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Supervisors’ Foreword

It is a great pleasure to introduce Dr. Damiano Rotondo’s thesis work, accepted for
publication within Springer Theses and awarded with a prize for an outstanding
original work. Dr. Rotondo joined the Research Center for Supervision, Safety and
Automatic Control (CS2AC) of UPC at Campus of Terrassa (Spain) as an Erasmus
student in 2009 and carried out the Master thesis under our supervision in 2010. At
that time, he was a master student at the University of Pisa in Italy. The master
thesis was also of a very good quality and was published as a book in Italy. After
finishing his master thesis in 2011, he started the doctoral studies at UPC doing the
research in the context of FP7 European project i-Sense where CS2AC research
center was participating as a partner. A bit later he got a 4-year Ph.D. scholarship
from the Catalonia regional government. Finally, he received the UPC Ph.D. degree
(excellent cum laude) with the International Mention in Automatic Control and
Robotics in April 2016.

Dr. Rotondo’s thesis includes a significant amount of original scientific research
in the field of gain-scheduling theory and its application to Fault Tolerant Control
(FTC) using the Linear Parameter Varying (LPV) and Takagi–Sugeno (TS) para-
digms in a unified manner. LPV/TS system theory allows dealing with the nonlinear
and time-varying behavior of some family of systems using linear-like techniques.
This thesis presents several relevant contributions to the LPV/TS gain-scheduling
theory, with an emphasis on their application to FTC. In particular, the thesis:

• provides an up-to-date review of the state of the art of the gain-scheduling and
fault tolerant control, with particular emphasis on LPV and TS systems;

• explores the strong similarities between polytopic LPV and TS models, showing
how techniques developed for the former framework can be easily extended to
be applied to the latter, and vice versa;

• proposes approaches to address the problem of designing an LPV state-feedback
controller for uncertain LPV systems and to consider shifting specifications as
well as its application to FTC;
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• proposes several FTC strategies for LPV systems subject to actuator faults based
on model reference control and virtual actuators, including actuator saturations
and fault isolation delays;

• all the proposed methods are illustrated using application examples and real case
studies based on an omnidirectional robot.

A significant part of Dr. Rotondo’s thesis has been published in top journals and
international well-recognized conferences; some of them are fruit of joint collab-
orations with the research group of Prof. Marcin Witczak from the Zielona-Gora
University in Poland and Prof. Didier Theilliol and Prof. Jean-Christophe Ponsart
from CRAN—Nancy at the University of Lorraine in France. Moreover,
Dr. Rotondo’s research has also been enriched during the Ph.D. thesis by his
research stays at the KIOS Research Center (Cyprus) under the supervision of Prof.
Marios Polycarpou and Dr. Vasso Reppa, and later on at AMOS Research Center
(Norway), where actually he is doing his postdoc, under the supervision of Prof.
Tor Arne Johansen and Dr. Andrea Cristofaro. The thesis has also been improved
by the valuable comments of the external reviewers Prof. Christopher Edwards and
Prof. Olivier Sename during the Ph.D. thesis evaluation phase.

Terrassa Prof. Fatiha Nejjari Akhi-elarab
January 2017 Prof. Vicenç Puig Cayuela
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Foreword by CEA

It is a great pleasure for us to introduce here the work of Damiano Rotondo,
awarded for the best Ph.D. thesis in Control Engineering during the 2016 edition
of the award call organized by the control engineering group of Comité Español de
Automática (CEA), the Spanish Committee of Automatic Control. This yearly
award is aimed at recognizing outstanding Ph.D. research carried out within the
Control Engineering field. At least one of the supervisors must be partner of the
Spanish Committee of Automatic Control and member of the Control Engineering
group. The jury is composed of three well-known doctors in the control engineering
field: two of them are partners of the CEA, while the third one is a foreign pro-
fessor. The first edition counted submissions from Ph.D. students examined
between July 2015 and July 2016. Notably, the scientific production of the can-
didates consisted of a total of more than 20 publications in international indexed
journals, where 15 of them are ranked in first quartile journals. This shows the high
scientific quality of the submitted Ph.D.s. All the thesis presented:

• have been under the international doctorate mention (the candidate must have at
least one international research stay out of Spain, write part of the thesis in
English, and have foreign members in the Ph.D. jury);

• have been mostly oriented to academic research than to industrial applications;
• were presented at international conferences. Among them, IFAC and IEEE are

considered as preferred conferences.

As a result, Damiano Rotondo’s Ph.D. thesis was selected as the best one among
an excellent group of candidates. His Ph.D. thesis deserves the label “the best of the
best”, Springer Theses’ main motto. Not only his nomination as winner of the
Spanish control engineering context has been our great pleasure, but also to rec-
ommend his thesis for publication within the Springer Theses collection. On the
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behalf of CEA, we wish Damiano to continue his outstanding scientific career,
keeping his genuine enthusiasm. We also hope that his work may be of inspiration
for other students working in the control engineering field.

Prof. Dr. Joseba Quevedo
President of CEA

Dr. Ramon Vilanova
Coordinators of the Control Engineering group

Dr. Jose Luis Guzman
Coordinators of the Control Engineering group

viii Foreword by CEA
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Chapter 1
Introduction

1.1 Context of the Thesis

The results presented in this thesis have been developed at the Research Center for
Supervision, Safety and Automatic Control (CS2AC) of the Universitat Politècnica
de Catalunya (UPC) in Terrassa, Spain. The research was jointly supervised by
Dr. Fatiha Nejjari and Dr. Vicenç Puig, and was sponsored partly by UPC through
an FPI-UPC grant and by the Agència de Gestió d’Ajuts Universitaris i de Recerca
(AGAUR) through contracts FI-DGR. The supports are gratefully acknowledged.

1.2 Motivations

The development of gain scheduling and fault tolerant control (FTC) techniques has
attracted a lot of attention in the last decades, as testified by the increasing number
of publications dealing with these topics.

In the first case, the interest of the research community has been attracted by
the possibility of dealing with nonlinear control problems. In particular, the linear
parameter varying (LPV) [1] and the fuzzy Takagi-Sugeno (TS) [2] paradigms have
provided an elegant way to apply linear techniques to nonlinear systems with theo-
retical guarantees of stability and performance. Some recent works have presented
some clues about the existence of a close connection between the LPV theory and
the fuzzy TS paradigms [3–6]. However, even if from theoretical analysis and design
points of view it is difficult to find clear differences between the two paradigms, they
are still considered different and their equality is dubious [7].

Most of the available results about the design of controllers for LPV systems
make the assumption that the model is perfectly known. Only a few works, e.g. [8, 9]
have stated the importance of considering robustness against uncertainties. Hence,
designing controllers for uncertain LPV systems that can guarantee some desired
performances in spite of the uncertainties is still an open problem. Furthermore, an
interesting twist on the application of LPV/TS theory, that has never been considered
before, is designing the controller in such a way that different values of the varying
parameters imply different performances of the closed-loop system.

© Springer International Publishing AG 2018
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2 1 Introduction

On the other hand, the increasing need for safety and reliability has motivated
the development of FTC techniques, which are able to maintain the overall system
stability and acceptable performance in presence of faults [10]. The LPV paradigm
has been successfully applied in the FTC field, due to the time-varying nature of
systems affected by faults and the need of dealing not only with linear plants, but also
with nonlinear ones. In this case, open issues that motivate further research consist
in how to take into account effectively the uncertainties in the fault estimation, and
how to improve the behavior of fault tolerant control systems subject to constraints
on the actuator action. This last problem is of particular importance in the case of
open-loop unstable systems, because neglecting it could lead to instability under
fault occurrence [11].

1.3 Thesis Objectives

The objectives of this thesis are the following:

• to state clearly the analogies and connections between LPV and TS systems;
• to show how methods developed for the LPV representation could be easily
extended in order to be applied to the TS one, and vice versa;

• to propose measures in order to compare different LPV/TS models and choose
which one can be considered the best one;

• to propose an approach for the design of robust LPV state-feedback controllers
for uncertain LPV systems that can guarantee some desired performances in spite
of the uncertainties;

• to propose an approach for the design of LPV state-feedback controllers such that
different values of the varying parameters imply different performances of the
closed-loop system;

• to use the robust LPV controller design method for FTC, giving rise to different
strategies (passive/active/hybrid) depending on the available information about the
faults;

• to take into account the presence of actuator saturations in the FTC scheme, such
that guarantees of convergence to zero of the state trajectory are obtained, even in
presence of delays between the fault occurrence and its isolation.

1.4 Outline of the Thesis

The thesis is organized in two parts:

Part I presents the results that constitute a contribution to the state-of-the-art of
gain-scheduling. It is made up of four chapters:

• Chapter 2 recalls some background on gain-scheduling, with particular empha-
sis on LPV and TS systems. Known results about modeling, analysis and control

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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of LPV/TS systems are presented and discussed. In particular, it is shown how
LPV/TS representations can be obtained starting from a given nonlinear system,
using different approaches, i.e. Jacobian linearization, state transformation, func-
tion substitution, sector nonlinearity and local approximation in fuzzy partition
spaces. Then, the analysis and design of LPV control systems using the quadratic
framework is reviewed, discussing several possible specifications, as stability, D-
stability (pole clustering in a subset of the complex plane), H∞/H2 performance
and finite time stability/boundedness.

• Chapter 3 addresses the presence of strong analogies between LPV and TSmodels.
In particular, the connections between LPV and TS systems are clearly stated. It is
shown that the method for the automated generation of LPV models by nonlinear
embedding [12] can be easily extended to solve the corresponding problem for TS
models. Similarly, it is shown that themethod for the generation of a TSmodel for a
given nonlinear multivariable function based on the sector nonlinearity approach
[13] can be extended to the problem of generating a polytopic LPV model for
a given nonlinear system. Finally, two measures, the first based on the notion
of overboundedness, while the second based on region of attraction estimates,
are proposed in order to compare different models and choose which one can be
considered the best one. The chapter is concluded by a mathematical example that
shows an application of the proposed methodologies.

• Chapter 4 considers the problem of designing a robust LPV state-feedback con-
troller for uncertain LPV systems that can guarantee some desired performances.
In the proposed approach, the vector of varying parameters is used to schedule
between uncertain linear time invariant (LTI) systems. The resulting idea consists
in using a double-layer polytopic description so as to take into account both the
variability due to the parameter vector and the uncertainty. The first polytopic
layer manages the varying parameters and is used to obtain the vertex uncertain
systems, where the vertex controllers are designed. The second polytopic layer is
built at each vertex system so as to take into account the model uncertainties and
add robustness into the design step. Under some assumptions, the problem reduces
to finding a solution to a finite number of linear matrix inequalities (LMIs), a prob-
lem for which efficient solvers are available nowadays. The proposed technique is
applied to numerical examples, showing that it achieves the desired performances,
whereas the traditional LPV gain-scheduling technique fails.

• In Chap. 5, by taking advantage of the properties of polytopes and linear matrix
inequalities (LMIs), new problems that can be seen as extensions of the more
classical D-stability,H∞ performance,H2 performance, finite time boundedness
and finite time stability specifications are solved. In these new problems, referred
to as shifting D-stability, shifting H∞ performance, shifting H2 performance,
shifting finite time stability and shifting finite time boundedness, by introducing
some varying parameters, or using the existing ones, the controller is designed in
such a way that different values of these parameters imply different performances
of the closed-loop system. The results obtained with an academic example are
used to demonstrate the effectiveness and some characteristics of the proposed
approach.

http://dx.doi.org/10.1007/978-3-319-62902-5_3
http://dx.doi.org/10.1007/978-3-319-62902-5_4
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Part II presents the results that constitute a contribution to the state-of-the-art of
fault tolerant control. It is made up of four chapters:

• Chapter 6 recalls some background on fault tolerant control. Different approaches
are resumed, following the well-established distinction between hardware redun-
dancy and analytical redundancy techniques and, with regards to the latter, the
additional distinction between passive and active approaches. The last part of the
chapter resumes recent developments of fault tolerant control theory, highlighting
some open issues that motivate further investigation in this topic.

• Chapter 7 shows how the framework proposed in Chap.4 for the design of robust
LPV controllers can be used for FTC, with the advantage that, depending on how
much information is available, it gives rise to different strategies. If the faults are
considered as perturbations, a passive FTC would arise. On the other hand, if
the faults are used as additional scheduling parameters, an active FTC would be
obtained. Finally, if the fault estimation uncertainty is taken into account explic-
itly during the design step, the robust LPV polytopic technique would lead to
hybrid FTC. The different controllers are obtained using LMIs, in order to achieve
regional pole placement andH∞ performance constraints. Results obtained using
a quadrotor unmanned aerial vehicle (UAV) simulator are used to show the effec-
tiveness of the proposed approach.

• Chapter 8 concerns the development of an FTC strategy for LPV systems involving
a reconfigured reference model and virtual actuators. The use of the reference
model framework allows assuring that the desired tracking performances are kept
despite the fault occurrence, thanks to the action brought by the virtual actuator.
By including the saturations in the reference model equations, it is shown that it
is possible to design a model reference FTC system that automatically retunes the
reference states whenever the system input is affected by saturation nonlinearities.
Hence, another contribution of this chapter is to take into account the saturations
as scheduling parameters, such that their inclusion in both the reference model
and the system provides an elegant way to incorporate a graceful performance
degradation in presence of actuator saturations. The potential and performance
of the proposed approach are demonstrated with two different examples: a twin
rotor multiple-input multiple-output (MIMO) system (TRMS) and a four wheeled
omnidirectional mobile robot.

• Chapter 9 deals with the design of an active FTC strategy for unstable LPV systems
subject to actuator saturation. Under the assumption that a nominal controller has
been already designed, a block is added to the control loop for achieving fault
tolerance against a predefined set of possible faults. In particular, faults affecting
the actuators and causing a change in the system input matrix are considered. The
design of this block is performed in such a way that, if at the fault isolation time
the closed-loop system state is inside a region defined by a value of the Lyapunov
function, the state trajectory will converge to zero despite the appearance of the
faults. Also, it is shown that it is possible to obtain some guarantees about the
tolerated delay between the fault occurrence and its isolation.Moreover, the design

http://dx.doi.org/10.1007/978-3-319-62902-5_6
http://dx.doi.org/10.1007/978-3-319-62902-5_7
http://dx.doi.org/10.1007/978-3-319-62902-5_4
http://dx.doi.org/10.1007/978-3-319-62902-5_8
http://dx.doi.org/10.1007/978-3-319-62902-5_9
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of the nominal controller can be performed so as to maximize the tolerated delay.
A numerical example is used to show the effectiveness of the proposed approach.

Finally, the thesis is concluded by:

• Chapter 10, which summarizes the main conclusions and suggests possible lines
of future research;

• Appendix A, which provides new characterizations for the analysis of finite time
boundedness and finite time stability. This new characterization allows considering
parameter-dependent Lyapunov functions easily, thus decreasing the conservative-
ness with respect to other approaches available in the literature;

• Appendix B, which completes the results presented in Chap.8, by demonstrating
that a particular matrix is independent from the values of the faults.

1.5 Notation

Following the notation used by [8], σ stands for the Laplace variable s in the
continuous-time (CT) case and for the Z-transform variable z in the discrete-time
(DT) case. Similarly, τ will stand for the time t ∈ R

+ in the CT case and for the time
samples k ∈ Z

+ in the DT case. The notation σ.x(τ ) stands for ẋ(t) for CT systems
and for x(k + 1) for DT systems.

For a complex number σ, its complex conjugate will be denoted by σ∗.
Given a vector v ∈ R

nv , its i th element will be denoted as vi . For a given matrix
M = [mkl]k∈{1,...,nr },l∈{1,...,nc} ∈ R

nr×nc , the i th row will be denoted as Mi , and the
element located in its i th row and j th column as mkl . The notation MT will indicate
the transpose operation, and MH will denote the Hermitian transpose operation.
For brevity, symmetric elements in a matrix are denoted by ∗ and M + MT will be
indicated as He {M}. If a matrix M ∈ R

n×n is symmetric, then M ∈ S
n×n . A matrix

M ∈ S
n×n is said positive definite (M � 0) if all its eigenvalues are positive, and

negative definite (M ≺ 0) if all its eigenvalues are negative. Moreover, the symbol
⊗ denotes the Kronecker product, † denotes the Moore–Penrose pseudoinverse and
Tr the trace of a matrix.
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Chapter 2
Background on Gain-Scheduling

2.1 Gain-Scheduling: LPV Systems and TS Systems

After World War II, the development of advanced jet aircrafts, the advent of guided
missiles and the need of stability and performance requirements for a wide set of
operating conditions pushed towards a rapid adoption of gain scheduled autopilot
systems [1]. As examples of first proposed solutions, the B-52 autopilot, developed
around 1951, incorporated an airspeed-based mechanism to compensate for changes
in the aero-surface effectiveness [1]. The autopilot of the Talos missile, developed
in the early 1950s, adjusted the gains to compensate for changes in altitude and
speed, thus exhibiting a rudimentary form of gain-scheduling [2]. Since then, gain-
scheduling began to play an important role not only in military applications, but in
commercial ones too. For example, in response to the dual imperatives of improved
fuel economy and reduction of exhaust emissions, gain scheduling began to be used
in automobile engine controllers for electronic fuel control [1], starting from [3],
in which a closed-loop electronic fuel injection control with a gain influenced by
measured variables was described.

The first gain scheduled controller design approach involved selecting several
operating points, covering the range of the plant’s working conditions, where lin-
ear time invariant (LTI) controllers were designed. Then, between these operating
points, the parameters (gains) of the controller were interpolated (scheduled) [4].
However, this approach lacked in providing stability and performance guarantees
for all the possible operating conditions and, moreover, it needed the assumption
of slow variation in time of the parameters [5]. For this reason, the necessity for
systematic analysis and design tools for gain-scheduled controllers arised. Among
the most successful approaches, there are the linear parameter varying (LPV) and
the Takagi-Sugeno (TS) paradigms.

LPV systems were introduced by Shamma [6] to distinguish such systems from
LTI and linear time varying (LTV) ones [7]. More specifically, LPV systems are a
particular class of LTV systems, where the time-varying elements depend on mea-
surable parameters that can vary over time [8]. The LPV framework has proved to

© Springer International Publishing AG 2018
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be suitable for controlling nonlinear systems by embedding the nonlinearities in the
varying parameters, that will depend on some endogenous signals, e.g. states, inputs
or outputs. In this case, the system is referred to as quasi-LPV, to make a further
distinction with respect to pure LPV systems, where the varying parameters only
depend on exogenous signals [9].

Since the introduction of this paradigm, a lot of research has concerned the devel-
opment of design techniques for LPV systems. At first, the small gain theorem was
applied to LPV systems with a linear fractional transformation (LFT) form [10, 11].
However, this approach took into account complex varying parameters, that did not
appear in real plants, thus introducing a strong source of conservatism [8]. For this
reason, Lyapunov-based approaches were developed, allowing to take into account
not only arbitrarily fast parameter variations [12], but also known bounds on the rate
of parameter variation [13–15]. A unified scheme combining the small gain theorem
and the Lyapunov-based approach was developed by [16].

The LPV paradigm has evolved rapidly in the last two decades and has been
applied successfully to a big number of applications, e.g. active vision systems [17],
airplanes [18, 19], bioreactors [20], canals [21], CD players [22], container crane
load swing [23], control moment gyroscopes [24], electromagnetic actuators [25],
engines [26], flexible ball screw drives [27], fuel cells [28, 29], glycemic regula-
tion [30], induction motors [31], internet web servers [32], inverted pendula [33],
ionic polymer-metal composites [34], magneto-rheological dampers [35], robots
[36], unmanned aerial vehicles (UAVs) [37, 38], vehicle suspensions [39–41], wafer
scanners [42], wind turbines [43] and winding machines [44]. Recently, the LPV
paradigm has also been applied to time delay systems with time varying delays
[45–47].

On the other hand, TS systems, introduced by [48], basically provide an effective
way of representing nonlinear systemswith the aid of fuzzy sets, fuzzy rules and a set
of local linear models which are smoothly connected by fuzzymembership functions
[49]. TS fuzzy models are universal approximators, since they can approximate any
smooth nonlinear function to any degree of accuracy [50–54], such that they can
represent complex nonlinear systems.

The design approaches for TS systems can be classified into six categories [49]:
(i) local controller design, where feedback controllers are designed for each local
model and combined to obtain the global controller, and some stability criteria is
used to check stability [55, 56]; (ii) stabilization based on a nominal linear model
with nonlinearities considered as uncertainties [57, 58]; (iii) stabilization based on a
common quadratic Lyapunov function [59–67]; (iv) stabilization based on a piece-
wise quadratic Lyapunov function [57, 68–70]; (v) stabilization based on a fuzzy
Lyapunov function [71, 72]; (vi) adaptive control, when the parameters of the TS
fuzzy models are unknown [73–75].

Also the TS paradigm has been successfully applied in several fields, among
which active suspension of vehicles [76], aircrafts [77], electromechanical systems
[78], energy production systems [79], missiles [80], robotic systems [81], spark
ignition engines [82], transmission systems [83] and time delay systems [84].
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2.2 Modeling of LPV Systems

In this section, some basic concepts about modeling of LPV systems are recalled.
Since the thesis deals with methods developed for LPV models with polytopic para-
meter dependence, the case of LFTparameter dependence [10, 11]will not be consid-
ered. This does not cause a loss of generality, since [8] has demonstrated that an LPV
model with LFT parameter dependence can be converted into an LPV model with
polytopic parameter dependence. Also, the thesis will focus on LPV state-space (SS)
representations, even though LPV input-output (IO) models have been proposed too
[85]. Reference [86] has suggested practically applicable approaches for the conver-
sion of an LPV IOmodel in a discrete-time LPV SS representation; thus, considering
SS models does not cause a loss of generality. Finally, the methods recalled here-
after provide an LPV model starting from a nonlinear model that is assumed to be
available. In cases different from this, LPV models can be identified from IO data
[87, 88].

An LPV system is defined as a finite-dimensional LTV system whose state space
matrices are fixed functions of some varying parameters θ(τ ) ∈ R

nθ , assumed to be
unknown a priori, but measured or estimated in real-time [89]:

σ.x(τ ) = A (θ(τ )) x(τ ) + B (θ(τ )) u(τ ) (2.1)

y(τ ) = C (θ(τ )) x(τ ) + D (θ(τ )) u(τ ) (2.2)

where x ∈ R
nx , u ∈ R

nu and y ∈ R
ny are the state, the input, and the output vector,

respectively, and A (θ(τ )), B (θ(τ )), C (θ(τ )) and D (θ(τ )) are varying matrices of
appropriate dimensions.

Among the available analysis/synthesis approaches, the most popular, at least
taking into account the number of publications, is the polytopic approach [4]. An
LPV system is called polytopic when it can be represented by matrices A (θ(τ )),
B (θ(τ )), C (θ(τ )) and D (θ(τ )), where the parameter vector θ(τ ) ranges over a
fixed polytope �, and the dependence of the matrices on θ is affine [12], resulting in
the following representation:

σ.x(τ ) =
N∑

i=1

μi (θ(τ )) (Ai x(τ ) + Biu(τ )) (2.3)

y(τ ) =
N∑

i=1

μi (θ(τ )) (Ci x(τ ) + Diu(τ )) (2.4)

where the quadruples (Ai , Bi ,Ci , Di ) define the so-called vertex systems, and μi are
the coefficients of the polytopic decomposition, such that:

N∑

i=1

μi (θ(τ )) = 1, μi (θ(τ )) ≥ 0, ∀i = 1, . . . , N , ∀θ ∈ � (2.5)
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In the following, somemethods for obtaining anLPVmodel starting froman available
nonlinear SS model are recalled. For sake of simplicity, only continuous-time (CT)
nonlinear systems in the form:

ẋ(t) = g (x(t), u(t)) (2.6)

y(t) = h (x(t), u(t)) (2.7)

are considered. Notice that most of the physical systems of interest for control pur-
poses are CT, and if discrete-time (DT) LPV representations are desired for digital
implementation, suchmodels can be obtained fromCTLPVmodels using discretiza-
tion techniques, such as Euler or more sophisticated ones [90, 91].

2.2.1 Jacobian Linearization

The Jacobian linearization approach is the simplest technique that can be applied
for obtaining LPV models. It assumes that the nonlinear system can be linearized
around some equilibrium points of interest [9]. The basis of the method is to use a
first-order Taylor-series approximation of (2.6)–(2.7), and then an interpolation of
the obtained LTI models, when the system is working in operating points different
from the equilibrium ones.

Despite its simplicity, the behavior of the obtained LPVmodel could diverge from
the behavior of the nonlinear model [9]. The use of higher-order Taylor expansions
could alleviate this issue, but would lead to impractical implementations [92]. Also,
it is essentially impossible to capture the transient behavior of the nonlinear plant
using this method [93].

Hereafter, an example of the application of the Jacobian linearization technique,
taken from [94], is shown.

Consider the nonlinear system [95]:

(
ẋ1(t)
ẋ2(t)

)
=

( −x1(t)
x1(t) − |x2(t)| x2(t) − 10

)
+

(
1
0

)
u(t) (2.8)

y(t) = x2(t) (2.9)

The set of linearized models obtained from (2.8)–(2.9) is:

(
δẋ1(t)
δẋ2(t)

)
=

(−1 0
1 −2

∣∣xeq2 (t)
∣∣
) (

δx1(t)
δx2(t)

)
+

(
1
0

)
δu(t) (2.10)

δy(t) = (
0 1

) (
δx1(t)
δx2(t)

)
(2.11)
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Then, by considering the scheduling parameter θ(t) = ∣∣xeq2 (t)
∣∣, the model (2.10)–

(2.11) would appear in the form (2.1)–(2.2). The resulting system would be referred
to as quasi-LPV, due to the dependence of θ(t) on xeq2 (t).

2.2.2 State Transformation

In the state transformation approach, a coordinate change is performed with the aim
of removing any nonlinear term not dependent on the scheduling parameters [89].
This method assumes that the nonlinear system is in the following form:

(
ż(t)
l̇(t)

)
= g (z(t)) + A (z(t))

(
z(t)
l(t)

)
+ B (z(t)) u(t) (2.12)

where z(t) ∈ R
nz are the scheduling states, and l(t) ∈ R

nh are the non-scheduling
ones, with nz = nu . Under the assumptions that there exists a family of equilibrium
states parameterized by z(t), such that:

0 = g (z(t)) + A (z(t))

(
z(t)

leq (z(t))

)
+ B (z(t)) ueq (z(t)) (2.13)

with leq (z(t)) and ueq (z(t)) continuously differentiable functions, and that A (z(t))
and B (z(t)) are partitioned as:

A (z(t)) =
(
A11 (z(t)) A12 (z(t))
A21 (z(t)) A22 (z(t))

)
(2.14)

B (z(t)) =
(
B1 (z(t))
B2 (z(t))

)
(2.15)

it is possible to rewrite the state dynamics as:

(
ż(t)

l̇(t) − l̇eq (z(t))

)
=

(
0 A12 (z(t))

0 A22 (z(t)) − ∂leq (z)
∂z

∣∣∣
z(t)

A12 (z(t))

) (
z(t)

l(t) − leq(t)

)

+
(

B1 (z(t))

B2 (z(t)) − ∂leq (z)
∂z

∣∣∣
z(t)

B1 (z(t))

)
(
u(t) − ueq (z(t))

)

(2.16)
thus obtaining a quasi-LPV form different from the one obtained by performing
the Jacobian linearization, and exactly representing the original nonlinear system.
However, the presence of an inner-loop feedback due to the term ueq (z(t)) can
deteriorate the properties of the system by adversely exciting flexiblemode dynamics
[5, 6]. Hence, special care should be taken when applying this technique.
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For the example (2.8)–(2.9), the quasi-LPV model:

( ˙̃x1(t)˙̃x2(t)
)

=
(−1 − 2 |x̃2(t)| 0

1 0

) (
x̃1(t)
x̃2(t)

)
+

(
1
0

)
ũ(t) (2.17)

would be generated by changing the state coordinates as [94]:

x̃1(t) = x1(t) − xeq1 (x2(t)) (2.18)

x̃2(t) = x2(t) (2.19)

ũ(t) = u(t) − ueq (x2(t)) (2.20)

with:
ueq(t) = xeq1 (x2(t)) = |x2(t)| x2(t) + 10 (2.21)

2.2.3 Function Substitution

An alternative approach to obtain a quasi-LPV model is the function substitution
approach [96, 97], which consists in replacing the so-called decomposition function
with functions that are linear with respect to the scheduling parameters. This decom-
position function is formed by combining all the terms of the nonlinear system that
are not both affine with respect to the non-scheduling states and control inputs, and
function of the scheduling parameters alone (after a coordinate change with respect
to a single equilibrium point has been performed) [9]. The decomposition is car-
ried out through a minimization procedure, which leads to numerical optimization
problems [88].

For the example (2.8)–(2.9), the nonlinear system is rewritten as [94]:

( ˙̃x1(t)˙̃x2(t)
)

=
( −1 0

1 0

) (
x̃1(t)
x̃2(t)

)
+

(
1
0

)
ũ(t) +

( −xeq1 + ueq

xeq1 − ∣∣x̃2(t) + xeq2
∣∣ (x̃2(t) + xeq2

) − 10

)

(2.22)

where:

x̃1(t) = x1(t) − xeq1 (2.23)

x̃2(t) = x2(t) − xeq2 (2.24)

ũ(t) = u(t) − ueq (2.25)

with trim point (xeq1 , xeq2 ) = (11, 1). Then, by replacing the nonlinearity in (2.22)
with:
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g (x̃2(t)) =
{ [|xeq2 |xeq2 −|x̃2(t)+xeq2 |(x̃2(t)+xeq2 )]

x̃2(t)
x̃2(t) �= 0

0 x̃2(t) = 0
(2.26)

the following quasi-LPV model is obtained:

( ˙̃x1(t)˙̃x2(t)
)

=
(−1 0

1 g (x̃2(t))

) (
x̃1(t)
x̃2(t)

)
+

(
1
0

)
ũ(t) (2.27)

2.2.4 Other Approaches and Current Directions of Research

The problem of modeling a nonlinear system as a quasi-LPVmodel is still a hot topic
of research. For example, [98] have suggested that linearization and local controller
design should be carried out not only at equilibrium states, but also in transient
operating regimes.

In [99], a method for automated generation of LPVmodels, to be used when affine
representations of polytopic models are desired, has been presented. The affine LPV
representations are generated from a general nonlinear model by hiding the nonlin-
earities in the scheduling parameters. These LPV representations are not unique and
different models have different properties that may facilitate, complicate, or even
make impossible, the controller synthesis. For instance, two representations of the
same system may differ in the number of parameters, in the property of stabilizabil-
ity, or in the degree of overbounding of the admissible parameter set. Hence, [99]
also proposed a heuristic measure for the quality of different LPV models.

In the case of overbounding, i.e. when the obtained quasi-LPV model displays
more behaviors than the underlying nonlinear model, it is possible to use the method
proposed in [100]. This method is based on parameter set mapping (PSM) [101] and
leads to the generation of less conservative representations.

A SS model interpolation of local estimates (SMILE) technique has been pre-
sented in [102] for estimating LPV SS models, based on the interpolation of LTI
models estimated for constant values of the scheduling parameters. The interpola-
tion is based on the formulation of a linear least-squares problem that can be effi-
ciently solved, yielding homogeneous polynomial LPV models that are numerically
well-conditioned and therefore suitable for LPV control synthesis.

In [103], inspired by the feedback linearization theory, a systematic procedure is
proposed to convert control affine nonlinear SS representation into stateminimalLPV
SS representations in an observable canonical form, where the scheduling parameter
depends on the derivatives of the inputs and outputs of the system. In addition, if the
states of the nonlinear model can be measured or estimated, then the procedure can
be modified to provide LPV models scheduled by these states.
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2.3 Modeling of TS Systems

In this section, some basic concepts about modeling of TS systems are recalled.
Also in this case, as in the LPV modeling, the approach that constructs a TS fuzzy
model using an identification procedure applied to IO data is not considered. The
interested reader may find some details about this approach, suitable for plants that
cannot or are too difficult to be represented bymeans of analytical/physicalmodels, in
[104, 105].

TS systems, as proposed byTakagi and Sugeno [48], are described by localmodels
merged together using fuzzy IF-THEN rules [54], as follows:

I F ϑ1(τ ) is Mi1 AND · · · AND ϑp(τ ) is Mip

T HEN

{
σ.xi (τ ) = Ai x(τ ) + Biu(τ )

yi (τ ) = Ci x(τ ) + Diu(τ )
i = 1, . . . , N

(2.28)

where ϑ1(τ ), . . . ,ϑp(τ ) are the premise variables, that can be functions of the state
variables, controlled inputs, external disturbances and/or time. Each linear conse-
quent equation represented by Ai x(τ ) + Biu(τ ) is called a subsystem. Given a pair
(x(τ ), u(τ )), the state and output of the TS system can be inferred easily as:

σ.x(τ ) =

N∑
i=1

�i (ϑ(τ )) (Ai x(τ ) + Biu(τ ))

N∑
i=1

�i (ϑ(τ ))

=
N∑

i=1

ρi (ϑ(τ )) (Ai x(τ ) + Biu(τ )) (2.29)

y(τ ) =

N∑
i=1

�i (ϑ(τ )) (Ci x(τ ) + Diu(τ ))

N∑
i=1

�i (ϑ(τ ))

=
N∑

i=1

ρi (ϑ(τ )) (Ci x(τ ) + Diu(τ )) (2.30)

where ϑ(τ ) = (
ϑ1(τ ), . . . ,ϑp(τ )

)T
is the vector containing the premise variables,

and �i (ϑ(τ )) and ρi (ϑ(τ )) are defined as follows:

�i (ϑ(τ )) =
p∏

j=1

Mi j
(
ϑ j (τ )

)
(2.31)

ρi (ϑ(τ )) = �i (ϑ(τ ))

N∑
i=1

�i (ϑ(τ ))

(2.32)

where Mi j
(
ϑ j (τ )

)
is the grade of membership of ϑ j (τ ) in Mi j and ρi (ϑ(τ )) is

such that:
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N∑

i=1

ρi (ϑ(τ )) = 1, ρi (ϑ(τ )) ≥ 0, ∀i = 1, . . . , N (2.33)

In the following, some methods for the CT TS modeling will be recalled.

2.3.1 Sector Nonlinearity

The main idea behind this method appeared for the first time in [106]. Given a
nonlinear system ẋ(t) = g (x(t)) with g(0) = 0, this approach aims at finding a
global sector such that ẋ(t) ∈ [a1 a2]x(t). This approach guarantees an exact model
construction [54], but in some cases it is hard to apply, and local sector nonlinearities
should be considered instead.

The following example, taken from [54], shows an application of this approach.
Consider the nonlinear system:

(
ẋ1(t)
ẋ2(t)

)
=

( −x1(t) + x1(t)x32(t)−x2(t) + (3 + x2(t)) x31(t)

)
x1(t) ∈ [−1, 1]
x2(t) ∈ [−1, 1] (2.34)

Equation (2.34) can be rewritten as:

(
ẋ1(t)
ẋ2(t)

)
=

( −1 x1(t)x22 (t)
(3 + x2(t)) x21 (t) −1

) (
x1(t)
x2(t)

)
(2.35)

By choosing the premise variablesϑ1(t) = x1(t)x22 (t) andϑ2(t) = (3 + x2(t)) x21 (t),
and calculating the minimum and maximum values of ϑ1(t) and ϑ2(t) over the
considered intervals, i.e. ϑ1(t) ∈ [−1, 1] and ϑ2(t) ∈ [0, 4], the fuzzy model (2.28)
is obtained, with:

M11 = M21 = z1(t) + 1

2
(2.36)

M31 = M41 = 1 − z1(t)

2
(2.37)

M12 = M32 = z2(t)

4
(2.38)

M22 = M42 = 4 − z2(t)

4
(2.39)

and:

A1 =
(−1 1

4 −1

)
A2 =

(−1 1
0 −1

)
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A3 =
(−1 −1

4 −1

)
A4 =

(−1 −1
0 −1

)
(2.40)

It is worth mentioning that the choice of the premise variables is not unique, and
different TS representations of the same nonlinear system are possible. This fact will
be further investigated in the next chapter.

2.3.2 Local Approximation in Fuzzy Partition Spaces

The spirit of this approach is to approximate nonlinear terms by judiciously choosing
linear terms, thus reducing thenumber of fuzzy rules, being this particularly important
at the control system design step [54]. However, since the obtained model does not
represent exactly the original nonlinear system, the designed control system could
fail in guaranteeing the stability of the original nonlinear system.

The following example, taken from [54], shows an application of this approach.
Let us consider the equations of motion for an inverted pendulum [107]:

ẋ1(t) = x2(t) (2.41)

ẋ2(t) = g sin (x1(t)) − amlx22 (t) sin (2x1(t))/2 − a cos (x1(t)) u(t)

4l/3 − aml cos2 (x1(t))
(2.42)

where x1(t) denotes the angle of the pendulum from the vertical, and x2(t) is the
angular velocity; g is the gravity constant, m is the mass of the pendulum, M is the
mass of the cart, 2l is the length of the pendulum, u is the force applied to the cart,
and a = 1/(m + M).

When x1(t) is near zero, (2.42) can be simplified as:

ẋ2(t) = gx1(t) − au(t)

4l/3 − aml
(2.43)

On the other hand, when x1(t) is near ±π/2, (2.42) can be simplified as:

ẋ2(t) = 2gx1(t)/π − aβu(t)

4l/3 − amlβ2
(2.44)

with β = cos(88◦).
Then, a TS fuzzy model with two subsystems can be obtained:

A1 =
(

0 1
g

4l/3−aml 0

)
B1 =

(
0

− a
4l/3−aml

)

A2 =
(

0 1
2g

π(4l/3−amlβ2)
0

)
B2 =

(
0

− aβ
4l/3−amlβ2

)
(2.45)
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Notice that by applying the sector nonlinearity approach described in Sect. 2.3.1,
sixteen subsystems would have been obtained. Hence, the reduction of fuzzy rules
is considerable.

2.4 Analysis of LPV and TS Systems

This section recalls some of the most popular approaches for analyzing an LPV or a
TS system. As it will be shown in the next chapter, there are strong analogies between
the two frameworks, and the tools developed for a class of system usually apply to
the other one too. For this reason, the definitions and theorems recalled in this section
are shown for the LPV framework only.

First of all, let us recall some definitions.

Definition 2.1 (Poles of an LPV system [108]) Given an autonomous LPV system:

σ.x(τ ) = A (θ(τ )) x(τ ) (2.46)

where x ∈ R
nx is the state, θ(τ ) ∈ � ⊂ R

nθ is the varying parameter vector, A (θ(τ ))

is a varying matrix of appropriate dimensions, the poles of (2.46) are the set of all the
poles of the LTI systems obtained by freezing θ(τ ) to all its possible values θ ∈ �.

Definition 2.2 (D-stability of an LPV system) Given a subset D of the complex
plane, the autonomous LPV system (2.46) is said to be D-stable if all its poles lie
in D.

Notice that, unlike the LTI case, in general the notions of stability andD-stability
are not related. In fact, a D-stable system could be unstable even if D is contained
within the left-hand semiplane Re(s) < 0 in the CT case or the unit circle in the
DT case [109]. Also, an LPV system could have some unstable poles, and yet be
stable [110].

Definition 2.3 (LMI regions [111])A subsetD of the complex plane is called a linear
matrix inequality (LMI) region if there exist matrices α = [αkl]k,l∈{1,...,m} ∈ S

m×m

and β = [βk,l]k,l∈{1,...,m} ∈ R
m×m such that:

D = {σ ∈ C : fD(σ) ≺ O} (2.47)

where fD(σ) is the characteristic function defined as:

fD(σ) = α + βσ + βTσ∗ = [
αkl + βklσ + βlkσ

∗]
k,l∈{1,...,m} (2.48)

In other words, LMI regions are subsets of the complex plane that are represented by
an LMI in σ and σ∗. In [111], it was shown that LMI regions do not only include a
wide variety of typical clustering regions, but also form a dense subset of the convex
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regions that are symmetric with respect to the real axis. Among the regions that are
representable as LMI regions, there are:

• Left-hand semiplanes Re(σ) < λ

α = −2λ β = 1

• Right-hand semiplanes Re(σ) > λ

α = 2λ β = −1

• Disks of radius r and center (−q, 0)

α =
(−r q

q −r

)
β =

(
0 1
0 0

)

• Horizontal strips −ω < Im(σ) < ω

α =
(−2ω 0

0 −2ω

)
β =

(
0 1

−1 0

)

Definition 2.4 (H∞ norm [112]) For a stable real-rational transfer matrix T (σ), the
H∞ norm is defined as:

‖T (s)‖∞ = sup
ω∈R

σmax (T ( jω)) CT systems

‖T (z)‖∞ = sup
ω∈[−π,π]

σmax
(
T (e jω)

)
DT systems (2.49)

where σmax (M) denotes the largest singular value of the matrix M .

TheH∞ normmeasures the system input-output gain for finite energy signals across
all input/output channels.

Definition 2.5 (H∞ performance of an LPV system) The LPV system:

σ.x(τ ) = A (θ(τ )) x(τ ) + Bw (θ(τ )) w(τ ) (2.50)

z∞(τ ) = Cz∞ (θ(τ )) x(τ ) + Dz∞w (θ(τ )) w(τ ) (2.51)

hasH∞ performance γ∞ if
∥∥Tz∞w(σ, θ)

∥∥∞ < γ∞ ∀θ ∈ �, where Tz∞w(σ, θ) denotes
the closed-loop transfer function from w(τ ) to z∞(τ ).

The H∞ performance can be interpreted as a disturbance rejection performance,
and is convenient to enforce robustness against model uncertainty, and to express
frequency-domain specifications such as bandwidth, low-frequency gain, and roll-
off [113].
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Definition 2.6 (H2 norm [113]) For a stable real-rational transfer matrix T (σ), the
H2 norm is defined as:

‖T (s)‖2 =
√

1
2π

+∞∫
−∞

Tr
(
T ( jω)HT ( jω)

)
dω CT systems

‖T (z)‖2 =
√

1
2π

π∫
−π

Tr
(
T (e jω)HT (e jω)

)
dω DT systems

(2.52)

where Tr(M) denotes the trace of the matrix M .

TheH2 norm is equal to the root-mean-square of the impulse response of the system.
Itmeasures the steady-state covariance (or power) of the output response z2 = T (σ)w

to unit white noise inputs w.

Definition 2.7 (H2 performance of an LPV system) The LPV system (2.50) and:

z2(τ ) = Cz2 (θ(τ )) x(τ ) (2.53)

hasH2 performance γ2 if
∥∥Tz2w(σ, θ)

∥∥
2 < γ2 ∀θ ∈ �, where Tz2w(σ, θ) denotes the

closed-loop transfer function from w(τ ) to z2(τ ).

The H2 performance is useful to handle stochastic aspects such as measurement
noise and random disturbances [113].

Definition 2.8 (Finite time stability [114, 115]) The autonomous LPV system (2.46)
is said to be finite time stable (FTS) with respect to (c1, c2, T, R) with c2 > c1 > 0
and R � 0 if:

x(0)TRx(0) ≤ c1 ⇒ x(τ )TRx(τ ) < c2
∀t ∈ [0, T ] CT systems

∀k ∈ {1, . . . , T } DT systems
(2.54)

The idea of finite time stability, originally formulated by [116], concerns the bound-
edness of the state of a system over a finite time interval for given initial conditions.
Notice that this definition of finite time stability is different from the one provided
in other works, e.g. [117], where the property of a given system to be driven to the
equilibrium point in finite time is considered instead.

Definition 2.9 (Finite time boundedness [114, 115]) The CT LPV system:

ẋ(t) = A (θ(t)) x(t) + Bw (θ(t)) w(t) (2.55)

and the DT LPV system:

{
x(k + 1) = A (θ(k)) x(k) + Bw (θ(k)) w(k)
w(k + 1) = W (θ(k)) w(k)

(2.56)

are said to be finite time bounded (FTB) with respect to (c1, c2, T, R, d), with c2 >

c1 > 0, R � 0 and d > 0 if:
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{
x(0)TRx(0) ≤ c1
w(t)Tw(t) ≤ d

⇒ x(τ )TRx(τ ) < c2
∀t ∈ [0, T ] CT systems

∀k ∈ {1, . . . , T } DT systems
(2.57)

The idea of state boundedness is more general and concerns the behavior of the state
in presence of external disturbances. Notice that FTS can be recovered as a special
case of FTB when w = 0.

2.4.1 Analysis Based on a Common Quadratic Lyapunov
Function

The simplest approach for the analysis of LPV/TS systems is the one based on a
common quadratic Lyapunov function. In this case, the Lyapunov candidate function
used to assess the chosen specification is:

V (x(τ )) = x(τ )TPx(τ ) (2.58)

where P � O .

Theorem 2.1 (Quadratic stability of CTLPV systems)The autonomous LPV system
(2.46) with t = τ is quadratically stable:

1. if there exists P � O such that [118]:

A(θ)TP + PA(θ) ≺ O ∀θ ∈ � (2.59)

2. if there exists Q � 0 such that [119]:

QA(θ)T + A(θ)Q ≺ O ∀θ ∈ � (2.60)

Proof It is straightforward to obtain (2.59) by calculating V̇ (x(t)), replacing ẋ(t)
with (2.46), and imposing the condition V̇ (x(t)) < 0. Then, (2.60) can be obtained
from (2.59) with Q = P−1 [119]. A relevant consequence is that the stability of the
dual system:

ẋ(t) = A (θ(t))T x(t) (2.61)

is also characterized by (2.59)–(2.60). �

Theorem 2.2 (Quadratic stability ofDTLPV systems)The autonomous LPV system
(2.46) with τ = k is quadratically stable:

1. if there exists P � O such that [120]:

A(θ)TPA(θ) − P ≺ O ∀θ ∈ � (2.62)
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2. if there exists P � O such that:

( −P PA(θ)
A(θ)TP −P

)
≺ O ∀θ ∈ � (2.63)

3. if there exists Q � O such that [49]:

( −Q A(θ)Q
QA(θ)T −Q

)
≺ O ∀θ ∈ � (2.64)

Proof It is straightforward to obtain (2.62) by calculating �V (x(k)), replacing
x(k + 1) with (2.46) and imposing the condition �V (x(k)) < 0. Then, (2.63) can
be easily obtained from (2.62) by using the Schur complement. Finally, (2.64) can
be obtained from (2.63) with P = Q−1. �

Theorem 2.3 (Quadratic D-stability of LPV systems) Given an LMI region D
defined as in (2.47), the autonomous LPV system (2.46) is quadratically D-stable:

1. if there exists P � O such that [121]:

α ⊗ P + β ⊗ PA(θ) + βT ⊗ A(θ)TP
= [

αkl P + βkl P A(θ) + βlk A(θ)TP
]
k,l∈{1,...,m} ≺ O ∀θ ∈ �

(2.65)

2. if there exists Q � 0 such that:

α ⊗ Q + β ⊗ A(θ)Q + βT ⊗ QA(θ)T

= [
αkl Q + βkl A(θ)Q + βlk QA(θ)T

]
k,l∈{1,...,m} ≺ O ∀θ ∈ �

(2.66)

Proof The proof follows from the reasoning provided in [111], and (2.66) can be
obtained as the dual matrix inequality of (2.65) [119]. �

For an LPV system quadratically D-stable, it is assured that its poles are in D. As
shown by [108], the quadratic D-stability also affects the dynamical behavior of the
system, justifying from the engineering point of view the definition of LPV poles
given in Definition 2.1. It should be highlighted that in the case of CT systems, it can
be proved that some transient properties, usually defined in terms of pole location
in the case of LTI systems, hold for the LPV case too. This fact has been shown by
[121], taking into account the reasoning in [122].

