lu.b. for a subset of rational numbers, exactly as we did for the real
numbers. For example, a rational number M is called the L.u.b. of A C Q if

(a) M is an upper bound of A, and

(b) No rational number less than M is an upper bound of A.
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We will now show that there is a set of rational numbers, which is bounded above, but it
does not necessarily have the Lu.b. in rational numbers. To show this, consider the set
A={xeQ|x>0and x? < 2}. Thus, A is the set of all those positive rationals whose square
is less than 2.

Clearly, the set A is bounded above. In fact, every positive rational number whose square is
greater than 2 is an upper bound for this set. But in this case, the Lu.b. is\/2. Some elements of set
A (in the decimal form) are 1, 1.4, 1.414, . . ., which are all rational numbers, but the l.u.b. for A in R
is \/E, which is not in the set of rational numbers, as we know. Hence, among the rational numbers,
this set has no Lu.b., but among the reals, it has the Lu.b. /2. Thus, if we had never heard of
irrational numbers, then we would say that A has no 1.u.b. However, we have seen that a nonempty
set A, of real numbers, bounded above necessarily has a Lu.b.—a fact that is not at all obvious.

For real numbers, however, it is not possible to show that every nonempty set bounded above
has the l.u.b. Therefore, we take this property of the entire real number system as an axiom,
called the completeness property or the axiom of Lu.b. or the axiom of least upper bound for
real numbers.

3.14.7 The Axiom of Least Upper Bound

If A is any nonempty subset of R, which has an upper bound in R, then A has the least upper
bound in R.

The l.u.b. axiom does not hold if R is replaced by Q, the set of rational numbers. Thus,
the l.u.b. property distinguishes real numbers from the rational numbers. The axiom says
roughly that R visualized as a set of points on a line has no gaps in it. In other words, the
real number system is complete in itself, in the sense that it does not have any other type of
numbers different from rational and irrational numbers. For this reason, the Lu.b. property
is also called the completeness property of real numbers.'?

Remark: Note that, whereas the property of denseness is possessed by both the sets Q and R,
the property of completeness (or the L.u.b. property) is possessed only by the set R and not by the
set Q of rational numbers.

From the Lu.b. axiom, the following property of the g..b. can be proved.!'®

3.14.8 The Axiom of Greatest Lower Bound

If A is any nonempty subset of R, which has a lower bound in R, then A has the greatest lower
bound in R.

Before considering the problems of the Lu.b., let us examine the definition(s) of Lu.b. in
detail and put them in a more convenient form. Let us recall the definition of the Lu.b.

Definition I (l.u.b.): (Old definition at 3.14.4)

Let A C R be bounded above. A number M is called the l.u.b. of A if

(a) M is an upper bound for A; and
(b) No number smaller than M is an upper bound for A.

U2) It is not possible to show an example of a (nonempty) set of real numbers, which is bounded above but does not have a
Lu.b. (In fact, any set of real numbers is nonempty.)

(3 One can deduce g.1.b. axiom from the £u.b. axiom. Remember that neither can be proved independently from the other
properties of the real numbers.
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If such a number M exists, we write M = Lu.b. A. We see that areal number M is the Lu.b. of A, if
it satisfies both the properties (a) and (b).

First of all, M is an upper bound of A. Hence, every element of A must be less than or equal to
M (i.e., no element of A is greater than M).

Second, any number smaller than M is not an upper bound. It means that if we choose any
number smaller than M (for example, M — &, where & > 0) then there must be atleast one
element of A greater than the number

(M — &)Y,

Hence, we may restate the definition of the Lu.b. in Section 3.15.

3.15 (MODIFIED) DEFINITION II (L.u.b.)

M is the L.u.b. of A if

(a) a<M, for every a €A, and
(b) for any positive number ¢, there is atleast one member a, of A such that a, > M — ¢.

Using arguments similar to those for the Lu.b., we can restate the definition of g.Lb. in
Section 3.16.

3.16 (MODIFIED) DEFINITION II (g.l.b.)

We say that “m” is the g.Lb. of A if

(@) a>m, for every a €A (i.e., m is a lower bound of A).
(b) for any positive number &, there is atleast one member a, of A which is less than m + &
(i.e., ap <m+e).

Example (19): Let A = (a, b)) = {x|a<x<b}

We observe that b is an upper bound of A. Also if we take any number ¢ smaller than b, then
there is atleast one member of A greater than ¢ (for example, b+c¢/2). Hence, by the above
definition (II), b is the Lu.b. of A. Note that b¢ A.

Example (20): Let A = {—6, —4, —2,0, 2, 4}

Consider the upper bounds of this set. We observe that every number > 4 is an upper bound.
The smallest of these upper bounds is obviously 4. Hence, 4 is the Lu.b. Also it may be seen that
if we take any number c less than 4, then it cannot be the Lu.b. of A, since there is one member
of A greater than ¢ (this member is 4 itself). Thus, 4 is the Lu.b. of A. It is also the greatest
element of A, 4 A1

(9 Here ¢ represents an arbitrary positive real number, which can be used to get a number smaller than M.

(5 A set may or may not have the greatest (or the least) element of the set. For example, the set {1, 1/2, 1/3, ...} does not
have the least element. In fact, the least element (i.e., the g.L.b.) of this set is “0,” which is not defined by 1/ for any value
of n. (Of course, the limit of the function 1/n, as n approaches infinity equals zero, but this concept will be clear only when
we discuss the concept of limit in Chapters 7a and 7b.)
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Example (21): Let A = {1,2,3,4, ...}

Here, A is not bounded above. Tt has no upper bound. Hence, A has no Lu.b.

137 2" —1

Example (22): If B = {E’Z’g’”"T

1
7} then g.Lb. = 3 and Lu.b. = 1.

Proof: Observe that every number < 1/2 is a lower bound for B. The greatest of these lower
bounds is obviously 1/2. Hence, 1/2 is the g.Lb.

Also it is clear that no real number y which is greater than 1/2 can be a lower bound for B,
since 1/2 which is an element of B is less than y. Thus, 1/2 is the greatest lower bound (g.1.b.).

To prove that Lu.b. B = 1.

We observe that every element of B is less than 1. Hence, 1 is an upper bound for B. Then every
real number bigger than 1 is also an upper bound of B.
Now, we will show that any number less than 1 is not an upper bound of B. For this purpose,
suppose € >0 and let 1 — & be an upper bound of B.
Then, we must have
2" —1

1
T<l—sVn€N0rl—F<l—s

! > 2”<1
or 2n & or s

But we can always find an integer n such that 2"is greater than 1/& (for any & > 0). This
is a contradiction. Thus, 1 — & cannot be an upper bound of B for any &. Thus, 1 is the smallest
(or the least) of all the upper bounds. We, therefore, write Lu.b. B = 1,

Example (23): LetA = {0, 1-1/2, 1-1/3, 1-1/4, ...}
=1{0, 1/2,2/3, 3/4, 4/5, ...}

From the elements of set A, we guess that 1 may be the l.u.b. Let us check this. We observe
that each member of A is less than 1. Hence, 1 is an upper bound.

Let &£ > 0. Consider the number 1 — &, which is less than 1. Let us suppose that 1 — & is an
upper bound. We note that the nonzero elements of A are of the form (1—1/n), n € N.

If 1—¢ is an upper bound of A, then we will have,

1 -1 1 1
l—-——<l—gor —<—¢gor —>gorn<-—
n n n &

But we can always find a natural number # such that n > é for any & > 0. This is a contradiction.
Thus, 1 — & cannot be an upper bound of A for any &. Thus, 1 is the Lu.b. of A.



4 From Geometry to Coordinate
Geometry

4.1 INTRODUCTION

Geometry appears to have originated from the need for measuring land. Today, geometry is a
branch of mathematics in which we study the properties of various figures. It is believed that
Egyptians and Babylonians (2000-1600 BC) were the first to use geometry, but mostly for
practical purposes. They had discovered many geometrical properties of simple figures (i.e.,
triangles, rectangles, etc.) through actual measurements, but they never developed it as a
systematic discipline. Geometry was also studied and taught by ancient Indians and references
to this are contained in Vedic literature.

Later on, this knowledge was passed on to Greeks who developed the subject systematically.
The pioneer in this science was the Greek mathematician Euclid who lived around 300 BC. He
initiated a completely new approach in the study of geometry. He showed that by knowing
certain measurements in geometrical figures, the remaining ones could be found out by
calculation and thus one need not depend on actual measurements to know all the facts in
geometry. He is said to be the father of geometry.

In Euclidean Geometry, the approach was to start with three undefined concepts (or terms)
namely point, line, and plane. Suggested by physical experience, certain properties are
attributed to these terms. These terms along with the properties attributed to them are called
axioms or postulates. Euclid called them the self-evident truths."

He showed that by accepting these axioms as true, other geometrical facts can be derived by
logical reasoning. The new results, so derived are called theorems, which reveal to us the
interesting and useful properties of various geometric figures. Now the question is: What is a
proof? The process of establishing a conclusion by deductive logical reasoning on the basis of
axioms and previously proved theorems is called proof.

What must you know to learn calculus? 4-Coordinate geometry (Cartesian coordinates, distance formula, inclination
and slope of a line, loci and their equation(s), equations of lines and their slopes)

M 1t must be clear that axioms are simple and obvious facts that we observe. For example

(i) When two distinct lines intersect, their intersection is exactly one point.
(ii) Infinite number of lines can pass through a given point, and so on.

(iii) Two distinct points determine one and only one line, and so on.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Before we proceed further, it is useful to understand clearly what we mean by the terms
point, line, and plane in geometry.®

This was the only approach to geometry for some 2000 years till the French philosopher
and mathematician Rene Descartes (1596—1650) published “La Geometrie” in 1637 wherein
he introduced the analytic approach by systematically using algebra in his study of
geometry.®

He combined algebra and geometry in a fashion that had not been accomplished previously
and laid the foundations for Calculus. This wedding of algebra and geometry is known as
coordinate geometry or analytic geometry. This was achieved by representing points in the
plane by ordered pairs of real numbers (called Cartesian coordinates, named after Rene
Descartes) and representing lines and curves by algebraic equations.

4.2 COORDINATE GEOMETRY (OR ANALYTIC GEOMETRY)

Coordinate Geometry differs in procedure from the geometry studied in high school, in that the
former makes use of the coordinate system. It includes the study of points, lines, curves, angles,
and areas in a plane, with the help of algebra.

We are familiar with the representation of real numbers on a line, which we call the number
line denoted by R. Descartes and Fermat, introduced two perpendicular lines (called axes) and
agreed to represent any point in the plane by its directed distances (or signed distances) from
the two axes.

@ From a practical point of view, we have got some ideas about the terms point, line, and plane. However, there are
difficulties in defining these terms.

Forexample, we think of a point as a fine and tiny dot made by a sharp pencil on a paper. Also, the top of aneedle or a very
small hole made by a pointed pin on a sheet of paper can be considered as examples that are very close to the concept of a
point. The most important idea involved in this concept is that a point is assumed to have no physical dimension (i.e., it has
no length or width, etc.)

Similarly, the idea of a line comes in our mind by considering the edge of a paper in our note book, the intersection of two
walls, a piece of thin wire, or a tight and stretched thread. The most important idea involved in this concept is that a line is
assumed to have only one dimension, namely “length”. It has no width and thickness. We use arrow heads at the ends of a
line segment to say that a line has unlimited length.

To get an idea of a plane, one can think of surface of a smooth wall, a black board, top of a table, or a sheet of a paper.
Again, one should keep in mind that a plane is assumed to have only two dimensions, namely “length” and “width”. It has
no thickness. Also, a plane is assumed to extend indefinitely in all sides.

Remark: If we try to define a “point ” as a “mark” observed at the intersection of two distinct lines, then the term “line”
enters into the definition, which is not defined. Similarly, if we try to define a line as a “mark” observed at the intersection of
two planes, then the term plane enters into the definition and it must be defined. Thus, an attempt to define these terms
makes them more difficult to understand, than what we already know about them.

Itis therefore appropriate to accept these terms with the properties attributed to them, as “self-evident truths” so that they
are not required to be proved. Moreover, this understanding has helped in obtaining many other facts (by logical reasoning)
that are useful and interesting, as properties of many geometrical figures. This is how Euclid has contributed in the progress
of geometry.
© Descartes complained that the geometry of Greeks was very much tied to figures, so he desired to have a simpler
approach for understanding the subject by using algebra. Fortunately, for the world, a great deal of progress had been made
in algebra during the latter half of sixteenth century and the early part of the seventeenth. Another French mathematician
Pierre de Fermant (1601-1665) is also credited with the invention of coordinate geometry. His work was known after his
death. Both Descartes and Fermant working independently of each other saw clearly the potential in algebra for the
representation and study of curves.
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FIGURE 4.1 The number plane R>.

4.2.1 The Plane and the Cartesian Coordinates

We take two copies of the number line (with equal scales) and place them perpendicular to each
other in a plane, so that they intersect at the point “O” (say). We call this point of intersection,
the Origin, from where all the distances on both the axes should be measured.

It is customary to have one of the lines horizontal, with the positive numbers located to
the right of “O”, and call it the x-axis. The other line is usually called the y-axis, with the
positive numbers lying above “O”. Then the points to the left of “O”, on the x-axis and
those lying below “O” on the y-axis represent negative numbers. These axes (called coordinate
axes) divide the plane into four regions, called quadrants, labeled I, II, ITI, and TV numbered
in the counter clockwise direction (Figure 4.1).

Now, let P be any point in the plane. Through P, we draw perpendicular(s) to respectively
x-axis and y-axis. Let the foot of the perpendicular on the x-axis meet there at the point “a” and
that on the y-axis at the point “b”, then we associate P to the ordered pair (@, b) of numbers. If
the point P is identified with the ordered pair (@, b) of real numbers, we sometimes write P (a, b)
for P.Note that, in the ordered pair (a, b), the first number “a” is the x-coordinate (or abscissa);
and the second number “b” is the y-coordinate (or ordinate). The origin is a point whose x and y
coordinates are both “0”. Hence, we identify the origin “O” by the ordered pair (0, 0)
(Figure 4.2).

The set of all ordered pairs of real numbers is called the number plane denoted by R, and
each ordered pair (x, y) is called a point in the number plane. Just as R, the set of real numbers,
can be identified with points on an axis (a one-dimensional space), we can identify R (i.e., the
number plane) with points in a geometric plane (a two-dimensional space).

There is a one-to-one correspondence between the points in a geometric plane and the
number plane R?; that is, with each point in the geometric plane, there corresponds a unique
ordered pair (x, y), and with each ordered pair (x, y) of real numbers there is associated only
one point.¥

) Because of this one-to-one correspondence, we identify the number plane R? with the geometric plane. Also, for this
reason we call an ordered pair (x, y), a point.
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— (a, b)

2 -1 1 2 3 a

FIGURE 4.2

This system of coordinating ordered pair (x, y) with every point in the (geometric) plane is
called the rectangular Cartesian coordinate system. Figure 4.3 illustrates a rectangular
Cartesian coordinate system with some points.

The convention of the positive and negative signs, marked with the numbers in the ordered
pairs, in different quadrants, follows from the very definitions of x-axis and y-axis in terms of
signed lengths of line segments.

4.2.2 The Notion of Directed Distance (or Signed Length)

If A is the point (xy, y;) and B is the point (x,, y;) (i.e., A and B have the same ordinate but
different abscissas), then the directed distance from A to B is denoted by AB, and we
define,

AB = x; — X

AY

54—
| [ lqonl | ]
(4.3) 3 (T, 3)

2 4,1

1 (4. 1)

| x
-6 | 4 | 2 |0l 1234567

! (1,-4)
oS T ]

FIGURE 4.3
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Ilustration (1):

(a) If the two points are A(3, 4) and B(9, 4) then, AB=9 —3=6.

1 AQG.4) B©,4)

(c) If the two points are A(4, 2) and B(1, 2) then, AB=1—4=-3.

B(12) A@42)

We see that AB is positive if B is to the right of A, and AB is negative if B is to the left of A.

If Cis the point (x1, y1) and D is the point (x1, y2), then the directed distance from C to D,
denoted by CD, is defined by

CD =y2—yl
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Illustration (2):

(a) The directed distance between the points C(1, —2) and D (1, —8), from C to D is
given by

CD=-8—(-2)=-6
(b) The directed distance between C(—2, —3) and D (-2, 4) is given by

CD=4—(-3)=7

AY y
X

0 —t—> D(-2,4) @ —

T e (C(1,-2) e

T X
| | >

4 "o I .

L eD(l1,-8) C(-2,-3)® T

(a) (b)

The number CD is positive if D is above C, and CD is negative if D is below C.

Note (1): The terminology directed distance (or signed length) indicates both a distance and a
direction, positive or negative. Note that we can talk about positive or negative direction
only with reference to the horizontal and vertical line segments. Thus, if a line segment parallel
to the x-axis from x; to x, is denoted by the signed length Ax then the same line segment
from x; to x; will be denoted by the signed length —Ax. A similar statement is applicable to
any line segment of signed length Ay, parallel to the y-axis.

Note (2): The introduction of Cartesian coordinates allows us to use numbers and their
arithmetic as a tool in studying geometry. The term “analytic geometry” (or coordinate
geometry) is used for the study of geometry using coordinates. This coordinate system also
allows us to draw geometric pictures, which illustrates a great deal of numerical work.

Note (3): The notion of signed length is used for defining the slope of a line, to be studied shortly.
If we are concerned only with the length of the line segment between two points P(x;, y;) and Q

(x2, y2), without regard to direction, then we use the word distance to mean an undirected
distance (or unsigned length) between P and Q. The horizontal distance between the points
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P and Q is denoted by

X2 = x1| = |x1 — xo

and the vertical distance is given by |y, — yi| = [y — ya|.
If the line segment joining P and Q is neither horizontal nor vertical, then we can find the
distance between the two points, as follows.
4.3 THE DISTANCE FORMULA
To find the distance between two points P(xy, y;) and Q(x», y,) in the plane, we construct the
right triangle APRQ as shown in Figure 4.4.

The point R(x,, y;) in the figure has the same x-coordinate as Q and the same y-coordinate
as P.

Therefore, |Ax| = |x, — x;| =length PR and |Ay| = |[y» — y1| = length RQ

Now, the distance between P(x;, y;) and Q(x,, ,) is the length d of the hypotenuse of the
right triangle QRP; so, by the Pythagorean theorem, we get

d* = |Ax] + |y (1)
Since the terms in (1) are squared, the absolute-value symbols are not needed, so that

= (Ax) + (&)

and

d = /(A7 + (0] = /(2 — 1) + 02 — 1))

d = 1PO = \/I(x2 = 31> + (32 — 11)?]

This formula holds for all possible positions of P and Q in all four quadrants.

0(x2, y2)

[AY] = [yo—y1]

/

P(xy, yp) R(xp, yy)
[Ax] = o=y

FIGURE 4.4
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Example (1): Let P(3, —4) and Q(—2, 1). Find the distance between P and Q.

Solution: By the distance formula,

POl = /(-2 = 3)° + (1 - (~4))?
SBT3 = A= 53

(Note that, by knowing the coordinates of two points in a plane, we have been able to compute
the distance between them.)
If P and Q are on the same horizontal line, then y, =y; and

d =1/(x2—x1)" +0?
= ‘xz —xl\('.' \/t?: |a\>

Similarly, if P and Q are on the same vertical line then x, = x; and
d=\/0*+ (y2 —y1)* = [y2 — i

44 SECTION FORMULA

We now obtain the formulas for finding the coordinates of the midpoint of a line segment.
Let M(x, y) be the midpoint of the line segment from P;(xy, y1) to Po(X3, ¥2).
Refer to Figure 4.5. Because AP\RM and AMTP, are congruent,

|P\R| = |MT| and [RM|= [TP;|
Thus,
X=X =X —X Y—Y1=Yy2—)

S2X=Xx1+Xx2 S 2y=yi+m

x:X1+X2 Loty
72 SLy 72
y
Py(xa, ¥2)

X=X,

Pq R(x,yy) SCx, y1)
(s 1)

Y =

FIGURE 4.5
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Similarly, it can be easily proved that the coordinates of the point P(x, y) that divides the line
joining A(xy, y1) and B(x,, y,) internally in the ratio m:n are given by

v mx, + nx; _my; +ny,
T om+n T m+n

In the derivation of the above formulas, we assumed that x, > x; and y, > y;. The same formulas
are obtained by using any ordering of these numbers.

We now proceed to discuss about the inclination and slope of a line, which are two different
concepts, but related to each other, as explained below.

4.5 THE ANGLE OF INCLINATION OF A LINE
In a coordinate plane, any line / will either intersect the x-axis or be parallel to that axis.

Definition: The angle of inclination (or simply inclination) of a line is the smallest positive
angle 6 (the part of the line above x-axis makes with the positive direction of x-axis)*>

The angle of inclination may have any measure 6 such that 0 < 6 < 180°. Note that the angle of
measure 0° is included in the definition of inclination but the angle of 180° in not included
(Figure 4.6a and b). (The angle of inclination of a line that does not cross the x-axis is taken
to be 0°.)

Remark: From the above definition of inclination, it follows that the inclination of x-axis
(or any line parallel to x-axis) is 0°, whereas the inclination of y-axis (or that of any line parallel
to y-axis) is 90°.

Y =
Y =

(a) ()
FIGURE 4.6 The angle of inclination 6 (0 <6 < 180).

) The sense of an angle is derived from the direction of rotation of the initial side into the terminal side. If an angle is
measured in the anticlockwise direction, its measure is said to be positive, whereas the one which is measured in clockwise
direction is said to have negative measure.
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4.5.1 Slope (or Gradient) of a Nonvertical Line

Definition (1): The slope of a nonvertical line is defined as the ratio of the change in ordinates
to that of change in abscissa. For a given line, this ratio is a constant number denoted by m.

Consider a nonvertical line segment joining two points P(xy, y;) and Q(x,, y»). The number
y» — ¥y gives the measure of the change in the ordinate from P to Q, and it may be positive,
negative, or zero. (In the case of horizontal line, y, =y,, and so y, —y; =0.) The number
X, — X gives the measure of the change in abscissa from P to Q, and it may be positive or
negative but not zero because the line is nonvertical so, x| # x, and therefore x, — x| #0.
Thus, the slope of the line segment PQ is expressed by

_2=N _

m s
X2 — X1 —(Xz—)ﬂ) X1 — X2

_ —(y2 — 1) _N1—) (x1 # x2)

Remark: Parallel lines have equal angles of inclination and hence, if they are not vertical, they
have the same slope. The slope of a vertical line is not defined. (Why?)
Ya=Y1 _ Y1 =)

Remark: Since ——— = “———= it makes no difference even if we label P(x,, y,) and
Xy — X1 X1 — X2

Q(x1, y1). In other words, the slope of the line PQ or QP is same.

Definition (2): By the slope of a line, we mean the number of units the line climbs up or falls
down vertically, for each unit of our horizontal advance from left to right.

From the definition of slope it follows that the slope “m” of a line will be positive if the line
makes an acute angle with the positive direction of x-axis, and will be negative if it makes an
obtuse angle with the positive direction of x-axis.®

Ilustration (3):

If a line climbs upward three units for each unit step we go to the right, (as shown in
Figure 4.7a), the line has the slope 3.

If the line falls two units downward per unit step to the right (as shown in Figure 4.7b), the line
has slope = —2.

Remark:

« A horizontal line neither climbs nor falls, so it has slope 0.7

o A vertical line climbs straight up over a single point, so it is impossible to measure how
much it climbs per unit horizontal change. Thus, the slope of a vertical line makes no
sense. (Its calculation involves division by zero.) We say that the slope of a vertical line is
not defined.®

© This becomes clear, if we use the lengths of directed line segments (i.e., the signed length).

™ For a nonvertical line passing through P(x,, y;) and Q(x,, ), the slope m is given by m = (y2 — y1)/(x2 — x1). If the
line is parallel to the x-axis y, =y;; so the slope of the line is zero.

®) If the line is vertical (i.e., parallel to y-axis), X, = x,. Hence, the ratio defining m is meaningless, because division by
zero is not permitted.
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Y y

m=3 m=-2

0 1/ 0 1 \

(@) (b)
FIGURE 4.7 Slope of a non-vertical line.

Example (2): Let us find the slope of the line passing through the points P(2, 4) and Q(5, 16).

A 12
A—i =3 = 4, which is the slope of the line PQ.
Solution: As we go from P(2, 4) to Q(5, 16), we have Ax=5—-2=3 and Ay=16—-4=12.
Thus, the line climbs Ay = 12 units, while we advance Ax = 3 units to the right. Therefore, the
amount it climbs per unit horizontal advance to the right is 12/3 = 4 units.

Note: To find the slope of the line passing through the points P(2, 4) and Q(5, 16), in Example
above, we may also proceed as follows.

As we go from Q(5, 16) to P(2, 4), we have the signed lengths

Ax=2-5=-3 and Ay=4-16=-12

SN2,
A =3 3
Ay _y-n 7—(y1—y2):y1—y2

‘We know that, m =

Ax xp—x; —(x1—x2) X1 —x2
Hence, the slope of a nonvertical line is given by

_ Ay _ difference of y-coordinates
" Ax difference of x-coordinates

provided both the differences are taken in the same order.
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Example (3): The line through (7, 5) and (-2, 8) has slope

A - 1
LN (825 3

A (=2-7) -9 3

The negative slope tells us that the line falls down vertically, as we go horizontally from left to
right.

4.5.2 Relation Between the Inclination and the Slope of a Line
It can be shown that if the angle of inclination of a line lis 0, then tan 0 gives the slope of the line.

Further two cases arise, which are as follows:

Case (i): 0 is acute. Then it is clear from Figure 4.8a, that for the horizontal change Ax in the
positive direction, the line climbs up by Ay that is also positive. Hence, for the acute angle of
inclination 0, we have

A
slope m of the line/ = m = Y tang
Ax

This fact relates “slopes of lines” with trigonometric functions.

Case (ii): 6 is obtuse. (see Figure 4.8b)

Here again, we consider the horizontal change Ax in the positive direction and observe that the
line I fall down by Ay, which is negative. Hence, for the obtuse angle of inclination, we have

slope m of the line / = —(Ay/Ax), a negative number. There is another way to show that for
an obtuse angle of inclination the slope of line / is given by m =—(Ay/Ax).

YN

Ay Ay
0 0 0
/]
/ _ \
Ax Ax
(@) (b)

FIGURE 4.8 Another way of looking at the slope of a non-vertical line.
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We write,
A
A—i = tan(mw — 0)
=—tanf [ tan(m — 6) =—tan 6]
Ay
tanf =——
. tan o

Note: For the purpose of analytic geometry, we associate a number with the inclination of the
line in the following manner.

Definition: The slope of a nonvertical line having inclination 6, is defined to be tangent 6.

Points to Remember
Let a line with angle of inclination 0, have the slope m, then

. Value of m is given by tan6.

. If 0 is acute, m is positive.

. If 6 is obtuse, m is negative.

If 6=0; m=0. The slope of x-axis (or any line parallel to x-axis) is 0.
. If 0 =mn/2, the line is vertical and m is not defined.

. The slope m is independent of the sense of the line segment. [Note that if 0 is the angle of
inclination of line AB then (7 4 6) is the angle of inclination of BA, which is the same line
considered in opposite direction.]

(z+0)

Y

Now, we have slope of AB=tan#, and slope of BA =tan(n + #) =tan §. Thus, the
direction of a line segment does not play any role in the measurement of its slope.
7. A line that rises to the right has positive slope and the one that falls to the right has
negative slope. [See (2) and (3) above.]
8. The slope mis a measure of the steepness of a line either up or down. The larger |m| is, the
steeper the line is (Figure 4.9).

) In fact, all trigonometric ratios are defined with reference to an acute angle in a right triangle. When these definitions
are extended for angles of any magnitude and sign, the trigonometric ratios are still defined for acute angles. Of course, then
the signed lengths of sides of the right triangle play their role. (This will be clear, when we study Chapter 5.)
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A 7-1

_1-1__ m=g4=5=3
m= == 3 \
7
_3
=3
_2-1_1
m=45=
2 @2 61 o
. m==2=0
[ R T R A l Lo x
4 3 22 0/23456789
*..| SLOPE=-1

FIGURE 4.9 Lines of various slopes.

Remark (1): Note that, whereas the inclination of a vertical line is defined to be 90°, its slope is
not defined.

Remark (2): Of all the curves, the line is the only curve having the property that, for any two
distinct points P(xy, y1) and Q(x,, y») on it, the value of the slope m is always constant and is
given by the formula

m:h—}n _J1—Y,

POXLF£ X
X2 — X1 X1 — X2

For all other curves, the slope varies from point to point.

Note: “Slope” is one of the central concepts of calculus. In our study of calculus, an important
concept to be learnt is the slope of a curve at a point. We shall return to this concept in Chapter 9,
for the derivative of a function.

We have demonstrated how a rectangular Cartesian system can be used to obtain geometric
facts (like length of a line segment and coordinates of the midpoint of a line segment, etc.) by
algebra. We now show how such a coordinate system enables us to associate a graph (a
geometric concept) with an equation (an algebraic concept).

4.6 SOLUTION(S) OF AN EQUATION AND ITS GRAPH

Consider an algebraic equation in two variables x and y. When x and y are replaced by specific
numbers, say a and b, the resulting statement may be either true or false. If it is true, the ordered
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pair (a, b) is called a solution of the equation, and it represents a point in R2. It can be easily seen
that, in general, an equation in two variables has an unlimited number of solutions. All such
ordered pairs can be graphed as points in a (geometric) plane and such a graph (which consists
of an unlimited number of points) is said to represent the algebraic equation under
consideration.'”

4.6.1 Definition: Graph of an Equation

The graph of an equation in R? is the set of all those pointsin R?whose coordinates are solutions
of the given equation.

The basic problem of coordinate geometry is to find algebraic equations for certain sets of
points (geometrical objects), which satisfy the given geometric condition. Such a set of points
is called locus.

4.6.2 More About the Word “Locus”

As stated above, “locus” is a set of points satisfying a given geometric condition. Since
each point of the set satisfies the given geometric condition, we may consider a representative
point P(x, y) of such a set. Sometimes, it is advantageous to think of a locus as a path traced out
by a moving point satisfying at each position of its motion, the given geometric condition,
characteristic of the locus. Consider the following examples:

Example (4): Consider the set of points in a plane that satisfy the (geometric) condition that
they are all at the same distance “r” from a fixed point “c”. We can show that the set of all such
points is the circle with center “c” and radius “r” (Figure 4.10a).

Example (5): Consider the set of points P, in a plane that satisfy the (geometric) condition that
they all are equidistant from two fixed points A and B (Figure 4.10b).

We can show that the set of all such points is the perpendicular bisector of the line segment AB.
We use the word locus for such sets of points.

Y =

(a) )
FIGURE 4.10

(9 The equation x* 4 y* =0, has only one solution, namely (0, 0). Hence, the graph of this equation consists of a single
point. The equation 2x%4y? =—1 has no solution, and hence it has no graph or its graph is a null set.
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Note: With reference to Example (1) above, we may say that a circle is the locus of a point P
[i.e., the path traced by P(x, y)] that moves in a plane, such that it always remains at a fixed
distance “r” from a fixed point “c” in the plane.

In our discussion to follow, we will consider the loci (plural of locus) in planes only.

4.6.3 Locus and Its Equation

When the /ocus is looked upon as a path traced out by the (representative) moving point P, the
geometric condition, which is satisfied at each position of the point P(x, y), can be expressed
in the form of a relation connecting the variables x and y—the coordinates of the point P. Such
a relation is called the equation of the locus.

Since, alocus can be looked upon as a graph of all those points satisfying the given geometric
condition, the equation of a locus also stands for the graph representing the locus. Thus, it is
possible to study the properties of graphs with the help of their equations. Our interest lies in
finding the algebraic equation for a locus.

4.6.3.1 Equation of a Locus Consider a circle with center C(1, 3) and radius 4 units. Let
P(x, y) be any point on this circle.

Then, CP = 4 (2)

By the distance formula, we get CP = \/(x 1)+ (y-3)?

Using (2), we get \/(x — 1)+ (-3 =4

On squaring both sides, we get
(x— 17+ (y—=3) =16 (3)

Equation (3) is called the equation of locus of P(x, y). Also, Equation (3) is the equation of the
circle with center C(1, 3) and radius 4.

Note: The equation of a locus is an algebraic relation between the variables x and y, where
P(x, y) stands for an arbitrary point of the locus.
Two points should be noted:

(a) Coordinates of every point P(x, y) of the locus must satisfy the equation of the locus.

(b) Any point Q(x', y) satisfying the equation of the locus, must be on the locus.

The concept of locus forms the basis of coordinate geometry, and therefore a student has to first
learn the following two things in coordinate geometry:

(i) To find the locus, given an equation in x and y (or only x, or only y) (i.e., the cor-
responding set of points).

(ii) To find the corresponding equation;in x and y (or only x, or only y), given alocus (i.e., a
set of points defined by some geometric condition).""

Y Finding the algebraic equation (in x and/or y) for a set of points defined by some (geometric) condition is the basic
problem of coordinate geometry.



SOLUTION(S) OF AN EQUATION AND ITS GRAPH 79

4.6.4 To Obtain the Equation of a Locus

To find the equation for a set of points satisfying a given geometric condition, we generally
proceed as follows:

Step (1): Take any point P(x’, y) of the locus.
Step (2): Express the geometrical condition(s) of the locus by means of an algebraic relation
between x’ and y'.
Step (3): Replace X’ by x and y’ by y. The equation in x, y so obtained is the required
equation of the locus.

Note (1): If there is no possibility of any confusion, we take the coordinates of any point P of
the locus as (x, y) instead of (X', ).

Note (2): In the equation of a locus, the variables x and y [i.e., the coordinates of a
(representative) moving point P(x, y)] are called current coordinates.

Note (3): Locus represents a set of points, satisfying a given geometric condition. When
locus is viewed as a path traced by a moving point, it represents a curve. However, a locus,
that is, a set of points satisfying a given geometric condition (defined algebraically), may
also represent a region in a plane (Figure 4.11). (Thus, algebraic statement(s) defined
geometric figures.)'?

Note: Every locus (i.e., a set of points satisfying a given geometric condition) need not be
represented by an equation. It can also be an inequality. For example, consider the set of points
lying inside a circle of unit radius with center at origin. If P(x, y) belongs to the locus (i.e., the
set of points in question), then the condition to be satisfied by P(x, y) is that

OP < lfie., ¥ +y* < 1]

FIGURE 4.11

(2) Tt is for this reason that coordinate geometry is considered as a wedding of geometry and algebra.
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Here, the set of points, representing locus of P(x, y) is not a curve. Moreover, this locus is
represented by an inequality. Thus, every locus is not expressed by an equality. Also, we can
give examples to show that every equation does not represent a locus (i.e., a set of points).(13 )

Ilustrative Examples

Example (6): Let us find the equation of the locus of point P(x, y) that satisfies the conditions
as given below:
(i) Abscissa of P exceeds twice its ordinate by 7.

Solution: By the given condition x is greater than 2y by 7. x =2y + 7, which is the
required equation of the locus.

(i) The sum of coordinates of P is 11.

Solution: Sum of coordinates of Pis 11, .. x4y =11, is the required equation of the
locus.

(iii) P is always equidistant from A (—2, 3) and B (3, —5).

Solution: We have P(x, y) as a point of the locus.
.. PA = PB (Given) (4)

.. By the distance formula, we have

PA=\Jlx— (2P + (=37 = /(x+ 2/ + (y - 3

and PB=\[(x=37 + 1y~ (-5)F = Jx= 37 + (45

s @gives (/(x+27 4 (=37 = \Jx =3P+ (1 +5)
On squaring both sides, we get
(x+2°+ (-3 =(x=-3+(+5)’
ie, (=37-0+5=(x-3"-(x+27? ¥
e, Y —6y+9—(P+10y+25) =x?—6x+9— (x> +4x+4)
ie, —6y+9—-10y—25=—-6x+9—-4x—-4
ie, —16y—16=—10x+5
ie, 10x—16y=21 or 16y=10x—2I

which is the required equation of the locus (or the set of points).

% For example, the equation x* + > =—5, does not represent any curve (nor a set of points).

19 Here, we can use the identity @ —b*=(a—>b) (a+b) to simplify both sides. This will give us (y —3 —y—15)
-3+y+5)=x—-3-x—-2) (x—3+x+2) or —82y+2)=—52x—1) or —16y —16=—10x+5 or 10x — 16y
=21 or 16y=10x —21
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(iv) The sum of the squares of its distances from the axes is 9.
Solution: The distance of P(x, y), from x-axis =y, and that from y-axis = x.

Now, according to the given condition, x* + y* =9, which is the required equation of
the locus.

(v) The sum of its distances from the coordinate axes equals to the square of its distance
from the origin.

Solution: The distance of P(x, y)

(a) from x-axis =y,
(b) from y-axis = x, and

(c) from origin 0(0, 0) = \/(X — 04 (y—0)" = /a2 +y?

Now according to the given condition
2
xX+y= [\/xz—i-yz} or x+y=x>+y
which is the required equation of the locus.

Example (7): Derive the equation of the locus of a point P(x, y), which moves so that the sum
of the squares of its distances from points A(0, 0), and B(2, —4) is always 20.

Solution: PA = \/(x — 0)2 +(y— 0)2 =/x2+)?

PB=/(x =27 + (y+4)

It is given that PA* + PB*=20

XY (x =2+ (y+4) =20

XY —Ax 442+ 8y + 16 =20

22X 42y —4x+8y+20=20

X4y —2x4+4y=0 (A)19)
This is the equation of the locus.

Example (8): A point moves so that its distance from the y-axis is always equal to its distance
from the given point A(4, 0). Find the equation of the locus.

(15 This equation can also be written in the form
2
(x=1) 4+ +2)7= (\/§>

Later, we will show that this equation represents a circle with center C(1, —2) and radius /3. Also, we will show how the
equation (A) can be put in this convenient form (see “shift of origin”).
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Solution: Let P(x, y) be any point on the locus. Then the distance of P(x, y) from the

y-axis = |x|'®

Let us denote it by PB, then PB = |x|

Again, the distance between P(x, y), and the given point A(4, 0)

= -4+ =07 = Jx— 47+ 2
Then, P(x, y) must satisfy the geometric condition PB = PA.
[l = /(e =4)” +2
Squaring both sides, we get
X =x>—8x+ 16+
Sy —8x+16 =017

This is the required equation of the locus.

4.6.5 Points on the Locus

If a point P(x, y) belongs to a locus, then its coordinates satisfy the equation of the locus.
Conversely, if the coordinates of a point P(x, y) satisfy the equation of a locus, then the point
P(x, y) lies on the locus.

4.6.6 Points Not on the Locus

If a point P(x, y) is not on the locus, then its coordinates will not satisfy the equation of that
locus. Conversely, if the coordinates of a point P(x, y) do not satisfy the equation of the locus,
then the point P(x, y) does not belong to the locus.

Example (9): Find the points on the x-axis, which lie on the curve whose equation is X2+ y2 +
5x + 4 =0. Hence, find the length of the intercept (i.e., chord) made by the curve on the x-axis.

Solution: Any point on x-axis, has its y-coordinate zero. Let (a, 0) be a point (on the x-axis),
which lies on the curve. Therefore, coordinates (a, 0) must satisfy the given equation.

@+ (0 +5(a)+4=0
P +5a+4=0 or (a+4)(a+1)=0
a=—1 or a=—4

The required points are (—1, 0) and (—4, 0).
By the distance formula,

Length of the chord = \/(—4 +1)+(0-07=3 Ans.

19 The distance of P(x, y) from y-axis is the perpendicular distance of P from the y-axis, which is the absolute value of
x-coordinate of P.
U7) This is the equation of a parabola, as we will see later.
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4.7 EQUATIONS OF A LINE

A line (i.e., a straight line) is a geometric object. When it is placed in a coordinate plane, the
points (in the plane) through which the line passes, satisfy certain geometric conditions. For
example, any two distinct points P(xy, y;) and Q(x,, y,) on the line, determine it completely.
Also, if the line PQ is not vertical (i.e., if the line PQ is not parallel to y-axis), then its slope m is
given by the number,

Y2=Y1 _ V1=
m=2T N TR 2
Xy — X1 X1 — X2

which is a constant.

To obtain the equation of a line we use the important fact that a point P(x,, y;) and a slope m
determines a unique line. But, we know that the slope m of a horizontal line is zero and that of a
vertical line is not defined. Hence, first we consider the equations of horizontal and vertical lines.

4.7.1 Equations of x-Axis, y-Axis, and the Lines Parallel to the Axes

o Observe that the x-axis consists of all points of the form (x, 0). It means that for any point

on the x-axis, the y-coordinate is always zero. Therefore, its equation is y =0.
Similarly, the y-axis consists of all points of the form (0, y). Therefore, its equation
is x=0.

e Any line parallel to the x-axis consists of all points of the form (x, b). Therefore
its equation is of the form y =5, for some number b. Similarly any vertical line is
perpendicular to x-axis and consists of all points of the form (a, y), therefore, it has an
equation of the form x = a, for some number a.

Remark: In our rectangular (x, y)-coordinate system, when we set coordinate variables equal
to constants, we get two equations of lines: x =« is vertical line and y = b is a horizontal line
(Figure 4.12).

Now we will consider only the equations of nonvertical lines in the following discussion.

4.7.2 Point-Slope Form of the Equation of a Line

[To find the equation of a line having the slope 1, and passing through a given point A(x1, y1)]

Let a given line “/” have slope m and pass through the point A(x;, y;) as shown in
Figure 4.13. Let P(x, y) be any point on the line /, other than A. Then, we have to find an
algebraic condition for the point P(x, y) to lie on the line “I”.

Equation of y-axis is Equation of this line is
x=0 xX=a
b
Equation of this line is
y= b X
>

Equation of x-axisisy =0

FIGURE 4.12
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y
slope =m

P(x, y)

Axy, yp)

0 X1
FIGURE 4.13

Since the slope of the line that joins (x;, y;) and (x, y) is also required to be m, therefore, the
condition for P(x, y) to lie on the given line is that

YN
= 5
" (5)
ory —yr =m(x—xp) (6)
Equation (6) is called the point—slope form of the equation of the line “I”.

Example (10): Find a point—slope equation of the line passing through (2, 1) with the given
slope, and sketch the line.

(a) Slope 0, (b) Slope %, (c) Slope —3

Solution: Point—slope form of the equation at (6) above is, y — y; = m(x — x). Here, x; =2 and
=1L

For (a), we have m = 0. Therefore equation (6) becomes y — 1 =0. The line is horizontal. It is
sketched in Figure 4.14.

Slope =0

Slope = %
(3.-2)

FIGURE 4.14
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For (b), we have m = 1/2, so that equation (2) becomes y —1 = (1/2)(x — 2). To sketch this line,
we need a second point on it. Now, if we put x =0 in this equation, we obtain y = 0. Thus, the
line passes through (2, 1) and (0, 0). It is also sketched in Figure 4.14.

For (c¢), m= -3, so that (2) becomes y — 1 = —3(x — 2).

By choosing any (convenient) value for x, we can get a corresponding value for y, and thus
obtain the coordinates of a second point on the line. However, we give below a very useful idea
of finding the coordinates of a second point on the line.

Note that the slope of the line is —3. It tells us that by moving I unit to the right causes a
change of -3 units in the value of y. Therefore, with reference to the point (2, 1) on the line,
we easily get another point on the line, with the x-coordinate as 2 + 1 =3 and y-coordinate
as 1+ (-3)=-2.

[Note carefully the method of obtaining the coordinates of a new point on a line, when the slope
of the line and a point P(a, b) on the line are known.]

Now, it is easy to sketch the line passing through the points (2, 1) and (3, —2). This line also
appears in Figure 4.14.

4.7.3 Slope-Intercept Form of the Equation of a Line
The point—slope form of the equation of a line, given at (6) above can also be rewritten in the

form

y=mx+ (y1 —mx)
or y=mx+b, (7)
where b = y; — mx

[Note that (y; — mx)) is a real number.]

This form of the equation is very useful. The constant b in equation (7), has a nice inter-
pretation. If we set x =0, in Equation (7), we get y =b. So the point (0, b) lies on the line. Note
that the point (0, b) is on the y-axis and therefore the line makes an intercept b on the y-axis. It
is for this reason that equation (7) is called the slope—intercept form of the equation of a line.

Note: The slope—intercept form of equation of a line can also be obtained as follows.

Let a nonvertical line with slope m have the y-intercept b. Then, obviously, this line passes
through the point (0, ). Now, using the available information, we may write its equation in
point—slope form as

y=—b=m(x—-0) or y=mx+b
which is in the slope—intercept form.

Note (1): For any nonvertical line, the equation of the line can always be put in the form
y=mx+ b, in which the coefficient of x represents the slope of the line. For the line y = x, the
slope is 1, for y=> (i.e., y=0-x+ ), the slope is 0, and for 3y =7x — 5, the slope is 7/3.
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Note (2): A vertical line has undefined slope, so it does not have an equation of the form of
equations (6) or (7).

Example (11): Let us find the equation of the line through (2, —3) with slope 7.

Solution: The required equation is given by
y =y =m(x —xi)
or y—(-3)=7(x-2)
or y+3=T7x—-14
or y="Tx-17

Here, the y-intercept of the line is —17. If it is desired to find the x-intercept, we set y =0, in the
equation and get x = 17/7, which is the x-intercept.

Remark: Slope-intercept form of the equation of a line involves only y-intercept of the line.
There is another form of equation called “intercept form,” which involves the x-intercept “a”
and the y-intercept “b”, both. We shall discuss about this form in Section 4.7.5.

4.7.4 Two-Point Equation of a Line

(Equation of a nonvertical line passing through two given points.)
Let /be any nonvertical line in the plane and P(x,, y,), Q(x,, y») any two distinct fixed points
on it. Since [ is nonvertical, x; # x,. The slope of the line is given by

Y2 =N
m=-———-— X X
xz_x17 (17’é 2)

Now, using the available information, we can easily write down the equation of the line using
the point—slope form

(y=y1) =m(x —x1) )

or (y—y2)=m(x—x) 9)

Y2 — )1
X2 — X

where m =

Here, it is important to note that equations (8) and (9) are equivalent.
We write the desired equation using either (8) or (9)

Using (8), we get (y — y1) = 2221 (x — xy) (10)

X2 — X

and it is called two-point equation of the line.
Similarly, using (9) we can write the two-point equation of the line as

O =>)="——
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It can be verified that, on simplification, this equation and the one at (10) above, give the same
equation of the line.

Note that the fraction(y, — y;)/(x2 — x1), is the slope of line [, which is a constant
independent of the points (x;y;) and (x5, y2).

Remark: For writing the equation of a nonvertical line it is a matter of convenience to use
equations (6), (7), or (10), depending on the available information.

Example (12): Let us find the equation of the line through (-5, —3) and (6, 1).

Solution: We have

22— _ (=3) :i

1 —
X2 —x; 6—(=5) 11

Slope m =

Now, we may choose any of the two given points for writing the equation of the line. If we
choose the point (—5, —3), then we get the required equation as

Y=y =m(x—x)

4
y+3:ﬁ(x+5)
or 1ly+33=4x+20

or 4x—11y=13 (i)
Pyt 13 (ii)
R TR T

If we choose the other point (6, 1), we get the equation of the line as

4

yflz—l(xf6) (iii)

Equation (iii) can be simplified to (i) or (ii).

If a line crosses the x-axis at (a, 0), then “a” is called the x-intercept of the line. To find the x-
intercept, we set y =0, in the equation of the line and solve it for x. Similarly, if we set x =0 in
the equation of the line, and solve it for y, we get the y-intercept of the line. We shall now obtain
the equation of a nonvertical line in the intercept form in which both the intercepts are reflected.

4.7.5 Equation of a Nonvertical Line in the Intercept Form (Showing Both the
Intercepts)

Let / be any nonvertical line, which makes an intercept “a” on the x-axis and an intercept “b”
on the y-axis (¢ #0, b #0).

Therefore, by definition, the points (a, 0) and (0, b) are on the line I. The slope of this line is
given by
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Now, using the point—slope form of the equation of a line, we may write the equation of the
above line considering the point (a, 0) on the line as

b
(y—0) =72(x7a) or ay=-bx+ab
Dividing both sides of the equation by ab, we get
=1 (11)

Equation (11) is called the “intercept form” of the equation of a line.
Similarly, equation (11) can also be obtained by considering the point (0, b) on the line, and
the slope obtained above, we get y — b =(—b/a) (x — 0), which simplifies to equation (11).

4.7.6 General Linear Equation

(The equation of the line in the form Ax + By + C=0.)"®

It would be nice to have a form of the equation that covered all lines, including vertical
lines. We have shown that the equation of a nonvertical line is of the form y=mx+ b [or
mx —y + b =0, where m is any real number including zero], and an equation of a vertical line
is of the form x =a [or x + (0)-y — a=0]. It can be shown that each of these equations is a
special case of an equation of the form

Ax+By+C=0 (12)

where A, B, and C are constants and both A and B are not zero simultaneously. In other words,
every line has an equation of the form (12).

Theorem (1): The equation Ax + By + C =0, always represents a straight line, provided A
and B are not zero simultaneously.

Proof: We consider the following three cases.

Case (I): If B=0 (but A # 0), then the equation (6) becomes Ax + C=0or x =—(C/A), which
represents a vertical line (i.e., a line parallel to y-axis).

Case (II): If A =0 (but B #0), then equation (6) becomes By + C =0 or y =—(C/B), which
represents a horizontal line (i.e., a line parallel to x-axis).

Case (III): IfA # 0 and B # 0, we can solve the equation for y and obtainy = —(A/B)x — (C/B),
which represents the straight line with slope —(A/B), and y-intercept —(C/B).

The converse of the above theorem, given in the following theorem, is also true.
Theorem (2): Every straight line has an equation of the form Ax + By + C=0, where A, B,

and C are constants, with the condition that both A and B are not zero simultaneously.

(% An equation of this type in which both x and y (or only x or only y) appear in degree one only, is called a linear equation,
because its graph is a line.
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Proof: Given a straight line, either it cuts the y-axis or is parallel to it (or coincident with it). We
know that the equation of a line that has a y-intercept “b”, can be put in the form

y=mx+b (1)
Further, if the line is parallel to (or coincident with) the y-axis, its equation is of the form
X=X (ii)

(or x =0 in case the line coincides with the y-axis).

Both equations (i) and (ii) are of the form given in the theorem; hence the proof.

4.7.7 Slope and Intercepts of the Line Ax + By + C=0

The equation Ax + By + C =0, can be written as

By=—Ax-C
A C

Comparing this equation with the equation y =mx + b, we get

fficient of >
.". Slope of the line :—w
coefficient of y

C
and y intercept = — 3 (B #0)

[If the equation of a line is given in the form Ax + By + C =0, then it is important to remember
that its slope is given by the ratio m = (A/B).]

Let the line Ax 4+ By + C =0, intersect the x-axis in (@, 0) and y-axis in (0, b), respectively.
Then, A(a) + B(0)+ C =0 and A(0) + B(b) + C=0.

~,a=f§ (fA £0), - b:f% (it B # 0)

int t=— *C d int t=— 7C
.o X-1nterce , an -1NtEerce
p A y p B

4.8 PARALLEL LINES

If two lines have the same slope, they are parallel. For example, y=2x+1 and y=2x—3
represent parallel lines, as both have the slope 2. The second line is 4 units below the first, for
every value of x. Similarly, the lines with equations —2x + 3y + 12=0 and 4x — 6y =35 are
parallel. (To see this, we must solve these equations for y.)

Example (13): Find the equation of the line through (6, 8) which is parallel to the line with
equation 3x — Sy =11.
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Solution: We solve 3x — 5y =11 for y, and we gety = (3/5)x — (11/5). This equation shows
that the slope of this line is 3/5. Since the desired line passes through the point (6, 8), its equation
must be,

3

)’*8:§(X*6)

or 5y—40=3x-18
or 3x—5y+4+22=0 Ans.

Note: If the line y = mx + b passes through origin, O (0, 0), then its equation will be y = m.x.
[A line drawn perpendicular to x-axis at the point (1, 0), will intersect the line y = m.x at the
point (1, m) (since y=m, for x = 1). This idea is found useful in the following derivation.

4.9 RELATION BETWEEN THE SLOPES OF (NONVERTICAL) LINES THAT
ARE PERPENDICULAR TO ONE ANOTHER

There is a simple slope condition between two nonvertical lines that are perpendicular to one
another.

Method (1):

Consider two nonvertical lines /| and [, that are perpendicular to one another and have the
slope(s) myand m,, respectively, as shown in Figure 4.15. Without loss of generality, we may
assume that these lines intersect at the origin, or we may translate them, so that they intersect at
the origin, without changing their slopes.

We draw a line, perpendicular to x-axis passing through the point (1, 0). Then P(1, m;) and
QO(1, m,) are points on the lines as shown in Figure 4.15 149

i
slope m;

b
slope m, P(1, my)

d
0 1,0

Y =

(1, my)

FIGURE 4.15 Pair of non-vertical lines (through origin) and perpendicular to one another.

U9 [Hint: We know that a line with slope m passing through the origin O(0, 0) has the equation y = mx. Thus, the
equation of /; is y = mx and that of /, is y = m,x. Therefore, the coordinates of P (on /;) are (/, m;) and those of Q (on /5)
are (1, my).]
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The lines are perpendicular, if and only if, the triangle with vertices (0, 0), (1, m;) and (1, n1,)
satisfies the Pythagorean relation @* = r* + s*. Let us compute 12, s, and d° using the distance
Sformula. We obtain

P =(1-07+(m —0)7=1+m
2= (1-0)+ (my— 0> =1 +m3
=1 =17+ my—m)* = (my —m)?
The Pythagorean condition becomes
(my = m1)* = (1+m}) + (1 +m3)
m3 = 2mimy +m} =2+ m? +n3
Therefore, — 2mym, =2

mynyp = —1
1
or my— ——
n
Thus, if the slope of the line [ is known, then we can write the slope of another line that is
perpendicular to I. The above relation may also be obtained as follows.

Method (2):
Let /; and /, be two (nonvertical) lines perpendicular to one another, with slopes m1; and m1,,
respectively. Let §; and 6, be their inclinations as shown in Figure 4.16.

cotanfy = tan(g + 01)

1
= —cotfh =—
coth tan 6,
. tan @ -tan 6, =—1
c.my-mp =—1 [From(1)].

{; (slope m)
[, (slope m,)

FIGURE 4.16 Two non-vertical lines with slopes #1;, m, and perpendicular to one another.
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Example (14): Let us find the slope of a line perpendicular to the line passing through the
points (6, —5) and (8, 3).

Solution: The slope of the given line is

Ay _—5-(3)_-8_,
Ax  6-(8) -2

Therefore, a line that is perpendicular to the given line has slope (—1/4).

Points to Remember

1. If a line with slope m passes through (0, 0), then y =mx is the equation of the line.

2. Consider the line /, which passes through (0, 0), and is equally inclined to both the axes.
Two cases arise. If the angle of inclination is /4, then the slope m = 1, and if it is 37/4, then
the slope m =—1. Hence y = x or y =—x, will be the equations of the line, respectively.

3. The equation of a line may be written in any of the forms discussed above. The choice is a
matter of convenience and requirement.

Note: It is important to remember that, for the line y = mx + b (which has the slope m) the
change of 1 unit in the value of x (i.e., from x; to x; + 1) causes a change of 7 units in the
value of y (i.e., from y, to y; + m). In other words if (x;, y;) is a point on the line, then (x; + 1,
yi+m), (x; +2, y; +2m), (x; + 3, y; +3m), and so on, are other points on the line.

4.10 ANGLE BETWEEN TWO LINES

Suppose /; and /, are two intersecting lines. Then, we define the angle from I;to0 I, to be the angle
0 through which /; must be rotated counter clockwise about the point of intersection in order
to coincide with /, (see 0 in Figure 4.17). Thus, 0 < 6 < 7. By using trigonometric identities, we
can express 6 in terms of the slopes of /; and /.

Theorem: Let/; and /; be two nonvertical lines that are not perpendicular, with slopes m; and
m,, respectively. Then, the tangent of the angle 6 from /; to /, is given by

nm, —m
tan ) = —= !
1+m1m2
I
y
6,
0 b
)
X
0

FIGURE 4.17
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Proof: Let ; and 6, be angles with initial sides along the positive x-axis and terminal sides
along /; and /,, respectively. For easy understanding, we choose 6, and 6, such that 0 < < =
and 0, > 0. Then, 6 =60, — 0,. We have

my = tan 6,
and
myp = tan €2<20)

Also, since mm, # —1 (why?)

We have

tan 6, — tan 6, my — my
tan 0 = tan(6, — 601) = = . (P d
an an( 2 1) 1 + tan 0; tan 6, 1+ mymy ( rove )

Note: In numerical examples, the value of tan # will sometimes be found to be negative. This
would merely mean that instead of acute angle of intersection, its supplement, which too is the
angle of intersection of the lines, is being obtained.

Example (15): Let the equations of /; and /, be y —2x=2 and 2y + 5x=17.

Find the tangent of the angle 6 from [, to L.

Solution: From the equation of /; and /,, we find that m; =2 and m, = (—5/2)
my —m_ (=5/2) = (2) (—(9/2)) 9

= T T 2(=52)  \ =4 )~

8

4.11 POLAR COORDINATE SYSTEM

So far, we have located a point in a plane by its rectangular Cartesian co ordinates. The
position of a point in a plane may also be determined by means of a so-called polar coordinate
system. This system is important because certain curves have simpler equations in the polar
coordinate system.

Cartesian coordinates are numbers, the abscissa and ordinates, and these numbers are
directed distances from two fixed lines. Polar coordinates consist of a directed distance and
the measure of an angle related to a fixed point and a fixed ray (or half line).

The fixed point is called the pole (or origin), designated by the letter “O”. The fixed ray
is called the polar axis (or polar line), which we label OA. The ray OA is usually drawn
horizontally and to the right and it extends indefinitely, (see Figure 4.18). Positive x-axis is
generally taken as the polar axis and the origin (0, 0) as the pole.

Let P be any point in the plane distinct from “O”. Let 0 be the radian measure of a directed
angle AOP, positive when measured counter clockwise, and negative when measured
clockwise. Let the initial side of the angle 6 be the ray OA and its terminal side the ray
OP. Then the point P can be assigned the polar coordinates (r, 6), if r is taken as the undirected
distance from O to P (i.e., r=|OP|).

Actually, the coordinates (r, 6 4+ 2kmn), where k is any integer, give the same point as (r, 6).
Thus, a given point has an unlimited number of sets of polar coordinates unlike the rectangular

@O 1f 9, > 7 (as in Figure 4.17), then tan 0, = tan(0, — 1) = 1,
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P(r, 6)
6
0 > A
FIGURE 4.18
P(4%ﬁ) %,, P4, %7”) P@4, Lr)
Uy 6
6
5 A A A
1%
(a) (b) (c)
FIGURE 4.19

Cartesian coordinate system in which a one-to-one correspondence between the coordinates
and the positions of points in the plane exists (see Figure 4.19a—c).

Polar coordinates of a point P are also defined by considering “”” as the directed distance
from O to P. Thus, there can be a set of polar coordinates of P, denoted by (r, #), where r =— \ﬁ |
Now, we consider polar coordinates for which r is negative. In this case, instead of being on
the terminal side of the angle, the point is on the extension of the terminal side, which is the ray
from the pole in the direction opposite to the terminal side (see Figure 4.20a and b).

Thus, the point (—4, —(1/6)7) shown in Figure 4.20a is the same as (4, (5/6)n), (4, (17/6)n),
and (4, —(7/6)n) as shown in Figure 4.19a—c, and (—4, (11/6)), as shown in Figure 4.20b.

The angle is usually measured in radians. Thus, a set of polar coordinates of a point is an
ordered pair of real numbers. For each ordered pair of real numbers, there is a unique point
having this set of polar coordinates. However, we have seen that a particular point can be given

by an unlimited number of ordered pairs of real numbers.

P(—4,—%7r) O
s 5.
S e
Y Y
-
. . A A
0 1
iz "
6
(a) (b)

FIGURE 4.20



POLAR COORDINATE SYSTEM 95

4.11.1 Relation Between the Rectangular Cartesian Coordinates and the Polar
Coordinates of Point

To find the desired relation, we take the origin of the Cartesian coordinate system and the pole of
the polar coordinate system coincident, the polar axis as the positive side of the x-axis and the
ray for which 6 = (1/2) as the positive side of the y-axis.

Suppose P is a point, whose representation in the rectangular Cartesian coordinate system is
(x,y) and (r, 0) is a polar coordinate representation of P. As a particular case, suppose P is in the
second quadrant and r > 0, as indicated in Figure 4.21.

Then
cosf=— =" and sinh=—2 =7
lop| 1 lop| 7
Thus,
x=rcosf and y=rsind (13)

These equations hold for P in any quadrant and r positive or negative.

From equation (13), we can not only obtain the rectangular Cartesian coordinates of a point
when its polar coordinates are known, but we can also obtain a polar equation of a curve from
its rectangular Cartesian equation.

From equation (13) we get

x4+ 3% = r? (cos?  +sin? ) = 12

Sor=da/x24y? (14)
Also, from equation (13), we get
rsing y
rcosf  x
. _Y
..tan97; (if x # 0) (15)
y
P
(r6) ¢
(x,y)
-
y
T 6
X
X 0 >

FIGURE 4.21
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Note: If a curve in a plane is expressed in polar coordinates, say r = f(0) then r and 0 both vary
from point to point on the curve.

Note: For the purpose of learning basic calculus, the material given in this chapter will prove to
be sufficient. However, the subject of coordinate geometry is a very useful subject and can be
easily learnt from standard books. This study will be found useful in realizing and appreciating
the simpler methods, later offered by calculus, in studying many properties of curves,
represented by functions. Some details about conic sections and their identification by
Translation of Axes are given in Appendix B.



5 Trigonometry and Trigonometric
Functions

5.1 INTRODUCTION

The word trigonometry is derived from two Greek words, together meaning measuring the
sides of a triangle. The subject was originally developed to solve geometric problems involving
triangles. One of its uses lies in determining heights and distances, which are not easy to
measure otherwise. It has been very useful in surveying, navigation, and astronomy. Applica-
tions have now further widened.

At school level, in geometry, we have studied the definitions of trigonometric ratios of
acute angles in terms of the ratios of sides of a right-angled triangle.

P B P
sinf=—, cosf=—, tanf=—
H B

T

H
cosecl =—, sech=
P

Note that in the right-angled triangle OAR, if the lengths of the sides are respectively denoted
by B (for base), P (for perpendicular), and H (for hypotenuse), as shown in Figure 5.1, then
the angle 6 (in degrees) is an acute angle (i.e., 0° < 6 < 90°). It is for such angle(s) that we have
defined trigonometric ratios in earlier classes."

Now, in our study of trigonometry, it is required to extend the notion of an angle in such a
way that its measure can be of any magnitude and sign. Once this is done, the trigonometric
ratios are defined for angles of all magnitudes and sign. Finally, by identifying these magnitudes
and signs of angles, with real numbers, we say that the trigonometric ratios of directed angles
represent trigonometric functions of real variables. This is achieved by defining trigonometric
ratios of any angle expressed in radians. To enjoy the subject of trigonometry, it is useful to start
our study right from the concept of directed angles and the radian measure of an angle.

What must you know to learn calculus? 5-Trig try and trig tric functi [Concept of angle, directed
angle(s) of any magnitude and sign, extending the concept of trigonometric ratios (of acute angles) to trigonometric
Sfunctions of real variable]

@ For beginners, the trigonometric ratios are not considered for the angles of 0° and 90°, since the triangle does not exist
for these values of 6. Also, since the above trigonometric ratios are found sufficient in solving the problems related to
heights and distances and for studying trigonometric identities, the notion of directed angles is not introduced for beginners
to avoid difficulties likely to be faced by them.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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R
(Hypotenuse) H P (Perpendicular)
6
o B (Base) A

FIGURE 5.1 Right angled triangle defining trigonometric ratios.
5.2 (DIRECTED) ANGLES

Definition: In geometry, an angle is considered as the measure obtained by rotating a given ray
about its end point.

¢ The original ray is called the initial side and the finial position of the ray (after rotation) is
called the terminal side of the angle (Figure 5.2).

o The point of rotation is called the vertex.

o If the direction of rotation is anticlockwise, the angle is said to be positive; and if the
direction of rotation is clockwise, the angle is negative.

5.2.1 An Angle in Standard Position

A directed angle is said to be in standard position if its vertex lies at the origin and the initial side
lies on the positive side of the x-axis. Figure 5.3 shows an angle AOB in standard position with
OA as the initial side.

We know that the angle AOB can be formed by rotating the side OA to the side OB and, under
such a rotation, the point A moves along the circumference of a circle having its center at O and
radius |OA| to the point B.

5.2.2 Measure of an Angle

¢ The measure of an angle is the amount of rotation performed to get to the terminal side
from the initial side.

Note (1): The definition of an angle suggests a unit, namely, one complete revolution, from the
position of the initial side, as shown in Figure 5.4.

B Vertex Initial side
0 A
O
'\“7’\%\
o
A
Vertex Initial side
(a) ()

FIGURE 5.2 (a) Positive angle. (b) Negative angle.
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19) “A

FIGURE 5.3 Angle in standard position.

o Initial side
Q Terminal side

FIGURE 5.4

This unit that is based on a complete revolution is often convenient for large angles.
For example, an engineer might speak of a spinning wheel making say 15 revolutions
per minute.®

There are several units of measuring angles. We describe below two units of measuring of
an angle that are most commonly used. One is the degree and the other is the radian measure
of an angle.

5.2.3 Degree Measure of an Angle

If arotation from the initial side to the terminal side is (1/360)th of a revolution, the angle is said
to have a measure of 1°. For additional precision, we define two subunits of a degree by the
following relations:

60 minutes (written as 60') = 1° (one degree)

60 seconds (written as 60”) = 1’ (one minute)

In dealing with problems involving angles of triangles, the measurement of an angle is usually
given in degrees.®

@ The idea of spinning wheel making large angle(s) suggests that one may generate angles of any magnitude and sign.
) There is no deep reason for choosing the number 360. Early astronomers, with their imperfect instruments, thought that
the earth took 360 days to circle the sun, and hence divided a circle into 360 equal parts. One may wonder what they would
have done had they known that this number was nearly 365}, which itself is not accurate. So the choice is between 360 and
365 %. When an angle is measured in degrees, minutes, and seconds, the system of measurement is called the sexagesimal
system of measurement, because it is based on multiples of 60.
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FIGURE 5.5 Radian measure of an angle.

However, in calculus, we are concerned with trigonometric functions of real numbers, and
these functions are defined in terms of the radian measure of an angle.

5.2.4 Definition of Radian Measure of an Angle

Consider two concentric circles with B as their (common) center. Let the radius of the inner
circle be one unit and that of the outer circle be r units, as shown in Figure 5.5.

The radian measure of angle ABC at the center B of the unit circle is defined to be the length
of the circular arc AC.

If A’C’' (= s) is the arc cut by the (same) angle from a second circle (which is the outer circle,
in Figure 5.5), then the circular sectors A’BC’ and ABC are similar. In particular, their ratios of
arc length to radius are equal. We denote this equality by the constant 6.

In the notation of Figure 5.5, this means that

length of arcA’C" _ length of arcAC 0
r N 1 -

or

; = length of arc AC = 6 (1a)

This is true no matter how large or small the radius of the second circle may be. Thus, for any
circle centered at B, the ratio s/r (of the length of the intercepted arc to the radius of the circle)
always gives the radian measure of the angle.

Equation (1a) is sometimes written in the form

s=rb (1b)
Equation (1b) can be used to find out any one of the related quantities (i.e., s, r, or 6) if the other

two are known. Generally, this equation is used to compute the arc length s, when r and 6
are known.
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FIGURE 5.6 Angle of one radian.

Note (1): Equation (1b) is also useful in defining an angle of 1rad, which is the unit angle in
radian measure. If we put » = 1 in equation (1b), then the central angle 6, in radians, is just
equal to the length of the circular arc AC, as defined above.

Definition: 1 rad is the measure of a central angle, subtended by a circular arc whose length is
equal to the radius of the circle (Figure 5.6).

Note (2): Although angles can be expressed (or measured) in degrees or radians, we will here
use only radian measure of angles, unless otherwise indicated. This will be convenient in our
study of calculus.

The circumference of a circle is approximately 6.28 times its radius. In other words, the
angle subtended by the circumference of a circle at the center is approximately 6.28 rad.”

Note (3): The length of circumference of a circle is given by 2zr, so for a unit circle, the
circumference equals the length 27. Thus, 7 can be interpreted in two ways:

o When speaking in terms of the length of a circular arc of unit circle, = represents the length
of half the circumference of unit circle, and so it stands for a real number ~ 3.14159. ..
(note that this number is half of the number 6.28. . ., mentioned above).

¢ When speaking of angles, the unit circle subtends an angle of 27 rad at its center (or 360°).
It follows thathalf the circle subtends the angle of mrad at the center. Thus, 7 stands for 180°.

Remark: It is important to clearly understand that © never represents the number 180. When
expressing an angle in terms of 7, the statement 180° = n should be read as 180° = mrad. Thus,
the reader should mentally imply the word radians to avoid confusion between 7 and 180°.

(Note that, in the expression 7 rad, 7 is the coefficient of the unit radian and, therefore, it
must be looked upon as a real number.)

5.2.4.1 Angle of Any Magnitude and Sign Suppose aray starting from the initial position is
rotated about the vertex, more than one rotation in positive (or negative direction). Then, we can
generate angles of desired magnitude and sign, as indicated in Figure 5.7.

@ Radian measure of an angle assumes that we know how to measure the length(s) of circular arc(s). Later on, when we
discuss Integration, we will show how this can be done. For the present, we agree that the circumference of a circle is 27r,
where r is the radius of the circle. In other words, we agree that 7 is the ratio of circumference of a circle to its diameter. It is
true that 7 is related to the circle, but it also appears in many (definite) integrals and in sum (s) of certain infinite series. From
this point of view, one should not carry an impression that 7 is related only to the circle. It arises in mathematics in the same
way as the number e arises in calculus. (Both 7 and e are special types of irrational numbers, called transcendental numbers.)
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(a) )
FIGURE 5.7 Angle of desired magnitude.

5.2.4.2 Zero Angle and Straight Angle

Zero Angle:  Suppose the given ray OA is not rotated about the vertex O, then we say that the
measure of the angle at the point O is zero (Figure 5.8).

Straight Angle:  Suppose the given ray OA rotates half the circle (so that it occupies the final
position OB opposite to the direction of OA), then the measure of the angle AOB will be 180°
(or —180°) depending on the direction of rotation of the line OA about the vertex. It is called
straight angle (Figure 5.9).

5.2.4.3 The Concept of Positive and Negative Arc Lengths Consider a circle centered at
the origin, with arbitrary radius r > 0. We place an angle of 6 rad (in the circle) in standard
position (so that its vertex is at the origin and its initial side is on the positive side of the x-axis.
If & > 0, then it opens counterclockwise (Figure 5.10a), and if 6 <0, it opens clockwise
(Figure 5.10b).

We allow 6 to be greater than 27 (i.e., 360°). For example, an angle of 37 rad can be obtained
by rotating a line through one full revolution (2x rad) and an extra half-revolution. Thus, an
angle of 37 rad has the same initial and terminal side as an angle of n rad.

Since, the circle contains 2x rad and its circumference is 277, an angle of 1 rad intercepts an
arc of length r on the circle. If @ > 0, an angle of 6 rad intercepts an arc of length 6 on the circle.
If we denote this arc length by s, we have

s=rf
>
o A
Angle of measure zero
FIGURE 5.8 Angle of measure zero.
180° -180°

B N >4 8 S A

FIGURE 5.9 Straight angle.
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y Y

(x, y)

, Lenght s =r8
0 X x
0 r 0N,y 7 -
r Negative of
the lenght

x, y) s=r0

(@) (0)
FIGURE 5.10 Positive and negative arc-lengths.

For § < 0, formula (1) holds if we think of s as the negative of the length of the arc intercepted on
the circle (Figure 5.10b).

(Note that for the purpose of defining directed angles, we have agreed to accept the idea of
positive and negative arc lengths, which is otherwise meaningless.)

5.2.5 Relation Between Degree and Radian Measures of an Angle

A circle subtends at the center an angle whose degree measure is 360° and radian measure is 21
rad (Figure 5.11). It follows that

360° =2nrad (A)

180° = wrad ~ 3.1415 rad

180°
— = Irad =~ 57°17'44.8"

and

. 2= m

(Here the values of 1rad and 1° are computed assuming 7 ~ 22/7.)

360°
2mrad

FIGURE 5.11 Angle of 360° or 27 radians.
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TABLE 5.1 Measure of Some Useful Angles in Degrees with their Corresponding Measure
in Radians

Degrees 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°
3 4 6 2

2n

b1
Radian:s 0 =
adians 5

Remark: Inthe equation (A), it will be more appropriate to use the symbol ~ instead of using
the symbol of equality (i.e., =), which tells that the given measurements are for the same or

congruent angles.
Thus, we have®
180
xrad = [—).(x)°
xra ( = ) (x)
and

x° = <:ﬁ)(x) rad

Table 5.1 on conversion is very often useful in trigonometry.
Now, note that

)

162°= 162 ™ rad = — 7rad

180 10
and
5 5 180° .
Enradfﬁn T—75

It should be emphasized, however, that the radian measure of an angle is dimensionless.
Note that r and s [in equation (1a)] represent lengths measured in identical units, so that the units
get canceled.

5.2.6 Relation Between the Radian Measure and Real Numbers

Consider the unit circle with center at the origin O. Let A be any point on the circle so that OA is
the radius of the circle and we consider it as the initial side of an angle (Figure 5.12a). We may
imagine the circumference of the circle marked of with a scale from which we may read 6.
The unit on this number scale is the same as the unit radius (Figure 5.12b).

Now, let a line PQ be tangent to the unit circle and let the point O be marked on it as 0 of the
number scale based on the unit radius. We place the point O of the line at the point A of the circle
so that the line PAQ is tangent to the circle at A.

We know that the length of an arc of the circle will give the radian measure of the angle,
which the arc will subtend at the center of the circle. Thus, the point A represents the real number
0 on the tangent line, AP represents the positive side of tangent line, and AQ represents the
negative side.

) For converting radians into degrees and vice versa, it is useful to remember that 1 rad is a bigger angle, nearly 57 times
bigger compared to 1°. Hence, for converting radians into degrees, we must multiply the radian measure by a bigger factor
180/m. On the other hand, the degree measure must be multiplied by a smaller factor 7/180 to convert it to radians.
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- 1 rad

T
I
w
—
=~}
a

0=12rad 0.1 rad
|0 S I N I N (N B |
10.1020.3

(@) (b)
FIGURE 5.12 An angle in radians looked upon as a real number.

If we wrap the line AP around the circle in the counterclockwise direction and AQ in the
clockwise direction, then every real number on the tangent line will correspond to a radian
measure and conversely (every radian measure will correspond to a real number). Thus, radian
measures of angles with reference to the unit circle can be considered to represent the real
numbers having the same magnitude and sign.

5.2.6.1 Convention Aboutthe Notation If the angles are measured in degrees or radians, we
adopt the convention that whenever we write angle °, we mean the angle whose degree measure
is 6, and whenever we write angle 6 (i.e., without superscript °), we mean the angle whose radian
measure is 0. Thus, in the expression sin 30°, measure of the angle is 30°; whereas in cos 75, the
number 75 represents the radian measure of the angle involved and also the number 75.

Now, we are in a position to extend the definitions of the trigonometric ratios for angles of
any magnitude and sign. Such angles can be generated by rotating the initial side (about its
vertex) in the desired direction to any desired extent.

5.2.7 Trigonometric Ratios for Angles of Any Magnitude and Sign: Definitions
of Trigonometric Functions

Let an angle of 0 rad be placed in standard position in a circle of radius r. The terminal side of
the angle intersects the circle at a unique point (x, y) (see Figure 5.13a). We define the sine and
cosine functions of 6 by

sinf=> and cosf=" (2)
r r
InFigure 5.13a, x, y, and r represent the sides of a right-angled triangle and 6 is the angle that the

revolving line OP makes with the x-axis. In fact, the definitions of trigonometric functions at
equation (2) are the same as the definitions of trigonometric ratios given for acute angle(s).
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A Y
P(x, y)
,
0 Y X
0] X
(a)
AY y
P,y
P(X, ) P(x,y)
P(x, y) 0
X \ X
0 M M X M M 0 X

® (i)
()

FIGURE 5.13 Angle 6 in standard position.

Here, it is important to keep in mind that the angle 6 can be of any magnitude and sign.
Therefore, the terminal side OP can be in any quadrant. Thus, the angle 6 that the revolving line
makes with the x-axis need not be acute. However, we define the trigonometric function of the
angle 0 with reference to the right-angled triangle in which the revolving line (as hypotenuse)
makes the angle 6 with the x-axis. Obviously, § may be acute or obtuse or negative.

The properties of similar triangles imply that sin 6 and cos 6 depend only on ¢ and not on the
value of r (Figure 5.13b).

From equation (2) above, we get that if r = 1,

x =cosfandy = sin 6 (3)

Since, the angle 6 (in radians) represents a real number, which can assume any real value
in (—oo, 00), the domains of both sin € and cos 8 are (—oo, 00).

[Note that, in the expression sin 6, 6 represents a number. Thus, we write sin 3 to mean
sin (3rad).]
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5.2.7.1 Periodic Functions: sin @and cos @ Since an angle of § rad (0 < § < 2n) and the one
of (f + 2r) radians have the same terminal side, we can write

sin @ = sin (6 + 27) and cos 6 = cos (6 + 2n)

Thus, the values of sine and cosine functions repeat for an interval of 27 rad. We say that both
sine and cosine functions are periodic; they both have a period of 2z. Consequently, for any
integer n and any number 0,

sin @ = sin (6 + 2nn) and cos 6 = cos (6 + 2nn) 4)

Coterminal Angles The angles that differ in their measure by an integral multiple of 360°
(=2r°) are called coterminal angles. They have the same initial arm and the same terminal arm.

5.2.8 Defining Other Trigonometric Functions using Sine and Cosine Functions

There are four other basic trigonometric functions that are defined in terms of sin § and cos 6.
Remembering that sin 6 = y/r, cos § = x/r, we define

sind y cosf x
tan07cos()7}, x #0 corisin()i;’ y#0
1
secf = :1, x#0 cosecez,—zf, y#0
cosf x sinf y

The values of these functions can be quickly computed from the corresponding values of sin 6
and cos 6.

5.2.9 A Simple Approach for Calculating the Values of sin 6 and cos 0

Let (x, y) be a point on the standard unit circle. Then, using equation (3), we can express the
coordinates (x, y) on the unit circle by (x, y) = (cos 6, sin 6).

Thus, x = cos ¢ and y = sin 6 (see Figure 5.14).

These values of cos ¢ and sin € are called their /ine values and can be conveniently used for
drawing their graphs. Also, graphical methods are available to find the line values of other
trigonometric functions.

(x, ¥) = (cos 6, sin 8)

N .

FIGURE 5.14 The acute reference triangle for an angle 6.
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Observe that (in Figure 5.14), the revolving line that makes the angle § with the x-axis lies in
the second quadrant. If we drop a perpendicular from the point (x, y) on the x-axis, we get

|x| = cos
that is,
—x=cosf [. x<0
and
ly] = sin@
that is,
y=sinf [. y> 0]

Thus, we get that the sign of cos 6 is always the sign of x-coordinate and the sign of sin 6 is
the sign of y-coordinate. Now, recall that in the second quadrant, x-coordinate is negative and
y-coordinate is positive. Thus, the values of cos 6 and sin 6 expressed above are consistent with
their definitions at equation (3).

Important Note: Figure 5.14 suggests that the values of cos 6 and sin # can be calculated from
an acute reference triangle, made by dropping a perpendicular to the x-axis, as shown in the
figure. The ratios are read from the triangle, and the signs determined by the quadrant in which
the angle lies.®

In fact, the method for calculating the values of sin 6 and cos 6 discussed above is applicable
for any location of revolving line in the standard unit circle.

5.2.9.1 Values of sin 0 and cos 0 for Some Standard Angles. For certain values of 0, the
values of sin € and cos 6 are easily obtained by placing the angle in a unit circle in standard
position (see Figure 5.15).

We observe that

sin0 =0 and cos0 =1

1 1
sinE:f\/z and cosE: \/E

42 42
T b
in—=1 d —=0
sin > an cos >
sint =0 and cosm=-—1
3n 3n
in —=—1 d — =0
sin — and  cos —

Table 5.2 gives these values and some others that are frequently used.
Note that in Table 5.2, a simple scheme is given for remembering the values of sin 6
and cos 6.

© 1t must be clear that in the acute reference triangle, the trigonometric ratios are read with reference to the acute angle
made by the revolving line with the x-axis. It is this acute angle that lies in the quadrant in which the revolving line lies.
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Ay
1
5727
©,1)
(2 \/—2 P \/—2)
T
\ x
1.0 ¢ Lo
%n: 37
©.-1)
FIGURE 5.15

TABLE 5.2 A Simple Scheme Indicating the Values of Basic Trigonometric Functions, for
Important Angles

0 0 /6 /4 /3 /2 27n/3 3n/4 57/6 T

(0°) (30°)  (45°)  (60°)  (90°)  (120°)  (135°)  (150°)  (180°)

o /O /OB f f O Vo Vo o

f V3

<%)fff—<::>—@>—<%)—(%>

1 V3
2 2 2 2

=
™|
M‘I\)
ST1
(=)

cos 0 &

5.2.9.2 The Relations sin (—0) = —sin @ and cos (—0) = cos @ Figure 5.16a and b shows
two angles of opposite sign but of equal magnitude. The rays of the two angles ¢ and (—?)
intersect the circle at the points (x, y) and (x, —y), respectively. Each has equal x and y
coordinates in magnitude, but the y-coordinates differ in sign.

From the above figure, we have

sin (—6) :;y:—X:sinQandcos(—(-)) =2 = cosd (6)
r r r

Remark: To define the radian measure of an angle, we use a circle. Hence, trigonometric
functions of real variables are also called circular functions.

5.3 RANGES OF SIN 6 AND COS 6

‘We know that the domains of sin 6 and cos 6 are (—oo, 00) (see Section 2.7). In the reference
right-angled triangle (Figure 5.13a), we have, X2+ =
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Y Y x, )
(=, y)
i 0
| ™\ 6 x x
i o/ ” 0
| -0 N
(=x, =)
(., -y)
(@) (b)
FIGURE 5.16
Since r #0, we get
¥y x\2 »\2 2 N2
r7+r7 =1 or (;) + (;) =1 or (cosf)” + (sinf)” =1

We write (cos 0)° = cos20, (sin ) = sin? 6, and so on.

. 08’0 +sin? § = 1 (7)
scos’0<1 and sin?0< 17

Since cos® § and sin® 6 are nonnegative, the minimum value of cos® @ and sin® 6 can be 0.
Therefore, from equation (A) above, the maximum value of cos? 6 and sin® 0 is 1.

o —1<cosf@<land —1<sinfd <1

Thus, range of both these functions is the closed interval [—1, 1].

5.3.1 Domains and Ranges of tan 6, sec 6, cot 6, and cosec 6

We have

l,x#O

_sinf _y 1
a cosf x

tan 6 cos&ig’xio’ and secf =

Thus, tan 6 and sec 6 are not defined for those values of ¢ for which x = 0.

(In radian measure, this means that (n/2), (3n/2), ..., — (n/2), — (3n/2),... are
excluded from the domains of the tangent and the secant functions.)

Similarly, cot 8 and cosec 0 are not defined for those values of 6, for which y = 0. Thus,
0=0,n2n, ..., —7m, —2m, ... are excluded from the domains of cot 6 and cosec 6.

) This conclusion can also be drawn as follows. We know that the square root of a positive number is its principal square
root, by which we mean its positive square root. Therefore, by taking the square root on both sides of the inequalities
cos? < landsin® 6 < 1, we get Vcos? 6 = |cos §] <1 and V/sin2 @ = |sinf| < 1 orcos@ < |1| and sin§ < |1|. Then, by
definition of absolute value we get —1 <cosf <1 and —1 <sin < 1.
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TABLE 5.3 Domains and Ranges of Trigonometric Functions

Function Domain Range
(€)) sinf =y/r All real numbers —1<sinf <1
2) cosf = x/r All real numbers —1<cosfh<1
3) tanf = y/x All real numbers except +n/2, +37/2, ... All real numbers
4) coth =x/y All real numbers except 0, 7, +2m7, ... All real numbers
5) secl =r/x All real numbers except £n/2, £37/2, ... sec @ < —1 andsec § > 1
(6) cosec =r/y All real numbers except 0, £n, £27, ... cosec § < —1 and cosec 6 > 1

Note: The values of 6 for which these functions are defined, we have

ind 1 1
tan 6 = s cosec § = sec ) = cotf =
c

(®)

1
0sf’ sinf’ cosf’ tan 6

These relations (being the basic definitions of trigonometric functions) are very important.
The domains and ranges of trigonometric functions are given in Table 5.3.

5.4 USEFUL CONCEPTS AND DEFINITIONS

=

(a) Trigonometric Ratios of Coterminal Angles: The trigonometric ratios are defined in

terms of coordinates (x, y) of a point P and its (constant) distance r from the origin.
Accordingly, the trigonometric ratios of coterminal angles are equal. Thus, the tri-
gonometric ratios of 60° and any other angle of measure 60° + (n x 360°) (where nis an
integer) are same.

Trigonometric Ratios of an Angle of Large Measure: To find the trigonometric ratios of
an angle of large measure (which is greater than 360°), we find one coterminal angle
whose measure @ is such that 0 < 6 < 360°.

Then, the trigonometric ratios of the angle € are the same as the trigonometric ratios of
the given (large) angle. Furthermore, the concept of allied angles [discussed below in
(e)] will be found useful in computing the trigonometric ratios of any angle in terms of
the trigonometric ratios of any (small) angle 6 where 0 < 6 < 90°.

Quadrantal Angles: All angles that are integral multiples of n/2 are called quadrantal
angles: Some such angles are shown in the Figure 5.17.

Definition (Angle in a Quadrant): An angle is said to be in a quadrant in which the
terminal side of the angle lies.®

(e) Allied Angles: Two angles are said to be allied angles if the sum or difference of their

measures is either zero or an integral multiple of 90°. Thus, if 0 is the measure of a given
angle, then the angles whose measures are —6, 90° + 6, 180° £ 6, 270° £+ 6, 360° £ 6,

® Note that for an obtuse angle 6, the terminal side lies in the second quadrant, whereas the angle 6 covers partly the second
quadrant (see Figure 5.14). However, in view of this definition, the acute angle (180° — 6) in the second quadrant is
considered for defining the trigonometric ratios of the angle 6. This definition is important because we can define sin § and
cos 0 by considering the reference right-angled triangle in the second quadrant, in which the terminal arm (lying in the
second quadrant) is taken as hypotenuse, and the acute angle made with the x-axis is taken as the reference angle. The same
understanding is applicable for the location of the terminal arm in any quadrant.
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FIGURE 5.17 Coterminal angles.

and so on are its allied angles. Our interest lies in finding their trigonometric ratios in
terms of those of 6.

If we are given an angle of any measure (large or small), then its trigonometric
ratios can be found in terms of trigonometric ratios of a small angle 6 (where 6 lies
between 0° and 90°). For this purpose, we must express the given angle in the form of
an allied angle.

If the trigonometric ratios of the (small) angle 6 are known, then the procedure that
we are going to discuss will help us find the trigonometric ratios of the given angle in
terms of those of 0. The procedure (i.e., the rules) under consideration suggests that for
writing the trigonometric ratios of allied angles, we shall need the sine and cosine
ratios of 90° and 180°.
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In fact, we have already obtained the values of trigonometric ratios of 0°, 90°, and 180° using the
unit circle in the standard position and have reflected them in Table 5.2 along with the values for
some other angles frequently used. Besides, the tables for trigonometric ratios for angles of
measures between 0° and 90° have been published. This can be used to find the trigonometric
ratios of angles of large measures.

Note: Here, it may be mentioned that the trigonometric ratios of the angles of measure 30°,45°,
and 60° can be easily obtained by drawing the right-angled triangles and using geometry. It is
convenient to take a hypotenuse of unit length.

We give three important points for expressing trigonometric ratios of an allied angle in terms
of an angle 6 whose trigonometric ratios are known.

(i) The signs of trigonometric ratios are governed by the location of terminal side in
different quadrants. This is indicated in the following graph.

sin and cosec positive, all others negative (second All ratios positive (first quadrant)
quadrant)

=+ | ()

== | (=9

tan and cot positive, all others negative (third cos and sec positive, all others negative (fourth
quadrant) quadrant)

Note: Observe that every trigonometric ratio (and its reciprocal) has a positive sign in
two quadrants and a negative sign in the remaining two quadrants. Therefore, if a single
trigonometric ratio is given, then it is not possible to determine exactly the quadrant in
which the terminal side is located.

For example, both sin 30° and sin 150° have the same value 1/2. Similarly, both cos
45° and cos —45° have the same value /2,2 and likewise tan 60° and tan 240° have the
same value v/3/2.

The location of the terminal side (and hence the measure of angle involved) can
be uniquely determined iff the values of two independent trigonometric ratios are given.
This will become more clear from the solved examples to follow subsequently.

(ii) Ifthe revolving line bounds the angle § with x-axis, then the trigonometric ratio remains
unchanged, when expressed in terms of ¢, while the sign of the ratio is governed by (i)
above.

Example (1):
sin 210° = sin (180° + 30°) = —sin 30
sec (150°) = sec (180° — 30°) = —sec 30°
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(iii) Ifthe revolving line bounds the angle § with y-axis, then the trigonometric ratio changes
to the corresponding coratio, when expressed in terms of 6, the sign of the ratio being
governed by (i) above. Thus,

sin 120° = sin (90° + 30°) = cos 30°
tan 240° = tan (270° — 30°) = cot 30°

cot 300° = cot (270° + 30°) = —tan 30° and so on

5.5 TWO IMPORTANT PROPERTIES OF TRIGONOMETRIC FUNCTIONS

Now we introduce the following notions that will be needed to define two important properties
of trigonometric functions.

5.5.1 Notion of Even and Odd Functions
5.5.1.1 Even Function A function is said to be even if f{—x) = f(x) for all x.
Example (2):
(a) A polynomial function of the following form is an even function:
p(x) = ap + a;x* + ax* + ...+ a,x*"

Observe that the power of x in each term is an even integer.

(b) We have already seen that cos (—x) = cos x for all x. Thus, the cosine function is an
even function.

(c) A constant function is always even (how?).
5.5.1.2 0Odd Function A function fis said to be odd if f{—x) = —f(x) for all x.
Example (3):

(a) It can be easily verified that the functions f{x) = x and g(x) = x> are odd functions.

In fact, any polynomial function in which the power of each term is an odd integer is
an odd function.

(b) We have also seen that for all x,
sin (—x) = —sinx
tan (—x) = —tan x

Thus, the sine and the tangent functions are odd functions.

Note: The property of functions whether even or odd is very useful. In particular, it helps in
drawing graph of such functions.
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5.5.2 The Notion of Periodic Function

Definition: A function f: R — R is said to be periodic, if there exists a real number p (p # 0)
such that f(x + p) = fix) for all x € R.

Period of a Periodic Function: If a function fis periodic, then the smallest p > 0, if it exists
such that fix + p) = f(x) for all x, is called the period of the function. Obviously, the period
of the sine and cosine functions is 2. It can be shown that the period of the tangent function
(and that of the cotangent function) is 7.

Remark: A periodic functionmaynot have a period. Note that a constant function fis periodic as

fix + p) = f(x) = constantforall p > 0; however, thereisnosmallestp > 0 for which therelation
holds. Hence, there is no period of this function, though it is periodic by definition. The periodicity
of trigonometric functions helps us to compute their values for large angles greater than 27.

5.6 GRAPHS OF TRIGONOMETRIC FUNCTIONS

The graph of a periodic function is completely known once we know it over an interval whose
length is equal to the period of the function. We have already seen that values of sin x and cos x
repeat after an interval of 2n. Hence, values of cosec x and sec x will also repeat after an interval
of 2n. Also, we know thattan (r + x) = tan x. Hence, value of tan x is repeated after an interval
of m. Using this knowledge and the behavior of trigonometric functions, we can sketch the
graphs of these functions, as given in Figure 5.18a—f.

5.7 TRIGONOMETRIC IDENTITIES AND TRIGONOMETRIC EQUATIONS

Definition: An equation involving trigonometric functions, which is true for all those angles
for which the functions are defined, is called a trigonometric identity. For example, the
statements, sin”@ + cos®# = 1andsin 26 = 2sin #-cos 0 are trigonometric identities. They are
true for all values of 6. Similarly, the statement tan § = sin 6/cos 6 is a trigonometric identity.
It holds for all 8, except for those values for which cos 6 = 0.

Note: In a trigonometric identity, two or more numbers (i.e., angles in radians) may be
connected by a relation existing among their circular functions, as shown in the statement
sin 260 = 2sin §-cos 6.

Definition: An equation of the form
sin § = cos 0

is a trigonometric equation but not a trigonometric identity, because it is not true for all 6. For
example, if § = 7/2, then sin (7/2) = 1, whereas cos /2 = 0. Thus, sin § # cos 6, for = 7/2.

Note: Trigonometric identities and solutions of trigonometric equations are very important and
useful in various problems of engineering and science. Simple methods are available to obtain
the solutions of trigonometric equations.

© Solutions of trigonometric equations:
¢ The solutions of trigonometric equations for which 0 <@ < 2 are called principal solutions.
* The solution involving integer n that gives all solutions of a trigonometric equation is called the general solution
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FIGURE 5.18 Graphs of trigonometric functions.

Here, we shall obtain some trigonometric identities and also list below some important

identities used frequently.
Consider a circle of radius r, centered at the origin O(0, 0). Then, distance r between the
origin and any point P(x, y) on the circle (see Figure 5.13a) is given by

x* +y? = r*(using the distance formula)
Substituting for x and y from the definitions cos § = x/r and sin 6 = y/r, we get

r?cos? 6 + r*sin® 0 = r?
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This yields the famous Pythagorean identity
cos® 0 4 sin* 0 = 1

Since we normally use x to represent points in the domain of a function, we will usually follow
that convention for sine and cosine functions and replace 6 by x. Thus, the above identity
becomes

sin®x + cos’x = 1 9)

The next two identities are obtained by dividing both sides of equation (9) by cos®x and sin’x,
respectively. We have

tan’x + 1 = sec’x

1 + cot’x = cosec’x

These two identities are also called Pythagorean identities. Next, the following five important
identities follow from the definitions of tan x, cot x, sec x, and cosec X:

sin x cos X .
tanx = ——,cotx = ——,sinx-cosecx = 1,cos x-sec x = l,and tan x - cot x = 1
cos X sin x

These eight identities are called fundamental trigonometric identities (or basic trigonometric
identities).

Also, we have discussed that sin (—x) = —sin x and cos (—x) = cos x (x)

Besides, it is easily proved (using geometry and the definitions of sine and cosine
functions) that

sin (x £ y) = sinxcosy £ cosxsiny
and
cos (x +y) = cos x cos y =+ cos x - siny (¥*)

The list of trigonometric identities is very large. Memorizing every trigonometric identity is out
of question. It is wiser to memorize only the basic eight identities and those indicated by (*)
and (**).

These are the most important ones. Other trigonometric identities can be derived using these
identities. For convenience, we give below a list of several of the more useful trigonometric
identities frequently used (including those mentioned above):

2x=1 (10)

sin®x -+ cos
sec’x = 1 + tan®x (11)

cosec’x = 1 + cot’x (12)
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sin (x +y) = sinxcosy + cosxsiny
sin (x —y) =sinxcosy — cosxsiny
(13)
cos (x +y) =cosxcosy — sinxsiny
cos (x —y) =cosxcosy + sinxsiny
tan x + tan
tan (x + ) _ fanxttany
l —tanxtany (14)
tanx — tany
tan (x —y) =

1+ tanxtany

Other important trigonometric identities, listed below [from (6) onward] can be derived from
the above identities.

. . . 2 tan x 2tan x
sin2x =2sinxcosx, sin2x=-———, tan2x=-———>—
1 + tan® x 1 —tan® x
cos 2x = cos® x — sin’ x
=1 — 2sin’x ] .
— tan® x
Cos2x =——+— 15
=2cos?x — 1 1 + tan? x (1)
. 2 1 —cos2x
Losinf x = ——
2
1 + cos 2x
andc:oszxzi2

sin3x = 3sinx — 4sin’ x

3tanx — tan® x
tan3x =————— 16
anax 1 — 3tan? x (16)

cos3x =4 cos® x —3cos x

sin (x + 2nm) = sin x
{ (17)
cos (x + 2nm) = cos x
sin (—x) = —sinx
{ (18)
cos (—x) = cosx
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. (T . (T
sin (E — x) = COS X, Sin (E + x) = COS X,

T . T .
cos (f - x) =sin X, cos (E + x) = —sin X,

2
. T b
tanx + tany sin 5 = 1 and cos 5= 0 (19)
tan (x 4 y) = o Y
1 —tanxtany
t — t
tan (x — y) = an x any’
1 4+ tanxtany
2t
tan2x=$,
1 —tan?x
t <n+> 1+tanx{t r 1} tanrt (n—i-x)] tan(n x) cot(n—i-x)
an(—+x)=——|tan—=1/, —— (= = ——Xx)= -
4 1 —tanx’ 4 2 \4 4 4
tan(z—x>:7l_tanx, (20)
4 1 +tanx
A+B A—B
sinA +sinB = 2sin + ~cosT
A—B
sinA —sinB = 2cos -si 5
(21)
A—B
cosA + cosB = 2cos ~cosT
. . A—-B
cosA — cosB = —2sin -sin 2

These identities are expressed in the following useful forms.

1
sinAcosB = 5 [sin (A + B) +sin (A — B)]
Usefulness in solving problems :

1
sin5xcosx = 3 [sin 6x 4 sin 4x] (22a)

1 1
sin5xcos 7x = 3 [sin 12x + sin (—2x)] = 3 [sin 12x — sin2x]

[Note : cosA - sinB = sin B - cos A]
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1
cosAcosB = 5 [cos (A + B) +cos (A — B)]
Usefulness in solving problems :

1
cos 5xcos 3x = S [c0s 8x + c0s 2] (22b)

1
cos2xcos5x = 3 [cos 7x + cos (—3x)]

1
=3 [cos7x +cos3x] [."cos (—x) = cosx]

1
sinA-sinB = 3 [cos (A —B) — cos (A + B)]
Usefulness in solving problems:

. . 1
sin3x-sin2x = 3 [cosx — cos 5x] (22¢)

1
sin3x-sin5x = 3 [cos (—2x) — cos 8x]

1
=3 [cos 2x — cos 8x]

5.8 REVISION OF CERTAIN IDEAS IN TRIGONOMETRY

It is useful to revise the following important points discussed in this chapter.

(a)

(b)

In our school geometry, the definitions of trigonometric ratios are introduced for an
acute angle in a right-angled triangle in terms of the ratios of its sides. Then, the concept
of angle is extended to define directed angles that could have any magnitude (positive,
Zero, or negative).

Using the concept of radian measure of an angle, the directed angles are identified
with real numbers, and vice versa. This helps in defining trigonometric ratios for angles
having any magnitude (i.e., trigonometric functions of real numbers).

The values of trigonometric functions (i.e., trigonometric ratios for angles of any
magnitude) are still defined with reference to an acute angle in a right-angled triangle
as follows:

We choose on the revolving line (generating an angle ) a point P anywhere (other
than the origin) and draw a perpendicular PM on the x-axis, as shown in Figure 5.19.

The values of trigonometric functions of an angle 6 are then defined (as usual) for the
acute angle /POM, made by the revolving line with the x-axis, the reference right-
angled triangle being AOMP. Depending on the position of the revolving line, this
triangle may be in any quadrant with OM as the base segment and MP as the
perpendicular segment.

In the standard unit circle, if we change the (directed) angle 6, then the magnitude(s)
of the (directed) line segment(s) OM and MP must change. The sign of any
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FIGURE 5.19

trigonometric ratio depends on the signs of these signed line segments. Accordingly, the
values of trigonometric functions (for different angles) have different values, and their
signs depend on the position of the terminal side. [The hypotenuse (being a line segment
of the revolving line) is treated as undirected segment, and hence identified with a
positive number.]

Recall that the functions sin § and cos 6§ are the two basic trigonometric functions that
are independent of each other. The remaining four trigonometric functions (i.e., tan 6,
cot 6, sec 0, and cosec 6) are defined in terms of sin # and cos 6.

Coordinate geometry plays a very important role in defining trigonometric functions.
‘We may choose the point P anywhere on the revolving line (except at the origin) and the
trigonometric ratios are defined on the basis of coordinates of P.

Definitions of trigonometric functions are justified, based on the following two

facts:
(1) The value of each trigonometric function is independent of the position of P on the
revolving line [see Figure 5.13b: (i) and (ii)].
(i) The values of trigonometric functions depend on the position of the terminal side
in different quadrants.
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(d) We know that each trigonometric ratio (and its reciprocal) is positive in two quadrants
and negative in the remaining two quadrants. Hence, even if we are given the value of
any one trigonometric function, it is not possible to find exactly the quadrant in which
the terminal lies (depending on the quadrant in which the terminal side lies, we say that
the angle in question lies in that quadrant).

Hence, to be able to determine the position of the terminal side exactly, it is
necessary that the values of two independent trigonometric functions are given. Also,
if the value of a single trigonometric function is given and the quadrant in which the
angle x lies is also given, then we can find out exactly the values of all other
trigonometric ratios for the angle x.

(e) Recall that if the Cartesian coordinates of a point P are (x, y) and its polar coordinates are
(r, 8), then we have

x=rcosfandy =rsinf (23)

where

r:\/xz—o—yzandtanezz (24)

X

The relations (23) and (24) enable us to change the coordinates of a point from one system to
the other. In view of the relations at (23), we have

P(x,y) = P(rcos @, rsin0)

We know (as already discussed in Chapter 4) that the polar coordinates differ from Cartesian
coordinates as follows:

With each point P in the coordinate plane is associated a unique pair of Cartesian
coordinates (X, y), and, conversely, with each ordered pair of real numbers is associated a
unique point in the coordinate plane.

On the other hand, each ordered pair (r, §) determines a point uniquely, but if  is the
amplitude of P (which means that if 6 is the varying quantity) then all ordered pairs of the
form (r, 6 4+ 2nm), where n is an integer, correspond to the same point. Thus, an unlimited
number of ordered pairs (r, § + 2nm) represent the same point in the polar coordinate
system.

Note: If 6 is the radian measure of the angle involved and r is treated as the undirected
distance from the origin O to P (i.e., r = |OP|), then one set of polar coordinates of P is
given by r and 6, denoted by (r, 0 + 2nn).

On the other hand, if r is treated as the directed distance (with usual convention of signs),
then we get another set of polar coordinates of P in which r is negative (details are already
discussed toward the end of Chapter 4).

5.8.1 Illustrative Solved Examples: Revision of Useful Concept in Trigonometry

Example (4): Write the sign of sin 2.
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Solution: sin 2 means sine of that angle whose measure is 2 rad. We know that n rad ~ 3.14.
Therefore, (n/2) =~ 1.57. Thus, (n/2) < 2 < ©. It means that the angle of measure 2 rad lies in the
second quadrant. Therefore, sin 2 is positive. Ans.

(Note that, cos 2 is negative and tan 2 must also be negative.)

Example (5): If the x-coordinate of a point on the unit circle is 8/17, find its y-coordinate.

Solution: Let the y-coordinate of the point on the unit circle be y.

X4y =1
8\ ) 64 225 [(15\°
i =1 =l = (22
<17) T oy 289 289 \17
15
L y=4-2 Ans.
oy 17 Ans

Example (6): Given sin x =—(3/5). State in which quadrants can the angle x lie."'?’

Solution: Since sin x is given to be a negative number, the angle x must lie in third or fourth
quadrant. Ans.

(If tan x is a negative number, then x must lie in the second and fourth quadrants; and if cos x is
negative, then x must lie in the second and third quadrants.)

Example (7): If sinx =—(3/5) and cos x =—(4/5), state the quadrant in which the angle x
lies.

Solution: We know that sin x is negative in the third and fourth quadrants and cos x is negative
in the second and third quadrants. Thus, both the given conditions are satisfied if x lies in the

third quadrant. Ans.

Example (8): Find the values of trigonometric functions sin x, cos x, and tan x of an angle x in
standard position whose terminal arm passes through the point P(—3, 4).

Solution: The distance of the point P(—3, 4) from the origin O(0, 0) is given by

r:opz\ﬂ—3—0f+w4—m2: 9+16=>5

y — coordinate of P 4
r o5

c.osinx =

X — coordinate of P -3 3
COS X = = ? = g

r

(0 Recall that angle x is said to be in that quadrant in which the terminal side of the angle lies.
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and

Example (9): If cos x =—(3/5), and x lies in the third quadrant, find the values of other five
trigonometric functions.

Solutlon. We haVe COsS X 7—(3/5).
5
So8eCx = 3

(Now we can use the identity sin?x + cos’x = 1 to compute the value(s) of sin x.)
We have

2 2

x =1—cos“x

(3 01

o 5) 25 5
16 4
csinx=44/—=+—
. sSin X 25 5

But, it is given that x lies in the third quadrant that means that sin x is negative. Therefore, we
take the value of sinx = —(4/5). Accordingly, we have cosec x = —(5/4). Furthermore,
we have tan x = (sin x/cos x) = 4/3, and cotx = 3/4 Ans.

sin

Note: This example tells us about the usefulness of trigonometric identities.

Example (10): Find the values of the other five trigonometric functions if tan x = —(5/12)
and Xx lies in the second quadrant.

Solution: Since tan x = —(5/12), we have

cot 12
otx = ——
5

The identity sin®x + cos>x = 1 suggests that (by dividing both sides by cosx)

5\ 2
tan’x + 1 = sec’x = (—E) +1 = sec’x

or

oty 25 160 (13 :
h 144~ 144 \12
13

=+
sec x 2
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But x lies in second quadrant, which means that sec x must be negative.

13
.SeC X = _E

12
. COS X = —E

Furthermore, we have

sin x . 5 12 5 (11)
tanx =—— = sinx =tanx-cosx=|—— |- | —— | =
Ccos X 12 13

and

Example (11): Given sin x = 5/6, find cos x.

125

Solution: We know that sin x is positive in the first and second quadrants. We have sin®x +

cos’x = 1

5\ 2
cos?x=1—sin’x=1— (7)

6
_,.».n
36 36
11
. cosx=i% Ans.

(Note that cos x = —(1/11/6) when the angle x is in the second quadrant).

Example (12): Given sin x = 5/6, find cosec x and cot x.

Solution: Since sin x = 5/6, it follows that cosec x = 6/5. Furthermore, in Example (8),
we have shown that for the given value of sin x, there are two values of cosx :+v/11/6

and —(V/11/6).

Accordingly, cot x will have two values:

VI g

(D 1t is convenient to compute sin x using the identity sin = tan x-cos x, rather than using any other identity.
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Example (13): Fill in the blanks:

(a) If cot x = —1 and sec x = 1/2, then x must lie in _ quadrant.
(b) If sinx = —(3/5) and cos x = 4/5, then x must lie in _ quadrant.

Solution:

(a) cot x is negative in the second and fourth quadrants. On the other hand, sec x is positive
in the first and fourth quadrants.
Therefore, x must lie in the fourth quadrant. Ans.

(b) sin x is negative in the third and fourth quadrants, while cos x is positive in the first and
fourth quadrants.
Therefore, x must lie in the fourth quadrant. Ans.

Example (14): The coordinates of P are (4 cos 6, 4 sin ). Find |OP| if O is the origin.

Solution: If (r, 0) are the polar coordinates of a point whose Cartesian coordinates are (x, y),
then we have x = r cos 6 and y = r sin 6.

On comparing we get r = 4 in this problem.
.. |OP| = 4 Ans.
Example (15): Convert x = « into polar form.

Solution: By the relation between Cartesian coordinates and polar coordinates, we have x = r
cos 6.

. rcosf = a. Ans.
Exercises

Q. (1) Find the values of sin x, sec x, and tan x under the following conditions:

(a) cos x = 12/13, x lies in the first quadrant.

EIE]
13712712

(b) tan x = 1/3, x lies in the third quadrant.

1 V101
Ans. — ——, — Y
V10 33
(c) sinx = —(3/5) and tan x is positive.
A 2 5 2
ns. — -, ———,—
57 V21'V21



REVISION OF CERTAIN IDEAS IN TRIGONOMETRY

127
Q. (2) Find the values of all trigonometric functions:
() If cot x = 2/3, x lies in the third quadrant.
Ans.sinx = ———, cosx = —i tan x :i cosec X = —@ secx = —@
V13’ V13’ 2’ 37 2

(i1) If tan x = —5, x lies in the fourth quadrant.

5 1
Ans.sinx = ———, cosx = ———, tanx = —5, sec x = V26,
V26 V26
V26 1
cosecx = ———,cotx = ——

5 5



6 More About Functions

6.1 INTRODUCTION

In Chapter 2, we defined a function as a special relation on the basis of set theory and discussed
the related terminology. In this chapter, we think of a function as a machine. It will be found that
this way of looking at a function is more useful than the earlier definitions.

The first important step toward learning the subject of calculus is to understand clearly
the concept of numerical function, by which we mean those functions in which both the
domain and the range consist of real numbers. The numerical functions of interest (in
calculus) are those that are defined on intervals. They may be defined by one, or more

formulas, given as follows: "
f(x)=5x+2, x € R (1)
2x+3, x<0

— 2
w0 ={3000 ) @

X2 -9

h(x) =——
() =22 x #£3 ()

Many functions arise as combinations of other functions. It is, therefore, necessary to
discuss different methods of combining functions and find out the domain(s) of such
combinations. Recall that a single letter f (or g or h or F, etc.) is used to name a function and
that f(x) denotes the value that the function “f” assigns to “x”. We read f(x) as “f of x” or
“the value of f at x”.

6.2 FUNCTION AS A MACHINE

We can think of a function as a machine (see Figure 6.1) that takes the members “x” of the domain
and applies a rule (does something) to each “x”, to produce the members “f(x)” of the range.
Consider the function at (1) above.

What must you know to learn calculus? 6-More about functions (Function as a machine, combinations, and
ipositions of functions and their d ins)

[

M Though we are going to discuss only simple algebraic functions here, other functions of our interest (namely,
trigonometric, logarithmic, exponential, and hyperbolic, etc.) and their properties are discussed later at appropriate places.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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x (input)

l

fx—>5x+2
S5x+2
(output)

FIGURE 6.1 Function as a machine.

Here, the name of the machine is “f”, and “rule of the machine” (or the operation of the
machine) is given by

fix—5x+2

This operation converts each x (of the domain) into 5x + 2. Thus, the number “0” fed into
the machine is converted into the number 2. Similarly, 1/5 is converted into 3, —2/5 is converted
into “0”, v/2 is converted into 5v/2 + 2, and so on. In view of the above, we give the following
definition:

Definition: A function is an operation that assigns to each input number exactly one output
2)
number.

6.3 DOMAIN AND RANGE

The set of all input numbers that can be used in the operation is called the domain of the
function. The set of all output numbers is called the range.

6.3.1 Natural Domain

When no domain is specified for a function, we always take the domain as the largest set of real
numbers for which the rule of the function makes sense and gives real number values. This is
called the natural domain of the function.

For example, the natural domain forf(x) = 1/(x — 5)is {x € R|x # 5}. Weexclude 5 to
avoid division by 0. Similarly, g(x) = /X has the natural domain [0, co) since this function is
defined only for x > 0.

6.4 DEPENDENT AND INDEPENDENT VARIABLES

In calculus, we deal with functions, which are defined by formulas expressing dependence of
one quantity on another. When two variables are related to one another, strictly speaking,
either variable may be expressed in terms of the other. In most situations, it is more natural to
regard the variation of one as independent of other, in a way controlling the variation of the

@) We stress two key points in the definition:
(i) A function must make an assignment to each number in the domain.
(ii) A function can assign only one number to any given number in the domain.
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other. (For example, it is more appropriate to say that income tax depends on the income, than
it is to say it the other way round.) Similarly, we say that

e Area of a circle depends on its radius.
A(r) = i’ [A is a function of “r”

e Volume of a sphere depends on its radius.
V(r) =%mr [V is a function of “r”]

o Surface area of a cube depends on the length of its side
S(x) = 6x2 [S is a function of “x”]

When the rule for a function is given by an equation of the form y = f(x) (e.g.,y = x° + 7x*
—2x + 3), x is called the independent variable and y or f(x), the dependent variable. This
is a numerical function and its domain must be a set of real numbers. Any element of the domain
must be chosen independently (as a value of the independent variable) and this choice completely
determines the corresponding value of the dependent variable, y or f(x). We say that the value f(x)
depends on the chosen value of x. In other words, the value f(x) changes with x.

Note: We shall sometimes, by abuse of notation, speak of the function f(x), but strictly
speaking, “f” is the function and “f(x)” is the value of the function fat x. Whenever we speak of
“the function f(x)”, we shall generally mean “the value f(x)”. However, if “f(x)” is used to stand
for a function, we must read it as a function “f” of “x”. The meaning of the symbol f(x) will be
clear from the context.

Now, consider the functionf: x — X —4. Here, the function “f”’ converts each number “x” (of
the domain) into x> — 4. We write f(x) = x> —4,

Thus, f(2)=2>—-4=4
f-D = (-1)' 4= -5,
fla)=a -4
fla+h)=(a+h? —4=d®+3d*h+3ah*+h -4

Study the following examples carefully. They will play an important role later.

Example (1): For f(x) = x*>—2x, find and simplify

(@ f4),

(b) f4 + h),

(c) f(4 + h)—f(4),

(d) [f(@& + h) —f(4))/h, where h 0.

Solution:
(a) f(4) =4*—2(4)=16—-8=38
) f(A+h) = (4+h)* =204 +h) = [4 +24)h+ 1] —2(4 +h)
=16+8h+h*—8—2h
=h*+6h+8
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() f(4+h)—f(4)= (K> +6h+8) —8=h+6h

fA+h)—f(4) h*+6h h(h+6)
h ~ h T h

(d) =h+6(h #0)

Example (2): Find the natural domain for ¢(t) = V9 — .

Solution: Here, we must restrict “#’ so that 9 — 1220, in order to avoid nonreal values
for v/9 — 2. This is achieved by requiring that 9> 7% or ¥* <9 or |t | <3. Thus, the natural

domain of ¢ is {¢ € R: |7]< 3}. In interval notation, we can write the domain as [—3,3].
6.5 TWO SPECIAL FUNCTIONS
We give below, two very special functions that will be used in many contexts.

(i) The Absolute Value Function | | (Figure 6.2) is defined by

x if x>0
]x]: —x if x<0

Note that the graph of |x| has a sharp corner at the origin.

y

y=1x
FIGURE 6.2 Absolute value function, y = |x|.

(ii) The Greatest Integer Function [ ] is defined by [x] = the greatest integer less than or
equal to x. Thus, [2.1] = 2, [1.99] = 1, [-2.5] = 3.
Its domain is the set of all real numbers and its range consists of all the integers.
The graph of [x] takes a jump at each integer (Figure 6.3).

6.6 COMBINING FUNCTIONS
Functions are not numbers. But, just as two numbers a and b can be added to produce a new

number (a + b), two functions fand g can be added to produce a new function (f + g). This is
just one of the several operations on functions. We shall consider the combinations and
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y
5+ )
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3 oo |
2 e | |
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FIGURE 6.3 The greatest integer function, y = [x] = the greatest integer less than or equal to x.

compositions of functions, together with some special cases of combinations, under the
following heads:

o Sums, differences, products, and quotients of functions.

e Some simple functions and their combinations: constant function, identity function,
polynomial function, linear function, and rational functions.

¢ Power functions.
e Root functions.
¢ Raising a function to a power.

¢ Composition of functions.

6.6.1 Sums, Differences, Products and Quotients of Functions

Let f and g be functions. We define the sum f + g, the difference f— g, and the product f-g to
be the functions whose domains consist of all those numbers that are common in the domains
of both f and g and whose rules are given by

(f +2)(x) =f(x) + g(x)
(f —&)(x) =f(x) —g(x)
(f-g)(x) =f(x)-g(x)

In each case, the domain is the expected one, consisting of those values of x for which both
f(x) and g(x) are defined. Next, because division by 0 is excluded, we give the definition of
quotient of two functions separately as follows:

The quotient flg is the function whose domain consists of all numbers x in the domains of
both f and g for which g(x) # 0, and whose rule is given by

(E)w =23, g 2 0
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Example (3): Let f(x) = 1/x and g(x) = v/x. Let us find the domain and rule of f + g.

Solution: The domain of fis {x € R|x # 0} and the domain of g is {x € R|x > 0}. The
only numbers in both domains are the positive numbers, which constitute the domain
of f+ g.

For the rule, we have

(f +8) () =f(x) + g(x) = -+ VX for x>0

T x
Example (4): Letf(x) =v4—x? and g(x) =+x — 1. Let us find the domain and rule
of fg.
Solution: The domain of fis the interval [—2, 2] and the domain of g is the interval [1,00).
.. The domain of f-g = [—2, 2] N [1,00] = [1,2]. The rule of f-g is given by

(f-8)(x) =f(x) - 8(x)
=V4—x2 Vx—T=/(4—-x2)(x—1) for 1<x<2

Caution: This example illustrates a surprising fact about the domain of combination of
functions. We found that the domain of f-g is the interval [1,2]. Now observe that the
expression /(4 — x%)(x — 1) is also meaningful for x in (—oo, —2]. This is true because
4—-x* (x—1)>0, x<—2. However, (—oco, —2] cannot be considered a part of
the domain of f-g. By definition, the domain of the resulting function f-g consists of those
values of x common to domains of fand g. It is not to be determined from the expression (or
the rule) for f'g. Similar comments hold for the domains of f + g and f—g. For the domain
of flg, there is an additional requirement that the values of x, for which g(x) = 0, are
excluded.

Example (5): Letf(x) = x + 3 and g(x) = (x—3) (x + 2). Let us find the domain and rule
of fig.

Solution: Observe that the domains of fand g are all real numbers, but g(x) = 0, for x = 3
and —2. It follows that the domain of flg consists of all real numbers except —2 and 3. The
rule of flg is given by

Jix:@:$ orx # —2 and x
(g) g(x)  (x=3)(x+2) f # -2 d #3

Note: We can add or multiply more than two functions. For example, if f, g, and / are functions,
then for all x common to the domains of f, g, and i, we have (f + g + h) (x) = f(x) + g(x) +
h(x) and (f-g-h) x = f(x)-g(x)-h(x).
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6.6.2 Some Simple Algebraic Functions and Their Combinations
(a) Constant Function: A function of the form f(x) = a, where “a” is a nonzero real
number (i.e., a#0), is called a constant function.®
(The range of a constant function consists of only one nonzero number.)
(b) Identity Function: The function f(x) = x is called the identity function.
From the functions at (a) and (b) above, we can build many important functions of
calculus: polynomials, rational functions, power functions, root functions, and so on.
(¢) Polynomial Function: Any function, that can be obtained from the constant functions
and the identity function by using the operations of addition, subtraction, and
multiplication, is called a polynomial function. This amounts to saying that “f” is a
polynomial function, if it is of the form

f(X) =ax" + a1 X"+ -+ a3 + X+ ax +ag

where ay, ay, a,,. .., a, are real numbers (a, # 0) and n is a nonnegative integer.
If the coefficient a, # 0, then “n” (in x"), the nonnegative integral exponent of x, is
called the degree of the polynomial. Obviously, the degree of constant functions is zero.””

o Linear Function: Polynomials of degree 1 are called linear functions. They are of the
form f(x) = a;x + aog, with a; #0. Note that, the identity function [ f(x) = x] is a
particular linear function.

o f(X) = ax® 4+ ar1x + ay is a second degree polynomial, called a quadratic function.
If the degree of the polynomial is 3, the function is called a cubic function.

o Rational Functions: Quotients of polynomials are called rational functions. Examples
are as follows:

Fx) =0 £3) =" + V5,

x> —2x+n _x2+x72

fW === 5 W =a15"%

Example (6): Let f(x) = vézj;jﬁ. Let us find the domain of f.

Solution: We have x* + 5x—6 = (x — 1) (x + 6). Therefore, the denominator is 0 for x = 1
and x = —6. Thus, the domain of f consists of all numbers except 1 and —6.

Remark: Sometimes, it may happen that both the numerator and the denominator have
a common factor. For example, we have X H+x—2=(x-1D(x+2),and x> + 5x—6 =
x=D&x+06

® Note that we do not call the function f(x) = 0, as a constant function. A special case of product occurs when one of the
functions is a constant function: g(x) = ¢ for all x. For any function f, the domain of the product, c-f, is the same as the
domain of f.

@ we distinguish between a zero-degree polynomial and a zero polynomial denoted by “0”. Remember that while the
degree of a constant polynomial is zero, the degree of zero polynomial is not defined. It can be easily seen why the degree of
a zero polynomial cannot be defined. Accordingly, though some authors consider “0” as a special constant polynomial, but
we shall not identify it as a constant polynomial.
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. _X2+X_2_(x71)(x+2)
-f(x)_x2+5x—6_ (x = 1)(x+6)

which may be simplified to read (x + 2)/(x + 6), provided x # 1.

Note that, while the expression (x + 2)/(x + 6) is meaningful for x = 1, the number 1 is
not in the domain of function f.

(This again suggests that the domain of a combination of functions must be determined
from the original description of the function(s), and not from their simplified form.)

6.6.3

Power Functions

These are functions, of the form f(x) = x", where n is an integer.

1" —4 _—n(5)

Examples are DA S S
We know that

The domain of x" consists of all real numbers, if n > 0. If n <0 (i.e., if n is a negative integer)
then the domain consists of all real numbers excep? 0, since division by 0 is not defined.

Remark: Every power function is a rational function, but the converse is not true.

6.6.4

(a)

(b)

©)

Root Functions
Square root function: Consider the relation y? = x. We write it as y = V/x or x'2 and
call it the square root function of x. We know that there is no real number whose square
is a negative number. Hence, we define square root function f(x) = /x that assigns to
each nonnegative number x the nonnegative number f(x).©

We emphasize that \/x is defined only for x >0 and that \/x > 0, for all x> 0.

Accordingly, it is meaningful to write V3, \/ﬁ';‘, and /0, and so on, but v/=5 has no
meaning. Furthermore, while \/4_1 = 12, we write \/4_1 =2

(We never write v/4 = —2.)
Cube Root Function: Consider the relation y* = x. We write it as y = V/xorx"”, and
call it the cube root function. It assigns to any number x, the unique number y such that
y? = x. Of course, our interest lies only in real roots.

In contrast to the square root function, the cube root function has in its domain a//
real numbers, including negative numbers. For example, v—1 = —1, v/—8 = -2,

and /—27/64 = —3 /4. Similarly v/8 = 2,v/125 = 5, and v/—125 = —5. Thus cube

root of any negative number is a negative number and that of any positive number is a

1/3
5

positive number.

)

nth Root Function: We note that cube root function “y/x” is defined for all real
numbers x, whereas square root function “/x” is defined only for x >0 with the
understanding that\/x > 0 (i.e., only nonnegative square roots are accepted). By

) Note that power functions are a special class of rational functions.
© There is a legitimate relation between square root and absolute value of a number, given by |x| = v/x". This is obtained
from the relation |x|> = x2, which gives the definition of absolute value |x|.
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extending these concepts to the roots of higher order, we get that if n is odd, then
nth root function “\/x” is defined for all real numbers, and on the other hand, if n is

even, then “y/x” is defined only for x > 0.7

Note (1): In view of the above, the expressions v/—1, /=32, and v/—128 are meaningful,
whereas the expressions v/ —1,/—64,and \/—9/4 are meaningless.

Note (2): For every positive integer n, we also have

V1=1 and V0=0

Now, we can define the nth root function, by f(x) = v/x, x > 0, with the understanding that

whenever n is even, we shall consider only positive nth root (i.e., for x >0, /x> 0).

6.7 RAISING A FUNCTION TO A POWER

We may also raise a function to a power. By f”, we mean the function that assigns to x the
value [ f(x)]". Thus, if f(x) = %52 and g(x) = /x, then

-3 27x276x+9
o 4

and
F7200) = )] = 1/[(x = 3)/2] = 4/(x> = 6x +9)

Remark: There is one exception to the above agreement. We never give the power “—1” to f.
We reserve the symbol £ ! for the inverse function, which we have already introduced in
Chapter 2. Thus, f ~'does not mean 1/f.

6.8 COMPOSITION OF FUNCTIONS

This is another way of combining functions that occur frequently in calculus. In fact, obtaining
the composite function of two given functions is a new operation. This (new) operation
consists of carrying out two operations one after the other, as illustrated by the following
example.

=1/4
@ To understand this more clearly, consider V/16= 1/ (2)*= [(2)4] = 2. Though it is also possible to write

1/4
V16= \4/ (72)4: [(72)4} = —2, we discard this negative fourth root of 16 (note that in /16, n is 4, which is even).
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Consider the function, ¢(x) =f(x) =vVx+7
We may look at ¢(x) as the result of carrying out the following two operations, one after the
other:

(1) Add 7 to x. We express this operation by f(x) = x + 7.

(ii) Take the square root of the above result.
We express this operation by g(x) = /x.
(Here, it must be clearly understood that /x stands for +/f(x).)

Thus, ¢(x) is obtained by first applying f to x and then applying g to the resulting value
Jx).

To understand the method of composition of functions, think of two machines, put together,
one after the other, thus making a more complicated machine. Let these machines represent
functions f and g.

If fworks on x to produce f(x) and then g works on f(x) to produce g( f(x)), we say that we
have composed g with f (see Figure 6.4a).

The resulting function is called the composite of g with f, and we denote it by g o f.
Thus,

(gof) (x) = &(f(x))

If g works on x to produce g(x) and then f works on g(x) to producef (g (x)), we say that we have
composed f with g (see Figure 6.4b).
The resulting function is called the composite of f with g, and we denote it by fo g.

X

l

-

\
J)
2

®

g [fw] fleW]
(@) (b)
FIGURE 6.4

l
l
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6.8.1 Definition of a Composite Function

Given the two function f and g, the composite function denoted by (g o f) is defined by
(gof) (x) = &(f(x))

and the domain of g( f(x)) is the set of all numbers x in the domain of f such that f(x) is in the
domain of g.

The definition indicates that when computing (f o g)(x), we first apply g to x and then the
Sfunction f to g(x).

We write

(fog)x) =f(e(x))

Example (7): Let f(x) = %52 and g(x) = \/Xx. We may composite them as follows:

o N =e(r) =e( 52 ). 0 =3

(i) (fog)(x) =f(g(x)) =

Now consider f(¢) = ¢ — (3/2). From this definition of f; it follows that

Fvm) =2

L (fog)(x) =f(g(x) =f(Vx) =

Remark: Note that (g o f) (x)#(f o g) (x). Thus, composition of functions is not
commutative; g o f and f o g are usually different.

6.8.2 Domain of a Composite Function

‘We must be more careful in describing the domain of a composite function. Let f{xx) and g(x)
be defined for certain values of x. Then, the domain of g o fis that part of the domain of f (i.e.,
those values of x) for which g can accept f(x) as input.®

In the above example, the domain of g o fis [3,00), since x must be greater than or equal to 3
in order to give a nonnegative number x — 3/2 for g to work on.

® Thus, the domain of g o fis a subset of the domain of f. Similarly, the domain of f o g is a subset of the domain of g.
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In calculus, we shall often need to take a given function and decompose it (i.e., break it) into
composite pieces.
Usually this can be done in several ways.

Example (8): Consider the function ¢(x) = vx3 + 7.

We can express ¢ as the composition of the two functions g and f, given by f(x) = x* 4+ 7 and

¢(x) = VX

Now, we have

$(x) = (gof) (x) = 8(f(x) =g(x* +7) = Vx* + 7.

Next, we can also express ¢ as the composition of another pair of functions g and f given by

fx) = x> and g(x) = Vx + 7.
Consider 9(x) = (g 0/)(x) = g(f(x)) = (x3) = V3 + 7.

Example (9): Given ¢(x) = —=—

Express ¢ as the composition of two function f and g in two ways:

(i) The function f containing the radical.
(ii) The function g containing the radical.

Solution: To solve such problems, it is necessary to develop the ability of decomposing the
given function into composite pieces.

(i) We choose f(x) = 1/v/x+3 and g(x) = x%.
Now, (f o g)(x) = f(g(x)) =f(x*) = 1/Vx* +3.
(Observe that to express f(g(x)), first we insert the expression for g(x) and obtain f(¢),
where ¢ stands for g(x). Next, we write the expression for f(#) and replace ¢ by g(x).)
(ii) Now, we choose f(x) = 1/xand g(x) = vx% + 3.
Then, |

VX243
(Here again, to express f(g(x)), first we insert the expression for g(x) and obtain f(¢),

where f(7) stands for g(x). Now we look at the expression for f(7), which suggests that we
must take the reciprocal of ¢.)

(fog)(x) =f(g(x)) =f(VX*+3) =

Example (10): Let f(x) = v/x — 1 and g(x) = 1/x. We shall determine the functions g o f
and f o g, and then find g (f(5)) and f(g(1/4)).

©) An important theorem in calculus, called the chain rule (discussed in Chapter 10), involves composite functions. When
applying the chain rule (for computing the derivative of a composite function), it is necessary to think of the given function
as the composition of two other functions.
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Solution: The function g o fis given by

gf() = g(Va—T) = {.,gm _ ,]

The domain of fis [1, 00). Therefore, the domain of g o f consists of those numbers x in [1, 00)
for which g can accept f(x) as input. This demands that

g (\/x — 1) = \/% must be defined, which requires that x # 1. Therefore, the domain of g o f
is (1, 00). ”

The rule for f o g is given by

I
[
—_
—
~
—~
=
I
~
I
—
[

The domain of g is the set of nonzero numbers, that is, (—oo, 0) U (0, co). Therefore,
the domain of f o g consists of those numbers x in the above domain for which f can
accept g(x) as input. This demands that f(1/x) = \/(1/x) — 1 must be defined. It requires

that

1
-—1>0
X

1

= — > 1(xmust be positive with 1/x > 1)
X

=x<1

The domain is (0, 1].

Finally, we have g(f(x)) = 1/vx — 1 and f(g(x)) = /(1/x) — 1

(O = == 7=
) e -
=Vi—1=+3

Note: We shall discuss about trigonometric, exponential, and logarithmic functions and their
various properties (involving their combinations) at appropriate places in corresponding
chapters.
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6.9 EQUALITY OF FUNCTIONS
We say that two functions f and g are equal (or the same) if

(1) fand g have the same domain and

(ii) f(x) = g(x), for each x in the common domain.

Thus, f(x) = x% (1 <x<3) and
g(x) = X%, (1 < x <4), define two distinct functions because their domains are different.
On the other hand, the equations

f(x) =x%x >3,
g(x) = (x—1)" =2x = 1,x > 3,and h(y) = %,y > 3

represent the same function because their domains are identical and their rules assign the same
numerical number to each element (number) in the domain.

To summarize, if two functions have the same domain and assign the same value to each
number in their domain, then they are equal.

6.10 IMPORTANT OBSERVATIONS
(1) Two or more formulas may define a single function. For example, consider

cosx, x <0
y=<¢1+x,0<x<2
log(x—1), x>2

Note that, this is a single function defined on the real line, by three formulas.

(ii) Not all functions can be written as formulas. One such example is the Dirichlet
function that is defined on the real line as follows:

1 if xis a rational number
r= 0 if xis an irrational number
This is certainly an unusual function, but still is a function. It maps the set of rational
numbers to unity and the set of irrational numbers to zero. So far, no analytical
expression is suggested for this function.
Similarly, the statement n'” digit in the decimal representation of © defines a

function that cannot be expressed by any formula.