Corollary 2.1 (Exponential decay/growth of LPV systems) Let V (x(t)) be defined
as in (2.58), and let the autonomous LPV system (2.46) be quadratically D stable,
i.e. (2.65) holds. Then, the Lyapunov function V (x(t)) satisfies, for all x(t) �= 0:

1

2

V̇ (x(t))

V (x(t))
∈ D ∩ R (2.67)
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Proof Pre-multiplying (2.65) by I ⊗ x(t)T, and post-multiplying it by I ⊗ x(t),
respectively, the following is obtained for all x(t) �= 0:

α ⊗ x(t)TPx(t) + β ⊗ x(t)TPA (θ(t)) x(t) + βT ⊗ x(t)TA (θ(t))T Px(t) ≺ O
(2.68)

Recalling that:

1

2
V̇ (x(t)) = x(t)TPA (θ(t)) x(t) = x(t)TA (θ(t))T Px(t) (2.69)

and dividing (2.68) by V (x(t)), this process leads to:

α ⊗ 1 + β ⊗ 1

2

V̇ (x(t))

V (x(t))
+ βT ⊗ 1

2

V̇ (x(t))

V (x(t))
≺ O (2.70)

which implies (2.67). �

As a consequence of Corollary 2.1, the system’s decay/growth rate lies within the
LMI region D. Reference [121] have shown that the concept of D-stability can also
be used for imposing limits on the energy of the rate of state change, thus imposing
a limit on the system’s oscillatory behaviors.

Theorem 2.4 (Quadratic H∞ performance of CT LPV systems) The LPV system
(2.50)–(2.51) with τ = t has quadratic H∞ performance γ∞ [111]:

1. if there exists P � O such that:

⎛

⎝
A(θ)TP + PA(θ) PBw(θ) Cz∞(θ)T

Bw(θ)TP −I Dz∞w(θ)T

Cz∞(θ) Dz∞w(θ) −γ2∞ I

⎞

⎠ ≺ O ∀θ ∈ � (2.71)

2. if there exists Q � O such that:

⎛

⎝
A(θ)Q + QA(θ)T Bw(θ) QCz∞(θ)T

Bw(θ)T −I Dz∞w(θ)T

Cz∞(θ)Q Dz∞w(θ) −γ2∞ I

⎞

⎠ ≺ O ∀θ ∈ � (2.72)

Proof See [123]. �

It is worth recalling that (2.71)–(2.72) can be replaced with [12]:

⎛

⎝
A(θ)TP + PA(θ) PBw(θ) Cz∞(θ)T

Bw(θ)TP −γ∞ I Dz∞w(θ)T

Cz∞(θ) Dz∞w(θ) −γ∞ I

⎞

⎠ ≺ O ∀θ ∈ � (2.73)

⎛

⎝
A(θ)Q + QA(θ)T Bw(θ) QCz∞(θ)T

Bw(θ)T −γ∞ I Dz∞w(θ)T

Cz∞(θ)Q Dz∞w(θ) −γ∞ I

⎞

⎠ ≺ O ∀θ ∈ � (2.74)
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Theorem 2.5 (Quadratic H∞ performance of DT LPV systems) The LPV system
(2.50)–(2.51) with τ = k has quadratic H∞ performance γ∞ [124]:

1. if there exists P � O such that:

⎛

⎜⎜⎝

P PA(θ) PBw(θ) O
A(θ)TP P O Cz∞(θ)T

Bw(θ)TP O I Dz∞w(θ)T

O Cz∞(θ) Dz∞w(θ) γ2∞ I

⎞

⎟⎟⎠ � O ∀θ ∈ � (2.75)

2. if there exists Q � O such that:

⎛

⎜⎜⎝

Q A(θ)Q Bw(θ) O
QA(θ)T Q O QCz∞(θ)T

Bw(θ)T O I Dz∞w(θ)T

O Cz∞(θ)Q Dz∞w(θ) γ2∞ I

⎞

⎟⎟⎠ � O ∀θ ∈ � (2.76)

Proof See [123]. �

Also in this case, (2.75)–(2.76) can be rewritten as [12]:

⎛

⎜⎜⎝

P PA(θ) PBw(θ) O
A(θ)TP P O Cz∞(θ)T

Bw(θ)TP O γ∞ I Dz∞w(θ)T

O Cz∞(θ) Dz∞w(θ) γ∞ I

⎞

⎟⎟⎠ � O ∀θ ∈ � (2.77)

⎛

⎜⎜⎝

Q A(θ)Q Bw(θ) O
QA(θ)T Q O QCz∞(θ)T

Bw(θ)T O γ∞ I Dz∞w(θ)T

O Cz∞(θ)Q Dz∞w(θ) γ∞ I

⎞

⎟⎟⎠ � O ∀θ ∈ � (2.78)

The results provided in Theorems 2.4 and 2.5 are also known as the bounded real
lemma (BRL). Several results developed throughout this thesis based on (2.71)–
(2.72) and (2.75)–(2.76) can be easily extended to the alternative formulations given
by (2.73)–(2.74) and (2.77)–(2.78).

Theorem 2.6 (Quadratic H2 performance of CT LPV systems) The LPV system
(2.50) and (2.53) with τ = t has quadratic H2 performance γ2 [111]:

1. if there exist P � O and Y (θ) ∈ S
nz2×nz2 such that T r (Y (θ)) < γ2

2 ∀θ ∈ � and:

(
A(θ)TP + PA(θ) Bw(θ)

Bw(θ)T −I

)
≺ O ∀θ ∈ � (2.79)

(
Y (θ) Cz2(θ)

Cz2(θ)
T P

)
� O ∀θ ∈ � (2.80)
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2. if there exist Q � O and Y (θ) ∈ S
nz2×nz2 such that T r (Y (θ)) < γ2

2 ∀θ ∈ � and:

(
A(θ)Q + QA(θ)T Bw(θ)

Bw(θ)T −I

)
≺ O ∀θ ∈ � (2.81)

(
Y (θ) Cz2(θ)Q

QCz2(θ)
T Q

)
� O ∀θ ∈ � (2.82)

Proof See [111]. �
Theorem 2.7 (Quadratic H2 performance of DT LPV systems) The LPV system
(2.50) and (2.53) with τ = k has quadratic H2 performance γ2 [124]:

1. if there exist P � O and Y (θ) ∈ S
nz2×nz2 such that T r (Y (θ)) < γ2

2 ∀θ ∈ � and:

⎛

⎝
P PA(θ) PBw(θ)

A(θ)TP P O
Bw(θ)TP O I

⎞

⎠ � O ∀θ ∈ � (2.83)

(
Y (θ) Cz2(θ)

Cz2(θ)
T P

)
� O ∀θ ∈ � (2.84)

2. if there exist Q � O and Y (θ) ∈ S
nz2×nz2 such that T r (Y (θ)) < γ2

2 ∀θ ∈ � and:

⎛

⎝
Q A(θ)Q Bw(θ)

QA(θ)T Q O
Bw(θ)T O I

⎞

⎠ � O ∀θ ∈ � (2.85)

(
Y (θ) Cz2(θ)Q

QCz2(θ)
T Q

)
� O ∀θ ∈ � (2.86)

Proof See [124]. �
Notice that, according to Schur’s complements [125], in case a multiobjective spec-
ification is considered, some of the provided conditions are redundant. For example,
the stability conditions provided in Theorems 2.1–2.2 can be found in the upper-left
parts of (2.71)–(2.79), (2.81), (2.83) and (2.85). Also, if both H∞ and H2 perfor-
mances are considered at the same time, (2.79), (2.81), (2.83) and (2.85) are not
needed, since they are already included in (2.71)–(2.76).

Theorem 2.8 (Quadratic FTB of CT LPV systems) The LPV system (2.55) is
quadratically FTB with respect to (c1, c2, T, R, d) if, letting Q̃1 = R−1/2Q1R−1/2,
there exist positive scalars a, λ1, λ2, λ3 and two positive definite matrices Q1 ∈
S
nx×nx and Q2 ∈ S

nw×nw such that:

(
A (θ) Q̃1 + Q̃1A (θ)T − aQ̃1 Bw (θ) Q2

Q2Bw (θ)T −aQ2

)
≺ O ∀ θ ∈ � (2.87)
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λ1 I ≺ Q1 ≺ I (2.88)

λ2 I ≺ Q2 ≺ λ3 I (2.89)

⎛

⎝
c2e−aT √

c1
√
d√

c1 λ1 0√
d 0 λ2

⎞

⎠ � O (2.90)

Proof It is obtained straightforwardly, taking into account that the conditions pre-
sented in Lemma 6 of [114] should hold for every possible value of θ. �

Theorem 2.9 (Quadratic FTB of DT LPV systems) The discrete-time LPV system
(2.56) is quadratically FTB with respect to (c1, c2, T, R, d) if there exist positive
scalars a, λ1, λ2 with a ≥ 1 and two positive definite matrices Q1 ∈ S

nx×nx and
Q2 ∈ S

nw×nw such that:

⎛

⎜⎜⎝

−aQ1 Q1A (θ)T O O
A (θ) Q1 −Q1 Bw (θ) O

O Bw (θ)T −aQ2 W (θ)T Q2

O O Q2W (θ) −Q2

⎞

⎟⎟⎠ ≺ O ∀ θ ∈ � (2.91)

λ1R
−1 ≺ Q1 ≺ R−1 (2.92)

O ≺ Q2 ≺ λ2 I (2.93)

( c2
aT − λ2d

√
c1√

c1 λ1

)
� O (2.94)

Proof It is obtained straightforwardly, taking into account that the conditions pre-
sented in Lemma 1 of [115] should hold for every possible value of θ. �

Theorem 2.10 (Quadratic FTS of CT LPV systems) The autonomous LPV system
(2.46) with τ = t is quadratically FTS with respect to (c1, c2, T, R) if, letting Q̃1 =
R−1/2Q1R−1/2, there exist positive scalars a, λ1 and a positive definite matrix Q1 ∈
S
nx×nx such that (2.88) and:

A (θ) Q̃1 + Q̃1A (θ)T − aQ̃1 ≺ O ∀θ ∈ � (2.95)

(
c2e−aT √

c1√
c1 λ1

)
� O (2.96)

hold.

Proof It is a direct consequence of Theorem 2.8, when Bw (θ(t)) = O and
d = 0. �
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Theorem 2.11 (Quadratic FTS of DT LPV systems) The autonomous LPV system
(2.46) with τ = k is quadratically FTS with respect to (c1, c2, T, R) if there exist
positive scalars a, λ1 with a ≥ 1 and a positive definite matrix Q1 ∈ S

nx×nx such
that: ( −aQ1 Q1A (θ)T

A (θ) Q1 −Q1

)
≺ O ∀ θ ∈ � (2.97)

( c2
aT

√
c1√

c1 λ1

)
� O (2.98)

λ1R
−1 ≺ Q1 ≺ R−1 (2.99)

Proof It is a direct consequence of Theorem 2.9, when W (θ(k)) = Bw (θ(k)) = O
and d = 0. �

The problem with the conditions provided in Theorems 2.1–2.11 is that they rely on
the satisfaction of infinite constraints. However, this difficulty can be overcome by
considering the polytopic approach, as recalled in Sect. 2.2. In the following, for each
theorem, an appropriate corollary is obtained. A mathematical proof is provided for
Corollary 2.2 only, while it is omitted for the other corollaries, due to the similarity
of the reasoning behind their proofs with the provided one.

Corollary 2.2 (Quadratic stability of CT LPV systems, polytopic version) The
autonomous polytopic CT LPV system:

ẋ(t) =
N∑

i=1

μi (θ(t))Ai x(t) (2.100)

with coefficients μi such that (2.5) holds, is quadratically stable:

1. if there exists P � O such that:

AT
i P + PAi ≺ O ∀i = 1, . . . , N (2.101)

2. if there exists Q � O such that:

QAT
i + Ai Q ≺ O ∀i = 1, . . . , N (2.102)

Proof Due to a basic property of matrices [126], any linear combination of (2.101)
and (2.102) with non-negative coefficients, of which at least one different from zero,
is negative definite. Hence, using the coefficients μi (θ(t)), and taking into account
(2.5), (2.59) and (2.60) are obtained. �
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Corollary 2.3 (Quadratic stability of DT LPV systems, polytopic version) The
autonomous polytopic DT LPV system:

x(k + 1) =
N∑

i=1

μi (θ(k))Ai x(k) (2.103)

with coefficients μi such that (2.5) holds, is quadratically stable:

1. if there exists P � O such that:

( −P PAi

AT
i P −P

)
≺ O ∀i = 1, . . . , N (2.104)

2. if there exists Q � O such that:

( −Q Ai Q
QAT

i −Q

)
≺ O ∀i = 1, . . . , N (2.105)

Proof Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.4 (QuadraticD-stability of LPV systems, polytopic version) Given an
LMI region D defined as in (2.47), the autonomous polytopic LPV system:

σ.x(τ ) =
N∑

i=1

μi (θ(τ ))Ai x(τ ) (2.106)

with coefficients μi such that (2.5) holds, is quadratically D-stable:

1. if there exists P � O such that:

α ⊗ P + β ⊗ PAi + βT ⊗ AT
i P= [

αkl P + βkl P Ai + βlk AT
i P

]
k,l∈{1,...,m} ≺ O ∀i = 1, . . . , N (2.107)

2. if there exists Q � O such that:

α ⊗ Q + β ⊗ Ai Q + βT ⊗ QAT
i

= [
αkl Q + βkl Ai Q + βlk QAT

i

]
k,l∈{1,...,m} ≺ O ∀i = 1, . . . , N

(2.108)

Proof Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.5 (QuadraticH∞ performance of CT LPV systems, polytopic version)
The polytopic CT LPV system:

ẋ(t) =
N∑

i=1

μi (θ(t))
[
Ai x(t) + Bw,iw(t)

]
(2.109)
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z∞(t) =
N∑

i=1

μi (θ(t))
[
Cz∞,i x(t) + Dz∞w,iw(t)

]
(2.110)

with coefficients μi such that (2.5) holds, has quadratic H∞ performance γ∞:

1. if there exists P � O such that:

⎛

⎜⎝

AT
i P + PAi PBw,i CT

z∞,i

BT
w,i P −I DT

z∞w,i

Cz∞,i Dz∞w,i −γ2∞ I

⎞

⎟⎠ ≺ O ∀i = 1, . . . , N (2.111)

2. if there exists Q � O such that:

⎛

⎝
Ai Q + QAT

i Bw,i QCT
z∞,i

BT
w,i −I DT

z∞w,i
Cz∞,i Q Dz∞w,i −γ2∞ I

⎞

⎠ ≺ O ∀i = 1, . . . , N (2.112)

Proof Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.6 (QuadraticH∞ performance of DT LPV systems, polytopic version)
The polytopic DT LPV system:

x(k + 1) =
N∑

i=1

μi (θ(k))
[
Ai x(k) + Bw,iw(k)

]
(2.113)

z∞(k) =
N∑

i=1

μi (θ(k))
[
Cz∞,i x(k) + Dz∞w,iw(k)

]
(2.114)

with coefficients μi such that (2.5) holds, has quadratic H∞ performance γ∞:

1. if there exists P � O such that:

⎛

⎜⎜⎜⎝

P PAi PBw,i O
AT
i P P O CT

z∞,i

BT
w,i P O I DT

z∞w,i

O Cz∞,i Dz∞w,i γ2∞ I

⎞

⎟⎟⎟⎠ � O ∀i = 1, . . . , N (2.115)

2. if there exists Q � O such that:

⎛

⎜⎜⎝

Q Ai Q Bw,i O
QAT

i Q O QCT
z∞,i

BT
w,i O I DT

z∞w,i

O Cz∞,i Q Dz∞w,i γ2∞ I

⎞

⎟⎟⎠ � O ∀i = 1, . . . , N (2.116)
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Proof Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.7 (Quadratic H2 performance of CT LPV systems, polytopic version)
The polytopic CT LPV system (2.109) and:

z2(t) =
N∑

i=1

μi (θ(t))Cz2,i x(t) (2.117)

with coefficients μi such that (2.5) holds, has quadratic H2 performance γ2:

1. if there exist P � O and N matrices Yi ∈ S
nz2×nz2 such that T r(Yi ) < γ2

2∀i = 1, . . . , N and:

(
AT
i P + PAi Bw,i

BT
w,i −I

)
≺ O ∀i = 1, . . . , N (2.118)

(
Yi Cz2,i

CT
z2,i

P

)
� O ∀i = 1, . . . , N (2.119)

2. if there exist Q � O and N matrices Yi ∈ S
nz2×nz2 such that T r(Yi ) < γ2

2∀i = 1, . . . , N and:

(
Ai Q + QAT

i Bw,i

BT
w,i −I

)
≺ O ∀i = 1, . . . , N (2.120)

(
Yi Cz2,i Q

QCT
z2,i

Q

)
� O ∀i = 1, . . . , N (2.121)

Proof Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.8 (QuadraticH2 performance of DT LPV systems, polytopic version)
The polytopic DT LPV system (2.113) and:

z2(k) =
N∑

i=1

μi (θ(k))Cz2,i x(k) (2.122)

with coefficients μi such that (2.5) holds, has quadratic H2 performance γ2:

1. if there exist P � O and N matrices Yi ∈ S
nz2×nz2 such that T r(Yi ) < γ2

2∀i = 1, . . . , N and:

⎛

⎝
P PAi PBw,i

AT
i P P O

BT
w,i P O I

⎞

⎠ � O ∀i = 1, . . . , N (2.123)
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(
Yi Cz2,i

CT
z2,i

P

)
� O ∀i = 1, . . . , N (2.124)

2. if there exist Q � O and N matrices Yi ∈ S
nz2×nz2 such that T r(Yi ) < γ2

2∀i = 1, . . . , N and:

⎛

⎝
Q Ai Q Bw,i

QAT
i Q O

BT
w,i O I

⎞

⎠ � O ∀i = 1, . . . , N (2.125)

(
Yi Cz2,i Q

QCT
z2,i

Q

)
� O ∀i = 1, . . . , N (2.126)

Proof Similar to that of Corollary 2.2, thus omitted. �
Corollary 2.9 (Quadratic FTB of CT LPV systems, polytopic version) The poly-
topic CT LPV system (2.109), with coefficients μi such that (2.5) holds, is quadrat-
ically FTB with respect to (c1, c2, T, R, d) if, letting Q̃1 = R−1/2Q1R−1/2, there
exist positive scalars a, λ1, λ2, λ3 and two positive definite matrices Q1 ∈ S

nx×nx

and Q2 ∈ S
nw×nw such that:

(
Ai Q̃1 + Q̃1AT

i − aQ̃1 Bw,i Q2

Q2BT
w,i −aQ2

)
≺ O ∀i = 1, . . . , N (2.127)

and (2.88)–(2.90) hold.

Proof Similar to that of Corollary 2.2, thus omitted. �
Corollary 2.10 (Quadratic FTB of DT LPV systems, polytopic version) The poly-
topic DT LPV system (2.113) and:

w(k + 1) =
N∑

i=1

μi (θ(k))Wiw(k) (2.128)

with coefficients μi such that (2.5) holds, is quadratically FTB with respect to
(c1, c2, T, R, d) if there exist positive scalars a, λ1, λ2, with a ≥ 1 and two pos-
itive definite matrices Q1 ∈ S

nx×nx and Q2 ∈ S
nw×nw such that:

⎛

⎜⎜⎝

−aQ1 Q1AT
i O O

Ai Q1 −Q1 Bw,i O
O BT

w,i −aQ2 WT
i Q2

O O Q2Wi −Q2

⎞

⎟⎟⎠ ≺ O ∀i = 1, . . . , N (2.129)

and (2.92)–(2.94) hold.

Proof Similar to that of Corollary 2.2, thus omitted. �
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Corollary 2.11 (Quadratic FTS of CT LPV systems, polytopic version) The auton-
omous polytopic CT LPV system (2.100), with coefficients μi such that (2.5) holds,
is quadratically FTS with respect to (c1, c2, T, R) if, letting Q̃1 = R−1/2Q1R−1/2,
there exist positive scalars a, λ1 and a positive definite matrix Q1 ∈ S

nx×nx such
that:

Ai Q̃1 + Q̃1A
T
i − aQ̃1 ≺ O ∀i = 1, . . . , N (2.130)

(2.88) and (2.96) hold.

Proof Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.12 (Quadratic FTS of DT LPV systems, polytopic version) The auton-
omous polytopic DT LPV system (2.103), with coefficients μi such that (2.5) holds,
is quadratically FTS with respect to (c1, c2, T, R) if there exist positive scalars a, λ1

with a ≥ 1 and a positive definite matrix Q1 ∈ S
nx×nx such that:

(−aQ1 Q1AT
i

Ai Q1 −Q1

)
≺ O ∀ θ ∈ � (2.131)

and (2.98)–(2.99) hold.

Proof Similar to that of Corollary 2.2, thus omitted. �

2.4.2 Analysis Based on Other Lyapunov Functions

In some situations, using a common quadratic Lyapunov function, as shown in
Sect. 2.4.1, could not be enough, due to the introduction of conservativeness of
these functions. In these cases, other types of Lyapunov functions could be used,
even though at the expense of increasing the complexity of the analysis. This section
reviews some of the results in this field.Mathematical details will not be provided, but
the interested reader could find easily further informations in the references provided
throughout this section.

The main weakness of quadratic stability is that it considers arbitrarily fast para-
meter variations. As a consequence, the analysis performed using the conditions
presented in Sect. 2.4.1 can be very conservative for constant or slowly-varying para-
meters. In order to reduce the conservatism, [127] proposed extending the class of
Lyapunov functions to include parameter-dependent Lyapunov functions:

V (x(τ )) = x(τ )TP (θ(τ )) x(τ ) (2.132)

Also, [128] showed that robust stability of a time-varying system is equivalent to the
existence of a parameter-dependent Lyapunov function (2.132) for some augmented
system. However, the approaches proposed in [127, 128] are non-convex, and thus
hardly tractable from a computational point of view. For this reason, [13] proposed a
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way to convexify the problem by imposing additional constraints on the parameter-
dependent Lyapunov functions, obtaining a numerically tractable LMI feasibility
problem. Since the bounds on the derivatives of the scheduling parameters are explic-
itly taken into account, the approach proposed in [13] provides a smooth transition
between time invariant parameters and arbitrarily fast parameter variations. Further
development of this approach can be found in [15], where H∞ control synthesis
was considered, in [129], where H2 control synthesis was considered, and in [130],
where an extended characterization of H2 and H∞ norms was provided, allowing
to further decrease the conservatism when using parameter-dependent Lyapunov
functions. Homogeneous polynomially parameter-dependent quadratic Lyapunov
functions were proposed by [131], demonstrating their effectiveness with respect
to linearly parameter-dependent Lyapunov functions. A systematic procedure for
constructing a family of LMI conditions of increasing precision is given in [132].
At each step, a set of LMIs provides sufficient conditions for the existence of an
affine parameter-dependent Lyapunov function. Necessity is asymptotically attained
through a relaxation based on a generalization of Pólya’s theorem. A robust stability
approach based on a Lyapunov function which depends quadratically both on the
system state and the varying parameters (biquadratic stability) has been proposed
by [133]. References [134–136] have shown that, by employing Lyapunov functions
associated with higher-order time-derivatives of the state, simpler inequalities in a
higher-dimensional space can be obtained, leading to not only simple and tractable,
but also less conservative LMI conditions.

Notice that the use of parameter-dependent Lyapunov functions in the case of LPV
systems is akin to the use of fuzzy Lyapunov functions in TS systems, as proposed
in [72, 137].

It is worth recalling an additional line of research, that tries to enhance the concept
of LMI region provided in Definition 2.3. For example, [138] have introduced DR

regions, obtained modifying the characteristic function (2.48), as follows:

fDR (σ) = α + βσ + βTσ∗ + χσσ∗ = [
αkl + βklσ + βlkσ

∗ + χklσσ∗]
k,l∈{1,...,m}

(2.133)

with χ = [χk,l]k,l∈{1,...,m} ∈ S
m×m . Without any assumption on the matrix χ, DR

regions are not convex, but when χ is positive semidefinite, DR are only a slight
modification of LMI regions [138], that allow applying parameter-dependent Lya-
punov functions for assessing the pole clustering property. On the other hand, [139]
have developed an approach that allows specifying not only a simple convex region,
but also a non-convex region, defined as a number of convex subregions. The intro-
duction of extra variables and the use of additional LMIs have been considered by
[140], requiring greater computational effort, but providing sufficient conditions that
are much more close to necessity. A Kalman-Yakubovich-Popov (KYP) lemma for
LMI regions, to guarantee the satisfaction of a frequency domain inequality, has been
discussed in [141].
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2.5 Control of LPV and TS Systems

Taking into account the analysis conditions presented in Sect. 2.4, the problem of
designing a control law such that the resulting closed-loop system has some desired
properties will be analyzed hereafter.

For the sake of simplicity, only the case of a state-feedback control law of the form:

u(τ ) = K (θ(τ )) x(τ ) (2.134)

will be considered. Even though in many situations the state is not available, in most
of them the system is observable, thus it is possible to add a state observer to the
control loop. Then, the state observer would provide an estimation of the state to
be fed back to the controller [142]. In cases where this would not be possible, other
approaches may be viable, e.g. output-feedback controller synthesis [143–145] or
IO controller synthesis [85, 146, 147].

The following theorems can be easily obtained taking into account the results
presented in the previous section.

Theorem 2.12 (Quadratic stabilization of CT LPV systems) The LPV system (2.1)
with control law (2.134) and τ = t is quadratically stabilizable if there exist Q � O
and a matrix function K (θ) ∈ R

nu×nx such that:

He {A(θ)Q + B(θ)K (θ)Q} ≺ O ∀θ ∈ � (2.135)

Proof It is obtained straightforwardly from Theorem 2.1, by considering the closed-
loop state matrix A(θ) + B(θ)K (θ) instead of the autonomous state matrix
A(θ). �

Theorem 2.13 (Quadratic stabilization of DT LPV systems) The LPV system (2.1)
with control law (2.134) and τ = k is quadratically stabilizable if there exist Q � O
and a matrix function K (θ) ∈ R

nu×nx such that:

(−Q A(θ)Q + B(θ)K (θ)Q
∗ −Q

)
≺ O ∀θ ∈ � (2.136)

Proof It is obtained straightforwardly from Theorem 2.2, by considering the closed-
loop state matrix A(θ) + B(θ)K (θ) instead of the autonomous state matrix
A(θ). �

Theorem 2.14 (Quadratic D-stabilizability of LPV systems) Given an LMI region
D defined as in (2.47), the LPV system (2.1) with control law (2.134) is quadratically
D-stabilizable if there exist Q � O and a matrix function K (θ) ∈ R

nu×nx such that:

α ⊗ Q + He {β ⊗ [A(θ)Q + B(θ)K (θ)Q]} ≺ O ∀θ ∈ � (2.137)
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Proof It is obtained straightforwardly from Theorem 2.3, by considering the closed-
loop state matrix A(θ) + B(θ)K (θ) instead of the autonomous state matrix
A(θ). �

Theorem 2.15 (Quadratic H∞ state-feedback for CT LPV systems) The CT LPV
system:

ẋ(t) = A (θ(t)) x(t) + B (θ(t)) u(t) + Bw (θ(t)) w(t) (2.138)

z∞(t) = Cz∞ (θ(t)) x(t) + Dz∞u (θ(t)) u(t) + Dz∞w (θ(t)) w(t) (2.139)

with control law (2.134) has quadratic H∞ performance γ∞ if there exist Q � O
and a matrix function K (θ) ∈ R

nu×nx such that:

⎛

⎝
He {A(θ)Q + B(θ)K (θ)Q} ∗ ∗

Bw(θ)T −I ∗
Cz∞(θ)Q + Dz∞u(θ)K (θ)Q Dz∞w(θ) −γ2∞ I

⎞

⎠ ≺ O ∀θ ∈ � (2.140)

Proof It is obtained straightforwardly from Theorem 2.4 by considering the closed-
loop state matrix A(θ) + B(θ)K (θ) instead of the state matrix A(θ), and the closed-
loop z∞ output matrix Cz∞(θ) + Dz∞u(θ)K (θ) instead of the z∞ output matrix
Cz∞(θ). �

Theorem 2.16 (Quadratic H∞ state-feedback for DT LPV systems) The DT LPV
system:

x(k + 1) = A (θ(k)) x(k) + B (θ(k)) u(k) + Bw (θ(k)) w(k) (2.141)

z∞(k) = Cz∞ (θ(k)) x(k) + Dz∞u (θ(k)) u(k) + Dz∞w (θ(k)) w(k) (2.142)

with control law (2.134) has quadratic H∞ performance γ∞ if there exist Q � O
and a matrix function K (θ) ∈ R

nu×nx such that:
⎛

⎜⎜⎝

Q A(θ)Q + B(θ)K (θ)Q Bw(θ) O
∗ Q O QCz∞(θ)T + QK (θ)TDz∞u(θ)T

∗ ∗ I Dz∞w(θ)T

∗ ∗ ∗ γ2∞ I

⎞

⎟⎟⎠ � O ∀θ ∈ �

(2.143)

Proof It is obtained straightforwardly from Theorem 2.5 by considering the closed-
loop state matrix A(θ) + B(θ)K (θ) instead of the state matrix A(θ), and the closed-
loop z∞ output matrix Cz∞(θ) + Dz∞u(θ)K (θ) instead of the z∞ output matrix
Cz∞(θ). �

Theorem 2.17 (Quadratic H2 state-feedback for CT LPV systems) The CT LPV
system (2.138) and:

z2(t) = Cz2 (θ(t)) x(t) + Dz2u (θ(t)) u(t) (2.144)



2.5 Control of LPV and TS Systems 37

with control law (2.134) has quadraticH2 performance γ2 if there exist Q � O and
matrix functions K (θ) ∈ R

nu×nx , Y (θ) ∈ S
nz2×nz2 such that T r (Y (θ)) < γ2

2 ∀θ ∈ �

and: (
He {A(θ)Q + B(θ)K (θ)Q} Bw(θ)

∗ −I

)
≺ O ∀θ ∈ � (2.145)

(
Y (θ) Cz2(θ)Q + Dz2u(θ)K (θ)Q

∗ Q

)
� O ∀θ ∈ � (2.146)

Proof It is obtained straightforwardly from Theorem 2.6 by considering the closed-
loop state matrix A(θ) + B(θ)K (θ) instead of the state matrix A(θ), and the
closed-loop z2 output matrix Cz2(θ) + Dz2u(θ)K (θ) instead of the z2 output matrix
Cz2(θ). �

Theorem 2.18 (Quadratic H2 state-feedback for DT LPV systems) The DT LPV
system (2.141) and:

z2(k + 1) = Cz2 (θ(k)) x(k) + Dz2u (θ(k)) u(k) (2.147)

with control law (2.134) has quadraticH2 performance γ2 if there exist Q � O and
matrix functions K (θ) ∈ R

nu×nx , Y (θ) ∈ S
nz2×nz2 such that T r (Y (θ)) < γ2

2 ∀θ ∈ �

and:
⎛

⎝
Q A(θ)Q + B(θ)K (θ)Q Bw(θ)
∗ Q O
∗ ∗ I

⎞

⎠ � O ∀θ ∈ � (2.148)

(
Y (θ) Cz2(θ)Q + Dz2u(θ)K (θ)Q

∗ Q

)
� O ∀θ ∈ � (2.149)

Proof It is obtained straightforwardly from Theorem 2.7 by considering the closed-
loop state matrix A(θ) + B(θ)K (θ) instead of the state matrix A(θ), and the
closed-loop z2 output matrix Cz2(θ) + Dz2u(θ)K (θ) instead of the z2 output matrix
Cz2(θ). �

Theorem 2.19 (Quadratic FTB state-feedback for CT LPV systems) The CT LPV
system (2.138) with control law (2.134) is quadratically FTB with respect to
(c1, c2, T, R, d) if, letting Q̃1 = R−1/2Q1R−1/2, there exist positive scalars a, λ1,
λ2, λ3, two positive definite matrices Q1 ∈ S

nx×nx and Q2 ∈ S
nw×nw , and a matrix

function K (θ) ∈ R
nu×nx such that:

(
He

{
A(θ)Q̃1 + B(θ)K (θ)Q̃1

}
− aQ̃1 Bw(θ)Q2

∗ −aQ2

)
≺ O ∀θ ∈ � (2.150)

and (2.88)–(2.90) hold.
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Proof It is obtained straightforwardly from Theorem 2.8 by considering the closed-
loop state matrix A(θ) + B(θ)K (θ) instead of the state matrix A(θ). �

Theorem 2.20 (Quadratic FTB state-feedback for DT LPV systems) The DT LPV
system (2.141) and:

w(k + 1) = W (θ(k)) w(k) (2.151)

with control law (2.134) is quadratically FTBwith respect to (c1, c2, T, R, d) if there
exist positive scalars a, λ1, λ2 with a ≥ 1, two positive definite matrices Q1 ∈ S

nx×nx

and Q2 ∈ S
nw×nw and a matrix function K (θ) ∈ R

nu×nx such that:

⎛

⎜⎜⎝

−aQ1 ∗ ∗ ∗
A(θ)Q1 + B(θ)K (θ)Q1 −Q1 ∗ ∗

O Bw(θ)T −aQ2 ∗
O O Q2W (θ) −Q2

⎞

⎟⎟⎠ ≺ O ∀θ ∈ � (2.152)

and (2.92)–(2.94) hold.

Proof It is obtained straightforwardly from Theorem 2.9 by considering A(θ) +
B(θ)K (θ) instead of A(θ). �

Theorem 2.21 (Quadratic finite time stabilization of CT LPV systems) The LPV
system (2.1) with control law (2.134) and τ = t is quadratically finite time sta-
bilizable with respect to (c1, c2, T, R) if, letting Q̃1 = R−1/2Q1R−1/2, there exist
positive scalars a, λ1, a positive definite matrix Q1 ∈ S

nx×nx and a matrix function
K (θ) ∈ R

nu×nx such that:

He
{
A(θ)Q̃1 + B(θ)K (θ)Q̃1

}
− aQ̃1 ≺ O ∀θ ∈ � (2.153)

(2.88) and (2.96) hold.

Proof It is obtained straightforwardly from Theorem 2.10 by considering A(θ) +
B(θ)K (θ) instead of A(θ). �

Theorem 2.22 (Quadratic finite time stabilization of DT LPV systems) The LPV
system (2.1) with control law (2.134) and τ = k is quadratically finite time stabiliz-
able with respect to (c1, c2, T, R) if there exist positive scalars a, λ1 with a ≥ 1, a
positive definite matrix Q1 ∈ S

nx×nx and a matrix function K (θ) ∈ R
nu×nx such that:

( −αQ1 ∗
A(θ)Q1 + B(θ)K (θ)Q1 −Q1

)
≺ O ∀θ ∈ � (2.154)

and (2.98)–(2.99) hold.

Proof It is obtained straightforwardly from Theorem 2.11 by considering A(θ) +
B(θ)K (θ) instead of A(θ). �
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However, similarly to the previous section, Theorems 2.12–2.22 imply infinite con-
straints to be checked, that can be reduced to a finite number using the polytopic
approach described in Sect. 2.2. In this case, the matrices A (θ(τ )), Bw (θ(τ )),
Cz∞ (θ(τ )), Dz∞w (θ(τ )), Cz2 (θ(τ )), W (θ(k)) are assumed to be polytopic, as fol-
lows: ⎛

⎜⎜⎜⎜⎜⎜⎝

A (θ(τ ))

Bw (θ(τ ))

Cz∞ (θ(τ ))

Dz∞w (θ(τ ))

Cz2 (θ(τ ))

W (θ(k))

⎞

⎟⎟⎟⎟⎟⎟⎠
=

N∑

i=1

μi (θ(τ ))

⎛

⎜⎜⎜⎜⎜⎜⎝

Ai

Bw,i

Cz∞,i

Dz∞w,i

Cz2,i

Wi

⎞

⎟⎟⎟⎟⎟⎟⎠
(2.155)

where the coefficientsμi satisfy the property (2.5). On the other hand, thematrices B,
Dz∞u and Dz2u are assumed to be constant. This assumption is not restrictive, since
in the case of varying matrices B (θ(τ )), Dz∞u (θ(τ )) and Dz2u (θ(τ )), a prefiltering
of the input u(τ ) would lead to obtain a new system with constant matrices B̃, D̃z∞u

and D̃z2u [12]. More specifically, for the system:

σ.x(τ ) = A (θ(τ )) x(τ ) + B (θ(τ )) u(τ ) + Bw (θ(τ )) w(τ ) (2.156)

z∞(τ ) = Cz∞ (θ(τ )) x(τ ) + Dz∞u (θ(τ )) u(τ ) + Dz∞w (θ(τ )) w(τ ) (2.157)

z2(τ ) = Cz2 (θ(τ )) x(τ ) + Dz2u (θ(τ )) u(τ ) (2.158)

let us define a new control input ũ(τ ) such that:

σ.xu(τ ) = Au (θ(τ )) xu(τ ) + Buũ(τ ) (2.159)

u(τ ) = Cuxu(τ ) (2.160)

with Au (θ(τ )) stable. Then, the resulting LPV system would be:
(

σ.x(τ )

σ.xu(τ )

)
=

(
A (θ(τ )) B (θ(τ ))Cu

O Au (θ(τ ))

)(
x(τ )

xu(τ )

)
+

(
O
Bu

)
ũ(τ ) +

(
Bw (θ(τ ))

O

)
w(τ )

(2.161)

z∞(τ ) = (
Cz∞ (θ(τ )) Dz∞u (θ(τ ))Cu

) (
x(τ )

xu(τ )

)
+ Dz∞w (θ(τ )) w(τ ) (2.162)

z2(τ ) = (
Cz2 (θ(τ )) Dz2u (θ(τ ))Cu

) (
x(τ )

xu(τ )

)
(2.163)

that are in the desired form.
It is worth recalling that some recent research has developed design conditions

that wouldwork in the casewhere thematrices B (θ(τ )), Dz∞u (θ(τ )) and Dz2u (θ(τ ))
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are varying, without the need of resorting to the input prefiltering [148]. Since these
conditions are in some way conservative, many works try to reduce their pessimism.
Among these works, [149] is recognized to lead to a good compromise between
complexity and conservatism.

The following corollaries are obtained from Theorems 2.12–2.22, and consider a
polytopic state-feedback control law (2.134), as follows:

u(τ ) =
N∑

i=1

μi (θ(τ )) Ki x(τ ) (2.164)

The mathematical proof is provided only for Corollary 2.13, since the proofs of the
remaining ones can be presented by a similar reasoning.

Corollary 2.13 (Design of a quadratically stabilizing polytopic state-feedback con-
troller for CTLPV systems) Let Q � O and�i ∈ R

nu×nx , i = 1, . . . , N be such that:

He {Ai Q + B�i } ≺ O ∀i = 1, . . . , N (2.165)

Then, the closed-loop systemmade up by the LPV system (2.1), with τ = t , B (θ(t)) =
B, and polytopic matrices as in (2.155), and the polytopic state-feedback control law
(2.164) with gains calculated as Ki = �i Q−1, i = 1, . . . , N, is quadratically stable.

Proof By considering that Ki = �i Q−1 is equivalent to �i = Ki Q, (2.165) can be
rewritten as:

He {Ai Q + BKi Q} ≺ O ∀i = 1, . . . , N (2.166)

Then, taking into account the basic property of matrices [126] that any linear combi-
nation of (2.166) with non-negative coefficients, of which at least one different from
zero, is negative definite, using the coefficients μi (θ(τ )), and taking into account
(2.155) and (2.164), (2.135) is obtained. �

Corollary 2.14 (Design of a quadratically stabilizing polytopic state-feedback con-
troller forDTLPVsystems)Let Q � O and�i ∈ R

nu×nx , i = 1, . . . , N, be such that:

(−Q Ai Q + B�i

∗ −Q

)
≺ O ∀i = 1, . . . , N (2.167)

Then, the closed-loop system made up by the LPV system (2.1), with τ = k,
B (θ(k)) = B, and polytopic matrices as in (2.155), and the polytopic state-feedback
control law (2.164) with gains calculated as Ki = �i Q−1, i = 1, . . . , N, is quadrat-
ically stable.

Proof Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.15 (Design of a quadratically D-stabilizing polytopic state-feedback
controller for LPV systems) Given an LMI regionD defined as in (2.47), let Q � O
and �i ∈ R

nu×nx , i = 1, . . . , N, be such that:
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α ⊗ Q + He {β ⊗ [Ai Q + B�i ]} ≺ O ∀i = 1, . . . , N (2.168)

Then, the closed-loop system made up by the LPV system (2.1), with B (θ(τ )) = B,
and polytopic matrices as in (2.155), and the polytopic state-feedback control law
(2.164) with gains calculated as Ki = �i Q−1, i = 1, . . . , N, is quadratically D-
stable.

Proof Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.16 (Design of a quadratic H∞ polytopic state-feedback controller for
CT LPV systems) Let Q � O and �i ∈ R

nu×nx , i = 1, . . . , N, be such that:

⎛

⎝
He {Ai Q + B�i } ∗ ∗

BT
w,i −I ∗

Cz∞,i Q + Dz∞u�i Dz∞w,i −γ2∞ I

⎞

⎠ ≺ O ∀i = 1, . . . , N (2.169)

Then, the closed-loop system made up by the LPV system (2.138)–(2.139), with
B (θ(t)) = B, Dz∞u (θ(t)) = Dz∞u, and polytopic matrices as in (2.155), and the
polytopic state-feedback control law (2.164) with gains calculated as Ki = �i Q−1,
i = 1, . . . , N, has quadratic H∞ performance γ∞.

Proof Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.17 (Design of a quadratic H∞ polytopic state-feedback controller for
DT LPV systems) Let Q � O and �i ∈ R

nu×nx , i = 1, . . . , N, be such that:

⎛

⎜⎜⎜⎝

Q Ai Q + B�i Bw,i O
∗ Q O QCT

z∞,i

∗ ∗ I DT
z∞w,i

∗ ∗ ∗ γ2∞

⎞

⎟⎟⎟⎠ � O ∀i = 1, . . . , N (2.170)

Then, the closed-loop system made up by the LPV system (2.141)–(2.142), with
B (θ(k)) = B, Dz∞u (θ(k)) = Dz∞u, and polytopic matrices as in (2.155), and the
polytopic state-feedback control law (2.164) with gains calculated as Ki = �i Q−1,
i = 1, . . . , N, has quadratic H∞ performance γ∞.

Proof Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.18 (Design of a quadratic H2 polytopic state-feedback controller for
CT LPV systems) Let Q � O, �i ∈ R

nu×nx and Yi ∈ S
nz2×nz2 , i = 1, . . . , N, be

such that:
T r(Yi ) < γ2

2 ∀i = 1, . . . , N (2.171)

(
He {Ai Q + B�i } Bw,i

∗ −I

)
≺ O ∀i = 1, . . . , N (2.172)
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(
Yi Cz2,i Q + Dz2u�i

∗ Q

)
� O ∀i = 1, . . . , N (2.173)

Then, the closed-loop system made up by the CT LPV system (2.138) and (2.144),
with B (θ(t)) = B, Dz2u (θ(t)) = Dz2u , and polytopic matrices as in (2.155), and the
polytopic state-feedback control law (2.164) with gains calculated as Ki = �i Q−1,
i = 1, . . . , N , has quadratic H2 performance γ2.

Proof Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.19 (Design of a quadratic H2 polytopic state-feedback controller for
DT LPV systems) Let Q � O, �i ∈ R

nu×nx and Yi ∈ S
nz2×nz2 , i = 1, . . . , N, be

such that:
T r(Yi ) < γ2

2 ∀i = 1, . . . , N (2.174)

⎛

⎝
Q Ai Q + B�i Bw,i

∗ Q O
∗ ∗ I

⎞

⎠ � O ∀i = 1, . . . , N (2.175)

(
Yi Cz2,i Q + Dz2u�i

∗ Q

)
� O ∀i = 1, . . . , N (2.176)

Then, the closed-loop system made up by the DT LPV system (2.141) and (2.147),
with B (θ(k)) = B, Dz2u (θ(k)) = Dz2u, and polytopicmatrices as in (2.155), and the
polytopic state-feedback control law (2.164) with gains calculated as Ki = �i Q−1,
i = 1, . . . , N, has quadratic H2 performance γ2.

Proof Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.20 (Design of a quadratic FTB polytopic state-feedback controller for
CT LPV systems) Fix a > O, and let λ1 > 0, λ2 > 0, λ3 > 0, Q1 � O, Q2 � O,
and �i ∈ R

nu×nx , i = 1, . . . , N, be such that:

(
He

{
Ai Q̃1 + B�i

}
− aQ̃1 Bw,i Q2

∗ −aQ2

)
≺ O ∀i = 1, . . . , N (2.177)

and (2.88)–(2.90) hold, where Q̃1 = R−1/2Q1R−1/2. Then, the closed-loop system
made up by the CT LPV system (2.138), with B (θ(t)) = B, and polytopic matrices as
in (2.155), and the polytopic state-feedback control law (2.164) with gains calculated
as Ki = �i Q̃

−1
1 , i = 1, . . . , N, is quadratically FTBwith respect to (c1, c2, T, R, d).

Proof Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.21 (Design of a quadratic FTB polytopic state-feedback controller for
DT LPV systems) Fix a ≥ 1, and let λ1 > 0, λ2 > 0, Q1 � O, Q2 � O and �i ∈
R

nu×nx , i = 1, . . . , N, be such that:
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⎛

⎜⎜⎝

−aQ1 ∗ ∗ ∗
Ai Q1 + B�i −Q1 ∗ ∗

O BT
w,i −aQ2 ∗

O O Q2Wi −Q2

⎞

⎟⎟⎠ ≺ O ∀i = 1, . . . , N (2.178)

and (2.92)–(2.94) hold. Then, the closed-loop system made up by the DT LPV system
(2.141) and (2.151), with B (θ(k)) = B, and polytopic matrices as in (2.155), and the
polytopic state-feedback control law (2.164) with gains calculated as Ki = �i Q

−1
1 ,

i = 1, . . . , N, is quadratically FTB with respect to (c1, c2, T, R, d).

Proof Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.22 (Design of a quadratically finite time stabilizing polytopic state-
feedback controller for CT LPV systems) Fix a > 0, and let λ1 > 0, Q1 � O and
�i ∈ R

nu×nx , i = 1, . . . , N, be such that:

He
{
Ai Q̃1 + B�i

}
− aQ̃1 ≺ O ∀i = 1, . . . , N (2.179)

Equation (2.88) and (2.96) hold, where Q̃1 = R−1/2Q1R−1/2. Then, the closed-loop
systemmade up by the CT LPV system (2.1), with τ = t , B (θ(t)) = B, and polytopic
matrices as in (2.155), and the polytopic state-feedback control law (2.164) with
gains calculated as Ki = �i Q̃

−1
1 , i = 1, . . . , N, is quadratically FTS with respect

to (c1, c2, T, R).

Proof Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.23 (Design of a quadratically finite time stabilizing polytopic state-
feedback controller for DT LPV systems) Fix a ≥ 1, and let Q1 � O and �i ∈
R

nu×nx , i = 1, . . . , N, be such that:
( −aQ1 ∗
Ai Q1 + B�i −Q1

)
≺ O ∀i = 1, . . . , N (2.180)

and (2.98)–(2.99) hold. Then, the closed-loop system made up by the DT LPV sys-
tem (2.1), with τ = k, B (θ(k)) = B, and polytopic matrices as in (2.155), and the
polytopic state-feedback control law (2.164) with gains calculated as Ki = �i Q

−1
1 ,

i = 1, . . . , N, is quadratically FTS with respect to (c1, c2, T, R).

Proof Similar to that of Corollary 2.13, thus omitted. �

2.6 Conclusions

This chapter has presented some background on gain-scheduling. Some basic con-
cepts about modeling of LPV and TS systems have been recalled, and different
methods for obtaining such models starting from an available nonlinear state-space
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model have been illustrated using some examples. For LPV systems, the follow-
ing methods have been recalled: (a) the Jacobian linearization approach, based on
the interpolation of LTI models obtained as first-order Taylor-series approximations
of the nonlinear systems around some equilibrium points of interest; (b) the state
transformation approach, where a coordinate change is performed with the aim of
removing any nonlinear term not dependent on the scheduling parameters; and (c)
the function substitution approach, that replaces a decomposition functionwith func-
tions that are linear with respect to the scheduling parameters. For TS systems, the
followingmethods have been recalled: (d) the sector nonlinearity approach, that aims
at finding global sectors through which an exact model representation is guaranteed;
and (e) the local approximation in fuzzy partition spaces, where nonlinear terms are
approximated by judiciously choosing linear terms, with the effect of reducing the
number of fuzzy rules.

Afterwards, the problem of analyzing whether or not some properties hold for a
given LPV system has been considered. The definitions in the case of LPV systems
of poles, LMI regions, H∞ norm, H∞ performance, H2 norm, H2 performance,
finite time stability and finite time boundedness have been provided. Detailed condi-
tions to perform the analysis based on a common quadratic Lyapunov function have
been listed, and it has been shown that a finite number of LMIs can be obtained by
considering the polytopic approach.

Finally, it has been shown how the analysis conditions can be taken into account
for designing a state-feedback control law such that the resulting closed-loop system
has some desired properties.
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Chapter 3
Automated Generation and Comparison
of Takagi-Sugeno and Polytopic Quasi-LPV
Models

The content of this chapter is based on the following work:

• [1]D.Rotondo,V. Puig, F.Nejjari,M.Witczak.Automatedgeneration and compar-
ison of Takagi-Sugeno and polytopic quasi-LPV models. Fuzzy Sets and Systems,
277:44–64, 2015.

3.1 Introduction

Despite the strong similarities of the two paradigms, LPV andTS systems have nearly
always been treated as though as they belonged to two different worlds. In fact, the
research for each of them has been performed in an independent way and, as a result,
cross-references between papers dealing with the LPV theory and those dealing with
the TS theory are quite uncommon. As a consequence, some theoretical results that
could be useful for both types of systems have been applied only to one type.

However, in some recent works, some clues that there is a close connection
between the LPV theory and the fuzzy TS paradigms have been presented [2, 3]. In
[4], Rong and Irwin have pointed out that LPV systems can describe TS fuzzymodels
if the scheduling functions of the former paradigm are treated as membership func-
tions of the latter one. Bergsten and his co-workers [5] have pointed out that, since
it has been proved that a TS fuzzy system, where the local affine dynamic models
are off-equilibrium local linearizations, leads to an arbitrarily close approximation
of an LTV dynamical system about an arbitrary trajectory [6], the results concerning
observers for TS fuzzy systems are also relevant to LPV systems. In [7], Collins has
commented that, even though the results in [8] seem to be very related to existing
results on LPV control, they are not put in perspective with those existing for LPV
systems. He also claimed that it is apparent that the fuzzy TS model is a special case
of an LPV model. However, even if from theoretical analysis and design points of
view it is difficult to find clear differences between the two paradigms [9], LPV and
TS systems are still considered different and their equality is dubious [10].

© Springer International Publishing AG 2018
D. Rotondo, Advances in Gain-Scheduling and Fault Tolerant Control Techniques,
Springer Theses, https://doi.org/10.1007/978-3-319-62902-5_3
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This chapter openly addresses the presence of strong analogies between LPV
and TS models, in an attempt to establish a bridge between these two worlds, so far
considered to be different. In particular, this chapter considers themodeling problem,
with the following important contributions:

• the analogies and connections between LPV and TS systems are clearly stated;
• it is shown that the method for the automated generation of LPVmodels by nonlin-
ear embedding presented in [11] can be easily extended to solve the corresponding
problem for TS models;

• it is shown that the method for the generation of a TS model for a given nonlin-
ear multivariable function based on the sector nonlinearity concept [12], can be
extended to the problem of generating a polytopic LPVmodel for a given nonlinear
dynamical system;

• two measures are proposed in order to compare the obtained models and choose
which one can be considered the best one. The first measure is based on the
notion of overboundedness. The second measure is based on region of attraction
estimates;

Notice that the resultingmethod for automated generation of TSmodels by nonlinear
embedding has been already used by the fuzzy community in an intuitive way. For
example, one can verify that the TS models obtained by Tanaka and Wang in [8]
are contained within the set of TS models obtained through the method proposed
in this chapter. Hereafter, the method used in [8] is automated adapting a technique
developed by the LPV community that had never been used for TS systems until
now.

3.2 Analogies Between Polytopic LPV and TS Systems

There are strong analogies between polytopic LPV and TS systems. In fact, the
only remarkable difference between the two frameworks is the set of mathematical
tools that are used for obtaining the system description. In the LPV case, these tools
belong to the standard mathematics; on the other hand, in the TS case, they belong
to the fuzzy theory. In particular, the correspondences between polytopic LPV and
TS systems are as follows:

• the scheduling parameter θ of LPV systems correspond to the premise variables ϑ
of TS systems;

• the coefficients of the polytopic decomposition μi correspond to the coefficients
ρi that describe the level of activation of each local model;

• the vertex systems in the polytopic LPV case correspond to the subsystems in the
TS case.

These analogies can be strongly exploited for extending techniques and results that
have been developed for polytopic LPV systems to the TS case, and viceversa.
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3.3 Measures for Comparison Between LPV and TSModels

3.3.1 Overboundedness-Based Measure

Given a nonlinear system of the form:

σ.x(τ ) = g (x(τ ), u(τ ), w(τ )) (3.1)

y(τ ) = h (x(τ ), u(τ ), w(τ )) (3.2)

where x ∈ R
nx is the state, u ∈ R

nu is the control input, w ∈ R
nw is some exoge-

nous signal and y ∈ R
ny is the output, the approaches for automated generation of

polytopic LPV and TSmodels proposed in this chapter provide a systematic method-
ology for building a whole set of LPV/TS models representing the nonlinear system
(3.1)–(3.2). Hence, it is interesting to compare the obtainedmodels in order to choose
which one is the best.

Hereafter, a measure based on the notion of overboundedness is proposed, similar
to the one presented in [11]. The idea is to calculate the volume of the (hyper)region
contained between the vertices/subsystems (hyper)planes: the smaller is this vol-
ume, the better is the approximation offered by the polytopic LPV/TS model. To
obtain the measure, subsets S1, . . . , Snx of {X,U,W,F1} , . . . ,

{
X,U,W,Fnx

}
must

be chosen, where X, U,W and Fi , i = 1, . . . , nx are the state space, the input space,
the exogenous signal space and the ith state variable derivative space, respectively.
Then, if V (S)

1 , . . . , V (S)
nx are the volumes of the subsets S1, . . . , Snx , and V1, . . . , Vnx

are the volumes of the (hyper)regions contained between the vertices/subsystems
(hyper)planes in S1, . . . , Snx , a measure of the goodness of the polytopic LPV/TS
model is given by:

M = V1V2 · · · Vnx

V (S)
1 V (S)

2 · · · V (S)
nx

(3.3)

where the smaller is this measure, the better is the model.1

Notice that in some situations, calculating the volumes V1, . . . , Vnx can be a hard
task. Then, an approximate measure can be used as follows:

M̃ = Ṽ1Ṽ2 · · · Ṽnx

V (S)
1 V (S)

2 · · · V (S)
nx

(3.4)

where Ṽi is an approximation of Vi . In particular, in this chapter, each factor Ṽi/V
(S)
i

is obtained generating randomly a certain number N of points inside the subset Si ,

1The measure M usually decreases when the number of vertex systems/subsystems used in the
considered polytopic LPV/TS model increases. In some cases, e.g. controller synthesis, this could
lead to an increase in the computational effort that is not taken into account by the proposedmeasure
M . If it is desired to include such an effect in the evaluation of the goodness of the model, a slight
modification of M should be done.
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and then calculating the ratio between the points that can be described by a polytopic
combination through the model taken into consideration, and the total number of
points.Obviously, M̃ approachesM in the limit as N → ∞. However, it is impossible
to set N = ∞. Thus, the problem becomes the one of selecting N in such a way that
M̃ , i.e. the estimation of M , has some desired properties. In order to do this, notice
that the process of generating points in the subset Si and checking whether or not
they can be described by the model taken into consideration is a Bernoulli process
[13] with a limited number N of Bernoulli trials. Hence, the estimator M̃ can be
analyzed using the results coming from the theory of statistics and probability [14].

3.3.2 Region of Attraction Estimates-Based Measure

It is often believed that a closed-loop quasi-LPV/TS system, obtained from a nonlin-
ear system using an exact transformation procedure, that satisfies stability (or some
other goal) for all parameters varying in a convex region, e.g. a bounding box, implies
that stability is satisfied for the underlying nonlinear system. This is not always true,
as shown in [15], where a Van der Pol equation with reversed vector field exam-
ple was used to demonstrate that the LPV/TS analysis of the nonlinear system does
not guarantee local asymptotic stability. However, [15] also shows that the LPV/TS
analysis can be used to estimate the region of attraction for the underlying nonlinear
system. In fact, even though finding the exact region of attraction analytically might
be difficult or even impossible [16], the Lyapunov functions can be used to estimate
the region of attraction.

Assume that the autonomous LPV system with θ(τ ) dependent on the state x(τ ):

σ.x(τ ) = A (θ (x(τ ))) x(τ ) (3.5)

satisfies some stability andperformance conditions, as the ones proposed inSect. 2.4.1
∀θ ∈ �, in the sense of decreasing the Lyapunov function (2.58):

V (x(τ )) = x(τ )TPx(τ ) (3.6)

with P � O . Moreover, let us define the following sets:

X = {x ∈ D|θ(x) ∈ �} (3.7)

�β = {x ∈ D|V (x) ≤ β} (3.8)

where D ⊂ R
nx is a given domain containing x = 0, and, for the nonlinear system:

σ.x(τ ) = g(x(τ )) (3.9)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2


3.3 Measures for Comparison Between LPV and TS Models 55

with the origin being an equilibrium point, let us define the region of attraction as
the set:

RA =
{
x(0)| lim

τ→∞ φ (τ ; x(0)) = 0
}

(3.10)

where φ (τ ; x(0)) denotes the solution that starts at initial state x(0) at time τ = 0.
Then, the following theorem holds:

Theorem 3.1 Consider the nonlinear system (3.9), with the exact quasi-LPV repre-
sentation (3.5). If �β ⊆ X then �β ⊆ RA, where RA is the region of attraction.

Proof See [15]. 
�
A consequence of this theorem is that an approximation of the region of attraction
is given by the (hyper)ellipsoid provided by the positive definite matrix P of the
Lyapunov function (3.6). Hereafter, a measure based on the approximation of the
region of attraction is proposed in order to compare quasi-LPV and TS models
obtained from the same nonlinear system, as follows:

Mβ = Vβ

V�

(3.11)

where Vβ is the volume of �β , and V� is the volume of the polytopic region �

within which the parameter vector θ (or the premise variables ϑ in the case of TS
representation) can take values.

3.4 Generation of TS Models via Nonlinear Embedding

A method for the automated generation of LPV models, when affine or polytopic
models are desired, has been presented in [11]. These models are generated from a
general nonlinear model by hiding the nonlinearities in the scheduling parameters.
In this section, it is shown that this method can be used for generating a TS model
from a given nonlinear model.

Consider the nonlinear state2 equation (3.1). The automated generation of TS
models via nonlinear embedding consists of the following five steps:

• In the first step, (3.1) is rewritten in a standard form, that is, each of its rows is
expanded into its summands gi j :

σ.xi =
Ti∑

j=1

gi j (x, u, w), i = 1, . . . , nx (3.12)

2The method can be applied to the output equation (3.2) without significant differences.



56 3 Automated Generation and Comparison of Takagi-Sugeno …

where Ti is the total number of summands of that row. Then, each summand is
decomposed into its numerator αi j , denominator βi j and constant factor κi j :

σ.xi =
Ti∑

j=1

κi j
αi j (x, u, w)

βi j (x, u, w)
, i = 1, . . . , nx (3.13)

Finally, the numerator is factored as the product of non-factorisable terms li j and
integer powers of the states xq , q = 1, . . . , nx and the inputs ur , r = 1, . . . , nu :

αi j =
nx∏

q=1

nu∏

r=1

li j (x, u, w)x
μi jq
q u

νi jr
r (3.14)

• In the second step, two classes of summands are distinguished: (a) constant or
non-factorisable numerator, K0, when neither a power of the state xi nor of an
input ui is a factor of the numerator; and (b) arbitrary positive power of factor,
KP , when the summand has a numerator with positive integer powers of a state
variable xi or input ui ;

• In the third step, according to the classification of each summand, components
ϑa
i jk and ϑb

i jk that link the summand to the entries of the state and input matrices A
and B are chosen. If the summand gi j belongs to K0, one can obtain nx possible
assignments to the state matrix A and nu possible assignments to the input matrix
B, with ϑa

i jk and ϑb
i jk defined as follows:

ϑa
i jk = κi j

αi j (x, u, w)

βi j (x, u, w)xk
, k = 1, . . . , nx (3.15)

ϑb
i jk = κi j

αi j (x, u, w)

βi j (x, u, w)uk
, k = 1, . . . , nu (3.16)

Otherwise, if the summand gi j belongs to Kp, one can choose to assign the sum-
mand to an element of the state or input matrix, as long as the element is a factor
of the numerator, i.e. if there exists a k for which μi jk �= 0 or νi jk �= 0;

• In the fourth step, the premise variables ϑ are derived from ϑa
i jk and ϑb

i jk . This can
be done either by direct assignment or by superposition. In the direct assignment
case, the premise variables are directly chosen as ϑa

i jk and ϑb
i jk , such that:

aik =
ζa∑

j=1

ϑa
i jk bik =

ζb∑

j=1

ϑb
i jk (3.17)

where ζa and ζb are the number of components of the same equation σ.xi that are
assigned to the same state xk or input uk , respectively, but have been obtained from
different summands. In the superposition case, the premise variables, denoted by
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ϑa
ik and ϑb

ik , are obtained through a sum of all the contributions of a summand to
the same element of A or B:

ϑa
ik =

ζa∑

j=1

ϑa
i jk ϑb

ik =
ζb∑

j=1

ϑb
i jk (3.18)

such that the premise variables correspond to the elements of the state space matri-
ces:

aik = ϑa
ik bik = ϑb

ik (3.19)

In both cases, the premise variables need to be renumbered in order to be coherent
with the numbering presented in (2.28):

I F ϑ1(τ ) is Mi1 AND · · · AND ϑp(τ ) is Mip

T HEN

{
σ.xi (τ ) = Ai x(τ ) + Biu(τ )

yi (τ ) = Ci x(τ ) + Diu(τ )
i = 1, . . . , N

(3.20)

• In the final step, an adaptation of the technique used in [17] for obtaining polytopic
LPV models, often referred to as bounding box method, is used to complete the
generation of the TS model. The minimum and maximum values of each premise
variable ϑi over the possible values of x , u and w, are obtained as follows:

ϑi = min
x,u,w

ϑi ϑi = max
x,u,w

ϑi (3.21)

From the maximum and minimum values, ϑi can be represented as:

ϑi = M1i (ϑi )ϑi + M2i (ϑi )ϑi (3.22)

with the additional constraint:

M1i (ϑi ) + M2i (ϑi ) = 1 (3.23)

such that the membership functions are calculated as:

M1i (ϑi ) = ϑi − ϑi

ϑi − ϑi

and M2i (ϑi ) = ϑi − ϑi

ϑi − ϑi

(3.24)

Finally, the subsystems are obtained by considering each possible combination of
membership functions in the IF clauses of the TS model.

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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3.5 Generation of Polytopic LPV Models via Sector
Nonlinearity

The idea of using sector nonlinearity in TS model construction first appeared in
[18], where the single variable system case was considered, and extended to the
multivariable case in [12]. In this section, it is shown that this method can also be
used for generating a polytopic LPV model from a given nonlinear model.

Consider the nonlinear state equation (3.1), under the hypothesis that the function
g(x, u, w) is differentiable everywhere (as in the previous method, the application to
the output equation (3.2) can be performedwithout significant differences). The auto-
mated generation of polytopic LPV models via sector nonlinearity concept consists
of the following steps:

• In the first step, the space {X,U,W} is partitioned into its 2nx+nu+nw quadrants.
Each quadrant is denoted by:

R
(
s(x)
1 , . . . , s(x)

nx , s(u)
1 , . . . , s(u)

nu , s(w)
1 , . . . , s(w)

nw

)
(3.25)

where:
{
s(x)
j = 1 ⇔ x j ≥ 0

s(x)
j = 0 ⇔ x j ≤ 0

(3.26)

{
s(u)
j = 1 ⇔ u j ≥ 0

s(u)
j = 0 ⇔ u j ≤ 0

(3.27)

{
s(w)
j = 1 ⇔ w j ≥ 0

s(w)
j = 0 ⇔ w j ≤ 0

(3.28)

Then, each quadrant R is associated to its symmetric quadrant R∗ to obtain Q =
2nx+nu+nw−1 regions:

Rq

(
s(x)
1 , . . . , s(u)

j , . . . , s(w)
nw

)
∪ R∗

q

(
¬s(x)

1 , . . . ,¬s(u)
j , . . . ,¬s(w)

nw

)
(3.29)

where ¬ denotes the negation operator and q = 1, . . . , Q.
• In the second step, for each of the regions Rq ∪ R∗

q , q = 1, . . . , Q defined in (3.29),
after partially differentiating each row fi of (3.1) with respect to x1, . . . , xnx ,
u1, . . . , unu , the minimum and maximum values in the region Rq ∪ R∗

q are found:

a(q)

i j = max
x,u,w∈Rq∪R∗

q

∂gi (x, u, w)

∂x j

i = 1, . . . , nx

j = 1, . . . , nx
(3.30)

a(q)

i j = min
x,u,w∈Rq∪R∗

q

∂gi (x, u, w)

∂x j

i = 1, . . . , nx

j = 1, . . . , nx
(3.31)
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b
(q)

i j = max
x,u,w∈Rq∪R∗

q

∂gi (x, u, w)

∂u j

i = 1, . . . , nx

j = 1, . . . , nu
(3.32)

b(q)

i j = min
x,u,w∈Rq∪R∗

q

∂gi (x, u, w)

∂u j

i = 1, . . . , nx

j = 1, . . . , nu
(3.33)

• In the third step, the vertex matrices
(
A(q)

j , B(q)

j

)
are obtained by taking into

consideration all the possible combinations of the row vectors

[
�
a

(q)

i ,
�

b
(q)

i

]
and

[
�
a

(q)

i ,
�

b
(q)

i

]
, as follows:

A(q)

j

(
t ( j)1 , . . . , t ( j)i , . . . , t ( j)nx

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ã(q)

1
...

ã(q)

i
...

ã(q)
nx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.34)

B(q)

j

(
t ( j)1 , . . . , t ( j)i , . . . , t ( j)nx

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b̃(q)

1
...

b̃(q)

i
...

b̃(q)
nx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.35)

where:

ã(q)

i =
⎧
⎨

⎩

�
a

(q)

i =
[

�
a

(q)

i1
�
a

(q)

i2 . . .
�
a

(q)

inx

]
i f t ( j)i = 1

�
a

(q)

i =
[

�
a

(q)

i1
�
a

(q)

i2 . . .
�
a

(q)

inx

]
i f t ( j)i = 0

(3.36)

b̃(q)

i =

⎧
⎪⎨

⎪⎩

�

b
(q)

i =
[

�

b
(q)

i1

�

b
(q)

i2 . . .
�

b
(q)

inx

]
i f t ( j)i = 1

�

b
(q)

i =
[

�

b
(q)

i1

�

b
(q)

i2 . . .
�

b
(q)

inx

]
i f t ( j)i = 0

(3.37)

and:

�
a

(q)

i j =
{
a(q)

i j i f s(x)
j (q) = 1

a(q)

i j i f s(x)
j (q) = 0

(3.38)

�
a

(q)

i j =
{
a(q)

i j i f s(x)
j (q) = 1

a(q)

i j i f s(x)
j (q) = 0

(3.39)
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�

b
(q)

i j =
{
b

(q)

i j i f s(u)
j (q) = 1

b(q)

i j i f s(u)
j (q) = 0

(3.40)

�

b
(q)

i j =
{
b(q)

i j i f s(u)
j (q) = 1

b
(q)

i j i f s(u)
j (q) = 0

(3.41)

Then, (3.1) can be reconstructed from
(
A(q)

j , B(q)

j

)
as follows:

σ.x = g(x, u, w) =
Q∑

q=1

2nx∑

j=1

α
(q)

j (x, u, w)
(
A(q)

j x + B(q)

j u
)

(3.42)

where:

α
(q)

j (x, u, w) =
nx∏

i=1

[
t ( j)i

�
α

(q)

i (x, u, w) +
(
1 − t ( j)i

)
�
α

(q)

i (x, u, w)

]
(3.43)

with:

�
α

(q)

i (x, u, w) = gi (x, u, w) − �
a

(q)

i x − �

b
(q)

i u
�
a

(q)

i x + �

b
(q)

i u − �
a

(q)

i x − �
a

(q)

i u
R∈
q (x, u, w) (3.44)

�
α

(q)

i (x, u, w) =
�
a

(q)

i x + �

b
(q)

i u − gi (x, u, w)

�
a

(q)

i x + �

b
(q)

i u − �
a

(q)

i x − �

b
(q)

i u
R∈
q (x, u, w) (3.45)

where R∈
q (x, u, w) is an operator that returns 1 if (x, u, w) belongs to the region

Rq ∪ R∗
q and 0 otherwise.

Remark: Notice that the polytopic system (3.42) is equivalent to the following quasi-
LPV system:

σ.x = A(x, u, w)x + B(x, u, w)u (3.46)

with:

A(x, u, w) =
Q∑

q=1

2nx∑

j=1

α
(q)

j (x, u, w)A(q)

j (3.47)

B(x, u, w) =
Q∑

q=1

2nx∑

j=1

α
(q)

j (x, u, w)B(q)

j (3.48)
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Remark: The obtained polytopic system exhibits discontinuities in the polytopic
decomposition coefficients α

(q)

j (x, u, w) at the region boundaries, i.e. along the axes
that define the quadrants. In order to avoid this phenomenon, [12] suggests to add
some compatibility conditions. In particular, this is obtained by replacing a(q)

i j , a
(q)

i j ,

b
(q)

i j and b(q)

i j in (3.38)–(3.41) with ai j , ai j , bi j , bi j , defined as follows:

ai j = max
q=1,...,Q

ā(q)

i j
i = 1, . . . , nx

j = 1, . . . , nx
(3.49)

ai j = min
q=1,...,Q

a(q)

i j
i = 1, . . . , nx

j = 1, . . . , nx
(3.50)

bi j = max
q=1,...,Q

b
(q)

i j
i = 1, . . . , nx

j = 1, . . . , nu
(3.51)

bi j = min
q=1,...,Q

b(q)

i j
i = 1, . . . , nx

j = 1, . . . , nu
(3.52)

3.6 Application Example

Consider the following nonlinear system:

⎧
⎪⎨

⎪⎩

ẋ1 = x1 + 3 sin x1 + x2 − 2 sin x2 + u1

ẋ2 = x21

√
1 + x22 + x1x2 + u2

ẋ3 = x1 + x2 − x3

(3.53)

with:
x1, x2, x3 ∈ P = [−π,π] × [−π,π] × [−π,π]

Hereafter, the methods described in Sects. 3.4 and 3.5 will be used to obtain TS and
quasi-LPV representations of (3.53), and the measures introduced in Sect. 3.3 will
be used to compare the obtained models.

3.6.1 Generation of TS Models via Nonlinear Embedding

The TS representations are obtained applying the nonlinear embedding method
described in Sect. 3.4, where the final step is done by superposition, such that eight
different TS models are generated. The general form for each TS model is the fol-
lowing:
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I F ϑ
( j)
11 is M ( j)

i11 AND ϑ
( j)
12 is M ( j)

i12 AND ϑ
( j)
21 is M ( j)

i21 AND ϑ
( j)
22 is M ( j)

i22

T HEN ẋ(t) = A( j)
i x(t) +

⎛

⎝
1 0
0 1
0 0

⎞

⎠ u(t)
i = 1, . . . , N j

j = 1, . . . , 8

(3.54)
where for the j th TS model, the N j ∈ {4, 8, 16} linear models are obtained taking
into consideration all possible combinations of minimum and maximum values of
the premise variables ϑ

( j)
11 , ϑ

( j)
12 , ϑ

( j)
21 and ϑ

( j)
22 .

In particular, the premise variables are defined as follows3:

ϑ(1)
11 (x1, x2) = ϑ(2)

11 (x1, x2) = 1 + 3
sin x1
x1

− 2
sin x2
x1

ϑ(3)
11 (x1) = ϑ(4)

11 (x1) = 1 + 3
sin x1
x1

ϑ(5)
11 (x1, x2) = ϑ(6)

11 (x1, x2) = 1 − 2
sin x2
x1

ϑ(3)
12 (x2) = ϑ(4)

12 (x2) = 1 − 2
sin x2
x2

ϑ(5)
12 (x1, x2) = ϑ(6)

12 (x1, x2) = 1 + 3
sin x1
x2

ϑ(7)
12 (x1, x2) = ϑ(8)

12 (x1, x2) = 1 + 3
sin x1
x2

− 2
sin x2
x2

ϑ(1)
21 (x1, x2) = ϑ(3)

21 (x1, x2) = ϑ(5)
21 (x1, x2) = ϑ(7)

21 (x1, x2) = x1

√
1 + x22 + x2

ϑ(2)
21 (x1, x2) = ϑ(4)

21 (x1, x2) = ϑ(6)
21 (x1, x2) = ϑ(8)

21 (x1, x2) = x1

√
1 + x22

ϑ(2)
22 (x1) = ϑ(4)

22 (x1) = ϑ(6)
22 (x1) = ϑ(8)

22 (x1) = x1

Among the obtained models, the ones that are considered to be more suitable for
representing the original nonlinear system (3.53) are those given by j = 3 and
j = 4. This is motivated by the fact that in the remaining six TS models, i.e.
j ∈ {1, 2, 5, 6, 7, 8}, terms of the type sin x1/x2 or sin x2/x1 appear, which are not
defined in some subsets of the region P .

For the models obtained with j = 3 and j = 4, the subsystems in (3.54) are
defined by the following state matrices (see Figs. 3.1, 3.2 and 3.3 for a graphical
representation of the nonlinear system equations and their subsystem counterparts):

A(3)
1 =

⎛

⎝
4 1 0
kπ 0 0
1 1 −1

⎞

⎠ A(3)
2 =

⎛

⎝
4 −1 0
kπ 0 0
1 1 −1

⎞

⎠ A(3)
3 =

⎛

⎝
4 1 0

−kπ 0 0
1 1 −1

⎞

⎠

3Notice that the real premise variables can be a subset of those listed in (3.54), when some of them
are constants, i.e. ϑ(1)

12 = ϑ
(2)
12 = ϑ

(7)
11 = ϑ

(8)
11 = 1, ϑ(1)

22 = ϑ
(3)
22 = ϑ

(5)
22 = ϑ

(7)
22 = 0.



3.6 Application Example 63

−4 −2 0 2 4 −4
−2

0
2

4−20

−15

−10

−5

0

5

10

15

20

x2x1

dx
1/
dt
(x

1,
x 2
)

Fig. 3.1 Representation of the nonlinear equation ẋ1 = x1 + 3 sin x1 + x2 − 2 sin x2 in P and its
approximation using the subsystems described by A(3)

i or A(4)
i . After [1]
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Fig. 3.2 Representation of the nonlinear equation ẋ2 = x21

√
1 + x22 + x1x2 in P and its approxi-

mation using the subsystems described by A(3)
i . After [1]

A(3)
4 =

⎛

⎝
4 −1 0

−kπ 0 0
1 1 −1

⎞

⎠ A(3)
5 =

⎛

⎝
1 1 0
kπ 0 0
1 1 −1

⎞

⎠ A(3)
6 =

⎛

⎝
1 −1 0
kπ 0 0
1 1 −1

⎞

⎠
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Fig. 3.3 Representation of the nonlinear equation ẋ2 = x21

√
1 + x22 + x1x2 in P and its approxi-

mation using the subsystems described by A(4)
i . After [1]

A(3)
7 =

⎛

⎝
1 1 0

−kπ 0 0
1 1 −1

⎞

⎠ A(3)
8 =

⎛

⎝
1 −1 0

−kπ 0 0
1 1 −1

⎞

⎠ A(4)
1 =

⎛

⎝
4 1 0
qπ π 0
1 1 −1

⎞

⎠

A(4)
2 =

⎛

⎝
4 1 0
qπ −π 0
1 1 −1

⎞

⎠ A(4)
3 =

⎛

⎝
4 1 0

−qπ π 0
1 1 −1

⎞

⎠ A(4)
4 =

⎛

⎝
4 1 0

−qπ −π 0
1 1 −1

⎞

⎠

A(4)
5 =

⎛

⎝
4 −1 0
qπ π 0
1 1 −1

⎞

⎠ A(4)
6 =

⎛

⎝
4 −1 0
qπ −π 0
1 1 −1

⎞

⎠ A(4)
7 =

⎛

⎝
4 −1 0

−qπ π 0
1 1 −1

⎞

⎠

A(4)
8 =

⎛

⎝
4 −1 0

−qπ −π 0
1 1 −1

⎞

⎠ A(4)
9 =

⎛

⎝
1 1 0
qπ π 0
1 1 −1

⎞

⎠ A(4)
10 =

⎛

⎝
1 1 0
qπ −π 0
1 1 −1

⎞

⎠

A(4)
11 =

⎛

⎝
1 1 0

−qπ π 0
1 1 −1

⎞

⎠ A(4)
12 =

⎛

⎝
1 1 0

−qπ −π 0
1 1 −1

⎞

⎠ A(4)
13 =

⎛

⎝
1 −1 0
qπ π 0
1 1 −1

⎞

⎠

A(4)
14 =

⎛

⎝
1 −1 0
qπ −π 0
1 1 −1

⎞

⎠ A(4)
15 =

⎛

⎝
1 −1 0

−qπ π 0
1 1 −1

⎞

⎠ A(4)
16 =

⎛

⎝
1 −1 0

−qπ −π 0
1 1 −1

⎞

⎠

where kπ and qπ are constants defined as:

kπ = π
√
1 + π2 + π qπ = π

√
1 + π2
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The membership functions M (3)
i11, M

(3)
i12, M

(3)
i21, M

(4)
i11, M

(4)
i12, M

(4)
i21, M

(4)
i22 are defined

using (3.24):

M (3)
i11

(
ϑ(3)
11 (x1)

)
=

{
sin x1/x1 i = 1, 2, 3, 4
1 − sin x1/x1 i = 5, 6, 7, 8

M (3)
i12

(
ϑ(3)
12 (x2)

)
=

{
1 − sin x2/x2 i = 1, 3, 5, 7
sin x2/x2 i = 2, 4, 6, 8

M (3)
i21

(
ϑ(3)
21 (x1, x2)

)
=

⎧
⎨

⎩

x1
√

1+x22+x2+kπ

2kπ
i = 1, 2, 5, 6

kπ−x1
√

1+x22−x2
2kπ

i = 3, 4, 7, 8

M (4)
i11

(
ϑ(4)
11 (x1)

)
=

{
sin x1/x1 i = 1, 2, 3, 4, 5, 6, 7, 8
1 − sin x1/x1 i = 9, 10, 11, 12, 13, 14, 15, 16

M (4)
i12

(
ϑ(4)
12 (x2)

)
=

{
1 − sin x2/x2 i = 1, 2, 3, 4, 9, 10, 11, 12
sin x2/x2 i = 5, 6, 7, 8, 13, 14, 15, 16

M (4)
i21

(
ϑ(4)
21 (x1, x2)

)
=

⎧
⎨

⎩

x1
√

1+x22+qπ

2qπ
i = 1, 2, 5, 6, 9, 10, 13, 14

qπ−x1
√

1+x22
2qπ

i = 3, 4, 7, 8, 11, 12, 15, 16

M (4)
i22

(
ϑ(4)
22 (x1)

)
=

{ x1+π
2π i = 1, 3, 5, 7, 9, 11, 13, 15

π−x1
2π i = 2, 4, 6, 8, 10, 12, 14, 16

Finally, the coefficients that describe the level of activation of each local model are
obtained using (2.32):

ρi (ϑ(τ )) = wi (ϑ(τ ))

N∑

i=1
wi (ϑ(τ ))

(3.55)

as:

ρ(3)
i (x1, x2) = M (3)

i11M
(3)
i12M

(3)
i21

8∑

i=1
M (3)

i11M
(3)
i12M

(3)
i21

ρ(4)
i (x1, x2) = M (4)

i11M
(4)
i12M

(4)
i21M

(4)
i22

16∑

i=1
M (4)

i11M
(4)
i12M

(4)
i21M

(4)
i22

Remark: Notice that the obtained TS models can be interpreted as if they were
polytopic quasi-LPV systems as follows:

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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⎛

⎝
ẋ1
ẋ2
ẋ3

⎞

⎠ = A3 (x1, x2)

⎛

⎝
x1
x2
x3

⎞

⎠ +
⎛

⎝
1 0
0 1
0 0

⎞

⎠
(
u1
u2

)

⎛

⎝
ẋ1
ẋ2
ẋ3

⎞

⎠ = A4 (x1, x2)

⎛

⎝
x1
x2
x3

⎞

⎠ +
⎛

⎝
1 0
0 1
0 0

⎞

⎠
(
u1
u2

)

where:

A3 (x1, x2) =
⎛

⎝
ϑ(3)
11 (x1) ϑ(3)

12 (x2) 0
ϑ(3)
21 (x1, x2) 0 0

1 1 −1

⎞

⎠ =
8∑

i=1

ρ(3)
i (x1, x2)A

(3)
i

A4 (x1, x2) =
⎛

⎝
ϑ(4)
11 (x1) ϑ(4)

12 (x2) 0
ϑ(4)
21 (x1, x2) ϑ(4)

22 (x1) 0
1 1 −1

⎞

⎠ =
16∑

i=1

ρ(4)
i (x1, x2)A

(4)
i

where ρ(3)
i (x1, x2) and ρ(4)

i (x1, x2) can be interpreted as coefficients of a polytopic
decomposition.

3.6.2 Generation of Polytopic LPV Models via Sector
Nonlinearity

Hereafter, a polytopic representation for (3.53) is obtained applying the method
described in Sect. 3.5.

The space {X1,X2} is partitioned into 4 quadrants, that give rise to the following
2 regions as described by (3.29):

R1 : [−π, 0] × [−π, 0] ∪ [0,π] × [0,π]
R2 : [−π, 0] × [0,π] ∪ [0,π] × [−π, 0]

Then, the partial derivatives of (3.53) are calculated:

∂g1

∂x1
= 1 + 3 cos x1

∂g1

∂x2
= 1 − 2 cos x2

∂g2

∂x1
= 2x1

√
1 + x22 + x2

∂g2

∂x2
= x21 x2√

1 + x22

+ x1
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and their minimum and maximum values in R1 and R2 are found:

a(1)
11 = max

R1

∂g1

∂x1
= 4 a(1)

11 = min
R1

∂g1

∂x1
= −2

a(2)
11 = max

R2

∂g1

∂x1
= 4 a(2)

11 = min
R2

∂g1

∂x1
= −2

a(1)
12 = max

R1

∂g1

∂x2
= 3 a(1)

12 = min
R1

∂g1

∂x2
= −1

a(2)
12 = max

R2

∂g1

∂x2
= 3 a(2)

12 = min
R2

∂g1

∂x2
= −1

a(1)
21 = max

R1

∂g2

∂x1
= rπ + π a(1)

21 = min
R1

∂g2

∂x1
= − (rπ + π)

a(2)
21 = max

R2

∂g2

∂x1
= rπ − π a(2)

21 = min
R2

∂g2

∂x1
= −rπ + π

a(1)
22 = max

R1

∂g2

∂x2
= wπ + π a(1)

22 = min
R1

∂g2

∂x2
= − (wπ + π)

a(2)
22 = max

R2

∂g2

∂x2
= wπ − π a(2)

22 = min
R2

∂g2

∂x2
= −wπ + π

where:
rπ = 2π

√
1 + π2 wπ = π3√

1+π2

Afterwards, using (3.34)–(3.41), the state matrices of the vertex systems are calcu-
lated, resulting in the following eight matrices (see Figs. 3.4 and 3.5 for a graphical
representation):

A(1)
1 =

⎛

⎝
−2 −1 0

− (rπ + π) − (wπ + π) 0
1 1 −1

⎞

⎠ A(1)
2 =

⎛

⎝
−2 −1 0

rπ + π wπ + π 0
1 1 −1

⎞

⎠

A(1)
3 =

⎛

⎝
4 3 0

− (rπ + π) − (wπ + π) 0
1 1 −1

⎞

⎠ A(1)
4 =

⎛

⎝
4 3 0

rπ + π wπ + π 0
1 1 −1

⎞

⎠

A(2)
1 =

⎛

⎝
−2 −1 0

−rπ + π wπ − π 0
1 1 −1

⎞

⎠ A(2)
2 =

⎛

⎝
−2 −1 0

rπ − π −wπ + π 0
1 1 −1

⎞

⎠

A(2)
3 =

⎛

⎝
4 3 0

−rπ + π wπ − π 0
1 1 −1

⎞

⎠ A(2)
4 =

⎛

⎝
4 3 0

rπ − π −wπ + π 0
1 1 −1

⎞

⎠
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Fig. 3.4 Representation of the nonlinear equation ẋ1 = x1 + 3 sin x1 + x2 − 2 sin x2 in P and its
approximation using the vertex systems of (3.56). After [1]
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Fig. 3.5 Representation of the nonlinear equation ẋ2 = x21

√
1 + x22 + x1x2 in P and its approxi-

mation using the vertex systems of (3.56). After [1]



3.6 Application Example 69

such that (3.53) results expressed in the following polytopic LPV form:

⎛

⎝
ẋ1
ẋ2
ẋ3

⎞

⎠ =
4∑

j=1

α(1)
j (x1, x2)A

(1)
j

⎛

⎝
x1
x2
x3

⎞

⎠ +
4∑

j=1

α(2)
j (x1, x2)A

(2)
j

⎛

⎝
x1
x2
x3

⎞

⎠

+
⎛

⎝
1 0
0 1
0 0

⎞

⎠
(
u1
u2

)
(3.56)

where the coefficients of the polytopic decomposition are obtained using (3.43)–
(3.45), as follows:

α(1)
1 (x1, x2) = �

α
(1)

1 (x1, x2)
�
α

(1)

2 (x1, x2)R
∈
1 (x1, x2)

α(1)
2 (x1, x2) = �

α
(1)

1 (x1, x2)
�
α

(1)

2 (x1, x2)R
∈
1 (x1, x2)

α(1)
3 (x1, x2) = �

α
(1)

1 (x1, x2)
�
α

(1)

2 (x1, x2)R
∈
1 (x1, x2)

α(1)
4 (x1, x2) = �

α
(1)

1 (x1, x2)
�
α

(1)

2 (x1, x2)R
∈
1 (x1, x2)

α(2)
1 (x1, x2) = �

α
(2)

1 (x1, x2)
�
α

(2)

2 (x1, x2)R
∈
2 (x1, x2)

α(2)
2 (x1, x2) = �

α
(2)

1 (x1, x2)
�
α

(2)

2 (x1, x2)R
∈
2 (x1, x2)

α(2)
3 (x1, x2) = �

α
(2)

1 (x1, x2)
�
α

(2)

2 (x1, x2)R
∈
2 (x1, x2)

α(2)
4 (x1, x2) = �

α
(2)

1 (x1, x2)
�
α

(2)

2 (x1, x2)R
∈
2 (x1, x2)

with:

�
α

(1)

1 (x1, x2) = 3x1 + 2x2 − 3 sin x1 + 2 sin x2
6x1 + 4x2

�
α

(1)

1 (x1, x2) = 3x1 + 2x2 + 3 sin x1 − 2 sin x2
6x1 + 4x2

�
α

(2)

1 (x1, x2) = 3x1 − 2x2 − 3 sin x1 + 2 sin x2
6x1 − 4x2

�
α

(2)

1 (x1, x2) = 3x1 − 2x2 + 3 sin x1 − 2 sin x2
6x1 − 4x2

�
α

(1)

2 (x1, x2) =
(rπ + π) x1 + (wπ + π) x2 − x21

√
1 + x22 − x1x2

2 [(rπ + π) x1 + (wπ + π) x2]

�
α

(1)

2 (x1, x2) =
(rπ + π) x1 + (wπ + π) x2 + x21

√
1 + x22 + x1x2

2 [(rπ + π) x1 + (wπ + π) x2]

�
α

(2)

2 (x1, x2) =
(rπ − π)x1 + (π − wπ)x2 − x21

√
1 + x22 − x1x2

2 [(rπ − π)x1 + (π − wπ)x2]
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�
α

(2)

2 (x1, x2) =
(rπ − π)x1 + (π − wπ)x2 + x21

√
1 + x22 + x1x2

2 [(rπ − π)x1 + (π − wπ)x2]
R∈
1 (x1, x2) = max (0, sgn(x1)sgn(x2))

R∈
2 (x1, x2) = max (0,−sgn(x1)sgn(x2))

where sgn denotes the sign function.

Remark: Notice that the quasi-LPV representation of (3.53) obtained using this
method has the following structure:

⎛

⎝
ẋ1
ẋ2
ẋ3

⎞

⎠ =
⎛

⎝
a11(x1, x2) a12(x1, x2) 0
a21(x1, x2) a22(x1, x2) 0

1 1 −1

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ +
⎛

⎝
1 0
0 1
0 0

⎞

⎠
(
u1
u2

)
(3.57)

Remark: The obtained quasi-LPV system can be interpreted as a TS model, if
a11(x1, x2), a12(x1, x2), a21(x1, x2), a22(x1, x2) in (3.57) and sgn(x1)sgn(x2) are

considered to be the premise variables, and
�
α

(1)

1 ,
�
α

(1)

1 ,
�
α

(2)

1 ,
�
α

(2)

1 ,
�
α

(1)

2 ,
�
α

(1)

2 ,
�
α

(2)

2 ,
�
α

(2)

2 ,
R∈
1 , R

∈
2 the membership functions.

Remark: If the conditions (3.49)–(3.52) are used in order to avoid the discontinuity
phenomenon, as described in Sect. 3.5, the matrices A(2)

1 , A(2)
2 , A(2)

3 and A(2)
4 change

as follows:

A(2)
1 =

⎛

⎝
−2 −1 0

−(rπ + π) wπ + π 0
1 1 −1

⎞

⎠ A(2)
2 =

⎛

⎝
−2 −1 0

rπ + π −(wπ + π) 0
1 1 −1

⎞

⎠

A(2)
3 =

⎛

⎝
4 3 0

−(rπ + π) wπ + π 0
1 1 −1

⎞

⎠ A(2)
4 =

⎛

⎝
4 3 0

rπ + π −(wπ + π) 0
1 1 −1

⎞

⎠

3.6.3 Comparison

Hereafter, the comparison criteria between the models described in Sect. 3.3 are
applied to the proposed example.

The subsets S1 ⊂ X1 × X2 × Ẋ1 and S2 ⊂ X1 × X2 × Ẋ2 are chosen as follows:

S1 = [−π,π] × [−π,π] × [−7π, 7π] (3.58)

S2 = [−π,π] × [−π,π] × [−hπ, hπ] (3.59)

with:

hπ = π2

(
2 + 2

√
1 + π2 + π2

√
1 + π2

)
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so that:
V (S)
1 = 56π3 V (S)

2 = 8π2hπ

The volumes Ṽi have been calculated using (3.4) on the basis of N = 16588 points,4

generated randomly using a uniform distribution:
Model generated via nonlinear embedding A(3)

i :

Ṽ1

V (S)
1

= 5856 + 3.3179

16588 + 6.6358
= 0.35

Ṽ2

V (S)
2

= 6178 + 3.3179

16588 + 6.6358
= 0.37 M̃ = Ṽ1Ṽ2

V (S)
1 V (S)

2

= 0.13

Model generated via nonlinear embedding A(4)
i :

Ṽ1

V (S)
1

= 5856 + 3.3179

16588 + 6.6358
= 0.35

Ṽ2

V (S)
2

= 4866 + 3.3179

16588 + 6.6358
= 0.29 M̃ = Ṽ1Ṽ2

V (S)
1 V (S)

2

= 0.10

Model generated via sector nonlinearity concept:

Ṽ1

V (S)
1

= 7546 + 3.3179

16588 + 6.6358
= 0.45

Ṽ2

V (S)
2

= 9844 + 3.3179

16588 + 6.6358
= 0.59 M̃ = Ṽ1Ṽ2

V (S)
1 V (S)

2

= 0.27

Model generated via sector nonlinearity concept (conservative):

Ṽ1

V (S)
1

= 7546 + 3.3179

16588 + 6.6358
= 0.45

Ṽ2

V (S)
2

= 11197 + 3.3179

16588 + 6.6358
= 0.67 M̃ = Ṽ1Ṽ2

V (S)
1 V (S)

2

= 0.30

Hence, according to the measure of overboundedness (3.4), the best model is the one
generated via nonlinear embedding and described by the matrices A(4)

i . In general,
models obtained via nonlinear embedding tend to be less conservative than the ones
obtained via sector nonlinearity concept. This is probably due to the fact that the non-
linear embedding method tries to find the maximum and minimum value of g(x)/xi ,
whereas the other method finds the maximum and minimum value of ∂g(x)/∂xi .
Then, according to the mean-value theorem, g(x)/xi is bounded by ∂g(x)/∂xi , so
that the extreme values of the former are smaller than those of the latter.

To conclude the comparison between themodels, let us consider themeasure based
on the region of attraction as introduced in Sect. 3.3.2, with controllers designed in
order to achieve quadratic D-stability in the following LMI region:

D = {z ∈ C : Re(z) < −1} (3.60)

The measure Mβ defined in (3.11) has been calculated for each model, giving the
following results:

4This particular value of N is chosen using statistical reasoning, in order to guarantee that the
semi-length of the 99% Agresti-Coull confidence interval will be less than 0.01 [19].
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Model generated via non-linear embedding A(3)
i :

Mβ = Vβ

V�

= 122.7323

248.0502
= 0.4948

Model generated via non-linear embedding A(4)
i :

Mβ = Vβ

V�

= 122.8700

248.0502
= 0.4953

Model generated via sector non-linearity concept:

Mβ = Vβ

V�

= 122.7605

248.0502
= 0.4949

Model generated via sector non-linearity concept (conservative):

Mβ = Vβ

V�

= 122.6771

248.0502
= 0.4946

It can be seen that, also in this case, the model generated via nonlinear embedding
with matrices A(4)

i performs slightly better than the others, thus confirming to be the
best obtained model.