(iii) Not every formula defines a function. The rule of correspondence is the heart of a
function. However, a function is not completely determined until its domain is given.
We can write formulas whose domain is the empty set. Obviously, such formulas cannot

represent any function.
For example, consider the formula

p(x)=vVx—-2+VI1-x (A)



EVEN AND ODD FUNCTIONS 143

The domain of y = v/ x — 21is [2, o0) (i.e., x > 2), while that of y = v/1 — x is (—o0, 1]
(i.e., x < 1). These intervals do not intersect. Thus, the formula (A) does not define any
function.

Remark: The above example also tells that if f and g define functions, then f+ g need not
define a function. Following are some more examples of formulas, which do not define

functions:
1 1

y =F(x) :ﬁ+\/?x
G(x) = log x + log(—x)
y=f(x) = Vsinx-2

y = h(x) = log(sin x — 2),and soon!

<
I

10)

In view of the above, we must distinguish between a function and a formula. Of course, in
calculus we shall generally be dealing with functions, which are expressed by formula(s).
However, it must be remembered that there are certain functions, for which no formula exists.
Furthermore, polynomials and rational functions are particular kinds of algebraic
functions.'V

In addition to algebraic functions that we have considered in this chapter, we shall also
consider transcendental functions that are trigonometric functions discussed in Chapter 5,
inverse trigonometric functions discussed in Chapter 14, exponential and logarithmic func-
tions discussed in Chapter 13a, and hyperbolic functions discussed in Chapter 23.

6.11 EVEN AND ODD FUNCTIONS

We have introduced the notion of even and odd functions, in Chapter 5. We recall the formal
definitions:

(1) A function is an even function if for every x in the domain of f

Remark: From both the definitions (i) and (ii) above, it is clear that —Xx is in the domain of f
whenever X is.

Note: It will be shown later that we can define functions that are neither even nor odd. For
detailed discussion about even and odd functions, refer to Chapter 7b on integration (i.e., Part II

U9 Calculus: Basic Concepts for High School by L.V. Tarasov (pp. 52—54, English translation), Mir Publishers, Moscow,
1982.
1 A complicated example of an algebraic function is the one defined by f(x) = (f —3xr x4+ 1)3)/\/)«4 +5.
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of this book), wherein we have discussed some special properties of definite integrals,
restricted to even and odd functions.

6.12 INCREASING AND DECREASING FUNCTIONS
Increase and decrease of a function are important characteristics of the behavior of a function.

Definition: A function y = f(x) is said to be increasing on an interval if to greater values of
the argument x belonging to that interval there correspond greater values of the function.
Similarly, f(x) is called decreasing if to greater values of the argument there correspond
smaller values of the function.

If the graph of a function is traced from left to right (this corresponds to the increase of
the argument x), then for an increasing function the moving point of the graph goes
upward (relative to the positive direction of OY), and for a decreasing function it moves
downward.

6.12.1

The increase and the decrease of a function can be interpreted in a broader sense.
A function f(x) is called nondecreasing on an interval [a, b] if for any xi, x5 € [a, b], the
condition x; < x, implies the nonstrict inequality

Flx) < f(x)

Similarly, if x; < x, implies f(x;) > f(x,), the function is said to be nonincreasing.

This type of increase or decrease in the broad sense is most often a characteristic of
functions having different analytic expressions on different intervals. The definitions
of nondecreasing (nonincreasing) functions cover bigger classes of functions than those
of increasing (decreasing) functions (see Figures 6.5-6.10). Most often, they are defined by
two or more different analytic expressions on different intervals. Note that such functions
may stay constant on a subinterval, while on the remaining ones they must either be

y Y

X

y=a
(a>1)

\

(=]

Q

[V (S
=]

(@) (b)
FIGURE 6.5 Graphs of increasing functions.
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d

(@) (b)
FIGURE 6.6 Graphs of nondecreasing functions.
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increasing (see Figure 6.6b) or be decreasing (see Figure 6.8b). The following graphs of
functions must clarify the distinction not only between the increasing and the nondecreasing
functions but also between decreasing and nonincreasing functions.

Note that a nondecreasing function may be an increasing function (see Figure 6.6a), but the
converse is not true (see Figure 6.6b). Similarly, a nonincreasing function may be a decreasing
function (see Figure 6.8a), but the converse is not true (see Figure 6.8b). For obvious reasons,
a nondecreasing function may be looked upon as an increasing function and similarly a
nonincreasing function is considered a decreasing function.*?

It is usually possible to break up the interval (on which a function is considered) into a
number of subintervals on each of which the function is either increasing or decreasing. At
times we use the terms strictly increasing (or strictly decreasing) function to mean increasing
(or decreasing) function.

In Figure 6.9, we give the graphs of (strictly) increasing and (strictly) decreasing functions.

6.12.2 Monotonic Function

A function f(x) is said to be monotonic on [a, b] if f(x) is only nondecreasing, in particular
increasing on [a, b], or only nonincreasing, in particular decreasing on [a, b].

6.12.3 Strictly Monotonic Function

A function which is either increasing or decreasing on an interval will be called strictly
monotonic function on that interval.

6.12.4 A Function Neither Increasing nor Decreasing

It is possible that a function is neither increasing nor decreasing on a given interval. For
instance, see Figure 6.11 where the graph of a function defined on the interval [a, b] is shown.

(12 Note that the question of using the terms nondecreasing and nonincreasing functions arises only if a function is defined
on two or more subintervals, with different analytic expressions.
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(=]
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1 \ y=log, x
O<a<1
(@) (b)
FIGURE 6.7 Graphs of decreasing functions.

This interval is split into the intervals [a, x], [x, X2], [x2, Xx3], and [x3, b], on which,
respectively, the function decreases, increases, decreases, and increases. If a function fincreases
and decreases on different subintervals of its domain I, we say that the function is neither
increasing nor decreasing on I.

Note: Later on, we will find out the intervals on which a function is only increasing (or only
decreasing). In Chapter 19a, we shall use the properties of derivatives to find such intervals and
study certain local properties of functions. Furthermore, we will be able to investigate functions
for maximum/minimum values of functions in Chapter 19b.
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FIGURE 6.8 Graphs of nonincreasing functions.
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FIGURE 6.9 Graphs of (strictly) increasing functions.
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FIGURE 6.10 Graphs of (strictly) decreasing functions.
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FIGURE 6.11 Graph of a function which is neither increasing nor decreasing.

6.13 ELEMENTARY AND NONELEMENTARY FUNCTIONS

First, we talk about the basic elementary functions by which we mean the following
analytically represented functions:

(i) Power Function: y = x“, where a is a real number.
If a is irrational, this function is evaluated by taking logarithms and antilogarithms:
loggy = o logox. It is assumed that x > 0.
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(For more details, refer to the definition of logarithm using integral calculus

discussed in Chapter 6b of Part II)

(ii) Exponential Function: y = a*, where a>0 and a # 1.

(iii) Logarithmic Function: y = log, x, a>0 and a # 1.
Throughout this book, the base of the logarithm will be either 10 or e,
depending on the requirement of the problem. In case no base is indicated, the symbol
log will stand for the logarithm to the base “e”. (For a detailed discussion about the
logarithmic function, refer to Chapters 12 and 13a.)

(iv) Trigonometric Functions: y = sin x, y = cos X, y = tan X, y = cot X, y = sec X,

and y = cosec x.

(v) Inverse Trigonometric Functions:y = sinflx,y = cos 71x,y = tanflx,y = cot™'x,

y =sec 'x, and y = cosec 'x.

Elementary Functions: Elementary functions are those that are represented analytically.
In general, it is represented by a single formula of the type y = f(x), where the expression on
the right-hand side is made up of basic elementary functions and constants by means of finite
number of operations of addition, subtraction, multiplication, division, and taking function
of a function.

(An elementary function may also be represented by two formulas. The important point to
be emphasized is that elementary functions are represented analytically.)

Examples of Elementary Functions:

log x + 4+/x+2tan x

:\/F,y: 1+4sin2x7y: 10 —x+ 10

X

y= ,and so on.

Examples of Nonelementary functions:

(a) The Dirichlet function defined on the whole real line, is not an elementary function. It is
defined as follows:

y = 1 if x is rational and O if x is irrational.

(Note that this function is defined in terms of a property of real numbers and not in the
form y = f(x). Thus, it is not represented analytically.)

(b) The function y = 1,2,3, ..., n [y = f(n)] is not elementary because the number of
operations that must be performed to obtain y increases with “n”. Thus, the number
of operations is not finite.



7 The Concept of Limit
of a Function

7a.1 INTRODUCTION

Addition, subtraction, multiplication, division, raising to a power, extracting a root, taking a
logarithm, or a modulus are operations of elementary mathematics. In order to pass from
elementary mathematics to higher mathematics, we must add to this list one more mathematical
operation, namely, “finding the limit of a function”.

The notion of limit is an important new idea that lies at the foundation of Calculus. In fact, we
might define Calculus as the study of limits. It is, therefore, important that we have a deep
understanding of this concept. Although the topic of limit is rather theoretical in nature, we shall
try to represent it in a very simple and concrete way.

7a.2 USEFUL NOTATIONS

Our work for understanding the concept of limit will be simplified if we use certain notations.
Therefore, let us first get familiar with these notations:

o Meaning of the notation x — a:
Let x be a variable and “a” be a constant. If x assumes values nearer and nearer to “a”
(without assuming the value “a” itself), then we say x tends to a (or x approaches a) and
we write x — a. In other words, the procedure of giving values to x (from the domain
of “f”)nearer and nearer to “a”, but not permitting x to assume the value “a”, is denoted
by the symbol “x — a”.

Thus, x — 1 means, we assign values to x which are nearer and nearer to 1 (but not
permitting x to assume the value 1), which means that x comes closer and closer to “1”,
reducing the distance between “x” and “1”, in the process.

Thus, by the statement “x” tends to “a”, we mean that:

@ x#a,
(i) x assumes values nearer and nearer to @, and

(iii) The way in which x should approach a is not specified.
(Different ways of approaching “a” are given below.)

What must you know to learn calculus? 7a-The concept of limit of a function, development of epsilon (¢), delta (5)
definition of limit and its applications. Algebra of limits (limit theorems) and one-sided limits.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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e Meaning of x — a
If we consider x to be approaching closer and closer to “a” from the left side (i.e., through
the values less than “a”), then we denote this procedure by writing x — a~ and read it
as “x” tends to “a minus”.

e Meaning of x — a*
If we consider x approaching closer and closer to “a” through the values greater than “a”
(i.e., x approaching “a” from the right side), then this procedure is denoted by writing
x — a' and we read it as “x” tends to “a plus”.

Example (1): Consider the function F(x)=3x+5, x€ (2, 3)U(3, 5].
Note the following points:

(i) “4” is in the domain of F, and it can be approached from both the sides. Therefore, we
can write x — 4.
(i1) “5” is in the domain of F, but x can approach “5”, only from the left of 5 (i.e., through
values of x <5).
(iii) “2” is not in the domain of F, but x can approach “2”, from the right of ‘“2” (i.e.,
through values of x > 2). Thus, in this case, it is meaningful to write x — 2" but we
cannot write x — 2~ or x — 2.

(iv) “3” is not in the domain of F, but x can approach “3” from both the sides of “3”.
Thus, we can write x — 3" and x — 3~ or x — 3.V

7a.2.1 What Happens When “x”” Approaches “a”?

We know that the distance between “x” and “a” is denoted by |x — a|. Thus, as x tends to “a”,
|x — a| becomes smaller and smaller for values of “x” nearer and nearer to “a”. Mathematically,
we say that for an arbitrary small positive number 8, the absolute number |x — a| can be made
less than 8, if the number x is chosen nearer and nearer to “a”.

We write x — a=> |x —a| <8, for an arbitrary small § > 0. But, we also want that x should
never attain the value “a” (i.e., x # a). This is expressed by the inequality 0 < |x — a|. We can,
therefore, combine these two inequalities and write 0 < |x — a| < 8, to mean x — a.

In other words, x — a means

0 < |x —a| < 8, for an arbitrary small § > 0 (H?

M Note the conditions under which “x” can approach “a”, even when “a” does not belong to the domain of the function.

@ This statement is true irrespective of whether “x” approaches “a” from one side or from both the sides.
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Notes:

(1) The variable “x” may approach the fixed number “a” from either side (or both the sides,
simultaneously). This approach may be along all the points of an interval (on either side)
or by jumping on certain points, which are closer and closer to “a”.®’

(2) If x can approach “a” from both sides, then the statement (1) tells us that, for an
arbitrary small 8 > 0, x always belongs to the deleted 5-neighborhood of “a”, that is,
x€(a—296,a+8), with x#a.

a-98 x— a —x a+ o

This is equivalent to assigning values to “x”, closer and closer to “a” from both sides of
“a”. (This procedure is useful for studying the values of a function in the neighborhood
of the given point “a”.)

3) If x — a” (i.e., if x approaches “a” from the left) then, statement (1) means that for an
arbitrary small 8 > 0, x always belongs to (a — 8, a).¥

a-90 x— a

4) If x — a” (i.e., if x approaches “a” from the right) then, statement (1) means that for an
arbitrary small 8 > 0, x always belongs to (a, a + 8).¥

— ¢ ——————— ¢ ¢
a —x a+ 6

7a.3 THE CONCEPT OF LIMIT OF A FUNCTION: INFORMAL DISCUSSION

‘We know that the value of a function “f” for any given number “a” of its domain is denoted by
fla). However, if “a” is not in the domain of “f”, then we say that f{a) does not exist or fla) is
not defined. For example, consider the function

f(x) =5x+2, x€0,2]
Note that, the numbers 0, 1, and 2 are in the domain of “f”. Here, we have
FO)=2,£1)=7, and f(2) =12,

Next, consider the function ¢(x)=5x+2, x (0, 1)U(1, 2).®

Observe that 0, 1, and 2 are not in the domain of ¢. Accordingly ¢(0), ¢(1), and ¢(2) are not
defined. We ask the following question:

If x ismade to assume values closer and closer to 1 (from either side), how will the value ¢(x)
change? In other words, to what number is ¢(x) closest to when x is close to 1?

@ 9

& Whenever “x” approaches “a” through jumps, we are in effect considering the limit(s) of sequences, which are also
functions of a particular type. Here, it may be mentioned that once we have learnt the concept of /imit of a function, it is
simpler to understand the concept of limit of a sequence, which is a function whose domain is the set of natural numbers.
Here, we shall not discuss about the limit of a sequence <a,>.

® Remember that in the one-sided neighborhood of “a”, the point “a” itself is not included in the neighborhood
(see Chapter 3).

® Recall that, whenever the domain of a function is changed, we get a new function. Thus, f;(x) =5x+2, x € [0, 2] is
different from f>(x) =5x+2, x €0, 2).
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In this case, it is easy to guess that if x gets close to 1, then, ¢(x) = 5x + 2 gets close to 7.
Similarly, if x gets close to 0, ¢(x) gets close to 2 and if x gets close to 2, then ¢(x) gets
close to 12. We say that the limit of the function ¢(x)=5x+ 2, when x approaches the
number 1, is 7.

We express this idea by the notation:

lim ¢(x) = 3@1(5)( +2)=17, here x can approach 1 from both the sides

x—1

lim ¢(x) = lim (5x +2) =2, here x can approach O only from the right

x—0" x—0"

lim ¢(x) = linzl, (5x +2) =12, here x can approach 2 only from the left

x—27

Note that, whereas the function ¢(x) is not defined at the point 0, 1, and 2, yet the limit(s) as
indicated above exist.

We agree that our discussion will be restricted to the real valued functions of real variables.
This restricts our choice of functions. For example, the formula g(x) = /x will be a function
only for x > 0.

Now, it is easy to guess that as x approaches “9”, /x approaches 3 and (y/x + 13)
approaches 16. It follows that the reciprocal of (y/x + 13) should approach 1/16 and
(v/X + 13)"*must approach 2. Later on, we will be able to show that all our guesses are correct.

Remark: Inconnection with limit of the function ¢, we have considered only those points that
are not in the domain of ¢. However, the concept of limit is equally applicable to the points
(numbers), which are in the domain of ¢. For example, 1/5 is in the domain of ¢ (and it can be
approached from either side), hence we can say that as x approaches the number 1/5 (from either
side), the function ¢ approaches 3.

We write,

li = i 5 2)=3
Jim o) = lim (5x+2)

Similarly,

lim é(x) = lim (5x+2) =5vV2+2
,Hﬁ(b( ) Hﬁ( )

The point we are making here is that the following two questions are different.

(i) What is the value of ¢(1)?

(ii) What is the number which ¢(x) is close to, when x is close to 1?

Note that, whereas ¢(1) does not exist, the 1im1¢(x) exists and it is the number 7.
X —

The idea of limit indicated in (ii) above will be found useful when we compute the limit of

the type lim ((x* —a®)/(x —a)). In fact, it is due to this type of function that we can
X—da

understand the concept of the limit in a better way.

Remark: To be able to find the limit of a function at any point “a”, (which may or may notbe in
its domain) it is necessary that there exists some neighborhood of “a” in which “f” is defined,
except possibly at “a”. This is necessary, since only then can x approach “a”.
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7a.4 INTUITIVE MEANING OF LIMIT OF A FUNCTION

Let f{x) be a function. If x assumes values nearer and nearer to the number “a” except possibly
the value “a” and f{x) assumes the values nearer and nearer to /, which is a finite real number,
then we say that f{x) tends to the limit / as x tends to a, and we write lim f(x) = /.
X—da
Notice that we do not insist anything to be true at “a”. The function fneed not even be defined

at “a”. Since “a” may be approached from both the sides of a (i.e., left side and right side
of a) when we say that lim f(x) = [, we really mean to say that lim f(x) =1= lim‘f(x). If
X—d X—a X—a

these conditions are not satisfied simultaneously, we say that lim f(x) does not exist.®
X—da
The following examples will clarify the situation.

2
Example (2): Consider fi(x) = );7_247
Observe that, here fi(x) is not defined for x =2. Further, since (x>—4) and (x —2) both
approach “0” as x approaches 2, it follows that limit of the quotient function is of the form 0/0,
which is not defined. Therefore, it is not possible to compute lim ((x* —4)/(x —2)). We,
therefore, use an indirect method as explained below. Yo

We have seen that f,(2) is not defined. However, since f] is defined for all other values of x,
there is no objection in computing the values of fiat all other points. We, therefore, study the
values of fywhen x is considered very close to the number 2.

For this purpose, we prepare the following calculations, by choosing successive values of x
from a small neighborhood of 2 (say 0.1 neighborhood of 2) and compute corresponding
values f;(x).

This involves the following calculations:

x#£2

x?—4

x x> x*—4 x-2 fl(x):x—Z

From the above calculations, we get the data of our interest, which is given in Table 7a.1.
Observe that as x approaches 2, fi(x) takes up values closer and closer to 4. We, therefore,
say that the limit of fi(x), as x approaches 2, is 4. In symbols, we write lim2 fi(x) = 4.
X —

Note that the preparation of Table 7a.1 is time consuming and tedious. On the other hand, a
logical way of thinking (which is explained below) is found to be useful and simpler in
evaluating the limits. We have

A =Sy xr2=ET 0 ®)

Note that, if (x — 2) #0, (i.e., if x # 2) then we can cancel the factor (x — 2) from the numerator
and the denominator of the above expression on the right-hand side of Equation (2), and get,

fix) =(x+2), x#2 3)

© In other words, if lim f(x) is different from lim f(x) then we will say that lim f(x) does not exist.
X—a X—a X—da
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TABLE 7a.1

X filx)
1.91 391

1.92 3.92

1.96 3.96

1.99 3.99

1.997 3.997
1.9998 3.9998
1.999998 3.999998
1.99999999 3.99999999
2 Not defined
2.00000001 4.00000001
2.0000001 4.0000001
2.000001 4.000001
2.00001 4.00001
2.0001 4.0001
2.001 4.001

2.01 4.01

2.02 4.02

Thus, we have two Equations (2) and (3), both representing the same function fi(x), when
X #2. We may choose any of them for computing the limit of the function in question.
Obviously, the Equation (3) is simpler to handle in view of the difficulty observed in connection
with the expression (x> — 4)/(x — 2), x # 2, in listing the values of f,(x) in the neighborhood
of 2. Hence, we choose the expression (x 4 2) for computing the limit in question. We get

x2

. xP—4
Imhe)=lin Ty, *#2

= lim(x+2), x#2
x—2

=242=4

Note that whereas f1(2) does not exist (since 2 is not in the domain of “f”), hm fl( x)
exists, and it is given by the number 4.

This shows that the existence or nonexistence of the limit of a function at a point does not
depend on the existence or nonexistence of the value of the function at that point.

Example (3): Consider F(x)= X2 =5x4+2,x€(0,3)U(3,5)

Here, F is not defined for x =0, 3, and 5. Therefore, F(0), F(3), and F(5) do not exist. However,
the limit(s) of F at 0, 3, and 5 exist. (Of course, limits at O and 5 are one-sided limits, to be
discussed later.)

“ ”

Remark: Limit of a function at any point “a” may be considered if and only if it is possible to
approach “a” from at least one side. Thus, if “a” is an isolated point in an interval (so that there
exists an open interval which contains alone) then limit of a function at “a” cannot be
discussed.

In the following example, we observe that hm G( ) should not exist even though “a” can be
approached from both the sides.

“q ”
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Example (4): Consider G(x) = %7 x#2
Note that this function is defined for all real values of x, except x = 2, which is not an isolated
point. However, the limit lim2 ((x+2)/(x—2)), x # 2 does not exist.

X—

This is because, as x — 2, the numerator (x + 2) approaches the number 4 whereas the
denominator approaches the number “0”, so that G(x) approaches arbitrary large values and
hence not defined. Whenever such a situation arises, we say that the limit of the function does
not exist.”

Further note that

lim G(x) = lim *2 —

x—1 x—1X —

2
-3, and  lim G(x) = lim X5

x—*3x—2_

Remark: To evaluate the limitlim (f(x)/g(x)), where f(a) = 0 and g(a) = 0, we cannot put
X—d

X = a, since it produces the expression 0/0, which is not defined. In such cases, we must search
for a common factor in f{x) and g(x). If there is a common factor in both f(x) and g(x) whose
limitis zero as x — a, then we can reduce the quotient to a simpler form and finally evaluate the

limit by using the direct method.®
2
—4
* , XF#2 . .
Example (5): Let F(x) =¢ x—2 , and consider lim F(x).
X —
6, x=2

We know that lim2 ((x2 —4)/(x— 2)) = 4 [see Example (2)]. Here, F(2) is defined to be 6. In

fact, we may define F(2) to be any real number, artificially. Thus, limit of the function F(x) at

x =2 and the value F(2) both exist, but they are not equal. This example shows that lim F(x)
X—d

need not be equal to F(a), even when both exist.

Next, consider the following example.

X2 —4
, XF2 o
Example (6): Let G(x) = ¢ x —2 , and consider 11m2 G(x).
4, x=2 ”

Here, we note that the limit of the function G(x) at x = 2 and the value of the function at x =2,
both exist and each is equal to 4.

(This property will be very useful in the next chapter, where we study the concept of
continuity of a function.)

x+5, forx>0

Example (7): Consider f>(x) = { 42 forx <0

Observe that f5(0) is not defined. Let us study the values of f>(x) as x — 0. We note that as
x — 07, f>(x) — 2.Onthe other hand, as x — 07, ,(x) — 5. Thus, lim(fg(x) # lim fo(x).
x—0° x—0"

When this happens, we say that the limit of the function does not exist.

™ Remember that “limit of a function” at any point must be a “finite” (real) number. Since lim2 %% approaches
N—

infinity (c0), which does not represent a real number, we say that this limit does not exist. Later on in Chapter 7b, we shall
introduce infinity as limit of a function.

® As regards other algebraic, trigonometric, exponential, and logarithmic functions or their combinations, different
methods are available for evaluating their limit(s) in corresponding chapters.
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TABLE 7a.2

x<2 f(x) x>2 f(x)
1.9 2.8 2.1 3.4

1.99 2.98 2.01 3.04
1.999 2.998 2.001 3.004
1.9999 2.9998 2.0001 3.0004
1.9999 2.99998 2.00001 3.00004
Asx — 2~ fix) =3 Asx — 2" fix) =3

Example (8):

Al = 2x—1, for1<x<2
I T l4x—5, for2<x<3

Observe that f3(2) is not defined. Let us study the values of f3(x) as x — 2. We prepare
Table 7a.2. From Table 7a.2, we observe that lim f3 (x) =3, and lim f3(x) = 3. Thus, the
xX—2 x—2"

left-hand limit of f3(x) at x =2 is equal to its right-hand limit at x = 2. In this case, we say
that the limit of f3(x) as x — 2 exists, and we write

lin12f3 (x)=3

The function f5(x) is really interesting. Moreover, it is very simple to define any number of such
functions.®

Now we consider the following (more complicated) functions and the associated difficulties
in finding their limit(s). These examples should help us O suitably word the definition of the limit
of a function at a point, covering all possible situations.

X ifx <1
Example (9): Let fg(x) = ¢ 2 ifx=1
x+2 ifx>1

Let us consider limI fo(x) We have the following observations:
X —

(@) Asx — 17, fe(x) — 1 (left-hand limit)
(b) Asx — 17, fy(x) — 3 (right-hand limit)
(©) fo(1)=2

Thus, lim fo(x) =1# lim fo(x) =3
x—12 x— 1t

Obviously, lim1 Jo(x) does not exist.
X —

© 2x+10, forl <x<3
Tx —5, for3<x<5
2x3 — 10, forx <2

3x3 — 18, forx >2

@ Let fi(x) :{ (Here, lim fi(x) = 16)

(b) Let fs(x) = { (Here, anlz_f5<,¥) =06)
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Example (10): Let f;(x) = -, for all x # 1

T x—10

Observe thatas x — 17 (as x assumes values closer and closer to 1 from the right hand side) f7(x)

gets larger and larger positive values. On the other hand, when x — 17 (as x assumes values

closer and closer to 1 from the left hand side), f5(x) gets larger and larger negative values.
Thus, »}Lml f7(x) does not exist. Here, it may also be noted that f5(1) is not defined. In this

case, neither the value f2(1) exists nor does the limit of the function, as x — 1.

1 forx#0

Example (11): Consider the function f(x) = { 5+ 0
orx =

Observe that for all values of x (other than zero), f{x)=1. Since, lin(}? f(x)=1 and
lim f(x) =1, hence lim f(x) = 1. T
x—0t x—0 AY

2e¢

Hiccup Function

Note that though f(0) =2, yet this does not make any difference for the existence of the limit,
which is 1. In view of this example, we would like that the definition of lim f(x) should
be independent of the value f(a). (This function is known as a “hiccup function” due to the
appearance of its graph.)

Example (12): Now consider the function defined by

) = {

y

0 forx<O
1 forx>0

Diving Board function
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We ask the question: Does “f” have a limit as x — 02 Notice that in any interval about 0, say
(—1/1000, 1/1000) the function assumes both the values 0 and 1. Observe that hm flx)=

and hm f (x) = 1. Here, left-hand limit # right-hand limit, therefore, we conaude that “f”
does not have limit. This function is sometimes called “diving board function”.

Example (13): Consider the graph of the signum function defined by

-1 ifx<0
sgnx = 0 ifx=0
1 ifx>0

y

Signum Function

Since, sgn x =—1, if x <1 and sgn x =1, if x > 0. We have,

hrn sgnx = lim (—1)=—1 and lim sgnx= lim (—1)=1
x—0 x—0" x—0" x—0t

Because the left-hand limit and the right-hand limit are not equal, the two-sided limit, hm sgn x
does not exist. Hence, we say that, 11m sgn x does not exist.
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TABLE 7a.3
X sin x sin x/x
—0.10 —0.0998333 0.99833
—0.09 —0.0898785 0.99865
—0.05 —0.0499792 0.99958
—0.03 —0.0299955 0.99985
—0.02 —0.0199987 0.99993
—0.01 —0.00999983 0.999983
0.00 0.00000 ?
0.01 0.00999983 0.999983
0.02 0.0199987 0.99993
0.03 0.0299955 0.99985

Example (14): Now, let us evaluate the following limit

. sinx . . 10
lim . (xin radians)"”
x—0 X

Here, there is no way of canceling terms in the numerator and denominator. Since
sin x — 0 as x — 0, the quotient sin x/x might appear to approach 0/0. But, we know that
0/0 is undefined, so if the above limit exists, then we must find it by a different technique.
Since we do not have any other simpler way of rewriting sin x/x to obtain the limit, we use
a calculator to find the values of sin x/x for values of x close to 0 and angles x (in sin x)
in radians. "V

(Other methods of finding this limit will be discussed later.)

From Table 7a.3, itis obvious that, as x — 0, either from the right or from the left, the value
of sinx/x approaches closer and closer to the number 1. We, therefore, agree to write
Vliin0 (sinx/x) = 1. This limit is used very often to find the limits of many trigonometric

functions (including various functions involving trigonometric functions), and plays a very

important role in deriving many useful results. It must be emphasized that the limiting

value of lin}) (sin x/x) is I provided x is measured in radians. If x is measured in degrees, this
X —

limit will be different (and thus, the above does not hold). We will discuss this particular limit (x
measured in degrees) later in Chapter 11a.

We have discussed limits informally. In some cases, we were able to deduce limits easily.
However, when we tried to ascertain; whether

. sinx
lim
x—0 X

exists, we were reduced to calculating sin x/x for several values of x approaching 0. Using these
calculations, we guessed that the above limit exists and it should be 1. However, the uncertainty
about this limit leads us to seek a formal definition of limit.

10 We have so far considered only algebraic functions. The purpose of considering this trigonometric limit is to convey
that the concept of limit is applicable to all types of functions.

(1 Radian measure of any angle subtended at the center of unit circle equals the length of the circumference, which is
taken to have subtended the angle in question. Thus, the measure of an angle “x” radians and the real number “x”
representing the length of circumference in the question, both have the same numerical value. In other words, the angle “x”

Gy

in radians may be looked upon as a real number “x”.
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7a.4.1 Points of Concern: Formulating the Precise Definition

In formulating the precise definition of lim f(x) we will allow f to be undefined at “a” and
ensure that the following requirements are covered in the definition.

(1) Even when f(a) is not defined (i.e., f is not defined at “a”), hm f (x) may exist.

(2) If “fla) happens to be defined at “a”, we would like the deﬁnmon of hm f (x) to be
independent of the value f(a) [see Examples (5) and (11)].

3) If v}gna £ (x) exists, we would like the limit to be the same, whether we approach from the

left hand side or the right hand side. For any reason if the limit is not unique (i.e., if it is
found that left-hand limit # right-hand limit) then we agree to say that the limit does not
exist [see Examples (9), (12), and (13)].

7a.4.2 Rigorous Study of Limits

We gave an informal definition of limit of a function in Section 7a.4.'>
Here is a slightly better, reworded definition.

Definition: To say that lim f(x) = /, means that the difference between f{x) and / can be made
X—a

arbitrarily small (i.e., as small as we please) by demanding that x be considered sufficiently
close to “a”, but not exactly “a”

We are now ready to formulate a precise definition of limit.

7a.4.3 The Formal Definition of Limit

« 77

We have said that /is the limit of f{x) as “x” approaches “a”, if f{x) gets close to / as x gets close
to a. But precisely what does this mean? Doev it mean to say that f{x) gets close to [ or that x
gets close to a? We begin to answer this question by reinterpreting hm f (x) = /. We demand

“q CH)

(but distinct from “a”) “then f(x) must be at least as close to
[ as we wish”. (This statement is very important.)

In other words, even when fis not defined at “a”, we should be able to obtain the values f(x)
closer and closer to / as x is assigned values nearer and nearer to “a”

In order to put this definition in precise mathematical terms, we shall be using Greek letters &
and & to stand for arbitrary positive numbers. We think of & and 8 as small positive numbers,
which can be chosen to be as small as we please.'”

that if x is considered close to

7a.4.4 Making the Definition Precise (&, § Definition of Limit)

To say that f(x) differs from / by less than ¢ is to say that |f(x) — /| < &. Next, to say that x is
sufficiently close to a, but different from a, is to say that for some 6 > 0, x is in the small open
interval (¢ — 8, a + 8) with “a” deleted. We demand that “x” be chosen distinct from “a”, so that

(12 we reproduce it here, for convenience: Let f(x) be a function. If “x” assumes values nearer and nearer to “a”, except
possibly the value “a”, f(x) assumes values nearer and nearer to some finite number / then we say that f(xx) tends to the

limit / as “x” tends to “a” and we write lim f(x) = /.
X—a

(3 At this point, it must be clearly understood that the arbitrary positive numbers & and & are not to be confused with
variables. It is because of their arbitrary nature that we can choose their numerical values as per our requirements.
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the value of “f” at “a” (if it exists there), has no influence on the existence or value of the limit.
The best way to say this is to write 0 < |x —a| <§.!?
We are now in a position to give the &, § definition of limit.

7a.4.4.1 &, & Definition of Limit Let f be a function defined at every number of some
open interval containing “a”, except possibly at the number “a” itself. We say that the limit of
fix) as “x” approaches “a” is I, if the following statement is true.

For every number & > 0, there exists a number & > 0, such that

if 0 <

x—al <& then |f(x)—Il<e (4)

Itis to be emphasized that the number ¢ is chosen first and then the number 6 has to be produced.
Once we have chosen & >0, we must search for a number 6 > 0 to ensure that if x is in the
interval (a — 8, a + 8), with x # a, then the distance between f(x) and /is less than &. If for every
&> 0,itis possible to get a corresponding 6 > 0, such that the condition (4) is satisfied, then we
say that the limit at “a” exists, or that f has a limit at “a” or that the limit lim f(x) exists.
Using the above ¢, 6 definition, it can be easily proved that a function, can(;la\;le at most one

limit at “a” (we do not prove it here). This justifies calling it “the” limit (and not “a” limit) of
“E at g,

7a.4.5 Geometric Interpretation of the Definition

It is useful to understand carefully the following geometric interpretation of the definition of
the limit of a function f. Figure 7a.1 shows a portion of the graph of fnear the point where x = a.

Because fis not necessarily defined at a, there need be no point on the graph with abscissa a.
Observe that if x on the horizontal axis, lies between @ — &, and a + &1, then f{x) on the vertical
axis will lie between / — &, and / + &;. In other words, by restricting x (on the horizontal axis)
to lie between a — 8, and a + 81, f{x) on the vertical axis can be restricted to lie between / — &,
and [+ ¢;.

A y =1
l+¢ @
[
l-¢ o :
i x
* >
0 a— 5] a a+ 51
FIGURE 7a.1

(% Note that |x —a| < & describes that @ — 8 < x < a+8, while 0 < |x — a| tells that x # a.
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AY y=fx)
l+& @
I+ & _10
-6, —% !
fx) ;
IEXGR 4 / i
; x
0 a-8 % a a+d .

FIGURE 7a.2

Thus, if 0 < |x—a| < 8, then [f(x) — /| < &;.

[In Figure 7a.1, observe that the function values (on the vertical axis), lie well within the
interval (I — ey, 1+ &).]

If smaller value of € is chosen, then it can require a different choice for 6. In Figure 7a.2, it is
seen that for &, < &1, the 6, value does not serve the purpose since it is too large; so that, there
are values of x (like X) in the open interval (¢ — 8y, a + 8;), for which 0 < |x — a| < &, but
[AZ) — 1| > &,

So we must choose a smaller value 8, as shown in Figure 7a.3, such that if 0 < |x — a| < 8,
then |[f(x) — | < &».

y y =/
I+& °
1
1— & [ ] i i
i x
od >
0 S a
a-8& a+ o
FIGURE 7a.3

U9 n other words, if we choose £, < &, then to restrict the value of f(x) to lie between / — &, and / + &, we must search for
a positive number 85, so that whenever x lies between ¢ — 8, and a + 85, f(x) lies between / — &, and / + &. In general, the
closer f(x) is to be to / the nearer x must be to a.
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Note (5): Some people call the above &, § definition as the most important definition in calculus.
Use of symbols “&” and “6” in the definition make it look abstract. But the one who has gone
through the process of developing this definition, appreciates its wording and the roles of the
variables “&” and “6”. To be able to prove something requires that we should be very clear about
the meaning of the words we are using. This is especially true for the word “limit”, because all of
Calculus rests on the meaning of this word.
If “/” is the limit of f as “x” approaches “a”, then we write
lim f(x) =1

X—a

(Note that, in the definition of limit, nothing is mentioned about the function value at x =a.)

Remark: The ¢, § definition of limit does not give any method for evaluating lim f(x). It can
be used only to verify, whether a given number (or a guessed number) “/” is ‘the'limit of the
function or not as x — a.

7a.5 TESTING THE DEFINITION [APPLICATIONS OF THE g, 8 DEFINITION
OF LIMIT]

It is desirable to test the &, & definition against familiar examples to see whether it gives
results consistent with our past experience. For instance, our experience tells us that as x — 4,
3x = 34)=12,and 3x—7) — 3(4)—7=5.

Now we give the following examples to show our &, 6 definition gives the kinds of results
we want.

Example (15): Use the epsilon, delta definition to prove that lirra (3x—7)=5.

Solution: The first requirement of our definition is that (3x — 7) be defined at every number in
some open interval containing 4 except possibly at 4. Here, since (3x — 7) is defined for all real
numbers, any open interval containing 4 will satisfy this requirement.

Now, we must show that for any ¢ > 0, there exists a 6 > 0 such that

0<|x—4/<d then|3x—7)—-5|<e (5)

S 0<

x—4]<é then|B3x—7)-35|<e
S0<|x—4/<6 then3|lx—4|<e

1
S0<|x—4|<6 then\x74|<§g

This statement indicates that (1/3)¢ is a satisfactory 6. With this choice of §, we have the
following argument:

0<|x—4|<é
= 3|x—4| < 36
= |3x — 12| < 36
= |3x—7) -5/ <38

1
= |Bx-7)=5|<e| v d=ze o =e
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We have, therefore, established that if 6 = (1/3)e, statement (5) (based on the definition) holds.
This proves, that 1irra(3x —7)=5.
X —

Again, we discuss the above limit in a slightly different way. We begin with what we call a
preliminary analysis. 1t is not part of the proof. It is the kind of work, which may be treated as
rough work. We include it here, so that our proof will look more logical, systematic and
convenient.

To prove that lim4(3x —7) =519

X —
Preliminary Analysis
Let & be any positive number. We must produce a 6 >0, such that 0<|x—4| <6 =
|3x —7) — 5| < &, where ¢ is any arbitrary small positive number, that we may like to choose.

For this purpose, consider the inequality,

|Bx—=7)-5|<ee 3x—12|<e
& 3(x—4)|<e
& Bllx—4|<e

e

S x—-4 <<

-4l <

This suggests the way for choosing 8. Of course, any smaller § (for example, = /4, etc.) would
work. Now, we proceed to give the Formal Proof.

Formal Proof:
To show that, lim (3x —7) = 5.

Consider, xod
|(3x —7) — 35|
= [3x — 12|
= [3(x —4)]
=3|x — 4|

We know that
x—40<|x—4/ <8, foranyd > 0.

Let £ > 0 be given. We choose 8 = £/3, based on our preliminary analysis.
Now, 0 < |x —4| < & means

O<|x—4|<§ [ 8 =g/3]

=0<3x—4|<e
=0<|B3x—7)—-5|<e

['.3]x — 4] is the simplified expression of |(3x — 7)—5|, Thus, for any & > 0, it is possible to
produce 6 >0 (here 8 = £/3) such that 0 < |x —4|<8=|3x—7)—5|<e

= lin}‘(3x —7)=5 (Proved)
x—

Note that, here, 8 depends on ¢ (i.e., 8 = £/3) and this may be the situation in general, however,
this may not always be the case [see Example (4)].

(16 Note that, we are not asked to evaluate the limit lina(3x — 7). Also, observe that this limit is given to be 5, and we have
to prove that this statement is true. *
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. s 2x2-3x-2

Example (16): Prove that Yhﬂm2 =5 =5, x#2

Preliminary Analysis

We are looking for 6 such that 0 < |[x —2| < 6 =
Now for x # 2,

2x2—3x—2
=2 5‘ <e

2x2 —3x—2
x—2

<o B

75‘<8
& |2x+1)-5|<e

& R2x-2)<e

& 2fx=2|<e

&
& |x=-2| <=
-2 <3

This indicates that 6 = &/2 will work.

Formal Proof: To show that lim 235=2 = 5
Consider, o

2x% —3x—2

-5
x—2

_5' _ '(2x+1)(x—2)

(x-2)

[(2x+1) = 5| =[2(x = 2)|

= 2|x — 2|
Let £ >0 be given. We have to search for a 6 such that

2% —3x -2
if 0<|x—2/<8 then %—5'«;

We know that x — 2 <0< |x —2| <8 for every 6 >0
We choose 8 = &/2, then

O0<|x—=2|<eg/2 [ 8=¢/2]

2x2 —3x -2
=2[x—-2|<e or Lfs <e
x—2

2x2 —3x—2

It follows that lim
x—2 x—2

=5 (Proved)

Note (6): The cancellation of the factor (x — 2) is legitimate because 0 < |x — 2| = x # 2. Thus,
division by 0 is avoided.
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7a.5.1 Simpler and Powerful Rules for Finding Limits (Algebra of Limits)

Limits are extremely important throughout Calculus. Most readers will agree that proving the
existence of limit using &, 0 definition is both time consuming and difficult. Also, up to this
point, we do not have any general method that can be applied to any function to find its limit at a
given point “a”.

Of course, as a general method, we can prepare a table listing values of x, closer and closer to
“a”, and the corresponding values f{x). Such a table may help us guess a number to which f{x)
approaches, suggesting the limit of f, as x — a. Once such a number (say “1”) is guessed, the &, &
definition can be used to check whether 1 is the limit of “f” or not. However, such a process of
finding the values of “f” as x — a is generally very tedious, as we have seen in the case of
computing

. sinx
lim — =1
x—0 X

Yet, it is useful to have some experience in computing limit(s) by the above process, in very
simple cases.!”
Fortunately, such a procedure will usually not be necessary because simpler and powerful
rules for finding limits are available and we shall discuss about them shortly in Section 7a.5.2.
Now, we shall verify the following two basic limits using &, & definition.

e lim ¢ = c and
X—d

e limx=a
X—a
These limits will be treated as standard results, so that they can be freely used in evaluating the
limits of many other functions.'®

U7 Here, it may also be mentioned that simply by studying the values of a function, it may not be possible to guess
the limit of a function, especially when the given function consists of a combination of functions. For example,

consider lim, _, ¢ [xz — fo"zjo‘”] Following the procedure used earlier, we have constructed Table 7a.4, of values for the

given function. Table 7a.4 suggests that the desired limit is 0. But, that is wrong. If we recall the graph of y =cos x,

This situation

we realize that cos x approaches 1 as x approaches 0. Thus, ELmU [xz — ﬁ;’go‘o} =0’ — W = *W‘
will be clearer when we study algebra of limits.

TABLE 7a.4

X ¥ — 10,000
+ 0.99995
+0.5 0.24991
+0.1 0.00990
+0.01 0.000000006
! !

0 ?

%) Later on, when we have studied the properties of trigonometric, exponential, and logarithmic functions, we will be able

to establish some other basic limits like, limo¥ =1, (xin radians), ]imo "\:1
‘— x—

will be treated as standard limits.

= log,a, lin})(l +x)"/* = ¢, etc., which
x—
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Example (17): Show that lim ¢ = c.

Preliminary Analysis

We write lim ¢ = lim f(x), where f(x) =c.

Let & be any positive number. We must produce a 6 > 0, such that
O0<|x—dal<é=|f(x) —c| <& wheref(x)=rc.
Consider, |[fix)—c|<es|c—c|<e
< 0 < e whichis true for any e > 0.

Thus, for a constant function, f(x)=c, we have, for any 6 >0,
O<|x—da<é=|f(x)—¢c|=c—c|=0<e.

It follows that, lim ¢ = c.
X—a

Remark: In the case of a constant function, the (positive) number & does not depend on the
arbitrary positive number &, since any constant function f(x) = ¢ does not change with x. In
other words, x approaching any number “a” does not have any effect on the limit of a constant
function. Accordingly,

T T
lim1 =1, lim —=— d lim(—n)=—
pmi=t fm 3=z wd Jmim=-r

Example (18): Show that, lim x =a
X—da

Solution: Here, f(x) = x for all x.
Let £ >0, be an arbitrary number.
We must find a number & > 0, such that,

O0<|x—da<é=|x—d|<e

Consider, |f(x) —a| = |x —a].
In this case, for |x —a| < &, we can choose § =&, so that we can write 0 < |x —a| < &=
|x —al <e, thatis, 0 < |x —a| <8 = |x — a| < & [by putting £ =45 on the left-hand side].
From the above statement, we conclude that !im X = a. Inview of the above, we can write

X—d

lim x=4n and lim x=-vI11
x—4n x——VI11

Remark: A slight alteration in the situation would show that for any fixed numbers a, b, and c.

lim (bx +c¢) =ba+c, lim|x|=|q|

X—a
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It follows that
hmz(fo +3)=(-5)-2)+3=-7

and lim |x
x— -3

— -3 = —(=3)=3

7a.5.2 Algebra of Limits [Limits Theorem]

For computing limits, there are methods which are simpler than using the £, 6 definition. In these
methods, we employ theorems (called limit theorems) whose proofs are based on the &, &
definition. In fact, these theorems define the algebra of limits, and they are useful in finding the
limits of various combinations of functions. We accept these theorems without proof, which
are given below.

7a.5.3 Theorem (A): Main Limit Theorem
Let n be a positive integer, k be a constant, and f and g be functions, such that

lim f(x) and lim g(x) exist, then

lim [f(x) 4+ g(x)], xliinakf(x), lim [f(x) — g(x)], and lim [f(x)-g(x)] exist.

Let
lim f(x) =/and lim g(x) = m, then we have the following theorems (rules).

(1) Sum Rule:

lim [f(x) £ g(x)] = lim f(x) £ lim g(x)

X—da X—da X—da

=Il+tm

(This rule is applicable for a finite number of functions.)
(2) Constant Multiple Rule:

lim k f(x) = k lim f(x), for any constant k.
=k-l
(3) Product Rule:

fim [£(x) g(x)] = Jim f(x) - lim g(x) = -m

X—da X—da

(4) Quotient Rule:

If lim f(x) and lim g(x) exist and lim g(x) # 0, then, lim%exists and, we have
the following rule
flo) _ im S
) _xa TL L 2 0)
x—ag(x) limg(x) m
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A special case of this rule is the following.
If a is any real number except zero, then

11 1 1 o .
thna; p . Also, }er}lf( ) m provided Ahﬁmaf(x) # 0.
X—a

®) lim [f(0)" = [ fim /()|

X—a

(6) hm Vf(x) =/ hm f ), provided hm f (x) > 0, when nis even.

@ lim flg(x)] —f(hm 8(x)) =f(m).

Now, we also include the following two results (to be treated as theorems), which we
have already proved above.

@) lim c=c
(9) lim x=a

Since “limits are real numbers”, any combination of limits must follow the rules for
combining real numbers. This should help us remember the above theorems. Remember
that we have accepted the above theorem and rules without proof. Hence, one should not
bother about their proofs immediately. For the time being, it is more important to see how
all these theorems are applied. The proofs may be referred to in any standard book on the
subject.?

Exercise: Using &, 8 definition, show that

Q. (1) lim (3x—2) = 4

—16
— ] =16, (x#4)

Q. 2 hm 2{

x—1

2 _
Q. (3) lim {%} =4, (x#£1)

e

@) lim

x—5

x> —2x—15
{?} =2 x#9)

Q. (5 1im3(x2 +x-5)=7

Q. (6) Prove that if >0, lim v/x = va
X—d

Note: Solutions to Q. (5) and Q. (6) are given below in Examples (19) and (20).

19 We can deduce rule (5) from rule (4).
f(x) 1
Note that —= = f(x) - —
FE AT

@O caleulus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick, HBJ Publication.
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Example (19): Prove that lim3 (x2 +x-5)=17,

Preliminary Analysis
Our task is to find § such that 0 < [x — 3| <8 = |(xX* +x—5)— 7| <e.

Consider, |(x*+x —35) = 7| = x>+ x — 12| = [(x + 4)(x — 3)| = |x + 4||x — 3|

Since the second factor x — 3 can be made as small as we please, it is enough to bound the
factor |x + 4] (i.e., to find the maximum value of this factor as x — 3). To do this, we first agree
to make 6 < 1.

Let us see what happens when we choose & < 1.%"

We have [x—3 <1= —1<x-3<1

=2<x<4
=24+4<x+4<4+4
=6<x+4<8

(When & < 1, the value of |x — 3] <1 suggests that maximum value of |x — 3| can be 1.)
Then, |x — 3| < 8 implies

[x+4| =|(x=3)+7|
< |x—=3|+17] (Triangle Inequality)
<1+7=8

This indicates that if we also take 6 < &/8, the product |x + 4

x — 3| will be less than &.

Formal Proof:
Let £ >0 be given.
Choose 6 =min{1, &/8}; that is choose 8 to be smaller of 1 and &/8.
Then, 0 < |x — 3| < 8 implies
(X 4+x—=35)=7 = |x* +x— 12
= |x+4||x-3]<8. ¢g/8=e¢

Example (20): Prove that if ¢ >0, lim v/x = va

Preliminary Analysis
(Note that /x is defined only for x >0.)
We must find 8 such that 0 < [x —a| <8 = [\/x —Va| <&

Consider, IV —a| = ‘ (Vx —(£)+(£)+ Va)
T VAt va
_ |x—d < |x —a

S Vx+vaT a
x—d

Now, to make 7 less than &, requires that we make |x — a| < &/a.

@D Note that we may as well choose 8 <2 or § <3, (or § < any other convenient positive number) and then obtain the
relation between that number and &.
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Formal Proof: To prove lim v/x = v/a, (a>0)
Let £ >0 be given. o

Choose & = ev/a

Then, 0 < |x —a| < & implies

(VX + a)
:‘\/;;f/a S\x\;ﬁa|<87\\//;’ [ |x—a| <eVa]
ie |x—a\<8
L., Tz
V- Val < e
lim v = Va

Remark: There is one more technical point. We should insist that < a, for then |x —a| <&
implies x > 0 so that \/X is defined.*>
Thus, for absolute rigor, we must choose 8 to be smaller than a and e+/a.

Note (8): In Example (6) given above, we had to rationalize the numerator for the purpose of our
demonstration. Rationalization is a trick frequently useful in calculus.

7a.5.3.1 Applications of the Main Limit Theorem

Example (21): Evaluate the following limits:
(@ lim x*
x——1
(b) lim (mx + x?)
X— —
2

I -
© [tm T3

Solution:

@ lim = ('Xlim x)( lim x) =(~1)(-1) =1

¢ — — x——1
(Here, we have applied the product rule.)
(b) We have lim1 ax=n(-1)=-n (By constant multiple rule)
X——
and 1im1 X =1 [By part (a) above].
X— —

We conclude that

liml(nx—i-xz): lim 7x + lim x?
X — —

x—-1 x— -1 (By sum rule)
=-—n+1
@ [x—al<d=>-8<x—a<d=>a—-8<x<a+8 (i). Now, 6§<a=a—8>0. .. From (i) it follows that

0<x<a+3.
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(c) We have lim (x +3)=—-143=2, (By sum rule)
and hm =1 [By part (a)].

X— —
We conclude from the quotient rule that
2

2 lim x
x——1

—_

lim = — =
x—-1x+3 llml(x+3) 2
X— —

Note (9): Rule no. (6) of Theorem A, demands special attention.
We have,

lim /f(x) = ¢/ llm f ), provided hm f (x) >0, whennis even.

X—da

Recall that the nth root function, v/x is defined for any real number X, if 1 is odd. However, if n
is even then /X is defined only for x > 0, with the understanding that only non-negative values
of the nth root are accepted. As a particular case of rule (6), we have

lim v/x = V/a,

X—a

for all aif nis odd.
fora > 0, if nis even.

In particular, hm Vx = +/a, fora > 0.

1
For example hm \/— = 7:5

7a.5.3.2  Substitution Rule
Consider the following limit

lim Vx5 —4x2 +3x 42

x—1

To evaluate this limit we have to apply the Rule (7), which states that

lim flg(x)] = £ ( lim g(x))

X—da

Now, suppose lim g(x) = ¢ (i.e., some constant) and we substitute y = g(x).
X—da
Then, we can write, lim g(x) = lim y.
X—a y—c
This is a valid statement and we can write lim f[g(x)] = lim f(y), provided f(y) exists.
xX—a y—c

This is known as Substitution Rule. Frequently, the process is straight-forward.
This rule might look innocent but itis a very convenient and useful rule for evaluating certain
limits. The following examples will convince the reader about its usefulness.

Example (22):

Find lim1 VXS —4x2+3x+2 (6)
X

In trying to evaluate this limit, we first let y = x° — 4x* 4 3x 4 2 and notice that as x — 1,y
approaches (1)° —4(1)* 4+ 3(1) +2=2.

This suggests that by substitutingy = x° — 4x> +3x+2 ... (7)
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We can easily evaluate the limit of the expression on the right-hand side of Equation (7),
as x — 1.
Now, in order to evaluate the limit at (6) above, we substitute y — 2, for x — 1.

Thus, we write
lim Vx> —4x2 +3x+2 = limz\/§= V2 Ans.
y—

x—1

Example (23): Consider lim2 x+1. We first let y=x+21 Then, we notice that
X — -

S 1y _ 15 ooy 1

xhiny—hin(x+;)—2+§—§. [ y=x+1].

By the substitution rule, we get hm +1i= llm/ VY= \/7
Yoy

Example (24): If 1im3f(x) =4and lim3 g(x) =8, find l_im3 [fz(x)~ v g(x)]

Solution:

x—3

lim [fz(x)~ vg(x)] = hmf (x)- “llm v g(x)

= {hm flx )]2- / lim g(x)

x—3
=47 V8

=16-2=32 Ans.

Note (10): Usefulness of the substitution rule is appreciated when we have to evaluate the
following limit.

Example (25): WA
lim ——
x—1x1/3 -1
Here, we observe that the indices of x are fractions. Hence, it is not possible to factorize both
numerator and denominator. Further, we see that the denominator of these indices is 4 and 3, and
their L.C.M. is 12.
We substitute x = y'2. Thus, we gety= X2 - XM= (14 — 3 and X1 = (1213 =y
Also, we see thatas x — 1,y — 1.
3 -1

Required limit is hm Y 7
y— 1yt — y—1 y —1

(Note that, now the numerator and the denominator both can be factorized.)

i =Dy 4D
=1y =D+ +y+ 1)

) O +y+1)
=lim - —/——>+——"—, 1
=1 (P Fy 4y +1) Cry#1)

I+1+1 3
== Ans.
I+1+1+1 4
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Note (11): Many such limits are evaluated in the Chapter 7b.
Another example in which the beauty of the substitution rule can be enjoyed is the following
limit.

Example (26): lint 7”?’1 [Hint: Put y=1+x, then as x — 0, y — 1. Hence, the limit
X — -

reduces to the form lirnl ((yl/2 -1)/(y— 1)).]
y—

7a.6 THEOREM (B): SUBSTITUTION THEOREM >
If fis a polynomial function or a rational function, then

lim £(x) = f(a)

X—a

[Pt

provided that, in the case of a rational function, the value of the denominator at “a” is not zero.

Note that Theorem (B) allows us to find limits for polynomials and those of rational
Sfunctions by simply substituting “a” for x throughout. Let us see what happens when in a
rational function the limit of the denominator is zero.

X42x48
x2-2x+1

lim X>42x48
x—1 (x=1)°

Note (12): Suppose, we have to find lim1
X —

In this case, neither Theorem (B) nor the “Quotient Rule” of Theorem (A) applies, since the
limit of the denominator is 0. However, since the limit of the numerator is 11, we see that as x
nears 1, we are dividing a number near 11 by a positive number near 0. The result is a large
positive number. In fact, the resulting number can be made as large as you like by letting x get
close enough to 1. Here, we may say that the /imit does not exist, but later on in Chapter 7b we
will allow ourselves to say that the limit is +oc.

(This becomes possible once we accept +o0o0 and —oo as limits.)

—
—

2)(t+1)
)

Note (13): Now suppose that we have to find thl% 3(d)

2 10 q: (
1t2+2tt—8 - ,hlg(
Again, in this case, Theorem (B) does not apply. But this time, the quotient takes the
meaningless form 0/0 at t=2. Whenever this happens we should look for an algebraic

simplification of the quotient (by factorization), before taking the limit.

£—t-2 _hm(t—z)(t+1)

Ii -
P28 a(t—2)(t+4)

t+1
=lim,_,——, Ct#£2
1my; zt+4 [ 7é }
:gz1 Ans.
6 2

23 The substitution theorem [i.e., Theorem (B)] discussed here should not be confused with the substitution rule
discussed in Section 7a.5.3.2.
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7a.7 THEOREM (C): SQUEEZE THEOREM OR SANDWICH THEOREM

Let f, g, and / be functions satisfying f(x) < g(x) < h(x), for all x near a, except possibly at a.

If lim f(x) = lim A(x) = I, then lim g(x) = /®¥

X—a X—da X—a

Proof: Let £ >0 be given. Choose 6, such that,
O0<|x—a|<8=>]—-e<fix)<l+eandd,suchthat0 < [x —a| <8 =I—e<h(x)<I[+e.
Also, choose 83 so that 0 < |x —a| <83 =>1—e<g(x)<I+e.

Let 8§ =min{8, 85, 83}. Then 0< |[x —a| <8 =/—e<fiX)<gx) <h(x)<l+e=1—¢
<gx)<l+e.

Hence, we conclude that lim g(x) = /.

Note (14): This theorem will be found very useful in evaluating limits of a variety of
trigonometric functions, to be studied later.

Remark: Suppose lim f(x) does not exist, then, limit rules can help in proving this fact, as
the following exampylg illustrates.

1
Example (27): Show that lim0 — does not exist.
x—0X

Solution: To prove the above result, we approach by the indirect method.
Suppose that limo(l/x) exists, and let 1im0(1/x) = /. Consider, 1 = x- (1/x).
X — X —

1 1
We have lim 1 = lim (x~ f) orl = (lim x) . (limf)
x—0 x—0 X x—0 x—0X

1=0-1=0

This is absolutely false (since 1# 0). Therefore, lim0 (1/x) cannot exist.
X —

7a.8 ONE-SIDED LIMITS (EXTENSION TO THE CONCEPT OF LIMIT)

Now, we are in a position to give the &, 6 definitions for left-hand and right-hand limits of a
function.

Definition: Let fbe defined on some open interval (¢, a).*>A number “I” is the limit of f{x)
as x approaches a from the left, if, for every & > 0, there is a corresponding & >0, such that
—-d<x—a<0=|flx)—I|<e.

In this case we write, lim f(x) =/, and we say that the left-hand limit of “f” at “a”
exists. Right-hand limits are treated in a completely analogous way. Thus, if “f” is defined on
some open interval (a, c), then a number “/” is the limit of f(x) as x approaches “a” from the
right, if for every & > 0, there is a corresponding 8 > 0,suchthat 0 < x —a <8 =|f(x) — | < e.

@ 9

In this case, we write lim+ f(x) = [, and we say that the right-hand limit of “f” at “a” exists.
X—da

@4 Roughly speaking, the theorem tells us that if a function can be “sandwiched” between two other functions, each of
which approaches the same limit “/” (say) as x approaches «, then the sandwiched function also approaches the same limit
“I” as x approaches a. For obvious reasons, we call it the “Sandwich Theorem”.

9 Observe that “f” is not defined at “a”. Besides, “a” can be approached only from the left-hand side of “a”.
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Remark: One can show that hm VX =0, but it must be clear that neither hm /X nor
hm VX exists (because /X is not deﬁned to the left of 0). Similarly, for f(x) = \/y_c x €(1,2),
hm Vx = /2, but neither hm /X nor llm2 V/X exists.

X —

Note (15): Right-hand and left-hand limits are called one-sided limits. Ordinary limits are
called two-sided limits.

Note (16): Sometimes a function “f” is defined by two (or more) different rules. In such cases,
one rule may be applicable for the values of x less than “a” and the other for the values of x
greater than “

We have already given examples, wherein

lim f(x) =/ and _lim+f(x) =Dh.(,#1) [see Examples (6)—(9)].

Ifl, =L =1 (say), then we say that 11m f( ) exists, otherwise we say that the limit does not
exist. Thus, the statement

limf(x) =1 & lim f(x) =/= lim f(x).

xX—a X—a x—at

Note (17): The concept of one-sided limits will be very useful in studying the concept of
continuity of a function:

(i) at any point in an interval and
(ii) at the end point of a closed interval.*®

Example (28): Let us find linln V1—x2

Solution: First observe that v'1 — x? is not defined for |x| > 1. (Why?)
Lety=1-— X2

For any value of x, such that |x| < 1 we have y > 0. Thus, when x — 17,y — 0. Therefore,
we have, Vlinll* V1-x2= Xlirgﬁ Vy=0.

Remark: Although hm V1 — x? exists, hm V1 — x2 does not exist, because 1 — x> will

be negative whenever X hes totherightof 1, and we know that square root of a negative number
is not defined.

9 The concept of “continuity of a function” is discussed in Chapter 8.



7b Methods for Computing Limits
of Algebraic Functions

7b.1 INTRODUCTION

In Chapter 7a, we introduced the notion of limit of a function. There, we defined the meanings of
certain notations (suchas x — a, x — a*, x — a~, where “a” is a real number), applied intuitive
and logical thinking to compute the limit(s) of some polynomials and rational functions. In
fact, this has been the simplest and the most practical way of introducing the concept of limit of
a function.

Recall that, in the process of assigning meaning to a rational function like
f(x) = (x> = 9)/(x — 3)), wherein the variable x is permitted to assume values closer and
closer to 3, we learnt that whereas the value of f(x) at x =3 is not defined, we can still give
a logical meaning to the statement YILm3 f(x), which matches our intuitive meaning of

the statement. This allows us to assign the number 6 to the statement limz f(x) Ge.,
lim ((x* = 9)/(x — 3))), which we called the limit of f(x) at x=3. o

Such examples help us distinguish between the value f of the function f(x) at x =« and the
limit of f(x) as the variable x approaches the number a. We get that the value of a function and
the limit of a function are two different numbers. Of course, under certain situation both may
stand for the same number.

Note: In our study of differential calculus we will be required to compute the derivative of a
function, which itself is the limit of a particular kind (this we will understand later in Chapter 9).
Hence, it is necessary to understand the limiting process in full clarity.

Recall that, the ¢, 6 definition of the limit introduced in Chapter 7a does not help in evaluating
\l_iina f(x).It can only be used to verify whether a given number (or a guessed number) is the limit

of the given function f(x), as x — a. The method of preparing the tables: one for the values of
x closer and closer to “a” and the other for the corresponding values “f(x)”, can help us guess
the number to which the values “f(x)” approaches. But, this process is not only tedious but also
unreliable (under certain situations) as shown in Chapter 7a.

Further, there is no general theorem, which can be applied to a given function to obtain its
limit at a desired point. However, there are /imit theorems (based on &, & definition of limit),
which offer very simple methods for evaluating limits of (all) functions. Standard limits have

What must you know to learn calculus? 7b-Methods for computing the limits of algebraic functions. Limit at infinity
[i.e., lim f(x), lim f(x)] and infinite limits [i.e., meaning of lim f(x) = too].
x— 00 PR—— x—d

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

177



178 METHODS FOR COMPUTING LIMITS OF ALGEBRAIC FUNCTIONS

been established for different functions (through &, & definition) and then by using these
standard limits directly, we can easily obtain their limits, avoiding all practical difficulties
associated with &, 6 definition of limit.(V

In Chapter 7a, we have handled various algebraic functions and obtained their limit(s) for
developing the &, 6 definition of limit. What remains to be discussed are different methods for
evaluating limits of many other types of algebraic functions. Accordingly, we now introduce
the following methods.

7b.2  METHODS FOR EVALUATING LIMITS OF VARIOUS ALGEBRAIC
FUNCTIONS

7b.2.1 Direct Method [or Method of Direct Substitution]

This method is applicable in the case of very simple functions, in which the value of the function
and the limit of the function both are the same. For learning the concept of limit, such functions
are neither important nor useful, since they do not distinguish between the two different ideas
involved. TIf we replace x by a in the formula defining f{x), we get the value f{a), and the limit
\!iln3 f(x) both representing the same (finite) number.

Example (1):
lim (x* +3)= lim x* 4 lim 3
x—2 x—2 x—2

=224+3=17. Ans.

Example (2):

11m vVx—1 +hm2
- 2
e

vx+31 l1m5 Vx4 31
X —

Vi-1+2 4 2

=——=—-=—Ans.
V5431 6 3
Example (3):
3 _
XLII% x—3 x73
il ( ) =4 Ans.

lggx—3):(1—3):i§

7b.2.2 Factorization Method

For computing limit(s) of the type, hm (f(x)/g(x)), where fla) =0 and g(a) =0, the direct
substitution method fails. In such Cases, we search for a common factor (x — @) in f(x) and
g(x) by factorizing them and canceling this factor to reduce the quotient to the simplest form

@ In fact, the standard limits of trigonometric functions are established in Chapter 11a and those for exponential and
logarithmic functions in Chapter 13a. Accordingly the methods of computing limits of functions involving trigonometric
functions are discussed in Chapter 11b and those involving exponential and logarithmic functions are discussed in
Chapter 13b.
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and then apply the direct method to obtain the limit. [Remember that x — a means that x # 0, at
any stage. In other words (x — a) # 0, at any stage. This permits us to cancel the common factor
(x—a) from both numerator and denominator.]

2 _4 3
Example (4): Evaluate Yhﬂml ;T;H—_.’)
Solution:
X —dx+3 L (x=3)(x—1)

=1
xl~>n11x2+2X*3 ‘cl—vrnl(x+3)()€*1)

= 1img, [(x=1)#0]

x~>lX+3

1-3 -2 1
13-4 2 A

Note: For evaluating lim (f(x)/g(x)), we may also follow the following steps:
X—d

(1) Putx=a+h( .asx—a, h—0)
(i1) Simplify numerator and denominator and cancel the common factor /.
(iii) Put #=0, in the remaining expression in / and obtain the limit.

3_8x2 116
Example (5): Evaluate lim ~—— %+ 0%
x—4 x3—x—60

Solution: Consider x* — 8x? + 16x
=x(x* —8x+16), {16 = (—4)(—4)}
x? —4x — 4x + 16)
=x[x(x —4) —4(x — 4)]
[(x —4)(x —4)]

“

=x

Now consider x> — x — 60
=% —4x? +4x? — 16x + 15x — 60
=x}x—4) +4x(x —4) + 15(x — 4)
= (x —4)(x? +4x+15)

X3 -84 16x x(x—4)(x—4)
lim ——— = lim
x—4 x> —x—60 x—4(x —4)(x? +4x + 15)

x(x —4) 44 —4)

lim = =0 Ans.
x—4(x2+4x+15) (4% +4(4) +15)
An Important Standard Limit
We will prove the following limit.
no__ . n
lim> % =y ! (1)
xX—a X —d

Let n be a natural number and a > 0.



180 METHODS FOR COMPUTING LIMITS OF ALGEBRAIC FUNCTIONS

Consider x" — a"

_ — _ — - 2 _
:xnixnl_a+xnl_a7xn2_a2+xn 2a+xn 3a3 7xn3_a3

x4 gt 4o +xa”’1 — 0. g
=xX"Mx—a)+x"?2 - alx—a)+x"3 - (x—a)+ - +x% @ (x—a)
= (X — a)[x"*l —+ xn72 . S a-—+ xn’3 . az ...... + anfl]
x"—da" _ _ B B
7:[x”l+x"2.a+x"3la2+ ...... 4+ g!
X—a
Y1 — "
Therefore, lim = lim(X" X2 a7 +a"
x—a X —a x—a
=ad '+t n terms
=n-a"!' (Proved)

(We will use this formula in evaluating the following limits.)

7b.2.3 Applications of the Standard Limit in Solving Special Type of Problems

Example (6): Evaluate lim1

Solution: The given limit

=1
xl—>l x—1
_ 2 _ 3 D)4 n_
:lim(x D+x*=1)+x-1)+ +(x"—1)
x—1 x—1
7lim(x—1)+(x—1)(x+1)+(x—1)(x2+x+1)+ ~~~~~~ +(x=D (" X 2a+ x4 1)
T ol x—1
=Hm [+ (D + (x4t (T ] [ (= 1) #£0]
X—

=1+0+D)+A+1+1)+-- - ntimes)

=1+ 143444546 +n

:n(n+l)

A
) ns

We have seen above that,
Y — g = (x_a)[xn—l +xn—2 . a+xn—3 . a2 ...... +an71]

where 7 is a natural number and a > 0.

The above formula can be used to evaluate limits of the form (x" — a")/(x™ — a™), (where

n,m € N, and a > 0).

@ Note that the expression x” — a” can be factorized only if n € N and a > 0.
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For this purpose, we write

. n n . x)‘l_al’l X—a . xn_an . xm_a
lim = lim . = lim =+ lim
x—axm —ag" x—a x—a X" —ag" x—a x—a x—a X—da

m

and apply the standard limit to obtain

X" —a" n

XLHL XM — gn = %a”*m (2)

which is a corollary to the standard limit (1).
B
Example (7): Evaluate lim 3 3
x—aXx3 —a

5 5 5-1 4

. . X —a . 5-a 5 5,
Solution: Xhﬂmax3 = }erba =y ga Ans.

Remark: Formula (2) has been proved for natural numbers 7 and m. However, the result is true
for rational values of n and m. The following examples tell how this is justified.

x4 —1
Example (8): Evaluate lim AT
x—1x1/3 —1
Note (1): In such cases the important point is that the given limit can be converted in the form (2)
by substitution as follows.
Here, the indices of x are fractions (i.e., the positive rational numbers) and hence we cannot
factorize. The denominators of these indices are 4 and 3. Their L.C.M. is 12. Therefore, we use
the substitution x = ¢'2, for our purpose.

Solution: Put x = 2 - ;= x!/12
. xl/4 _ (112)1/4 — A3 and xl/3 _ (l12)1/3 _ l4
Also we see that as x — 1, t — 1.

£—1 A—-1 317" 3.12 3
. Required limit = lim = lim 1= (n) = 5= Ans.
=1t —1 =14 —-1 4(1) 4 .13 4

Note (2): We can also apply Corollary (2) directly and obtain the limit as follows:

" X1/4_1_ i x1/4_1l/4
,‘cl—*rnl.xl/3 —1 _xl—>rnlx1/3 — 1173

(1/3)

x5 325
Example (9): Evaluate lim 77—

4

(1/4) (1)/H=073) 3. (2 :% Ans.

(2/5) sem-a/)

-~ (1/2)
4

— 2. (3" (/10
SE)
4 1

:5 . 3710 Ans.
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-3 _ 273
E le (10): Evaluate lim ———
xample (10) valuae:xlin2 —
-3 _ 2*3 -3 _ 273
Solution: lim ——— = 1i s
x—2 x—2 x—2 xl -2l
i N S P!
1
-3
=— Ans
16

Note (3): To evaluate limits of this type, it is always useful to convert the given limit to the
standard form as follows:

-3 3 1 1

3 _237x3_7(x3723)
A R R S

o 8x3

1 3 _ 23
.. The given limit is lim —— (x )

x—2 8x3\ x—-2

1 3 1 3

=— I = — 3 4= =
(8~23 1 > 64 16

(x+2)°7 = (a+2)°?

Ans.

Example (11): Evaluate lim

(x+20°° —(a+2)°"
(x+2)° —(a+2)?
(x+2) - (a+2)

Solution: lim

X—da

im x—a=(x+2)—(a+2
x+2) — (a-+2) [ ( )= )]

. ((l + 2)(5/3)—1

= . (a+2)*"* Ans.

(
5
3
5
3

13

Example (12):

Solution: lim

X —

Evaluate )}l_}l’nl m

IV

11 —x2/3

~im (xl/3 _ 1)/x'/3
x—1(x33 —1)/x2/3

1/3 . (1/3 1/3
B S Sl ) SEYTC STV Sl S Sk
by (x2/3*1) x—1 x—1 X2/3*1)
1/3 2/3
= lim < lim &
i—1 x—1 x—1 x—1
_ 1 10/3)-1 2(1)(2/3)—1 l_g: Ans.
3 3 3
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Exercise [Application of Standard Limits]

(1) Evaluate the following limits:
n—1
X
(l) Vhinl xmfl
1 "1
(ii) lim a0 =1 [Hint : 1 +x =]
X —

Lo x =37
L e

. . 1 1
(iv) lim (;—8)/()6—2)

3
H 1 : ) _ 3
) xlinllx ; [Hint:x’ + 1 =x" — (-1)]
o VI+x—1
(vi) lim ——
x—0 X

(x+3)2 = (a+3)"?

(vii) lim
X—a X —d
. X2 —64
(Vlll) /\!m’m
(%) lim x+x2 4+ +x44+x =5
x—1 x—1
9 9
00 I Tim 2% — 9_find the value of a. [Hint: x+a—=x — (—a)]

x—-a X+a
n __nn
> = 80, and n is a positive integer, then find the value of n.

(xi) If hm2

.. : (XZ —X— 2)20 : . T T
(xii) lim —————— 7 [Hint: factorize N' and D']
x=2(x3 — 12x + 16)
Answers
@) n/m (i) n Gii) 172 @v) —=3/16 (v) 3
(vi) 172 (vii) (7/2)(a + 3)*"* (viii) 6 (ix) 15 (x) %1

(xi) 5 (xii) (3/2)".

7b.2.4 Method of Simplification

Sometimes it is required to simplify the given function and then evaluate the limit.

1 1
Example (13): Evaluate lim +
x—=3\x—3 3—x

1 1
Solution: lim ( + )

x—3\x—3 3—x i 1 1
xl—»m3<x—37x—3)

lim (0) =0

x—3

183
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1
Example (14): Evaluate hm —L
x—5 x?-5x
1 5
lution: li -
Solution xlin (fo 2 fo)
li ! > x—5 #5.:.( 5)#0
=1l — — X X —
x=5\x—-5 x(x-35)/)’
= lim X5
T x5 \x(x—5)
li ! ! Ans
= 11 — | ==
x—5\X 5

. 1 1
Example (15): Evaluate xlinlz <x2 516 + o 2)

Solution: We have, X’ +5x+6

=(x2+3x)+(2x+6) [6=3x2]
=x(x+3)+2(x+3)
=x+3)(x+2)

and X2 +3x+2
= +2x)+x+2 2=2x1]
=(x+2)(x+1)

*. The given limit is

. 1 i
:,xlinlz((x+3)(x+z)+(x+z ))

i x+1+x+3
e 2\ (x+3) (x+2) (

. 2x+2
lim
=2\ (x+3)(x+2)(x+1)

Xlinlz (ﬁ) { Sx— =2, ox A2 s (x+2)#0
2 2

T(2+3)22+1) ()20

Exercise [Method of Simplification]

(2) Evaluate the following limits:

. 1 7
@ lim, <(x—3)7(x2+x—12)>

a b
(@) PT_ ((ax —b)  (ax?— bx))




METHODS FOR EVALUATING LIMITS OF VARIOUS ALGEBRAIC FUNCTIONS 185

1 7
(i) Tim ((y 3by +20%)  (2y? — 3by + b2))

1 1
. l. -/2_9 - -
(i) Jim, {x (w+w+w—@>
) x—-16 x2-9
) lim (x4—4 +x2—3>
Answers

@ /7 G ab Gii) =3/6> (V)6 (V) 25.

7b.2.5 Method of Rationalization

If the numerator or the denominator or both contain functions of the type [/f(x) — g(x)] or
[Vf(x) —v/g(x)], and the direct method fails to give the limit, we rationalize the given

function by multiplying and dividing by [\/f(x) 4+ g(x)] or [\/f(x) + 1/g(x)], as the case may
be. After simplification of the function, we evaluate the limit by the earlier methods.

x
Example (16): Evaluate hmi

ple (16): 0y/1I4+x—1

. . X X \/H—x-i-l x(V1+x+1)
Solution: Consider =

ViFx—1 \/1+x—1 Vitx+1 X
V1 1
‘. Given limit is lim w: lim (VI+x+1), [x#0)
X —

=v1+0+1=14+1=2 Ans.

Example (17):

-3
lim Y

x—3 1/_x_ — /4 —.X
Solution: Consider
x—3 _ x—3 ><\/)6—2—1-\/4—x
VX=2—-V4—x Vx-2-Vd-x Vx—-2++V4-x

_(x=3)(Vx—2+VE—x)

(x=2)-(4-x)
(=324 V)
2x —6
C (x=3)(VX—2+VE—x)
- 2(x—3)
:3131? (m;M) [-.~x—>3, SX#£ 3 (X—3)?é()]

_(V3-2+4V4A-3) (VIHVID) 141

5 = > = =1 Ans.
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Example (18): Evaluate lim L va— X
x=0y/b+x—+vb—x

Solution: Consider \/a + x — /a — x
=(a+x—+a—x) X—a—‘,-x—i- a-x
Vva-+x—++/a—x

_(a+x)—(a—x) 2x
S Va+x+a—-x atx+Ja—x

Consider vb + x — vVb — x

 (WhEx—vhoxYotxtvhox
) Vb+x+vVb—x
X

Vbt x+vh-x

2x 2X
.. Given limit is lim -
=0Vatx+yva=—x Vh+x+vb—x
lim Vh+x+Vb—x
=1li

x—0 Ja+x++/a—x
Vb+0+vVb—0 2vb  [b

— Ans.

“Vatot+va-o 2/a Va
Exercise [Method of Rationalization]

(3) Evaluate the following limits:

(Vx2+5+V5x—1)
2

—4

® i,

(i) lim
X —

X
01 —-+v1-x
Vx+h—/x
h

@iv) lim —Vl'i_x_ V1-x

x—0 X
. \/a+2x7\/§
lim Yo" Vo4
v) lim m_\/?(a#())
(Vx2—1++vx—-1)

x3—1

(iii) lim
h—0

(vi) lim
x— 1

[Hint: Take v/x — 1 common from numerator and denominator.].

Answers

() —1/24 G2 Gi)1/2yx G113 i) (V2+1)/V3
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7b.3 LIMIT AT INFINITY

Evaluating limit(s) of the form liril F(x).
X — 00

The concept of infinity (co) was introduced in Chapter 2, and the concept of interval
involving infinity [i.e., (a, ) [a@, 00), (—00, b), (—o0, b] and (—oo, c0)] was introduced in
Chapter 3. Thus, (3, 00) is our way of denoting the set of all real numbers greater than 3, and
similarly we denote the set of all numbers less than or equal to 5 by the interval (—oo, 5].

We know that infinity (oo) does not represent a number. In this section, we will use the
symbols oo and —co in a new way, maintaining the same clear understanding about the
concept.®

Consider the function £(x) = (x/(1 + x?)). We ask the question: What happens to f(x) as
x gets larger and larger? In symbols, we ask for the value of Vli»moc f(x). We use the symbol

x — oo as a shorthand way of saying that x gets larger and larger without bound.

(When we write x — oo, we are not implying that somewhere far, far to the right on the
x-axis, there is a number bigger than all other numbers to which x is approaching. Rather, we
use x — oo to say that x is permitted to assume larger and larger values endlessly.)

In Table 7b.1, we have listed values of f, for larger and larger values of x, for several
values of x.

It appears that f(x) gets smaller and smaller as x gets larger and larger. Therefore, we
write lim = (x/(1 +x%)) =0.

X —00
Experimenting with large negative values of x, would again lead us to write
lﬂimoo = (x/(1 4+ x?)) = 0. We say that the limit of f(x) at infinity is 0.

X
7b.3.1 Rigorous Definitions of Limits as x — +oco

In analogy with our &, 6 definition for ordinary limits, we make the following definitions.
Definition (a): (Limit as x — o)

Let f be defined on [a, 00) for some number “a”. We say that a number / is the /imit of f(x) as

x approaches o, if for every & >0 there is a corresponding number M, such that

x>M=|f(x)—1 <e.

TABLE 7b.1

X J(X) =y
10 0.099

100 0.010

1000 0.001

10,000 0.0001

l !

00 9

© The concept of “infinity” has inspired and also confused mathematicians from time immemorial. The deepest problems
and profoundest paradoxes of mathematics are often intertwined with the use of this word. Yet, mathematical progress can
in part be measured in terms of understanding of the role of infinity. [Calculus with Analytic Geometry (Fifth Edition) by
Edwin J. Purcell and Dale Verberg (p. 184), Prentice-Hall Publication.]
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In this case, we write, lim f(x) =1.
X — 00

We say that the limit of f{x) exists as x — oo (or that f has a limit at o).

Definition (b): (Limit as x — —o0)
Let “f” be defined on (—o0, a] for some number “a”. We say that a number /is the limit of
Sf(x) as x approaches —oo, if for every & >0 there is a corresponding number M such that

X<M=f(x)—Il<e.

In this case, we write, lim f(x) =/.
X— —0C

We say that the limit of f(x) exists as x — —oo (or that f has a limit at —o0).

Remark: Definitions (a) and (b) will remain unchanged even when fis defined on the intervals
(a, o0) and (—o0, a), respectively.

Note (4): The number M in the above definitions corresponds to the number 8 as in all other
definitions of limit(s) so far. We think of x as “close to” co when x > M, just as we say that x is
“close to” a when a — 6 < x < a. M can depend on ¢. In general, the smaller ¢ is, the larger M
will have to be.

Example (19): To show that if K is a positive integer, then

. 1 . 1
xhﬂrrolox—,( =0 and xEIPxxT =0

Solution: Let £ > 0 be given. We have to find a (positive) number M such that

1
x>M = |%-— O' <e&
X
= x7 < &,
| since we want x to be greater than a
= % <¢ positive number M, it follows that x > 0.
X
Hence, x* > 0.
1
= x> -
&

=>x>4/l/e

Thus, M > £/1/eimplies |(1/xX) — 0| < &. It follows that, lim 1/x¥ = 0. Similarly, we can
X — 00
prove that lim 1/x* = 0. (In particular, lim 1/x =0and lim 1/x = 0.) These limits
X — =00 X — 00 X — =00

must be treated as standard limits.

We must face the question of whether the main limit theorem (i.e., Theorem A) holds
for them. The answer is yes. We accept the corresponding statements of the limit theorem,
without proof.



LIMIT AT INFINITY 189

Thus, the limit as x approaches oo (or —oo) is unique, when it exists. Furthermore, if

lim f(x)and lim g(x) exist, we have
X — 00 X —00

Jim [f(x) +g(x)] = lim f(x) + lim g(x)
lim f(x) - g(x) = lim f(x) - lim g(x)

X — 00

(There are corresponding formulas for limits at —co.)

Example (20): Prove that lim _r 0

x—oo ] 4 x2

Solution: Here we use a standard trick: dividing numerator and denominator by the highest
power of x that appears in the denominator.

im0 = fim Y g M
x~>ool+x2_ _x~>oo(l+x2)/x2_x~>ool/.x2+1
g, 0

lim 1/x>+ Lim 1 0+1
X — 00 X — 00

3
. X

EXample (21). To find xk@@m
Solution: Divide numerator and denominator by x°, we get

. 2x3 2 2
lim ——=

Iim ———=—+—-=2.
xa—oo1+x3 XJ'TOOI/X3+1 0+1

Remark: We can think of the lim f(x) as akind of left-hand limit, because x approaches oo

from the left. Similarly, we can think of lim f (x) as the right-hand limit.

Exercise
(4) Evaluate the following limits: @
2x2 —4 5
@) lim X" —4x+o

x—oo 3x3 —x+7

) lim 2x—1)* . Bx-1)"
X — 00 (2X+ 1)5()

(i) lim (Vx+1- /%)

@ [Hint: Consider the highest powers of the terms involving x, in both numerator and denominator, and proceed to
compute the limit.]
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. Vxr+2—x
(iv) lim
x—=0 /X243 — X
(v) lim -V 43
X—00 4/ 2_‘_3_‘/){2_‘_1
Answers

OO0 ()@Y Gno @23 W)l

7b.4 INFINITE LIMITS

lim f(x) = 400, where “a” is finite.>
X—da

So far we have considered the cases where as x — « (a finite number), f{x) — /, (a finite
number). But, it may happen that as x — a, f(x) increases (or decreases) endlessly. Symbol-
ically, we express these statements as follows:

x—a=f(x)—oo or YILIIIL:f(X) =00

or x—a=f(x)— —oco or limf(x)=—o0
X—da

Consider the graph of f(x) = 1/(x — 2), as shown in Figure 7b.1.
Note that it makes no sense to ask for lim2 1/(x — 2) (why?), but we think it is reasonable to
X

write 1irr217 1/(x —2) = —o0, and lim 1/(x —2) = co. The following definition relates to
X— x—2t

this situation.

7b.4.1 Definition (Infinite Limits)
We say that lim f(x) = oo, if for each positive number M, there corresponds a 8 > 0, such that
x—at

O<x—a<d=fix)>M.

fx) =

FIGURE 7b.1

® So far, only finite numbers were considered to be the limit(s) of function(s). Now, we shall consider infinite limits.
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AY
.
» F
1
—v/l L «
-1 2 3
I __ 1
fx) = 17
FIGURE 7b.2
There are corresponding definitions of lim f(x) = —oo, lim f(x) = oo, and
lim f(x) = —oc. A e

X—a-

1
Example (22): Find lim — and lim 5
=1 (x—1) x=1" (x=1)

Solution: The graph of f(x) = (1/(x — 1)%) is shown in Figure 7b.2.
We think it is quite clear that

lim ——— = o0,
=1 (x—=1)
1
lim ———— = oo.
x— 11 (x — 1)
Since both limits are oo, we could also write
1 1
lim — = X)=——
x—=1(x—1) &) (x—1)*
x+1

Example (23): Find lim ———=— ¢

Solution: lim — 1 _ Jim X!
Txo X2 45x+ 6 x—2t (x—3)(x —2)

As x — 2%, we see that x+1 — 3, x—3 — —1, and x—2 — 0. Thus, the numerator is
approaching 3, but the denominator is negative and approaching 0. We conclude
that lim ((x+1)/(x = 3)(x —2)) = —c0.
x—2
The concept of limit at infinity [i.e., lim f(x), lim f(x)], and the meaning of infinite
X — 00 X — —00
limits [lim f(x) = +oc] as discussed above, make it easy to introduce the concept of
X—da

asymptote(s).
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7b.5 ASYMPTOTES

Definition: An asymptote to a curve is defined as a straight line, which has the property
that the distance from a point on the curve to the line tends to zero as the distance of this
point to the origin increases without bound. There are vertical, horizontal, and oblique
asymptotes.

7b.5.1 Vertical Asymptotes

The graph of the function y = f(x) has a vertical asymptote for x — a, if lim f(x) = +oo or
lim f(x) = —oo (see Figure 7b.3a and b). e

Note (5): In the case of a vertical asymptote for x — a, the point x=a is a point of
discontinuity. (In Chapter 8, this is classified under the discontinuity of the second kind.)
The equation of the vertical asymptote has the form x= a. (In Figure 7b.3a, it is x =0, and in
Figure 7b.3b it is x =a.)

7b.5.2 Horizontal Asymptotes

The graph of the function y = f(x) for x — +o0 or for x — —o0, has a horizontal asymptote, if

lim f(x)=bor lim f(x)=b, where b is a finite number.
X — 400 X — —00

It may happen that either only one or none of these limits is finite. Then, the graph has either
one or no horizontal asymptote. Of course, the graph of a function may have two horizontal
asymptotes.

The equation of the horizontal asymptote has the form y =a.

(In Figure 7b.4a, it is y = b, and in Figure 7b.4b the two asymptotes are y=1and y=—1.)

7b.5.3 Oblique Asymptotes

In Figure 7b.5a and b, it is indicated that the graph of the function y =f(x) has an oblique
asymptote y =kx + b.

y x 3 0AY a X
fx)= 2

1 3

0.5 12
0.25 48
0.1 300
0.01 30,000
0.001 3,000,000

()
g)=- ay

FIGURE 7b.3  Vertical Asymptotes.
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AY AY
y=f(x) y:]

/ M(0, b) f

y=b

(@) )
FIGURE 7b.4 Horizontal Asymptotes.

In this case, the following equality holds true.

lim [f(x) — (kx +5)] =0

x — £o0

or lim [f(x)—kx—5b]=0 (3)

X — +00

Taking out X, as a factor, we get

tim "2 o

X — Fo0 X X
b
é@ —k—==0 (4)
X x
Now, observe that lim b/x = 0 always. Thus, we get the formulas for computing the para-

X — F00

meters k and b given by

lim [f(x)—kx]=b from (3), and

X — £00

lim f(x)/x =k from (4)

X — £00

y Y

y=f(x)

(@) (®)
FIGURE 7b.5 Oblique Asymptotes.
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Thus, we get the procedure for finding oblique asymptote for the given curve as follows: The
constant k is given by the limit 1i1£ f(x)/x = k, and the constant b is obtained by computing
X — 00

the limit liril [f(x) —kx] = b.
X — o0
Having found the values of k and b, we can write down the equation (of straight line)

representing the oblique asymptote.

Note (6): For finding the asymptotes to the given curves, both the cases x — +oo and
X — —o0, should be considered separately.

Example (24): Find the asymptotes to the curve y = i

Solution: We have liril 1/(x — 3) = 0. Therefore, the curve has a horizontal asymptote at
X — oo

y=0. Further, we observe that

1
im = —ooand lim = 400.
x—3"Xx—3 x—3tx—3

Hence, the curve has a vertical asymptote at x =3 (see Figure 7b.6).

Example (25): Find the oblique asymptotes to the curve y = 2

x—1

Solution: From the given equation, we obtain

2
k = lim @: lim —>  — lim
x—+oo X xﬂioo(.x—l) - X x—+ooXx — 1

“141 I
— him TN im (1+ ):1
X — oo x—l X — oo X—l

FIGURE 7b.6
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FIGURE 7b.7
. . x?
b= lim [f(x)—kx] = lim_ {m‘ "]
. li x> —x+x . X
o xiToo (X*l) 7‘c~>ioc (X*l)

x—1+1 1
im 2L (1+—):1
x—1

x—+4oo x—1 X — o0

Thus, k=1 and b = 1. Consequently, for x — +o0 or for x — —o0, the graph of the function
has an oblique asymptote, y =kx+b=x+ 1 (see Figure 7b.7).

Remark: Observe that the curve shown in Figure 7b.7 also has the vertical asymptote, x=1.

TABLE 7b.2 Good and Bad Uses of Infinity (co)”

Expression Is it Right or Wrong? What it Means? Remarks

i: 0 Usually right, but likely to create confusion. Here, we really mean to say that
lim 1/x = 0, which is a right statement
X — 00

3.-00=00 This is right, as mathematical shorthand. It means if a quantity increases without bound,

so does three times that quantity
This is right again. It means if two quantities increase without bounds, so does their sum

This is wrong. Division by O is not defined for real numbers. Besides, note that
lim 1/x = oo, but lin&i 1/x = —oo. Hence, it is worse to write the expression
X—

x—0t
under consideration

This is wrong again. Note that, as x — oo, X 00, and X’ > oobut x® — x2 —od”

This is wrong. Note that, as x — oo, X 00, and x> — 00, butx3/x2 = X — 00. Again,
X2/ =1/x—0

“The reader may also refer to the algebra of infinity (co), given at the end of Chapter 2.

b lim (x* —x*) = lim X}(l—%):lim\ oo (¥F)=00.
x— 00 X500



8 The Concept of Continuity
of a Function, and Points
of Discontinuity

8.1 INTRODUCTION

The study of calculus begins with the concept of limit introduced and discussed in Chapters 7a
and 7b. Of all the many consequences of this concept, one of the most important is the concept
of a continuous function. One cannot think of the subject of calculus without continuous
functions, which we study now.

The word continuous means much the same in mathematics as in everyday language. We can
introduce the concept of continuity proceeding from a graphic representation of a function.
A function is continuous if its graph is unbroken, i.e., free from sudden jumps or gaps.

Suppose a function is defined on an interval /. We say that the function is continuous
on the interval I, if its graph consists of one continuous curve, so that it can be drawn
without lifting the pencil. There is no break in any of the graphs of continuous functions
(Figure 8.1a—c).

If the graph of a function is broken at any point “a” of an interval, we say that the function is
not continuous (or that it is discontinuous) at “a”. We give the following definition:

Definition: A function is discontinuous at x = a, if and only if it is not continuous at x = a.

This point “a” is called the point of discontinuity of the function. The domain of a function
plays an important role in the definition of continuity (and discontinuity) of a function. A
function may be continuous on one set but discontinuous on another set. It is useful to
recall the definitions of the domain of definition and the natural domain of a function,
from Chapter 6.

o The set of all those numbers that can be used in the definition of a function (which we call
“input numbers™) constitute the domain of definition (or simply the domain) of the
function.

What must you know to learn calculus? 8-Continuity of functions and the points of discontinuity. The definiti

of continuity “at a point” and “in an interval.” Types of discontinuities and some theorems defining properties of
continuous functions.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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y
x X
” 0
i) =2x+3 ) =+
(@) )
y
54
1 1 1 1 1 J 1 1 1 1 1 X
_|5 T T T T 0 T T T T é gl
S0 = |X|
(©)
FIGURE 8.1

o If the domain of the given function is not specified, we take the domain as the largest set of
real numbers for which the rule of the function makes sense and gives real-number values.
This is called the natural domain of the function.

Note that, the natural domain of a given function f(x) is a fixed set of points for which f(x) is
defined. It does not include those points at which f{x) is not defined. On the other hand, the
domain of definition of a given function f(x) is the set of all input numbers that can be used in
the definition of a function. (It may include even those numbers at which the function is not
defined.). It is not a fixed set of points. The “domain of definition” of a function can be varied.
Of course, when we change the domain of a function we define a new function.

For the purpose of studying the property of continuity (and discontinuity) of a function we
shall always take the domain of a function as an interval. One may also consider a domain,
which is the union of an interval with some isolated points. Obviously, such a domain is more
general (than an interval) for the purpose of discussion. Here, we may state (in advance) that a
point of discontinuity can be any point “a”, provided there exists some neighborhood of “a”
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in which the function is defined. The function may or may not be defined at a. It follows that an
isolated point (if any) of a domain cannot be a point of discontinuity. In fact, a function whose
domain of definition is a singleton “a” is considered continuous at “a”. Intuitively, this
statement might appear to create a situation of confusion but it is true as will be seen when
we define one-sided continuity of a function. The conclusion follows from the definition of
continuity “at a point” (to be discussed later), and the fact that a constant sequence {a, a, a,}
converges to “a”, which means both the one-sided limits defined at “a” are equal. We do not
discuss sequences and their properties in this compilation.

For example, the natural domain of the function f(x) = 1/(x —5) is {x € R|x # 5}. We
exclude “5” (from the domain of “f”) to avoid division by zero. Note that, “f” is defined for
each x in its natural domain. We can also say that the functions g(x) = 1/(x — 5), x € (5,00)
and Ai(x) = 1/(x—5), x € (—0,5), (wherein the number “5” is excluded from the definitions
of these functions) are defined for each x in their respective domains.

We can also include the number “5” in the definition of such a function. For example,
consider, F(x) = 1/(x—5), x € [4,7], and so on. We say that the domain (of definition) of F is the
interval [4, 7] in which the function F is not defined at x = 5. (Shortly, it will be seen that any
such point “a” is the point of discontinuity of “f.”)

To understand the concept of continuity better, it is useful to study the following graphs of
functions, which represent discontinuous functions.

The graph of the function f;(x), appears in Figure 8.2a. It consist of all points on the line
y=2x+ 3, except (1, 5). The graph has a break at the point (1, 5). Here f,(x) is not continuous
at x = 1 since “1” is not in the domain of f;(x). We say that f;(x) is not defined at x = 1. We can
also say that fi(x) is continuous for all x, except for x = 1. It is also correct to say that fi(x)
is discontinuous at x =1 (or that it is discontinuous in any interval containing “1”).

Il Il Il X X
T / T 0 1 T O
fi)=2x+3,x%1 fz(x)=é,x¢0
(@) (b)

FIGURE 8.2



200 THE CONCEPT OF CONTINUITY OF A FUNCTION, AND POINTS OF DISCONTINUITY

Note (1): Some authors do not prefer to say that f;(x) is discontinuous at x = 1 (or a function like
1/x? is discontinuous at x = 0). They are of the opinion that we should not consider the question
of continuity (or discontinuity) at a point that is not in the domain of the function. (We shall
come back to this discussion, shortly.)

Now consider the function f>(x) = 1/x%, x # 0. Its graph appears in the Figure 8.2b. Observe
that as x — 0, 1/x> — oo, which means that f>(x) does not exist at x =0 or that f>(x) = X2 is
not defined at x = 0. We say that in any interval containing “0”, the function f>(x) is discontinuous
at the point x = 0. This is an example of infinite discontinuity to be discussed later.

Note (2): We say that a function f{x) is not defined at x = a if either “a” is not in the domain of
fix)or fix) — oo as x — a.

We give below some more situations when a function may be discontinuous “at a point”, in
the interval of its definition. The functions f3(x) and f4(x) are defined for all x. Note that the
point (1, 5) is torn out from the graph of f3(x) and shifted to the location (1, 2). Here, the point
(1, 5) of the graph jumps out from the height 5 to 2, creating a break in the graph at x=1
(Figures 8.3 and 8.4).

The graph of the function f4(x), shows a break at the point x = 1. Here, a portion of the graph
has a finite vertical jump at x =1 making the graph discontinuous at x =1.

Next, consider the graphs of the functions f5(x) and f(x) as indicated in Figures 8.5 and 8.6,
respectively.

The function fs(x) is defined for all x. There is a finite jump in the graph suddenly at x =0
[as in the case f4(x)] causing a break. Thus, fs(x) is discontinuous at x =0.

The function fg(x) is not defined at x = 0 but it is defined for all other values of x. We observe
thatas x — 0", 1/x — oo, and as x — 0™, 1/x — —oo. (This is another example of infinite
discontinuity, to be discussed later.)

From the above discussion (and the graphs), it is clear that the question of continuity must be
considered only for those points, which are in the domain of the function. However, a point of
discontinuity may or may not be in the domain of the function.

/ — i
2x+3if x#1
ﬁ(x)_{z if x=1

FIGURE 8.3
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3+4x ifx<l1

3—x, ifx>1

Jax) = {

FIGURE 8.4

Note (3): If a function “f” is not defined at some point “a” (say), then “a” may not be a point
of discontinuity of “f”. This will be clear from the Examples (1) and (2) to follow shortly.
(The important point to be emphasized is that if /f” is defined on an interval containing “a”, but
“f” is not defined at “a”, then “a” must be the point of discontinuity.)

Now, we give the intuitive definition of continuity of a function “at a point”.

8.1.1 Intuitive Definition of Continuity of a Function at Any Point “a”

@ 9

Lety =f{x) be a function defined on an interval /, which contains a point “a” in its interior or on
its boundary.

Roughly speaking the function “f” is continuous at the point x = a, provided that its graph
does not have a break at x = a.”

8.1.1.1 Points of Discontinuity of a Function An elementary function can have a
discontinuity only at separate points of a certain interval but not at all of its points.
[The Dirichlet Function (see Chapter 6, Section 6.10) which is defined throughout the real
line is mot continuous at any point. Of course, it is not an elementary function.]
The following Figure 8.7a and b are the graphs of functions which are discontinuous as
indicated there.

The function represented by the graph in Figure 8.7a is discontinuous at x=1 and
x =2. It is continuous at all other points of its domain. The function graphed in Figure 8.7b
is discontinuous at x=1, x=2, and x=4. It is continuous at all other points of
its domain.

M 1f the graph of a function has a break in its interior, then it is not difficult to imagine such a break. However, if the break
occurs at the end point of the graph then it is not easy to visualize such a break. It is for this reason that the phrase: “roughly
speaking” is used in the definition.
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From a graphical point of view, the following definitions are useful in deciding whether any

point “a” is a point of discontinuity of the given function or not.””

Definition (a): A point at which a function is not continuous, but is defined in its neighbor-
hood, is a point of discontinuity.

Definition (b): A point at which a function is not defined (but is defined in a neighborhood), is
a point of discontinuity.

@ Elements of Higher Mathematics for High School Students by D. K. Faddeev, M. S. Nikulin, and I. E. Sokolovsky, Mir
Publisher, Moscow, 1989.
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FIGURE 8.7 Graphs of functions with discontinuities: (a) atx =1land x =2 (b)atx=1,x =2and x =4.

Note (4): We know that the property of discontinuity of a function “f” depends upon the interval
I on which the function “f” is defined. Accordingly, an arbitrary point “a” outside the interval /
cannot be point of discontinuity of the function (note that “f”” may or may not be defined at “a”).
The following Examples (1) and (2) make the situation clear.

Example (1): Consider the function g,(x) = /x which is defined only for x > 0, which means
that the domain of /X is [0, 00). Obviously, “~5” is not in the domain of /X or that 1/X is not
defined at x = —5 (see Figure 8.8). Further, observe that there is no neighborhood of “—5 in
which the function /x is defined. Hence, the condition of Definition (b) is not satisfied for the
number “—5” (or any other negative number). Therefore, the number “—5” cannot be a point of
discontinuity of y/x. Accordingly, it will be wrong to say that \/x is discontinuous at “—35,” since
it is not in the domain of /x.

Example (2): Now let us consider the function g,(x) defined by:
e(x)=2x+3,x€[2,8], x#3

Obviously, this function is not defined at x =3, but it is discontinuous at x =3 (why?). [Note
that there is neighborhood of “3” in which the function g,(x) is defined, and so “3” is a point of

g0 =x

FIGURE 8.8
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discontinuity in view of the Definition (b) above.] On the other hand, if we consider any other
point outside the interval [2, 8], say “10”, then obviously, it will be wrong to say that g,(x) is
discontinuous at “10”.

Now, in view of the Definition (b) it is easy to understand that the functions G(x) = 1/x,
x#0 and H(x)=1/x* x+#0 are both discontinuous at x=0 (see Figure 8.9a and b,
respectively). We know that, these functions have infinite discontinuity at x=0. However,
the function H(x) = 1/x?, x # 0 is an example of infinite discontinuity with one sign as x — 0.
Here, we can also say that both these functions are continuous on the intervals (—oo, 0) and
(0, 0o) whose union forms the natural domain of these functions.®

8.2 DEVELOPING THE DEFINITION OF CONTINUITY “AT A POINT”
Of course, graphical intuition is helpful in understanding the concept of continuity, but a precise
definition of continuity cannot depend on pictures.

The notion of continuity can be best expressed through limits as will be clear from the

following examples.

Example (3): Consider the following functions:

29 -3 3
0 =220 xzs e B s
(i) g(x) = {2”’ i

® John B. Fraleigh, a world-class author of the book Calculus with Analytic Geometry (published by Addison-Wesley,
1979) has expressed (in a footnote on p. 52) that we should not even prefer to consider the question of continuity at a point
that is not in the domain of the function. He is of the opinion that whereas we can talk about the continuity of 1/x on the
intervals (—oo, 0) and (0, c0), he is against the statement that 1/x is discontinuous at x =0. However, in view of the
definition of the domain of a function defined earlier, and the definition (b) given above, we agree to say that 1/x is
discontinuous at x = 0. This is a matter of approach and outlook that helps in accepting the concept of discontinuity with
uniformity in our thinking.
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The graphs of f(x) and g(x) appear in Figure 8.10a and b, respectively. In the graph of f(x) the
point (3, 6) is missing from the graph. On the other hand, in the graph of g(x), it appears as if
the point (3, 6) is torn out from the graph of g(x) and pushed at a new location (3, 2) which is
vertically below the point (3, 6) at a lower height. Thus, a break is created in these graphs,
making both of them discontinuous at x = 3.

x> =9 x+3, ifx#3
x5 Y73 g(x)_{z, ifx =3

(0)f(x) =

Stated another way, if we were to trace these graphs with a pencil, we would have to lift the
pencil at x =3. These situations can be technically expressed through /imits as follows.

(i) The function f{x) = (x* = 9/(x—3) is not defined at x =3, or we say that the function
f(x) is meaningless for x =3 (why?). Here is a preliminary remark: The concept of
limit of a function f(x), as x — a is connected with the behavior of the function in the
vicinity of the point “a”, except for the point “a” itself. Note that, the ratio (x>*—9)/(x—3)
is identically equal to the expression (x + 3) at all points, except for the point x =3.
Consequently, in the vicinity of the point x =3 as well the functions (x*—9)/(x—3) and
(x + 3) coincide, and we have

lim (x> — 9)/(x — 3) = lim(x+3) =6, (x#3)

x—3
Thus, although the function, f(x) = (x> — 9)/(x — 3) = ((x = 3)(x + 3))/(x — 3) is
meaningless, at the point x =3, this does not exclude the possibility of the existence of

the limit of the function as x — 3. Also, note that f(x) is discontinuous at x =3, for
obvious reasons.
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(ii)
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Now, if we agree to define f(x) at x =3 by f(3) = 6, then it appears as if the missing
point (3, 6) is brought back into the gap, making the graph continuous. In other words,
the discontinuity of the function f{x) is removed by defining f(x) at x = 3 suitably so that
this value equals the limit f{x) as x — 3.

The function g(x) has the same function values as the function f(x) when x # 3. But it is
also given that g(3) = 2. Thus, g(x) is defined for all values of x, but still there is a break
in its graph at x =3.

If, however, we redefine g(x) at x =3, by g(3) =6, it is equivalent to shifting the
point (3, 2) (of the graph) to the location (3, 6), [which is vertically above the point
(3, 2)1. This fills up the gap in the graph at x =3 and makes it continuous.

The redefined function g(x) is given by:

o X+3, 1fx7$3(4)
“”_{@ if x =3

Note that by redefining the function g(x) at x = 3 (which is the point of discontinuity) the
value g(3) is numerically made equal to the lim3 g(x).
x—

This is the basis of our definition of continuity of a function at any point “a” in the
domain of definition of the function. At this state, it is necessary to consider one more
contrasting situation as indicated in the following example (in which a function is

discontinuous), before formulating the definition of continuity at any point “a” in an
interval /1.

Example (4): Let ¢ be defined by

C[34x, ifx<l
QS(X)_{.’)—X, ifx>1

Figure 8.11 shows the graph of ¢. Here, we note that

Ay

&

V =

FIGURE 8.11

) Here we have retained the same name of the redefined function, to convey that the discontinuity of g(x) can be removed.
Technically, this is not correct. The refined function must be denoted by a different notation, say 4(x) or ¢(x), and so on.
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(i) ¢(1)=4 (as clear from the graph),
(i) _“"1‘, o(x) = 1in117(3 +x) =4, and

Gii) lim ¢(x) = lim (3 —x) = 2.
x— 1t x— 1"

Here, we know that limit linll, ¢(x) # Um ¢(x), which means that the liml @(x) does not
x— x—1" xX—
exist. We observe that the graph of ¢ has a break at the point x = 1, where the lim1 ¢(x) does not

exist. From the above discussion, involving the functions f(x), g(x), and ¢(x) we get the
following total picture.

Let a function “f(x)” be defined on an interval I, and let “a” be an arbitrary pointin I. Then,
there are three contrasting possibilities for the behavior of f(x) near “a” as follows:

() lim f(x)does not exist (see Figure 8.12a and b)

(ii) lim f(x)exists, but lim f(x) # fla) (see Figure 8.12c and d)

X—a

(i) lim f(x)exists, and lim f(x) =f(a) (see Figure 8.12¢)

(@)
y y
3 5
(¢) (@) (e)

FIGURE 8.12
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lim f(x)does not exist [i.e., lim f(x) # lim f(x). (Here, “a” stands for “0”, with reference
X—a X—a- X—a
to Figure 8.12a and it stands for “1” with reference to the Figure 8.12b—e.)
For Figure 8.12c, lim f(x)exists, but lim f(x) # f(a) [since, f(a) is not defined].
X—da X—da
For Figure 8.12d, lim f(x)exists, but lim f(x) # f(a) [since, f(a) is different from
]imf(x)]' X—a X—a
X—a
For Figure 8.12¢, lim f(x) exists, and lim f(x) = f(a).
X—d X—d
Notice that in Figures 8.12c and d the graphs appear to be broken at “1”. Next observe that

in Figure 8.12e the graph appears to be unbroken (i.e., continuous) at “1”, with f(x) approaching
f(1) as x approaches “1”. This type of behavior is of great importance in calculus.

8.2.1 Defining Continuity of a Function at Any Point ‘“a”

From the above observations, we can now give the following definition(s) of continuity at any

=l

point “a’, in its domain, using the concept of limit.

Definition [Continuity]: Letafunction “f” be defined in an interval I, and let “a” be any point
in I. The function “f” is said to be continuous at the point “a”, if and only if the following three
conditions are met:

(i) f(x)is defined atx = a
(i) lim f(x) exists; and
X—d

(i) Tim £ (x) = f(a).

(1)(5)

In fact, these three conditions of continuity “at a point”, are summed up in the following short
definition.

A function f(x) is said to be continuous at a point x = a, if the limit of the function as x — a, is
equal to the value of the function for x = a, which we express by the statement,

lim f(x) = f(a) (2)

X—a

There is another way to express continuity of a function at a point “a”. In the statement (2), if
we replace x by a+ A, then as x — a, we have i — O (see Figure 8.13).
Thus, the statement

lim f(a+h) = f(a) 3)

9

defines continuity of the function “f” at “a”.

) We give here the meanings of certain statements, which are frequently used in mathematics.

® f(x) is defined at x = a means, the value f(a) is a finite number.

w0

¢ f(x)isnotdefined at x = a means, either the point (a, f(a)) is missing from the graph (which also means that “a” is not
in the domain of “f”) or fla) is not finite [i.e., as x — a, flx) — oo].

¢ lim f(x) exists means lim f(x) = lim f(x), both being finite.
xX—d x—a- x—at
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The statement (3) of the definition of continuity is very useful and convenient for applying to
the trigonometric, exponential, and logarithmic functions, and so on to prove their continuity
or otherwise.

Note (5): It is important to remember that the value fla) and lim f(x) are two different concepts
X—d

and hence even when both the numbers exist, they may be different. The concept of continuity of
the function (at any point x = a, in its domain) is based on the existence and equality of these
two numbers, at “a”.

Remark: In the notion of limit lim f(x), the value f{a) plays no role [since, lim f(x) may
X—da X—a

exist, even when f(a) is not defined] but the value fla) becomes very important when we

9

consider the continuity of “f(x)” at “a”.

8.2.2 A Little More About Continuity

The condition of continuity of a function in an interval can be described as the property of
the function to change gradually within that interval in the sense that small variations
of argument (i.e., the independent variable) generate small variations of the function
itself.®

In descriptive geometrical terms, the continuity of a function at a given point signifies that
the difference of the ordinates on the graph of the function y = f{(x) at the points x, + / and x,
will, in absolute value, be arbitrarily small, provided |/| is sufficiently small (i.e., if we can
choose |h| arbitrarily small, closer and closer to zero).

If the function f(x) is known to be continuous at the point “a”, then the problem of
calculating the limit of the function f{x) as x — a s trivial, since the calculation of the limit at
the point “a” reduces to the calculation of the value of the function at the point “a”.

© This is a characteristic feature of many phenomena and processes, for instance, expansion in the length of metal rods on
heating, the growth of an organism during a period, and variation in air temperature during the day, and so on, are
considered continuous processes.
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For example, if h(x) = (x?=3)/(x—1), then we can easily compute

, . x2-3 22-3
Hm ) = lim Sy =5 =

It can be shown that all the basic elementary functions are continuous in the intervals where
they are defined. (Of course, the proofs can be seen in the advanced courses in mathematical
analysis.)

Besides, continuous functions can be easily investigated and their properties can be studied.
Hence, it is often important that a function be continuous wherever possible. We ask the question,
is it possible to remove the discontinuity of a function? The answer is “only sometimes”. If the
discontinuity of a function is not removable it is called an irremovable or an essential
discontinuity. We shall discuss about removable and irremovable discontinuities shortly.

Note (6): The continuity of a function can be expressed either in terms of the points at which the
function is continuous or in terms of the points at which the function is discontinuous or by
considering the entire situation covering all the points of interval.

For example, technically it is correct to say that the function

(x — 1)(2x +3)

o) =—f_p

x#1

is continuous throughout its domain where it is defined or that it is discontinuous at x = 1 or that
it is continuous for all x except for x =1, where it is not defined.

Remark: If we simply say that the function F(x) is continuous throughout its domain of
definition, then there comes up an element of curiosity (or discomfort) in the reader’s mind who
is able to visualize the point of discontinuity in the expression defining F(x). Therefore, from
this point of view it is more convenient and convincing to say that F(x) is continuous for all x
except for x = 1, where it is discontinuous. We can understand the concept of continuity better,
if we study its opposite—the concept of discontinuity.

8.2.3 Definition

A function is discontinuous at x = a if and only if it is not continuous at x = a. (Recall that we
have already given this definition earlier in Section 8.1.1. Note that, this is an indirect definition
wherein by denying the property of continuity to a function, “at a point”, we identify it as a
discontinuous function.)

When we say that a function is not continuous at x =«, we mean that the condition of
continuity is violated at x = a, so that

lim £(x) # /(a) )
The point “a” is then called a point of discontinuity of the function.
8.2.3.1 A Point of Discontinuity in Terms of Limit(s) Having discussed the definition of

continuity in terms of limits (in Sections 8.2.1 and 8.2.2) we now use our knowledge, to discuss
and find out what happens at a point of discontinuity (of a function) in terms of limits.
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With reference to the definition of discontinuity at (4) above, we can say that, a function
defined on an interval I is discontinuous at a point a €1, if at least one of the following
conditions occur at the point x=a.

(i) The function f(x) is not defined at x =a,
(ii) lim f(x) does not exist [which means that ‘liﬂmif(x) # lim_f(x)orat least one of the
Zneisided limits is infinite], e e
(iii) Vhinu f(x) # f(a), in the arbitrary approach of x — «a (which means that the expressions

on the right and the left both exist but they are unequal).

8.2.4 Removable and Irremovable Discontinuities of Functions

If lim f(x) exists but f(a) is either not defined, or not equal to lim f(x) then, we may redefine
X—a X—a

“f” (at the point of discontinuity “a”) such that we assign to f{a), the number which equals the
limit lim f(x). This makes the function f{x) continuous at x = a (by definition of limit). This
X—da

we have seen in the process of developing the definition of continuity (see Figure 8.10a and b).
Such a discontinuity is called removable discontinuity, for obvious reasons.

It is not always possible to remove the discontinuity of a function. If the discontinuity is
not removable it is called an irremovable (or an essential) discontinuity of the function, as
mentioned earlier. If 313}1 f(x)does not exist then f(x) is said to have an irremovable (or

essential) discontinuity at x = a. (Note that the graphs of the functions in Figures 8.2a and 8.3
indicate the point of removable discontinuities whereas those displayed in Figures 8.2b, 8.4,
8.5, and 8.6 indicate the points of irremovable discontinuities.)

The simplest type of essential discontinuity occurs at those points at which a function makes
a (finite) jump, that is, where the function has a definite limit as x — a™ and a different definite
limit as x — a*. Such discontinuities are displayed in Figures 8.4 and 8.5.

Note (7): It must be clear that if the graph of the function has a finite jump of a point alone, then
the function is said to have removable discontinuity at that point. But, if there is a finite jump of a
portion of the curve, then such a function has irremovable (or essential) discontinuity at the
point of jump.

Remark: In the case of an irremovable discontinuity it does not matter whether or how the
function is defined at the point of discontinuity. This will be clear from the following example,
and many more later on.

Example (5): Recall the function f{x) = 1/x, x # 0. Clearly this function is not continuous
at x =0, and in any interval containing the point “0”. The examination of the graph of 1/x
in the vicinity of the point x = 0 clearly shows that it splits into two separate curves at the
point x =0 (see Figure 8.9a). Further note that, in this case, we cannot make “f” continuous
by assigning any value to f(0). Also observe that neitherliir}) f(x) exists nor f(0) is defined.

We say that “f” has an infinite discontinuity at x = 0. This is an essential discontinuity of
the function.

The same behavior is observed in the graph of the function y = tan X, in the vicinity of the
points x = (2k + 1)n/2. Even in the case of signum function (denoted by y = sgn x), and the
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e

Y

i

FIGURE 8.14

function y = |x|/x (which are the examples of jump discontinuity), the curve “splits” into two
separate curves [see Examples (6) and (7), given below].

-1 ifx<0
Example (6): Let the function f(x) =sgnx =47 0 ifx=0
1 ifx>0

The function f(x) is called signum function (or sign function) denoted by sgn x and read “signum
of x” (Figure 8.14). (It gives the sign of x.) Note that the function sgn x is defined for all x.
Because sgn x=—1, if x <0 and sgn x=1, if x> 1, we have

lim sgn(x) = lim (—1), and lim sgn(x) =lim (1) =1
x—0" x—0" x—0" x—0"
Thus, the left-hand limit and the right-hand limit are not equal, which means that lim0 sgn(x)
does not exist. Accordingly, f(x) is discontinuous at x =0. o
Note that f(0) exists. Obviously, the function sgn x has a jump discontinuity at x =0.

|X]

Example (7): Consider the function y = = x #0 (see Figure 8.15).

The arrows at the ends of the rectilinear portions of the graph mean that for x = 0, the function is
not defined but for the values of x less than zero the value of the function is “— 17, and for the
values of x exceeding zero, itis equal to “1”. Hence, there exists no number to which the value of
the function becomes arbitrarily close for all the values of x, approaching the point “0”. (In other
words, this function has no limit as x — 0.)

Note (8): If we add the point x = 0 to the domain of this function and put y = 0, for x =0, we get
the signum function discussed in the previous example.

Remark: We must distinguish between a jump discontinuity and an infinite discontinuity.
Recall that a function has a jump discontinuity at x = a, if both the one-sided limits are finite
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FIGURE 8.16 Greatest integer function

and unequal. In the case of an infinite discontinuity, at least one of the one-sided limits is infinity.
Of course, both are irremovable discontinuities.

Example (8): The greatest integer function of x denoted by [x] is defined as: [x] = the greatest
integer less than or equal fo x. Thus, for all numbers x less than 2 but near 2, [x] = 1, and for all
numbers greater than 2 but near 2, [x]

=27

The graph of [x] takes a jump at each integer as clear from the graph (Figure 8.16).

@ Obviously, [3.11=3, [2.99]1=2, [2]=2, [0]=0, [0.9]1=0, [-3.1] = —4, [-2.99] = -3, [7.2] =7.
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Now we ask the question: is [x] near to a single number 1, when x is near 2? The answer is “No”.
When x — 27, [x] — 1, but when x — 27, [x] — 2. Thus, limz[x], does not exist. This is as
X —

well true for any other integer. Thus, [x] is not continuous for any integer Xx.

8.2.4.1 Infinite discontinuities appear at points of discontinuity “a” for which lim f(x) =
X—da

o0. We have already seen that for the function y = 1/x?, this point is x = 0, and for the function

y =tan x, such points are x = (2k + 1)n/2.®

Note (9): Because, continuity is defined in terms of limits, we can get information about
continuity from the various limit theorems already stated. For example, we know that if “a” is
in the domain of the rational function f(x) which means that f(a) is defined, then we have,

lim f(x) = fla). It follows that, any rational function is continuous at every point where it is
X—a

defined (i.e., at the points where the denominator does not become zero). Similarly, each of the
Six trigonometric functions sin x, cos x, tan x, and so on, is continuous at every point where
they are defined (i.e., in their natural domains). (In Chapter 11a, we have shown that
lim sin x =sin @, and lim cos x =cos a, which is equivalent to saying that both the functions

X—da X—a
=t

are continuous at any point “g” in their domain.)

Example (9): Find any points of discontinuity for the function f{xx) given by

X =33 +2x—1
x2—4

fx) =

The denominator is zero when x = +2. Hence “f” is not defined at £2 and accordingly it is
discontinuous at these points. Otherwise, the function is “well behaved”. In fact, any rational
function (i.e., any quotient of polynomials) is discontinuous at points where the denominator
becomes 0, but it is continuous at all other points.

Earlier, we have broadly identified the discontinuities of functions as: (i) removable
discontinuities and (ii) irremovable discontinuities.

Our discussion of discontinuous functions suggests that the following finer classification of
the points of discontinuity should help in understanding various types of discontinuities.

8.3 CLASSIFICATION OF THE POINTS OF DISCONTINUITY:
TYPES OF DISCONTINUITIES

If a function y = f(x) has a discontinuity for x = a, then to identify the character (or nature or
type) of the discontinuity, it is necessary to find the left-hand and right-hand limits of the
function f(x) as x — a.

Depending on the behavior of a function in the vicinity of the point of discontinuity, we
distinguish between two basic kinds of discontinuity:

(i) A Discontinuity of the First Kind. In this case, there exist both the one-sided limits. That
is, lim f(x)and lim f(x), both are finite numbers.
X—a X—a

® Some other examples are the point x =0 for the function y =log x (which is defined on the right of that point of
discontinuity x=0), and the points x=—1 and x=1 for the function y=1/v/1 — x2. In this case, the points of
discontinuity are the end points of the interval [—1, 1]. Note that this function is defined only on the open interval
(—1, 1), where it is continuous.



CHECKING CONTINUITY 215

This is an important class of points of discontinuity. Obviously the jump discontinuity
belongs to the first kind. Also note that removable discontinuity is of the first kind.

(ii) A Discontinuity of the Second Kind. All other discontinuities (which are not of the first
kind) are called discontinuities of second kind. In this case, at least one of the one-sided
limits does not exist or is infinite.

In view of the above classification, note that the discontinuities indicated in the graphs of
Figures 8.2a, 8.3, 8.4, and 8.5 are of the first kind, whereas those indicated in the graphs of
Figures 8.2b and (8.6) are of the second kind.®

8.4 CHECKING CONTINUITY OF FUNCTIONS INVOLVING
TRIGONOMETRIC, EXPONENTIAL, AND LOGARITHMIC FUNCTIONS

Recall that the concept of continuity of a function f{x), at a point “a” is defined in terms of the
equality of both the one-sided limits of the function at “a” with the value f(a). All the statements
of the definition of continuity are useful in dealing with different requirements of the problems.
One definition which may be useful for checking the continuity of an algebraic function may not
be convenient for checking the continuity of a trigonometric or exponential function. Hence,
depending on the type of function and the requirement involved, one may have to choose the
suitable definition to be applied. Of course, all the three definitions are equivalent.

So far we have discussed about the continuity (and discontinuity) of some algebraic
functions only. In almost all the cases, the graphs of the functions were also given, for easy
understanding. In fact, this approach has been quite simple (and systematic), since the concept
of limit of a function was introduced with the help of simple algebraic functions only. In our
further study, it will be found that the continuity of a function can be checked without having an
idea about the graph of the function. In fact, in most of the cases, it may not be possible to draw
the graph of the function or even imagine its shape.

Now, it is proposed to discuss the continuity of functions involving trigonometric,
exponential and logarithmic functions. Accordingly, it is necessary to study their properties
and the methods for computing their limit(s). Since, this requirement is met in different
chapters, it is necessary that we assume certain results (i.e., the standard limits), since these will
be needed to compute the limits involving these functions.

o Standard Limit of Trigonometric Functions. We know that the trigonometric functions
are defined for the angle “x”, expressed in radians, which represents real numbers, as
discussed in Chapter 5.

The following trigonometric limits, are discussed at length in Chapter 11a.

(i) limcosx =1,
x—0
(i) limsinx =0

X —

. sinx
(i) lim — =
x—0 X
. . cosx—1
@iv) lim ——— =0
x—0 X

© One must not think that a point of discontinuity of the second kind is necessarily a point of infinite discontinuity. There
are bounded functions having neither a left-hand limit nor a right-hand limit as the argument (i.e., a independent variable)
approaches a point of discontinuity. Such an example is the function y = sin(1/x). When x — 0, the function does not tend
to any limit, finite or infinite, left-hand or right-hand.
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These results are treated as standard trigonometric limits, and they are used for computing
limits of other functions involving trigonometric functions as discussed in Chapter 11b.

o Standard Limits of Exponential Functions. If “a” is a positive real number, then the
function f defined by fix)=a" is called an exponential function. The number “¢” is
introduced later in Chapter 13a and the natural exponential function is denoted by
fix)=¢e". The following results (A) and (B) are also proved there. These are treated as
standard limits.

1. lim (1+x)"=¢ (A)
X

—0

Further, if fix) — 0, as x — 0, then
lim (14K f(x)"" =, (k #0)
X —

This result is easily obtained by expressing its left-hand side in the form as shown
above on the left-hand side of (A). For this purpose, we use the method of substitution
as follows:

Put k f(x)=t, then as x — 0, t — 0 [since, f{x) — 0 as x — 0]
TMmmaE%u+kﬂwW”W:y%0+0W:e

X o
2. fim &
x—0

=log, a, wherea >0 (B)

However, if fix) — 0, as x — 0, and k#0 then, 1=k fix) — 0, as x — 0.
kfx) _ r_
Therefore, lim a ! = lim? ; ! =log,a

x—0 kf(x) 1—0

The methods for computing the limits of exponential and logarithmic functions are
discussed in Chapter 13b.

Besides, for computing the limit(s) of certain functions involving exponential functions, the
following results will be found very useful. We know that,

lim 1/x=-0c0 and lim 1/x= o0
x—0" x—0"

Therefore, as x — 07, 5 — 0 (since, 5/ — 57°°=1/5°=0) and as x — 0", 5/ =
(since, 5 — 5% =o0).

21/% 42
T2
Solution: Note that the function f(x) is not defined at x = 0. To check whether this function is

continuous at x =0, we compute its one-sided limits. As x — 0 from the left (i.e.,as x — 07,
1/x — —o0, so that 2! — 0).

Example (10): Check whether the function f(x) is continuous at x =0.

, . 242 042
i SG) = i T or 2 ©
However, as x — 0 from the right (i.e., as x — 07, 1/x — oo, so that 2! — 0o and
201 —0)

Note that, here it is not useful to apply the result lim 2'/¥ = 0. Hence, we express the

x—0

given function in a different form, so that its limit can be computed easily. We have,
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2V 42 V(142271
2 V(1427
14227

1+2—1/x

flx) = X0

, x#0

lim f(x) = 9

7 6
x—0* 1+0 ()

Thus, the function f{x) has a limit 2, as x — 0~ and a limit 1 as x — 0. These limits are
unequal (and finite). Therefore, the function in question is discontinuous at x =0, and the
discontinuity is of the second kind. (Note that without having any idea of the graph of this
function, we have obtained the above result.)

Example (11): Prove that the function defined by

xsinl, when x # 0
fx) = X

0, whenx =0
is continuous at x =0.
Solution: We shall compute the left-hand limit and right-hand limit of this function, at x =0.
Since we have to find the limit of f{x) at x =0, we put x =0 + A. Therefore, as x — 0,4 — 0.

‘We know that, on the left side of “0”, each number is negative and on the right side of “0”, each
number is positive (by convention), which means

lim f(x) = éii‘})f(0+h) and Xlinaﬁf(x) = }}Ln%)f(ofh)

x—0"

. 1
lim f(x) = lim x- smf
x—0" x—0

hrn (0+h)- sln( > —Ihm(h)~sin(ll)
h—0 1

= }}imo (h) - smz 0. (a finite quantity) = 0

(Since sin(1/x) is a bounded function, which lies between —1 and 1.)

1
Now, i — lim x-sin—
ow,xin&?f(x) Jim_ - sin—

. . 1 . . 1
zl}gno(ofh)-sm(o_h) —hhil%)(fh)@ln(f%)

1
= /}m})(h) - sinﬁ = 0- (a finite quantity) =0

(Since sin(1/x) is a bounded function which lies between —1 and 1.)

As lin(}if(x) = lim f(x) = f(0), f(x) is continuous at x =0.

x—07
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Example (12): f(x) =
0, x=0

Test the continuity of f(x) at x=0.

Solution: Note that f(x) is defined for all x. However, since the part sin(1/x) is not defined for
x =0, there is a possibility of discontinuity at x = 0. The function f{x) is well defined for all
other values of x. The value of f{x) in the neighborhood of “0” is given by

1
f(0+ h) =sin 0 where £ is a real number other than 0.

Orf(h) = sin%7 (h#£0)

1
-l =1 in—, which ist.
oL erT]()f(h) err}) sin i which does not exist

[Indeed, the }}m}) f(h)oscillates between —1 and +1.]

N | . . . .
In other words, the /llmo smz does not exist at #=0. Hence, the given function f(x) is not
h—

continuous at x =0.

Note (10): The function sin(1/x) is defined for all values of x except for x=0. It
does not approach either a finite limit or infinity as x — 0. The graph of this function is
shown below.

BN

BN
I
N|—
3=

-1

Note (11): The function f(x), defined in Example (7) is a peculiar function wherein the point of
discontinuity does not fit into the first kind, since it is neither a removable discontinuity nor a
jump discontinuity. Hence, this is an example of the second kind of discontinuity.

1
x2.sin—, x#0
Example (13): f(x) = X

0, x=0
Test the continuity of f{x) at x=0.
Solution: Note that f(x) is defined for all x. However, since the part x” - sin(1/x) is not defined at

x =0, there is a possibility of discontinuity of f(x) at x = 0. Therefore, we compute the left-hand
and the right-hand limits of f{x), at x=0.
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Put x =0+ h. Therefore, x - 0=h— 0.
Also, lim f(x) = hlin%)f(O + h) and lin(} flx)= }}imof(O +h)
x—0" — x—0" —

1
lim f(x) = lim x*-sin—
x—0" x—0" X
= 1im (0 + /&) - sin !
o ROES!
1
= }}imo W sin% = 0- (a finite quantity)
=0.
Again, lim f(x) = lim )czvsinl
£ Tx—0 Cx—0- ) X
1
= i _— 2 . 1 ——
= Jim (0= 7)"-sin 575

1
= /lirr%) 12 -sin— = 0 (a finite quantity)
11—

h

= 0 (as above)

Also we have f(0) =0

In view of the statements at (7), (8), and (9) above, f{x) is continuous at x =0.

Example (14): Test the continuity/discontinuity of the following function at x =0.

el/x 0
fo)={ Trean X7
0, x=0

el/x

Tltel
Put x=0+h) .. Asx — 0,h — 0.

Solution: Given, f(x)

lim f(x)= hliil%)f(o+h)

x—0"

iy £0) = fim (0=
In view of (10) above, we have

el/(O-%—h) el/h
Jim f(x) = fim, 3 e~ M e = B (ay)

Now, dividing the numerator and the denominator by e'/#, we express /; by

I = lim ————
! h%e*l/h+l

1
We know that as 7 — 0, ~7 — —00, so that e /" — 0.

219
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1
Therefore, /| = 0r1 = 1, which is the limit from the right. (12)

In view of (11) above, we have

. ‘ 1/(0-h)
My 1) = i e
e 0 o -
= ;}T})m =10~ 0, which is the limit from the left. (13)
Since lim f(x) # lirroli f(x), we conclude that f(x) is discontinuous at x = 0. [Also note that
x—0 X

the point of discontinuity (at x =0) is of the second kind.]

sin 2x

)

X
Example (15): f(x) = X . Is f (x) continuous at x =0?
1, x=0

Solution: Note that the function is defined for all x. To find whether f{x) is continuous at x =0 or
not, we check the left-hand and the right-hand limits at x =0.

Put x=0+h) .. Asx — 0,h — 0.

lim f(x) = lim f(0 + /) (14)
x—0" h—0
lim f(x) = lim £(0 ) (15)
Now, in view of (14), we have
. _.sin2(0+h) . sin2h
Amfe) = Jim =5~ Am
. sin2h . sin2h
= fim @) =2 jim o =2 (16)
. L sin2(0 — h) .. —sin2h
Jm fo) = fim = M,
sin 2K
— . = 1
fim 2= 7

Here, wehave lim f(x) = lin(} f(x) = 2, which means that lin}) f(x) exists and it is 2. But, it
x—0 x—0 X —
is given that f(0) = 1. Thus, lim0 f(x) #£(0). Hence, the given function is not continuous
X —
at x=0.

Note (12): Since the limit of f{x) and its value both exist at x =0, the given function f{x) can be
made continuous at x =0, if we redefine the function at x =0 by f{(0) =2 (instead of 1).