3.7 Conclusions

In this chapter, the presence of strong analogies between polytopic LPV and TS
systems and the automated generation of polytopic LPV and TS models have been
addressed. In particular, it has been shown that the method for the automated gen-
eration of LPV models by nonlinear embedding can be easily extended to generate
automatically TSmodels from a given nonlinear system. Similarly, a method already
used in the TS framework for finding a model that describes in a fuzzy way a given
nonlinear function has been extended to the case of polytopic LPV description of
nonlinear systems.

Results obtained with a mathematical example have been presented and it has
been shown, using an overboundedness measure, that the automated generation via
nonlinear embedding provides less conservative models than the automated genera-
tion via sector nonlinearity concept. Also, a measure based on the region of attraction
estimates has been introduced for comparing the closed-loop performances of the
different models.

The overboundedness measure has shown to be an objective criterion that can be
used to select which model can be considered the best one. However, in the general
case, which model is the best one also depends on the context in which the model is
used, i.e. whether it is used for stabilization or observation, and which structure of
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controller/observer is used for achieving the desired goal. Some information in this
sense has been provided by the measure based on the region of attraction estimates,
that allows comparing the closed-loop performances obtainedwith the differentmod-
els. The proposedmeasure could be easily extended to the observation case.However,
it has the limit of providing an indication of which model is the best only a posteri-
ori. It seems clear that an important path for future research is the development of
a procedure that automatically selects the best model during the design step, taking
into account what the model is used for and the used controller/observer structure.
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Chapter 4
Robust State-Feedback Control of Uncertain
LPV Systems

The content of this chapter is based on the following work:

• [1]D. Rotondo, F. Nejjari, V. Puig. Robust state-feedback control of uncertain LPV
systems: an LMI-based approach. Journal of the Franklin Institute, 351(5):2781–
2803, 2014.

4.1 Introduction

LMI-based results have been used to cope with both uncertain LTI systems and cer-
tain LPV systems throughout the last two decades. However, the design of controllers
for LPV systems has been usually performed under the assumption that there was
no model uncertainty. Only a few papers have stated the importance of considering
robustness against uncertainty [2–11]. In recent years, works dealing with inexactly
measured parameters have been an important field of research. The realistic case,
where only some of the parameters aremeasured and therefore available for feedback
and the remaining parameters are treated as uncertainty, was analyzed by [12], where
an affine dependence on the measurable parameters and an LFT dependence on the
uncertain parameters were assumed. A solution in the convex programming frame-
work with the use of LMI solvers in the case of polytopic parameter dependence was
proposed by [13]. In this case, the measurement errors were modeled by imposing
an a priori bound on the distance between the real and the measured parameters. The
uncertainty wasmodeled as a hypersphere of a certain radius, and the analysis/design
conditions were given in function of this radius. The same problem was analyzed in
the works of Sato and his coworkers [14–17], where an additive uncertainty on the
scheduling parameter was considered. Hence, both the real scheduling parameter and
the uncertainty were assumed to lie in two hyper-rectangles, and the analysis/design
conditions were given at the vertices of these hyper-rectangles. Some recent results

© Springer International Publishing AG 2018
D. Rotondo, Advances in Gain-Scheduling and Fault Tolerant Control Techniques,
Springer Theses, https://doi.org/10.1007/978-3-319-62902-5_4

75
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in this area were presented in [18], where an a posteriori analysis is used to ver-
ify that the closed-loop system is robust against deviations within known bounds in
the scheduling signals, and in [19], where the design technique has been performed
taking into account a stochastic description of the parameter uncertainty. Finally,
it is worth recalling the work [20], where a general framework for the systematic
synthesis of robust gain-scheduling controllers by convex optimization techniques
for uncertain dynamical systems in LFT form has been presented.

In this chapter, the problem of designing an LPV state-feedback controller for
uncertain LPV systems that can guarantee some desired performances is consid-
ered. In the proposed approach, the vector of varying parameters is used to schedule
between uncertain LTI systems. The resulting idea consists in using a double-layer
polytopic description so as to take into account both the variability due to the parame-
ter vector and the uncertainty. The first polytopic layer manages the varying parame-
ters and is used to obtain the vertex uncertain systems, where the vertex controllers
are designed. The second polytopic layer is built at each vertex system so as to take
into account the model uncertainties and add robustness into the design step. Under
some assumptions, the problem reduces to finding a solution to a finite number of
LMIs, a problem for which efficient solvers are available nowadays [21, 22]. It is
worth highlighting that the proposed approach allows to cope with the problem of
inexactly measured scheduling parameters as long as the vertex uncertain systems
are obtained taking into account the uncertainty in the measurement of the varying
parameters.

The solution proposed in this chapter differs from [3, 12] in not assuming an
LFT dependence, but a polytopic description of the system matrices dependence on
the scheduling parameters and the uncertainties. In contrast with [2, 7, 8, 18], the
robustness in the proposed approach is guaranteed a priori during the design phase.
This is different from [6] because it does not use weighting transfer functions; from
[11] because the matrices obtained for different values of the uncertainty are not set
to zero, but assume constant values; from [13] where the uncertainty is expressed as
a hypersphere; from [14–17] in that the proposed method copes with the general case
of uncertain matrices while the works by Sato and coworkers consider only the case
of uncertain scheduling parameters. It is also different from [19] in not assuming a
stochastic description of the parameter uncertainty.

4.2 Problem Formulation

Consider the following uncertain LPV system:

σ.x(τ ) = Ã (θ(τ )) x(τ ) + B̃u(τ ) + B̃w (θ(τ )) w(τ ) (4.1)

z∞(τ ) = C̃z∞ (θ(τ )) x(τ ) + D̃z∞uu(τ ) + D̃z∞w (θ(τ )) w(τ ) (4.2)

z2(τ ) = C̃z2 (θ(τ )) x(τ ) + D̃z2uu(τ ) (4.3)
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where u ∈ R
nu is the control input, w ∈ R

nw is a vector of exogenous inputs (such as
reference signals, disturbance signals, sensor noise), z∞ ∈ R

nz∞ is a vector of output
signals related to the H∞ performance of the control system (see Definition 2.5),
z2 ∈ R

nz2 is a vector of output signals related to the H2 performance of the control
system (see Definition 2.7), and θ ∈ � ⊂ R

nθ is the vector of varying parameters.

Remark: In cases ofLPVsystemswith varying inputmatrices B̃ (θ(τ )), D̃z∞u (θ(τ )),
D̃z2u (θ(τ )), it is possible to obtain a system in the form (4.1)–(4.3) by prefiltering
the inputs u(τ ) as proposed in [2], and recalled in (2.156)–(2.163).

The system state-space matrices take values inside a polytope, as follows:

⎛
⎝

Ã (θ(τ )) B̃ B̃w (θ(τ ))

C̃z∞ (θ(τ )) D̃z∞u D̃z∞w (θ(τ ))

C̃z2 (θ(τ )) D̃z2u

⎞
⎠ =

N∑
i=1

μi (θ(τ ))

⎛
⎝

Ãi B̃ B̃w,i

C̃z∞,i D̃z∞u D̃z∞w,i

C̃z2,i D̃z2u

⎞
⎠ (4.4)

with the coefficients μi satisfying (2.5):

N∑
i=1

μi (θ(τ )) = 1, μi (θ(τ )) ≥ 0, ∀i = 1, . . . , N , ∀θ ∈ � (4.5)

The matrices Ãi , B̃w,i , C̃z∞,i , C̃z2,i , D̃z∞w,i denote the values of Ã (θ(τ )), B̃w (θ(τ )),
C̃z∞ (θ(τ )), C̃z2 (θ(τ )), D̃z∞w (θ(τ )) at the i th vertex of the polytope. Each of these
matrices, together with B̃, D̃z∞,u and D̃z2u , is uncertain, with an uncertainty that can
be described as well in a polytopic way by Mi LTI systems, as follows:

⎛
⎝

Ãi B̃ B̃w,i

C̃z∞,i D̃z∞u D̃z∞w,i

C̃z2,i D̃z2u

⎞
⎠ =

Mi∑
j=1

ηi j

⎛
⎝

Ai j B j Bw,i j

Cz∞,i j Dz∞u, j Dz∞w,i j

Cz2,i j Dz2u, j

⎞
⎠ (4.6)

The goal is to compute an LPV static state-feedback control law of the form (2.134):

u(τ ) = K (θ(τ )) x(τ ) (4.7)

that meets one (or more) of the following specifications on the closed-loop behavior
in the robust LPV sense, i.e. for each possible value that the parameter θ and the
uncertain matrices Ã, . . . , D̃z2u in (4.1)–(4.3) can take:

• stability
• D-stability
• H∞ performance
• H2 performance
• finite time boundedness
• finite time stability

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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4.3 Design Using a Common Quadratic Lyapunov Function

The design conditions presented in Sect. 2.5 can be extended so as to cope with
uncertain LPV systems and solve the problem formulated in Sect. 4.2 with the use
of a common quadratic Lyapunov function, as in (2.58):

V (x(τ )) = x(τ )TPx(τ ) (4.8)

Indeed, an LPV state-feedback gain K (θ(τ )) that meets the desired specifications
for each possible value taken by the scheduling parameters θ and in spite of the
uncertainty in the matrices Ã (θ(τ )) , B̃w (θ(τ )) , . . . , D̃z2u (θ(τ )), should satisfy the
conditions presented in the Theorems 2.12–2.22 with the following changes:

A(θ) → Ã(θ)

B(θ) → B̃

Bw(θ) → B̃w(θ)

Cz∞(θ) → C̃z∞(θ)

Dz∞u(θ) → D̃z∞u

Dz∞w(θ) → D̃z∞w(θ)

Cz2(θ) → C̃z2(θ)

Dz2u(θ) → D̃z2u

Then, by choosing K (θ(τ )) in (4.7) to be polytopic, as in (2.164):

u(τ ) =
N∑
i=1

μi (θ(τ )) Ki x(τ ) (4.9)

it is possible to obtain the following theorems, that are based on a finite number of
LMIs.

Theorem 4.1 (Design of a robust quadratically stabilizing polytopic state-feedback
controller for uncertainCTLPVsystems)Let Q � O and�i ∈ R

nu×nx , i = 1, . . . , N,
be such that:

He
{
Ai j Q + Bj�i

} ≺ O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi (4.10)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2


4.3 Design Using a Common Quadratic Lyapunov Function 79

Then, the closed-loop system made up by the uncertain CT LPV system (4.1), with
τ = t , B̃w (θ(t)) = O, and matrices Ã (θ(t)) and B̃ satisfying (4.4) and (4.6), and
the polytopic state-feedback control law (4.9) with gains calculated as Ki = �i Q−1,
i = 1, . . . , N, is quadratically stable in the robust LPV sense.

Proof The uncertain CT LPV system (4.1), with τ = t and B̃w (θ(t)) = O , is
quadratically stable in the robust LPV sense if the following condition, derived from
(2.135) with the changes A(θ) → Ã(θ) and B(θ) → B̃, holds:

He
{
Ã(θ)Q + B̃K (θ)Q

}
≺ O ∀θ ∈ � (4.11)

Taking into account (4.4), (4.6) and (4.9), (4.11) can be rewritten as:

He

⎧⎨
⎩

N∑
i=1

μi (θ)

Mi∑
j=1

ηi j Ai j Q +
Mi∑
j=1

ηi j B j

N∑
i=1

μi (θ)�i

⎫⎬
⎭ ≺ O (4.12)

with �i = Ki Q.
Then, from a basic property of matrices [23], which states that any linear com-

bination of negative definite matrices with non-negative coefficients, whose sum is
positive, is negative definite, (4.10) is obtained, completing the proof. �
Theorem 4.2 (Design of a robust quadratically stabilizing polytopic state-feedback
controller for uncertainDTLPVsystems)Let Q � O and�i ∈ R

nu×nx , i = 1, . . . , N,
be such that:

(−Q Ai j Q + Bj�i

∗ −Q

)
≺ O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi (4.13)

Then, the closed-loop system made up by the uncertain DT LPV system (4.1), with
τ = k, B̃w (θ(k)) = O, and matrices Ã (θ(k)) and B̃ satisfying (4.4) and (4.6), and
the polytopic state-feedback control law (4.9) with gains calculated as Ki = �i Q−1,
i = 1, . . . , N, is quadratically stable in the robust LPV sense.

Proof Similar to that of Theorem 4.1, thus omitted. �
Theorem 4.3 (Design of a robust quadraticallyD-stabilizing polytopic state-feedb-
ack controller for uncertainLPVsystems)GivenanLMI regionD definedas in (2.47):

D = {σ ∈ C : fD(σ) ≺ 0} (4.14)

with the characteristic function fD(σ) given by (2.48):

fD(σ) = α + βσ + βTσ∗ = [
αkl + βklσ + βlkσ

∗]
k,l∈{1,...,m} (4.15)

whereα = [αkl]k,l∈{1,...,m} ∈ S
m×m and β = [βk,l ]k,l∈{1,...,m} ∈ R

m×m, let Q � O and
�i ∈ R

nu×nx , i = 1, . . . , N, be such that:

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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α ⊗ Q + He
{
β ⊗ [

Ai j Q + Bj�i
]} ≺ O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi

(4.16)
Then, the closed-loop system made up by the uncertain LPV system (4.1), with
B̃w (θ(τ )) = O, and matrices Ã (θ(τ )) and B̃ satisfying (4.4) and (4.6), and the
polytopic state-feedback control law (4.9) with gains calculated as Ki = �i Q−1,
i = 1, . . . , N, is quadratically D-stable in the robust LPV sense.

Proof Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.4 (Design of a robust quadraticH∞ polytopic state-feedback controller
for uncertain CT LPV systems) Let Q � O and �i ∈ R

nu×nx , i = 1, . . . , N, be such
that:

⎛
⎝

He
{
Ai j Q + Bj�i

} ∗ ∗
BT

w,i j −I ∗
Cz∞,i j Q + Dz∞u�i Dz∞w,i j −γ2∞ I

⎞
⎠ ≺ O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi

(4.17)
Then, the closed-loop system made up by the uncertain CT LPV system (4.1)–(4.2)
with τ = t and matrices Ã (θ(t)), B̃, B̃w (θ(t)), C̃z∞ (θ(t)), D̃z∞u and D̃z∞w (θ(t))
satisfying (4.4) and (4.6), and the polytopic state-feedback control law (4.9) with
gains calculated as Ki = �i Q−1, i = 1, . . . , N, has quadraticH∞ performance γ∞
in the robust LPV sense.

Proof Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.5 (Design of a robust quadraticH∞ polytopic state-feedback controller
for uncertain DT LPV systems) Let Q � O and �i ∈ R

nu×nx , i = 1, . . . , N, be such
that:

⎛
⎜⎜⎝

Q Ai j Q + Bj�i Bw,i j O
∗ Q O QCT

z∞,i j

∗ ∗ I DT
z∞w,i j

∗ ∗ ∗ γ2∞

⎞
⎟⎟⎠ � O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi

(4.18)
Then, the closed-loop system made up by the uncertain DT LPV system (4.1)–(4.2)
with τ = k and matrices Ã (θ(k)), B̃, B̃w (θ(k)), C̃z∞ (θ(k)), D̃z∞u and D̃z∞w (θ(k))
satisfying (4.4) and (4.6), and the polytopic state-feedback control law (4.9) with
gains calculated as Ki = �i Q−1, i = 1, . . . , N, has quadraticH∞ performance γ∞
in the robust LPV sense.

Proof Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.6 (Design of a robust quadraticH2 polytopic state-feedback controller
for uncertain CT LPV systems) Let Q � O, �i ∈ R

nu×nx and Yi j ∈ S
nz2×nz2 , i =

1, . . . , N, j = 1, . . . , Mi , be such that:

T r(Yi j ) < γ2
2 ∀i = 1, . . . , N ∀ j = 1, . . . , Mi (4.19)
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(
He

{
Ai j Q + Bj�i

}
Bw,i j

∗ −I

)
≺ O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi (4.20)

(
Yi j Cz2,i j Q + Dz2u�i

∗ Q

)
� O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi (4.21)

Then, the closed-loop systemmade up by the uncertainCTLPV system (4.1) and (4.3)
with τ = t and matrices Ã (θ(t)), B̃, B̃w (θ(t)), C̃z2 (θ(t)) and D̃z2u satisfying (4.4)
and (4.6), and the polytopic state-feedback control law (4.9) with gains calculated
as Ki = �i Q−1, i = 1, . . . , N, has quadraticH2 performance γ2 in the robust LPV
sense.

Proof Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.7 (Design of a robust quadraticH2 polytopic state-feedback controller
for uncertain DT LPV systems) Let Q � O, �i ∈ R

nu×nx and Yi j ∈ S
nz2×nz2 , i =

1, . . . , N, j = 1, . . . , Mi , be such that:

T r(Yi j ) < γ2
2 ∀i = 1, . . . , N ∀ j = 1, . . . , Mi (4.22)

⎛
⎝

Q Ai j Q + Bj�i Bw,i j

∗ Q O
∗ ∗ I

⎞
⎠ � O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi (4.23)

(
Yi j Cz2,i j Q + Dz2u�i

∗ Q

)
� O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi (4.24)

Then, the closed-loop systemmade up by the uncertainDTLPV system (4.1) and (4.3)
with τ = k and matrices Ã (θ(k)), B̃, B̃w (θ(k)), C̃z2 (θ(k)) and D̃z2u satisfying (4.4)
and (4.6), and the polytopic state-feedback control law (4.9) with gains calculated
as Ki = �i Q−1, i = 1, . . . , N, has quadraticH2 performance γ2 in the robust LPV
sense.

Proof Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.8 (Design of a robust quadratic FTB polytopic state-feedback controller
for uncertain CT LPV systems) Fix α > 0, and let λ1 > 0, λ2 > 0, λ3 > 0, Q1 � O,
Q2 � O, and �i ∈ R

nu×nx , i = 1, . . . , N, be such that:
(
He

{
Ai j Q̃1 + B j�i

}
− αQ̃1 Bw,i j Q2

∗ −αQ2

)
≺ O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi

(4.25)
and (2.88)–(2.90):

λ1 I ≺ Q1 ≺ I (4.26)

λ2 I ≺ Q2 ≺ λ3 I (4.27)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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⎛
⎝
c2e−αT √

c1
√
d√

c1 λ1 0√
d 0 λ2

⎞
⎠ � O (4.28)

hold, where Q̃1 = R−1/2Q1R−1/2. Then, the closed-loop system made up by the
uncertain CT LPV system (4.1), with τ = t and matrices Ã (θ(t)), B̃ and B̃w (θ(t))
satisfying (4.4) and (4.6), and the polytopic state-feedback control law (4.9) with
gains calculated as Ki = �i Q̃−1, i = 1, . . . , N, is FTB with respect to (c1, c2, T,

R, d) in the robust LPV sense.

Proof Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.9 (Design of a robust quadratic FTB polytopic state-feedback controller
for uncertainDTLPV systems)Fixα ≥ 1, and letλ1 > 0,λ2 > 0, Q1 � O, Q2 � O
and �i ∈ R

nu×nx , i = 1, . . . , N, be such that:

⎛
⎜⎜⎝

−αQ1 ∗ ∗ ∗
Ai j Q1 + Bj�i −Q1 ∗ ∗

O BT
w,i j −αQ2 ∗

O O Q2Wi j −Q2

⎞
⎟⎟⎠ ≺ O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi

(4.29)
and (2.92)–(2.94):

λ1R
−1 ≺ Q1 ≺ R−1 (4.30)

O ≺ Q2 ≺ λ2 I (4.31)

( c2
αT − λ2d

√
c1√

c1 λ1

)
� O (4.32)

hold. Then, the closed-loop system made up by the uncertain DT LPV system (4.1),
with τ = k, matrices Ã (θ(k)), B̃ and B̃w (θ(k)) satisfying (4.4) and (4.6), and input
w(k) given by:

w(k + 1) =
N∑
i=1

μi (θ(k))
Mi∑
j=1

ηi jWi jw(k) (4.33)

and the polytopic state-feedback control law (4.9) with gains calculated as Ki =
�i Q−1, i = 1, . . . , N, is FTB with respect to (c1, c2, T, R, d) in the robust LPV
sense.

Proof Similar to that of Theorem 4.1, thus omitted. �

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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Theorem 4.10 (Design of a robust quadratically finite time stabilizing polytopic
state-feedback controller for uncertain CT LPV systems) Fix α > 0, and let λ1 > 0,
Q1 � O and �i ∈ R

nu×nx , i = 1, . . . , N, be such that (4.26) holds together with:

He
{
Ai j Q̃1 + Bj�i

}
− αQ̃1 ≺ O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi (4.34)

and (2.96): (
c2e−αT √

c1√
c1 λ1

)
� O (4.35)

where Q̃1 = R−1/2Q1R−1/2. Then, the closed-loop system made up by the uncertain
CT LPV system (4.1), with τ = t , B̃w (θ(t)) = O, and matrices Ã (θ(t)) and B̃ sat-
isfying (4.4) and (4.6), and the polytopic state-feedback control law (4.9) with gains
calculated as Ki = �i Q̃−1, i = 1, . . . , N, is FTS with respect to (c1, c2, T, R) in the
robust LPV sense.

Proof Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.11 (Design of a robust quadratically finite time stabilizing polytopic
state-feedback controller for uncertain DT LPV systems) Fix α ≥ 1, and let λ1 > 0,
Q1 � O and �i ∈ R

nu×nx , i = 1, . . . , N, be such that (4.30) holds together with:

( −αQ1 ∗
Ai j Q1 + Bj�i −Q1

)
≺ O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi (4.36)

and (2.98): ( c2
αT

√
c1√

c1 λ1

)
� O (4.37)

Then, the closed-loop system made up by the uncertain DT LPV system (4.1), with
τ = k, B̃w (θ(k)) = O, and matrices Ã (θ(k)) and B̃ satisfying (4.4) and (4.6), and
the polytopic state-feedback control law (4.9) with gains calculated as Ki = �i Q−1,
i = 1, . . . , N, is FTS with respect to (c1, c2, T, R) in the robust LPV sense.

Proof Similar to that of Theorem 4.1, thus omitted. �

The idea that lies behind Theorems 4.1–4.11 is to use a double-layer polytopic
description so as to take into account both the variability due to the parameter vector
θ and the variability due to the uncertainty. The first polytopic layer manages the
parameter θ and is used to obtain the vertex uncertain systems, where the vertex
controllers are designed. The second polytopic layer is built at each vertex system so
as to take into account the model uncertainties and add robustness in the design step.

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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4.4 Design Using a Parameter-Dependent Lyapunov
Function

The solution proposed in the previous section, despite the advantage of simplicity,
has the drawback of the conservativeness due to matrix P being constant in (4.8).
This source of conservativeness can be eliminated by using a parameter-dependent
Lyapunov function as in (4.38):

V (x(τ )) = x(τ )TP (θ(τ )) x(τ ) (4.38)

At the end of the last century, the authors of [24, 25] showed that, in a DT setting, the
dilation of the matrix inequality characterizations and the introduction of auxiliary
variables allowed to achieve decoupling between the Lyapunov variables and the
controller variables. In this way, some technical issues that had hindered the use of
parameter-dependent Lyapunov functions up to that point were overcome. Similar
results for CT systems were obtained in [26, 27] via a particular application of the
Schur complement technique. Hereafter, these results are extended to the case of
uncertain LPV systems, to solve the problem formulated in Sect. 4.2 with the use of
a parameter-dependent quadratic Lyapunov function, as in (4.38).

To the best of our knowledge, the cases of FTB and FTS were never treated using
the dilation approach. Appendix A shows how new dilated LMIs for the FTB and
the FTS analysis can be obtained in the case of DT systems, thus allowing the use
of a parameter-dependent quadratic Lyapunov function for solving the problem of
robust finite time state-feedback control of uncertain LPV systems. The obtention
of dilated LMIs for the FTB/FTS analysis of CT systems is still under investigation,
and will be addressed in future work.

Theorem 4.12 (Design of a robust stabilizing polytopic state-feedback controller
for uncertain CT LPV systems) Let Qi j � O, �i ∈ R

nu×nx , i = 1, . . . , N, j =
1, . . . , Mi , and S ∈ R

nx×nx be such that:
(

O −Qi j
−Qi j O

)
+ He

{(
Ai j S + B j�i

S

)}
≺ O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi

(4.39)
Then, the closed-loop system made up by the uncertain CT LPV system (4.1), with
τ = t , B̃w (θ(t)) = O, and matrices Ã (θ(t)) and B̃ satisfying (4.4) and (4.6), and
the polytopic state-feedback control law (4.9) with gains calculated as Ki = �i S−1,
i = 1, . . . , N, is stable in the robust LPV sense.

Proof The uncertain CT LPV system (4.1), with τ = t and B̃w (θ(t)) = O , is stable
in the robust LPV sense if the following condition, derived from (2.135) with the
changes A(θ) → Ã(θ), B(θ) → B̃ and Q → Q(θ), holds:

He
{
Ã(θ)Q(θ) + B̃K (θ)Q(θ)

}
≺ O ∀θ ∈ � (4.40)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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Following [26], (4.40) is equivalent to:

(
O −Q(θ)

−Q(θ) O

)
+ He

{(
Ã(θ) + B̃K (θ)

I

)
S

}
≺ O ∀θ ∈ � (4.41)

that, through the change of variables �(θ) = K (θ)S, becomes:

(
O −Q(θ)

−Q(θ) O

)
+ He

{(
Ã(θ)S + B̃�(θ)

S

)}
≺ O ∀θ ∈ � (4.42)

By choosing:

Q(θ) =
N∑
i=1

μi (θ)

Mi∑
j=1

ηi j Qi j (4.43)

and taking into account (4.4), (4.6) and (4.9), (4.40) can be rewritten as:

N∑
i=1

μi (θ)

Mi∑
j=1

ηi j

{(
O −Qi j

−Qi j O

)
+ He

{(
Ai j S + Bj�i

S

)}}
≺ O (4.44)

with �i = Ki S.
Then, from a basic property of matrices [23], which states that any linear com-

bination of negative definite matrices with non-negative coefficients, whose sum is
positive, is negative definite, (4.39) is obtained, completing the proof. �

Theorem 4.13 (Design of a robust stabilizing polytopic state-feedback controller
for uncertain DT LPV systems) Let Qi j � O, �i ∈ R

nu×nx , i = 1, . . . , N, j =
1, . . . , Mi , and S ∈ R

nx×nx be such that:

(
Qi j Ai j S + Bj�i

∗ S + ST − Qi j

)
� O ∀i = 1, . . . , N ∀ j = 1, . . . , Mi (4.45)

Then, the closed-loop system made up by the uncertain DT LPV system (4.1), with
τ = k, B̃w (θ(k)) = O, and matrices Ã (θ(k)) and B̃ satisfying (4.4) and (4.6), and
the polytopic state-feedback control law (4.9) with gains calculated as Ki = �i S−1,
i = 1, . . . , N, is stable in the robust LPV sense.

Proof The uncertain DT LPV system (4.1), with τ = k and B̃w (θ(k)) = O , is stable
in the robust LPV sense if the following condition, derived from (2.136), holds:

(−Q(θ) Ã(θ)Q(θ) + B̃K (θ)Q(θ)
∗ −Q(θ)

)
≺ O ∀θ ∈ � (4.46)

http://dx.doi.org/10.1007/978-3-319-62902-5_2


86 4 Robust State-Feedback Control of Uncertain LPV Systems

Following [24], (4.46) is equivalent to:

(
Q(θ) Ã(θ)S + B̃K (θ)S

∗ S + ST − Q(θ)

)
� O ∀θ ∈ � (4.47)

The remaining of the proof follows a reasoning similar to the one of Theorem 4.12,
and thus is omitted. �

In order to apply efficiently the parameter-dependent Lyapunov framework to the
problem of pole clustering, the concept of LMI regions (see Definition 2.3) has been
slightly revised by [28], as follows:

Definition 4.1 (DR regions [28]) A subset DR of the complex plane is called a
DR region if there exist matrices α = [αkl]k,l∈{1,...,m} ∈ S

m×m , β = [βk,l ]k,l∈{1,...,m} ∈
R

m×m and χ = [χk,l]k,l∈{1,...,m} ∈ S
m×m such that:

DR = {
σ ∈ C : fDR (σ) ≺ 0

}
(4.48)

where fDR (σ) is the characteristic function defined as:

fDR (σ) = α + βσ + βTσ∗ + χσσ∗ = [
αkl + βklσ + βlkσ

∗ + χklσσ∗]
k,l∈{1,...,m}

(4.49)

Without any assumption on the matrix χ, DR regions are not convex, but with
the assumption χ ≥ 0, DR regions are a slight modification of the characterization
provided by LMI regions.

Theorem 4.14 (Design of a robust quadratically DR-stabilizing polytopic state-
feedback controller for uncertain LPV systems) Given a DR-region defined as in
(4.48), let Qi j � O, �i ∈ R

nu×nx , i = 1, . . . , N, j = 1, . . . , Mi , and S ∈ R
nx×nx be

such that:
⎛
⎝
[
αkl Qi j + βklUi j (S, �i ) + βlkUi j (S, �i )

T
]
k,l∈{1,...,m} ∗[

βkl
(
Qi j − S

) + χklUi j (S, �i )
T
]
k,l∈{1,...,m}

[
χkl

(
Qi j − S − ST

)]
k,l∈{1,...,m}

⎞
⎠ ≺ O

(4.50)
∀i = 1, . . . , N, ∀ j = 1, . . . , Mi , with:

Ui j (S, �i ) = Ai j S + Bj�i (4.51)

Then, the closed-loop system made up by the uncertain LPV system (4.1), with
B̃w (θ(τ )) = O, and matrices Ã (θ(τ )) and B̃ satisfying (4.4) and (4.6), and the
polytopic state-feedback control law (4.9) with gains calculated as Ki = �i S−1,
i = 1, . . . , N, is DR-stable in the robust LPV sense.

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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Proof Theproof uses the results obtainedby [28], and is similar to the oneofTheorem
4.12, thus omitted. �

Theorem 4.15 (Design of a robust H∞ polytopic state-feedback controller for
uncertain CT LPV systems) Let Qi j � O, �i ∈ R

nu×nx , i = 1, . . . , N, j = 1, . . . ,
Mi , and S ∈ R

nx×nx be such that:

⎛
⎜⎜⎝

He
{
Ui j (S, �i )

} −Qi j + ST −Ui j (S, �i ) Bw,i j Vi j (S, �i )
T

∗ −He {S} O −Vi j (S, �i )
T

∗ ∗ −I DT
z∞w,i j

∗ ∗ ∗ −γ2∞ I

⎞
⎟⎟⎠ ≺ O (4.52)

∀i = 1, . . . , N, ∀ j = 1, . . . , Mi , with Ui j (S, �i ) defined as in (4.51), and:

Vi j (S, �i ) = Cz∞,i j S + Dz∞u, j�i (4.53)

Then, the closed-loop system made up by the uncertain CT LPV system (4.1)–(4.2)
with τ = t and matrices Ã (θ(t)), B̃, B̃w (θ(t)), C̃z∞ (θ(t)), D̃z∞u and D̃z∞w (θ(t))
satisfying (4.4) and (4.6), and the polytopic state-feedback control law (4.9) with
gains calculated as Ki = �i S−1, i = 1, . . . , N, has H∞ performance γ∞ in the
robust LPV sense.

Proof Theproof uses the results obtainedby [26], and is similar to the oneofTheorem
4.12, thus omitted. �

Theorem 4.16 (Design of a robust H∞ polytopic state-feedback controller for
uncertain DT LPV systems) Let Qi j � O, �i ∈ R

nu×nx , i = 1, . . . , N, j = 1, . . . ,
Mi , and S ∈ R

nx×nx be such that:

⎛
⎜⎜⎝

Qi j Ui j (S, �i ) Bw,i j O
∗ S + ST − Qi j O Vi j (S, �i )

T

∗ ∗ I DT
z∞w,i j

∗ ∗ ∗ γ2∞ I

⎞
⎟⎟⎠ � O (4.54)

∀i = 1, . . . , N, ∀ j = 1, . . . , Mi , withUi j (S, �i ) defined as in (4.51), and Vi j (S, �i )

defined as in (4.53). Then, the closed-loop system made up by the uncertain DT LPV
system (4.1)–(4.2)with τ = k andmatrices Ã (θ(k)), B̃, B̃w (θ(k)), C̃z∞ (θ(k)), D̃z∞u

and D̃z∞w (θ(k)) satisfying (4.4) and (4.6), and the polytopic state-feedback control
law (4.9) with gains calculated as Ki = �i S−1, i = 1, . . . , N, hasH∞ performance
γ∞ in the robust LPV sense.

Proof Theproof uses the results obtainedby [25], and is similar to the oneofTheorem
4.12, thus omitted. �

Theorem 4.17 (Design of a robustH2 polytopic state-feedback controller for uncer-
tain CT LPV systems) Let Qi j � O, �i ∈ R

nu×nx , Yi j ∈ S
nz2×nz2 , i = 1, . . . , N,

j = 1, . . . , Mi , and S ∈ R
nx×nx be such that (4.19) and:
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(
Yi j Wi j (S, �i )

∗ S + ST − Qi j

)
� O (4.55)

⎛
⎝

He
{
Ui j (S, �i )

} −Qi j + ST −Ui j (S, �i ) Bw,i j

∗ −He {S} O
∗ ∗ −I

⎞
⎠ ≺ O (4.56)

hold ∀i = 1, . . . , N, ∀ j = 1, . . . , Mi , with Ui j (S, �i ) defined as in (4.51), and:

Wi j (S, �i ) = Cz2,i j S + Dz2u, j�i (4.57)

Then, the closed-loop systemmade up by the uncertainCTLPV system (4.1) and (4.3)
with τ = t and matrices Ã (θ(t)), B̃, B̃w (θ(t)), C̃z2 (θ(t)) and D̃z2u satisfying (4.4)
and (4.6), and the polytopic state-feedback control law (4.9) with gains calculated
as Ki = �i S−1, i = 1, . . . , N, has H2 performance γ2 in the robust LPV sense.

Proof Theproof uses the results obtainedby [27], and is similar to the oneofTheorem
4.12, thus omitted. �

Theorem 4.18 (Design of a robustH2 polytopic state-feedback controller for uncer-
tain DT LPV systems) Let Qi j � O, �i ∈ R

nu×nx , Yi j ∈ S
nz2×nz2 , i = 1, . . . , N,

j = 1, . . . , Mi , and S ∈ R
nx×nx be such that (4.19), (4.55) and:

⎛
⎝

Qi j Ui j (S, �i ) Bw,i j

∗ He {S} − Qi j O
∗ ∗ I

⎞
⎠ � O (4.58)

hold ∀i = 1, . . . , N, ∀ j = 1, . . . , Mi , with Ui j (S, �i ) defined as in (4.51), and
Wi j (S, �i ) defined as in (4.57). Then, the closed-loop system made up by the uncer-
tain DT LPV system (4.1) and (4.3) with τ = k and matrices Ã (θ(k)), B̃, B̃w (θ(k)),
C̃z2 (θ(k)) and D̃z2u satisfying (4.4) and (4.6), and the polytopic state-feedback con-
trol law (4.9) with gains calculated as Ki = �i S−1, i = 1, . . . , N, has H2 perfor-
mance γ2 in the robust LPV sense.

Proof Theproof uses the results obtainedby [25], and is similar to the oneofTheorem
4.12, thus omitted. �

Theorem 4.19 (Design of a robust FTB polytopic state-feedback controller for
uncertain DT LPV systems) Fix α ≥ 1, and let λ1,i j > 0, λ2,i j > 0, Q1,i j � O,
Q2,i j � O, �i ∈ R

nu×nx , i = 1, . . . , N, j = 1, . . . , Mi , S1 ∈ R
nx×nx and S2 ∈

R
nw×nw be such that:

⎛
⎜⎜⎝

−α
(
S1 + ST1 − Q1,i j

) ∗ ∗ ∗
Ai j S1 + Bj�i −Q1,i j ∗ ∗

O BT
w,i j −Q2,i j ∗

O O ST2 Wi j Q2,i j − S − ST

⎞
⎟⎟⎠ ≺ O (4.59)
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λ1,i j R
−1 ≺ Q1,i j ≺ R−1 (4.60)

O ≺ Q2,i j ≺ λ2,i j I (4.61)

( c2
αT − λ2,i j d

√
c1√

c1 λ1,i j

)
� O (4.62)

hold ∀i = 1, . . . , N, ∀ j = 1, . . . , Mi . Then, the closed-loop system made up by the
uncertain DT LPV system (4.1), with τ = k, matrices Ã (θ(k)), B̃ and B̃w (θ(k))
satisfying (4.4) and (4.6), and input w(k) given by (4.33), and the polytopic state-
feedback control law (4.9) with gains calculated as Ki = �i S

−1
1 , i = 1, . . . , N, is

FTB with respect to (c1, c2, T, R, d) in the robust LPV sense.

Proof Similar to the proof of Theorem 4.12, taking into account a modified version
of Theorem A.1 (see Appendix A), where the open-loop state matrix A is replaced
with the closed-loop state matrix A + BK , and the change of variable K S1 = � is
applied. �

Theorem 4.20 (Design of a robust finite time stabilizing polytopic state-feedback
controller for uncertain DT LPV systems) Fix α ≥ 1, and let λi j > 0, Qi j � O,
�i ∈ R

nu×nx , i = 1, . . . , N, j = 1, . . . , Mi , and S ∈ R
nx×nx be such that:

(−α
(
S + ST − Qi j

) ∗
Ai j S + Bj�i −Qi j

)
≺ O (4.63)

λi j R
−1 ≺ Qi j ≺ R−1 (4.64)

( c2
αT

√
c1√

c1 λi j

)
� O (4.65)

hold ∀i = 1, . . . , N, ∀ j = 1, . . . , Mi . Then, the closed-loop system made up by the
uncertain DT LPV system (4.1), with τ = k, B̃w (θ(k)) = O, and matrices Ã (θ(k))
and B̃ satisfying (4.4) and (4.6), and the polytopic state-feedback control law
(4.9) with gains calculated as Ki = �i S−1, i = 1, . . . , N, is FTS with respect to
(c1, c2, T, R) in the robust LPV sense.

Proof Similar to the proof of Theorem 4.12, taking into account a modified version
of Theorem A.2 (see Appendix A), where the open-loop state matrix A is replaced
with the closed-loop state matrix A + BK , and the change of variable K S = � is
applied. �
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4.5 Examples

4.5.1 Example 1:D-stability

Consider an uncertain CT LPV system described by (4.1) with:

Ã (θ(t)) =
(

ν1 ν2θ(t)
−2 −4ν2

)
B̃ =

(
1 0
0 ν1

)

and B̃w (θ(t)) = O , with the varying parameter θ(t) ∈ [2, 4] and the uncertainty
given by ν1 ∈ [0.9, 1.1] and ν2 ∈ [0.9, 1.1]. This system can be described as a poly-
topic combination of uncertain LTI systems as in (4.4), as follows:

Ã (θ(t)) = μ1 (θ(t)) Ã1 + μ2 (θ(t)) Ã2

with:

Ã1 =
(

ν1 2ν2
−2 −4ν2

)
Ã2 =

(
ν1 4ν2
−2 −4ν2

)

μ1 (θ(t)) = 4 − θ(t)

2
μ2 (θ(t)) = θ(t) − 2

2

The pair ( Ã1, B̃) can be described in a polytopic way by four LTI systems, as in (4.6):

(
Ã1

B̃

)
= η11

(
A11

B1

)
+ η12

(
A12

B2

)
+ η13

(
A13

B3

)
+ η14

(
A14

B4

)

with:

A11 =
(
0.9 1.8
−2 −3.6

)
A12 =

(
0.9 2.2
−2 −4.4

)

A13 =
(
1.1 1.8
−2 −3.6

)
A14 =

(
1.1 2.2
−2 −4.4

)

B1 = B2 =
(
1 0
0 0.9

)
B3 = B4 =

(
1 0
0 1.1

)

In the same manner, the pair ( Ã2, B̃) can be described in the polytopic form (4.6),
as follows:

(
Ã2

B̃

)
= η21

(
A21

B1

)
+ η22

(
A22

B2

)
+ η23

(
A23

B3

)
+ η24

(
A24

B4

)
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with:

A21 =
(
0.9 3.6
−2 −3.6

)
A22 =

(
0.9 4.4
−2 −4.4

)

A23 =
(
1.1 3.6
−2 −3.6

)
A22 =

(
1.1 4.4
−2 −4.4

)

Let us solve the design problem of finding a state-feedback gain:

u(t) = K (θ(t)) x(t) = μ1 (θ(t)) K1x(t) + μ2 (θ(t)) K2x(t)

that places the closed-loop poles in a disk of radius r and center (−q, 0).
In this case, the problem can be solved either using Theorem 4.3, i.e. a common

quadratic Lyapunov function, or using Theorem 4.14, i.e. a parameter-dependent
Lyapunov function. In the first case, the LMIs (4.16) take the following form:

(−r Q qQ + Ai j Q + Bj�i

∗ −r Q

)
≺ O

with i = 1, 2, j = 1, 2, 3, 4, while in the second case, the LMIs (4.50) become:

((
q2 − r2

)
Qi j + qHe

{
Ai j S + Bj�i

}
q
(
Qi j − ST

) + Ai j S + Bj�i

∗ Qi j − S − ST

)
≺ O

with i = 1, 2, j = 1, 2, 3, 4.
In this example, the desired circle has been chosen as the one with center (−10, 0)

and radius r = 10. By applying Theorem 4.14, the robust controller vertex gains are
obtained using YALMIP toolbox [21] with SeDuMi solver [22]:

K1 =
(−1.4754 3.8629

0.7617 2.7419

)
K2 =

(−1.5504 2.9062
0.5752 2.6576

)

with:

S =
(
0.1421 −0.0116
0.0081 0.0293

)

Q11 =
(

0.1442 −0.0008
−0.0008 0.0301

)
Q12 =

(
0.1435 −0.0012

−0.0012 0.0312

)

Q13 =
(

0.1422 −0.0013
−0.0013 0.0296

)
Q14 =

(
0.1420 −0.0011

−0.0011 0.0305

)

Q21 =
(

0.1437 −0.0014
−0.0014 0.0304

)
Q22 =

(
0.1438 −0.0025

−0.0025 0.0313

)
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Q23 =
(

0.1424 −0.0016
−0.0016 0.0294

)
Q24 =

(
0.1427 −0.0029

−0.0029 0.0306

)

In the following, a comparison with a controller obtained applying a classical LPV
technique that does not take into account the uncertainty (denoted as fragile) is done.
The vertex gains of the fragile controller are:

K1 =
(−1.3170 0.6347

0.1779 3.6717

)
K2 =

(−1.4257 −0.3826
−0.5024 3.5638

)

Figure4.1 shows the results of the pole placement when the proposed approach is
used. The closed-loop poles of the vertex systems are depicted as blue dots, and it
can be seen that they are always inside the desired region, thus demonstrating that the
proposed technique can guarantee pole clustering in presence of model uncertainties.
When the problem is solved using the classical approach that takes into account
during the design phase only the varying parameters (but not the uncertainties), the
pole placement specification is satisfied only for the nominal system (cyan dots in
Fig. 4.1), and fails in achieving the goal as soon as the uncertainties are taken into
consideration (red dots in Fig. 4.1).

Figure4.1 shows that for some realizations of the uncertainty the robust con-
troller would be stable, whereas the fragile controller would be unstable. This fact
can be seen from simulation analysis, for example by considering the time response
obtained with ν1 = 1.1, ν2 = 0.9 and θ(t) = 3 + sin t , starting from the initial con-
dition x(0) = (

1 0
)T
. The evolutions of the states x1 and x2 are depicted in Figs. 4.2

Fig. 4.1 Robust D-stability:
comparison between robust
and fragile controller (zoom)
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Fig. 4.2 Robust D-stability: closed-loop response of x1(t)
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Fig. 4.3 Robust D-stability: closed-loop response of x2(t)

and 4.3, respectively, in both the cases when a robust controller is applied and when
the fragile controller is applied. While in the first case the closed-loop state trajec-
tory converges to zero, in the second case the closed-loop state trajectory exhibits
divergence.
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4.5.2 Example 2:H∞ Performance

Consider an uncertain CT LPV system described by (4.1) with:

Ã (θ(t)) =
(

ν1 ν2θ(t)
−2 −4ν2

)
B̃ =

(
1 0
0 ν1

)
B̃w (θ(t)) =

(
ν1θ(t)
0

)

with the varying parameter θ(t) ∈ [2, 4] and the uncertainty given by ν1 ∈ [0.6, 1.4]
and ν2 ∈ [0.6, 1.4]. This system can be described as a polytopic combination of
uncertain LTI systems as in (4.4), as follows:

(
Ã (θ(t))
B̃w (θ(t))

)
= μ1 (θ(t))

(
Ã1

B̃w,1

)
+ μ2 (θ(t))

(
Ã2

B̃w,2

)

with:

Ã1 =
(

ν1 2ν2
−2 −4ν2

)
B̃w,1 =

(
2ν1
0

)
Ã2 =

(
ν1 4ν2
−2 −4ν2

)
B̃w,2 =

(
4ν1
0

)

μ1 (θ(t)) = 4 − θ(t)

2
μ2 (θ(t)) = θ(t) − 2

2

The triplet ( Ã1, B̃, B̃w,1) can be described in a polytopic way by four LTI systems,
as in (4.6):

⎛
⎝

Ã1

B̃
B̃w,1

⎞
⎠ = η11

⎛
⎝

A11

B1

Bw,11

⎞
⎠ + η12

⎛
⎝

A12

B2

Bw,12

⎞
⎠ + η13

⎛
⎝

A13

B3

Bw,13

⎞
⎠ + η14

⎛
⎝

A14

B4

Bw,14

⎞
⎠

with:

A11 =
(
0.6 1.2
−2 −2.4

)
A12 =

(
0.6 2.8
−2 −5.6

)

A13 =
(
1.4 1.2
−2 −2.4

)
A14 =

(
1.4 2.8
−2 −5.6

)

B1 = B2 =
(
1 0
0 0.6

)
B3 = B4 =

(
1 0
0 1.4

)

Bw,11 = Bw,12 =
(
1.2
0

)
Bw,13 = Bw,14 =

(
2.8
0

)

In the same manner, the triplet ( Ã2, B̃, B̃w,2) can be described in the polytopic form
(4.6), as follows:
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⎛
⎝

Ã2

B̃
B̃w,2

⎞
⎠ = η21

⎛
⎝

A21

B1

Bw,21

⎞
⎠ + η22

⎛
⎝

A22

B2

Bw,22

⎞
⎠ + η23

⎛
⎝

A23

B3

Bw,23

⎞
⎠ + η24

⎛
⎝

A24

B4

Bw,24

⎞
⎠

with:

A21 =
(
0.6 2.4
−2 −2.4

)
A22 =

(
0.6 5.6
−2 −5.6

)

A23 =
(
1.4 2.4
−2 −2.4

)
A22 =

(
1.4 5.6
−2 −5.6

)

Bw,21 = Bw,22 =
(
2.4
0

)
Bw,23 = Bw,24 =

(
5.6
0

)

Let us solve the design problem of finding a state-feedback gain:

u(t) = K (θ(t)) x(t) = μ1 (θ(t)) K1x(t) + μ2 (θ(t)) K2x(t)

such that the closed-loop system hasH∞ performance less than 1 in the robust LPV
sense (this specification corresponds to the attenuation of the exogenous input across
all frequencies).

In this case, the problem can be solved either using Theorem 4.4 (common
quadratic Lyapunov function) or using Theorem 4.15 (parameter-dependent Lya-
punov function). By applying the latter, the robust controller vertex gains are obtained
using YALMIP toolbox [21] with SeDuMi solver [22]:

K1 =
(−12.6028 −3.3688

−1.8928 −1.8585

)
K2 =

(−28.7550 −7.3552
−3.2000 −3.1281

)

with:

S =
(

0.7395 −0.2440
−0.4165 1.0987

)

Q11 =
(
7.9460 0.4642
0.4642 4.6821

)
Q12 =

(
8.6724 −0.9988

−0.9988 7.6659

)

Q13 =
(
7.2706 0.5011
0.5011 6.1806

)
Q14 =

(
8.0755 −1.1003

−1.1003 8.9602

)

Q21 =
(
17.6562 0.7993
0.7993 5.2005

)
Q22 =

(
19.1482 −0.8789
−0.8789 7.8580

)

Q23 =
(
17.8220 0.3148
0.3148 7.8933

)
Q24 =

(
19.4641 −2.1891
−2.1891 9.9042

)



96 4 Robust State-Feedback Control of Uncertain LPV Systems

−50

−40

−30

−20

−10

0

10
M

ag
ni

tu
de

 (d
B)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−90

−45

0

Ph
as

e 
(d

eg
)

Bode Diagram

Frequency  (rad/s)

Robust controller
Fragile controller

Fig. 4.4 Robust H∞ performance: Bode plot

In the following, a comparison with a fragile controller, obtained applying a classical
LPV technique without taking into account the uncertainty, is done. The vertex gains
of the fragile controller are:

K1 =
(−9.5607 −3.0468

−1.8819 0.8398

)
K2 =

(−19.1879 −5.7774
−4.7960 0.1083

)

Figure4.4 shows the Bode diagrams of the closed-loop system obtained with
ν1 = 1.4, ν2 = 0.6 and θ = 2. It can be seen that for low frequencies, the desired
specification is not attained by the fragile controller. On the other hand, the robust
controller successfully achieves the performance (themagnitude plot is always below
the threshold of 0 dB).

Finally, to complete the analysis, a simulation with ν1 = 1.4, ν2 = 0.6, θ(t) =
3 + sin(t), w(t) = sin(0.01t), and initial condition x(0) = (

0 0
)T

is considered.
The evolution of the output related to the H∞ (z∞ = x1) is plotted in Fig. 4.5. It
is confirmed that the robust controller successfully achieves the attenuation of the
exogenous disturbance w(t), whereas the fragile controller does not.
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Fig. 4.5 Robust H∞ performance: closed-loop response of z∞(t)

4.6 Conclusions

In this chapter, the problem of designing an LPV state-feedback controller for uncer-
tain LPV systems has been considered. The controller has been designed such that
some desired performances are achieved in the robust LPV sense, i.e. for each pos-
sible value that the scheduling parameters and the uncertainty can take.

Some well-known results obtained in the last decades in the robust and in the LPV
control fields have been extended to obtain conditions that can be used to solve this
problem. The provided solution relies on a double-layer polytopic description that
takes into account both the variability due to the scheduling parameter vector and the
uncertainty. The first polytopic layer manages the varying parameters and is used to
obtain the vertex uncertain systems, where the vertex controllers are designed. The
second polytopic layer is built at each vertex system so as to take into account the
model uncertainties and add robustness into the design step.

The problem has been tackled using both a common quadratic Lyapunov function
and a parameter-dependent Lyapunov function. In both cases, under some assump-
tions, a finite number of LMIs, that can be solved efficiently using available solvers,
is obtained.

The proposed technique has been applied to numerical examples, showing that it
achieves correctly the desired performances, i.e. robust D-stability and robust H∞
performance, whereas the traditional LPV gain-scheduling technique fails.

An open issue that requires further investigation is the obtention of dilated LMIs
for the FTB/FTS analysis of CT systems. This step is necessary in order to obtain
conditions for the design of robust FTB/FTS polytopic state-feedback controllers for
uncertain CT LPV systems.
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Chapter 5
Shifting State-Feedback Control of LPV
Systems

The content of this chapter is based on the following works:

• [1] D. Rotondo, F. Nejjari, V. Puig. A shifting pole placement approach for the
design of parameter-scheduled state-feedback controllers. In Proceedings of the
12th European Control Conference (ECC), pages 1829–1834, 2013;

• [2] D. Rotondo, F. Nejjari, V. Puig. Design of parameter-scheduled state-feedback
controllers using shifting specifications. Journal of the Franklin Institute, 352(1):
93–116, 2015;

• [3] D. Rotondo, F. Nejjari, V. Puig. Shifting finite time stability and boundedness
design for continuous-time LPV systems. In Proceedings of the 32nd American
Control Conference (ACC), pages 838–843, 2015.

5.1 Introduction

In this chapter, the problem of designing a parameter-scheduled state-feedback con-
troller is investigated. In particular, this chapter takes advantage of the properties of
polytopes and LMIs to solve new problems, that can be seen as extensions of the
more classical D-stability, H∞ performance, H2 performance, finite time bound-
edness and finite time stability specifications, that will be referred to as shifting
D-stability, shifting H∞ performance, shifting H2 performance, shifting finite time
stability and shifting finite time boundedness. In these new problems, by introducing
some parameters, or using the existing ones, the controller can be designed in such
a way that different values of these parameters imply different performances. Notice
that this is akin to the approach described in [4], where a methodology for design-
ing a sampling period dependent controller with performance adaptation has been
proposed.

© Springer International Publishing AG 2018
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Springer Theses, https://doi.org/10.1007/978-3-319-62902-5_5
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From a practical point of view, reasons for which such a problem can be of interest
include all situations where some performance degradation could be desirable, e.g.
high-/low-gain control, control of systemswith saturation nonlinearities [5], graceful
performance degradation for active fault tolerant control [6] and actuator health
degradation avoidance [7].

5.2 Problem Formulation

Consider the LPV system given by (2.156)–(2.158):

σ.x(τ ) = A (θ(τ )) x(τ ) + B (θ(τ )) u(τ ) + Bw (θ(τ )) w(τ ) (5.1)

z∞(τ ) = Cz∞ (θ(τ )) x(τ ) + Dz∞u (θ(τ )) u(τ ) + Dz∞w (θ(τ )) w(τ ) (5.2)

z2(τ ) = Cz2 (θ(τ )) x(τ ) + Dz2u (θ(τ )) u(τ ) (5.3)

and divide the nθ-dimensional set � into three subsets, i.e. an nθs -dimensional set
�s , an nθr -dimensional set �r , and an nθp -dimensional set �p, such that:

� = �s × �r × �p (5.4)

where:

• θs(τ ) are varying parameters used to schedule the controller (they would corre-
spond to variables that can be either measured or estimated);

• θr (τ ) are parameters that are not used to schedule the controller, and robustness
must be guaranteed against their variations (these parameters would correspond to
unmeasurable variables that cannot be estimated, but also to unknown but bounded
uncertainties affecting the system, e.g. the ones arising from noise or estimation
errors);

• θp(τ ) are varying parameters used to schedule not only the controller as in the case
of θs(τ ), but also the shifting specifications D (

θp(τ )
)
, γ∞

(
θp(τ )

)
, γ2

(
θp(τ )

)
,

c1
(
θp(τ )

)
and c2

(
θp(τ )

)
, defined formally in the following (see Definitions

5.1–5.7).

�s , �r and �p are assumed to be polytopes, such that:

θs(τ ) =
S∑

i=1

si (θs(τ ))θs,i ,

S∑

i=1

si (θs(τ )) = 1 , si (θs(τ )) ≥ 0 , i = 1, . . . , S

(5.5)

θr (τ ) =
R∑

j=1

r j (θr (τ ))θr, j ,

R∑

j=1

r j (θr (τ )) = 1 , r j (θr (τ )) ≥ 0 , j = 1, . . . , R

(5.6)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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θp(τ ) =
P∑

h=1

πh
(
θp(τ )

)
θp,h ,

P∑

h=1

πh
(
θp(τ )

) = 1 , πh
(
θp(τ )

) ≥ 0 , h = 1, . . . , P

(5.7)
with S, R and P the numbers of vertices, denoted by θs,i , θr, j and θp,h of �s , �r and
�p, respectively. Then, � is a Cartesian product of polytopes [8], such that:

θ(τ ) =
S∑

i=1

si (θs(τ ))

R∑

j=1

r j (θr (τ ))

P∑

h=1

πh
(
θp(τ )

)
θi jh (5.8)

where θi jh is defined as:

θi jh = [
θs,i θr, j θp,h

]T
(5.9)

In this chapter, the problem of designing the controller:

u(τ ) = K
(
θs(τ ), θp(τ )

)
x(τ ) (5.10)

so as to satisfy one of the following specifications:

• shifting D-stability
• shiftingH∞ performance
• shiftingH2 performance
• shifting finite time stability
• shifting finite time boundedness

is considered. These specifications are defined in the following.

Definition 5.1 (Shifting D-stability of an LPV system) Given the following sched-
uled subset of the complex plane:

D(θp) = {
σ ∈ C : fD(θp)(σ, θp) < O

}
(5.11)

where fD(θp)(σ, θp) is the shifting characteristic function defined as:

fD(θp)(σ, θp) = α(θp) + β(θp)σ + β(θp)
Tσ∗ = [

αkl (θp) + βkl (θp)σ + βlk (θp)σ
∗]

k,l∈{1,...,m}
(5.12)

where α(θp) = [αkl(θp)]k,l∈{1,...,m} ∈ S
m×m and β(θp) = [βk,l(θp)]k,l∈{1,...,m} ∈

R
m×m , the autonomous LPV system (2.46):

σ.x(τ ) = A (θ(τ )) x(τ ) (5.13)

with θ ∈ �, and � as in (5.4), is shiftingD-stable with respect toD(θp) if, for every
possible θ ∈ �, the poles of (5.13) are inside D(θp).

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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Definition 5.2 (Shifting H∞ performance of an LPV system) The LPV system
(2.50)–(2.51):

σ.x(τ ) = A (θ(τ )) x(τ ) + Bw (θ(τ )) w(τ ) (5.14)

z∞(τ ) = Cz∞ (θ(τ )) x(τ ) + Dz∞w (θ(τ )) w(τ ) (5.15)

has shiftingH∞ performance γ∞(θp) if
∥
∥Tz∞w(σ, θ)

∥
∥∞ < γ∞(θp) ∀θ ∈ �, with �

as in (5.4), and Tz∞w(σ, θ) denoting the closed-loop transfer function from w(τ ) to
z∞(τ ).

Definition 5.3 (ShiftingH2 performance of an LPV system) The LPV system (5.14)
and (2.53):

z2(τ ) = Cz2 (θ(τ )) x(τ ) (5.16)

has shiftingH2 performance γ2(θp) if
∥∥Tz2w(σ, θ)

∥∥
2 < γ2(θp) ∀θ ∈ �, with � as in

(5.4), and Tz2w(σ, θ) denoting the closed-loop transfer function from w(τ ) to z2(τ ).

Definition 5.4 (Shifting finite time stability of CT LPV systems) The autonomous
LPV system (5.13), with τ = t , is said to be shifting finite time stable (SFTS)
with respect to

(
c1(θp), c2(θp), T (θp), R

)
with c2(θp) > c1(θp) > 0 ∀θp ∈ �p and

R � O if:
{
x(t0)TRx(t0) ≤ c1(θp0)

θp(t) = θp0 ∀t ∈ [
t0, t0 + T (θp0)

] ⇒ x(t)TRx(t) ≤ c2(θp0)

∀t ∈ [
t0, t0 + T (θp0)

] (5.17)

Definition 5.5 (Shifting finite time stability of DT LPV systems) The autonomous
LPV system (5.13), with τ = k, is said to be shifting finite time stable (SFTS) with
respect to

(
c1(θp), c2(θp), T (θp), R

)
with c2(θp) > c1(θp) > 0 ∀θp ∈ �p and R �

O if:
{
x(k0)TRx(k0) ≤ c1(θp0 )
θp(k) = θp0 ∀k ∈ {

k0, . . . , k0 + T (θp0 ) − 1
} ⇒ x(k)TRx(k) ≤ c2(θp0 )

∀k ∈ {
k0 + 1, . . . , k0 + T (θp0 )

}

(5.18)

Definition 5.6 (Shifting finite time boundedness of CT LPV systems) The CT LPV
system (2.55):

ẋ(t) = A (θ(t)) x(t) + Bw (θ(t)) w(t) (5.19)

is said to be shifting finite time bounded (SFTB) with respect to
(
c1(θp), c2(θp),

T (θp), R, d(θp)
)
with c2(θp) > c1(θp) > 0 ∀θp ∈ �p and R � O if:

⎧
⎨

⎩

x(t0)TRx(t0) ≤ c1(θp0)

w(t)Tw(t) ≤ d(θp0)

θp(t) = θp0
∀t ∈ [

t0, t0 + T (θp0)
] ⇒ x(t)TRx(t) ≤ c2(θp0)

∀t ∈ [
t0, t0 + T (θp0)

]

(5.20)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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Definition 5.7 (Shifting finite time boundedness of DT LPV systems) The DT LPV
system (2.56):

{
x(k + 1) = A (θ(k)) x(k) + Bw (θ(k)) w(k)
w(k + 1) = W (θ(k)) w(k)

(5.21)

is said to be SFTB with respect to
(
c1(θp), c2(θp), T (θp), R, d(θp)

)
with

c2(θp) > c1(θp) > 0 ∀θp ∈ �p and R � O if:
⎧
⎨

⎩

x(k0)TRx(k0) ≤ c1(θp0 )
w(k)Tw(k) ≤ d(θp0 )
θp(k) = θp0

∀k ∈ {
k0, . . . , k0 + T (θp0 ) − 1

} ⇒ x(k)TRx(k) ≤ c2(θp0 )
∀k ∈ {

k0 + 1, . . . , k0 + T (θp0 )
}

(5.22)

Despite the problemof design using shifting specifications is being considered for the
case of LPV systems, the proposed method is useful for LTI systems too. In this case,
a vector θp(t), exogenous with respect to the system to be controlled, is introduced,
and used to schedule the controller, such that, even though the plant to be controlled
is LTI, the overall system is LPV and themathematical reasoning developed hereafter
can be applied. The reason behind doing so is that in this way the performance of the
closed-loop system can be varied in time according to some criterium, e.g. energetic
issues. The introduction of an exogenous θp(t) can also be done in the case of LPV
systems, when it is desired to vary the performance according to criteria that are not
connected with the intrinsic varying parameters of the LPV system.

5.3 Design Using a Common Quadratic Lyapunov Function

The following theorems provide some conditions for designing the controller (5.10)
in order to satisfy the shifting specifications introduced in Definitions 5.1–5.7. For
the sake of simplicity, only the case where a common quadratic Lyapunov function,
as in (2.58):

V (x(τ )) = x(τ )TPx(τ ) (5.23)

will be considered.

Theorem 5.1 (Quadratic shifting D-stabilizability of LPV systems) Given an LMI
region scheduled by θp, as in (5.11), the LPV system (5.1) with Bw (θ(τ )) = O and
control law (5.10) is quadratically shifting D-stable with respect to D(θp) if there
exist Q � O and K (θs, θp) ∈ R

nu×nx such that:

α(θp) ⊗ Q + He
{
β(θp) ⊗ [

A(θ)Q + B(θ)K (θs, θp)Q
]} ≺ O ∀θ ∈ �

(5.24)

Proof The condition (5.24) is obtained from (2.137), by considering that α and β
are not constant, but functions of θp, and that K depends only on θs and θp. �

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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Theorem 5.2 (Quadratic shiftingH∞ state feedback for CT LPV systems) The CT
LPV system (5.1)–(5.2) with τ = t and control law (5.10) has quadratic shiftingH∞
performance γ∞(θp) if there exist Q � O and K (θs, θp) ∈ R

nu×nx such that:

⎛

⎜
⎝

He
{
A(θ)Q + B(θ)K (θs, θp)Q

} ∗ ∗
Bw(θ)T −I ∗

Cz∞(θ)Q + Dz∞u(θ)K (θs, θp)Q Dz∞w(θ) −γ∞(θp)
2 I

⎞

⎟
⎠ ≺ O ∀θ ∈ �

(5.25)

Proof The condition (5.25) is obtained from (2.140), by considering that γ∞ is not
constant, but function of θp, and that K depends only on θs and θp. �

Theorem 5.3 (Quadratic shiftingH∞ state feedback for DT LPV systems) The DT
LPV system (5.1)–(5.2)with τ = k and control law (5.10) has quadratic shiftingH∞
performance γ∞(θp) if there exist Q � O and K (θs, θp) ∈ R

nu×nx such that:

⎛

⎜
⎜
⎝

Q A(θ)Q + B(θ)K (θs , θp)Q Bw(θ) O
∗ Q O QCz∞ (θ)T + QK (θs , θp)

TDz∞u(θ)
T

∗ ∗ I Dz∞w(θ)T

∗ ∗ ∗ γ∞(θp)
2 I

⎞

⎟
⎟
⎠ � O ∀θ ∈ �

(5.26)

Proof The condition (5.26) is obtained from (2.143), by considering that γ∞ is not
constant, but function of θp, and that K depends only on θs and θp. �

Theorem 5.4 (Quadratic shifting H2 state feedback for CT LPV systems) The CT
LPV system (5.1) and (2.158) with τ = t and control law (5.10) has quadratic
shifting H2 performance γ2(θp) if there exist Q � O, K (θs, θp) ∈ R

nu×nx and
Y (θ) ∈ S

nz2×nz2 such that T r (Y (θ)) < γ2(θp)
2 ∀θ ∈ � and:

(
He

{
A(θ)Q + B(θ)K (θs, θp)Q

}
Bw(θ)

∗ −I

)
≺ O ∀θ ∈ � (5.27)

(
Y (θ) Cz2(θ)Q + Dz2u(θ)K (θs, θp)Q

∗ Q

)
� O ∀θ ∈ � (5.28)

Proof It follows from the conditions of Theorem 2.17, by considering that γ2 is not
constant, but function of θp, and that K only depends on θs and θp. �

Theorem 5.5 (Quadratic shifting H2 state feedback for DT LPV systems) The
DT LPV system (5.1) and (5.3) with τ = k and control law (5.10) has quadratic
shifting H2 performance γ2(θp) if there exist Q � O, K (θs, θp) ∈ R

nu×nx and
Y (θ) ∈ S

nz2×nz2 such that T r (Y (θ)) < γ2(θp)
2 ∀θ ∈ � and:

⎛

⎝
Q A(θ)Q + B(θ)K (θs, θp)Q Bw(θ)
∗ Q O
∗ ∗ I

⎞

⎠ � O ∀θ ∈ � (5.29)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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(
Y (θ) Cz2(θ)Q + Dz2u(θ)K (θs, θp)Q

∗ Q

)
� O ∀θ ∈ � (5.30)

Proof It follows from the conditions of Theorem 2.18, by considering that γ2 is not
constant, but function of θp, and that K depends only on θs and θp. �

Theorem 5.6 (Quadratic SFTB state feedback for CT LPV systems) The CT LPV
system (5.1) with τ = t and control law (5.10) is quadratically SFTB with respect
to

(
c1(θp), c2(θp), T (θp), R, d(θp)

)
if, letting Q̃1 = R−1/2Q1R−1/2, there exist a

positive scalarα, positive functionsλ1(θp),λ2(θp),λ3(θp), positive definitematrices
Q1 ∈ S

nx×nx and Q2 ∈ S
nw×nw , and a matrix function K (θs, θp) ∈ R

nu×nx such that:

(
He

{
A(θ)Q̃1 + B(θ)K (θs, θp)Q̃1

}
− αQ̃1 Bw(θ)Q2

∗ −αQ2

)

≺ O ∀θ ∈ �

(5.31)
λ1(θp)I ≺ Q1 ≺ I ∀θp ∈ �p (5.32)

λ2(θp)I ≺ Q2 ≺ λ3(θp)I ∀θp ∈ �p (5.33)

⎛

⎝
c2(θp)e−αT (θp)

√
c1(θp)

√
d(θp)√

c1(θp) λ1(θp) 0√
d(θp) 0 λ2(θp)

⎞

⎠ � O ∀θp ∈ �p (5.34)

Proof From Definition 5.6, by introducing the new time variable t̃ = t − t0, (5.20)
becomes:

⎧
⎨

⎩

x(0)TRx(0) ≤ c1(θp0)

w(t̃)Tw(t̃) ≤ d(θp0)

θp(t̃) = θp0
∀t̃ ∈ [

0, T (θp0)
] ⇒ x(t̃)TRx(t̃) ≤ c2(θp0)

∀t̃ ∈ [
0, T (θp0)

] (5.35)

Since θp(t) is constant during the considered time interval, it follows that in order to
obtain (5.35), the property of finite time boundedness, as defined in Definition 2.9,
should hold ∀θp ∈ �p. The remaining of the proof follows from the conditions of
Theorem 2.19, taking into account that K depends only on θs and θp. �

Theorem 5.7 (Quadratic SFTB state feedback for DT LPV systems) The DT LPV
system (5.1) with τ = k and (2.151):

w(k + 1) = W (θ(k)) w(k) (5.36)

with control law (5.10) is quadratically SFTBwith respect to
(
c1(θp), c2(θp), T (θp),

R, d(θp)
)
if there exist a positive scalar α ≥ 1, positive functions λ1(θp), λ2(θp),

positive definite matrices Q1 ∈ S
nx×nx and Q2 ∈ S

nw×nw and a matrix function
K (θs, θp) ∈ R

nu×nx such that:

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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⎛

⎜⎜
⎝

−αQ1 ∗ ∗ ∗
A(θ)Q1 + B(θ)K (θs, θp)Q1 −Q1 ∗ ∗

O Bw(θ)T −αQ2 ∗
O O Q2W (θ) −Q2

⎞

⎟⎟
⎠ ≺ O ∀θ ∈ �

(5.37)
λ1(θp)R

−1 ≺ Q1 ≺ R−1 ∀θp ∈ �p (5.38)

O ≺ Q2 ≺ λ2(θp)I ∀θp ∈ �p (5.39)

(
c2(θp)

αT (θp ) − λ2(θp)d(θp)
√
c1(θp)√

c1(θp) λ1(θp)

)

� O ∀θp ∈ �p (5.40)

Proof From Definition 5.7, by introducing the new time variable k̃ = k − k0, (5.22)
becomes:

⎧
⎨

⎩

x(0)TRx(0) ≤ c1(θp0 )
w(k̃)Tw(k̃) ≤ d(θp0 )

θp(k̃) = θp0
∀k̃ ∈ {

0, . . . , T (θp0 ) − 1
} ⇒ x(k̃)TRx(k̃) ≤ c2(θp0 )

∀k̃ ∈ {
1, . . . , T (θp0 )

} (5.41)

Since θp(k) is constant during the considered time interval, it follows that in order to
obtain (5.41), the property of finite time boundedness, as defined in Definition 2.9,
should hold ∀θp ∈ �p. The remaining of the proof follows from the conditions of
Theorem 2.20, taking into account that K only depends on θs and θp. �

Theorem 5.8 (Quadratic shifting finite time stabilization of CT LPV systems) The
CT LPV system (5.1), with τ = t , Bw (θ(t)) = O, and control law (5.10), is quadrati-
cally shifting finite time stabilizable with respect to

(
c1(θp), c2(θp), T (θp), R

)
if, let-

ting Q̃1 = R−1/2Q1R−1/2, there exist a positive scalar α, a positive function λ1(θp),
a positive definite matrix Q1 ∈ S

nx×nx , and a matrix function K (θs, θp) ∈ R
nu×nx

such that:

He
{
A(θ)Q̃1 + B(θ)K (θs, θp)Q̃1

}
− αQ̃1 ≺ O ∀θ ∈ � (5.42)

(
c2(θp)e−αT (θp)

√
c1(θp)√

c1(θp) λ1(θp)

)
� O ∀θp ∈ �p (5.43)

and (5.32) hold.

Proof It is a direct consequence of Theorem 5.6 when Bw (θ(t)) = O and
d(θp) = 0. �

Theorem 5.9 (Quadratic shifting finite time stabilization of DT LPV systems) The
DTLPV system (5.1), with τ = k, Bw (θ(k)) = O, and control law (5.10), is quadrat-
ically shifting finite time stabilizable with respect to

(
c1(θp), c2(θp), T (θp), R

)
if

there exist a positive scalar α ≥ 1, a positive function λ1(θp), a positive definite
matrix Q1 ∈ S

nx×nx and a matrix function K (θs, θp) ∈ R
nu×nx such that:

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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( −αQ1 ∗
A(θ)Q1 + B(θ)K (θs, θp)Q1 −Q1

)
≺ O ∀θp ∈ �p (5.44)

(
c2(θp)

αT (θp )

√
c1(θp)√

c1(θp) λ1(θp)

)

� O ∀θp ∈ �p (5.45)

and (5.38) hold.

Proof It is a direct consequence of Theorem 5.7 when W (θ(k)) = Bw (θ(k)) = O
and d(θp) = 0. �

In the CT case, it can be proved that the quadratic shifting D-stability specification
allows varying in time the transient performance of the closed-loop system, i.e. its
decay or growth rate. This is stated by the following corollary, that is based on
Corollary 2.1 [9, 10].

Corollary 5.1 Let V (x(t)) be defined as in (5.23), and let the autonomous LPV
system (5.13) be quadratically shifting D-stable with respect to D(θp), i.e. (5.24)
holds. Then, the Lyapunov function V (x(t)) satisfies, for all x(t) �= 0:

1

2

V̇ (x(t))

V (x(t))
∈ D(θp) ∩ R (5.46)

Proof It follows the reasoning of the proof of Corollary 2.1, thus it is omitted. �

Looking at Corollary 5.1, it can be seen that using a shiftingD-stability specification,
it is possible to modify online the constraint on the minimum decay rate (ifD (

θp(t)
)

is contained in the left half plane), or the maximum possible growth rate of the
Lyapunov function used to assess the shifting D-stability. From a practical point of
view, it is possible to vary online other transient performances using the proposed
shifting specifications, also in the case of DT systems.

However, the conditions provided in Theorems 5.1–5.9 cannot be used for the
controller design, since they impose an infinite number of constraints. This difficulty
can be alleviated under the following assumptions:

• β
(
θp(τ )

)
is a constant matrix and:

⎛

⎜⎜⎜⎜
⎜
⎝

α
(
θp(τ )

)

γ∞
(
θp(τ )

)2

γ2
(
θp(τ )

)2
√
c1

(
θp(τ )

)

⎞

⎟⎟⎟⎟
⎟
⎠

=
P∑

h=1

πh
(
θp(τ )

)

⎛

⎜⎜⎜
⎝

κ1,h

κ2,h

κ3,h

κ4,h

⎞

⎟⎟⎟
⎠

(5.47)

(
c2

(
θp(t)

)
e−αT(θp(t))

√
d

(
θp(t)

)

)

=
P∑

h=1

πh
(
θp(t)

) (
κ5,h

κ6,h

)
CT systems (5.48)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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(
c2(θp(k))
αT(θp (k))

d
(
θp(t)

)

)

=
P∑

h=1

πh
(
θp(k)

) (
κ5,h

κ6,h

)
DT systems (5.49)

Looking at the examples of LMI regions provided in Chap. 2, it can be seen that the
assumption of a constant β matrix corresponds to fixing the shape of the shifting
LMI region.

• The matrices B (θ(τ )), Dz∞u (θ(τ )) and Dz2u (θ(τ )) only depend on θr (τ ) and:

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

A (θ(τ ))

Bw (θ(τ ))

Cz∞ (θ(τ ))

Dz∞w (θ(τ ))

Cz2 (θ(τ ))

W (θ(τ ))

Y (θ(τ ))

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

=
S∑

i=1

si (θs(τ ))

R∑

j=1

r j (θr (τ ))

P∑

h=1

πh
(
θp(τ )

)

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

Ai jh

Bw,i jh

Cz∞,i jh

Dz∞w,i jh

Cz2,i jh

Wi jh

Yi jh

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

(5.50)⎛

⎝
B (θr (τ ))

Dz∞u (θr (τ ))

Dz2u (θr (τ ))

⎞

⎠ =
R∑

j=1

r j (θr (τ ))

⎛

⎝
Bj

Dz∞u, j

Dz2u, j

⎞

⎠ (5.51)

Notice that when the assumption that B (θ(τ )), Dz∞u (θ(τ )) and Dz2u (θ(τ )) only
depend on θr (τ ) introduces too much conservativeness, it is possible to relax this
assumption by filtering the inputs, as proposed by [11].

Then, it is possible to consider the following control law:

u(τ ) =
S∑

i=1

si (θs(τ ))

P∑

h=1

πh
(
θp(τ )

)
Kihx(τ ) (5.52)

and reduce the conditions provided by Theorems 5.1–5.9 to a finite number of matrix
inequalities, by rewriting themat the S · R · P vertices of�, as stated by the following
corollaries.

Corollary 5.2 (Design of a quadratically shifting D-stabilizing polytopic state-
feedback controller for LPV systems) Given an LMI region scheduled by θp, as
in (5.11), with β

(
θp(τ )

) = β, let Q � O and �ih ∈ R
nu×nx , i = 1, . . . , S, h =

1, . . . , P, be such that:

κ1,h ⊗ Q + He
{
β ⊗ [

Ai jh Q + Bj�ih
]} ≺ O (5.53)

∀i = 1, . . . , S, ∀ j = 1, . . . , R, ∀h = 1, . . . , P. Then, the closed-loop system made
up by the LPV system (5.1), with Bw (θ(τ )) = O and polytopic matrices as in (5.50)–
(5.51), and the polytopic state-feedback control law (5.52) with gains calculated as
Kih = �ih Q−1, i = 1, . . . , S, h = 1, . . . , P, is quadratically shifting D-stable with
respect to D(θp).

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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Proof It follows from the basic property of matrices [12] that any linear combination
of negative definite matrices with non-negative coefficients, whose sum is positive, is
negative definite, and it uses a reasoning similar to the one used in previous theorems,
thus it is omitted. �

Corollary 5.3 (Design of a quadratic shifting H∞ polytopic state-feedback con-
troller for CT LPV systems) Let Q � O and �ih ∈ R

nu×nx , i = 1, . . . , S, h =
1, . . . , P, be such that:

⎛

⎝
He

{
Ai jh Q + Bj�ih

} ∗ ∗
BT

w,i jh −I ∗
Cz∞,i jh Q + Dz∞u, j�ih Dz∞w,i jh −κ2,h I

⎞

⎠ ≺ O
∀i = 1, . . . , S
∀ j = 1, . . . , R
∀h = 1, . . . , P

(5.54)

Then, the closed-loop system made up by the CT LPV system (5.1)–(5.2), with τ = t ,
and polytopic matrices as in (5.50)–(5.51), and the polytopic state-feedback control
law (5.52)with gains calculated as Kih = �ih Q−1, i = 1, . . . , S, h = 1, . . . , P, has
quadratic shiftingH∞ performance γ∞(θp).

Proof Similar to that of Corollary 5.2, thus omitted. �

Corollary 5.4 (Design of a quadratic shifting H∞ polytopic state-feedback con-
troller for DT LPV systems) Let Q � O and �ih ∈ R

nu×nx , i = 1, . . . , S, h =
1, . . . , P, be such that:

⎛

⎜⎜
⎝

Q Ai jhQ + Bj�ih Bw,i jh O
∗ Q O QCT

z∞,i jh + �T
ih D

T
z∞u, j

∗ ∗ I DT
z∞w,i jh

∗ ∗ ∗ κ2,h I

⎞

⎟⎟
⎠ � O

∀i = 1, . . . , S
∀ j = 1, . . . , R
∀h = 1, . . . , P

(5.55)

Then, the closed-loop systemmade up by the DT LPV system (5.1)–(5.2), with τ = k,
and polytopic matrices as in (5.50)–(5.51), and the polytopic state-feedback control
law (5.52)with gains calculated as Kih = �ih Q−1, i = 1, . . . , S, h = 1, . . . , P, has
quadratic shiftingH∞ performance γ∞(θp).

Proof Similar to that of Corollary 5.2, thus omitted. �

Corollary 5.5 (Designof a quadratic shiftingH2 polytopic state-feedback controller
for CT LPV systems) Let Q � O, �ih ∈ R

nu×nx and Yi jh ∈ S
nz2×nz2 , i = 1, . . . , S,

j = 1, . . . , R, h = 1, . . . , P, be such that:

T r
(
Yi jh

)
< κ3,h (5.56)

(
He

{
Ai jh Q + Bj�ih

}
Bw,i jh

∗ −I

)
≺ O (5.57)
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(
Yi jh Cz2,i jh Q + Dz2u, j�ih

∗ Q

)
� O (5.58)

Then, the closed-loop systemmade up by the CT LPV system (5.1) and (5.3), with τ =
t , and polytopicmatrices as in (5.50)–(5.51), and the polytopic state-feedback control
law (5.52)with gains calculated as Kih = �ih Q−1, i = 1, . . . , S, h = 1, . . . , P, has
quadratic shiftingH2 performance γ2(θp).

Proof Similar to that of Corollary 5.2, thus omitted. �

Corollary 5.6 (Designof a quadratic shiftingH2 polytopic state-feedback controller
for DT LPV systems) Let Q � O, �ih ∈ R

nu×nx and Yi jh ∈ S
nz2×nz2 , i = 1, . . . , S,

j = 1, . . . , R, h = 1, . . . , P, be such that (5.56), (5.58) and:

⎛

⎝
Q Ai jhQ + Bj�ih Bw,i jh

∗ Q O
∗ ∗ I

⎞

⎠ � O (5.59)

hold ∀i = 1, . . . , S, ∀ j = 1, . . . , R, ∀h = 1, . . . , P. Then, the closed-loop system
made up by the DT LPV system (5.1) and (5.3), with τ = k, and polytopic matrices
as in (5.50)–(5.51), and the polytopic state-feedback control law (5.52) with gains
calculated as Kih = �ih Q−1, i = 1, . . . , S, h = 1, . . . , P, has quadratic shiftingH2

performance γ2(θp).

Proof Similar to that of Corollary 5.2, thus omitted. �

Corollary 5.7 (Design of a quadratic SFTB polytopic state-feedback controller for
CTLPVsystems)Fixα > 0, and letλ1,h > 0,λ2,h > 0,λ3,h > 0, Q1 � O, Q2 � O,
and �ih ∈ R

nu×nx , i = 1, . . . , S, h = 1, . . . , P, be such that:

(
He

{
Ai jh Q̃1 + Bj�ih

}
− αQ̃1 Bw,i jh Q2

∗ −αQ2

)

≺ O (5.60)

λ1,h I ≺ Q1 ≺ I (5.61)

λ2,h I ≺ Q2 ≺ λ3,h I (5.62)

⎛

⎝
κ5,h κ4,h κ6,h

κ4,h λ1,h 0
κ6,h 0 λ2,h

⎞

⎠ � O (5.63)

hold ∀i = 1, . . . , S, ∀ j = 1, . . . , R, ∀h = 1, . . . , P, where Q̃1 = R−1/2Q1R−1/2.
Then, the closed-loop system made up by the CT LPV system (5.1), with τ = t ,
and polytopic matrices as in (5.50)–(5.51), and the polytopic state-feedback control
law (5.52) with gains calculated as Kih = �ih Q̃

−1
1 , i = 1, . . . , S, h = 1, . . . , P, is

quadratically SFTB with respect to
(
c1(θp), c2(θp), T (θp), R, d(θp)

)
.
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Proof Similar to that of Corollary 5.2, thus omitted. �
Corollary 5.8 (Design of a quadratic SFTB polytopic state-feedback controller for
DT LPV systems) Fix α ≥ 1, and let λ1,h > 0, λ2 > 0, Q1 � O, Q2 � O and �ih ∈
R

nu×nx , i = 1, . . . , S, h = 1, . . . , P, be such that:

⎛

⎜⎜
⎝

−αQ1 ∗ ∗ ∗
Ai jh Q1 + Bj�ih −Q1 ∗ ∗

O BT
w,i jh −αQ2 ∗

O O Q2Wi jh −Q2

⎞

⎟⎟
⎠ ≺ O (5.64)

λ1,h R
−1 ≺ Q1 ≺ R−1 (5.65)

O ≺ Q2 ≺ λ2 I (5.66)

(
κ5,h − λ2κ6,h κ4,h

κ4,h λ1,h

)
� O (5.67)

hold ∀i = 1, . . . , S, ∀ j = 1, . . . , R, ∀h = 1, . . . , P. Then, the closed-loop system
made up by the DT LPV system (5.1) and (5.36), with τ = k, and polytopic matrices
as in (5.50)–(5.51), and the polytopic state-feedback control law (5.52) with gains
calculated as Kih = �ih Q

−1
1 , i = 1, . . . , S, h = 1, . . . , P, is quadratically SFTB

with respect to
(
c1(θp), c2(θp), T (θp), R, d(θp)

)
.

Proof Similar to that of Corollary 5.2, thus omitted. �
Corollary 5.9 (Design of a quadratically shifting finite time stabilizing polytopic
state-feedback controller for CTLPV systems)Fixα > 0, and letλ1,h > 0, Q1 � O,
and �ih ∈ R

nu×nx , i = 1, . . . , S, h = 1, . . . , P, be such that:

He
{
Ai jh Q̃1 + Bj�ih

}
− αQ̃1 ≺ O (5.68)

(
κ5,h κ4,h

κ4,h λ1,h

)
� O (5.69)

and (5.61) hold ∀i = 1, . . . , S, ∀ j = 1, . . . , R, ∀h = 1, . . . , P, where Q̃1 = R−1/2

Q1R−1/2. Then, the closed-loop system made up by the CT LPV system (5.1), with
τ = t , Bw (θ(t)), and polytopic matrices as in (5.50)–(5.51), and the polytopic state-
feedback control law (5.52) with gains calculated as Kih = �ih Q̃

−1
1 , i = 1, . . . , S,

h = 1, . . . , P, is quadratically SFTS with respect to
(
c1(θp), c2(θp), T (θp), R

)
.

Proof It is a direct consequence of Corollary 5.7 when Bw,i jh = O and
κ6,h = 0. �
Corollary 5.10 (Design of a quadratically shifting finite time stabilizing polytopic
state-feedback controller for DT LPV systems) Fix α ≥ 1, and let λ1,h > 0, Q1 � O
and �ih ∈ R

nu×nx , i = 1, . . . , S, h = 1, . . . , P, be such that (5.65), (5.69) and:
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( −αQ1 ∗
Ai jh Q1 + Bj�ih −Q1

)
≺ O (5.70)

hold ∀i = 1, . . . , S, ∀ j = 1, . . . , R, ∀h = 1, . . . , P. Then, the closed-loop system
made up by the DT LPV system (5.1), with τ = k, Bw (θ(k)), and polytopic matrices
as in (5.50)–(5.51), and the polytopic state-feedback control law (5.52) with gains
calculated as Kih = �ih Q

−1
1 , i = 1, . . . , S, h = 1, . . . , P, is quadratically SFTS

with respect to
(
c1(θp), c2(θp), T (θp), R

)
.

Proof It is a direct consequence of Corollary 5.8 when Wi jh = Bw,i jh = O and
κ6,h = 0. �

5.4 Examples

5.4.1 Example 1: Shifting D-Stability

Let us consider a CT LPV system described by (5.1) with:

A (θ(t)) =

⎛

⎜⎜
⎜⎜
⎝

0 1 0 0

−θp(t) −θs(t) θp(t) 0

0 0 0 1

θp(t) 0 −θp(t) −θr (t)

⎞

⎟⎟
⎟⎟
⎠

B (θr (t)) =

⎛

⎜
⎜⎜
⎝

0 0

θr (t) 0

0 0

0 1

⎞

⎟
⎟⎟
⎠

Bw (θ(t)) = O

with the varying parameters θs ∈ [2, 3], θr ∈ [2, 3] and θp ∈ [1, 2] (in this example,
the subscripts s, r and p are used following the notation explained in Sect. 5.3).
Notice that the assumption about the matrix B depending only on the subset of
varying parameters θr (t) is verified.

The LPV system matrices can be described as polytopic combinations of LTI
system matrices as in (5.50)–(5.51):

A (θ(t)) = s1 (θs(t)) r1 (θr (t))π1
(
θp(t)

)
A111 + s1 (θs(t)) r1 (θr (t))π2

(
θp(t)

)
A112

+ s1 (θs(t)) r2 (θr (t)) π1
(
θp(t)

)
A121 + s1 (θs(t)) r2 (θr (t)) π2

(
θp(t)

)
A122

+ s2 (θs(t)) r1 (θr (t)) π1
(
θp(t)

)
A211 + s2 (θs(t)) r1 (θr (t)) π2

(
θp(t)

)
A212

+ s2 (θs(t)) r2 (θr (t)) π1
(
θp(t)

)
A221 + s2 (θs(t)) r2 (θr (t)) π2

(
θp(t)

)
A222

B (θr (t)) = r1 (θr (t)) B1 + r2 (θr (t)) B2

with:

A111 =

⎛

⎜⎜⎜
⎝

0 1 0 0

−1 −2 1 0

0 0 0 1

1 0 −1 −2

⎞

⎟⎟⎟
⎠

A112 =

⎛

⎜⎜⎜
⎝

0 1 0 0

−2 −2 2 0

0 0 0 1

2 0 −2 −2

⎞

⎟⎟⎟
⎠
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A121 =

⎛

⎜⎜⎜
⎝

0 1 0 0

−1 −2 1 0

0 0 0 1

1 0 −1 −3

⎞

⎟⎟⎟
⎠

A122 =

⎛

⎜⎜⎜
⎝

0 1 0 0

−2 −2 2 0

0 0 0 1

2 0 −2 −3

⎞

⎟⎟⎟
⎠

A211 =

⎛

⎜⎜⎜
⎝

0 1 0 0

−1 −3 1 0

0 0 0 1

1 0 −1 −2

⎞

⎟⎟⎟
⎠

A212 =

⎛

⎜⎜⎜
⎝

0 1 0 0

−2 −3 2 0

0 0 0 1

2 0 −2 −2

⎞

⎟⎟⎟
⎠

A221 =

⎛

⎜⎜
⎜
⎝

0 1 0 0

−1 −3 1 0

0 0 0 1

1 0 −1 −3

⎞

⎟⎟
⎟
⎠

A222 =

⎛

⎜⎜
⎜
⎝

0 1 0 0

−2 −3 2 0

0 0 0 1

2 0 −2 −3

⎞

⎟⎟
⎟
⎠

B1 =

⎛

⎜⎜⎜
⎝

0 0

2 0

0 0

0 1

⎞

⎟⎟⎟
⎠

B2 =

⎛

⎜⎜⎜
⎝

0 0

3 0

0 0

0 1

⎞

⎟⎟⎟
⎠

Let us solve the design problem of finding a state-feedback gain:

K
(
θs(t), θp(t)

) = s1 (θs(t)) π1
(
θp(t)

)
K11 + s1 (θs(t))π2

(
θp(t)

)
K12

+ s2 (θs(t)) π1
(
θp(t)

)
K21 + s2 (θs(t))π2

(
θp(t)

)
K22

that places the closed-loop poles in a disk of radius r
(
θp(t)

)
and center(−q

(
θp(t)

)
, 0

)
, described by the characteristic function:

fD(θp)

(
z, θp(t)

) =
( −r

(
θp(t)

)
q

(
θp(t)

) + z
q

(
θp(t)

) + z∗ −r
(
θp(t)

)
)

with r
(
θp(t)

)
and q

(
θp(t)

)
defined as:

r
(
θp(t)

) = 1 + θp(t) q
(
θp(t)

) = −1 + 3θp(t)

The design is done using Corollary 5.2, such that (5.53) becomes a set of eight LMIs
with variables Q (Q � O being the ninth LMI), K11, K12, K21, K22:

( −2Q 2Q + A111Q + B1�11

2Q + QAT
111 + �T

11B
T
1 −2Q

)
≺ O
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( −3Q 5Q + A112Q + B1�12

5Q + QAT
112 + �T

12B
T
1 −3Q

)
≺ O

( −2Q 2Q + A121Q + B2�11

2Q + QAT
121 + �T

11B
T
2 −2Q

)

≺ O

( −3Q 5Q + A122Q + B2�12

5Q + QAT
122 + �T

12B
T
2 −3Q

)

≺ O

( −2Q 2Q + A211Q + B1�21

2Q + QAT
211 + �T

21B
T
1 −2Q

)
≺ O

( −3Q 5Q + A212Q + B1�22

5Q + QAT
212 + �T

22B
T
1 −3Q

)
≺ O

( −2Q 2Q + A221Q + B2�21

2Q + QAT
221 + �T

21B
T
2 −2Q

)
≺ O

( −3Q 5Q + A222Q + B2�22

5Q + QAT
222 + �T

22B
T
2 −3Q

)
≺ O

Then, using theYALMIP toolbox [13] with SeDuMi solver [14], the controller vertex
gains are obtained:

K11 =
(−1.5769 −0.9760 −0.4146 −0.0109

−0.9610 0.0224 −4.2662 −2.0773

)

K12 =
(−4.1989 −2.1903 −0.8467 −0.0156

−1.8680 0.0333 −11.0760 −5.1844

)

K21 =
(−1.5692 −0.5853 −0.4143 −0.0107

−0.9637 0.0206 −4.2667 −2.0774

)

K22 =
(−4.1541 −1.7798 −0.8423 −0.0148

−1.8749 0.0225 −11.0776 −5.1848

)

with:

Q =

⎛

⎜⎜⎜
⎝

0.0949 −0.2352 −0.0020 0.0072

−0.2352 0.7420 0.0026 −0.0214

−0.0020 0.0026 0.0875 −0.2230

0.0072 −0.0214 −0.2230 0.7340

⎞

⎟⎟⎟
⎠
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Table 5.1 Shifting D-stability: closed-loop eigenvalues of the matrices Ai jh + Bj Kih

Ai jh + Bj Kih Eig. 1 Eig. 2 Eig. 3 Eig. 4

A111 + B1K11 −1.973 + 0.500i −1.973 − 0.500i −2.042 + 1.054i −2.042 − 1.054i

A112 + B1K12 −3.216 + 0.442i −3.216 − 0.442i −3.567 + 0.422i −3.567 − 0.422i

A121 + B2K11 −1.4539 −1.8811 −3.0436 −3.6267

A122 + B2K12 −2.1872 −2.3338 −6.0023 −6.2321

A211 + B1K21 −1.6266 −2.040 + 1.053i −2.040 − 1.053i −2.5405

A212 + B1K22 −2.5932 −3.584 + 0.449i −3.584 − 0.449i −3.9844

A221 + B2KE21 −1.4538 −2.377 + 0.235i −2.377 − 0.235i −3.626

A222 + B2K22 −2.1850 −2.4509 −5.8787 −6.0097

Table5.1 lists the eigenvalues of the vertex closed-loopmatrices Ai jh + Bj Kih . Also,
Fig. 5.1 shows how the closed-loop poles shift according to different values of the
scheduling parameter θp, proving that the shifting D-stability specification is cor-
rectly satisfied. In particular, it can be seen that in contrast with the classical D-
stability approach, where a region is selected and all the poles of the closed-loop
system are forced to be in such region, the shifting D-stability approach allows to
select different regions for different values of the scheduling parameter θp. Accord-
ing to Corollary 5.1, the decay rate of the Lyapunov function varies with the value of
θp. In fact, by taking a look at the dominant poles of the vertex systems (denoted as
Fig. 1 in Table5.1), one can see that the range of the real parts of the dominant poles
for θp = 1 (index h = 1) is [−1.973,−1.4538], while when θp = 2 (index h = 2)
such range is [−3.216,−2.1850].