Example (16): Let f(x) = (sinx)/x. Define a function g(x) which is continuous, and
g(x) =f(x) for all x #0.
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Solution: We have, lim f(x) = lim sinx
x—0 Yoo x
smx7 forx 0
Let g(_x): X
17 forx =0

Then, g(x) is continuous at “0”. Since limog(x) =1 = g(0). Furthermore, g(x) = f(x) for all
X, as was desired. A

Note (13): The graph of the function (sin x)/x is given below. It gives a feel of how it becomes
continuous when we redefine it at x=0 as 1.

y

l sin x

TN :

-2r - 0 | b/ 4 2w 3

Example (17): Discuss the continuity of the function

(3 -1’
— = fi 0
f(x) =< sinxlog (1+x)’ orx 7
2log3, forx=0
Solution: Given f(0) = 2log 3 (18)
, B (3* — 1)
3:n1()f(x) - xhlno sin x log (1 + x)
X 2
(3
x—0(sinx/x) - (1/x)log(1 + x)
. X _ 2
fim (3= )/ oz

_@W@W“$%mwﬂ7”%;®wz<m

From (18) and (19), we have limof(x) £ £(0),

fis discontinuous at x =0.

Note (14): Since, the lim 0f(x) and the value of “f”” at x = 0, both exist, it is possible to remove the
X —
discontinuity by redefining f as follows:
(3 1)
flx) =f(x) = sinxlog(l + x)
(log 3)%, forx =0

, forx+#0
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Remark: In the definition of f(x), the value f(0) is given to be 2 log 3 =1log 3% =1log 9.

However, for continuity of “f” at x =0, it is found to be (log 3)>. [Note that log 3% (log 3)*.]

o The Problems Related with the Concept of Continuity can be Classified as Follows:

Type (1): Discontinuity of a function at a given point. We have already discussed a
good number of such problems.

Type (2): To find the value of the unknown, if f{x) is given to be continuous at a
certain point.

Type (3): To find the value fla) when f is given to be continuous at x = a. [Such
problems demand that we must compute the lim, _, ,f(x). Then by definition,
fa)= lim fix).]

Type (4): Itis given that f{x) is continuous at x = @, and it is required to state either the
lim f(x) or the value f(a), when anyone of them is given. [Such problems require
X—d

minimum effort. (Why?)]

Example (18): Find the value of k, if
1 —coskx
flx) = X sin x
2, forx =0

, forx#0

is continuous.

Solution: Since fis continuous at x=0, .". 1im0 f(x)=A0) (20)
Now, it is given that f{0) =2. 21 o
Hence our problem reduces to computing the limit of f{x) as x — 0.
Consider,

1 —coskx

lim f(x) = lim

/
x—0 x—0 Xxsinx (say)

(We try to apply some method of expressing the given expression in a convenient form so that
the above limit can be easily evaluated.) We have,

! —lim (1 —c'oskx) (1 +coskx)
x—0  xsinx (14 cos kx)

. 1 —cosk?x
=lim ————
x—0xsinx(1 4 cos kx)

. 1 — cosk®x
=lim ———
x—0xsinx(1 4 cos kx)

. 2. 2
! —lim .(smkx/kx) k
x—0 (sinx/x)(1 + cos kx)

12 k2 k?
= m = 7 (aS cos0 = l) (22)
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Substituting the values from (21) and (22) in (20), we get

2
K _,
2
=4 . k=+2
(5" =2%)-x . . .
Example (14): f(x) = ——————, for x #0, is continuous at x =a. Find f{(0).

cos 5x — cos 3x’

Solution: It is given that f is continuous at x = 0. Therefore, by definition, we have,

£(0) = tim £(x). (23)

x—=0

Thus, our problem is reduced to computing the lirr}J fx).
x—

X _9XY,
Now, lim fx)= lim (5 )X

S A S |
x—0cos5x — cos3x (say)

Note (15): The standard limits of exponential functions and trigonometric functions suggest
that: (i) numerator and denominator must be divided by x* and (ii) the denominator must be
expressed as a product of “sine functions”, using the trigonometric identity.

Now, cos 5x — cos 3x = —2sin <5X + Sx) -sin (Sx _ 3x)

2 2

= —2sin4Xx - sin x
: (5" =2Y)/x)
=1
! xlino((fZSin4x~sinx)/x2)

(5" = 1)/x) = (2" = 1) /)]
x—0 (—8)(sin4x/4x)(sin x/x)

1 5
From (23) we have f(0) = —§10ge (E)

Example (20): The function fis defined by

X_l_

%, forx #0
flx) = 1 *

> forx =0

is continuous at x =0. What is lim Of(x)?
X —

Solution: [If the problem is read carefully, it must be clear that we do not have to compute
lim0 J(x). On the other hand, we have to simply state the number that gives the limit.]
X
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Since, f(x) is continuous at x =0,

lim f1x) = f(0)
But (0)=1.
- lim o) =1

8.5 FROM ONE-SIDED LIMIT TO ONE-SIDED CONTINUITY
AND ITS APPLICATIONS

In Chapter 7b, the concept of limit of a function was extended to include one-sided limits (and
limits involving co). The importance of one-sided limits has since been seen in testing the
continuity of a function at any point and in identifying the type of discontinuity at that point.

Now, we extend the concept of limit to define the concept of one-sided continuity, which is
useful in defining continuity in a closed interval. For this purpose, we start our discussion with
the function /.

We know that the domain of the square root function /x is [0, o). Therefore, the lim /X
does not exist. As a consequence, under the definition of continuity, the square root function VAS
is not continuous at x =0 (Why?).

However, it has a right-hand limit at 0. We express this fact by saying that the square root
function \/x is continuous from the right of “0”. We give the following definitions of one-sided
continuity.

¢ Definition [Continuity from the Right]: A function f{x) is continuous from the right ata

9

point “a” in its domain, if 11m f( ) =f(a).
¢ Definition [Continuity from the Left]: A function f(x) is continuous from the left at a

=i

point “a” in its domain, if lim f(x) =f(a).
X—da

Inview of the above definitions a function whose domain is a singleton is considered continuous
at that point. See Note (17) on Page 176 (Chapter 7a).

8.6 CONTINUITY ON AN INTERVAL

We say that a function is continuous on an interval if it is continuous at each point there. It must
be clear that each point in the interval has to satisfy all the three conditions of continuity at a
point as stated in the definition (1). This is exactly what it means for continuity on an open
interval. When we consider a closed interval [a, b], we face a problem as we have seen in the
case of the square root function /x.

We overcome this situation by agreeing as follows: we say that “f” is continuous on closed
interval [a, b], if it is continuous at each point of (@, b) and if the following limits exist:

lim f(x) =f(a), and lim f(x) = £(b)

x—at x— b~

(These are one-sided limits at the end points of a closed interval.)

Remark: To define the continuity of a function at any end point of a closed interval, we agree
to accept the one-sided limit, as the limit of the function, at that point. It is a matter of
convenience that, we accept the one-sided limit(s), as the limit(s) at the end point(s). We give the
following well accepted definition of continuity on an interval.
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Definition: We say that “f”’ is continuous on an open interval (a, b), if it is continuous at each
point of that interval.

It is continuous on the closed interval [a, b], if it is continuous on (a, b), right continuous at a,
and left continuous at b.

Note (16): If there exists at least one point in the domain of a function (assumed to be an
interval) where it is not continuous, then the function is said to be discontinuous in its domain.
Thus, if a function is not continuous even at an end point of a closed interval [a, b], then it is said
to be discontinuous on [a, b].

Example (21): Given f(x) = x/(x — 2). Test the continuity of the function in the intervals
(1,2),[1,2],and (1, 3). Note that, f(x) is not defined for x = 2. Accordingly, f(x) is continuous
in any interval which does not contain 2. Thus, “f” is continuous on (1, 2), but it is dis-
continuous on [1, 2] and on (1, 3).

o Some Theorems on Continuity (Without Proof):

1. If fand g are two functions continuous at the number “a”, then f+ g, f— g, f-g, are
continuous at “a” and f/g is continuous at “a”, provided that g(a) # 0.

2. Continuity of a Composite Function: If the function g is continuous at “a” and the
function fis continuous at g(a), then the composite function f o g is continuous at “a”.

Remark: A function continuous in a domain is continuous on any nonempty subset of
the domain.

o Bounded and Unbound Intervals: Any interval of the form [a, b], (a, b € R) is said to be
closed and bounded. Open intervals (a, b) are bounded, if a and b are finite numbers. (In
fact, in this notation a and b are assumed to be finite.) The interval (—oo, 0o), which
represents the entire real line, is both open and closed, and of course unbounded. Intervals
of the form (a, o0) and (—o0, b) are said to be closed and unbounded. Remember that the
symbol “co” does not represent a real number.

8.7 PROPERTIES OF CONTINUOUS FUNCTIONS

Continuous functions have many useful properties that discontinuous functions do not have. A
function continuous on a closed and bounded interval [a, b] possesses many important
properties. Here we state, without proof, one of them, namely the Intermediate Value Theorem
(IVT) with some of its consequences and applications.

8.7.1 The Intermediate Value Theorem: IVT

If function “f” is continuous on closed interval [a, b], and if fla) # f(b), then for any number k
between f(a) and f(b), there exists a number ¢ between a and b such that

fley=k- 24

The intermediate value theorem assures us that if the function f is continuous on the
closed (and bounded) interval [a, b], then f(x) assumes every value between f(a) and f(b), as x
assumes all values between a and b. For example, if a function f is continuous throughout
the interval [2, 6], and if f{2) =1 and f(6) =4, then every number between 1 and 4 must be
in the range of f.
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In terms of geometry, the intermediate value theorem states that the graph of a function,
continuous on a closed interval must intersect every horizontal line y =k, between the lines
y=fla) and y=f(b), at least once. Refer to Figure 8.17a, where (0, k) is a point on the y-axis
between (0, f(a)) and (0, f(b)); the line y =k intersects the graph of f, at the point (c, k),
where c¢ lies between a and b.

For some values of k, we may have more than one possible value of ¢. The theorem states that
at least one value of c exists, but such a value is not necessarily unique. Figure 8.17b shows three
possible values of ¢ (¢y, ¢, and ¢3) for a particular k.

The following theorem is a direct consequence (a corollary) of the intermediate value
theorem.

8.7.2 The Intermediate Zero Theorem

If the function fis continuous on a closed interval [a, b] and if fla) and f(b) have opposite signs,
then there exists a number ¢ between a and b such that f{c) =0.

Proof: The hypothesis of the intermediate value theorem is satisfied by the function f, and
because f{a) and f{b) have opposite signs, the number “0” qualifies as a number k between f(a)
and f(b). Thus, there is a number ¢ between a and b such that

floy=0 (25)

Such a number “c”, is called a zero or a root of “f”. For example, let f(x)=
X2 —dx—5=(x=35)(x+1).

Then, we get fix) =0, for x=—1 and x=35.

Accordingly, the zeros of “f” are —1 and 5.

Remark: Zeros of functions of the form f(x) = ax? + bx 4+ ¢, where a # 0 can be located by
means of the quadratic formula. But for higher-degree polynomials (and functions in general)
there is no simple formula from which we can determine a zero.
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8.7.3 Importance of Zeros of a Function

Let f be continuous on an interval /. If f has both positive and negative values on /, then the
intermediate value theorem implies that f(x) =0, for some x in I, that is, f has a zero in I.
Equivalently, if f has no zero in I, then either f(x) > 0, for all x in I or f{x) < 0, for all x in L.
This fact yields a procedure for discovering the intervals on which a continuous function f is
positive, and those on which f is negative.'?

Example (22): Let f(x) = (x+ 1)*(x — 2)(x — 3). We shall determine the intervals on
which f is positive and those on which f is negative.

Solution: Note that the zeros of “f” are —1, 2, and 3. Now we can determine the sign of
f(x) on the relevant intervals (—oo, —1), (—1, 2), (2, 3), and (3, o©), by preparing the
following table.

Interval (1) An Arbitrary but flo) Sign of f(x)
Convenient Point ¢ in (1) on the Interval

(=00, —1) -2 20 +

(_ I, 2) 0 6 +

2,3) 512 —49/16 -

(3, o0) 4 50 +

From the table, we observe thatfis positive on (—oco, —1), (—1,2), and (3, o), and is negative on
(2, 3). Thus, the intermediate value theorem can be used to determine the intervals, where
continuous functions are positive, where they are negative, and where they are zero.

Remark: The method used in the above example, applies to a function such as a rational
function, even if it is not defined on certain points in its domain.

The intermediate value theorem will not hold, if the function f is discontinuous at a point
in [a, b].0V

The intermediate value theorem can also be used to show that every non-negative number
has a square root, that is, the domain of the square root function consists of all non-negative
numbers, as asserted in Chapter 6.

Proof: To prove the assertion, we select any non-negative number p, and show that p has a
square root which is a non-negative number, that is, there is a number ¢ > 0, such that 3= p-

(19 Here it may be mentioned (in advance) that once we have introduced the concept of the derivative and studied its
properties, we shall apply this technique to determine the zeros of the derivative of f. This will help us in finding the
intervals on which the function “f” is increasing and those on which fis decreasing. This technique is very useful for
studying many applications of derivatives; for instance, maximum and minimum values of a function, and some other
related concepts.

(D For details refer to the following:

1. Calculus with Analytical Geometry (Alternate Edition) by Robert Ellis and Denny Gulick (pp. 97-100), HBJ
Publication.

2. The Calculus 7 of a Single Variable by Louis Leithold (pp. 87-89), HCC Publishers.
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For this purpose, we consider f{x) = xz, for x > 0. We know that fis continuous on any interval,
and observe that

f0)=0<p, (p=0)

<P +p+1=p+1)Y=fp+1)

Thus, f(0) <p <f(p+1). But the intermediate value theorem says that there is a number ¢
in [0, p+1] such that f(c) =p or equivalently, > = p (*. f(c) = ¢?). Thus, p has a square
root.

Since p was an arbitrarily chosen non-negative number, it follows that the square root is
defined for every non-negative number-.

In fact, a continuous function f defined on a closed interval [a, b], possesses many properties,
that we shall be using. Some of these properties are listed below.

If f is continuous on a closed interval [a, b], then

e fis bounded on [a, b],
e fhas a maximum and a minimum value on [a, b],

e fis uniformly continuous on [a, b].

The importance of continuity of a function on a closed interval will become more and more
apparent when the reader proceeds through his study of calculus. This property is a part of the
hypothesis of many key theorems, such as the mean value theorem, the fundamental theorems
of calculus and the extreme value theorem.

8.7.3.1 Continuity of Some Elementary Functions It can be shown that

(i) A constant function is continuous for all x.
(i) A polynomial function fix) =ay+ a;x + x>+ . ..+ a,x" is continuous for all values
of x on (—o0, o).
(iii) x"; n> 0 is continuous for all values of x.

(iv) A rational function is continuous at every point in its domain.

1 . .
) s n> 0 is continuous for all values of x, except x =0.
X

(vi) Trigonometric functions: f{xx) =sin x and g(x)=cos x are continuous on (—00, 00).
Other trigonometric functions (i.e., tan x, cot X, sec X, cosec x) are continuous for all
values of x for which they are defined.

(vii) Inverse trigonometric functions are continuous for all values of x for which they are
defined.
(viii) The exponential function: f{x) = a*, (a > 0) is continuous on (—oo, co). (In particular,
e" is continuous for all x.)
(ix) The logarithmic function: f{x)=1og, x, (a > 0) is continuous on (0, co).

Itis now proposed to solve the following problems that may also be treated as an exercise. [This
discussion is expected to be useful for a beginner to get a deeper idea of the concept of continuity
(and discontinuity). This should prepare him to handle difficult problems presented in various
exercises in the textbooks.]
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Exercise I

Discuss the continuity of the following functions in the intervals indicated against them. In
case a function is discontinuous, state whether the discontinuity is removable or irremovable.

Q. M): f(x) = —atx=2
1 .
Q. @): () = T3’ if x #£2
3, ifx =2
. _f|x=3], ifx#3
Q. 3): p(x) = 2, ifx =3

242, forx>1
1, forx<1

X+ 6, if x>3
X2, ifx <3

+ 2, ifx>2

) ifx <2
X2, forx <1
Q M:f(x) = x forx > 1

Q. (8): fix) =x7/(1+x7)
Q. (9): Show that the function f{x) =15 is continuous for every value of x.
Solutions

(1) Letfbedefinedbyf(x) = 1/(x — 2). The graph of fhas a break at the point where x = 2;
so we investigate the conditions of definition (1). Note that “f” is not defined at x = 2.
Hence, f is discontinuous at 2. Again, lim2 f(x) does not exist (Why?). This is an

X —

example of infinite discontinuity of second kind.

y
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(2) Let g be defined by

— ., ifx#£2
s = {32 7

3, ifx=2

Note that g(x) is defined for all x. Here again, the graph of g has a break at 2. We check
the conditions of Definition (1), at x =2. Observe that

@ g2)=3

1 1
(ii) lirrzli g(x) = lim 5= 00 and lim g(x) = lim = +4o00.
X —

x—2" X — x—2" =2t X —2

Thus, lim2 g(x)does not exist. Obviously, g is discontinuous at 2. The discontinuity is infinite
X —

and it is of second kind.

(3) Let ¢ be defined by

_fx=3], ifx#3
¢“)_{z ifx =3

The graph of ¢ shows that it has a discontinuity at x = 3. We check the three conditions
of definition (1) at x = 3.
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y

@ ¢(3)=2
(i) 1irr?17 o(x) = lin317 B3-x)=0
linzl+ o(x) = 1irr31+(x -3)=0

Hence, the llmg ¢(x) exists.
(iii) limy_.3 (x) # &(3)

Because condition (iii) is not satisfied, ¢ is discontinuous at 3. This discontinuity
is removable because, if ¢(3) is redefined to be 0, then the new function becomes
continuous at x = 3. This is a discontinuity of first kind.

X242, forx>1

is continuous at x = 1.
S5x -1, forx<1

(4) Let us determine whether f(x) = {

Solution: The functions having values x*+2 and 5x — 1 are polynomials and are
therefore continuous everywhere. Thus, the only number at which continuity is
questionable is 1. We check the three conditions for continuity at “1”.

(1) f(1)=4. Thus, f(1) exists.
(i) lim f(x)= lim (x> +2)=3,and lim f(x)= lim (5x—1)=4
x—17 x—1% x—17 x—17
Thus, lim f(x)# lim f(x).
x— 17" x—17
Therefore, lim f(x)does not exist, and so “f” is discontinuous at x=1.

| . . . o . .
This is an example of jump discontinuity, which is of course irremovable. It is of the
second kind.

x+6, ifx>3

(5 Let g(x) = {xz, ifx<3

The only possible trouble may occur when x =3.
We observe that, g(3)=3+6=09.

Further, lim g(x)= lim (x4+6)=34+6=9
x—3" x—3"
and 1in317 g(x) = linglf (x*)=9
X — X—3
Thus, 1im3f(x) =f(3). .. fis continuous atx = 3.
X —
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x+2, ifx>2

(6) Let f(x) = {xz, if x <2

Since “f” is not defined at x = 2, it is discontinuous there. (It is continuous for all other x.)

This discontinuity can be removed by redefining f. Note that

lim f(x) = lim (x+2)=4and ’lin217f(x) = lim (x?) = 4.

x—2" x—2 x—2"
Thus, lim f(x) exists. Hence this discontinuity can be removed.
x—2

Also note that, by including “2” in the domain of “f” [in any part of the formula
defining f(x)], we get f(2) =4. Thus, f becomes continuous at “2”, if 2 is included in the
domain of f.

x2, forx < 1
x, forx>1

() Let f(x) = {

Show that “f” is continuous at 1.

Solution: We have 1irr11 flx)= lirrll x> =1land lim f(x) = lim x=1.
xX— x—

x— 17 x— 1t
hmlf(x) =1 (26)
Also, fihH)= 1? 27

Thus, limlf(x) = f(1). Therefore, “f” is continuous at x =1.
X —

(Note that the graph of “f” has a sharp corner at x =1.)"?

U2 Later on, when the concept of differentiable functions is introduced (in Chapter 9), it will be noted that a continuous
function, whose graph has a sharp corner at some point x = a (say), is not differentiable at that point.
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(8) Let fix) = x*/(1+x?). Determine the numbers at which “f” is continuous.

Solution: Here again “f” is a rational function, but its denominator (1+x°) is never 0.
Thus, “f” is defined for all x and therefore “f” is continuous for every real value of x.
(9) Let us show that the function f(x) =15 is continuous at x =7.
Solution: We must verify that the conditions for continuity are satisfied.
(i) “f” is defined at x =7 [Here, we have f(7)=5.]
(i) lim f(x) = lim 5 =5

Thus, lim7f(x) = f(7). Therefore, f(x) is continuous at x=17.
X —

Remark: Note thatf(x) =5 is a constant function. It is easy to show that every constant
function is continuous for every value of x.

Exercise 11

Discuss the continuity of the following functions:

eSx _ er . 0
@ f)="si3x ' oY 7
1, whenx =0
SI;I ox , forx#0
®) =1 53
=, forx =0
5 or x
7 whenx £0
() ffix)= x when x 7 is continuous at x =0, find k.
k, whenx =0
log(1 + x)

(d) If the function f{x) = , for x # 0, is continuous at x =0, find f(0).

sin X



9 The Idea of a Derivative of
a Function

9.1 INTRODUCTION

There are certain problems in mathematics, mechanics, physics, and many other branches of
science, which cannot be solved by ordinary methods of geometry or algebra alone. To solve
these problems, we have to use a new branch of mathematics known as calculus. It uses not only
the ideas and methods from arithmetic, geometry, algebra, coordinate geometry, trigonometry,
and so on, but also the notion of limit, which is a new idea that lies at the foundation of calculus.
Using this notion as a tool, the derivative of a function is defined as the limit of a particular kind.

The idea of derivative of a function is among the most important and powerful concepts in
mathematics. This concept distinguishes calculus from other branches of mathematics. It will
be found that the derivative of a function is generally a new function (derived from the original
function). We call it the rate function or the derivative function.

Calculus is the mathematics of change. The immense practical power of calculus is due to
its ability to describe and predict the behavior of changing quantities. We cannot even begin to
answer any question related to change unless we know what changes and how it changes? Let
us discuss.

We know that

o the area of a circle, A(r) = 17, changes with (respect to) its radius “r”.

o the volume of a sphere, V(r) = (4/3) nr®* = ki® (k = (4/3)r), changes with (respect
to) its radius “r”.

o the surface area of a cube, S(/) = 6/, changes with (respect to) the length “/” of its side.

Consider a function y = A(x) whose graph is a smooth curve (not a straight line). Then, the
inclination “6” of the tangent line (drawn at any point of the curve) changes from point to point
on the curve. (Later on, this observation will be used to define a (new) concept, namely, “the
slope of a curve” in terms of the slope of the (tangent) line.)

The fact is that all our effort is aimed at defining the slope of a curve at a point, which also
stands for instantaneous rate of change of the function y [ = h(x)] at any value of x. To get a
better idea of the whole situation, it is useful to study a little more as explained below.

The notion of dependent variable introduced in Chapter 6 suggests that if “f” is any function
defined by y = f(x), then the dependent variable y [ = f(x)] changes whenever there is any

9-The concept of derivative function f'(x) (I s rate of change of f at x, or slope of the graph of f at x) and the
process of obtaining it from y = f(x)

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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change in the value of independent variable x. We say that the quantity f(x) changes with
(respect to) x.D

9.1.1

The calculus tool that tells us about the behavior of changing quantities is called the derivative
function (or the rate function). For a given function y [ = f(x)], the derivative function (or the
rate function) is denoted by f’(x), which tells us the instantaneous rate of change of f(x) with
(respect to) x.

In this chapter, we will invest a lot of time and effort in studying how to define derivative
functions formally and how to calculate them symbolically. In the process of defining the
derivative function (or a rate function), various subtleties and puzzles will inevitably arise.
Nevertheless, it will not be difficult to grasp the concept (of derivatives) with our systematic
approach.

The relationship between f(x) and f(x) is the main theme. We will study what it means for
f'(x) to be the rate function (or derivative function) derived from f{x) and what each function
says about the other. The important requirement is to understand clearly the meaning of the
instantaneous rate (or the actual rate) of change of f(x) with respect to x.

For this purpose, it is necessary to distinguish between the average rate of change and the

actual (or instantaneous) rate of change of a varying (dependent) quantity f{x) with respect to
2

et

another varying quantity “x”, considered to be varying independently.
We know that every rate is the ratio of two changes that may occur in two related quantities.
For example, consider the volume of a sphere, defined by

4 4
V(r) = §m’3 = kr’ (where constant k = §n)

Note that, V(r) will change if “r” is changed. Now consider the situation when “r” is increased
by 2 units from 1 unit to 3 units. We get
Average rate of change in V(r) (for increase in “7” by 2 units)
_ Changein V(r) k(3)* —k(1)?

Change inr 3-1)
_ k(27—1) 26k
“e-n 2 MK W

Again, consider the situation when r is increased by 2 units from 2 units to 4 units. We get
Average rate of change in V(r) (for increase in “7” by 2 units)

_ ChangeinV(r) _ k(4)' —k(2)*

Changeinr ~ (4-2)
 k(64—8) 56k
“e-n 2 % )

) Here, it may be mentioned that a falling object (dropped from a tower), orbiting spacecraft, growing populations, decaying
radioactive material, rising consumer prices, etc., can all be modeled through calculus. — The Mathematics of Change

@ Once we have defined the rate function, it will be found that the same principle, suitably interpreted, lies behind all our
calculations and applications of derivatives. Later on, it will be found quite useful to see how the graphs of f(x) and f’ (x) are
related.
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G99

Also, it can be checked that average rate of change in V(r), for one unit increase in “‘r” varies as
follows:

Change in r Average rate of change (for one unit increase in r)
Fromr=0tor =1 k
Fromr=1tor=2 Tk
Fromr=2tor=3 19k
Fromr =3tor =4 37k

6,00

From the above data, we observe that for two units increase in “r”, the average rate of
change in V(r) is not the same as can be seen from (1) and (2) above. Similarly, the average
rate of change in V(r) for a unit change in “r”, is different for two different values of “r”.
This observation indicates that the rate at which V(r) increases must be different, for
different values of “r”.

The rate of change at any particular value of r is called the rate of change (or the
instantaneous rate of change) for that value of r. Our interest lies in computing the actual
rate of change in V(r) at each value of “r”. This statement might look confusing or even
useless to a beginner since, so far, we neither know the usefulness of “the actual rate of
change of V(r)” nor do we know the method of computing it.®’

9.1.2 From the Average Rate to the Actual Rate (or the Instantaneous Rate) of Change

Consider an object moving in a straight line. A parameter of our interest is its speed. Let the
moving object be a car, which may be moving with a constant speed or varying speed, with or
without stoppages in between. In all situations, we can always compute the average speed of the
object by noting the distance traveled in an interval of time, and using the formula

Distance traveled
Average speed = ————
Time taken

Note that, the average speed does not give any information about the variation in speed during
any interval of time. If one plans to travel 160 km by this car, and hopes to make the trip in 4 h,
then it suffices for him to know that he must travel at an average speed of 40 km/h. Thus, in such
cases, what matters is the average speed.

Calculus is not meant for computing average speed(s) (or average rate(s)). These can be
computed using simple arithmetic. Differential calculus is designed to compute actual rate(s)
of change (or instantaneous rate(s) of change) of varying quantities.

To emphasize the importance of actual speed, imagine the situation when the car strikes a
tree. Here, what matters is the actual speed of the car at the time of strike. Similarly, as a bullet
travels through air, its average velocity may be around 2000 km/h (i.e., 555 m/s, approximately),
but what counts when it strikes a person is the actual velocity at the instant of striking.

If it is 2km/h (i.e., 0.55 m/s), the bullet will drop (without causing any harm), but if it is
555 m/s, the person will drop.

The speedometer of a vehicle indicates its actual speed at each instant (to keep the driver
alert, so that he could use necessary controls to avoid accidents). Again, we are interested
neither in the speeds of vehicles meeting with accidents nor in the velocities of bullets striking

3 We have observed that “the average rate of change” can be computed using algebra; but it will be seen shortly that, in
general, we cannot compute actual rate of change using algebra.
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individuals. However, our interest lies in being able to compute the actual rate(s) of change of
varying quantities because there are many scientific problems that require the use of instan-
taneous speed.(4)

Consider a function f (in the form of a formula) defining the way in which the quantity
y [ = f(x)] changes with x. Then, the differential calculus helps in computing a new function,
denoted by f'(x), which describes the actual rate of change in f(x) with respect to x. The new
function f’(x) is obtained from the given function f(x), through a definite procedure, to be
discussed shortly.”

Inpractice, the speed of a car (or any other vehicle) is always varying, reasonably close to the
desired average speed. For our purpose, let us assume that a car moves in a straight line
according to the formula y = f(x) = 3x%, connecting the distance traveled with time (y in
meters, x in seconds). Note that, with the passage of time (i.e., for higher values of x) the car can
attain a very high speed, and our interest lies in computing actual speed of the car, at any instant
of time. In fact, the actual speed (or instantaneous speed) of the car can be read from the
speedometer or it can be obtained by substituting the value of the instant “x” in the formula of
the derivative function to be obtained from the given function f(x).©®

Note (1): It will be found that in general f’(x) depends on x, except when it is a constant
function, (that is, f'(x) = c¢). Also, in certain cases it will be observed that f'(x), is not defined
for certain values of x, for which f{x) is defined. For the time being, we assume that (unless
otherwise noted) our functions are well behaved, which means that the given function f{x) and
its derivative function f’(x) both have smooth, unbroken graphs.m

To get an idea of the actual speed at any instant, the simplest way is to compute the average
speed over shorter and shorter intervals of time. This average speed may be considered very
close to the actual speed (i.e., the speedometer speed) at any time during the same small
interval. However, to get a systematic and definite procedure (to define derivative function), we
consider a functionf, givenby y = f(x) and make a very small positive change Ax in the value of
x (at x = xy).

Let the corresponding change in the value of y [ = f{x)] be computed. This change in the
value of y may be any real number (positive, negative, or zero). Then the ratio of resulting
change, that is, the change in the value of y to the change in the value of x, gives an approximate
value of f'(x) at x = xy. Our interest lies in this ratio and we shall use it in obtaining the desired

formula for f'(x).

“ For example, an object near the surface of the Earth falls with varying speed according to aknown law s = 16/ (s in feet,
t in second(s)). Therefore, to know its speed at any time means to know its instantaneous speed. It is also known that when
an object is far from the Earth and falls toward it under gravitational attraction, then not only its velocity but also its
acceleration varies from instant to instant.

A deep investigation of all such motions requires understanding of instantaneous speed and instantaneous acceleration.
The problems scientists have faced since the seventeenth century are not only that of treating instantaneous speed and
acceleration but also instantaneous rates of changes of forces, energies, intensities of light and sound, and hundreds of other
instantaneous rates of change.

) Note that, while the function f tells the way in which the value f(x) changes with x, the (new) function f’(x) is expected to
tell the actual rate at which f(x) changes with x at each value of x.

© Any function f can be used to build new functions derived in one way or another, from f. For example, consider the
functions: fi(x) = 2A(x), fo(x) = fx) + a, f5(x) = ] + 2(x), and fo(x) = (F(x+0.1) —f(x))/0.1. All these
functions may be called “relatives” of f, and the possibilities are endless. Among all the possible functions one might
obtain from the given function f(x), the derivative function f'(x) is the most important. Our interest lies in establishing the
procedure for defining the derivative function of a given function y = f(x).

) This assumption is useful to overcome the initial difficulties in understanding the concept of derivatives. As we develop
new languages and tools, we will be able to handle complicated functions for computing their derivatives. Of course, all
such functions are defined on intervals.
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Here is an informal description of derivatives:

9.2 DEFINITION OF THE DERIVATIVE AS A RATE FUNCTION

Letf be any function. The new function f, called the derivative function of f, is defined by the
rule:

f'(x) = instantaneous rate of change of f at x.

This definition tells us that if f is any function defined by the formula y = f(x), then f’(x)
represents “the rate at x” at which y changes with respect to x. For instance, the statement
f'(3) = 5means that if x =~ 3 then increasing x by a small amount produces about five times as
much increase in f(x).

9.3 INSTANTANEOUS RATE OF CHANGE OF y [ =f(x)] AT x = x; AND THE
SLOPE OF ITS GRAPH AT x = x;

Most functions of our interest can be graphed, hence it is natural to expect that the graphs of the
Sfunctions must reveal useful information about their derivatives. We ask the question: What
does the derivative mean graphically?

Suppose, a car starting at some point on the x-axis moves (in the positive direction) a
distance given by the formula

y = g(x) = 2x+ 3 [x units of time, y units of distance]

(Let us not worry about the units of y and x.] From the above formula, it can be easily checked
that in each unit of time, the car moves 2 units of distance. In other words, the car moves with a
constant speed of 2 units. The graph of this motion is a straight line with slope 2. Whenever an
object moves with any constant speed, the graph of distance against time is a straight line with
positive slope, which is numerically equal to the constant speed (see Figure 9.1).”

In other words, the slope of a straight line represents the constant speed of the moving object.
Note that any constant speed may be looked upon as the instantaneous speed (of the moving
object), which represents the derivative of the given function.

Next, suppose the car accelerates gradually in the positive direction of x-axis. Let this
motion be represented by the graph (Figure 9.2), which we may call the function /(x) (we have
not defined y = A(x) by any formula).

Observe from this graph that the value /(x) (i.e., the height of the graph from x-axis)
increases with x, indicating that the car is gradually accelerating (i.e., moving greater and
greater distance per unit time as the time x passes). It follows that the slope of the tangent
line on each point of the graph increases with x. In other words, the slope at a point on the

® The phrase instantaneous rate of change is applicable even in the cases where nothing seems to be moving. We say that a
road bends suddenly. We can discuss how quickly the direction of a railway line changes. Words such as “suddenly” and
“quickly,” which are originally meant to describe a motion, can also be used to describe motionless objects. Differential
calculus is, therefore, a subject that can be applied to any thing that moves or changes.

©) The speed of a particle is defined as the absolute value of the instantaneous velocity. Hence, speed is a nonnegative
number. The terms speed and instantaneous velocity are often confused. Note that the speed indicates only how fast the
particle is moving, whereas the instantaneous velocity also tells the direction of motion.
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FIGURE 9.1 Constant speed.

(xp, f(x1)

FIGURE 9.2 Varying speed.

curve is the slope of the tangent line at that point. We call it the slope of the curve at that
point. Note that, by using the concept of slope of a line, we have now defined the slope of a
curve at a point.

In view of our observation that the slope of a straight line represents the constant speed (or
the instantaneous speed), we conclude that the slopes of the curves (representing functions) can
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be interpreted to represent instantaneous rate(s) of change or (derivatives) of functions. We give
another informal description of derivatives.

9.3.1 Definition (The Derivative as a Slope Function)

Let f(x) be any function given by y = f(x). The derivative function f’(x) is given by the rule
f(x) = slope of the graph of y = f(x) at any point x.

So far, we have introduced only what it means for f’(x) to be the derivative of f{x). We have neither
given its definition nor described the method of obtaining it from the original function f{x).
From the above description, we get that, to find the instantaneous rate of change of a given
functiony = f(x) at a desired point x|, we should compute the slope of the tangent line at the
point (xy, f(x)) of the graph of f.
From all that we have discussed so far, to understand the derivative, we proceed to consider
the following two problems, which are the foundation of differential calculus.

(a) The Problem of the Tangent Line: To define the tangent line to a curve at a point and to
find its slope at that point.!?

(b) The Problem of Instantaneous Velocity: An object is moving in a straight line. We are
given a rule (a function), which tells where the object is at any time, and we are asked to
find how fast it is moving at any desired time.

The two problems, one geometric and the other mechanical, might appear to be unrelated, but
the fact is that they define one and the same problem, as will be clear from the discussion that
follows. Let us discuss first the problem of the tangent line.

9.3.2 The Problem of the Tangent Line

In our school geometry, we learnt that the tangent to a circle is a line, which meets the circle, at
exactly one point. To draw a tangent line, to a circle at any given point P, we join “O,” the center of
the circle, with P. Then, the line perpendicular to OP at P is the tangent to the circle, at P
(see Figure 9.3).

Using this property of the circle, it is possible to draw a tangent line to a circle, by geometric
methods. Euclid’s notion of a tangent, as a line touching a curve at one point, is all right for
circles, but completely unsatisfactory for most other curves, as will be clear from the following
discussion.

Suppose, we want fo draw a tangent line to any other curve, which is not a circle. The
problem is: How do we get such a line? Let us try to understand what is meant by a line being a
tangent to a curve.

In Figure 9.4a, the lines /; and /, intersect the curve at exactly one point P. Intuitively, we
would not think of I, as the tangent at this point, but it seems natural to say that /; is.

Also, in Figure 9.4b, we would consider /sto be the tangent at P, even though it intersects
the curve at other points. From these examples, it is clear that we must drop the idea that a
tangent line intersects a curve at only one point. To develop a suitable definition of tangent line,
we have to use the limit concept as follows.

(07t is assumed that the given functions are defined on intervals and have smooth and unbroken graphs.
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FIGURE 9.3 Tangent line to a circle at any point P.

I3

(a) (b)
FIGURE 9.4

Consider, a curve that is the graph of a function y = f(x). Let P(x1, y;) be a fixed point on the
curve and Q(x, y) be a nearby movable point on that curve. The line through P and Q is called a
secant line. 'V

Now imagine that the point Q moves along the curve approaching closer and closer to P.
Then, the secant PQ is approaching nearer and nearer to a definite line PT, as shown in
Figure 9.5.

While Q approaches P, it has to pass through an infinite number of positions along the curve
and accordingly the secant PQ has to pass through an infinite number of positions to approach
closer and closer to the definite position PT. (Note that Q can be considered arbitrarily close to
P, but we never allow the point Q to coincide with the point P.) Thus, the line PT is the limiting
position of the secant line PQ and it is the same whether Q approaches P from the left or from the
right. This common limiting position of secant lines is called the tangent line to the curve at P.

(D A fixed point is identified with coordinates (xo, yo), (X1, 1), and so on, wherein the coordinates are with subscript 0, 1,2,
and so on. An arbitrary point or a movable point is expressed with coordinates (x, y), wherein the coordinates are without
subscript.
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Secant
line

T Tangent
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FIGURE 9.5 Limiting position of secant line is defined as the tangent line.

This definition is in agreement with our intuition and avoids the failings previously discussed.
We now give the following definition.

9.3.3 Definition (Tangent Line to a Curve at a Point P)

The tangent line PT is the limiting position of the secant lines PQ, as Q approaches P, along
the curve.

To draw the tangent line at any given point P of a curve, it is necessary to know the slope of
the tangent line at P. The method of coordinate geometry gives the slope of any secant line
(which passes through any two points on the curve) but fails to give the slope of the tangent
line at any point of the curve. Let us see why?

To see the actual difficulty, note that the slope of any secant line denoted by mg.. passing
through two distinct points P(xy, y;) and Q(x,, y,) on the curve is given by

My, = 222 (3)
X2 — X

Observe that as Q — P along the curve, the secant line PQ approaches the limiting position PT
and hence the slopes of the secant lines PQ approach the slope of the tangent line PT. Now
consider the expression (3), which gives the slope mg. of the secant line PQ. As Q — P,
Xy — X1,y2 — ¥ and (x, — x1) — 0. Therefore, by using (3), we are unable to compute the
slope of tangent line. Thus, although we are able to visualize the existence of the tangent line at
P, we are unable to compute its slope at P.

To find the slope of the tangent line at the point P(x;, f{x;)), we choose another point
QO(x3, f(x,)) on the curve, distinct from P (see Figure 9.6).

Now we express the slope of the secant line PQ as

e =TT here £(02) = yr and () = ]
X2 — X1

Since x, can be obtained by adding a nonzero number h to x,, we can write x, = x| + h,
where h# 0. Here, h is a variable nonzero number, positive or negative. Thus, the slope of the
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0O(xy, f(x))
I

Sflx) = f(xy)
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P(xy, fxp))

FIGURE 9.6 Tangent line PT at P.

secant line PQ may be expressed as

e St ) =flu)  fOa+h) = fx)
see (X]ﬁ*h)*)ﬂ h

Since, the tangent line is the limiting position of secant lines, the slope of the tangent line at P is
the limiting value of the slopes of secant lines PQ as Q — P. But, as Q — P along the curve,
X, — xp and so &7 — 0. (Note that at any stage 4 # 0, for if # = 0, then x, = x; and then no
secant line would exist.)

Therefore, the slope of the tangent line at P(x,, f(x,)) is given by

provided the limit at (4) exists.
If the limit at (4) exists, then in view of the definition of derivative as a slope function, we
identify the above limit as the derivative function (or the rate function) of f at x;.

Since, x; in (4) can be any number (in the domain of f), we may replace it by x to make the
result more general. Thus, our problem condenses to evaluating the limit.

h—0 h
which gives the slope of the tangent line at any point P(x, y) of the curve y = f(x), provided
the limit at (5) exists, and we call it the derivative function of f(x) at x and denote it by the
symbol f'(x).

The above discussion suggests that to find the derivative of the given function f{x), we must
construct a new function (f(x+h) —f(x))/h, (h # 0) without bothering to know what
this would mean, and take its limit as # — 0. If the limitlim, ¢ (f(x+ /) —f(x))/hexists, we

call this limit as the derivative function of f{x) and denote it by f'(x). Note that derivative of f{x)
can be defined aside from any geometric meaning attached to f{x).
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The above discussion also suggests that we can define the slope of a curve at any point
of the curve, as the slope of the tangent line at that point, obtained from the limit at (5) if
it exists.

9.3.4 Definition

The slope of a curve at a point P is the slope of the tangent line at P. (Note that the concept of
slope of a curve at a point is not to be found anywhere in geometry.)

Notevery curve has a definite single tangent at each of its points. For example, if the graph of
a function has a sharp corner then there will be two tangent lines at such a point, one from the
left and the other from the right, with different slope. In other words, the slope at any sharp
corner of a curve is not unique. For example, see the graph of y = |x| at the origin.

Besides, there are functions whose graph may have vertical tangent line(s) at certain
point(s). We know that the slope of the tangent line is not defined at such points.

For example, this happens in the graph of y = x'’?, at the origin. If the slope of the curve
cannot be defined at certain points, we say that the function does not have derivative at
those points. This amounts to saying that the limit at (C) does not exist at such points (see
Figures 9.7 and 9.8).

It is now proposed to go back again to the concept of actual rate of change of a function at a
point (or the actual velocity at any instant), in more details.

y
y= |x|
X
0
FIGURE 9.7
AY
fy=27
A X
0 ' -
1

FIGURE 9.8
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9.4 A NOTATION FOR INCREMENT(S)

Lety = f(x) be a function of x. The symbol 6x (sometimes Ax) is used to denote an arbitrary

nonzero increment in the value of the independent variable x and the symbol 8y (or Ay) is

used to denote the corresponding change in the value of dependent variable y [ = f(x)].""?
From the relation f(x) = y, we write

f(x+6x)=y+8y
= f(x) +8y (sincey = f(x))
8y = f(x+0x) —f(x)

Thus, [f(x + x) — fix)] = 8y is the increment (or the resulting change) in the value of the
function, corresponding to the increment, 8x in x.'*

9.4.1 The Increment Ratio (or the Difference Quotient) at x;

The ratio (f(x; +8x) —f(x1))/8x = 8y/dx is called the increment ratio (or the difference
quotient) of the function f(x), at the point x,. This increment ratio represents the “average
rate of change”, in the value f(x), relative to the change 6x at x,. Our interest lies in computing
the actual rate of change (or the instantaneous rate of change) in the value f(x) relative to the
change 8x at x,. Note that for this purpose, the increment 8x has no role to play.

9.5 THE PROBLEM OF INSTANTANEOUS VELOCITY

We have seen that in certain situations the instantaneous rate of change of a varying quantity is
more significant than its average rate of change—it may be a vehicle hitting a tree or a bullet
hitting a person.'®

The following examples, connecting varying quantities, may be found useful:

(1) Asone travels, his distance from the starting point continually chan €S, as does the time
that elapses.(ls)

U2 The symbol “8” is the Greek small “d” and is pronounced “delta”. Contrary to the ordinary usage of algebra, 8.x does not
mean a product of § and x. It is a single symbol and hence the letters should not be separated. A single letter h and k can also
be used. An advantage in using the composite symbols dx and 8y (instead of single letters h and k) will be noted when we
define the derivative of the function y = f(x) as the limit limg, _, o 8y/dx.

(3 Observe that 8x is an arbitrary nonzero increment (positive or negative) in the value of x and 8y [ = fix + 8x) — fix)]is
the corresponding increment in y, which can be any real number (positive, negative, or zero). (Note that for a constant
function y = fix) = ¢, 8y will always be zero.) Thus, while x and x + 8x represent two distinct points on the x-axis, the
corresponding values f(x) and f(x + &x) need not be distinct on the y-axis.

49 we may consider another example of a person traveling in a train at a speed of 200 km/h or so. He may hardly be
conscious of the speed but a sudden decrease in the speed can throw him out of his seat. In fact, it does not hurt to travel at a
high speed such as 200 km/h (or even 1000 km/h). What does hurt is the sudden change in speed.

(19 We have already seen that if the law of motion is a linear function of time, the speed of the object is constant throughout.
It means that “average speed” of the object for “any” interval of time is the same. Obviously, then it must also represent the
actual speed of the object, at any instant. Furthermore, considering only the algebraic aspect, if the law of motion involves
higher powers of 7, then “the average speeds are different for different time intervals” and hence the actual speeds are
different at different instants. In such cases, computation of instantaneous speed is not simple, even in the case of
polynomial functions, when the law of motion involves powers of ¢ > 2. On the other hand, if the law of motion involves
trigonometric, exponential, or logarithmic functions, or even algebraic functions involving fractional, then differential
calculus can help only in computing the actual rates (or the actual speed of moving object at any instant) provided the law of
change (or the law of motion) is expressed by a function.
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FIGURE 9.9

(ii) A bob on a spring (or on a simple pendulum) moves with constantly varying speed and
acceleration.

(iii) For any curve (other than a straight line), the slope of the curve changes from point to
point.

(iv) In electrical circuits, as a capacitor is charged (or discharged), the voltage across it
changes during the time of charging (or discharging).

(v) In DC circuits, the current takes time to grow to its steady value after the circuit is
completed.

Now, we give below some simple experiments by which we can clearly observe the varying
rates of change.

(a) If water is poured at a constant rate in a glass pot having different diameter in different
portions, then we can easily see that water level rises at different rates in different portions
(see Figure 9.9). This arrangement also suggests that if water is poured (at a constant rate)
in a conical pot, then water level must rise at different rates at different heights.

(b) If we walk toward a street light bulb (or go away from the pole), then the rate at which the
length of our shadow changes at different distances from the pole is not the same.

(c) Itis easy to check that if the radius of a sphere changes, the rate at which the volume of
the sphere changes is different for different values of the radius. (This, we have already
discussed.).



248 THE IDEA OF A DERIVATIVE OF A FUNCTION

Having realized the importance of the fact of instantaneous rate of change, we would like to be
able to compute the instantaneous rate of change of varying quantities.

But there are certain difficulties in computing instantaneous rates. The first question is: What
is an instant ? It may be difficult to give a good physical definition of an instant, but the notion of
an instant does have some physical meaning.

For example, when two objects collide, we think of this happening at an instant. A lightning
flash is practically instantaneous. We speak of an event happening at 6 o’clock and refer thereby
to an instant. Thus, even in common situations, we think of and utilize the notion of an instant.
Let us discuss about this notion in details.

9.5.1 The Notion of an Instant

Mathematically, we have less trouble with the concept of an instant. A mathematician thinks of
time as a measurable quantity, measured, say, in seconds. Then, the passage of time is recorded
by the number of seconds measured from some event that is represented as happening at zero
time. Thus t = 2 is an instant, 2s after the event that the mathematician has selected as
happening at zero time.

Having understood the notion of an instant, let us try to understand the notion of
instantaneous speed. It is true that a person traveling in an automobile has a speed at each
instant. But there is difficulty in stating just what we mean by instantaneous speed, and
if we do not know precisely what it means, then we certainly shall have trouble in
calculating it."'®

9.5.2 From Average Speed to Instantaneous Speed

We know that speed is the rate of change of displacement compared to time. Therefore, the
average speed, which applies over an interval of time (rather than at an instant), is the distance
traveled during any time interval divided by the time taken. Let the distance traveled by an
object in a time interval of “6¢” units be “8s” units of distance. Then, we can write

A d Distance travelled  6s its of d
verage speed = ————————— = — units of spee
£¢ 5P Time taken ot P

The definition of average speed permits us to calculate it very easily. Hence, we are tempted to
define and calculate instantaneous speed in the same way. But at an instant, zero distance is
traveled and zero time elapses. Hence, to define instantaneous speed as distance divided by time
leads to the expression 0/0, which is meaningless from a mathematical point of view. Here then
lies the problem.

Physically we have every reason to believe that there is such a thing as an instantaneous
speed, yet we face difficulty in defining it and calculating it mathematically."”

19 Note (2): From the above discussion, one might think that “differential calculus” is difficult to learn, but this is not true.
Once the basic ideas of differential calculus have been grasped, a whole world of problems can be tackled without great
difficulty. It is a subject well worth learning and this book is compiled to achieve this goal systematically, maintaining the
interest and enthusiasm of the reader.

A7 Of course, now we know that this difficulty can be overcome only by applying the method(s) of evaluating the limit
limg; . ¢ 65/8¢ and check if the limit exists.
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9.5.3 Approaches by Newton and Leibniz

Let us consider how Newton and Leibniz approached the problem of defining and calculating
instantaneous rates. Though there were differences in their approaches, we shall ignore them
and examine the subject in the form in which it has been standardized in recent years.

To start with, let us consider the formula

s = 1642, (¢ seconds, s feet) (6)®

that governs the free fall motion of a ball, relating the distance the ball falls to the time it falls.

Note (3): The formula (6) is strictly correct only if the object falls in vacuum. The factor 16 is
approximate. Also, note that the ball falls vertically in a straight line and thus we are
considering the motion in a straight line.

Suppose it takes exactly 4 s for the ball to hit the ground, after it is dropped from a tower, and
suppose it is required to compute the instantaneous speed of the ball at the end of third second.
We prepare the following table:

From this table, we observe that the average speed of the ball keeps on increasing with time
and therefore its instantaneous speed is increasing as the time passes. What can we say about its
speed at the end of the third second?

Observe that the ball started with no velocity at all, and increased its speed under
gravitational attraction. In first 3, the ball falls by 144 ft and so the average speed of the
ball during this period is 48 ft/s. Obviously, then its actual speed at the end of third second must
be greater than 48 ft/s, to balance its slow initial speed. Next, we observe that the distance the
ball fell by during the third second is 80 ft. Hence, its actual speed at the end of third second
must be greater than 80 ft/s.

It is reasonable to say that the actual speed at any instant will not differ very much from the
average speed during the previous 10th of a second. Furthermore, if we compute the average
speed for the previous 1000th of a second, then it will still be closer to the actual speed, at
the instant under consideration. In other words, if we take the average speed for smaller and
smaller intervals of time around the instant under consideration, then we shall get nearer and
nearer to the true speed at the instant in question.

For many practical purposes, the average speed during a 1000th of a second may be
regarded as the exact speed, but in reality it is still different from the actual speed. 1t is
important that we should not agree to accept any approximate value of the average speed
howsoever close to the actual speed it might be.

(Here, we introduce the area of logical thinking, leading to the concept of limit.)

The distance “s” traveled by the ball in 3s is given by

s = 1672 = 16(3)* = 144 ft (7)

U8 Eormulas for free fall near the Earth’s surface:
1. s = (1/2)gt* s = distance, ¢ = time, g = gravitational constant.
2. 5 = l6gt* s = feet, t = seconds, g = 32 ft/s’.
3. 5 = 490¢% s = centimeters, 1 = seconds, g = 980 cm/s”.

4. s = 497 s = meters, 1= seconds, g=98 m/s>
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Also, using the formula (6), we can find where the ball will be at the end of (3 + 8¢) s, 8¢ being
an arbitrarily small additional time interval, after third second. Then, we have

s+8s = 16(¢+81)” = 16(:2 + 28t + 87%)

= 16(9 + 651+ 81%)
144 465 = 144 +965¢ + 1651 (8)
8s = 968t + 1657 9)

But, we know that the average speed during the additional time interval 8t is given by 8s/6t.
Therefore, we divide both sides of formula (9) by 6#(6¢ > 0) and obtain

8s 968t + 1661

- 10

8t 8t (10)
From formula (10), we observe that the average speed 8s/8t(over the time interval 8t) is a
function of 8t. Furthermore, since 8t # 0, we can divide the numerator and denominator on the
right side of (10) by 8¢ and obtain the simplified expression for 8s/6z. Thus, we get

5
3% = 96+ 1651, (5t # 0) (11)

Up to this point, Newton and Leibniz had calculated the average speed of the falling body in the
time interval 8t, after the third second of the fall. Moreover, since 6¢ can be chosen as small as
we please and the above algebra still holds; they had obtained the formula for average speed
over any small interval, just after the third second.

But, the problem they set out to solve was to calculate the speed just at the end of the third
second, that is, when 6¢ = 0. One is tempted to put 6 = 0 in (11) and obtain the answer 96.
Unfortunately, the answer happens to be correct, but the reasoning is incorrect (Why?)."'?

To determine the value of 8s/8¢ (when 8¢ = 0), we should use formula (10). But if we
substitute 8¢ = 0in (10), we obtain s/8¢ = 0/0, which poses the same difficulty (in obtaining
instantaneous speed) as we mentioned at the outset. The situation is exasperating. The answer
we seek is obviously at hand in formula (11), but we cannot use formula (11).

One is tempted to cheat a little by putting ¢ = 0in formula (11) and get the answer, but it is
not correct as discussed above. (The new idea that Newton and Leibniz contributed comes in at
this point.) They operated on the expression 96 + 166t in the way we would treat it today for
computing its limit as 8t — 0.2%

Let us examine formula (11) when &7 is not 0, and see what happens to it as 67 approaches
closer and closer to 0 in value. For all nonzero values of t, formula (11) is valid, and we see that
as &t — 0, theright side of (11) (i.e., 96 + 168¢) approaches 96. We therefore take 96 to be the
actual speed at the end of third second.

(9 Note that (11) is derived from (10) with the condition that 87 0. Thus, (11) is not the correct expression for the value of
8s/6t when 8¢ = 0.

29 No one can read the details of their writings on calculus without being amazed by the number of times they changed
their explanations of the limit concept and still failed to get it right. Some of these explanations contained outright
contradictions of earlier ones. It is fair to say that though both men had their hands on a sound idea, they could not grasp it
securely. The concept of a limit, as we know it today, was not known to either Leibniz or Newton. (The Calculus of a Single
Variable by Louis Leithold (p. 115), Harper Collins).
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In this calculation, we observed the behavior of formula (6) when 8¢ — 0, but did not permit
8¢ to assume the value 0. Thus, we did use formula (11), but the manner in which we used it, is all
important.

In other words, what we do is as follows: Consider the formula at (6) and try to guess the
number to which the expression (96 + 168¢t) approaches as 8t approaches 0. This number is
called the limit of (96 + 166¢) as 6t — 0, and we take it as the actual speed at the end of the
third second.®"

Observe that 96 is also the value of the expression (96 + 168¢) for 8t = 0. This is equiva-
lent to saying that the limit of the function (96 + 1661) as 8t — 0 and value of the function at
8t = 0 both are same. This is due to the fact that we had a very simple function “16>”, which is
continuous. This may not be the situation always, that is, the expression representing the
difference quotient 8s/8¢ may not be as simple as the one in (10).

In other words, it may not be possible to simplify the function 8s/87, to the form that is so
convenient for finding its limit.**

Since our requirement is to find the limit of the function &s/8¢ as 8¢ — 0, we must
understand and respect the distinction between the limit of the function as 5t — 0, and the
value of the function at 8¢ = 0. We have discussed about this distinction at length, in the process
of formulating the 8, & definition of limit in Chapter 7a. The general fact, about speed at an
instant, is expressed as follows:

The speed at an instant is the limit approached by the average speed 8s/5t as 5t approaches
0. In our problem, we applied this fact in computing the speed at the end of the third second, by
considering the average speed over smaller and smaller intervals, just exceeding the third
second.®

To appreciate the full generality of the process of computing instantaneous rates, we must go
a step further. Let us consider the function

y = fx) = 1657

where y [ = f(x)] is the dependent variable and x is an independent variable, representing any
quantity, and let us ask for instantaneous rate of change of y with respect to x, at any value of x
(say at x = xp).

@D Atthis stage, it is important to consider one more situation that could create confusion in computing the actual speed. To
understand it, let us go back to Table 9.1, which gives average speeds of the ball during various intervals. There we observed
that during the period of 1 s before # = 3 (i.e., from t = 2to ¢t = 3), the distance covered by the ball is 80 ft, and during the
subsequent period of 1 s after this instant (i.e., from # = 3to ¢ = 4), the distance covered is 112 ft. It is therefore reasonable
to guess that the velocity at the instant # = 3 must lie between 80 and 112 ft/s. Accordingly, one might take the average of
80 and 112, and conclude that the velocity of the ball is 96 ft/s. Unfortunately, this answer is correct. We say “unfortunately”
because as a rule taking the average does not give the correct velocity. In fact, it hardly gives the correct velocity. It is only
when the law of variable is of the type s = at*> + bt + ¢ will taking the average work. It is easy to understand why this
happens. It may be checked that averaging gives a wrong result for the law, v(r) = (4/3)mr°, as we had discussed earlier in
this chapter.

2 Ror example, it will be found that in the process of computing the instantaneous rate of change for the function y = sin x
(to be discussed later in Chapter 11a), we have to use the result Eilrlo(sin x)/x = 1and similarly for the functiony = a” (in

Chapter 13a), we have to use the result lin{)(a“ —1)/x = log, a.Inboth these cases, there is no way of canceling terms in
X

the numerator and the denominator. Each quotient appears to approach 0/0, which is not defined. However, these limits
exist and are evaluated by different techniques. Therefore, to be able to compute the derivatives of certain functions, it is
important to learn method(s) of evaluating such limits.

@3 Note (4): Now, we propose to treat y = 16x7 to represent any function and try to obtain its (actual) rate of change. It
might appear as if we are repeating the whole thing that we have already discussed, but it is not so. If y is the distance s, x is
time ¢, and x; is 3, then the above relation reduces to the earlier problem.
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TABLE 9.1 Guessing the Actual Speed (of a Freely Falling Ball) From its Average Speed

No of Total Time Actual Actual distance Average
second(s) distance interval period fallen (&s) during speed

the ball fallen in feet during which of fall the actual period during the
falls (s = 167%) the ball falls (81) of fall (87) period (8s/57)
0 0

1 16 Otols 1s (16-0) = 161t 16 ft/s

2 64 1-2s 1s (64-16) = 481t 48 ft/s

3 144 2-3s 1s (144 — 64) = 80ft 80 ft/s

4 256 3-4s Is (256 — 144) = 112t 112 ft/s

From the above relation, we can write the value of “f” at x = x,, and denote it by y;. Thus,
we get

yi = f(x) = 16x, (12)

Now, let us give an arbitrary, nonzero, increment dx to x; and let the corresponding
increment in y; be denoted by éy. Then we have

yi+8y = f(x1+6x)
16(x; +8x)> 2
= 16x2 +32x,6x + 165x2 (13)

Therefore, we get from (13) — (12)
8y = f(x1 +6x) —f(x1) = 32x;8x + 166x° (14)

To get the average rate of change of y with respect to x, in the interval 6x, we divide both
sides of (14) by éx and obtain

Sy _ flxi406x)—f(x1) _ 32x18x + 168x2 (15)
Sx ox N ox

Observe that right-hand side of (15) is a function of §x. Fortunately, in this case, it is possible
to simplify the RHS of equation (15) by dividing both numerator and denominator by 6x,
which is a nonzero common factor in both. Thus, we obtain from (15)

Sy _ f(x1+6x) —f(x1)

S S = 32x; +168x, where 8x # 0 (16)

At this stage the crucial step is to see what happens on the right side of (16) when éx — 0?7 In
this, case the answer is obvious. As 6x — 0 in value, the quantity 166x — 0 and so the limit

2% Here, x is a particular point on the x-axis and (x; + 8x) is another neighboring point, which is obtained by giving an
arbitrary nonzero increment 8x to x;. The increment “6x” given to x; is arbitrary; hence, it is expressed without any
subscript. Similarly, the resulting increment 8y in y, is expressed without subscript.
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of the function (32x; + 166x) is 32x,. Thus, the instantaneous rate of change of y [ = f(x)]
with respect to x, at x = x, is 32x,. We write

lim =% = 32x, (17)

9.5.4 Formula (17) Tells Us Several Valuable Things

(a) The quantity x; was any value of x. Hence, in steps (12)—(17), we obtained the
instantaneous rate of change of y with respect to x, for any value of x. We may
emphasize this fact by dropping the subscript and writing

oy
lim — = 32 18
axIToﬁx x (18)
Notation: If the Slim 8y/dx exists, we use the notation dy/dx to express this limit.
We write A

. Oy dy
1 = = 2 19
ox 08 YT Ay (19)
and call it the derivative of the function y = f(x), and it is true for any value of x at which
it is defined.

Remark: Since dy/dx is a notation for a limit, it must be treated as a single symbol, though its
appearance is that of a quotient.*>

Thus, we have calculated the rate of change of y with respect to x, for an infinite number of
values of x, in one operation. In fact, the relation (19) is a new formula (and we look at it as a
new function of x), which is derived from the given functiony = 16x*. We say that the function
32x is the derivative of the functiony = 16x*. We can link the formula at (19) with that at (11).
As a check on (19), let us note that at x = 3, dy/dx = 32(x) = 32(3) = 96, and this result
agrees with the conclusion derived from equation (11).

(b) The second valuable implication of (18) or (19) is that the result holds regardless of the
physical meaning of y or x. Remember that mathematics treats only pure numbers or pure
special relationships. Hence, we can apply the result to thousands of physical situations in
which the original function, y = 16x°, applies. Moreover, the process that we used to obtain
the result (19) can be applied to any function.

We can calculate the rate of change of one variable with respect to the other at a value of the
second variable, by the same mathematical procedure that we used for calculating instan-
taneous rate of change of y with respect to x when y = 16x> For example, if y represents

9 eibniz used the suggestive but misleading notation dy/dx for the instantaneous rate. It suggests that the instantaneous
rate is obtained by considering an average rate, which is indeed a quotient. On the other hand, this notation is misleading in
the sense that it represents instantaneous rate in the form of a quotient, whereas instantaneous rate is not a quotient but the
limit approached by a quotient. Besides, the symbols dy and dx have not been given independent meaning. They are called
differentials of dependent and independent variables, respectively, and their ratio dy/dx can be interpreted as the derivative
of y w.r.t x. Details are discussed in Chapter 16.
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velocity and x time, we can calculate the rate of change of velocity compared to time at an
instant. This instantaneous rate of change of velocity is called instantaneous acceleration.

As another example, the pressure of the atmosphere varies with height above the surface of
the Earth. Given the formula that relates pressure and height, we can calculate the rate of change
of pressure compared to height at any given height and the rate of change of surface area of a
cube, with respect to the length of its edge.®

Remark: The original calculus problems of speed and acceleration did involve time and were
concerned with rates at an instant of time. Our interest lies in computing the rate of change of the
dependent variable y [ = f(x)] with respect to the independent variable x at any value of x. All
such rates are referred to as instantaneous rates, despite the fact that time may not be one of the
variables involved.

9.5.5

From the above discussion, we note the following:

(i) If y is a function of x denoted by y = h(x), whose graph is a curve, then the slope
of the curve at any point P(x, y) on the curve, is given by the limit
limgy o (A(x+ 8x) — h(x))/8x, provided this limit exists. We denote it by dy/dx.

(ii) Consider a particle “P” moving in a straight line. Suppose the position of the particle at
any instant “t” is expressed by functiony = g(t), then the velocity of the particle at any
instant t is given by the limit limg, o (g(¢+81) — g(t))/8t, provided this limit exists.
We denote it by dy/dz.

(iii) Let the velocity of a particle at any instant z be given by the function v = ¢(%), then the
instantaneous rate of change of velocity at any instant t, is given by the limit
lims,—o (¢(2+8t) — ¢(t))/8t, provided this limit exists. We denote it by dv/dz. It
is called the instantaneous acceleration of the particle.

Thus, if y = f(x)is a given function, which may define a curve, the position of a moving particle
at time Xx, or the velocity of a particle at time x, then the limit 5lim0 (f(x+68x) —f(x))/dx,
x—

if it exists, will define, respectively, the slope of the curve at a poiﬁt, the velocity of the particle
at an instant, or the acceleration of the particle at an instant.

This limit also appears in many other contexts in economics, physics, and chemistry. Since
it has various interpretations, it is treated as an abstract mathematical entity called a
derivative, and its properties are studied in detail.

In view of the above, it is reasonable and natural to give the following useful definition of
the derivative of a function at a point in its domain.

Now, we give the following formal definitions:

e Derivative of a Function:
Let y = f{x) be a given function defined in an open interval (a, b). Let the points x and
(x + &x) both belong to the domain of function f{x), where dx is an arbitrary nonzero
number.

6 At the end of this chapter, we have discussed some interesting applications of the process of finding the derivatives or
rates of change. There, we have computed the rate of change of the area of a circle with respect to radius and the rate of
change of volume of a sphere with respect to its radius.
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From the function f{(x), we form a new function

The limit of this ratio, as 6x — 0, may or may not exist.
It

ox) — 1)
lim M — lim oy (20)
éx—0 ox Sx—0 8x

exists, then we call it the derivative of f with respect to x.
e Derivative of a Function at a Particular Point:

The derivative of a function y = fix) at a particular point x = x, in the domain of f is
given by the limit

Sx) —
lim Sl +8x) —f(x1) (21)
5x—0 ox
if this limit exists. It is denoted by f'(x) or dy/dx.
If we replace (x; 4+ 6x) by x, and accordingly 6x by x — X, then the derivative of f
at x, is given by

Fln) = Tim fx) =f(x1) (22)©7

X=X X — X1
if this limit exists.

In all cases, the number x at whichf' is evaluated is held fixed during the limit operation. Here,
x is the variable and x\is regarded as a constant.

Note (5): Observe that if f’(«) exists, then the letter x in (C) can be replaced by any other letter.
For example, we can write

Note (6): The quotients (f(x;+8x)—f(x1))/6x and (f(x)—f(x1))/(x—x;), both are
called standard difference quotients of the function f, at the number x;. If it is desired to

@7 Derivatives can be regarded as a rate measure. It measures the rate at which a function is changing its value with that of
the variable upon which it depends. Thus, for a function y = x? since (dy/dx) = 2x,whenx = 1,y[= x%] changes its
value at two times the rate at which x is changing. Similarly, when x = 3, y is changing its value six times the rate at which x
is changing.
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compute the derivative of a function at a particular point x = x1, and if f'(x) exists, then it is
more convenient to evaluate the limit

i ) = x1)

X=X X — X1

Consider the following example.

Example (1): Letf(x) = (1/4)x> + 1.Findf’(— 1) andf’(3), and draw the line tangent to the
graph of f at the corresponding points.

Solution: Using (22), we obtain

((1/4)x*+1) = (5/4)

f’(fl):XEnE] x—(-1)
o AR )
x— —1 x+1 x— —1 x+1
o (A= DD
x— —1 X—|—1
. 1
:xkrlzlz(xfl)[‘.'x # —1]
=1
T2

We also obtain

) — gi (/422 41) ~(13/4)
@)= fim, v—3

(/42— (04
] x—=3

= limw = lim%(x+3)

x—3 x—3 x—3

The lines, tangent to the graph at the corresponding points, are shown in Figure 9.10.
Next, we give the following formal definitions.

e The Natural Domain of Derivative: Let a set D be the domain of f(x). The question is
whether D is also the domain of f/(x)? In any case, the domain of f'(x) cannot be wider
than the domain of f(x) because to compute f’'(x) we use f(x). In general, the domain
of f'(x) is a subset of D. It is obtained from D by elimination of those points x for
which f/(x) does not exist. It is called the domain of differentiability of f(x).

o Differentiation: The process of computing the derivative of a function is called
differentiation.
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3

Slope -5

V =

fix) = %xz +1

FIGURE 9.10

e Differentiability of Functions:
(i) Functions differentiable at a point. If a function has a derivative at x; of its
domain, then it is said to be differentiable at x;
(ii) Functions differentiable in an open interval. A function is differentiable in an
open interval (a, b) if it is differentiable at every number in the open interval. 2%
(iii) Functions differentiable in a closed interval. If fix) is defined in a closed
interval [a, b], then the definitions of the derivatives at the end points are
modified so that the point (x + &x) lies in the interval [a, b].

For example, if x = b and dx > 0, then the point (x + 8x), thatis, (b + &x) will not lie in the
interval [a, b]. Similarly, if 5x < 0, then the point (¢ + 6x) will not lie in [a, b]. Hence, we define

the derivative at the end points as follows:

-IM (6x > 0) and

fla) = Jim =
b)—f(b—06
fb) = S,IVITOJW’ (6x>0)

e Differentiable Function: If a function is differentiable at every number in its domain, it is
called a differentiable function.

Note (7): The above definition appears to be quite simple, but certain situations might create
confusion. Hence, to get a clear idea of a differentiable function, it is useful to consider

Examples (2) and (3) as follows:

9 1n this case, at every point of the open interval, the two-sided limit of the difference quotient exists.
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Note (8): It can be proved that the derivative of x* is given by

d(x*)
dx

=ax*"!, (a€R)

However, for our purpose, let us consider (without proof)

dx) _ o
o = (reQ
Example (2): Let f(x) = 3/x, then f'(x) = — (3/x?).

Note that the domain of f is the set of all real numbers except the number 0. Also, f'(x)
exists at every real number except “0”. Thus, f is differentiable at every number in its
domain. Hence, f is a differentiable function.

Example (3): Let g(x) = /X = x'/2, then g'(x) = (1/2)(x)71/2 = (1/2)y/x

Here, the domain of g is [0, + o0), but g’ (x) does notexistat x = 0. Thus, g is not differentiable
at “0”, which is in the domain of g. Therefore, we will say that g is not a differentiable function.

However, if we define the function\/x in the open interval (0, o), then it becomes a
differentiable function.

In view of the above, we agree to say that if the domain of f' is the same as that of
f, then f is a differentiable function.

Nearly every function we will encounter is differentiable at all numbers or all but finitely
many numbers in its domain.

Note (9): The derivative of a function, at a given point (irrespective of its physical meaning)
has the same numerical value.

Note (10): To obtain the derivative of a function, by using the definition of the derivative, is
known as the method of finding the derivative from the first principle.

Notation for Derivative:
We know that differentiation of y = f(x) by the first principle involves two steps: first, the
formation of the difference quotient and second, the evaluation of its limit.
If the limit, 5lim0 (f(x+6x) —f(x))/6x = 6lim0 8y/8x exists, then we denote it by the
X = X —
symbol f'(x) or dy/dx and call it the derivative of the function f(x).

Note (11): We can look at the process of differentiation as an operation. The operation of
obtaining f”(x), from f{x), is called differentiation of f{x). The symbol d/dx is assigned for this
operation. We call it the operator of differentiation.*®

o The Operator of Differentiation d/dx:

29 The “operator of differentiation” is a new term that we have introduced here. This operator may be looked upon as a
machine, which generates a numerical function at the output, in response to a “numerical function at the input”.

Numerical function — [operator] — (new) Numerical function
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In view of the above discussion, we can say that the symbol d/dx stands for the operation
of computing the derivative of a given function by the first principle. In other words, we agree
to say that d/dx constructs from f(x), the difference quotient (f(x-+0x)—f(x))/ dx,
and determines its limit as éx — O (treating the difference quotient as a function of
variable 8x).C9

Note (12): The notation d/dx should be interpreted as a single entity andnot as aratio. (It reads

“d over dx”). In Chapter 10, it will be seen that the symbol d/dx is also used in a formula to stand

for the phrase “the derivative of”. Thus, the symbol d/dx is used to define the derivatives of

combinations of functions.®*V

9.6 DERIVATIVE OF SIMPLE ALGEBRAIC FUNCTIONS
Now, we proceed to evaluate the derivatives of some simple algebraic functions by definition.

e The Derivative of the Power Function: Let us find the derivative of some simple
(algebraic) functions.

We begin with

Example (4): Let y = f(x) = x. Then, we have

. fx+6x) —f(x) . (x+6x)—x
! = ————————————— T —
fix) = 3,13510 Sx s,lrlglo Sx
. 6x
- 5,lxlglog =L

That is, the derivative of flx) = x is a constant equal to 1. We write (d/dx)(x) = 1

(This is obvious since y = x is a function whose graph is a straight line with a constant
slope.)
Example (5): Let y = f(x) = x°, then

Flx+8x)° —x? fim 2 x4 (8x)

! — b —
f(x) = 51-1210 Sx Sx—0 Sx
= lim (2x+68x)
Sx—0
=2x

We write (d/dx)(x%) = 2x.

GOWe can also say that the operator d/dx constructs from f(x) the difference quotient (f(x)—f(a))/(x —a) and
determines its limit as x — « treating it as a function of x.

G For example, df (x)g(x)]/dx = £(x)(dg(x)/dx) + g(x)(df (x) /d).
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Example (6): Lety = fix) = x3, then

F(x) = lim flx+8x) =3

T ex—0 Sx
. X4 3x28x 4 3x(8x)% + (6x)’ — x?
= lim
5x—0 ox

51imoz»x2’+3x5x+(6x)2 (" 6x £ 0)
= 3x?

We write (d/dx)(x*) = 3x%

Observe the general feature of the structure of the derivatives of the power function y = x”"
forn=1,2,3.
Now, we shall prove that

Proof: Let y = f{x) = x"

Sy 0y = f(x+8x) = (x+8x)"

oy :f(x+6x) —f(x)  (x+6x)"—x"

T 6x 6x 6x
We have
d ., . by . (x+8x)—x"
a(x ) = ayﬁlog e Sx
Now,

(x46x)" = X"+"Cix" 1 ox+"Cox" 2 (8x) 2 + -+ + (8x)"
nn—1)

X'+ nx""1 6x+

XTEX) 4 e 4 (x)"

19 —1
. l:nxn71+n(n )

" By S X Rx e (0N)"T [ 8x £ 0]

The expression on the RHS is a sum of n terms; the first term is independent of 5x and the
others tend to zero as 6x — 0. Therefore,

8 -1
LA
8x—00x
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Thus, for every positive integral exponent n, the power function y = x" has the derivative
n x" ' We write

— (") =nx""1 (n EN)(.32)

Note (13): In Chapter 15a, where the method of logarithmic differentiation is discussed,
we shall show that the above formula remains valid for any (real) exponent n. Thus, we
can write

LR = TC(xl/z) _ %x—l/z _ %

Similarly,

a1 :i(xfl/Z): 1o
dx \\/x dx 2xy/x

e Now, Let Us Consider the Derivative of a Constant, y = f(x) = c. Since, the value of the
function does not change, as the independent variable x changes, we have

Flx+8%) = £(x)
fx+6x)—f(x) =0
8y = f(x+6x)—f(x) =0

oy 0
A S
éx  Ox

S
Consequently, 5limoé = 5]im0(0) = 0.
X — X —

Thus, the derivative of a constant is equal to zero. It is reasonable to say that the rate of
change of any constant is zero.

Example (7): Find the derivative of v/3x+7
Solution: Let f(x) = /3x+7

fx+h) = \/3(x+h)+7

V3(x+h)+7—3x+7

' .
x) = lim
GDWe know that d(x?)/dx = 2x, d(x)/dx = 1, d(x~')/dx = —x~2. Note that we have not yet encountered any

function whose derivative is x ~'. This problem is dealt with in Part II of the book.
O3 For writing these results, we have used the formula d(x")/dx = nx"~', neR.



262 THE IDEA OF A DERIVATIVE OF A FUNCTION

By rationalizing the numerator, we get

Pl = lim V3(x+h) 4317 —V3x+7

i V3x+h) +7—3x+T7\/3(x+h) +7+3x+7

h—0 h V3 +h) +7+3x+7

i (33047~ (3x+7)
h=0h(~\/3(x+h)+7+/3x+7)

= lim 3h
h=0h(\/3(x+h)+7+3x+7)

= lim 3
h=0./3(x+h)+7++3x+7

3
V3(x+0)+74+3x+7

Example (8): Find the derivative of 1/4/x.

con: _ _ 1
Solution: Let f(x) = Ve S fx+h) = Mo
Now consider
1 1 VX =Vx+h
SO 1) = e = 2 = Y2

By rationalizing the numerator, we get

VA= VXFhX VXt h
 Vxthyx Jx+Vx+h

flx+h)—f(x)

_x—(x+h) 1
VX hx X+ VX +h

—h
C Vx hyx(VX VX TR
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Now,
f/(x) :}}I‘I)I%)f(x+h})lif( )
= lim —h
=0 X hyE (VX VX )]
_1 .. —
~ A Ym ek
-1
S
-1
2x\/x
i ! d -1 Ans.

=L -
dx | v/x dx 2x\/X

9.7 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

263

To find the derivatives of trigonometric functions by the first principle (i.e., by definition) we

have to use the following standard limits:
. . Sin . . .
1) hrr}) —— = 1 where x is an angle expressed in radians.
X— X
cosx — 1

(i) lirr}) — = 0 [or equivalently x stands for a real variable].
X—

Then, the following results can be proved:

d
o (sinx) =cosx

CosX) = —sinXx
dx
— (tan x) = sec? x
4 (tan )
3 (cotx) = —cosec? x
X

d( ) t
— (sec x) = sec x - tan x
dx

d
— (cosec x) = —cosec x - cot x
dx

(All necessary details about the proof of limits (i) and (ii) are available in Chapter 11.)
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9.8 DERIVATIVES OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

To find the derivatives of exponential and logarithmic functions, by the first principle, we have
to use the following limits:

() lim (14+x)"7" = e.
x—0

X

(i) 1irr})a = log, a, where a > 0.

Then, the following results can be proved:

d

a(a‘*) =alog,a, a>0, (a # 0)
d . !

a(e") =e¢'log,e = e¥

d 1
a(logex) = x>0

d 1
2 -
dx( 024 %) xlog, a’

(x>0,a>0,a #1)

(All necessary details about the proof of limits (i) and (ii) are available in Chapter 13.)

Note (14): So far, we have seen the evaluation of derivative(s) of some simple functions by the
first principle (i.e., by definition). The direct evaluation of the limit

L L H0%) —f(x)as)
S5x—0 ox

is most often connected with lengthy and complicated calculations. But, it turns out that for
basic elementary functions (i.e., basic trigonometric, exponential, and logarithmic functions), it
is possible to derive general formulas expressing their derivatives analytically, as in the case of
the power function y = x”.

Furthermore, the rules for differentiating combinations of functions resulting from arith-
metical operations (i.e., sums, products, and quotients) and the rules for computing derivatives of
composite functions are readily established, in terms of the derivatives of constituent functions.

Accordingly, we can always find analytically the derivative of any combination of finite
number of basic elementary functions, without resorting to the computation of the limit indicated
above. (The rules for differentiating combinations of functions are discussed in Chapter 10).

9.9 DIFFERENTIABILITY AND CONTINUITY

There is an important relationship between differentiability of a function and continuity of that
function, as stated in the following theorem.

Theorem: If a function f is differentiable at x,, then fis continuous at x;.

G4 Evaluation of this limit means applying the operator d/dx to the function f{x).
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Proof: Suppose fis differentiable at x;.
g ]lilno(f(xl +h)—f(x1))/h = f'(x1) exists.

Now, consider

lim [f(x +h) —f(x)] = lim hw

h

hm (h) lim

h—0 h—0
=0f'(x1) =0
=0

~ Jim [f ey ) = £ ()]
. lim f(x; +h) = hmf(xl)
h—0 h—0
It means that fis continuous at x. This theorem tells us that if a function fis given (or proved) to
be differentiable at x = Xy, then it is definitely continuous at x = x;. It also tells us that a
function cannot have a derivative at points of discontinuity.

Remark: From thefact that at some point x = x, the functiony = f(x) is continuous, it does
not follow that it is differentiable at that point. In other words, if a function is continuous at a
point, it is not necessarily differentiable at that point, as must be clear from the following
examples.

Example (9): Letf{x) = Ixl. It is easy to show that this function is continuous at all points, in
particular continuous at O (see Figure 9.11a). We can show that it is not differentiable at 0.
To find the derivative at x = 0, consider the difference quotient:

FO+R) —f(0) _ [o+h[—o] _ ||
h h h
Let us consider the limit of the above difference quotient as 1 — 0.

It h — Ofrom the right, then the limit of this ratio is + 1 and if h — O from the left, then the limit
is — 1. Smce lim |A|/h ;é hm || /b, it follows that the two-sided limit hm |/h does not
—07"

exist. In other words, |x]| is not dzﬁerentlable at 0.

y=Ix|

0
FIGURE 9.11a
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4~
//

0 1 2
FIGURE 9.11b

Example (10): A function f{x) is defined on an interval [0,2] as follows (see Figure 9.11b):

f(x) = x, when0 < x <1
=2x—1,whenl <x <2

~

=
)

Na¥
I

Atx = 1, the function has no derivative, although it is continuous at this point as shown below.
Consider a nonzero variable h. (Note that 1 stands for an increment that can be either positive or
negative, but not zero.) Thus, at x = 0, when /& > 0, we have

LR )R 1] () 1]
h—0 h h—0 h
L (l+2h)—17 . 27/17 . _
= }}%7}1 = 6111210 = 2, [sincef(x) = 2x —1]

Again when /1 <0, we get

i fAER —f() (R =1

im - = 1.
h—0 h—0 h sh—0h

(The definition of a derivative requires that the ratio 8y/6x (as 8x — 0) should approach one and
the same limit regardless of the way in which 6x — 0.)

Since, the above limit depends on the sign of (the increment) /4, it follows that the function
has no derivative at the point x = 1. Geometrically, this is in accordance with the fact that at
x =1, the “curve” does not have a definite tangent line.

Note (15): In Example (9), there is a sharp corner at x = 0 and in Example (10), such a corner
exists at x = 1. At such points, the graph is continuous, but there are possible two tangent lines
with different slopes. In other words,

. Oy . Oy
L el L O

It is easy to show that this function is continuous at x = 1.
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We have fix) = xfor0 < x < 1,and fix) =2x — 1 when 1 < x <2

S f) =1 (23)
Next, Ylﬂir{lﬁf(x) = \»LiHR* x=1 (24)
lim f(x) = lim 2x—1) =2-1 =1 (25)

x—17 x—17
From (24) and (25), we have linll? f(x) = lim f(x)
X— x—1*
Also, we have f(1) = 1 [from (23)]
s dim f(x) = f(1)

x—1
. fis continuous atx = 1.

Example (11): The functiony = /X is not differentiable at 0, though it is continuous for all
values of x.

Let us find out whether this function has a derivative at x = 0.
We have, at x = 0,

. f(x)—£(0)
! — l SN SN
f1(x) = lim—=——
x'3_0
= lim
x—0 X
5 1
- vlin()xz/z

But this limit does not exist. Thus, f is not differentiable at 0. However, f is continuous at
0, because limof(x) = lin10x1/3 =0 = f(0).
X — X —

Note (16): A function f can fail to be differentiable at a number x; for one of the following
reasons:

e Function f is not continuous at x.

o Function fis continuous at x, but the graph of f does not have a (unique) tangent line at
point x = x;. Figure 9.11a and b shows the graph of functions satisfying this condition.
Observe a “sharp turn” (or corner) in these graphs (see Figure 9.11a at x = 0 and
Figure 9.11b at x = 1).

o Function fis continuous at xy, but the graph of f has a vertical tangent line at the point
x = x;. Remember that the slope of a vertical line is not defined. This situation occurs in
Example (11) (see Figure 9.12). In such cases, we say (for generality) that the function has
an infinite derivative, which also means that the function is not differentiable at the point
in question.
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ﬂx) — xl/3

FIGURE 9.12

Note (17): Before giving another example of a function that is continuous but not differentiable
at a point of the domain, it is useful to recall the fact that the values of the trigonometric
functions sin x and cos x lie between — 1 and 1, for all x. Obviously, this is also true for the
functions sin(1/x), x # 0, and cos (1/x), x # 0. In other words, Vliin0 sin(1/x) and xliino cos(1/x)

oscillate between — 1 and 1, which means that these limits do not exist.
Now, we give an example of a function (involving trigonometric functions) that is continuous at
x = 0, but not differentiable.

Example (12): Prove that the function defined as follows is continuous at x = 0, but not
differentiable at x = 0.

1
{xcos if x # 0
= X

ifx =20
= hh_rp 0 — h)cos (O )
= hm cos !
n " h

- lim(fh)cos<%> [+ cos(—0) = cos ]

h—

Solution: 1ir(r)17 flx) = llm xcos(
x—

<=

1
= 0 x a finite quantity | ".- coszlies between — 1 and 1
=0 (i)

. . . 1 .
Similarly, xlirg} flx) = /}T})hcosﬁ =0 (ii)
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Also, f(0) = 0, (given)

269

(iif)

In view of (i), (ii), and (iii), we conclude that f(x) is continuous at x = 0. Now to find the

derivative of f(x), at x = 0, we compute the following limit:

im LX) SO _ oy SOy xoos(1/x)
x—0 x—0 x—0 X x—0 X
1 1 ..
= xhlr})cos? [ x # 0]

But, this limit does not exist.
.. f/(0) does not exist. That is, f{x) is not differentiable at x = 0.

Remark: It can be shown that the function
x? cosl ifx #0
X

fx) =
0 ifx =0

is continuous and differentiable at x = 0, and obviously at all other points.
Consider the limit (of difference quotient)

2 —
— gim © cos(1/x)—0
x—0 x—0

2
- Y cos(1/x)
x—0 X

. 1
= A!{r})xcos;, (o x # 0)

. . 1
= ( lim x lim cos—
x—0 x—0 X

= (0)(a finite quantity) = 0

Thus, the limit of the difference quotient exists at x = 0. This proves that the function g(x) is

differentiable at x = 0, which also tells us that g(x) is continuous at x = 0. (The continuity, at

x = 0, can also be proved independently.) Note that in the definition of this function, the
2 2 . .

component x~ (in x* cos(1/x)) plays an important role. (This also suggests that we can define

any number of such differentiable functions.)
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Example (13): Prove that the greatest integer function y = [x] is not differentiable at x = 1.
Solution: Here, we will show that the function f{x) = [x] is not continuous at x = 1.

Consider lir?if(x) = lim [x]

x—1-

lim 1~ 4], (h>0)

0 (by definition of [x])

Again lim f(x) = lim [x]
x—17 x—17
= hhino[l +h), (h>0)

=1 (by definition of [x])

Thus left-hand limit # Right-hand limit
*. lim [x] does not exist.
x — 1 . . .
= thé function [x] is not continuous at x = 1.
= [x] is not differentiable at x = 1.

Note (18): The greatest integer function y = [x] is a step function.

Recall that [x] = the greatest integer less than or equal to x.

Selected values of y = [x]

Positive values: [3] = 3, [3.1] = 3, but [2.9] =2

The value 0: [0] = 0, but [0.5] =0

Negative values: [-2] = —2,[-18] = —2,but[—-2.1] = —3

Note that if x is negative, [x] may have a larger absolute value than x does.
Furthermore, observe that

[51=5. lim [x] =5, (- [5.01] =5)

x—5"
but liI‘Isl [x] =4, (. [499 =4)
Next, [—4] = —4, lim [ = -4, ([-381] = —4)
but lim [x] = =5, (. [-4.12]= —5)

x—4-

From the above, we observe that the functiony = [x]is right continuous for each integral value
of x. Furthermore, [x] is not differentiable for any integral value of x.

9.10 PHYSICAL MEANING OF DERIVATIVES

We know that
If f(x) = 5x+C, thenf'(x) = 5 (26)

If g(x) = x°, theng(x) = 3x? (27)
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The relation (26) tells us that for function “f”” the (actual) rate of change is 5 (a constant), which
means that for any (small or big) increase (or decrease) in X, the value f(x) must increase (or
decrease) five times the change in x, anywhere in the domain of f{x). In other words, the rate of
change of f{x) (being constant) does not depend on the value of x.

The relation (27) tells that, for the function “g” the (actual) rate of change of g(x) is 3x°,
which depends on x. It means that at x = 1, any small change in x causes nearly 3 times the
change in the value g(x), and at x = 2, any small change in x causes nearly 12 times the change
in the value g(x) (since for x = 2, 3x% = 12).

In other words, the derivative of a function gives an idea about the variation in y-coordinate
of a point on the graph (for a very small variation in the x-coordinate of the point).®>

9.11 SOME INTERESTING OBSERVATIONS ©?
(a) We know that area A of any circle is given by the formula
A(r) = mr? (28)

where r is radius of the circle. Here A is a function of r. Let us find the instantaneous rate
of change of A, with respect to r.

(We may carry out the process as done in steps (12)—(18) for function y = 16x% There is,
however, no need to repeat all the details. The two functions are practically alike, the only
difference being that © occurs in formula (28), whereas the number 16 occurs iny = 16x>.
Of course, 6r in the present case is an increase in the length of the radius (see Figure 9.13) and
0A is the corresponding increase in the area that results due to the increase or in r.)

We get

dA
T 2nr (29)

The result (29) is of interest since it tells us that the rate of change of area of a circle with
respect to radius is the circumference of the circle. This result is intuitively clear, for as the
radius increases, one might say that successive circumferences are added to the area.

or

dA

FIGURE 9.13

G5 We have mentioned about the derivative as a rate measurer in an earlier footnote.
GO The following examples are selected from the book What Calculus Is About by W.W. Sawyer, Random House.
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(b) With the preceding result at hand, one might guess that the rate of change of volume of a
sphere with respect to the radius could be the area of the surface of the sphere. In fact,
this is true.

The volume of a sphere is given by

4 3
v(r) = 3
Here v is a function of r. We get
dv 4
= = I3p?
a 37
= 4qr?

which is the formula for the area of the surface of a sphere.

This can hardly be a coincidence. In fact, it is easy to see why it occurs. Suppose we have
a sphere and we want to make it a little larger. We might spray an even coating of paint all
over its surface, thus giving it an extra skin. It is not at all surprising that the amount by which
the volume has increased during this operation should be closely related to the area of the
surface, on which the skin has been placed (or paint has been sprayed).

In this argument, it is absolutely essential that the coating should be even (i.e., the skin
must have the same thickness everywhere). In effect, we are estimating the increase 6v in the
volume by multiplying the surface area to the thickness &r of the skin. This estimate is
reasonable only if the coating is thin.

(c) The idea that objects grow by forming an extra skin can also be illustrated without using
circles and spheres. Imagine a cube placed in the corner of a room as shown in
Figure 9.14. This cube will grow if someone continually sprays paint onto the exposed
faces of the cube.

This is done in such a way that the points A, B, and C move outward at some constant speed
(say, 1 mm/s). At any time, let the side of the cube be x mm. Its volume will be v = x’. This, we
know, grows at the rate (dv/dr) = 3x2. The picture shows why 3x*should come into focus.
Observe that the exposed surface consists of three squares.

/

/

—
—
-

FIGURE 9.14
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HISTORICAL NOTES

Who invented derivatives?

No one person invented the derivative. Related ideas and methods appear throughout math-
ematical history, spanning at least 2000 years. The modern European development happened
largely in the seventeenth and eighteenth centuries as follows:

Pierre de Fermat (1601-1665, French)

Isaac Newton (1642-1727, English)
Gottfried Leibniz (1646 — 1716, German)
Leonard Euler (1707-1783, Swiss)
Joseph-Louis Lagrange (1736-1813, French)

Isaac Newton and Gottfried Leibniz are generally considered the cofounders of modern
calculus. Building on Euler’s idea of a function, Lagrange may have been first to use the
phrase “derivative function”, and the prime symbol, to denote it.

Because of the difficulties in the very foundation of calculus, conflicts and doubts on the
soundness of the entire subject were prolonged. Among many contemporaries of Newton were
the following:

Michel Rolle (who then contributed a famous theorem) taught that calculus was a
collection of ingenious fallacies.

Colin Maclaurin (after whom another famous theorem was named) decided that he would
give a proper foundation to calculus and published a book on the subject in 1742. The book
was undoubtedly profound but also unintelligible.

One hundred years after Newton and Leibniz, Joseph Louis Lagrange, one of the greatest
mathematicians of all times, still believed that calculus was unsound and gave correct
results only because errors were offsetting each other. He too formulated his own
foundation for calculus, but it was incorrect.

Near the end of eighteenth century, d’ Alembert had to advise students of calculus to keep
on with their study: faith would eventually come to them.

Some of the strongest criticisms came from religious leaders. Of these, the most famous is
the highly original philosopher Bishop George Berkely.

Since the fundamental concept of calculus was not clearly understood and therefore, not
well presented by either Newton or Leibniz, Berkely was able to enter the fray with
justification and conviction.

In “The Analyst” (1734), addressed to an infidel mathematician, he condemned
instantaneous rates of change of functions as “neither finite quantities nor quantities
infinitely small, nor yet nothing”. These rates of change were but “the ghosts of the
departed quantities”.

To account for the fact that calculus gave correct results, Berkely, like Lagrange, argued
that somewhere errors were compensating for each other.

The problem of calculating instantaneous rates, of which speed and acceleration were the most
pressing, attracted almost all the mathematicians of the seventeenth century, and the roster of
those who contributed to the subject and achieved limited success is extensive. Newton and
Leibniz took decisive steps in applying their ideas, which involved both intuition and
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imagination. They had an idea that made physical sense, and, since mathematics and physical
science were closely intertwined, they were not greatly concerned about the lack of mathe-
matical rigor. One might say that in their minds the end justified the means.

e Both Newton and Leibniz had a good “intuitive understanding” of the idea involved.
They applied it in a way we may call today, “the process of computing the limit of a
function”. However, in concluding the result(s), the explanations given by them were
inconsistent and many a time contradictory. The concept of limit, as we know it today, was
not known to either Newton or Leibniz. Since they were not very clear about the idea (of a
limit) they applied, they could not define it. Also, nobody before them defined the concept.
The “merely intuitive quality of the idea” (of a limit) hampered progress in the
development of calculus, for a century, after Newton and Leibniz.

In 1754, the French mathematician d’Alembert (1717-1783) suggested that the logical
basis of calculus would reside in the concept of limit. It was French mathematician
Augustin-Louis Cauchy (1789-1857), who gave the definition of limit that removed
doubts as to the soundness of the subject and made it free from all the confusion. With the
availability of systematic and refined material on the concept of limit, the reader today,
can easily grasp the concept. However, if the reader still finds some difficulty in grasping
it, he may be less discouraged when it is told that the concept of limit eluded even Newton
and Leibniz.

The history of controversy surrounding calculus is most illuminating. The soundness of
calculus was doubted by the greatest mathematicians of the eighteenth century (as mentioned
above), yetit was not only applied freely but some of the greatest developments in mathematics-
differential equations, the calculus of variation, differential geometry, potential theory- and a
host of other subjects comprising what is now called analysis were developed and explored by
means of calculus.

Calculus might have been lost to us forever had the mathematicians of that age been too
concerned with rigor. We know now that even in mathematics, intuition and physical
thinking produce big ideas and that logical perfection must come afterward. We also see
more clearly today that the pursuit of absolute rigor in mathematics is an unending
endeavor, calling for patience. The understanding and mastery of nature must be sought,
with the best tools available.

(Most of these notes are taken from Mathematics and the Physical World, by Morris Kline,
and Calculus with Analytic Geometry (Alternate Edition), by Robert Ellis and Denny Gulick,
HBJ Publishers.)



10 Algebra of Derivatives:
Rules for Computing Derivatives
of Various Combinations
of Differentiable Functions

10.1 INTRODUCTION

In Chapter 7a and b, we have studied the concept of limit of a function and used the notion (of
limit) as a tool to define the derivative of a function. We know that while the notion of limit is a
general notion for functions, the derivative of a function f(x) is defined by the limit

o S ) —f ()
h—0 h

If this limit exists, we denote it by f’(x) and call it the derivative of f. In other words, the
derivative of a function is a limit of a particular kind."

Since there are limit rules for sums, differences, products, and quotients of functions, it is
natural to ask whether there are corresponding rules for derivatives. Of course, there are rules
for computing the derivatives of such combinations of functions, but some of these rules (or
formulas) are quite different from their counterparts for limits. Also, there are rules
governing the derivative(s) of composite functions and those of inverse functions. All these
rules constitute the algebra of derivatives. We will also see how these rules are used in
applications and in the further development of calculus itself.

The necessity of such rules can be shown by means of the following example. Suppose we
have to find the derivative of the function defined by

flx) = x> —4x* +7x +8

This is a simple combination of algebraic functions, but still a complicated formula defining a
function. To find its derivative by applying the definition (i.e., by forming its difference quotient

10-Algebra of derivatives (Derivatives of combinations of functions)

@ It must be clear that the difference quotient limy, _ o f (x -+ &) — f(x)/h is constructed from the given function f(x) and
looked upon as a new function of “/2”. If the limit of this difference quotient as # — 0 exists, only then is f(x) said to be a
differentiable function, the limit being denoted by f’(x).

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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and evaluating its limit) will be naturally time consuming and tedious. But, if we know how to
find the derivative of a combination of functions from the derivatives of the individual
functions, then obtaining the derivative f'(x) would be much simpler.

For example, if f(x) and g(x) are differentiable functions of x, then the following results can
be proved:

D) = kL), (ke R) m
10800 = 70 800) + 80) 1) @)

These relations define the rules (or formulas) expressing the derivative(s) of certain
combinations of functions in terms of the derivatives of individual functions. The functions
f(x), g(x), h(x), and so on may be basic elementary functions (like x", sin x, ¥, log, x, etc.) or
their (simple) combinations (like k sin x, cos x?, &>, log.(x + 5), etc.) that are called
elementary functions. We distinguish between the terms: basic elementary functions and
the elementary functions.

10.1.1 Definition (A)

Basic elementary functions are the following analytically represented functions:
(i) Power Function: y = x*, a €R, x > 0®
(ii) General Exponential Function: y = a*, (a>0,a#1, x€R)

(iii) Logarithmic Function: y = log,x, (a>0, a# 1, x> 0)
(iv) Trigonometric Functions: y = sin x, y = c0S X, y = tan X,

y = cot X,y = Ssec X, y = COSeC X.

(v) Inverse Trigonometric Functions: y = sin”' x, y = cos™ ' x, y = tan~' x,

y = cot’lx7 y = sec’]x, y = cosec” L.

Observe that certain basic elementary functions are combinations of other basic elementary
functions, for example, tan x = sin x/cos x.

10.1.2 Definition (B)

An elementary function is a function that may be represented by a single formula of the type
y =/

where the expression on the right-hand side is made up of basic elementary functions and
constants, by means of a finite number of operations of addition, subtraction, multiplication,
division, and taking the function of a function.

@ If gis irrational, this function is evaluated by taking logarithms and antilogarithms. Thus, we can write log y = « log x,
which is defined for x > 0.
) For more details, see Differential and Integral Calculus by N. Piskunov (vol. I, pp. 20-24), Mir Publishers, Moscow.
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Examples of elementary functions:

y=|x| = Va2, y = V1 4 dsin’x

_ logx+42tanx 4 4y/x
YT T X110

10.1.3 An Example of a Nonelementary Function

The function y = 1.2.3.4.5...n [y = n! = f(n)] is not elementary because the number of
operations that must be performed to obtain y increases with n. In other words, the number
of operations is not bounded.

10.2 RECALLING THE OPERATOR OF DIFFERENTIATION

We introduced the symbol d/dx in Chapter 9 and named it the operator of differentiation.
Recall that when it is applied to a differentiable function y = f(x), it carries out the entire
operation of computing the derivative of f(x), in the following two steps:

(a) From the function f(x), it constructs a new function (called the difference quotient)
o FOe ) = £ ()
h—0 h

3)

where & is a nonzero variable number, and
(b) Treating the difference quotient as a function of the variable /, it determines the limit

fx+h) —f(x)

lim - 4)

h—0

If this limit exists, we call it the derivative of the function y = f(x), and denote it by the symbol
(dy/dx)[or (d/dx)(y)]or f'(x) or y".

10.2.1 Operator of Differentiation

Here a very important question arises.

Why should we introduce the operator of differentiation d/dx,if df/dx represents nothing
else but the limit transition operation described at (4)?

To answer this, note that the operator d/dx stands for the entire process of computing
the derivative of a function. (This includes the method(s) required for evaluating the limit of
the difference quotient.) Accordingly, for certain functions (which are complicated combi-
nations of functions), the process of differentiation by applying the operator will be obviously
quite tedious.

Now, suppose it is proved separately that for a given function f(x), lim W =f(x)
exists, then we can always write (the notation) h=0

d

/=1 (5)
without evaluating the limit of the difference quotient of f(x). Thus, we can use the symbol
d/dx in two useful ways.
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First, as an operator, when it defines the entire process of computing the derivative of a given
function, and second, it can be used to stand for the phrase, the derivative of f{x) as indicated
at (5) above.

(Note that in the formulas at (1) and (2) above, we have used the result (5), in expressing
the derivatives of certain combinations of functions without forming the difference quotient
of the given functions and evaluating their limits.)

To continue the discussion smoothly, we give below one more formula that expresses the
derivative of the ratio of differentiable functions:

Let f(x) and g(x) be differentiable functions. Then the derivative of the ratio

u(x) = f(x)/g(x) is given by

iG] @I SO e

d/dx[u(x)] = d/dx {g(x) FEk

If the derivatives of f(x) and g(x) are known, then we can easily write down the derivative of
the quotient u(x) = f(x)/g(x) using the formula (6), avoiding the direct use of limits.
(Note that, here, the symbol d/dx does not demand the formation of difference quotient and
evaluation of its limit since it does not act as an operator of differentiation.) This simplifies the
procedure for evaluating the derivative of the given combination of functions.

But to use such rules, we must know the derivatives of the basic elementary functions,
appearing in the formulas. 1t is therefore necessary to compute the derivatives of basic
elementary functions by some method and prepare a table for using them in the formulas to be
established.

One way is to obtain the derivatives of basic elementary functions by the first principle. It is
a good exercise but time consuming. There is a simpler way. We can obtain the derivatives of
some selected basic elementary functions by the first principle and then by using these
derivatives in the formulas, we can obtain the derivatives of other basic elementary functions,
by using properties of the functions, as will be clear from the following example.

Example (1): We know that d/dx (sin x) = cos x. Now, by using the relation cos x =
sin((n/2) — x) and the chain rule for differentiation (to be studied shortly), we can
compute(d/dx)(cos x). Furthermore, we know that tan x = sin x/cos x, (cos x # 0). Hence,
by applying the formula (6), we can obtain the derivative of tan x, using the derivatives of sin x
and cos x.©

10.2.2 Rules of Differentiation of Functions

The above discussion suggests that our first step should be to establish the rules for differentia-
tion of functions. For this purpose, first, we find the result of applying the operator d/dx to
certain combinations of differentiable functions, namely, sums, products, and ratios. (It turns
out that the rules for differentiating such combinations of functions are easily established in
terms of the derivatives of the constituent functions.).

* The proof of this formula is discussed later under Rule (4).

) This gives an idea about the applications of the rules of differentiation. Later on, in the process of computing derivatives
of implicit functions and parametric functions, it will be noted how the rules of differentiation contribute to the further
development of calculus.
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Second, we find out the result of applying the operator d/dx to some selected basic
elementary functions, namely, functions like y = x", y = sinx, y = a*, y = log, x. It is
found that the derivatives of these functions are easily computed by applying the operator d/dx
and using the properties of the functions. It will be seen that using the formulas (or rules) for
differentiation and the derivatives of these functions, we can obtain the derivatives of many
other basic elementary functions. (We can then prepare a table of these basic elementary
functions with their derivatives.)

After these two steps are completed, we may practically forget about the relations of the
type (4). In order to differentiate a function, it is sufficient to express the given function (via
basic elementary functions) and apply the rules of differentiation. Using the differentiation
rules and the table of derivatives for the basic elementary functions, we are in a position to
forget about the relations of the type (4) and compute the derivatives of elementary functions
using the language of the relations of type (5).

10.2.3 Formal Differentiation

By using the rules of differentiation, we can compute the derivatives (of functions) without
applying the operator d/dx (i.e., without applying the definition of derivatives). Hence, this
method of obtaining derivative(s) is called formal differentiation. Note that, in obtaining the
derivatives of functions by applying the formal rules of differentiation, the definition of
derivatives is indirectly used.®

In a formal course of differential calculus, the approach could be to skip the relations of the
type (4). These rules allow us to compute the derivatives of most complicated combinations of
functions, almost instantly, avoiding evaluation of limit(s). For the time being, we shall accept
the following standard results. These results are established later, in different chapters, as
indicated below:

10.2.4 Derivatives of Some Basic Elementary Function

d, . . d o ony _ o one %)

1. P (¢) = 0, (c being constant) 2. e (x") = nx""", (neN)
d . d .

3. a(smx) = CcOS X 4. a(cosx) = —sinx

5 i(tan x) = sec’x 6 i(cot x) = —cosec’x

" dx N " dx N

7. a(sec X) = secx-tanx 8. E(cosec X) = —cosec X - cot X
d X\ X d x x

9. dx(e)—e 10. a(a)—a -log,a, (a>0)
d 1 d 1

11. —(1 = - 0 12. —(1 =— 0 0
$logx) = - (x>0) Flos) = S (@>0.5>0)

(© If differential calculus were formulated in terms of limits, using relations of type (4), all books on calculus would have
been increased in their volume several folds and become unreadable. The use of the relations of type (5), instead of (4),
makes it possible to avoid this.

) This rule is true for any real n, as will be clear later on.
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Of these results, those at (1) and (2) are already proved in Chapter 9.

o Derivatives of trigonometric functions are established in Chapter 11.

¢ Derivatives of exponential and logarithmic functions are established in Chapter 13.

Having accepted the standard results stated in Section 10.2.4, our next step is to establish the
rules for differentiation.

Our approach will be to state the differentiation rules and discuss their application(s). Also,
we will prove some of these rules, preferably those that demand special care in proof{s), leaving
the rest as exercises. It is assumed that each function under consideration is a differentiable
function of a real variable.

Rule (1): Derivative of a sum (or difference) of functions
Let f; and f> be differentiable functions of x, with the same domain, and let

f(x) = filx) +£2(x)
then

d

d d
T = SA0) + ()

This rule tells us that the derivative of a sum (or difference) of functions is the sum (or
difference) of their derivatives. (This rule is similar to the corresponding rule for limit of a sum
(or difference) of functions.)

Note (1): This rule can be extended to the derivative of the sum (or difference) of any finite
number of differentiable functions, with the same domain. Thus, if

f(x) = H(x0) £h(x) £ .. £fulx)

then

fx) = fi) £h(x) £ - ££(x)

Example (2):

. d—(sinxfcosx) = cos x + sinx
X

d
. d—(x3+7x75) =3x* 47
X

1
e (a* — tan x + log, x) = a*log,a — sec’x + -

. d—(xs—i—ex—secx) = 5x* +e¥ —secx-tanx
X
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Rule (2): The Constant Rule for Derivatives
If k is any constant, f is any differentiable function, and g(x) = k - f(x), then

d d d
To8) = k()] = k)

Example (3):

d . . d
. %(5 sinx) = Sd

sinx) = 5cosx
 (sinx)

. %(7}3) = 7{%()63)} = 7(3x%) = 21x*

281

Note (2): This rule reminds us of the formula for the limit of a function multiplied by a constant.
Besides, the difference rule for derivatives is obtained by combining the addition rule and the

constant multiple rule for derivatives.

Remark: The constant rule can be interpreted geometrically. The graph of k - f(x) is obtained

by stretching the graph of “f "vertically, with factor k.

How does such a stretch affect a tangent line to the graph of “f” at x = a?

The constant rule says that a vertical k stretch multiplies slopes of every thing — both the
graph and the tangent line — by the same factor k. For example, the slope of the line y = 3x is
three times that for y = x. Similarly, the slope at each point of y = 5x* is five times that for

y = x%

Note (3): By combining rule(2), with rule(1), we can write
dx
Rule (3): The derivative of product of two functions
Let fi(x) and f>(x) be differentiable functions of x and let
f(x) = filx) fa(x)

Then

910 = LUR@A] = 109 = T A00] + A0 L 1)

Proof: We have

f(x) = filx) f2(x)
fx+h) = filx +h)fa(x+h)

® To remember this formula, we can read it as follows:

d x d(Second functi d(First functi
W = First function - WJr Second function - w

d 2
7 (5 sinx — 7e* +2log, x +2x°> — 8x% +3) = 500sx—7ex+;+6x2— 16x
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By the definition of derivative (i.e., by applying the operator d/dx), we have

% () )] = tim AEEALEEH ZAR)AX)

h—0 h

lim fHx+h)fa(x+h) = filx+h)o(x) +H(x+ 1) H(x) = fi(x) f(x)

h—0 h

— lim A+ {Ax+h) —H))+AE{filx+h) - fAi(x)}
h—0 h

— im fi(x + M {f(x+h) —fHi(x)} n LA +h) - filx)}
h—0 h h

= 110 RG]+ ) ()]
LLAMAC] = A0 A0+ 50 57

Note (4): This rule can also be proved, without using the trick of adding the number O (i.e., adding
f1(x)f2(x) and subtracting the same). Another convenient notation for stating this rule is
d dv

d
[uv] = L + vd—u7 where u and v are differentiable functions of x.
X x

dx

Note (5): This rule can be extended to the product of more than two functions (and in general
for a product of finite number of differentiable functions).

Thus,
d d d d
%[uvw] = %[(uv)w] = uv%—i—w S;v)
= uvd—w—l— w Q—i— du
T LT
= uv—+ vw%Jr wuﬂ
d dx d

Example (4):

d,, ,d d,,
5(x log,x) = x E(IO&,X) +logux5(x )

= x? + log, x*x
xlog, a
X
= + 2x log,x Ans.
log, a

Remark (1): We have seen that the derivative of a sum (or difference) of functions is a sum (or
difference) of their derivatives. By analogy, it is tempting to assume that the derivative of a
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product of functions is the product of their derivatives. But this is not correct as can be seen from
the example £ (x2)

(The correct formula as discussed under Rule (3) was discovered by Leibniz. Hence, it is
often called the Leibniz rule.)

Remark (2): If k is a constant and f(x) is a differentiable function of x, then
d/dx[kf(x)] = kf(x). This we have stated as rule (2). It can also be proved by applying
the definition of derivative (i.e., by the first principle). It can also be proved by applying
Rule (3) as follows:

)+

Proof: kf(x)] =k v
d

= ko f () +£(x)0

4
dx

Example (5): Find the slope of the graph of /1(x) = (7x> — 5x +2)(2x* + x + 7),atx = 1.

Solution: Let f(x) = 7x* —5x+2 and g(x) = 2x* +x+7

Then,
h(x)

S (x)

f(x)g(x)
F(x)g'(x) + g(x)f'(x) ()
= (7x* =5x+2)(8x* + 1) + (2x* + x + 7)(21x2 = 5)

Now, by evaluating 4’'(x) at x = 1, we get the slope of the graph of /(x) at that point. We have

H(l)=0T-5+2)8+1)+2+1+7)(21-5)
=4(9)+10(16) = 36+ 160 = 196
Another approach could be that we expand the right side of (7) and differentiate the resulting

polynomial. Besides, note that in this example /(x) is a polynomial, whereas we will be applying
the product rule to many functions other than polynomials.

Example (6): Differentiate (x> + 5x2)sin x.

Solution: Let y = (x* 4 5x?) sin x

d
ﬁ = (x* 4+ 5x%)cos x + sin x(3x? + 10x)

= (x* +5x%)cos x + (3x? + 10x)sinx  Ans.

© Note that dx?/dx = d(x-x)/dx. If the above assumption were true, we would conclude that dx?/dx =
(dx/dx) - (dx/dx) = 1 x 1 = 1, which is not correct.
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Example (7): Differentiate 3* logs x

Lety = 3" logs x

d d
_ x4 Y (ax
= 370 (logs %) + (logs ) - (3")

1
=3 1 3*1og,3
Ylog.5 (logs x)3" log,

X

+ log,3 - 3%(logs x)

:xlog 5

e

1
=3 + 3*log,3(logs x) Ans.

xlog,5
Exercise Answer
(1) Differentiate x log,x 1 + log. x
@) If y = (x* + 2x) 3", find dy/dx at x = 2 18(log 3* + 3)
(3) If y = 6xtanx, find dy/dx at x = 0 0

The rules defining the derivatives of product(s) and quotient(s) of functions are not as straight-
forward as those of sums and constant multiples. Just as the derivative of the product of two
functions is not the product of their derivative, the derivative of the quotient of two functions is
not the quotient of their derivatives, as you see in the next rule.

Rule (4): The derivative of quotient of two functions
Let f; and f, be differentiable functions of x and let

_filx)
) ~ h(x)
Then,
d [fl (X)} _ L@ )] - A @A)
dx | fo(x) ()
roof: e have f(x) = fix)
Proof: We h f(x) )
o flx+h) = ;%g j: Z;
A [100] _ g G (e 1) (/G50
dx | fr(x) h—0 h
_ AN AE) —filx) A+ h)
h—0 hfz (X + h)fz (X)

As we did in the proof of the product rule, we perform another clever manipulation.
Again, we add the number 0 in the numerator, but this time the expression (that we add) is

[=fi)f2(x) + fi(x)f2(x)].
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i{fl(x)} _ i AT L) =)L) /() f(x) = fi(x) fo(x + 5)
h—0

dx | A(x) hf>(x + h) f2(x)
_ limfz(X)[(fl (x+h) —fi(x)/h] = A [(H(x +h) —fH(x))/h]
h—0 f(x+h)f(x)

Now, taking the limit, we 2 get

4 TAW] _ LE@HE] -AO@EO]
dx{fz(X)} - H)P » Whete f{x) # 0

This formula can be remembered as follows.

The derivative of the quotient of two functions:

_ Dr(%)Nr—i\Ir(%)Dr7 Dr £ 0
(Dr]

where, Nr = Numerator and Dr = Denominator.

Another convenient notation used to state this rule is given below.
If u and v are differentiable functions of x, then
d u v(%) — u(%)
—|-| = ———"=, wherev 0
dx [v] v2 ’ 7
Note (6): The formula for the derivative of a quotient becomes more concise when the
numerator # = 1, for all x. In this case, the formula is

v y2 v2 dx

41 O e
dx

Example (8): Show that (d/dx)tan x = sec’x.

Solution: We have, tan x = sin x/cos x.

cos x(&)sin x — sin x(<)cos x
—tanx = : :
dx cos2x

~ €OS X -C0s X — sin x(—sin x)

cos2x

cos?x + sin’x

cos2x

1
=—-= sec’x
COs“X
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Similarly,

—cCcotx = —COSECZX

dx

Example (9): Show that (d/dx) sec x = sec x - tan x.

Solution d sec d !
:o—secx = —
dx dx \cos x
_cos x(4) (1) = 1(L)(cos x)
= 2
(cos x)
~ 0—(-sinx) 1 sinx
(cos x)*  COSXCOS X
= sec x-tan x
Similarly,
d (cosec x) = —cosec x - cot x
dx n

Rule (5): The power rule of differentiation for negative powers
(As an application of Rule (4))

Show that (d/dx)(x™") = —nx """, for any positive integer n.

Proof: Since - is a negative integer, it means that  is a positive integer.
We, therefore, express f(x) as a quotient and apply the quotient rule.
We have

flx)=x"=—
X
(xM0 —1-n(x"1
) =S
— _};l;:il — 7nxn7172n
= —px "1

In particular,

d (1 ,i -1y _ _ 72f;1 i —13y _ —14
w(3) ==t = e e =i

Note (7): The function x> appears in Newton’s law of gravitation and in the formula for the
electric force between charges. In addition, x~* appears in the formula for the flow of blood
through arteries. Thus, functions of the form x ", where 7 is positive, arise in the real world.'?

9 Caleulus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick (p. 128), HBJ Publication.
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Remark: We have

—-ny _ _ —n—1
P (x™) = —nx
and %(x”) = nx""!

d
d—(x”x’") = X"(—nx"71) + x7"(nx"h)
x
= —nx! +nx7!
= (—n+n)x7!
= 0x!
If we assume that 0 x~' = 0, then we can write

d n—nid n—niiOf -1 _
a(xx )7dx(x )7dx(x)70x =0

which means that the result

(xn) = nx""! holds even when n = 0

287

dx
d
In particular, if n = 1, thend—(xl) =Ixt=x" =1
x
Thus, we conclude that if n is any integer (positive, zero, or negative), then the power rule
holds.
Remark: Note that, there is no power functiony = x", which can give dy/dx = x~! = 1/x.

Later on, we will discover a new function, namely, the logarithmic function to the base e
(denoted by y = log, x, (x>0)] that gives dy/dx = d(y)/dx = d(log, x)/dx = 1/x =
x~!. (This is discussed in Chapter 13 of Differential Calculus and Chapter 6b of Integral

Calculus.)
Example (10): Ify — /02X 0d dy/d
xample t Iy = \/Toamay find dy/dx.

Solution: Consider 1 — sin 2x

= sin’x 4 cos®x — 2 sin x cos X

= (sin x — cos x)*

1 —sin2x sin X — cos x
y = T = —
1+ sin2x sin x + cos x

We have

d . .
d—(smx—cosx) = cos X + sin x
x
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and

d . .
— (sin x + cos x) = cos x — sinx

dx
dy  Dr(4)Nr—Nr(£)Dr

dx

= , Dr#0
dx [Dr]2 7

(sin x + cos x)(cos x + sin x) — (sin x — cos x)(cos x — sin x)

(sin x + cos x)°

(sin x 4 cos x)* + (sin x — cos x)°

(sin x + cos x)*

(I 4+ 2sinxcosx) + (1 — 2 sin x cos x)

(sin x + cos x)*

dy 2 2

dX_ (Sin X -+ cos x)2 (1 -+ sin 2x)

Example (11): If y = (tanx + sec x)/(tan x — sec x), find dy/dx.

Solution: Consider

sin x 1 sin x + 1
tan x + sec x = + =
COSX COSX CoS X
Similarly
sinx — 1
tanx —secx = ————
Cos X
sinx + 1
sinx — 1

d
Furthermore, o (sinx+1) = cosx
x

d
and$(sinx— 1) = cosx

dy d [sinx+1
dx ~ dx

sinx — 1

. d . . d .
(sinx — 1)£(smx+l) - (smx—Q—l)%(smx— 1)

(sinx —1)*
_ (sinx — I)cos x — (sinx + 1)cos x
a (sinx — 1)*
_ —COSX —COS X
(sinx — 1)*
dy  —2cosx

dx  (sinx—1)?

D Note (8): If we express the given function as y = (cos x — sinx)/(cos x + sin x), then we will get dy/dx =
—2/(1 + sin 2x).
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Example (12): Differentiate with respect to x, the function, y = log, a

Solution: We have log,a = log.a-log,e

Where k (constant) = log.a

Thus, we have

y:

d
dx

dy

9

VaT)

Example (13): If y — ((gli

Va-T)

Solution: Consider

" log,x

__log,a k

log, x

k
log, x

_log, x(0) — k

(1/x)
(log, x)°
—k

~ x(log, x)°

—log, a

- Ans.
x(log, x)

find dy/dx.

Vi+Tl+vVx—1

Vi+1l+vVx—1

T xtil—Vao1

Vx+1+vVx—1

x+D)+x-1)+2vVx+1vVx—1 2x—|—2\/x2 7x+\/xZ—

(x+1)—

Q - 1 dy
dx 2\/x2

(Vat+vx)
(Va—vx)?

Example (14): Ify =

Solution: —(f+f) =04—— !

and

N
d
S (Va-vA) = -

(x—1) 2

X Ans.

,find dy/dx.

1

2Vx

1
2V
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Now,
dy  (Va—vx)(1/2Vx) = (Va+ VX)(=1/2V%)
dx (Va— %)’
_ (Va/2vx) - (1/2) + (Va/2yx) + (1/2) _ Va/Vx
(Va—vx)? (Va—vx)?
L L Ans.

Uy R(Va- V)

Exercise (1):

Find the derivative of
the following functions

with respect to x: Answers
1 e e¥(sinx — cos x)
©osinx sin? x
X X
2. a—n a—n (10gea - ﬁ)
X X X
3, Yeosx (—x sin x + cos) log x — cos x
4 log, x cos x + x log, x sin x
© cosx X cos? x
5 e¥+e " 4
* e¥ — X (ex _ e—r)z
14+ x 1 or 1
6\ (1—x)V1-2 (1—x)"(1+x)
, Vatx—ya-x @ —avar —x?
va+x++a+x [N

a
8. log,/a+x 2 —x2
a—x
x+ab ab
9. log ~—ab 2 _a2b?

1 —log,10

log;g x x(log, x)*

10.3 THE DERIVATIVE OF A COMPOSITE FUNCTION

We have already introduced the concept of composite functions in Chapter 6. Many of the
functions we encounter in mathematics and in applications are composite functions. Consider
the following examples:

o . . . 3 . .
(i) sin x> is a function of x°, and x* is a function of x.

(i) log. x* is a function of x*, and x* is a function of x.
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cos 2x

(iii) e is a function of cos 2x, cos 2x is a function of 2x, and 2x is a function of x.
(iv) log(tan (x/2)) is a function of tan (x/2), tan (x/2) is a function of x/2, and x/2 is a
function of x.

Thus, sin x°, log.x*, e 2*, log(tan (x/2)), and so on are examples of composite functions of x.

If we could discover a general rule for the derivative of a composite function in terms of
the component functions, then we would be able to find its derivative without resorting to the
definition of the derivative.

To find the derivative of a composite function, we apply the chain rule, which is one of the
important computational theorems in calculus. It assumes a very suggestive form in the Leibniz
notation and can be stated as follows:

If y is a function of u, defined by y = f(u) and dy/du exists, and if u is a function of x, defined
by u = g(x) and du/dx exists, then y is a function of x and dy/dx exists, and is given by

i ®
Note (9): The resemblance between (8) and an algebraic identity makes it easy to remember
this rule. Here, it is important to note that in the product of derivatives on RHS, there are two
separate operators of differentiation, namely, d/du and d/dx. Hence, dy/dx is not obtained
by canceling du from the numerator and the denominator.'?

Note (10): The proof of the chain rule for all differentiable functions is sophisticated and
appears in advanced texts. A simplified proof (pertaining to functions satisfying an additional
hypothesis) is given below.

Rule (5): The Chain Rule
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable functions of x, such
that the composite function y = f(g(x)) is defined then

dy dy du

o dudx ©)

Proof: It is given that y is a differentiable function of u and u is a differentiable function of x
such that f(g(x)) is defined. Thus, y is a function of x.

As x changes to (x + 6x), let u change to (¢ 4+ éu) and in turn y to (y + &y).

. Asdx—0, 6u—0

(2) When we introduced the Leibniz notation dy/dx, we emphasized that it should be treated as a single symbol. We did not
give independent meanings to dy and dx. We should, therefore, consider the statement (9) as an equation involving formal
differentiation. Later on, we will see the separate meanings attached to dy and dx (in Chapter 16), so that the meaning of
dy/dx is retained.
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Now, consider the algebraic identity

oy Oy ou
5% = 3u 5x (where du # 0, 6x # 0)

Taking limit as 6x — 0
. &y oy éu
m 0dx S0, (% g)

. Oy . du
N (3}}9 0674) (a.lxlg 0 ﬁ)

[*.yis a differentiable function of ]

Now,
o _dy
ou—08u  du’

and
. du
im — = —
sx—00x  dx’

.. RHS of (10) exists.

[ uis a differentiable function of x|

. LHS of (10) exists, that is, slimo 8y/8x, which is equal to dy/dx.

dy dy du
—=—— P d
“Tdx du dx rove

Rule (5.1): Extension of Chain Rule (i.e. The Compound Chain Rule)
In general, if y = (), t = g(u), and u = h(x), where dy/dt, dz/du, and du/dx exist, then y is a
function of x and dy/dx exists, given by

dy dy dr du

dx ~ dr du dx

Thus, the derivative of y is obtained in a chain-like fashion. In practice, it is convenient to
identify the functions ¢, ©, and so on at different stages of differentiation, as indicated in the
solved examples.

Remark: In formula (R), y is represented in two different ways:once as a function of x and
once as a function of u. The expression dy/dx is the derivative of y, when y is regarded as a
function of x.

In the same way, dy/du is the derivative of y, when y is regarded as a function of w1

Formula (9) is especially useful when y is not given explicitly in terms of x, but is given in terms
of an intermediate variable (see solved examples on related rates.)

Example (15): If y = log(log (sin x)), find dy/dx.

U3 1t can be shown that dy/dx and dy/du may be different. For example, consider a simple function. Suppose y = 1>
and u = (1/x). Then y = (1/x)* = 1/x* = x 2, so that dy/dx = —2/x% whereasdy/du = 2u = 2/x. Thus,
dy/dx # dy/du.
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Solution: We have y = log(log (sin x)), differentiating w. r. to x, we get

dy d .
i alog(log(sm X))

= %log t, [wheret = log(sin x)]

d e 8t [ 4y _dvde
T dr ©dx Cdx dr dx

= malog(sm x), [putting the value of ¢|

= malog u, [whereu = sin x|
d du
B log(sin x) du (log )
1 1d .
- log(sin x) u dx Sy
R
" log(sin x) sin x

COS X

o dy  cotx

= — Ans.
" dx log(sinx) ns

Example (16): If y = /secy/x, find dy/dx.

Solution: We have

y = y/secy/x
(%yc = di;c secy/x = di;tl/z, [where secy/x = 1]
:itl/zﬂ {Qzﬂg}
dr dx’ dx dr dx
1 d
= 27 Lseevx
1 d
= m Esec u, [whereu = \/ﬂ
1 d du
= m L
= ;secutanuixl/z
2+/secy/x dx

1 1
= ——secy/xtany/x——=
2+/secy/x 2y/x
secy/X tany/x

= Ans.

B 44/x\/secy/x
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Example (17): If y = log,/40™) find dy/dx.

(I—sin mx)”

1 — sinmx
1 1 + sin mx

y=zlog| ————
2 1 — sin mx

1
=3 [log(1 + sinmx) — log(1 — sin mx)]

14 si 1/2
Solution: Given, y = 10g( =+ sin mx)

dy 1[d d 4
é =3 _%log(l + sinmx) — alog(l — sin mx)}
_ ! -ilo t ilo u| {wheret =1+ sinmx, andu = 1 —sinmx}x
2 |dx g dx g N ’ B
_! _glo lgfglo ud—u
BN T I P
1[1d 1d
=5 ;a(l + sin mx) —;a(l - sinmx)}
1 [mcosmx  mcosmx
== —— —
2 |1+sinmx 1 —sinmx
1 {1 —sinmx + 1 + sin mx}
= —mCcos mx —
2 1 — sin” mx
_1[2mcosmx] = m
" 2| cos?mx | cosmx
= msec mx Ans.

Simpler method for Example (17) and other similar problems:

1 1+ si 1
Giveny = Elog (11_2%) =3 [log(1 + sin mx) — log(1 + sin mx)]
d 17d d
é =5 {Elog (1 4 sinmx) — Elog (1 + sin mx)
Consider d log (1 + sin mx)
dx 8
1 m COS mx
= ———(mcosmx) = ———
1 + sin mx 1 4 sinmx
.. d . —m COS mx
Similarly —log (1 — sinmx) = ———
dx 1 — sinmx

9 Note (11): From this step onward, we can adopt a simpler approach, as given below, instead of the one that follows in
continuation.
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Q_l m cos mx m cos mx
dx 2

1+sinmx 1 —sinmx

1 1 — sinmx + 1 + sin mx
= —mCcos mx —
2 1 — sin” mx
1 {2m cos mx m
= 5 = = msec mx Ans.
2 | cos? mx cos mx

Note (12): When computing derivatives by the chain rule, we do not actually write the functions
t, u, and so on, but bear them in mind, and keep on obtaining the derivatives of the component
functions, stepwise, as shown in the following solved examples.

Example (18): If y = log (sin x?), find dy/dx.

Solution: Given, y = log (sin x?).

Using the comments given in the above note, we write
dy d
dx — dx
1 2 d o
= ——cosx”—(x
sinx? dx( )
= cot?x-2x

[log(sinx?)]

= 2x cot x? Ans.

Note (13): Observe that when we differentiate a function by using the chain rule, we
differentiate from the outside inward. Thus, to differentiate sin(3x + 5), we first differentiate
the outer function sin x (at 3x + 5) and then differentiate the inner function (3x + 5), at (x).
Similarly, to differentiate cos x’, we first differentiate the outer function cos x (at x’) and then
differentiate the inner function x’, at x.

The chain rule can be applied to even longer composites. The procedure is always the same:
Differentiate from outside inward and multiply the resulting derivatives (evaluated at the
appropriate numbers).

For example,

4 [sin(cos(tan’ x))] = [cos(cos(tan’ x))][—sin(tan’ x)] (Stan® x)sec? x

dx
Example (19): If y = loglog (log x), find dy/dx.

Solution: We have y = loglog(logx)

& _d

o [loglog(logx)]

1 d

= Tog(log x) dx [log(log x)]
o 1 d
"~ log(log x) log x dx
! 11
"~ log(log x) log x x
_ 1

"~ xlog xlog(log x)

(log x)

Ans.
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Example (20): If y = logloglog x*, find dy/dx.

Solution: We have

y = logloglog x*

dy d 3
il [log log log x°]
1 d
=—————[loglog x*
log log x3 dx[Og ogx’]
1 1 d
= = " (logx®
log log x3 log x3 dx [log ]

1 1 1d
log log X3 log X3 x3 dx
3x?
x3 log x3 log log x3
_ 3
" xlog x3 log log x?

(")

Ans.

Example (21): If y = e*, find dy/dx.

Solution: We have, y = e¥

dy d,
ax 5(3 )
s d
= e a(}d)
= ¥ 3x2
= 3x%e° Ans.

Example (22): If y = \/cosy/x, find dy/dx.

Solution: We have, y = y/cosy/x

dy  d
.a—ﬁ{ cos\/}}

2\ /cos\/x ( sm\/_) (\/_)

fsm\/— 1 d
COszfdx()

—siny/x Ans

- 4\/x+/cos\/x
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Example (23): If y = sin(log,, x), find dy/dx.

We have, y = sin(log, X)

dy d,.
i a[sm(k’glo x)]

d
= cos(logyg X) Ix (logg x)
1

= cos(logy, x)m
e

dy _ cos(log x)

_ Ans.
dx ~ xlog, 10 ns

Example (24): If y = log[sin x° + cos x°], find dy/dx.

dy 1 S o
e (inx T+ oosx) dv [sin x° 4 cos x°]
1 dp. nx X
B (sin x° 4 cos x°) dx {sm@ +eos @]

:@$$ayﬁﬁ%%%”ﬂ%%ﬁ

dy m |cos x° — sin x° X
A bt b Ans.
“dx 180 Losxo + sinx°} ( 180 ) ns
Example (25): If y = 2* cos (3x — 2), find dy/dx.
Solution: We have
y = 2%cos (3x —2)
d d d
é = 2 cos(3x — 2) + cos(3x — 2) 2"
= 2¥[-sin(3x — 2)]3 + cos(3x — 2)2*log,2
= 2¥[log, 2 cos (3x — 2) — 3sin (3x — 2)] Ans.
Example (26): If y = 1/(xlog, x), find dy/dx.
Solution: We have
1 .
= = 1
Y = g — Wloe
dy d -1
R [xlog, x]

= —1[xlog, x] * % (xlog, x)

-1 1
m [x; + log, x(l)}
e

_ _(1 + loge X) Ans
(xlog, x)? '

297
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Note (14): Some important Observations about the Chain Rule

Suppose we have to differentiate the function: y = (x> + 2)2. Then, we may write it as
y=x'+4x* +4

and differentiate it easily. But this method is impractical for a function such as

) 1000

y = (x*42 or y=(x*+2)?

1000 1000

Note that, since y = (x> + 2)
the chain rule),

is like y = u'%, where, u = x% + 2, we can write (usin
7

d
é = 1000 (2x)

= 2000x(x% +2)"°  Ans.