The effect of the shifting pole placement specification on the transient dynamics of
the closed-loop system can be effectively seen by taking a look at the free responses of
the state variables, shown in Figs. 5.2, 5.3, 5.4 and 5.5. These free responses have been
obtained starting from the initial state x(0) = [ 2 1 2 1 ]T in four different cases, three
of which with constant values of the scheduling parameter θp(t) (θp = 1, θp = 1.5
and θp = 2, corresponding to the solid, dashed anddotted lines, respectively), andone
with a varying scheduling parameter θp(t) = 1.5 + 0.5 sin(πt/2) (corresponding to
the dash-dotted line). The remaining scheduling parameters have been chosen as
θs(t) = 2.5 + 0.5 cos t and θr (t) = 2.5 + 0.5 sin t .

It can be seen from these figures that the closed-loop system behaves as expected:
a big value of θp corresponds to faster dynamics of the closed-loop system. In the
fourth case, that is, with a time-varying θp, the dynamics of the closed-loop system
around t = 0s is the same as the one of the closed-loop system scheduled by the
constant θp = 1.5. As the time increases, so does the value of θp and the system
gets faster until t = 1s when θp begins to decrease and the trend reverses, with the
system getting slower. However, this last effect and the increasing of speed from time
t = 3s are not appreciable because the steady-state has almost been reached. The
input signals u1 and u2 are shown in Figs. 5.6 and 5.7. It can be seen that the bigger
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Fig. 5.1 Shifting
D-stability: closed-loop
poles. After [2]
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Fig. 5.2 Shifting D-stability: closed-loop response of x1(t). After [2]

is θp, the bigger are the control signals, and vice versa. This is consistent with the
fact that strong control actions are required to make the controlled system faster.



5.4 Examples 119

t [s]
0 0.5 1 1.5 2 2.5 3 3.5 4

x 2(t)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

θp=1

θp=1.5

θp=2

θp=1.5+0.5*sin( t/2)

Fig. 5.3 Shifting D-stability: closed-loop response of x2(t). After [2]
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Fig. 5.5 Shifting D-stability: closed-loop response of x4(t). After [2]
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Fig. 5.6 Shifting D-stability: input signal u1(t). After [2]

5.4.2 Example 2: Shifting H∞ Performance

Let us consider a CT LPV system described by (5.1)–(5.2) with matrices A (θ(t))
and B (θr (t)) defined as in the previous example, Dz∞u (θr (t)) = O , Dz∞w (θ(t)) =
O and:
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Fig. 5.7 Shifting D-stability: input signal u2(t). After [2]

Bw (θ(t)) = Bw =

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ Cz∞ (θ(t)) = Cz∞ = (

1 0 0 0
)

and let us solve the problem of finding a state-feedback gain:

K
(
θs(t), θp(t)

) = s1 (θs(t))π1
(
θp(t)

)
K11 + s1 (θs(t)) π2

(
θp(t)

)
K12

+ s2 (θs(t))π1
(
θp(t)

)
K21 + s2 (θs(t)) π2

(
θp(t)

)
K22

such that the transfer function from w to z∞ satisfies the following desired bound on
theH∞ norm:

γ∞
(
θp(t)

) =
√
0.01 + 0.24

(
θp(t) − 1

)
θp ∈ [1, 2]

Notice that the particular structure of the shifting bound allows to obtain:

γ∞
(
θp(t)

)2 = π1
(
θp(t)

)
κ2,1 + π2

(
θp(t)

)
κ2,2

as in (5.47), with κ2,1 = 0.01 and κ2,2 = 0.25 and:

π1
(
θp(t)

) = 2 − θp(t) π2
(
θp(t)

) = θp(t) − 1
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The design is done using Corollary 5.3, solving the LMIs (5.54) using the YALMIP
toolbox [13] with SeDuMi solver [14], obtaining the following controller vertex
gains:

K11 =
(−1588.9 −107.2 −2.5 −2.2

155.7 11.0 −1.0 −0.9

)

K12 =
(−12.8 −5.2 −2.4 −2.4

4.9 3.8 −0.5 −1.4

)

K21 =
(−1570.2 −105.6 −2.4 −2.2

154.6 10.9 −1.0 −0.9

)

K22 =
(−12.6 −4.8 −2.4 −2.5

5.8 4.2 −0.5 −1.4

)

with:

Q =

⎛

⎜⎜
⎝

0.0562 −0.7985 0.0120 0.0042
−0.7985 11.9183 −0.2890 −0.0497
0.0120 −0.2890 12.1721 −6.0386
0.0042 −0.0497 −6.0386 6.1784

⎞

⎟⎟
⎠ (5.71)

It can be seen from the figures that the closed-loop system behaves as expected. The
shifting H∞ performance specification results satisfied for each possible value of
the scheduling parameter θp, as depicted in Fig. 5.8. It can be seen that the relevant
feature of the proposed approach with respect to the classical H∞ design is that it
allows to specify different bounds for theH∞ norm corresponding to different values
of θp(t), thus allowing to vary online the exogenous input rejection characteristics.

The effect of the shiftingH∞ specification on the closed-loop system can be seen
from the plots of Tz∞w for different values of the parameter θp (see Fig. 5.9). In
particular, it can be seen that the higher the value of θp is, the higher is the peak of
the magnitude of Tz∞w. This result is consistent with the definition of theH∞ norm
and its shifting counterpart.

Finally, to conclude this analysis, let us consider a sinusoidal exogenous input
w = sin(t), and let us analyse the response of the closed-loop system to this input,
starting from zero initial condition. As in the previous example, the simulations are
performed with θs(t) = 2.5 + 0.5 cos(t) and θr (t) = 2.5 + 0.5 sin(t), and different
values of θp(t) have been considered for comparison purpose. The obtained results
are plotted in Fig. 5.10. As expected, a stronger rejection of the exogenous input
corresponds to a small value of θp (solid line, corresponding to θp = 1).By increasing
θp, e.g. to values of θp = 1.5 (dashed line) and θp = 2 (dotted line), the rejection
performance of the control system decreases. When considering a varying θp(t) =
1.5 + 0.5 sin(0.5πt), the rejection characteristics vary in time: at the beginning of
the simulation, when θp(t) is approximately 1.5, the response of the system with the
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Fig. 5.8 Shifting H∞ performance: bound on the H∞ norm. After [2]
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Fig. 5.10 Shifting H∞ performance: response of the closed-loop system to an exogenous input
w = sin(t). After [2]

varying θp (dash-dotted line) equals the one with a constant θp = 1.5 (dashed line).
As the time increases, so does θp(t), and the gain of the transfer function from w

to z∞ increases. Hence, the effect of the sinusoidal signal on z∞ becomes stronger
until time t = 1 s, when the varying parameter θp(t) starts decreasing again, and the
trend reverses.

5.5 Conclusions

In this chapter, the problem of designing a parameter-scheduled state-feedback con-
troller that satisfies a new kind of specifications, referred to as shifting specifications,
has been investigated. In particular, the concepts ofD-stability,H∞ performance,H2

performance, finite time boundedness and finite time stability have been extended
in a shifting sense, introducing the shifting D-stability, shifting H∞ performance,
shifting H2 performance, shifting finite time boundedness and shifting finite time
stability specifications. The problem has been analyzed in the LPV case, and the
solution, expressed as LMIs for which a feasible solution should be found, has been
obtained using a common quadratic Lyapunov function.

The results obtained with CT LPV academic examples have demonstrated the
effectiveness and some characteristics of the proposed approach. In particular, in
contrast with the classical specifications, the design using the shifting ones allows
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to select different performances for different values of the scheduling parameter θp,
thus allowing to vary online the control system performance.

As a future work, since the use of a common quadratic Lyapunov function is
potentially conservative, the application of other types of Lyapunov functions, e.g.
parameter-dependent ones, can be investigated. Also, a future comparison of the
proposed approach with the use of parameter-dependent weighting functions could
be interesting.
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Chapter 6
Background on Fault Tolerant Control

6.1 Motivation

Fault tolerant control (FTC) is the name given to all those techniques that are capa-
ble of maintaining the overall system stability and acceptable performance in the
presence of faults. In other words, a closed-loop system which can tolerate compo-
nent malfunctions, while maintaining desirable performance and stability properties
is said to be a fault tolerant control system (FTCS). Starting from the 80s, FTC
applications began to appear in the scientific literature, mainly motivated by aircraft
flight control system designs. The goal was to provide self-repairing capability in
order to ensure a safe landing in the event of severe faults in the aircraft [1]. Since
then, a lot of effort has been put in developing FTC schemes. Interests in diagnostics
and fault tolerant control have been intensified since the Three Mile Island inci-
dent on March 28, 1979 and the tragedy at the Chernobyl nuclear power plant on
April 26, 1986. The FTC problem has begun to draw more and more attention in
a wider range of industrial and academic communities, due to the increased safety
and reliability demands beyond what a conventional control system can offer. FTC
applications include aerospace, nuclear power, automotive, manufacturing and other
process industries.

The existing FTC techniques can be divided into three categories:

• Hardware redundancy techniques
• Analytical redundancy techniques: passive fault tolerant control (PFTC)
• Analytical redundancy techniques: active fault tolerant control (AFTC).

The hardware redundancy techniques try to achieve fault tolerance by exploiting
hardware redundancy in the system. Its main advantage is simplicity, but at the cost
of an increased hardware and maintenance cost that can be avoided using analytical
redundancy techniques. The passive FTC techniques are control laws that take into
account the fault appearance as a system perturbation. Thus, within certain mar-
gins, the control law has inherent fault tolerant capabilities, allowing the system to
cope with the fault presence, thanks to its robustness against a class of faults. This
approach has the advantage of needing neither fault diagnosis nor controller recon-
figuration, but it has limited fault tolerance capabilities (for example, it needs to take
all possible faults of a system in consideration during the design stage, thus it cannot
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be guaranteed that unanticipated failures are handled). Moreover, there is a loss of
performancewith respect to the nominal case. On the other hand, the active FTC tech-
niques adapt the control law using the information given by the fault diagnosis. With
this information, some automatic adjustments in the control loop are done after the
fault appearance, trying to satisfy the control objectives with minimum performance
degradation.

Several reviews on FTCS have appeared since the 80s. A good recent review can
be found in [2], where a comparison of different approaches according to different
criteria such as design methodologies and applications is carried out and 376 refer-
ences, dating back to 1971, are compiled to provide an overall picture of historical,
current, and future developments in this area. A few books on this subject have been
published in recent years too, e.g. [3].

Some of the existing techniques will be briefly discussed in this chapter.

6.2 Hardware Redundancy Techniques

In principle, the tolerance to control system failures can be improved if two or more
sensors/actuators, each separately capable of satisfactory control, are implemented
in parallel. This approach is referred to as hardware redundancy. A voting scheme
is used for the redundancy management, comparing control signals to detect and
overcome failures.With two identical channels, a comparator can determine whether
or not the control signals are identical; hence, it can detect a failure but cannot identify
which component has failed. Using three identical channels, the control signal with
themiddle value can be selected (or voted), assuring that a single failed channel never
controls the plant. A two-channel system is considered fail-safe because the presence
of a failure can be determined, but it is left to additional logic to select the unfailed
channel for control. The three-channel system is fail-operational, as the task can be
completed following a single failure. Systems with four identical control channels
can tolerate two failures and still yield nominal performance. Problems encountered
in implementing hardware redundancy include: selection logic, reliability of voting,
increased hardware and maintenance costs.

6.3 Passive Fault Tolerant Control Techniques

The passive FTC techniques synthesize a controller so that the closed-loop system is
stable, or has some desired performance, for some combinations of failure elements
defined apriori. This is donebyusing the results in the robust control area, considering
faults as if they were uncertainties or system perturbations. In particular, the term
passive indicates that no actions are required by the FTCS after the prescribed faults
have occurred during the system’s operation.
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This approach has the advantage of needing neither fault diagnosis schemes nor
controller reconfiguration, but it has limited fault tolerant capabilities and the price
to pay for its simplicity is a loss of performance with respect to the nominal case.
Also, in passive FTC no time delay exists between the fault occurrence and the
corresponding action. For these reasons, the design of passive FTCS has attracted a
lot of attention from the academic community [4].

A good historical overview about development and research of passive FTC tech-
niques can be found in [5]. Someof the passive FTCapproaches found in the literature
are: reliable linear quadratic (LQ),H∞ robust control and passive FTC using LMIs.

6.3.1 Reliable Linear Quadratic (LQ) Approach

The LQ approach is one of the most established passive FTC techniques, and relies
on the robustness of the LQ theory. This approach was first used to accommodate
requirements for robustness against sensor failures by [6]. Later, [7] developed a
methodology for the design of reliable centralized and decentralized control sys-
tems that provided guaranteed stability and performance not only when all control
components are operational, but also for sensor or actuator outages in the centralized
case, or for control-channel outages in the decentralized case. In [8], the LQ regulator
technique has been exploited to design a reliable controller against a class of actuator
outages using Riccati equations. A method based on robust pole region assignment
and a pre-compensator that modifies the dynamic characteristics of the redundant
actuator control channels has been presented by [9] to synthesize a reliable controller
for dynamic systems possessing actuator redundancies. The results obtained by [8]
were extended to deal with nonlinear systems in [10], where Hamilton-Jacobian
inequalities were employed instead of the Riccati equations. Despite being a well-
established technique, reliable LQ control is still a subject of investigation, e.g. [11].
The main problem with this technique is that the stability is not guaranteed for faults
outside the pre-selected ones, and since there is no reconfiguration of the controller,
the nominal performance is not optimal.

6.3.2 H∞ Robust Control

Another control approachwidely used for passive FTC isH∞ robust control, that uses
the results developed by [12]. Important results were obtained by [7], where theH∞
performance has been guaranteed not only in the nominal case, but also in presence
of control component outages, as long as these results do not affect the observability
and controllability of the system. The results obtained by [7] were extended by [13],
by considering not only outages but also loss of effectiveness in sensors and actuators.
Recent research has also dealt with the same problem for networked control systems
[14]. However, when the magnitude of the fault goes beyond the range considered
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for the design, the H∞ norm performance can no longer be guaranteed. Also, since
the reference signal is assumed to be arbitrary, the controller is conservative because
it takes into account the worst case reference signal [15].

6.3.3 Passive FTC Using Linear Matrix Inequalities (LMIs)

The goal of this approach is to achieve optimal performance in the nominal situation
and acceptable level of performance under occurrence of faults in the control com-
ponents. In [16], the robust FTC problem has been formulated in an LMI setting, in
which satisfactory performance and stability robustness are introduced. In particular,
a multi-objective approach is used to establish a matrix inequality formulation for
FTCS design. Later, in [17], a reliable output-feedback controller has been designed
using an iterative LMI approach. In this case, the design goal is to find an internally
stabilizing controller such that the nominal performance of a closed-loop transfer
matrix is optimized. The designed controller also satisfies the reliability constraint,
in terms of stability and performance, under the actuator/sensor faults condition.

6.4 Active Fault Tolerant Control Techniques

As pointed out in [2], an active FTC system can be typically divided into four sub-
systems:

• a reconfigurable controller;
• a fault diagnosis scheme;
• a controller reconfiguration mechanism;
• a command/reference governor.

The inclusion of both a fault diagnoser and a reconfigurable controller within the
overall control system scheme is the main feature distinguishing active FTC from
passive FTC. Key issues in active FTC consist in how to design:

• a controller that can be reconfigured;
• a fault diagnosis schemewith high sensitivity to faults and robustness againstmodel
uncertainties, variations of the operating conditions, and external disturbances;

• a reconfiguration mechanism that allows recovering the pre-fault system perfor-
mance as much as possible, in presence of uncertainties and time delays in the
fault diagnosis, as well as constraints on the control inputs and the allowed system
states.

Based on the online information of the post-fault system, the reconfigurable con-
troller should be designed to maintain stability, desired dynamic performance and
steady-state performance. In addition, in order to ensure that the closed-loop system
can track a desired trajectory under fault occurrence, a reconfigurable feedforward
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controller often needs to be synthesized. Also, a command/reference governor that
adjusts the reference trajectory automatically should be added to avoid potential actu-
ator saturation and to take into consideration the degraded performance after fault
occurrence.

Some of the existing active FTC techniques that can be found in the literature
are the following: linear quadratic (LQ), pseudo-inverse method (PIM), intelligent
control (IC), gain-scheduling (GS), model following (MF), adaptive control (AC),
multiple model (MM), integrated diagnostic and control (IDC), eigenstructure
assignment (EA), feedback linearization (FL)/dynamic inversion (DI), model pre-
dictive control (MPC), quantitative feedback theory (QFT) and variable structure
control (VSC)/sliding mode control (SMC).

Anyway, even if each individual control design method has been developed sepa-
rately, in practice a combination of several of thesemethodsmay bemore appropriate
to achieve the best performance.

6.4.1 Linear Quadratic (LQ) Approach

The LQ approach has been used also for active FTC in several papers. For example,
[18] has presented an LQ-based approach for the automatic redesign of flight control
systems for aircrafts that have suffered control element failures. Reference [19] have
developed a self-repairing flight control system concept in which the control law is
reconfigured after actuator and/or control surface damage to preserve stability and
pilot command tracking. In [20], the use of integral control achieves reconfiguration
and acceptable performance in the presence of several simultaneous control actuator
failures and exogenous disturbances.

6.4.2 Pseudo-inverse Method (PIM)

The main idea of the PIM is to modify the feedback gain so that the reconfigured
system approximates the nominal system in some sense. It is an attractive approach
because of its simplicity in computation and implementation. The main drawback of
the PIM is that the stability of the reconfigured system is not guaranteed. As a result,
if applied without appropriate care, the PIM can lead to instability. The theoretical
basis for this approach have been developed by [21], where the lack of stability
guarantees has been pointed out and an approach that provides stability constraints
for the solution of the PIM has been proposed. The PIM has later been revisited by
Staroswiecki [22], where the use of a set of admissible models, rather than searching
for an optimal onewhich does not provide any stability guarantee, has been proposed.
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6.4.3 Intelligent Control (IC)

IC uses expert systems, fuzzy logic, neural networks and similar tools to detect and
accommodate faults. Its advantage is the possibility to use easily heuristic knowl-
edge for achieving fault tolerance, but it also requires a high computational power
and a very precise knowledge of the fault. Reference [23] presents a controller that
uses a rule-based expert system approach to transform the task of failure accom-
modation into a problem of search, with the advantage of enhancing the existing
redundancy. Reference [24] presented a methodology that accommodates unantici-
pated faults using learning techniques. In [25], the fuzzy model reference learning
controller has been used to reconfigure the nominal controller in an F-16 aircraft
to compensate for various actuator failures without using explicit failure informa-
tion. An expert supervision strategy is also applied, such that the performance of the
control reconfiguration is increased. Reference [26] have proposed the use of online
learning neural network controllers that have the capability of bringing a system
affected by substantial damage back to an equilibrium condition. This goal has been
achieved through the use of a specific training algorithm and proper collection of
the architectures for the neural network controllers. Reference [27] has presented
a learning methodology for failure accommodation that uses online approximators,
i.e. generic function approximators with adjustable parameters, such as polynomials,
splines and neural network topologies, e.g. sigmoidal multilayer networks and radial
basis function networks. Reference [28] has presented an approach that integrates a
fuzzy TS model-based adaptive control with the reconfiguration concept. Reference
[29] have proposed a neural network-based FTC for unknown nonlinear systems
that introduces an extra neural network-based fault compensation loop under fault
occurrence. The learning capabilities of neural networks and fuzzy systems have
been exploited for FTC in [30], where online approximation-based stable adaptive
neural/fuzzy control has been studied for a class of input-output feedback lineariz-
able time-varying nonlinear systems. In this work, a fault diagnosis unit designed
by interfacing multiple models with an expert supervisory scheme is also used for
improving the fault tolerance ability of the adaptive controller. Reference [31] have
presented the architecture and synthesis of a damage-mitigating control systemwhere
the objective is to achieve high performance, with increased reliability, availability,
component durability, and maintainability. Such an objective is accomplished using
a fuzzy controller that makes a trade-off between system dynamic performance and
structural durability in critical components.

6.4.4 Gain-Scheduling (GS)

The idea of this method is to generate a control law that depends on varying parame-
ters that include the fault signals generated by the fault diagnosis unit. For example,
in [19], a self-repairing flight control system concept, where the scheduled gain
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stabilizes a collection of models representing the aircraft in various control fail-
ure modes, has been described. A similar approach has been used later by [32] for
the reconfigurable LPV control of a Boeing 747-100/200, where the controller was
scheduled by three parameters: flight altitude, velocity, and a fault identification sig-
nal. The gain scheduling approach has been coupled to an adaptive Kalman filter
estimation in [33]. A static output feedback synthesis in presence of multiple actua-
tor failures is developed by [34], such that the closed-loop stability can bemaintained
for any combination of multiple actuator failures.

6.4.5 Model Following (MF)

The basic idea of the MF approach is to design a control system that makes the
output or the state vector trajectories of the real plant follow the ones of a reference
system as closely as possible [35]. If the MF is achieved even in the presence of
faults, the control system is fault tolerant. This idea has been first exploited by
[36], where a restructurable control using proportional-integral implicit MF has been
presented. Frequency domain necessary and sufficient conditions for perfect MF are
developed and used by [37] to design reconfigurable control systems. The case of
output feedback control, both using the implicit MF and the explicit MF principles,
has been used for aircraft FTC in [38].

6.4.6 Adaptive Control (AC)

An AC scheme is able to deal with a time-varying uncertain system. Thus, it can be
efficiently used to deal with faults. AC has been used in [39] to accommodate failures
in the F-16 aircraft. In [40], three adaptive algorithms for reconfigurable flight control
are compared, and their advantages and disadvantages concerning the complexity and
the assumptions that they require are discussed. The direct adaptive reconfigurable
flight control approach described by [41] uses a mix of dynamic inversion controller
in an explicit MF architecture, neural network, control allocation scheme and system
identification module to achieve fault tolerance of a tailless fighter aircraft. The
case where some inputs are stuck at some fixed or varying values which cannot be
influenced by the control action has been analysed in [42, 43] for the state feedback
and the output feedback case, respectively.

6.4.7 Multiple Model (MM)

The idea of this approach is to compute a bank of models offline, each of which
describes the system behavior in the presence of a particular fault, and to calculate the
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corresponding control law for each of them.When a fault is detected, themost suitable
model is selected, and the corresponding control law becomes active, allowing to
increase the performance under faulty situation. This idea has been considered first
by [44] for designing an aircraft flight control systemwith reconfigurable capabilities.
In [45], an MM Kalman filtering approach has been introduced for the estimation
of the model of a damaged aircraft, and used as the basis for the reconfiguration of
the flight control system. MM adaptive estimation methods have been incorporated
into the design of a flight control system for an F-16 aircraft in [46], providing it
with the capability to detect and compensate for sensor and control surface/actuator
failures. In particular, the algorithm consists of an estimator, composed of a bank
of parallel Kalman filters, each matched to a specific hypothesis about the failure
status of the system, a means of blending the filter outputs through a probability-
weighted average, and an algorithm that redistributes the control commands, that
would normally be sent to the detected failed surfaces, to the non-failed surfaces,
accomplishing the same control action on the aircraft. An integrated fault detection,
diagnosis, and reconfigurable control scheme based on interacting MM approach,
with the relevant feature of being able to deal not only with actuator and sensor
faults, but also with failures in the system components, has been proposed by [47]. A
combination between MM and adaptive reconfiguration control has been developed
by [48] to compensate for the effect of actuator faults and asymptotically track a
reference model.

6.4.8 Integrated Diagnostics and Control (IDC)

Another possible approach for achieving fault tolerance is to design together the
controller and the diagnostic module, instead of designing them independently, thus
accounting for the interactions which occur between these two components [49].
In [50], it has been shown how a combined module for control and diagnosis can
be designed, such that references are tracked, disturbances are robustly rejected,
undetected faults do not have disastrous effects, the number of false alarms are
reduced and the faults which have occurred are identified. Demonstrations of the
applicability of this approach to valve fault accommodation on rocket engines, heat
exchangers and autonomous underwater vehicles have been provided in [28, 51, 52],
respectively.

6.4.9 Eigenstructure Assignment (EA)

EA is a technique used to control multiple input multiple output (MIMO) systems,
that has been applied to FTC systems with the aim of designing the eigenstructure
of the reconfigured system to be as similar as possible to the nominal one, as shown
in [53]. The application of EA to FTC has been further developed in [54], where
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the problem of robust reconfigurable controller design, which makes the after-fault
closed-loop insensitive as much as possible to the parameter uncertainties of the
after-fault model, has been considered.

6.4.10 Feedback Linearization (FL)/Dynamic Inversion (DI)

The idea of applying FL in FTC dates back to [55], that presented a restructurable
flight control system design method based on this technique. In a subsequent work,
the idea has been extended to DT systems and applied to aircraft failures occurring
with the control effectors [56]. A DI-based adaptive/reconfigurable control system
has been designed to provide fault and damage tolerance for an X-33 on the ascent
flight phase in [57].

6.4.11 Model Predictive Control (MPC)

In MPC, a model of the system is used to predict its behavior over a future time
interval. Then, based on these predictions, the sequence of inputs is calculated by
minimizing a cost function. The first input of the sequence is applied and, at the
following time sample, the process is repeated over a shifted time interval [58]. The
idea of applying MPC to FTC dates back to [59], where it was used for maximiz-
ing aircraft tracking performance before and after control surface failure, preventing
instability. In [60], the approach proposed for reconfiguring control systems in the
event of major failures makes use of a combination of constrained MPC and other
technologies, such as high-fidelity nonlinear simulationmodels, effective approxima-
tion and identification algorithms, and fault detection and isolation (FDI) capability.
Formulations and experimental evaluations of various MPC schemes applied to a
realistic full envelope nonlinear model of a fighter aircraft are presented in [61]. In
[62], two FTC strategies based on MPC are proposed and compared: passive fault
tolerant MPC, that takes advantage of natural tolerance of MPC, and active fault
tolerant MPC, that uses active fault tolerance techniques in combination with MPC.
The comparison is performed through an application over a portion of the Barcelona
sewage network.

6.4.12 Quantitative Feedback Theory (QFT)

QFT, developed by [63] in the early 1970s, is a frequency domain based design
technique where the controllers can be designed to achieve a set of performance and
stability objectives over a specific range of plant parameter uncertainty. The QFT
method takes into account quantitative information on the variability of the plant,
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the robust performance requirements, the tracking performance specifications, the
expected disturbance amplitude and its attenuation requirements [64]. The feasibility
of utilizing a robust QFT controller that meets flying quality specifications for an
aircraft subject to control surface failures has been investigated by [65]. A reconfig-
urable flight control system that uses the series of a robust QFT controller and an
adaptive filter has been presented in [66]. The design and experimental evaluation
of a fault tolerant controller for an electrohydraulic servo positioning system subject
to sensor failures or faults in the servovalve and supply pump has been performed
in [67].

6.4.13 Variable Structure Control (VSC)/Sliding Mode
Control (SMC)

VSC systems are characterized by a suite of feedback control laws and a decision rule
[68]. The decision rule, named switching function, decides which feedback controller
should be used at a given instant, based on the system state. A VSC system can be
regarded as a combination of subsystems, where each subsystem has a fixed control
structure and is valid for a specific subset of system states. SMC is a particular type of
VSC,where the state of the system is driven and constrained to lie in a neighbourhood
of the switching function, with the advantage of making the system insensitive to
a particular class of uncertainty. VSC/SMC has been used successfully in many
applications of FTC [69, 70]. A reconfigurable SMC that achieves robust tracking
after damage in an aircraft has been designed in [71, 72]. A MF scheme, based
on VSC, that possesses a fault tolerance property has been proposed by [73]. The
combination of integral SMC methodology and observers with hypothesis testing
has been used for FTC of a spark ignition engine in [74].

6.5 Recent Developments of Fault Tolerant Control

This section resumes some recent developments of FTC theory [2], highlighting
some open issues that motivate further investigation in this topic.

• Redundancy: since the introduction of the concept of analytical redundancy, i.e.
the use of a mathematical model of the system for FDI/FTC, important research
efforts on how to efficiently utilize this concept have been made [75, 76]. The
following challenging issues regarding redundancy can be detected [2]: (i) the
design of the overall fault tolerant and redundant system architecture; (ii) the
optimal configuration of redundancy, achieving a tradeoff between specifications
and cost; (iii) the design and implementation of a fault tolerant controller that
utilizes at best both the hardware and the analytical redundancy to achieve the
control objectives; and (iv) the introduction of quantitative measures of the degree
of redundancy [9, 77, 78].
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• Integrated design of fault diagnosis/fault tolerant control: as remarked by [2],
in order to obtain a functional active FTCS, it is important to ensure an adequate
cooperation between the fault diagnosis and the FTC algorithms. In fact, an incor-
rect information provided by the fault diagnoser can lead potentially to undesired
behaviors and overall degradation of the FTCS performance. For this reason, the
way how to integrate both the subsystems is an important topic of research, and
recent papers have addressed this issue [79–82]. Also, another important issue
worth investigating is how to mitigate the adverse interactions between each sub-
system [83]. For further discussion about the integration of fault diagnosis and
fault tolerant control, the reader is referred to the survey paper in [84].

• Design for graceful performance degradation: recently, some techniques have
tried to achieve fault tolerance without aiming at recovering the original system
performance, but accepting some performance degradation instead. These tech-
niques are of particular interest in the case of actuator faults. In fact, once an
actuator is affected by a fault, maintaining the original performance will typically
increase the effort distributed on the remaining actuators, which is highly unde-
sirable in practice, due to physical constraints on the actuators. Therefore, recent
works have considered the design of FTCSwith graceful performance degradation,
e.g. [85, 86].

• Stability and stability robustness: in the case of active FTCS, stability require-
ments are specified under different situations: (i) fault-free operation; (ii) transient
during reconfiguration; (iii) steady-state after reconfiguration. In all these situa-
tions, it is important to investigate the stability robustness [87]. As remarked by
[2], despite much work has been done, e.g. [88], stability analysis and stability
robustness for real-time reconfigurable control systems in practical environments
still need further investigation.

• FTC design for nonlinear systems: several strategies have been proposed to deal
with nonlinear systems, such as feedback linearization [89], nonlinear dynamic
inversion [57], backstepping [90] and neural networks [91] among others. How-
ever, as stated by [2], the development of effective design methods for dealing
with nonlinear FTCS issues is still an open research problem.

• FTC of constrained systems: the design of FTCS subject to actuator amplitude
and rate saturation constraints has been investigated by a few works, such as [59,
92]. However, there are still many open problems in the framework of MIMO
systems [2].

• Dealing with fault diagnosis uncertainties/delays: the presence of errors in the
fault diagnosis process are inevitable [93]. Also, time delays and false alarms
are associated with fault diagnosis decisions [94]. Hence, it is important to take
into account these undesired effects to reduce their impact on the FTCS, and
the development of new and practical approaches to accomplish this goal is an
investigation hot topic [2].

• Self-designing FTC: recent research activities have focused on FTC laws which
rely on online estimation of plant parameters [95–97]. There are still some chal-
lenges in this field, e.g. dealing with poor input excitation and the adverse inter-
actions between the identification and the control in a closed-loop setting [2].
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• Control allocation: in presence of actuator redundancy, control allocation tech-
niques aim at choosing how to use the available actuators in order to achieve a
specified objective. In case of actuator faults, these techniques try to make the
best use of the remaining healthy actuators [98, 99]. As remarked by [100], there
are still computational issues in the application of control allocation to nonlinear
systems.

• Transient management: undesired transients during the reconfiguration process
may be harmful to the safe operation of an FTCS, and lead to undesired conse-
quences, such as saturations in the actuators, and damage to the components. For
this reason, these transients should be minimized as much as possible which, in
spite of a few results available in the literature, e.g. [101], is still an open problem.

• Real-time issues: all the subsystems in an AFTCS should operate in real-time,
and for this reason there should be hard deadlines for controller reconfiguration,
in order to avoid risky situations. This issue, despite its criticality, has not been
dealt with satisfactorily, and there are only a few works addressing it, e.g. [76].

• Fault-tolerant networks: FTC in networked control systems is a challenging
problem due to timing issues, network-induced delays and packet losses, whose
effects should be carefully taken into consideration [102, 103].

6.6 Conclusions

In this chapter, a review of the available FTC approaches has been performed. The
ability to maintain stability and acceptable performance in spite of faults has moti-
vated a lot of effort in developing FTC strategies. FTC techniques can be divided
into three categories. Hardware redundancy approaches achieve fault tolerance by
exploiting extra components, providing a simple but expensive solution. Different
passive FTC approaches have been recalled (reliable linear quadratic control, H∞
control, and LMI-based design). They all increase the robustness of the nominal
controller against some predefined set of faults, and share the advantage of needing
neither fault diagnosis nor controller reconfiguration, but at the expense of limited
fault tolerance capabilities. Finally, the active FTC approaches (reconfigured lin-
ear quadratic control, pseudo-inverse method, intelligent control, gain-scheduling,
model following, adaptive control, multiple model, integrated diagnostics and con-
trol, eigenstructure assignment, feedback linearization/dynamic inversion, model
predictive control, quantitative feedback theory, variable structure control/sliding
mode control) use the information given by the fault diagnosis to perform some
automatic adjustments after the fault appearance, in order to achieve fault tolerance.

Despite the strong development of FTC theory in the last decades, a lot of open
issues, resumed in the last part of the chapter, motivate further investigation in this
topic.
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Chapter 7
Fault Tolerant Control of LPV Systems
Using Robust State-Feedback Control

The content of this chapter is based on the following works:

• [1] D. Rotondo, F. Nejjari, V. Puig. Passive and active FTC comparison for poly-
topic LPV systems. In Proceedings of the 12th European Control Conference
(ECC), p. 2951–2956, 2013.

• [2] D. Rotondo, F. Nejjari, V. Puig. Fault tolerant control design for polytopic
uncertain LPV systems. In Proceedings of the 21st Mediterranean Control Con-
ference (MED), p. 66–72, 2013.

• [3] D. Rotondo, F. Nejjari, A. Torren, V. Puig. Fault tolerant control design for
polytopic uncertain LPV systems: application to a quadrotor. In Proceedings of
the 2nd International Conference on Control and Fault-Tolerant Systems (SysTol),
p. 643–648, 2013.

• [4] D. Rotondo, F. Nejjari, V. Puig. Robust quasi-LPV model reference FTC of a
quadrotor UAV subject to actuator faults. International Journal of Applied Math-
ematics and Computer Science, 25(1):7–22, 2015.

7.1 Introduction

In Chap. 4, the idea of the robust LPV polytopic technique, obtained merging known
results from the robust polytopic control area and the traditional LPV polytopic
control area, has been introduced. In the proposed technique, the vector of vary-
ing parameters is used to schedule between uncertain LTI systems. The resulting
approach consists in using a double-layer polytopic description to take into account
both the variability due to the varying parameter vector and the uncertainty. The
first polytopic layer manages the varying parameters and is used to obtain the vertex
uncertain systems, where the vertex controllers are designed. The second polytopic
layer is built at each vertex system to take into account the model uncertainties and
add robustness in the design step.

In this chapter, it is shown that the proposed framework can be used for FTC, with
the advantage that, depending on how much information is available, it gives rise to
different strategies. If the faults are considered as though as they were perturbations,
a passive FTC would arise. On the other hand, if the faults are used as additional
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scheduling parameters, an active FTC would be obtained. Finally, if the fault esti-
mation uncertainty is taken into account explicitly during the design step, the robust
LPV polytopic technique would lead to a hybrid FTC. The different controllers are
obtained using LMIs, in order to achieve regional pole placement and H∞ perfor-
mance constraints. Results obtained using a quadrotor UAV simulator are used to
show the effectiveness of the proposed approach.

7.2 Problem Formulation

Consider the following slight modification of the LPV system (2.1):

σ.x(τ ) = A (θ(τ )) x(τ ) + B (θ(τ )) u(τ ) + c(τ ) (7.1)

where c(τ ) is a known exogenous input, and let us consider the problem of designing
a control scheme in order to achieve the goal of tracking a desired trajectory. The
conditions provided in Chap. 2 for the analysis and state-feedback controller design
for LPV systems cannot be directly applied, since they refer to the stability of the
origin. In order to assure the convergence of the system trajectory to the desired one,
the idea of LPV model reference control is considered. Originally developed for the
LTI case [5], this technique has been successfully extended to the LPV case [6, 7]
and relies on the use of a reference model, as follows:

σ.xre f (τ ) = A (θ(τ )) xre f (τ ) + B (θ(τ )) ure f (τ ) + c(τ ) (7.2)

where xre f ∈ R
nx is the reference state vector and ure f ∈ R

nu is the reference input
vector. The reference model gives the trajectories to be followed by the real system.
Thus, considering the tracking error, defined as e(τ ) � xre f (τ ) − x(τ ), the following
error system is obtained:

σ.e(τ ) = A (θ(τ )) e(τ ) + B (θ(τ )) �u(τ ) (7.3)

with �u(τ ) = ure f (τ ) − u(τ ).
Then, the results presented in Chap. 2 can be applied for the design of an error-

feedback control law of the form:

�u(τ ) = K (θ(τ )) e(τ ) (7.4)

that constitutes a slight modification of (2.134):

u(τ ) = K (θ(τ )) x(τ ) (7.5)

Hence, the control action to be applied to the system will be made up by the sum of
two components, the feedforward one ure f (τ ), and the feedback one �u(τ ).

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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However, in presence of faults, the Eq. (7.1), in the following denoted as nominal
system, does not describe correctly the system dynamics anymore, and the obtained
results in terms of stability and performance could not hold anymore. In particular,
in this chapter, two types of faults are considered: (i) parametric faults, affecting
the matrix A (θ(τ )) and changing it into A f (θ(τ ), f (τ )); and (ii) actuator faults,
affecting the matrix B (θ(τ )) and changing it into B f (θ(τ ), f (τ )). Hence, under
fault occurrence, the Eq. (7.1) becomes:

σ.x(τ ) = A f (θ(τ ), f (τ )) x(τ ) + B f (θ(τ ), f (τ )) u(τ ) + c(τ ) (7.6)

that will be referred to as the faulty system, and the error system changes into:

σ.e(τ ) = A (θ(τ )) xre f (τ ) + B (θ(τ )) ure f (τ ) − A f (θ(τ ), f (τ )) x(τ ) − B f (θ(τ ), f (τ )) u(τ )

(7.7)

from which is evident that a controller in the form (7.4), designed to behave in some
desired way when applied to (7.1), could lead to a very different behavior when
applied to the error faulty system (7.7).

In the following section, the problem to be solved is the one of adding fault
tolerance to the control scheme. This will be done by redefining the reference model
and by designing the error-feedback controller using some results about the robust
feedback control of uncertain LPV systems presented in Chap. 4.

7.3 Fault Tolerant Control

7.3.1 Passive FTC Reference Model

In passive FTC, no information about the fault is available on-line. Hence, the same
reference model used for the nominal case, i.e. (7.2), should be used.

7.3.2 Active FTC Reference Model

In active FTC, an estimation of the faults, denoted in the following by f̂ (τ ), is
available. This information is added to the reference model by changing A (θ(τ ))

into A f

(
θ(τ ), f̂ (τ )

)
and B (θ(τ )) into B f

(
θ(τ ), f̂ (τ )

)
, such that (7.2) becomes:

σ.xre f (τ ) = A f

(
θ(τ ), f̂ (τ )

)
xre f (τ ) + B f

(
θ(τ ), f̂ (τ )

)
ure f (τ ) + c(τ ) (7.8)

http://dx.doi.org/10.1007/978-3-319-62902-5_4
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7.3.3 Passive FTC Error Model

In order to obtain the passive FTC error model, some manipulation is performed
on (7.7), in order to obtain a structure suitable for applying the design technique
presented in Chap. 4. The typical way to do so would be to rewrite A f (θ(τ ), f (τ ))

and B f (θ(τ ), f (τ )), as follows:

A f (θ(τ ), f (τ )) = A (θ(τ )) + �A (θ(τ ), f (τ )) (7.9)

B f (θ(τ ), f (τ )) = B (θ(τ )) + �B (θ(τ ), f (τ )) (7.10)

where �A (θ(τ ), f (τ )) and �B (θ(τ ), f (τ )) contain the changes to the state space
matrices brought by the faults. Hence, (7.7) can be rewritten as:

σ.e(τ ) = A (θ(τ )) e(τ ) + B (θ(τ )) �u(τ ) − �A (θ(τ ), f (τ )) x(τ ) − �B (θ(τ ), f (τ )) u(τ )

(7.11)

Then, by doing some manipulations and rewriting f (τ ) as � f (τ ) = f (τ ) − 1, (7.11)
can be brought to the following form:

σ.e(τ ) = A (θ(τ )) e(τ ) + B (θ(τ )) �u(τ ) + D (θ(τ ), x(τ ), u(τ ),� f (τ )) � f (τ )

(7.12)
where D (θ(τ ), x(τ ), u(τ ),� f (τ )) is the matrix such that:

D (θ(τ ), x(τ ), u(τ ),� f (τ ))� f (τ ) = −�A (θ(τ ), f (τ )) x(τ ) − �B (θ(τ ), f (τ )) u(τ )

(7.13)

Through the introduction of a new varying parameter vector θp(τ ), containing θ(τ ),
x(τ ) and u(τ ), and by taking into account the uncertainty due to � f (τ ), (7.12) can
be reshaped as follows:

σ.e(τ ) = A
(
θp(τ )

)
e(τ ) + B

(
θp(τ )

)
�u(τ ) + D̃

(
θp(τ )

)
� f (τ ) (7.14)

where D̃
(
θp(τ )

)
is obtained by rewriting D (θ(τ ), x(τ ), u(τ ),� f (τ )) as a function

of θp(τ ).
Notice that (7.14) is in a form similar to (4.1):

σ.x(τ ) = Ã (θ(τ )) x(τ ) + B̃u(τ ) + B̃w (θ(τ )) w(τ ) (7.15)

where A and B are known matrices1 (a constant input matrix that does not depend on
θp(τ ) can be obtained easily by prefiltering �u(τ ) as proposed in [8], see (2.156)–
(2.163)) and D̃ is uncertain due to the fact that the exact value of � f (τ ) at a given

1Notice that the reasoning can be easily generalized to uncertain LPV systems subject to actuator
faults, i.e. to the case where A and B are replaced by uncertain Ã and B̃. However, this has not been
done in order to keep the formulation simple.

http://dx.doi.org/10.1007/978-3-319-62902-5_4
http://dx.doi.org/10.1007/978-3-319-62902-5_4
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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moment is not known. Hence, if � f (τ ) is considered a disturbance that should
be rejected, fault tolerance can be achieved through the robust LPV H∞ (or H2)
performance approach proposed in Chap. 4.

7.3.4 Active FTC Error Model

In order to obtain the active FTC error model, the assumption that f̂ (τ ) = f (τ ) is
done, such that subtracting (7.6) from (7.8) leads to:

σ.e(τ ) = A f

(
θ(τ ), f̂ (τ )

)
e(τ ) + B f

(
θ(τ ), f̂ (τ )

)
�u(τ ) (7.16)

Then, by introducing a new parameter vector θa(τ ), containing θ(τ ) and f̂ (τ ), the
following is obtained:

σ.e(τ ) = A f (θa(τ )) e(τ ) + B f (θa(τ ))�u(τ ) (7.17)

that is in a quite standard form for applying the LPV framework for designing an
error-feedback controller scheduled by both the varying parameters θ(τ ) and the
fault estimation f̂ (τ ), as follows:

�u(τ ) = K (θa(τ )) e(τ ) (7.18)

7.3.5 Hybrid FTC Error Model

Fault estimation algorithms are affected by uncertainties that will cause the estimated
value given by the algorithm to differ from the real fault value. Among the causes of
uncertainty, there are the presence of external disturbances, the mismatch between
the real and modeled dynamics, due to unmodeled nonlinearities and errors in the
calibration of the model parameters during the identification phase, and the noise
affecting the measurements given by the sensors. The presence of these uncertainties
in the fault estimation, if not properly taken into account, can degrade the FTC system
performances and give rise to undesired behaviors. This fact motivates combining
the benefits of the passive and the active FTC strategies in order to obtain a hybrid
passive/active FTC.

In order to obtain the hybrid FTC error model, let us rewrite f (τ ) = f̂ (τ ) +
� f (τ ), where � f (τ ) is the unknown error on the fault estimation,2 such that (7.6)
is rewritten as:

2Notice that the � f (τ ) used in the passive FTC error model is different from the � f (τ ) used in
the hybrid FTC error model.

http://dx.doi.org/10.1007/978-3-319-62902-5_4
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σ.x(τ ) = A f

(
θ(τ ), f̂ (τ ) + � f (τ )

)
x(τ ) + B f

(
θ(τ ), f̂ (τ ) + � f (τ )

)
u(τ ).