5
Example (27): If y — (—) find dy/dx.

xX+3

Y= (xizy

ic_zc(xi)s
() & (6)

5( x3)4 (x+3)(1)x(1)}
x+

(x+3)°
x 4
> (x + 3)
B 5x*3
(x+3)*(x+3)*
15x4

= G Ans.
(x+3)°

Solution: We have

_3
(x+3)°

(i) When we apply the chain rule we use the power rule first and then the quotient rule.
(i) The power rule is a special case of the chain rule.

Let us prove the following result:
d n __ n—1 pr
TSN = nlf () f (%)
Proof: Lety = [f(x)]"
y = u", whereu = f(x)

d d
ﬁ = m/" and £ =f'(x)



Now,
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dy _dydu
dx  dudx

=" f(x) = nff(x)]" f(x)
— [ =l fx)]" f(x)

In particular, we have,

and

d 1 d

Ix [f(x)]n = a[f(x)}’”
= —n[f(x)] " f(x)
o Y
d _d 2 Lo, e 1
VI = ZU@I = = o

Similarly, we can prove the following results, using the chain rule.

An important requirement is that we must remember the derivatives of basic elementary
functions involved.

y dy/dx
sin[f(x)] cos[f(x)]f'(x)
cos[f(x)] —sin[f(x)]f'(x)
tan[ £ (x)] sec?[f(x)]f'(x)
cot[f(x)} —cosec?[ f(x)]f'(x)
sec[f(x)] seclf(x)]tan[f (x)}f"(x)
cosec[ f(x)] —cosec[f(x)] cot[f(x)]f(x)

y dy/dx
alf) al/@log, af'(x)
el F)] elF) f7(x)
log,[f(x)] 1/(f(x))f' ()
log,[f(x)] 1/([f (x)log, a)f"(x)

If (d/dx)f(x) = ¢(x), then (d/dx) f(ax +b) = a¢(ax + b)

(iii) All the above results are the corollaries to the chain rule. They should not be used as

formulas. In other words, to write the derivative of a composite function, we must write
all the steps before reaching the final answer, as shown in the solved examples, (4)—(13).
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10.4 USEFULNESS OF TRIGONOMETRIC IDENTITIES
IN COMPUTING DERIVATIVES

The following examples indicate that trigonometric identities can be used in expressing certain
combinations of functions (in suitable forms), convenient for computing their derivatives in a
simple form.

Example (28): If y = ({@cosxbsiny gng dy/dx.

(a sin x+b cos x) ?

Solution: If this function is considered as a quotient, then its differentiation by the rule (5) will
be very complicated. Hence, we simplify the given function by changing the constants, as given
below.">

Puta = rsintand b = r cost

a .
tant = B and > =a® +b* (whererand ¢are obviously constants)

rsinfcos x — rcos ¢ sin x

rsin ¢ sin X + r Cos £ COS X

in(f—
_rsinlt=0) -y
rcos (t — x)

d -1
L2 —sec?(1—x) = ————
dx [cos(t — x)]

_ —1
[cos 7 cos x + sin 7 sin x]*

-1

- 2
b a .
—COS X +— sin x
r r

2

(b cos x + asin x)*

d (42 b2
'.l :—(a + ) 5 Ans.
dx  (hcosx + asinx)

Example (29): Ify = %, find dy/dx.

(I4cos x

We have (d/dx)(sinx) = cosx and (d/dx)(1 + cos x) = —sin x.

a5 A good number of examples of this type are discussed in Part II (Chapter 3) of this book.
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Now consider,

dy _ (14 cos x)(4)(sin x) — sin x(£)(1 + cos x)

dx (1 4 cos x)*
_ (14 cos x)(cos x) — sin x(—sin x)
(1 4 cos x)*
1+ cos? x +sin® x
(1 4 cos x)*
d 2
& — Ans.
dx (14 cosx)
Also, it is easy to show that,
sin x . x(16)
————— = tan
Y 1+ cosx 2
d 1 1
g % = seczg (E) = Eseczg Ans.

Example (30): If y = logtan((n/4) + (x/2)), find dy/dx.

Solution: We have, y = logtan((n/4) + (x/2)).

Using trigonometric identities and algebraic operations, we can show that

l—i-sinx_t <n+x>(17)
Visinx ™3 72

(e Sinx 2sin(x/2)cos(x/2)  2sin(x/2)cos(x/2)  sin(x/2)

X
l+cosx 1+2cos?(x/2)—1 2cos?(x/2) " cos(x/2) tany

(7 Similarly, we can easily prove the following results:
1+Sin2x*tan(n+x) 1fsinx7mn(n x)
Vi—sinax ~ \a "Vi+sinx T \4 2
- cost_mn . \/1 +cosx cot('z)
l4+cos2x — V1-cosx 2

sin x X cosx T X
—— =tanz,———— = an<777).
1 +cosx 2°1 +sinx

4 2

301

We should be able to obtain these results and they need not be remembered. For necessary details, refer to Part II of this

book, Chapter 2



302 ALGEBRA OF DERIVATIVES

Assuming this result, we have,

T4+sinx\'? 1
y = log (ﬂ) [log(1 + sin x) — log(1 — sin x)]

1 —sinx - 2
dy 1 1 1
dx 2 [(1+sinx) cosx (1 —sinx) (—cos x)}
1 cos X —Ccos X
T2 |(14sinx) (1 —sinx)
1 [cos x — cos x sin x + cos x + cos x sin x
T2 1 — sin® x
1 [2cos x 1
== = = secx
2 [cos? x cos x
d
Y sec x Ans.
dx

Exercise (2): Differentiate the following functions w.r.t. x:

(1) log(logsinx)  (2) [log(log(log x))I*  (3) Vainv/x  (4) g

sin x°

(5) cos(xe¥)  (6) (712" (8) logs(log; x)  (9)

X
(10) et e (11) Io 1+ sin 3x (12) Io / 1+ cosx
eX¥ —e ¥ £ 1 —sin3x & 1 —cos3x

Answers:
) cotx 2 4[log(log(log x))]? 3) cosy/X
log sin x xlog x log(log x) 41/x+/cosy/x
4) VX C0sy/X — siny'X (5) —x?e*(x + 3) sin(x’ &) (6) e ¢ e
2x3/2
x 1 1 rnx
7)2% 2% log 2 8) ————— 9) — |+—=~cos x° — sin x°
ME2og2 @) e O 5l ]
—4e2x
(10) m (11) 3sec 3x (12) — cosec x

10.5 DERIVATIVES OF INVERSE FUNCTIONS

We have seen (in Chapter 2) that if a function y = f(x) is one—one and onto, from A to B,
then the inverse of f exists, and is denoted by f'. Also, f' is a one—one and onto
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function from B to A. The inverse function consists of the same pairs of elements but in
reverse order.'®

Now the question is: Iffis differentiable, will f~ ' be differentiable? If so, at what points, and
what is the rule of differentiation? If this information is available to us, it will help us to obtain
the derivatives of log,x, sin" ! x, cos ' x, and so on whenever they are defined.

Rule (6)

Theorem: Ify = f(x)is adifferentiable function of x such that the inverse function x = £~ (y)
is defined and dy/dx, dx/dy both exist, then

dx/dy = g7z, provided dy/dx # 0.

Proof: Supposey = f(x) be a one—one mapping of A onto B, where A and B are subset of Real
numbers.

Let x = f~'(y) be the inverse mapping of B onto A.

Then, the composite mapping (ff~!) is the identity mapping of B onto B.

That is, f[f '] =y

Differentiating both sides of the above equation w.r.t. y, we get

d —1 _ dy _
dfyf[f )] = O 1 (11)

By the chain rule for composite functions (and remembering that f ~'(y) = x), we get LHS
of (11)

d dx
%f(x)@ =

using f(x) =y, we get

dy dx
dx dy

We have thus shown that if y is a function of x and x is the inverse function of y, then
dx/dy = m, provided dy/dx # 0.
Corollary: If x = g(y) is a differentiable function of y such that the inverse function
y = g~ '(x) exists, then dy/dx = W, provided dx/dy # 0.

We can also prove the above results as follows:

(% Tt means that the domain of £ is the range of f, and range of f' is the domain of f.
(19 Suppose y = f(x) has an a differentiable function, which has an inverse. Then, we can express the inverse function by
the equation x = f"(y). Accordingly, the derivative of fis expressed by dy/dx, whereas the derivative off" by dx/dy.
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Theorem: (Method II)
Ify = f(x) is a derivable function of x, such that the inverse function x = f~'(y) is defined and
dy/dx, dx/dy both exist, then dx/dy = 1/(dy/dx), provided dy/dx # 0.

Proof: As x changes to x + dx, let y change to y + Jy.
. Asdx — 0,6y — 0

Now, consider the algebraic identity,

5—y—1 (6x # 0,8y # 0)

Sx
ox 1
8y  8y/dx
Taking limit as 6x — 0
o) 1 1
lim ox _ lim = (12)
5x—0 0y  6x—0 87y lim Sl
ox sx—0 \8x
*.© y is a differentiable function of x,
oy _ dy
. = = = 13
ax 0 ox  dx (13)
8 d
S 8}(1510 S—;C exists, provided é #0
Again, as 6x — 0,6y — 0
o) 0 d
co lim X _ lim ox _ & (14)
5x—0 8y  8y—0 8y dy

using (13) and (14) in (12), we get

dx 1 . dy
& ded <X £ 0
dy dy/dx’ ProvICeC 4x 7

Note: Since fand f ! are mutually inverse functions, we also have

dy 1 o dx
o ded & = 0
dx  dxjdy POVICyy
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Summary of Differentiation Rules

Rule (D LA A = LA+ 00

(Derivative of a sum of functions)

Rule (2) d

d
Ekf(x) = kaf(x) [k = constant)

(Derivative of a constant multiple

of a function)

fuke @ LLAMA] = () 5 A0+ AC) 5 [A)

(Derivative of a product of functions)
Rule (4) d {fl (v\‘)} _LO@HRE]-AE@DA)]
(A0

(Derivative of ratio of functions)

Rule (5) d d d

el = e x 170
(Derivative of composite functions):
the chain rule
Rule (6) d7x 1
dy  dy/dx
(Derivative of inverse of functions) that is d x(y) = 1
"dy (d/dx)y(x)

Remark: One may get an impression that by using differentiation rules (1)—(6), we should be
able to compute the derivative of any function. However, there are still some functions whose
derivatives cannot be computed with these rules. On the other hand, the derivative of such
a function can sometimes be computed directly from the definition. For instance, consider
the function

f(x) = x|x|

We cannot apply any of the rules to obtain f/(0) because |x| is not differentiable at O.
Nevertheless, using the definition of derivative, we find that
—f(0 -0
£(0) = 1im ) J(;( I o = lim x| =0

x—0 X — x—0 X —

However, a great majority of the differentiable functions that we will encounter can be
differentiated by rules (1)—(6).



1 la Basic Trigonometric Limits
and Their Applications
in Computing Derivatives
of Trigonometric Functions

11a.1 INTRODUCTION

Every time we come across new functions, we would like to find if they are differentiable, and if
so, we would like to find their derivatives. In Chapter 9, we have seen that the derivative of a
Sfunction is the limit of the particular kind. To compute the derivative(s) of basic trigonometric
functions, we shall be using the following basic trigonometric limits:

@) lirrb cosx =1
X —
@i1) lim sinx =0
x—0 .
(i) 1im 22 = 1 and
x—0 X

—1
Gv) lim 871
x—0 X

But how do we get these limits? We shall obtain the above results shortly.

In Chapter 5, we extended the definitions of trigonometric ratios (of an acute angle) to the
trigonometric functions of real variable. "V

In Chapter 7, we introduced the concept of limit of a function, and gave illustrative
examples, for evaluating the limits of some simple algebraic functions, involving polynomials
(including rational functions).®

Also, we stated the main limit theorem (without proof), introduced the substitution rule
(with its usefulness), and proved the sandwich theorem (or the squeezing theorem), which is
very useful in evaluating limits of a variety of trigonometric functions.

11a-Basic trigonometric limits and their applications in computing derivatives of trigonometric functions

M For this purpose, the concept of directed angles and their radian measure was introduced with a logical understanding
that angles of any magnitude and sign could be generated.

@ Starting from intuitive meaning of limit, we entered into the rigorous study of the concept and developed &, & definition
of limit by considering a good number of suitable examples to cover various possible situations, so as to make the definition
complete in all respects.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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If the reader has gone through the concept of limit (as discussed in Chapters 7a and 7b), then
he will be able to appreciate that our way of introducing the concept of limit has been the
simplest and the most practical one, and that it would not be so simple if it were introduced by

considering trigonometric or any other functions.

Now, since we have some idea about the limit concept, we are in a position to discuss and
establish the basic trigonometric limits mentioned above (i—iv). It is important that we are very
clear about the definition of trigonometric functions of an arbitrary angle whose measure “6” is
expressed in radians. (Recall that radian measure “x” in sinx stands for a real number.)
Accordingly, we can use, instead of “6”, any other symbol (like x, y, or #) that is used to represent
real numbers, and identify it, as the measure of an angle in radians. It is in this sense that
expressions such as x + sin x, x cos x, (sin x)/x, and other similar ones are understood.

Also, recall (from Chapter 7a) that for evaluating the limit lirr}) (sin x)/x, we listed the
values of the ratio (sin x)/x, for several values of x closer and closer to the number “0”, and

observed that the value of this ratio approaches nearer and nearer to 1, as x tends to “0”. We
therefore guessed (and, in fact, agreed) that

lim Y 1, (xin radians)®

x—0 X
Fortunately, our guess happens to be correct but the feeling of uncertainty (and incompleteness)
remains in our mind. This situation demands that we should prove the above result in a more
systematic way. Such a proof is available in the text.

11a.2 BASIC TRIGONOMETRIC LIMITS

To prove the basic trigonometric limits (i) and (ii), we recall the definitions of the sine and cosine
functions (with reference to a circle of radius “r” centered at the origin, and an angle of 0
radians, placed in standard position at the center of the circle, as shown in Figure 11a.1).

Y

P(x, y)

FIGURE 11a.1 Angle ¢ in standard position.

® 1t is due to this limit (and many other problems creating various situations in the way of guessing limits of certain
functions) that compelled mathematicians to seek a suitable definition of limit of a function. This is how the &, 8 definition
of limit came into existence. This definition might look abstract to someone, but in fact it is a beautiful definition of limit,
complete in all respects.
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1 _\ C = (cos x, sin x)

sin x

X

ofM~——~—"5 A

CoS x

1-cosx

FIGURE 11a.2 Unit circle centered at the origin.

The terminal side of the angle intersects the circle at a unique point P(x, y). We define the
sine function and cosine function by

sinO:% and cosf==®

~ =

If r=1, then sin # =y and cos 0=x®

Since we normally use “x” to represent points in the domain of a function, we will
usually follow that convention for the sine and cosine functions and replace 6 by x (see
Figure 11a.2).

In Figure 11a.2, let C be any point on the unit circle (placed in the standard position) such
that it is at the end of the arc length x. Since this arc length subtends an angle of x radians at the
center, we identify the point C as a function of the angle x and define cosine and sine functions of
this angle as follows:

sin x = y—coordinate of C

cosx = x—coordinate of C

Since C (cos x, sin x) can move endlessly around the unit circle (with positive or negative
arc length), the domain of both sine and cosine functions is (—oo, +00). The largest value
either function may have is 1 and the smallest value is —1. Also, observe that both these
functions assume all values between —1 and 1. Hence, the range of both the functions is
[-1, 1].

Note that as x — 0, the point P(cos X, sin x) moves toward (1, 0) so that we get

lim cosx =1 and lim sinx =0

x—0 xX—

Thus, we have shown the correctness of the results (i) and (ii).

“ The properties of similar triangles imply that sin 6 and cos 6 depend only on 6, not on the value of r.
® we repeat that in the expression sinf, “6” represents a number. Thus, we write sin2 to mean sin(2 radian).
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(Though we have concluded results (i) and (ii) in a very simple way, their rigorous proof uses
sandwich theorem.)®

Note (1): Now, onward, we shall be using results (i) and (ii) freely in solving problems and
obtaining other results.

Now, our next goal is to show that for any real number “a”,

lim sinx =sina and lim cosx = cosa (1)
X—da X—da

We know that, if “a” is a fixed number and x = a + A, then

X—a

lim f(x) =1 if and only if }}imo fla+h)=1

Therefore, in order to prove the result(s) at (1) above, we can instead show that

/lirr}) sin(a+h) =sina and ]lim cos(a + h) = cosa”

1 — n—

Solution: Let “a” be a fixed number. To prove that /limo sin(a + /) = sina and hence that
h—

lim sinx = sin a, we use the trigonometric identity:

X—a
sin (@a+h)=sin a-cos h+cos a-sin h
Since “a” is fixed, sin a and cos a are constants.

Now,

lim sin(a+ 4) = lim (sinacos i+ cos asin k)

—0 h—0

sin a( lim cos h) + cos a( hlin% sin h)

h—
(Here, we have applied the sum and constant multiple rules for limits.)

= (sina)l + (cos @)0 [Applying the results (i) and (ii)]

=sina

Similarly, to prove that /limo cos(a+ h) =cosa, we use the trigonometric identity:
s

cos(a+h)=cos a - cos h—sin a - sin & and conclude the result, lim cos x = cos a.
x—0

©® For this proof refer to Calculus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick, HBJ
Publishers.

D In fact, these results tell us that both sine and cosine functions are continuous at any point “a” in their domain (see
Section 8.2.1, Statement (3) of continuity of a function in Chapter 8). It is important to remember that continuity of a
function at a point is a higher concept than the existence of the limit at that point.
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Remark: Note that the proofs of the results at (1) depend on the limits (i) and (ii).

The other trigonometric functions have similar properties, as can be verified from (1), by using
the limit rules. For example,

. . sinx Xhin{, SILY - sing
lim tan x = lim = = =tana
X—a x—a cosx lim cosx cosa
X—d

Sfor any number a in the domain of the tangent function. In particular, limo tanx = 0.
A very useful trigonometric limit is the result (iii), that is, -

sinx
=1, (xin radians)

lim
X—a X

This result is proved using the sandwich theorem (also called squeezing theorem). We have
already stated and proved this theorem in Chapter 7a. Here, we give the geometrical view of
this theorem.

11a.2.1 Geometrical View of Squeezing Theorem (the Sandwich Theorem)

The squeezing theorem says (in effect) that if the graphs of fand /4 converge at a point P in the
plane and if the graph of g is “squeezed” (or sandwiched) between the graphs of g and /4, then
the graph of g converges with the (graphs of) f and / at P (Figure 11a.3).

Theorem: Show that lim sin = = I, (xinradians).
X

X —

Proof: Consider a unit circle with center “O”, placed at the origin, and let the radian measure of
angle AOC be x radians (Figure 11a.4).

FIGURE 11a.3 Geometrical View of the Sandwich Theorem.
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D
AY A
(cos x, sin x)
l
c ~ tan x
X
sin x
X X

0 cos X B A

FIGURE 11a.4 Applying Geometric Considerations and Sandwich Theorem.

Using Figure 11a.4, we obtain the following equations, which are valid for 0 < x < g

sin x

1 1
Area of triangle OAC = 5 |OA||BC| = El -sinx =

Area of sector OAC = Zl (Area of circle) = g ®
T

. 1 1 1sin x
Area of triangle OAD = = |OA||[AD| = =1 -tanx = =
2 2 2cos x
It is geometrically clear that
Area of AOAC < area of sector OAC < area of AOAD, so that
sinx _x _ 1sinx
<S<s—
2 2~ 2cosx
Area Sector OAC  x X X
@ O e . =—7n =— it ci = 2 —
Arca of Circle m Area of sector OAC w7 Note that the area of the unit circle=7(1)" = 7.
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Separately, the first and second inequalities yield

sin x sin x
<1 and cosx <— (a)
X

X

Combining the inequalities in (a), we get

sin x i
cosx <——<1, for 0<x<§
X

Furthermore, using the fact that

sin(—x) —sinx sinx
cos(—x) =cosx and sin(=x) = =
—X —X x

we obtain

sin x i
cosx <—— < 1, f0r0<\x\<§
X

But lim cosx =1, and lim1=1, it follows from the sandwich theorem that

x—0 xX—

smx = 1 Proved.

lim

x—0

Remark: We emphasize that the result limsin 2= 1 is valid only if the angle x in sinx is

X—

expressed in radians. In case, angle x in sinx is expressed in degrees, then the limit in question
does not hold. Let us see why?

If “x” in sinx is in degrees, then the limit to be evaluated is hm sin x /x, where
X = (rcx/ 180)‘radians. Note that the degree measure of an angle is a linear Sfunction of the
radian measure x.

Note (2): To evaluate lim0 sin x° /x, we must express the numerator sin X as afunction of real
X —
variable x. Hence, we replace x by the number 7 x/180 and then adjust the denominator
. Lot
suitably so that we can apply the result lmg) sin ;= 1.
t—

Let us evaluate this limit.

We have
i S0 sin(m x/180)
x—=0 X x—0 X
- lim sin(m x/180) (7 x/180)
x—0 (TE x/180)
m X
=1— ", as —
180 { sy =0,ygg _’0}
-
180
X x
Now, using the result hm sin — = 1, we can easily prove the result lim — = 0.
-0 X x—0 (cosx —1)
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11a.2.2 Important Observation

L. X . . .
To evaluate the limit, lim ——, notice that lim x = 0, so we cannot apply the quotient
x—0 (cosx — 1) x—0

rule (for limits) directly. However, we can evaluate this limit through the following mathe-
matical manipulations:

cosx—1 fcosx—1 cosx+ 1Y\ cos? x — 1
x X cosx+1/  x(cosx+1)
_ —sin? x _ (sinx —sin x
T x(cosx+1) \ x cosx + 1
cosx — 1 sin x —sinx ®
lim — = {lim ( )} {lim 7}
x—0 X x—0 X x—0cos x + 1

-ofr) -

11a.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

By using the basic trigonometric limits (listed in the beginning at (i)—(iv)) and applying
the definition of the derivative, we can compute the derivatives of all basic
trigonometric functions.

11a.3.1 The Derivatives of sin x and cos x (From the First Principle)

To find the derivative of f(x) =sin x, using the definition of the derivative.
We have,

d B f(x+6x) —f(x)
&f(x) - 5.!(%0 Sx

provided the limit on the RHS exists.

d . . sin(x + 8x) — sinx
S.—sinx= lim —M——————

dx 8x—0 ox
I (sin x cos 8x + cos x sin 8x) — sin x
= lim
8x—0 ox

[ sin(x +y) = sin xcos y + cos x sin y]

© To compute the limit of a function, which is in the form of a ratio, some trick like algebraic manipulation or the use of
some algebraic/trigonometric identity is almost always needed to eradicate the troublesome denominator.
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. [sinx(coséx — 1) cosxsindx
=1 +
ox ox

. {sin x(cosdx — 1)  cosxsin Sx}
= lim +

- x—0 ox ox
. . cosdx — 1 . sin 6x
=sinx| lim ———| +cosx lim
Sx—0 S5x sx—0 Ox
coséx — 1
= (si s x)1 o lim ——— =
(sin x)0 + (cos x) [ < lim " O}
=cosx, forallx
Thus,
d .
— sinx =cosx, forallx (1a)

dx
We can also prove the above result by using the trigonometric identity, sin 2x =2 sin x cos x,

as follows:
To prove

d
— sinx =cosx, for all x
dx

Proof: Let f(x) =sin x

. f(x+86x)= sin(x + 8x)

d .
A = Jlim fx+5v) — f(x)ax

d (sinx) = lim sin(x + 8x) — sinx
dx " sx—0 ox

sin(x 4 8x) + sin(—x)

= 5£1Ln0 Y [ —sinx = sin(—x)]
. [(x+6x—x X+ 06x+Xx
d 2sin 5 cos 2
a(smx) - 5??0 6x "

a0 Using the trigonometric identity, sin A + sin B=2sin M%B) cos —(A;B).
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A+ B A—B
{ sinA+sinB:2sin( er )cos( > )]

[ 2sin ox cos 2x 4 ox
) 2

ox

lim cos

x—0

_ _1, sin(8x/2)]
[5x—0  8x/2

d
o (sinx) = cos x

Similarly, we can show that

d (cos x) = —sinx
dx B

2x+6x\
5 =

lcos x

Note: It is convenient to use the symbol “/i” instead of the composite symbol 8x.

11a.3.2 Derivative of tan x (from the First Principle)

To prove d (tan x) = sec? x
Prove | gx N '
Proof: Let f(x) =tan x

f(x+h) =tan(x + h)

d t h) —t
< an ) = tim M

.1 [sin(x +h)
=lim- |———%—
lcos(x +h) cosx

4 (tan x) sin X
dx h—0h

= lim —
ety L cos(x + h) cos x
. 1[sin(x+h—x)

= lim - | —————
h—0h [cos(x + h) cos x

[ sin /1

=lim—~|———"
B [cos(x + ) cos x}

1 [sin(x + /) cos x — cos(x + h) sin x}
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i sinh 1

= lim — - lim —————

h—0 h  h—0cos(x+ h)cosx
1 1 2

=(1 = 7 =sec’ X
COSXCOSX COS?X

d
— (tan x) = sec? x

dx

Similarly, we can prove the following results:

d 2
—(cotx) = —cosec” x
o (cotx)

4 (sec) t
—(SeCc X)) = sec xtan x
dx

d
o (cosec x) = cosec x cot x
X

11a.3.3 Alternative Simpler Methods (for Finding Derivatives
of Basic Trigonometric Functions)

317

(3a)

Here, we use formal rules of differentiation, trigonometric identities, and derivatives of sin x
and cos x (i.e.,(£)(sinx) = cos x, (& )(cosx) = —sin x), which we have obtained by

dx dx
applying the definition of the derivative.

d
T -~ = —sinx.
0 prove (dx) (cos x) sin x

We know that,

cos X = sin(x + E)
B 2

%(cosx) :%sin<x+g) = cos(x+g> { %(Sin 1) = cos t}

fron = [ron(c5) -
dx COS X) = —SIn X COS| X 3 = —SIn X

Therefore,
d .
o (cos x) = —sin x
Similarly, we can show that

i(sin X) = cosx
dx ™ B
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11a.3.4 Derivatives of tan x, cot x, sec x, and cosec x (Alternative Simpler Methods)

These trigonometric functions are quotients involving only sin x and cos x, so their derivatives
can be found using the quotient rule for differentiation.

cosx( d )(sinx) sinx( d )cosx
d (tan x) = d (smx) B dx dx

dx dx \cos x cos? x
(cos x)(cos x) — (sin x)(—sin x)

cos? x

cos? x + sin® x 1 ,
= 5 =—5—=sec’x
cos? x cos? x
In exactly the same way we can show that,
_ 2
— (cot x) = —cosec” x

dx

Note: The formulas for the derivative of a quotient becomes more concise when the quotient is
of the form 1/g(x) for all x.

d d
i( Numerator (Nr) > B Dr(£>Nr_Nr<a>Dr

dx \ Denominator (Dr) (Dr)?

When the Numerator = 1, the RHS reduces to — () (Dr)/ (Dr)?.
In this case, the formulas is

d

dx glx

% (ﬁ) B g x) @

Example (1): Show that (L )(sec x) = sec x tan x.

Solution: From the formulas (7), we obtain

d d 1 —(—sinx) 1 sinx
—(secx) = = = = sec x tan x
dx dx \cos x cos?x COS X COS X

Similarly,

d(cosec x) = —cosec x cot x

11a.3.5 A Question For Consideration

Now the next question is: How can we find the derivative of sin X3, orin general, that of sin u,
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where u is a differentiable function of x?
(To find the derivatives of such functions, we apply the chain rule.)
We have

i(sinu) = i(sinu)% =cosu —
dx - d dx dx

Thus, for the function y = sin (x*), we have

Similarly, for the function y = cos(2x’), we may put 2x° = u, so that we have

y =cosu
b i(cosu)%
dx d dx
g = fsinu—u
dx dx

d
—sin(2x%)10x*, becauseé = 10x*

—10x*sin(2x%) = —10x* sin(2x7)

We list below for convenience the formulas for derivatives of basic trigonometric functions,
proved above, in three sets.

Set (1)
1(a) a(sin X) =cos x
d .
2(a) a(cos X) = —sinx

3(a) %(tan x) = sec? x

4(a) a(cotx) = —cosec’x
d
5(a) o (sec x) = sec x tan x

d
6(a) — (cosecx) = —cosec x cotx
dx

Corresponding to the formulas for derivatives of basic trigonometric functions, we list their
chain rule formulas.
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Set (2)

1(b) —(sinu) =cosu du

dx dx

2(b) %(cos u) = —sinu %

3(b) % (tan u) = sec’ u ax

4(b) di(cot u) = —cosec’ u (%

5(b) % (secu) = sec utanu g—z

6(b) % (cosecu) = —cosec ucotu ?TZ
Set (3)

In the trigonometric functions sin x, cos x, and so on, if x is replaced by the linear function
(ax + b) then we have the following standard results, known as the derivatives of extended
forms of basic trigonometric functions.

1(c) disin(ax +b) =acos(ax +b)
X

2(¢) %Cos(ax +0b) = —asin(ax + b)

3(c) ditan(ax +b) = asec? (ax + b)
X

d
4(c) acot(ax + b) = —acosec? (ax + b)

5(c) %sec(ax + b) = asec(ax + b) tan(ax + b)

d
6(c) o cosec(ax + b) = —a cosec(ax + b) cot(ax + b)

Note (5): The functions cos x, cot x, and cosec x (starting with “co”) are called cofunctions
of sin x, tan x, and sec X, respectively. Note that the derivatives of cofunctions are with
negative sign.

Note (6): Importance of the Radian Measure
The radian measure of an angle is convenient for calculus on trigonometric functions. We know
that ( )(sm Xx) =cos X, provided “x”, represents a real variable (or equivalently, angle x is
expressed in radians).

On the other hand, if angle x is expressed in degrees and we have to compute the derivative
of sin x’, then we proceed as follows:

i sinx = ism [since X = ﬂradians
dx T dx 180 T 180

= COS r d r X
1807 180
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o T
= (cos x )m

= @COS xo

Remark: Observe that if we use degree measure, we would have the factor n/180 in our
differentiation formulas for basic trigonometric functions. On the other hand, if the angles
are expressed in radians, then derivatives of trigonometric functions are in their simplest
form. It is for this reason that radian measure is considered convenient for calculus.

11a.3.6 More Uses of Basic Trigonometric Limits
The limits limo (sinx/x)=1 and lim0 (cosx — 1/x) =0 are mainly useful to prove the
X — X —
derivative formulas. However, we can also use them for evaluating other trigonometric limits.
Some applications of the result limo(sin x/x) =1 are given below through examples.
X —
Example (2): To evaluate limo(sin x/x2/3).
X —

2/3

Solution: We rewrite (sin x)/x~~ as follows:

sin x sin x B sin x
= w23 = (SX) s
x2/ x X

Since limo X3 =0, it follows from product rule (for limits) that
x—

sinx sin x
lim ——= = limy x!/3
x—0 x2/3 x—0 X

Il
=
/N
=z
w2
~
=
=
=
=
(95}
|
—
o
I
o

Example (3): To evaluate lim (sin 5x)/x.

X—

Solution: Because of the appearance of 5x in the numerator, we write

sin 5x sin 5x
=5 8
X ( S5x ) ®

Furthermore, notice that as x — 0, 5x — 0. Now, if we put 5x =y, we can write

. sinSx . sin 5x
lim = lim 5
x—0 X 5x—0 5x

— lim (—Smy) 5
=0 y

_ ._siny _
= Syhlrb—y =0)(1)=5
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Remark: In evaluating the above limit, we have used “the substitution rule”. (We have
already introduced this rule in Chapter 7. However, it is useful to repeat it again.)

11a.3.7 The Substitution Rule

Using the /imit rules and the sandwich theorem, we can evaluate limits of rational functions and
a variety of trigonometric functions. But, as yet we have no convenient method for evaluating
limits such as

liml V(2x3 +x2 —5x + 8) (1D
x—

To evaluate this limit, suppose we first let y = 2x° + x> — 5x + 8 and notice that as x — 1, y
approaches 2(1)* 4 (1) — 5(1) + 8 = 6. It is then suggesting that if we substitute y for 2x° +
x? — 5x+8, and substitute y — 6 for x — I, then we can write

lim VX3 X2 —5x+8) = lim /5
X — y—

Since 1im6 V¥ = /6, it would follow that

lim V(X3 +x2 —5x+8) = V6

More generally, if lim f(x) = cand if lim g(y) exists, then we have the following result,
X—da y—c

known as the substitution rule.

lim g(f(x)) = lim g(y)""” ©)

X—a y—c
To find lim g(f(x)), by using the substitution rule (9), we approach as follows:
X—a

(i) We substitute y for f{x)
@ii) find ¢ = lim y, and then

(iii) compute lim g(y)
y—e
The process is straightforward. Let us consider the following example:
Example (4): To evaluate 1irn/ cos(x + m/6).
x—mn/3

Solution: Let y = x + n/6 and notice that

. . Y
xlirle/z y= XLIT/_% <x + E) -

+

wla
N
N

(1 Surely, resorting to &’s and &’s has no appeal in this case because the proof will be very tedious.
U2 Caleulus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick (p. 78), HBJ Publishers.
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Then, by substitution rule
. i . T
lim cos(x +6) = lim cosy= cosi =0

x—mn/3 y—mn/2

Remark: The substitution rule tells us that we can write
lim g(/(x)) = g(lim /(x))

provided the limit on RHS exists. (See Chapter 7, theorem (A), rule (8).)
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1 lb Methods of Computing Limits
of Trigonometric Functions

11b.1 INTRODUCTION

To evaluate limits of the functions involving trigonometric functions, the following points must
be remembered:

1. Itis assumed that all the trigonometric functions are defined for real variable x. Thus, x
in sinx, cos x, tan.x, and so on stands for a real variable (or equivalently the angles
contained in the trigonometric functions are expressed in radians).

Note (1): In any problem, if the degree measure of an angle is given, then it must be converted
into radian measure using the relation, 1° = 7/180 radians.

2. We shall apply the following basic trigonometric limits, proved in Chapter 11a:

@ limosinx = sin0 =0 (iii) liII})COSX = cos0 =1
X — Y
i —1
i) Tim 2% — v tim X1
x=0o X x—0 X

These are all standard limits and can be directly used for evaluating the required limits.

3. Using the standard limits given at (2) above, we can easily prove the following results:

Corollary (i)

. X
lim — =1
x—0 SIn X
Corollary (ii)
. tan x
lim — =1
x—0 X
Corollary (iii)
. X
lim =1
x—0 tan x
11b-Methods of iputing limits of trig tric functions using basic trigonometric limits, sandwich theorem,

trigonometric identities, and algebraic manipulations methods

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Corollary (iv)

1—cosx 1
m _
x—0 X2 2

Corollary (v)
2
lim —> =2
x—0 1—cosx

Remark: Observe that

,\!llno x2 - xhino (5x)2 2= 2

Note (2): While the standard limits given in (2) above can be used freely for evaluating the
required limits, the five corollaries listed above should not be used freely, since they are not
considered standard limits.

4. We know that tan (n/2) is not defined because

(i) as x—m/2, from left, tan x — oo, while
(i) as x — n/2, from right, tan x — —o0.
(iii) .. lim tan x does not exist.

x—mn/2
Here, the importa/nt point to be remembered is that for the function f(x) = tan x, neither
does the value f(n/2) exist nor does the lim f(x) exist. In fact, lim tan x = tana pro-
vided “a” is not an odd multiple of 7 /2. x=m/2 o
Similarly, we have

¢ lim sec x = sec a, provided seca is defined.

X—a

e lim cosec x = cosec a, provided cosec a is defined.
X—da

e lim cotx = cota, provided cota is defined.

X—a

Proposition: If f(x) is a bounded function, and if lim g(x) = 0.

X—a

Then, lim f(x)g(x) = 0.

X—a

Proof: Since f(x) is a bounded function,
f(x) has both the lower and the upper bounds.
Suppose, [ is the lower bound, and u is the upper bound of f(x)

< f(x) < u, for every x € domain of f.

™ To prove lim (1 — cos x)/x* = 1/2,consider (1 — cos x)/x*> = (1 — cos x*)/(x*(1 + cos x)) = (sin® x)/(x*(1 +cos x))

. I—cosx . sin x\ 2 1 s 1 1
o lim = lim | —— = (1) ——
x—0 x2 x—0\ X 1 4cosx (1+1) 2
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Multiplying by g(x), throughout. Then, for every x such that g(x) > 0, we have /- g(x) <

f(x)g(x)u-g(x), and for every x such that g(x) < 0, we have /- g(x) > f(x)g(x) > u- g(x).
Thus, in any case, the product f(x)-g(x) lies in between /-g(x) and u-g(x). But,

3%1~g(x) =1/ Xlgrr&}g(x) =1/-0 =0and Yhﬂmaug(x) =u- Jerlag(x) =u-0=0.

.. By the sandwich theorem

lim f(x)-g(x) = 0.

X—a

Remark (1): In the above proposition, the condition that “f(x) is bounded” is necessary.
The following example justifies this remark.

Example (1): Let f(x) = 1/x and g(x) = x.

(Note that f{x) is not bounded for x — 0.)

Now,
lim [f(x)g(x)] = lim [~
xlin()fxgx _xl—vln() xx
= lim1 = 1(x #0)
Thus,

lim f(x)g(x) = 1 # 0, through 1irrbg(x) =0

x—0

Therefore, the above proposition may not hold if f(x) is not bounded.

Remark (2): The above proposition remains valid if we replace “x — a” by “x — o0”.
Example (2): Evaluate lengc (sinx)/x = .Ylex [(1/x)sin x].

Solution: Note that — 1 <sinx < 1, for all x

*. sinx is a bounded function.

Also, lim 1/x = 0.
X — 00

.1
lim —sinx = 0
X — 00

tim 2% — 0 (by remark (1))
X

X — 00
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Example (3): Evaluate lirr}) sin(1/x)/1/x.
Solution: limosin(l/x)/l/x = !imox-sin 1/x.

We know that — 1 <sin+ < 1, for all x.

1

X

.. sin 1/x is a bounded function.

Next, lim x = 0.
X —

1
. lim {xsinf} =0
X

X—

1

sin
— = 0 (by remark (1))

. lim
x—0 ;
Note (3): We shall be dealing with two types of limits of trigonometric functions:
1. Limits of the type: lim0 F(x), (type (D).
X —
2. Limits of the type: lim f(x), where a # 0 (type (II)).
X—da

In dealing with limits of the type lim f(x), where a # 0, we first substitute t = x — a, so that as
X—a

x — a, t — 0. Thus, we convert the limits of the type (Il) into the form of limits of type (I).

If the given limit is in the form of a ratio and both the numerator and the denominator are
trigonometric functions, then it is possible to evaluate the limit more easily by canceling a
common factor. Certain algebraic manipulations and/or use of trigonometric identities may
be needed.

11b.2 LIMITS OF TYPE (I)
Example (4): Evaluate lin}) sin 3x/x.

o1 3 o1 3
Solution: lim SOX lim (sm x)3
x—0 X 3x

x—0

Note that as x — 0, 3x — 0. If we put 3x = ¢, we get the given limit as

lim KS‘—“’) 3} — lim (Sl—“t) lim 3
t—0 t t—0 t t—0
= (1)(3) =3 Ans.

Note (4): In solving problems, we need not indicate the above substitution. Thus, we can
directly write lirr%)(sin 3x/3x) = 1. However, one must remember that the standard limit
is limo sin x/x"="1, where x is expressed in radians.

X —

Example (5): Evaluate limo(tan x)/x.
X —

. . tanx . sin x
Solution: lim —— =

im
x—=0 X x—0XCOS X
. sinx 1 . sin x 1
= lim = lim -
x—0| X cosx x—0\ X lim cos x
1 T
=1--=1
1
tan x
—— =1 Ans.

Thus, lim
x—0
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Remark: This limit is not used as a standard limit.
Example (6): Evaluate lirrb (x cos x + sin x)/(x + tan x).
X —

Solution: Let us denote the above limit by /.

Consider xcosx+sinx cos x + (sin x/x)
X +tan x 1 + (tan x/x)

_ cosx+(sinx/x)
~ 14 (sinx/x)(1/cos x)

}Lni() (cos x + (sin x/x)) cos0+1

h= Tim 14 Tim [(sin x/x) (1 /cos x)] ~ 1+ (1)(1/cos0)

1+1

=1
Note (5): Observe that we have not directly used the results lim,_ otan x/x = 1 simply
because it is not considered a standard limit.

1 Ans.

Example (7): Evaluate limO (cosec 2x— cot 2x) /sin x.
e

Solution: Let us denote the given limit by /

Consider, cosec 2x— cot 2x
1 cos 2x 1—cos2x

sin2x  sin2x sin 2x

1—(1-2sin’x) _ sinx

2sin x cos x cos x
1 i 1 1
1= lim— |22 = lim —— =1 Ans
x—08in x | cos x x—0CO0S X 1
Example (8): Evaluate limO (V22— V1 + cos 2x) /sin’ x.
x—
Solution: Let us denote the above limit by /.
Consider V2—/T+cos2x V2++/1+cos2x
sin® x V2 ++/T+cos 2x
B 2— (1 +cos2x) B 1—cos 2x
sin x(v2 4+ /T +cos2x)  sin® x(v/2 + /T + cos 2x)
2sin® x
.l = lim “rcos2x = 1—2sin’ x
x—0sin? x(v/2 + /T + cos 2x) [ )
2
= lim———, [Asx—0,sinx—0 . .sinx #0
x—04/2 + /T +cos 2x [ 7 }
2 2 1 2
= —= £ Ans.

CVIHVITL 22 V2 2
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Example (9): Method (IT)

Evaluate limo (V22— /1 + cos 2x) /sin’ x.
X —

Let us denote the above limit by /

Consider v/1+cos2x = V14+2cos2x—1 = V2 cos x.

. V2—V2cosx
m-—————
x—0 sin” x

V2(1—cos x) o (I +cosx)

x—=0  sin®x (I +cosx)

. V2(1—cos? x)
x—0sin” x(1 4+ cos x)
. \/Esin2 X
lim 3 1 N
x—0sin” x(1 4 cos x)

-
= ey [inx 7 0

V2 V2
=——=— Ans
141 2

Example (10): Evaluate limo(l—cos 4x/x%) = I, say.
x—

1—cos4x 14cosdx

Solution: Consider,
utl onsidaer. x2 1 T cos 4x

1—cos? 4x sin® 4x

x2(14cos4x)  x2(1+4cos4x)

sin? 4x 1
(4x)> (1 +cos4x)

. 2
_ (sin 4x 16 1
4x (1 +cos 4x)

2
sin 4x 1
=i 16
fauys {( 4x > (1+cos 4x)

] —
1+1

—

=12-16 16% =8 Ans.



LIMITS OF TYPE (I)

Note (6): It is useful to prove the following results and compare them.

. .. l—cosx I l—cosx_ 1

U] xhinoix =0 (ii) xhg})ixz 3

ooy 1. 1—COS2x . . 1—cos5x 25

@) lim ——=0 @ lm—s—=7
. l—cosx 1 x?

™ ,\!lino x2 2 (vi) ’}LOI*COSX =2

Example (11): Evaluate lim0 (3sin x°—sin 3x°)/x* = [, say.
frame

Solution: Consider 3 sin x°— sin 3x°
= 3sinx°— [3sinx°—4sin® x°] - [sin3x = 3sin x— 4 sin’® x]
= 4sin’ x°
.4 sin® x°
[ = lim
x—0 X3

sinx*\°
= lim 4
x—0 X

3
B . sin(nx/180)(n/180)
4 [,\!llno x/180 ]

3 3
T T
Example (12): Evaluate l_imo(cos ax— cos bx)/(cos cx—cos dx) = I, say.?

L latb)x . (a—b)x

Solution: Consider, cos ax— cos bx = —2sin > 5
_ 2 sin((a+ b)x/2)sin((a— b)x/2) ((a+ b)x/2)((a— b)x/2)
(a+b)x/2 (a—b)x/2
}EI]()(COS ax—cos bx) = }ll‘no [ 2 (a + b)x :|
2 p)x
- ‘}ILI%) - & 2b }
Similarly, llm (cos cx—cosdx) = »}Ln%) - %

, a*—b*)x?
= lim e aa e

L [@=pY) x—0,x #0

= Im le—a) {.'.xz £0 }
27[72

= % Ans.

@ Recall that cos A +cos B = 2cos (A + B/2)cos(A— B/2) and cos A—cos B = — 2sin(A + B/2)sin(A— B/2).
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Exercise (1):
2

sin ax sin? x
1) 1 2 i
@) xlf%)sinbx @ m x
3) Jim 1208 2% @) hmw
¥=0 X x—0  Xx%?sinx
X3 cot x 2sin? 3x
lim iy 2807 3
® <00 T cos 2x (©) o —
(7 lim — 2% (8) lim o =X T 1zcosdx
x—0 tan?x x—0 xsin x

(Hint: Divide numerator and denominator by X2)

2 sin X°— sin 2x° VT Fx— /1=
©) lim = ST 10) lim Y- XZVIZX
x—0 X7 x—0 sSin x

1
Hint: x —00,— —0
1 X
(11) lim sinxtan— 1
e Y | - tan— —0.Also— 1 < sinx < 1
X

sin(a + x) + sin(@— x)— 2 sin
2

12) tim SV 13) lim
X — 00 X x—0
cos 8x— cos 2x

1
. e - . 2 _
a4 thr}) cos 12x— cos 4x (15) Show that xhg})x cos X 0

1
(16) Show that lim x*>sin— = 0
x—0 X

Answers.
1
§)) g ) 0 3) 0 @ -3 ®) 2
25 i 3
6) 18 m 3 8) -16 ) (@> 10) 1
an o 12) 0 (13) —sinx (14) g

11b.3 LIMITS OF THE TYPE (II) [lim f(x), WHERE a # 0]
X —a
Example (13): Evaluate lim (sin x—sin a)/(yv/x— v/a).

Solution: Let the given limit be denoted by /
Consider Lim sinx—sina . sinx—sing VX4,

R a e Ja—a Rt a
sin x— sin a(/X + /a)

(x—a)

putt=x—a. . x=t+a

© Note (7): The method of rationalization introduced for algebraic functions is also applicable here.
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Asx — a,t — 0.

[sin(1 4+ a)— sina][\/T+ a+ /4]

.l = lim
t—0 t
t t
[200S(a+ E)sini} [\/t—|—a—|—\/21]
= lim
t—0 t

= iim cos(a+ %) {Sh;/tz/z] [Vita+Va]

= cos (a+0)[1][V0O+a+ /4]
= 2y/acosa Ans.

Example (14): Evaluate lim (v/2+cos x—1)/(n—x)> = [, say.

X—=T

Solution: Put x— 7 = ¢ . x = nw+1.
Note that x — 7, t — 0.

\/2+cos(n+1t)—1

f= i 2
V2—cost—1
= lir%%7 [ cos(m+1) = —cos{]
t—

~ lim V2—cost—1+v2—cost+1
0 2 V2—cost+1
lim (2—cost)—1
1=02(\/(2—cost)+1)

1—cost

= lim
t=072(/(2—cost)+1)

1—cos t
= Tim —2 i

1
=0 £ 1=0(\/(2=cost) +1)

We have shown earlier that,

t—0 t 2

(We must prove it here again since it is not a standard limit. However, we use this result to
save time.)

1 1 11 1

= = =
’ 2(Va=1+1) 22 4

Ans.
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Example (15): Evaluate lim (1—tanx)/(1—+v/2sinx) = /, say.

x—n/4

1—t
Solution: Consider x|

1—\/§sinx
COS X— sin x 1 14++/2sinx
cosx  1—+/2sinx1++/2sinx

cos x—sinx 1 4+ /2 sin x
COS X 1—2sin® x

cosx—sinx 1+ +v2sinx

cosx  cos? x—sin? x

. cos x— sin x 1++/2sinx
1 = lim - -
x—n/4 cosx  (cosx—sinx)(cos x4+ sin x)
] T 1
COSX # Ccos— F —
_ #eosy #
. 1 ++/2sin x
- 11m4 cos x(cosx +sin x) |’ sinx # qinE #* L
x—n/ | S s \/E
c.cosx—sinx # 0
1
1+vV2 —
_ V2 V2o 1412,
- 1(1 N 1>7L.L717 ‘
V2\V2 V2 V2 V2
Example (16): Evaluate !iml(xz—3x+2)/[x2—x+sin(x— 1)] = I, say.
Solution: Consider x2— 3x +2
= x2—-2x—x+2
= x(x—2)—1(x—2)
= (x=2)(x—1)
7 — lim (x=1)(x=2) putx—1 =1 . x=t+1
T xsix(x—1) Fsin(x— 1) \Asx— 1, t—0
l‘ —
= 1m7(z 1),
=0 (t+1)t+sint
)
= lim———FF—+ [ t—0, ..t#0
tgl})([+l)+sint/l [ 7 0l
0-1 1

= =~ Ans
O+1)+1 2 O
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Exercise (2):

Evaluate the following limits (type (II)):

1 S
(1) fim LFOOST
x—1 (_xf 1)
sinx— cosx
3) lim ———
@ x—l»rrrrl/4 (x—m/4)
$) lim V2—+/T+sinx
x—m/2 cos? x
1—tan x
7) lim ——M
@ x—n/41—+/2sin x
2sin x— 1
9) lm —
@ x—n/6+/3tan x— 1
Answers:
1
1) 57‘52 (2) cosa 3) V2
1
(6) 3 7 2

(8) —sina 9) %

sin x— sin a
2) lim ———
2) x% (x— a)
2 x—
@ lim 2"
x—mn/2 COS X
. VS5+cosx—2
6) lim ————

xX—7 (7[* .X)

sin(x + a)— sin(a— x)—2sina

(8) lim -
xX—a X Sin X
COS X— cos a
10) lim —————
e
1
4) -2 5) ——
@ ©) N

11b.4 LIMITS OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

10) —2v2sina

335

(Basic exponential and logarithmic functions and the related standard limits are discussed in

Chapter 13.)

Definition: If a > 0, then the function f defined by

y=flx)=a"
is called an exponential function.
Note 8): (i) a* = y & x = log,y
Thus, we can write
Ifa* =y, (1)
Then, log, y = x, (2)

and vice versa.

It is easy to obtain the following results:

x
log,a* = x,

and

log,y _
a “ - ya

(3)(4)

O

 This result is obtained if we consider (2) and substitute for y from (1).
® This result is obtained if we consider (1) and substitute for x from (2).
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(@) log, xy = log, x+log,y
(ii) log, r o log, x—log, y
y
(iii) log, x™ = mlog, x
Rules for Change of Base

_log, x

log, x (4)©®

~log, b
By writing x = b, in the above statement, we get

_log, b

log, b

a

~ logya

1
~ logya

1
“log, b =
++ 0% log, a

(logyb = 1)

11b.4.1 Common Logarithms and Natural Logarithms

Logarithms to the base e (e ~2.7182) are called natural logarithms (or Napierian logarithms).

(i) When we are considering natural logarithms, the convention is not to write the
base e.
In our study of calculus, we are going to use, in general, natural logarithms only.
Therefore, we need not write the base when it is to the base e. Thus, log x will mean
“log,x”™

Note (9):

(ii) loge = log,e = 1
(iii) loge* = log,e* = x
(iV) elogx — elog@ L — y

© It is very easy to remember this rule. Write the algebraic identity, x/a = (x/b)/(a/h), and it helps to write this rule.
One may also write down the identity x/a = (x/b)(b/a), and then write down log,x = log,x, which gives (A).

) By not writing the base “¢” repeatedly we save time and effort. However, one can still write the base “e” for clarity, if and
when needed. (At the school level where the base “e” is not introduced, and only base 10 is used, some authors insist that log

x should be read to mean log;x.)
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We shall assume the following results:

1 X
(i) lim (1+7) s
X — 00 X

(i) limo(l—i-x)]/x —e

s X\ 4%
(143"
(iv) Iff(x) — 0,as x — 0, then limo(l+kf(x))m =e, wherek # 0

X —

It follows that

; N
lim (1-x)""* =&, and lim (1— 7) =e
x—0 x—0 X

We also assume the following limit®:

a*—1

(i) lim = log,a (B)
x—0

(Recall that for proving this result, we first prove l_imologa(l +x)/x =
log, e = 1/log, a by the change of base.) o

(ii) By replacing a with e in (B), we get

i =1 =1
fim = = togc
X_ [
In particular, lim = log,5, and lim = log,2
x—0 X t—

Let fix) — 0 as x — 0. If k0, then any number ¢ = k-f(x) — 0 as x — 0.
We have

li — li @1 log, a loga
im = lim = a =
R T s & g

® We have proved these results in Chapter 13.



12 Exponential Form(s) of a
Positive Real Number and its
Logarithm(s): Pre-Requisite for
Understanding Exponential and
Logarithmic Functions

12.1 INTRODUCTION

The product 2 x 2 X 2 x 2 x 2 X 2 = 64, is conveniently written in the form 2° = 64, to mean
that the number is multiplied by itself, six times. In the expression 2°, the number “2” is called
the base and “6” is called the exponent. We say that the number 64 is expressed in the
exponential form as 2°. Similarly, we can write 4°> = 64 and 64' = 64, which are two other
exponential forms for 64.

In fact, any positive number can be expressed in any number of exponential form(s), by
choosing a positive base and an appropriate exponent.”

12.2 CONCEPT OF LOGARITHM

At this stage, we introduce the concept of logarithm of a positive real number. If three numbers
a, b, and c are so related that

ad =¢, (a>0,a#1) (1)

then the exponent “b” is called the logarithm of “c” to the base “a.”
We write

log,c = b (2)

It may be noted that the logarithm of a number can be different for different bases. Detailed
discussion about logarithm(s) and their applications will follow later.

What must you know to learn calculus? 12-Logarithms [Exponential form(s) of a positive real number and its
logarithm(s)]

M This statement is true from a mathematical point of view. However, it should not create any fear or confusion in the
reader’s mind by visualizing the practical difficulties. Later on, it will be clear that our interest lies in only two bases,
namely “10” and “e”, and tables for exponents are readily available.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Both (1) and (2) given above express the relations between the three numbers a, b, and c.
The relation (1) is in the index form and the relation (2) expresses the same thing in the log arithm
(log) form. Let us discuss the role of the conditions a > 0 and a # 1. reflected at (1) above.

(i) By definition, 0" = 0, (n € N).
In general, X =0, (keR, k#£0).?
Note that in the relation 0 = 0, the exponent k loses its role and identity due to the
base “0.” Moreover “0%”’ represents the number “0,” only. Hence, in order to express a
positive number in the exponential form, we cannot consider the number “0” as the base.

(ii) By definition 1” = 1 (n € N).

In general 1 = 1 (ke R)

Further, 1¥+1¥ = 1 (ke R)®

Also, 1¥+1F = 1"+ = 1°

19=1
Note that in the expression 1% (k € R) the exponent k looses its role and identity due to
the base “1””. Moreover, 1 always represents the number 1. Hence, in order to express
any positive number (other than “1”) in the exponential form, we cannot consider the
base to be one.

(iii) Now, let us see what happens if the base “a” is taken as a negative number. We know that,
(=3)? = 9and (3)*> = 9. On the other hand, (—3)® = —27and (3)* = 27.

From the above examples, it is clear that if a negative base is raised to an even power we
get a positive number, but if it is raised to an odd power, we get a negative number.
On the other hand, if the base is positive, then any power raised to it represents a
positive number. Therefore, to represent a positive number in the exponential form, the
base is always taken to be a positive number, other than 1.

12.3 THE LAWS OF EXPONENT

The laws of exponents are initially defined for natural numbers and then extended to integers
and rational numbers. Let us revise the following definitions and laws of exponents:

) axaxa...... (n factors) = &", (a €R, n € N). In particular, 0" = 0.
(i) a™" = Ud", (a#0)
@iii) a® = 1 (@ 0)
(iv) The nth root of a positive number “a”. If the exponent of a positive number “a” is a
rational number of the form 1/n (n € N), then we call it the nth root of “a”. Thus, 1614
is called the fourth root of 16 and 1253 is called the third root of 125. The root of a
number is also written using a radical symbol (/). An expression for a root is called

radical. We write "7 as /a and read it as the gth root of “a”. Here /a is called a
radical and ¢ is called the index of the radical.

@ It is assumed that the reader is familiar with the basic laws of exponents, which are used for combining exponents.
Further, since the expression 0° cannot be assigned any value, we do not define it.
® Note that, d“+a* = 1 = d" % = a°.
. d" =1(a€eR, a#0).
This follows from the laws of exponents, valid for real numbers. Thus, 70 =1,
(-5°=1,(5/7)" = 1, (v/3)° = 1, and s0 on.
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Definition: The nth root of a positive number “a” is the positive number /a (or a'"

nth power is “a”. The above definition tells us that, for a > 0,
(va)" = (@) = a> 0

Remark: A negative number does not have a square root (since the square of any number
is never negative). On the other hand, a positive number has two square roots, of which one is
positive and the other is negative. For example,

), whose

5% = 25and (—5)> = 25, so that, (25)"/% = V25 = +5.

Thus, if 7 is even, then the nth root of a positive number is not unique. If we agree to exclude
negative value(s) of this nth root when n is even, then nth root of “a” (a>0) is uniquely
defined, whether n is even or odd. Thus, the nth root operation on a > 0, becomes a function, if
we discard negative values of \/a, whenever n is even.

(v) Positive Rational Numbers as Exponents: Let “a” be any positive real number and p/q
be a positive rational number (where p and ¢ both are positive integers).

Note (1): We have already given a meaning to ¢'/? and now we are in a position to give a
meaning to a”’?. a”'? is defined as (¢”)"/7. Thus, a”'? is defined as gth root of a”. Notice,
however, that if q is an even integer, then &” must be positive, so that (a”)""? is defined.
(This is definitely achieved, if a > 0.)

Note (2): We assume that in the expression a”"?, the base a > 0.

(vi) Negative Rational Numbers as Exponents: A negative rational number is generally
written in such a form that its denominator is always positive. If the denominator is
negative, we can multiply both, the numerator and the denominator by “(—1)” and thus
make the denominator positive. For example,

1\'7? 1 1
4372 — 4732 — (42 ([ = = _,
(47) yE 647 3

Remark: Conventionally, an exponential expression is written in such a way that its exponent
is a positive number.

124 LAWS OF EXPONENTS (OR LAWS OF INDICES)

Now, we clearly know the meaning of a”*, where x is a rational number. At this stage, we assume
that a*is defined, when x is an irrational number. Now, we can give the “laws of exponents”
(or laws of indices) valid for real exponents.

12.4.1 Laws of Exponents (or Laws of Indices) for real exponents

For any real numbers a, b, m, and n, the following laws are valid:

(i) aN’l X a?l — am+n

(ii) (a”n)n — am X n
“ We agree that /0= 0'/" = 0.

) We have remarked earlier that the square root of a negative number does not exist. For the same reason, if ¢ is even then,
gth root of a negative number does not exist.
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(i) (ax b)" = a" x b"

. Jn . . .
@iv) ([:7') =d"xa"=d"", ifa#0.

Remark: If m = n,thenm —n = 0.
It follows that a° = 1, provided a 0.
an

) (g) =2 itb#o.

12.4.2 Applications of the Laws of Exponents

Itis interesting to know that the above laws of exponents can be used to multiply and divide any
given numbers (however, large or small, they might be) using addition and subtraction, which
are simpler operations. The main ideas of the method were developed and given by John Napier
in 1614, as explained below. Let us consider the following two sets, A and B. Set A contains
some positive integers which are powers of 2, written in ascending order. Set B consists of
corresponding exponents of 2.

12.4.3 Multiplication of Numbers in Set A

Suppose, we have to multiply two numbers in the Set A.

For example, 32 x 512, we locate the exponents of “2”, corresponding to 32 and 512. They
are 5 and 9, respectively. Add these exponents, thatis, 5 49 = 14. Then we look for the number
in the Set A corresponding to the exponent 14. It is 16384.

.32 x 512 = 16384.

Note that, we have used the operation of addition to calculate the product. This becomes clear if
we look at law (i) above.

32x512 =22 x2° =27 = 24 = 16384

Set A Set B
2 =2! 1
4=272° 2
g =2° 3
16 =24 4
32=2° 5
64 = 28 6
128 =27 7
256 = 28 8
512 =2° 9
1024 = 210 10
2048 = 2! 11
4096 = 2'2 12
8192 = 213 13
16384 = 24 14

32768 = 21°

—_
W
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12.4.4 Division of Numbers in Set A

Now, suppose we wish to divide 8192 by 128. The corresponding exponents of “2” are 13 and 7,
respectively. We subtract the exponents, that is, 13 — 7 = 6. The number in Set A correspond-
ing to exponent 6 is 64.

. @:2713:213—7:26:64
©128 27
[Note that, we have used law (iv) in the above computation.]

The Sets A and B considered above are quite simple. Similar sets can be designed
using other bases such as 3, 4, 5, ..., and so on. Obviously, it will not be convenient to
choose the (positive) rational numbers as bases. Recall, that in the statement a = ¢, the
exponent (or the power) “b” raised to the positive base “a” is called the logarithm of the
number “c”.

12.5 TWO IMPORTANT BASES: “10” AND ¢e”

In the system of logarithms, which we use in our day-to-day calculations (such as those in the
field of engineering, etc.), the base 10 is found to be most useful. Logarithms to the base 10 are
called common logarithms. Once the base “10” is chosen, it has to be raised with a suitable real
number “b” (positive, zero, or negative) so that, it represents the given (positive) number
¢, exactly or very close to it. Thus, we write,

10 = cor10® ~ ¢

where the symbol “~” stands for “very close to”. For example,

log;,100 = 2.0000 These values of logarithms are exact, since 10> = 100 and

log,(,1000 = 3.0000 10° = 1000

log 05 =~ 0.6990 These values of logarithms are not exact, but they are very close to
the numbers in question, since (10)°%°°°~ 5 and (10)!**3 ~27.8

log,027.8 ~ 1.445

Now, the question is, How do we find these exponents (i.e., logarithms of the given positive
numbers) to the base “10”? For our purpose, the answer is that the logarithms can be found out
by using suitable tables.®

12.5.1 Notations

In common logarithms, the base is always 10, so that, if no base is mentioned, the base 10 is
always understood. However, it is useful only while dealing with arithmetical calculations.

© Detailed methods, for preparing the tables (of logarithms) are available in many books on algebra and trigonometry.
Study of these methods is quite interesting, but here our interest lies in concentrating more on logarithms and their
properties.
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Important in calculus are logarithms to the base “e”, called natural logarithms (or Naperian
logarithms). The number “e”, (which is the base for natural logarithms) is a typical irrational
number, lying between 2 and 3 (e ~2.71828...).7”

The notation for “natural logarithm” is “In”, but we shall be using log,x to mean /n x.
Throughout this book, we are going to use natural logarithms only.

(Once we get used to it, we will start identifying log x to stand for log,x.) To avoid,
confusion in the notation, whether log x should mean log;ox or log.x, we agree that in dealing
with arithmetical calculations it will stand for log;¢x. On the other hand, while solving problems
in calculus, it will stand for log,x. Besides, this notation will be implemented only after a
suitable note.

12.6 DEFINITION: LOGARITHM

The logarithm of any number fo a given base, is equal to the power to which, the base should be
raised to get the given number.®

We Know That Therefore, we say That We Write
2% =64 log of 64 to the base 2 = 6 log,64 = 6
4 =64 log of 64 to the base 4 = 3 logs64 =3
64' = 64 log of 64 to the base 64 = 1 loges64 =1
52 =125 log of 25 to the base 5 = 2 logs25 =2
573 =1/125 log of 1/125 to the base 5 = —3 logs 1/125 = -3
a@ =1, (a#0) log of 1 to the base a = 0 log,1 =0
a'=a log of a to the base a = 1 log,a =1
Note (1):

(i) From the first three illustrations, we observe, that the logarithm of a (positive) number is
different for different bases.

(i1) From the last two illustrations, we get the following two results:
(a) The logarithm of 1 to any base is zero.

(b) The logarithm of any number to the same base (as the number itself) is (i.e.,
log,a = 1, log;p10 = 1, log.e = 1.)

@ 1t might look odd to choose “e™ as a base. Later, it will be found that choosing “e” as a base, provides many advantages in
analysis. It arises quite naturally in calculus (similar to  appearing in geometry) as a basic property of mathematics. A
detailed discussion about “e”, its origin and properties along with the exponential function e and its properties are
discussed in the next chapter.

® Note that, we shall be considering logarithms of “positive real numbers” only. However, it may be mentioned that
logarithms of negative numbers (and those of complex numbers) are also defined and handled, when we deal with the
algebra of complex numbers.
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Recall the following three laws of exponents,

(i) am.an — am+ﬂ’

(ii) am = a}’l — a"'l*n’

(i) (@) =d™.
Corresponding to the above laws (of exponents), we have the following three fundamental laws
of logarithms:

(i) log,(mn) = log,m +log,n
(ii) log,(m/n) = log,m —log,n

(iii) log,m" = nlog,m
Let us prove these laws (or properties) of logarithms.
(D To prove, log,(mn) = log,m + log,n

Let, x = log,m,so thata* = m}

andy = log,n,so thata’ = n
Now, consider,
mn = a*-a = a*" (by law of exponents)
o logymn = x+y, (by definition of logarithm)
= log,m + log,n, [using (3)]
(II) To prove, log, (m/n) = log,m —log,n

Let, x = log,m,so thata® = m
andy = log,n,so thata’ = n
Now consider,

X
m_E g g
n a’

. log,(m/n) = x—y (by definition of logarithm)
= log,m — log,n

() To prove, log,m" = nlog,m
Let, x = log,m so thata® = m. Now, consider, m" = (a*)" = a™
.. log,(m") = nx (by definition of logarithm)

= nlog,x

It is necessary to get acquainted with the terminology related to logarithms.
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12.6.1 Characteristic and Mantissa of Logarithm

Definition: If the logarithm of any number is partly integral (i.e., it is an integer) and partly
fractional, the integral portion of the logarithm is called its characteristic and the decimal
portion is called its mantissa.

For example, log 795 = 2.9004. Here, the number 2 is the characteristic and 0.9004 is the
mantissa.

12.6.2 Method of Expressing Negative Logarithm

The characteristic of a logarithm may be any real number (positive, zero, or negative), but the
mantissa “x” is always expressed as a non-negative number (0 <x < 1). The method of
expressing a negative logarithm, with positive mantissa is made clear from the following
example.

From the table of logarithms, it will be found that, log 2 = 0.3010
1
Then, we have log (5) =logl—1log2= 0-0.3010 = —0.3010 (sincelog 1 = 0)

which is a negative number.

This is a case of a negative logarithm, wherein the characteristic is zero, and hence the
mantissa is a negative number.

To express the mantissa as a positive number, we write

—0.3010 = -1+ 1-0.3010

= —1+0.6990.

For shortness, we write this latter expression as 1.6990. The horizontal line over the number 1
denotes that the integral part (i.e., characteristic) is a negative number; the decimal part (i.e.,
mantissa), however, is positive. Thus, 2.3276, stands for —2 + 0.3276.

There is an advantage in expressing the mantissa as a positive number with reference to the
base 10. This is explained in point (b) given in Section 12.7.

12.7 ADVANTAGES OF COMMON LOGARITHMS

(a) The characteristic of the logarithm of any number can always be determined by
inspection.

Case (I): Let the number be greater than unity

Since 10° = 1, therefore log 1 = 0,
since 10! = 10, therefore log 10 = 1,
since 10* = 100, therefore log 100 = 2, and so on.

©) Here the characteristic (i.e., integral part of logarithm) is zero.



ADVANTAGES OF COMMON LOGARITHMS 347

Hence, the logarithm of any number between 1 and 10 must lie between 0 and 1. From the log
tables, it may be seen that,

log3 = 0.4771; log7 = 0.8451;
log 8.3 = 0.9191; 10g 9.9 = 0.9958.

Similarly, the logarithm of any number between 10 and 100 must lie between 1 and 2, the
logarithm of any number between 100 and 1000 must lie between 2 and 3, and so on. Thus, the
logarithm of any number between 10” and 10™"" must lie between # and 1+ 1. From the log
tables, we have

log27.6 = 1.4409; log 153.2 = 2.1853;
log 1623 = 3.2067; log 7295 = 3.8576.

Case (II): Let the number be less than unity.

Since 10° = 1, therefore log 1 = 0,

since 107" = 1/10 = 0.1, therefore log 0.1 = —1,

since 1072 = 1/10% = 0.01, therefore log 0.01 = —2,

since 1072 = 1/10° = 0.001, therefore log 0.001 = —3 and so on.

Thus, the logarithm of any number between 0.1 and 1, lies between —1 and 0, and so it is equal to
“—1” + some number in decimal (i.e., its characteristic is 1). Similarly, the logarithm of any
number between 0.01 and 1 lies between —2 and —1 and hence it is equal to “—2” 4 some
number in decimal (i.e., its characteristic is 2). From the log tables, we get,

log 0.35 = 1.5441; log 0.057 = 2.7559;
log 0.0091 = 3.9590; log 0.0006 = 4.7782.

(b) A very important property of logarithms to the base 10, is that the mantissa (i.e., the
decimal portion) of the logarithms of all numbers, consisting of the same significant
digits, are the same. The following example makes this point clear.

Suppose we are given that log 66818 = 4.8249. Then, consider the numbers 66818,
668.18, 0.66818, and 0.00066818, which consist of the same significant figures, but
differ only in the position of the decimal point. Let us find the logarithms of these
numbers, to the base 10. From the log tables, we have log;, 66818 = 4.8249.

Now, consider

66818
log 668.18 = log 00— log 66818 — log 100

= 4.8249 -2
= 2.8249

8 = log 66818 — log100000

=4.8249 -5

= 1.8249
66818

108

= 4.8249 — 8
= 4.8249

log 0.00066818 = log
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Observe that, the logarithms of the above numbers have the same decimal portion (i.e.,
the same mantissa), and they differ only in the characteristic.

Remark: Inview of the above, we say that the mantissa of a logarithm is by convention

positive. However, the above property (possessed by logarithms to the base 10) is not
possessed by logarithms to the base “e” (or other bases such as 2, 3, 5, 7, ... etc.).

12.8 CHANGE OF BASE

‘We will now show that, if we are given the logarithm of a number, to any base, then we can easily
compute the logarithm of that number to any other base. The following relation states the rule.

1
log,,x — 0gpX
log,a
orlog,x -log,a = log,x (5)(10)
Let us prove this relation.
Proof: Let
log,x = yandlog,a = ¢ (6)
b = xand b’ = a (7)

We must eliminate “b”. For this purpose, we obtain from (7)

b= x"andb = a'/¢

X =gl s x = ale

coy/e = log,x
1
~log,x = yje = lfgjj, [using (6)]
1
oo log,x = IZZ’; (Proved)
In the same manner, it can be proved that
log,x = logyx-log,b (8)

Thus, if we know the logarithm of any number to a base “b” then we can easily find its logarithm
to any other (desired) base “a”.

A0 1 o0k at the following algebraic identity. (x/a)-(a/b) = (x/b). It is useful, in writing the rule for change of base, for
logarithms.
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12.8.1 Corollary

An important property of logarithms

1
logya-log,b = lorloga = ——

log,b
Proof: Let
logya = ¢ .b° =a )
and
logp=d a’ =b (10)
From (10), we obtain
b = a (11)

Now, from (9) and (11) we have (by eliminating “b”),
a = a*, which meansc-d = 1
o logpa-log,b = 1

or

1 = 12
ogpd log,b (12)

Remark: Using (12), result (5) can be written in the form (6).

12.8.1.1 To Express Any Positive Number in the Exponential Form Now, it is easy to
show that

aloed) — pclloed) — p - glloe) — x and so on.

Now, we will show that, a°&Y) = x.
Let, log,x = ¢
. x = d' (by definition of logarithm)
= aloe) | (-t = log,x)
Remark: The above result tells us that any positive number “x” can be expressed in the

exponential form by choosing an arbitrary positive base “a” (a # 1) and raising it to the power
log,x.
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12.8.2 Antilogarithm: Definition

Iflog,c = b, then cis called the antilogarithm of b, to the base a. We read, ¢ = antilog b, to the
base a. Thus, the process of finding the antilogarithm is just the reverse of the procedure for
finding the logarithm of a given number.

Now, we shall work a few numerical examples to show the application of logarithms and
antilogarithms for calculations. Here, it is assumed that the reader is familiar with how to use the
tables for logarithms and antilogarithms. (Later in the text, we have discussed the method of
using these tables.)

12.8.3 Application of Logarithms

(a) Multiplication of Numbers
To find the product (0.035681)(2763.5)

Let x = (0.035681)(2763.5)

log x = log 0.035681 + log 2763.5
2.5524 +3.4254

1.9778

antilog (1.9778)

= 95.01.

=
I

(b) Powers and Roots

(i) To find (5.978)*
Let x = (5.978)*

logx = 410g5.978
= 4 x 0.7766
= 3.1064

*. x = antilog(3.1064)
1277

Check 6* = 1296.
(i) To find cube root of 79507
Let x = [79507]"3

log x = (1/3) log 79507
(1/3)[4.9004]
= 1.6334

.. x = antilog 1.6334 = 43.00
Thus, the cube root of 79507 is 43.
From the above, we note that the simpler process of addition has replaced the process of

multiplication, and the simpler process of division has replaced the difficult process of
extracting the cube root.
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129 WHY WERE LOGARITHMS INVENTED?

To speed up and simplify calculations, naturally. Indeed, logarithms simplify and speed up
calculations to a remarkable degree. They make it possible to perform operations that would
otherwise be extremely difficult (e.g., extracting high-index roots).

Today, we are used to logarithms and to the extent to which they simplify the computation
process so it is hard to imagine the wonder and excitement they caused when they first
appeared.

If the logarithm of a number is an irrational number, then it cannot be exactly expressed in
decimal form. The logarithms of such numbers are given only approximately, no matter how
many decimal places are taken—the larger the number of decimal places in the mantissa, the
better the approximation.'"

The idea that shorter mantissas would suffice was realized recently. For most practical needs,
even three place mantissas are suitable. This is because of the fact that, rarely do measurements
involve more than three decimal places.

12.10 FINDING A COMMON LOGARITHM OF A (POSITIVE) NUMBER

The common logarithm of a (positive) number, consists of the sum of two parts, namely the
“characteristic” and the “mantissa”. Thus,

log x = characteristic for x + mantissa for x.

The characteristic is an integer (positive, zero, or negative) and the mantissa is always a non-
negative number, less than 1 in the decimal form (e.g., 0.2539, 0.0703, etc.). Characteristic is
found by inspection, whereas mantissa is found from the tables of (common) logarithms.

Note (4): To find the logarithm of a number, it is necessary to “write” the number in the decimal
form. For example, we write 635 (= 635.00), 5923/5 = 1184.6, and consider numbers of the
type 2.0357, 0.8305, 0.003751, and so on.

12.10.1

To find the characteristic by inspection, we consider the following two cases:

(a) Characteristic of a Number Greater Than 1

Rule:
We count the number of digits on the left of the decimal point of a given number. Suppose, there
are “n” digits, then the characteristic of that number will be (rn — 1).

(D With this idea, nearly 500 types of logarithm tables have been prepared from the time logarithms were invented. They
include 10-place tables (for common logarithms) by Dutch mathematician Adrian Vlacq to 260-place logarithms (to the
base “e”’) by Adams. Interesting information about these developments is available in the book “Mathematics can be Fun”,
by Ya Perelman (p. 381), Mir Publishers, Moscow, 1979.
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Example (1):

Given number Characteristic
3073.563 3
506.335 2
93.672 1
8.359 0

(b) Characteristic of a (Positive) Number Less Than 1 (i.e.,, 0 <x < 1)

Rule:

Count the number of zeros appearing immediately after the decimal point and before the first
nonzero digit, in the decimal form of the number. Suppose, there are “z” such zeros. Then,
characteristic of that number is —(z + 1). In this case, the characteristic is a negative number.
However, to indicate the negative characteristic we use a bar over the characteristic, to

emphasize the point that, only the number below the bar is negative.

Example (2):

Given number Characteristic
0.23931 1
0.05729 2
0.00315 3
0.00063 4

12.10.2 Method of Finding the Mantissa (Using Logarithm Tables)

[It is useful to open the log tables(s) at the time of reading the following material.] We have to
use logarithm tables, to find the mantissa (i.e., decimal part) of the logarithm of a number. The
logarithm tables consist of rows and columns. Rows begin with the numbers 10, 11, 12, ... upto
99, and there are columns with headings 0, 1, 2, 3, ... upto 9. After these columns, there are
other columns, with headings 1,2, 3, .. ., 9. These are known as mean differences. (Reader may
refer to a log table.)

The common logarithm tables are designed to find the mantissa for four-digit numbers. For
finding the mantissa, we ignore the decimal point, and consider only four (significant) digits of
the number. If we have numbers, which have more than four digits, after ignoring the decimal,
then we proceed as follows:

o If the fifth digitis >5, then increase the fourth digit by 1 and ignore all the digits from fifth
onwards.

o If the fifth digit is less than 5, then ignore all the digits from fifth onwards.
For example,
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Number for Number for Four-Digit Mantissa
Finding Finding Number for (Found Using
Logarithm Mantissa Finding Mantissa the Table)
57.314 57314 5731 0.7582
57.315 57315 5732 0.7583
5.7317 57317 5732 0.7583
0.57313 57313 5731 0.7582
0.057318 57318 5732 0.7583

Remark: The column(s) of mean differences are prepared to ensure proper accuracy of the
mantissa. Let us find the logarithm(s) of the following numbers to understand the entire
procedure.

Example (3): To find the logarithm of 7452.76.

(a) Characteristic for 7452.76 is 3.

(b) Mantissa: Ignoring decimal point, we read the number as 745276 and consider the four-
digit number 7453. (Why ?) Now, we look at the row starting with 74. Since the next
digit (in 7453) is 5, we find the number in this row under the column headed by 5. Here
the number at the crossing of 74 and 5 is 8722.

Now, we read the number in the same row under the column 3 of mean differences [3 is the next
(last) digit in 7453]. The difference is 2. We add the mean difference to 8722 and obtain the
mantissa as 0.8724.

. log7452.76 = 3.8724

Example (4): To find logarithm of 0.035244.

(a) Characteristic for 0.035244 = 2
(b) Mantissa: For the four-digit number 3524

= 5465 4 5 (mean difference) =5470.
.. 10og 0.035245 =2.5470.

12.11 ANTILOGARITHM

Now, we consider the problem of finding the number n2, when logm is known. We know that
log 1000 = 3. Therefore, we say that antilog 3 = 1000. Our interest lies in finding,
antilogarithm(s) of numbers with four-digit mantissa (i.e., numbers of the type 3.8424,
0.0134, 2.5470., 1.6133., etc.).

For finding antilog of a number, we have to refer to the table with heading Antilogarithms.
These tables also consist of rows and columns. Here, the rows begin with numbers 0.00, 0.01,
and 0.02, up to 0.99. Everything else looks similar to the log tables. The method of referring to
these tables is also the same. We explain the method of finding the antilog of a number with the
help of some examples. [Of course, it will be useful to refer to the antilog table(s) while solving
the following examples.]



354 EXPONENTIAL FORM(s) OF A POSITIVE REAL NUMBER AND ITS LOGARITHM(s)

Example (5): Let us find the antilog (3.8724).

Here, we have to find the number whose log is equal to 3.8724. Suppose, the required number is
y, then

logy = 3.8724 = 3+ 0.8724.

Here, characteristic for y is 3, and mantissa is 0.8724. (Antilog tables are used with reference to
the first four digits of mantissa. Final number is found by placing the decimal point suitably,
using the characteristics.)

Step I: First we consider the mantissa part, which is 0.8724.

Inthe antilog table, the entry in the row beginning with 0.87 and under the column headed by
2 is 7447. Now, the next digit in 0.8724 is 4, so we find the number in the same row (in the mean
difference column) headed by 4. This number is 7. We add this number to 7447 and obtain the
number 7454.

Step II: Since the characteristic of the required number is 3, the number of digits before the
decimal point must be 4. Hence, the required number is equal to 7454.0.

Note (5): In the earlier Example (3), for finding the logarithm, we have computed the logarithm
of 7452.76 as 3.8724. Therefore, antilogarithm of 3.8724, should be nearly 7453, but here it is
found to be 7454. Thus, there is a difference between the original number and the recovered
number, in the fourth digit only. This indicates the accuracy achieved in obtaining the original
number, by applying the antilog to the logarithm of the given number. Similarly, it will be found
that, for recovering a five-digit number, there may be a difference of (at most) two-digit
number, and so on. Let us check about this expectation.

Consider, log 63293 = 4.8009 + 6 (mean difference) = 4.8015.

Now, let us compute antilog 4.8015.

(Recall that, for computing the antilog, we consider the mantissa only, and then place the
decimal point suitably, depending on (the value) of characteristic.)

Antilog 4.8015 = 6324 + 7 (mean difference) = 63310.0 = 6331.

Note that, the difference between the original number and the recovered number is
(63310 — 63293) = 17.

Example (6): Now, consider log 0.07627 = 2.8824.

It is found that, antilog 2.8824 = 0.07628.
(Here, the characteristic is 2. Hence, after finding the antilog with reference to the mantissa
0.8824, we put one zero to the right of decimal point) and write the digits discovered.

Example (7): To find antilog 1.0352.
(Note that, in this case the four-digit mantissa to be considered is 0352.)
.. Antilog 1.0352 = 0.1084.

Example (8): Antilog 1.31527

In this case, the four-digit mantissa to be considered is 3153 (Why?).
.. Antilog 1.3153 = 0.2066.
(Also, antilog 1.3152 = 0.2066.)
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12.11.1 Antilogarithm of a Negative Number

In dealing with real numbers, our interest is restricted to the logarithms of positive numbers
only (excluding 1). However, we may be required to compute the antilogarithm(s) of a (small)
negative number like (—1.3256) or (—0.5913) or (—2.6512), and so on. How to compute these
antilogarithm(s)?

[Note that, in (—1.3256) the characteristic and the mantissa both parts are negative. To
express the mantissa (i.e., —0.3256) as a positive number, we add 1 and subtract 1, to keep the
given number unchanged.]

~1.3256 = (=1 —0.3256) + 1 — 1
—2+0.6744
= 2.6744

~0.5913 = (~0.5913) + 1 — 1
= —1+0.4087
= 1.4087

Now, it is simple to compute the antilogarithms of these numbers.

12.12 METHOD OF CALCULATION USING LOGARITHM

Using tables of (common) logarithms and antilogarithms numerical calculations, involving
operations of multiplication, division, raising to the power, and root extraction are easily
computed, by applying the laws of logarithms and using the tables of common logarithm(s) and
antilogarithm(s). Earlier (in Section 12.4), we have seen some examples, which explain the
applications of tables of logarithms and antilogarithms. Now, having learnt the method of using
log tables and antilog tables, we illustrate below, the logarithm method of calculation, which is
very useful in arithmetical calculations, especially in labs.

Example (9): Using logarithm tables, let us calculate

(59.6)° 2
@1 x 12|

59.6)° 2
Solution: Let t = (27)
(4.7)° x (7.2)

1/2
(59.6)°

cologt = logd ——————
ST 47k (72)

3
e (59.6)

2 % (4.7)% x (7.2)

1 1
= 5 log(59.6)" = log [(4.7)" (7.2)]

!

= %[3 1log(59.6)] 3 [210g(4.7) +log (7.2)]
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Now, 3 log 59.6 = 3 (1.7752) = 5.3256.

2log4.7 = 2(0.6721) = 1.3442

log7.2 = 0.8573 }2'2015 (Total)

1 I
v logt = £[5.325 — 2.2015) = 7[3.1241] = 1.5625

..t = antilog 1.5625 = 36.52

: ﬂ 1/2:3652 Ans
@) x (7.2) ‘ ‘

5.8 x 13.6 x 18.9
(2.7 x021 °
5.8 x13.6 x 18.9
(2.7)* x 0.21

Example (10): To calculate

Solution: Let ¢ =

5.8 x13.6 x 18.9
2.7)* x 0.21
= (log5.8 +1og 13.6 4 log 18.9) — (31og 2.7 + log 0.21)

logt = log

log5.8 = 0.7634
Now, log 13.6 = 1.1335 }3.1734 (Total)
log 18.9 1.2765

3log2.7 = 3(0.4314) = 1.2942

_ 0.6164 (Total)
and log0.21 = 1.3222

logt = (3.1734 — 0.6164) = 2.5570

.t = antilog 2.5570 = 360.6
.t = 360.6 Ans.

Note (6): Besides the above applications, the computation of compound interest (on fixed
deposits) or population growth, or depreciation values of houses, and so on are easily calculated
by using “log method”. The compound interest formula is

A=rpli+

where A, P, r, and »n have their usual meaning.

Remark: The logarithm of a number is based on representing the number in exponential
form. The mathematical operation “raising to a power” has two inverse operations. If o =c,
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then finding the base “a” is one inverse operation called extraction of the root, and finding the
exponent “b” is the other inverse operation called taking the logarithm.

Note that, in the operation(s) of addition and multiplication, both the terms are of an equal
status and can be interchanged (thus, a+b = b+a and a-b = b - a). But the numbers (or
terms) that take part in “raising to a power” are not of the same status, and, generally, cannot be
interchanged (e.g., 3° # 5°). It is for this reason that, “raising to a power” has two inverses.
Further, finding the base and finding the exponent are handled in different ways.

Let us revise the following terms, which we have frequently used in this chapter.

Power: The number of times a quantity is to be multiplied by itself. For example,
20 =2 %x2x2x2x2x2 = 64, is known as the sixth power of 2.

Exponent: A number or symbol placed as a superscript after an expression to indicate the
power, to which it is raised. For example, x is an exponent in a*, and in (ay + b)".
Index: A number that indicates a characteristic (or a role or a function) in a mathematical
expression. For example, in y°, the exponent 6 is also known as the index. Similarly, in v/27
and log;px, the numbers 3 and 10, respectively, are called indices (plural for index).



13a Exponential and Logarithmic
Functions and Their Derivatives

13a.1 INTRODUCTION

Exponential and logarithmic functions are among the most important and most practically
useful functions in calculus. The definition of logarithm of any (positive) number is based on
exponents and the properties of logarithms are then proved from corresponding properties
of exponents."

If a > 0 (a # 1), then the expression a* makes sense for any real number x. Accordingly, for
any positive base a (except @ = 1), the expression a* defines a sensible exponential function.
In practice, a = 2, a = 10, and a = e are the most useful bases. Among all exponential
functions, the one with base e (i.e., the function €¥) turns out to be especially useful and
convenient. For day-to-day calculations such as those in the field of engineering, the base 10 is
found to be very useful. Logarithms to the base 10 are called common logarithms. Important in
calculus are logarithms to the base e called natural logarithms.®

In many books, systematic and excellent information about the number e is available. It
possesses certain unique properties valuable in many branches of mathematics, particularly
calculus. For a student of mathematics, the knowledge of this unique number (and the related
functions: e¥, log,x, a*, log,x) is very essential. We give here a brief account of the number e.
Its approximate value is given by

e =271828182845904523536...

For this number, the symbol e was first adopted by the great Swiss mathematician Leonard
Euler.

‘What must you know to learn calculus? 13a-The number “e,” its origin, value, and properties Exponential and
logarithmic functions (e*, logx, a*, log,x), their derivatives and the applications of ¢* (exponential growth and
decay)

(D Recall that, if three numbers a, b, and ¢ are related such that, a” = ¢ (a>0, a# 1), then the exponent b is called the
logarithm of c¢ to the base a. Observe that, for a > 0, ¢ is always a positive number.

@ In mathematics, the two numbers, namely, 7 and e are very important. They arise in a natural way in geometry and
calculus, respectively. Both 7 and e are special types of irrational numbers, known as transcendental numbers. They arise
not as the result of a simple algebraic relationship, but as a basic property of mathematics. (Transcendental numbers are
defined as numbers that are not the roots of any algebraic equation with rational coefficients.) In this chapter, we shall
discuss why e is important in mathematics.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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13a.2 ORIGIN OF e

The idea of the number e comes from the practice of money lending. Consider a quantity
growing in such a way that the increment of its growth, during a given time, shall always be
proportional to its own magnitude. This situation resembles the process of computing interest
on money lent at some fixed rate, since the bigger the capital, the bigger the amount of interest.
Here, we must distinguish clearly between two ways for calculating interest on the capital: (a) at
simple interest, and (b) at compound interest.

13a.2.1 At Simple Interest

We know that in this case the capital remains fixed, so the interest is always calculated on the
fixed capital for a given time. Thus, if the initial capital is Rs. 100 and the rate of interest is 10%
per annum, then the owner will earn Rs. 10 every year. If this earning continues for a period of
10 years, then the owner must have received 10 increments of Rs. 10 each (so the total interest
earned is Rs. 100) and thus, his initial capital will be doubled in 10 years. (In this case, the value
of the yearly interest is 1/10 of the capital.)

If the rate of interest is 5% (i.e., 5/100 = 1/20), then the initial capital will be doubled in
20 years, and if the rate of interest is 1% (i.e., 1/100), then it will take 100 years for the initial
capital to be doubled. It is easy to see that if the value of the yearly interest is (1/n)™ of the
initial capital, the owner must go on hoarding for n years in order to double his capital. In other
words, if p is the initial capital and the yearly interest is p/n, then at the end of n years his final
amount will be

p
En=2
p+n=2p

13a.2.2 At Compound Interest

In this case, the interest is added to the capital every year (or every half or every quarter of the
year, and so on, as the terms may be); so the capital increases by successive additions of the
interest part to it at the end of every term.

As before, let the owner begin with an initial capital of Rs. 100, earning an interest at the rate
of 10% per annum. Then, at the end of first year, the capital will grow to Rs. 110 and in the
second year this new capital will earn (assuming the interest rate is still 10%) Rs. 11 as interest.
Accordingly, he will start the third year with Rs. 121 as capital and the interest on this amount
will be Rs. 12.10. He will, thus, start the fourth year with Rs. 133.10 as capital, and so on.

If p is the initial capital that grows by compound interest at the rate of 10% per annum, then at
the end of 10 years the capital will grow to the amount A given by

10 10
A=Rs.p(1+—
S”(Jrloo)

1\
:Rs.p(l—i—E)

~Rs.p x 2.594

However, this mode of calculating compound interest, once a year, is not quite fair because it is
possible to earn more by computing the interest at the end of every half-year. This demands that
instead of computing the interest at the rate of 10% per year, we should compute it at the rate of
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5% per half year. Thus, during the period of 10 years, there will be 20 operations involved, at the
end of which the initial capital is multiplied by 21/20.

Now, since (1+1/20) = (21/20)*° = 2.654, the original capital (of Rs. 100) will be
multiplied by the factor 2.654, showing that the capital must grow to Rs. 265.40.

But even so, the process is still not quite fair since by further reducing the period of each
term, it is possible to earn more and more. Suppose we divide the year into 10 parts and reckon a
1% interest for each tenth of the year. In this case, we will have 100 operations lasting over the
period of 10 years. Thus, at the end of 10 years, the capital will be multiplied by factor 101/100,
thereby obtaining the amount A given by

1 100
A=Rs.100( 1+ —
* ( +100)

which works out to approximately Rs. 270.40.
Even this is not final. Let 10 years be divided into 1000 periods (each of 1/100 of a year), the
interest being 1/10% for each such period. Then,

1 1000
A=Rs.100(1+——
° < * 1000)

which works out to approximately Rs. 271.71.

Let 1/n be the fraction added on at each of the n operations, then the value of the capital p at
the end of 7 operations is given by p(1+ (1/n))".

Now, it must be clear that what we are trying to find is in reality the ultimate value of the
expression (1 + 1/n)" as n — co. As we take n larger and larger, the number (1 + 1/n)" grows
closer and closer to a particular limiting value. However large we make #», the value of this
expression grows nearer and nearer to the figure 2.718281828459. . ., a number never to be
forgotten. To this number, the mathematicians have assigned the English letter “e”.

13a.2.3 Compound Interest and True Compound Interest

In the process of computing compound interest, the capital p has its interest added to it at regular
periods of time and thus increases by jumps at the end of each period. If we calculate the interest
at shorter and shorter intervals, then in the /imiting case it will signify in a sense that the interest
is compounded continuously at each instant. When the interest is compounded in this way, we
say that true compound interest is calculated.

13a.2.4 What Is e

Suppose we are to let 1 grow at simple interest till it becomes 2, and if at the same nominal rate of
interest and for the same period of time we were to let 1 grow at true compound interest instead
of simple, then it would grow to the value e.

Further Explanation for e:

Let us take 100% as the unit of rate and any fixed period as the unit of time. Then, the result of
letting 1 grow arithmetically (i.e., by simple interest) at the unit rate for the unit time will be 2,
while the result of letting 1 grow by true compound interest at the unit rate for the unit time will
be 2.71828. . ., which is the number e.
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Accordingly, we write

lim (1+(1/n)" =€

n— 00

13a.3 DISTINCTION BETWEEN EXPONENTIAL AND POWER FUNCTIONS

The expression 2* can be carelessly mistaken for the expression x” as typographically they are
similar; however, the resemblance ends here. They in fact define entirely different functions.
The function x? is an algebraic power function in which the base is a variable and the exponent
is a constant. On the other hand, the function 2* is an exponential function in which the base is a
constant and the exponent is a variable. The difference in their pattern of behavior is illustrated
in Table 13a.1.

TABLE 13a.1 Comparative Values of the Function x> and 2*

X x? 2*
0 0 1
1 1 2
2 4 4
3 9 8
4 16 16
5 25 32
6 36 64
7 49 128

As can be seen from Table 13a.1, the exponential function y = 2" increases more slowly for
small values of x and is actually less than the power function y = x> between x = 2and x = 4.
However, y = 2* increases more and more rapidly as compared to y = x7. This is because the
exponent in the exponential function increases with x (which means that the base is multiplied
to itself more number of times), whereas for the power function the exponent remains constant
and only the base increases with x.

Another important difference between the two functions is as follows: Corresponding to the
fact that 2¥ — 0 as x — — oo, the graph of y = 2 has the line y = 0 (i.e., the x-axis) as a
horizontal asymptote. In fact, every exponential function y = a* (¢ >0, a# 1) has the line
y = 0 as a horizontal asymptote. By contrast, no power function x* (where « is a real number)
has a horizontal asymptote.

13a.4 THE VALUE OF e

We know that lim (1 + 1/n)" = e. A good number of values obtained for this expression,
n—oo

taking n = 2, n = 5, n = 10, and so on up to n = 10,000, are given below.

) Each of the expressions 2%, ¥, 4%, (1/2)", and so on defines an exponential function. Note that, the name, exponential,
function is chosen, since the value of the function depends on the exponent x. The most general exponential function is of
the form [ f(x)]**), where both f(x) and g(x) are variables.
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2
) =225

2.489

~—,
Il

2.594

_
+
sl-
S~—n~uZ_

f=]
I

For practical purposes, we can obtain the above values with the help of a pocket calculator.
Besides, the value of e can be computed to any prescribed degree of accuracy using Taylor’s
Theorem (introduced later in Chapter 22).
It is, however, worthwhile to find another way of calculating this immensely important
figure. First, observe that since  is infinitely large, the number 1/n is very small and hence <1.
Therefore, by using the binomial theorem, we can expand the expression (1 + (1/n))" and
have

(141 11 (50, 020D 0=D0-Du-)

2! 3! 41

Now, when n — oo, 1/n, 2/n, 3/n, and so on all tend to 0. This permits us to write

IR D A B R
e L R TR TR TRTR

TR SR
or ¢ = +ﬁ+i+§+m+"'
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We know that n! grows very fast, therefore (1/n!) goes on reducing rapidly with increasing ».
We can work out the sum to any prescribed degree of accuracy by considering the necessary
number of terms and ignoring the rest.

Here is the working for 10 terms:

Ist term = 1.000000
2nd term = (dividing 1st term by 1) = 1.000000
3rd term = (dividing 2nd term by 2) = 0.500000
4th term = (dividing 3rd term by 3) = 0.166667
5th term = (dividing 4th term by 4) = 0.041667
6th term = (dividing 5th term by 5) = 0.008333
7th term = (dividing 6th term by 6) = 0.001389
8th term = (dividing 7th term by 7) = 0.000198
9th term = (dividing 8th term by 8) = 0.000025
10th term = (dividing 9th term by 9) = 0.000002

Total 2.718281

Remark: It might seem that the unbounded increase in the exponent would imply an
unbounded increase in the function (1 + 1/n)". But the growth in the exponent is compensated
by the fact that the base (1 + 1/n) tends to 1 as n— oo. The integral function (1 + 1/n)"
increases as n — oo, but remains bounded. The bounded character of (1 + 1/n)" can be easily
proved. It can be shown that e lies between 2 and 3.

13a.5 THE EXPONENTIAL SERIES

Now, we will show that,
23 i
X —_— —_— —_— e
e = l+x+ 45+ +

For this purpose, consider the expression (1 + 1/n)"*. Note that, forn > 1, (1/n) < 1. Therefore,
by making use of the binomial theorem, we can expand this expression and get

<1+%) :1+nx-1 nx(nx—1) 1+nx(nx—1)(nx—2) i+

P T 3l 3
mx(x—(1/n 1 mwx(x—(1/n))(x—2/n 1
e P 1 Rl () L

e W) e =)

But, as n— oo, the terms 1/n, 2/n, and so on approach 0. Therefore, the right-hand side
simplifies to the following:

XZ x3 x4
R.H.S. = 1+X+5+§+1+
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Moreover, the number of terms (being n 4 1) becomes infinitely large as n — oo, whatever x
may be. Hence, the series continues to infinity.

1 nx
Also, L.H.S. = (1 + 7) =
n

<1+1) :[lim (1+l)
n n— o0 n

2 3 4
. We get, e¥ = 1+x+x—+%+£+

lim
n— o0

This series is called the exponential series. It can be shown that this infinite power series is a
rapidly convergent series for all real values of Xx.

13a.6 PROPERTIES OF e AND THOSE OF RELATED FUNCTIONS

The greatest reason why e is regarded important is that the function e™ possesses a property that
is not possessed by any other function of x, that is, when e* is differentiated, the result is the
same (i.e., e¥).®

This can be easily seen by differentiating e* with respect to x. We have

23 A
J— ® _ _— R
y=e¢e 7l+x+2!+3!+4!+ ,we get
dy d

=2 (e

dx dx()

2x  3x%  4x3 5x*
o Er T T

. x> ¥ X
= +X+§+§+I+“'

which is exactly the same as the original function e,

13a.6.1 Another Way of Obtaining the Exponential Series

Let us try to find a function of x such that its derivative is the same as the function itself.
We may also ask: Is there any expression involving only powers of x that is unchanged by
differentiation?

We will show that such a function is

2 X3 X4 XS

X
1+X+*+?+*+§+

@) This is equivalent to saying that (e¥)’ = e¥, Vx € R, that is, (d/dx)(e*) = e*.
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As a general expression (involving only powers of x), let the required function be
y = A+Bx+Cx*+Dx* +Ex* + ... (1)

where the coefficients A, B, C, and so on are to be determined.
By differentiating (1) we get,

d
a)y;::B+ZCx+3Dx2+4Ex3+~-. 2)

Now, if this new expression at (2) is to be the same as that at (1), from which it was derived, then
by comparing coefficients it is clear that

B=A
2C =B chfA _A
- T2 1.2 2
C A A
3D =G, b=3=123713
D A A
4E = D, E=-= ==
4 1-2.3-4 4

Using these values of B, C, D, E, and so on in equation (1), we get the general expression of the
desired function to be
2 3 4

X X

If we compare this expression with thatof e™, we observe that both the expressions will be the same
if we choose A = 1. Note that, in the general expression in equation (3), we can assume A = 1,
without any loss of generality. Therefore, for the sake of simplicity, we take A = 1 and get

2 x3 X4

X X

e R R TR TR T TI (4)
which is the function of x (involving only powers of x) having the desired property. Moreover, it
represents e”.

Thus,

2 3 4
y=e =1+ T+ T+ T+ 50+ (5)

is the only function (in powers of x) that has the property that differentiating it any number of
times will always give the same function. The functionf{x) = e* (with base e) is often called the
exponential function, or sometimes the natural exponential function.

In Chapter 2, we have shown that the exponential function f{x) = e*, x € R has one-to-one
mapping from (— oo, co) onto (0, co). Hence, its inverse function exists. The inverse of the
exponential function is called the logarithmic function.
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Y

y=a
O<a<l

1\
X X

> >

(a) )

FIGURE 13a.1 Two graphs of the function, y =a" for different positive values of the base ‘a’.

Note (1): Exponential and logarithmic functions come in pairs. An exponential function with
base e corresponds to a logarithmic function with the same base. What makes base e special for
both exponential and logarithmic functions will become clearer when we study the derivatives
of these functions. Instead of taking e as the base, we can choose any other positive number a
as the base. Then this function is called an exponential function to the base a. We now define the
function ¢* and log,x.

Definition: The exponential function, y = a* (¢ >0, a # 1) is defined at every point on the
number line R and its range is the set of positive numbers. This function monotonically
increases, if the base is @ > 1 and monotonically decreases if 0 <a <1 (see Figures 13a.1a
and 13a.1b).

To define the logarithm function, we use the exponential function.
Definition: The logarithm function with positive base « is denoted by
f(x) = log,x (x > 0)

and defined by the condition

y=logxedad =x

Note (2): For any positive base a (a # 1), the value of @, y € R, is always positive. Let & = x.
This equation also stands for the statement log,x = y. It follows that the logarithm function is
defined only for positive numbers and that the logarithm of a positive number will be a real
number (positive, zero, or negative).

The logarithm function, y = log,x is defined for all positive x, and its range is the interval
(— 00, 00). This function monotonically increases if a > 1, and monotonically decreases if
0<a<1 (see Figures 13a.2a and 13a.2b).

The logarithmic function, y = log,x is the inverse of the exponential function y = a* and
vice versa. [The logarithmic function to the base e is called the natural logarithm (or Naperian
logarithm) and is usually denoted by In x (or log,x).] The logarithmic function to the base 10
is called the common logarithm and sometimes denoted by log x.
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(@) )
FIGURE 13a.2 Two graphs of the function, log,x, for positive values of ‘a’.

Thus, log,x = Inx and log,;,x = log x. We observe the following:

(1) If the base a>1, then for x>1, log,x >0 and for 0 <x <1, log,x <0 (see
Figure 13a.2a).

(ii) If the base a is such that 0 <a <1, then for x> 1, log,x <0 and for 0 <x <1,
log,x > 0 (see Figure 13a.2b).

To get the proper feel of our observation at (ii), let us find out what happens if the base a lies
between 0 and 1. For convenience, let us consider the base a = 1/2.

We have
(1/2) = 1/8 o logp(1/8) =
(1/2)! =172 log1/2(1/2)
(1/2)0 =1 1031/2(1)
(1/2)77 = 1/(1/2)° =32 . log;,(32) =

Thus, if the base a is such that 0 <a < 1, then for x > 1, log,(x) < 0, and for 0< x< 1,
log,(x) > 0.

In Table 13a.2, we give values of matched pair of exponential and logarithm functions
with base a = 2. The values illustrate the correspondence between the functions 2* and
log,x.
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TABLE 13a.2 Exponential and Logarithmic Function Values for the Base a = 2

X -2 -1 0 1 2 3 10 13.28771
2% 1/4 172 1 2 4 8 1024 10,000
X 1/4 172 1 2 4 8 1024 10,000
log,x -2 -1 0 1 2 3 10 13.28771

TABLE 13a.3 Comparative Values of Logarithms (of some numbers) to the bases 10 and e.
log,(50 = 1.6990 log;(500 = 2.6990 log;(5000 = 3.6990
log,50 = 3.9120 log,500 = 6.2146 log,,5000 = 8.5172

Note (3): The rules of common logarithms hold good for natural logarithms also.
Thus,

(i) log,ab = log,a+log,b
(ii) log,(a/b) = log.a—log,b
(iii) log,a" = nlog,a

But, as 10 is no longer the base, one cannot write down the logarithm of 100x or 1000x by
merely adding 2 or 3 to the index. What does this mean?
Table 13a.3 clarifies the point.

13a.7 COMPARISON OF PROPERTIES OF LOGARITHM(S)
TO THE BASES 10 AND e

(a) Common logarithms (i.e., log to the base 10) are usually studied in elementary
mathematics. They are the most convenient to use for most arithmetical calculations,
because their base coincides with the decimal base of our number system.

(b) Natural logarithms (i.e., log to the base e) are useful in calculus. The logarithmic base e
is “natural” only in the sense that it is “naturally convenient” in making the standard
process of differentiation work out simply for a logarithmic function.

For all practical purposes, we can always convert back and forth between natural and
common logarithms of the same number by the following relations:

log,ox = logee x log,x (6)
log,x = log,10 x log;,x (7)

It is simple to establish these relationships between common and natural logarithms of the
same number Xx.

Let

y = logjpx (8)

) Later we will see that if the base is e, then the result of differentiating logarithmic and exponential functions assumes
simpler forms.
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or
x =10 9)
Consider equation (9) and take logarithms of both sides to the base e. We get,

log,x = ylog,10

log,x = log;ox x log,10

logox = x log,x

1
log,10
log,ox = log;ye x log,x

To remember the above relationships, it is useful to remember the algebraic identity,

Now, the identity (x/10) = (x/e)- (e/10) may be looked upon as suggesting
log,ox = log,x x logge

and similarly we can remember the other one.

But, log;pe = log;;2.718 = 0.4343 and log,10 = 2.3026. Therefore,

log,ox = 0.4343(log,x)

log,x = 2.3026(log;x)

(c) The characteristic of common logarithm of any (positive) number N changes from 0
to 1 at a convenient point, where N = 10, and from 1 to 2 at a convenient point,
where N = 10> = 100, and so on. But the corresponding part of the natural
logarithm of N changes from 0 to 1 at the (inconvenient) point, where N = e =
2.718. .., and from 1 to 2 at the (inconvenient) point, where N = e? =7.389..., and
so on. Thus, a drawback of natural logarithms is that their integral parts (i.e.,
characteristic or digits to the left of decimal point) are not obvious, as in the case of
common logarithms.

Thus, the naturalness of natural logarithms has nothing whatsoever to do with the mathematical
nature of our decimal number system. For this reason, tables of natural logarithms must include
digits to the left of the decimal point as well as to the right (corresponding to both the
characteristic and mantissas of common logarithms) (Table 13a.4).

Besides, additional tables are computed for certain functions involving e. The value of e*,
e ", and (1 — e ) are frequently required in different branches of physics. Some of the values
of these functions are tabulated here for convenience.
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TABLE 13a.4 A Useful Table of Naperian Logarithms (Also Called Natural Logarithms)

No. log, No. log, No. log,
1 0.0000 3.0 1.0986 20 2.9957
1.1 0.0953 35 1.2528 50 3.9120
1.2 0.1823 4.0 1.3863 100 4.6052
1.5 0.4055 4.5 1.5041 200 5.2983
1.7 0.5306 5.0 1.6094 400 6.2146
2.0 0.6931 6 1.7918 1000 6.9078
22 0.7885 7 1.9459 2000 7.6010
2.5 0.9163 8 2.0794 5000 8.5172
2.7 0.9933 9 2.1972 10000 9.2104
2.8 1.0296 10 2.3026 20000 9.9035
TABLE 13a.5

x e” e l—e™

0.00 1.0000 1.0000 0.0000

0.10 1.1052 0.9048 0.0952

0.20 1.2214 0.8187 0.1813

0.50 1.6487 0.6065 0.3935

0.75 2.1170 0.4724 0.5276

0.90 2.4596 0.4066 0.5934

1.00 2.7183 0.3679 0.6321

1.10 3.0042 0.3329 0.6671

1.20 3.3201 0.3012 0.6988

1.25 3.4903 0.2865 0.7135

1.50 4.4817 0.2231 0.7769

1.75 5.754 0.1738 0.8262

2.00 7.389 0.1353 0.8647

2.50 12.183 0.0821 0.9179

3.00 20.085 0.0498 0.9502

3.50 33.115 0.0302 0.9698

4.00 54.598 0.0183 0.9817

4.50 90.017 0.0111 0.9889

5.00 148.41 0.0067 0.9933

5.50 244.69 0.0041 0.9959

6.00 403.43 0.00248 0.99752

7.50 1808.04 0.00053 0.99947

10.00 22026.5 0.000045 0.999955

13a.8 A LITTLE MORE ABOUT e

The number e ~2.718281. . . plays a vital role in higher mathematics, physics, astronomy, and
other sciences. It often appears in a situation where it is least expected. For example, let us have
a look at the following problems:

(1) Itisrequired to partition a given positive number «a so that the product of all its parts is a
maximum. How to do this? Of course, each part must be greater than 1. It is known that
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the largest product for a constant sum can be obtained when the numbers are all equal.
Clearly, then the number @ must be partitioned into equal parts. But into how many equal
parts? Two, three, five, or what?

Techniques in higher mathematics enable us to establish that the largest product is
obtained when the parts are as close as possible to e.

For example, if we want to partition 10 into a number of equal parts such that they
are as close as possible to 2.718..., then we have to find the quotient
(10/2.718) = 3.678... that is approximately 4.

Then, we get the product
(2.5)* = 39.0625

which is the largest product that can be obtained from multiplying together (four) equal parts
of the number 10.
Observe that by dividing 10 into three or five equal parts, we get smaller products:

10\’ 10\’
— | =37 —] =32
&) = (5)
Again, in order to obtain the largest product of the parts of 20, the number has to be
partitioned into seven equal parts, because 20 +2.718 = 7.36 7.

Similarly, the number 50 has to be partitioned into 18 parts and the number 100 into 37
parts as

50 +2.718 = 18.4
100 = 2.718 = 36.8

(ii) Stirling’s Formula: To compute the product n! that stands for the product of all
natural numbers, from 1 to a certain number n is a tedious exercise. It may be
verified that

10! = 362800
25! = 15511210043330985984000000

In the eighteenth century, the Scottish mathematician James Stirling elaborated a formula that
could calculate factorials approximately:

n
n! =~ \V2nn (g)

where © = 3.141... and e = 2.718. ... Both these numbers play an important role in various
mathematical problems. Applying Stirling’s formula and using the tables of logarithms, it is
easy to obtain 25!~ 1.55 x 10%.

There are many other questions, considered mathematically, that involve e.

(Note (4): Both the problems given above are taken from the book Mathematics Can Be Fun by
Yakov Perelman, Mir Publishers, Moscow).
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13a.9 GRAPHS OF EXPONENTIAL FUNCTION(S)

The general exponential function (to the base a) is expressed by the formula
y=a,(a>0,a#1)

It is defined for all values of x.

Note (5): The restriction a# 1 merely excludes from our consideration the rather trivial
constant function y = flx) = 1" = 1.

Note (6): Since the exponent x (in ¢*) can be any real number, the question comes up as to how
shall we define something like a"?? Stated simply, we use an approximation method as follows:
First, a‘ﬁ ~a't = a7/5, which is defined. Better approximations are a4l = 14100 Ry gTaT
and ¢"*'*, and so on. In this way, a meaning of a 2 becomes clear. Thus, we can say that a* is
defined for all real x.

It is simple to calculate the points for drawing the graphs of y = 2%, y = 3%, and y =
(1/2)* = 27, The following table gives the value(s) of the function(s) corresponding to some
values of independent variable x. We consider the following three cases, concerning different
positive values of the base a in Table 13a.6.

The ordered pairs are now plotted in a two-dimensional Cartesian frame of reference. Since
the domain is the set of all real numbers, we join these points by a smooth continuous curve, as
shown in Figure 13a.3.

TABLE 13a.6

X -2 —1 0 1 2 3
Case (1) y=2" 1/4 172 1 2 4 8
a>1 y=3" 1/9 173 1 3 9 27
Case (IDa =1 y=1* 1 1 1 1 1 1
Case (IM 0 < a< 1 y=(1/2" =2~ 4 2 1 12 1/4 1/8

3

FIGURE 13a.3 Three graphs of the exponential function, y = a*, showing their behavior.
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Case (I):a>1: Leta = 2 and a = 3. The curve y = 3" draws a comparison with y = 2% and
shows how the graph changes as the base « (arbitrary constant) changes from 2 to 3.

Case (II): @ = 1: The graph of y = 1¥ = 1 is a line parallel to the x-axis, passing through the
point (0, 1). (We have excluded this case from our consideration and hence from the graph.)

Case (II): 0 <a <1: Let a = 1/2. The graph of y = (1/2)* is drawn to see how the curve
changes as a changes to less than 1, while remaining positive.

Observations: We make the following observations regarding the nature of the graph(s) of
y = a* for different (positive) values of a and real values of x.

1. Ineach case, the curve always passes through the point (0, 1), whatever be the value of a.

2. In each case, whatever be the value of x (+ ve, zero, or — ve), the value of y = a* is
always positive. Hence, the graph of every exponential function must completely be
above x-axis (i.e., in the first and second quadrants only). No part of the graph(s) will lie
in the third or fourth quadrant.

3. When a > 1 (see the graphs for 2% and 3¥), the following are the observation:

(1) For x>0: As x increases (or decreases), the value of the function y = a*
increases (or decreases) at a faster rate.®

(i) For x <0: As x decreases by having negative values, y also goes on decreasing
and the curve comes nearer and nearer to the x-axis on the negative side. However,
since y = a" can never actually become equal to zero, whatever x may be, the
graph will not touch x-axis. The x-axis is said to be an asymptote to the curve on
the negative side of the axis.

For negative values of x, the function y = a" (a > 1) increases (or decreases)

with x, but at a slower rate. Thus, the change of y depends, directly on the change
of x. The function y = a* (¢ > 1) is an increasing function.

4. When 0 <a < 1 [see the graph of y = (1/2)"], the observation is just the reverse.

(1) Forx <0: As x decreases (by having negative values), the value of the function
y = a" increases at a faster rate.

(i) Forx > 0: As x increases, y can take on values closer and closer to 0, that is, the
curve comes nearer and nearer to the x-axis on the positive side. However, since
y = a" can never actually become equal to zero, whatever x may be, the graph
will never touch x-axis. The x-axis is then said to be an asymptote to the curve on
the positive side of the axis.

For positive values of x, the value of the functiony = ¢ (0 < a < 1) decreases at a slower
rate as x increases. Thus, the function y = a* (0 <a < 1) is a decreasing function.

5. The graphs of the functionsy = a*andy = (1/a)* = a ™, are symmetric with respect to
the y-axis (see the graphs of 2 and (1/2)™).

Note that, the function y = (1/a)* can be written as y = a ™. It then follows that the values
assumed by a ~ * for positive x’s are the same as those assumed by ™ for negative x’s, having the
same absolute values and vice versa. This means that the graphs of the functions y = a* and
y = (1/a)® = a™* are symmetric, relative to the axis of ordinates.

© It means that when x increases (or decreases) by one unit, the corresponding increase (or decrease) in the value of y = a*
is more than one unit.
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13a.9.1 Notation

The exponential function to the base a is denoted by exp,,. It relates x to a*. We write
exp,; X —a*

Similarly, the exponential function to the base e is denoted by exp,. It relates x to ™. We write,
exp,: X — e

The logarithmic function to the base a (@ > 0, a # 1) is denoted by log, (read as log to the base
a). It relates x (x > 0) to log,x. We write

log,: x —log,x (for each positive x)

13a.10 GENERAL LOGARITHMIC FUNCTION

Definition: The general logarithmic function of x>0 (to the base a) is denoted by
log,x (a > 0,a # 1) and defined by y = log,x, if and only if, &’ = x.

(It is important to remember that to define a logarithmic function, we use an exponential
function.)

We know that if f and £~ ' are the functions that are inverses of one another, then their
composite in either order is the identity function. In other words,

FUH ) = x
FHf) = x
Since the functions exp, and log, are inverses of one another, we obtain the equations:
log,(exp,(x)) = x, orlog,a™ = x (for all x) (10)
exp,(log,(x)) = x, ord°%* = x (for each positive x) (11)

Note: Since log, is the inverse of exp,, the domain of log,, is the range of exp,, which is the set of
all positive numbers. Hence, we say that equation (11) is defined for each positive x.

Remark: Equation (11) says that we can represent any positive number X in an exponential
form. For this purpose, we must choose any positive number a (excepta = 1) as base and raise it

to the power of the logarithm of x to the base a. Thus, we can write,

d% = x(a@a>0,a # 1, x>0)
elor = x (x> O)7

) This equation, together with the expansion of e, permits us to expand e'°¢<* as an infinite power series. We may write
x = e = 1 +log,x+ (logﬁ.r) + M + ---This expansion will be found useful in evaluating certain limits,
including derivatives of @ (a >0, a# 1).
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In other words, the logarithm to the positive base a (a # 1) is the exponent to which we raise a
to get x.

Besides, equation (11) can be used to represent any power function x* (x > 0), with an
arbitrary exponent o in the form of a function of a function composed of the logarithmic and
exponential functions.

(8)
y = Yo = (alog(,x)a = log,x

13a.10.1 Graphs of Logarithmic Functions y = log,x

The graph of a logarithmic function can be obtained just by interchanging the domain and range
of the equivalent exponential function. Thus, to plot points for a logarithmic function log,x,
we use the equivalent exponential form: 2 = x.

If y = 0, then x = 1, giving the point (1, 0). Similarly, we find other points as follows:

y -2 —1 0 1 2 3
x 1/4 12 1 2 4 8
(X, y) (1/4, =2) (172, = 1) (1,0 2,1 “4,2) (,3)

[Remember that the domain of (log,x) is the set of all positive numbers and the range is the
set of all real numbers.]

Similarly, we may plot points for y = log, ,x, using the equivalent exponential function
(172 =xor27 Y = x.

y -2 —1 0 1 2 3
x 4 2 1 12 1/4 1/8
) @, —2) @ -1 (1, 0) 12, 1 (1/4,2) (1/8, 3)

We expect the graph of the log, function to be the curve that behaves with respect to the
Xx-axis as the exp, curve does with respect to the y-axis and vice versa (or, more informally, we
may say that if the axes of x and y are interchanged, the exp, curve becomes the log, curve and
conversely).

13a.10.2 Observations from the Graphs of Logarithmic Functions

The observations we make are mostly similar to those we have made for the graphs of
exponential functions.

1. All logarithmic curves pass through the point (1, 0).

2. The graphs lie in the first and fourth quadrants only. That is, the graphs lie entirely on the
right of the y-axis. From this observation, we get that logarithmic functions are not
defined for negative values of x. (What about x = 07.

3. For a > 1, the function is an increasing function. That is, as x increases, so does y and
conversely (this is clear from the equation 2* = x, which stands for log,x = y).

® Mathematical Analysis (English Translation) by A.F. Bermant and I.G. Aramanovich (p. 59), Mir Publishers, Moscow,
1975.

© Remember that for a >0, the equation log,x = y means @’ = x. Therefore, for x = 0, we get @’ = 0, which is not
possible (why?). Hence, logarithmic function is not defined for x = 0.
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FIGURE 13a.4 Logarithm functions with various bases.

For 0 < a < 1, it is a decreasing function, that is, as x increases, y decreases and conver-
sely (this is clear from the equation (1/2)” = x, which stands for log, X =)

4. The curve never meets the y-axis, since ¢” cannot be zero for any value of y.

5. For a>1, the curve y = log,x approaches the y-axis on its negative side but never
crosses it. The y-axis is said to be an asymptote to the curve on its negative side (see the
graphs of y = log,x, y = log,x, and y = log,x).

For a < 1, the same observation is made for the positive side of the y-axis. In this case, the
y-axis is an asymptote to the curve on its positive side (see the graphs for y = log, ,x,
Figure 13a.4.

The graphs of the logarithmic functions to the bases a and 1/a are symmetric with respect to the
x-axis (see graphs of log,x and log, ;,x in Figure 13a.4).

13a.10.3 Geometrical Relationship Between the Graphs of Mutually Inverse
Functions

We know that the following two functions are mutually inverse functions:

1 p— X

W y=e } (xER, y>0)

(i)  x = log,y

The relation (i) is in the index form and the relation (ii) expresses the same thing in the log form.

Itis important to note that these two equations really mean the same thing and that they describe

one and the same curve in the xy-plane. For the function e”, the axis of argument is the x-axis;

while for the function log,y, this role is played by the y-axis (Figure 13a.5a). Similarly, if

y = x° then x = /3. The graph of these relationships is a cubical parabola (Figure 13a.5b).
It is seen that although the calculations yield different points for plotting, the result is

identical, that is, the two curves are the same.

Important Note (8): Generally, we construct the graphs of two mutually inverse functions in
such a way that the x-axis is the axis of argument for both of them. For this purpose, we express
the two mutually inverse functions in the forms y = f{x) and y = ¢(x). The ordered pairs (for
plotting) are then calculated and graphed. All such graphs are symmetric about the line y = x
(for more details, see Chapter 2).

Note that, the following graphs of functions, are symmetric about the line y = Xx.
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Y y=e*
y=x
y y:x3
3
x=\/§ x=y3
————— 3 ;
/' =
X
0
’
'I
(@) )

FIGURE 13a.5

13a.11 DERIVATIVES OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS
We know that
. 1\» 1 1 1 1
(a) nlingc<1+;> e=l+mtmtg gt

xZ YS 4

1' 20 73Tl

(b) e*

d .
(©) a(e*) = e [This result is obtained by differentiating both sides of the result in

equation (b).]

Now, to find the derivative of the logarithmic function y = log,x, we use the following two
results:

(i) The logarithmic function y = log,x and the exponential function x = e” are
mutually inverse functions, of which we know the derivative of the exponential
function e’.

(@i1) For any pair of mutually inverse functionsy = fix)and x = f~ l(y), their derivatives are
related by the condition

dy 1 . dx
= = ded = £ 019
A~ ([djdy)  Provided @ #

19 The rule for the derivative of inverse function states as follows: If x = f{y) is a differentiable function of y such that the
inverse function y = f~ '(x) exists, then (dy/dx) = 1/(dx/dy) provided (dx/dy) # 0 (see Chapter 10).
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13a.11.1 Finding the Derivative of the Logarithmic Function
To find the derivative of the logarithmic function y = log,x, consider the equation
y = log,x (12)

We transform equation (12) into its equivalent exponential form.
‘We have,

x=¢ (13)

[Here, x stands for the function (i.e., the dependent variable) and y for the independent variable.]
Hence, differentiating both sides of (13) with respect to y, we get,

dx d
TP D) = 14
5 =5 =e (14)
The derivative of ¢” with respect to y is the original function unchanged.
Now, to compute the derivative of y = log,x, we use the formula

dy 1 o dx
== ded — # 01
dx ~ (dv/dy) Provided 55 7
1 d>
o | df; = ¢, by equation (14)
1
=3 [.. ¢ = x, by equation (13)]

Therefore, for the function y = log,x, we get
dy d 1 —1
= —(1 = = 15
2= Sllog) = = x (15)

This is a very curious result. Note that, x ~ ' is a result that we obtained by differentiating the
function log,x with respect to x, and that we could never have got it by differentiating the power
functions, as can be seen from the following results.

d
—dx(x) =x' =1
1
— () =x"' ==
x() x <

(D Note that, dx/dy = ¢’ #0, for any value of y.
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Ayl A s
() = ’dx(Z)_x

From the above list of derivatives, we note that by differentiating any power function, we
can never get the result x ~ . Thus, we can say that if there exists any function whose derivative
is (1/x), then such a function must be a new function other than a power function. We ask
the question:

Is there any function whose derivative is (1/x)?("?

Note that, we have obtained the function log,x whose derivative is (1/x). Thus, log,x is the
desired (new) function that fills up the gap noticed above. We call it the natural logarithm
function.

Recall that the definition of logarithmic function was encountered in algebra and it was
based on exponents. The properties of logarithms were then proved from the corresponding
properties of exponents.'>

Definition: The natural logarithmic function denoted by In (or log,) is defined by
X
1
Inx = log,x = ;dz, x>0
1

The properties of logarithms can be proved by means of this definition. However, to understand
this definition, we have to study the properties of definite integrals and the first fundamental
theorem of calculus. These topics are discussed in Part II of this book.

Now, let us try to differentiate y = log, (x + a).

Consider, y = log, (x+a)

oX+a=¢

Differentiating both the sides with respect to y, we get

.~_diy(x+a) = {._.djy(&) _ e}}

This gives

dx

e —
dy € X+a

U2) This is equivalent to asking the question: Is there any function that is antiderivative of 1/x? [Here, antiderivative is a
new term that stands for a (new) function such that its derivative must be equal to the given function].

In other words, we can say that if there is any antiderivative of 1/x denoted by f(x), then we must have
(d/dx)[f(x)] = 1/x. Later in Part II of the book, it is shown that the antiderivative of 1/x is log,x.
U3 In particular, to define the logarithm function y = log,x (x > 0), we used the exponential function x = ¢’ (y € R).
The condition, y = log,.x<>x = ¢’ means that a logarithm function and an exponential function with the same base are
inverse of each other.
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Now, for reverting to the original function, we use the formula
lim 1 -log, (1 + x)
x—0 X
We get

dy _
dx  x+a

d
— |note that & = x+a=¢& #0
dy

Thus, for y = log, (x+a), we have

Q_ 1
dx  x+a

Next, let us try to differentiate y = log,x. First, we must change log,x to natural logarithms
(why?). We get

y =log,x-log,e (here, log,eis a constant)
(14)

=log,x -
B log,a

cdy 11
“dx  x'log.a

(where log,a is constant)

In particular, for the function y = log,,x, we have

dy

d
P a(lOglox) =

11 04343 1
x log,10  x " log,10

= log,pe = 0.4343

13a.11.2 Finding the Derivative of the Exponential Function

To find the derivative of the exponential function y = a* (a>0, a# 1) is not very simple.
Taking the natural logarithm of both the sides, we get

log,y = xlog,a

oox = log,y- (16)

log,a
Note that, here the independent variable is y; hence, differentiating both sides of equation (16)
with respect to y, we get

dx 1 1 1 1

dy . log,a T log,a

(9 Any expression of the form log,e must be expressed in the form log,a, since tables are available for log to the base e.
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Now, reverting to the original function, we get

dy 1
dx — (dx/dy)

= a*-log,a

Thus, for the function y = a”* (¢ >0, a# 1), we have

dy d
a—a(a)—a log,a

Remark: We have obtained the following results:

d X
S = (17)
d ;
a(ax) = a*-log,a (18)
d 1
a(log‘,x) =3 (19)
d 1
~( =1 20
2 flog,2) = L -log,a (20)

From the above results (17)—(20), observe that the derivatives of exponential and logarithmic
functions assume simplest forms, if the number e is chosen as the base.
Also, note that for any constant

d

- ekx _ kekx

dx

i kx\ __ i X _ k
dx(a )7dx(b)(whereb7a)

b*log.b [using (ii)]

= " -log,a* = kd"* -log,a

Note (9): We have obtained the derivatives of exponential functions (¢* and «*) and those of
logarithmic functions (log,x and log,x) using the special property that (d/dx)(e*) = e* and
(the relationship) that the functions ¢’ and log,¢ (with the same base) are mutually inverse.
In fact, this is an indirect approach by which we could obtain their derivatives. Subsequently,
we shall obtain the derivatives of these functions by applying the definition of derivative, that is,
by the first principle.
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13a.12 EXPONENTIAL RATE OF GROWTH

The process of growing proportionately at every instant to the magnitude at that instant is called
the exponential rate of growth.

Definition: Unit Exponential Rate of Growth: It is the rate of growth that in unit time will
cause 1 to grow to the value 2.718281. .. (i.e., the value of e).

13a.13 HIGHER EXPONENTIAL RATES OF GROWTH

Let us find out what should be the meaning of twice (or thrice) the logarithmic rate of growth?

Observe that a unit logarithmic rate causes 1 to grow (in unit time) to e. Now, if the rate of
growth is doubled then 1 will grow to e in half the time, and during the remaining half the time
(at the same rate), the quantity e must again grow e times, resulting in total growth to e times.
Similarly, if the rate of growth is thrice the logarithmic rate, then 1 must grow to e, in unit time,
and so on. In general, if a quantity grows at the exponential rate, x units per unit time, then it
causes 1 to grow to e in unit time.

Remark: Note that in the statement y = e, the exponent x is the logarithm of the (positive)
number y to the base e. Since the value of the function e* changes with the exponent X,
some people say that the (exponential) function e™ grows at the logarithmic rate x. But since the
rate of change of the function y = e” is also given by the value of e* for every x € R [since,
(d/dx)(e¥) = e¥],itis logical to say that the exponential function e* grows at the exponential
rate e (see Figure 13a.6). Thus, both the statements about the rate of growth of e* given above
mean the same thing.

Note (10): In the case of any other exponential function whose base is a (positive) number a
other than e (a # 1), then its rate of change is different from the rate of change of e” for obvious

V =

0

FIGURE 13a.6 Graphs indicating growth (and decay) of the function, y = e", x € R.
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0

y=a*,a>1

FIGURE 13a.7 Exponential growth, y = a*, a>1 x € R.

reasons. Of course, all such exponential functions are said to grow (or decline) exponentially

(see Figures 13a.7 and 13a.8).
We know that

l n
lim (1+;) —e (neN)

n— oo

0

y=a",0<a<1

FIGURE 13a.8 Exponential decay, y = a¢*, 0<a<1 x € R.

(21)
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It can also be shown that

1 X
lim (l + ;) =e (x€ER) (22)
lim (1+x)/* =e (xeR) (23)
Furthermore, if f{x) — 0 as x — 0, then
lim (1 +kf(x)/HD) = ¢ (k £ 0) (24)
X —

In the process of defining the number e, we accepted the result (21). By applying (21), we can
prove the results at (22) and (23). Here, we shall accept the results without proof. Furthermore,
the result at (24) can be proved if we put kf(x) = t (where k # 0), since it can be then expressed
in the form (23).1%

The limits at (21)—(23) will be used as standard results. They are used for computing the
derivatives of logarithmic functions. Besides, they are used for establishing the following
standard limit that is needed for computing the derivative(s) of exponential functions.

13a.14 AN IMPORTANT STANDARD LIMIT

X

-1
= log,a.

. a
To prove lim
x—0

To prove the above result, we shall prove the following prerequisite results:

lim log,(1+x) _ 1
x—0 X log,a

Proof: Consider

lim log,(1+ x)

. 1
lim p = }ILI}) ;~loga(1+x)

= limologa(l—f—x)l/x

- 1oga[1im (1 +x)1/x]

—0
= log,e [using equation (23)]

1
= Tos.a (by change of base)

U5 Differential and Integral Calculus (Second Edition, Vol. I, pp. 49-50; revised from 1972 Russian edition) by
N. Piskunor, Mir Publishers, Moscow, 1974.
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Corollary:
log, (1
fim 2(EY) oo
x—0 X
Now, it is easy to prove the result
X _
}LmO = log,a
Solution: Put¢* — 1 =y
Lat =14y
x = log,(1+y) (by definition of logarithm)

Also, as x —0,y—0(-rasx — 0,a"—1 = y—0).

i a*—1 i y 1
im = lim =
x—0 X y—0 log,(1+y) . log,(1+y)
lim ——=
y—0 y
! 1
= = log,a
log,e B
.a -1
. Yhin0 P log,a (25)
Corollary:
X _
/\hﬂmo = log,e = 1
In particular,
X _ X _
/\!lino P log,7, vl% = log,e = 1.

Remark: Note that if f{x) — 0, as x — 0 and k # 0, then ¢t = k-f(x) — 0 as x — 0.

kf(x) _ 1 L1
lim ¢ — lim? = log,a

Rt kf (x) 1—0

13a.14.1 Derivative of Exponential Function a* (by the First Principle)
To prove (d/dx)(a*) = a*-log,a(a >0, a # 1).
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Proof: Let f(x) = a* (a>0,a # 1)

L feth) =t

N )= —
ow, 1-(a) = 1)
h b
fllimof (et /) F&) (Gefiition of derivative)
h— 1
ax+/1 a*
— i
it h
fim £ @ = 1)
T =0 h
L (d"=1)
=a1
a lzl—I*I}) h
=a"*-log,a [using equation (25)]
d X X
a(u ) = a*-log,a (26)
In particular,
d _.
= (5%) = 5"-log,5
o) og,
and
d
a(e’() =e*-log,e

=e*(".log,e = 1)

Recall that earlier we had proved this result by differentiating both sides of the result.