(7.19)

Then, some manipulation is performed on (7.19), in order to obtain a structure suitable
for applying the design technique presented in Chap. 4, similar to what has already
been done in Sect. 7.3.3 for obtaining the passive FTC error model. In particular,

A f

(
θ(τ ), f̂ (τ ) + � f (τ )

)
and B f

(
θ(τ ), f̂ (τ ) + � f (τ )

)
are rewritten as follows:

A f

(
θ(τ ), f̂ (τ ) + � f (τ )

)
= A f

(
θ(τ ), f̂ (τ )

)
+ �A f

(
θ(τ ), f̂ (τ ),� f (τ )

)
(7.20)

B f

(
θ(τ ), f̂ (τ ) + � f (τ )

)
= B f

(
θ(τ ), f̂ (τ )

)
+ �B f

(
θ(τ ), f̂ (τ ),� f (τ )

)
(7.21)

where �A f

(
θ(τ ), f̂ (τ ),� f (τ )

)
and �B f

(
θ(τ ), f̂ (τ ),� f (τ )

)
contain the effects

that the fault estimation uncertainty � f (τ ) has on the faulty state space matrices.
Hence, by subtracting (7.19) from the active FTC reference model (7.8), and taking
into account (7.20)–(7.21), the following is obtained:

σ.e(τ ) = A f

(
θ(τ ), f̂ (τ )

)
e(τ ) + B f

(
θ(τ ), f̂ (τ )

)
�u(τ )

−�A
(
θ(τ ), f̂ (τ ),� f (τ )

)
x(τ ) − �B

(
θ(τ ), f̂ (τ ),� f (τ )

)
u(τ ) (7.22)

that, through some manipulations, can be reshaped as:

σ.e(τ ) = A f

(
θ(τ ), f̂ (τ )

)
e(τ ) + B f

(
θ(τ ), f̂ (τ )

)
�u(τ )

+D f

(
θ(τ ), x(τ ), u(τ ), f̂ (τ ),� f (τ )

)
� f (τ ) (7.23)

where D f

(
θ(τ ), x(τ ), u(τ ), f̂ (τ ),� f (τ )

)
is the matrix such that:

D f

(
θ(τ ), x(τ ), u(τ ), f̂ (τ ),� f (τ )

)
� f (τ ) =

−�A
(
θ(τ ), f̂ (τ ),� f (τ )

)
x(τ ) − �B

(
θ(τ ), f̂ (τ ),� f (τ )

)
u(τ ) (7.24)

Through the introduction of a new parameter vector θh(τ ), containing θ(τ ), x(τ ),
u(τ ), f̂ (τ ), � f (τ ) and possibly their powers and/or some combinations of them, the
following is obtained:

σ.e(τ ) = A f (θh(τ )) e(τ ) + B f (θh(τ ))�u(τ ) + D̃ f (θh(τ ))� f (τ ) (7.25)

where D̃ f (θh(τ )) is obtained by rewriting D f

(
θ(τ ), x(τ ), u(τ ), f̂ (τ ),� f (τ )

)
as

a function of θh(τ ).

http://dx.doi.org/10.1007/978-3-319-62902-5_4
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Similar to the passive FTC case described in Sect. 7.3.3, if � f (τ ) is considered as a
disturbance that should be rejected, the robustness of the FTC against fault estimation
uncertainties can be achieved through the robust LPV H∞ (or H2) performance
approach proposed in Chap. 4.

Notice that, differently from the passive FTC case, the hybrid FTC error model
is scheduled also by the fault estimation f̂ (τ ), embedded into the new scheduling
vector θh(τ ). In other words, the proposed hybrid FTC approach adds the rejection
characteristic of the passive FTC method to the active FTC strategy.

7.4 Reconfigurable Controller Strategy

In this section, it is shown how the FTC strategy proposed in Sect. 7.3 can be used
for the implementation of a bank of controllers, such that the signal provided by the
fault diagnosis unit determines which controller should be active at a given moment.

It is assumed that the faults belong to a set F , that can be expressed as:

F = {
f1, . . . , fnx

} =
[
f1, f1

]
×

[
f2, f2

]
× · · · ×

[
fnx , fnx

]
(7.26)

7.4.1 Passive FTC

In the passive FTC approach, it is assumed that no information about the faults is
available. Hence, tolerance against faults can only be achieved by considering faults
as if they were uncertainties. A single controller is designed in such a way that
it exhibits some robustness properties. More specifically, a single controller K is
designed so as to be scheduled by the parameter vector θ(τ ) and to be robust against
the faults, that are considered as if they were additional uncertainties, as shown in
Sect. 7.3.3. This strategy has the advantage of not needing a fault diagnosis algorithm
but, on the other hand, the controller has the highest possible conservativeness.

7.4.2 Active FTC Without Controller Reconfiguration

The conservativeness of the passive approach can be overcome by considering that
some information available about the faults can be used to schedule accordingly the
controller. In this case, the faults are considered to be varying parameters θ f (τ ),
whose values are known or can be estimated through the information coming from a
fault estimation module, and can be used to schedule accordingly a single controller
K (θ(τ ), θ f (τ )

)
, designed as shown either in Sect. 7.3.4 or in Sect. 7.3.5. Notice

that the controller is not reconfigured, as it is the same in both the nominal and the
faulty case.

http://dx.doi.org/10.1007/978-3-319-62902-5_4
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7.4.3 Reconfigured FTC with Fault Detection

In this case, the faults are considered as uncertainty, similar to what has been described
in Sect. 7.4.1, but a fault detection algorithm can detect the fault occurrence at time
instant τD . Then, two controllers are designed and switched according to the follow-
ing law:

K =
{
K0 (θ(τ ))

KD (θ(τ ))

i f τ < τD
i f τ ≥ τD

(7.27)

where:

• K0 (θ(τ )) is the nominal controller, designed without taking into account the uncer-
tainty introduced by the faults;

• KD (θ(τ )) is the reconfigured controller, designed to be robust against all the
possible faults.

This approach is less conservative in the nominal case than approaches without
controller reconfiguration. Notice that the case when K0 (θ(τ )) = KD (θ(τ )) corre-
sponds to the active FTC without controller reconfiguration.

7.4.4 Reconfigured FTC with FDI

In this case, the faults are considered as uncertainty, and an FDI algorithm can detect
the fault occurrence at time instant τD and isolate the fault at time instant τI . Then,
n f + 2 controllers are designed and switched according to the following law:

K =
⎧⎨
⎩

K0 (θ(τ ))

KD (θ(τ ))

K i
I (θ(τ ))

i f τ < τD
i f τD ≤ τ < τI

i f τ ≥ τI

(7.28)

where:

• K0 (θ(τ )) is the nominal controller, designed without taking into account the uncer-
tainty introduced by the faults;

• KD (θ(τ )) is the reconfigured post-detection controller, designed to be robust
against all the possible faults;

• the n f controllers K 1
I (θ(τ )) , . . . , K

n f

I (θ(τ )) are the reconfigured post-isolation
controllers, each one designed to be robust against a specific fault fi ;

Notice that the case when K0 (θ(τ )) = KD (θ(τ )) = K i
I (θ(τ )) corresponds to the

active FTC without controller reconfiguration.
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7.4.5 Reconfigured FTC with Fault Detection, Isolation
and Estimation

In this case, an estimation of the fault fi is provided by a fault estimation algorithm,
and this estimation can be used as a scheduling parameter, denoted as θif . Moreover,
it is assumed that the FDI algorithm can detect the fault occurrence at time instant
τD and isolate the fault at time instant τI . Then, n f + 2 controllers are designed and
switched according to the following law:

K =

⎧⎪⎨
⎪⎩

K0 (θ(τ ))

KD (θ(τ ))

K i
I

(
θ(τ ), θif (τ )

)
i f τ < τD

i f τD ≤ τ < τI
i f τ ≥ τI

(7.29)

where:

• K0 (θ(τ )) is the nominal controller, designed without taking into account the uncer-
tainty introduced by the faults;

• KD (θ(τ )) is the reconfigured post-detection controller, designed to be robust
against all the possible faults;

• the n f controllers K 1
I

(
θ(τ ), θif (τ )

)
, . . . , K

n f

I

(
θ(τ ), θif (τ )

)
are the reconfigured

post-isolation controllers, each one scheduled not only by the vector of varying
parameters θ(τ ) but by the estimation of the specific fault fi too, through θif (τ ).
This controller would be designed following either Sect. 7.3.4 or Sect. 7.3.5.

It is evident that the advantage of the reconfigured controllers with respect to the non-
reconfigured ones lies in that the formers have to cope only with specific faults and
allow to improve the performances in the non-faulty case using the nominal controller,
whose design does not take into account the possibility of fault occurrence.

7.5 Application to a Quadrotor System

In this application, the problem of fault tolerant tracking for a quadrotor UAV will be
solved using the robust state-feedback control technique, as shown in the previous
sections of this chapter.

7.5.1 Quadrotor Modeling

A quadrotor is a vehicle that has four propellers in a cross configuration. Two
propellers can rotate in a clockwise direction, while the remaining two can rotate
anticlockwisely. The quadrotor is moved by changing the rotor speeds. For exam-
ple, increasing or decreasing together the four propeller speeds, vertical motion is
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achieved. Changing only the speeds of the propellers situated oppositely produces
either roll or pitch motion. Finally, yaw rotation results from the difference in the
counter-torque between each pair of propellers.

Let us consider a body fixed frame {xb, yb, zb} with origin in the quadrotor center
of mass. Under the assumptions that the body is rigid and symmetrical, and the
propellers are rigid, i.e. no blade flapping occurs, the quadrotor dynamic model is
described by the following equations [9]:

ẍb(t) = (cos ϕ(t) sin �(t) cos ψ(t) + sin ϕ(t) sin ψ(t))
U1(t)

m
(7.30)

ÿb(t) = (cos ϕ(t) sin �(t) sin ψ(t) + sin ϕ(t) cos ψ(t))
U1(t)

m
(7.31)

z̈b(t) = −g + cos ϕ(t) cos �(t)
U1(t)

m
(7.32)

ϕ̈(t) = �̇(t)ψ̇(t)
Iy − Iz

Ix
− JT P

Ix
�̇(t)�(t) + lU2(t)

Ix
(7.33)

�̈(t) = ϕ̇(t)ψ̇(t)
Iz − Ix

Iy
+ JT P

Iy
ϕ̇(t)�(t) + lU3(t)

Iy
(7.34)

ψ̈(t) = ϕ̇(t)�̇(t)
Ix − Iy

Iz
+ U4(t)

Iz
(7.35)

where ϕ(t) is the roll angle, �(t) is the pitch angle, ψ(t) is the yaw angle and the
inputs U1(t), U2(t), U3(t), U4(t), �(t) are defined as follows:

U1(t) = b
(
�1(t)

2 + �2(t)
2 + �3(t)

2 + �4(t)
2
)

(7.36)

U2(t) = b
(
�4(t)

2 − �2(t)
2
)

(7.37)

U3(t) = b
(
�3(t)

2 − �1(t)
2
)

(7.38)

U4(t) = d
(
�2(t)

2 + �4(t)
2 − �1(t)

2 − �3(t)
2
)

(7.39)

�(t) = �2(t) + �4(t) − �1(t) − �3(t) (7.40)

where �i (t) denotes the i th rotor speed. For a description of the system parameters,
as well as the values used in the simulations taken from [10], see Table 7.1.
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Table 7.1 Quadrotor parameters description and values

Param Description Value

Ix Body moment of inertia around the x-axis 8.1 × 10−3 [Nms2]

Iy Body moment of inertia around the y-axis 8.1 × 10−3 [Nms2]

Iz Body moment of inertia around the z-axis 14.2 × 10−3 [Nms2]

m Mass of the quadrotor 1 [kg]

g Acceleration due to gravity 9.81 [ms−2]

JT P Total rotational moment of inertia around the propeller axis 104 × 10−6 [Nms2]

l Center of quadrotor to center of propeller distance 0.24 [m]

b Thrust factor 54.2 × 10−6 [Ns2]

d Drag factor 1.1 × 10−6 [Nms2]

Hereafter, only the problem of attitude/altitude tracking control will be addressed.
Hence, the dynamics of the system along the xb and yb axes, i.e. Eqs. (7.30)–(7.31),
will be neglected.

By introducing the state x(t), the input u(t) and the varying parameter vector θ(t),
as follows:

x(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ(t)
ϕ̇(t)
�(t)
�̇(t)
ψ(t)
ψ̇(t)
zb(t)
żb(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u(t) =

⎛
⎜⎜⎝

�1(t)
�2(t)
�3(t)
�4(t)

⎞
⎟⎟⎠ θ(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1(t)
θ2(t)
θ3(t)
θ4(t)
θ5(t)
θ6(t)
θ7(t)
θ8(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ̇(t)
�̇(t)
ψ̇(t)
�1(t)
�2(t)
�3(t)
�4(t)

cos ϕ(t) cos �(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

the system (7.30)–(7.40) can be brought to the form (7.1) with:

A (θ(t)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0

0 0 0 (Iy−Iz)
2Ix

θ3(t) 0 (Iy−Iz)
2Ix

θ2(t) 0 0

0 0 0 1 0 0 0 0

0 (Iz−Ix )
2Iy

θ3(t) 0 0 0 (Iz−Ix )
2Iy

θ1(t) 0 0

0 0 0 0 0 1 0 0

0 (Ix−Iy)
2Iz

θ2(t) 0 (Ix−Iz)
2Iz

θ1(t) 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.41)
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B (θ(t)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
JT P
Ix

θ2(t) − JT P
Ix

θ2(t) − lb
Ix

θ5(t)
0 0

− JT P
Iy

θ1(t) − lb
Iy

θ4(t)
JT P
Iy

θ1(t)

0 0
− d

Iz
θ4(t)

d
Iz
θ5(t)

0 0
b
m θ4(t)θ8(t)

b
m θ5(t)θ8(t)

· · ·

· · ·

0 0
JT P
Ix

θ2(t) − JT P
Ix

θ2(t) + lb
Ix

θ7(t)
0 0

− JT P
Iy

θ1(t) + lb
Iy

θ6(t)
JT P
Iy

θ1(t)

0 0
− d

Iz
θ6(t) − d

Iz
θ7(t)

0 0
b
m θ6(t)θ8(t)

b
m θ7(t)θ8(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.42)

c(t) = −g (7.43)

By considering multiplicative faults in the actuators, that change �i → fi�i , i =
1, . . . , 4, in (7.36)–(7.40), the faulty system (7.6) is obtained, with A f (θ(t), f (t)) =
A (θ(t)), and:

B f (θ(t), f (t)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
JT P
Ix

θ2(t) f1(t) − JT P
Ix

θ2(t) f2(t) − lb
Ix

θ5(t) f2(t)2

0 0
− JT P

Iy
θ1(t) f1(t) − lb

Iy
θ4(t) f1(t)2 JT P

Iy
θ1(t) f2(t)

0 0
− d

Iz
θ4(t) f1(t)2 d

Iz
θ5(t) f2(t)2

0 0
b
m θ4(t)θ8(t) f1(t)2 b

m θ5(t)θ8(t) f2(t)2

· · ·

· · ·

0 0
JT P
Ix

θ2(t) f3(t) − JT P
Ix

θ2(t) f4(t) + lb
Ix

θ7(t) f4(t)2

0 0
− JT P

Iy
θ1(t) f3(t) + lb

Iy
θ6(t) f3(t)2 JT P

Iy
θ1(t) f4(t)

0 0
− d

Iz
θ6(t) f3(t)2 − d

Iz
θ7(t) f4(t)2

0 0
b
m θ6(t)θ8(t) f3(t)2 b

m θ7(t)θ8(t) f4(t)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.44)
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7.5.1.1 Passive FTC Error Model of the Quadrotor

By following the reasoning provided in Sect. 7.3.3, through the introduction of the
new varying parameter vector:

θp(t) =

⎛
⎜⎜⎜⎜⎝

θ(t)
θ9(t)
θ10(t)
θ11(t)
θ12(t)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

θ(t)
�1(t)2

�2(t)2

�3(t)2

�4(t)2

⎞
⎟⎟⎟⎟⎠

the passive FTC error model of the quadrotor can be brought to the form (7.14) with:

D̃
(
θp(t)

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
− JT P

Ix
θ2(t)θ4(t)

JT P
Ix

θ2(t)θ5(t) + lb(2+� f2(t))
Ix

θ10(t)
0 0

JT P
Iy

θ1(t)θ4(t) + lb(2+� f1(t))
Iy

θ9(t) − JT P
Iy

θ1(t)θ5(t)

0 0
d(2+� f1(t))

Iz
θ9(t) − d(2+� f2(t))

Iz
θ10(t)

0 0
− b(2+� f1(t))

m θ8(t)θ9(t) − b(2+� f2(t))
m θ8(t)θ10(t)

· · ·

· · ·

0 0
− JT P

Ix
θ2(t)θ6(t)

JT P
Ix

θ2(t)θ7(t) − lb(2+� f4(t))
Ix

θ12(t)
0 0

JT P
Iy

θ1(t)θ6(t) − lb(2+� f3(t))
Iy

θ11(t)
JT P
Iy

θ1(t)θ7(t)

0 0
d(2+� f3(t))

Iz
θ11(t) − d(2+� f4(t))

Iz
θ12(t)

0 0
− b(2+� f3(t))

m θ8(t)θ11(t) − b(2+� f4(t))
m θ8(t)θ12(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.45)

7.5.1.2 Active FTC Error Model of the Quadrotor

By following the reasoning provided in Sect. 7.3.4, through the introduction of the
new varying parameter:

θa(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ(t)
θ13(t)
θ14(t)
θ15(t)
θ16(t)
θ17(t)
θ18(t)
θ19(t)
θ20(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ(t)
f̂1(t)2

f̂1(t)
f̂2(t)2

f̂2(t)
f̂3(t)2

f̂3(t)
f̂4(t)2

f̂4(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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the active FTC error model of the quadrotor can be brought to the form (7.17) with
A f (θa(t)) = A (θ(t)) and:

B f (θa(t)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
JT P
Ix

θ2(t)θ14(t) − JT P
Ix

θ2(t)θ16(t) − lb
Ix

θ5(t)θ15(t)
0 0

− JT P
Iy

θ1(t)θ14(t) − lb
Iy

θ4(t)θ13(t)
JT P
Iy

θ1(t)θ16(t)

0 0
− d

Iz
θ4(t)θ13(t)

d
Iz

θ5(t)θ15(t)
0 0

b
m θ4(t)θ8(t)θ13(t)

b
m θ5(t)θ8(t)θ15(t)

· · ·

· · ·

0 0
JT P
Ix

θ2(t)θ18(t) − JT P
Ix

θ2(t)θ20(t) + lb
Ix

θ7(t)θ19(t)
0 0

− JT P
Iy

θ1(t)θ18(t) + lb
Iy

θ6(t)θ17(t)
JT P
Iy

θ1(t)θ20(t)

0 0
− d

Iz
θ6(t)θ17(t) − d

Iz
θ7(t)θ19(t)

0 0
b
m θ6(t)θ8(t)θ17(t)

b
m θ7(t)θ8(t)θ19(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.46)

7.5.1.3 Hybrid FTC Error Model of the Quadrotor

By following the reasoning provided in Sect. 7.3.5, through the introduction of the
new parameter vector:

θh(t) =

⎛
⎜⎜⎜⎝

θp(t)
θ13(t)

...

θ20(t)

⎞
⎟⎟⎟⎠

the hybrid FTC error model of the quadrotor can be brought to the form (7.25) with
A f (θh(t)) = A (θ(t)), B f (θh(t)) = B f (θa(t)) and:



7.5 Application to a Quadrotor System 161

D̃ f (θh(t)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
− JT P

Ix
θ2(t)θ4(t)

JT P
Ix

θ2(t)θ5(t) + lb(2θ16(t)+� f2(t))
Ix

θ10(t)
0 0

JT P
Iy

θ1(t)θ4(t) + lb(2θ14(t)+� f1(t))
Iy

θ9(t) − JT P
Iy

θ1(t)θ5(t)

0 0
d(2θ14(t)+� f1(t))

Iz
θ9(t) − d(2θ16(t)+� f2(t))

Iz
θ10(t)

0 0
− b(2θ14(t)+� f1(t))

m θ8(t)θ9(t) − b(2θ16(t)+� f2(t))
m θ8(t)θ10(t)

· · ·

0 0
− JT P

Ix
θ2(t)θ6(t)

JT P
Ix

θ2(t)θ7(t) − lb(2θ20(t)+� f4(t))
Ix

θ12(t)
0 0

JT P
Iy

θ1(t)θ6(t) − lb(2θ18(t)+� f3(t))
Iy

θ11(t) − JT P
Iy

θ1(t)θ7(t)

0 0
d(2θ18(t)+� f3(t))

Iz
θ11(t) − d(2θ20(t)+� f4(t))

Iz
θ12(t)

0 0
− b(2θ18(t)+� f3(t))

m θ8(t)θ11(t) − b(2θ20(t)+� f4(t))
m θ8(t)θ12(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

7.5.2 Reference Inputs Calculation for Trajectory Tracking

To make the quadrotor track a desired trajectory, proper values of the reference inputs,
in the following denoted as �1,re f , �2,re f , �3,re f and �4,re f , respectively, should be
fed to the reference model, such that its state equals the one corresponding to the
desired trajectory.

Here, for illustrative purpose, the case of sinusoidal trajectories is considered, as
follows:

ϕre f (t) = � sin

(
2πt

Nϕ

)
(7.47)

�re f (t) = P sin

(
2πt

N�

)
(7.48)

ψre f (t) = � sin

(
2πt

Nψ

)
(7.49)

zre f (t) = Z sin

(
2πt

Nz

)
(7.50)

where �, P, �, Z are the amplitudes, and Nϕ, N�, Nψ , Nz are the periods. Taking
the derivatives of (7.47)–(7.50) and considering the reference model equivalent of
(7.32)–(7.35), i.e.:

ϕ̇re f (t) = vre fϕ (t) (7.51)
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v̇re fϕ (t) = �̇(t)v̇re fψ (t)
Iy − Iz

2Ix
+ v̇re f� (t)ψ̇(t)

Iy − Iz
2Ix

− JT P

Ix
�̇(t)�re f (t) + lUre f

2 (t)

Ix
(7.52)

�̇re f (t) = vre f� (t) (7.53)

v̇re f� (t) = ϕ̇(t)v̇re fψ (t)
Iz − Ix

2Iy
+ v̇re fϕ (t)ψ̇(t)

Iz − Ix
2Iy

+ JT P

Iy
ϕ̇(t)�re f (t) + lUre f

3 (t)

Iy
(7.54)

ψ̇re f (t) = v
re f
ψ (t) (7.55)

v̇
re f
ψ (t) = vre fϕ (t)�̇(t)

Ix − Iy
2Iz

+ ϕ̇(t)vre f� (t)
Ix − Iy

2Iz
+ dUref

4 (t)

Iz
(7.56)

żre f (t) = vre fz (t) (7.57)

v̇re fz (t) = −g + cos ϕ(t) cos �(t)
Uref

1 (t)

m
(7.58)

with:

Uref
1 (t) = b

(
f̂1(t)2�1(t)�1,re f (t)+ f̂2(t)2�2(t)�2,re f (t)

+ f̂3(t)2�3(t)�3,re f (t) + f̂4(t)2�4(t)�4,re f (t)
) (7.59)

Uref
2 (t) = b

(
f̂4(t)

2�4(t)�4,re f (t) − f̂2(t)
2�2(t)�2,re f (t)

)
(7.60)

Uref
3 (t) = b

(
f̂3(t)

2�3(t)�3,re f (t) − f̂1(t)
2�1(t)�1,re f (t)

)
(7.61)

Uref
4 (t) = d

(
f̂2(t)2�2(t)�2,re f (t)+ f̂4(t)2�4(t)�4,re f (t)

− f̂1(t)2�1(t)�1,re f (t) − f̂3(t)2�3(t)�3,re f (t)
) (7.62)

�re f = f̂2(t)�2,re f (t) + f̂4(t)�4,re f (t) − f̂1(t)�1,re f (t) − f̂3(t)�3,re f (t) (7.63)

where �i,re f denotes the i th reference rotor speed, then the following is obtained:

ϕ̇re f (t) = vre fϕ (t) = � cos

(
2πt

Nϕ

)
2π

Nϕ
(7.64)
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�̇re f (t) = vre f� (t) = P cos

(
2ßt

N%

)
2ß

N%
(7.65)

ψ̇re f (t) = v
re f
ψ (t) = � cos

(
2πt

Nψ

)
2π

Nψ
(7.66)

żre f (t) = vre fz (t) = Z cos

(
2πt

Nz

)
2π

Nz
(7.67)

Then, another differentiation of (7.64)–(7.67) leads to:

ϕ̈re f (t) = v̇re fϕ (t) = −�

(
2π

Nϕ

)2

sin

(
2πt

Nϕ

)
(7.68)

�̈re f (t) = v̇re f� (t) = −P

(
2ß

N%

)2

sin

(
2ßt

N%

)
(7.69)

ψ̈re f (t) = v̇
re f
ψ (t) = −�

(
2π

Nψ

)2

sin

(
2πt

Nψ

)
(7.70)

z̈re f (t) = v̇re fz (t) = −Z

(
2π

Nz

)2

sin

(
2πt

Nz

)
(7.71)

and, by properly replacing (7.64)–(7.71) into (7.52), (7.54), (7.56) and (7.58), and
taking into account (7.59)–(7.63), we obtain:

�̇(t)� cos
(

2πt
Nψ

)
2π
Nψ

Iy−Iz
2Ix

+ ψ̇(t)P cos
(

2ßt
N%

)
2ß
N%

Iy−Iz
2Ix

+ �
(

2ß
N’

)2
sin

(
2ßt
N’

)

− JT P
Ix

�̇(t)
(
f̂2(t)�2,re f (t) + f̂4(t)�4,re f (t) − f̂1(t)�1,re f (t) − f̂3(t)�3,re f (t)

)

+ lb
Ix

[
f̂4(t)2

(
�4,re f (t) − �u4(t)

)
�4,re f − f̂2(t)2

(
�2,re f (t) − �u2(t)

)
�2,re f (t)

]
= 0

(7.72)

ϕ̇(t)� cos
(

2πt
Nψ

)
2π
Nψ

Iz−Ix
2Iy

+ ψ̇(t)� cos
(

2πt
Nϕ

)
2π
Nϕ

Iz−Ix
2Iy

+ P
(

2ß
N%

)2
sin

(
2ßt
N%

)

+ JT P
Iy

ϕ̇
(
f̂2(t)�2,re f (t) + f̂4(t)�4,re f (t) − f̂1(t)�1,re f (t) − f̂3(t)�3,re f (t)

)

+ lb
Iy

[
f̂3(t)2

(
�3,re f (t) − �u3(t)

)
�3,re f (t) − f̂1(t)2

(
�1,re f (t) − �u1(t)

)
�1,re f (t)

]
= 0

(7.73)

�̇(t)� cos
(

2πt
Nϕ

)
2π
Nϕ

Ix−Iy
2Iz

+ ϕ̇(t)P cos
(

2ßt
N%

)
2ß
N%

Ix−Iy
2Iz

+ �
(

2ß
N 

)2
sin

(
2ßt
N 

)

+ d
Iz

[
f̂2(t)2

(
�2,re f (t) − �u2(t)

)
�2,re f (t) + f̂4(t)2

(
�4,re f (t) − �u4(t)

)
�4,re f (t)

]

− d
Iz

[
f̂1(t)2

(
�1,re f (t) − �u1(t)

)
�1,re f (t) + f̂3(t)2

(
�3,re f (t) − �u3(t)

)
�3,re f (t)

]
= 0

(7.74)
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b cos ϕ(t) cos �(t)
m

[
f̂1(t)2

(
�1,re f (t) − �u1(t)

)
�1,re f (t) + f̂2(t)2

(
�2,re f (t) − �u2(t)

)
�2,re f (t)

]

+ b cos ϕ(t) cos �(t)
m

[
f̂3(t)2

(
�3,re f (t) − �u3(t)

)
�3,re f (t) + f̂4(t)2

(
�4,re f (t) − �u4(t)

)
�4,re f (t)

]

−g + Z
(

2π
Nz

)2
sin

(
2πt
Nz

)
= 0

(7.75)

7.5.3 Results

The results presented hereafter compare the proposed FTC strategies. Since the input
matrices B (θ(t)) and B f (θa(t)) are not constant, a prefiltering of the inputs is needed
in order to obtain constant input matrices [8]. This is done by adding the states xu1,
xu2, xu3 and xu4 to the error vector, such that �ui (t) = xui (t), i = 1, . . . , 4, together
with the state equations:

ẋui (t) = −ωi xui (t) + ωi�ũi (t) (7.76)

where �ũi (t), i = 1, . . . , 4, are the new inputs, and ωi has been chosen as ωi = 100,
i = 1, . . . , 4.

The polytopic approximation of the quadrotor quasi-LPV passive FTC error model
(7.14), with matrices A

(
θp(t)

)
, B

(
θp(t)

)
and D̃

(
θp(t)

)
defined as in (7.41), (7.42)

and (7.45), respectively, has been obtained by considering:

θ1 ∈ [min(ϕ̇), max(ϕ̇)] = [−0.25, 0.25]

θ2 ∈ [min(�̇), max(�̇)] = [−0.25, 0.25]

θ3 ∈ [min(ψ̇), max(ψ̇)] = [−0.25, 0.25]
(

θi+3

θi+8

)
∈ Tr

{(
min (�i )

min (�i )
2

)
,

(
max (�i )

min (�i )
2

)
,

(
max (�i )

max (�i )
2

)}

with min (�i ) = 100, max (�i ) = 500, i = 1, 2, 3, 4 and Tr denoting a triangular
polytopic approximation, that has been preferred to a bounding box one in order to
reduce the conservativeness. Finally, θ8 ∈ [0.5, 1], that corresponds to the interval
of possible values of θ8 when ϕ ∈ [−π/4,π/4] and � ∈ [−π/4,π/4].

The polytopic approximation of the quadrotor quasi-LPV active FTC error model
(7.17) with A f (θa(t)) = A (θ(t)) and B f (θa(t)) defined as in (7.41) and (7.46),
respectively, has been obtained by considering:

θ1 ∈ [min(ϕ̇), max(ϕ̇)] = [−0.25, 0.25]

θ2 ∈ [min(�̇), max(�̇)] = [−0.25, 0.25]
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θ3 ∈ [min(ψ̇), max(ψ̇)] = [−0.25, 0.25]

θi+3 ∈ [min(�i ), max(�i )] = [100, 500] i = 1, 2, 3, 4

θ8 ∈ [0.5, 1]
(

θ2i+11

θ2i+12

)
∈ Tr

{(
min ( fi )

2

min ( fi )

)
,

(
min ( fi )

2

1

)
,

(
1
1

)}

Similar considerations have been applied to the quadrotor quasi-LPV hybrid FTC
error model for obtaining its polytopic approximation. In particular, the results pre-
sented hereafter have been obtained considering min ( fi ) = 0.7.

The passive/active/hybrid controllers have been designed using Theorems 4.3 and
4.4, to assure pole clustering in:

D =
{
z ∈ C : Re(z) < −0.5, Re(z)2 + Im(z)2 < 10000, tan(0.3)Re(z) < − |Im(z)|

}

and a H∞ performance bound γ∞ = 1000, considering:

z∞(t) =

⎛
⎜⎜⎝

ϕ(t)
�(t)
ψ(t)
zb(t)

⎞
⎟⎟⎠

It must be remarked that, due to the exponential growth of the vertices with the number
of faults taken into consideration (28 · 3i vertices in the passive and active FTC cases,
28−i · 32i vertices in the hybrid FTC case, where i is the number of considered faults),
the time needed to solve the LMIs grows exponentially too. However, the strong
calculating capacity available nowadays, and the fact that the controller design is
performed offline and only the coefficients of the polytopic decomposition must be
calculated online, make this issue less critical.

The results shown hereafter refer to simulations which last 30 s, where the quadro-
tor is driven from the initial state:

ϕ(0) = π/6 �(0) = π/6 ψ(0) = π/6 zb(0) = 0
ϕ̇(0) = 0 �̇(0) = 0 ψ̇(0) = 0 żb(0) = 0

to the desired trajectory defined as in (7.47)–(7.50) with � = P = � = 0.1, Z = 0,
Nϕ = N� = Nψ = Nz = 10. The desired trajectory has been generated by the refer-
ence model (7.51)–(7.58) starting from the initial reference state:

http://dx.doi.org/10.1007/978-3-319-62902-5_4
http://dx.doi.org/10.1007/978-3-319-62902-5_4
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Fig. 7.1 Roll angle response (comparison between the nominal controller and the passive FTC).
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕre f (0)

vre fϕ (0)

�re f (0)

vre f� (0)

ψre f (0)

v
re f
ψ (0)

zre f (0)

v
re f
z (0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2π�/Nϕ

0
2πP/N�

0
2π�/Nψ

0
2πZ/Nz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figures 7.1, 7.2, 7.3 and 7.4 present a comparison between the responses obtained
with a nominal controller and the ones obtained with the proposed FTC approach.
A fault in the first actuator acts starting from the time instant t = 15 s. It can be seen
that even a small fault, e.g. f1 = 0.9, is enough to drive the system to instability if
the nominal controller is used (see green lines). On the other hand, the passive FTC
shows some tolerance capability since, for f1 = 0.8 and f1 = 0.9 (purple and cyan
lines, respectively), the stability is preserved, even though with a steady-state error
due to the effect of the fault.3

On the other hand, the proposed active FTC technique can achieve a perfect fault
tolerance as long as the fault is correctly estimated, as shown in Figs. 7.5, 7.6, 7.7 and
7.8 (green lines), where a fault f1 = 0.7 acting from t = 15 s is considered. However,

3Adding an integral action to the controller could eliminate the steady-state error, even though at
the expense of worsening the dynamical transient performance of the closed-loop system.
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as the uncertainty in the fault estimation, in this work modeled as uniformly bounded
noise, increases, so does the error between the real trajectory and the reference one.
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By applying the proposed hybrid FTC method, the overall performance can be
improved, thus reducing the effect that the fault estimation error has on the closed-
loop response, as shown in Figs. 7.9, 7.10, 7.11 and 7.12.
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In order to quantify numerically the improvement brought by the considered FTC
strategies, let us introduce the following performance measures:
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Table 7.2 Comparison of nominal controller with passive/active/hybrid FTC

Type of
FTC
strategy

Fault/uncertainty
magnitude

Jϕ J� Jψ Jz J

Nominal f1 = 1 3.9 · 10−9 3.4 · 10−9 4.1 · 10−9 1.6 · 10−11 1.1 · 10−8

f1 = 0.9 105.2 593.6 388.5 1.6 · 103 2.7 · 103

Passive f1 = 1 1.4 · 10−10 1.4 · 10−10 1.2 · 10−10 2.7 · 10−10 6.7 · 10−10

f1 = 0.9 2.0 · 10−4 0.047 0.012 0.027 0.087

f1 = 0.8 0.002 0.329 0.084 0.143 0.558

f1 = 0.7 7.0 · 104 2.3 · 103 2.3 · 104 1.5 · 105 2.5 · 105

Active f1 = 0.7

� f1 = 0 4.9 · 10−10 1.2 · 10−8 9.4 · 10−10 7.3 · 10−11 1.3 · 10−8

� f1 ∈ [−.01, .01] 5.5 · 10−7 1.8 · 10−4 5.7 · 10−7 5.5 · 10−8 1.8 · 10−4

� f1 ∈ [−.05, .05] 3.2 · 10−5 0.015 5.0 · 10−5 4.8 · 10−6 0.015

� f1 ∈ [−.10, .10] 3.8 · 10−5 0.027 8.5 · 10−5 8.9 · 10−6 0.027

Hybrid
f1 = 0.7

� f1 ∈ [−.10, .10] 2.0 · 10−5 8.0 · 10−4 1.5 · 10−4 3.4 · 10−4 0.001

Jψ =

3000∑
k=1500

(
ψr

(
k

100

) − ψ
(

k
100

))2

1500
(7.79)
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Jz =

3000∑
k=1500

(
zr

(
k

100

) − z
(

k
100

))2

1500
(7.80)

J = Jϕ + J� + Jψ + Jz (7.81)

A comparison of the performance measures obtained in the different cases, as
resumed in Table 7.2, shows the improvement brought by the proposed FTC strate-
gies with respect to the nominal one, as well as the one brought by the hybrid FTC
with respect to the passive and active FTC strategies.

7.6 Conclusions

In this chapter, the idea of the robust LPV polytopic technique, introduced in Chap. 4,
has been applied to FTC, giving rise to different strategies. A passive FTC strategy
has been obtained by considering the faults as exogenous perturbations that should
be rejected. An active FTC strategy has been obtained by considering the faults as
additional scheduling parameters. Finally, a hybrid FTC strategy has been obtained
by taking into account explicitly the fault estimation uncertainty during the design
step.

It has also been shown how the proposed FTC strategy can be used for the imple-
mentation of a bank of controllers, such that the signal provided by the fault diagnosis
unit determines which controller should be active at a given moment. The advantage
of the reconfigured controllers with respect to the non-reconfigured ones lies in that
the formers have to cope with specific faults and allow to improve the performances
in the non-faulty case using the nominal controller, whose design does not take into
account the possibility of fault occurrence.

The proposed method has been applied to solve the FTC problem for a quadrotor
UAV. The results presented have shown the relevant features of the proposed FTC
strategy, that is able to improve the performances under fault occurrence. In partic-
ular, whereas the passive FTC shows some limited tolerance capability, due to the
appearance of steady-state errors due to the fault effect, the active FTC technique can
achieve a perfect fault tolerance as long as the fault is correctly estimated. However,
as the uncertainty in the fault estimation increases, so does the error between the real
trajectory and the reference one. By applying the proposed hybrid FTC method, the
overall performance can be improved, thus reducing the effect that the fault estima-
tion error has on the closed-loop response. The introduction and comparison of some
performance measures have allowed confirming numerically such analysis.

http://dx.doi.org/10.1007/978-3-319-62902-5_4
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Chapter 8
Fault Tolerant Control of LPV Systems
Using Reconfigured Reference Model
and Virtual Actuators

The content of this chapter is based on the following works:

• [1] D. Rotondo, F. Nejjari, V. Puig. A virtual actuator and sensor approach for
fault tolerant control of LPV systems. Journal of Process Control, 24(3):203–222,
2014.

• [2] D. Rotondo, F. Nejjari, V. Puig, J. Blesa.Model reference FTC for LPV systems
using virtual actuator and set-membership fault estimation. International Journal
of Robust and Nonlinear Control, 25(5):735–760, 2015.

• [3] D. Rotondo, V. Puig, F. Nejjari, J. Romera. A fault-hiding approach for the
switching quasi-LPV fault tolerant control of a four wheeled omnidirectional
mobile robot. IEEE Transactions on Industrial Electronics, 62(6):3932–3944,
2015.

• [4] D. Rotondo, F. Nejjari, V. Puig. Fault tolerant control of a PEM fuel cell using
Takagi-Sugeno virtual actuators. Journal of Process Control, 45:12–29, 2016.

8.1 Introduction

In recent years, the fault-hiding paradigm has been proposed as an active strategy
to obtain fault tolerance [5]. In this paradigm, the controller reconfiguration (CR)
unit reconfigures the faulty plant instead of the controller/observer. The nominal
controller is kept in the loop by inserting a reconfiguration block between the faulty
plant and the nominal controller/observer when a fault occurs. The reconfiguration
block is chosen so as to hide the fault from the controller point of view, allowing it to
see the same plant as before the fault. In case of actuator faults, as the ones considered
in this chapter, the reconfiguration block is named virtual actuator. Initially proposed
in a state space formulation for LTI systems [6], this active FTC strategy has been
extended successfully to many classes of systems, e.g. LPV [7], TS [8], piecewise
affine [9], Lipschitz [10] and Hammerstein-Weiner [11] systems.

© Springer International Publishing AG 2018
D. Rotondo, Advances in Gain-Scheduling and Fault Tolerant Control Techniques,
Springer Theses, https://doi.org/10.1007/978-3-319-62902-5_8
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The work presented in this chapter is concerned with the development of an
FTC strategy for LPV systems involving a reconfigured reference model and virtual
actuators. The use of the reference model framework allows to assure that the desired
tracking performances are kept despite the fault occurrence, thanks to the action
brought by the virtual actuator.

In all controlled systems, the actuator capacity is limited by physical constraints
and limitations of the actuators. The effects of saturations on the control loop could
be performance degradation, large overshoot and possible instability in spite of sat-
isfactory performances predicted from the linear design [12, 13]. While the system
analysis, including saturated actuators, is relatively easy, the controller synthesis
problem in presence of input nonlinearities is a much more involved task. In [14], a
systematic anti-windup control synthesis approach for systems with actuator satura-
tion is provided within an LPV design framework. The advantage of this approach
is that it directly utilizes saturation indicator parameters to schedule accordingly the
parameter-varying controller.

In this chapter, by including the saturations in the reference model equations, it
is shown that it is possible to design a model reference FTC system that automati-
cally retunes the reference states whenever the system input is affected by saturation
nonlinearities. Hence, another contribution of this chapter is to take into account the
saturations as scheduling parameters, such that their inclusion in both the reference
model and the system provides an elegant way to incorporate a graceful performance
degradation in presence of actuator saturations.

8.2 FTC Using Reconfigured Reference Model and Virtual
Actuators

8.2.1 Model Reference Control

Let us consider an LPV system in state-space form, described by (2.1)–(2.2) (for the
sake of simplicity, D (θ(τ )) = O in further deliberations):

σ.x(τ ) = A (θ(τ )) x(τ ) + B (θ(τ )) u(τ ) + c(τ ) (8.1)

y(τ ) = C (θ(τ )) x(τ ) (8.2)

where c(τ ) is a known exogenous input. Similar to what has been done in Chap.7,
the idea of LPV reference model control is considered to assure the convergence
of the system trajectory to the desired one [15, 16]. Hence, the following reference
model is considered for the synthesis of the LPV controller:

σ.xref (τ ) = A (θ(τ )) xref (τ ) + B (θ(τ )) uc
ref (τ ) + c(τ ) (8.3)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_7
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yref (τ ) = C (θ(τ )) xref (τ ) (8.4)

where xref ∈ R
nx is the reference state vector, uc

ref ∈ R
nu is the nominal reference

input vector, and yref ∈ R
ny is the reference output vector.

Thus, considering the tracking error, defined as e(τ ) � xref (τ ) − x(τ ), the fol-
lowing error system is obtained:

σ.e(τ ) = A (θ(τ )) e(τ ) + B (θ(τ )) �uc(τ ) (8.5)

εc(τ ) = C (θ(τ )) e(τ ) (8.6)

with �uc(τ ) � uc
ref (τ ) − u(τ ) and εc(τ ) � yref (τ ) − y(τ ).

The LPV error system (8.5)–(8.6) is controlled by an error-feedback control law:

�uc(τ ) = K (θ(τ )) ê(τ ) (8.7)

where ê(τ ) is an estimation of the error e(τ ), provided by the following LPV error
observer:

σ.ê(τ ) = A (θ(τ )) ê(τ ) + B (θ(τ ))�uc(τ ) + L (θ(τ ))
[
C (θ(τ )) ê(τ ) − εc(τ )

]

(8.8)

where the gain L (θ(τ )) ∈ R
nx×ny is a design parameter. Notice that the information

given by the error observer can be used directly to obtain the state estimation, since
x̂(τ ) = xref (τ ) − ê(τ ).

8.2.2 Fault Definition

In this chapter, the considered actuator faults change the nominal state equation of
the system (8.1), as follows:

σ.x(τ ) = A (θ(τ )) x(τ ) + Bf (θ(τ ), f (τ )) u(τ ) + �(θ(τ ), f (τ )) fa(τ ) + c(τ )

(8.9)

where fa(τ ) ∈ R
nu denotes the additive actuator faults, being�(θ(τ ), f (τ )) ∈ R

nu×nx

the actuator fault distributionmatrix. Themultiplicative actuator faults are embedded
in the matrix Bf (θ(τ ), f (τ )), as follows:

Bf (θ(τ ), f (τ )) = B (θ(τ )) F (f (τ )) (8.10)
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with:

F (f (τ )) =

⎛

⎜⎜⎜
⎝

f1(τ ) 0 · · · 0
0 f2(τ ) · · · 0
...

...
. . .

...

0 0 · · · fnu(τ )

⎞

⎟⎟⎟
⎠

(8.11)

where fi(τ ) ∈ [0, 1], i = 1, . . . , nu, represents the effectiveness of the ith actuator,
such that the extreme values fi = 0 and fi = 1 represent a total failure of the ith
actuator and the healthy ith actuator, respectively.

8.2.3 Fault Tolerant Control Strategy

The fault tolerant control strategy proposed in this chapter is based on a reconfigura-
tion of the reference model (8.3)–(8.4), and the addition of a virtual actuator block.
At first, the reference model state equation (8.3) is slightly modified to take into
account the actuator faults, as follows:

σ.xref (τ ) = A (θ(τ )) xref (τ ) + Bf

(
θ(τ ), f̂ (τ )

)
uref (τ ) + �

(
θ(τ ), f̂ (τ )

)
f̂a(τ ) + c(τ )

(8.12)
where f̂ (τ ) and f̂a(τ ) are estimations of f (τ ) and fa(τ ), respectively, and uref (τ ) ∈
R

nu is the reconfigured reference input vector. Hence, under the assumption that
f̂ (τ ) ∼= f (τ ) and f̂a(τ ) ∼= fa(τ ), the error system equation (8.5) becomes:

σ.e(τ ) = A (θ(τ )) e(τ ) + Bf

(
θ(τ ), f̂ (τ )

)
�u(τ ) (8.13)

with �u(τ ) � uref (τ ) − u(τ ).
Then, the concept of virtual actuator introduced in [6] for LTI systems is extended

to LPV systems, such that it can be applied to the error model (8.13). The main idea
of this FTC method is to reconfigure the faulty plant such that the nominal controller
could still be used without need of retuning it. The plant with the faulty actuators
is modified adding the virtual actuator block that masks the fault and allows the
controller to see the same plant as before the fault.

The virtual actuator can be either a static or a dynamic block, depending on the
satisfaction of the following rank condition:

rank
(
Bf (θ(τ ), f (τ ))

) = rank
(

B (θ(τ )) Bf (θ(τ ), f (τ ))
)

(8.14)

If (8.14) holds (e.g. when the fault has only changed the actuator gain, but it has not
completely broken it), the reconfiguration structure is static and can be expressed as:

�u(τ ) = N
(
θ(τ ), f̂ (τ )

)
�uc(τ ) (8.15)
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where �uc(τ ) is the controller output, and the matrix N
(
θ(τ ), f̂ (τ )

)
is given by:

N
(
θ(τ ), f̂ (τ )

)
= Bf

(
θ(τ ), f̂ (τ )

)†
B (θ(τ )) (8.16)

Cases where (8.14) does not hold should be described through values of the matrix
B∗ (θ(τ )), such that the following condition holds:

B∗ (θ(τ )) = Bf (θ(τ ), f (τ )) N
(
θ(τ ), f̂ (τ )

)
(8.17)

Notice that the matrix B∗ (θ(τ )) does not depend on f (τ ) because the matrix

N
(
θ(τ ), f̂ (τ )

)
eliminates the effects of partial faults, as discussed in Appendix B.

In such cases, the reconfiguration structure is expressed by:

�u(τ ) = N
(
θ(τ ), f̂ (τ )

)
(�uc(τ ) − M (θ(τ )) xv(τ )) (8.18)

where M (θ(τ )) is the gain of the LPV virtual actuator, while the virtual actuator
state xv(τ ) is calculated as:

σ.xv(τ ) = (
A (θ(τ )) + B∗ (θ(τ )) M (θ(τ ))

)
xv(τ ) + (

B (θ(τ )) − B∗ (θ(τ ))
)
�uc(τ )

(8.19)

In these cases, the LPV error observer (8.8) is also modified, as follows:

σ.ê(τ ) = A (θ(τ )) ê(τ ) + B (θ(τ ))�uc(τ ) + L (θ(τ ))
(
C (θ(τ )) ê(τ ) − ε(τ )

)

(8.20)
where:

ε(τ ) = εc(τ ) + C (θ(τ )) xv(τ ) (8.21)

Thanks to the introduction of the virtual actuator block, the separation principle holds
for the augmented systemmade up by the LPV error system, the LPVvirtual actuator,
the LPV error-feedback controller and the LPV error observer, i.e. the augmented
system can be brought to a block-triangular form, as shown by the following theorem.

Theorem 8.1 (Separation principle for the augmented system) Consider the aug-
mented model that includes the faulty LPV error system state (8.13) and output (8.6)
equations, the LPV virtual actuator (8.18)–(8.19), the LPV error-feedback controller
(8.7) and the LPV error observer (8.20), as shown1 in Fig.8.1:

1In the remaining of the theorem, and in its proof, the dependence of the matrices on the vector
of scheduling parameters θ(τ ) and the multiplicative faults f (τ ), or their estimation f̂ (τ ), will be
omitted.