Y x2ox X
e = +X+§+?+ﬁ+

The result (26) can also be obtained as follows:

We have
d X+h _ . x
d—(ax) = ;}1m0%, (provided the limit exists)
X —
h
—1
=a* lim ( )
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Now, we can put " = ¢ft'loga(1®
d ) eh log.a __ 1
. —(a) = a* lim 7( )
dx h—0 h

2 3
— o lim <1+hlogea+ (hlogea)” | (hlogea)” , . > -1

2! 3!
= aflog,a+0+0+0+ -] (taking lim)

= a*-log,a

Note (11): By expressing " in the form e/ %4 we can expand it by using the exponential
series.

Corollary: Derivative of the Logarithmic Function log,x (by the First Principle):

We have
d 1 h) —1
i (log,x) = hhino M (provided the limit exists)
! (x+h)
N hhg%) EIOg”( X )

d . 1 x x+h
2 108a¥) = Jim, %;1°ga< X )

o h h o "
= fim, zl"ga(”;) = jm ;“’ga(”;)

Put (h/x) = t. Therefore, as h— 0,1 — 0. We get

4 (log,v)

L i) _ ] i Ve _
o p }EI%) log,(1+1) = ;logae ) th_I}})(l+t) =e

1
=—- (by change of base)

log,a

==

1 1
x log,a

d :
e (logy) =

(16 We know that any positive number x can be expressed in the exponential form as the following: x = ¢'°&* = plo&~ =

log, P log,. h = _hlog,
€%, .. where a, b, e, and so on are positive numbers other than 1. Now a = ¢'°%“. Therefore, a’ ~ e"°%“,



AN IMPORTANT STANDARD LIMIT

In particular,

1 1

d 1
“a = . == (1 =1
los) = Do = (loge = 1)

Corollary: If y = log,[f(x)] (@ >0,a # 1)
Then,

d d 1
ﬁ:@%mmamm;ﬂmwmmm

In particular, for y = log,[ f(x)],

o1 e

dx _m. (" loge = 1)

13a.14.2 Derivatives of Different Exponential Functions: Graphical View

We know that, if f{x) = e¥, then f/(x) = €.

389

We ask the question: Does something similar hold for exponential functions, with other

bases?

Consider the exponential functions, y = 4%,y = e*, and y = 2" whose graphs are given in

Figure 13a.9. We have the following:

_dy
For,y = e",— = ¢"
or,y = e, m=e
For, y = 2% = e¥log.2 g = (log,2)-e*
,y=2"= gy o
For, y = 4% = e¥log4 - b (log,4) -e*
Y =4 = gy loge

-2 -1 0 1 2

FIGURE 13a.9 Graphs of three exponentials.
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FIGURE 13a.10 Inverse functions and their derivatives.

Note that, at x = 0, the €™ graph has the slope 1, the graph of y = 2* has the slope log,2, and the
graph of y = 4" has the slope log, 4. The three graphs cross at the point (0, 1), but have different
slopes there.

For any other value of x, the slope of ¢ depends on « and it is log,a times the slope of ™ at
that value of x.

13a.14.3 Derivative of the Logarithmic Function: A Graphical View

We know that for any positive base, a # 1, the functions ¢* and log,,x are inverses of one another.
Geometrically, this relationship means that either graph can be obtained from the other by
reflection around the line y = x. Figure 13a.10 shows the graph for the case ¢ = e and illustrates
a crucial point. It is interesting to observe how such a reflection affects the tangent lines.

We notice the following features of the graph:

(1) Symmetric Points: A point p(x, y) lies on one graph if and only if the point p’(y, x) lies on
the other. Several such points are shown.

(ii) Symmetric Tangent Lines: Like the graphs themselves, the tangent lines at the
symmetric points are symmetric to the line y = x. It follows that the slopes of the
tangent lines at P and P’ are reciprocals. (This is a key fact!) At points (0, 1) and (1, 0),
the graphs of y = e*andy = In x are parallel to each other and to the line y = x (why?).

13a.15 APPLICATIONS OF THE FUNCTION e*: EXPONENTIAL GROWTH
AND DECAY

Earlier in this chapter, we have discussed exponential and logarithmic functions to the base e
and respectively expressed them by the following equations:

y =¢" (x ER) (27)
x =logy(x€R,y>0) (28)
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FIGURE 13a.11

We know that the relation (27) is in the index form, and the relation (28) expresses the same
thing in the log form. We emphasize that these two equations mean the same thing and that they
describe the same curve in the xy-plane.

Now, our interest is to discuss the applications of the exponential function e*. For this
purpose, we shall review (through geometrical illustrations) the growth of a capital by both
simple interest and compound interest, so that the capital is doubled in a given interval of time.

In Figure 13a.11, OP stands for the original value of a function representing the capital (or
the quantity). OT is the whole time during which the value is increasing (we treat this time
interval as the unit time). Let the time interval be divided into 10 (equal) periods, each of which
have an equal step-up; meaning there is an equal increase in the capital in each interval. We say
that the value OP increases at a constant rate. This is also clear from the straight line PQ sloping
up by equal steps. Here, dy/dx is a constant.

Note (12): To learn the subject of calculus, it is important to understand clearly the meaning of
the symbol dy/dx. We know that if y is a function of x given by y = f(x), then dy/dx stands for
the (instantaneous) rate of change of y [ =f(x)] with respect to x and it is generally different
from the “average rate of change” of y with respect to x, which we denote by (Ay/Ax). Itis only
in the case of functions of the formy = ax + b thatboth these rates are equal. This is so because
dy/dx also stands for the “slope of the curve” at a point that varies from point to point, but
the slope of the straight line is same at each point. Here, each step-up is 1/10 of the original OP;
so with 10 such steps, the height is doubled. If we had taken 20 steps, each being half the height
shown, at the end (of 20 steps) the height would still have just doubled. Obviously, 7 such steps,
each being 1/n of the original height OP, would suffice to double the height. This is the case of
simple interest.

Figure 13a.12 illustrates the corresponding geometrical progression. Each of the successive
ordinates is to be 1 4 (1/n) [i.e., (n+ 1)/n] times as high as its predecessor.'”

(7 Recall that in a geometric progression (or a geometric sequence), the ratio of each term to the one after it is a constant.
The general term of a geometric progression is expressed by ar”, where r represents the common ratio and a stands for the
firstterm (i.e., when n = 0).If r > 1, each term of the sequence increases with n, but if  is a proper fraction (i.e.,0 <r < 1),
then the terms keep on decreasing as n increases. Obviously, the general term of a geometric sequence represents the
n + D™ term.
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FIGURE 13a.12

The step-ups are not equal because each step-up is now 1/n of the ordinate at that part of the
curve. If we literally had 10 steps, with (1 + (1/10)) for the multiplying factor, the final total
would be (1 + (1/10))" or 2.593 times the original 1. But, if we take 7 sufficiently large (and
the corresponding (1/n) sufficiently small), then the final value (1 + (1/n))" to which 1 will
grow will be 2.7182818, and so on. Mathematicians have assigned this (mysterious) number the
English letter e. It is an irrational number (and a transcendental number). It is known that e is
even more important than 7.

The process of growing proportionality at every instant to the magnitude at that instant
is called the exponential rate of growth. Some people call it a logarithmic rate of growth,
since the quantity y (=¢”) grows with the exponent x, which is the logarithm of y to the
base e. It might also be called the organic rate of growing, because it is characteristic of
organic growth that (in certain circumstances) the increment of the organism in a given
time is proportional to the magnitude of the organism itself. Some such examples are as
follows:

¢ Some models of population growth assume that the rate of change of the population at any
time ¢ is proportional to the number y of individuals present at that time.

¢ In biology, under certain circumstances, the rate of growth of a culture of bacteria is
proportional to the amount of bacteria present at any specific time.

e We may recall an application of these phenomena in business. When interest grows
continuously, the number e originates in the process, as we have already seen.

o Itis known from experiments that the rate of decay of radium is proportional to the amount
of radium present at the given moment.

Besides, there are many physical processes in which something is gradually dying away.
Mathematical models of these processes involve differential equations whose solutions contain
powers of e. Some such processes will be discussed subsequently.

Now, we are in a position to discuss the phenomenon of growth and decay of a number (or a
quantity or an amount) whose rate of increase (or decrease) is proportional to the number
present at any given time.
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FIGURE 13a.13 (a) The curve showing exponential growth f(x) = bp/”, k> 0. (b) The curve showing
exponential decay f(x) = bp*~, k <O0.

Suppose y = f(¢) represents the number at time ¢ and (dy/d¢) or f'(f) represents the
(instantaneous) rate of increase of the number at time 7, then there is a positive constant k&
such that

dy

5 = koylies(n) = k(6" (29)

Also, we may consider a different physical phenomenon in which the number (or the quantity) is
decreasing at a rate proportional to the number present at that time. (This happens in the case of
a radioactive substance.) Then, the function f{(7) satisfies equation (29) for an appropriate
negative constant k. Thus, equation (29) describes two quite different physical phenomena:

(a) The situation(s) in which something representing a number (or a quantity) is increasing
atevery instant proportional to the number at that instant. In such cases, the number k is a
positive constant (see Figure 13a.13a).

(b) The situation(s) in which something representing a number (or a quantity) is decreasing
atevery instant proportional to the number at that instant. In such cases, the number k is a
negative constant (Figure 13a.13b).

Remark: Note that both the situations (defining the phenomenon of growth or decay) are
described only by a geometrical progression that is a function of the type f(x) = bp"x, where k
is a positive constant in the case of growth and a negative constant in the case of decay.

It would therefore be of interest to determine all such functions which satisty equation (29). [In

other words, we have to solve the differential equation (29).]

(8 Equation (29) involving the derivativef (t) [i.e., dy/dt] of the function y = f(7) is called a differential equation. We shall
discuss the formation of differential equations and their solutions in Chapter 9a (in Part II of this book).
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First, observe that the constant function 0 satisfies equation (29). Also, for f(¥) = X we

have f/(1) = ke*' = k-f(i¢) [ " = f(£)]. It follows that functions such as e also satisfy
equation (1) [recall that the exponential function e’ is the only function such that
(d/dr)(e") = €'].

Before we proceed to solve the differential equation (29), we make the following assumption
that is in fact an important idealization of the function f(¢).

We know that if y [ =f{(#)] is the population of a certain community, then by definition y is a
positive integer. However, to apply calculus to the phenomenon, we assume that y can be any
positive real number, such that y = f{(¥) represents a continuous function of t. The same logic
is applicable when f{¢) represents an amount or a quantity.

13a.15.1 Solving the Differential Equation (29)

Consider a mathematical model given by the equation, y = f(¢), involving the law of natural
growth or decay and the initial condition that y = yo, when ¢ = 0. Then, the differential
equation formed at equation (29) is

dy

T kylorf'(t) = kf(¢)]

where k is a constant and y > 0 for all ¢ > 0, with the initial conditions y = yo when ¢t = 0
[i.e., f(t) = f(0) when ¢ = 0]. [In the above equation, the time is represented by ¢ units
(from ¢ = 0 onward) and y represents the number of y units present (in the process) at any
time ¢.]

Separating the variables, we obtain,

d
2= kdi
y
On integrating, we get
d
Jl —k J di
y

.. log,

kt+ ¢, where cis an arbitary constant
kt

¥l

or ‘y‘ — ekt+e

— el.¢

Lettinge® = b, we get |y| = be*’, and because yis positive, we can omit the absolute value bars
and write,

y = b 1>0

Also, since y = yo when ¢ = 0, we obtain from the above equation b = y, when ¢ = 0. Thus,
we get
y = yo .ekt (30)(19)

(9 Note that, the function y = yo»ek’ represents a geometrical progression in which the base e > 1 and k is a constant for
the given phenomenon. Also, it is clear that y >0 for all >0 and that for t = 0, y = yo.
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Equation (30) gives us the form of the functions satisfying equation (29). We call it the solution
of the differential equation (29).

If k > 0, then equation (29) is the law of natural growth and equation (30) defines a function
that has exponential growth.

If k < 0, then equation (29) is the law of natural decay and equation (30) defines a function
that has exponential decay.

It must also be noted that in the case of exponential growth, f{(7) increases without bound;
whereas, in the case of exponential decay, f(¢) approaches 0 through positive values.

In fact,e ~ ¥ serves as a die away factor for all those phenomena in which the rate of decrease
(in our usual symbols dy/dr) is proportional at every moment to the value that is decreasing at
that moment.

13a.15.2

We give below some processes in which the solution (of the above differential equation) given at
equation (30) is applicable

¢ The cooling of ahot body is represented (in Newton’s celebrated “Law of Cooling”) by the
equation 6, = 6ge ~*, where 0, is the original excess of temperature of a hot body over
that of its surroundings, 6, is the excess of temperature at the end of time ¢, and k is a
constant, namely, the constant of decrement (here k depends on the amount of surface
exposed by the body and on its coefficients of conductivity and emissivity, and other
parameters).

e The formula

0, = Qe X

is used to express the charge of an electrified body, originally having a charge Q, that is
leaking away with a constant of decrement k (here k depends on the capacity of the body
and on the resistance of the leakage path).

¢ The oscillations given to a flexible spring die out after a time; and the dying out of the
magnitude of the motion may be expressed in a similar way.

13a.15.2.1 The Time Constant Inthe expression for the die away factore™ ki letus replace
k by another quantity (1/7). Then, the die away factor will be written as e(~%7) (note that
the quantity & is represented by the reciprocal of another quantity 7, which we call the time
constant). Now, we may explain the meaning of T as follows:

In the die away factor e(=/T) ifwe putt = T, the meaning of T [or of (1/k)] becomes clear. It
means that 7'is the length of time that the (die away) process takes for the original quantity (6, or
Q. in the proceeding instances) to die away to (1/e)™ part (i.e., to 0.3678) of its original value.

Example (1): Consider a hot body that is cooling. Suppose at the beginning of the experiment
(i.e., when ¢ = 0), it is 72° hotter than its surrounding objects. Let the time constant of this
cooling be 20 min [which means that it takes 20 min for its excess of temperature to fall to (l/e)th
part of 72°]. We can then calculate its temperature at any given time. For instance, suppose we
wish to find the temperature of the hot body after 60 min. Here, # = 60 min and 7 = 20 min.
Therefore, (#/T) = 60 +20 = 3. Now we can find the value of e ~ 3 (from Table 13a.5] and then
multiply the original difference of temperature, that is, 72°, by this number. The table shows
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that e > is 0.0498. Hence, at the end of 60 min, the excess of temperature will have fallen to
72° % 0.0498 = 3.586°.2%
Similarly, we can compute the temperature of the hot body after 30 min. Here, # = 30 min
t _ 30

and T (i.e., time constant) = 20 min. .". z = 55 = 1.5

From Table 13a.5, we get thate = (0.2231. Hence, the temperature of the hot body after
30 min will be around 72° x 0.2231 = 16.063°.
Now, we proceed to discuss some real-life problems.

— 1.5

Example (2): The rate of increase of the population of a certain city is proportional to
its population. In 1950, the population was 50,000 and in 1980 it was 75,000. (a) If y is the
population after ¢ years since 1950, express y as a function of z. (b) Estimate analytically what
the population will be in 2010.

Solution: Let y = f(¢) denote the population after ¢ years for #>0. The differential
equation is

% = kylorf'(t) = k-f(2)] S

We know that the solution of the differential equation (31) is given by

v = yoe! for f(r) = f(0)e" (32)

where k is a constant and yo = 50,000, when ¢t = 0 [f{0) = 50,000, when ¢ = 0] (this is the
situation in the year 1950).
The following table indicates the boundary conditions:

Units of time 7 (in the year) t = 0(in 1950) t = 30 (in 1980) t = 60 (in 2010)
Units of population y (in numbers)  yo = 50,000 = fl0) y30 = f(30) = 75,000 yg = f(60) =?

Now, in view of the solution at equation (32) and the boundary conditions, we have
£(£) = 50,000e*" (33)

and our interest is to find f{60).

In order to find f{(60), we first determine the value of k and then apply the formula (32) to
obtain the value of f{60) (or yeo). It is given thatin 1980 (i.e., after 30 from 1950) the population
has grown to 75,000. (Thus, y(30) = 75,000).

Using this information in equation (33), we get

75,000 = 50,000e°%

75,000 3
30k ’

- _2 34
¢ 50,000 2 (34)

©O Calculus Made Easy by S.P. Thomson (a fellow of Royal society), published in 1948.
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Now, it is easy to compute f{60). We can utilize the information of equation (34) in equation (33)
as follows:

We have
f(1) = 50,000e"

or
(1) = 50,000 (e3°’<)’/3°[-,- kt = (30K) ﬁ

Now, we can put ¢ = 60 in the above equation so that we get

3\° 9
£(60) = 50,000 5) = 50,000 - 1
=12,500 x 9
=1,12,500
Thus, the population in the year 2010 will be 1,12,500.  Ans.

Example (3): The rate of decay of radium is proportional to the amount present at any time.
The half-life of radium is 1690 years and 20 mg of radium is present now.

(a) If y mg of radium will be present ¢ years from now, express y as a function of 7.
(b) Estimate how much radium will be present 1000 years from now.

Solution: The boundary conditions are recorded in the table given below, where it is indicated
by Y1000, the units of (the material) radium in milligrams that will be present after 1000 years
from now.

Units of time ¢ (in years) 0 1690 (half-life of radium) 1000 years
Units of radium (in mg) 20 10 [=y] Y1000 (remaining quantity)?

The differential equation is

dy
~— k 35
il (35)

where k is a constant and y = 20 when ¢ = 0 [we say y, = 20 = f(0) when ¢ = 0].
The solution of the differential equation (35) is known to be

y = yoek' = 20eK = f(r) (36)

Our interest is to find the value of y;goo or f{1000).
It is given that y = 10 when ¢ = 1690.
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Therefore, from equation (36), we get
10 = 20e 6%
or

elGQOk _ E _ 1 (37)

20 2

Now, we can compute the quantity Yggp [or f{1000)] using equation (36), along with the
information available at equation (37). From equation (36), we have

f(t) = 20ex
o f(t) =20 (e!99%)/190 (yhere 1 = 1000)
1\ /1960
£(1000) = 20 (5)
1 1000/1960
=20-(§) (-1 = 1000)
1 0.5917
=20-(3)
~ 1327

Thus, 1000 years from now, 13.27 mg of radium will be present out of 20 mg. Ans.

Example (4): In a certain culture, the rate of growth of bacteria is proportional to the amount
present. Initially, 1000 bacteria are present and the amount doubles in 12 min.

(a) If y bacteria are present at ¢ min, express y as a function of ¢.

(b) Estimate to the nearest minute how long will it take for 10,000 bacteria to be present.

Solution: The following table gives the boundary conditions where y bacteria are present at
t min. Suppose that it will take # min for 10,000 bacteria to be present.

Units of time # (in min) 0 12 t?
Units of bacteria (y in numbers) 1000 2000 10,000

The differential equation is

&y _

i ky (38)

where k is a constant and y = 1000 when ¢ = 0 [we say yo = 1000 = f{(0) when ¢ = 0].
The solution of differential equation (38) is known to be

y = yoe orf(t) = 1000e*’ (39)
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Our interest is to find the value of 7 when f(#) = 10,000. But, it is given that y = 2000 when ¢ =
12. From this information, we obtain from equation (39)
f(12) = 1000e' or 2000 = 1000e'%* [ -, (12) = 2000].
. 2000
ol2k _

T 1000 (40)

We use equation (40) in equation (39) to obtain the value of ¢ for which f{#) = 10000. Equa-
tion (39) tells us that fz) = 1000e'** or f(r) = 1000(e'*)"'2. Now, 10,000 = 1000(2)"*
[kt = 12k(1/12)).

. 10,000 = 1000(2)/"?

. (2)t/12: 10

L

12

. 12log,10
~ log2

~ 12[2.3026]
T 0.6931

276312
T 0.6931

log,2 =1og,10

(using Table 13a.4)

= 39.86 (using calculator)

Thus, in 40 min, 10,000 bacteria will be present. Ans.

Definition: The time that a population takes to double is called its doubling time.
If the population grows exponentially with doubling time d; then, that time ¢ is given by

F(1) = f(0)2"/

Definition: The half-life of a radioactive substance is the length of time it takes for half of a
given amount of the substance to disintegrate through radiation.

Note: The half-life of C'* by international agreement is 5568 years. However, recent measure-
ments indicate that the half-life of C'* is actually closer to 5730 years.

If the half-life of a substance having exponential decay is & years and f{0) units of the
substance are present now, then f{¢) units will be present in ¢ years, where () = f(0) (ﬁ)' !



13b Methods for Computing
Limits of Exponential and
Logarithmic Functions

13b.1 INTRODUCTION

In Chapter 13a, we have studied exponential and logarithmic functions and plotted their graphs.
In this Chapter, our interest lies in learning the methods that help in computing limits of functions,
which are in the exponential form, and those that involve exponential or logarithmic functions."”

For this purpose, it is useful to review in brief the topic of logarithms and then see how to
evaluate limits of these functions. For convenience, we will also list some basic limits and some
standard limits, which were proved (or accepted) earlier.

13b.2 REVIEW OF LOGARITHMS

If three numbers a, b, and ¢ are related such that,
" =cla>0,a#1) (I

then, the exponent b is called the logarithm of ¢ to the base a.
We write,
log,c=b (1)
Definition: Let a be a positive real number (a # 1) and y be any given real number. If there is a
number x such that
at=y

then x is called the logarithm of y to the base ¢ and we write log, y = x.

13b-Methods for computing limits of exp tial and logarithmic functions

M Here are some examples of the type of limit(s) that we will learn to evaluate:

54 x\ ¥y . log x — log 2 log x — 1 gsinx _
im (25) " im & ;lim (x — 3)Y09, gim (Y TO8L) iy (28T ) i (S ;
x—=0\5—x x—0 X x—4 x—2 x—2 x—e x—e x—0 sin x

. (12"' -4 -3 +1
lim | ———
X sin x

); and so on

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Note (1): From the above definition, we have
() If a* =y (1)
thenlog,y = x (2)
Substituting for y [from equation (1)] in equation (2), we get
log,a* = x (3)<2)

Again, substituting for x [from equation (2)] in equation (1), we get

alogay =y (4)(3)
(i) @' =a, .. log,a=1 (5)
(iii) @® =1, loga=0 (6)
13b.2.1 Laws of Logarithms
() log,xy =log,x + log,y
(11) logaf = logax - logay
(iii) log,x" = mlog,x
(iv) Change of base:
log,x
lOga.X Tme B (7)

- log,b
If we write x = b in the above equation, we get

_logyb 1
" logya  logya

log,b

(- logyb=1) (8)
The relation (7) tells that we can express log,x in terms of log,x, wherein the base a is changed
to a new base b, log,a being a constant.

Next, the relation (8) tells us that log,a -log,b = 1.

‘We know that there are two important bases: 10 and e. In the system of logarithms, which we
use in our day-to-day calculations (such as in the field of engineering), the base 10 is found to
be the most useful. Logarithms to the base 10 are called common logarithms. Logarithms
to the base e are called natural logarithms and they are useful in calculus.®”

(Recall that if the base is e, then the result of differentiating the functions log,x and e*
assume simpler forms.) Besides, for all practical purposes, we can always convert back and
forth between natural and common logarithms. Therefore, throughout this course, we are going

@ Equation (3) tells that any real number x can be expressed in log form.

) Equation (4) tells that any real number y can be expressed in exponential form.

“ The logarithmic base e is “natural” only in the sense that it is “naturally convenient” in order to make the standard
process of differentiation work out simply for a logarithmic function (for details, see Chapter 13a).
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to use natural logarithms only. We may or may not write the base. Thus, even when we write
logx, we shall mean log,x.
Note (2):

(i) loge =log,e =1 [see equation (5)]
(i) loge® =log,e* = x [see equation (3)]
]

(iii) e°¢* =el%%¥ =y [see equation (4)

13b.3 SOME BASIC LIMITS

The following basic limits are used for evaluating the limits of exponential and logarithmic
functions.

1. Xhin a* = a”, whenever a? is defined.
2. ki) ff0<a< 1, then Vlingoax =0(x€ER).
@ii) If a > 1, then xlinéc a* =00 (xER).
3. If p>1, then llrrlplogax = log,p.
4. (i) If a>1, then lim log,x = oo.
x— 00

(i) If 0<a< 1, then lim log,x = —oo0.

X — 00

In Chapter 13a, we have seen that

. ,,ILH;O (1—5—%)”:6 (neN) 9)
It can also be shown (by substitution) that

. X]er;g (l—i—i)x:e (xeR) (10)

-Pgh(ux)‘/":e (x €R) (11)

o lim (1+ k()" =e (k #0) (12)

Note: Limits at (9)—(11) are considered as standard limits. The limit at (12) can be expressed in
the form (11) by substitution, and then we can use the standard result (11).
The following important limits have already been proved in Chapter 13a.

1 1 1
1. limwzlogae:— (13)
x—0 X log,a
. at—
2. }Ln1() P log,a (14)
e’ —
Corollary: 1irr%) = log,e = 1.
X —
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Note (4): The limit at equation (13) is not considered as a standard limit. However, it is a very
important limit, since it is used in proving the limit at equation (14), which is treated as a
standard limit.

First, we will evaluate certain limits that can be evaluated by applying the results given in
equations (9)—(12). Later on, we will recall the proof of the result (13) and then evaluate certain
limits wherein the result (14) is applicable.

3425\ ¥
E le (1): i

3\ 4 x3N
Solution: vanl() ( . Zx) = Yan}) <m> = L (say)

2y 1/x
First consider lim (1 + ?)
X —

(If we put 2x/3 = ¢, then 3/(2x) = 1/¢t. Furthermore, note that as x — 0,¢ — 0 and 1/t — 00.)
. 2\ /267213 . 9 2/3
[ (142" o]
— ¢2/3 since {lin}) 1+ = e}
t—

Next, consider,

1
lim (1 — (2x/3))""*

—(1/x) —(3/2x)72/3
lim (1_%) :{nm (Ji) }
x—0 3 x—0 3
(3/2x)7—-(2/3)
{Hm (1 —z—x) } — e (2/3)
x—0 3

=3 Ans.

X —00

) 2x +3 x+1
Example (2): lim
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2 2
Solution: L = lim x+3 x+3
x—oo \ 2x — 1 Hoc 2x —1

1+ (3/2x)\" [1+(3/2x)
(1— 1/2x)) (1 —(I/ZX)>
14 (3/2x))" (1 +(3/2x))
—(1/2x))" (1= (1/2x))

X — 00

lim (
(
Now, consider,
3 X
1+
(1)

2¢/3] /2 3 2x
lim |1+ — Asx—o0o, — —0, and — — o0
2x 2x 3

X —00

3/2

=e’/?, since lim (1 + t)l/t =e, where t = 3/(2x)

X —

Next, consider,

1 —2x| )
= {lim (1 —7) } =e (1/2)
X — 00 X

2 (140 _ i _ 2 ap
e~(1/2) (1+0)

Note that,

. N\ 1\ 1
xlglgc (1 N E) = xcango (1 + —Zx) = 1 2x
i |1+ (=5 )|
X — 00 —2x

405

Furthermore, note that as x — oo, (1/ —2x) — 0 and 2x — oo. Accordingly, the limit in

question (in the denominator) is e 1/2

Example (3): Evaluate; lim1 X/ (x=1)
xX—

Solution: Let lim x(/&—1) =

X —
Put x — 1 =¢. Therefore, x=1 + t. Note that, as x — 1, t — 0,

L=1lim(1+0)""
t—0



406 METHODS FOR COMPUTING LIMITS OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

But lim (1+0)/" =e¢

x—1

the limit in question =e. Ans.

Example (4): Evaluate; lim4 (x — 3)('/ (x=4)

Solution: Let lina (x =34 —
X —
Put x — 4 =1t. Therefore, x =4 + t. Note that, as x — 4, t — 0,
L=lim@+7—3)" =1im (140"
t—0 t—0
(Note that, as 1 — 0, (1/1) — 00.)
L=1lm(1+0" =e. Ans.

t—0

Exercise (1): Evaluate the following limits:

(1/x)
o)
1/x)
(i) 11 (1 )

—

34+ (1/x)
1
(iii) 1m e )
2 (1/x)
@iv) hm (5 + )
5—
) 11m (3+2 )
3—2x

(viid) lim (x — 3)(1/x=4)

Answer:
(i e
(i) e 12
(iii) e
@iv) e’

(V) e4/3
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(vi) e’
(vii) 1/e
(viii) e
(3) Now, we recall for convenience, the proof of the result (15) that was proved in Chapter 13a.
This is an important limit.

To show that
o log (142) 1

x—0 X " log,a (15)
Solution:
Consider
. log,(I+x) . 1
tiy P i o (1 +-)
= lim log, (1 + x)!"/?
x—0
=log, {hmo (1+ x)(l/“ﬂ
=log,e (using C)
1
= og. (by change of base) (Proved)
Corollary:
1
fim 020+ _
x—0 X
Solution:
_ oo log(l+x) o 1 o (1/%)
= }%T = ggrr})gloge(l +x) = ;Ln})loge(l + Xx)

=log,e =1 (Proved)

Important Note (5): We know that the limit (15) is not considered as a standard limit.
Hence, we cannot use this result directly in evaluating other limits. Accordingly, to evaluate any
limit that involves logarithm of a function, we must express the inner function in a suitable
standard form whose limit can be evaluated using standard limits. We proceed as follows:

(i) Use suitable substitutions and the properties of logarithms to simplify the given limit.

(ii) Express the given expression in the form of a logarithm of an expression and then
modify the inner function suitably so that its limit can be evaluated using standard
limit(s).

(iii) Evaluate the given limit by expressing the limit }IHL log,[f(x)] in the form

log, [ lim f(x)].
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The following solved examples indicate the various steps involved.

Example (5): Evaluate
1 _
o 108X log 3
x—3 x—3
Solution: Let

1 —log3 ®)
lim 28X~ 08>,
x—3 x—3

Put x — 3 =t. Therefore, x=3 + t. Note thatas x — 3, ¢t — 0.

Thus,

1 — 1 1
I hmwzhm,(log(ﬂ»
1—0 t (=0t 3

AW/ A 6/070A)
= }E‘[‘(l)log(l +§) = log [’l% <1 +§) :|

[Note that, ast— 0, (¢/3) —0.]

L=loge'?® = (1/3)log,e = (1/3) Ans.

Note (6): When we are considering logarithms to the base e, it is conventional not to write the
base e. Thus, log x means log,x.

Example (6): Evaluate
logx —1
im og X
x—e X —¢€
Solution: Let

logx—1
X—e X —€ B

) Note that the method of substitution is very important in converting the given expression to the desired form.
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Put x — e =1t. Therefore, x =¢ + ¢. Also, note that as x — e, t — 0.

[ lim<log(e +1)— 1)

t—0 t

1 1) —1
:m(w) [+ loge = 1]

1 ; A7)
= lim (7logi) = lim log(l +—)
t—0\ t e 1—0 €

A /00
= log [lim (1 +7) ]
t—0 c

[Note that, asz— 0, (¢/e) —0.]

1 1
L =logel/c =—log, e =— Ans.
e e

Example (7): Evaluate

lim log 10 4 log(x + 0.1)

x—0 X

Solution: Let

=L

lim log 10 4 log(x + 0.1)

x—0 X
Consider, log 10 4 log(x + 0.1)
10x + 1)

=log 10 + log( 10

=log 10 + log(10x + 1) — log 10 = log(1 + 10x)

Therefore, the given limit can be expressed in the form

log(1 + 10 1 _
L= tim 280109 L el + 10w) = lim log(1 + 10x)"/"
X — X —

x—0 X x—=0X

10 710
= limolog [(1 + 10x)(1/10x)] = log {limo(l + 10x) /100
X X—

=loge'” = 10log,e =10  Ans.

409
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Exercise (2): Evaluate the following limits:

log x +log?2

? [AHSZ (1/2)]

log(1 + (8x/3))
x

log(5 + x) — log(5 — x)

® lim,

(ii) lim [Ans: (8/3)]

(iii) lim [Ans: (2/5)]

(iv) }Lrnzé [log(3 + x) —log(3 — x)] [Ans: (2/3)]

13b.4 EVALUATION OF LIMITS BASED ON THE STANDARD LIMIT
xliiIlO ((@* = 1)/x) = log,a, where a >0 (we have proved this limit in Chapter 13a).
Corollary: Replacing a by e, we get

e —1

lim
x—0 X

=log,e =1

Furthermore, if f{ix) — 0 as x — 0 and k is a nonzero number, then

t=k-f(x)—0 as x—0

L
, J—
= Jim —— =log.a
Example (8): Evaluate
a* —b*
lim
x—0 X
X _ X Y1) — (b — 1
Solution: lim & b — lim (a )= (b )
x—0 X x—0 x
X _ X
im @D D)
x—0 X X

= log,a —log,b

= log‘,% Ans.
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Example (9): Evaluate

3% -1
lim
x—0 X

Solution: Let

3% -1
lim ( ) =L
x—0 X

38x7 1 38x7 1
L = lim = {lim } -8
x—0 X x—0 8x

Put 8x=1¢. Then, as x — 0, t — 0.

r_
L:lim<3 1)~8
t—0 t

= (log,3)-8

= 8-log,3 Ans.

Example (10): Evaluate

e¥ —e*
lim —
x—0 sinx
Solution:
X _ a—X e2x _
lim = lim =L, say
x—0 SsInXx x—0 e¥sinx
1 1 e -1 2x 1
L=1 (szf c— —| = lim L
x—0 sinx e x—0 2x sinx e

(e —1) 2x 1
2x sinx e

2x
¢ 1)~2(1im = ) lim (i)
2x x—0sinx/ x—0\e"
1 1
~2(lim - ) lim(—,>
x—0sinx/x/) x—0\ e
! lim i
lin})(sinx/x) x—0\ e~

e —1 . sinx
=log,e=1, lim
x—0

[\

=1, and lim e* =1
X x—0

=(1)-(2)-(1)- (1) [ lim

t—0
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Example (11): Evaluate

. (ab)" —a* = b+ 1
/\!1310 x2

Solution: Consider, (ab)* —a* — b* + 1
=a'b*—a*"—b"+1
=a"(b*-1)=1(0* - 1)
— (B 1)@ 1)

(b~ 1~ 1)

The required limit = lim

x50 x2
—lim(a —1)‘(b' —1)
x—0 X X

Example (12): Evaluate

oa +a -2
Li e e
x—0 X
Solution: Consider a* + a x—2
1 2 _ g% 4] X 2
a2 (@ DT i the simplified numerator,)
a* x2 a*
(@ -1

The required limit = lim ~—
x—=0 Xx=-a¥

X _ 2 x _ 112
= lim <“ 1> Jim L = [lim a 1} lim -
x—0 X x—0a* x—0 X > )

1
= (logea)zﬁ = (log,a)* -1 = (log,a)’ Ans.

The following example explains clearly the approach for evaluating limits involving exponen-
tial functions:

Example (13): Evaluate

3 -1
lim
x—0 tan3x
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Solution: Let
3]

x—0 tan 3x

First, consider only the numerator:

31
3SX—1:( = )-Sx

Now, consider the denominator:

1 1 1

tan3x (sin3x)(1/cos3x)  (sin3x/3x)-3x-(1/cos3x)

o [((3™ —1)/5x) - 5x]
L= lm, [((sin3x)/3x) - 3x - (1/cos 3x)]

(3% = 1)/5x) - 5x

L= vhino (sin3x/3x) (5x/3x)(cos 3x)
= (log3)- g 1= g(log 3) Ans.

Note carefully the important points in evaluating limits in the following two examples:
Example (14): Evaluate

12 44— 3" — |
m-— =
x—0 X

Solution: Let

12 +4¥—-3"—1
m-— =

li L
x—0 X

L i U2 D@ D - (31
x—0 X

(Note that the last two bracketed terms in the numerator keep the numerator unchanged.

g (2D @) (3o
x—0 X X X

=log,12 + log,4 — log,3

. (12><4>
~ log, (

=log,16 Ans.
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Example (15): Evaluate
12X -4 -3+ 1
llm e —
x—0 X s1n x

Solution: Let
12Y 4% 3% 4]
lim —m78M =

- L
x—0 Xxsin x

[The points of difference between Examples (6) and (7) are as follows: In this example
12% = (—4)"(—3)". This suggests that numerator can be factorized. Note that this was not the
case in Example (6). Furthermore, the denominator has a product of two functions that may
be suitably adjusted to apply the standard result(s).]

4¥.3% 4% _3¥ 4]

. L= lim -
x—0 X sin x
453 —-1)—-1(3* -1
I e (A )
x—0 X sin x

This form of expression suggests that both the denominator and the numerator must be
multiplied by x. Thus, we get

— lim B3 -1 -1 X
x—0 xsin x X
- Iim 3—-1) 4" -1 1

x—0 x x LX
sin =
X

L =log,3-log,4-1 = (log,3)(log,4) Ans.

An important point here is that both problems look alike at a glance, but the distinction between
the two must be carefully noted. This should help in solving similar problems.

Exercise (3): Evaluate the following limits:

X 4 px 2x+1
(i) lim a+b -2
x—0 X

A —d — a1
i) lim ——m8M———
x—0

X sin x

5F—-57%-2

G im0 2
(iii) o x?

15 =5 -3 +1
(iv) lim +

x—=0 /2 —cos2x — 1
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W) 1i et —e =2
v) lim ————
x—0c0s 3x — cos 7x
sinx 1
(vi) lim —
x—0 SInx
6" —3"—-2*+1
(vii) lim 2~ — =2 1
x—0 X

2x_1

(viii) lim
x—0 tanx

Answers

(i) log (i—b>

(i) %log%

(iii) (log 5)

@(v) 1

(v) =2

(vi) log5

(vid) (log2) (log3)
(viii) 2 log 5



14 Inverse Trigonometric
Functions and Their Derivatives

14.1 INTRODUCTION

We introduced the concept of the inverse of a function in Chapter 2. 1t is useful to review
this concept before we discuss inverse trigonometric functions. Functions that always give
different outputs for different inputs are called one-to-one. Since each output of a one-to-one
function comes from just one input, any one-to-one function can be reversed to turn the outputs
back into the inputs from which they came. Thus, a function has an inverse if and only if it is
one-to-one. The function defined by reversing a one-to-one function f [which means that
each ordered pair (a, b) belonging to f, is replaced by a corresponding ordered pair (b, a) in the
new function] is called the inverse of f and denoted by f .

Example (1): Consider the function y = X1t gives different output(s) for different input(s).
Hence, it is a one-to-one function. On the other hand, the functiony = x? can give the same
outputs for different inputs. (Check for the inputs 1 and —1, v/2 and —v/2, —3 and 3, etc.)
Hence this function is not one-to-one. However, if we restrict the domain of this function to
non-negative numbers then the same expression (with restricted domain), that is, y = xz,
x > 0, defines a one-to-one function. This example tells us that by restricting the domain of
a function suitably, it is possible that a given formula (expression) defines a one-to-one
function. This fact is specially used when we consider inverse trigonometric functions.

Now, consider the graph of y = f(x) = +/x shown in Figure 14.1.

The function y = /x is defined for all x > 0 and its range is y > 0. For each input x, the
function f gives a single outputy = ,/X¢. Since every non-negative y is the image of just one x
under this function, we can reverse the construction. That is, we can start with y > 0 and then go
over to the curve and down to x = y°, on the x-axis. [This is indicated by the arrows starting
from y, (on y-axis) and reaching (on to the x-axis) the point x = y(z)]. This construction
in reverse defines the function g(y) = y?, the inverse of f(x) = /X. Thus, the inverse of
y =f(x) = Vxisgiven by x = g() = y* [or x = f'(») = y’].

14-Inverse trigonometric functions and their derivatives

@ The term one-to-one function stands for a function which is one-one and onto (Chapter 2).

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Ay
y=1x
Yo >
Vx|
A
v X
0 %o Y6

FIGURE 14.1

Note (1): Each pair of inverse functions (here, f and g) behave opposite to each other in the
sense that one function undoes (i.e., reverses) what the other does. The algebraic description
of what we see in Figure 14.1 is that

g(f(x) = (Vx)? x}
fe)) = () =y

Observe that, in the above equations f'is the inverse of g. It must be noted that an inverse
function associates the same pair of elements, as in the original function, but with the object
and the image interchanged. In the inverse notation,

g=f"

Note (2): Not every function has an inverse, as in the case of y = X* (x €R).
Whenever a function

y = f(x) (1)
has an inverse, we can write it as
x=f7'0) (2)

provided (1) can be solved for x uniquely.
Both the functions at (1) and (2), if they are defined, describe one and the same curve in the
xy-plane.

14.1.1

The independent variable for the function fis x, while for the function f~' the independent
variable is y. If we wish to denote the argument in formula (ii) by x [i.e., if we wish to write
x = fY(y) in the form y = £~ (x)] in a single coordinate system, we get two different graphs
which are symmetric about the line y = x. They represent two mutually inverse functions.

The graphs of the two mutually inverse functions are given in Figure 14.2. The graph of a
function and its inverse are symmetric with respect to the line y = x.

14.1.2 Distinguishing Geometrical Properties of One-to-One Functions

We know that a vertical line can intersect the graph of a function at one point only. For a one-to-
one function, it is also true that a horizontal line can intersect a graph in at most one point. This is
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y=g(x)=x>

y=f)=x

FIGURE 14.2

the situation for the one-to-one function defined by y = x> whose graph appears in Figure 14.3.
On the other hand, observe in Figure 14.4 that for the function defined by y = x?, which is not
one-to-one, any horizontal line above the x-axis intersects the graph in two points. We have,
therefore, the following geometric test for determining if a function is one-to-one.

Y

FIGURE 14.3
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~
1l
=

FIGURE 14.4 Graph of a function which is not one-to-one.
14.1.3 Horizontal-Line Test

A function is one-to-one if and only if every horizontal line intersects the graph of a function in
at most one point.

Note (3): We use the terminology “inverse functions” only when referring to a function and
its inverse.

Note (4): The criterion that a function be one-to-one, in order to have an inverse may be very
hard to apply in a given situation, since it demands that we have complete knowledge of the
graph. A more practical criterion is that a function be strictly monotonic (i.e., either strictly
increasing or strictly decreasing). This is a practical result, because we have an easy way of
deciding if a function f is strictly monotonic. We simply examine the sign of f/(x). If f'(x) >0
the function fis strictly increasing on its domain but if f'(x) < 0, fis strictly decreasing. These
results are proved in Chapter 19a. Later on, in Chapter 20, it is proved that a strictly monotonic
function is one-to-one, showing that all such functions have inverses.

The six basic trigonometric functions (sin x, cos x, tan x, cot x, sec x, and cosec x of the real
variable x) are defined in Chapter 5. Since all these functions are periodic (and hence not one-
to-one), none of them has an inverse. We can however, restrict the domains of these functions in
a way to allow for an inverse.

14.2 TRIGONOMETRIC FUNCTIONS (WITH RESTRICTED DOMAINS)
AND THEIR INVERSES

We begin with the sine function, y = sin x, whose graph appears in Figure 14.5. Observe from
the figure that the sine function is strictly increasing on the interval [—(1/2)m and (1/2)=].
Consequently, from the horizontal-line test (see Section 14.1.3), the function f, for which

filx) =sinx; xe€ {—%n, %n] (3)@

@ Later on in Chapter 19a, we will show that the function f;(x) is strictly increasing on [=(1/2)m, (1/2)x].
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Y
+1
/\ VAl
¥ _3 1 0 ) 3
-2r 57[ - o 14 E” b4 27[ 2
y=sinx
FIGURE 14.5
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is one-to-one, and hence it does have an inverse in this interval. The graph of f;(x) is sketched
in Figure 14.6. Its domain is [—(1/2)n, (1/2)n] and its range is [—1, 1]. The inverse of this

function is called the inverse sine function.

14.2.1 Definition of the Inverse Sine Function

. . . .1
The inverse sine function, denoted by sin

, is defined by

The domain of sin~ !xisthe closed interval [—1, 1] and the range is the closed interval [

Illustration:

-1

(-
e sin 1(
o)

-1

!
1(

« sin”'(1)

y = sin"'x, if and only if, x = sinyandy € {—

1) = —1n, because sin(—4n) = —1.
0) = 0, because sin (0) = 0.

= L, because sin(in) = 1

1) = in(l — L
fz) n, because s1n(47z) =5

1

—_ _1 in(—1
2) = —1m, because sin(— {7

I
5

= n, because sin(% n) = 1.

2

Lo
32 .

y
) 1
y=sinx
'," \\ \“\
, . M
:" “\ 1 1 5 X 0
N g T 5 1
\ 5 5 \ AT 7
\\ .
-1
Domain restricted to[ bX 7—;]
W=sinx, _lz<x<ly
fl 2 2

FIGURE 14.6

72”}
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Remark: In equation (3), the domain of fj(x) = sinx is restricted to the closed interval
[—(1/2)m, (1/2)x], so that the function is strictly monotonic and therefore has an inverse
function. However, the sine function has a period of 27 and is (strictly) increasing on the other
intervals as well, for instance, [—(5/2)n, — (3/2)n]and [(3/2)=, (5/2)n]. Also, the functionis
strictly decreasing on certain closed intervals, in particular the intervals [—(3/2)n, — (1/2)n]
and [(1/2)7, (3/2)n]. Any one of these intervals could just as well be chosen for the domain of
the function f; of equation (3). The choice of the interval [—(1/2)x, (1/2)n], however, is
customary because it is the largest interval containing the number 0, on which the function
is (strictly) monotonic.

Note (5): The use of the symbol “—1” fo represent the inverse sine function makes it
necessary to denote the reciprocal of sin x by (sin x)~', to avoid confusion.

A similar convention is applied when using any negative exponent with a trigonometric
function. For instance, 1/(tan x) = (tanx)"', 1/(cos®> x) = (cos x) 7, and s0 on.

Note (6): The terminology arc sine is sometimes used in place of inverse sine, and the notation
arc sineis then used instead of sin™ " x. This notation probably comes from the fact that, if t = arc
sinu, then sin t = u, and t units is the length of the arc on the unit circle for which the sine is u.

In this text, we shall be using the symbol “—1” (rather than the word arc) and thus writing
sin~x, cos™!x, and so on (instead of arc sin x, arc cos x, etc.). (This symbol is consistent with
the general notation for inverse functions.)

We can sketch the graph of the inverse sine function by locating some points from values of
sin~'x such as those given in Table 14.1. The graph appears in Figure 14.7.

y
I
0 X
i R
1 |
[ ) y=sin"'x
-in
FIGURE 14.7
TABLE 14.1
3 1 1 3
x -1 V3 1 0 1 V3 1
2 2 5 >
sin~'x 7171: 717: 717: 0 ln 111: ln:
2 3 6 6 3 5
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From the definition of the inverse sine function (Section 14.2.1), we have

sin (sin™'x) = x forx in[—1, 1]
sin"!(siny) =y foryin[—(1/2)x, (1/2)7]

Caution: Observe that, sin (sin™'x) = x is valid for all real values of x, it must be noted that
sin”'(siny) #y, if y is not in the interval [—(1/2)m, (1/2)x].

Example (2): Evaluate sin™' (sin27)

Solution: First we use the fact that

. (5 . 1 (1 1
sin 6” = sin( 7w 6n = sin 67[ =5
sin”! sinén = sin™! l
6 ) 2

We know that sin(1/6)r = 1/2, it follows that sin~'(1/2) = n/6

sin”! sin§n _I
6] 6

Note that, sin~! (sinln) 32 since %”¢ [f%n, %n]

6 6>
Similarly, sinfl(sin%n) = %n [we have sinfl(sin%n) = sinfl(%) = %n] and
sin”!(sinJn) = —1n [we have sin”!(sinn) = sin’l(—\ifz> = —1n.

Example (3): Find

(a) cos [sin’1 (— %)]

(b) sin~'[cos?n]

Solution:
We know that the range of the inverse sine function is [— %n, %n]
S Y
Further, [sm (f 5)] = —5T

(a) cos[sin™!(—1)] = cos( i ) =
(b) sin"'[cos?n] = sin~'(—

14.2.2 Derivative of the Inverse Sine Function

‘We now obtain the formula for the derivative of the inverse sine function by applying the rule
that deals with the differentiation of inverse functions. [Recall from Chapter 10, Rule 6 which
states as follows: if y = f(x) is a derivable function of x such that the inverse function
x = f~(y) is defined and dy/dx, dx/dy both exist, then derivative of the inverse function is
given by dx/dy = 1/(dy/dx), provided dy/dx # 0.]
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Let y = sin~'x, which is equivalent to

. 1 1
x =siny and ye€ [—57@ En} (4)

Differentiating both the sides of this equation with respect to y, we obtain

d 1 1
d—;c = cosy and yis in{fin, En} (5)

If yisin [f %n, %n}, cosy is non-negative.®’

d 1 1
We know that, & = — (6)
dx dx/dy cosy

Here, we have to write the right-hand side in terms of x. Since, siny = x, we have

cosy = +4/1 —sin’y = V1 — x2

Of these two values for cos y, we should take cosy = v/1 — x2, since y lies between —(1/2)n
and (1/2)7.

b _ i(sin_lx) Lt

dx — dx Tcosy  /1-—x2

d . _1 1

a(sln .x) = ﬁ (7)

Theorem (A): If u is a differentiable function of x,

1 d
)= ——— <" (by the Chain Rule)

\/17u2.dx

Example (4): Find f'(x), if fix) = sin~'x?

Solution: From Theorem (A),

= — Ans.

® Note that for y = £(1/2)x, cosy = 0, and so dy/dx = 1/cos x is not defined. However, if y lies between —(1/2)n
and (1/2)m, then cosy is positive and so dy/dx = 1/cosy is defined. Therefore, we consider y such that it lies between
—n/2 and 7/2.
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FIGURE 14.8

14.3 THE INVERSE COSINE FUNCTION

To obtain the inverse cosine function, we proceed as we did with the inverse sine function.
We restrict the cosine to an interval on which the function is (strictly) monotonic. We
choose the interval [0, ] on which the cosine is decreasing, as shown by the graph of the
cosine in Figure 14.8.

Let us consider the function f,(x) defined by f>(x) = cosx, x € [0, «].

The domain of f>(x) is the closed interval [0, ] and the range is the closed interval [—1, 1].
The graph of f>(x) appears in Figure 14.9. Because f>(x) is continuous and decreasing on
its domain, it has an inverse, which we now define.

14.3.1 Definition of the Inverse Cosine Function

The inverse cosine function, denoted by cos™', is defined by y = cos™'x, if and only if,
x = cosyandy € [0, n]. The domain of cos~!is the closed interval [—1, 1] and the range is the
closed interval [0, n](4).

N —

! S— 5N+

fr(x) =cos x xe [0, 7]

FIGURE 14.9

@ Note that, the domain of y = cos™'x is the set of numbers x such that x = cos y. But, the value cos y lies in the interval
[—1, 1]. Hence, domain of cos™ ! is the interval [—1, 1] and range is [0, 7].
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y
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y= coslx

FIGURE 14.10

The graph of the inverse cosine function appears in Figure 14.10. From the definition of the
inverse cosine function (Section 14.3.1), we have

1

cos (cos™ x) = x, forxin[—1,1]

cos !(cosy) =y, foryin]0,n]
Note (7): Observe that there is again a restriction on 'y in order to have the equality.
cos™'(cosy) =,

For example, because (3/4)r is in [0, =].

However, cos ™! (cos%n) = cos~! (——) =37, and

cos™! coszn = cos™! L —ln
Sa = COS \/i ="
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14.3.2 Formula for the Derivative of the Inverse Cosine Function

Let y = cos 'x, which is equivalent to
x =cosy and ye€|[0,7] (8)

Differentiating both sides with respect to y, we have

d
& —siny, and y€0,7] 9)
dy
If y is in [0, «], siny is non-negative, making the above term on the RHS negative
d 1 -1
But, & (10)®

dx  dx/dy - siny

Here, we have to express the right-hand side in terms of x. Since cosy = x, we have
siny = +V1 —cos?x = £V1 —x2

Of these two values for siny, we should take sin y = v/1 — x2, since y lies between 0 and 7.

dl_i(cosflx) _t__ -1
dx — dx T siny T V1—x2
d _ -1
a(cos 'x) = Vinr (11)

14.3.3 Important Identities Involving Inverse Trigonometric Functions

The following identities involving inverse trigonometric functions are very important.

(i) sin"' x4+ cos!x = Z
(i) tan~' x +cot™ ' x = Z
(iii) sec™! x +cosec™! x = %
Let us prove (i)
Let sin”'x = ¢ (12)

in 1 (n t)
X = sinf = cos| = —
2

z ~1

—— 1t = COs 13

5 cos X (13)
Adding (12) and (13), we get

- ~1 T
sin” - x + cos x:§

Similarly (ii) and (iii) can be proved.

©) Refer to Chapter 10, Corollary to Rule 6, Page 303.
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Note (8): Now, using the identity at (i) above and the result,

i(sin_l Y) = b

dx V-2
‘We will now show that,

i(cos—l x) = -

dx B V1—x2

Consider the identity sin~! x 4+ cos™! x = Z
Differentiating both sides with respect to x, we get,

%(sin_I X) erix(cos_I x) =0

d d
a(cos’1 X) = —E(Sin’1 X)
-1 d 1
= \/ﬁ Sil’lCe7 a(sin_l x) = \/ﬁ (PrOVed)

Theorem (B): If u is a differentiable function of x, then

i(cosfl u) = _l du
dx T V1= w2 dx
Example (5): Find % if y = cosle**
Solution: Given y = cos” e,
We get, from theorem (B),
dy —1d
Py et e
V1= ()
—e%x —De%x

Ans.

= \/1 pEnE - VI = ¥

14.4 THE INVERSE TANGENT FUNCTION

To develop the inverse tangent function, observe from the graph in Figure 14.11, that the
tangent function is continuous and (strictly) increasing on the open interval
(=(1/2)m, (1/2)m). We restrict the tangent function to this interval, denote it by f3 and define
it by f3(x) = tan x and —(1/2)n < x < (1/2)m.

The domain of f5(x) is the open interval (—(1/2)r, (1/2)n) and the range is the set R of real
numbers. The graph of f3(x) is given in Figure 14.12. This function has an inverse called the
inverse tangent function.
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FIGURE 14.11

14.4.1 Definition of the Inverse Tangent Function

The inverse tangent function, denoted by tan™ ', is defined by y = tan™'x, if and only if,
x = tanyand —(1/2)n <y < (1/2)n. The domain of tan™~ " is the set R of real numbers and the
range is the open interval (—(1/2)n, (1/2)7). The graph of the inverse tangent function is
shown in Figure 14.13.
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f3(x) =tan x

FIGURE 14.12
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FIGURE 14.13

From the definition of inverse tangent function (Section 14.4.1), we have

tan(tan~' x) = x, for xin(—oo, + o0)

-1 1
tan"'(tany) = y, foryin (771, En)

The restrictions on y are discussed through the following examples.

Example (6): tan~! (tan%n) = %7‘5 and tan~! [tan(—%n)] = —%7‘5
However, tan™! (tan37) = tan"'(—1) = —{mand tan”'(tan3n) = tan"'(1) = — %7
14.4.2 Formula for the Derivative of the Inverse Tangent Function
Let y = tan”'x. Then,
. 1 1
x = tanyandyis in(—=n, =7 (14)
272
Differentiating both the sides of this equation, with respect to y, we obtain
d 1 1
d—;c = sec’y and yis in(—En7 577:) (15)

From the identity sec’y = 1+ tany, and replacing tan y by x, we have
g

sec’y = 1+ x?
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dy 1
But, -2 =
a7 (dx/dy)
dy 1
dx ~ 1+x2

1
1+ x2

Thus, %(tan_lx) = (16)

The domain of the derivative of the inverse tangent function is the set R of real numbers.

Theorem (C): If u is a differentiable function of x,

i (tan~'u) = ! du

1+u? dx

Example (7): Find f'(x), if f(x) = tan™! -

x+1

Solution: From Theorem (C),

o 1 d/
f(x)71+<1/(x+1)2) dX<1+X>
L 1 -1

o o= 14 (1/(x+ 1)2> (1+x)°

-1 -1
(x+1)7+1 P +2x+2

Ans.

Example (8): Differentiate tan™'log x

d 1 d
Solution: — [tan"' (logx)| =———— —(logx
3 Ltan ™ (logx)] T Gop) 3 (ogx)
B 1 1
1+ (logx)* X
! Ans.

:x[l +(logx)?]

14.5 DEFINITION OF THE INVERSE COTANGENT FUNCTION

To define the inverse cotangent function, we use the identity tan™'x +cot 'x = /2, (see
Section 14.3.3) where X is any real number.
Definition: The inverse cotangent function, denoted by cot™", is defined by

1
y=cot 'x = 3= tan~' x where x is any real number (17)

The domain and the range of cot™".®

© The Calculus 7 of a Single Variable (Sixth Edition) by Louis Leithold (pp. 501-502), HarperCollins College Publishers.
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By definition, the domain of cot™" is the set R of real numbers. To obtain the range, we write
the equation in the definition as

1
tan'x = 3= cot!x (18)
1 1
We know that, —57< tan”'x < 57 (19)
Using (18) in (19), we get
1 < 1 < 1
FM<zm—cot”x <z

Subtracting (1/2)m from each member, we get
—n < —cot !x <0
Now, multiplying each member by —1, we get

x>0

T > cot
Reversing the direction of inequality signs, we obtain
0<cot'!x<n

The range of the inverse cotangent function is therefore the open interval (0, n). Its graph is
sketched in Figure 14.14.

Ilustration:
(a) tan~!'(1) = im
(b) tan'(=1) = —i7
(©) cot!(l) =dm—tan'(1) = in—tn=1in
(@ cotl(=1) =In—tan"!(—1) = in— (Fn) =3n
AY
n
1z
2
X
-2 -1 0 1 2
y=cot!x

FIGURE 14.14
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14.5.1 Formula for the Derivative of cot lx
From the definition of inverse cotangent function, we have
-1 1 -1
cot”'x = -m—tan X,

Differentiating both sides with respect to x, we get

d d(l ,1>
—cot X = —|-m—tan 'Xx

dx dx \2
d 1 1
—(cot™'X) = ——— 20
dx (CO Y) 1+ x2 (20)
Theorem (D): If u is a differentiable function of x,
d - 1 du
a(cot u):71+uza

Before we define the inverse secant and the inverse cosecant functions, let us again look at the
graphs of basic trigonometric functions and the inverse trigonometric functions.

The graphs of six trigonometric functions are shown in Figure 14.15a—f. None of these
functions has an inverse, since a horizontal line y = ¢ may cross each graph at more points.

Now consider the six functions (fi—fs), which as graphs have heavily marked portions of
the six trigonometric functions in the same graph (Figure 14.15). (In fact, these portions of the
graph define the respective trigonometric functions with restricted domain.) Each of these
graphs represents a new function, which has the same range as the corresponding trigonometric
function, and each new function has an inverse. We call them the principal branches of the basic
trigonometric functions.

By abuse of terminology, the inverses of f1, f5, . . ., f¢ are called the inverse trigonometric
functions, so that fl_l is the inverse sine, denoted by x = sinfly, fz_l is the inverse cosine,
denoted by x = cos™ 'y, and so on. Similar notations are used for the remaining four inverse
trigonometric functions. The graphs of the inverse trigonometric functions as functions of
the independent variable x are shown in Figure 14.16.

Note (9): As can be seen from the graph of sec x and cosec x (Figure 14.15), it is impossible
to choose “branches” of these functions so that the inverse functions become continuous.
The branches of sec 'x and cosec ™ 'x (Figure 14.16) are chosen to make the formulas for
the derivatives of these functions come out nicely, without ambiguity to sign. Now, the
derivatives of sec™' x and cosec ™' x can easily be found just as we found the derivatives in
other cases.”’

14.6 FORMULA FOR THE DERIVATIVE OF INVERSE SECANT FUNCTION
1

Let y = sec X

X = secy

@ For more details, refer to Calculus with Analytic Geometry by John B. Fraleigh (p. 261), Addison-Wesley.
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Differentiating with respect to y, we get

—— =secy-tany = secyy/tan’y

dy
= secyy/sec?y — 1
=xvx2 -1

dy 1 1

dx (dy/dx)  xvx2—1

d(sec™'x) 1
= , X >1 21
e o |x| (21)
Theorem (E): If y is a differentiable function of x,
d -1 1 du
— = — > 1
T (sec™ u) Y |u

14.7 FORMULA FOR THE DERIVATIVE OF INVERSE COSECANT
FUNCTION

Let y = cosec”'x
Then, X = cosecy

Differentiating with respect to y, we get,

dx

— = —cosecy-coty = —cosec yy/cosec?y — 1
dy
= —cosec yy/cosec?y — 1
= —xvVx2 -1
dy 1 -1
Now, - = = , x| >1
dx - (dy/dx)  xvx2—1 g
d(cosec™'x) -1
= ;x| > 1 22
dx V2 —1 x| (22)
Theorem (F): If u is a differentiable function of x,
d 1 -1 du
a(COSeC u) = u\/ﬁ . a, |M| > 1

Table 14.2 summarizes the data that we should remember regarding inverse trigonometric
functions.
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TABLE 14.2
Function Domain Range Derivative
. B L 1
sin” ' x [—1,1] [ 2,2} 717)(2
-1
cos 'x [—1,1] 0,m [
[0, —
T T 1
tan~'x All ——<y<= —
an~'x x 7 <Y<3 ..
cot™'x All x 0<y<m -1
’ : Y 1+ x2
T T 1
sec!x x<-—lorx>1 —n§y<—§0r0§y<§ T
cosec™'x x<—lorx>1 m<y<-For0<y<?t _ -t
B B -2 T2 Va2 -1

Source: Calculus with Analytic Geometry by John B. Fraleigh (p. 263), Addison-Wesley.

From the theorems stated at (A)—(F) above, we know that if u is a function of independent
variable x, then we may write the formulas for derivatives of inverse trigonometric functions of

u, using the chain rule.

dgin~ly = L, . du

and so on. These results may also be written as

dx -z " dx
a O ()
—sin" [f(x)] = —=—F—=; ——cos [f(x)] =
dx - P 1 - [f(x)
i an”[f(x)] = f’(ir) and so on
i V] = s andsoon

These formulas are primarily important for evaluation of certain definite integrals. In fact, this is
the main reason for studying the calculus of inverse trigonometric functions.

14.8 IMPORTANT SETS OF RESULTS AND THEIR APPLICATIONS

The following sets of results [set (1) to set (5)] connecting trigonometric (circular) functions
and inverse trigonometric functions are useful in simplifying certain inverse trigonometric
functions for computing their derivatives.

In the above results (or formulas) it is assumed that we are dealing with the principal branch
(es) of the functions and their appropriate domain(s). Their applications are given below:

Set (1) Set (2)
sin~!(sinx) = x sin(sin"'x) = x
cos™!(cosx) = x cos(cos™!x) = x
tan~! (tanx) = x tan(tan~'x) = x

and so on. and so on.
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Applications of set (1) and (2) (differentiate with respect to x).
y = sin™!(sin 5x)

Put5x =t ..y = sin!(sint) = ¢

d
U

or y = 5x Cdx

Set (3): We know that,

sin"!(cos x) = sin~!|sin T oy} =Z-»
2 2

cos~!(sinx) = cos~! [cos(E - x)} =T x
2 2

-1 — tap-1 T_ T
tan~!'(cot x) = tan {tan ( 5 x)} 5
and so on.

Application of set (3)
Lety = sin~![cos 3x]

y = sin”! [sin(g—3x>} = g_3x

d
D _0-3=-3 Ans
dx
Set (4)
tan"'x +tan"'y = tan~! (M)
1—xy
_ _ _ X—y
tan~!x —tan~!y = tan~!
* Y (l +xy>

These results are very useful as can be seen from the solved examples (it is proposed to prove

these results at the end of this chapter).

Note that the expression ((x +y)/(1 — xy)) can be converted to the form tan(p + ¢) by
proper substitution and similarly ((x —y)/(1 + xy)) can be converted to the form tan(p — ¢).
Thus, in any expression of the type tan™ '[f(x)], if it is possible to break up f(x) in any of the two
above forms, then the given function tan™'[f(x)] can be simplified for the purpose of the

differentiation as will be clear from the following solved examples.
Application of set (4)

5
(a) Lety = tan”(1 —);xz)’

= tan~!(3x) + tan~'(2x)
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dy 1 d 1 d

B0 4+——— —(2x

dx 14 (3x)° dx( ) 1+ (2x)° dx( )
3 2

—_° 4% Ans
1102 TTra O

sin 7x — cos 7x
b) Lety = tan™! | —————
(b) Lety an Lin 7x + cos 7x}

Dividing numerator and denominator by cos 7x.

~ an! [tan7x —17 ran-! tan 7x — 1
Y= [tan7x + 1 1 +tan7x
— ! [ tan 7x — tan(/4) 1®
B | 1 4 tan 7x - tan(m/4)
[ T n
=tan !|tan| 7x—= )| = Ix-=
an _an( x 4)} X=7

d
é =7 Ans.

Set (5)

[, (1]
SIn "X = cosec —
X

cos™ X = sec

tan~'x = cot™!

)
()
s = (1)
€

sec”'x = cos™! )

—1 . 71 1
cosec”!x = sin™' [ —
X

Application of set (5) (differentiate the following with respect to x).

439

® Here the expression inside the bracket can be simplified (using trigonometric identities) to the form tan™ ' (7x — (n/4)),
or else we may use the formula of set (4) to write the right-hand side as tan~ '[tan(7x)] — tan~'[tan(n/4)] = Tx — (n/4),

which can be easily differentiated.
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Example (9): Lety = sin [cosecfl(i)]

y = sin (sin"'x) [Using set (5)]

=X
dy

dx

2
Example (10): Lety = sec {cos’1 (—)}

5x
= sec secfls—)C -
= 2 )" 2
dy 5
2 Ans.
dx 2 ns

3 —2tanx
Example (11): Lety = cot™' |[=——
1D ety €0 {2+3tanx}

Note that, using the formula cot 'x = tan™! (lx),
we can write,

~ tan! 2+3tanx
y= 3—2tanx

Observe that the expression on the right-hand side can be simplified if the denominator is
expressed in the form (1 —k tan x). This can be done by dividing the numerator and
denominator by 3. We then get,

4 (2/3) + tanx
y = tan {1 — (2/3)tanx}

2 b
= tan~! (g) + tan™! (tanx) [ tan™! <L> = tan"'a +tan”'h

1—a-b
= tan*](g) +Xx

d—y:0+l:l Ans.
dx

1 1 1

Note (10): It is normally preferred to express cot” X, sec” x, and cosec™ x in the forms

tanflt, cosflt, and sinflt, respectively, where ¢ stands for (1/x).

5+4x
E le (12): Lety = cot™!| ——
xample (12) ety = co (5x—4>

tan~! Sx—4 eot™lt = tan’11
5+4x t
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Dividing numerator and denominator by 5, we get
— (4 — (4
bt (Z2 )Y g (X = 4/9)
1+ (4x/5) 1+ x-(4/5)

4
= tan 'x —tan"!( =
an~'x — tan (5)

dy 1 1
2 ~0=-—— Ans.
dx 142 1+ x2 ns

149 APPLICATION OF TRIGONOMETRIC IDENTITIES
IN SIMPLIFICATION OF FUNCTIONS AND EVALUATION
OF DERIVATIVES OF FUNCTIONS INVOLVING INVERSE
TRIGONOMETRIC FUNCTIONS

Sometimes a simplification of the function makes the differentiation easier. It is useful to learn
the methods of manipulation on certain trigonometric expressions so that they can be expressed
in the desired form(s), which can in turn be simplified, using the relations given above [i.e.,
sets (1)—(5)]. Such simplifications are possible only in certain functions.

Example (13): Differentiate tan~'(sec x + tan x)
Let y = tan™!(sec x + tan x) (23)

1 sin x

Consider, sec x + tan x =
COSX COSX

1+sinx  cos?(x/2) + sin®(x/2) + 2sin(x/2)cos(x/2)

COS X cos?(x/2) — sin®(x/2)
_cos(x/2) +sin(x/2)  1+tan(x/2)  tan(n/4)+tan(x/2) T X
"~ cos(x/2) —sin(x/2) 1 —tan(x/2) 1 —tan(n/4)-tan(x/2) an(1+5>

y = tan~! |tan E—i—f
4 2

X _
+§ [+ tan'(tanx) = x]

&1

dy

Ans.
e ns

N =



442 INVERSE TRIGONOMETRIC FUNCTIONS AND THEIR DERIVATIVES

Given below are some trigonometric functions with necessary simplifications, to help under-
stand the approach.
1. sinx  2sin(x/2)-cos(x/2) x

— tan=
14cosx 1+ 2cos?(x/2)—1 )

tan~! _sinx | _ tan_l<tanf> =z
I +cosx| 2/ 2

cosx sin((n/2) — x)

I +sinx 14 cos((n/2) — x)

2 tnl T _ tan T X
B T B W)
ant| S0 (B X)) = E Y
1 +cosx| 4 2 T4 02

5 Ltsiny sin®(x/2) 4 cos?(x/2) + 2 -sin(x/2) - cos(x/2)

1 —sinx  sin®(x/2) 4 cos?(x/2) — 2 -sin(x/2) - cos(x/2)

- [etaf2)wsny

)
1 +sinx  [14tan(x/2) 2
N {1 —tan(x/Z)}

1 — sinx

= |tan E—i—E

a 42
1+Sinx—tan E+f
1 —sinx 42

tan-! 1+sinx_ E+f
“\4 2
a

1 — sinx

4. - tan”! Hﬂ = tan~! [tan_lf] -
o 1 — cosx 2

: tan~! ; = tan"! |cot E—Q—f
S secx + tanx ) 4 2
—tanan(Z-2)| =22
o 4 2 T4 2

6. tan~!(secx — tanx) = I —siny _ 1—tan(x/2) _ tan(ﬁ,f)
' © cosx  l4tan(x/2) 4 2
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7. . tan”! = tan"' |cot r.x
secx — tanx 4 2

= tan~! [tan E—I—f *E—Q—f
o 4 2/ 4 2

1 — cosx X
8. cosecx 4+ cotx = ——— = cot—
sinx 2

X X
cot™!(cosecx + cotx) = cot™! (cotz) =3

And, tan~!(cosecx + cotx) = tan~! (cot%)

=o' (mn(5-3))

= % — g Ans.
1 1 ; X
= = tan—
cosecx + cotx  cot(x/2) 2
1 —cosx X
10. cosecx — cotx = ———— = tan—
sinx 2

1 1 X
11. - = cot: = ¢ (,_,>
cosecx — cotx  tan(x/2) N 272

14.9.1 Evaluation of Derivatives of Inverse Trigonometric Functions by Making
Substitutions (Usually Trigonometric Substitutions)

Sometimes appropriate trigonometric substitutions can be made to simplify inverse trigono-
metric functions in order to compute their derivatives. The following trigonometric formulas
give us a clue regarding suitable substitutions. The expressions in question can be simplified
using the trigonometric formulas, and the sets of results [set (1)—(5)] given above.

Examples of Inverse Trignometric

Trigonometric Formulas Functions for Simplification
2 tanx 4x
Al sin2x = ——— in”' (———
[A] sin2x 1 + tan’x s (1 + 4x2>
[B] cos2x = 1 tan’x cos~! [ — 4x*
7 1 4 tan?x 1+4x2
2tanx 1—x2
C] tan2x = ———— !
(€] tan2x 1 — tan’x «© < 2x >
tanx =+ tany -1 < 2e” >
D] tan(x =+ _ tan
(bl n(x+y) = 1 &+ tanx.tany [ —e™
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INVERSE TRIGONOMETRIC FUNCTIONS AND THEIR DERIVATIVES

(Continued)

Trigonometric Formulas

Examples of Inverse Trignometric
Functions for Simplification

. g4 1 + tanx
(@] tan (Z + Y) = 1 — tanx
. T 1 — tanx
] tan (3 - x) = g

[E]

[e(i)] cos G — x) = sinx,

.. . (T
[e(ii))] sin (E — x) = CcosX,
and so on.

[F]

2 2

[f(d)] cos2x = cos“x — sin“x

[f(ii)] cos2x = 1 —2sin’x
[fGii)] cos2x = 2cos?x — 1
[fiv)] sin2x = 2sinxcosx
[G] sin®x+cos’x = 1

[g()] sin?x = 1 — cos’x
[g(ii)] cos’x = 1 —sin’x

[g(iii)] sec’x = 1+ tan’x

[giv)] cosec’x = 1 +cot’x
[h()] sin 3x = 3 sinx — 4 sin’x

[h(ii)] cos 3x = 4 cos®x — 3 cos x

3 tanx — tan’x

[h(ii)] tan3x = =3 tan’x

S f(1+x
tan
1—x
f1—=x
tan™' [ ——
1+x

sin”!x(cos x)

G VI—x?
tan~! ———
x
| 1
cos
1+ x2
sec” V1 + x2
i <\/l + x2>
cosec™! [ ———
x
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Given below are some solved examples, which indicate the usefulness of such substitutions.

1 d
Example (14): If y — tan! (1 +x>, find é

b4
Solution: Put x =tan zand 1 = tanZ

y = tan™! {w] = tan™! {tan(ngt)}

1 — tan(n/4) - tant

n+t
T4
T -1 .. -1
y=gttanx (v t=tan"'x)
dy 1
o Ans.
dx 1+ x? ns

| — e d
Example (15): Ify = cos™' [~ ), find —

1+
1-(e%)

Solution: We have, y = cos™! 5
1+ (e¥)

Pute® =tan¢ -, ¢ =tan 'e"

— cos ! 1 — tan?t
y= 1 + tan?t

= cos!(cos2¢) = 2t = 2tan~'e*
d 2 d 2e*
v _ — —et = = or Ans.
dx 1+ (e¥) dx 1 + e

Example (16):
VIV — X2 . dy
y = tan”! , find —
V14 xr—v1—x? dx

Solution: We know that,

cos2t = 2cos?t— 1

= 1 - 2sin’t
(i) .. cos2t+1 = 2cos’t ©
(i) or 1 —cos2t = 2sin’t

© It is useful to remember these relations, and use them whenever similar expressions appear.
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In view of these relations, we put
2 1,2 |
Xx° = cos2t, sothat 2¢f = cos™'x* or ¢t = -cos X
1 +x% = 14 cos2t = 2cos’t
and 1 —x? = 1—cos2t = 2sin’t

tan-"! cost + sint
=tan ' | ——
Y cost — sint

tan-1 1 + tant
= tan
1 — tant

= tan”! |tan E—b—t :E—O—t
4 4

1 1
y = E—i—icos’lx2 { t = Ecos’lxz]

4
dy 1{ -1 } —X
e | 2= — Ans.
dx 2 [V1—x* VI —x*

Example (17): Differentiate y = tan~" (V '+;‘2‘1) with respect to x.

Solution: We have, y = tan~! <7””Y‘2*1)

Consider the expression, Y'=X=1 = E (say)

Put, X = tant
t = tan 'x
. V14tan’t—1  Vsec?t — 1
- tant - tant

sect—1 1 —cost

tant  sins
2sin’
___ %in (1/2) _ tan£
2sin(t/2) - cos(/2) 2
= tan~! tan£ !
= 2) "2
= 1tan_lx [ = tan_lx]
> .
dy 1 )
=t
dx 2 dx an X

C2(1 4 x2)
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Example (18): Differentiate y = sin~! (xx/l —x—/xV1— xz)

or y = sin’l(x\/l— (ﬁ)z—\/}vl—ﬁ)
Putx = sinA and v/x = sinB
y = sin”! (sinA\/l — sin’B — sinBV1 — sin2A>
= sin™!(sinA - cosB — cosA - sinB)
sin~![sin(A — B)]
—A-B
=sin"'x—sin"'y/x [ A =sin"'x] and B =sin'V/x

b1 1 AW
dx  V1-x2 \/17(\/})2 dx

1 1
= — Ans.
V1I—x2 2vx—x2
Example (19): If y — sin|2tan~"y/~—> | find &
P PRy = 1+ x|’ dx
. . o [I—x
Solution: We have, y = sin|2tan
14+ x
. 1—x t
If we put x = cos ¢, then it can be shown that = tan—
1+x 2

t
y = sin [Ztan_1 <tan§)}

. t (10
=sin|2 | =sin¢
sin |: 2:| sin

= V1 — cos?t
= V1 —x? [ cost = x]
dy d N 1/2
= - (1=
dx dx( x)
1 1/2
X
= —— Ans
V1 —x2

A9 At this stage, if we use the relation x = cost, we get y = sin(cos ™' x).

dy _ 1) deosly — -1 —x
& = cos(cos'x). freosTIx = x.

1-x? 1-x2"
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Example (20):

Exercise (1)

S

(1
= (157)

Differentiate the following with respect to x.

) tan”( atx )
1 —ax
1 sinx
(3) tan ( 1+ cosx)
I cosx
(5) tan ( 1+ sinx>
) cos! 1 4+ cosx
2
©) tan! 1 + sinx
cosx
1) tan"! 1 4+ cosx
1 — cosx

INVERSE TRIGONOMETRIC FUNCTIONS AND THEIR DERIVATIVES

y = sec”! Lk
17 X
1—4F 1

> { sec”'x = cos 1(7)]
X

Put2® = tan¢ .. t = tan~ 12" (1)
— cos ! 1 — tan?¢
y= 1 + tan?¢
= cos™!(cos2t) = 2t
y = 2tan"12¥ [by using (1)]
dy 2 d .
- ()
dx 1+ (2% dx
2
= -2 . log,2
T+4° © %%
dy 2x+1
Fe e log,2 Ans
6x
2) tan”!
(2) tan (1 —8x2>
COSX + SInx
4) tan”!| —————=
@ tan (cosxfsmx)
©6) tan"! 1 — cosx
sinx
1—x
8 !
(8) co (1+x)
(10) tan""! 1 + sinx
1 — sinx



Answers:

1
1
O

@ 1

™ 3

(10)

Exercise (2)

Differentiate the following with respect to x.

@

3) sin!

. 1 )
(5) cos ( e
™ (
) sec*'(

an

Answers:

(¢Y)

1+ x2

APPLICATION OF TRIGONOMETRIC IDENTITIES

@ 1+24x2+1+‘i6x2 ®) %
S -3 (6) %
an --

2

@

(6)

®

(10)

12)

@

@

6

2sinx
1+ cos?x

2% 10g2
1+ 4

2
1+ x2

449



450 INVERSE TRIGONOMETRIC FUNCTIONS AND THEIR DERIVATIVES

-1 3

O == ® i
1

O e 0 1

[§8)) _; 12) #
V1 —x? V1—x?

Note (11): The inverse trigonometric functions discussed above are of a special type and as we
have seen, their derivatives can be computed using special methods involving substitution and/
or simplification. On the other hand, there can be any number of functions involving inverse
trigonometric functions whose derivatives are computed simply by applying the rules of
differentiation. Of course, substitution may also be useful as an intermediate step. Consider the
following examples.

(a) Lety = x> cos 'x

Here, we have a product of two functions, and therefore we must use the product rule
for derivatives.

g—)yc =x2- %cos’lx—i— cos 1x- %xz
= x2 ﬁ—}— cos~'x - (2x)
% = 2x~cos_1x—\/% Ans.
(b) Lety = jcl?:)f

Here we must use the quotient rule for derivatives.
(c) Lety = sin(tan”'x)
Here we have to use the chain rule.

L

T = cos(tan~'x) - e (tan~'x)
dy  cos(tan"'x)
Qo X Anps.
dx 14 x2 ns
Exercise (3)
Differentiate the following with respect to x.
1) y =sinlyx (2) y = sin"lax
(3) y = sin"!(2x) (4) y = cos~!(y/cosx)
X tan~!x
(5) y =sin (;) (6) 52
(7) log(tan™'x) ®) sinT'(3x+2)

9) cos'x?



Answers:

W ﬁ
@) ﬁ
© azlf X2

@) :

(1+ x?)tan~x

&)

()

(C))

(6)

®)

APPLICATION OF TRIGONOMETRIC IDENTITIES

a

V1 —a?x?
sinx
2y/1 — cosx4/cosx
1 —2xtan"'x
(1+x2)°
3
1+ (3x+2)°
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15 d Implicit Functions and Their
Differentiation

15a.1 INTRODUCTION

First, let us distinguish between explicit and implicit functions. Functions of the form, y = f{x), in
which y (alone) is directly expressed in terms of the function(s) of x, are called explicit functions.

Example (1):
y=x>+3x —2; y = sin x + 2¢* )
y=(x+3)/(1+x?); y=cosx+log,(1+x?), andsoon

Not all functions, however, can be defined by equations of this type. For example, we cannot
solve the following equations for y (alone) in terms of the functions of x.

Examples (2):

X3 4+ y¥ = 2xy; V4 3y? —2x% = —4; X2 +y? = 36; 2)
siny = xsin(a+y); y*+ 7y = x>, and so on
Such relations connecting x and y are called implicit relations. An implicit relation (in x and y)
may represent jointly two or more functions of x.
As an example, the relation x” +y = 36 jointly represents two functions:

36 —x2 and y= —V36— x2.

Remark: Every explicit function y =f{(x) can also be expressed as an implicit function. For
example, we may write the above equation in the form y —f(x) =0 and call it an implicit
function of x. Thus, the term explicit function and implicit function do not characterize the
nature of a function but merely the way a function is defined."

(Implicit functions may be expressed in the form f= {(x, y)|ly =f(x)}.)

15a-Differentiation technique for implicit functi and the method of logarithmic differentiation (For general
exponential functions and other expresstons involving products, quotients and powers of functions)

O Differential and Integral Calculus by N. Piskunov (vol. I, p. 86), Mir Publishers Moscow, 1974.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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454 IMPLICIT FUNCTIONS AND THEIR DIFFERENTIATION

Note (1): In the case of an implicit function in the form, y — fix) =0, it is quite simple to
compute the derivative dy/dx since it is as good as if we are handling an explicit function.
Hence, here onward we shall consider the implicit functions such as those given in (II) above.®

Note (2): It is assumed that an implicit relation defines y as at least one differentiable function
of x. With this assumption, the derivate of y with respect to x can be found without transforming
it into the explicit form.

(This assumption is important since certain relations in x and y may not represent any
function. For example, the relation x>+ y*> = —36 does not represent any function.)

Note (3): The technique of implicit differentiation is based on the chain rule.
For example, consider the equation

Y47y =x> (3)<3)

Differentiating both the sides with respect to x, treating y as a function of x, we get (via the rule
for differentiating a composite function)

dy _dy
3P = 4+ 7= =3x7 4
ydx+ dx o )

d
Now solving (4) for d—y, we get
b

dy 5 a2 dy 3
dx(3y +7) = 3x dx 3y 47

Note that, the above expression for dy/dx involves both x and y. If it is required to find the value
of the derivative of an implicit function for a given value of x, then we have to first find the
corresponding value of y, using the given relation (such as in 3). This will help in computing the
value of dy/dx(or the slope of the curve) at those points that lie on the graph of the given
equation.

For example, the point (2, 1) satisfies equation (3); hence, it must be on its graph. At (2, 1),
we have

dy  3(2)° 12
dx  3(1)°+7 10

Thus, the slope of the curve at (2, 1) is 6/5.
On the other hand, if we have to find the gradient at the point (1, 1) of the curve

X*+y*—3x+4y—3=0, then it is a simpler situation. It can be seen that
dy/dx = (-2x+3)/(2y+4)=1/6 at (1, 1).

@ From this point of view, a relation like x” - y* = a’ may also be looked upon as an implicit function; however, to compute
the derivative dy/dx in such cases, there is only one method available, namely, the logarithmic differentiation (to be
discussed later in this chapter). No other method is helpful.

© Note that, in this equation though all the terms involving y are on LHS, the value of y (alone) is not expressed in terms of
the functions of x, and hence it is an implicit function of our interest.
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Now, we ask the question: Is the method of implicit differentiation legitimate? Does it give
the right answer? We can give evidence for the correctness of the method through examples,
which can be solved in two ways.

Let us find dy/dx, if 4x?y —3y=x>—1.

Method (1): Here, we have, y = (x> — 1)/(4x? — 3), which defines y explicitly.
We get,

dy 4x* — 9x% + 8x

= by quotient rule 5
T (@ _3) (by q ) (5)

Method (2): (Implicit Differentiation)
Now, after using the product rule in the first term, we obtain

dy dy
4x2Z +y-8x —3-==3x7
X dx+y X ax X
dy _ 3x* —8xy (6)

Cdx | 42 -3

This answer looks different from the one obtained at (5). However, if we substitute y = x>=1)
(4x> —3) in (6), we get the same expression for dy/dx, as in (5).

Thus, we observe that, if an equation in x and y determines a function y =f(x) and if this
function is differentiable, then the method of implicit differentiation will yield a correct
expression for dy/dx.

(Note the “two ifs” in this statement.)

15a.2 CLOSER LOOK AT THE DIFFICULTIES INVOLVED

The equation x> +y*= —1 has no solution and, therefore, does not determine a function.
On the other hand,

X +y* =25 (7)
represents a circle with center at the origin and radius 5 units (Figure 15a.1). It does not

represent any function of x.
For each x in the open interval (=5, 5), there are two corresponding values of y, namely,

y=v25—-x% and y=-Vv25—x2

They represent two functions, in the interval (-5, 5), given by

y=fl) =V )
and y=g(x)=—-v25-x2 (8b)

Their graphs are the upper and lower semicircles, respectively, as shown below in Figures 15a.2a
and 15a.2b.
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o
y

o P +y?=(57=25
FIGURE 15a.1

It may be noted that both functions are differentiable in the open interval (-5, 5), but
not at x==5 (since their graphs have vertical tangents at those (end) points. Let us find
their derivatives.

First, consider f(x) = v/25 — x2. It satisfies x> + [f(x)]* = 25, where

fx) =y
When we differentiate f(x) implicitly and solve for f'(x), we obtain
2x 4+ 20 (x)f'(x) = 0

() —2x X

T 2f(x) V25 — X2

fo) = 25 - ¥ g(x):-\/257x2
(a) (®)
FIGURE 15a.2
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A completely similar treatment of g(x) yields

() = 5= e =
Y T T Vo2 Vo

For practical purposes, we can obtain both these results simultaneously by the implicit
differentiation of x>+ y* =25. We get

d
2+ 2y =0
dx
dy _ —x_ { —x/V25— X2, ify=f(x)
—x/ —=V25—-x%, ify=g(x)

- dx y

It is enough to know that dy/dx = —x/y. Suppose, we want to know the slope of the tangent
line to the circle x* + y? =25, when x = 3. The corresponding y-values are 4 and —4. The slope
at (3, 4) is —3/4, and that at (3, —4) is 3/4.

15a.2.1

When an equation of the form ¢(x, y) = 0 is differentiated implicitly, we get dy/dx in the form of
a quotient. At certain points (x, y) on the curve, the denominator of this quotient, representing
dy/dx, may become zero. In fact, these are the points where the tangent line is vertical and hence
the slope of the curve (i.e., dy/dx) is not defined.®

Example (3): Let us find dy/dx, if y° 4 3y* — 2x* = —4,

Differentiating both sides of the given equation “with respect to x” (using the chain rule), we
obtain

5y4%+6y%—4x =0
We now solve for dy/dx, obtaining
Y__ 4
dx 5y*+6y

This formula gives dy/dx at any point (x, y) on the curve where the denominator 5y* + 6y is
nonzero.

For example, it is easily seen that the point (2, 1) satisfies y° + 3y* — 2x* = —4, and therefore
it lies on the curve. Then

o 4x
@1 Syt +6y

8

en 11

dy
dx

) The subject of implicit functions leads to some other difficult technical questions, which are dealt with in Advanced
Calculus. The problems we study here have straightforward solutions. (For details, refer to Calculus with Analytic
Geometry (Fifth Edition) by Edwin J. Purcell and Dale Varberg (p. 135), Prentice-Hall Inc., New Jersey.)
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Two intersecting curves are said to be orthogonal to each other if the tangent lines at the point of
their intersection are perpendicular.

Example (4): Let us show that the curve y — x> = 0 is orthogonal to the curve x* +2y* =3, at
the point (1, 1) of intersection.

Solution: The given curve is y = x°. The slope of the tangent line to this curve is given by

dy dy
—=2x .. = =2=
dx o dx | qy m (say)
The other curve is x>+ 2y> =3.
Differentiating implicitly w.r.t. x, we get
d
2x+4y L =0
dx
dy —-2x —x dy -1 (say)
== R == ——=m sa
dx 4y 2y dx (11 2 2 2 Y
Since m - my = —1, the curve y = x* is orthogonal to the curve x* + 2y = 3, at the point (1, 1),

of their intersection.

Remark: Whenever it is required to find the value of dy/dx at a particular point on given
curve, we can easily check that the point in question lies on the curve.
Use implicit differentiation to find the derivative of y with respect to x, at the given point.”’

(@ =y =1; (vV3,V2)
() x*+xy°=0; (- 1, 1)
(©) @x+y)’=31—1/x; (- 1,4)

Note (4): Implicit differentiation is useful in computing related rates.
This topic is discussed in Chapter 18.

Example (5): If x° +y* = 3axy, find dy/dx.

Solution: We have x° + y> = 3axy.
Differentiating implicitly both the sides, w.r.t. x, we get

d d d
3x2+3y2—y:3a x—y—i—y-l :3ax—y+3ay
dx dx dx

d
(3y* — 3ax) d—z =3ay — 3x?

dy 3(ay—x*) ay—x*

L= = Ans.
dx 30> —ax) y*—ax ns

S Caleulus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick (pp. 151-155).
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Example (6): If x’ =e* ~ ¥, show that dy/dx = (log, x)/(1 + log, x)*.
Solution: We have x”=¢* ~ 7.
. x—y=log, x =ylog,x (by definition of logarithm)

. x=y+ylog,x = y(l +log,x)

. o X
T T log, )

Differentiating both the sides w.r.t. x, we get

dy _ (I+log, x)(1) —x(0+1/x)

dx (1 +log,x)*

_ 1+log, x—1 _ log, x Ans.
(1+log,x)>  (1+log,x)

Exercise (1)

QL. If x’ = (x+y)* " ?, and ay # bx, prove that dy/dx = y/x.
Q2. If sin y=x sin(a +y), show that dy/dx = sin®(a + y)/sin a.

Q3. If y=sin(x +y), find dy/dx.

T2
Ans. cos(x +7) or 1y
I—cos(x+y)  1—,/1—y2

Q4. If y=x ¢, show that dy/dx = y/x(1 —y).

Q5. Find the equation of the tangent line to the curve
y® — xy? 4 cos xy =2 at the point (0, 1).

1
Ans. - 1
ns. 3x+

Q6. If x sin 2y =2cos 2x, find dy/dx.

2y sin 2x + sin 2y
S. ——————————
cos 2x — 2x cos 2y

459
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Q7. If tan (x +y) +tan(x —y) =1, find dy/dx.

sec?(x +y) + sec?(x — )

Ans.
s sec?(x —y) —sec?(x +y)

Q8. If sin y=x cos(a +y), then prove that dy/dx = cos?(a + y)/cos a.

Q9. If V1 —x2 + /1 —y?> = a(x — y), then prove that

dy_ 1=y
dx  V1—x2

Q10. If x =y log(xy), then prove that dy/dx = (y(x — y))/(x(x +)).

We give below the solutions of the first five problems.

QL. If x*y* = (x+y)* " and ay # bx, prove that dy/dx = y/x.

Solution: From the given relation, on taking logarithms, we have
alog, x +blog,y = (a+ b)log,(x +)
Differentiating w.r.t. x, we get

1 1 dy 1 dy

—+b-——= b)——(1+—
ax+ ydx (a+ )x—i-y( Jrd>c>

a bdy a+b (a+b)dy

x ydx x+y (x+y)dx
{b a+ b] dy a+b a

or - =

or

y x+y

dx x4y x

bx +by—ay—bydy ax+bx—ax—ay
Yyl x(x4y)

bx—aydy bx—ay

Y +y)dy ~ x(x+y)

that is

But it is given that ay #bx (i.e., bx —ay #0).
.. From (9), we get

1dy 1
ydx_x

or sz Ans
dx «x

Q2. If sin y=x sin(a + y), show that dy/dx = (sin*(a + y))/sin a.

Solution: We have sin y = x sin(a +y) (10)
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Differentiating implicitly both sides w.r.t. x, we get
dy dy |
cosy— = xcos(a+y)-—+sin(a +
Yy (@+y) g +sin(a+y)

d
", [cosy — xcos(a+y)] ﬁ = sin(a +y)

) Q: sin(a +y) (1)
" dx cosy—xcos(a+y)

Now, observe that the above result contains x whereas the desired result does not. Hence, we try
to remove x from the above result using (10) and get

Q _ sin(a + y)
dx (siny)
cosy sin(a +9) cos(a+y)
B sin?(a + y) _sin*(a+y)
sin(a 4+ y)cosy — cos(a + y)siny  sin(a +y —y)
B sinz(a +y)
T sina

Method II: From (10), we get x = siny/sin(a + y).
Now, differentiating both sides w.r.t. x (by applying quotient rule to the RHS), we can easily
prove the desired result, as follows:

d d
sin(a + y)cos y—y —sinycos(a+y) dl
x

We get, 1 = .dx 5
fsin(a+)
- Dlsin(a+y—)
[sin(a +y))*
dy .
gy tina
~sin’(a+y)
dy sin’(a+y)
“dx  sina

Q3. If y=sin(x+y), find £.
Solution: Given y = sin(x +y)

Differentiating both sides w.r.t. x, we get
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d
Y cos(x +3) S ()

dy
- 1 -
COS(.X + y) ( + )

d d
LY cos(x +y) é = cos(x +y)

dx
dy
or —=[1 —cos(x+y)] = cos(x +y)
dx
; dy _ cos(x +y) (12)
dx 1—-cos(x+y)
Method II: Given, y =sin(x +y)
. x—i—y:sin’ly
Differentiating both sides w.r.t. x, we get
- dy 1 O
dx ~ /1— y2dx
B 1 , dy -1y \dy
- 1— yz dx - 1— y2 dx
dy V1 —y? (13)
dx 1-,/1—y2
Check that (12) and (13) are the same.
Q4. If y=x¢’, show that dy/dx = y/x(1 —y).
Solution: Given, y=x ¢’ (14)

Differentiating both sides w.r.t. x, we get

dy d | , d
&_xdx(e)Jre dx(x)
dy ,

— xe' =2 4+ ¢
xe dx+e

dy ,
1 —xe)—= = ¢
( xe)dx e
dy e’

© Derivatives of inverse trigonometric functions are discussed in Chapter 14.
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Now, observe that the term e’ does not appear in the desired result. Hence, we eliminate it
using (14) and get

d 1

&Y - Ans.

dx xl—-y x(1-y)

Q5. Find the equation of the tangent line to the curve
y* — xy* 4 cos xy = 2 at the point (0, 1)

Solution: Given y* — xy*+ cos xy =2

Differentiating both sides implicitly w.r.t. x, we get

d d d
3y2—y— {x-Zy y—i—yz} — sin xy (xd—i—‘-y) =0

dx dx
d d d

3y2—y—2xy —y—y2 —xsinxy—y—ysinxy:O
dx dx dx

d
d—y [3y* — 2xy — xsinxy] = y* + ysinxy
X

i dyi y2+ysinxy
" dx 3y? —2xy — xsinxy
dy 1240 1

Tyl 3(1)°-0-0 3

Thus, the equation of the tangent line at (0, 1) is
y—1=2(x-0)

x+1 Ans.

W= W=

or y=

15a.3 THE METHOD OF LOGARITHMIC DIFFERENTIATION

(For (complicated) functions such as general exponential functions and other expressions
involving products, quotients, and powers of functions.)
Recall that to find the derivative d(x")/dx, we use the power rule:
d n—1

a(x):nx

Also, we get

S =)

using power rule and the chain rule.
But, we cannot use the power rule to find d(e*)/dx. Thus, d(e¥)/dx # x -e¥~!
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Recall that, d(a*)/dx = a* log, a, which is the differentiation formula for the exponential
function.
Thus, we get,

a(ex) =e'log,e =¢" [ log, e = 1]

d ; .
— | = /& f
and . [a ] a’¥log, a-f'(x)

using differentiation formula for exponential function and the chain rule.

15a.3.1

Now, we ask the question; what can we write for d(x*)/dx?

Of course, it would be sheer nonsense to write d(x*)/dx = x - x*~ 1.

It is for these types of functions, and more generally for functions of the type y = [ f(x)]*,
where both f(x) and g(x) are differentiable functions of x, that we can use the technique of
logarithmic differentiation for computing their derivatives.

This technique is also used to simplify differentiation of many (complicated) functions
involving products, quotients, and powers of different functions.

We list below the right technique for differentiating each of the following forms of
functions:

[ £(x)]" — Power rule

y = /™ — Differentiation formula for exponential functions

[ £(x)]¥"™ = Logarithmic differentiation

Remark: The technique of logarithmic differentiation is so powerful that it can be used for
each of these forms.

15a.4 PROCEDURE OF LOGARITHMIC DIFFERENTIATION

The procedure of logarithmic differentiation involves taking natural logarithm of each side of
the given equation. After simplifying (by using properties of logarithms), we differentiate both
sides w.r.t. x. The usefulness of the process is due to the fact that the differentiation of the
product of functions is reduced to that of a sum; of their quotients to that of a difference; and of
the general exponential to that of the product of simpler functions.

The following solved examples will illustrate the process of logarithmic differentiation.
First, we start with the differentiation of certain (complicated) function involving products,
quotients, and powers of functions.

Example (7): If y=e’ sin 2x cos x, find dy/dx.

We have, y =e>* sin 2x cos x

Taking the natural logarithm of both sides, we get

log, y = log, > + log, sin 2x + log, cos x
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Differentiating w.r.t. x, we get

Idy 1 d,.s, d . .
A 2 (sin2 el
ydx eSxdx( ) sin 2x dx (sin x)+cosxdx (cos x)
Lesesy ! PN (—sin x)
= —e. cos2x -2 +——(—sinx
e>x sin 2x cos x

= 5+2cot2x —tanx

d
= l:y[S + 2 cot 2x — tan x|
dx

= > sin2x cos x[5 + 2 cot2x — tan x| Ans.

Example (8): If y=e™ sin’x tan’x, find dy/dx.
We have y=e** sin’x tan’x

Taking the natural logarithms of both sides, we get

log, y = log, e** + log, sin*x + log, tan®x

= 4x + 2log, sin x + 3 log, tan x

Differentiating w.r.t. x, we get

1d
f—y:4 ——cosx +3 sec? x
ydx sin x tan x
:4+2C0tx+7
sin X - COS X
d
2 :y{4+2cotx+.7]
dx sin X - COS X

= e* gin® x tan® x {4 + 2cot x + Ans.

sinx~c0sx}

Example (9): If y = % find %.

Taking natural logarithm of both sides, we get

log, v = 3 llog, (1 + x)(2 + x) ~log,(1 ~ ¥)(2 ~ x)

= S llog,(1-+3) +10g,(2 + x) ~log,(1 ~ x) ~ log, (2 ~ )

465
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Differentiating w.r.t. x, we get

Idy 1] 1 1 1 1
— == - -1)— -1
ydx 2_1+x+2+x l—x( ) 2—x( )}

S 2| THx T 2x ToxT2-x

dy [ 1 1 1 1}

:X'(l —x)+(1+x)+(2—x)+(2+x)} (Imp.)

21 1+x)(1—-x) 24+x)(2-x)

_y[ 2 N 4
C2[1-x2 4-x2

2
DR R

{4—x2+2—2x2}

Yo E )
04+ x)2+x) 6 —3x2 N
= (1—x><2—x>{<1—x2><4—x2>} Ans.

Now, we consider functions of the type [ f{x)]1***. Here, it may be mentioned that such functions
do not occur naturally. However, to demonstrate the power of technique of the logarithmic
differentiation, we solve the following examples.

Example (10): If y=5""", find dy/dx.
We have y =5"“"*

Taking natural logarithm of each side, we get
log, y = tan x - log,5

Differentiating w.r.t. x, we get

1d
Y sec?x- log,5
ydx
d
g é = y[sec? x - log,5]

= 5" ~[sec? x-log,5] Ans.
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Example (11): If y=x", find dy/dx.
We have y=x* 7
Taking the natural logarithm of each side, we obtain

log, y = xlog, x

Differentiating both sides w.r.t. x, we have

1dy 1
vax x(f) + (log, x)(1) = 1 + log, x

X
dy
LT (1 +log, x) = x*(1 +1log, x) Ans.

Example (12): If y = x¥', find dy/dx.
We have y = (x)*
Taking the natural logarithm of each side, we get
log, y = x* log, x

Differentiating both sides w.r.t. x, we get

467

1dy _d d
=2 log, x + log, X~ (x*
iy gy loge X Hlogex o ()
1 d
=Y =41 (X
ot ogexdx(x )
x—1 X d X X
= x*"!+1log, x[x*(1 +1log,x)] | a(x )=x"(1+1log, x), from Example (1).
= x*"! + x*log, x(1 +1log, x)
d . :
. % = y[x* !+ x¥log, x(1 +1log, x)] = x* [x*~! +x*log, x(1 +log, x)]

Method II: If y = x*, find dy/dx.
We have

X

y=(x)
Taking the natural logarithm of both sides, we get

log, y = x* log, x

b
™ Recall that a” = %" (a > 0).
— hloza

(15)

(16)
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Taking logarithms again, we get
log, (log, y) = xlog, x + log,(log, x)

Differentiating both sides w.r.t. x, we get

1 1dy Lo x(1)) & !
[ X Z
log, yydx X g log, x x
dy
2~ ylog, y|1+1
©odx yogey[ + Ogex—i_xlogex}

_ xx‘.xxlogEX{1+10g€x+xloggx}

[using (2)] Ans.

Example (13): If y = (x*)”, then find dy/dx.

2

XX X

We have, y = (x*)" = x¥" ¥ = x
Taking natural logarithm of both sides, we get
log,y = x? log, x

Differentiating w.r.t. x, we get

1dy 1
e ng + (log, x)(2x)
= x + 2xlog, x
dy
s = 2xlog,
o =yl +2vlog,

= x" - x[1 +2log, ]

=x""[1+2log,x] Ans.

Example (14): If y=(log.x)", find dy/dx.
We have y = (log,x)*

Taking natural logarithm of both the sides, we get

log, y = xlog,(log, x)
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Differentiating both sides w.r.t. x, we get

1dy d d
Sav = ¥ gy lozlog )] + log, log. x) g (¥
—x L1 + log,(log, x) - 1
= ) logexx ge ge
_ ! +log, (log, x)
= oz g, (log,
dy
N log,(1
dx Loge X + log,(log, X)}

; 1
= (log, x)" L + log, (log, x)} Ans.

og, x

Example (15): If y=(cos x)*" ¥, find dy/dx.

We have y = (cos x)*"~
Taking natural logarithm of both sides, we get

log, y = sin x - log, cos x

Differentiating both sides w.r.t. x, we get

1d 1
;d%jc = sinx Los o (—sin x)} + (log, cos x)(cos x)

sin® x

= - + cos x - log, cos x
cos x
dy sin? x
. — =y|cosx-log,cosx —
dx cos X

-2
sin x Sin

= (cos x) cos x - log, cos x —

cos X

} Ans.

Example (16): If y = (tan x)"°% ¥, find dy/dx.
log, x

We have, y = (tan x)

Taking natural logarithm of each side, we get

log, y = log, x - log, (tan x)

469
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Differentiating both sides w.r.t. x, we get

1d 1 1
;é = logexmseczx + log, (tan x) .
cos 1 1 ta
g S L log. tan
sin x cosx X
Cdy log,x N log, (tan x)
“dx 7 |sinxcosx X

log,x n log, (tan x)

= (tan x)'°&* { .
sin x cos x X

} Ans.
Example (17): If y =(sin x)*"*, find dy/dx.

We have, y = (sin x)*" *
Taking the natural logarithm of each side, we get

log, y = tan x - log, sin x

Differentiating both sides w.r.t. x, we have

by : + log, si 2
—— =tanx cos x + log, sin x sec” x
ydx in x Ee

= 1+ sec? xlog, sin x
d
. d—y = y[1 + sec? xlog, sinx] Ans.
x

Example (18): If y = (cos x)"°%*, find dy/dx.

log, x

We have y = (cos x)

Taking the natural logarithm of each side, we get
log, y = log, x - log,(cos x)

Differentiating both sides w.r.t. x, we get

1d 1 |
;é = log, xm (—sin x) + log,(cos x) <;)
1
= log, x(—tan x) + ;loge(cos X)
1
- {;bge(cos x) —log, x tan x}
d 1
- % =y {gloge(cos x) —log, x tan x}

1
= (cos x)'°&* {;loge(cos x) — log, x tan x] Ans.
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—y(+x log, y)

Example (19): x”-y"=1, then prove that dy/dx = O e S

Solution: Given
Xyt =1
Taking natural logarithm of both sides, we get
log,x” +1log,y* =log 1
or log, x” +log,y*=0[". log 1 =0]
oo ylog,x+xlogy =0
Differentiating w.r.t. x, we get

dy 1dy
aer;—Jrlogey-l:O

dx
x\ dy y
= [ log, — —:—(l 7>
(Og‘x+y>dx og,y+

N (ylogFX+X>d7y: _(y+xlogey>

1
y;+loggx

y dx X
_ 4y Ofxlogy)/x
dx (x+ylog, x)/y
_ Yologx+x) o
x(xlog,y +y)

Example (20): x* +y*=d’, find dy/dx.
Solution: Given
X +y'=d
Putting u=x" and v=y", we get
b

u+v=uda

du dv

——=0
'dx+dx

Now, consider u = x"
Taking natural logarithm of both sides, we get

log, u = ylog, x

471
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Differentiating both sides w.r.t x, we get

1du d d(y)
il | 1 =
e = Vg (log x) +log, x— =

du y dy y dy
- _ Z 4 ) = (Z+1 -
u(x—i- ogexdx) X (x+ ogexdx

Now, consider u =y~
Taking natural logarithm of both sides, we get

logl’ V=X log(', y

Differentiating both sides w.r.t x, we get

1dv d d(x)
=~ x—(log, log, y—-2
o gy 108 y) +log y— =

dv x dy [ xdy

Y S =y (224

dx v(ydx+ Ogey> y (ydx+ Oge)’)

Using (18) and (19) in (17), we get

d (xd
x’ (X + log, x—y) +y ({—y + log, y) =0
X dx ydx

C by X0/x) +ytlogy
" dx xlog, x + y*(x/y) '

(18)

(19)



15b Parametric Functions and
Their Differentiation

15b.1 INTRODUCTION

Let abody be moving in the x, y-plane, perhaps in the direction of the arrows on the curve shown
in Figure 15b.1. Suppose the Cartesian coordinates (x, y) of its position at any time # are given by
the pair of equations

x=f(1) and y = g(7) (1)

Then, for every number t in the domain common to f and g, the body is at a point (f(¢), g(¢)) and
these points trace a plane curve c traveled by the body. Equation (1) is called a parametric
equation of ¢ and the variable  is called a parameter."

The curve c is also called the graph of the parametric equation (1).

15b.1.1 Definition

If a functional relationship between two variables is specified so that each variable is
determined separately as a function of one and the same auxiliary variable, we say that this
functional relationship is represented parametrically and call the auxiliary variable a
parameter.

It may be noted that the curve c represented by parametric equations need not be the graph
of a function. If the parameter ¢ is eliminated from the pair of Equations (1), we obtain one
equation of the curve in x and y, of the form,

P(x,y) =0 2)

called a Cartesian equation of the curve c.

If a plane curve is defined by an equation of the form y = f{x), where fis continuous, then its
parametric equations may be obtained by letting x = t andy = f{t), where t is in the domain of f.
Other substitutions for x may also give parametric equations of the curve provided x assumes
every value in the domain of f.

15b-Derivatives of functions in parametric forms. Derivative of one function w.r.t. another function and the method of
substitution

M The equation x = f(#) describes the motion on the x-axis of the x-projection, which always stays right under the main
body. Similarly, y = g(#) gives the motion on the y-axis of the y-projection, which stays opposite the main body.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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x=f(t)
Body y=28(

/ X

1 X- projection

y- projection

T —

FIGURE 15b.1 A curve indicating motion (of a body in a plane) represented by x =f{t) and y = g(?).

Example (1): A parabola having the equation

= (3)
is also defined by parametric equations

x=1tand y= /¢ (4a)
as well as by the parametric equations

x=¢ and y=1° (4b)

Note (1): The above observation suggests that we may write any number of parametric
equations for the parabola at (3) above. However, the parametric equations

x=¢and y=1* (5)
define only the right-hand side of the parabola where x > 0.

Let us try to find the parametric equations for the parabola y*> = 4ax. From this equation, we
get y = 24/ax. Now to get the parametric equations in a simple form, we try to get rid of the
“square root” on the right-hand side. We put x = at®, which gives y=2ar. Thus, we get the
parametric equations as x = ar* and y =2at.

Note (2): Every relation in x and y cannot be expressed in the form of parametric equations.

15b.1.2 What is a Parameter?

The term parameter is one that is widely used in mathematics and in engineering and it is not easy
to give a definition that covers all its applications. If a moving point is tracing a curve, time “#” can
be taken as a parameter. In writing the equations of certain planar curves, parameter ¢ represents

@ Note that, by eliminating parameter ¢ from equations (5), we get the Cartesian equation y = x* that is defined for all real
values of x and hence its graph consists of the parabola represented by (3), whereas the parametric equations at (5) define
only the right-hand side of the parabola. Also, note that this situation does not occur with the parametric equations at (4a)
and (4). (Why?)
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the radian measure of the angle measured from the positive side of the x-axis to the line segment
from the origin to the point (x, y) on the graph. Another useful parameter is arc length.

However, a parameter need not have any physical significance. Any quantity that is
algebraically convenient can be used as a parameter. In such cases, the purpose of using
parametric representation is usually to simplify the algebra. We might think of parameter 7 as an
independent variable that controls the values of x and y.

A parameter can be described as a quantity (appearing in a formula) that can take different
values, and these values indicate different individual members of a family or different states
of a physical system. For example, a family of curves can be represented by the equation
F(x,y, a) =0, where « is a parameter defining the different curves of the family. In fact, there
are curves that can be conveniently represented only by parametric equations. Thus, paramet-
ric functions are unavoidable in coordinate geometry and in calculus. (see the equation of a
cycloid in Example (5) below.) Let us now consider some examples.

Example (2): Circle
A circle with center at the coordinate origin and with radius “a” is defined by the relation:
Xy =a (6a)

This relation is satisfied by every x and y, given by,

= t
= acos }(0 <1< 2n) (6b)
y=asint

for any value of ¢. The pair of equations (6b) are called parametric equations of the curve (6a)
and ¢ is called a parameter.

Example (3): Find a Cartesian equation of the graph given by the parametric equations,
x=2cos t and y=2sin ¢, (0 < t < 2r) and sketch the graph.

Solution: To eliminate ¢ from the two parametric equations, we square both sides of each
equation and add, which gives

X2 +y?* =dcos?t+4sin’t =4

The graph of the equation x> 4 y*> = 4 is a circle with center at the origin and radius 2. By letting ¢
take on all numbers in the closed interval [0, 27], we obtain the entire circle starting at the point
(2, 0) and moving (along the circle) in the counterclockwise direction, as indicated in
Figure 15b.2. Note that, in this example, the parameter ¢ represents the radian measure of
the angle measured from the positive side of the x-axis to the line segment from the origin to the
point P(x, y) on the circle, as indicated in Figure 15b.3.

Example (4): Ellipse

The equation of an ellipse
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y
2
2/ 2x
f f >
0
P+yr=4
-2

FIGURE 15b.2

P(2 cos t, 2 sin)

-2

4N

FIGURE 15b.3

is represented by the parametric equations,

X =acost
y=bsint

} (0<t<2n) (7b)

The equation of the curve (7a) is obtained by eliminating parameter ¢ from the pair of equations
in (7b).

Example (5): Cycloid

The cycloid is a curve described by a point M lying on the circumference of a circle if the circle
rolls upon a straight line without sliding. The equations
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x =a(t—sint)
<t <
y:a(l—cost)} Osis2n (82)

are the parametric equations of the cycloid, where “a” is the radius of the circle and 7 is a
parameter. As ¢ varies between 0 and 27, the point M (on the circle) describes one arc of the
cycloid. By eliminating parameter ¢ from equation 6(A), we get x as a function of y directly,
given by

x=2na-— {acos’l {?} - \/(ay—yz)}, na < x < 2mna (8b)

It will be noted that this is the simplest form in which the relation between x and y can be
expressed and that y cannot be expressed in terms of elementary functions of x.

Remark: Equation (8b) of the cycloid clearly shows that, in certain cases, it is more
convenient to use parametric equations for studying functions and curves rather than the
direct relationship of y and x.®

15b.2 THE DERIVATIVE OF A FUNCTION REPRESENTED
PARAMETRICALLY

We now prove the theorem that helps us find the derivatives of functions represented
parametrically.

Theorem: If x=f(r) and y = g(¢) are differentiable functions of ¢, then®
dy dy/de

dx — dx/de’
Proof: As ¢ changes to ¢+ 8¢, let x change to x +6x and y change to y + 8y.

dx
= £ o®
dt 7

;. Asét—0, 6x—0, and 6y—0 9)
(It means that at any stage 67# 0, 6x #0, and 8y #0.)

® Differential and Integral Calculus (Second Edition) by N. Piskunov (vol. I, pp. 100-101), Mir Publishers, 1974.

AY
C
a
W/ K
t
X
o P B

Cycloid

@ 1tis given that x =f{(¢) and y = g() are differentiable functions of 7, and we assume that x = () has an inverse, 7 = h(x),
which also has a derivative. Accordingly, y = g(¢) = g(h(x)) is also a differentiable function because it is a composite of
differentiable functions. Now, the derivatives dy/dx, dy/dz, and dx/dz, all exist and, with dx/df # 0, we may solve the
equation dy/d¢ = (dy/dx)(dx/dr) for dy/dx, and obtain dy/dx = (dy/dr)/(dx/dt).
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Now, consider the algebraic identity

sy y/st
dx  8x/8t
Sy _Oy/étr 51rlino(8y/8t)

- lim —= = =
S1m0x Stlgl(léx/ﬁt 5limo(‘o‘x/&)
t—

(. 6t # 0 and 6x # 0)
(10)

Now, since x =f(¢) and y = g(¢) are differentiable functions of t,

dy _dy

i @ or_dx
Cei—0 8¢ dt

and im — =
5t—006t dt

Now, if dx/d¢ # 0, limit on RHS of (10) exists.
.. limit on LHS. of (10) also exists (i.e., ;im 8y/8x exists)
t—

But as 6t — 0, 6y — 0 and 6x — 0 (see (A) above)

.8y . 8y dy
"s£‘L“o§*altlTo$*a (12)
Using (11) and (12) in (10), we get

dy  dy/dr
dx  dx/dt’

d
provided <d—f + 0) (13)

Remark: The derived formula, dy/dx = (dy/d¢)/(dx/dt), dx/d¢ # 0, permits us to calcu-
late the derivative dy/dx as a function of t, from the derivatives, dy/dz and dx/dr.

An important fact is that if a function is defined parametrically, as x =f{(t), y = g(t), then we
can find dy/fx without having to find y as a function of x.

Now, let us consider some examples.

Example (6): If x=2t+3,y= P - 1, find the value of dy/dx at t=6.

Also, find dy/dx as a function of x.

Solution: The result (13) gives dy/dx as a function of #:

dy dy/dr 2t
dx  dx/dt 2

When =6, dy/dx = 6.

Note (3): It may be noted that dy/dx is expressed in terms of the parameter only without directly
involving the main variables x and y.

Example (7): If x=at? y=_2at, find dy/dx.

‘We have,

dx d
a—za[, a—za

dy dy/dt 2a 1
A 4 _2  Ans.
Cdx dx/dt 2ar ns




Example (8):

‘We have

and

Now,

Example (9):
0<t<2n):

THE DERIVATIVE OF A FUNCTION REPRESENTED PARAMETRICALLY

Find dy/dx, if x = sin(log,?), y = cos(log,?)

d d
d—); = cos(log, 1) T (log, 1)

1
= cos(log, 1) "

dy . d
T —sin(log, l‘)a(loge 7)

1
= —sin(log, ?) P

dy  dy/dt _ —sin(log, 1)(1/1)

dx dx/dt  cos(log, t)(1/1)
—tan(log, #) Ans.
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Find the slope of the tangent to the following cycloid at an arbitrary point

x =a(t—sint) }

y=a(l —cost)

(14)

Solution: The slope of the tangent at any point of the curve (1) is equal to the value of the
derivative dy/dx for the value of parameter t at that point.
(See Example (5), on computation of speed.)

‘We know that,

Now,

dy

,.a:

dy dy/dt
dx  dx/dt
2—); =a(l —cost), % = a[0 — (—sin¢)] = asint

asint ___sinz_ 2s1n(t/2)cos(l/2) —eotl = tan<f _ 1)
a(l —cost) 1—cost 25sin*(¢/2) 2 2 2
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Hence, the slope of the tangent to a cycloid at every point is equal to tan((n/2) — (¢/2)), where
t is the value of the parameter corresponding to that point.

15b.3 LINE OF APPROACH FOR COMPUTING THE SPEED OF A MOVING
PARTICLE

To compute the speed of a moving particle whose x, y-coordinates at any instant t are given by
the parametric equations:

x=f(t),y=2g(t)

where ¢ is the time parameter.

Suppose, a body is moving in the x—y plane. Let the x-coordinate of the body’s position at
time ¢ be some function x = f{¢), and the y-coordinate of its position be given by the function
y=g(?). At each instant 7, the body is moving in the direction tangent to the curve of its
motion.

Suppose, it were possible to command the motion of the body, with the instruction
“stop curving and keep going in the same direction (as at the particular instant “z”’) and at the
same speed (as at that instant)”; then the body would go off along a tangent line to the curve at
that point (or time instant). Now, if the body were to go off on the tangent line and keep the
same speed as it had at the instant t, then in one unit of time it would travel a distance |dx /d1|
in the x-direction and a distance |dy/d¢| in the y-direction. Hence, the actual distance traveled

along the hypotenuse, in one unit of time, would then be \/[(dx/dl)2 + (dy/dr)*]. This
represents the magnitude of the speed along the tangent line to the curve at the instant “t”
under consideration (see Figure 15b.4).

To illustrate the above, consider the discussion in the following example.
Example (10): Let the position of a body in the plane at time ¢ be given by x =1’ — 31,
y=21>+7t. Then, compute its speed and the slope of the curve traced by the body at 7= 1,
t=2.

Solution: At any instant ¢,

d
x-component of velocity = d—); =37-3

[ /@/dn? + @ydr? | | dy/di |

| d/dr |
FIGURE 15b.4
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and
. dy
y-component of velocity = i 4t 47
sot=1,dx/dr = 3(1)2 —3=0,anddy/dr=4(1)+7=11.
Atr=2,dx/dr = 3(2)2 —3=9,anddy/dr =4(2) +7 = 15.
‘We have,
dx\*  [dy\?
d = bt ol
et = () - (3)
cospeed(atr=1) = (0)2 + (11)2 =11
and

speed (at 7 = 2) = 1/(9)* + (15)* = V/306

Slope of curve} Cdy  dy/dr 119

(atzr=1) Tdx dx/dt 0
Slopeofcurve | _dy 15 _5
(att =2) Tdx 9 3

Now, forz =14 X~ (1)32_ 3(1) =2
’ y=2(1)"4+7(1)=9

— 3 —
and forz =2 x7(2)2 3(2) =2
y=2(2)+7(2) =22
Therefore, at the point (—2, 9) on the curve, the tangent line is vertical, whereas at the point
(2, 22) the tangent line makes an angle of tan™'(5/3) with the positive x-axis.

15b.4 MEANING OF dy/dx WITH REFERENCE TO THE CARTESIAN FORM
y = flix) AND PARAMETRIC FORMS x = f(¢), y = g(t) OF THE FUNCTION

In the case of a function y =f{(x), the derivative dy/dx represents the instantaneous rate of
change of y with respect to x. It also represents the slope of the curve [y =f(x)] at an arbitrary
point (x, y) on the curve.

However, when a function is expressed by parametric equations (such as x =f(t), y = g(1)),
then the notation dy/dx, though it represents the slope of the curve, for each value of t, it does
not represent the speed of the particle in any direction. This is so because in the parametric
representation of a function, the variations in x and y are controlled by an independent variable
(parameter) t.

©) It means that the tangent line is vertical to x-axis, for 7 = 1. Also, note that slope of the curve (represented by parametric
equations) for any value of 7 need not represent the velocity (speed, in this case) of the moving object.
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The curve represented by parametric equations indicates the actual path of motion of the
particle, which need not be a straight line. Accordingly, dy/dx gives the rate of change of y w.r.t.
x (which represents the slope of the curve for different values of ¢, but it does not represent the
speed of the particle, in any direction).

In order to find the speed of the particle when equations are given in parametric form, we

must use the following formulas:©®

dx¥ dy .
d = — —
Spee (dt) + (dt)

&V d%y Y
cceleration ( [2) + ( t2)

Note (4): Whenever the equations of a curve are given parametrically, the Cartesian
coordinates of a point (on the curve) can be obtained, corresponding to each value of the
parameter “t”, as needed in the following example.

Example (11): Let us find the equation of the line normal to the curve given parametrically by

x=2r+1
y =26 — 61} (15)
at the point where t =2.

Solution: To find the equation of the line, we need to know a point on the line and the slope of
the line.

Point: When t=2, we get, x=15 and y =4, so the point on the curve is (5, 4).

Slope: The tangent line has slope,

62— 6

=2 2t

_ dy/dt
— dx/dt

b
dx

Therefore, the normal line has slope = —2/9.
.. Equation of the line, normal to the curve (15) at (5, 4) is given by

2
y—4:—§(x—5) or 9y +2x =46 Ans.

It is important to realize that an innocent looking problem (as in Example (11)) requires
proper logical thinking for its solution. We will now show how the derivative of one function
with respect to another function can be obtained by treating the functions as parametric
equations.

© Caleulus with Analytic Geometry by John B. Fraleigh (p. 86).
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15b.5 DERIVATIVE OF ONE FUNCTION WITH RESPECT TO THE OTHER

Let u =f(x) and v = g(x) be two differentiable functions of x. Then, we can easily compute the
derivatives du/dv, and treating x as a parameter.

Example (12): Differentiate log,(1 + x?) w.rt. tan” lx.

Solution: Let u=1log,(1 + x?) and v=tan 'x

.. We have to find du/dv.

Now,
du d 2x dv 1
—=—log,(1+x*)] =——=2x=—""— and —=
dx dx[Og‘( +x)] v T1re M i
Cdu (dw/dx)  [2x/(14+xY)) O 2x 1447
Ay (dv/dx) T\ /(02 | 142 1
=2x Ans.
Example (13): Differentiate x - e* w.r.t. x-log x.
Solution: Let u=x-¢* and v=x-log, x.
We have to find du/dv.
Now,
du _ x(e¥)+e* (1) =e(x+ 1)
dx
d 1
and d—;:x<;) +log, x- (1) =1+1log, x

Cdu (du/dx) e*(x+1)

= = Ans.
“dv (dv/dx) 1+log, x ns

Example (14): Differentiate € - cos x w.r.t. e~ -sin x.

X

Solution: Let u=¢"-cos x and v=e~ " -sin x.

Then, we have to find du/dv.

Now,
du X 3 X X H
ol (—sin x) 4 cos x(e*) = e*(cos x — sin x)
and
d
d—; = e ¥(cos x) +sinx- (—e™")
= e “(cos x — sin x)
du (du/dx) e*(cosx—sinx)  ,.

Ans.

Ty (dv/dx) e *(cosx —sinx)
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Example (15): Differentiate 7% w.r.t. log, 7.

Solution: Let u=7" and v=1log, 7.
Then, we have to find du/dv.
Now,

d dt
é =T7"1og, 7 |If t = a*, then F a*log, a

Furthermore, v=log, 7 means x” =7 (by definition of logarithm).”
. vlog, x =log, 7

Differentiating both sides w.r.t. x, we get

1 dv
—+log, x—=0
Vx+ 08 Yy

cdv v 1 —log, 7

“dx  xlog,x xlog, x
:7_1 {"logbazil ]
xlog, x log; x ' log, b

Now,
du  (du/dx)
= (dv/dx) =T7"log, 7- (—xlog, xlog; x)
= —x-Txlog, 7log, xlog; elog, x [."log; x = log, x log; e]
= —x7*(log, x)*(Since, log, 7log; e = 1) Ans.

15b.5.1 Method of Substitution (Usefulness of Trigonometric Identities)

In the process of differentiating one function with respect to another function, it is at times
more convenient to use the method of substitution employing trigonometric identities,
wherever applicable. This results in a change of parameter.

Example (16): Differentiate e¥ wrt. X2
Letu =e* and v=2x>
We have to find du/dv.

Solution: In « and v, we substitute x* =, thus getting u=e¢’ and v=1.

@ In calculus, we always express logarithm to the base “e”. The reason for this choice is the simplicity of the relation
d(log.x)/dx = 1/x.
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(Here, the parameter x changes to parameter ¢.) Now,

du dv du (du/dr) e >
& d —=1 - —= —Z —el=¢" Ans.
a M & (v 1 ° € s

Example (17): Differentiate log.(1 + x%) w.r.t. V1 + x2.

Letu = log,(1 + x*) and v = /1 4 x2.®
We have to find du/dv.

Solution: If we substitute 1 + x> = t, we get
u=1log,t andv=+/t= (t)'/2

(Here, parameter x changes to parameter ?.)

Now,
duil dVil —-1/2 1
G (@) 111 2V
dv (dv/de) ¢ 21 1
2 2
=—=— Ans
t V14 x2

Example (18): Differentiate tan~'((3x — x°)/(1 — 3x)) w.rt. tan™ 'x.

Let u = tan~!'((3x — x*)/(1 — 3x)) and v=tan™'x.®
We have to find du/dv.

Solution:
Put x=tan ¢.

3tant — tan’ ¢
cu=tan ! | 2RI TR tan~!(tan 37) = 3¢
1 —3tant
andv = tan"!(tan ¢) = ¢
du dv
L—=3 d —=1
“dv ne
du  (du/dr) 3
g —2—-3  Ans.
dv (dv/dr) 1 ns
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© The expression (3x — x%)/(1 — 3x) suggests to recall the trigonometric identity tan 3¢ = ((3 tan ¢ — tan®¢) /(1 — 3 tan ¢))
and the corresponding substitution (i.e., x = tan #). If we do this, parameter x will change to parameter 7. Even otherwise, from
the equation v =tan ™~ 'x, we get x = tan v. By substituting x = tan v, we get u = tan "~ '(tan 3v) = 3v. From this relation, we get

du/dv =3, which is the desired answer.
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Example (19):
Ifu=cos '((1—x%)/(1+x*) and v=tan"'(2x/(1—x?)), then find du/dv.

Solution: Put x =tan ¢.

1 —tan®¢
. u=cos ! (i) = cos™!(cos 2¢) = 2t

1 +tan? ¢
and
2tan ¢t
v = tan (1 —a? t) tan” (tan 27) = 2¢
du dv
L—=2 d —=2
"t ne W
Now,
% ~ (du/dr) %
dv (dv/dt) 27
du
So—=1 Ans.
o ns
Exercise

Q1. Differentiate ™ w.r.t. /x.
Ans. 2,/xe*

Q2. Differentiate sin~((1 — x)/(1 + x)) W.r.t. \/x.

Ans.
1+x

Q3. Differentiate tan~ ! ((\/l —x2—1) /x) w.rt. tan”'x.

1
Ans. —
ns. 2
Q4. Differentiate sin~'x w.r.t. cos™'v1 — x2.
Ans. 1

Q5. Differentiate tan~! (2x/(1 — x2)) w.r.t. sin~!(2x/(1 + x?)).
Ans. 1



16 Differentials “dy”’ and “‘dx”’:
Meanings and Applications

16.1 INTRODUCTION

We now introduce the concept of the differential, which enables us to approximate changes in
function values, where the function is differentiable. Even though, the application of differ-
entials for approximating the function values is not very important in the age of technology
(since better tools are available), differentials are important as a convenient notational device
for the computation of antiderivatives, as we will learn later in Part I of this book.

For a differentiable function y = f(x), we have been using Leibnitz notation dy/dx to mean
the derivative of y with respect to x. Although this notation has the appearance of a quotient, it is
treated as a single entity, since it is a symbol for the limit

i FE O —f () ey dy
Sx—0 ox sx—06x dx

f'(x)

if this limit exists. It is now proposed to give separate meanings to the symbols dy and dx."

The concept of the differential of a function is closely related to the derivative of the
function. To understand this, refer to Figure 16.1. In this figure, an equation of a curve is y =
f(x). The line PT is tangent to the curve at P(x, f(x)), Q is the point (x + Ax, f (x 4+ Ax)), and the
directed distance MQ is

Ay =£(x +Ax) — £(x)
which represents the actual change in the value of f, when x is changed to (x + Ax).

In the following figure, Ax and Ay are both positive; however they could be negative. For a
small value of Ax, the slope of the secant line PQ and the slope of the tangent line at P are
approximately equal; so that we can write,

Ay
D)

or Ay ~ f'(x)Ax (1)

The right-hand side of equation (1) is defined to be the differential of y.
We give the following definition.

16-The differentials dy, dx, and the derivative dy/dx as a ratio of differentials.

M The symbols dy and dx should be understood as individual symbols and not as product(s) of d and y or d and x,
respectively.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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AY y:f(x)

fx+ Ax) (x + Ax, filx+Ax)) O

Ay Ay

(x, flx) P
S M

FIGURE 16.1

16.1.1 Definition: Differential of the Dependent Variable y

Let the function fbe defined by the equation y = f(x), then the differential of y is denoted by “dy”
[or df(ix)], and is given by

dy = f'(x)Ax (2)

where x is in the domain of f' and Ax is an arbitrary increment to Xx.

Refer now to Figure 16.2, which is the same as Figure 16.1, except that the vertical distance
segment MR is shown, where the directed line MR = dy. Observe that dy represents the change
in y along the tangent line to the graph of the equation y = f(x) at the point P(x, f{x)), when x is
changed by Ax.®

Note that, dy # Ay, but for small values of Ax, dy is very close to Ay. Also, note that [with
reference to equation (2)] since variable x can be any number in the domain of f’ and Ax can be
any number whatsoever, the differential dy or [df(x)] is a function of two variables x and Ax.

We now wish to define the differential of the independent variable or “dx”. To arrive at a
suitable definition consistent with the definition of dy, we consider the identity function denoted
by f(x) = x. For this function, f’(x) =1 and y = x. Thus, from (2), we get dy = 1-Ax, that is,
if y=x, then, dy=Ax. For the identity function, we would want that dx be equal to dy.
This permits us to write Ax =dx. This reasoning leads us to the following definition.

16.1.2 Definition: Differential of the Independent Variable

If the function fis defined by the equation y = f(x), then the differential of x, denoted by dx is
given by

dx = Ax

where x is any number in the domain of f” and Ax is an arbitrary increment of x. The relation
(2) can now be written as

@ Note that, the definition of differential does not involve the notion of the derivative, though the derivative f’(x) appears
in the expression for the differential dy.
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A Y y=fx)
flx + Ax) (x + Ax, f(x + Ax)) O

7 T

FAN e T e 2 - Ay

dy { (x f(x) P dy {
fx) Ax M

X

0 - ”

x Ax X+ Ax

FIGURE 16.2
dy = f'(x)dx 3%

We treat (3) as the definition of the differential of y (i.e., the dependent variable). It tells us that,
knowing the derivative of a function y =f{(x), we can readily find its differential. Further, by
dividing both sides of (3) by dx, we can, if we wish, interpret the derivative as a quotient of two
differentials.

d
S =f(x), ifdx # 0 4)

This representation of the derivative, as the ratio of two differentials, is extremely important
for mathematical analysis.

Remark (1): By defining the differential of a function, we have attached meanings to the
symbols “dy” and “dx”, and given a new meaning to dy/dx (the derivative of y with respect to x)
as a ratio of dy to dx, retaining the meaning of the symbol dy/dx in question.

Remark (2): Inequation (3), dx being arbitrary, can have any (finite) magnitude big or small.
Also, since the magnitude of dy depends on two variables x and Ax, it can have any (finite)
magnitude. Thus, in equation (3), dy and dx need not be small.

However, if we think of dx and dy as being small, then the equation (3) proves to be very useful
since it gives the approximate changes in function values, where the function is differentiable.

Note (1): When we introduced the notation dy/dx (for the derivative of y with respect to x), we
emphasized that dy and dx had not been given independent meaning. But, now we can also treat
the symbol dy/dx as a ratio of two differentials. It is only when we think of differentials, that
we can write dy =f’(x)dx. This permits us to write dy/dx = 3x? in the form dy =3x%dx and
similarly dy/dx = cos x in the form dy = cos x dx, and so on.

) In this expression for dy, the derivative f’(x) appears as the coefficient of dxx, which is the differential of independent
variable. Hence, the derivative of a function is called the differential coefficient.
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16.1.3 Geometrical Interpretation of the Differential dy

Let y =f(x) be a differentiable function of x and consider a fixed value of x, say x(. Then, the
differential of f at x; is given by

dy = f'(x0)dx (5)
Note that, in this case, dy is a linear function of the single variable dx, f'(xo) being a constant.”
Also, if an increment dx is given to Xy, the corresponding increment Ay in y, is given by

f(xo +dx) — f(x0) = Ay
or S(x0 +dx) = f(x0) + Ay

But, we know that, for small values of dx, Ay is very close to dy. Hence, replacing Ay by dy,
we can write,

S(x0 +dx) = f(xo) +dy
~ f(x0) +f'(x0)dx

Since, f is differentiable we may drop the subscript “0”, and write the above equation as

f(x+dx) = f(x) +f'(x)dx (6)(5)

The relation (6) gives us an approximate value of f{x + dx) in terms of fully known quantities
[i.e., fix),f'(x) and dx] where x is a number at which fis differentiable. We shall make use of
this equation to estimate values of functions that are difficult or impossible to obtain exactly.
The approximation given by this equation is most useful when f(x) and f’(x) are easy to
compute. This will be clear from the solved examples which follow shortly.

Note that, when we approximate f(x + dx) by f(x) + dy, we are approximating the ordinate
of the point Q on the curve by the ordinate of the point R on the tangent line (see Figure 16.2).©

Note (2): One should not think that the increment Ay is always greater than dy. The situation
becomes clear from the Figure 16.3a and 16.3b. It may be noted from Figure 16.3b that Ay < dy.

Note (3): It should also be noted that, if /'(x) =0 at a point x, the differential is equal to zero:
dy=0. In this case, dy is not compared with the increment Ay of the function. Now, let us
compute the differentials of some functions:

“ We know that the differential dy = f’(x)dx is a function of two variables, x and dx, which are independent of each other,
since, in general, f'(x) varies with x and the increment “dx” can be chosen arbitrarily.

) In a sufficiently small neighborhood of the point x, this replacement leads to small errors. A demerit of this formula is
that although we know that the relative error (Ay/y) tends to zero as dx — 0, it does not provide any estimation of the error
for anumerical value of dx. This is natural, because the error depends on the nature of f. Of course, we can measure the error
for a given function and the given value of dx. Here, it may be mentioned that for all practical purposes the error is generally
found to be negligible, as will be seen in the solved examples.

© We know that tangent lines and derivatives are closely related. Since a straight line is simpler than curves, and since the
tangent line to a differentiable curve runs close to the curve near the point of tangency, the tangent line can provide a useful
approximation to the function values near the point of tangency. Equation (6) tells us that to approximate the value
Sflx +dx), we add the tangent line increment f”(x)dx to the value of f(x). Thus, an approximation of f{x + dx) given by (6)
is called a linear approximation. Of course, we can measure the error, but for all practical purposes it is found to be
negligible, as will be seen in the solved examples. However, we shall discuss the error and its estimation later in Chapter 22.
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0/ x X+ Ax

(a) ()
FIGURE 16.3 (a) Ay > dy, (b) Ay < dy.

Example (1):

i) y=x>+5x>—1
. dy = D[x* + 5x% — 1]Ax

(where D, is the “derivative with respect to x”).
ody = [3x% + 10x]Ax

Now, if x=1 and Ax =0.02, then dy = [3(1)*+ 10(1)(0.02)] = 0.26.

(i) y=sinx
*.dy = d(sinx)
= D, [sin x]Ax
= cos x-Ax
(iii) y=e**

oody = d(e¥) = D [e®] - Ax = 3¢ - Ax

(iv) Let y =f(x) =log(x*+ 1)

L dy = df(x)]

d[log, (x* + 1)]

D, [log,(x* +1)] - Ax

_ 2x-Ax
X241

1
:m-Zx-Ax
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Example (2): Given y=4x?> —3x+ 1, find Ay, dy and Ay — dy for

(a) any x and Ax

(b) x=2, Ax=0.1
(c) x=2,Ax=0.01
(d) x=2, Ax=0.001

Solution:
(a) We are given y =f(x)= 432 —3x+1

SoAy = flx+Ax) —f(x)
= 4(x+Ax)" = 3(x+Ax) + 1 — (4x> —3x+1)
= 4x2 4+ 8x-Ax +4(Ax)* —3x —3-Ax+ 1 —4x2 +3x — |
= (8x—3)-Ax+4-(Ax)?
From the definition of the differential in equation (3) above, we have
dy = f'(x)dx = (8x — 3)Ax (since dx = Ax)
Thus, Ay — dy = 4(Ax)?

The results of the parts (b), (c), and (d) are given in the table below:

X Ax Ay dy Ay —dy
(b) 2 0.1 1.34 1.3 0.04
(c) 2 0.01 0.1304 0.13 0.0004
(d) 2 0.001 0.013004 0.013 0.000004

From the above table, we note that the closer Ax is to zero, the smaller is the difference between
Ay and dy. Furthermore, observe that for each value of Ax;, the corresponding value of Ay — dyis
smaller than the value of Ax. More generally, dy is an approximation of Ay when Ax is small,
and the approximation is of better accuracy than the size of Ax.

16.2 APPLYING DIFFERENTIALS TO APPROXIMATE CALCULATIONS

The application of the differential to approximate calculations is based on the replacement of
the increment.

o Ay = f(xo 4+ dx) — f(xo)

by the differential, dy [=f’(x)dx], since for small values of dx we have Ay ~ dy. Therefore,
we write,

f(xo+dx) — f(x0) = dy = f'(xo)dx (7)

Note that, even though the increment Ay may depend on dx in a complicated manner, the
differential dy can be easily obtained by differentiation.
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This approximate equality can be immediately used to solve the following problem.

Given the values of f(x), f'(xo), and dx, it is required to compute an approximation to the
value f(xo+ dx) of the function.

Relation (7) directly gives us the desired formula:

f(xo 4 dx) ~ f(xo) +f'(x0)dx

Let us consider some illustrative examples. (For brevity, we shall write x in place of xo and
denote dx by h.)

(I) Consider the functiony = /X
1
Its differential isdy = ——=dx

2y/x

h
H ~V/x+—
ence, v/x + ﬁ+2ﬁ

o In particular, for x =1, we obtain,
h
V 1 + h ~ 1 + E
¢ In the general case, for x = a (a>0), we have,

h
Va+h~a+—
2a
These approximate formulas are extremely simple and make it possible to compute
square roots with a sufficient accuracy when |A| is small compared to a.
For instance, the application of these results yields

21
v121=v1+021 =1 +L: 1.105

2)(1)
The exact value of the root is equal to 1.1.
To compute the root v/408 we represent it in the form /408 = /207 + 8, and

thus obtain v/408 ~ 20 + (8/(2)(20)) = 20.2.
Now, let us take 1/390. Here, it is convenient to put 1= —10, then

10
V390 = V20> — 10 ~ 20 — ——— = 19.75

(2)(20)
. dy d U ameny e /x
-Ify—\/;c,then,dx—dx(x")—n(x )—nx X =

1 n 1 n
dy = 1y Sdx = fﬂh (replacing dx by h)
n x n x

sV x + b= ﬁ%‘/% “h (8)
For x =1, this yields the approximate formula
VTih~1h
o A more general formula is obtained for x =da" (a > 0):

. ho O
va'+h~a+——

n-a"!

™ This formula is obtained by putting x = 4" in equation (8).
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Let the reader compute several roots with the aid of this formula and estimate the
accuracy achieved by finding more accurate values using the table of logarithms.

(II) Let us consider the function y =sin x. Its differential is dy = cos x dx, and therefore
sin(x + h) & sin x + h cos x

In particular, for x =0, we derive the formula, sin /1 = h.

For example, we have sin g5 ~ 155 = 0.01745

That is, approximately, sin 1° = 0.1745.®

This approximation is correct to the fifth decimal digit, that is, the error does not exceed

107>, Let us compute sin 31°.
in31° ~ sin30° + —— cos 30°
sin ~ sin ——cos
180

3
0.5 +% -(0.01745)

Q

Q

0.5150

The tabular value of sin31° correct within 10~ (i.e., the fourth place of the decimal)
is 0.5150. (The reader may account for the fact that we have obtained a major
approximation of sin 31°.)

(1) Now, consider the function y =1In x. Here we have, dy = (1/x)dx, and
o In(x+h) ~Inx+1
e In particular, for x =1 this yields the formula In(1+ /)~ 1

Take the known value In781 ~ 6.66058. To compute In782, we apply the above
formulas

1
6.66058 + ——

In 782
n 781

1%

Q

6.66186

The tabular value of In 782 correct within 107> is equal to 6.66185.
(We see that the error of our approximation is small. The reader may try to find out why
in this case we have also obtained a major approximation.)'?’

16.3 DIFFERENTIALS OF BASIC ELEMENTARY FUNCTIONS

Since the differential of a function is obtained as the product of the derivative by the differential
of the independent variable, we can readily write down the table of the differentials of all the

® Note that 6o ~ % ~ 0.01745 On the other hand, n radians = 180°. Therefore sin 35 = sin (%) =sin 1°, and we
obtain, sin 1° ~0.01745.

©) Later on, it will be found that using Taylor’s theorem (to be studied in Chapter 22) these results can be obtained more
easily and accurately.

U9 Today, in the age of technology, the application of differentials for approximating function values is not
very important (since with a pocket calculator, it is easy to find very accurate values of f(xg), flxo+ dx), and
Ay = flxo+ dx) — f(xo)). However, differentials are important as a convenient notational device for the computation of
antiderivatives as we will learn later in Part II of this book.
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basic elementary functions because their derivatives are known. For instance,
d(x") = nx"!dx
d(a¢®) = a*Inadx

1
d(lnx) = —dx

d(sin x) = cos x dx, and so on.

16.3.1 Differentials of the Results of Arithmetical Operations on Functions

In accordance with the rules for finding derivatives (studied in Chapter 10), we can use the
derivative formulas to write down the corresponding differentials. For example, if # and v are
differentiable functions of x, then the formula

d du dv
after multiplying both the sides by dx becomes
du+v) =du+dv (9b)

which says that the differential of the function (u + v) is the differential of the function « plus the
differential of the function v. It is still assumed that u and v are differentiable functions, but the
name of the independent variable no longer appears in the formula. We do not need to mention
itas long as we understand that (9b) is an abbreviation for (9a). We illustrate the major rules in the
table below.

Derivative Rule Differential Rule
d(c
1. ﬂ =0 d(c)=0
dx
d n
2. (") = nx""! d(x"y =nx""'dx
dx
3. dch:) = cg—z d(cu)=cdu
du+v) du dv
4. =—4+— d =d d
dx dx+dx (@t v)=dutdv
d d d
5. E;;v):ud—; vd—z dwv)=udv+vdu
d(u/v)  v(du/dx) — u(dv/dx) vdu —udy
6. = d(‘—f) =
dx v2 v V2
J
7. d() = m"! du A"y =m""" du
dx dx

Warning: One must be careful to distinguish between derivatives and differentials. They are
not the same. When you write D,y or dy/dx you are using a symbol for the derivative, but when
you write “dy” you are dealing with a differential.

Note (4): It should be noted that a differential on the left-hand side of an equation (say dy), also
calls for a differential usually dx on the right-hand side of the equation. Thus, we never have
dy =3x?, but we have dy =3x*dx.
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16.3.2 Differential of a Composite Function

While the definition of dy assumes that x is an independent variable, that assumption is not
important. Let y=£(u) and u= ¢(x) be two functions of their arguments possessing the
derivatives f'(u) and ¢'(x) with respect to these arguments. If we put,

y=fw) =flp(x)] = F(x) (say)
then, by differentiating both sides with respect to x, we have
Y =F(x)=f(u)-¢(x) (10)
On multiplying both sides of this relation by dx, we get
Y odx =f'(u) - ¢/(x)dx

or dy=f"(u)-du [sincey -dx = dyand ¢'(x)dx = du]

Thus, the differential has the same form as if the magnitude u were an independent variable.
This can be stated as follows.

The differential of a function y = f{u) retains the same expression irrespective of whether its
argument « is an independent variable or a function of another variable.

This property is referred to as the invariance of the form of the differential. 'V

It is because of this property that we can write down the differential in one and the same
form irrespective of the nature of the argument of the function. The equality, dy =f'(u)-du
implies

dy
! A
[l =4
and hence in all the cases, this equation may be looked upon as follows:
The rate of change of a function relative to its argument is equal to the ratio of the differential
of the function to the differential of its argument.
Relation (10) can now be written as

dy dy du

dx  du dx

(11)

The right-hand side of equation (11) is obtained from the left-hand side by the simultaneous
multiplication and division of the former by du (if, of course, du # 0).

Hence, the arithmetical operations on differentials can be performed as if they were ordinary
numbers. Here, lies the reason for the convenience of the representation of the derivative as the
ratio of the differentials. For instance, using this representation of derivatives we can readily
write down the differentiation rule for inverse of a function.

R Y
x Cdx  dx/dy  Dy[x]

U Note that this important property of the differential follows from the differentiation rule for a function of a function.
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Remarks: Knowing the derivative of a function, we can find its differential and vice versa.
Hence, the existence of the derivative can be taken as the condition equivalent to the
differentiability of the function.'®

From the geometrical point of view, this condition is equivalent to the existence of the tangent to
the curve y =f{x), not perpendicular to the x-axis.

Definition: Recall that, a function y=f(x) is said to be differentiable at a point x (in its
domain) if it possesses a derivative at that point. Further, if a function is differentiable at every
point in its domain (i.e., the derivative exists at every point in its domain) then it is called a
differentiable function.

Now, in view of the above discussion (about the differential of a function) we can give the
following definition:

A function y = f(x) is said to be differentiable at a point x, if it has a differential at that point.

Note (5): Any problem involving differentials, (say that of finding dy when y is given as a
function of x), may be handled either

(a) by finding dy/dx and multiplying by dx or

(b) by direct use of formulas on differentials.
Example (3): Given a function y = siny/x. Find dy.
Solution: Representing the given function as a composite function,

y=sinu, u=+/x
1
2y/x

1
oo dy = cosy/x - ——=dx
2y/x

d d
we ﬁnd,—y: cosu- 2 — cosy/X -
dx dx

or, we write,

1
. dy = cos u du, du = (Vx)'dx = —=dx

2Vx
. dy = (cosy/x) <21de>

Note (6): The application of the differential of a function can also be appreciated by considering
nonuniform motion of a particle in a straight line. Let the law of motion be expressed
mathematically by

s=f(1) (12)

where s is the distance traveled and ¢ stands for the time taken. Then, the velocity of the particle
at any instant 7, is given by f'(¢,). If now an additional time A¢ passes, let the particle cover an

U2 1t is for this reason that the operations of finding the derivative and the differential of a function are called
differentiation.
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additional distance As. Since the motion is nonuniform, the dependence of As on At can be
complicated because the velocity of the particle varies all the time.

But if At is not large, the velocity will not change considerably during the period of time
from ¢, to ¢; + At. Therefore, the motion may be regarded as “almost uniform” during the
time interval Az. Hence, in calculating the distance traveled, we shall not get a serious
error if we regard the motion as uniform with the constant velocity f'(t,), from the instant
1 to t, + At.

Thus, the (approximate) distance traveled during the interval At is given by f'(¢;)-At.
This product, as we know, is called the differential of the distance function and is denoted by ds.
We write

ds =f'(1y) - At (13)

Of course, the real distance As traveled (during the interval ¢, to ¢; + Af) differs from the
invented distance ds given in (13) above.

It must be clear that the accuracy of the formula (13) becomes greater as At is decreased and
vice versa. Nevertheless, it is much easier to compute ds as a distance covered in uniform
motion than to evaluate the real distance As. This accounts for the fact that formula (13) is
often used even when At is not very small.

In all such cases, the replacement of a real change of a quantity by its differential reduces to
the transition from some nonuniform processes to the uniform ones. Such a replacement is
always based upon the fact that every process is “almost uniform” during a small interval
of time.

16.4 TWO INTERPRETATIONS OF THE NOTATION dy/dx

Leibniz used the suggestive notation dy/dx for the instantaneous rate of change of y with
respect to x. This notation suggests that the instantaneous rate comes from considering an
average rate (which is indeed a quotient) and computing its limit. Thus, dy/dx stands for
the limit,
A d
. ;TOA—z = 57 provided the limit exists
Here, dy and dx do not have any meaning if considered separately (since dy/dx is a single entity:
a symbol for the limit, which we call the derivative).
Our investigation suggests that
Ay dy . S
im — =—, provided the limit exists
Ax—0Ax dx P
It would be wrong to interpret this limiting relation in the sense that Ay tends to dy and Ax to
dx, as Ax — 0. The correct meaning is that the ratio of the increments Ay/Ax, as Ax — 0,
tends to the limit denoted by dy/dx or the f’(x). On the other hand, the differential of a function
y=£(x) is defined by

dy = d[f (x)] = f'(x)dx

where f’(x) stands for the derivative of fat a point x and dx is an arbitrary number (dx # 0).
Dividing both sides by dx, we get dy/dx =f(x), (dx # 0).
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In this case, dy/dx stands for the ratio of two quantities namely dy and dx. In either case, we
get dy/dx =f(x), dx #0.

Now, we can also say that the ratio of increments Ay/Ax tends to the ratio of differentials
dy/dx, as Ax — O.
16.5 INTEGRALS IN DIFFERENTIAL NOTATION
The notation of differentials allows us to express integrals in a shorthand that often proves

useful. For example, if u is a differentiable function of x, then the integral of du/dx with respect
to x is sometimes written simply as the integral of du:

du
Ja -dx = Jdu

Thus, the integral of du is required to be evaluated as

".du = .“%dx =u+c

or simply, [du=u+c
For instance, if # = sin x, then d(sin x) = cos x dx, and we can write

Jd(sin X)=sinx+c¢

which is short for [ cos xdx = [ & (sinx)dx = sinx + c.

Thus, for a given integral [f(x)dx, we have to express the differential f{x)dx in the form
(d/dx)F(x)dx (which also stands for d[F(x)]). Obviously, then (d/dx)F(x)=f(x). Whenever
Sf(x)dx is expressed in the form d[F(x)], we say that the integrand is expressed in the standard
form. Once this is done, we can immediately write down the antiderivative (or the indefinite
integral), F(x) + c.

Solved Examples
Example (1): Find the approximate value of (4.01)* correct to two decimal places.
Solution: We have
flx+8x) & f(x) +f(x) - (14)"
where 6x is small.
(x4 6x)° & x4 3x7 - 8x (15)
We take x=4 and 6x=0.01

U3 n all subsequent problems, we shall use this formula, which gives the approximate value of a differentiable function
Sf(x), at a point (x + 8x) close to x.
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Substituting these values in (15), we get,

(440.01)° ~ (4)° +3(4)*-(0.01)
~ 64+ (48)-(0.01)
~ 64 +0.48
~ (401)° ~ 6448  Ans.

Now, we must similarly compute (3.97)°.
Here, we take x =4 and 6x =0.03

- (397 = (4-003)°
(4—-0.03)°

Q

Q

64 + (48) (—0.03)
64— 1.44
~ 62.56

Q

Example (5): Find an approximate value of v/8.05
Solution: Consider the function
flx) = V="

1 1
v 23
.f(x)—3x =305

We have,

F(x+6x) =f(x)+f(x)-8x, where8xis small

. 13 _ _1/3 )
C(x+8x) " = x +3x2/3 Sx
We take x =8 and 6x =0.05
Substituting these rules in (16), we get
1
8+0.05) ~ (8) + 0.05
( M @) 4 (005)
0.05
~ 24—
(3)4)

~ 2+0.00417
. v/8.05~ 2.00417

Now, if we wish to compute v/7.95, we get

/7.95% 2 — 0.00417 = 1.99583

Example (6): Estimate the value of sin31°, assuming that 1°=0.0175rad,
cos 30° =0.8660.

(4 +3(4)% - (~0.03) [ F((x + (~8x)) ~ f(x) +£(x) - (~5)]

and
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Solution: Let fix) =sinx .. f'(x)=cos x
We have, fix + 8x) ~f(x) +f'(x) - 5x, where 8x is small

.sin(x + 8x) = sin x 4 cos x - 6x (17)

We take x = 30° = £ and 6x = 1° = {55 = 0.0175

Substituting in (17), we get,

sin31° = sin(30° + 1°)
sin 30° + cos 30° - (0.0175)
sin(n/6) + cos(n/6) - (0.0175)
0.5 + (0.8660) - (0.0175)
0.5+ 0.015155
0.51516 Ans.

Q

Q

Q

1%

1

Note (7): Assuming that 1° =0.0175 rad and sin 45° = 0.7071, we can easily estimate cos 46° or
cos 44°. (Remember that cos 45° =sin 45° =0.7071.)
Let f(x) =cosx

s f(x) = —sinx

We have f(x + 8x) = f(x) +f'(x)8x
c.cos(x+8x) = cosx —sinx-8x
. cos(45° +1°) &~ cos45° —sin45°(0.0175)
~ 0.7071 — (0.7071)(0.0175)
~ 0.7071 — 0.01237
~ 0.6947

Q

and cos(45° — 1°) & 0.7071 — (0.7071)(—0.0175)

Q

0.7071 + 0.01237
0.71947

Q

. ; 7
Example (7): Approximate sin 3%

Solution: Note that, 2 = §% + % = Z + L Thus, 32 is close to 7.
Thui, we Writensin;—’é = sin (% + %)
Let £ = x and & = 6x
Toon
cosinf—=+=—) =sin ox
! <6+36> in(x +8x)

We have, fix +6x)~f(x)+f'(x)-8x

.. sin(x + 8x) & sin x + cos x - 8x
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or sin(n/6 + n/36) =~ sin(n/6) + cos(n/6) - (1/36)
0.5+ (v/3/2) - (n/36)
0.5+ 0.075575 = 0.575575

Q

Q

Example (8): Find the value of f{x)= 253 +7x+5, at x=2.001.

Solution: Let f{x)=2x>+7x+5
S f(x) =6x2+7
We have, f(x+8x) =~ f(x)+f'(x)-6x, where &xis small.
~ (23 4+ 7x+5) + (6x* +7)-8x
We take x =2 and 6x=0.001
- f(2.001) = [2(2)° +7(2) 4 5] + [6(2)* + 7](0.001)
(16 + 14+ 5) + (24 + 7)(0.001)
= 35+0.031 = 35.031 Ans.

Example (9): Find the approximate value of tan~! (0.99).

Solution: Let f(x) =tan~'x .. f'(x) =

‘We know that,
S f(x+6x) = f(x) +f'(x) - 8x, where x is small

1
ootan (x + 8x) ~tan~! x + (m) - (8x)
We take x=1 and 6x=—0.01

- tan—1(1 — ~ tan—! ! (=
sotan™! (1 —0.01) ~ ta (1)+<1+(1)2> (—=0.01)
0.01

2

~
~

—0.005

~
~

Al &~

~ 0.7854 — 0.005
~ 0.780 Ans.

Note (8): Approximate value of tan~'(1.001) is given by

tan~'(1 +0.001) ~ tan~!(1) + (1 n 12)(0‘001)
T 1
~ ~ 4= -(0.001
472 ( )

~ 0.7854 + 0.0005
0.7855 + 0.0005
~ 0.7860 Ans.

1%
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Example (10): Find the approximate value of e'°** taking e = 2.71828.
Solution: Let f{x) =¢”, then we know that f'(x) =¢”
We have, flx + 8x) = f(x) +f'(x)-8x, where 8x is small
. ex+5x ~ ex _’_ex.ax
We take x =1 and 6x =0.002

61‘002

1%

el +e!-(0.002)

2.71828 + (2.71828)(0.002)
2.71828 + 0.005437

2.7237 (up to four decimal places)

Q

Q

Q

Example (11): Taking log, 10 =2.3026, find the approximate value of log, 101.
Solution: Let /(X) =log, x, .. f'(x) :é
We have, flx + 6x) ~f(x) +f'(x) - 8x, where dx is small

. log,(x 4+ 8x) ~ log, x +% - (8x)

We take x =100 and 6x =1

Q

. log, (100 + 1) ~ log, 100 + 1/100(1)
log, (10)* 4 0.01
2(2.3026) + 0.01
4.6052 + 0.01

4.6152 Ans.

Q

1%

1%

Q

16.6 TO COMPUTE (APPROXIMATE) SMALL CHANGES AND SMALL
ERRORS CAUSED IN VARIOUS SITUATIONS

The measurements in physical experiments are not exact. A certain amount of error is always
present. Therefore, the measurements are in fact only approximations. Of course, these
approximate numbers [representing measurement(s) of various quantities] are very close to
their exact measurement(s).

The statement, y =f(x) means that for a measured value of x, we can calculate the
corresponding value of y. If a small error x enters in the measurement of x, then evidently,
there will be an error in the calculation of the dependent variable y. These errors may be due to
inaccuracies/limitation(s) of measuring instruments or due to human errors, Besides, these
errors may be positive or negative in nature."?

(9 For example, in calculating the area of a given circle, if there is an error in measuring the radius x, then there is bound to
be an error in computing the area, y = X2,



504 DIFFERENTIALS “dy” AND “dx”: MEANINGS AND APPLICATIONS

The resulting error in y is given by 8y =f(x + 6x) — f(x). If x is very small, then
oy mf(x) +f(x)-0x = f(x) [ f(x +6x) = f(x) +f'(x) - 8x]

or dy = f'(x) - 8x (18)

Thus, the two errors 8x and 8y are related by (18). This formula enables us to find
approximately the small change 8y in y corresponding to small change éx in x. If dx is
treated as a small error in the measurement of x, then the formula (18) gives us the
corresponding error 8y in calculating y.

16.6.1 Definitions: Absolute Error, Relative Error, and Percentage Error

If the error 8y is calculated for a given value of x (say x = x;) it is called the absolute error.
The quantity 8y/y is called the relative error. Sometimes, scientists are interested in the percent
error in the computation of a numerical quantity. The percentage error is given by

15
2. 100‘ = |relative error x 100|<15>
y

Let us see some examples:

Example (12): A spherical ball when new measures 3.00 cm in radius. What is the approx-
imate volume of metal lost after it wears down to r =2.98 cm?

Solution: Volume of the spherical ball is given by, V = (4/3)nr3.

The approximate change in computing volume of the spherical ball (due to wear of 0.02 cm in
its radius) is given by

ov %(gnﬁ) -or

Q

1%

4mr? - 8r (here r = 3 cm and 8r = 0.02 cm)
47(3)*- (0.02)

367(0.02) = 0.727, taking 7 ~ 3.14

2.26 cm® Ans.

Q

Q

Q

Note (9): If we assume that the figures ry = 3.00 cm and r, = 2.98 cm are exact, then the exact
answer would be

ov

Q

gn[32 - (2.98)2]

(0.71521066. . .)n

1%

Q

2.26 cm?, correct to two decimal places.

1) The percentage error has to be positive number irrespective of whether the error is positive or negative.



TO COMPUTE (APPROXIMATE) SMALL CHANGES AND SMALL ERRORS 505

Example (13): A spherical ball of wood of radius 150 cm is coated by a layer of paint. If
thickness of paint layer is 0.05 cm, find the volume of paint required.

Solution: The approximate volume of paint required is given by

Buzg i7rr3 -or
dr\ 3

(4mr?) - r cm?

47(150)2 - (0.05) = 4n(22,500) - (0.05) cm’
14137.167 cm® = 14.14 L (approx.) Ans.

Example (14): A hemispherical dome of a temple has radius 5 m from the inside. If the dome is
to be coated by a plastic material of 0.08 cm thickness, then find the volume of material used.

Solution: The approximate volume of plastic material required, is given by

d 174
6V~a§<§ﬂr) or

212 -8r (Here r = 5m = 500 cm and 8r = 0.08 cm.)
27(500) - (0.08)

(0.16)(250, 000)7 cm®

125663.7 cm®

125.7 L (approx.) Ans.

%

Q

Q

1%

Example (15): Find the volume of the metal of a hollow cylindrical shell of inner radius 2 cm
and thickness 0.1 cm and length 10 cm.

Solution: Let v =inner volume of the cylinder and 6v = the volume of the metal used in the
hollow cylindrical shell of thickness 0.1 cm.

We have, v=1r’h

d
D s
dr

(2nrh) - 6r
40n(0.1) (" r=2, h=10, andér =0.1)
= 4n=12.57cm? Ans.

Q

Oy

1%

1%

Example (16): If the diameter of a sphere is measured to be 20cm and the error in the
measurement is 0.4 cm, find the error in the calculation of the surface area of the sphere.

Solution: Let surface area of the sphere be denoted by s.
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Then, s = 4mr%, where r is the radius of the sphere.

The error in measurement of the diameter of the sphere = 0.4 cm.

.. The error in measurement of radius of the sphere =0.2 cm.
Suppose 0s is the error in the calculation of surface area of the sphere.
Then, we have,

bs~— -8r= (8nr)-6r (6r=0.2cm)

For r=10cm, 6r=02cm [. dia=20cm, .. r=10cm]

©. 85 =~ 81(10) - (0.2) = 161 cm? Ans.

Example (17): A right circular cone has a height of 7 cm and a base diameter of 5cm. It is
found that the diameter is not correctly measured to the extent of 0.06 cm. Find the consequent
error in the calculated volume.

Solution: The volume of the right circular cone v = (1/3)rr?h.

Height of the cone =7 cm (it is assumed to be correctly measured)
Radius of the base =2.5cm
(This is not correct. There is an error of 0.03 cm in its measurement).
We have to find the consequent error v in the calculation of the volume v (i.e., to find 6v).
We have,

v:gnrzh
dv 2
8v%5~8r:<§nrh)-6r -Q_Emﬂh
dr 3

At r=2.5cm, 6r =0.03 cm. (Note that, h is constant =7 cm.)

Q

2
&y g7z(2.5)(7) -0.03 cm®

N

~ 100

0.357 cm?

1.09 = 1.1 cm?® (approx) [ 7 = 3.14] Ans.

Q

Q

Example (18): Find the approximate error in computing the surface area of a cube having an
edge of 3 m, if an error of 2 cm is made in measuring the edge. Also, find the percentage error in
computing the surface area.

Solution: Suppose the edge of the cube is x m.

.. Its surface area A(x) = 6x2
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The error in measuring the edge is 6x =2 cm = 0.02 m. We have to find the approximate error in
calculating the surface area of the cube. Suppose it is A.

Then,
dA

dx
(12x) - 6x
12(3) - (0.02)
0.72 m?

6A ox

1%

Q

Q

Q

Now, the percentage error in computing the surface area

8A 0.72
= .(100) = x 100

a1 5y

0.72 72 4 o
—5—4><100—5—4—§—1.33Aa Ans.

Example (19): If the radius of a spherical balloon increases by 0.1%, find approximately the
percentage error in computing the volume.

Solution: We have v = %73

d
SO ~ o = dnr? b1
dr
Now, the percentage error in computing v is given by

ov 4’1[7'2'5}" 3
I l e a—— l - — 1 ’64 1
. x 100 @/3)m x 100 r>< 00 - 61 (19)

But, it is given that the radius increases by 0.1% (i.e., percentage of increase in r=0.1)
or 2 x 100 = 0.1

0.1)r r

=50~ 1000

Put this value of 6r in (19), we get

3 3
% error in computing v = o X 100 - (10;;)0> =15= 0.3% Ans.

Example (20): If there is an error of 0.3% in the measurement of the radius of a spherical
balloon, find the percentage error in the calculation of its volume.

Solution: Let x =radius of the sphere.

Then, its volume v = 37x?

v % -6x = (4nx?) - 8x (20)
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{ :; - 4nx2} (21)

It is given that percentage error in x is 0.3.

. lOOB—x =03
x

(0.3)-x

-, error in x(i.e., 8x) = 100

(22)

We have to compute: percentage error in calculating v [i.e., to compute the value of
((8v/v) - 100)].
We have 6v ~ Q ox [see (20) above]
Multiplying both sides of (20) b 100

100QN@ sk
v dx

100 4nx?  (0.3)x

. Y%erroriny ~ @3 T 100

0.9% Ans.

Example (21): The time T of a complete oscillation of a simple pendulum of length “/” is
given by T = 2n é. If there is an error of 1.2% in the measurement of /, find the percentage
error in 7.

Solution:

2 2
GivenT = 2n [ il [ or T= k\ﬂ, where k is a constant = il
g V8 NG

There is an error of 1.2% in the measurement of /.

. %x 100 = 1.2
Lo (12 121
o= 100~ 1000

We have to find % error in computing T (i.e to compute 2= % 100)

6T dT
We h. —
e have, = ~ -
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cor~ 3L s = S[kﬂ] -1

d/ d/
= k.%.lfl/Z.,s[
e Ziﬂ-az [T =kV]]
STTX 100 = [Ziﬂ ~61} . {k%ﬁ} x 100 { %:k%/?}
:%XIOO ['.‘Sl:%oi)}
127 1

6

Note (10): Exercises are not given here. The reader may refer to standard books for good
exercises.



17 Derivatives and Differentials
of Higher Orders

17.1 INTRODUCTION

‘We have studied several methods of finding derivatives of differentiable functions. If y = f{(x) is
a differentiable function of x, then its derivative is denoted by

dy / /

o fi(x) or ¥y or y

The notation f'(x) suggests that the derivative of f{x) is also a function of x. If the function f’(x)
is in turn differentiable, its derivative is called the second derivative (or the derivative of the
second order) of the original function f{x) and is denoted by f”'(x). This leads us to the concept of
the derivatives of higher orders.

£10) = £ = limy T AV 2T

We write,

T2

d(;l)yc) dy {d(f/(X))

dx T:f”(x) or y' or y;

Similarly, we can find the derivative of d*y/dx*provided it exists, and is denoted by dy/dx?
[or f(x) or y" or y3], called the third derivative of y =f(x) and so on.

17.1.1 Notations for Derivatives of y = f(x)

Order of Derivative Prime Notation () Leibniz Notation y-Notation D-Notation
Ist ¥ or f'(x) dy/dx i Df

2nd ¥y or f(x) d’y/dx? V2 D’f

3rd y" or f"(x) dyrdx? V3 Df

4th YWor fY(x) dty/dx* Va Df

nth Yy or f(x) d"y/dx" Vn D"f

17-Derivatives and differentials of higher order Related rates: computing unknown derivative(s) using known derivative(s).

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Example (1): Ify = f(x) = 2x°> — x* + 3, then
yi=10x* —2x, y, =40x> —2, y3 = 120x?,

v4=240x, y5 =240, y¢=0, ..., y,=0

Note that, for a polynomial function f(x) of degree 5, f“(x) =0 for n > 6. More generally,
the (n+ 1)™ and all higher derivatives of any polynomial of degree n are equal to 0.

However, there are functions [like sin x, cos x, €”, log,x, and their extended forms, [that
is, sin(ax + b), cos(ax + b), e, log.(ax + b), or more general ones like sin( f(x)), /™ and
log,(f(x))] that can be differentiated any number of times and f(”)(x) is never 0.

The most important derivatives in physical applications are the first and the second, and
these have different special meanings. For example, if x represents time and y the distance, then
dy/dx represents velocity v. In this case, the rate of change of velocity, that is, dv/dx (:d2y/dx2)
is called the acceleration.

Also, the second-order derivative has other special interpretations, depending on the
meaning of the related variables x and y. When the relation between x and y is graphed, then
one interpretation of d®y/dx? is associated with the curvature of the graph.

Note (1): The generation of successive derivatives is not merely free creation of the curious
mind. A railroad engineer has to employ second derivatives to calculate the curvature of the line
he constructs. He needs a precise measure of the curvature to find the exact degree of banking
required to prevent trains from overturning.

An automobile designer utilizes the third derivative in order to test the ride quality of the car
he designs and the structural engineer has even to go to the fourth derivative in order to measure
the elasticity of the beam and the strength of the columns. Besides, we will later see that the
derivatives of higher orders are needed to expand functions (to the desired degree of accuracy)
in the form of polynomials.

Example (2): Let us find the nth derivatives of the following:
(i) X", (ii) €%, (iii) a”, (iv) sinx, (v) cos x, (vi) 1/x, (vii) log.x
Solutions:
(i) Let y=x".
oyt ="y =nn— D)x"2 y; =n(n—1)(n — 2)x" 3,

ys=n(n—1)(n—2)(n—3)x"* and so on

oy =nn—1)n-2)(n-3)...2-1-x"7"
=nn-1)(n-2)(n-3)...2-1

=n! Ans.

Remark: y, ;=0 (since, y, =n! = constant)
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(i) Lety=¢e™.
yr=¢e", ym=e", y3=¢", andsoon
S.yn=¢" Ans.
(iii) Let y=a".
sy =aloga=a" -k
where k =log.a = constant.

v =k -a*log,a = k*-a*

y3 = k3 -a*, and so on
yu =k"-a* = (log,a)" -a* Ans.

(iv) Let y=sinx.

yi = cosx:sin<g+x> { sin(g—o—a) :COS9:|

cos(g—i— >*s'n E—Q—(E—i— ) *s'n<2 E—I— >
Y2 5 X | =s1 5 ) X )| =s1 3 X

Y3 :COS<2~g+x> :sin{g—l— (2-g+x>}
= sin(3-§+x>

S Vn = sin(n- g—i— x) Ans.

(v) Let y=cos x.

dy . n N T .
A a—yl = fsmx—cos<5+x> [ . cos<2+0> = sm6’]

Now, it is easy to show that,

Yy = cos(nA g+x> Ans.

513
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(vi) Lety = (1/x) = x7.

-1
v 7_1.x—27(x2)
—1)%1-2 1)%-2!
yo = (-2 = E 2
. (=123 (=13
y3 = (=1)(=2)(=3) - x* = = =—a
- al
e = ( xn)+l . Ans
(vii) Let y=Ilog.x.
Vi fl:x_l
X
~1
Y2 = (71)x_2 - (xz)
—1)%2
= (<123 = EY

S (=D(=2)(=3)...(—n+1) _(=1)""(n—1)!

[Compare this result with the nth derivative of 1/x at (vi).]

Note (2): The higher derivatives with respect to the extended forms of the above functions
are given below at (1)—(9). The reader may easily prove these results. It is useful to remember
them since they will be needed for solving problems.

1. Lety=(ax+b)’, rer.
Then, y,=r(r— 1)(r—2) ... r —n+ Dd"(ax+b)™"
This result is true for every real value of r.

2. Lety=(ax+b), reNn.

Then,
rla(ax +b)™"
Yn :7(7‘—?1)! s (n <r)
where r is a positive integer.
3. Lety=(ax+b)", neN.
Then,
nld"(ax + b)" "
S
o (ax + b)0 =1
yu = nld"
and 0! = 1
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4. Lety = (ax+b):1(ax+b)"'
Then,
v = (—l)~a~(ax—i—b)_2
v = (~1)(=2)-@- (ax +b)">
y3 = (=1)(=2)(-3)-& - (ax +b)"*

yo = (=1)"nla"(ax + b)~ "D

(—1)"nla"
" (ax + b)"!
5. Let y=1log (ax+ b).
Then,
(=) - Dl
y}‘l - (ax + b)ﬂ
6. Let y=e™
Then,
yn — e(L\' . an
yn — aneax
7. Let y=d**

Then, y, = a** - k"(log,a)"

Yo = K" (tog,a)"

8. If y=sin(ax+b), y,,:a”sin(ax—i—b—l—wz)

2
. . b
If y=sinax, y,,:a”sm(ax—i-wi)
. . A
If y=sinux, y,,:sm<x+nv§>
9. If y=cos(ax+b), yn:a”cos(ax+b+n~g)
n
If y=cosax, yn:a”cos(ax—O—n-E)
. T
If y=cosx, yn:sm<x+n-§)

@ Examples: If

M y=7%y =7

(i) y=>5" y,=5""

w
= =
)
@
~

(
(i) y=-e™,y, =™ (7)" (loge)’
(
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17.2 DERIVATIVES OF HIGHER ORDERS: IMPLICIT FUNCTIONS
If y is an implicit function, its higher derivatives are found by differentiating the required
number of times the equation connecting x and y, bearing in mind that y and all its derivatives
are functions of the independent variable x.
For example, the second derivative of the function y specified by the equation

X +y' =1 (1)
is found by differentiating equation (i) twice. We get 2x +2yy =0 or

x+y =0 (2)
and (X)) +yy" +yy =0or

L+ (/) +n" =0 (3)

Buty = —(x/y) andy" = —(1+ (v)*)/».

y// _ _1+(7(x/))))2 _ _x2+y2 _
y y

17.3 DERIVATIVES OF HIGHER ORDERS: PARAMETRIC FUNCTIONS

In order to find a derivatived of higher orderd of a function specified by parametric equations, we
differentiate the expression of the preceding derivative considering it as a composite function of
the independent variable.

Let x = ¢(¢) and y =f{(¢). Then, we have,

dy _f'() _ (dy/dr)

dx  ¢'(t)  (dx/dr)

where dx/dt #0. Also, the function x = ¢(¢) has an inverse function t = o 1(x).
Furthermore,

s d Q) d[f(r)] d . dy dy d
Y'=4 Lﬁ/(tl)} =5 Lﬁ/(tf)} . di)tc (usmg the property, £:£é>
_ SO () —f(0)-¢"(1) dt
2 dx
[d(r)}

From the inverse function ¢ = ¢>71(x), we obtain

dr 1

dr  ¢'(x)
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and arrive at the expression

v _ B0 106" ()
¢/ (1))

The differentiation of the last relation with respect to x leads to the expression for the third
derivative, and so on.

Example (3): Let us find the derivatives y and y” of the function specified by the equations
x=acostand y=bsint.

Solution: On differentiating, we obtain

dx int dx ;
— = —asint, - = —acos
dt 2t
d 2
d—);:bcost7 @:—bsint
y/:dl: bcost:_écott diy:Qg:diydix
dx —asint a “dx  dr dx  dr’ dr
y//:£<dl) _ (—asint)(—bsint) — (bcost)(—acost) (ﬁ)
dx \dx (7asin[)2 dx
_absin® t + ab cos® ¢ 1 _ b
B a?sin® ¢ (—asint) @2sin’¢
, b
¥y =—Zcott
a
b
= ————— Ans.
Y a?sin’ ¢

17.4 DERIVATIVES OF HIGHER ORDERS: PRODUCT OF TWO FUNCTIONS
(LEIBNIZ FORMULA)

It helps us to find the nth derivative of the product of two functions. Let u(x) and v(x) be
functions of x, possessing derivatives of nth order, and y =u-v. Then,

yn = (uv), ="Counvo +"Cytty—1v1 +"Cottn_ovs + -+ +"Ctty_yvy + -+ +"C, v,

where,

n!
nC‘ —
" (m=r)l!

This formula can be formally obtained if we take Newton’s binomial formula for
the expansion of (z+ v)” and then replace the powers of u and v by the derivatives of the
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corresponding orders of u and v (and put vy = u, vo =v). Here, we do not present the general
proof of this formula and confine ourselves to considering some examples of its application.®

Note (3): When one of the functions in the above theorem is of the form x”, then we should
choose it as (the second function) v, and the other as (the first function) u, because x” shall have

only m derivatives (and not more).

Note (4): From the expression for "C,, we get

Example (4): If y=e“x?, find y,.
Solution: uy = ™, vo = x2
u; = ae™, v =2x
U =a’e™, v =2

u, =a'e”, n=0=v=vs=---

-1
Vp = aneaxxz +nan—leax2x+n(’11 5 )an—Zeax.z

or y, = e®[d"x* 4 2nd" 'x +n(n— 1)a" ] Ans.

Example (5): Let us compute the 100th derivative of the function y = x%sin x.

We have
Yioo = (sinx-x?) g
= (sin x) ;00 - X% + 190Cy (5in X) g9 (2x)+ ' C, (sin x)gg(2)

100 -
= (sin x)gq - x> + 200x(sin x)gg + w (sin x)gg(2)

All the subsequent terms are omitted here since they are identically equal to zero. Consequently,

®
Yioo = X* sin<x+ 100%) +200xsin(x+99g> +99005in(x+98%)

= x2sinx — 200x cos x — 9900 sin x Ans.

@) A rigorous proof of Leibniz formula may be carried out by the method of complete mathematical induction [i.e., by
proving that if this formula holds for nth order, it will also hold for the order (n+ 1)].
©® We know that sin[x + (2n) - (r/2)] = sin x and sin[x + (2 + 1) - (1/2)] = cos x.
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Example (6): Differentiate » times the equation

d’y dy

2

il el -0
x dx2+xdx+y

Here, each term is differentiated n times.

Solution: D" (y2X?) = y,12X*4+"C1yns1(2x)+"Cay,(2)

D(52) = s + 2 + 70 2) @
D" (y1x) = X" Yns1 + 1Y (5)
D) =+ ©)

Adding (4), (5), and (6), we get

0=x% yuo+ 2n+1) X ype1 +[p(n—1)+n+ 1]y,

0=x> y,0+ (2n+1) X yp1 + [nz + 1yu

Example (7): If y =sin(msin~'x), then prove (1 — x?) — xy; + m?y = 0 and deduce that
(1= )i — 0+ 1) X vy — (72— 1)y, =0

Solution: We have y =sin(m sin”'x) (7)

m

s
=cos(msim X): ————
n=cosl N

orv1— x2-y; =mcos(msin~'x)

2

or (1 — x2)-y? = m? cos?(msin~'x) (on squaring both the sides)

1x)] [since cos?0 = 1 — sin’f]

= m?[1 — sin®(m - sin~
=m’[1 -
Sl=xtyt = w1 -y (18)
Differentiating both the sides of (18) with respect to x,
(1= x*)2y12 + 1 (=2x) = m[-2yy1]

or

(1 =)y (2y1) — x(2y7) = —m* - y(2y1)
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Canceling the factor (2y;) from both the sides, we get

(1 —x%)ys —xy, +m*y =0 (9) (Proved)

Now, in order to prove the second relation, we shall differentiate each term of equation (9) n

times by Leibniz theorem.

nn—1
D'(1 — x*)ys = Y2 (1 — X?) 4+ nynei (—2x) —0—%%(—2)

= Y2 (1 = X*) — nyue1 (2x) =y, -n(n — 1)

D"(=xy1) = Yni1 (=X)+"Cryu(—1)

= = XYnt1 — IYn
D' (ny) = m’y,
Adding (10), (11), and (12), we get
0= (1= )z + (=20 = Xyt + [n(n — 1) = n+ m?ly,
or (1 = xX2)yu2 — (204 Dy — (B> —m*)y, =0 (4) (Proved)
The following results can be easily proved:
If y=e“"-sin bx, then,
yn = (a® + b*)"? sin(bx + na) - e
where a =tan~!(b/a).
If y =e™ sin(bx + ¢), then
yp = (@ + b*)"? sin(bx + ¢ + na) - e*
where, o = tan™ '(b/a).
In particular, if y=¢"sinx (here a=1, b=1, ¢ =0), then
v = (12 + 1" sin(x + na) -

=2"2.¢* sin(x +ntan"' 1/1)

=2"2.¢" sin(x 4 n-n/4)
Similarly, if y =e€" cos x, then

yu =2"%. e cos(x +n-m/4)

(10)

(11)

(12)
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Now, if y=e>*-sinx (here a=2, b=1, ¢=0), then
yn = (22 + 12" sin(x + na)
=52 sin(x + ntan™! %)
If y=¢e“"-cos bx, then

yn = (& + )" cos(bx + nar)e™

where a =tan"(b/a).
If y=¢e“* cos(bx + ¢), then

yn = (& + b2)"? - cos(bx + ¢ + na) - e
where a =tan~ (b/a).

Note (5): The following material is given here to satisfy the natural curiosity about differentials
of higher orders. The reader may find it useful later on.

17.5 DIFFERENTIALS OF HIGHER ORDERS

Consider a function y =f(x), where x is the independent variable. The differential of this
function is denoted by

dy = f'(x)dx

which depends on two arguments, namely, the independent variable x and its differential dx.
Here, it is important to remember that the differential dx of the independent variable x is a
magnitude independent of x: for any given value of x, the value of dx can be chosen quite
arbitrarily.®

It means that dy must be looked upon as a function of x alone and that we have the right to
speak of the differential of this function. The differential of the differential of a function, that is,
d[df(x)], is called the second differential (or the differential of the second order) of the function
f(x) and denoted by

d?y:
d®y = d(dy)

By virtue of the general definition of a differential, we have,

d%y = [ f'(x)dx] dx

™ Tn other words, the differential f(x)dxis afunction of x, but only the first factor [i.e.,f’(x)] can depend on x. The second
factor dx is an increment of the independent variable x and y is independent of the value of the variable dx.
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which is a function of x (for an arbitrary but fixed value of dx independent of x). Since dx is
independent of x, dx is taken outside the sign of the derivative upon differentiation, and we get

&y = £ (x)(dx)’

Note (6): When writing the degree of differential, it is common to drop the brackets; in place of
(dx)z, we write dxz, and so on.

&Py =f"(x)dx?

Note (7): To unify the terminology, we call the differential df(x) [=f’(x)dx] of the function f{x)
the differential of the first order (or the first differential).

Similarly, the third differential (or the third-order differential) of a function is the differential
of its second differential.

&y = d(@y) = [ (x)d]dx = £ (x)dx’
Analogously, for the differential of the nth order, we arrive at the formula
dy = /") (x)dx"

where dx” is the nth power of dx. Thus, the differential of nth order is equal to the product of the
nth derivative with respect to the independent variable by the nth power of the differential of
the independent variable.

We have seen (in Chapter 16) that, if y =f(x), then dy = f'(x)dx irrespective of whether the
argument x is an independent variable or a function of another argument. [Recall that if y = f{u),
where u= ¢(x), then dy =f'(u)¢'(x)dx =f'(u)du]. In the general case, this property (i.e., the
invariance property of the first derivative) is not possessed by the differentials of higher orders.

Indeed, suppose that x is no longer an independent variable as before, but a function of a new
independent variable 7 [i.e., x = ¢(#)]. Then, dx also becomes function of ¢, and therefore it is not
allowable to regard dx as a constant when the first differential is differentiated. This leads to a
new expression of d’y different from the one above. Computing the differential of dy by
applying the differentiation rule for a product, we find

d?y = d[f'(x)dx]
Now, treating f(x)dx as a product of functions, we get,

&y = d[f'(x)ldx + f'(x)d(dx)
— [Pl 4 F ()
= f"(x)dx? + f'(x)d*x®)

Observe that there appears the additional term f (x)d*x. If x is an independent variable, the
first term is retained but the second one vanishes, since,

dEx=(x)"dx*=0-dx* =0

© We must distinguish between the terms dx* and d*x:

dx? = (dx)(dx); d®x = (x)"dx* =0-dx?
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The expression for the third differential in the case when x depends on ¢ is still more
complicated. Thus, when finding a higher order differential, we take into account the nature of
the function and distinguish between the cases when it is an independent variable or depends on
some other variable.®

17.6 RATE OF CHANGE OF A FUNCTION AND RELATED RATES

In Chapter 9, we have discussed at length the concept of rate of change of a function
y [=f(x)] with respect to the independent variable x and invented the definition of derivative
of a function. There, we have clarified the distinction between the average rate of change and the
instantaneous rate (or the actual rate) of change of a function. Also, we were convinced through
examples that in certain situations, the instantaneous rate of change is more significant than the
average rate of change of a function.

In calculus, we are fundamentally concerned with the actual rate of change of a function with
respect to the change in the variable on which it depends.

Furthermore, if both x and y are varying with 7 (i.e., both x and y are functions of ¢), then

dy dy dx .

2. = h 1

= & (by chain rule)
dx

—, [R—

=15

Thus, the rate of change of one variable can be calculated if the rate of change of the other
(related) variable is known.

For example, when a spherical balloon is inflated, its radius 7, volume v, and surface area s
grow simultaneously with time 7. Thus, r, v, and s are all functions of ¢, but each of them could
also be considered as a function of any one of the remaining variables, since all of them are
interrelated. One might be interested in computing the following:

dr . . - -
P rate of increase of radius per unit increase in time
(at the instant when say r = 8 cm)

ds . . L
— =rate of increase of surface area per unit increase in time
(at the instant when say r = 6 cm)

dv . . —
Fri rate of increase of volume per unit increase in time
(at the instant when say r = 10 cm)
d; = rate of increase of surface area per unit increase in radius
r .
(at the instant when say = 25 cm)

dv . L. . .
F = rate of increase of volume per unit increase in radius
r .
(at the instant when say r = 25 cm)

© Mathematical Analysis (English translation) by A.F. Bermant and 1.G. Aramanovich (pp. 155-173), Mir Publishers,
Moscow, 1975.



524 DERIVATIVES AND DIFFERENTIALS OF HIGHER ORDERS

The d-notation helps us remember which rate of change we are interested in. In many rate-
of-change problems, we can find the time rate of change of a quantity Q if we know the time rate
of change of one or more related quantities.

Let us consider some examples.

Example (8): If a spherical balloon is inflated at the rate of 10 cm?/s, how fast is the radius of
the balloon increasing when the radius is 5 cm.

Solution: Let V = volume of the (spherical) balloon.

%: 10cm?/s (13)

The (geometrical) relation connecting the variable is

To compute (dr/dt) at r=35.

How do we compute this?

To compute the desired rate, we may consider either the rate whose value is known (here it is
dv/df) or the rate that is obtained from the relation connecting the variables (here it is dv/dr).
Furthermore, to compute the desired rate, we write

dv _dv dr

T @ (by chain rule)

Observe that dr/dt appears in this relation, so that we get

dr _ dv/dt
dt dv/dr
or
dv _dv df

=% @ (by chain rule)

Observe that, in this relation, dr/d¢ does not appear, but d#/dr appears. However, in view of
this definition of derivative as a ratio of differentials, we can write

dr dv/dt
dt  dv/dr
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which is the same expression as obtained above. Now we get

dr 10
dt 4w

Cdr| 10 100 1

Cdrf,s 4m?|_s 4m(5)*  10m

Therefore, when the radius is 5 cm, the radius is increasing at the rate of ﬁcm/s Ans.

Note (8): It is necessary to write down the units of the rate computed.

Remark: Note thatforradius = 10 cm, dr/df = 1/40x. [t may be observed here that the balloon
is inflated at a constant rate (10 cm>/s), but the rate at which its radius increases is not constant.
In fact, dr/d¢ keeps on decreasing with time (why?).

Inthe related rate problems, all the variables are interrelated and so are their time rates. If two
or more equations connect the variables involved, then we can compute the desired rates (e.g., in
this case, dv/dr, ds/dr, and dv/ds) by obtaining the required rate(s) from the right equation.

The important step is to connect the available rate(s) suitably so that the desired rate gets into
the relation. Then, by using the available data and the derived data, we can easily compute the
desired rate.

Example (9): If v denotes the volume of a sphere and s its surface area, find the rate of change
of v with respect to s, when the radius of the sphere is 2 cm.

Solution: Let r =radius (of the sphere),

4
v = volume of the sphere = gnr3 (15)

and s = surface area of the sphere = 47 (16)

To find dv/ds, when r=2cm.
‘We have,

dv 2
i 4nr”  [from (15)]

d
and d—: = 8nr [from (16)]

dv  dv/dr 4m? r

N @ T
% s ds/dr  8mr 2
d 2
P _r =Z=1cm?/cm? Ans.
ds at r=2 2 at r=2

Example (10): An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the
volume of the cube increasing when the edge is 10 cm long?
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Solution: Let edge of the (variable) cube = x cm.

.. Volume of the cube v = x

Given dx/df =3 cm/s.
To find

—V, when x = 10 cm
dr

From (17), we easily get

Now,

dv dv dr dv/de
dx  dr dx = dx/de

Cdv dv dx

Tdr dx dr

Cdv 2

L $=062)0)

dv 2 .

g =3(10)"-3 [by using (18) and (19)]

at x=10

=900cm®/s  Ans.

(17)

(18)

Example (11): The radius of a spherical balloon increases at the rate of 4 cm/s. Find the rate at

which its volume increases when its radius is 5 cm.

Solution: Let r =radius (of the spherical balloon) and

4 5
v = volume = gnr

Also,

dr

— =4 s
& cm/s
To find dv/d¢ when r=>5.

Note that from (20), we easily get the following rate:

(20)

(21)

(22)
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Now, to get dv/dz, we write

dv v dr dv/de
dr dr dr dr/dt

Sdv dv dr 5
w T a @ G @
dv

- & = 471(5)2 -(4) = 4007 cm3/s Ans.
r=5
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Example (12): A stone is dropped into a quiet lake and waves move in circles at a speed of
4 cm/s. At the instant when the radius of the circular wave is 10 cm, how fast is the enclosed area

increasing?

Solution: Let » =radius of a circle and A = area of the circle.

A =t

Given

To find dA/df when r=10cm.
From (23), we get

dA
— =2nr

We write

U _u dr
dr  dr dr

dA dA dr

& & A

dA

s—|  =2n(10)-(4) =80rcm?/s  Ans.”)
def,_yo

The enclosed area is increasing at the rate of 80 cm*/s when r = 10 cm.

@ We solve this equation for dA/dt, using the fact that de/dr = 1/(dr/d?).

(25)
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Note (9): At r= 15 cm, dA/d7 = 120m cm?/s and at » =5 cm, dA/dt = 40w cm?/s.

Example (13): If the volume of a sphere increases at the rate of 25 cm?/s, find the rate of

increase of its surface area at the instant when its radius is 10 cm.

Solution: Let r =radius of the (changing) sphere at any instant.

4
.. Volume of sphere v = gnr

and
surface area s = 4mr?
Given
dv
—~ —=25cm’
" cm’/s

To find ds/d¢ when » =10 cm.
From (26) and (27), we get

dv 2
Fr 4nr-  [from (26)]

d
and d—j = 8nr [from (27)]

To compute ds/d¢, we write

d _ds dr
dr dr dr
d _ds dr
dt dr dt
d

—S—Sm’ ﬂ
dt dt

3

(26)

(27)

(28)

31

Now, we are required to find the value of dr/d¢, which we can find by using only (26)

(why?).®

dv _dv g74 ) dr

@

dr
S 25 =4dm? —
T T,

® It is given that (dv/dr) =25 cm®/s. Now (dv/df) = (dv/dr)-(dr/dt) [where (dv/dr) = 4mr].

(32)
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dr 25
dt 4

Cds 2 50
R P (25) = - om /s
ds

& =5cm’/s  Ans.
dz,_o

Example (14): Sand is pouring from a pipe at the rate of 10 m*/s. The falling sand forms a
cone on the ground in such a way that the height of the cone is always twice the radius of the
base. Find the rate at which the height of the sand cone is increasing when sand in the pile is
8 m high.

Solution: Given

% =10m’/s (33)
Height of the sand cone i = 2r (always) (34)
1 5 1 /hy2
Volume of conev = gnr h —§n<§) -h
- in;ﬁ (35)
12
To find d//dt when =8 m.
From (35), we get
dv 3 , 1 ,
- lznh 74nh (36)

Note that, the value of dv/d¢is given at (33). Hence, we express this rate in a way such that the
desired rate dh/dt gets involved in the relation.
We write,

dv  dv dh7<1 12).dh ['.‘ﬂzlnhz}

ar ~dnar - \a™

1
or10 = —mh?- di [ dv_ 10m3/s}

4 dr dr
dh 40

Cdt mh?

% =ﬂ2:im/s Ans.
de at h=8 72?(8) 8n

The units of the final result must be mentioned carefully.
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Example (15): A man of height 2 m walks on a level road at a (uniform) speed of 5 km/h, away
from a lamppost 6 m high. Find the rate at which the length of his shadow is increasing.

Solution: The figure given below reflects the situation stated in the problem.

L (Lamp)
M (Man)
6m
2m
G (Ground) N (Shadow)
< X > <€ s >

<

Let x = distance between the lamppost and the man at any given instant .

Then, s =length of the shadow of the man at the instant 7.

Here, it is important to note that the length s of the shadow is related to the distance x from
the lamppost. Hence, we must express the length s in terms of the length x. Also, note that we
have dx/d¢ = 5 km/h and we have to find ds/dr. Since the triangles GPL and NPM are similar,

we have

NP NM
GP GL

o 521
x+s 6 3

or 3s=x+s or 2s=x

ds dx

odr dr
ds_5 [ dx_
dt 2 dr

Thus, the length of the shadow increases at the rate of 2.5km/h Ans.

Example (16): The height of an inverted cone is 10 cm and radius of its circular base is 5 cm.
Water is poured into it at the rate of 1.5 cm*/s. Find the rate at which the level of water in the cone

is rising when the depth is 4 cm.

Solution: At any time ¢, let the height of water level = /1 and radius of cone at i/ =r. We have

h
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Line of approach:

(1) When water is poured into the cone at the (constant) rate of 1.5 cm’/s, we can say that
the rate of increase in volume of water in the cone is

(dv/df) = 1.5 = (15/10) = (3/2) cm?/s.

(i) We have to find the rate at which the level of water in the cone is rising when 1 =4 cm,
that is, to find d4/dt when h=4.
(iii) Let V=volume of water in the cone at any instant 7.

radius 5 cm

Since the value of

dv  mh?dh

— == 38
dt 4 dt (38)
Cdh | dv 3

Tdr | T de 2

dh 3 1 3
'a(ath_4)_4§.n~l6_87ncm/s

*. Rate of increase of water level = 3/8ncm/s Ans.
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Example (17): A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled
along the ground away from the wall at the rate of 2 m/s. How fast is its height on the wall
decreasing when the foot of the ladder is 4 m away from the wall?

Solution: At any time ¢, let

(i) the bottom of the ladder be at a distance x m from the wall and
(i1) the height at which the top of the ladder touches the wall be y m.

Then,
¥ 4+yr = (57 =25 (39)
T (Top)
A
y S5m
G X B (Bottom)
FIGURE 17.1
T
5m
y
4 m B

FIGURE 17.2
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Note that

(a) Bottom B of the ladder is pulled away along the ground at the rate of 2 m/s.

dx
TTde
(b) When the bottom B is 4 m away from the wall, we have
V442 =5
Yy =25-16=9
S.y=3m

(c) We have to find dy/df when y=3 and x =4.
From (39) we have

dx dy dy xdx dx
w2y o, —=77—( h —:2)
YT Pa Ty T Yy \Vee

dy 4 8
2 T =2
a3 =3

Therefore, the end of the ladder comes down at the rate of —(8/3) m/s.
[Negative sign in —(8/3) tells that upper end of the ladder slides downward.]

Important Note (10):

533

(40)

In the preceding example, it is essential to draw Figure 17.1 that represents the situation at any
instant. If we had tried to find the rate of slippage from Figure 17.2 that represents the situation
only at a particular time #;, then we would not have been able to obtain a relationship between
the rates dx/dz and dy/d¢. In particular, x does not appear in this figure. However, this figure is
needed to find the value of y for the given value of x at the time ¢,. These related values of x and y

are then used in part c.
The procedure for solving related rate problems includes the following steps:

Step (1): Write down the available information in a convenient order.

(i) Decide what rates of change are given and express these data in Leibniz notation:

dv/dt =50 cm®/s or dx/df =3 m/s and so on.

(ii) Write down, if any geometric relation connects the variables involved.
Examples: V= (4/3)nr°, or § =4nr?, or x> +y*> =64, and so on.

(iii)) Write down the derivatives of the quantities involved with respect to the relevant

independent variable(s).

Example 18: dv =472, ds — 8nr
dr dr

d d
2x+2)’§=0 £= ;

(iv) Decide what rate of change is desired and express it in Leibniz notation.

To find dA/dt at h =35, dy/dt when y =3, and so on.
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Step (2): If necessary, draw a picture and express the available details therein. Such a figure may
be needed for correcting the variables involved [refer to solved examples (9) and (10)] [note
down what changes and what does not].

Step (3): Express the given rate of change from step (1.i) in the form of a product of rates of
change (applying the chain rule) ensuring that the desired rate of change appears in the relation.

For example, suppose we are given the value of dv/df and we have to compute dr/df when
r=>5. Then we express

dv _dv dr

=0 =L (by chain rul 41
FPimriley (by chain rule) (41)

Here, dv/dt is given and the expression for dv/dr is available from step (1.iii). Hence,
equation (41) can be solved for dr/d¢ and its value can be computed for any value of r.

Note (11): Sometimes, it may happen that we have to compute the rate ds/dr, whereas relation
(41) involves the rate dr/ds, which is the reciprocal of the desired rate. In such cases, we can
express it in the desired form by transferring it to the other side of the equation and solve the
equation for the desired rate.

Note (12): We may also express the relation from step (1.iii) in a suitable form, (applying the
chain rule) ensuring that the desired rate appears in the relation. Then, by using the available
information, we can obtain the desired rate.

Exercises

(1) The edge of a cube is increasing at the rate of 5 cm/s. How fast is the volume of the cube
increasing when the edge is 12 cm long?
Ans. 2160cm’/s

(2) A stone is dropped into a quiet lake and waves move outwards in circles at the speed of 4 cm/s.

At the instant when the radius of the circular wave is 10 cm, how fast is the enclosed area
increasing?

Ans. 80mcm?/s

(3) A man 1.8 m high walks away from a lamppost at the rate of 1.2 m/s. If the height of the
lamppost is 4.5 m, find the following:

(i) The rate at which the length of his shadow increases.

Ans. 0.8m/s
(i1) The rate at which the tip of shadow is moving.
Ans. 2m/s

(4) Sand is poured from a pipe at the rate of 12 cm?®/s. The falling sand forms a cone on the
ground in such a way that the height of the cone is always one-sixth of the radius of base.
Find how fast the height of the sand cone is increasing when the height is 4 cm.

1

Ans. 180 cm/s



18 Applications of Derivatives
in Studying Motion in
a Straight Line

18.1 INTRODUCTION

Various problems in kinematics can be solved with the use of the derivative. Let a particle move
along a straight line so that its distance s from some fixed point is a function of time.
We express this by writing,

s = ()

Then, the velocity v = ds/d¢ and the acceleration “a” = ds/d#?.

One particular example of motion in a straight line is the motion of a falling body under
gravity. The acceleration of a falling body due to gravity has been calculated as g = 32 ft/s” or
9.8 m/s’, towards, the center of Earth. In this chapter, we will use differentiation to compute
velocity and acceleration of a moving object in some practical situations.

18.2 MOTION IN A STRAIGHT LINE
Example (1): A particle is moving in a straight line according to the formula s = 473 + 272,
where s is the distance traveled in meters and ¢ is in seconds. Find the velocity and acceleration

of the particle after 4s.

Solution: Given,

s = 48 + 27 (1)
d
Velocity, v = d—j = 122 + 4t (2)
. dv
Acceleration, a = Frie 24t +4 (3)

(Note that v and a are both functions of ¢.)

Applications of derivates 18-Motion in a straight line (including motion under gravity), circular motion and angular
velocity. Applications in geometry.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Velocity, when ¢ = 4s, is obtained from equation (2) by putting 1 = 4. We get,
V(4) = 12(4)* +4(4) = 192416 = 208 m/s
Acceleration, when ¢ = 4 s, is obtained from equation (3) and by putting ¢ = 4 we get
a(4) = 24(4) +4 = 100m/s>

Thus,
v = 208 m/s

anda = 100 m/s> Ans.

Example (2): A particle is moving in a straight line according to the formula s =
£ — 972 4+ 3¢+ 1, where s is measured in meters and ¢ in seconds. When the velocity is
—24 m/s, find the acceleration.

Solution: We have

s=0£-92+3r+1 (4)
The velocity v is given by
ds
=— =37-18t+3 5
V=g + (5)

If v is equal to (—24), we have
37— 18143 = —24
37— 181427 =0
or #—-6t+9=0
or (1=37%=0
t=3s

Thus, we get that the velocity is —24 m/s at # = 3's. Now we have to find the acceleration of
the particle at t = 3 s. The acceleration is given by,

dv  d (ds d2s
=—=—|—)|=—==6:—18=6(tr—3
T dt(dz) dr? ( )

. Att = 3s, a(3) = 6(3—-3) = 0m/s>  Ans.
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Example (3): The distance s in meters described by a particle in ¢ seconds is given by
s = Ae' + (B/e'). Show that the acceleration of the particle at time t is equal to the distance
traveled by it up to time t.

Solution: We have,
s = Ae' + (B/e') = Ae' + Be™! (6)

Differentiating both sides of (6) w.r.t. ¢,

ds

— = Ae' — Be™! 7
q = Ae —Be ()
Differentiating once again, we get
. d’s ' ¢
Acceleration = i Ae' + Be (8)
Comparing (6) and (8), we observe that
d2s _
dr

In other words, the numerical value of acceleration at time ¢ is the same as the number
representing the distance traveled up to the instant z.

Example (4): A particle moves in a straight line such that s = A cos(Kt¢ + 6). Find the

[p=i)

velocity at any time ¢ and show that the acceleration “a” is proportional to s.

Solution: We have, s = A cos(Kt + 0).

dv
v=22 kA sin(Kt + 0)
dr
and
dv 5 )
a=4= —K*Acos(Kt+0) = —K=s

Thus, a < (=)s [ K?is a constant].
Such a motion in which the acceleration is proportional to the displacement and is directed in

its opposite direction is termed simple harmonic motion. It is a to-and-fro motion about a
central point and is always directed toward the central point.

Exercise (1):

Q1 A particle is moving in a straight line. If the law of motionis s = 3 — 6¢> + 9¢ — 4, where
s is measured in meters, then find

(i) its displacement and acceleration when velocity is 0 m/s.
(ii) its displacement and velocity when acceleration is 0m/s>.
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Ans.

(i) Displacement(s) = 0, Acceleration = 6 m/s
(ii) Displacement = —2m, Velocity = —3 m/s

Q2 A particle is moving in a straight line, where its position s in meters is a function of time 7 in
seconds, given by s = 3 + at® + bt + ¢, where a, b, ¢ are constants.

It is known that at # = 1 s, the position of the particle is given by s = 7 m, velocity is
7m/s, and acceleration is 12 m/s?. Find the values of a, b, c.

Ans.a=3,b=-2,¢c =5

18.2.1 Motion Under Gravity

Motion of a falling body under gravity is a particular instance of motion in a straight line. The
acceleration of the falling body due to gravity is called the acceleration due to gravity and is

generally denoted by “g”."

Example (5): A stone is thrown vertically upward. It moves according to the formula
s = 490t — 4.9/, where s is in centimeters and ¢ in seconds. Find the maximum height

attained by the stone.

Solution: We have

s = 490t — 4.9¢* 9)
ds
— = 490 — 9.8¢ 10
de (10)
At the maximum height, the velocity of the stone will be zero.
ds
That is, — = 0
atis, -
or 490—-9.8t =0
= 9.8t = 490
490
t=—=2>50
9.8 °

Hence, putting # = 505 in (9), we get

maximum height s = 490 x 50 — 4.9(50)*
= 24,500 — 12,250 = 12,250 m Ans.

M Tt is useful to recall the following formulas for free fall near the Earth’s surface:

(1) s = 0.5g, s = distance, t = time, g = gravitational constant
() s = 16g%, s = feet, t = seconds, g = 32ft/s’
(3) s = 490¢%, s = centimeters, = seconds, g = 980 cm/s’

4) s = 4.9, 5 = meters, t =seconds, g =9.8 m/s’
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Example (6): A ball is thrown vertically upward. The height of the ball from the ground after ¢
seconds is / feet, given by the equation 7 = 80t — 16¢2. Find

(i) the time interval when it reaches the ground.

(ii) its velocities after (a) 1s and (b) 3s. Discuss about the signs of these velocities.
(iii) the velocity by which the ball was thrown.
(iv) the time when the ball was just at rest.

Solution: We have,
h = 80t — 16¢* (11)

dh
*. Velocity, v = Frie 80 — 32¢ (12)

(i) It reaches the ground where 1 = 0.

.. From equation (11), we get

0 = 807 — 16°

That is, 167 (t — 5) = 0

. t=0s or t=35s

Note (1): The value ¢ = 0s shows that initially the ball was on the ground.
Once the ball is thrown up, it must come back on the ground after 5s.  Ans.
(ii) (a) When ¢t = 1, we get from equation (12)
v = 80 —32(1) = 48ft/s Ans.
(b) whent = 3s,v = 80 —96 = —16ft/s Ans.
Explanation for negative sign of velocity at (b) above.

The positive sign in velocity shows that the ball is going upward, while the negative sign shows
that the ball is falling down (which is the motion in the opposite direction).

(iii) Initially when the ball was thrown up, t = Os.

Therefore, by equation (12), we have

v = 80 —32(0) = 80ft/s  Ans.

(iv) When the ball just comes to rest, v = 0. Hence, by equation (12) we get

0= 80— 32¢

80
Lt = e =25s Ans.
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18.3 ANGULAR VELOCITY

This is another important concept. When a particle moves along the circumference of a circle,
the central angle #, measured from some fixed direction, is a function of time .

Definition: We define angular velocity w as the rate of change of 0 with respect to time t
and write,
de

w:a

Likewise, angular acceleration « is denoted by

_ d (doy _ a0
T w\ar) T e

Example (7): A particle P moves around the circumference of the circle with constant angular
velocity. Find v, vy, a, and a,.

Solution: Let the equation of the circle be given in parametric form as follows:

x =rcosf, y = rsinf

do
Then,v, = —r sinOE = —rwsinf Ans.
do
y, = rcosf— = rwcosf Ans.
’ dr
d d d
ay = d—t(vx) = a[—rw sinf] = —rwa(sine)
do
= —rwcosf— = —rw’cosf Ans.
dt
and
d -
ay, = d—t(rw cosf) = —rwsinf Ans.

18.4 APPLICATIONS OF DIFFERENTIATION IN GEOMETRY

(a) Slope: We have seen in Chapter 9 that the slope of the tangent line to the curve y = f(x) at
any point (x, f(x)) is given by

dy

! !

= =2 =m=t

y = f(x) =" an a,

where « is the angle of inclination of the tangent line.

@ We also speak of angular velocity and angular acceleration of a vector OP drawn from the origin O to a point P as P
moves along a curve. However, we shall not discuss about it at this point.
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FIGURE 18.1

(b) The equations of a tangent and of a normal to the curve:

Let us consider a curve whose equation is
y =f(x)

On this curve, we take a point M(x,, y,) (Figure 18.1) and write the equation of the
tangent line to the given curve at the point M, assuming that this tangent line is not
parallel to the axis of ordinate. We write its equation in the point-slope form, by
expressing the slope m of the tangent line at M. We have

Yy =N
X — X

y—y1 = m(x—xp)

= m

This is the equation of a straight line with slope m and passing through the point M
(x1, y1) (Figure 18.1). For the tangent line in question, m = f’(x) is evaluated at
the point (xy, y;), so that we have (the numerical value) m = f'(x;). Thus, the
equation of the tangent at (xi, y;) is given by

y=yi =f(x1) (x = x) (13)

Now, let us consider the equation of the normal at M(xi,y;)

Definition: The normal to a curve, at a given point, is a straight line passing through the given
point and perpendicular to the tangent at that point.

From the definition of a normal, it follows that its slope = (—1/m) = —1/f'(x).
Hence, the equation of a normal to the curve y = f{x) at a point M(xy,y;) (Figure 18.1)
is given by
1
Y=yt = *%(X*xl)
(14)
1
= - (x —x1)
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Example (8): Find (a) the equation of the tangent and (b) the equation of the normal to the
curve y> = 5x — 1 at the point (1, —2).

Solution: The equation of the tangent will be of the form
(y+2) = m(x—1)

where m = y evaluated at (1, —2).

We have,
> =5x—1
2yy =5
5 5 5

/ —

TR T Rl

Hence, the equation to the normal becomes
5
2 = ——(x—1
y+ 7(x—1)

y+2 = -(x=1) Ans.

18.4.1 More Definitions

(Refer to Figure 18.1 for the following definitions.)

(i) T = length of the tangent (i.e., the length of segment QM of the tangent between the
point of tangency and the x-axis).
(ii) St = length of the subtangent (i.e., the segment QP, which is the projection of the
tangent on x-axis).
(iii) N = length of the normal (i.e., the segment MR is called the length of the normal).
(iv) Sy = length of the subnormal (i.e., the segment RP, which is the projection of the
normal RM on x-axis).

Let us find the quantities 7, St, N, and Sy for the curve y = f{x) with reference to the point
M(xy,y;) on the curve. From Figure 18.1, it will be seen that,

Y1

Vi

yl’:

P = cota| =
0] [yicota ana

Therefore,

St =

= [o
m

(Here, m = y|, which stands for the derivative y', evaluated at (x,,y:), and this will be
applicable all throughout the text.)

i
N
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and T = /MP?+QP* = \/y, +31/ \/y W)+ 61/7)
GNP +1)

y*}\/yiz—O—l‘ = y—]\/l-l—mz [ VX2 = |x|i|
N m
Further, it is clear from Figure 18.1 that
PR = Sx = [yitana| = [yni] = |yim|
(Note that /PMR = « (why?))
*. In right-angled triangle MPR, tana = PR/y.
And so,
Sno= il = Iyml
Now,
MR = N = VMPZ 1 PR = /i + (n)])?
— 2 2,2
= VYT tyn
= ’yl 1+ = pivV1+n|

It is convenient to remember the above formulas in the following order:

i
i

yi
m

St =

Sno= [yl = |yim]|

y*i\/y{zﬂ‘ =
N

N = nvV1+0| = v+

T =

yi
m

where m stands for y'[or dy/dx], evaluated at the point of tangency (and in case of parametric
curves it stands for the given value of the parameter).

Note (2): These formulas are derived on the assumption that y; > 0, y{ > 0. However, they
hold in the general case as well.

Example (9): Find the lengths of the tangent and the subnormal to the curve

y=x"—2x+3 at(L,2)
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Solution: We have,
y =x —2x+3
y =5x*-2

Hence,m = y = f'(1) = 5(1)* =2 =3

2
V1 2 )2 1+(3 ‘ 2
Length of the tangent = T = ;yl T ) 3 ®) ‘ = g\/10
m

And length of the subnormal = Sy = |my,| = 3x2 =6

Example (10): Find

(i) the equations of the tangent and the normal;
(ii) the lengths of the tangent and the subtangent; and

(iii) the lengths of the normal and subnormal for the ellipse.

X = acost, y = bsint

at the point M(x,, y;) for which ¢t = /4 (see Figure 18.2).
Solution: From equation (15), we find,

dx

d
i —asint, %:bCOSt
dy dy/dt b
L= = = ——cott
dx dx/dt a

Therefore,

FIGURE 18.2

(15)
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To find the coordinates of the point of tangency, that is, M(x,y), we putz = n/4 inequation (15)
and obtain

[denote it by x|

S
Sl

andy = b sin” =

- v

[denote it by y]

.. The equation of the tangent at M(xy, y;) is given by

Y=y = —g(x—xl) { <%> _ _g}

or y— b b 0
Y. BRI
b
'.y+7x:\/§b

ay+bx = V2 ab
or  bx+ay—+2ab =0

The equation of the normal is

i)

ax b a
o y—— = —

b~ V2 b2
Multiplying both sides by bv/2, we get
yoV2 —ax\2 = B* - d?
or V2(by —ax) = b* —d®
or  —(ax—by)V2 = —a*+ 1

or (ax—by)V2—a*>+b =0
The lengths of the subtangent and subnormal

Y1

Sr =
bt

-
m
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where m stands for y| or the derivative dy/dx (obtained from the given parametric equations
X = acos t,y = bsin 1), and evaluated at 1 = /4.

b/\2 a :@

—b/a V2 2

/ b b 1,
Sn = [yl = yim| = H-0)-=%

The lengths of the tangent and the normal are

N 1] -
b

—a |a®+b? Var +b?

1 i

s = |

T = 1+ m?

) ‘b/ﬁ
—b/a

RE}

yi
m

N*‘y1\/1+y1’2
[y
- 1% )

Va2 +b?

= [T

o

18.4.2 Angle Between Two Curves

The angle between two curves will be the angle between the tangents at the point of their
intersection. Accordingly, this angle is given by the formula,

np — ny

(16)

tan by ===
1712

where m; and m, are, respectively, the slopes of the curves (1) and (2), at the point of their
intersection, and 6, is the angle measured counterclockwise, from the tangent to the curve 1 to
the tangent to curve 2 (see Figure 18.3).

Note (3): In Chapter 4, we have shown that the angle 6 between two nonvertical lines is
given by

m, —m
tanfh = — -
1+ mymy
where m; and m;, are, respectively, the slopes of the lines /; and /.

Once the point of intersection of two curves is known, the derivatives f{(x) and f5(x),
evaluated at that point will give m; and m, for the equation (16).
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FIGURE 18.3

Example (11): Find the angles at which the following curves intersect in the first quadrant
() x*4+y* =9 and (i) y* = 8x

Solution: The point of intersection is determined by solving the two equations simultaneously.
This yields,

X2 +8—-9=0

or X*+9%—-x-9=0
or x(x+9)—1(x+9) =0
or x+9(x-1)=0
x=1,-9

Note (4): The point of intersection in the first quadrant is obtained by putting x = 1 (in any

of the equations) and getting y = + 2 /2, of which y = 2+/2 is needed for us. Therefore,
the point of intersection in question has the coordinates (1, 21/2).

Now, differentiating (i), we get

2x+2y-y =0
;X — I V2
y = y 1 72\/2 4
And by differentiating (ii), we get
4 4 42
-y =8 .y =— . m= =Z=V2
Y-y y y 2 22 4
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Therefore,

7”’[2*]’”1 7 \/i-f‘\/m 75\/5/475
tan bz = L+ mmy 1+(—\/§/4)\/§ 12 2\/5

and the angle of intersection is given by 01, = tan~'(5/2)v/2.

Example (12): Show that

(i) x> —xy+y*—3 = 0and
(i) x +y = 0, intersect at right angles.

Solution: The points of intersection are readily found to be (1, —1) and (-1, 1).

For (i), 2x—(xy'+y-1)+2yy =0
2x—y+yQ2y—x) =0

= —(2x—y) _ 2x —y
’ 2y — x x—2y

and at either point, m; = 1.
For (ii), ¥’ = -1 so that we have m, = —1. Since m; = —1/m;, hence the angle of
intersection is 90°, that is, the tangent lines (and hence the curves) intersect at right angles.
(Note that tan 0y, = (le — ml)/(l +I’Vl1n12) = (—1 — 1)/(1 + (—1)) = —2/0.)

18.5 SLOPE OF A CURVE IN POLAR COORDINATES

We know that in rectangular coordinates dy/dx represents the slope of the curve y = f(x), but
in polar coordinates dp/d0 does not represent the slope of the curve.

p = f(0) (17)

It merely represents the rate of change of the radius vector p with respect to angle 6. In order
to determine the slope of the curve p = f(6), we use the following relations between
rectangular coordinates (x, y) and polar coordinates (p, 6). These are

X = pcosf

) (18)
y = psiné

Equation (18) is a parametric equation of the given curve, the parameter being the polar angle 6.
(Note that p is a function of 6.)

If we denote by ¢ the angle formed by the tangent to the curve at some point M (p, 0) with
the positive x-axis, we will have,

_ dy/dd
® = dx/do

Now,

= —cosf —psind

dx _dp
de do
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and

d d
d%; = d—g sinf + pcosf [from equation (2)]

Slove — dy _ (dp/df)sin6 +pcos _ p'sinf + pcosf
Pe=ax = (dp/df)cosf — psind  p’cosf — psind

Dividing the numerator and denominator both by p’ cos 6, we get,

d
where p' = e

tan6 + p/p’
Sl =
ope 0

~ L—tanb(p/p’)’

549

(19)

With this formula we can readily find the slope of the curve whose equation is given in the

polar coordinates.
Example: Find the slope of the curve p = 2 — cos¥.
(a) At any point (b) at § = /4.
Solution: The given curve is
p = 2 —cosf
(a) We know that slope of the curve (1) at any point is given by

tan 6 + p/p’
S1 = '
P T T " tand (/o)

We have p’ = sin 6 [from (20)].
Now,

2 —cosf
tan0+£,:tan0+ -
p sinf

and
2 — 0
1 —tanGE, =1 —tan@ﬂ
p sin §

sinftanf + 2 — cosf
Slope = 2(sin@ — tan ) Ans.

(20)

21

(22)

(b) Slope of the curve at the point where polar angle § = /4 is obtained by putting

0 = m/4in (19).

Slope (at0 = g)

_V2/2+2(-v2/2) _ 2 Ans.

V2-2 V2-2
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18.5.1

An important angle to consider is the angle u between the radius vector and the tangent
measured counter clockwise from the radius vector to the tangent.
Now,

tan 6 + tan u
SlOpe = tantp = tan (6+/.L) = m

Comparing (19) and (23), we find,

)
tan u = ; (24)

18.5.2

The geometric meaning of the derivative of the radius vector p with respect to the polar angle 0
[p' = dp/d6] (See Calculus by Thomas/Finney, Fig10.37, Page 592, where the angle y must be
identified as w.).

From equation (24) we have tan u = p/p’ orp’ = pcot u.

Thus, the derivative of the radius vector with respect to the polar angle (p' = dp/df) is
equal to the length of the radius vector multiplied by the cotangent of the angle u between the
radius vector and the tangent to the curve at the given point.

18.5.3 The Angle Between Two Curves in Polar Coordinates

In view of the definition of the angle u, discussed above, the angle between two curves is given
by 61 = tan(w; — u,), where ), the angle measured counterclockwise from curve (1) to
curve (2) is given by

tan w, — tan wu,;

0, =
” 7 T+ tan My tan wy

(25)

Formula (24) is used to evaluate tan w;and tan w,.



19a Increasing and Decreasing
Functions and the Sign
of the First Derivative

19a.1 INTRODUCTION

In Chapter 6, we have discussed increasing and decreasing functions on an interval. The
distinction between an increasing and nondecreasing function, and that between decreasing
and nonincreasing function are also clarified there.”

In this section, we shall discuss the increasing and the decreasing portions of the graph and
the point(s) at which the increasing (or decreasing) portion of the graph enters into the
decreasing (or increasing) portion. For convenience, we revise the definitions of increasing
(decreasing) functions as introduced in Chapter 6.

Definition: A function y =f{x) is said to be increasing on an interval / if to greater values of
x € I there correspond greater values of the function. Similarly, a function is said to be
decreasing on I/, if to greater values of x there correspond smaller values of the function.
Analytically, we can define increasing and decreasing functions as follows:

19a.1.1 Increasing and Decreasing Functions on Interval “I”’
Definition: Let/be an open interval, contained in the domain of a real-valued function. Then,
fis said to be

(a) increasing on I, if x; < x5 in I = f{x;) < f(x,) for all x, x, € I.

(b) decreasing on I, if x| < x, in I = fix;) > fx,) for all x|, x, € L

Note (1): From the above definitions, it is clear that by the term increasing function, we mean
the strictly increasing function and, similarly, the term decreasing function stands for the strictly
decreasing function.

Applications of derivatives 19a-Increasing and decreasing functions, and the sign of the first derivative horizontal
tangents and local maximum/minimum values of functions Concavity, points of inflection, and the sign of the second
derivative.

() Recall that when the graph of a function has a horizontal portion, added to an increasing (or decreasing) function, it
becomes a nondecreasing (or nonincreasing) function.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Note (2): It must be noted that the notion of increasing and decreasing functions are always
defined in terms of increasing x. Thus, as we move from left to right along the graph of a function,

« in the case of an increasing function, the height of the graph continuously increases, and
¢ in the case of a decreasing function, the height of the graph continuously decreases.

19a.1.2

In this chapter, we will use differentiation to find out whether a function is increasing or
decreasing or neither.

The derivative of a function y = f(x) is the rate at which y changes with respect to x. It defines
the slope of the function’s graph at x and allows us to estimate how much y changes when we
change x by a small amount. These concepts were discussed in Chapter 16. However, it is useful
to revise the process of computing approximate changes in the value of a function y = f{x) when
the independent variable x is changed by an small amount. The following example makes it clear.

Example (1): Consider the function,

y=x (1)
so that we have,
Yy =3x (2)
Equation (2) tells us that at x=1, y = 3'(1)2 =3 and similarly at x =2, y/ = 3(2)2 =12.

These calculations tell us that if we change the value of x by a small amount, say 0.2 units at
x = 1, then the value of y [=x] will approximately change three times, that is, by 0.6 units. In
other words, the height of the graph will be more (approximately) by 0.6 units at the point
x = 1.2 than at the point x = 1. Similarly, the height of the graph at the point x = 2.2 will be more
by 2.4 units (i.e., 12 times of 0.2) than at x =2.0, and so on.

19a.1.3

If a function y =f(x) has a derivative at a point x,, then we know that f'is a continuous at x.
Accordingly, if a function has a derivative over an interval, then it is continuous over the
interval. In other words, the graph of a differentiable function is without any break.

We can gain even more information about the graph of a differentiable function if we know
where its derivative is positive, negative, or zero. We shall also see where the graph is rising, is
falling, and has a horizontal tangent.®

19a.1.4

Refer to Figure 19a.1 showing the graph of a function ffor all x in the closed interval [x, x7] on
which f{x) is continuous. This figure shows that as a point moves along the curve from A to B, the
function values increase as x increases, and that as a point moves along the curve from B to C,
the function values decrease as x increases. We say, then, that f{x) is increasing on the closed
interval [x;, x,] and that f{x) is decreasing on the closed interval [x,, x3].

@ In this section, we shall learn how the sign of the first derivative helps in deciding the increasing (or decreasing)
nature of a function. Later on, the signs of the first and the second derivatives will be used in determining extreme values
(i.e., maximum and minimum values) of functions. In fact, the signs of the first and the second derivatives together tell
us how the graph of a function is shaped.
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Y= () ~&

oy E(xs y5)
/.\ 5 )5 i B

\_ 0/ !

JA(% " TTCGs ) |

[C(x3, y3 !

FIGURE 19a.1

Thus, the function of Figure 19a.1 is increasing on the closed intervals [x;, x,]; [X3, X4];
[xs, X6l [x6, X7]; [xs, X7] and it is decreasing on the closed intervals [x,, x3]; [x4, X5]. Let us see
what is happening geometrically.

We observe that when the slope of the tangent line (to the curve) is positive, the function is
increasing, and when it is negative, the function is decreasing. We know that the slope of the
tangent line to the curve y = f(x) at a point is represented by the derivative f’(x). Our observation
tells us that when f’(x) > 0, the function is increasing as x increases; and when f’(x) < 0, the
function is decreasing as x increases. Later on, we shall prove that these conclusions (drawn
from our observations) are true. We also observe the following:

(i) Atthe point(s) of transition (between the rising and falling portions of the curve), there
is a horizontal tangent line that means f’(x) = 0 at such points. In Figure 19a.1, these
points (on the curve) are B(x,, y,), C(x3, y3), and E(xs, ys).

(i) At the point of transition D(xy4, y4), no unique tangent line exists (we say that the
derivative does not exist at x4). Note that the point D on the graph is a sharp point
(or corner point).

(iii) Atthe point F(x¢, y), the horizontal tangent line exists, we say that the rate of change of
the function at x = x¢ is zero, but it is not a transition point of the curve, since the
function increases throughout the interval [xs, X7] as x increases and the point F(xg, X¢)
lies in this interval.

From Figure 19a.1, we have gained useful information about the increasing/decreasing portions
of the graph, points of transition, and the existence of horizontal tangent lines at certain points
on the graph of a function. Now consider the following examples:

Example (2): The function y = x? decreases on (—oo, 0), where y' =2x<0. It increases on
(0, 00), where y' = 2x > 0. At x = 0, the point of transition y’ = 0, and the curve has a horizontal
tangent (Figure 19a.2).

Example (3): The function f{x) =tan x increases on (—(n/2), (n/2)) and ((n/2), (3n/2)),
where  f'(x)=sec’x=(1/cos’x) > 0. The graph of y=tan x increases on
—(n/2) < x < (n/2) and on (n/2) < x < (3n/2) (Figure 19a.3).
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AY y=x2
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FIGURE 19a.3

On these intervals, the function does not decrease anywhere. Thus, the graph of this function
does not have a transition point. (Note that, f is not defined at x =n/2, but this fact is not
important here.)

Example (4): The function y=1/x? increases from left to right on (—oco, 0), where
¥'=(—2/x*) > 0 and decreases from left to right on (0, co), where y'= (-2/x%) < 0.

The derivative y' (=(—2/x3)) is not defined at x =0, which is the point of transition.
Furthermore, note that the point of transition (x = 0) does not lie on the graph of y =1/x%. In
fact, the function of y =1/ x? itself is not defined at x =0 (Figure 19a.4).

Note (2): The above examples show that a function may increase over one interval and decrease
over another. They also suggest that we can speak of a function increasing or decreasing at
a point.
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FIGURE 19a.4

Remark: It is clear that if a function is increasing (or decreasing) in an interval, then it is
definitely increasing (or decreasing) at every point in that interval. However, it is useful to
clarify (through a simple definition) what it means when we say that a function is increasing
(or decreasing) at a point X in the domain of the function.

19a.1.5

Definition: A function f{x) is said to be increasing at a point x =X, if there exists a
neighborhood (xy — 8, xo+ &) of Xy such that f(x) < f(xy) whenever x < xy, and f(x) > f(xo)
whenever x > x, (Figure 19a.5).

Analogously, a function f(x) is said to be decreasing at a point x =X, if given some
neighborhood of X, f(x) > f(xo) whenever x < x,, and f(x) < f(xy) whenever x > x.

In Chapter 20, it is proved that if y = f(x) is differentiable with f’(x) > 0 at every point of an
interval /, then f{x) increases on I. Similarly, if f’(x) < 0 at every point of /, then f{x) decreases
on /.

For the time being, we assume these results and record them as the first derivative test for rise
and fall.

Sfixo)

[OF YU ———

=]

Xg+ 0

FIGURE 19a.5
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19a.2 THE FIRST DERIVATIVE TEST FOR RISE AND FALL

Suppose that y =f(x) has a derivative at every point x of an interval /. Then,
(i) f(x)increases on/, if f'(x) > Ofor all xin/ }(3)
(ii) f(x)decreaseson/, if f'(x) < Ofor all xin/

In geometric terms, the first derivative test says that a differentiable function increases where the
tangent to its graph has a positive slope and decreases where the tangent to its graph has a
negative slope.

(This permits us to judge the increasing or decreasing nature of a function by the sign of its
derivative.)

Remark: The first derivative test gives us the sufficient condition for a function to increase
(or decrease) in an interval. It is worth mentioning that if f(x) increases on [a, b], then it does not
follow f’(x) > 0 everywhere in (a, b) as is clear from the following example:

Example (5): The functionf(x) = x> increases on [— 1, 1]. However, the derivative f(x)= 3x2
equals the value 0 at x=0. Similarly, the function g(x) = —x> is a decreasing function on
[—1, 1] with g'(x) = —3x2, which equals the value 0 at x = 0. [Note that this function increases
even at the point x =0, where f'(x) =0.]

The following theorem specifies the sufficient conditions for a function to be increasing or
decreasing at a point.

19a.2.1

Theorem: Let f{x) have a derivative f’(xo) at xq. If f/(xg) > 0, then f(x) increases at x, and if
f'(x0) <0, then f(x) decreases at x.

Proof:
Letf’(xo) > 0. Then, by definition of the derivative, we have, xo € (xo — &, xo + h), forall i € R.

limf(xo +h) = f(xo)

0
h—0 h =

n

This means that, there exists 6 > 0, such that for all h,
0<|h <6

It follows that, if 0 < || < &, then / and [f(xo + h) — f(xo)] are of the same sign.

Thus, if 1< 0, then [f(xo + &) — f(x0)] < O, that is, f(xo + /) < f(x0), and if 4> 0, then
[f (xo + 1) = f(x0)] > 0, that is, f (xo + &) > f(xo).

By definition, this means that f{x) increases at x(_Using similar reasoning, we can show that
if f'(xg) <0, then f(x) decreases at x,. (Proved)

> (0, whenever

Note (4): The conditions specified in the above theorem are not necessary. Note that the
function shown in Figure 19a.6 increases at x = 0; however, the derivative of this function does
not exist at x =0. [Also see the example f{x) = x> discussed above.]

) We shall use these results in our further discussion and draw many useful conclusions. These facts are proved in Chapter
20 under an application of Lagrange’s Mean Value Theorem as hinted above.
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y

y=fx

/

FIGURE 19a.6

Y

FIGURE 19a.7

The function fix) = x> increases at x =0, and its derivative flx)= 3x? vanishes at x=0
(Figure 19a.7).

Note (5): We have seen that a function may increase over one interval and decrease over another.
Such intervals are called the intervals of monotonicity, and our interest lies in finding these
intervals for a given function.

19a.3 INTERVALS OF INCREASE AND DECREASE (INTERVALS
OF MONOTONICITY)

An interval on which the function increases is called the interval of increase, and an interval on
which the function decreases is called its interval of decrease. For simple functions, whose
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FIGURE 19a.8

graphs are known, these intervals of monotonicity are easily determined. Later on, some
techniques will be developed that will make it possible to find the intervals on which a function
is monotonic, without requiring to construct its graph. Consider the following example:

Example (6): Determine the domain of increase and decrease of the function y= x*,

Solution: The derivative of y is given by y' = 4x>: for x >0, we have y' > 0 and the function
increases; for x < 0, we have y’ <0 and the function decreases (Figure 19a.8).

19a.3.1 Sign of a Continuous Function f(x)

Let y =f(x) be a continuous function. By the sign of f{(x), at any point x = a in its domain, we
mean the sign of the value f{a) provided fla) # 0. If fla) # 0, then either f{x) > 0 or f{x) < 0.

Our interest lies in solving the inequalities f/(x) > 0 and f’(x) <0, which will give us the
intervals on which f(x) increases and those on which f(x) decreases, respectively. Now, we shall
show how our intuitive knowledge of continuity can be applied to solve a quadratic inequality
and other inequalities. But first, we must provide a framework on which to build our technique.

Consider the graph of a continuous function y = f{x) (Figure 19a.9). There is a relationship
between the (real) roots of the equation f{x) = 0 and the points where the graph of y = f(x) meets
the x-axis. These points are called the x-intercepts of the graph. If the graph of fhas an intercept
(7, 0), then f(r) =0 and so r is a root of the equation f(x) =0.

y =fx)

/_\ \_(” 2, 0) X
(1, 0) N 03,0)

FIGURE 19a.9
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Hence, from the graph of y = f(x) in Figure 19a.9, we conclude that ry, r,, and r5 are roots
of the equation f(x)=0. On the other hand, if r is any real root of the equation f{x) =0, then
f(r) =0 and hence (r, 0) lies on the graph of f. It means that all real roots of the equation f{x) =0
can be represented by the points where the graph of f meets the x-axis.

19a.3.2 Procedure to Solve an Inequality Involving a Polynomial

Now, suppose we have to solve the quadratic inequality x* +3x — 4> 0.

We put fix) = x> +3x —4 = (x+4)(x— 1).

Since f(x) is a polynomial, it is continuous everywhere. The roots of the equation f(x) =0
are (—4) and 1. Hence, the graph of f(x) has x-intercepts (—4, 0) and (1, 0). These roots (or to
be more precise the x-intercepts) determine three intervals on the real line: (—oo, —4), (—4, 1),
and (1, co) (Figures 19a.10 and 19a.11).

Consider the interval (—oo, —4). Since f is continuous on this interval, we claim that
throughout this interval either f{x) >0 or fix) < 0.@

We prove this indirectly as follows:

Suppose f(x) did indeed change sign in the interval (—oo, —4). Then, by continuity of f,
there would be a point in (—oo, —4) where the graph would intersect the x-axis. Suppose this
point is ¢. Then, ¢ would be a root of the equation f(x) =0, so that we should get f{c) =0.

This cannot occur since there is no root of the equation x> + 3x — 4 = 0 that is less than —4.
Hence, f(x) must be (strictly) positive or (strictly) negative on (—oo, —4) as well as on the other
intervals.

Thus, to determine the sign of f{x) on any interval, it is sufficient to determine its sign at any
point in the interval. This permits us to select any convenient point in the interval to find the sign

of f{x).

Y

f)=x>+3x-4

L

FIGURE 19a.10

@ The statement f{x;) > O tells us that the point (x1, f(x;)) is above the x-axis. Similarly, the statement f{x,) < O tells us that
the point (x, f{x,)) is below the x-axis.
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fx)>0 (X, 0)

flx) <0 4

FIGURE 19a.11

fx)>0 f(x)<0 f(x)>0
|

—4 1

FIGURE 19a.12

For instance, —5 is in (—oo, —4). Therefore, for f{x) = X2 43x — 4, we getf(—5)= (=52 +
3(—=5) — 4=6>0. Thus, fix) >0 on (—oco, —4). Since 0 is in (—4, 1) and f(0)=—-4 <0,
fix)<0on (-4, 1).

Similarly, 3 is in (1, co) and f(3) = 14 > 0. Therefore, f{x) > 0 on (1, co) (Figure 19a.12).

Therefore, we get f(x) = x>+ 3x —4 > 0 for x <-4 and for x> 1

(This is the solution of the inequality x% 4 3x — 4> 0. One must realize the importance of
the role played by the concept of continuity.)

Let us review what we have learnt. If we consider a polynomial function, y =f{x), then the
roots of the equation fix) =0 (say X, X», X3) represent points on the x-axis. These points
determine the intervals (—oo, X1), (X1, X2), (X2, X3), (X3, 00) on the real line. If a is any point on
an interval and f{a) > 0, then the graph of the function must be above the x-axis in that interval.
Similarly, if fid) < 0 in an interval, then the graph of the function must be below the x-axis in
that interval.

Every polynomial function is continuous and differentiable. Now, our interest lies in
differentiable functions whose graphs are definitely continuous. Also, we know that f’(x)
represents the slope of the tangent line at any point (x, f(x)) of the graph. Therefore, the sign of
the first derivative f’(x) tells us all that we need to know about where the curve rises and where it
falls. The roots of the equation f’(x)=0 can help us to determine the intervals on which
f'(x) >0 and those on which f’(x) < 0.

The intervals on which f’(x) > 0, the function f(x) increases, and the intervals on which
f'(x) <0, the function decreases.

For any differentiable function, we can find (using the first derivative test) the intervals on
which the function f{x) increases (or decreases), since the first derivative test is applicable to
any differentiable function.

19a.3.3 Practical Method for Finding Intervals of Monotonicity
Example (7): Now, let us use the above technique to determine the intervals in which the
function f(x) = 2x% —3x* —36x+7 is (a) increasing and (b) decreasing.
Solution: f(x) = 2x* — 3x> — 36x + 7
fl(x) = 6x% —6x—36
=6(x>—x—6)
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Putting f/(x) =0, we get 6(x — 3)(x + 2) =0. Therefore, x =3 and x = —2 are the roots of
f(x)=0.

The points x=—2 and x =3 divide the real line into three disjoint intervals, namely,
(—00, —2), (=2, 3), (3, c0). In each interval, the sign of f'(x) is determined by the signs of the
factors of f/(x).

We have f'(x) =6(x — 3)(x +2). Now observe the following:

(i) (=3) is in (=00, —2)
f(=3)=6(-)(=)=(+) andso f'(x)>0on(—o0,-2)

Therefore, f(x) is increasing on (—oo, —2).
@ii) Oisin (=2, 3)

f(0)=6(=)(+)=(-) andso f'(x) <Oon(-2,3)
Therefore, f{x) is decreasing on (-2, 3).
(ii1) 4 is in (3, 00)
@) =6(+)(+)=(+) andso f'(x)>0on(3,00)

Therefore, f(x) is increasing on (3, 00).

Remark: Note that, it is not necessary that we actually evaluate f'(—3), f(0), or f’(4). To find
the sign of f’ (x), we factorize f’(x) and find the sign of each factor. The sign of f’(x) is then
obtained by using rules of algebra.

Now, let us investigate the behavior of exponential, trigonometric and logarithmic functions.

Example (8): Prove that the exponential function e” is increasing throughout its domain, in
this case R.

Solution: We know that (d/dx)(e¥) =e*. We also know that,
e¥=1+x+ (220 + (x3/3)+ ..

(i) When x is positive, e* is positive, because

2 3

S X e
et=1+x+ 5 + y + > 1
(ii) When x is negative, e* is positive
1 1

ex = - =
e~ a positive number

(iii) When x is 0, e*= 1> 0 (Figure 19a.13).

Therefore, e* is positive for all values of x.
Since (d/dx)(e*)= e* is always positive, it follows that e is an increasing function
throughout R.
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0

FIGURE 19a.13

Example (9): Prove that the function sin x is increasing in the interval (0, n/2) and decreasing
in the interval (7/2, 7).

Solution: (d/dx)(sin x) = cos x
We know that cos x is positive on (0, 7/2) and negative on (n/2, n). Therefore, sin x is
increasing on (0, 7/2) and decreasing on (7/2, ).

Remark: If we consider the entire interval (0, 7), sin x is neither increasing nor decreasing.

Example (10): Consider the function f(x) = x? — x + 1, 0 < x < 1. We have,
, 1
fx)y=2x-1=2 X3

Observe that for x > 1/2, f(x) is positive, but if x < 1/2, then f’ (x) is negative. Therefore, on
the interval (1/2, 1), f{x) is increasing, whereas on the interval (0, 1/2), it is decreasing. If we
consider the entire interval (0, 1), f(x) is neither increasing nor decreasing.

Example (11): Separate the intervals in which f(x) = x* — 6x> +9x + 5 is increasing or
decreasing.

Solution: We have f(x) = x> — 6x% +9x +5

3x2 —12x+9
= 3(x? —4x +3)
=3x-1)(x-3)

f(x)
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We solve f/(x) =0.
F) =30—1) (x—3) =0

x=1 and x=3

These points determine three intervals as (—oo, 1), (1, 3), and (3, oo) on the real line. We discuss
the behavior of f(x) in these intervals separately. Observe the following:

() 1/2 s in (o0, 1)
F/(1/2) = 3(=)(=) = (+) and 50 f(x) > Oon (o0, 1)

Therefore, f(x) is increasing on (—oo, 1).
(i) 2isin (1, 3)

f(2)=3(+)(=) = (—)and so f'(x) < 0on(1,3)

Therefore, f(x) is decreasing on (1, 3).
(iii) 4 is in (3, 00)

f(4) =3(+)(+) = (+) and so f'(x) > 0on (3, 00)
Therefore, f(x) is increasing on (3, 00).

Note that, the set of values of x for which f{(x) is increasing is (—oo, 1) U (3, 00).
Also, the set of values of x for which f(x) is decreasing is (1, 3). Ans.

Example (12): Show that the function f{x) = 3x° — 32 +x+25is increasing on R.
Solution: We have, f(x) = 3x* — 3x? + x + 25.

fl(x)=9x* —6x+1=(3x—1)*
Note that, f'(x) is a perfect square. At x = 1/3, f'(x) = 0, but for all other values of x, f/(x) > 0.
Geometrically, it means that slope of f at each point is positive except at (1/3, f(1/3)), where

tangent line is horizontal [since f'(1/3) =0 ]. As f’(x) does not change sign on the whole real
line, it follows that f{x) increases throughout R.

Note (6): It is easy to show that the logarithmic function (i.e., y=1og x) is an increasing
function, wherever it is defined. Try this.

Example (13): Prove that, x — 1 > logx > (x —1)/x, Vx > 1.
Solution: We shall do this in two steps:

1 x—1>logx Vx>1

~1
(i) logx>"—~ VYx>1
X
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() Letf(x) = (x — 1) —log x 3

Now, for x > 1, (1/x) < 1.
1——>0
X

1
f’(x):lf;>0, Vx>1

Therefore, f(x) is increasing at every x > 1.
Next, observe that

f()y=(1-1)—1log1=0-0=0from equation (3)

Thus, f(x) is increasing for x > 1 and that f{1) =0.
It follows that, fix) >0,V x> 1.

(x—=1)—logx>0... (x—1)>logx (4)

(i) Now, let

1 1 x-1
/ P —
§)=2-5="23
Observe that, for every x > 1,
x —1
2 >0
ooy Xx—1
gx) = 2 >0, Vx>1

Therefore, g(x) is increasing at every x > 1.
But,

1-1
g(l):loglfT=070=O

©) We will show that f{x) = (x — 1) — log x >0, so that (x — 1) > log x.
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Thus, g(x) is increasing for x > 1 and that g(1) =0.
It follows that, g(x) >0,V x> 1.

g(x):logx—x >0,Vx>1

x—1

log x > Vx>1 (6)

From equations (4) and (6), we have

-1
1—x> logx>xT7 Vx>1. Ans.

Example (14): Show that, log x<x — 1 for 0 <x < 1.
Solution: Let fix)=(x — 1) —log x, for 0 <x < 1.

1 1
f’(x):l—O—}:l—;, for0 < x < 1

Since x < 1, (1/x) > 1.
o fly)y=1-1<0, foro<x<1

Therefore, f is decreasing for 0 <x < 1.
x<1=f(x)>f(1)
But f{il)=(1-1)—log 1=0 [log 1 =0].

x<1=f(x)>0
= (x—1)—logx >0
=x—1>logx
=logx <x—1,forO<x<1. Ans.

19a.4 HORIZONTAL TANGENTS WITH A LOCAL MAXIMUM/MINIMUM

Consider the graph of a differentiable function y = f{x) shown in Figure 19a.14. We observe that
the function increases on (a, ¢), where f'(x) >0, decreases on (¢, d), where f’(x) <0, and
increases again on (d, b). The points of transition P and Q on the curve (at x=c and x =d,
respectively) are marked by horizontal tangents.

If the derivative f’ of a function y =f{(x) is continuous, then f’ can go from negative to
positive values only by going through 0. (This is a consequence of the Intermediate Value
Theorem for continuous functions stated in Chapter 8.)

The statement f’(x) = 0 tells us that the slope of the tangent line at the transition point is 0,
which means that at such a transition point, the graph of f has a horizontal tangent.

If f’ changes continuously from positive to negative values as x passes from left to right
through a point P, then the value of f at ¢ is a local maximum value of f as shown in
Figure 19a.14.
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FIGURE 19a.14

Thatis, f(c) is the largest value the function takes on in the immediate neighborhood of x = c.
Similarly, if /" changes from negative to positive values as x passes from left to right through a
point d, then the value of fat Q is a local minimum value of f. That is, f(d) is the smallest value f
takes in the immediate neighborhood of x = d.©®

19a.4.1 A Horizontal Tangent Without a Maximum or a Minimum

Suppose y = f(x) has a continuous derivative f’ that changes sign as x passes through a point c,
then we know that f'(¢) =0. However, a change in sign does not always occur when the
derivative is zero. The curve may cross its horizontal tangent and keep on rising, as happens in
the graph of y=x> at (0, 0) of (Figure 19a.7).

Similarly, the curve may cross its horizontal tangent and keep on falling, as y = —x° does at
(0, 0). Neither function has a local maximum value or a local minimum value at x = 0, through
£/(0)=0. This situation arises because the function y = x* increases on the entire x-axis, and
yet the first derivative y' = 3x7 is 0 at x = 0. Since the first derivative does not change sign as x
passes through the point 0, a local maximum does not exist at x = 0. For the same reason, a local
minimum does not exist for the function y = —x> at x =0.

19a.4.2 A Local Maximum or Minimum Without a Horizontal Tangent

We give below an example of a function that is continuous on the interval on which it rises and
falls, but the derivative fails to exist at the point of transition. In other words, a maximum or
minimum may exist at a point (of transition) without a horizontal tangent.

Example (15): The function y = |x| decreases on (—oo, 0), where y’ = —1, and increases on
(0, 00) where y’ = 1. This function has no derivative at x = 0. The transition from negative slope
to positive slope (i.e., from falling to rising) takes place at a point x = 0, where the derivative
fails to exist (Figure 19a.15).

Note (7): We have seen in Example (4) (on page 554) that the function y = 1/x? rises on the
interval (—oo, 0), and falls on the interval (0, co). These intervals are separated by the point

© We will give more formal definitions of local maximum and local minimum when we will study the theory of maximum
and minimum values of functions in Chapter 19b.
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fx)=Ixl
FIGURE 19a.15

x =0 that is the transition point. But, this point does not lie on the curve y = 1/x? (or that this
function is not continuous at x = 0). Since the function y = 1/x? is not continuous at the point of
transition (x = 0), the local maximum value of f does not exist at x =0.

19a.5 CONCAVITY, POINTS OF INFLECTION, AND THE SIGN OF THE
SECOND DERIVATIVE

Just as the first derivative gives information about the behavior of a function and its graph,
so does the second derivative. In fact, the first and the second derivatives together tell us how the
graph of a function is shaped.

Definition: Concave Up and Concave Down: The graph of a differentiable function y = f(x)
is concave down on an interval where y' decreases, and concave up on an interval where y/
increases. But how do we check this?

If afunction y = f{x) has a second derivative as well as a first, we can apply the first derivative
test to the (derived) function f/(= y') as follows:

Atany point in an interval, if y"” < 0, then y’ decreases, and if y” > 0, then y’ increases in that
interval.

‘We therefore have a test that we can apply to the formula y = f{x) to determine the concavity of
its graph. This test is called the second derivative test for concavity.

19a.5.1 The Second Derivative Test for Concavity

The graph of y =f{x) is concave down on an interval where y” < 0 and concave up on an interval
where y” > 0.

The idea is that if y” <0, then y" decreases as x increases and the tangent turns clockwise
(Figure 19a.16a). Conversely, if y” > 0, then y’ increases as x increases and the tangent turns
counterclockwise (Figure 19a.16b)."

We have the following definitions:

D 1tis easy to imagine that if ' is decreasing (i.e., the slope is decreasing), then the tangent will turn clockwise so that the
graph will be concave down. Similarly, if y’ is increasing, then the tangent will turn counterclockwise, so that the graph will
be concave up.
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FIGURE 192a.16 (a) Concave down. The tangent turns clockwise as x increases; y’ is decreasing. (b) The

tangent turns counterclockwise as x increases; y’ is increasing.
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FIGURE 19a.17 (a) A portion of the graph of a function f. Concave upward at the point (¢, f(c)). (b) A
portion of the graph of a function f. Concave downward at the point (c, f(c)).
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19a.5.1.1 Definition of Concave Upward (at a Point) The graph of a function fis said to be
concave upward at the point (¢, f(c)), if f'(c) exists and if there is an open interval I containing ¢
such that for all values of x # c in I, the point (x, f{x)) on the graph is above the tangent line to the
graph at (¢, f(c)) (Figure 19a.17a).

19a.5.1.2 Definition of Concave Downward (at a Point) The graph of a function fis said to
be concave downward at the point (¢, f(c)), if f(¢) exists and if there is an open interval I
containing ¢ such that for all values of x # c in I, the point (x, f(x)) on the graph is below the
tangent line to the graph at (¢, f(c)) (Figure 19a.17b).

Example (16): Considering the function defined by f{(x)=x? f/(x)=2x and f”(x)=2.
Thus, f”(x) > 0 for all x. Furthermore, because the graph of f, appearing in Figure 19a.18a,
is above all of its tangent lines, the graph is concave upward at all of its points.®

®) The conclusion that f must always be concave up tells us that the graph of y = x> must be as shown in Figure 19.18¢ and
not as in Figure 19.18d, for in that situation there are intervals on which the curve is concave down. Thus, the concept of
concavity is very useful in sketching curves.
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FIGURE 19a.18

Example (17): If g is a function defined by g(x) = —x?, then g'(x) = —2x and g"(x) = —2.
Hence, g”(x) < 0 for all x. Also, because the graph of g, shown in Figure 19a.18b is below all its
tangent lines, it is concave downward at all of its points.

Example (18): Consider the curve y=f(x)=sin x, 0 < x <7n. We have f'(x)=cos x and
f"(x)=— sin x.

Note that, for any x in (0, ), f”(x) < 0. Therefore, the curve fis concave down over the interval
0, m).

19a.5.2 Point of Inflection

A point on a curve y = f(x) where concavity changes from up to down or vice versa is called a
point of inflection. See Figure 19a.19a and b for the point(s) of inflection on the curve.

In view of the above discussion, a point of inflection on a (twice-differentiable) curve is a
point where y” is positive on one side and negative on the other. If y” is continuous, it implies that
y” must be 0 at a point of inflection.

Example (19): The curve y=x" has a point of inflection at x =0, where y” = 6x, changes
sign, as x increases from negative to positive values (Figure 19a.19c).
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FIGURE 19a.19

FIGURE 192.20 The graph of y = x* has no inflection point at the origin even though y”(0) =0.

Remark: There are functions for which the condition y” =0 does not confirm the existence
of a point of inflection, as can be seen in Example (5). Besides, a point of inflection on a
graph may occur where y” fails to exists, as in Example (6).

Example (20): See Figure 19a.20. The curve y = x* has no point of inflection at x =0 even
though y” = 12x7 is 0 there. The second derivative does not change sign at x = 0 (in fact, y” is
never negative). The curve is concave up over the entire x-axis because y = 4x° is an increasing
function on (—oo, 00).

Note (8): In the above example, the second derivative test for concavity is not satisfied (note that
y" = 12x? is positive for all x # 0). It follows that the condition y” = 0 is a sufficient condition,
it is not a necessary one.

Note (9): Most points of inflection occur at those points where f”(x) = 0, but a point of inflection
may occur where f”(x) is undefined, as Example (20) shows.

Example (21): In Figure 19a.21, the curve y = x'"* has a point of inflection at x =0 even
though the second derivative does not exist here. To see this, let us calculate y” at x # 0. We have
y=x"y = (1/3)x" @3y = —(2/9)x~ /3,
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FIGURE 19a.21

For x <0, f”(x) > 0, so that the curve is concave up and f’(x) is increasing. On the other hand,
for x > 0, f”'(x) < 0, so that the curve is concave down and f”(x) is decreasing. Thus, concavity
changes as x passes through 0.

Therefore, the point (0, 0) is a point of inflection. However, f”(x) does not exist at x =0.
Note that as x — 0, f”'(x) — oo. Yet the curve is concave up for x <0 (where y” >0 and y’ is
increasing) and concave down for x >0 (where y” <0 and y’ is decreasing).

Note (10): It is important to understand clearly that a point of inflection separates a concave
down arc from a concave up arc (or vice versa) of a curve. Of course, it is possible that the
function under consideration may not be differentiable at the point of inflection, as we have seen
in Example (21).

(Note that the tangent line is vertical at x = 0.) Now we are in a position to give the following
definition.

19a.5.3 Definition of a Point of Inflection

The point (c, f(c)) is a point of inflection of the graph of the function fif the graph has a tangent
line and if there exists an open interval / containing ¢, such that, if x is in /, then either

@ f"(x)<0if x<e¢, and f"(x)>0if x>¢, or
(i) f"(x)>0if x<c¢ and f"(x)<0if x>c.

The existence of a point of inflection on different curves is indicated in Figure 19a.22.

Figure 19a.22a illustrates a point of inflection where the sense of concavity changes from
downward to upward at the point of inflection.

In Figure 19a.22b, the sense of concavity changes from upward to downward at the point of
inflection.

Figure 19a.22c gives another illustration, where the sense of concavity changes from
downward to upward at the point of inflection.

Note that, in Figure 19a.22c, the graph has a horizontal tangent line at the point of inflection.
Figure 19a.22d illustrates a point of inflection where the sense of concavity changes from
upward to downward at the point of inflection. Note that in Figure 19a.22d, the graph has a
vertical tangent line at the point of inflection.

Remark: A crucial part of the definition of the point of inflection is that the graph must have a
tangent line. This will be clear from the following example.
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Example (22): Consider the function f defined by

_[4-x2, ifx<d
f(x)_{2+x2, if1<x

The graph of f appears in Figure 19a.23.

_f4-x2 ifx <1
f(x)_{2+x2, if1 < x
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Observe that,
ff(x)=-2, ifx<l
ff(x)=2, ifx>1
Thus, at the point (1, 3) on the graph, the sense of concavity changes from downward to upward.
However, (1, 3) is not a point of inflection because the graph does not have a tangent line.

Example (23): Let us discuss concavity and inflection points for the curve y=fx)=
3 2
x —=3x"42.

Solution: We have f'(x) =3x> — 6x and f”(x) =6x — 6=6(x—1).
Now, for f”(x) =0, we get,
6(x—1)=0
ox=1
‘We note that if x < 1, then,

6(x —1) <0, that is, f’(x) <0

Therefore, the curve is concave down, if x < 1.
Next, if x > 1, then,

6(x —1) > 0, that is, f"(x) >0

Therefore, the curve is concave up, if x > 1.
Since the concavity changes as x increases through 1, the point (1, 0) is an inflection point on
the curve.

Note (11): Standard textbooks may be referred to for exercises.



19b Maximum and Minimum
Values of a Function

19b.1 INTRODUCTION

An important application of derivatives is to determine where a function attains its maximum
and minimum values. The value of a function fat x = xq, denoted by f(xy), is represented by the
height of its graph at x,. Thus, maximum and minimum values of a function are most easily
imagined in terms of the graph of a function.

A function fhas a maximum at the point x, if the value of the function at the point x; [i.e.,
Sf{x1)]is greater than its values at all points of a certain (small) interval containing the point x,.
Similarly, we say that a function has a minimum at the point x,, if the value of the function at the
point x;, [i.e., f{x,)] is less than its values at all points of a certain (small) interval containing
the point x,.

In connection with the above definitions of maximum and minimum values of a function,
note the following points carefully:

e One should not think that the maximum and minimum of a function are its respective
largest and smallest values over the given interval. At a point of maximum, a function has
the largest value only in comparison with those values that it has at all points sufficiently
close to the point of maximum, and the smallest value only in comparison with those that it
has at all points sufficiently close to the minimum point.

e The above discussion suggests that it is more appropriate to identify the maximum and

minimum of a function by the terms local maximum and local minimum, respectively. The
term Jocal extremum stands to mean either the local maximum or the local minimum
value of the function. (The terms maxima, minima, and extrema are the plurals of
maximum, minimum, and extremum values, respectively.)
To illustrate, consider the Figure 19b.1. Here is a function y = f(x) defined on the interval
[a, b], whichat x = x;and x = x3hasamaximum, at x = x, and x = x4 has aminimum,
but the minimum of the function at x = x4 is greater than the maximum of the function
at x = xj.

At this stage, we introduce the following terms and concepts that will be frequently used in this
chapter.

Applications of Derivatives 19b-Maxima and minima: theory and problems (Investigating functions with the aid of
derivatives for finding extremum values of a function, and the extreme value theorem)
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MAXIMUM AND MINIMUM VALUES OF A FUNCTION

0| a X Xy X3 Xy b

FIGURE 19b.1

Absolute Maximum (Minimum) of a Function: In Figure 19b.1, note that at x = b, the
value of the function is greater than any maximum of the function on the interval [a, b].
Thus, the greatest value of the function occurs at x = b, and similarly, the smallest value
occurs at x = x,. We say that the absolute maximum of fis f(b) and the absolute minimum
is flxo).

The Points of Extreme Values of a Function: The points like x, X», X3, x4, and b at which
the extreme values of the function f occur, are called the points of extremum (or extreme)
values of the function. Note that, a function defined on an interval can reach maximum and
minimum values only for the points that lie within the given interval. "

Our interest lies in finding the points of extreme values of a continuous function by
using the concept of the derivative. Once such points are known, it is easy to compute the
extreme values of the function and then select the absolute extreme values, which have
practical applications, as will be clear from some solved examples.

In the case of some functions, it is not difficult to find the points of extrema without
using calculus, but it will be seen that in general it is not possible to find the extreme values
without applying differential calculus.®

The knowledge of such points is very useful in sketching the graph of a given function.
Besides, these extreme values have many practical applications in widely varying areas
such as engineering and various sciences, and so on.

19b.2 RELATIVE EXTREME VALUES OF A FUNCTION

The term relative extreme values is frequently used, to stand for local extreme values (including
the absolute extreme values), in a broader sense, This is due to the fact that all extreme values of
a function can be easily compared for relatively smaller or larger values.

19b.2.1 Classification of Relative Extreme Values of a Function

In Figure 19b.2, we indicate how maxima and minima are classified. The reader may note how
the term “relative extreme value” is more general than the term “local extreme value”.

M Later on, we will show (through examples) that an open interval may not have any point of extremum.
@ 1f it were possible to draw easily the graph of any function accurately then we could easily find the extreme values of the
function without using differential calculus. But, we know that this is not so simple.
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Absolute maximum.

No greater value of f.

Also a relative maximum.
[

Relative maximum.
No greater value of f nearby.

y=fx) . .
Relative maximum.
Relative minimum. No greater value of f nearby.

No smaller value of f nearby.

Absolute minimum?

No smaller value of f.
Also a relative minimum
a c b

FIGURE 19b.2 Classification of relative extreme values of a function.

(Shortly, it will be seen how the term “relative extreme value” is more useful than the term
“local extreme value™.)

19b.2.1.1 Definition: Point of Relative Maximum A function f is said to have a relative
(or local) maximum at x = c, if,

f(x) <f(e)

for all values of x in some open interval about c.

If ¢ is an end point of the domain of f, the interval is to be half open, containing c¢ as the
end point. The interval might be small or it might be large, but no value of the function in
the interval (under consideration) is greater than f(c). Note that, it is only at x = ¢ where
f(x) = f(c). [Even when c is an end point of the interval, we have Algrr{ f(x) = f(e).]

19b.2.1.2 Definition: Point of Relative Minimum A function f is said to have a relative
(or local) minimum at x = c, if,

fle) <f(x)
for all values of x in some open interval about ¢ (or half open interval with ¢ as an end point).
Note: The word relative (or local) is used to distinguish such a point from the point of absolute
maximum (or absolute minimum). The precise definition of absolute extrema will be given later

in the chapter.
We now give the following simplified definitions:

(i) Definition of a Relative Maximum Value of a Function: The function f has a relative
maximum value at the point “c”, if there exists some number / >0, such that,

fle) >f(x), forallx e (c—h, c+h) (1)

The value f(c) is called the relative (or local) maximum value of f.
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FIGURE 19b.3

Figures 19b.3a and 19b.3b show a portion of the graph of a function having a relative
maximum value.

(ii) Definition of a Relative Minimum Value of a Function: The function f has a relative
minimum value at the point “c”, if there exists some number / > 0, such that,

fle) <f(x), forallx e (c—h, c+h) (2)

The value f{(c), in this case, is called the relative (or local) minimum value of f.
Figures 19b.4a and 19b.4b show a portion of the graph of a function having a relative
minimum value.

f N -
\L

(a) (b)
FIGURE 19b.4
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1 y =fx)

FIGURE 19b.5

Note: From the definitions at (i) and (ii) above, it must be clear that in the case of a relative
maximum (or minimum) of a function f, the function must be defined in some open interval
(¢ — h, ¢ + h), wherein, the strict inequalities (1) and (2) must hold.

Remark (1): Note that the above inequalities (1) and (2) will be satisfied even when fis not
continuous atx = ¢, but f(c) is defined. Such arelative extreme value is called “strict maximum
(minimum) value at a point”.

19b.2.1.3 Definition: Strict Maximum (Minimum) Value A function f is said to have a
strict maximum (minimum) at the point x = c, if there holds the strict inequality,

F(x) <fle) [f(x)>f(c)]
for all values of x in some open interval (¢ — h, ¢ + h).
[Here, we do not assume that f(x) is continuous at x = c.]

Example (1): Consider the function,

[ x* forx#0
f(x)_{l forx = 0

Note that, this function f is not continuous at x = 0, but it has a relative maximum value
at x = 0 (more precisely, f has a strict maximum value). Here, we can define f(x) in a
way such that it has any desired maximum (or minimum) value at x = 0 (Figure 19b.5).
[Of course, in the case of a continuous function, such extreme value(s) cannot be
chosen.]

Remark (2): When speaking of an extremum at a point x,, we usually mean strict extremum
at xo, irrespective of whether the function is continuous at xo or not. The only important
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requirement is that the value f(x,) should be defined and be finite. [Note that strict maximum
(minimum) is also a relative maximum (minimum).](3)

The following theorem is used to locate the possible points (numbers) at which a function may
have relative extreme values.

19b.3 THEOREM A

If (i) f(x) exists for all values of x in the open interval (a, b), (ii) f has a relative extremum at c,
where a < ¢ < b, and (iii) f'(c) exists, then f'(¢) = 0.

We differ the proof of this theorem for the time being, but let us see what it says, and what it
does not say.

In geometric terms, the theorem states that, if f has a relative extremum at ¢, and if f'(c)
exists, then the graph of f must have a horizontal tangent line at the point x = c.

(Observe that this situation prevails for the graphs in Figures 19b.3a and 19b.4a.)

Caution: Note carefully what the theorem says:
It says that f'(¢) = 0 at all those interior points “c” where f has a relative maximum or
minimum and f'(c) exists.

o The theorem does not say what happens if a relative maximum or minimum occurs at a
point ¢ where f'(c) is not defined [i.e., either f'(c) is infinite or the point (¢, f(c)) on the
graph is a sharp point such that no unique tangent line can be drawn at that point].

o Also, it does not say that f must have a relative maximum or minimum at every point “c”
where f'(c) = 0.

19b.3.1

The converse of theorem (A) does not hold.
It cannot be said that there definitely exists a relative extremum for every value at which the
derivative vanishes.

Example (2): The function y = f(x) = x>, whose graph appears in Figure 19b.6, has a
derivative equal to zero, at x = 0.

()x=0 = 3%, =0

But at this point, the function has neither a relative maximum nor a relative minimum. Indeed,
no matter how close the point x is to zero, we will always have

x> <0, whenx <0

x>>0, whenx >0

This is the example of a continuous function that has derivative at each point in its domain.

) It must be noted that the term “relative extremum” is used for the following two comparisons:

(i) For comparing the values of function within a small neighbourhood of the point of extremum.

(ii) For comparing the maximum (or minimum) values of the function to select the absolute maximum (or minimum)
values of the function.
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FIGURE 19b.7

Example (3): The functiony = |x| has no derivative at the point x = 0 (at this point the curve
does not have a definite tangent line), but the function has a relative minimum at this point:
y = 0 when x = 0. Note that, for any other point x different from zero, we have y >0
(Figure 19b.7).

Example (4): Let the function f be defined by

2x—1 ifx<3
flx) = {Sfx if3 < x

The graph of this function appears in Figure 19b.8, showing that f has a relative maximum
value at x = 3.
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FIGURE 19b.8

The derivative from the left of x = 3 is given by f/(x) = 2 [note that f'~(3) = 2], and the
derivative from the right of x = 3 is f/(x) = — 1 [note that f'*(3) = — 1]. Therefore we
conclude that f'(3) does not exist, but still a relative maximum exists at x = 3.

Note (3): It is possible that a function f can be defined at a number ¢ where f'(c) does not
exist and yet f may not have a relative extremum there. The following example gives such
a function.

Example (5): The function y = /x= x!/ does not have a derivative at x = 0. Since the
derivative y) = f'(x) = (1/3)x~%? approaches infinity as x — 0, we say that f'(x) does not
exist at x = 0.
The domain of fis the set of all real numbers. Figure 19b.9 shows the graph of the function.
At this point the function has neither a relative maximum nor a relative minimum. This is
also clear from the fact that f(0) = 0, fix) <0 for x <0 and f(x) > 0 for x > 0.

Example (6): Figure 19b.10 shows the graph of y = fix) = X3, on [—2,3].

Ve

~<
1l

FIGURE 19b.9
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FIGURE 19b.10

The derivativey = f/(x) = (2/3)x~ /3 = 2/3/x does not exist at x = 0, where y has
its minimum value of zero. [Observe that, the curve has a vertical tangent at (0, 0), because
lim, _of'(x) = o0.]

A function can have a minimum value at a point where its derivative does not exist. One way
this can happen is shown here, where the curve has a vertical tangent at x = 0. Another way is
shown in Figure 19b.7, where | x| has no tangent at all at x = 0. Again, in Figure 19b.8, arelative
maximum occurs at x = 3, where f'(x) does not exist.

Remark (1): Example (5) shows that when a maximum or minimum occurs at the end of a
curve, that exists only over a limited interval, the derivative need not vanish at such a point.

Remark (2): The Examples (2), (3), (4), and (5) demonstrate why the condition “f’(c) exists,”
must be included in the hypothesis of Theorem A.

In summary, then, if a function fis defined at a number ¢, a necessary condition for f to have
a relative extremum there is that f'(c) = 0 or f'(c) does not exist. But, this condition is not
sufficient as we have seen in the above examples. Before we discuss sufficient conditions for
existence of a relative extrema, it is important to define the following terms.

19b.3.2 Definition of Critical Points of f(x)

If ¢ is a number in the domain of the function f, and if either f'(c) = 0 or f'(c) does not exist,
then c is a critical point of f.

Thus, critical points include the roots of the equation f'(x) = 0, and the numbers where
f(x) does not exist. (In particular, the numbers “c” where lim,_,.f'(x) — £ co must be
carefully checked for extreme values.) Note that, for the function f(x) = x%/7, the derivative
f'(x) = (2/3)x~ /3 does not exist at x = 0, but f{x) has its minimum value of zero at x = 0
(see Figure 19b.10). In fact, the curve has a vertical tangent at (0, 0). On the other hand, a
different situation exists for the function, f(x) = x'/3. Note that, here again, there is a vertical
tangent at (0, 0) [meaning that f/(x) does not exist there], but no extremum exists at x = 0
(see Example 4, Figure 19b.9).
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19b.3.3 Stationary Point(s) of f(x)

The points where f'(x) = 0 are called the stationary points of f{ x), since the derivative f'(x) that
stands for the rate of change of the function f{x) (at such points) is zero. (A stationary point
is a critical point but does not necessarily have a relative extrema.) Note the difference in
terminology: a point of extremum of a function is a point lying on the axis along which the
independent variables runs, while a point of inflection (discussed in earlier chapter) is a point
lying on the curve itself.”

Note (4): From what has been said we conclude that every critical point of a function need not
have a relative extremum. However, if at some point the function attains a relative extremum
then this point is definitely critical. Therefore, to find the relative extrema of a function we must
proceed as follows:

Find all the critical points, and then, investigate separately each critical point, to find out
whether the function will have relative maximum (or a minimum) at that point.
Investigation of a function at critical points is based on the following theorem.

19b.4 THEOREM B: SUFFICIENT CONDITIONS FOR THE EXISTENCE
OF A RELATIVE EXTREMA—IN TERMS OF THE FIRST DERIVATIVE

Let there be a function f(x) continuous on some interval containing a critical point x;
and differentiable at all points of the interval, with the exception, possibly, of the point
X, itself.

o If when moving from left to right through this point the derivative changes sign from plus
to minus, then, at x = x;, the function has a relative maximum.

¢ But, if when moving through the point x; from left to right, the derivative changes sign
from minus to plus, the function has a relative minimum at x = x;.

In other words,

it () f'(x) >0 whenx <x; and
f(x) <0 whenx > x

then at x; the function has a relative maximum; but

it (b) f'(x) <0 whenx < x; and
f'(x) >0 whenx > x|

then at x; the function has a relative minimum.

Note that, the conditions (a) and (b) must be fulfilled for all values of x that are sufficiently
close to x; (i.e., at all points of some sufficiently small neighborhood of the critical point x;).
Also, the theorem demands that f’(x) may not exist at x = x; but f must be continuous at x;.

“ For more details, refer to Mathematical Analysis by A.F. Bermant and I.G. Aramanovich (pp. 202-203), Mir Publishers.
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FIGURE 19b.11

Proof: Letf’(x) > 0forx < x;. This means that on the left of the point x,, there is an interval
of increase of the function f(x) adjoining the point x;.

If f'(x) < 0 for x < xy, then on the right of the point x,, there is an interval of decrease
of the function adjoining the point x;. Consequently, x| is a point of (relative) maximum
(Figure 19b.11).

Other cases, when the derivative changes its sign from negative to positive as X passes
through the point x, from left to right, are investigated quite similarly.>

In other words, if the derivative f’(x) changes sign as x passes through the point x, (from
left to right), the point x, is a point of relative extremum (Figure 19b.12). (If the derivative
changes sign from positive to negative there is a relative maximum at the point x; if it changes
from negative to positive it is relative minimum at the point x;.)

y A f1 (020
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/

f + fr
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FIGURE 19b.12

) The theorem can also be proved by applying Lagrange’s mean value theorem (introduced later in Chapter 20). Such a
proof is very simple. [See Differential and Integral Calculus, Vol. 1 by Piskunove (p. 162), Mir Publishers.]
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FIGURE 19b.13

1t is clear that if the derivative f'(x) does not change sign as x passes through the point x,,
there is no relative extremum at the point x ;. This can be seen from the behavior of the function
y = x> in the vicinity of the point x = 0. Earlier, we have already discussed about this function
(Figure 19b.6), however, we again give the graph of this function with extra supporting
information for more clarity (Figure 19b.13).

Remark (3): For the sufficient conditions given by Theorem B to be satisfied, it is important
that the function f(x) be continuous at x = x.Itis important to note that if it is only known that
the derivative changes sign at a point, it is impossible to judge upon the existence of a (relative)
extremum, because it is necessary to know additionally that the function is continuous at that
point itself.

For instance, take the function y = (1/x?). Its derivative y = — (2/x*) changes sign as
X passes through the point x =0:

y >0forx<0 and y <Oforx>0

Consequently, the function increases on the left of x = 0 and decrease on the right of x = 0.
At the same time x = 0 is not a point of relative maximum of the function since 0 is not in the
domain of “f”. It has an infinite discontinuity at that point (see Figure 19b.14).

y

FIGURE 19b.14
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19b.4.1 Scheme for Investigating Functions by Means of the Sufficient Condition
for (Relative) Extremum in Terms of the First Derivative

The proceeding section permits us to formulate a rule for testing a differentiable function,
y = fix), for relative maximum and minimum.

(1) Find the first derivative of the function, that is, f'(x).

(2) Find the critical values of the argument x. To do this:
(a) Equate the first derivative to zero and find the real roots of the equation f'(x) = 0.
(b) Find the values of x at which the derivative f’(x) is not defined.

(3) Letthese critical points [obtained from (a) and (b)] be denoted, in an increasing order, as

X1 <X < - < Xy
We split the interval [a, b], in which the function is considered, into the subintervals.
(a, x1), (X1, X2)5 -+ o5 (Xu—1, Xn), (Xn, b)

In Chapter 19a, we have seen that the sign of f'(x) remains unchanged in each such
subinterval. In other words, the sign of the derivative in each such subinterval may be
either positive or negative. Thus, these subintervals are the intervals of monotonicity of
the function. The sign of the derivative in each subinterval specifies the character of
variation of the function in each subinterval.

It is now sufficient to investigate the sign of the derivative on left and right of each
critical point x;. The specification of the change of sign of the derivative (as x passes
through the point x; from left to right) indicates which of these points give a relative
maximum are and which points give a relative minimum.

Note (5): It may also turn out that some of the points x; are not points of (relative) extremum.
This is the case when the derivative has the same sign in two adjoining subintervals separated by
the point x; (for instance, for the function y = x* the point x = 0 belongs to this type).

(4) The substitution of the critical values x = Xx;into f{x) yields the corresponding values of
the function:

Fx) <flx2) < -0 <fxa)

each of which need not be a relative extremum. This gives us the following table of
possible cases:

Sign of Derivative f'(x) When Passing
Through Critical Point x;

X <X X = X X > X Character of Critical Point

+ f(x1) = 0orf'(x1)is — Point of relative maximum
not defined

— f1(x1) = 0orf(x1)is + Point of relative minimum
not defined

+ f1(x1) = 0orf(x1)is + Neither a relative maximum nor a
not defined

relative minimum. (Function

increases throughout)

— fl(x1) = 0orf(x1)is - Neither a relative maximum nor a
not defined relative minimum. (Function

decreases throughout)
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Note (6): It is possible to establish another sufficient test for relative extremum with the aid of
the second derivative f(x) of the function f(x) under investigation. It will be found that the
second derivative test (stated below) sometimes proves simpler and more convenient than the
one in the foregoing section.

In what follows we assume that in a neighborhood of a given point x; the function f(x)
itself and its first and second derivatives are continuous.

19b.5 SUFFICIENT CONDITION FOR RELATIVE EXTREMUM (IN TERMS
OF THE SECOND DERIVATIVE)

Theorem C: If the first derivative vanishes at the point x; [f'(x;) = 0] while the second
derivative is different from zero [f”(x;) # 0], then x; is a point of relative extremum.®

Furthermore, if f”(x;) < 0, the point x; is a point of relative maximum, if f”(x;) > 0, the
point x; is a point of relative minimum.

Proof: Letf'(x;) = 0and f”(x;) > 0.
By the hypothesis, the second derivative is continuous, and therefore its sign is retained in a
neighborhood of the point x;. It follows that the function f'(x; ) increases in this neighborhood
because its derivative (f'(x;))’ = f”(x;) is positive (by assumption).

Further, since f'(x;) = 0, the derivative f’(x;) assumes values less than f’(x;) = 0 on the
left of the point x; and is therefore negative:

f(x1) <0 forx < x

Similarly, on the right of the point x,, its values are greater than f'(x;) = 0, that is, its values
are positive:

f(x1) >0 forx>x

Hence, as x passes through the point x; from left to right, the functionf'(x,) changes sign from
negative to positive and therefore, according to the foregoing test for extremum (in terms of the
first derivative), x; is a point of relative minimum of the function f(x).

An analogous arguments shows that, if f”(x) < 0 the function f’(x) decreases and changes
its sign from positive to negative as x passes through the point x;, means that x; is a point of
relative maximum of the function f(x).

Remark (1): If both f’(x;) = 0andf”(x;) = 0, the second derivative test is inapplicable,
and one should resort to the first derivative test. For instance, consider the following examples
which will make this clear.

© Tt follows that the second derivative test for relative extremum is applicable to a function f, if f{x), ' (x ) and " (x, ) are
continuous at x = xy, and f”(x) # 0.
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Example (7): Test for (relative) maximum and minimum the functions

y=x* and y=x°

Solution: The first and the second derivatives of the function y = x* turn into zero at the point
x = 0. Therefore, the second derivative test is inapplicable while the first test indicates that
there is a (relative) minimum at that point, since the derivative y = 4x> changes sign from
negative to positive as x passes through the origin, from left to right.

At the same time, the function y = x> whose first and second derivatives also vanish at the point
x = 0, has no relative extremum at the origin. This is so, because its first derivative does not
change sign as x passes through the point x = 0.

Example (8): Test the following function for (relative) maximum and minimum

flx) = 1-x*

Solution:

(1) Find the critical points:
fx) = —4x
—4x* = Ogivesx = 0
(2) Determine the sign of the second derivative at x = 0.
f(x) = —12x2
Now, [f"(x)],—o = 0

It is thus impossible here to determine the character of the critical point by means of the
sign of the second derivative (Figure 19b.15).

FIGURE 19b.15
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(3) Investigate the character of the critical point by the first derivative test
[F/()]co >0, [/ (%)l is0 <0

Consequently, at x = 0, the function has a (relative) maximum, namely [f'(x)],_, = L

Remark (2): Whenever the second derivative test is applicable, it proves extremely conve-
nient, since, it does not require the determination of the sign of the function f'(x) at points
different from the point at which the given function is tested for relative extremum, and this
makes it possible to judge upon the existence of the relative extremum by the sign of the
Sfunction f"(x) at the same point.

Now, we give below two examples in which it is tedious to obtain f”(x) or inconvenient to
calculate it. In such cases, checking the change of sign of f’(x) gives a quicker result in
classifying the critical values.

Example (9): Show that the function
X =5xt 5 —1

has a maximum when x = 1, a minimum when x = 3, and neither when x = 0.
Solution: Let y = fix) = X —5xt 4553 - 1

d

D ) = 5x% - 2003 + 1542
dx
= 5x%(x* —4x+3)

5x2[x* —3x — x +3]
5x%[x(x —3) — 1(x —3)]
= 5x}(x—=3)(x—1) (3)

and f"(x) = 20x* — 60x? +30x
= 10x[2x? — 6x + 3]

For critical values of f(x), we must have dy/dx = f'(x) = 0.
That is, 5x*(x — 3) (x — 1) = 0, which gives x = 0, 1, and 3 (i.e., the critical values) at
which f(x) may have possible maxima or minima or neither.
When x = 1, we have from (4),
f(x) = 102—6+43] = —10<0
-, f(x)is maximum forx = 1
When x = 3, we have
103)[2(3)* = 6(3) +3
= 30[18—18+3] =90>0
*. f(x)is minimum forx = 3

f(x)

Finally, when x = 0, we get

f"(x) = 10x(2x* —=6x+3) = 0
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Hence, the test fails. Therefore, we use the first derivative test [i.e., to find whether f’(x) changes
sign as x increases through x = 0].

We have f'(x) = 5x*(x—1)(x —3)

when x is slightly less than zero, we have from (3),

Thus, we observe that f/(x) does not change sign as x increases through 0. Hence, the function
f(x) is neither maximum nor minimum at x = 0.
The critical value x = 0is a point of inflection on the curve, its coordinates being (0, — 1).

Note (7): The maximum and minimum values of the function, on putting x = 1 and x = 3,
respectively, in f(x) = x> — 5x* + 5x* — 1, are 0 and — 28. One might check and convince

himself that f(x) cannot have value greater than zero and less than — 28 for any value of x.

Example (10): Show that the function

(x+1)?
f(x) = 3
(x+3)
has a maximum value 2/27 and a minimum value zero.
12
Solution: Let y = f(x) = e+ )3
(x+3)

To find dy/dx = f'(x), it is convenient to take logarithms first.
Thus, log,y = 2log, (x + 1) — 3log, (x + 3)
Differentiating both sides w.r.t. x, we get

dy 2 3
y dx  x+1 x+3
O 2(x4+3)-3(x+1) 3—x)
T (D (x+3) 0 (x+D(x+3)
dy (3—x) (x+1)* (3-x

&~V ar D +3) (x+3)° (x+1)(x+3)
_ DB -x)
B (x+3)* (5)

Now, observe that it is tedious to obtain d*y/dx> = f”(x). Therefore, we choose to check the
change of sign of f’(x), as x increases through the critical values [i.e., x = — 1, x = 3, which
are in the domain of f’(x)]. Note that dy/dx = 0, when x = —1, 3.

First, consider x = — 1
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when x is slightly less than — 1, we see from (1), that
dy  (x+DB-x)  (=)(+) _

dx (x+3)* +

and when x is slightly greater than — 1, then

dy  (H)(+) _

===

dx +
Thus, dy/dx changes sign from negative to positive as x increases through — 1.

.y = fix) is minimum for x = — 1, and this minimum value obtained by putting

x = — 1 in the expression for y = f(x), is zero.

Next, consider x = 3
when x is slightly less than 3, we have, from (5)

dy _ (x+DB-x) _ (+)(+)

= = = +
dx (x+3)* +
and when x is slightly greater than 3, we get
dy _(H)(-) _
dx +

so that dy/dx changes sign from positive to negative as x increases through 3.
y = f(x) is maximum for x = 3 and its maximum value, on putting x = 3 in the
expression for y, is

(B+1)° 2x2x2x2 2

_ -~ Ans.
(3137 6x6x6 27 e

Note (7): In the above example, the derivative dy/dx = ((x+1)(3 —x))/(x+3)* is not
definedatx = — 3, hence x = — 3 isa critical value that must be investigated for existence of
extrema. But we also observe that the function y = (x+1)*/(x+3)? is not continuous at
X = — 3, since, y is not defined for x = — 3. In other words, x = — 3 is not in the domain
of the function and so this point is not to be considered for extreme values.

Example (11): We will show that the maximum value of (1/x)" is e'’.

Solution: Let y = (1/x)*

- log,y = xlog,(1/x) = xlog,(x)"
—xlog, x

1 dy 1

2oL = | x- = +1

y dx X x—i—og‘,x
= _[1+10gex]

dy

a: _Y[]+1Ogex]

X

1
or- =~ 13 (1+1log, x) (6)
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Equating dy/dx to zero, we obtain (1 + log,x) = 0
log,.x = -1 .. x=e!=1/

Note that 1/e is a positive number less than 1.
(Now we have to investigate the critical value x = 1/e for existence of extreme value.)
When x is slightly less than 1/e (which means that the value of log, x is slightly toward
—2 from —1), (1+1log, x) < 0 and we have, from (6)

% - 7(§>4(1+10gex) = (=)(+)(-) =+

and when x is slightly greater than 1/e (the value of log, x is slightly toward 0 from — 1),
(1+1log, x) > 0 and we have,

v f@”(mogex) = (<)(+)(+) = -

Thus, dy/dx changes sign from positive to negative as x increases through the value 1/e. Hence
y is maximum for x = 1/e, and this maximum value is given by

1 1/e
(17e) = el/e Ans.

19b.6 MAXIMUM AND MINIMUM OF A FUNCTION ON THE WHOLE
INTERVAL (ABSOLUTE MAXIMUM AND ABSOLUTE MINIMUM VALUES)

We are frequently concerned with a function defined on a given interval, and we wish to find the
largest or smallest value of the function on the interval. These intervals can be either closed,
open, or closed on one end and open at the other. We now give the precise definitions of the
absolute extreme values of a function.

(a) Definition of an Absolute Maximum Value on an Interval: The function f has an absolute
maximum value on an interval if there is some number c in the interval such that

f(c) > f(x), for allxin the interval

The number f{c) is then the absolute maximum value of f on the interval.

(b) Definition of an Absolute Minimum Value on an Interval: The function fhas an absolute
minimum value on an interval if there is some number c in the interval such that

f(c) <f(x), for all xin the interval

The number f{¢) is then the absolute minimum value of f on the interval. (If a function
has either an absolute maximum value or an absolute minimum value on an interval,
then the function is said to have an absolute extremum on that interval.)

A function may or may not have an absolute extremum on a particular interval. In
each of the following examples, a function and an interval are given, and we find the
absolute extrema of the function on the interval, if there is any.
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A Y

O

fix)=2x,for1 <x<4
FIGURE 19b.16

Example (12): Consider the function defined by f{x) = 2x

The graph of fon [1, 4) is sketched in Figure 19b.16, This function has the minimum value
of 2 on [1, 4). There is no maximum value of fon [1, 4) because lim, _. 4 f(x) = 8, but f{x) is
always less than 8 on the interval.

On the other hand, let us imagine the graph of the function

flx) =2x forl <x<4

It has the maximum value of 8 on (1, 4] but there is no minimum value of the function. Again,
the function fix) = 2x defined on (1, 4) has neither maximum value nor minimum value.

Example (13): Consider the function defined by f(x) = — x°

The graph of fon ( — 3, 2) appears in Figure 19b.17. This function has an absolute maximum
value on (—3, 2). There is no absolute minimum value of f on (—3, 2] because
lim,_, 3+ = —9butfix)is always greater than — 9 on the given interval. Of course, there
is relative minimum value of —4 at x = 2.

Note that, in this example a relative minimum occurs at an end points of the interval.

Example (14): Consider the function defined by f(x) = x°, x € [0, c0)

This function has the absolute minimum value of 0, at x = 0.

1t does not have the absolute maximum value, since the function can attain any positive
value. (Here, f is defined on an unbounded interval.)



MAXIMUM AND MINIMUM OF A FUNCTION ON THE WHOLE INTERVAL 595

fo) =% xe (-3,2)
FIGURE 19b.17

Further, the function,
fx) =x 1<x<3

has the absolute minimum value at 1, but there is no absolute maximum value. (Why?) On the
other hand, the function,

f(x) =x* 1<x<3

has both the absolute minimum value of 1 at x = 1 and the absolute maximum value of 9 at
x =3.
In contrast, consider the function,
2
x forl <x<3
f) = {5 forx = 3

Here, f has the absolute minimum value of 1 at x = 1, but there is no absolute maximum
value. (Why?)

Note that, for x = 3,f(x) = 5; but there are infinitely many points less than 3, in the interval
[1, 3], for which fix) > 5. However, it is not possible to choose a single point at which f has the
maximum value. Also, note that this function is defined on the closed interval [1, 3], but it is
discontinuous at x =3, which is an end point of the interval.
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Remark: This example shows that a function defined on a closed interval may not
attain the absolute extremum, if it is discontinuous, anywhere in the interval—including
the end point. On the other hand, there are examples showing that a discontinuous function
defined on an open interval may have both an absolute maximum and an absolute minimum
value.

The above examples suggest that we can be much more precise about possible extreme values if
the function f'is continuous and the domain S is a closed interval. The extreme value theorem
answers the existence question for some of the problems that come up in practice.

19b.6.1 The Extreme Value Theorem

If the function f'is continuous on the closed interval [a, b], then f has an absolute maximum
value and an absolute minimum value on [a, b]."”

Note the key words; f is required to be continuous and the set S is required to be a closed
interval.

Remark: The extreme value theorem states that the continuity of a function on a closed
interval is a sufficient condition to guarantee that the function has both an absolute maximum
value and an absolute minimum value on the interval. However, it is not a necessary condition.
For example, the function whose graph appears in Figure 19b.18, has an absolute maximum
value at x = ¢ and an absolute minimum value at x = d, even through the function is
discontinuous on the open interval (— 1, 1).

An absolute extremum of a function continuous on a closed interval must be either a relative
extremum or a function value at an end point of the interval.

Y

FIGURE 19b.18

) Though this theorem is intuitively obvious, a rigorous proof is quite difficult. The proof of this theorem can be found in
an advanced calculus text. One such reference is Calculus with Analytic Geometry (Alternate Edition) by Robert Ellis and
Denny Gulik, HBT Publication.
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[TPRt}

Since a necessary condition for a function to have a relative extremum at a number “c” is
for ¢ to be a critical number, the absolute maximum value and the absolute minimum value
of continuous function f on a closed interval [a, b] can be determined by the following
procedure:

(1) Find the function values at the critical numbers of f on (a, b).
(2) Find the values f(a) and f(b).

(3) The largest of the values from steps 1 and 2 is the absolute maximum value, and the
smallest of the values is the absolute minimum value.

Exercise (1)

Q1. Test for maximum and minimum of the function y = x°

Ans. The function has minimum at x = 0.

Q2. Test for maximum and minimum of the function y = (x — ?

Ans. The function has neither a maximum nor a minimum.

Q3. To find the greatest and the least values of x> — 18x% + 96x, in the interval [0, 9]

Ans. The greatest value = 160 and the least value = 0.

Q4. To find the greatest and the least values of 3x* — 2x®> — 6x* + 6x + 1 in the interval [0, 2]
Ans. The greatest value = 21, and the least value = 1.

Q5. Prove that x* has minimum value at x = 1/e, and the minimum value is (1/e)"/

Q6. Find the maximum value of k’%

Ans. Maximum value = 1/e.

Q7. Prove that the maximum value of sinx + cos x is V2

It is possible to give a step-by-step procedure for solving word problems concerning
maximum and minimum. Of these steps the most important step is to express the quantity
(to be maximized or minimized) as a function f of the other quantity. We now proceed to
discuss such applied problems.

19b.7 APPLICATIONS OF MAXIMA AND MINIMA TECHNIQUES IN
SOLVING CERTAIN PROBLEMS INVOLVING THE DETERMINATION
OF THE GREATEST AND THE LEAST VALUES

By using techniques that we learnt (for finding where a function attains its maximum and
minimum (i.e., extreme) values), we can examine situations in science, business, and
economics that require determining the value of a variable, which will maximize or minimize
a function.
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FIGURE 19b.19

In examining such situations, we are concerned with the problems in which the solution is an
absolute extremum of a function.

Of course, the extreme value theorem assures us that a function continuous on a closed
interval [a, b] has both an absolute maximum value and an absolute minimum value on the
interval.

However, we have seen the graph of a function (Figure 19b.18), which has an absolute
maximum value at x = ¢ and an absolute minimum value at x = d, even though the function is
discontinuous on the open interval (— 1, 1). It is important to remember that the greatest value
M (the least value m) of the function on the interval [a, b] is either one of its relative maximum
(minimum) values or an end point value. Some of the possible cases are shown in Figure 19b.19.

It is also clear that when a function y = f(x) is monotonic, in a closed interval [a, b], its
greatest value is f{(b) and the least value is f(a), if the function increases and conversely, the
greatest value is fla) and the least value is f(b), if the function decreases.

It often occurs that a given function has only one point of extremum in an interval. In this
case, the value of the function at that point is the greatest (an absolute maximum) on the interval
in the case of relative maximum, and the least (an absolute minimum) in the case of relative
minimum. Thus, we can deal with applications involving absolute extremum, even when the
extreme value theorem cannot be employed. The following theorem is sometimes useful to
determine if a relative extremum is an absolute extremum.

Theorem D: Suppose the function fis continuous on the interval I containing the number c.
If flc) is a relative extremum of f on I and c is the only number in I for which fhas a relative
extremum, then f(c) is an absolute extremum of f on 1.®

Suppose there are two magnitude connected by a functional relationship, and it is required to
find the value of one of them (belonging to an interval that can be finite or infinite) for which the
other magnitude assumes its least or greatest value among all the possible values. To solve such
a problem we must find the expression of the function describing the relationship between the
magnitudes in question and then determine the least or the greatest value of this function on the
given interval.

Example (15): Let us determine the /east length / of the fence enclosing a rectangular plot of
land with given area s adjoining a wall.

Solution: Denoting by x one of the sides of the rectangular plot of land with given area s
adjoining a wall (see Figure 19b.20) we readily obtain,

s = x(/—2x) where! = 2x+s/x (7)
The problem now reduces to finding the least value of this function as x ranges from 0 to co.

®) We accept this theorem without proof. For proof of Theorem “D”, refer to The Calculus — 7 of a Single Variable by
Louis Lethold (p. 288), Harper Collins.
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7

1-2x
FIGURE 19b.20

Note from (7) that/ — oo forboth x — 0and x — oo, the least value of the function | must
be among the minimum values of I, for some x in the interval (0, co).
We find the derivative,

d/ K
— =2
dx

]
Now, d//dx = 0 gives2—s/x> = 0 or x = \/s/2

It follows that in the interval in question there is only one stationary point x = \/s/2
at which the function has an extremum.

Now, the second derivative,
d?1 /dx? = 2s/x3 is positive, for any positive value of x, we get that T has the minimum value at
X = 4/s/2, and it is given by

2
s+ S 2\/2—5

S AN AN

This relation tells us that the length of any fence enclosing a rectangular plot of land with a given
area s adjoining a wall cannot be less than 2+/2s, and it is equal to this only when the smaller side
of the rectangle (which is equal to x = \/5/2 = (1/2)+/2s) is half the greater side [which is
equal to (1 — 2x) = (225 —2(1/2)v/2s = /25)].

Thus, in these circumstances, the most economical fence is the one whose greater side is
twice the smaller one.

Example (16): Divide a positive integer N into two parts such that their product is maximum.
Solution: Let one part of N be x
*. The other part = (N — x)

Let the product of these parts be denoted by y. Then, we have

y = x(N—x)

= Nx—x? ®
. & =N-2x

dx

Now, dy/dx = 0 gives N — 2x =0

. x =N/2
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Thus, y is extremum for x = N/2. We check the sign change of dy/dx when x passes through
N/2 from the left to right. When x is (slightly) less than N/2, we have from (1), dy/dx is positive.
When x is slightly more than N/2, we have dy/dx is negative. Thus, the sign of dy/dx changes
from positive to negative. Therefore, y has maximum value when x = NJ/2.

[If desired, second-derivative test could be done. Note that d’>y/dx?> = —2 (which is a
negative number). Hence, y has a maximum value when x = N/2.]

Remark: Product of two equal parts of a positive integer (these equal parts may be positive
integers or positive rational numbers) gives the maximum product.

Note (8): If it is desired to partition a given positive number into any number of equal parts, then
the largest product is obtained when each part is as close as possible to e (e = 2.718)
(see Chapter 13a for the properties of the number “e”).

Example (17): An agency agreed to conduct a tour for a group of 50 people at a rate of Rs.
400/- each. In order to secure more tourists, the agency agreed to deduct Rs. 5/- from the cost of
the trip, for each additional person joining the group. What number of tourists would give the
agency maximum gross receipts? (It was specified that 75 was the upper practical limit for
the size of the group).

Solution: Just imagine that four people were to join the group, the reduction in the cost of the
tour per person would be Rs. 20/-. If 10 people joined, the reduction in cost per person would be
Rs. 50/- (for the entire group).

If we represent by x the number of additional tourists, the reduction will be Rs. 5x per person
[so that cost of the tour for each person would be Rs. (400 — 5x)].

Thus, cost of tour (for each person) = Rs. (400 — 5x)
and Number of tourists = 50+ x
*. Gross receipts of the company = (400 — 5x)(50 + x)
Let us denote the gross receipts by the symbol y.
.y = Rs. (400 — 5x)(50 + x)
ory = 2000 — 250x + 400x — 5x?
y = 2000 + 150x — 5x* (It is desired that y should be maximum.)

To find the maximum gross receipt, we use the technique of finding the derivative and
equating the result to zero.

dy
— = 150 — 102
dx *

150—-10x = 0
10x = 150
x =15

Thus, forx = 15, y will have extremum value for y.



APPLICATIONS OF MAXIMA AND MINIMA TECHNIQUES IN SOLVING CERTAIN PROBLEMS 601

Now, there are two methods to check whether x = 15 will give maximum or minimum
receipts. One is to check the change of sign of dy/dx when x increases through the number 15,
and the other is to check whether d>yldx*is negative or positive.

If x is slightly less that 15, the sign of dy/dx is positive and for x more thanl5, dy/dx is
negative. Thus, the sign of dy/dx changes from positive to negative at x = 15. Thus, y will have
a maximum value for x = 15. (Also d*y/dx> = — 10 that is negative. Hence, y has maximum
value at x = 15.)

Thus, with any of the above techniques, it is easily shown that for x = 15, y has the
maximum value. Accordingly, if there are 15 additional tourists then the gross receipts will be
maximum. Thus, the number of tourists in the group should be 65.

Note (10): Check the above conclusion by varying the number of tourists and computing the
gross receipts.

Example (18): If two real numbers x and y are such that x >0 and xy = 1, then find the
minimum value of x + y.

Solution: It is given that

xy=1,x>0 )

1
=y = ;(obviously, y>0)

Letf(x) = x+y (10)
1
orf(x) :x—Q—; (11)
, 1
F6) = 1= (12)
11 -3 2
and f’(x) = 0+2x7° = = (13)
For f(x) to be minimum, fix) = 0
1
=1- i 0 [from (12)]
1
=X =1=x= +1, —1
But x > 0 given, therefore x = — 1 is not acceptable.
Putting x = 1 in equation (13), we get
2
(x) = il 2, which is positive

Hence, f(x) is minimum at x = 1 and the minimum value of f(x) is obtained from equation (11).

1
f(]):l—O—I:Z Ans.
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Example (19): A manufacturer of baby food wishes to package his product in cylindrical
metal cans, each of which has to contain a certain volume V|, of baby food. Let us find the ratio of
the height of the can to its radius, in order to minimize the amount of metal, assuming that the
ends and side (i.e., cylindrical portion of the can) are made from metal of the same thickness.

Solution: We wish to find a relationship between the height and the base radius of the right-
circular can in order for the total surface area to be an absolute minimum for a fixed volume.
Therefore, we consider the volume V|, of the can a constant.

Let radius of the can = r, (r > 0)
and height of the can = /1, (h>0)

Then, volume of baby food container in each can is given by
Vo = mrth (14)

and the surface area of circular portion = 2nrh
Now, the total surface area of can consists of two circular disks at the ends and the cylindrical
portion.
The total surface area of each can given by

S = 2w + 2nrh (15)

Because V) is constant, we could solve equation (14) for either r or /, in terms of the other and
substitute in (15), which will give us S as a function of one variable.

Vo
F 14 th = — 16
rom (14), we ge p— (16)
Vi
LS = 27rr2+27rr—02
nr
Vo
— 2 L2
S =2nr -+ 2 p (17)
Vi
orS = 2nr2+2~70

Now, for S to be minimum, we obtain from (17), and equate it to zero.

g*471}’—2&
dr 2

d
or—S:Z 2r—E

dr 2

(18)

Now 9—0 ives 211 = 2

Car T B o2

R

2n
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Step (1): The manufacturer wishes to minimize the surface area S of the can.
Step (2): We have found that the surface area of each can is given by equation (15)

Note that, r and /1 are not independent of each other. Since we have chosen r as the independent
variable, then S depends on r; also, # depends on r. We have found only one candidate in
equation (18), that is, the value of r which is related to 4, and our interest lies in ratio 4/r, which
should make ds/dr zero.®

Recall from equation (16) that

Yo
o
h V() V() 3 V()
- - = - L = =
roowd w(Vo/2n) 2n
h Vo 2
L ) Ans.
r A )

Note (11): This example illustrates the practical importance of extremum problems. For a
cylindrical can of minimal surface area and containing a given volume, we should have 7 = 2r,
that is, its height should equal the diameter.

Example (20): A square sheet of tin, “a” cm on a side, is to be used to make an open top box by
cutting a small square of tin from each corner and bending up the sides. How large a square
should be cut from each corner so that the box has as large a volume as possible?

Solution:
Let the side of the square cut from each corner be x cm. Then, the volume of the (open) box in
cubic centimeter is given by (Figure 19b.21)

v(x) = x(a—2x)7, 0<2x<a

5 (19)(10)
ie, v(x) = x(a—2x)7, 0<x<a/2

[Note (12): It is clear from (1) that v(x) = 0, when x = 0 or when x = a/2, therefore,
maximum volume of v(x) must occur at a value of x between 0 and a/2.]

The function in (19) has a derivative at every such point, and hence the extremum occurs at
an interior point of [0, /2] where V/(x) = 0.

From equation (1), we get,

v(x) = @®x —4dax?® +4x°
LV(x) = @ —8ax+12x% [12¢* = (—6a)-(—2a)
a* — 6ax — 2ax + 12x*
ala—6x) —2x(a— 6x)
(a—6x)(a—2x)

so that y = 0 when x = a/6 or x = a/2.

© Note that, the equation (18) (i.e., P =V /2m) helps in deciding the relation between /4 and r.
(19 The restrictions placed on the length x in equation (14) are due to the fact that one can neither cut a negative amount of
material from a corner nor cut away more than the total amount present.
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a-—2x

FIGURE 19b.21

Of these, only x = a/6 lies in the interior of [0, a/2]. Therefore, the maximum or minimum
occurs at x = a/6.

Now, by checking the sign change of y’ (when x increases through a/6) or by finding the sign
of y"" (a/6), it can be easily shown that y has maximum value for x = a/6.

Thus, each corner square should have dimensions /6 by a/6 to produce a box of maximum
volume. Ans.

Remark: Note that we have solved a general problem for making boxes of maximum volume,
from any given square sheet.

Exercise (2)
Q1. The sum of two positive numbers is 20. Find the numbers

(i) if their product if maximum;

(ii) if the sum of their squares is minimum.

Ans. x = 10 and y = 10.
Q2. Show that the perimeter of the rectangle of given area is minimum if it is a square.

Q3. Divide 100 into two parts such that the sum of the twice of first part and square of second is
minimum.

Ans. 99, 1.

Q4. The two sides of a rectangle are 2x and (!5 — 2x) units, respectively. For what value of x,

the area of rectangle will be maximum?

14
Ans. —
ns.

Q5. Find the two positive numbers whose product is 64 and sum is minimum

Ans. 8, 8.

Q6. Awire of length 28 m is to be cut into two pieces, one of the piece is to be made into a square
and the other into a circle. Where should the wire be cut so that the combined area is
minimum?

Ans. 112/(n +4) from one end. Hence length from second end = 287n/(n 4 4).



20 Rolle’s Theorem and the
Mean Value Theorem (MVT)

20.1 INTRODUCTION

One of the most important theorems in calculus is the Mean Value Theorem (MVT), which is
used to prove many theorems of both differential and integral calculus, as well as other
subjects, such as numerical analysis. MVT is said to be the midwife of calculus—not very
attractive or glamorous by itself, but often helping to deliver other theorems that are of major
significance. The proof of the Mean-Value Theorem is based on a special case of it known
as Rolle’s Theorem, which we discuss first.

The French mathematician Michel Rolle (1652-1719) proved that if fis a function continuous
on a closed interval [a, b] and differentiable on the open interval (a, b), and if f(a) and f(b)
both equal zero, then there is at least one number ¢ between a and b at which f'(¢) = 0.

In the statement of this theorem, there are three conditions, which must be satisfied for the
theorem to hold. By way of illustrations, we shall show that all the three conditions in Rolle’s
theorem are important and if they are violated, the theorem may not hold.”

First, let us see what this means geometrically. Figure 20.1 shows the graph of a function f
satisfying the conditions in the preceding paragraph.

We see intuitively that there is at least one point on the curve between the points (@, 0) and
(b, 0) at which the tangent line is parallel to the x-axis; that is, the slope of the tangent line is
zero. This situation is illustrated in this figure at the point P.

Note that, the x-coordinate of P is ¢ such that f’(¢) = 0.

Note (1): The function, whose graph appears in Figure 20.1, is not only differentiable on
the open interval (a, b) but is also differentiable at the end points of the interval. However,
the intuitive feeling that f should be differentiable at the end points is not necessary
for the graph to have a horizontal tangent line at some point in the interval. Figure 20.2
illustrates this.

Applications of derivatives: 20-Rolle’s theorem and mean value theorem (MVT)

™ Some authors state Rolle’s Theorem by relaxing the condition (iii) to read it as f(a) = f(b), thus not requiring that both
fla) and f(b) should be necessarily zero. In fact, the condition f(a) = f(b) is more general than the condition f(a) =
f(b) = 0. Thus, while verifying whether Rolle’s theorem is applicable for a specific function, it is enough to check whether
fla) = f(b), instead of requiring f(a) = f(b) = 0.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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FIGURE 20.2

We see in Figure 20.2 that the function is not differentiable at ¢ and b; however, there is a
horizontal tangent line at the point where x = ¢, and c¢ is between a and 5.

Note (2): It is necessary that the function should be continuous at the end points of the interval
to guarantee a horizontal tangent line at an interior point. Figure 20.3 shows the graph of a
function continuous on the interval (a, b) but discontinuous at b. Observe that, the function is
differentiable on the open interval (a, b), and the function values are zero at both a and b.
However, there is no point at which the graph has a horizontal tangent line.

Note (3): The condition that f{x) be differentiable in (a, b) is reasonable because the conclusion
of Rolle’s theorem is about the vanishing of the derivative.®

Note (4): The conditionf(a) = f(b) cannot be eliminated from Rolle’s Theorem. For example, if
f(x) = x,thenf’(x) = 1,forall x, in any open interval (a, b). This implies that f'(c) # 0 for all ¢
in (a, b). Thus, without meeting the condition f(a) = f(b), we cannot conclude that f'(¢) = 0 at
some cin (a, b). In fact, the conclusion of Rolle’s Theorem is applicable to a curve that rises and
falls smoothly.

@ An example of this type is given by the functiony = f(x) = V1 — x2,inthe interval [—1, 1]. This function represents
the upper half of a circle, with its center at the origin and having radius 1. Observe that {—1) = f(1) = 0, fis continuous in
[—1, 1] and the derivative f'(x) = x/v/1 — x2 exists in (—1, 1), though it does not exist at the end points of the interval
[—1, 1]. We have f/(0) = 0 and “0” lies in the interval (—1, 1). Thus, Rolle’s theorem is valid in this case. Note that,
differentiability at the end points of the closed interval is not needed.

) From this assumption it follows that fis continuous in (a, b). But, it must be remembered that the continuity of the
function fat both the end points a and b of the interval [, b] is also necessary and that this requirement cannot be dropped, as
already emphasized in the Note (2) above.
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FIGURE 20.3

A point on a continuous curve where the derivative does not exist is called a slopeless point. This
can happen under two situations:

(i) The graph of f has a vertical tangent line at some point ¢ in (a, b) (Figure 20.4).
(i) The graph of f has a sharp turn (or corner) at some point ¢ in (a, b) (Figure 20.5).

If a functionf is not differentiate at some pointin (&, b) then there may not be any point x in (a, b)
at which f’(x) = 0.

Note (5): Rolle’s Theorem guarantees only the existence of at least one point c in (a, b) for

which f(¢) = 0. Of course, there may be more such points in (a, b), for which the derivative
of fis zero. This is illustrated geometrically in Figure 20.6.

P (. flc)

Cc

fis not differentiable at ¢ € (a, b).
fis continuous at c.

FIGURE 20.4
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fis not differentiable at ¢ € (a, b).
f1is continuous at c.
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fla)=
=f(b)
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Observe that there is a horizontal tangent line at the point where x = ¢ and also at the point
X = ¢y, such that f'(¢;) = 0 and f'(¢cy) = 0. The theorem does not define the location of ¢ in
(a, b) but states that ¢ must lie somewhere within (a, b).

Now, we state and prove Rolle’s Theorem.

20.2 ROLLE’S THEOREM (A THEOREM ON THE ROOTS
OF A DERIVATIVE)

Let f be a function such that

(i) it is continuous on the closed interval [a, b];
(ii) it is differentiable on the open interval (a, b); and
(iii) it vanishes at the end points x = a and x = b [i.e., f(¢) = 0 and f(b) = 0]. Then
there is a number c¢ in the open interval (a, b), such that f(c) = 0.
[The number c is called a root of the function ¢(x) if ¢(c) = 0.]

Proof: Since the function f(x) is continuous on the interval [a, b], it has a maximum M and
a minimum m on that interval. We consider two cases.
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Case (1): If M = m, the function f(x) is constant, which means that for all values of x, it has a
constant value f(x) = m. But then at any point of the interval f'(x) = 0, and the theorem is
proved.

Case (2): Suppose M # m. Then at least one of these numbers is not equal to zero. For the sake
of definiteness, let us assume that M > 0 and that the function takes on its maximum value at
x = ¢, sothat f(c¢) = M. Here, it is important to note that c¢ is not equal either to a or to b, since
it is given that fla) = 0, f(b) = 0. Since f(c) is the maximum value of the function, it follows
that f(¢c + h) — f(c) <0, under both situations when h >0 and when /1 <0.

Accordingly, we get the following inequalities.

If / is positive, we have,

flet+h) —f(c)

<
7 <0

On the other hand, if / is negative,
fleth) =fe) .,
h >
But, f'is differentiable in (a, b), which means that the derivative at x = ¢ exists.
Therefore, upon passing to the limit as 7 — 0, we get

/}ijr})% =f(c)<0  (whenh > 0) (1)
and /linzw =f'(c)>0 (whenh < 0) (2)

But, f'(¢) is unique. This is possible if f'(¢) = 0, which we get on comparing (1) and (2).
Consequently, there is a point ¢ inside the interval [a, b] at which the derivative f'(x) = 0. This
establishes the theorem.

Note (6): The converse of Rolle’s Theorem is not true. That is, if a function f defined on [a, b] is
such that f'(c) = 0, with a < ¢ < b, then we cannot conclude that the conditions (i), (ii,) and
(iii) of the theorem must hold.

Now, we consider some examples to understand Rolle’s Theorem better.

Example (1): Given f(x) = 4x” — 9x. Verify that the three conditions of the hypothesis of
Rolle’s Theorem are satisfied for each of the following intervals:

3 3 33
[—570] M’ and [‘i’ﬂ

Then find a suitable choice for ¢ in each of these intervals for which f/(¢) = 0.

f(x) = 4x3 —9x

Solution: Given S f(x) = 1262 -9

Because f’(x) exists for all values of x, fis differentiable on (—oo, c0). Thus, conditions (i) and
(ii) of Rolle’s Theorem hold on any interval. To determine the intervals on which the condition
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(iii) holds, we find the values of x for which f(x) = 0. If f(x) = 0, it means that

4x(x2 —%) =0

3
x=0, x==x=

3 3
Thatis,x:fi,x=0,x=§

Therefore, at @ = —(3/2) and b = 0, we have f(x) = 0. Therefore, Rolle’s Theorem holds
on [—(3/2),0]. Similarly Rolle’s Theorem holds on [0, (3/2)] and [—(3/2), (3/2)]. To find
suitable values for ¢, we set f'(x) = 0 and get

12x2 -9 =0 A2 -3=0

1
" x:ii\/?;

Therefore, in the interval [—(3/2),0] a suitable choice for ¢ is —(1/2)+/3. In the interval
[0, (3/2)], we take ¢ = 1+/3.In the interval [—(3/2), (3/2)] there are two possibilities for c:
either —(1/2)+/3 or (1/2)V/3.

Example (2): Consider the continuous function

3

y=f(x) = Va=x" xel-11]
It assumes equal values at the end points of the interval [—1, 1]. However, its derivative
f'(x) = 2/3v/x2 does not vanish anywhere. In this example, the condition of differentiability
is violated at the point x = 0, which lies in the interval (—1, 1). Note that, the derivative does not
exist at x = O (since there is a vertical tangent at x = 0). (See Figure (20.8)).

Example (3): Verify the conditions of Rolle’s Theorem for the function

f(x) = log x*+2)— log 3 on [—1, 1], and find the value of ¢ where the derivative vanishes.

Solution:

(i) Since logarithmic function and a constant function both are continuous functions,
hence their sum given by

f(x) = log(x* +2) —log3

is continuous on [—1, 1].

(i) f'(x) = (1/(x* +2))-(2x) = 2x/(x* +2), which exists for all x. Thus, the func-
tion f(x) is differentiable in the open interval (—1, 1).

(iii) f(=1) = log(l +2) —log3 = Oand

f(1) = log(14+2)—1log3 =0
L =D =)
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Thus, f(x) satisfies all the conditions of Rolle’s Theorem.

. There must exist at least one value “c” of x, in (—1, 1) for which f’(c) = 0.

2c

NOWf,(C) = m =0=c¢= 06(—1,1)

Hence, Rolle’s Theorem is verified for the given function. Ans.

Example (4): Verify the conditions of Rolle’s Theorem for the functiony = f(x) = el
xe [—1, 1] and find ¢ for which f’(¢) = 0.

Solution:
(i) The functionf(x) = e!isan exponential function of x and hence it is continuous on
[—1,1].
@) f'(x) = —2x- ¢!~ which exists in the open interval (—1, 1).
(i) fi—1) = e° = 1, and f(1) = € = 1. Thus, (—1) = A1).
Since f(x) satisfies all the conditions of Rolle’s Theorem, there must exist at least one value ¢ of
xin (=1, 1), for which f'(c¢) = 0.
We have, fl(e) = =2(c)- et
= —2¢.el=¢
F©=0-c=0
Observe that, the number ¢ = 0 lies in the open interval (—1, 1).
Hence, Rolle’s Theorem is verified for the given function. Ans.

Hence,

Example (5): Discuss whether Rolle’s Theorem is applicable for the functiony = f(x) = |x|
on[—1, 1].

Solution: We have f(x) = |x|, xe [—1 1]. In the given interval,

x if0<x<1 ie,x€l0,1]
by definition f(x) = |x| =

—x if —1<x<0 xe[-1,0)

Now, (0) = i =G = tim 25— im
f(0)=1(x>0)
=—-1(x<0)

‘We note that

(1) f(x) is continuous in the closed interval [—1, 1]
o 1 if x € (0,1]
@ fx) = { I ifxe[~1,0)
Thus, f/(x) does not exist at x = 0.
f(=1) = =(=1) = L, and f(1) = 1
W pen = =
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Observe f(x) is not differentiable at x = 0 in the open interval (—1, 1). Thus, function |x| does
not satisfy the condition (ii) of the Rolle’s Theorem. Hence, the conclusion of Rolle’s Theorem
is not applicable for |x|. Therefore, there is no point ¢ in (—1, 1) at which f'(¢) = 0.

Example (6): Verify the conditions of Rolle’s Theorem for the function
f(x) =sinx+cosx—1 onl0, /2]
Solution:

(i) The function f(x) = sin x + cos x — 1 is continuous on the [0, 7/2].
(ii) f'(x) = cos x — sin x. Obviously, f’(x) exists in the open interval [0, 7/2].
@) f0)=0+1-1=0

and f(n/2) =14+0-1=0
Thus, f0) = f(n/2)

Thus, all the three conditions of Rolle’s Theorem are satisfied. Accordingly, there must exist at
least one value ¢ of x in the open interval (0, 7/2), at which f'(¢) = 0.

Now, f/(c)
cosc = sinc = tanc = 1

=c=n/4 Ans.

cosc—sinc = 0

Example (7): Consider the function
x for0<x<1

y =10 = {0 forx =1

Observe that, for the given interval [0, 1], f{0) = 0 and f(1) = 0. Also, f(x) is differentiable at
every point in (0, 1). It is clearly seen that f'(x) = 1 at all the points of the interval (0, 1), but
there is no point in (0, 1) at which it turns into zero, because this function is discontinuous at the
end point (x = 1) of the interval [0, 1]. This example also emphasizes the requirement of
continuity at the end points of the closed interval. [Now refer to Note (2) and Figure 20.3.]

20.2.1 Geometric Conclusion of Rolle’s Theorem

Rolle’s Theorem says (geometrically) that a curve that rises and falls (without any breaks or
slopeless points) must have leveled off in the mean time.

20.2.2 Dynamic Face to Rolle’s Theorem

When a ball is thrown up vertically at instant # = a (say), and returns at ¢ = b, there is an instant
¢, between a and b at which the ball stops momentarily, that is, it has zero velocity.

20.2.3 A Useful Interpretation of Rolle’s Theorem

Rolle’s theorem gives us the fact that if a polynomial has n distinct zeros, its derivative has at
least n — 1 distinct zeros.
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Consider a polynomial equation f(x) = 0 where f(x) satisfies the conditions of Rolle’s
Theorem, and let x|, X5, X3, - .., X,, be the roots of the equation. Then, by Rolle’s Theorem,
the equation f'(x) = 0 has the roots ¢y, ¢2, ¢3, . . ., ¢,,_1, one or more of which lie in between the
roots of f(x) = 0, that is, x; <] <X <2< X3+ < X1 < Cp1 < Xp-

[We studied maxima and minima (exterma) of a function in earlier Chapter 19b and found
that ¢, ¢, ¢3, ..., ¢, are the points of relative extrema.]

20.3 INTRODUCTION TO THE MEAN VALUE THEOREM

If y = f(x) is continuous at each point of [a, b] and differentiable at each point of (a, b), then
there is at least one number ¢ between a and b, at which,

[From the statement of the MVT, note that, it is not necessary for the function “f” to be
differentiable at the end points x = a and x = b.] As mentioned earlier, the proof of the MVT
is based on Rolle’s Theorem, which is powerful in its own right and is a special case of the
MVT as we will see.

The MVT has only two conditions that are in common with those of Rolle’s theorem, which
has an additional condition f(a) = f(b) to be satisfied. The MVT does not require the condition
fla) = fib) to be satisfied. With its two conditions, it asserts the existence of a number ¢
(somewhere) in (a, b) at which

We know that the condition f(a) = f(b) cannot be dropped from Rolle’s Theorem. Note that, if
f(@) = f(b) = 0, then the end points of the graph must lie on the x-axis (see Figure 20.1).
However, if f(a) = f(b) # 0, then the end points of the graph are on some line which is parallel
to x-axis (see Figure 20.7). Thus, when all the conditions of the Rolle’s Theorem are satisfied,

Y

fla) =fib)
y=fx)

o
—
—e
)
o
S
Y

FIGURE 20.7
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we can conclude that somewhere on the graph, the tangent line is parallel to the x-axis (see
Figure 20.7).

The MVT states that, if the line joining the end points of a (smooth) curve is not parallel to
the x-axis [since, f(a) #f(b)], then there is at least one point on the curve where the tangent
line is parallel to the line joining the points (a, f(a)) and (b, f{(b)) on the curve. Suppose, we call
the line joining any two points of the curve as a chord of the curve. Then, our improved
statement of the Mean Value Theorem reads as under:

Given a chord of a smooth curve, there is at least one point on the curve where the tangent
line is parallel to this chord (see Figures 20.9 and 20.10).

To be more specific, consider a function, y = f(x), and let A(a, f(a)) and B(b, f(b)) be two
points on its graph, whichrises and falls, without any breaks or slopeless points. We may assume
that @ < b. Then, the MVT asserts the existence of a number ¢, (a < ¢ < b) such that the tangent
at (¢, f(c)) to the graph of f, is parallel to the chord joining A(a, f(a)) and B(b, f(b)). To
visualize this we make use of coordinate geometry.

We know that two nonvertical lines are parallel if and only if they have the same slope.
Here, the slope of the line joining the points A(a, f(a)) and B(b, f(b)) is given by
(f(b) —f(a))/(b — a). Also, the slope of the tangent at the point (c, f(c)) is given by f’(c).
If this tangent line is to be parallel to the chord AB, then

i =10 -I1@

b B(b, fib))

0 a c b
FIGURE 20.9
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FIGURE 20.10

The MVT states that such a number c necessarily exists in (a, b). We now state the Mean Value
Theorem and prove it using Rolle’s Theorem.

20.3.1 The Mean Value Theorem

Let f be a function, such that,

(1) It is continuous on the closed interval [a, b].

(ii) It is differentiable on the open interval (a, b).
Then, there is a number “c” in the open interval (a, b), such that,

oy f(b)—f(a)
o === G)
Proof: Consider the number Q, defined by the equation
fb) —fla) _
“h_a 0 (4)
We will show that Q = f'(¢), ¢ € (a, b).
From the equation (4), we get,
f(b) —f(a) = Q(b—a) (5A)
or f(b) ~f(a)— Qb —a) = 0 (5B)

We introduce an auxiliary function F that allows us to simplify the proof by using Rolle’s
Theorem. To obtain this auxiliary function, we write x for b in equation (5B), and denote the
expression on left-hand side by F(x).

F(x) = f(x) —f(a) - Q(x — a) (6)

It is easy to show that the function F(x) satisfies all the conditions of Rolle’s Theorem.

(i) F(x)is continuous on [a, b] since it is the sum of fand a linear function, both of which
are continuous there.
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(ii) F(x) is differentiable on (a, b), because f is differentiable on (a, b).
(iii) F(a) = 0 and F(b) = O [using (5B)].
Therefore, by Rolle’s Theorem, there is a number “c” in the open interval (a, b), such that,

Flc) =0 (7)

Now, from equation (6), we have

F'(x) =f(x)-0Q [for all x € (a,b)]
F'(c) =f(c)—0Q [since ¢ € (a,b)]
or 0=f()-0Q [using (7)
s Q=10

o TOID

This establishes the theorem.

Note (7): The Mean Value Theorem discussed above is due to J.L. Lagrange (1736—-1813), an
outstanding French Mathematician and astronomer, hence it is also known as Lagrange’s Mean
Value Theorem.

20.3.2 The Geometric Significance of the Function F(x)

We write the equation of the chord AB (Figure 20.11), taking into account that its slope is
(f(b) —f(a))/(b—a) = Q, and that it passes through the point (a, f(a)):

y—fla) = O(x —a)

y

FIGURE 20.11
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which gives,
y = fla) +Q(x —a)
But F(x) = f(x) — [f(a) + Q(x — a)]
Thus, for each value of x, F(x) is equal to the difference between the ordinates of the curve
y = f(x)and the chord y = f(a) + Q(x — a), for points with the same abscissa. In other words,

F(x) represents the length of the segment MN for each x € [a, b].
Now, we consider some examples on MVT.

1
Example (8): Letf(x) = §x3 + 2x. Find a number c in (0, 3) such that f'(c) =

Solution: We have f(3) = = (3)° +2(3) = 15 and f{0) = 0.

W[ =

350 _15-0
3—-0 3—-0

We search for a number ¢ in (0, 3) such that f(¢) = 5. But, f'(x) = x> + 2.
Thus, ¢ must satisfy f'(c) = ¢ + 2 = 5.

Therefore, ¢ = 3, so that ¢ = ++/3. But, ¢ must be in (0, 3), we therefore conclude that
c =3 Ans.

Example (9): Test whether Lagrange’s MVT holds for f(x) = x — x> in the interval (=2, 1)
and if so, find the appropriate value of c.

Solution: Here, a = —2, b = 1 and f(x) = x — X

) —fla) _ 0-6
" b-a 1-(-2)

Now, fl(x) = 1—3x? 9)
If the MVT holds for the given function, then the number ¢ must satisfy the equation,
1-3x* = =2
3*=3 ¢c=1lor -1

Here, ¢ = —1 lies within (=2, 1).
LMVT holds for the given function. Ans.

20.3.3 A Closer Look at the Mean Value Theorem

The Mean Value Theorem (Lagrange’s Theorem), proved above, involves first derivatives.
Hence, it is called the MVT for first derivatives. In fact, it is known as the Fundamental Mean
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Value Theorem and is one of the most powerful tools in calculus. It is employed very often in
proving other important theorems.”

The conclusions of the MVT are intuitively appealing and its hypotheses are naturally
expected. Further, its applications will be found marvelously tangible (i.e., fitting
with experience). The student will find in the MVT, an ever present tool just waiting to be
applied, both in proving theorems and in solving problems.

The adjective “mean” carries both the notions “between” and “average”, each of which
gives a significant clue to the basic idea in the theorem. What the MVT does, is single out a
derivative value that plays the role of an average derivative value, and this derivative value is
attained at a point strictly between the end points of the interval domain of the function.

Consider a continuous function,

fila, =R

which is differentiable at every point of the open interval (a, b).©’

What the MVT does is to identify the difference quotient (f(b) — f(a))/(b — a) with the
derivative f'(x) evaluated at a point (say) ¢, lying strictly between a and b.

That is,

() NG

or equivalently

2) f(b) —fla) = f(c)(b—a)

wherea < ¢ < b

It must be clearly understood once and for all that the location of c is not really pinpointed,
we only know that it lies somewhere inside an open interval (a, b). But, the interesting fact is
the mere knowledge that c is a mean point (i.e., it lies strictly between the end points of the
interval) shows the real power behind the theorem and its applications. Of course, the exact
location of ¢ can be found in some cases (as we have seen in some solved examples) but in
general, it is never needed in any application.

Many important concepts in mathematics are based on Existence Theorems, the MVT being
one of them. Some other examples of existence theorems are the Intermediate Value Theorem
(IVT) and Extreme Value Theorem (EVT), both pertaining to continuous functions defined on
closed and bounded intervals. Without going into the proof of these theorems, we indicate why
the property each guarantees is practically useful.

(I) Intermediate Value Theorem [Already introduced in Chapter 8, but again repeated
here for ready reference]: Let f be continuous on the closed and bounded interval
[a, b] and let y be any number between f(a) and f(b). Then, there exists a number ¢
between a and b for which f(c) = y.

) There is another MVT for second derivatives that generalizes the MVT for first derivative and sets the stage for further
generalization, namely, Taylor’s Theorem, one of the most remarkable achievements in mathematics. Here, it may be
emphasized that the method and the steps in proving the above LMVT, using Rolle’s Theorem, is very important since
similar steps are required to be taken to establish the MVTs for higher derivatives, using the MVT for first derivatives.
Besides, there is a theorem known as Generalized Mean Value Theorem (Cauchy’s Theorem) that is useful for
evaluating limits of indeterminant forms [ i.e., the limit(s) of ratios of two functions f(x) and ¢(x) approaching the forms of
the type 0/0, co/co as x — 0 (or x — 00)].
) In other words, the graph of fis tied to the end points (a, f(a)) and (b, f(b)) and has neither breaks nor slopeless points
(in particular, no sharp points) anywhere between a and b (see Figure 20.12).



INTRODUCTION TO THE MEAN VALUE THEOREM 619

(b, f(b))

FIGURE 20.12

The IVT says that, if fis continuous on [a, b], then the range of f contains not just fla)
and f(b) but everything in between. This means that the graph of a continuous function
f is unbroken. In other words, it means that enroute from (a, f(a)) to (b, f(b)), the
graph of f crosses every horizontal line at one (or more number of points) between
y = fla) and y = f(b).
(IT) Extreme Value Theorem: Let f be continuous on the closed and bounded interval [a, b].
Then, f assumes both a maximum value and a minimum value somewhere on [a, b].
The EVT guarantees that, if f is continuous on the closed interval [a, b], then f
attains both a maximum and a minimum somewhere therein.
[Both hypotheses of the EVT—that fbe continuous and that the interval be closed are
necessary. If either fails, f need not assume a maximum or a minimum. ]

Note (8): Each of these existence theorems guarantees the existence of at least one point in the
domain with some desirable property. Neither theorem states where in [a, ] these points may
fall or how many (such points) there may be. It will be found that these theorems, (besides
having theoretical importance) have a lot of practical utility.

20.3.4 Some Aspects of the Conclusion of the MVT Expressed by its Formulas
(a) Geometric Aspect: In view of the formula (f(b) — f(a))/(b — a) = f'(c), the slope of
the extreme chord of a graph is attained by the tangent line at some mean point on
the graph.®
Example (10): Find the tangent line to the graph of f(x) = x°, which is parallel to the chord

joining (1, 1) to (2, 8) and has its point of contact between the given points.

(© That s in the family of all tangent lines whose points of contact lie between two given points on the curve, there is at least
one tangent line parallel to the chord joining the two given points.
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Solution: Slope of the chord joining (1, 1) and (2, 8) is given by,

f@Q-r) _2-0

o1 a-1

Also, f'(x) = 3x°.

If ¢ is the point in the interval (1, 2) for which f'(¢) = 7, then we have 3¢2 =17 or

c = +(V71/V3) = £((V7-v3)/3) = £(v/21/3) of which only ¢ = (v/21/3)&(1,2).

. the desired point of contact is ((1/3) - v/21,(7/9) - v21), so that the tangent line is

{(x,y):y = 7(x = (1/3)v21) + (71/9)V21}. Ans.

(b) Kinematic Aspect: Let f(x) be a position function (of a moving object) with the time

interval [a, b] as its domain. Then, f(x) is the velocity function and f'(c) is a mean
velocity, if c € (a, b).

Thus, the equality at the formula f(b) — f(a) = f'(c)(b — a) says that the displace-
ment f(b) — f(a) can be obtained as a product f'(c)-(b — a), where f'(c) is the mean
velocity and (b — a) is the time interval.”

Example (11): A vehicle has a quadratic position function t) = at> + bt + d, where
a, b, and d are any real numbers. Show that over any interval of motion, the average velocity
is attained at the mid point.

Solution: Let [#,, #,] be any time interval of motion. Suppose c is the instant in this interval
at which f'(¢) is average, then we have

) S _
2—h
2 2 _
or WEZIVENEZN) e, uheres' @) = 20+
2— 1

or a(t+t)+b =2ac+b

1
or ¢ = E(Zz + 1) Ans.

(¢) Formula of Finite Increments: The relation, f(b) — f(a) = f'(c)(b — a), ¢ € (a, b), in the

Mean Value Theorem is known as the formula of increments. It states that the
increment of a differentiable function on an interval is equal to the product of
the derivative of the function at an intermediate point by the increment of the
independent variable.

The formula of finite increments makes it possible to find the exact expression for
the increment of a function in terms of the increment of the argument and the value
of the derivative at an interior point of the interval. Tt has significant theoretical
importance and lies in the foundation of the proofs of a number of important theorems.

@ In other words, if an object moves with varying velocity, then during motion of the object, a velocity is attained, which if
itis applied as a uniform velocity (which is a constant velocity) for the same time interval, then the same displacement will
be achieved.

Thus, if a car traveled 120 km in 2 h, then it must have traveled 60 km/h at some instant during motion. Of course, it is
assumed that the car traveled throughout the interval.



INTRODUCTION TO THE MEAN VALUE THEOREM 621

Note (9): Itis important that the reader thinks of the MV T whenever he sees a difference
of functional values. That is, whenever the difference f(b) — f(a) turns up, the reader
should think of replacing it by the product f'(c) (b — @) with the knowledge that c lies
strictly between @ and b.

(d) From the equation,

() =f(a) = f'(c)(b—a) (10A)
in the MVT, where ¢ € (a, b), we get,
f(b) = f(a) +f(c)(b—a) (10B)

Here, the functional value f(a) may be looked upon as an approximation for f(b) with the
error measured by a mean-derivative multiple of the deviation of b from a.®
If we think of b as an independent variable on [a, b], we can write (10B) in the form

F(x) = f(@) +£()(x—a) (10C)

valid for the interval [a, x], with ¢ € (@, x). The right-hand side of (10C) looks like the linear
approximation of f near a.

If f(x) is continuous and c is close to a (as it will have to be if x is close to a), then, f'(c)
is close to f'(a), and (10C) gives

f(x) = f(a) +f'(a)(x — a) (10D)
which is the linear approximation of f near a.
Note (10): In Chapter 16, we produced and used linearizations without knowing exactly how
good they were. Now, with an extended version of the MVT for the second derivative (to be

studied later in Chapter 22), we shall see that the error in (10D) is proportional to (x — a)’.
Therefore, if (x — a) is small the error will be very small.”

20.3.5 Alternate Form of the MVT

For the closed interval [a, b], if we write b = a + h (where / is a positive number) then the
above interval becomes [a, a + h] where & denotes the length of the interval and we have
h=b—a.

Also, the number ¢ lies between a and a + A, so that we write
a<c<a+h

or O0<c—a<h
c—a
h
or 0<f<1 where 0 =

or 0< <1
c—a

h

¢ =a+0n"

® Equation (10B) may also be looked upon as f(a + h) = f(a) + f'(c)-h, where b = (a + h).

© Later on, when we extend the Mean Value Theorem to Taylor’s formula, we will be able to express f(x) by extremely
accurate polynomial approximations for a large class of functions that have derivatives of all orders.

(9 The number c that lies between a and (a + /) is greater than a by some fraction of 4. Here, 6 is a proper fraction (i.e.,
0<6 <1)and so we get c =a + 0h.
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Substituting this value of ¢ in (f(b) — f(a))/(b —a) = f'(c), we get

f(b) = fla)+ (b —a)f'(a+ 0h)
or fla+h) = f(a)+h-f(a+06h)

which is an alternate form of the MVT.

20.4 SOME APPLICATIONS OF THE MEAN VALUE THEOREM

The Mean Value Theorem is one of the most important results in Calculus. It is employed very
often in proving other important theorems that may or may not be related to one another.
In Chapter 19a, we stated as the first derivative test for rise and fall, the fact that, a
differentiable f(x) increases on intervals where f’'(x) >0 and decreases on intervals where
f'(x) <0. This fact can now be deduced from the Mean Value Theorem in the following way.

(I) Monotonicity Theorem: Suppose that f is continuous on [«, b] and differentiable on
(a, b). If f'(x) > O throughout («, b), then fis an increasing function on [a, b]. If f/(x) < 0
throughout (a, b), then f is decreasing on [a, b].

In either case, f is one to one.

Proof: Let x; and x, be any two numbers in [a, b] such that x; < x,.
Applying the MVT to f on [x;, X5],

f()Q) _f(xl) _pl
T (c)
for some ¢ between x; and x,
or f(x2) =f(x1) = f'(¢)(x2 — x1) (11)

The sign of the right-hand side of (11) is the same as the sign of f’(c), because (x, — x;) is
positive.

Therefore, f(x,) > f(x1), if f'(x) is positive on (a, b), that is, fis increasing, and f(x,) < f(x;)
if f/(x) is negative on (a, b), that is, f is decreasing.

In either case, x| # X, implies that f(x;) # f(x;), so f is one to one. Hence proved.

() Constant Function Theorem: Let f be continuous on a closed interval [a, b].
If £'(x) = 0 for each point x of (a, b), then f is constant on [a, b].

Proof: Let x; and x; be arbitrary numbers in [a, b], with x| < x,. By the MVT, there is a
number c¢ in (X, X,), such that,

fOo) =) _
ﬁ =f'(c) (12)

By assumption, f'(¢) = 0, and thus (12) reduces to

fle2) —f(x1) =0
f(x2) = f(x1)
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Since x| and x, are arbitrary, it follows that f assigns the same value at any two points in
[a, b], so fis constant on [a, b]. (Proved)

Note (11): The above theorem states that the only functions whose derivatives are equal to zero
throughout an interval, are the functions that are constant on that interval. The most significant
result implied by the above theorem is the following theorem, which gives the structure of
functions having the same derivatives over an interval.
(II) Constant Difference Theorem: Let f and g be continuous on a closed interval [a, b].
If f(x) = g'(x), for each point x of (a, b), then f(x) — g(x) is constant on [a, b]. In
other words, there is a constant C such that f(x) = g(x) + C, for all x in [a, b].

Proof: We define a function ¢(x) = f(x) — g(x), xela, b1
Differentiating both sides, we get,

¢'(x) = [f(x) —g(x)]
=f'(x) —g'(x) on(ab)
But, it is given that f'(x) = g'(x) for all x in (a, b).

we getf'(x) = 0

By the constant function theorem, it follows that,
o(x) = d(x1) = ¢(xz2) = -++ = C(say) for all x;, x5 in[a, b].
. f(x) —g(x) = Corf(x) = g(x) C. (Proved)

Note (12): The above theorem says that the only way two functions can have identical rates of
change on an interval is that their values should differ by some fixed constant on the interval.

For example, we know that for f(x) = x°, f/(x) = 3x%.

Therefore, if g(x) is any differentiable function whose rate of change with respect to x is 3x2,
that is, if dg(x)/dx = 3x? then g(x) = x> + C, for some constant C.

In determining that g(x) = x> + C, we say that we have determined g up to a constant.

If fis a function defined on an interval I, then any function F such that F'(x) = f(x), for each
x in I is called an antiderivative of f (since f is the derivative of F on I).

Thus, on any given interval, X° is an antiderivative of 5x*, x? is an antiderivative of 2.x, sin x
is an antiderivative of cos x, and e>* is an antiderivative of (1/2)e?*.

Once we know a single antiderivative F of a given function f, then all other antiderivatives
can be ascertained by adding constants to F. It follows that on any interval I, the only
antiderivatives of 3x” are the functions of the form x> + C, the only antiderivatives of cos x are
functions of the form sin x + C, and so on.

Techniques for determining functions from their rates of change are extremely important in
science and engineering. These techniques are discussed in Part II of this book.

Exercise

Verify the conditions of Rolle’s Theorem for the following functions on their respective
intervals and find ¢, if any, for which f/(¢) = 0.

D The key to the proof is to show that the difference function ¢(x) = f(x) — g(x) has derivative equal to zero on (a, b).
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Q1.
Q2.
Q3.
Q4.

Qs.

Q6.
Q7.

Q8.

Q9

ROLLE’S THEOREM AND THE MEAN VALUE THEOREM (MVT)
y = f(x) = x* —4x(—00 < x < +00).
y = f(x) = ¥2(1 —x)*in[0, 1.
y=fx) =1-Vx2=1-x*3

It is given that for the function y = f(x) = x* — 6x> + ax + bon[1,3]. Rolle’s Theorem
holds with ¢ = 2 + (1/+/3). Find the values of @ and b.

Onthe curve y = x2, find a point at which the tangent is parallel to the chord joining (0, 0)
and (1, 1).

Verify MVT for the function f(x) = (x —1) (x —2) (x —3) in [0, 4].

Find a point on the graph of y = x>, where the tangent is parallel to the chord joining (1, 1)
and (3, 27).

By use of MVT prove that |tan™"' x, — tan™" x| < |x; — x|V X1, Xo.

Using MVT prove that x/(1 +x) <In(1+x) < x, x> —1.

Note (13): The solutions to these problems are available in Appendix C.



21 The Generalized Mean Value
Theorem (Cauchy’s MVT),
L’ Hospital’s Rule, and their
Applications

21.1 INTRODUCTION

The mean value theorem (MVT), also known as Lagrange’s mean value theorem (LMVT), is the
Sfundamental mean value theorem that deals with a single function f(x). Augustin L. Cauchy
discovered another mean value theorem that uses two functions, f(x) and ¢(x), instead of one.
It is known as the generalized mean value theorem, which is elegantly used in proving a
rule, known as L’Hospital’s rule, which extends our ability to calculate limits. We state and
prove the generalized mean value theorem.

21.2 GENERALIZED MEAN VALUE THEOREM (CAUCHY’S MVT)

Theorem: If f{x) and ¢(x) are two functions such that

(1) fix) and ¢(x) are continuous on the closed interval [a, b];
(i1) fix) and ¢(x) are differentiable on the open interval (a, b);
(iii) for all x in the open interval (a, b), ¢'(x) #0

then, there exists a number ¢ € (a, b), such that,

fb)=fla) _ f'(¢)

o(b) 0@ Jle) W
Proof: Let us denote by Q, the number (f(b) —f(a))/(¢(b) — ¢(a)), so that we have
f(b) —fla) _
o(b)—ofa) ~ © A

Now, we show that, ¢(b) — ¢(a) # 0, that is, ¢(b) # P(a).
Assume ¢(b) = ¢(a). Note that, with this assumption, ¢ satisfies all the conditions of Rolle’s
theorem. Hence, there exists some number ¢ in (a, b), such that ¢'(c) =0.

Further applications of derivatives: 21-The generalized mean value theorem (Cauchy’s MVT), L’ Hospital’s rule and
its applications in calculating limits of various indeterminate forms

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

625



626 THE GENERALIZED MEAN VALUE THEOREM

But, condition (iii) of the hypothesis of the theorem demands that, for all x in (a, b),
@' (x) # 0. Therefore, the above assumption leads to a contradiction. Hence, the assumption
o(b) = ¢(a) is false. Consequently, ¢(b) — ¢(a) # 0.V

From (2A), we get,

f(b)—f(a) = Qo(b) — p(a)] = 0 (2B)

Let us construct an auxiliary function F(x) defined by®

F(x) = f(x) —f(a) — Q[o(x) — ¢(a)] (3)
Observe that,

1. F(a) = 0and F(b) = 0
(Note that, F(a) =0 from the definition of the function F(x) and F(b) =0 from the
definition of the number Q. When we write b for x in (3), F(b) becomes the LHS of (2B),
which equals zero.)

2. F(x) is continuous on [a, b] since f{x) and ¢(x) both are continuous on [a, b].

3. F(x)has a derivative F'(x) at every point in («, b), since every term on the right-hand side
of (3) has a derivative in (a, b). Thus, the function F(x) satisfies all the hypotheses of
Rolle’s theorem on the interval [a, b]. We, therefore, conclude that there exists a number
x = c between a and b such that F'(c¢) =0.

By differentiating (3) both sides, we get,
F'(x) = f'(x) - 0¢/(x),

L F'(¢) = f(¢)—-0¢'(c) = 0, [since F'(c) = 0]

which is the desired formula.

Note (1): Observe that, if we take ¢(x) = x, then, we have ¢(b) =b, ¢(a)=a and ¢'(x) = 1.
Using these values in the above formula, it may be noted that the conclusion of Cauchy’s MVT

() We get the same conclusion by applying LMVT to ¢ as follows: Because ¢ satisfies both conditions in the hypothesis
of LMVT, there is a number ¢ in (a, b) such that ¢/(c) = [¢(b) — ¢ (@)1/(b — a). But, if ¢(b) = ¢(a), (by assumption) we get
¢'(¢) =0, which contradicts the condition (iii) of Cauchy’s MVT. Hence, ¢(b) — ¢(a) # 0. [Recall that, Rolle’s Theorem is
a special case of LMVT.]

@ Note that, the auxiliary function F(x) has been obtained by replacing b by x in (2B). It means that we are treating b as an
independent variable, with ¢ as a point lying in between @ and x. This is justified, since both f{x) and g(x) are continuous on
[a, b], which means that x can vary from a to any b € [a, b]. This permits us to replace b by x. Later on, it will be noted that
we use the same understanding while extending the MVT to Taylor’s formula in Chapter 22.
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becomes the conclusion of Lagrange’s MVT. Thus, Lagrange’s MVT is a special case of
Cauchy’s MVT. This justifies the name, generalized, mean value theorem.

Note (2): Cauchy’s MVT cannot be proved by a simple term-by-term division of the relations
expressing LMVT for the functions f and ¢, since in this case we would get (after canceling out
(b — a)) the formula

f(b)~fa) _ fe)
o(b) -

(@ ()
in which a < ¢cCl <b and a < cC2<b.
This is obviously not the result of Cauchy’s MVT (since, generally, ¢; # ¢,).

21.2.1 Geometrical Interpretation of Cauchy’s MVT

Now, we will show that Cauchy’s MVT can be given the same geometrical interpretation as in
the case of Lagrange’s MVT. For this purpose, let us consider a curve in the x—y plane with
parametric equations, x = ¢(#) and y =f(f). As the parameter ¢ runs through the interval, say
[t1, 2], the variable point (x, y) describes a curve in the x—y plane, whose initial and final points
are, respectively, (¢(1), f{z1)) and (¢(22), f(12)).

The slope of the chord connecting these points is given by the ratio:

The derivative of y (regarded as a parametrically represented function of x) with respect to x
is given by,

dy  dy/dr_ f'(1)

dx — dx/dt — ¢(0)

Consequently, we get,

) —f(t '(c
f(Z) f(l):f,(c),([1<6<lz)
d(2) — ()  ¢'(c)
Note that, the LHS of this equation expresses the slope of the chord subtending an arc, whereas
the RHS represents the slope of the tangent line drawn at some intermediate point ¢ of the arc.

Note (3): Rolle’s theorem, the mean value theorem (i.e., Lagrange’s MVT), and the generalized
MVT (i.e.. Cauchy’s MVT) imply that there exists some “middle point” ¢ € (@, b) at which some
of the named relations are true. For this reason, all these theorems are collectively named the
mean value theorems for derivatives.

21.3 INDETERMINATE FORMS AND L’HOSPITAL’S RULE

In Chapter 7, we stated the quotient rule for computing limits:

lim f(x)
tim £ — 7",1*% -
x—x0 g(x) lim g(x)

X — Xo
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provided the limits on the right-hand side exist and lim g(x) # 0. However, there are
X — Xo

examples of quotient functions that have a limit, even though

lim g(x) = 0.

X — X0

Perhaps the simplest example of such a function is x/x, with x — 0. Thus, we have,

() lim> = 1
x—0X

(i1) Another example of this type is

X2 —3x+2  (x=2)(x—1)
lim = lim
=2 x24+x—6  x—2(x—2)(x+3)

=1 _1
x-2x+3 5

(iii) A less trivial example is

. sinx
lim — =1
x—0 X

While the limits at (i) and (ii) are computed by cancellation of factors, you may recall that an
intricate geometric argument led to the conclusion at (iii) above.

Note that, all these limits have a common feature. In each case, a quotient is involved in
which both numerator and denominator have 0 as their limits.

In all these cases, the quotient rule does not apply since it requires that the limit of the
denominator be different from 0. However, as we have seen, these limits may exist. Of course,
we cannot use the quotient rule cannot determine them.

Note that, except for canceling factors, where possible, we have so far no systematic method
for evaluating limits of quotients in which both the numerator and the denominator have “0”
as their limits.

L’Hospital’s rule provides an extremely simple and convenient method for evaluating the
limits of such quotients.

21.3.1 Indeterminate Form 0/0 and Evaluating its Limit

Let the functions f{x) and g(x) be defined in a neighborhood of a point x = xg and let f{xg) = 0=
8(xo). Then the ratio f(x)/g(x)is not defined for x = x,, but may have a very definite meaning
for values of x # x,. Hence, we can raise the question of searching for the limit of this ratio as
X — Xo. Evaluating limit(s) of this type is usually known as evaluating indeterminate form of
the type 0/0.%

This form gives an explicit connection between derivatives and limits that lead to
the indeterminate form 0/0. This rule stands in two forms, namely, the “first forn™ and the
“stronger form”, both discovered independently. While the first form follows from a simple

) There are seven Indeterminate Forms viz. g, 2,0. 00, 00 — 00, 0°, 00” and 1°°. All these forms can be brought to the
indeterminate form, 0/0, by suitable arrangement and so we shall first discuss this form. [Later on, it will be shown why
other possible symbols like %, T 00 + 00, 00 - 00, 0 and 00> cannot be considered as indeterminate forms.]
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observation, the stronger form is based on Cauchy’s MVT. The first form states as given in the
following theorem.

21.3.2 Theorem

Suppose that fand g satisty the following conditions:

(1) fla)=g(a)=0
(i1) f’ (@) and g'(a) exist, and that
(iii) g'(a)#0 then,

IO C))

x—ag(x)  x—ag(x)

Thus, if fand g satisfy certain condition (as stated above), then lim f(x)/g(x) equals the ratio
f'(a)/g'(a) of derivatives, where g'(a) #0. A

Remark: Since nothing is said about the location of “a” in the domain (common interval) of f
and g, we conclude that it can be anywhere in the interval. Now the question is: What can we do
about the limit lim, _, . f(x)/g(x) if in the ratio f'(a)/g (), & (a) = 0?®

We get the answer to this question from the “stronger form” of L’Hospital’s rule.

21.3.3 Statement of the Stronger Form of L’Hospital’s Rule
Roughly speaking, the stronger form of L’Hospital’s rule says if fla) = g(a) =0, then,

TG G

gy xtug(x)

provided the derivatives and limit on the right-hand side exist.

Note (4): In fact, it is a stronger form of the rule we call L’Hospital’s rule for evaluating the
limit in the indeterminate form 0/0. It says that whenever the rule gives 0/0, we can apply it
again, repeating the process until we get a different result. (It will be found that this rule is
useful in determining limits of all types of indeterminate forms.)

Here, we restate that the proof of L’Hospital’s rule is based on Cauchy’s MVT (that we have
already proved) and that this rule cannot be proved from the “first form”.

Ata glance, both the forms might appear identical, but the distinction between the two can be
easily observed. Though our interest lies only in the “stronger form” of the rule, it is useful to
observe and enjoy the approach leading to the proof of the first form of the rule and then study
carefully the stronger form.

Recall that derivatives (at a point) are calculated using the limit

f(x)—f(a)

a) = lim 4

fla) = im0 @
Also, note that this limit always produces the indeterminate form 0/0.

@ For example, consider the limit lim (x —sin x)/x = lim (x —sin x) /() = lim (1 — cos x)/(3x%) = 0|, _,-

The first form of L’Hospital’s rule does not tell us what the limit is because the derivative of g(x)= x> is zero at x = 0.
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From the limit at (4), we get an idea to use derivatives to calculate limits that lead to
indeterminate forms 0/0.
For example, consider limO sin x/x. Note that lim0 sin x =sin 0=0.
X — X —

. sinx . sinx —sin0
lim = lim ——
x—0 X x—0 x—0

d
= S sin)], g

= cos0 =1

Now, we state and prove both forms of L’Hospital’s rule.

21.4 L’HOSPITAL’S RULE (FIRST FORM)
Suppose that f and g satisfy the following conditions:

) fla)=g(@)=0
(ii) f'(a) and g'(a) exist, and that
(iii) g'(@) #0 then,

x—ag(x)  g'(a)

) @

Proof: Working backward, from f’(a) and g’(a), which are themselves limits, we have

flay _ U@ —A@)0=a) ) —fl@) _ 6 =0 _ ()
g@ ~ lim(g()—g(@)/x—a)  eg(x)—gla)  wug(n)—0  +ug(x)

X—a

Therefore, we have,

) )
Mg ~ ¢

provided that f’(a) and g'(a) exist and that g'(a) #0.

Note (5): Having observed the limitation of the first form, we give below the statement of
the stronger form of L’Hospital’s rule. Here, we wish to analyze the statement in detail so that
whenever we restate it as a theorem, its proof can be easily understood. (This approach is
important since its proof depends on Cauchy’s MVT, demanding careful attention.)

21.4.1 Theorem: L’Hospital’s Rule (Stronger Form)

Suppose that f{xg) = g(xo) =0 and that the functions f and g are both differentiable on an
open interval (a, b) that contains the point x.
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Suppose also, that g'(x) # 0 at every point in (a, b), except possibly at x,. Then,

) P

lim 222 =
hg()  ng(v)

provided the limit on the right-hand side exists.
Before providing the proof of this theorem, the following points (from the hypotheses) must
be carefully noted:

(i) The functionfand g both are differentiable on some open interval (a, b), which contains
a point x,, and that f{xg) = g(xp) =0.
(ii) The point xo can be anywhere in (a, b).
(iii) g'(x) # 0 at every point in (a, b), except possibly at x,
(iv) The existence of lim f'(x)/g’(x)implies that both f'(x) and g'(x) exist in at least a
small interval (xp, X| wherein g(x) #£0.

Since f'(x) and g’(x) both exist in (xg, x], it follows that f and g both are continuous
in this interval, but we do not know whether they are continuous at x,. (This
observation is important.)

(v) L’Hospital’s theorem says nothing about the limits of f{x) and g(x) as x — xo, but

the values f(xo) and g(x() are given to be zero. This suggests that by defining

lim f(x) = 0 and lim_ g(x) = 0 we can make both f and g (right) continuous at
X — xn

x—xy
Xo. This step is very important since we can now say that both these functions satisfy the
hypotheses of Cauchy’s MVT on the closed interval [xg, x].

(Whenever we say that a function is continuous on a closed interval [a, b], we mean that it is
continuous in the open interval (a, b), right continuous at a and left continuous at b.)

Note (6): Applying the same logic, as in step (v) above, we can make f and g satisfy the
hypotheses of Cauchy’s MVT on the closed interval [x, xg].

Remark: Observe that the functions fand g satisfying the conditions of L’Hospital’s theorem
can be made to satisfy the conditions of Cauchy’s MVT, by defining (or redefining) them
suitably so that they become continuous at any point xy € (a, b), where g'(xo) could vanish
though g'(x) # 0 at any other point in («, b).®

Also, note that this way of defining f and g does not affect the limit, lim f(x)/g(x)for the
reason given at (v) above. o

Now, we are in a position to prove L’Hospital’s rule (stronger form), but before attempting fo
prove it, we illustrate it through the following solved examples.

Example (1): Use L’Hospital’s rule to show that

sin x . l—cosx
lim— = land lim —— =
x—0 X x—0 X

Solution: Recall that we worked pretty hard to demonstrate these two facts in Chapter 11. After
noting that both limits have the 0/0 form, we can now establish the desired results in two lines.

©) It must be clear that, at most, the value ¢’ (x0) could be equal to zero, but for any other point x € (a, b), g'(x) #0.
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By L’Hospital’s rule,

i sinx lim (sin)/c)’ — lim SO _
x—0 X x—0 (_x) x—0 1
I 1—cosx_li (l—colsx) sinxi0
x—0 X x—0 (x) x—0 1

Example (2): Find limz(x2 —3x42)/(x* +x—6).
X —
Solution: This limit has the 0/0 form, so by L’Hospital’s rule,

1mx2—3x—i-2 B imZx—S 1
x—2 xX24+x—6 x-22x+1 5

Ans.

Recall that this limit was handled earlier by the method of factoring.
Of course, we get the same answer either way.
Example (3): Find limo tan 2x/log, (1 + x).

X —

Solution: Both the numerator and the denominator have limit 0. Hence,

tan 2 2sec? 2 2
im an 2y i e X _ 2 2  Ans.
x~>010ge(1+)€)

BEE V(S

Caution: Note that, to apply L’Hospital’s rule to f/g, we divide the derivative of f by the
derivative of g. Do not fall into the trap of taking the derivative of the ratio f /g. The quotient
to use is f'/g', not (f/g)".

Now we proceed to prove L’Hospital’s theorem.

21.5 L’HOSPITAL’S THEOREM (FOR EVALUATING LIMITS(S) OF THE
INDETERMINATE FORM 0/0.)

Theorem: Suppose that,
f(xo) = g(x0) =0

and that the functions f and g are both differentiable on an open interval (a, b) that contains
point x.
Suppose also that g'(x) # 0 at every point in (a, b), except possibly at x,. Then,

tim Ty L) (6)

xﬁxog(x) xﬂxog/(x)

provided the limit on the right-hand side exists.
(To prove the theorem, we must find a closed interval in (a, b) on which both the functions f
and g are continuous.)
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Proof: We first establish equation (6) for the case x — x;". The method needs almost no
change to apply to x — x,, , and the combination of these two cases establishes the result.

Tt is given that f'(x) and g’(x) exist on (a, b) and that g'(x) # 0, at every point in (a, b), except
possibly at xg € (a, b). Of course, the location of xo (in (a, b)) is not known.

Suppose that x lies to the right of x; (so that a < xo < x <b). Then, g’(x) #0 on (xg, x].
Since f’(x) and g'(x) exist on (a, b), it follows that f and g are both continuous on (xq, x].
But, it is also given that f{xp) =0 and g(xo) =0. Hence, f and g both can be made (right)
continuous at x, by defining

lim f(x) =0 and lim g(x) = 0©

-+ +
X — X, X=X,

This permits us to say that the functions f and g both satisfy the hypotheses of Cauchy’s MVT
on the closed interval [xo, x]. This produces a number ¢ between x, and x such that

fe) _ f(x) =f(x0)

T ol — ol xn) 7
g'(c)  g(x)—g(xo) (7)
But f(x0) = g(x0) =0, so that,
') f(x)
= o) 8
gl gv) ®)
As x approaches xo, ¢ approaches xy because it lies between x and x.
Therefore,
tim ) — i £ gy £ ©)

X=X, g(x) c—x, g,(C) x— X g’(x)

This establishes L’Hospital’s rule for the case where x approaches x, from the right. The case
where x approaches x, from the left is proved by applying Cauchy’s MVT on the closed interval
[x, X0, x < xp.

Finally, by combining these two cases, we get the desired result:

1) _ iy £

m = lm
r=ng(x)  x=xg(x)

(10)

provided the limit on the right-hand side exists.
Proved

Remark (1): The conclusion of L’Hospital’s rule (for 0/0 forms) is that

) (1)
g(x)

provided lim
X — Xo

(© Note that, in this way we simply make fand g right continuous at xo in [Xo, x]. In any case, these definitions do not affect
the limit lim f(x)/g(x) since the limit does not depend on whether f and g are defined at x,.
X xg
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The statement (11) (representing L’Hospital’s rule above) allows, under some specific con-
ditions (which must be satisfied by f and g), to replace a limit of a quotient of functions by a limit
of a quotient of their derivatives, which is sometimes easier to compute.”

Remark (2): Just because we have an elegant rule does not mean that we should use it
indiscriminately. L’Hospital’s rule does not apply when either the numerator or the denom-
inator has a finite nonzero limit. Hence, we apply L’Hospital’s rule as long as we still get the
form 0/0 at x = Xx,. To make sure at every stage whether the rule applies, we reflect our
observation on the right-hand side of each step to indicate whether the expression is in the
form [0/0], [still 0/0], or [not 0/0], as indicated in the following solved examples. To find
\—linl- f(x)/g(x), by L’Hospital’s rule, we proceed to differentiate f{x) and g(x) as long as
X —Xo

we still get the form 0/0 at x = xo. We stop differentiating when either the numerator or the
denominator has a nonzero limit. L’Hospital’s rule does not apply when either the numerator or
the denominator has a finite nonzero limit.

Example (4): Find lim (x — sin x) /X3,
X —

Solution: lim T s;n d {This is in the form F”
x—0 X 0
. l—cosx 0
= }1310 32 |:Stlll 6}
. sinx 0 COS X
= }L . |:Stlll 6] = lim G

(At this stage, we stop differentiation and evaluate the limit.)

. COSX 1
lm =g~ =g Ans

Example (5): Find lirr}) (1—cos x)/(x*+3x).
X —

. . 1—cosx . (lfcosx)'
Solution: lim ————— = lim~——— 4
x=0 x243x  x—0 (x243x)

= lim sin x notg
I 2x+3 0
(At this stage, we stop differentiation and evaluate the limit.)

0
=3=0 (Righy

@ In practice, the functions we deal with (in this book) satisfy the hypotheses of L ‘Hospital’s Rule.
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If we continue to differentiate in an attempt to apply L’Hospital’s rule once more, we get the
wrong result as follows:
1 —cosx . sinx cos X 1

li = = 1 = —
0 2 +3x am02x+3 D0 2 2

which is wrong.
Note (7): In applying L’Hospital’s rule, we may reach a point where one of the derivatives is
zero at X = xo and the other is not. Then, the limit of the fraction is either zero as in Example (5)

or infinity as in Examples (6) and (7).

Example (6):

. sinx {0}
lim —

x—0 x2 0
(sin x)’ . COSX
= 11 =
x—0 (xz)/ x—0 2x

Example (7):

. 1—cosx 0
lim ———, —
x—0X —sin x

lim sin x 9
x—01—cosx’ 0

COs X

im —
x—0sin x

Remark (3): Recall that, we have already defined infinity “co” as a limit (in Chapter 7b) though

it does not represent a real number. Accordingly, in view of Remark (2), L’Hospital’s rule

remains valid when the ratio of the derivatives tends to infinity, as we have seen in Examples (6)

and (7). In other words, if lim f'(x)/g’(x) = oo, then it follows that lim f(x)/ g(x) = oc.

X — Xp X — X0
It is easy to justify this. If lim g'(x) = 0, but lim f'(x) # 0, then the theorem is

X — X0 X — X

applicable to the reciprocal ratio g(x)/f(x), which tends to 0 as x — x,. Hence, the ratio

f(x)/g(x) tends to infinity.

Remark (4): L’Hospital’s rule lim f(x)/g(x) = lim f'(x)/g'(x) holds also for the case
X — X X — Xo

where the functions f{x) and g(x) are not defined at x = xp, but lim f(x) = 0, lim g(x) = 0.

X — X0 X — Xo

In order to reduce this case to the earlier considered case, we redefine the functions f{x)
and g(x) at point x = x,, so that they become continuous at point x,. To do this, it is sufficient to

putf(xo) = lim f(x) = 0,g(x0) = lim g(x) = 0.
Note that redefining fand g in this way does not affect the limit lim f(x)/g(x),(since the limit
X — X0
(at x — Xxq) does not depend on whether the functions f(x) and g(x) are defined at x = x,).
Note (8): L’Hospital’s rule (for 0/0 form) is also applicable if lim f(x) = 0 and
X — 00
lim g(x) = 0.

Indeed, putting x = 1/z, we see that 1 — 0 as x — oo and therefore from the statement
lim f(x) = 0, it follows that lin})f(l /t) = 0 and similarly from the statement
X — 00 t—

lim g(x) = 0 we get lim g(1/7) = 0.
X — 00 t—0
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Applying the L’Hospital’s rule to the ratio f(1/7)/g(1/t), we find
) _ o S0 A=y L 0 )

el T e/ T /(- 1/2) ) T gt

which is what we wanted to prove.

Example (8): Evaluate lim sin(k/x)/(1/x).

: _ 2
lim M = lim kcos(k/x)(—1/x) = lim kcosk = k Ans.
X — 00 l/x X — 00 —1/)62 X — 00 X

(If, for x — Xxq (or for x — ©0), both f{x) and g(x) simultaneously tend to infinity, then
L’Hospital’s rule remains valid, but the proof becomes more sophisticated and we do not treat
it here.)

Thus, L’Hospital’s rule is extended to state as follows:

If lim f(x) = oo, lim g(x) = oo, and lim f'(x)/g'(x) exist, then lim f—g;
X — 00 X — 00 X — 00 x~>:)Cg
A
= lim £
x—o0g'(x)

Warning: L’Hospital’s rule can be applied only when an indeterminate form is reduced to the
form 0/0 or oo/oo (since it is proved only for these forms). We therefore emphasize that
L’Hospital’s rule must not be applied to compute hmf( )/g(x) unless the quotient
f(a)/g(a)is an indeterminate form 0/0 or oo/ oo. To illustrate note that
x? 0

lim =-=0
x—0COS X 1

In this case, the limit of the denominator is 1, which is a nonzero real number. Hence, we cannot

apply L’Hospital’s rule in this case (see Remark (2)). If we apply the rule in such cases, the

result may be incorrect. Let us see what happens if we apply L’Hospital’s rule in this case:
x? 2x 2 2

lim = lim - = lim =— = 2
x—0COS X x—0 —sin x x—0 —COS X —1

which is wrong.

Note (9): When L’Hospital’s rule is used repeatedly, it is advisable to perform beforehand all
possible simplifications of the given expression, for instance, to cancel the common factors and
to use the limits already known.

Example (9):

lim 5
x—0 X 0

1/2)(14x)""*=1)2
- 1irr})( /2)( +’2‘l / {stillg}

VITx—1-(x/2) H

_ ~3/2
fim (/A0 T Ans.

x—0 2 8
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Example (10):

d
d—[l—cosx+xsinx] = sin x4 x cos x +cos x
X

= 2sin X + X COS X

x—0 sin X

. 2 sin X + Xcosx {0}
= lim————

d
d—[25inx+xcosx] = 2.cos x+ x sin x + cos x
X

= 3cosx—Xxsinx

. 3cosx—xsinx
= lim——F— = Ans.
x—0 cos X

Example (11):

tan ' x—sin"'x [0
0

lim -
x—0 tanx —sinx

Solution: Let the above limit be denoted by L, then by applying L’Hospital’s rule we get

L = lim —

12
x—0 (1/cos? x) —cosx 0 (12)

(1/14x3) —1/V1=x2 m

In order to express this limit in simplified form, it is useful to consider the Numerator (Nr) and
the Denominator (Dr) in the expression (12) as follows:

Nr_\/l—xz—(l-i-xz)_\/l—ch—l—x2 nd
(I+x2)V1—x? (1+x2)V1—x?

1—cos’x  (1—cosx)(1+cosx+ cos” x)

Dr — —
r cos? x cos? x
V1212 cos? x
. L = lim
x=0 l—cosx  (I4cosx+cos?x)(1+x2)V1—x2

In this expression, note that the limit of the second factor is 1/3; therefore, on applying
L’Hospital’s rule to the first factor, we get,

1. (VI—22—-1-x%) lhm(1/2)(1—x2)_1/2(2x)—2x

im = ’
3550 (1 —cos x)’ 3x50 sin x
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1., (—2x/2V1—x%)—2x 1. x((l/V1*x2)+2>

L = - 1lim - = — —1lim -
3x—0 sin x 3x—-0 sin x
1 X 1 1
= — —lim — 2 =(—-=)-1-(142) = —1 Ans.
3xlinosinx(1—xzJr ) ( 3) (1+2) s

Note (10): Evaluating indeterminate forms of the type co/c0, 0o - 0, and co — oco.

Sometimes, when we try to evaluate a limit as x — a (by substituting x =a), we get an
ambiguous expression like co/co, oo - 0, or co — oo, instead of 0/0.

In more advanced books, it is proved that L’Hospital’s rule applies both to the indeter-
minate form co /oo and to 0/0. Shortly, we will show that expressions such as oo - 0 (or 0 - co)
and co — oo can be easily expressed in the form co/co or 0/0.

(As for the remaining indeterminate forms, we shall show, through solved examples, how
they can be brought to these forms.)

21.6 EVALUATING INDETERMINATE FORM OF THE TYPE oco/co

We now consider the question of the limit of a ratio of functions f(x) and g(x) approaching
infinity as x — a (or as x — 00).

Theorem: Let the functions f(x) and g(x) be continuous and differentiable for all x # a in the
neighborhood of the point ¢ and the derivative g'(x) does not vanish. Furthermore, let
lim f(x) = oo, lim g(x) = oo, and let there be a limit lim f'(x)/g’'(x) = L, which may
X—da X—da X—da

be either a finite number or —oo or + oo, then there is a limit lim f(x)/g(x), and
X—da

. fx) I
:ELma g(x) x—ag'(x) L

“ e

(In the notation x — a, may be either finite or infinite.)

Note (11): A rigorous proof of the above theorem is quite difficult, but there is an intuitive way
of seeing that the result has to be true. It is important to analyze and assign some logical
meaning to the symbol co/oco.

Imagine that f(#) and g() represent the positions of two cars on z-axis at time ¢. These two
cars (the f-car and the g-car) are on an endless journey with respective velocities f'(¢) and g'(¢).
Now, if hm f (1)/¢'(t) = L, then ultimately the f-car travels about L times as fast as
the g-car. "It is therefore reasonable to say that in the long run, the f-car will travel about L times
(the distance) as what is traveled by the g-car; thatis, lim f(z)/g(z) = L. Thus, a meaning has
been assigned to the expression co/oc0 = L, wherein L 'may be finite or infinite.

We do not call this a proof, but it gives a logical meaning to the limit of a ratio of functions,
which take the form co/o0.

® The proof of this theorem is available in Differential and Integral Calculus by N. Piskunove (vol. 1, 140-143), Mir
Publishers, Moscow, 1974.
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Example: (12):

) tan x 00
lim —
x—mn/2tan 3x o0

sec? x . 1/cos® x {Stillf}
o0

im = lim
x—n/23sec?3x  x—n/23/cos? 3x

1cos? 3
— fim 22 e
x—n/23 cos? x 00

12c0s3x-(—sin3x)-3
x—x/23  2cos x(—sinx)

. 12-3-cos3xsin3x
= lim -—————
x—n/23  2cosxsinXx

= lim cos 3x lim s1.n 3x {note that lim cos is of the formg}
x—mn/2 COSX x—n/2 SIN X x—mn/2 COSX 0
—3sin3x(—1
=i 3D L GaT L and sinm/2 = 1
x—n2 —sinx (1) 2
—-1)(-1
= 3uu =3 Ans.
(1) (1)
Example (13):
lim ax’>+b 00
o —d 00
2
= cax _ 4 Ans
x—o002¢X c
Example (14): Find lim e¥/x.
X — 00
x x\/ x
lim — = 1 (e ), = lim & = o Ans.
X—00 X X — 00 (x) x—oo 1
Example (15):
lim ©
x — 00 ¥
This is of the form [co/c].
Applying L’Hospital’s rule, we get
1
Iim — = lim — =0

639
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Note (12): Generally, for any integer n >0

n n—1

. X . nx
lim — = lim -
x—o00 e’ x—oo e¥
-1)(n-2)...1
_ g MDD
X — 00 eX

Obviously, for any real number k>0, lim x*/e* = 0.
X — 00

Example (16): Show that, if a is any positive real number, then,

. Inx
lim =0
x—oo x4

Solution: Both In x and x“ tend to oo as x — oo. Hence, by the application of L’Hospital’s rule,

. Inx [oo}
lim —
x—oo x4 o0
1 1
— tim 22 fim L 20 Proved
x—oogxd—1 X — 00 ax®

Remark (5): Examples (15) and (16) imply something that is worth mentioning. In Exam-
ple (15) for large x, e* grows faster than any constant power of x, while in Example (16) In x
grows slower than any constant power of Xx.

For example, e* grows faster than x', and In x grows slower than /X
The following chart offers additional illustration indicating how some common functions
©)
grow.

X 10 100 1000
In x 2.3 4.6 6.9
N 3.2 10 31.6
xlnx 23 46.1 6908
X2 100 10,000 10°
e~ 10* 10% 10%34

Example (17): Find lim e*/x*. This is of the form [0o /o).

X — 00

Solution:

= lim — = ©
x—o0 2
X
lim — = o Ans

© One may check that e'® ~ 22026 = 2 (11013) ~ 2.10*. For convenience, we may write, e'* ~ 10*. Similarly, e'* ~ 10*?

and e'%% ~ 10 >, These approximate values give us an idea about how fast the function e* grows.
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Example (18):

X —2x2 —0
im ———
x—003x2 4 5x

o0
1— _
-1 {still—oo]
x— 000X
—4 2
= lim —=2 A
Jm 3 ns

Remark (6): Once again, note that the formulas

m 1) _ iy )
);—vXog(X) x_’ng/(x)

and

f )
og(x) T g (3)

(14)

hold only if the limit on the right-hand side (which may be finite or infinite) exists. It may
happen that the limit on the left exists, while there is no existing limit on the right. If this
happens, we say that L’Hospital’s rule is not applicable to such a ratio.

Example (19):

lim

X — 00 X

lim (1+Smx) 1
X — 00 X

In view of Remark (6), we should not apply L’Hospital’s rule in this case.

X+ sin x [oo]
T loo
Indeed,

On the other hand, if we apply the rule to this ratio, the ratio of derivatives, on simplification
gives,

(x+sinx)’"  1+cosx

= = l+4+cosx
(x)' 1
and therefore, we get,
lim xSy lim (1 + cos x)
X — 00 X X — 00

which does not approach any limit. Tt constantly oscillates between 0 and 2.

Note that, this example does not contradict L’Hospital’s rule. Simply, L’Hospital’s rule is not
applicable to this case as mentioned above. Another example of this type follows.
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Example (20): Let fix)= x? sin 1/x and g(x)=x. Then,
2 .
limf(x) = m sin(1/x) 7 {9}

o

x—0g(x) x—0 X

1
= lim xsin(f) =0
x—0 X

On the other hand, the quotient of derivatives

- (D)) on()

! 1 1
or HS) = 2xsin(;) —Ccos—

has no limit as x — 0.

Note (13): The two examples (19) and (20), given above, tell us that from the existence of
lim f(x)/g(x)it does not necessarily follow that lim f'(x)/g’(x) exists. Of course, there are
X — Xp X — Xo

examples in which lim f(x)/g(x) and lim f'(x)/g'(x), both give the same answer, as in the
X — Xo X— X

next two examples.

Example (21):
x —2x2 1—4x 1

lim————— = lim— = — Ans.

032 5% amb6x+5 5 ns

Example (22):

lim x —2x? lim 1—4x [oo
im ——— = 1i —
x—003x2 4+ 5x x—o00b6X+5

o
—4 2

= lim — = — — Ans
X — 00 6 3

Note (14): If the conditions of L’ Hospital’s theorem are satisfied on the interval (@ — 8, a) (or on
(a, a + 8)), then L’Hospital’s rule is applicable to computation of the limit of f(x)/g(x) as
x — a (orasx — a*).In the following two examples, we consider such one-sided limits.

Example (23):
In sin ax — 0
im —————
x—0+ Insin bx

(In sin ax)’
im —%
x—0* (Insin bx)

a.cos ax
sin ax

= lim = — lim |————
x—0F bﬁ(i:r‘l)sb}))cx bx—o0+ | cosbxsinax

cos ax sin bx}

. cosaxsinbx a
= m -
x—0* |cosbx b sinax

1.1.1{a > 0,b > 0]
=1 Ans.
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Example (24):
. Inx — 00
lim — —_—
x—0+ 1/x
(In x)’ . 1/x

= lim = lim = lim (—x) =0 Ans.
x—0% (1/X)/ x—07 *1/X2 XHOJr( )

Remark (7): Even if L’Hospital’s rule applies, it may not help us, as examples (25) and (26)
suggest (of course, with a proper understanding and approach such problems can be easily
solved).

Example (25): Find lim e */x~".

Solution:

Clearly, we are only complicating the problem.
A better approach is to do a bit of algebra first, as follows:

. e ¥ .X 00
lim = lim —, —
x—oox 1 x—ooe’ o0
!
by 1
= lim (),: lim — =0 Ans
\Hoo(ex) x— oo eV

Which form is more convenient 0/0 or oo/o0?

We know that L’Hospital’s rule applies to indeterminate forms of the type 0/0 and oo/oc.
Also, we can easily convert form 0/0 to co/co and vice versa. We may choose any of these
forms, depending on which is easier to handle as far as the differentiation is concerned.

Example (26): Find lim Inx/cot x.
x—0t

Solution: As x — 0", In x — — oo and cot x — co. So L’Hospital’s rule applies.

1 In x)’ 1
fim O Y x_] [OO]
x—0tcotx  x—0° (cotx) x—0+ | —cosec? x — oo

This is still indeterminate as it stands, but it may be observed that if we apply L’Hospitals rule
again, it will only make things worse. On the other hand, if we rewrite the bracketed expression
as follows, the situation is simplified.

I/x  sin’x . sinx

3 = = —SsSmx
— COosec” X X
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Thus,

In x

= lim {fsinx =0)x1=0 Ans.

sin x
im
x—0f COtX  x—0°

L’Hospital’s rule consists of several versions on the theme of using derivatives to evaluate limits
of quotients. However, it is useful to have an overall view of the L’Hospital’s rule, stated in
simplified language in the next section.

21.7 MOST GENERAL STATEMENT OF L’HOSPITAL’S THEOREM

Theorem: Let f(x) and g(x) be two functions tending simultaneously to zero or infinity as
X — u(orasx — oo). If the ratio of their derivatives has a limit (finite or infinite), the ratio of
the functions possesses a limit that is equal to the limit of the ratio of the derivatives:

fx )

Mg ~ )

Here, u may stand for a, a,at —oo, or + 0.

Note (15): (Historical Note) L’Hospital’s rule should actually be called “Bernoulli’s rule”
because it appears in a correspondence from Johann Bernoulli to L’Hospital. L’Hospital and
Bernoulli had made an agreement under which L’Hospital paid Bernoulli a monthly fee for
solutions to certain problems, with the understanding that Bernoulli would tell no one of the
arrangement. As a result, the rule described in the above theorem first appeared in L’Hospitals
1696 treatise. It was only recently discovered that the rule, its proof, and relevant examples all
appeared in a 1694 letter from Bernoulli to L’Hospital.

21.8 MEANING OF INDETERMINATE FORMS

Certain limit problems have been classified as indeterminate forms. In fact, the term indeter-
minate form is used to say that the result is not obvious. We classify them as follows:

(i) Indeterminate Limit Problems of the Form 0/0 and + oco/c0
(Quotient Forms): Consider the Limits,

2(x—1) —1)?
R TG Snll) R N TG Sll) M
x—1 x—1 x—1 x—1 x—=1(x—1)*

These examples show that one could define 0/0 to be 0, 2, or oo with equal
Justification. It is for this reason that one does not attempt to define 0/0. This
expression is an example of an indeterminate form (see Chapter 1).

Next, consider the limit problems in the form co/oc:

C1(x-2) 1 o (x=2)
Moy T2 M My T
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where both numerator and denominator in each limit approach oo as x approaches 2.

These examples suggest that we should consider co/oo to be an indeterminate form.

Note that O/co is not an indeterminate form, for if limf(x) = 0;
X—da

lim g(x) = oo, then lim f(x)/g(x) = 0.

Also, 2/0 is not an indeterminate form, for if lim f(x) = 2and lim g(x) = 0,

then lim f(x)/g(x)is always undefined, and the quotient f (x)/g(x) becomes large in
X—d

absolute value as x approaches a. Thus, 0/oc and 0 /0, are both not indeterminate
forms.
(ii) Indeterminate Limit Problems in Product Forms [0 - co or oo - 0]: Consider the limits
lim (x—1)[3/g(x)] = 3and lim [2/(x—1)](x—1)> = 0.
x—1 x—1
These examples show that we should consider 0 - oo (or oo - 0) to be an indeterminate

form.
Note that the product (0o - 00) is not an indeterminate product form (why ?).

(iii) Indeterminate Sum and Difference [(— o) + oo (or oo — 00)]: Consider the limits

Jim, (ﬁ - ﬁ) = {(i:i)] =0

1 14+2a-2 1 1 2(a— 2(x—
lim ( _lrzamax X): lim ( _ 1 2a x)>: lim { (x ")}:2
x—at \X—a xX—a x—at\X—a Xx—a Xx—a x—at | (x—a)

These examples show that —(oco0)+ o0 and oo — oo should be considered to be of
indeterminate form.

Note that, the sum oo + oo is not an indeterminate form (why?).

(iv) The Indeterminate Exponential Forms [0-0, 1-00, 1—00, co-0]: Indeterminate

exponential forms arise from expressions of the type lim f(x)¢®.

Recall that we have defined the exponential rfor all s only r> 0.

Hence, we assume that f{x) > 0 for x #a.

Since the logarithm function is continuous and is the inverse of the exponential
function, we see that,

lim In {f(x)g(x)] — b= 1n[ lim £

X—a

so that we can write lim f(x)!™ = e’

X—a

(Recall that In x (= log,x) = b means eb = X.)
Note that, the exponential forms 0> and oo™ are not indeterminate exponential forms (why?).

Remark (8): We have seen that the following seven symbols, (1) 0/0, (2) co/o0, (3) 0 - oo,
(4) 00 — 00, (5) 0% (6) o°, and (7) 1°°, represent indeterminate forms. Though there are
many other possibilities symbolized by, for example, 0/c0, 0 /0, 0o 4+ 00, 00 - 00, 0°°, and
00>, they are not indeterminate forms because in all these cases the result is easily guessed
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without any confusion. (This is so because in all these cases the forces are in collusion, not in
competition.)
Consider the following example pertaining to the exponential form.
Example (27): Find lim+ sin x°°'.

x—0
Solution: We might call this 0 form, but it is not an indeterminate form. Note that, sin x is
approaching zero, and raising it to the exponent cot x, an increasing large number, serves to
make it approach zero faster. Thus,

lim sinx*'¥ = 0

x—=07"

21.9 FINDING LIMITS INVOLVING VARIOUS INDETERMINATE FORMS
(BY EXPRESSING THEM IN THE FORM 0/0 OR oco/c0)

A limit corresponding to an indeterminate form is usually computed by trying to convert the
problem to a limit corresponding to the indeterminate quotient form 0/0 or oo /oc. Once this
is done, we can usually determine the correct limit. Of course, there may be unusual situations
as in Examples (25) and (26).

Note (16): There is a helpful way to remember how to convert a 0 - co-type problem to a
0/0-type problem. We write,

0 0

1/oo 0

(Note that, the above statement is mathematically wrong, but it is quite helpful if we agree to
remember it in this way. Similarly, the statement co/oco = (1/00)/(1/00) = 0/0 enables us
to convert a oo/oco-type problem to a 0/0-type problem. Now, we proceed to solve some
problems, wherein conversion to the form 0/0 or co/oc is involved.

0.0

21.9.1 Indeterminate Product Forms

Example (28): The limit lim, _, o, x sin(1/x) leads to the form oo - 0, but we can change it to
the form 0/0 by writing x = 1/¢f and letting  — 0. Thus, we have,

1 1
lim xsin— = lim—sin¢ [oco-0]
xX—00 X t—0t
i sin ¢ 0
= lim— |-
t—0 0

.. By applying L Hospital s rule, we get,

t
L = limg =1 Ans.
—0 1
Example (29) Find lim+ xlog, x.
x—0
Solution: Observe that lim x = 0 and lim log,x = —oo.
x—0* x—0"

Therefore, the given limit is of the form 0 - (—o0).
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However, we can transform it into the indeterminate form co/co by rewriting,

log,x

lim xlog,x = lim
X0 B e 1/x
This is of the form [ — co/o0].
.. By applying L’Hospital’s rule, we get,

| | 2
him 02X o MY o (X
x—0+ 1/x x—0t —1/x2  x—o* x

lim (—-x) =0
x~1>0+( )
xl_lg)h xlog,x =0 Ans.

Example (30): Find lim (tan x Insin x).

x—n/2
Solution: We have,

lim Insinx = 0 o lim sinx = 1
x—n/2 x—m/2

and

lim tanx = oo
x—n/2

Therefore, the given limit (L, say) is of the form 0 - co. We can rewrite it in the form 0/0 by
simply changing tan x to 1/cot x. Thus,

In si 0
lim (tanxInsinx) = lim DY This is of the form -
x—7/2 x—n/2 cotXx 0
By applying L’Hospital’s rule, we get,
1/si
L = lim M: lim (—cosxsinx) = 0
x—m/2 — COSec” X x—n/2

21.9.2 Indeterminate Sum and Difference Form
Now, we consider the type (0o — 00).
Example (31): Find lirr})[(l/sin x)—(1/x)].
X —
Solution: If x — 07, then sin x — 0" and 1/sin x — + oo, while 1/x — + co. The ex-
pression [(1/sin x) — (1/x)] formally becomes + oo — (+ 00), which is indeterminate. On

the other hand, if x — 0, then 1/sinx — — oo and 1/x — — oo, so that (1/sinx) — (1/x)
becomes —oo + 0o, which is also indeterminate.

We may also write,
1 1y  x-—sinx
sin x x)  xsinx

which is of the form 0/0.
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Thus,

. 1 1 . Xx—sinx 0
lim - —— ) = lim ——— —
x—0\sinx Xx x—0 Xsinx 0

. 1—cosx .0
= lim —  |[still=
x—0XCcoS X+ sin x 0

sin x
= lim

im—— =90 Ans.
x—0 — x sin x + 2cos x

21.9.3 Indeterminate Exponential Forms

Now, we consider the indeterminate forms 00, ooo, and 1°°.

The trick for these forms is fo not consider the original expression, but rather, its logarithm.
We first take the logarithm of the given expression and then determine the limit of that
logarithm. Finally, from this limit, we find the limit of the original function, which is allowable
because of the continuity of the logarithmic function.

Instead of the detailed theoretical analysis of the techniques used for evaluating such limits,
we show through examples how this reduction is performed practically.

Example (32): Find lim x*.19
x—0"

Solution: The given limit has the indeterminate form 0°.

Let y=x".
(In order to find the lim} x*, we first take the logarithm of the given expression, as suggested
above.) x=0

Taking logarithms on both sides, we get

lim Iny = lim Inx"
x—0t x—0t
= lim [xInx]
x—0*

This has the form [0(—o00)].

= im |7 [

By applying L’Hospital’s rule, we get

x—0" x—0t | —1/x2

lim (—x) =

x—0*

lim Iny = lim { 1/x ]
0

But we have to findlim y not lim (In y). Also, we know that lim (In y) = In (lim y). Therefore, we
write, In (Iim y) =0.
In other words, it means that,

limy = ¢ = 1

10 1t is reasonable that we consider only a one-sided limit, when x — 0 through positive values of x.
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or

lim x* =1 Ans.
x—07*

Example (33): Show that lim ((1)+(1/x))" = e.

X — 00

Solution: As in Example 5, we first find the limit of the logarithm of the expression on the left.
In other words, we are finding a number b such that

1 X
lim ln(l + 7) =b
X— 00 X
(Our answer for the original limit will be e[’.) We find that,

> 1 In(1+1
lim 1n(1+7) — lim xln(l—i—f) — g PO/
X

X — 00 X — 00 X — 00 I/X

This expression is now prepared for applying L’Hospital’s rule because

1 1
lim ln<1+7) =0 = lim —
X ;

X — 00 X—o0 X
As a result,
In(1+1 1/(1+1 —1/x2 1 1
Y V2 N V(e V2 Vi o
X — 00 1/x x— 00 —1/x x—ool+1/x 1+0

Thus, b =1, so that,

1 X
lim (1—0—7) =e =¢l =¢
X — 00 X

Remark: By applying L’Hospital’s rule, we get

1 X
lim (l—l—f) =e
X — 00 X

Thus, e could also be defined by means of the above limit, as is done in some textbooks.

Exercise
1
Q1. Find lim1 ((x/x—=1)—=(1/log, x)). Ans. 5
X —

Q2. lim0 x"log,x Anms. 0
x—

Q3. lim cos x"/* Ans. 1/+/e

X —

Q4. lim (cotx)/=*  Ans. 1/e

X—

Q5. Find lim (tan x)**". Ans. 1

x—(n/2)
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Q6. Find lim (x+1)"*.  Ans. e
x—0t

We give below the solution to the above exercise for the convenience of the readers.

Q1. Findvxl)iﬂmI ((x/x—=1)—=(1/log, x)), [o0— 0]

. b 1
lim -
x—=1\x—1 log,x

xlog, x—x+1 {O}

Solution:

= 1
foy (x—1)log, x

0
1
(xlog,x —x+1) = X3 +log, x—1 = log, x

x—1

1
[(x—Dlog, x| = +log,x = 1— o +log, x

Climo MO%eX g X
x—1(x—1)/x+log,x x—11/x2+1/x

oz. lim ¥"log, x [0-(—c0)]
Solution: — lim log, x [—OO}
x—0 1/X” o0
. 1/x
= (hf}, —n/xn 1
o\
= lim—— =0
x—0 n
oo lim x"log, x = 0 Ans.
x—0

Q3. To find lim0 (cos x)l/x2 [1°].
Solution: Let !imO (cos x)l/ ¥ A
Taking the logarithm, we get

loge{limo (cos x)l/xz} = log, A

11)

(
or log, A lim0 [loge(cosx)l/xz}

x—0 x2

— i loge(cosx)7 {0]

(D This is permitted because of the continuity of the logarithmic function.

_ !

Ans.
2 ns
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Now, applying L’Hospital’s rule, we get,

1 —si —t 0
log, A — lim (/e0V(=siny) - —tanx [0, 0
x—0 2x x—0 2x
. —1/cos? x 1
e T
. A :efl/Z — 1/\/6
or lim0 (cos x)'/x2 = 1//e Ans.

Q4. To find lim (cot x)!1oge X o],

Solution: Let lim0 (cot x)l/ loge ¥ _ 4
X —

Taking the logarithm, we get,

log, [lin}) (cot x) /1o ”} = log, A
X —
or log, A = lim [10g€(cot x) /1o X]
X —

1
— lim [oge(cotx)]7 { 00 }
x—0 log, x — 00

By applying L’Hospital’s rule, we get,

(1/cot x)(— cosec? x)

log, A = Jim S
1 1
cot x sin® x
- xhg}) 1/x

. —x {0]
lim — —
x—0C0S X sin X 0

. -1 . —(sinx/cos x - 1/sin® x)
= lim - - = lim

x—0c0s X cos X +sinx(—sinx)  x—0 1/x

1 li - 1

. 1o =lm———F5— = —
& ¥—0cos2x — sin’x
A =e =1/
lirr%) (cot x)'/1%* = 1 /e Ans.
X

Q5.Find lim  (tanx)™™

x—(n/2)

Solution: This has the indeterminate form oc®
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COos X

Puty = (tanx)

. Iny = cosxIntan x

_ Intanx
T osecx
Then,
. In tan x
lim y = Ilim
x—(n/2) x—(n/2) sec X
1 2
~ lim (1/tan x)sec” x
x—(n/2)” secXxtanx
sec x
= lim —5—
x—(/2)” tan? x
= lim 2%
x—(m/2)” SIn” x
Therefore,
lim y=¢ =1 Ans.
x—(n/2)”
Q6. Find lim (x+1)°".
x—0*
Solution: This takes the indeterminate form.
Lety = (x+1)c*~
. Iny = cotxIn(x+1)
By applying L’Hospital’s rule for the 0/0 form,
In(1
lim Iny = M
x—0* x—0t tanx
1/(1
o )

x—0+ secx
Thl]S, limxﬁ()» In y= 1’ [Where y= (X + l)cot x]
Our interest lies in computing lim‘ In y [not lim0 In y].
x—0 X—
Now,
lim Iny = In[ lim Iny]
x—0% x—07"

. We write In[ lim Iny] = 1
x—0"

limy=¢'=¢ Ans.
x—0"



22 Extending the Mean Value
Theorem to Taylor’s Formula:
Taylor Polynomials for Certain
Functions

22.1 INTRODUCTION

In Chapter 20, we have introduced the Mean Value Theorem, which says that if a function f'is
continuous on an interval [a, b] and differentiable on (a, b), then,

————=f(c) (1A)

or f)=f(@)+f(c)-(b-a) (1B)

for some ¢ between a and b.

Here, f(b) is expressed in terms of f(a) and f'(¢), (b — a) being the length of the interval
(a, b). Since x can vary from a to any value b ¢ [a, b], we may think of b as an independent
variable. This permits us to replace b by x and rewrite (1B) in the following form.

f(x) =fla) +f(c)(x —a) (1C)
In this new formula (1C), we think of x as an independent variable on [, b] and the number c lies
in the interval between @ and x. (The equation of the Mean Value Theorem is often stated in
this form.)
Note (1): The right-hand side of (1C) looks like the linear approximation of f near a. If f' is

continuous and c s close to a (as it will have to be if x is close to @), then f'(c) is close to f'(a) and
(1C) gives,

f(x) = fla) +f(a)(x —a) (1D)
which is the linear approximation of f near a.

22-Extending the MVT to Taylor’s formula (Taylor polynomials approximating certain functions Taylor’s formula
for polynomials and arbitrary functions)

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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We have studied linear approximations in Chapter 16 without knowing how good they
were. Now, with an extended version of MVT for second derivative(s), we shall see that
the error in (1D) is proportional to (x — a)?. Therefore, if (x — a) is small, the error will be
very small.

Note (2): At this stage, the reader may read the proof of MVT and note carefully how the
auxiliary function F(x) is defined there. In the process of extending the MVT for second
derivative(s) (which generalizes the MVT for the first derivative(s) and sets the stage for
further generalization), it is important to study carefully the steps involved in the proof.
In particular, the way of defining the auxiliary function F(x) (which satisfies the hypotheses
of Rolle’s Theorem) is important. Now, we proceed to state and prove the MVT for second
derivatives.

22.2 THE MEAN VALUE THEOREM FOR SECOND DERIVATIVES:
THE FIRST EXTENDED MVT

Let f be a (real) function defined on [a, b], such that,
(1) fand f" are continuous on [a, b] (from the statement f’ is continuous on [a, b], it follows
that f’ exists on [a, b)).

(ii) f’ is differentiable on (a, b).

Then, there exists a number ¢, between a and b, such that,

110) = (@) + /@)~ @)+ o —ap 4)

Proof: Let a number K be defined by
£(8) = (@) + £ )b~ @) + K(b ) (2B)
or 1(8) @) £ @b~ a) ~ K(b " =0 (20)

Note (3): The significance of equation (2A) is not the fact that some number K satisfies the
equation (2B), but the fact that the value of K defined by (2B) is actually given by

_ ()
K=""" (3)

for some point ¢, in the interval between @ and b.
Therefore, given that K is the number that satisfies (2B), we will show that K must satisfy (3)
for some number c, between a and b.

Note (4): Now, our interest lies in obtaining a function f{x), which must satisfy equation (2B).
Since, the independent variable x varies in [, b], we can say that x varies from a to any point b in
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[a, b]. This is equivalent to looking at b as an independent variable in [a, b]. Accordingly,
equation (2B) says that when x = b we can write (2B) in the following form:

f(x) =f(a) +f'(@)(x — a) + K(x - a)’ 4)

Note that, when x = b, the function f{x) and the function fla) +f(a) (x — a) + K(x — a)2 have
the same value [see equation 2B).Y

Also, these two functions have the same value when x = a [namely, f{a)], as can be easily
checked.

We now define a new function F(x), being the difference of the above two functions. Then,
generally F(x) must be different from zero, for all values of x, other than x =« and x = b. This
also means that F(x) is not, constant function. Thus,

F(x)=f(x) = [f(a) +f'(a)(x = a) + K(x — a)’]

5
=f(x) —f(a) = f'(a)(x — a) = K(x — a)’ 2

is different from zero.
Now, observe that,

(a) F(x) is continuous on [a, b], (because f, (x — a) and (x — a)? are continuous on [a, b)),

(b) F(x) is differentiable on (a, b) for the same reason, and

F(a)=0 [by (4)] }(2)
)

© Fpy=0 [y @C

Thus, the function F(x) satisfies all the conditions of Rolle’s Theorem on the interval [a, b].
Therefore, F'(x) =0 at some point ¢; between @ and b. Thus, we have,

Fc)=0,a<c¢ <b (6)

Now, from equation (5), we obtain the derivative,

and for x =¢;, we get,
F'(c1) =f'(c1) = f'(a) = 2K(cy —a) =0 [using (6)]

Next, we observe that the function F'(x) satisfies all the hypotheses of Rolle’s Theorem on the
interval [a, c,] as follows:

* Fi(c)=0 [from (6)],

e F(@)=0 [from (7)],

o F'(x) is continuous on [a, ¢;] and differentiable on (a, ¢;), because both f(x) and (x — a)
are.

M In fact, this is so because we have defined f(x) based on requirement of equation (2B).
@ Note that, F(a) =0 is a result of cancellation of differences in (5), while F(b) = 0 follows from (2C) due to the way K
is defined.
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Therefore, the derivative F”(x) must be zero at some point c,, between a and ¢, (and hence
between a and b).
Now, by differentiating (7) we get,

F"(x) = f"(x) — 2K, and for x = 3, we get

0=f"(ca) —2K [ F"(x)=0at some pointc; € (a, c)]
K _ F//(cz)
2

Substituting this value of K in (2B), we get the result that we wanted to prove.

22.2.1 Linear Approximations

We are now in a position to calculate the error in the linear approximation defined at equation
(1D). We begin by regarding b as an independent variable in equation (2A) (as indicated in the
note above) and rewriting this equation in the following form

F0) = f(@) +f o — )+ (e 8)®

with the understanding that ¢, lies in between a and x.
From equation (1D) we get the linear approximation

f(x) = fla) +f'(a)(x — a), )
valid on the interval from a to x with an error of

&) =1 (o (10)

If f” is continuous on the closed interval from «a to x, then it has a maximum value on the
interval and e;(x) satisfies the inequality

max| f”| 2

le1(x)] < =57 (x —a) (11)

where max refers to the interval joining a and x.

This inequality gives an upper bound for the error on the interval from a to x that is of

practical value in many cases. To get more accuracy in a linear approximation, we add a
quadratic term, as given in equation (8).

© This equation holds for x < a as well as for x > a. [Since the proof and the theorem remain valid if one refers to “the
interval with end points a and b” rather than explicitly to [a, b] or (a, b). Calculus and Analytic Geometry (Sixth Edition) by
Thomas/Finney, Remark at page 239.]

For more details refer to Calculus and Analytic Geometry (Sixth Edition) by Thomas/Finney.
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22.2.2 Quadratic Approximations

We can get a good estimate of the error in quadratic approximations by extending the Mean
Value Theorem one step further in the following way.

22.2.3 The Mean Value Theorem for Third Derivatives: The Second
Extended MVT

Theorem: Iff, f', and f are continuous on [a, b] and f” is also differentiable on (a, b), then
there exists a number ¢; between a and b for which

f(b) =f(a) +f'(a)(b—a)+ (b—a)’ (12)

[For the proof of this theorem, refer to Calculus and Analytic Geometry (Sixth Edition)
by Thomas/Finney.]
In applications, we usually write this equation with x in place of b, i.e., we write,

f"(a) f"(e3)

ﬂ@=ﬂ@+ﬂ®w7®+jf@*@ﬂ*6 (x—a)’ (13)
with the understanding that c; lies between a and x.
From (13), we get the quadratic approximation,
1
a
7) ~ (@) + @ - )+ (x— o (14)

valid on the interval between a and x.

Note that, the first two terms on the right-hand side of (14) give the standard linear
approximation of f. To get the quadratic approximation, we have only to add the quadratic term
without changing the linear part.

If f(x) is continuous on the closed interval from a to x, then it has a maximum value on
the interval, and we can write,

lea(x)| < maxw (x—a)’ (15)

The extended mean value theorems are special cases of a theorem called Taylor’s Theorem,
which holds for any natural number n. The most convenient statement of the theorem for our
purpose is the following theorem.

) In the quadratic approximation (14), the error is given by ?(x) = fm(;‘) (x —a)’ :f”,ﬁ‘) (x — a)®, which is the fourth
term on the right-hand side of (13).
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22.3 TAYLOR’S THEOREM

If fand its first n derivatives f/, f”, . . .. .. ™ are continuous on [a, b] and if f ™ is differentiable
on (a, b), then there exists a number ¢, | between a and b such that

" (a)

n!

f"(a)
2!

1"(@)
3!

f(b) =f(a) +f'(a)(b—a) + (b—a)+ b—a)’+... + (b—a)"
+f(’Hl)(anrl) (b _ a)n+1 (16)

(n41)!

Equation (16) provides extremely accurate polynomial approximations for a large class of
functions that have derivatives of all orders. (We do not prove this theorem.)

Note (5): Through Taylor’s Theorem, calculus provides a remarkably powerful and general
method of estimating the values of certain differentiable functions with any prescribed degree
of accuracy.

224 POLYNOMIAL APPROXIMATIONS AND TAYLOR’S FORMULA

While values of polynomial functions can be found by performing a finite number of additions
and multiplications, other functions such as the exponential, logarithmic, and trigonometric
functions cannot be evaluated as easily. We show in this section that many such functions can
be approximated by polynomials, and that the polynomial instead of the original function,
can be used for computations when the difference between the actual function value and the
polynomial approximation is sufficiently small. Various methods can be employed to approx-
imate a given function by polynomials. One of the most widely used involves Taylor’s Formula
[equation (16)].

We shall consider the functions e¥, log.x (i.e., In x), sin x, cos x, which occur frequently.
Their values are available in mathematical tables. Also, many calculators and computers have
been programmed to produce their values on demand. Where do the values in the tables come
from? By and large these numbers come from calculating partial sums of power series, which
are in fact polynomials. We, therefore, begin with the definition of a Power Series.

22.4.1 Definition: Power Series

A power series is a functional series of the following form:

f(x) =ao+a(x — x0) + az(x —x())2 +a3(x—x0)3 +ootan(x —x0)" + ...

whose terms are the products of constant factors ay, @y, a, - . ., ay,. . . by integral powers of the
difference (x — xg).
The constants ag, ai, da, . . ., dy. - .. . . are called the coefficients of the power series. Unless

otherwise stated, the coefficients will be assumed to be real. In particular, if xo =0, the power
series is arranged in ascending powers of x:

f(x):a0+a1x+a2x2+a3x3+...+a,,x”+... (17)
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We shall confine ourselves to studying series of the type (17) because any power series can be
brought to this type with the aid of the substitution, x — xo=X.

Note: For the sake of convenience, we shall call a,,-x" the nth term of the power series (17),
although it occupies the (n+ 1)™ place. The constant term aq of the series will be referred to
as its zeroth term.

The simplest example of the power series is the geometric series:

T+x+x> 4. +x"+...

The whole theory of power series is based on the following fundamental theorem.

Abel’s Theorem: If the power series (17) converges at a point xo#0, it is absolutely
convergent in the interval (—|xo|, |Xo|), that is, for every value of x satisfying the condition
x| < |xo]-

22.4.2 Definition: Interval of Convergence

The number R such that power series (17) is convergent for all x satisfying the condition |x| <R,
and divergent for all x satisfying the inequality | x| > R is called the radius of convergence of the
power series. The interval (—R, R) is referred to as the interval of convergence.

22.4.3 Properties of Power Series (Without Proof)

1. The sum of a power series is a continuous function in the interval of convergence of the
series; that is, the function

s(x) =ap+ax+ WX*+.ay X+ (-R<x<R)is continuous.

2. A power series can be integrated term wise within its interval of convergence. The new
(integrated) series possesses the same radius of convergence as the original series.

3. Every power series is infinitely term wise differentiable inside its interval of conver-
gence. The radii of convergence of the differentiated series remain the same as that of
the original series.

Now, we show how a power series can arise when we wish to approximate a function
y=f(x) (18)
by a sequence of the polynomials f;,(x) of the form

fulx) = ap + a1x + ax* + ... +a,x" (19)

©) The geometric series: 1 +x+ x>+ ...+ x"+... converges for |x| < 1, to the rational function, f(x) = 1/(1 — x),
which represents the sum of geometric series. The function 1/(1 — x) is defined and is continuous everywhere except at the
point x = 1 but it only serves as the sum of the series for |x| < 1. For |x| > 1, the series is divergent and it is senseless to
speak of its sum.
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A
a
y =f(x) y=ag+ax+ 72)(_2

=ay

= | A (0,/(0))

FIGURE 22.1

If a function f{x) can be represented as the sum of a power series, we say that it is expanded into
the power series. The existence of such an expansion is extremely important since it makes it
possible to replace (approximately) the given function by the sum of the first several terms of
the power series, which is in fact a polynomial.

The computation of the values of the given function then reduces to the computation of the
values of the polynomial, which can be achieved with the aid of the simplest arithmetical
operations.

We immediately face the following questions:

e What does it mean for a function f to approximate another function g?
e How can we choose a “good” polynomial approximation?

e How are derivatives involved?

We shall be interested, at least at first, in making the approximation for the values of x near 0,
because we want the term a,,x” to decrease as n increases. Hence, we focus our attention on a
portion of the curve y =f{(x) near the point A(0, f(0)), as shown in Figure 22.1.

(1) The graph of the polynomial fy(x) = a, of degree zero will pass through (0, f(0)) if we
take

ap =f(0)-

(2) The graph of the polynomial f(x) = ag + a,x will pass through (0, f(0)) and have the
same slope as the given curve at that point, if we choose,

ap = f(0) and a; = f(0).

(3) The graph of the polynomial f5(x) =ag+ a;x + a>x?, will pass through (0, f(0)) and
have the same first and second derivative as the given curve at that point,

f"(0)

if ap :f(o)v aj :fl(o)v anday = T
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(4) In general, the polynomial,

fo(x) = ao +ax+aox®+ ...+ ax"

which we choose to approximate y =f(x) near x =0, is the one whose graph passes
through (0, f(0)) and whose first n derivatives match the derivatives of f{(x) at x = 0.

The constant, linear, and quadratic approximations (which are respectively of zeroth-, first-,
and second-order approximations) may be looked upon as “made to order” approximations
to f. In each case, the “order” refers to the number of derivatives of f with which a
particular approximation agrees at 0. An even better agreement is possible if polynomials
of degree 3, 4, and higher are used to approximate f.

Suppose we take the nth degree polynomial f,(x) [given at equation (4) above] to
approximate y =f(x) near x =0. Then, our task is to find the coefficients aq to a,. This is
surprisingly easy. The key idea is that the coefficients «; are closely related to the derivatives
of f,(x) at x=0. To match the derivative of f,(x) to those of y=f(x) at x =0, we equate
the corresponding derivatives at x =0, and obtain the values of ag, a1, . . ., @, in terms of the
derivatives of y=f(x).

To see how this may be done, we write down the polynomial f,,(x) and its derivatives as
follows:

fulx) =ap +aix +ayx* +a3x ... ... + a,x"
() =ay +2ax +3a3x* +...... + na,x""!
f(x)=2a, +3 - 2a3x +...... +n(n— 1)a,x"2
) =nn -1 -2)...(1)-ap = (n)a.

But the first n derivatives of the (approximating) polynomial f,,(x) is required to match with the
corresponding derivatives of the given function y =f{x) at x =0. Therefore, we put x =0 in
Fa(x), fa(x),. .0, fn(") (x), and equate their values respectively with £/(0), f"(0), ..., f*(0).
We obtain,

f2(0) = a0 = £(0)
f'n(0) = ar = £'(0)

f”,,(()) =2a, :f//(()) cLay :f/z(lo)

f///n(o) =3.2a3 :f///(o) - :f//;(!o)
! (0

£0) =nla, =f™0)  -.ay =i ns )

Thus, the required polynomial, which approximates f(x) at x =0 is given by

! 2('0) x? +f 3(!0) X+ ... +7n! X (20)

Sa(x) =£(0) +£(0)x +



662 EXTENDING THE MEAN VALUE THEOREM TO TAYLOR’S FORMULA

The polynomial at (20) is called the n' degree Taylor polynomial of fat x = 0, after the name of
the English mathematician Brook Taylor (1685-1731), the author of an early calculus book
(published in 1717).

Here onwards, we shall denote the Taylor polynomial by P,(x) instead of f,(x). Thus,
the Taylor polynomial approximating the given function y = f(x) at x =0, given at (20) above
will be written as:

11 111 (n)
Pa(x) = £(0) +£(0)x + L 2(?) 24l 3(,0) Wl ngo) X' (21)

Remark: In a Taylor polynomial [P,(x)] of degree n, all Taylor polynomials of degree O to n
appear and thus there can be at most (7 + 1) terms.

Note (7): The advantages of approximating a function f{x) with a polynomial g(x) are given
below:

o If fis complicated, poorly understood or otherwise inconvenient, then it is useful to
replace f with a simpler, better-behaved, and better-understood polynomial g.

¢ Polynomial functions are simple, convenient, well understood, and easy to use, so it is
natural to use them to approximate more complicated functions.

Example (1): Let f(x) =e". Find a formula for the nth Taylor polynomial of f. Also, find
P, (1) and compute Ps(1).

Solution: The given function and its derivatives are

flx)=¢ f0)=¢"=1
fx)=e - 0= =1
fl)=e 0= =1
[0 =t )= =1
CfO)=1, FO)=1,0)=1,...... M0y =1
Using the formula for P,(x), we get,
1 (n)
P = £0) O+ e O
2 x? xn
=14+x+ 21 + ? 4+ .. + o

The graph of the function y =e™ and graphs of three approximating polynomials,

(A) a straight line 1 + x
2
(B) a parabola 1 + x + a
2 3

(C) a cubic curve 1 +x+%+€

are shown in Figure 22.2.
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X
-1.0 -0.5 0 0.5 1.0
FIGURE 22.2
For x=1,
2 13 1"
P,(1)=14+14+—+—+ +—=ce
" 20 3 n!

[Note that, ix)=e* = P,(x) .. f(1) =e = P,(1)]
For n=>5 (i.e., by considering first six terms) we obtain, for x =1

1 1 1 1
Ps(1)=1+1 +E+i+ﬂ+§: 2.71667.
Since P,(x) represents an approximation to f{x)=e", we should examine how well Ps(1)
approximates f{1) =e. The value of e is 2.71828 (accurate to six digits) and Ps(1) ~2.71667.
So Ps(1) approximates e with an error of about 0.00161.

Example (2): Letf(x) =log.(1 + x). Find a formula for the nth Taylor polynomial of f{x), and
then calculate Pg(1).

Solution: First, we calculate the derivatives of the function f{x) and compute their values at
x=0:

f(x) =log,(1+x) .. f(0)=0
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rO=grE o=
2
B)(y) — (=D(=2) _ (=12 (3)(0) = 2!
o) 0+ (txf f7(0)
@ (=1)3! @) |
f (X):(]+X)4 s fP0) =3
In general, for k> 1,
*) =Dk = 1)! o) k-1
[P (x) = G J0) = (=) (k= 1)!
Consequently,
(0 £3(0 F(0 .
P,(x)=£(0) + £ (0)x + 2(!)x2+#x3+ ...... + nE )x
B 1, 2, (=" (n—1)
7O+x—§x +§x +...+#
S S O +(_1)n71x"
B 2 3 4 7 n
We conclude that
P6(1):lf%+%f%+%f%:3—gm0.616667

We expect P,(x) to approximate f{x).
Since, the value of f{1) =log,2 =0.693147 (accurate to six digits), and P¢(1) =0.616667,
we find that P¢(1) approximates log,2 with an error of about 0.07648.

Example (3): Let f(x) = ;L. Find a formula for the nth Taylor polynomial of f, and
compute P,(2).

Solution: The derivatives of f and their values at x =0 are obtained as follows:

We have, f(x) = 1;x: (1—x)" oo fo)=1
/ _(_ —x 20 1) — 1 7 _
fx) = (=D —x)7(=1) 1) ) =1
£ = (=2)(1 =% (-1 = 2 J"(0) =2!
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665
M= 0 =3
T s
In general,
2 k!
R R AR
As a result,
11 (3) ()
P =1 + £+ T2 SO SO

=14+x+x>+... +x"

SP(2)=1424224 ... 42"

Example (4): Let f(x)=cos x. Find a formula for the nth Taylor polynomial of f at x =0.

Solution: The cosine and its derivatives are
f(x) =cosx, f'(x) = —sinx
f"(x) = —cos x, fO(x) =sinx
FE(x) = (=1)F cos x, f@HD (x) = (1) sinx
But, when x =0, the cosines are 1 and the sines are 0, so that,

f0) = (1), Do) =0
Thus, A0)=1,  f'(0)=0

i
S
(=]
=2
|
[
o
©
=
(=]
=2
I

0
F90) =1, 190)=0
f©0) = —1,f7(0) = 0 and so on.

The Taylor polynomials for f{x) = cos x have only even powered terms. Thus, for n =2k, we
have

F@(0 Fasu( £ £ (0 .,
Por(x) =£(0)x° + 25 )xz—i- 45 )x4+ 65 )x6+...+ n!( )xz
2t 46 o xk
S I
yra et g

2 4 6 8
x- x* x® X
We have, cosx~ 1 — —+———+—

TR in the vicinity of the point x =0.
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y
——x2+ x4

~

—1-1,2
y=1 3%

FIGURE 22.3

Figure 22.3 shows the graph of function y =cos x and those of approximating polynomials
y=1,y=1—(x?/2)), and y = 1 — (x?/2!) + (x*/24) in the neighborhood of origin.

Example (5): Let f{x) =sin x. Find a formula for the nth Taylor polynomial of f at x =0.

Solution: It is easy to show that the Taylor polynomial for y = sin x has only odd powered terms.
In the neighborhood of the origin, we have,

3 XS X7 x9

s1nx~xf§+§f?+a

Figure 22.4 illustrates the graph of the function y = sin x and the graphs of the approximating
Taylor polynomials y=x, y = x — (x*/6), and y = x — (x3/6) + (x°/120).

22.44 The Maclaurin Series for f(x)

The degrees of the Taylor polynomials of a given function f(x) are limited by the degree of
differentiability of the function at x = 0. But, if f(x) has derivatives of all orders at the origin,
then it is natural to ask whether for a fixed value of x, the values of these approximating
polynomials converge to f(x) as n — o0o?

AY
y=x
+1
/4
L2\
0 1 2
-1 1.3
y=x— X

FIGURE 22.4
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Now, these (approximating) polynomials are precisely the partial sums of a series, known as
the Maclaurin series for f(x), given by

),

110 X (22)

X4+ ...+

£0) +/0)x +1; -

Thus, the question just posed is equivalent to asking whether the Maclaurin series for f
converges to f(x) as a sum? It certainly has the correct value f(0), at x =0, but how far away
Sfrom x =0 may we go and still have convergence? And if the series does converge away from
x =0, does it still converge to f(x)?

The graphs in Figures 22.2-22.4 are encouraging, and it can be shown that normally a
Maclaurin series converges to its function in an interval about the origin. For many functions,
this interval is the entire x-axis.

22.5 FROM MACLAURIN SERIES TO TAYLOR SERIES

Now, suppose we are interested in approximating a function f{x) near a point x = a (instead of
near a point x = 0) in an interval I, then we write our approximating polynomial P,(x) in powers
of (x — a), as follows:

Pu(x) =ao+ai(x —a) +ar(x —a)* + ...+ ay(x —a)" (23)

where the constants ay, @y, ay, ..., a, are to be determined. Obviously, the function f{x) is
assumed to have all derivatives upto the (n + 1™ order (inclusive) in the interval I.

Since the polynomial P,,(x) and its first n derivatives must agree with the given function f{x)
and its corresponding derivatives at x = a, the following conditions should be satisfied:

Pn(a) :f(a)
P'y(a) =f'(a)
(24)
P’ (a) = f"(a) ...
P (a) =" (a)
Let us first find the derivative of P,(x)
Pu(x) = a; + 2a>(x — a) + 3a3(x —a)* + ... + nay(x — a)""
Ply(x) =2-lay +3-2a3(x —a) + ...+ n(n— Day(x —a)"*
(25)

PP(x)=3-2-1as+...+nn—1)(n—2)an(x —a)"> ...

P (x) = n(n—1)(n—2)...2-1a,



668 EXTENDING THE MEAN VALUE THEOREM TO TAYLOR’S FORMULA
Putting x = a, in equations (23) and (25), we get

Py(a) = ap =f(a) [Using (23) and (24)]
[Using (24) and (25)]

a0 =1(@), ay =f'(a), @ = 3/"(@

1 1
a3 = 3 (3)(0), .. .Hf,,(a).

Substituting in (23), the values of ay, a1, as, .. ., a,, we get the required polynomial:

“(x—a)"

n!

f"(a) (24)

The right-hand side of (24) represents an approximation of fnear “a” by the Taylor polynomial
P,(x). It is called the Taylor series expansion of f about a. There are two things to notice here:

First is that the Maclaurin series are Taylor series with ¢ =0 and

Second, a function cannot have a Taylor series expansion about x =, unless it has finite
derivatives of all orders at x =a.

For instance, f(x)=log.x does not have a Maclaurin series expansion, since the function
itself, (to say nothing of its derivatives), does not have a finite value at x = 0. On the other hand,
it does have a Taylor series expansion in powers of (x — 1), since log.x and all its derivatives
are finite at x= 1.

Note: In Examples (1) and (2) the value of the Taylor polynomial provided a reasonable

approximation to the corresponding value of the given function. Indeed, we found that if
fix)=¢", then

|f(1) = Ps(1)| = |e — Ps(1)| = 0.00161
and if fix) =log.(1 + x), then
| (1) — Ps(1)] = [log,2 — Pe(1)| =~ 0.07648

By contrast, if f{x) = 1/(1—x) [as in Example (3)], then for n > 1,

[£(2) = P,(2)| = ﬁ—(1+2+22+...+2ﬂ)

=|-1-(1+2+2>+...+2")]
> 2"
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Consequently P,(2) is not reasonably close to f(2) for any value of n. In fact, the larger n
becomes, the worse P,(2) approximates f(2).

22.6 TAYLOR’S FORMULA FOR POLYNOMIALS
Consider the n'™ degree polynomial
fx)=ap+aix +ax* +ax*+...... + a,x"

where ay, a,, a», as, . . ., a, are constant coefficients. We can express f{x) as the expansion in
powers of (x — a), with some coefficients, where “a” is an arbitrary number. We know that the
Taylor polynomial P,(x) approximating f{x) at x=a is given by

(x—a)’
2l

(x —a)’

5@

(x—a)
1!

f(x) = Pu(x) = f(a) + f'(a@) + f(a) +

o () (27)

The expression on the right-hand side of (27) is called Taylor’s formula for the polynomial f{x).
Note that, this formula is a partial sum of a series

2

(x—a)
T

(x—a)
2!

(x—a)

fla) + f'(a) + 3 Fa) + .. .Mf(’”(a) +...

f(a) +

n!

called Taylor series expansion of f about x = a.
If we put a=01in (27), we get the Taylor polynomial P,(x) approximating f{x) at x =0, we
write,

Flx) = P,(x) =£(0) +f'(0)x +@ X4

X (28)

The expression on the right-hand side of (28) [which is a specific case of Taylor’s formula
for f(x)] is called Maclaurin’s formula for f{x). Note that, this formula is a partial sum of a
series

£0) +£/(0)x +@x2 PR A (U IV

called Maclaurin series for f(x) about x =0.
Example (6): Expand the polynomial

f(x) =x*=3x+2 in powers of xand in power of x — 1.
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Solution: Applying Maclaurin’s formula, we get,

f(x)=x2=3x+2=£(0)=2
F1(x) = 2x—3 = f/(0) = —3
f'(x)=2=f"(0)=2

3 2
and flx)= 27Fx+§x2
=2-3x+x’

Thus, the expansion of f{x) in powers of x is identical to f(x) itself.
To expand f(x) in powers of (x — 1), we apply Taylor’s formula and get
fx)=x>*=3x+2=f(1)=0
f(x)=2x-3=f(0) = -1
ffx)=2=f"(0)=2

and f(x):O—l(x—l)—i—%(x—])z

=—(x-D+x-1)7

Notice that Taylor’s formula gives the value of f{x) at any point x, provided that the values of
f(x) and all its derivatives at some point @ are known.

Example (7): Express the polynomial
Flx)=2x =9 +11x — 1

as a polynomial in (x — 2).

Solution: We wish to write f(x) in the form (B) with a =2, and to do so we must compute the
derivatives of f at 2:

flx) =263 —9x% + 11x — 1
f2)=2-8-9-4+11-2—1
=16-36+22-1=1

fl(x)=6x>—18x+11 - f(2)=-1
f(x) = 12x — 18 o f'2)=6
fOx) =12 P2 =12

f"(x) =0forn > 4 o f"(2) = 0forn > 4.
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We know that

709 = @)+ (- 0 0D (¢
7o
+ 3!a (x —a)®, wherea =2
Lfx) =1+ (-1)(x—-2) +%(x72)2+%(x72)3

=1-(x-2)+3(x—-2+2(x-2)°

Although the form of the polynomial just obtained looks quite different from the given
polynomial, both polynomials represent the same function.

Example (8): Arrange

T+ (x+2)+3(x+2)°+ (x+2)* = (x+2)" in powers of x.

Solution:
Let f(x) =7+ (x+2)+3(x+2)°+x+2)*"—(x+2)°
() =149 +2) +4(x+2)° —5(x+2)*
s (%) = 18(x 4 2) 4+ 12(x +2)* — 20(x 4 2)°
O (x) = 18 4 24(x + 2) — 60(x + 2)°
FO(x) =24 — 120(x + 2)
fO(x) = —120
f(x) =0, forn>6
L f0)=T+2+24+16-32=17
f(0) = —11, f"(0) = =76
f3(0) = =174, f(0) = —216
F®(0) = =120, f©(0) = 0, and so on.
Hence,

2 3
f(x) =£(0) +x/(0) +%f”(0) +%f(3)(0)

4

X XS
+ /(0 +5/9(0)

.X'2 X3
=17+ x(=11) + = (=76) + = (—174)
2! 3l
X4 XS
77 (7216) + 57 (-120)

=17 — 11x —38x2 —29x —9x* — x> Ans.
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22.7 TAYLOR’S FORMULA FOR ARBITRARY FUNCTIONS

Now, consider a non-polynomial function, f{x) defined at x=a and which has finite
derivatives of all orders at x =a (Figure 22.5).

Let us denote by R,,(x) the difference between the values of the given function f(x) and the
constructed polynomial P,(x), that is:

(29)

R,(x) is called the remainder.

The value of R,,(x) tells us how well P,(x) approximates f{x). The smaller R,,(x) is, the better
P,(x) approximates f{x). For those values of x, for which the remainder R, (x) is small, the
polynomial P,(x) yields an approximate representation of the function f(x).

Thus, formula (29) enables one to replace the function y = f(x) by the polynomial y = P,(x),
to an appropriate degree of accuracy assessed by the value of the remainder R,(x).

Our next problem is to evaluate the quantity R,(x) for various values of x. Let us write the
remainder in the following form

B (X _ a)n+1
R(x) =y 0 (30)
A Y )
y= x/

R,(x)
y=P,(x)

f) | P

X
0 a X

FIGURE 22.5
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where Q(x) is a certain function to be defined, and accordingly we rewrite (29).

(x—a)’ (x—a)’

(x—a)

700 = fta) + C- D) + Eo Dy B2 g
o8 ;!a) f“”(@Jr%Q(x) (31)

For fixed x and a, the function Q(x) has a definite value. Let us denote it by Q. Let us further
examine the auxiliary function of t (¢ lying between a and x):

_ _ 2 a3
F(l) :f(x) 7f(t)7(x1' t)f/(t)f(x 2'[) f”(l)f(x 3't) f(3)([)
—_ A" . _tn+l
e MR T (2)

where Q has the value defined by the relation (31); here we consider a and x to be definite (fixed)
numbers.
We find the derivative F'(¢) (with respect to ¢) from equation (32)©

_ x— T — 2
F'(l) _ —f’(t) +f’(t) _y 'f”(t) +¥ 'f”([) _(Tt)fm(t)
(x—0"" n(x—0""
ey () + =——/"(1) (33)
(X B t)n n+ (n + 1)(X — [)n
*Tﬂ (1) +WQ

Note that, except the last two terms, all the terms on the right-hand side of (33) get
cancelled.

© Derivative of a few terms from (32) are worked out below:

- ["‘1’ Yo - )‘T” (1) +f’(t)(—l)} =10 -0
- {‘* - t)zf"(t): - :(" i 2 U‘"(r)} S0 o - G0 g
_ { oty mi [ O iy G (,)} _ <fn—7r>1")*!‘ g - E 0 g
- <zn*+f>]"; ’ o -- &S L B 0 { 4i0)= 0}
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.. On cancelling, we get,

0 (34)

Thus, the function F(7) [at (32) above] has a derivative at all points # lying near the point with
abscissa a (a <t<x), when a<x, and a >t > x when a > x.
It will be further noted that, on the basis of (31),

F(x)=0),
F(a):O}()

Therefore, Rolle’s Theorem is applicable to the function F(z) and consequently, there exists a
value ¢ = ¢ lying between a and x such that F'(c) = 0.
Therefore, on the basis of relation (34), we get,

(=) iy, (= 0)
_ " e =0
PR AR s
and from this, we get,
0 =f""(c)
Substituting this expression into (30), we get,
()C — a)”Jrl (n+1)
R =
,,(.X) (n 4 1) f (C)

This is the Lagrange form of the remainder.
Since c¢ lies between x and «, it may be represented in the following form.

c=a+06(x—a)

where 6 is a number lying between 0 and 1, (i.e., 0 <8< 1).®

Then, the formula of the remainder takes the following form.

(X _ a)n+1

Rn(x) = (}’l ¥ l)' f(n+l)[a + 9()6 - a)]

The formula is called Taylor’s formula of the (arbitrary) function f(x).

2 3
760 = (@) + E=pa) + S iy + C Do)
(x_ a)” (x_ a)ﬂ+] (35)
+ + nl f(n)( )“‘W[a—b—e(x—a)}

7 Note that F(x)=f£(x) — [expansion for f{x) on the right-hand side of (31)] =0 and similarly F(a)=0.
® See Chapter 20, alternate form of MVT.
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If in Taylor’s formula, we put @ =0, we will have,

n n+1

2
FO) =F(0) 453 (0) + 5F"(0) 4.+ (0) +

X

mﬂ”%e X) (36)

where 6 lies between 0 and 1. This special case of Taylor’s formula is called Maclaurin’s
formula.

Note (9): For applications of the above formulas, refer to standard books.
It can be easily shown that,

(x _ a)n+1

Ra() = () (7)

where, C,, | [= t (say)] is a point lying between a and x©
Note (10): We can use Taylor’s formula to achieve approximations with a prescribed accuracy.

Note (11): Note that Lagrange’s form of remainder R,(x) cannot be used for the exact
computation of the value of R,(x) since the exact location of the point C,, (between a and
x) at which the (n+ l)th derivative is taken, is unknown.

Remark: In approximating e and log,2, it is seen that the error introduced could be made as
small as we wished, by picking # sufficiently large. By taking larger values of n means adding
up more numbers in the n™ Taylor polynomial.*®

This suggests the possibility of attaching a meaning to an infinite series (which is the sum
of an infinite number of numbers). In fact, this can be done, and we will find that e and log,2
can be not only approximated, but also represented by a sum of an infinite collection of
numbers. It is even possible to create entirely new functions through the process of summing
infinite collections of numbers. This demands study of convergence of sequence and series of
numbers and that of functions.

In general, we are interested in the possibility of expressing a function f(x) as a power
series

i Cy(x—a)" (38)

n=0

6, 9

in powers of (x — @), where “a” can be any fixed number.

© For details, refer to Differential and Integral Calculus (Vol.1, Second Edition) by N. Piskunov, Mir Publishers, Moscow,
English translation 1974 (pp. 145-148).

9 Caleulus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick, HBJ Publication, 1988
[Examples (4) and (5) (pp. 502-503) approximating e with an error less than 0.001 and log,2 with an error less than 0.1,
respectively.]
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In particular, if f has derivatives of all orders at a, we call

% ¢4
Zf ( )(X_a)n (39)

the Taylor series of f about the number a.'V

The n'”" Taylor polynomial P,(x) of f about a is defined by

f'ta
2!

=

Py(x) = f(a) +f'(a)(x — a) +

Note: Key condition for expanding a function into Taylor’s series is discussed in Mathematical
Analysis by A.F. Bermant and 1.G. Aramanovich. (By Mir Publishers, Moscow), Page 676.

(D 1f 4 = 0, the Taylor series becomes Z;C:Uf(’” (0) %1, which we have already discussed in detail and which is frequently

nl?

called a Maclaurin series, after the Scottish mathematician Colin Maclaurin (1698-1746).



23 Hyperbolic Functions and
Their Properties

23.1 INTRODUCTION

Certain special combinations of e*and e appear so often in both mathematics and science
that they are given special names.

Definitions: The functions

X —X

sinh x = % (1)
X —X
cosh x = % (2)

are respectively, called the hyperbolic sine and hyperbolic cosine.

The terminology suggests that hyperbolic functions must have some connection with trigono-
metric (circular) functions. In fact, there is. It may not be clear at the moment why these names
are appropriate, but it will become apparent as we proceed further. Recall that, the trigonometric
(circular) functions are intimately related to the unit circle, x* + y* = 1 (Figure 23.1a) on which
any point (x, y) is represented by the parametric equations, x =cost, y=sin¢. In parallel
fashion, the parametric equations x = cosh ¢, y =sinh ¢ describe the right branch of the unit
hyperbola x> — y* =1 [which is the special case of the hyperbola ((x>/a?) — (y*/b?)) = 1]
(Figure 23.1b). Moreover, in both cases, the parameter ¢ is related to the shaded area S by 1 =28,
though this is not obvious in the second case.
Certain Similarities in Formulae

1. There are six basic hyperbolic functions, just as there are six basic trigonometric
functions. The other four hyperbolic functions are defined in the terms of the hyperbolic
sine and hyperbolic cosine.

Definitions: The functions
sinhx e¥—e™
coshx e¥+e¥

tanh x =

23-Hyperbolic and inverse hyperbolic functions: their properties, derivatives, and integrals.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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sinh ¢

2+ y2 =1 X -y =
(@) (b)
FIGURE 23.1

1
hx = 5
sechx cosh x ()
cosechx = ! (6)
) " sinhx

are respectively called the hyperbolic tangent, the hyperbolic cotangent, the hyperbolic
secant, and the hyperbolic cosecant.

Remark: It is because of the definitions of sinh x and cosh x that we use the termino-
logy of circular functions in defining hyperbolic functions.

2. Hyperbolic functions are connected by a number of algebraic relations similar to those
connecting trigonometric functions. In particular, the fundamental identity for the

hyperbolic functions is

cosh2x — sinh2x =1 (7)

To verify it, we write

e +e ¥V e —e Y
h*x —sinh*x = ( —— ) — ( ——
cosh” x — sinh” x ( 5 ) ( 5 )

[(e2x Lo 4 2) - (er Lo 2)]

— =

(This should be compared with the trigonometric result, cos? x+sin®> x=1.)
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Similarly, it can be shown that,
cosh? x + sinh? x = cosh 2x (8)

.. 2 )
(This is analogous to cos“x — sin” x = cos 2x.)

In fact, any formula for circular functions has its counterpart in hyperbolic functions. It will be
noticed that in the above two cases there is a difference in the signs used, and this applies only to
sinh 2x. In any formula connecting circular functions of general angles, the corresponding
Sformulae for hyperbolic functions can be obtained by applying the following rule.

If in any formula connecting cos x, sin x, and tan x, the term sin® x appears (or is implied,
as in the case of tan” x), then we replace sin x by i sinh x, tanx by i tanh x (where i=+/—1); cos x
by cosh x, and simplify the expression to obtain the corresponding hyperbolic formula.

Remember that, the product of two sines such as sinx - siny in a formula, will be replaced
by (isinhx) - (isinhy) = —sinh x - sinhy to obtain the corresponding formula of hyperbolic
functions. Thus, sec®x = 1 + tan’x, becomes

sech? x = 1 4 (itanh x)* = 1 — tanh? x 9)
and cos(x & y) =cos x cosy =+ sin x siny becomes
cosh(x £y) = cosh x coshy =+ sinh x sinh y (10)
Further, sin(x £ y) =sinxcosy £ cosxsiny becomes
sinh(x & y) = sinh x coshy =+ coshx sinhy (11)
If y is replaced by x in these identities we obtain,

cosh 2x = cosh? x + sinh? x (12)

sinh2x = 2sinhx - cosh x (13)

Note (1): From the definitions (1) and (2), we can obtain
coshx + sinhx = e” (14)

coshx —sinhx = e (15)

It is, therefore, apparent that any combination of the exponentials e*and e can be replaced by
a combination of sinh x and cosh x and conversely.
Let us verify the formula,

cosh(x +y) = coshx - coshy + sinh x - sinhy

By definition, we have the left-hand side as,

2

X+y —X—y
cos(x+y) = (i)
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Now, consider the right-hand side,

e¥+e ™ e+e? e*—et e—e?

coshx - coshy+sinhx - sinhy =

2 2 2 2
= % [ e ™™ pe Vfe Y e e —e¥ Y eV
2[ex+_v + efx—y] ex+y + e ¥y

2 = 5 =cosh(x+y)=L.H.S.

The important syperbolic and the corresponding trigonometric formulae are listed below.

Hyperbolic Functions

Circular Functions

cosh 2x — sinh 2x =1

sinh 2x =2 sinh x + cosh x
cosh 2x = cosh 2x + sinh 2x
sech®x=1 — tanh’x

cosech?x = coth?x —1

cos’x +sinx=1
sin2x =2sin X - cos X
€08 2x = cos’x — sin®x
sec’x =1+ tan’x

cosec’x = cot’x + 1

sinh(x £ y) =sinh x - cosh y &= cosh x - sinh y sin(x £ y)=sin x-cos y£tcos x-sin y

cosh(x £ y) =cosh x - cosh y £ sinh x - sinh y cos(x £y)=cos x-cos yFsin x-siny

Note (2): Hyperbolic functions are defined in terms of exponential functions. This is very
different from the way we defined trigonometric functions. However, if you study complex
analysis, you will discover that trigonometric functions can also be defined in terms of
exponential functions of a complex variable. Now, we shall discuss the striking connections
between the two sets of functions.”

23.2 RELATION BETWEEN EXPONENTIAL AND TRIGONOMETRIC
FUNCTIONS

The following expansions were obtained in the chapter(s) shown against each:

xz x3 n
D e'=l+x+=+=—+ . + =+ ... (see Chapter 13)
2! 3! n!
3.5 2n—1
(ii) sin x =x— % + % — e, + (=1)"! ﬁ + o (see Chapter 22)
2 .4 -2
(iii) cos x = 1—% + % — e, + (=" (2)’;7_” o (see Chapter 22)

It can be shown that these series converge for all values of x, real or complex. Indeed when
X=o0.+ iB, these series will serve as definitions of e**#, sin(a + iB), and cos(a + iB),
respectively.

@ For details, any book on advance trigonometry (i.e., Trigonometry of Complex Variables) should be consulted.
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(iv) For x =16, a purely imaginary number (i) becomes
2 3 04

. 0 0
0 __ n_ 2 2 Y
e’ =1+41i6 T 13!+4!+ ......... ,

since i =v/—1, 2 = —1, # = —i, i* = 1, and so on.

(v) Multiplying (ii) by i and writing 6 for x, we get,

03 S
lsm€:z€—l§+§— ......... ,
(vi) For x =40, (iii) becomes
g* ¢
cosd =1 — 21 + o ,

(vii) By adding (v) and (vi), we get (iv). Thus, we have,
e = cosh + isinf

This is a remarkable relation and is generally known as Euler’s Identity. It exhibits a
very simple connection between sin 6, cos 6, and e”. Evidently,

e = cos(—0) + isin(—6), or
(viii) e = cosf — isin 6
Solving (vii) and (viii) simultaneously for sin # and cos 6, we get

0 —if iX _ a—ix
(ix) siné?:! or sinx:!
2i 2i
ei(i + e—i& eix +efix
g=— - -
(x) cos 2 Or COSX )

These relations are very important in advanced mathematics. Also, (ix) and (x) could be used
as definitions of sin 6 and cos 0.

Note (3): In many branches of applied mathematics, there are functions very similar to the right-
hand side of (ix) and (x) above, which are of definite importance. These are ((e* — e™¥)/2) and
((e* 4+ e7¥)/2), where the exponents are real.

These simple combinations of the exponential functions are called the “hyperbolic sine of
the variable x”, and the “hyperbolic cosine of the variable x” and denoted by sinh x and cosh x,
respectively. That is, by definition,

. et —e ¥ et +e
sinh x = — and coshx = —

Recall that we started this chapter with these definitions. In order to make clear the reference to a
hyperbola in these definitions, it may be mentioned that a trigonometry of hyperbolic functions,
comparable to that of the circular functions has been developed.
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It is easy to show that,
. .. . .
sinh x = —sinix and coshx = cosix, wherei = v —1.
i

In the relation

ix _ e—ix e X _ ¢
sin x = replacing x by ix, we get sin ix = — =— — =1
i

. . . 1.
c.sinix = isinhx or sinhx = —sinix
i

Note (4): We know that e ™ is positive, therefore the equation, cosh x — sinhx=¢ * [i.e.,
equation (ix)] shows that cosh x is always greater than sinh x. But, for large values of x, e ™ is
small and coshx ~ sinh x.

23.3 SIMILARITIES AND DIFFERENCES IN THE BEHAVIOR
OF HYPERBOLIC AND CIRCULAR FUNCTIONS

The graphs of hyperbolic cosine and hyperbolic sine are shown in Figure 23.2. At x =0, cosh
x=1, and sinhx=0. Note that these value are same as in the case of corresponding
trigonometric functions, at x = 0. Therefore, all the hyperbolic functions have the same values
at 0 that the corresponding trigonometric functions have.

Further, note that,

sinh(—x) = = = —sinhx

—X X X —X
cosh(—x) = ¢ 2+e =° +2€ = cosh x

Thus, hyperbolic sine is an odd function and the hyperbolic cosine is an even function. So the
graph of sinh x is symmetric with respect to the origin and that of cosh x is symmetric about
the y-axis. Here again the hyperbolic functions behave like the ordinary trigonometric (or
circular) functions (see Figure 23.2).

Of course, there are major differences between hyperbolic and circular functions. For
example,

(i) The functions sinh x, cosh x, and tanh x are obviously defined for all values of x. But,
the function coth x is defined everywhere, except at the point x =0 (Figure 23.3).
On the other hand, the circular function tan x is defined everywhere except at the
points x=(2k + 1)(n/2), (k=0, £1, £2, ...). Similarly the function cot x is defined
everywhere except at the points x = k=, (k =0, +1, £2, ...).

(ii) The circular functions are periodic, sin(x+2mn) = sin x, tan(x+mn) =tan x, and so on.
But, hyperbolic functions are not periodic.

(iii) Both differ in the range of values they assume.

sin x varies between —1 and +1, i.e., it oscillates.

sinh x varies from —oo to o0, i.e., it steadily increases.
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1
1
!
d
q
i
i
i
[
1
[

FIGURE 23.2

cos x varies from —oo to 400, i.e., it oscillates.
cosh x varies from 400 to 1 to +oo.

tan x varies from —oo to +oo.
tanh x varies from —1 to +1 (Figure 23.4). Also see Note (6), given later.

|sec x| is never less than 1 [."|cos x| < 1]
sech x is never greater than 1, and is always positive (see Figure 23.5).

(iv) Another difference lies in the behavior of the functions as x — +oo. We can say nothing
very specific about the behavior of the circular functions sin x, cos x, tan x, and so on
for large values of x. But the hyperbolic functions behave very much like (e¥)/2,

(e7)/2, unity or zero, as explained below.
For x large and positive:
cosh x ~ sinh x ~ Eex

tanh x ~ coth x =~ 1 sech x =~ cosechx ~ 2e ™ ~
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Y

y=coth x

A

FIGURE 23.3

For x negative and |x| large:

et —
coshx ~sinhx~ ———~—e™

X —X
e +e

tanhx ~ cothx &8 —— ~ —1
ex 76*)»

sechx ~ —cosechx ¥ ————~2e* =~ 0

y = tanh x

FIGURE 23.4
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AY

y=sechx

_1e

y=sechx
FIGURE 23.5

Note (5): The hyperbolic functions are not included in the class of basic elementary functions,
but we discuss them here since they are important for applications.

23.4 DERIVATIVES OF HYPERBOLIC FUNCTIONS

The formulas for the derivatives of the hyperbolic sine and hyperbolic cosine functions are
obtained by considering their definitions (i) and (ii), and differentiating the expressions
involving exponential functions. Thus,

d d X _ a—X X —X
a(sinhx):a(e 26 )_e te = coshx

d d X —Xx X X
and a(coshx):a(e +2e ) =% "% _inhx

From these formulas and the chain rule we have the following theorem.

Theorem (A): If u is a differentiable function of x,

d . du
a(smh u) = coshu - o
d d

a(cosh u) = sinhu - é

The derivative of tanh x may be found from the exponential definition or we may use the above
result(s) (i.e., the derivatives of sinh x and cosh x).

inh
Let y=tanh x= S
cosh x
d d /[ sinhx
— (tanhx) = —
dx( ) dx (coshx)
_ coshx - coshx — sinh.x - sinh x
N cosh? x
_ cosh? x - —sinh2x
B cosh® x
1
= ——— =sech’x[" cosh’x —sinh?x = 1]

cosh? x
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The formulas for the derivatives of the remaining three hyperbolic functions are

d
o (cothx) = —cosech? x
X
d
d—(sech X) = —sechx - tanhx
X
d
d—(cosech x) = —cosech x - coth x
X

From these formulas and the chain rule, we have the following theorem.
Theorem (B): If u is a differentiable function of Xx,
% (tanh ) = sech’ uj—z
% (cothu) = —cosec h? uj—z
%(sech u) = —sechu - tanhu - (%
% (cosechu) = —cosechu - cothu - %

23.5 CURVES OF HYPERBOLIC FUNCTIONS

The curves of cosh x and sinh x in Figure 23.2 should be examined again with the assistance of
their differential coefficients.

X —X
1. y:coshx:i
2
d X _ a—X
d—y = % = sinh x, and
by
d?y e*fe "
@:#:COS}IX

Note that dy/dx vanishes only when x=0. There is, therefore, a turning point on the curve
(see Figure 23.6). Also, since dy/dx (=sinh x) is negative before this point and positive
after, while (d*y)/(dx?) is positive, the point x=0 is a minimum. There is 1o other
turning point and no point of inflexion. The curve of cosh x is an important one. It is
called the catenary, and is the curve formed by a uniform flexible chain which hangs
freely with its ends fixed.
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X
} } } } >
) -1 0 1 2
y =cosh x
FIGURE 23.6
2. y=sinhx.
dy d?y .
— =coshx, —= =sinhx
dx T dx?

Note that dy/dx is always positive and does not vanish. Consequently, sinhx is
always increasing and has no turning point. When x=0, (d?y)/(dx?) = 0, and is negative
before and positive after. Therefore, there is a point of inflexion when x = 0; since dy/dx
(i.e., cosh x)=1.

When x =0, the gradient at O is unity and the slope is n/4 (Figure 23.7).

d
3. y=tanh x - _ sech?x.
dx

Since sechx is always positive, tanh x is always increasing between —co and +o0c. Also
since sinh x and cosh x are always continuous and cosh x never vanishes, tanh x must be
a continuous function.

Note (6): The expression for tanh x can be written in the form:

6:2"’—1_1 2
e+ 1 e2¥ 4+ 1

tanh x =

From this form, it is evident that while x increases from —oo to 0, e>* increases from 0 to 1.

1 — ——— or tanh x increases from —1 to 0.
e 41

Similarly, while x increases from 0 to 400, tanh x increases from O to 1. The curve therefore has
the lines y =+£1 as its asymptotes which are shown in Figure 23.8.
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y
4 -4
3 -
a4
1 i
X
f f f f >
2 1 0 1 2
1T
27T
3+
4+
y=sinhx
FIGURE 23.7

Note (7): Observe that the derivatives of the hyperbolic sine, cosine, and tangent all have a plus
sign, whereas those for the derivatives of the hyperbolic cotangent, secant, and cosecant all
have a minus sign. Otherwise, the formulas are similar to the corresponding ones for the
derivatives of the trigonometric functions.®

4 3 2 - 01 2 3 4

FIGURE 23.8 y = tanh x

@ Recall that in the case of circular functions, the derivatives of cofunctions (i.e., cos x, cot x, and cosec x) are with
negative sign.
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23.6 THE INDEFINITE INTEGRAL FORMULAS FOR HYPERBOLIC
FUNCTIONS®

The indefinite integration formulas for hyperbolic functions from the corresponding differ-
entiation formulas.

Jsinhudu =coshu+c¢

Jcoshudu =sinhu+ ¢

Jsechzu du =tanhu + ¢
Jcosec h?udu = —cothu + ¢
Jsecu tanhudu = —sechu + ¢

Jcosech u - cothudu = —cosechu + ¢

23.7 INVERSE HYPERBOLIC FUNCTIONS

(i) Inverse Hyperbolic Sine Function. From the graph of the hyperbolic sine in Figure 23.7,
observe that a horizontal line intersects the graph in at most one point. The hyperbolic
sine is, therefore one-to-one. Furthermore, the hyperbolic sine is continuous and
increasing on its domain. Thus, this function has an inverse that we now define.

Definition (A): The inverse hyperbolic sine function denoted by sinh~'x, is defined as
follows:

y=sinh~'x, if and only if, x = sinh y, where y is any real number (Figure 23.9).

y

3 22 -1 0 2 3

y=sinh! x

FIGURE 23.9

) In fact, this material belongs to Part II of the book. However, it is included here to convey that the techniques applied to
integrate hyperbolic functions are similar to those used for trigonometric (circular) functions.
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Y

y=coshx,x>0

FIGURE 23.10

Both, the domain and range of sinh™'x, are the set R of real numbers. From the
definition (A),

sinh(sinh~'x) = x and sinh™' (sinh y) = y.

(ii) Inverse Hyperbolic Cosine Function. From the graph of the hyperbolic cosine in
Figure 23.6, notice that a horizontal line, y =k where k > 1, will intersect the graph
in two points. Thus, cosh is not one-to-one and does not have an inverse. However, as in
the case of inverse trigonometric functions, we restrict the domain and define a new
function F as follows:

F(x) =coshx, x >0 (Figures23.10 and 23.11).

Y=

0 1 2 3 4

y=cosh™! x

FIGURE 23.11
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The domain of this function is the interval [0, +00) and the range is the interval
[1, +00). Because F is continuous and increasing on its domain, it has an inverse,
called the inverse hyperbolic cosine function.

Definition (B): The inverse hyperbolic cosine function denoted by cosh™ 'y, is defined
as follows:

y = cosh™!x, if and only if, x = coshy, wherey > 0.

The domain of cosh™'x is in the interval [1, +00) and the range is in the interval
[0, +00). From the definition (B),

cosh(cosh™'x) = xif x > 1 and cosh™!(cosh y) if y > 0.

(iii) Inverse Hyperbolic Tangent Function. As with the hyperbolic sine, a horizontal line
intersects the graph of the hyperbolic tangent (Figure 23.8) in at most one point.
Therefore, the hyperbolic tangent function is one-to-one and has an inverse.

Definition (C): The inverse hyperbolic tangent function denoted by tanh™'x is defined
as follows:

y=tanh™'x, if and only if, x =tanh y, where y is any real number.

The domain of the inverse hyperbolic tangent function is the interval (—1, 1) and the
range is the set R of real numbers. The graph of tanh™'x appears in Figure 23.12.

(iv) Inverse Hyperbolic Cotangent Function. In this case, a horizontal line intersects the
graph of the hyperbolic cotangent function in at most one point. Hence, this function is
one-to-one and has an inverse. For convenience, the graphs of both y=coth x and
y=coth™'x are given in Figures 23.13a and 23.13b. The domain of the inverse hyper-
bolic cotangent function is (—oo, 1) U (1, +00) and the range is (—oo, 0) U (0, +00).

Note (8):The inverse hyperbolic secant and inverse hyperbolic cosecant functions are not
discussed here, since they are seldom used.

23.7.1 Logarithm Equivalents of the Inverse Hyperbolic Functions

Since the hyperbolic functions are defined in terms of e¥ and e, it is not too surprising that the
inverse hyperbolic functions can be expressed in terms of the natural logarithm. Following
are these expressions for the four inverse hyperbolic functions we have discussed.

sinh™'x = log,(x + v/x2+1), x € R (16)

cosh™' =log,(x + Vx2—1), x> 1 (17)
-~ 1 1+x

tanh 'xzilogem, x| < 1 (18)

1 1
coth™!x = flogei
x—

2 1

> 1 (19)
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x=-1 x=1

2+

-3 4

y=tanh™! x

FIGURE 23.12

To prove sinh™'x =log.(x +vx2>+1), x € R
Let y=sinh™'x
*. From definition (A)

x =sinhy
el —e ™V
orx =——r——
2
1
2x =¥ ——
e’

e —2x-e —1=0or(e) —2xe" —1 =0
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Ay -
2 4 T o
T
1
X £
S0 o s R E R .
-+ g
o 4
\
2+ ot
y=coth x y = coth~lx
(a) ®)
FIGURE 23.13

Solving this equation for e’ by using the quadratic formula, we get,

Vax? +4
2

L =xEtVx2+1

e’ =2x+

We can reject the minus sign in this equation because ¢” > 0 for all y, while x—v/x?+1 is less
than zero for all x. Therefore,

y= IOge(X + v X2+l),
But, y = sinh~'x, which means that,
y = sinh~'x = log,(x + VX2 + 1)

Other formulas can be proved similarly.
Example (1): Express each of the following in terms of a natural logarithm

(a) sinh™'2

(b) tanh™! (—%)

Solution: (a) We have

sinh~'x = log, (x + VX2 + 1)
o.sinh™12 =log,(2 ++/5) Ans.
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(b) tanh ™! (— %)

1 1
We have, tanh_]x:floggl—i_ix, x| <1
—Xx

2
4 4
Notethat,xzfgand‘f§'<l
. 1—(4/5)
~tanh™'x = ~log, —— =
A= %% T (45
1 1/5 1 1 1 1
=1 —— | =-log,| = | =zlog,| =
2Oge(9/5) 2Og‘<9) 2Og‘(9)
1 -2
:Eloge.’; = —log,3 Ans.
_ 1 1+x
1 J——
To prove tanh™ " x —2loge — x| <1

Let y=tanh 'x

x =tanhy, where |x| < 1(i.e., xlies between —1 and +1)
e —e? e -1
X=—=—
e +er e¥+1
x(e¥+1)=e¥ -1
or xe¥ +x=e¥ -1

or e?(x—1)=—(x+1)

2 (x+1) I+x

or e-:—(x71) 1—x
1+x
2y = log, ——
y =108 17—

1 1+x
Ory:§10gem7 x| <1

23.7.2 Differentiation of Inverse Hyperbolic Functions

Inverse hyperbolic functions correspond to inverse circular functions, and their derivatives are
found by similar methods.

(i) Derivative of sinh~x
Method (1): Let y= sinh~'x

Then x =sinhy
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dx

- h

d coshy

1 1

dx ~ coshy /T sinhZy
1 1

Ans.

= or
V1+x2 VxZ 41

Method (2): By using the logarithm equivalents, we can compute the derivative of
sinh~! x as follows:

d d
—(sinh™'x) = —log, (¥ + V7 + 1)

1 d

- . < 2 1)
x+vVx2+1 dX<x+ o

1 1 1
= (14— 2
x+vVx2+1 ( 2 x2 41 )
VX2 +1+x 1
= = ; Ans.
\/x2+1(x+\/x2+1) V41

(ii) Derivative of cosh™! x
Let y=cosh™! x. Using the same method as above, we get,

dy 1
dx Va2 -1
(iii) Derivative of tanh~'x
If y=tanh~'x
x =tanhy
dx )
— = sec
dy Y
dy 1 1 1

and — = = =
dx sec?y 1—tanh’y 1-—x?

The differential coefficient of the reciprocals of the above can be found by the same methods.
They are,

d 1
y = sech™lx, & -
dr  xvV1-a2
dy 1
=cosech 'y, —=-——o-——
Y dx xvV1 4+ x2
dy 1

y = coth™'x, - =
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TABLE 23.1
Functions Derivatives Functions Derivatives
I
sinh x cosh x sinh~'x
V1+x2
1
cosh x sinh x cosh™'x —,x>1
x2—1
_ 1
tanh x sech?x tanh~'x —, x| <1
1 —x2
2 —1 1
coth x —cosech”x coth'x -, x| >1
x2—1
sech x sech x - tanh x sech™! ! 0<x<1
_ X - X -
xV1—x2
1
cosech x —cosech x - coth x cosech™'x e
xvV1+ x2

The derivatives of all the hyperbolic functions and their corresponding inverse functions are
given in Table 23.1.

From these formulas and the chain rule, we can obtain the following results.

If u is a differentiable function of x

. %(Sinh’lu) :ﬁ : % (20)
C (o) = s (1)
. %(tanhflu) :l%uz : %, | < 1 (22)
. %(cothflu) =1 _1u2 : %7 lu| > 1 (23)

Later on, the following forms will be found to be important.

1. y= sinhfﬁ
a

dy 1 1 1 1
—_ = —— or —_—
dx /14 (x2/a?) a Va®+x2 VX2 + a?
2. Ify:coshflf
’ &1
dx_ xz—az
—1;
3. If y=tanh™ 3
dl a

dx a2 —x2

Logarithm equivalents

X X+ Vx2+a?
sinh” — =logq ———
a a
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X X+ Vxr—a?
cosh E:log —

1
tanh ™ T flog{ at x}
a

2 a—x

Example (2): Find dy/dx if y= tanhfl(cos 2Xx).

Solution: We have,

d 1 d
o (tanhflu) =1T-z %, where u© = cos2x
dy 1 .
— = ———— . (—2sin2
dx 1—cos?2x (=2sin2x)
(—2sin2x)
T sin?2x
= .7 = 2cosec2x Ans.
sin 2x
Example (3): Find dy/dx, if y = sinh™'(tan x).
Solution:
d 1 d
— (sinh ! (tan x)) = ——— - — (tanx
o (tanx)) e o (anx)
1 2 sec? x

=—— - se

cix=— "
Vitan? x + 1 [secx|

= |secx]| Ans.
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From the formulas for the derivatives of the inverse hyperbolic functions given in Table 23.1, we

obtain integration formulas, as follows:

_du sinh™'u +
=sinh™ u+c¢
Vu? +1
du
————=cosh'u+c¢
vu? -1
du _ {tanh™"u+ cfor|u| <1
1—u? coth™'u + cfor [u| > 1
du
——— = —sech Hu| + ¢
uv'l —u? ud
du
——— = —cosech™|u| + ¢
Ju\/l +u? o

(24)

(25)

(26)

(27)

(28)

Note (9): From Table 23.1, observe that tanh~'x and coth™'x have algebraically identical
derivatives, but the domain of tanh™'x is |x| <1 while the domain of coth™'x is |x| >1.
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Hence, there are two expressions in the formula (26). Further note that
1 1/2 1/2
21

l—w2 1—-u l4u

.. We can write,

du 1 1
J du —lo |l+u+c
11— 2%y

This is an alternative to (26).

Note (10): The main application of inverse hyperbolic functions is in connection with
integration, where the following formulas are used.

d
D Jiu:sinh_ngrc:loge(qu w+at+c if a>0
a

Vu? 4 a?

d
(1) J\/%:cosh"gﬁ—c:loge(u—k\mﬂ—a2+c if u>a>0
uw—a

1 u
—tanh~'=4¢ for |u| <a
a a

(110 JL -

2 _ 2 1 U
ar—u —coth™ ! =4 ¢ for |u| >a
a a

—log, m‘—i—c if u# aanda # 0
2a a—u

These formulas can be proved by computing the derivatives of the right-hand side and obtaining
the integral. We demonstrate the procedure by proving (I) from note 10.

Proof of (I):

2
:% - — andbecausea > 0,\/(?=a; thus
u-+a

To obtain the natural logarithm representation, we use formula (1) page 696.
‘We have,

sinh 'x = log,(x + V32 + 1), x €R



Therefore,

where ¢, = c—log.a.

JUSTIFICATION FOR CALLING sinh AND cosh

2

.sinh™! v log, E—Q— u +1
a a a

(u Vu? +a2)
= log, _

-+
a a

= log, (u+ Vu? + a?) — log,a

u
sinh™' =+ ¢ = log, (u+ Vu? + a?) — log,a + ¢
a

= log, (u+ Vu* +a%) + ¢;
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In Part II of this book, you will learn various techniques to evaluate the integrals. The formulas
I), (II), and (IIT) above, give alternate representations of the integral in question. When
evaluating an integral in which one of these forms occurs, the inverse hyperbolic represen-
tation may be easier to use and is sometimes less cumbersome to write. However, in the case of
definite integrals, wherein numerical value(s) are obtained, the logarithmic form of the integral
may be found more useful.

23.8 JUSTIFICATION FOR CALLING sinh AND cosh AS HYPERBOLIC
FUNCTIONS JUST AS sine AND cosine ARE CALLED TRIGONOMETRIC
CIRCULAR FUNCTIONS

Recall from trigonometry course (or see Chapter 5) that if 7 is the angle formed by the x-axis and
a line from the origin to the point P(x, y) on the unit circle, then

sinz = y and cost = x(see Figure 23.14).

P(cos t, sin 1)

FIGURE 23.14
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y

. P (cosh ¢, sinh 7)

.,
s,
s,
s,
s,
s,

B X

o
>

Seel oS

(cosh 0, sinh 0)

FIGURE 23.15

Now refer to Figure 23.15, where ¢ is any real number. The point P(cosh ¢, sinh ¢) is on the unit
hyperbola because

cosh? ¢ — sinh? 7 = 1.

Observe that, because cosh t is never less than 1, all points (cosh t, sinh t) are on the right
branch of the hyperbola. We now show how the areas of the shaded regions in Figures 23.14
and 23.15 are related. We know that the area of a circular sector of radius r units and a central
angle of radian measure t is given by(1/2)r?t square units. Therefore, the area of the circular
sector in Figure 23.14 is (1/2)# square units, since r = 1. The sector AOP in Figure 23.15 is the
region bounded by the x-axis, the line OP and the arc AP of the unit hyperbola.

Let the area of sector AOP = A, square units, the area of sector OBP = A, square units, and
the area of sector ABP = A3 square units.

Then, A1 = A2 — A; (29)
From the formula for determining the area of a triangle
1 .
Ay = Ecoshl - sinh ¢ (30)

We find A; by integration

Az = [sinhud(coshu)

O t—

sinh 2u du

O —
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t
1
= 5J(cosh2u — 1)du
0

1 (sin2u y '
2\ 2

0

1 1
= <Zsinh2u —Eu)

t

0

Therefore,

1 1
Ajs :Ecosht . sinht—it
1 . ..
Az :Az_it [using (ii)]
1 1
A3*A2:§l or Al:it[ Az —A; :Al}

Thus, the measure of the area of circular sector AOP of Figure 23.14 and the measure of the area
of the sector AOP of Figure 23.15 is in each case, one-half of the value of the parameter
associated with the point P. For the unit circle, the parameter ¢ is the radian measure of the angle
AOP. The parameter ¢ for the unit hyperbola is not interpreted as the measure of an angle; the
term hyperbolic radian, however, is sometimes used in connection with .

Note (11): For exercises, refer to standard books.



APPENDIX A (Related To Chapter-2)
Elementary Set Theory

A.1 INTRODUCTION

Set theory is the basis of modern mathematics. The great German mathematician George
Cantor (1845-1918) is regarded as the father of set theory. He developed, utilized, and stressed
the concept of sets in the study of mathematics.

The dictionary meanings of the word set are collection, class, family, aggregate, group, and
so on. But there can be collections (or sets) that cannot be identified uniquely. For example,
consider a set of rich people. From a dictionary point of view, it may be acceptable to use the
statement set of rich people for a group of people who appear to be rich, but from a mathematical
point of view we must define a rich person so that one can be identified (without confusion)
whether he (or she) is rich. From this point of view, the word set is not a well-defined term. It is
for this reason that set is considered to be an undefined term in mathematics.

To have a meaningful discussion about sets, it is necessary to be able to identify the
collection (or the set) without any confusion. This demands that there must be a rule that should
guide us in identifying the elements of the set under consideration so that one can decide
whether a given object belongs to the set under consideration. (Such a rule may specify a
property which a single object does or does not have).

Thus, from the point of view of mathematics, we agree to say that a set is a well-defined
collection of objects. (Note that, we have not attempted to define the word set).

A few examples of sets are given below:

(i) Set of natural numbers.
(i1) Set of roots of the equation, X2—TIx+6 =0.

(iii) A setconsisting of prime minister of India, capital of the United States, natural numbers
1-10, Taj Mahal and alphabets a—c.

In all these collections, we can identify each object precisely and hence they represent sets.
On the other hand, honest people, clever students, handsome boys and beautiful girls, and so on
are relative terms and it is not possible to identify them for want of their proper definitions.
Hence, they do not form sets in language of mathematics. Now, we introduce the following
terminology to understand the elementary set theory.

Appendix A Elementary Set Theory: (The language of sets as the back-bone of modern mathematics)

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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A.2 ELEMENTS OF A SET

The objects that belong to a set are called elements or members of the set. The elements of a set
need not be related to one another in any obvious way, except that they happen to be put
together (see example (iii) above).

A.3 SET NOTATIONS

The sets are usually denoted by the capital letters A, B, C, D, . . ., X, Y, Z and their elements are
denoted by small letters a, b, ¢, d, ..., x, y, z.

If a particular element x belongs to set A, we write x € A. If two elements x and y belong to set
A, we shall write x, y € A. However, if an element x does not belong to set B, we write x ¢ B. We
use curly brackets to enclose the elements of a set. For example, consider the set C given below:

C = {All positive even numbers}
={2,4,6,8,10,...}, here8 € B, 5¢ B
= {x|xis a positive even number}

The symbol “|” is used to read “such that”.
Each element in a set is separated from the other by a comma.

A4 SPECIFYING SETS

If the elements of a set do not have any property in common, then it becomes necessary to list all
the elements of the set. On the other hand, if the elements of the set have some property in
common, then it is up to our requirement whether to list the elements of the set or else use the
other method to identify correctly the elements of the set. Thus, there are two methods of
specifying sets:

(i) Roster Method or Listing Method or Tabulation Method: In this method, a set is
represented by listing all its elements within braces { }, as shown above. Again, set C of
vowels will be written as

C ={a, e i,o,u}

(ii) Rule Method or Set Builder Method: In this method, we state one or more characteristic
properties of the elements so that one is able to decide whether a given object is an
element of the set. Thus, if D is a set such that its elements x satisfy the property P(x),
then we write D = {x |x satisfies P(x)}.

Examples:
A = {x|x is even integer} = {..., -4, =2,0,2,4,6, ...}
B = {x|x is odd number less than 11} = {1,2,3,5,7,9}
C = The set of roots of the equation x* —6x>+ 11x —6 = 0
= {x]x*—6x*+ 11x—6 = 0}

Now, since the roots of the equation X —6x2+ 11x— 6 =0 are 1, 2, and 3, we may write
C=1{1,2,3}.
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Note: Sets that we use in mathematics are usually collections of numbers, points, planes, lines,
and so on, and we shall be concerned with such sets only.

A.5 SINGLETON SET (OR UNIT SET)

A set that contains only one element is called singleton. Thus, {a}, {5} are singleton sets.
LetA = {x|x+5 = 5}.Here, from x4+ 5 = 5, we get x = 0. Thus, the set A contains only
the element 0. Hence, A = {0}, which is singleton set.

A.6 THE NULL SET OR THE EMPTY SET

It is possible to characterize a set by a property that would permit no objects to be in the set.
For example, the set of all real roots of the polynomial equation, x* +1 = 0. The set that has
no members is called the empty set or the null set and it is denoted by the symbol ¢ or {}.

Remark: Here, it may be noted that in different contexts, there can be different null sets.
Hence, all null sets are not the same. However, all null sets are denoted by the same symbol.
Since there is only one null set (in each context), we call it the null set instead of a null set.

Note: We must distinguish between ¢ and {¢}. Although set ¢ is a null set (i.e., it contains no
element), the set {¢} is a singleton whose one element is the empty set ¢. Similarly, {0} is a
singleton.

There are many relations among sets, as given below.

A.7 THE CARDINAL NUMBER OF A SET

If a set A contains finite number of elements 7, we denote the cardinal number of set A by n(A).
In other words, n(A) stands for the number of elements in a finite set.

Examples: Consider the following sets:

i) A=1{1,3,5717,9,11, 13}
(i) B={a, e, i, 0, u}

Gii)) C ={2,3,5,7, 11, 13, 17, 19}

Thus, n(A) = 7, n(B) = 5, and n(C) = 8 represent the cardinal numbers of the above sets.
In Chapter 2, we have already introduced the concept of infinite sets (both countable and
uncountable). (A set is infinite if it is not finite.) Some examples of infinite sets are as follows:

i N=1{1,2,3,4,...}.
Gi) D= 1{1,4,9,16,...}.
(iii) R = Set of all real numbers.

(iv) S = Set of all points in a plane.

The cardinal number of countable infinite set, N = {1, 2, 3, 4, ...} (or any other set that is
equivalent to N), is denoted by the symbol R, (read aleph-null). The symbol “c” is used to denote
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the cardinal number of an uncountable infinite set, like the set of all real numbers or the set of
points in an open interval or the set of points in a plane.

Remark: The cardinal number of the empty set is zero. We write n(¢) = 0.

A.8 SUBSET OF A SET

If two sets A and B are such that every element of A is also an element of set B, then A is called
a subset of B. Thus, set A is a subset of B if

XEA=Xx€EB

(Here, the symbol = stands for implies that.)
Symbolically, we write this relationship as A C B and read as A is a subset of B or A is
contained in B."

Example: Let A = {1, 2, 3} and B = {1, 2, 3, 4}. Then clearly A C B. Again, let D =
{2,4,6,8}and E = {2, 8, 4, 6}. Then, D C E. Also note that E C D.

Remark: Observe that in the term subset, the possibility that both the sets may be equal is
included. Thus, every set is a subset of itself.
If set A is not a subset of set B, we write AgB.

A9 EQUALITY OF SETS

Definition (1): We say that two sets are equal if they contain precisely the same elements.
Again in view of the definition of subset of a set (which includes the possibility of their
equality), we give the following definition.

Definition (2): Two sets A and B are equal iff A C B and B C A.

In other words, we say that A = B, if every element of set A is an element of set B and every
element of set B is an element of set A. The equality of sets A and B may be written in the
following symbolic form:

XE€EA&S XEB.

The symbol <> stands for “implies and is implied by” or “if and only if” or “iff”.

Note: Importance of Definition (2)
We draw the following two important conclusions from Definition (2):

(i) A set does not change if we change the order in which its elements are tabulated.

(i) A set does not change if one or more of its elements are repeated.

M If A C B, then B is called the superset of A and symbolically we write it as B D A and read it as B is a superset of A or B
contains A.
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For example, consider the following sets:
A=1{1,7,32 B={7,31,2 3}

According to Definition (2), we have A = B.
(In general, we never write a set in which its elements are repeated.)

A.10 PROPER SUBSET
Consider a set A that is a subset of set B (i.e., A C B).
If there is at least one element of B that is not in A, then A is called a proper subset of B, and
we write A C B.
Example: IfA = {1,2,3}andB = {1,2,3,5,6},thenA C B.If A isnot a proper subset of B,

we write A ¢ B. This will be the situation when there is at least one element x € A, but x ¢ B.
For example, consider A = {1, 2, 3} and

B=1{1,2,4,5,6}. Here,3 € Abut 3 ¢ B. Hence, A ¢ B.

Remark: Thenull set ¢ is taken as a subset of every set. Thus, every set has at least two subsets:
the set itself and the null set.

A.11 COMPARABILITY OF SETS
Two sets can be compared if one of them is subset of the other. Two sets A and B are said to be
comparable if AC BorBC A.IfA g BorB g A, then A and B are said to be noncomparable

or incomparable.

Example: ThesetsA = {1,2}andB = {1,2,3} are comparable as A C B. On the other hand,
the sets A = {1, 2, 3} and B = {2, 3, 4} are incomparable.

(The symbols C and 2 in set theory may be compared with the order relations < and > in
arithmetic.)

A.12 SET OF SETS
A set may itself be sometimes an element of another set. A set whose elements are set(s) is

called set of sets. For example, A = {¢, {1, 2},{3}} is a set of sets. An important set of sets
is the power set defined below.

A.13 POWER SET

If S is any set, then the family of all the subsets of S is called the power set of S and denoted
by P(S).

Example: LetS = {1,2,3}.Then, P(S) = {¢, {1}, {2}, {3}, {1,2},{1,3},{2,3}, {1,2,3}}.

It can be shown that if a set S has n elements, then P(S) has 2" elements.
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Remark: The powersetof ¢is {¢} andithas 2% — 1 element. The power setof {0} is {{0}, ¢}
and it has 2' = 2 elements.

A.14 UNIVERSAL SET U

In any discussion about sets, all the sets under consideration are to be the subsets of a particular
set. Such a set is called the universal set or universe of discourse. It is denoted by U.

Examples:

(i) In the discussion concerning the set of odd numbers, the set of even numbers, the set of
prime numbers, the set of composite numbers, the set of factors, and so on, the universal
set is the set of natural numbers.

(i1) The setof all real numbers is the universal set in the discussion of subsets of rational and
irrational numbers.

Explanation: The statement there is no number whose square is 8 is valid if the discussion
is limited to the set of integers or the set of rational numbers, but it is invalid if the universal
set is the set of all real numbers.

A.15 OPERATIONS ON SETS

In arithmetic, the elementary operations of addition, subtraction, multiplication, and division

are used to make new numbers out of old numbers, that is, to combine two numbers to create

third. Similarly, in elementary set theory, there are binary operations on sets that generate
@

new sets.

Remark: It will be noted that these operations have many of the algebraic properties of
ordinary addition and multiplication of numbers, although conceptually these operations are
quite different from those of numbers.

A.16 THE UNION (LOGICAL SUM) OF TWO SETS A AND B

It is the set consisting of precisely those elements that belong to either A or B or both A and B.
In symbols, A U B = {x|x € A or B or both}.

Example: LetA = {1,2,3}and B = {2,3,5,6}. ThenAUB = {1, 2, 3, 5, 6}. Obviously,
then A U ¢ = A. Similarly, if C = {7, 8,9} and D = {7, 8,9, 10}, then CU D = D.

@ A binary operation defined on sets is a rule, affecting every two sets A and B, that states the manner in which a third set C
is to be derived from A and B. The set C is usually (but not always) different from A and B.

The binary operations (on sets) are union, intersection, and complementation, which correspond, more or less, to the
arithmetic operations of addition, multiplication, and subtraction, respectively.
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A.17 THE INTERSECTION (LOGICAL PRODUCT) OF TWO SETS A AND B

It is the set of all those elements that belong to both A and B.
In symbols, A N B = {x|x € A and x € B}.

Examples: Let A = {1,2,3}, B =1{2,3,5,6},and C = {5,7, 8}. Then, AN B = {2, 3},
BNC={5},and A NC = ¢.

A.18 DISJOINT SETS

Two sets A and B are said to be disjoint sets if they do not have any element in common.
LetA = {1,2,3} and B = {5, 8, 13}. Then, A and B are disjoint sets.

Note: If sets A and B are disjoint, then A N B = ¢, and conversely.

A.19 DIFFERENCE OF TWO SETS A AND B

The difference of two sets A and B in that order is the set of elements that belong to A but that
do not belong to B. We denote the difference of A and B by the set A — B, and read it as “A
difference B.”

Thus, A—B = {x|x € A, but x ¢ B}.

Example: LetA = {1,2,3,4}and B = {1,3,5,6,}. Then, A—B = {2, 4}. Also note that
B - A={5,6}. Thus, A- B # B — A.

Remark: In the definition of (A — B), it is not necessary that B should be a subset of A. Thus,
A — B is the set of those elements of A that are not in B.

A.20 COMPLEMENT OF A SET

If we consider the difference of sets U and A (where U is the universal set), then this difference is
denoted by A’ or A® and it is called the complement of A in U.

Thus, the complement of a given set A (with respect to the universal set U) is the difference of
the universal set U and A, in that order, and is denoted by A’ or A°. We write

A =U—-A={xlxeU, butx ¢ A}
Clearly, (A = U-A' =U—-(U—-A) =A
¢ =U-¢p=U
Acordingly, U = U—-U = ¢

Example: LetN = {1,2,3,4,...} = UandA = {1,3,5,7,...},thenA’ = {2,4,6,8,...}.

Remark: Complement of a set is basically the difference of the two sets, of which first set is
the universal set U and the other set is a proper subset of U.
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B.1 INTRODUCTION

We know that coordinate geometry (in two variables) deals with the study of geometric objects
(i.e., points, lines, curves, and areas) in a plane using algebra. We are familiar with the
representation of real numbers on the number line. It was the French philosopher and
mathematician Rene Descartes (1596-1650) who introduced the analytic approach in the
study of geometry by using algebra. This was achieved by representing points in the plane by
ordered pairs of real numbers, called Cartesian coordinates, named after Rene Descartes."

B.1.1

It is important to understand how the introduction of Cartesian coordinates allows us to use
numbers and their arithmetic as a tool in studying geometry. It is also important to remember
that this coordinate system allows us to draw the geometric pictures of algebraic equations
that illustrate a great deal of numerical work.®

In Chapter 4, we have studied that the algebraic equations represent lines and curves. There
we also introduced the concept of inclination of a line and its relation with the slope of the line.
(We know that inclination of a line relates trigonometric functions with the slope of the line).

In fact, the concept of slope is one of the central concepts in calculus. In our study of
calculus, an important concept to be learnt is the slope of a curve at any point on it. For this
purpose, we extend the concept of slope of a line and use it to define the slope of a curve ata point
by applying the concept of limit. It will be observed that the subject of calculus is dominated all
throughout by the concept of slope of a curve at a point.

Of course, at this stage, it is difficult to visualize: How the slope of the curve can be defined?
It is reasonable to think of a tangent line at a point of the curve and take the slope of this tangent
line as the slope of the curve at that point. This is exactly what is done. But, to give the definition
of a tangent to a curve at a point is not simple. It demands the knowledge of limit concept
(which is introduced in Chapter 7a), and subsequently applied in defining a tangent to a curve in
Chapter 9 that deals with the concept of derivatives.

Curves represented by second-degree algebraic equations in two variables and their identification: translation of axes

M Another French mathematician Pierre de Fermat (1601-1665) is also credited with the invention of coordinate
geometry. His work was known after his death. Both Descartes and Fermat introduced two perpendicular lines called axes
and agreed to represent any point P in the plane by an ordered pair (x, y), and denoted the point P as P(x, y). In this notation,
x and y represent the directed distances (or signed distances) from the y- and x-axes, respectively.

@ Here, it may be mentioned that, every equation need not represent a curve. For example, the equation x> + y? = —5 does
not represent a curve.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Now, it must be clear that the graph of an algebraic equation is the geometric picture of the
equation. Thus, calculus can help us in studying the properties of curves (represented by
equations) by operating on the given equations. This indicates how coordinate geometry plays
an important role in the foundation and development of calculus.®’

B.1.2 From Lines to the Curves - The Conic Sections

When we speak of an equation of a line /, we mean an equation in the form
y=mx+b

where m is the slope of the line and b stands for its intercept with the y-axis.
This is an equation of degree one in two variables. Also, we have studied other useful forms
of the equation of a line. The general equation of first degree in x and y is given by

Ax+By+C=0

where A and B are not zero, simultaneously. (This equation covers all the lines, including
vertical lines.)

B.2

Now, we shall study the curves represented by second degree equations in two variables. Our
interest lies in identifying those second degree equations that represent conic sections. The most
general equation of second degree in two variables is

Ax? +Bxy+ Cy* + Dx+Ey+F = 0 (where A # 0, B # 0) (1)

(Note that, irrespective of whether C =0 or C#0, Equation (1) will remain second degree
equation in two variables.)

Our interest lies in the special case of the Equation (1), which does not contain the term Bxy
(i.e., B=0). Thus, it remains to consider only those second degree equations that have just one
second degree term and those that contain two second degree terms.

B.2.1 Equations with Just One Second Degree Term

Such equations represent curves known as parabolas. It will also be seen that there are certain
limiting forms (of such equations) that do not represent parabola(s), but something different.”

) The subject of coordinate geometry is very vast in itself and must be studied separately. We will discuss here only the
necessary parts of the subject needed for our purpose.

“ Note that, the following equations represent parabolas:

() y*=8x (i) x*=12y (i) x*=4ay, a#0 (iv)y* +2x—4y +3=0 (V)y* +2x +3=0

(Vi) y=x*—2x+ 3 (vii) X*’=y + 3

However, the following equations do not represent parabolas:

(a) y2 =4 (It represents a pair of parallel lines.)

(b) y*=0 (It represents a pair of coincident lines, that is, a single line.)

(c) yz: —1 (It represents an empty set.)
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B.2.2 Curves Represented by Equations That Have Two Second Degree Terms

Circles, ellipses, and hyperbolas are the curves whose equations have two second degree terms.
Thus, we will be considering the algebraic equations of the form

AX*+CyY? +Dx+Ey+F =0 (2)

where A and C both are not zero. (Observe thatif A = 0 or C = 0, then Equation (2) will reduce to
the equation of a parabola.) Again, it will be noted that there are certain limiting forms of
Equation (2), which represent something different, other than the curves mentioned above.

Note: Parabola(s), ellipse(s), and hyperbola(s) are known as conic sections (or more commonly
conics), because they can be obtained by the intersection of a double napped right circular cone
by a plane.

B.3 THE IDEA OF A DOUBLE NAPPED RIGHT
CIRCULAR CONE AND CONICS

Let /be a fixed vertical line and m be another line intersecting it at a fixed point V and inclined to
it at an angle « (Figure B.1).

Suppose we rotate the line m around the line / in such a way that the angle a remains
constant, then the surface so generated is a double napped right circular hollow cone. From now
on, it will be referred to as the cone, extending indefinitely far in both directions (Figure B.2).

Definitions:

e The point V is called the vertex.

o The line / is the axis of the cone.

A/

FIGURE B.1
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A Generator

Upper nappe

Lower nappe

\_~ Generator

FIGURE B.2

o The rotating line m is called a generator of the cone.

o The vertex separates the cone into two parts called nappes.

Remark: Note thata generator of the cone is a line lying in the cone and that all generators of
a cone contain the point V.

B.4 CONIC SECTION: DEFINITIONS

If we take the section of a cone by a plane, then the points common to the plane and the cone
form the conic section (or the conic). The conic sections are classified according to the different
positions of the plane with respect to the cone. It will be seen that though a point, a pair of
coincident lines, a pair of intersecting lines, and a circle represent conic sections, they are
treated separately. A conic section generally refers to a parabola, an ellipse, or a hyperbola. We
start with the parabola.

(a) Parabola: If the cutting plane is parallel to the generator, the section is a parabola
(Figure B.3).

(b) Ellipse: An ellipse is obtained as a conic section if the cutting plane is parallel to no
generator, in which case the cutting plane intersects each generator (Figure B.4).
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/=

(@) )
FIGURE B.3 Parabola.

Note: A circle is a special case of the ellipse. A circle is formed if the cutting plane intersecting
each generator is also perpendicular to the axis of the cone (Figure B.5).

(Though a circle represents a conic section, it is not studied under conics. It is treated
separately.)

Note: The intersection of a cone with the cutting plane may take place either at the vertex of the
cone or at any other part of the nappe, below or above the vertex. If the intersection is a circle, an

ellipse, or a parabola, the plane cuts entirely across one nappe of the cone. What happens if a
plane intersects both the nappes?

57
A

(a) )
FIGURE B.4 Ellipse.
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i

(@) (b)
FIGURE B.5 Circle.

(c) Hyperbola: When the cutting plane intersects both nappes of a cone, the conic section
obtained is a hyperbola.
In this case, the cutting plane is parallel to the axis of the cone (Figure B.6).

L

A

(@) (b
FIGURE B.6 Hyperbola.

B.4.1 Degenerated Conic Sections
When the plane cuts at the vertex of the cone, we have the following degenerate cases of conic

sections:

(i) The degenerate case of an ellipse, a point, is obtained as a conic section if the cutting
plane contains the vertex but does not contain a generator (Figure B.7).
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(a) (b)
FIGURE B.7 Point.

(ii) A pair of coincident lines, if the plane passes through the vertex and contains a
generator (i.e., the plane touches the cone). It is the degenerated case of a parabola
(Figure B.8).

(iii) If the cutting plane contains the vertex of the cone and two generators, we obtain the
degenerate case of a hyperbola in the form of two intersecting lines (Figure B.9).

Remark: Though a point, a pair of coincident lines, a pair of intersecting lines, and a circle
represent conic sections, they are treated separately. A conic section generally refers to a
parabola, an ellipse, or a hyperbola.

B.4.2 Importance of Conic Sections

The study of properties of conics is very important in geometry, mechanics, physics, and
astronomy, such as design of telescopes and antennas, reflectors in flash lights, and automobile
headlights.

(@) b)
FIGURE B.8 Pair of coincident lines.



718 APPENDIX B (RELATED TO CHAPTER-4)

(b)
FIGURE B.9 Two intersecting lines.

The path of a projectile is a parabola, if motion is considered to be in a plane and air
resistance is neglected. All the planets, namely, Mercury, Venus, Earth, Mars, and others, move
around the sun in elliptical orbits with the sun at a focus. Indeed, these curves are important
tools for the present-day exploration of outer space and also for research into the behavior of
atomic particles.

We know that the conic sections are plane curves. (Why?) Therefore, it is desirable to use
equivalent definitions that refer only to the plane in which the curve lies and refer to special
points and lines in this plane, called foci (plural of focus), and directrix.

B.5 CONICS
Now we define a conic.

Definition: Suppose / is a fixed line and F (or S) is a fixed point not on the line. Then,
the locus of a point P (in the plane of | and F) such that the distance of P from the fixed
point F (or S) has a fixed ratio e to its distance from the fixed line | is called a conic
(or a conic section). By such a distance of P from /, we mean the length of the
perpendicular line segment from P to the line | (Figure B.10).The fixed point is called
the focus, the fixed line is called the directrix, and the fixed ratio is called the eccentricity of
the conic.

If e < 1, the conic is called an ellipse.
If e=1, the conic is called a parabola.
If e > 1, the conic is called a hyperbola.

The property defining the conic is called the focus—directrix property. It should also be
remembered that para means equality, ellipsis means deficiency, and hyper means
excess.
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FIGURE B.10

B.6

Now, we shall follow a (special) method in defining the standard equations of conics (i.e., a
parabola, an ellipse, and a hyperbola) to get their equations in the simplest form. In this method,
we choose the axes (not the curves) in a special way so that the equation of each conic section is
as simple as possible. (Even if we do not choose the origin and the axes conveniently, we would
still get the equation(s) of the curves, but they would not be as simple.)

B.6.1 Parabola

Definition: A parabola is the set of all points in a plane that are equidistant from a fixed line
and a fixed point (not on the line) in the plane.

The fixed line is called the directrix of the parabola and the fixed point F is called the focus
(Figures B.11 and B.12).

Directrix

FIGURE B.11
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/)

Directrix .
Focus Axis

/

Vertex

FIGURE B.12

¢ A line though the focus and perpendicular to the directrix is called the axis of the
parabola.

o The point of intersection of parabola with the axis is called the vertex of the parabola.

B.6.1.1 Standard Equations of Parabola The equation of a parabola is simplest if the
vertex is at the origin and the axis of symmetry is along the x-axis or y-axis. The four possible
such orientations of parabola are shown in Figure B.13.

In each figure, F stands for the focus.

Note: Here, we do not give the proof of the equations of any conic. For this purpose, any
standard book on coordinate geometry may be referred to.

>
>
~<
>
~
>

S|
I +
I
X = x
o\ Fwo) ” F(-a0)] O
4 y
y? = 4ax (a > 0) y? = —dax (a > 0)
(@) b)

FIGURE B.13 (a) y* =4ax, (a>0). (b) y* = —4ax, (a>0). (c) x> =4ay, (a>0).
(d) x*=—4ay, (a>0).
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A A
y y
y=a
B o X

F (0,a)

o
X F (0,—&)
o
< —
2 ,
x2=4ay(a>0) x“=—4ay (a>0)

(©) (d)

FIGURE B.13 Continued

Note:

(1) The standard equations of parabolas have focus on one of the coordinate axes, vertex at
the origin, and the directrix is parallel to the other coordinate axis.

(2) From the standard equations of parabolas, we have the following observations:

« A parabola is symmetric with respect to the axis of the parabola. If the equation has a y*
term, then the axis of symmetry is along the x-axis and if the equation has a x” term,
then the axis of symmetry is along the y-axis.

e When the axis of symmetry is along the x-axis, the parabola opens
(a) to the right, if the coefficient of x is positive; and
(b) to the left, if the coefficient of x is negative.

e When the axis of symmetry is along the y-axis, the parabola opens
(c) upward, if the coefficient of y is positive, and

(d) downward, if the coefficient of y is negative.

B.6.1.2 Latus Rectum

Definition: Latus rectum of parabola is a line segment perpendicular to the axis of the parabola
through the focus and whose end points lie on the parabola.(Figure B.14).
(It can be easily checked that the length of the latus rectum of the parabola, y* = 4ax, is 4a.)

B.6.2 Ellipse

Definition: Anellipse is the set of all points in a plane, the sum of whose distances from the two
fixed points in the plane is a constant.
The two fixed points are called the foci (plural of focus) of the ellipse (Figure B.15).
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y / 4 AY
Latus rectum ¢ A
X
> X
o
Focus Y o A 0)
\ B

FIGURE B.14

Note: The constant that is the sum of the distances of a point on the ellipse from the two fixed
points is always greater than the distance between the two fixed points.

e The midpoint of the line segment joining the foci is called the center of the ellipse.

e The line segment through the foci of the ellipse is called the major axis and the line
segment through the center and perpendicular to the major axis is called the minor axis
(Figure B.16a).

e The end points of the major axis are called the vertices of the ellipse. (Figure B.16a).

* We denote the length of the major axis by 2a, the length of the minor axis by 2b, and the
distance between the foci by 2¢. Thus, the length of the semimajor axis is @ and semiminor
axis is b (Figure B.16b).

B.6.2.1 Relationship Between Semimajor and Semiminor Axes The relationship between
semimajor axis ¢ and semiminor axis b (a > b) and the distance of the focus from the center of
the ellipse ¢ is shown in Figure B.17.

From this figure, it is easy to show that

a=+vVb2+c2 and c¢=+a?+b?

FIGURE B.15 P\F, + P\F,=P,F, + P,F,=PsF, + P5F,
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Major axis
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FIGURE B.16
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B >
FIGURE B.17

B.6.2.2 Special Cases of an Ellipse From the relation connecting «, b, and ¢, we have the
equation ¢* =a* — b,

If we keep a fixed and vary ¢ from O to a, the resulting ellipse will vary in shape (see
Figure B.17). Two cases arise:
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F F,

(@) (b)
FIGURE B.18

Case (1): When ¢ =0, both foci merge together with the center of the ellipse and a* = b*
(i.e., a=D) and so the ellipse becomes the circle.

Thus, a circle is a special case of an ellipse (Figure B.18a).

Case (2): When ¢ =a, then h=0.

The ellipse reduces to line segment F1F, joining the two foci (Figure B.18b)

B.6.2.3 Standard Equations of an Ellipse The equation of an ellipse is simplest if the center
of the ellipse is the origin.

The two such possible orientations are shown in Figure B.19.

Note: The standard equations of ellipses have center at the origin and the major and minor
axes are coordinate axes.

From the standard equations of ellipses (Figure B.19a and b), we have the following
observations:

(i) Ellipse is symmetric with respect to both the coordinate axes (and origin) since if
(x,y)is apoint on the ellipse, then (—x, y), (x, —y), and (—x, —y) are also points on the

y
©0.a)

(9]

c P (x.y)

(=0,0)
A B X
Fi(-=¢c0) 0 Fy(c,0)

(a) ()

2

X2y ¥y
FIGURE B.19 (a) =l + 7= 1. (b) 7 +5=1
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ellipse. (We have used this property of symmetry in Chapter 8a of Part II, where we
compute the area enclosed by an ellipse.)

(i) The foci always lie on the major axes. The major axis can be determined by finding the
intercepts on the axes of symmetry. That is, major axis is along the x-axis if the
coefficient of x* has the larger denominator and is along the y-axis if the coefficient of y*
has the larger denominator.

B.6.2.4 Latus Rectum

Definition: Latus rectum of an ellipse is a line segment perpendicular to the major axis
through any of the foci and whose end points lie on the ellipse (Figure B.20).

It is easy to show that the length of the latus rectum of the ellipse
(x2/a?) + (y*/b*) = 1is (b*/a). (Recall that b = semiminor axis and a = semimajor axis.)

B.6.3 Hyperbola

Definition: A hyperbola is the set of all points in a plane, the difference of whose distances
from two fixed points in the plane is a constant.

e The term difference that is used in the definition means the distance to the farther point
minus the distance to the closer point.

o The fixed points are called the foci of the hyperbola.

e The midpoint of the line segment joining the foci is called the center of the hyperbola.

o The line through the foci is called the transverse axis and the line through the center and
perpendicular to the transverse axis is called the conjugate axis (Figure B.21).

¢ The points at which the hyperbola intersects the transverse axis are called the vertices of
the hyperbola.

Latus rectum

FIGURE B.20
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A Conjugate
Py axis

N

Transverse
/ axis
F, Vel 7\ F
. ! Center Vertex Foczus
OCUS /' Vertex

FIGURE B.21 P\F,— P\F, = P>F, — PoF, = PsF, — P;F,

¢ We denote the distance between the two foci by 2c¢, the distance between two vertices (i.e.,
length of the transverse axis) by 2a, and we define the quantity b as b = v/¢? — a?. Also, 2b
is the length of the conjugate axis. (Figure B.22).

B.6.3.1 Standard Equations of Hyperbola The equation of a hyperbola is simplest if the
center of the hyperbola is at the origin and the foci are on the x-axis or y-axis.
The two such possible orientations are shown in Figure B.23.

Note: The standard equations of hyperbolas have transverse and conjugate axes as the
coordinate axes and the center at the origin.

From the standard equations of hyperbolas (Figure B.23a and b), we have the following
observations:

(i) Hyperbola is symmetric with respect to both the axes (and origin), since if (x, y) is a
point on the hyperbola, then (—Xx, y), (x, —y), and (—x, —y) are also points on the
hyperbola.

(ii) The foci are always on the transverse axis. It is the positive term whose denominator
gives the transverse axis.

For instance, (x?/9) — (y*/16) = 1 has transverse axis along x-axis of length 6 units (since
a =3 units), while (2/9) — (x?/16) = 1 has transverse axis along y-axis of length 10 units.

Y
a
b/
2c 7 > X
€ Dg A3 >
a 0 B F2

FIGURE B.22
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FIGUREB23 (2) 5 —35=1. (b) 535 =1.

B.6.3.2 Latus Rectum (of Hyperbola) Latus rectum of hyperbola is a line segment
perpendicular to the transverse axis through any of the foci and whose end points lie on the
hyperbola.

It is easy to show that the length of the latus rectum in a hyperbola is 25%/a.

B.7 TRANSLATION OF AXES (OR SHIFT OF ORIGIN)

The shape of a graph is not changed by the position of the coordinate axes, but its equation is
changed. Graphing an equation is frequently made easier by changing from one set of axes to
another. Since we may select the coordinate axes as we please, we generally do so in such a way
that the equations will be as simple as possible.

Consider an equation that is given with reference to a set of axes. We may wish to find a
simpler equation of its graphs (or we may wish to find if the given equation represents a known
curve. In particular, we will be interested to identify the given equation as a conic or its
degenerate form). If these different axes are chosen parallel to the given ones, we say that there
has been a translation of axes.

Definition: In the Cartesian coordinate system, if we shift the origin to a new point, in the same
plane, and take the new axes parallel to the original axes, through this new point, then we say that
the new axes are obtained from the old axes, by translation.

When we choose new axes in the plane by translation, every point will have two sets of
coordinates, the old ones (x, y) relative to the x- and y-axes and the new ones (u, v), relative to
the new axes, say the u- and v-axes. It is proposed to obtain the relation between the coordinates
of a point in two systems of coordinate axes. (It is logical and convenient to assume that in both
the sets of axes, the positive numbers lie on the same side of the origin.)

Let (4, k) be the old coordinates of the new origin (Figure B.24). By inspection, we see that,

x=u+h and y=v+k (1)
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FIGURE B.24
or equivalently
u=x—h and v=y—k (ii)

Equations (i) and (ii) are called the equations of transformation. So, if the origin is shifted
to (h, k) from (0, 0) (in the old set of axes), the new coordinates of a point P(x, y) will be
(x—h, y—k).

Example (1): Let us find the new coordinates of P(—6, 5) after a translation of axes to a new
origin at (2, —4).

Solution: Here /=2 and k= — 4. It follows that

u=x—-h=-6-2=-8
v=y—k=5—(-4)=9

Hence, the new coordinates are (—38, 9).

Example (2): The origin is shifted to the points (2, 1). Obtain the equation of the curve in the
new frame whose equation in the original form is given by

X2 +y? —dx —2y —20=0.

Solution: Let the new coordinates of a point be (¢, v). The equations of transformation are
x=u+ h,y=v + k. Here, (h, k)=(2, 1)

Sx=u+2 and y=v+1
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Substituting for x and y in the given equation, we get

W42 +(+1)" —4+2) —2(v+1)—20=0
S AU AV vl —du—8—-2v—2-20=0
PV Ay —du+2v—2v—25=0
P4+ =25
It is customary to write (x, y) in place of (, v) when the transformed equation is obtained.

. The transformed equation is x> + y*=25.

(The applications and usefulness of the process of translation of axes will be discussed at
length later.)

Note (1): An ellipse is called a central conic in contrast to a parabola, which has no center
because it has only one vertex.

Note (2): For an ellipse a > b, it follows that for the ellipse having the equation

(x2/25) + (y*/16) = 1, the principal axis is the x-axis. (Note that > = 25 and b* = 16,s0a =5
and b = 4 (Figure B.25a)). Next, the ellipse having the equation (x?/16) + (y2/25) = 1 has its
principal axis on the y-axis (Figure B.25b).

Note (3): Suppose the center of an ellipse is at the point (%, k) rather than at the origin, and the
principal axis is parallel to one of the coordinate axes. Then, by translation of axes, we have the
following standard forms of the equations of an ellipse:

—h)? —h)?
w¢>+uw)

=1 (a>Db) 6))]
if the principal axis is horizontal.

&) This equation represents a circle with center (2, 1) and radius 5. Of course, the coordinates of the center are with
reference to the original axes.
Note: In this particular case, we know the name of the curve, but this may not be the situation, always.
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b=k (x=h)?
7 + R 1 (a>b) (1)
if the principal axis is vertical.
(Recall that the foci always lie on the major axis. Furthermore, the major axis is along the
x-axis if the coefficient of x* has the larger denominator and it is along the y-axis if the
coefficient of y* has the larger denominator.)

Note (4): In the standard equation of an ellipse, we know that a > b. On the other hand, for a
hyperbola there is no general inequality involving ¢ and b. For instance, in the
hyperbola(x?/9) — (y*/16) =1, a=3 and b=4, so a<hb. But in the hyperbola,
(x2/21) — (y*/4) = 1, a =21 and b=2 so that a > b.

Note (5): The graphs of the hyperbolas (x?/9) — (y*/16) = 1 and (y*/9) — (x?/16) = 1 are
shown in Figure B.26.

In the equation of hyperbola, a may equal b, in which case the hyperbola is equilateral.

Definition: A hyperbola in which @ =b is called an equilateral hyperbola.
(It is of the form x? — y2 =d%).

Definition: An equilateral hyperbola having the equation x*—y*=1 is called the unit
hyperbola. A convenient device can be used to obtain equations of the asymptotes of the
hyperbola. For instance, for the hyperbola (x?/a?) — (y*/b*) = 1, we replace the right side by
zero and obtain (x?/a?) — (y?/b*) =0. Upon factorizing, this equation becomes
[((x/a) — (y/b)][(x/a) + (y/b)] =0, which is equivalent to the two equations
(x/a) — (y/b) =0 and (x/a) + (y/b) = 0=y =(bla)x and y = —(bla)x

These are the equations of the asymptotes of the given hyperbola.

(It can be proved that if the equation of a hyperbola is (x?/a®) — (y*/b?) = k, then the
equations of the asymptotes are also given by (x?/a?) — (y*/b*) = 0).

Definition: A hyperbola whose asymptotes are at right angles to each other is called a
rectangular hyperbola.

x2 y2 y2 2
FIGURE B.26 =l b=—-—=1
@516 ®) 3
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Remark: An equilateral hyperbola (i.e., x> — y*> = a?) is a rectangular hyperbola.
(Note that the asymptotes of this equilateral hyperbola are y = +x. Obviously, the asymptotes
are at right angles to each other and they are equally inclined to the axes.)

Note (6): If the center of the hyperbola is at (%, k), then an equation of the hyperbola is of the
following form:

N2 2
CE8) 0

if the principal axis is horizontal.

b=k (x—h)
a? b?

=1 (2)
if the principal axis is vertical.

B.7.1 Applications and Usefulness of the Process of Translation of Axes

We know that a given second degree equation in x and y of the form
AX*+Cy* +DXx+Ey+F=0(A#0, C #0)

may represent a circle, an ellipse, a hyperbola, or their degenerate forms. Our interest lies in
identifying the curve represented by the given equation. This demands that we should be able to
express the given equation to a recognizable form. But how can we do this? Let us discuss.

‘We know that the equation of a circle with center at the point (4, k) and the radius r is given by
(x—h?*+ - k)?=r Similarly, we can write down the equations of ellipse(s) and those of
hyperbola(s) with their centers at a point (4, k), other than the origin. Let us consider particular
equations of these curves for any given (%, k).

(i) The equation (x — 3?2 + - 12 =52 represents a circle with center at the point (3, 1)
and radius 5 units. On opening the brackets, the above equation becomes

Xy —6x—2y—15=0 (A)

(i) The equation (x +3)?/64 + (y — 4)?/100 = 1 represents an ellipse whose center is at
(=3, 4). On opening the brackets, the above equation becomes

25x% +16y* + 150x — 128y — 1119 =0 (B)

(iii) The equation (y+2)>/9—(x — 1)>/4 =1 represents a hyperbola whose center is at
(=2, 1). On opening the brackets, the above equation becomes

9x? — 4y — 18x — 16y +29 = 0 (C)
It is important to remember that a conic section generally refers to a parabola, an ellipse, or a

hyperbola. A conic section may be represented by an algebraic equation of second degree. We
ask an important question:
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Is the graph of the equation of the form Ax*> + Cy> + Dx + Ey + F =0, always represent
a conic?

The answer is no, unless we admit certain limiting forms. The table below indicated the
possibilities with a sample equation of each.

Conics Limiting Forms

1. (AC=0) A pair of parallel lines: y2 =4
Single line: y* =0
Empty set: y* = —1

2. (AC>0) Circle: x> + y2=4O
Point: 2x> + y*=0

2 2
Ellipse: % + )Z: 1 D :

Parabola: y* =4x

Empty set: 2x% + y*=—1

3. (AC<0) A pair of intersecting

-2 2 i
Hyperbola: % - % =1 lines: x> —y* =0 ><

Note: It must be clear that in case of an ellipse the coefficients A and C have the same sign, so
that AC > 0. (We have also seen this in Equation (B) above. Also, for a circle (which is a special
case of an ellipse), A and C are same so that AC > 0). In case of a hyperbola, A and C have
opposite sign so that AC < 0. As regards parabola, its equation must have only one second
degree term. It follows that we have to drop either Ax? or Cy?. In other words, we have to choose
either A =0 or C =0, which means AC=0.

Thus, a point, a pair of intersecting lines, a pair of coincident lines, and a circle represent
limiting form of conic sections. (Recall that we have already discussed earlier about these
possibilities.) Our interest lies in being able to express the given second degree equations in a
recognizable form (of a conic) so that its graph can be sketched conveniently.

Now, we ask the question:

Given a complicated second degree equation (in x and y), how do we know what translation
will simplify the equation and bring it to a recognizable form?

A familiar process called completing the square provides the answer. In particular, we use
this process to eliminate the first degree terms of any expression of the following form:

AX* +Cy* +Dx+Ey+F=0(A#0, C £0)

Example (3): Make a translation that will eliminate the first degree terms of
4x* + 9y* + 8x — 90y + 193 =0 and use this information to identify the curve.
Solution: Consider the given equation:

4x% 4+9y* +8x — 90y +193 =0

LA 42x+ ) +9(0?% — 10y +_) = —193

24 H2x+ 1) +9(0% — 10y +25) = —193 +4 + 225

SA(x+1)749(y — 5)7 =36

R )

1
9 4
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The translation # = x + 1 and v=y — 5 transforms this to (u?/9) + (v?/4) = 1, which is the
standard form of a horizontal ellipse.

Example (4): Find the new equation of the curve 3x> + 2y — 12x + 4y + 8 =0, when the
origin is shifted to the points (2, —1).

Solution: We have (4, k) =(2, —1)
Sx=u+h=u+2, and y=v+k=v-—1
.. The given equation transforms into

3u+2)+2(v— 1) = 12u+2)+4(v—1)+8=0

that is,
3 Fdut+4)+2(0F —2v+ 1) — 12(u+2) +4(v—1)+8=0
that is,
31+ 12u+12+2v* —4v+2 — 12u— 24 +4v — 448
that is,

3u +2v — 6 =0o0r3u* +21* = 6
The transformed equation is 3x* + 2y* =6 or (x2/2) + (¥*/3) = 1

This equation is recognized as the equation of an ellipse.

Example (5): Show that the graph of the equation 4x> + 9y* 4+ 8x —90y + 193 =0 is an
ellipse.

Solution: Consider the given equation

4x% +9y* +8x — 90y + 193 =0

A4+ 2x+ ) +9(% — 10y +_) = —193
LA 2x+ 1) +9(y% — 10y 425) = —193 +4 +225
A+ +9(y—5)7 =36

LD (-5)
T T3

=1

This equation represents an ellipse.
Example (6): Consider the equation 6x% + 9y* —24x — 54y + 115 = 0.

We write this equation as 6(x> — 4x) + 9(*> — 6y) = —115.
Completing the squares in x and y, we get

6(x* —4x+4)+9(y* —6y+9) = —115+24+81



734 APPENDIX B (RELATED TO CHAPTER-4)
or

6(x —2)*+9(y —3)* = —10

Because the right-hand side of this equation is negative and the left-hand side is nonnegative for
all points (x, y), the graph is the empty set.

Example (7): Consider the equation 6x% + 9y* — 24x — 54y + 105 =0.

We write this equation as 6(x — 2% + 9y — 3)2=0.

Its graph are the points (2, 3). We can prove in general that the graph of any equation of the form
(Q) is either an ellipse, a point, or the empty set.

(When the graph is a point or the empty set, it is said to be degenerate.)

Example (8): The equation 4x* — 12y + 24x + 96y — 156 =0 can be written as
4(x* + 6x) — 12(y* — 8y) = 156 and upon completing the square in x and y, we have

4(x2+6x+9) — 12(y* — 8y +16) = 156+ 36 — 192
4x+3)7—12(y—4)* =0

(x4+3)*=3(y—4)7=0

[(x4+3) = V3 -4)][(x+3)+V3(y-4)] =0

L x+3-V3(—-4)=0 and x+3+v3(y—4)=0

These are the equations of two lines through the points (-3, 4)
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EXERCISE

Verify the conditions of Rolle’s theorem for the following functions on respective intervals and
find ¢, if any, for which f’'(¢) = 0.

Q.(1): The polynomial function
¥ = f(¥) = ¥~ dx

is continuous and differentiable for all x, —oo < x < + oc.

We have, f(x) = X —dx = x (x> —4).

So if we take ¢ = —2 and b = + 2, then the conditions of Rolle’s theorem are satisfied,
since f{—2) = Oandf(+2) = 0. Thus, the derivative f’(x) = 3x> — 4, must be zero at least once
between —2 and 2. In fact, we can find this by solving f'(x) = 0, that is, 3x*> —4 = 0.

We get,

2:% 2 2V3

and x=¢=—— = ——— Ans.

3
i3 VR

X =C =

Q.(2): Verify Rolle’s theorem for fix) = x*(1 = x)%in [0,1].

Solution: Here, f(0) = f(1) = 0 and f(x) satisfies the conditions of Rolle’s theorem.

¥ 2(1=x) (=1)] 4 2x(1 — x)?
= —2x% (1 — x) + 2x(1 — x)°
=2x(1 —x) [-x+ (1 —x)]
=2x(1 —x) (1 —-2x)

f'(x)

1
f'(x) =0, whenx = 0, x = I’XZE

Here, x = ¢ = 1/2 lies in (0, 1), for which f(¢) = 0. Ans.

Appendix C: Solutions to the Exercise on Rolle’s Theorem and Mean Value Theorem (Chapter-20)

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Q.(3): Consider the function
y=fx)=1-Va2 =1-x

This function is continuous on the interval [—1, 1], and vanishes at the end points of the interval

[f(=1) = 0 and f(1) = 0O].

Q.(4): It is given that for the function fix) = x> —6x%+ax +bon[1,3]. Rolle’s theorem holds
with ¢ = 2+ (1/+/3). Find the values of a and b.
Solution:
f(x) =x*—6x*+ax+b
fl(x)=3x2—-12x+a

Since Rolle’s theorem holds for f(x), we have f/(¢) = 3¢ —12¢ +a,
where ¢ = (1, 3). Putting f'(¢) = 0, we have

32— 12c4+a =0

N 12+ 144 — 12a
C = ——

6
12 £ 236 — 3a
- > = —
6
V36 —3a

Here, ¢ = 2 — ((v/36 — 3a)/3) is not applicable.

2+M — 2+L
3 V3

V36 — 3a 7i

3 V3

V36 —3a = /3

36 —3a =3 or a =11
Hence, the function becomes
flx) = x> —6x* + 11x+ b

Now f(l) =1—6+11+b = 6+ b. (Similarly, f(3) = 6+ b.)
But Rolle’s theorem holds. So, f(1) = 0.
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Q.(5): On the curve y = x?, find a point at which the tangent is parallel to the chord joining
(0, 0) and (1, 1).

Solution: The slope of the chord is

The derivative is dy/dx = 2x.

We want x such that 2x = 1.

Thus, x = 1/2. We note that 1/2 is in the open interval (0, 1), as required in the MVT.
The corresponding point on the curve is (1/2, 1/4). Ans.

Q.(6): Verify LMVT for the function
JSx) = (x—D(x—2)(x—3)in [0, 4]

Solution:

f(x)=(x-1)(x-2)(x-3)
=X —-6x2+11x—-6

Since f(x) is a polynomial, it is continuous on [0,4] and differentiable in (0, 4).
Also, f'(x) = 3x*> — 12x + 11.
Now, f(4) =4 -1)4-2)4-3)=3x2x1=06
And fl0) = (—1)(—2)(—3) = -6

By Lagrange’s MVT, we have

f(b)_f(a) o

b —a = f'(c)

f4) - f0) :
o0 - 3¢ —12¢+ 11

or 6%(76) =3 —12¢+ 11

or 3¢2—12c+8=0

12 4 /144 — 4(3) - (8)

6
_12+£V48 12443
6 B 6
:2i—2\3/§

Both these values lie in (0, 4). Hence, LMVT is verified. Ans.
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Q.(7): Find a point on the graph of y = x°, where the tangent is parallel to the chord joining

(1, 1) and (3, 27).

Solution: f(x) = x>

This function is continuous on [1, 3] and differentiable in (1, 3).“)
Also, f/(x) = 3x*
Slope of the chord is given by

f(b) =f(a) _ f(4) —£(0)
b—a 4-0
42-0 64
“a-0 4 '°
By LMVT, we have,
16 = 3¢2
16 V3
= 44— = +4—
¢ 3 3
Note that, the value
4
¢ = ?E (1,3) Ans.

M Observe that the two points on the curve are (1, 1) and (3, 27). Hence, we are concerned only with the closed interval

[1, 3], though the function f(x) = X3 is defined for all x.
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Abel’s theorem, 659
Absolute extreme values, 576
Absolute maximum (minimum) of function, 575
Absolute values
function, definition, 132
inequalities used in calculus, 50-51
properties of, 51-54
Acceleration, due to gravity, 538
Acute reference triangle, 108
Algebra
definition of, 3
of derivatives, 275
of infinity, 38-39
as a language for thinking, 7-9
language of, 5
ordinary, 41
as shorthand of mathematics, 10-11
Algebraic functions
asymptotes, 191-195
computing limits methods, 177
evaluating limits methods, 178-186
direct method, 178
factorization method, 178-180
method of simplification, 183-185
rationalization method, 183-185
standard limit in solving special type of
problems, applications, 180-183
infinite limits, 190-191
limit at infinity, 187-190
definition of, 187-190
Allied angles, 111-114, 112
Analytic geometry, 64
Angle
degree measure of, 99-100
of inclination, 540
of magnitude and sign, 101-102
in quadrant, 111
in standard position, 98
between two lines, 92-93

Angle of inclination of line, 71
inclination and slope of line, relation
between, 74-75
slope (or gradient) of nonvertical line, 72-74
Angular acceleration, 540
Angular velocity
definition of, 540
Antilogarithm, 353-354
of a negative number, 355
Applications
of differentiation in geometry, 540-548
of the &, 6 definition of limit, 163-165
of the function e, 390-394
of the laws of exponents, 342
of logarithms, 350
of maxima and minima techniques, 597-604
of trigonometric identities in simplification
of, 441-443
Applying differentials, to approximate
calculations, 492494
Approximating polynomial, 667
Arbitrary constants, 4
Arc lengths, positive and negative, 102-103
Arithmetic, 1, 41
definition of, 3
Asymptotes, 191-195
definition of, 192
horizontal asymptotes, 192
oblique asymptotes, 192—-195
vertical asymptotes, 192
Auxiliary function, 673
Average speed, definition of, 248

Basic elementary functions. See Elementary
functions

Bijective function, 27

Binary operations, 41

Binomial expansion, 14

Binomial theorem, 363
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Boundary conditions, 396, 397
Bounded function, 326-328

Cardinal number of a set, 32-33
Cartesian coordinates, 64, 122, 125, 126, 473
system, 94
Cartesian equation, 473
Cartesian product of sets, 19-20
Cauchy’s MVT, 625-627, 629, 630, 633
geometrical interpretation of, 627
hypotheses of, 631
Chain rule, 278, 291-292, 298-299, 303,
319, 389, 424, 437, 450, 463, 534, 685,
686, 696
extension of, 292-294
Change of base, 348-349
antilogarithm, 350
application of logarithms, 350
Circular functions, 680, 682
similarities and differences of, 682—685
trigonometric, 677
vs. hyperbolic functions, 682-685
Codomain, 23, 25-27
Cofunctions, 320
Combinatorial coefficients, 15
Combining functions, 132-137
power functions, 136
root functions, 136-137
simple algebraic functions, and
combinations, 135-136
sums, differences, products, and quotients of
functions, 133-134
Common logarithm, 336-337, 359
advantages of, 346-348
of a (positive) number, 351-353
Comparing sets, without counting their
elements, 32
Completeness property of real numbers, 59
Composite function
definition of, 139
domain of, 139-141
Composite numbers, 3—4, 42
Computing derivatives
basic trigonometric limits and their applications
in, 307-323
by chain rule, 295
usefulness of trigonometric identities, 300-302
Computing limits, 166, 168
of algebraic functions, methods for, 177-195
of exponential and logarithmic functions,
methods for, 401-415
Concavity, second derivative test for, 567-569
Concept of “function.” See Fractions “f”

Concept of logarithm of a positive real
number, 339
Constant difference theorem, 623
Constant function, 135, 167
degree of, 135
theorem, 622
Continuity
on an interval, 224-225
concept, of function, 197
continuous functions, properties of,
226-233
definition of, 204-214
function definition of, 207-209
intuitive definition of, 201-204
one-sided limit to one-sided, applications, 224
removable and irremovable discontinuities of
functions, 211-214
terms of limit, point of discontinuity, 211
trigonometric, exponential, and logarithmic
functions, 215-224
Continuous variable, 4
Coordinate geometry, 64
Coprime numbers, 4, 42
Cosine function, 308
Coterminal angles, 107
trigonometric ratios, 111
Countable sets, 36
Counting numbers, 41
Cubic function, 135
Cubic polynomial, 7
Curve
angle between two, 546-548
Cartesian equation of, 473
concave down, 571, 573
concave up, 570, 573
cubic, 662
cycloid, 476
for exponential decay, 393
for exponential growth, 393
of hyperbolic functions, 686—-688
slope in polar coordinates, 548-550

Decay, 390, 392, 393, 395, 397, 399
Decreasing functions, 146, 147
Degree of a polynomial, 5
Denseness, property of, 55
Dependent variables, 24, 30, 131, 235, 246, 251,
254, 379, 488, 489

Derivatives

of composite function, 290-299

constant rule for, 281-282

definition of, 556

of differentiable functions, 511



dy/dx, with reference to the Cartesian
form, 481-482
of extended forms of basic trigonometric
functions, 320
first derivative test for rise and fall, 556
function, 236
function f{x), definition of, 275
of functions, represented
parametrically, 477-481
higher order
implicit functions, 516
Leibniz formula, 517-521
parametric functions, 516-517
with respect to extended forms, 514
increasing and decreasing functions, 551
intervals of increase and decrease, 557
of inverse functions, 302-305
of one function with respect to the
other, 483-484
method of substitution, 484-486
of product of two functions, 281-284
of quotient, 278
of two functions, 284-286
rule, 495
second-order, 512, 516
of some basic elementary function, 279
of sum (difference) of functions, 280
third-order, 512
Die away factor e ™, 395
Difference quotient, 277
Differentiable function, 257, 552
Differential equation, solution for, 394-395
time constant, 395-399
Differential of dependent variable y, 488
Differential of the independent variable, 488—489
Differential rule, 495
Diftferentials of basic elementary
functions, 494-495
arithmetical operations on functions, 495
composite function, 496-498
Differentials, of higher orders, 521-523
rate of change of function, 523-534
Differentiation, 256
closed interval, 552
continuous function, 552
increasing and decreasing functions, 552
open interval, 551
Differentiation, in geometry, 540-548
angle between two curves, 546-548
length of the normal, 542
length of the subnormal, 542
length of the subtangent, 542
length of the tangent, 542
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polar coordinates
angle between two curves, 550
slope of curve, 548-550
Differentiation rules, 305
Directed angles, 98
Dirichlet function, 142, 148, 201
Discontinuity
classification of, 214-215
points of, 197
Distance formula, 69-70
Distinct functions, 142
Diving board function, 157, 158
Division algorithm (or procedure) for
polynomials, 6
Division by zero, 16-17
Division of numbers, 343
Domain, 23-25, 130, 134, 225,437,558, 691, 697
of composite function, 139
natural, 130, 132, 198, 203, 256
and ranges of trigonometric functions, 111, 130
of relation, 21
restricted, 420, 433

Elementary functions, 147, 148, 201, 210, 264,
276, 278, 477
differentials of, 494-495
examples of, 148
Elementary set theory, 19
Equality of ordered pairs, 20
Equation of a nonvertical line
in the intercept form, 87-88
Equation of tangent, 541
Equations of a line, 83
point—slope form, 84-85
slope—intercept form, 85-86
two-point, 86-87
x-axis, y-axis, and the lines parallel to the
axes, 83-84
Equivalent sets, definition of, 33
Errors, 503-509
absolute, 504
percentage, 504, 506-508
relative, 490, 504
Euclidean geometry, 63
Euler’s identity, 681
Evaluating limits methods, 178-186
direct method, 178
factorization method, 178-180
method of simplification, 183-185
rationalization method, 183-185
standard limit in solving special type of
problems, applications, 180-183
Even function, 143
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Even numbers, 3 even and odd functions, 143-144
EVT. See Extreme value theorem (EVT) exponential and logarithmic functions,
Explicit functions, 453, 454 derivatives of, 264
Exponential decay, 395 historical notes, 272-274
Exponential functions, 148, 362 idea of derivative of, 235

finding the derivative of, 381-382 image, 23

standard limit of, 216 important observations, 142-143
Exponential rate of growth, 383-385, 390, 392 increasing and decreasing, 144-147
Exponential series, 364-365 increment ratio, 246

methods to obtain, 365-369 instantaneous rate of change, 239-245
Expressions, and identities in algebra, 12-15 instantaneous velocity, problem of, 246-247
Expression 2%, 362 as machine, 129-130
Extreme value theorem (EVT), 228, 596, 598, modes of expressing, 24-25

618, 619 monotonic, 145
neither increasing nor decreasing, 145-147

Factorization notation for increment, 246

method, 178-179 observations, 271-272

of a polynomial, 6 physical meaning of derivative, 270
Factors of a polynomial, 6 raising function to power, 137
Finite set, definition of, 33 range of, 23
Fixed number, 310 rule for, 131
Formal differentiation, 279 special, 132
Formulas, 130, 482 trigonometric, derivatives of, 263

for derivatives of basic trigonometric types of, 25-28

functions, 319 Fundamental laws, of logarithms, 345

for derivatives of hyperbolic functions, 685,689  Fundamental trigonometric identities, 117
for free fall near the earth’s surface, 249, 538

using the chain rule, 437 General exponential function, 276
Fractions “f” General linear equation, 88-89
complex, 2 General logarithmic function, 375-376
to decimals, 1 graphs of logarithmic functions, 376
improper fraction, 2 graphs of mutually inverse functions, 377-378
proper fraction, 2 observations from graphs, 376-377
simple, common, or vulgar fraction, 2 Geometrical interpretation, 48
unit fraction, 2 of differential dy, 490-492
Functions, 20, 24, 129. See also Combining Geometrical progression, 393
functions; Composite function; Constant Geometrical relationship, 377-378
function; Hiccup function; Hyperbolic Graph of equation in R?, 77
functions; Identity function; Implicit Graphs of exponential function(s), 373-374
functions; Increasing functions; Inverse notation, 375
function f 71; Trigonometric functions two-dimensional Cartesian frame, 373
alternative definition of, 21-23 Greatest common divisor (G.C.D.), 4
average rate to actual rate, 237-238 Greatest lower bound (g.1.b.)
codomain, 23 definition of, 60-61
composition of, 137-141 Greatest value, of function, 576
definition of, 130, 197 Guessed number, 163
dependent and independent variables, 130-132
derivative as rate function, definition of, 239 Hiccup function, 157
differentiability and continuity, 257, 264-270 Highest common factor (H.C.F.), 4
discontinuous/continuous, 197 Hindu—Arabic numerals, 1
domain, 23, 130 Horizontal asymptote, 362
elementary/nonelementary, 147-148 Horizontal-line test, 420

equality of, 142 Horizontal tangents



with local maximum/minimum, 565-566
without maximum/minimum, 566-567
Hyperbolic cosine, 677, 681, 682
Hyperbolic functions, 143, 677, 680, 682
curves of, 686-688
derivatives of, 685-686
fundamental identity for, 678
indefinite integral formulas for, 689
inverse, 689—699
differentiation of, 694—699
logarithm equivalents of, 691-694
similarities and differences of, 682—685
sinh and cosh, 699-701
trigonometry of, 681
vs. circular functions, 682-685
Hyperbolic radian, 701
Hyperbolic secant, 678
Hyperbolic sine, 677, 682
odd function, 682
variables, 681
Hyperbolic tangent, 678

Idealization of the function f{z), 394
Identity function, 133, 135, 375, 488
Imaginary number, 681
Implicit differentiation, 454, 455
difficulties, 455-463
equation ¢(x, y)=0, 457459
equation x* 4 y*=—1, 455457
method of logarithmic differentiation
examples illustrating process, 464—472
to find the derivative d(x")/dx, 463-464
to simplify differentiation, 464

using power rule and the chain rule, 463-464

technique of, 454-455
Implicit functions, 453, 454
Increasing functions

graphs of, 144, 147
Independent variables, 24, 30, 130, 584
Indeterminate exponential forms, 645
Indeterminate form, 646
Indeterminate limit problems, 645
Index of the radical, 340
Induction, 9-10
Infinite discontinuity, 212, 213, 215, 229, 585
Infinite set, definition of, 34-35
Infinity

algebra of, 38-39

good and bad uses of, 195

limit at, 187

notion of, 37-38

size of, 38
Instantaneous acceleration, 254

INDEX 743

Instantaneous rates, 254, 271

Integrals in differential notation, 499-503

Intermediate value theorem (IVT), 225-226,
618-619

Intermediate zero theorem, 226

Interpretations of the notation dy/dx, 498-499

Intervals

absolute value inequalities, definition of, 49-50

bounded and unbounded, 47

of convergence, 659

of monotonicity, 557, 558, 560

usefulness of, 47
Inverse circular functions, 694
Inverse cosecant function

applications, 438-441

formula for derivative, 436-437
Inverse cosine function, 425

definition of, 425-426

formula for the derivative of, 427-428
Inverse cotangent function, 431

definition of, 431432

formula for derivative of cot’]x, 433-434

graph, 432
Inverse function fﬁl, 29-32, 137, 420

derivatives of, 302-305
Inverse hyperbolic cosine function, 690-691
Inverse hyperbolic cotangent function, 691
Inverse hyperbolic functions, 694, 697
Inverse hyperbolic sine function, 689
Inverse secant function, 433

formula for derivative of, 433-436
Inverse tangent function, 428

definition of, 429430

formula for derivative of, 430-431
Inverse trigonometric functions, 148, 276,

417-418, 437, 441-443

Irrational numbers, 41, 392

set of, 2, 43

Jump discontinuity, 212

Lagrange form, 674
Lagrange’s mean value theorem (LMVT), 625,
626, 627. See also Mean value
theorem (MVT)
Laws of exponents, 340, 341-342
applications, 342
Least common multiple (L.C.M.), 4
Least upper bound (l.u.b.)
definition of, 60
Leibniz notation, 291, 487, 511, 532, 533
Leibniz rule, 283
Lengths of tangent and normal, 546
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L’hospital’s rule, 628-632, 634, 644, 648
based on Cauchy’s MVT, 629-630
first form, 630
indeterminate forms, 627-630
Johann Bernoulli, 644
stronger form, 629-632
L’hospital’s theorem, 629, 632-638
evaluating indeterminate of type form, 638-644
Limit concept
algebra of limits, 168
extension to, 175-176
finding, simpler and powerful rules for, 166—168
of function, 149
informal discussion, 151-152
intuitive meaning of, 153-163
&, 6 definition, 161
formal definition, 160
geometric interpretation, 161-163
precise definition, formulating, 160
rigorous study, 160
main limit theorem, applications of, 171-172
preliminary analysis, 164, 165
rigorous definitions of, 187-190
rules, 311
squeeze theorem/sandwich theorem, 175
substitution rule, 172-174
testing, 163-174
theorem, 168-171, 177
substitution, 174
of the type (I), 328-332
of the type (II), 332-335
useful notations, 149-151
Limits, indeterminate forms, 646
indeterminate exponential forms, 648-649
indeterminate product forms, 646—647
indeterminate sum and difference
form, 647-648
Limits of exponential, and logarithmic
functions, 335-336, 401
limits based on the standard limit, evaluation
of, 410415
methods for computing, 401
basic limits, 403—410
laws of logarithms, 402-403
logarithms, 401-402
Linear approximation, 490, 621, 653, 654,
656, 657
Linear function, 29, 133, 135, 246, 313, 320,
490, 615
Local extreme value, 576
Local extremum, 575
Local maximum, 565-567, 575, 577
Local minimum, 566, 575, 577, 578
Locus, 77

and equation, 78
obtain the equation of, 79-82
points not on, 82
points on, 82
Logarithm, definition of, 344
Logarithmic functions, 148, 276, 385, 563
finding derivative of, 379-381
Logarithmic rate of growth, 392
Logarithm method of calculation, 355-357
Logarithm(s) to the bases 10 and e, comparison of
properties
common logarithms, 369
of (positive) number, characteristic of, 370
natural logarithms, 369-370
naturalness of natural logarithms, 370

Maclaurin series, 667
expansion of, 668
Maclaurin’s formula, 669, 675
Main limit theorem
applications of, 171-172
constant multiple rule, 168
product rule, 168
quotient rule, 168-169
substitution rule, 172-174
sum rule, 168
Mantissa as positive number, 346
Mantissa, method of finding, 352-353
Mantissa of logarithm, 346
Many-one function, 26
Maxima and minima techniques, applications
of, 597-604
problems, expression of function, 598-604
theorem, 598
Maximum and minimum of a function on whole
interval, 593-596
extreme value theorem, 596-597
Mean value theorem (MVT), 605, 625, 653. See
also Cauchy’s MVT; Lagrange’s mean
value theorem (LMVT)
alternate form of, 621-622
applications of, 622-623
continuous function, 618
finite increments, 620
geometric aspect, 619
geometric significance of function F(x),
616-617
hypotheses, 618
Kinematic aspect, 620
Lagrange’s theorem, 616, 617
linear approximations, 656
nonvertical lines, 614
quadratic approximations, 657
Rolle’s theorem, 605, 615



for second derivatives, 654—657
to Taylor’s formula, 653
for third derivatives, 657
Measure of an angle, 98-99
Monomial, 5
Monotonicity theorem, 622
Motion in straight line, derivatives, 535-539
acceleration, 535
under gravity, 538-539
velocity, 536
Multiplication of numbers, 342
MVT. See Mean value theorem (MVT)

Naperian logarithms, 344, 371
Natural decay, 395
Natural domain, 130, 132, 197, 198
of derivative, 256
Natural logarithms, 336-337, 344, 359
Natural numbers, 1, 3, 41, 42
Negative logarithm, method of expression, 346
Negative numbers, 41
Negative rational numbers as exponents, 341
Neighborhood of a point, 54
definition of, 54
deleted neighborhood, 54-55
right and left neighborhood, 54
useful statement, 55
Nonelementary functions, 277
examples of, 148
Nonincreasing functions
graphs of, 145, 146
Nonpolynomial function, 672
Nonstrict inequality, 144
Notations, 177, 343-344
in algebra, 11-12
of f7(x), 511
Notion
of an instant, 247
of continuity, 204
of directed distance, 66—69
of even and odd functions, 114-115
of infinity, 37-38
of limit, 149, 209, 235
of a tangent, 241
Numerical function concept, 129, 131, 258

Odd function, 114, 143, 144, 682
Odd numbers, 3, 42
One-sided limits, 175-176
One-to-one functions, 25, 418
distinguishing geometrical properties, 418-420
Onto function, 25-27
Operations involving negative numbers, 15-16
Operator of differentiation, 277

INDEX 745

Ordered pairs, 19
Organic rate of growing, 392
Origin of e, 359-362
compound interest, 360-361
problems, 371-372
simple interest, 360
true compound interest, 361

Parabola, 473, 474, 662
Parallel lines, 89-90
Parameter, 474
circle, 475
cycloid, 476477
definition of, 474-475
ellipse, 475-476
Parametric equations, 473, 474, 548
definition of, 473474
Period of a periodic function, 115
Plane and Cartesian coordinates, 65-66
Plane curve, 473
Point of inflection, 569
definition of, 571
Point of intersection, 547
Point of relative maximum, 577
Point of relative minimum, 577-579
Point of tangency, 541
coordinates of, 545
Point-slope form of the equation of a line, 84
Points of extreme values of a function, 576
Polar coordinates, 93, 94, 95, 122, 126, 549
rectangular coordinates, relations, 548
Polynomial approximations, 658, 660, 669-671
for arbitrary functions, 672-676
definition of, 658-659
Maclaurin series for f{x), 666—669
power series, properties of, 659-666
Polynomial equations, 7, 29, 613
solutions/roots, 7
Polynomial function, 114,133,135, 174,228, 246,
512, 560, 658, 662
Polynomials
behave like integers, 6
degree of, 5
equations and their solutions, 7
value and zeros of, 6-7
Positive integers, 1
Positive numbers, 41
Positive rational numbers as exponents, 341
Power functions, 136, 147, 276
derivative, 259
vs. exponential, 362
Power rule, 287, 298
of differentiation for negative powers,
286-290
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Power series
coefficient of, 658
continuous function, 659
Prime numbers, 3—4, 42
Properties of e, 365
Pythagorean identities, 117
Pythagorean theorem, 69

Quadrantal angles, 111

Quadratic approximations, 657, 661
Quadratic function, 135

Quadratic inequality, 558, 559
Quadratic polynomial, 7

Quotient rule, 174

Radian measure, 320-321
of an angle, 100-101
relation between degree and, 103-104
Radical symbol, 340
Range, 130
Rational expression, 6
Rational functions, 135, 174
Rationalization, 171, 185, 186
Rational numbers, set of, 1,2, 41, 43, 44,59, 142,
341, 600
Ratio sin x/x, 308
Real numbers, 310
algebraic properties of, 4445
completeness property of, 55
axiom of greatest lower bound, 59-60
axiom of least upper bound, 59
bounded subsets, 56
greatest lower bound (g.1.b.) of a set, 57-59
least upper bound (L.u.b.) of a set, 57
unbounded subsets, 56-57
definition of, 44
of absolute value of, 47-48
geometrical picture of, 44
inequalities, 4547
relation between radian measure and, 104-105
set of, 2-3, 43
system, 1
Real-valued function, 551
Rectangular Cartesian coordinates
and polar coordinates of point, relation
between, 95-96
Relations, 20. See also Geometrical relationship
between differentiability of a function and
continuity, 264
domain of, 21
between exponential and trigonometric
functions, 680-682
between the slopes of (nonvertical) lines, 90-92

Relative extreme values, 576
classification, 577
of function, 576
Remainder theorem, 6
Rolle’s theorem, 605, 606, 626, 627, 674
auxiliary function, 615
converse of, 609
dynamic face to, 612
geometric conclusion of, 612
hypotheses of, 655
useful interpretation of, 612-613
Root functions, 136-137
cube root function, 136
nth root function, 136
square root function, 136

Sandwich theorem, 175, 310, 311-314, 327
Section formula, 70-71
Set of integers, 1
Signed length, 66-69
Signum function, 158, 212
Simplification, 174, 183-185
application of trigonometric identities in, 441
inverse trignometric functions for, 443444
Sine function, 308
Single function, 142
Slope and intercepts of the line, 89
Slope, definition of, 76
Slope less point, 607, 608
Slope of the tangent line, 540
Slopes of (nonvertical) lines, 72, 73
perpendicular to one another, 90-92
Squeeze theorem, 175
Squeezing theorem, 175, 311
Standard limit, 179, 385-386
applications of, 180-183
different exponential functions, derivatives
of, 389-390
exponential function a”, derivative of, 386-388
logarithmic function log,x, derivative
of, 388-390
Standard limits, 325, 326
Stirling’s formula, 372
Straight angle, 102
Strict maximum (minimum) value, 579
Substitution rule, 172-174, 307, 322, 323
Symbols “f” and “f(x)”, distinction
between, 23-24

Taylor polynomials, 653, 662, 668
Taylor series expansion, 668, 669
Taylor’s formula, 621, 658, 669, 674, 675
Taylor’s theorem, 363, 657, 658



Theorems
definition of critical points of f{x), 583
function relative extreme values, 579-580
relative extremum, sufficient condition
for, 584-586, 588
scheme for investigating functions, 586-587
in terms of second derivative, 588-593
in terms of the first derivative, 584-586
for value at derivative vanishes, 580-583
stationary point(s) of f{x), 584
Time constant, 395
Transcendental functions, 143
Triangle inequality, 52
Trigonometric equations, 115-120
Trigonometric formulae, 680
complex variable, 680
exponential, relation, 680-682
Trigonometric functions, 120, 143, 148,
276, 420
derivatives by making substitution, evaluation
of, 443-451
derivatives of, 314
alternative simpler methods, 317-322
of sin x and cos x, 314-316
of tan x, 316317
domains and ranges of, 111
evaluate sin’l, 423
graphs of, 115
and inverses, 420421
inverse sine function, 421-423
derivative of, 423-425
line values of, 127-128
with necessary simplifications, 442443
properties of, 114

INDEX 747

notion of even functions, 114
notion of odd function, 114
notion of periodic function, 115
standard limit of, 215
in terms of sin 6 and cos 6, 107
Trigonometric identities, 115-120, 116,
310, 484
application of, 441
in computing derivatives, 300-302
Trigonometric limits, 321
Trigonometric ratios, 105-107, 121
of an angle of large measure, 111
angle 6 in standard position, 106
approach for calculating values of sin 6 and
cos 6, 107-109
coterminal angles, 107, 111
ranges of sin6 and cos, 109-111
two angles of opposite sign but of equal
magnitude, 109
Trigonometry, 97
revising useful concept in, 120-126

Uncountable set, 36
Unusual function, 142

Value, of a polynomial, 6-7

Value of e, 362-364

Variables, 2, 4, 24, 30, 130-132, 362
algebraic equation, 7677

Whole numbers, 1, 42

Zero angle, 102
Zeros of a polynomial, 6-7
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