180 8 Fault Tolerant Control of LPV Systems Using …
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Fig. 8.1 Virtual actuator FTC scheme. After [2]

⎛

⎝
σ.ê(τ )

σ.e(τ )

σ.xv(τ )

⎞

⎠ =
⎛

⎝
A + BK + LC −LC −LC

B∗K A −B∗M
(B − B∗)K O A + B∗M

⎞

⎠

⎛

⎝
ê(τ )

e(τ )

xv(τ )

⎞

⎠ (8.22)

Then, there exists a similarity transformation such that the state matrix of the aug-
mented system in the new state variables is block-triangular, as follows:

Aaug (θ(τ )) =
⎛

⎝
A + LC O O

BK A + BK O
(B − B∗)K (B − B∗)K A + B∗M

⎞

⎠ (8.23)
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Proof The proof is straightforward, and comes from introducing the new state vari-
ables:

x1(τ ) = ê(τ ) − xv(τ ) − e(τ ) (8.24)

x2(τ ) = e(τ ) + xv(τ ) (8.25)

x3(τ ) = xv(τ ) (8.26)

that correspond to a similarity transformation using the following change of basis
matrix:

T =
⎛

⎝
I −I −I
O I I
O O I

⎞

⎠ . (8.27)

�

Looking at (8.23), it can be seen that the state x1(τ ) is affected by the matrix L (θ(τ ))

through the matrix A (θ(τ )) + L (θ(τ )) C (θ(τ )); the state x2(τ ) is influenced by the
matrixA (θ(τ )) + B (θ(τ )) K (θ(τ )); finally, thematrixM (θ(τ )) affects the behavior
of the state x3(τ ) through the matrix A (θ(τ )) + B∗ (θ(τ )) M (θ(τ )). This means that,
thanks to the reconfiguration of the referencemodel and the introduction of the virtual
actuator, the nominal location of the poles of the closed-loop system and the error
observer are not modified by the fault occurrence. Hence, the gains K (θ(τ )) and
L (θ(τ )) do not need to be retuned, and the overall system is modified only by the
additional poles introduced by the virtual actuator.

Remark: The location of the virtual actuator poles will have certain effects on the
performance of the reconfigured system. In general, it is wished the virtual actuator
to be faster than the controller. However, this specification is limited by the problem
of actuator saturations and by the observer poles, that should be faster than the virtual
actuator ones.

8.2.4 Graceful Performance Degradation in Presence
of Actuator Saturations

Physical systems have maximum and minimum limits or saturations on their control
signals and, as a consequence, the system input is different from the controller out-
put. This difference is usually referred to as controller windup [17] and can result
in a significant performance degradation, large overshoots and even instability, if
saturations are not taken into account properly [12, 13].

An advantage of the model reference control strategy proposed in this chapter is
that, by including the saturations in the reference model equations, it is possible to
design anFTCsystem that automatically retunes the reference stateswheneveruref (τ )

is such that the saturation nonlinearities become active. In fact, uref (τ ) (or uc
ref (τ )
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in nominal conditions) is usually calculated such that the reference model shows
some desired behavior, e.g. some subset of the reference model states are driven
to some desired steady-state values. In general, uc

ref (τ ) should be such that it does
not activate the saturation nonlinearities when the system is working in nominal
conditions. However, under fault occurrence, the reconfigured uref (τ ) could be such
that some saturation nonlinearities are activated. In this case, the desired performance
is not achievable. The inclusion of the saturation nonlinearities in the referencemodel
equations provides an elegant way to incorporate a graceful performance degradation
in presence of actuator saturations.

More specifically, let sat : Rnu → R
nu be a saturation function that specifies the

limited actuator capacity on the control input u(τ ) in (8.1). The saturation is assumed
to be a decoupled, sector-bounded, static actuator nonlinearity with a constant satu-
ration limit uMAX

i in the ith input, such that:

sat(u) =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

sat1(u1)
...

sati(ui)
...

satnu(unu)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

sati(ui) =
⎧
⎨

⎩

uMAX
i

ui

−uMAX
i

if ui > uMAX
i

if |ui| ≤ uMAX
i

if ui < −uMAX
i

(8.28)

for i = 1, . . . , nu, where uMAX = (
uMAX
1 , . . . , uMAX

nu

)T ∈ R
nu is a given vector with

positive entries. Consequently, (8.9) is changed to:

σ.x(τ ) = A (θ(τ )) x(τ ) + Bf (θ(τ ), f (τ )) sat (u(τ )) + � (θ(τ ), f (τ )) fa(τ ) + c(τ ) (8.29)

Then, the reference model (8.12) is changed accordingly, as follows:

σ.xref (τ ) = A (θ(τ )) xref (τ ) + Bf

(
θ(τ ), f̂ (τ )

)
sat

(
uref (τ )

)+ �
(
θ(τ ), f̂ (τ )

)
f̂a(τ ) + c(τ )

(8.30)

This modification of the reference model equation, under the assumption that f̂ (τ ) ∼=
f (τ ) and f̂a(τ ) ∼= fa(τ ), allows to write the error model as follows:

σ.e(τ ) = A (θ(τ )) e(τ ) + Bf (θ(τ ), f (τ ))
(
sat

(
uref (τ )

)− sat (u(τ ))
)

(8.31)

In order to assess stability or performance using LPV techniques, it is possible to
apply a slight modification of the anti-windup control design approach proposed in
[14], where the actuator saturation nonlinearities are directly taken into account by
representing the status of each saturated actuator as a varying parameter. In particular,
through the introduction of the following saturation scheduling parameter:

ςi
(
ui,ref (t), ui(t)

) = sati
(
ui,ref (τ )

)− sati (ui(τ ))

ui,ref (τ ) − ui(τ )
(8.32)
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the error model (8.31) becomes:

σ.e(τ ) = A (θ�(τ )) e(τ ) + B�f (θ�(τ ), f (τ ))�u(τ ) (8.33)

where:

B�f (θ�(τ ), f (τ )) = B� (θ�(τ )) F (f (τ )) (8.34)

B� (θ�(τ )) = B (θ(τ )) diag
(
ς1
(
u1,ref (τ ), u1(τ )

)
, . . . , ςnu

(
unu,ref (τ ), unu(τ )

))

(8.35)

with:

θ�(τ ) =

⎛

⎜⎜⎜
⎝

θ(τ )

ς1
(
u1,ref (τ ), u1(τ )

)

...

ςnu

(
unu,ref (τ ), unu(τ )

)

⎞

⎟⎟⎟
⎠

(8.36)

and:

ςi
(
ui,ref (τ ), ui(τ )

)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if
∣∣ui,ref (τ )

∣∣ < uMAX
i , |ui(τ )| < uMAX

i

ui,ref (τ )−sign(ui(τ ))uMAX
i

ui,ref (τ )−ui(τ )
if
∣∣ui,ref (τ )

∣∣ < uMAX
i , |ui(τ )| ≥ uMAX

i

sign(ui,ref (τ ))uMAX
i −ui(τ )

ui,ref (τ )−ui(τ )
if
∣
∣ui,ref (τ )

∣
∣ ≥ uMAX

i , |ui(τ )| < uMAX
i

[sign(ui,ref (τ ))−sign(ui(τ ))]uMAX
i

ui,ref (τ )−ui(τ )
if
∣∣ui,ref (τ )

∣∣ ≥ uMAX
i , |ui(τ )| ≥ uMAX

i

(8.37)

ςi can take values between 0 and 1, where 1 corresponds to the case where both the
system and the reference model work in the linear zone, and 0 corresponds to the
case that both the system and the reference model are in the saturation zone with
ui(τ ) and ui,ref (τ ) of the same sign.

8.2.5 Effects of the Fault Estimation Errors

Hereafter, the effects of the fault estimation errors over the FTC system, i.e. the
more realistic case where f̂ (τ ) �= f (τ ) and f̂a(τ ) �= fa(τ ), will be briefly discussed.
By considering f (τ ) = f̂ (τ ) + �f (τ ) and fa(τ ) = f̂a(τ ) + �fa(τ ), where�f (τ ) and
�fa(τ ) are the uncertainties in the estimation of the multiplicative fault and the
additive fault, respectively, then the faulty system (8.29) can be rewritten as:
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σ.x(τ ) = A (θ(τ )) x(τ ) + Bf

(
θ(τ ), f̂ (τ ) + �f (τ )

)
sat (u(τ ))

+�
(
θ(τ ), f̂ (τ ) + �f (τ )

) (
f̂a(τ ) + �fa(τ )

)
+ c(τ )

(8.38)

that, taking into account the reference model (8.30), under the assumption that:

�(θ(τ ), f (τ )) = � (θ(τ )) F (f (τ )) (8.39)

and by neglecting the terms arising of the type �fi(τ )�fa,i(τ ), can be brought to the
following error model:

σ.e(τ ) = A (θ�(τ )) e(τ ) + B�f (θ�(τ ), f (τ )) �u(τ ) − �
(
θ�(τ ), f̂ (τ )

)
�fa(τ )

−
[
Bsat (θ�(τ ), u(τ )) + �f

(
θ�(τ ), f̂a(τ )

)]
�f (τ )

(8.40)
where B�f (θ�(τ ), f (τ )) and θ�(τ ) are defined as in (8.34)–(8.36) and:

Bsat (θ�(τ ), u(τ )) = B (θ�(τ )) diag
(
sat1 (u1(τ )) , . . . , satnu

(
unu(τ )

))
(8.41)

�f

(
θ�(τ ), f̂a(τ )

)
= � (θ�(τ )) diag

(
f̂a1(τ ), . . . , f̂anu(τ )

)
(8.42)

By considering the output equation (8.6), the LPV virtual actuator (8.18)–(8.19), the
LPV error-feedback controller (8.7) and the LPV error observer (8.20), and by using
the similarity transformation of Theorem 8.1, the following is obtained:

⎛

⎝
σ.x1(τ )

σ.x2(τ )

σ.x3(τ )

⎞

⎠ =
⎛

⎝
A + LC O O

BK A + BK O
(B − B∗)K (B − B∗)K A + B∗M

⎞

⎠

⎛

⎝
x1(τ )

x2(τ )

x3(τ )

⎞

⎠

+

⎛

⎜
⎜
⎝

Bsat (θ�(τ ), u(τ )) + �f

(
θ�(τ ), f̂a(τ )

)
�
(
θ�(τ ), f̂ (τ )

)

−
[
Bsat (θ�(τ ), u(τ )) + �f

(
θ�(τ ), f̂a(τ )

)]
−�

(
θ�(τ ), f̂ (τ )

)

O O

⎞

⎟
⎟
⎠

(
�f (τ )

�fa(τ )

)

(8.43)

It can be seen that, taking advantage of the boundedness of u(τ ), it would be pos-
sible to improve the robustness of the FTC system against the uncertainties in the
multiplicative and additive fault estimations using perturbation rejection techniques,
such as H2\H∞ norm optimization.
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8.3 Design Using LMIs

8.3.1 Properties of Block-Triangular LPV Systems

Let us consider the following block-triangular LPV system:

(
σ.x1(τ )

σ.x2(τ )

)
=
(

A11 (θ(τ )) O
A21 (θ(τ )) A22 (θ(τ ))

)(
x1(τ )

x2(τ )

)
= Atriang (θ(τ ))

(
x1(τ )

x2(τ )

)

(8.44)
and assume that:

• the subsystem:
σ.x1(τ ) = A11 (θ(τ )) x1(τ ) (8.45)

is quadratically stable, that is, there exists Q1 
 O such that (see Theorems
2.1–2.2):

Q1A11(θ)
T + A11(θ)Q1 ≺ O ∀θ ∈ � (8.46)

or: ( −Q1 A11(θ)Q1

Q1A11(θ)
T −Q1

)
≺ O ∀θ ∈ � (8.47)

for CT and DT systems, respectively.
• the subsystem obtained from (8.44) when x1(τ ) = 0:

σ.x2(τ ) = A22 (θ(τ )) x2(τ ) (8.48)

is quadratically stable, i.e. there exists Q2 
 O such that:

Q2A22(θ)
T + A22(θ)Q2 ≺ O ∀θ ∈ � (8.49)

or: ( −Q2 A22(θ)Q2

Q2A22(θ)
T −Q2

)
≺ O ∀θ ∈ � (8.50)

for the CT and the DT case, respectively.

Then, an interesting question is whether the system (8.44) is quadratically stable
too. In fact, even though its asymptotic stability is guaranteed by well-known results
in the control systems theory [18], the quadratic stability is a stronger requirement,
because it implies the existence of a common matrix Q 
 O such that:

QAtriang(θ)
T + Atriang(θ)Q ≺ O ∀θ ∈ � (8.51)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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or: ( −Q Atriang(θ)Q
QAtriang(θ)

T −Q

)
≺ O ∀θ ∈ � (8.52)

In the remainder of this section, it is shown that if (8.46) and (8.49) hold, then there
exists Q 
 O such that (8.51) hold. Similarly, if (8.47) and (8.50) hold, then there
exists Q 
 O such that (8.52) hold. The proofs make use of the following lemma.

Lemma 8.1 Given Z 
 O and a matrix W of the same order, there exists κ > 0 such
that κZ − W 
 O.

Proof Z has some minimum singular value σZ such that σZ > 0 and W has some
maximum singular value σW . Also, for any non-zero vector v:

vTZv ≥ ‖v‖2 σZ (8.53)

vTWv ≤ ‖v‖2 σW (8.54)

So vT(κZ − W )v ≥ ‖v‖2 (κσZ − σW ) and ‖v‖2 (κσZ − σW ) > 0 whenever κσZ 

W . Hence, from the definition of positive definite matrix results that κZ − W is
positive definite. �

Hence, the following theorems are true.

Theorem 8.2 (Quadratic stability of a block-triangular CT LPV system) Given the
block-triangular CT LPV system (8.44) with τ = t, assume that there exist Q1 
 O
and Q2 
 O such that (8.46) and (8.49) hold. Then, there exists κ > 0 such that
(8.51) holds with:

Q =
(

Q1 O
O κQ2

)
(8.55)

Proof Replacing (8.55) into (8.51) leads to the following condition:

(
Q1A11(θ)

T + A11(θ)Q1 Q1A21(θ)
T

A21(θ)Q1 κ
(
Q2A22(θ)

T + A22(θ)Q2
)
)

≺ O ∀θ ∈ �

(8.56)

Using Schur complements [19], (8.56) is equivalent to Q1A11(θ)
T + A11(θ)Q1 ≺ O,

that holds due to (8.46), and:

κ
(−Q2A22(θ)

T − A22(θ)Q2
)− A21(θ)Q1�CT (θ)Q1A21(θ)

T 
 O ∀θ ∈ �

(8.57)
with:

�CT (θ) = (−Q1A11(θ)
T − A11(θ)Q1

)−1
(8.58)

The application of Lemma 8.1, taking into account that −Q2A22(θ)
T − A22(θ)Q2 


O due to (8.49), completes the proof. �
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Theorem 8.3 (Quadratic stability of a block-triangular DT LPV system) Given the
block-triangular DT LPV system (8.44) with τ = k, assume that there exist Q1 
 O
and Q2 
 O such that (8.47) and (8.50) hold. Then, there exists κ > 0 such that
(8.52) holds, with Q defined as in (8.55).

Proof Replacing (8.55) into (8.52) leads to the following condition:

⎛

⎜
⎜
⎝

Q1 O −A11(θ)Q1 O
O κQ2 −A21(θ)Q1 −κA22(θ)Q2

−Q1A11(θ)
T −Q1A21(θ)

T Q1 O
O −κQ2A22(θ)

T O κQ2

⎞

⎟
⎟
⎠ 
 O ∀θ ∈ �

(8.59)
Using Schur complements [19], (8.59) is equivalent to Q 
 O, which holds due to
the positiveness of Q1, Q2 and κ, and:

(
Q1 − A11(θ)Q1A11(θ)

T −A11(θ)Q1A21(θ)
T

−A21(θ)Q1A11(θ)
T �22(θ)

)

 O ∀θ ∈ � (8.60)

with:
�22(θ) = κ

(
Q2 − A22(θ)Q2A22(θ)

T
)− A21(θ)Q1A21(θ)

T (8.61)

Using again Schur complements [19], (8.60) is equivalent to (8.47) and:

κ
(
Q2 − A22(θ)Q2A22(θ)

T
)− A21(θ)�DT (θ)A21(θ)

T 
 O ∀θ ∈ � (8.62)

with:

�DT (θ) = Q1A11(θ)
T
(
Q1 − A11(θ)Q1A11(θ)

T
)−1

A11(θ) + Q1 (8.63)

The application of Lemma 8.1, taking into account (8.50), completes the proof. �

Remark: Notice that similar versions of Theorems 8.2–8.3 hold for LPV systems in
an upper block-triangular form.

The results shown in Theorems 8.2–8.3 justify the separate design of the LPV error
observer, the LPV error-feedback controller and the LPV virtual actuator, because
the augmented model can be brought to a block-triangular form, as shown by
Theorem 8.1. In fact, the quadratic stability of the augmented system (8.23) can
be obtained from the quadratic stability of each subsystem. It is worth remarking
that the separate design of each subsystem is more conservative than the design of
the augmented system as a whole, due to the block-diagonality of Q in (8.55). How-
ever, the separate design has the indisputable advantage of simplicity, e.g. due to the
possibility of reducing the design conditions into LMIs.
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8.3.2 Overall FTC Scheme Design

The design of the overall FTC scheme implies the following:

• finding the N� controller vertex gains Ki such that:

K (θ�(τ )) =
N�∑

i=1

μi (θ�(τ ))Ki (8.64)

guarantees the quadratic stability of A (θ�(τ )) + B� (θ�(τ )) K (θ�(τ )) and some
desired performance, under the assumption that the pair:

(
A (θ�(τ ))

B� (θ�(τ ))

)
=

N�∑

i=1

μi (θ�(τ ))

(
Ai

B�,i

)
(8.65)

is quadratically stabilizable in �� ;
• finding the N� virtual actuator vertex gains Mi such that:

M (θ�(τ )) =
N�∑

i=1

μi (θ�(τ ))Mi (8.66)

guarantees the quadratic stability of A (θ�(τ )) + B∗
� (θ�(τ )) M (θ�(τ )) and some

desired performance, under the assumption that the pair:

(
A (θ�(τ ))

B∗
� (θ�(τ ))

)
=

N�∑

i=1

μi (θ�(τ ))

(
Ai

B∗
�,i

)
(8.67)

is quadratically stabilizable in �� ;
• finding the N observer vertex gains Li such that:

L (θ(τ )) =
N∑

i=1

μi (θ(τ ))Li (8.68)

guarantees the quadratic stability of A (θ(τ )) + L (θ(τ )) C (θ(τ )) and some
desired performance, under the assumption that the pair:

(
A (θ(τ ))

C (θ(τ ))

)
=

N∑

i=1

μi (θ(τ ))

(
Ai

Ci

)
(8.69)

is quadratically detectable in �. Notice that the quadratic detectability of a given
system is equivalent to the quadratic stabilizability of the dual system.
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Taking into account the design conditions presented in Sect. 2.5, it is possible to
design the matrices Ki, Mi and Li separately.

8.4 Application Examples

8.4.1 Application to a Twin Rotor MIMO System

8.4.1.1 Description of the Twin Rotor MIMO System

The twin rotorMIMO system (TRMS) is a laboratory aeromechanical system, devel-
oped byFeedback Instruments Ltd. for control experiments. The system is considered
a challenging engineering problem due to its high nonlinearity, the presence of cross-
coupling between its axes and inaccessibility of some of its states for measurements.
In order to achieve satisfactory control objectives, an accurate model of the system
is needed [20].

The TRMS is similar in its behavior to a helicopter. At both ends of its beam,
there are two propellers driven by DC motors, each perpendicular to the other one.
The beam can rotate freely in the horizontal and vertical planes, in such a way that
its ends move on spherical surfaces. The joined beam can be moved by changing
the motor supply voltages, thus controlling the rotational speed of the propellers. A
counter-weight fixed to the beam is used for balancing the angular momentum in a
stable equilibrium position. The rotor generating the vertical movement is called the
main rotor. It enables the TRMS to pitch, which is a rotation around the horizontal
axis. The rotor generating the horizontal movement is called the tail rotor. It enables
the TRMS to yaw, which is a rotation in the horizontal plane around the vertical axis.

An accurate nonlinear model for the TRMS has been obtained by Rahideh and
Shaheed [20] and further improved in [21], resulting in the following set of differential
equations:

ω̇h(t) = kak1
JtrRa

uh(t) −
(

Btr

Jtr
+ k2a

JtrRa

)
ωh(t) − f1 (ωh(t))

Jtr
(8.70)

�̇h(t) = lt f2 (ωh(t)) cosαv(t) − koh�h(t) − f3 (αh(t)) + f6 (αv(t))

KD cos2 αv(t) + KE sin2 αv(t) + KF

+ km cosαv(t)
[
kak2uv(t)/Ra − (

Bmr + k2a/Ra
)
ωv(t) − f4 (ωv(t))

]

Jmr
(
KD cos2 αv(t) + KE sin2 αv(t) + KF

) (8.71)

+ kmωv(t) sinαv(t)�v(t)
(
KD cos2 αv(t) − KE sin2 αv(t) − KF − 2KE cos2 αv(t)

)

(
KD cos2 αv(t) + KE sin2 αv(t) + KF

)2

α̇h(t) = �h(t) (8.72)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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ω̇v(t) = kak2
JmrRa

uv(t) −
(

Bmr

Jmr
+ k2a

JmrRa

)
ωv(t) − f4 (ωv(t))

Jmr
(8.73)

�̇v(t) = lmf5 (ωv(t)) + kg�h(t)f5 (ωv(t)) cosαv(t) − kov�v(t)

Jv

+g
[
(KA − KB) cosαv(t) − KC sinαv(t)

]− �h(t)2KH sinαv(t) cosαv(t)

Jv

+
kt

[
kak1uh(t)/Ra −

(
Btr + k2a/Ra

)
ωh(t) − f1 (ωh(t))

]

JvJtr
(8.74)

α̇v(t) = �v(t) (8.75)

where uh and uv are the input voltage of the tail and main motor, respectively, ωh and
ωv are the rotational velocity of the tail and main rotor, respectively, and �h and �v

are the angular velocity of the TRMS for the yaw and the pitch angle, respectively.
Finally, αh is the yaw angle of the beam, and αv is the pitch angle of the beam.

The nonlinear functions fi(·) that take into account the frictions and coupling
effects between the horizontal and the vertical dynamics, are defined as:

f1 (ωh(t)) =
{

kthpωh(t)2

−kthnωh(t)2
if ωh(t) ≥ 0
if ωh(t) < 0

f2 (ωh(t)) =
{

kfhpωh(t)2

−kfhnωh(t)2
if ωh(t) ≥ 0
if ωh(t) < 0

f3 (αh(t)) =
{

kchpαh(t)
kchnαh(t)

if αh(t) ≥ 0
if αh(t) < 0

f4 (ωv(t)) =
{

ktvpωv(t)2

−ktvnωv(t)2
if ωv(t) ≥ 0
if ωv(t) < 0

f5 (ωv(t)) =
{

kf vpωv(t)2

−kf vnωv(t)2
if ωv(t) ≥ 0
if ωv(t) < 0

f6 (αv(t)) =
{

kcvp
(
αv(t) − α0

v

)2

kcvn
(
αv(t) − α0

v

)2
if αv(t) ≥ α0

v

if αv(t) < α0
v

where α0
v is the equilibrium point for the pitch angle, corresponding to uv = 0. For

a complete description of the TRMS parameters, and their values, see Table8.1.
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Table 8.1 TRMS parameters description and values

Param. Description Value

Bmr Viscous friction coefficient of the main propeller 0.0026 [�−1]

Btr Viscous friction coefficient of the tail propeller 0.0086 [�−1]

g Gravitational acceleration at sea level 9.81 [ms−2]

Jmr Moment of inertia of the main propeller 0.0254 [kgm2]

Jtr Moment of inertia of the tail propeller 0.0059 [kg m2]

Jv Vertical moment of inertia 0.0643 [kgm2]

KA Physical constant 0.0980 [kgm]

KB Physical constant 0.1137 [kgm]

KC Physical constant 0.0220 [kgm]

KD Physical constant 0.0553 [kgm2]

KE Physical constant 0.0058 [kgm2]

KF Physical constant 0.0059 [kgm2]

KH Physical constant 0.0591 [kgm2]

k1 Input constant of the tail motor 6.5

k2 Input constant of the main motor 8.5

ka Torque constant of the DC motors 0.0202

kchn Cable force coefficient for αh < 0 0.0111 [kgm−2s−2]

kchp Cable force coefficient for αh ≥ 0 0.0158 [kgm−2s−2]

kcvn Coupling coefficient for αv < α0
v 0.0563 [kgm−2s−2]

kcvp Coupling coefficient for αv ≥ α0
v 0.0623 [kgm−2s−2]

kfhn Aerodynamic force coefficient of the tail rotor for ωh < 0 0.0660 [kgms−2V−2]

kfhp Aerodynamic force coefficient of the tail rotor for ωh ≥ 0 0.0566 [kgms−2V−2]

kf vn Aerodynamic force coefficient of the main rotor for
ωv < 0

0.2197 [kgms−2V−2]

kf vp Aerodynamic force coefficient of the main rotor for
ωv ≥ 0

0.3819 [kgms−2V−2]

kg Gyroscopic constant 0.2 [ms]

km Physical constant 0.0017 [kgm2s−1V−1]

koh Horizontal friction coefficient of the beam subsystem 0.0185 [kgm2s−1]

kov Vertical friction coefficient of the beam subsystem 0.1026 [kgm2s−1]

kt Physical constant 0 [kgm2s−1V−1]

kthn Drag friction coefficient of the tail propeller for ωh < 0 0.0028 [V−1�−1]

kthp Drag friction coefficient of the tail propeller for ωh ≥ 0 0.0027 [V−1�−1]

ktvn Drag friction coefficient of the main propeller for ωv < 0 0.0155 [V−1�−1]

ktvp Drag friction coefficient of the main propeller for ωv ≥ 0 0.0168 [V−1�−1]

lm Length of the main part of the beam 0.246 [m]

lt Length of the tail part of the beam 0.282 [m]

Ra Armature resistance of the DC motors 8 [�]
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8.4.1.2 Quasi-LPV Error Model

In the following, only the problem of controlling the yaw angleαh will be considered.
The reason for this choice is that there exists a coupling between the main motor and
the yaw angle of the beam (km �= 0), so that the yaw angle can be controlled to some
desired value despite the complete loss of one of the two motors. On the other hand,
the same is not true in the case of the pitch angle αv , because it is driven only by the
main motor (kt = 0).

As a consequence, the problem of the FTC of the yaw angle of the TRMS allows
showing some features of the proposed methodology that could not be shown if the
control of the pitch angle was also considered. In particular, it will be shown that the
proposed methodology can tolerate complete losses of actuators, as long as there is
sufficient actuator redundancy in the controlled system.

In order to obtain a quasi-LPVerrormodel for theTRMS, the first step is to reshape
the nonlinear equations (8.70)–(8.73) into the quasi-LPV form (8.1), as follows:
⎛

⎜⎜
⎝

ω̇h(t)
�̇h(t)
α̇h(t)
ω̇v(t)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

θ1(t) 0 0 0
θ2(t) θ3(t) θ4(t) θ5(t)
0 1 0 0
0 0 0 θ6(t)

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

ωh(t)
�h(t)
αh(t)
ωv(t)

⎞

⎟⎟
⎠+

⎛

⎜⎜
⎝

b11 0
0 θ7(t)
0 0
0 b42

⎞

⎟⎟
⎠

(
uh(t)
uv(t)

)
+

⎛

⎜⎜
⎝

0
c2(t)
0
0

⎞

⎟⎟
⎠

where θ(t) = (θ1(t), . . . , θ7(t))
T is the vector of varying parameters, scheduled by

the state variables ωh(t), αh(t), ωv(t) and the exogenous variable (with respect to the
considered control problem) αv(t), with:

θ1(t) = −k2a/Ra + Btr + g1 (ωh(t))

Jtr

θ2(t) = ltg2 (ωh(t)) cosαv(t)

KD cos2 αv(t) + KE sin2 αv(t) + KF

θ3(t) = − koh

KD cos2 αv(t) + KE sin2 αv(t) + KF

θ4(t) = g3 (αh(t))

KD cos2 αv(t) + KE sin2 αv(t) + KF

θ5(t) = km cosαv(t)
(
k2a/Ra + Bmr + g4 (ωv(t))

)

Jmr
(
KD cos2 αv(t) + KE sin2 αv(t) + KF

)

θ6(t) = −k2a/Ra + Bmr + g4 (ωv(t))

Jmr
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θ7(t) = km cosαv(t)kak2
RaJmr

(
KD cos2 αv(t) + KE sin2 αv(t) + KF

)

b11 = kak1
JtrRa

b42 = kak2
JmrRa

c2(t) = f6 (αv(t))

KD cos2 αv(t) + KE sin2 αv(t) + KF

where the functions gi(·) are given by:

g1 (ωh(t)) =
{

kthpωh(t)
−kthnωh(t)

if ωh(t) ≥ 0
if ωh(t) < 0

g2 (ωh(t)) =
{

kfhpωh(t)
−kfhnωh(t)

if ωh(t) ≥ 0
if ωh(t) < 0

g3 (αh(t)) =
{

kchp

kchn

if αh(t) ≥ 0
if αh(t) < 0

g4 (ωv(t)) =
{

ktvpωv(t)
−ktvnωv(t)

if ωv(t) ≥ 0
if ωv(t) < 0

g6 (αv(t)) =
{

kcvp
(
αv(t) − α0

v

)

kcvn
(
αv(t) − α0

v

) if αv(t) ≥ α0
v

if αv(t) < α0
v

Then, using the reference model (8.5), and by defining the tracking errors eh(t) �
ω

ref
h (t) − ωh(t), e�(t) � �

ref
h (t) − �h(t), eα(t) � α

ref
h (t) − αh(t) and ev(t) �

ω
ref
v (t) − ωv(t), and the new inputs �uh(t) � uref

h (t) − uh(t), �uv(t) � uref
v (t) −

uv(t), the following DT quasi-LPV error model can be obtained through an Euler
approximation [22] with a sampling time Ts = 0.01 s:

⎛

⎜
⎜
⎝

eh(k + 1)
e�(k + 1)
eα(k + 1)
ev(k + 1)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

θd
1 (k) 0 0 0

θd
2 (k) θd

3 (k) θd
4 (k) θd

5 (k)

0 Ts 1 0
0 0 0 θd

6 (k)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

eh(k)

e�(k)

eα(k)

ev(k)

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

bd
11 0
0 θd

7 (k)

0 0
0 bd

42

⎞

⎟
⎟
⎠

(
�uh(t)
�uv(t)

)

where θd
1 (k) = 1 + Tsθ1(k), θd

2 (k) = Tsθ2(k), θd
3 (k) = 1 + Tsθ3(k), θd

4 (k) = Tsθ4
(k), θd

5 (k) = Tsθ5(k), θd
6 (k) = 1 + Tsθ6(k), θd

7 (k) = Tsθ7(k), bd
11 = Tsb11 and bd

42 =
Tsb42.
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Finally, the saturations have been taken into account following the approach pro-
posed in Sect. 8.2.4, and a polytopic model with 512 vertices has been obtained using
the nonlinear embedding approach [23] (see Chap.3).

8.4.1.3 Reference Input Calculation and Design of the FTC Scheme

In the following, actuator faults in the tail and the main motors are considered. These
faults cause the following changes in (8.70), (8.71), (8.73) and (8.74):

uh(t) → fh(t) (uh(t) + fah(t))

uv(t) → fv(t) (uv(t) + fav(t))

where fh, fah, fv , fav are the multiplicative and additive faults in the tail and the main
motor, respectively.

Consequently, the reference model is changed as described in Sect. 8.2.3, using
the fault estimations f̂h(t), f̂ah(t), f̂v(t) and f̂av(t). Under the assumption that f̂h(t) ∼=
fh(t), f̂ah(t) ∼= fah(t), f̂v(t) ∼= fv(t) and f̂av(t) ∼= fav(t), the error model input matrix
becomes:

Bf
(
θd
7 (k), fh(k), fv(k)

) =

⎛

⎜
⎜
⎝

fh(k)bd
11 0

0 fv(k)θd
7 (k)

0 0
0 fv(k)bd

42

⎞

⎟
⎟
⎠

In order to drive the TRMS to a desired yaw angle αdes
h (t), it is required to choose

properly uref
h (t) and uref

v (t). These values can be obtained from the TRMS nonlinear
model (8.70)–(8.75) by imposing all the derivatives equal to zero andαh(t) = αdes

h (t).
This leads to the following solution:

f des
2

(
αdes

h (t),αv(t)
) = f3

(
αdes

h (t)
)− f6 (αv(t))

lt cosαv(t)

f des
5 (αv(t)) = g [(KB − KA) cosαv(t) + KC sinαv(t)]

lm

ωdes
h

(
αdes

h (t),αv(t)
) =

⎧
⎪⎪⎨

⎪⎪⎩

√
f des
2 (αdes

h (t),αv(t))
kfhp

if f des
2

(
αdes

h (t),αv(t)
) ≥ 0

−
√

−f des
2 (αdes

h (t),αv(t))
kfhn

if f des
2

(
αdes

h (t),αv(t)
)

< 0

http://dx.doi.org/10.1007/978-3-319-62902-5_3
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ωdes
v (αv(t)) =

⎧
⎪⎪⎨

⎪⎪⎩

√
f des
5 (αv(t))

kf vp
if f des

5 (αv(t)) ≥ 0

−
√

−f des
5 (αv(t))

kf vn
if f des

5 (αv(t)) < 0

uref
h

(
αdes

h (t),αv(t), f̂h, f̂ah(t)
)

= 1

f̂h

(
BtrRa + k2a

)
ωdes

h

(
αdes

h (t),αv(t)
)

kak1

+ 1

f̂h

f1
(
ωdes

h

(
αdes

h (t),αv(t)
))

Ra

kak1
− f̂ah(t)

uref
v

(
αv(t), f̂v, f̂av(t)

)
= 1

f̂v

(
BmrRa + k2a

)
ωdes

v (αv(t)) + f4
(
ωdes

v (αv(t))
)

Ra

kak2
− f̂av(t)

Notice that for a given desired yaw angle αdes
h (t), infinite couples

(
uref

h (t), uref
v (t)

)

could be obtained. In particular, the correspondence between αv(t) and the couples(
uref

h (t), uref
v (t)

)
is a bijection. In the following, among all the possible couples

(
uref

h (t), uref
v (t)

)
, the one that corresponds to theminimumEuclidean norm is chosen,

as follows2:

ūref
h , ūref

v : min
αv∈[αv,αv ]

∥
∥uref

∥
∥2
2 = min

αv∈[αv,αv ]

[(
uref

h

)2 + (
uref

v

)2
]

Remark: In case of a complete loss of the tail rotor, uh = 0, and uref
h is chosen as

the value corresponding to αv = α0
v .

Remark: A normally distributed noise with zero mean and standard deviation 0.02
has been added to uref

h and uref
v in order to assure the excitation needed by the fault

estimation algorithm.

The controller and the virtual actuators (one for each possible complete loss of actu-
ator) have been designed considering the specifications of quadratic stability (Corol-
lary 2.13) and quadratic D-stability (Corollary 2.15), considering as LMI region,
the half-plane with minimum abscissa λ = 0.7, such that (2.168) is particularized as
follows:

1.4Q − He {AiQ + B	i} ≺ 0 i = 1, . . . , N

On the other hand, the observer design has been performed considering the disk of
radius r = 0.3 and center (−q, 0) = (0.5, 0), such that (2.168) becomes:

2The pitch angle interval for searching the reference input values has been chosen with αv =
α0

v − 0.2 and αv = α0
v + 0.3.

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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( −0.3Q −0.5Q + AT
i Q + CT	i

−0.5Q + QAi + 	T
i C −0.3Q

)
≺ 0 i = 1, . . . , N

The LMIs have been solved using the YALMIP toolbox [24] and the SeDuMi
solver [25].

8.4.1.4 Results

The results shown in this section refer to simulations that last 120 s, in which the
TRMS should reach and maintain the desired yaw angle αdes

h = 0.5 rad despite the
initial error, due to the difference between the TRMS initial state:

⎛

⎝
x(0)

�v(0)
αv(0)

⎞

⎠ =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

ωh(0)
�h(0)
αh(0)
ωv(0)
�v(0)
αv(0)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜⎜
⎝

0
0
1
0
0

α0
v + 0.8

⎞

⎟⎟
⎟⎟⎟⎟
⎠

and the reference model initial state:

xref (0) =

⎛

⎜⎜⎜
⎝

ω
ref
h (0)

�
ref
h (0)

α
ref
h (0)

ω
ref
v (0)

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠

and the faults. In particular, a fault scenario with the values of fh(t), fah(t), fv(t) and
fav(t) resumed in Table8.2 is considered.

The nominal closed-loop system response is shown in Figs. 8.2, 8.3, 8.4 and 8.5,
where the TRMS states are compared with the reference model ones. At steady-
state, the error is zero, and the system reaches the desired yaw angle αdes

h = 0.5 rad,
as expected. Figure8.6 depicts the response of the pitch angle αv , and Fig. 8.7 shows
the control inputs. It can be seen that after a short transient, the control inputs converge
to the reference ones.

Table 8.2 Fault scenario description

0–30 s 30–60 s 60–90 s 90–120 s

fh(t) 1 0.5 0.5 0

fah(t) 0 0 0 0

fv(t) 1 1 0.7 0.6

fav(t) 0 0 0.1 0
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Fig. 8.2 Nominal tail rotor
response (comparison
between TRMS and
reference model states).
After [2]
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Fig. 8.3 Nominal yaw
angular velocity response
(comparison between TRMS
and reference model states).
After [2]
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Fig. 8.4 Nominal yaw angle
response (comparison
between TRMS and
reference model states).
After [2]
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Fig. 8.5 Nominal main rotor
response (comparison
between TRMS and
reference model states).
After [2]
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Fig. 8.6 Nominal pitch
angle response. After [2]
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Fig. 8.7 Nominal control
inputs. After [2]
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Fig. 8.8 Faulty tail rotor
response (comparison
between TRMS and
reference model states, with
FTC). After [2]
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Fig. 8.9 Faulty yaw angular
velocity response
(comparison between TRMS
and reference model states,
with FTC). After [2]
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The proposed FTC strategy allows the system to reach the desired yaw angle
αdes

h = 0.5 rad in all cases except the one of complete loss of the tail actuator (see
Figs. 8.8, 8.9, 8.10 and 8.11). In this case, the reference is automatically changed
to the biggest value of αh achievable within the following range of variation of the
pitch angle, αv ∈ [α0

v − 0.2 rad,α0
v + 0.3 rad], as shown in Fig. 8.10.

It should be pointed out that the oscillations that appear in the yaw angle response
are mainly due to the changes in the working point of the pitch angle, as shown in
Fig. 8.12. In order to conclude the presentation of the results with FTC, the control
inputs are shown in Fig. 8.13.

The responses obtained in the case where the proposed FTC strategy is not applied
are illustrated in Figs. 8.14, 8.15, 8.16 and 8.17. It can be seen that if the faults are not
taken into account properly, some errors between the reference states and the system
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Fig. 8.10 Faulty yaw angle
response (comparison
between TRMS and
reference model states, with
FTC). After [2]
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Fig. 8.11 Faulty main rotor
response (comparison
between TRMS and
reference model states, with
FTC). After [2]
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Fig. 8.12 Faulty pitch angle
response (with FTC).
After [2]
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Fig. 8.13 Faulty control
inputs (with FTC). After [2]
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Fig. 8.14 Faulty tail rotor
response (comparison
between TRMS and
reference model states,
without FTC). After [2]
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states appear. Moreover, the same reference model pitch angle α
ref
h is affected by the

fault occurrence, such that αref
h does not converge to αdes

h = 0.5 rad in steady-state.

8.4.2 Application to a Four Wheeled Omnidirectional Mobile
Robot

8.4.2.1 Description of the Four Wheeled Omnidirectional Mobile Robot

Omnidirectional mobile robots are gaining popularity due to their enhanced mobility
with respect to traditional robots [26]. The omnidirectional feature provides a great
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Fig. 8.15 Faulty yaw
angular velocity response
(comparison between TRMS
and reference model states,
without FTC). After [2]
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Fig. 8.16 Faulty yaw angle
response (comparison
between TRMS and
reference model states,
without FTC). After [2]
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Fig. 8.17 Faulty main rotor
response (comparison
between TRMS and
reference model states,
without FTC). After [2]
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maneuverability and effectiveness, and is obtained thanks to the characteristics of
the wheels, which roll forward like normal wheels, but can also slide sideways at the
same time.

The dynamic model of the four wheeled omnidirectional mobile robot relates the
wheel inputs and robot velocities with the corresponding accelerations, taking into
account the traction, viscous friction andCoulomb friction forces. Themodel is given
by the following set of differential equations, obtained from the ones presented in
[26] by considering the linear velocities on the static axis instead of the ones on the
robot’s axis:

ẋ(t) = vx(t) (8.76)

v̇x(t) = (
A11 cos2 ϕ(t) + A22 sin2 ϕ(t)

)
vx(t) + [(A11 − A22) sinϕ(t) cosϕ(t) − ω(t)] vy(t)

+K11 cosϕ(t)sign
(
vx(t) cosϕ(t) + vy(t) sinϕ(t)

)− B21 sinϕ(t)u0(t) + B12 cosϕ(t)u1(t)
−K22 sinϕ(t)sign

(−vx(t) sinϕ(t) + vy(t) cosϕ(t)
)− B23 sinϕ(t)u2(t) + B14 cosϕ(t)u3(t)

(8.77)

ẏ(t) = vy(t) (8.78)

v̇y(t) = [(A11 − A22) sinϕ(t) cosϕ(t) + ω(t)] vx(t) + (
A11 sin2 ϕ(t) + A22 cos2 ϕ(t)

)
vy(t)

+K11 sinϕ(t)sign
(
vx(t) cosϕ(t) + vy(t) sinϕ(t)

)+ B21 cosϕ(t)u0(t) + B12 sinϕ(t)u1(t)
+K22 cosϕ(t)sign

(−vx(t) sinϕ(t) + vy(t) cosϕ(t)
)+ B23 cosϕ(t)u2(t) + B14 sinϕ(t)u3(t)

(8.79)

ϕ̇(t) = ω(t) (8.80)

ω̇(t) = A33 (ω(t)) ω(t) + B31u0(t) + B32u1(t) + B33u2(t) + B34u3(t) + K33sign (ω(t))
(8.81)

The values of the robot parameters, identified from data obtained with a real setup
[3], are provided in Table8.3. Also, A33 (ω(t)) is defined as follows:

A33 (ω(t)) = −0.0062ω(t)2 + 0.0028ω(t) − 0.4406. (8.82)

8.4.2.2 Quasi-LPV Error Model

In order to obtain a quasi-LPV error model for the four wheeled omnidirectional
mobile robot, the first step is to reshape the nonlinear equations (8.76)–(8.81) into

Table 8.3 Robot parameters values

Param Value Param Value Param Value

A11 −1.4904 B21 0.0089 B31 0.05

A22 −1.4904 B12 −0.0089 B32 0.05

K11 −0.5340 B23 −0.0089 B33 0.05

K22 −0.5340 B24 0.0089 B34 0.05
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the quasi-LPV form (8.1). Taking into account that B3 � B31 = B32 = B33 = B34,
Al � A11 = A22, Bl � B21 = −B12 = −B23 = B14, and Kl � K11 = K22, the quasi-
LPV model is obtained as follows:
⎛

⎜
⎜⎜⎜⎜⎜
⎝

ẋ(t)
v̇x(t)
ẏ(t)
v̇y(t)
ϕ̇(t)
ω̇(t)

⎞

⎟
⎟⎟⎟⎟⎟
⎠

=

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0
0 Al 0 −θ1(t) 0 0
0 0 0 1 0 0
0 θ1(t) 0 Al 0 0
0 0 0 0 0 1
0 0 0 0 0 θ2(t)

⎞

⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜
⎜⎜⎜⎜⎜
⎝

x(t)
vx(t)
y(t)
vy(t)
ϕ(t)
ω(t)

⎞

⎟
⎟⎟⎟⎟⎟
⎠

+

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0 0 0 0
−Blθ3(t) −Blθ4(t) Blθ3(t) Blθ4(t)

0 0 0 0
Blθ4(t) −Blθ3(t) −Blθ4(t) Blθ3(t)

0 0 0 0
B3 B3 B3 B3

⎞

⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎝

u0(t)
u1(t)
u2(t)
u3(t)

⎞

⎟⎟
⎠+

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0
cx(t)
0

cy(t)
0

cϕ(t)

⎞

⎟
⎟⎟⎟⎟⎟
⎠

where θ(t) = (θ1(t), . . . , θ4(t))
T is the vector of varying parameters, scheduled by

the state variables ϕ(t) and ω(t), with:

θ1(t) = ω(t)

θ2(t) = A33(ω(t))

θ3(t) = sinϕ(t)

θ4(t) = cosϕ(t)

where:
cx(t) = Kl cosϕ(t)sign

(
vx(t) cosϕ(t) + vy(t) sinϕ(t)

)

−Kl sinϕ(t)sign
(−vx(t) sinϕ(t) + vy(t) cosϕ(t)

)

cy(t) = Kl sinϕ(t)sign
(
vx(t) cosϕ(t) + vy(t) sinϕ(t)

)

+Kl cosϕ(t)sign
(−vx(t) sinϕ(t) + vy(t) cosϕ(t)

)

cϕ(t) = K33sign (ω(t))

Then, using the reference model (8.3), and by defining the tracking errors e1(t) �
xref (t) − x(t), e2(t) � v

ref
x (t) − vx(t), e3(t) � yref (t) − y(t), e4(t) � v

ref
y (t) − vy

(t), e5(t) � ϕref (t) − ϕ(t), e6(t) � ωref (t) − ω(t), and the new inputs �ui(t) �
uref

i (t) − ui(t), i = 0, 1, 2, 3, the following DT quasi-LPV error model can be
obtained through an Euler approximation [22] with a sampling time Ts = 0.04 s:
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⎛

⎜⎜
⎜⎜⎜⎜
⎝

e1(k + 1)
e2(k + 1)
e3(k + 1)
e4(k + 1)
e5(k + 1)
e6(k + 1)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜⎜
⎝

1 Ts 0 0 0 0
0 Ad

l 0 −θd
1 (k) 0 0

0 0 1 Ts 0 0
0 θd

1 (k) 0 Ad
l 0 0

0 0 0 0 1 Ts

0 0 0 0 0 θd
2 (k)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜⎜
⎝

e1(k)

e2(k)

e3(k)

e4(k)

e5(k)

e6(k)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0 0 0 0
−Blθ

d
3 (k) −Blθ

d
4 (k) Blθ

d
3 (k) Blθ

d
4 (k)

0 0 0 0
Blθ

d
4 (k) −Blθ

d
3 (k) −Blθ

d
4 (k) Blθ

d
3 (k)

0 0 0 0
B3Ts B3Ts B3Ts B3Ts

⎞

⎟⎟⎟⎟
⎟⎟
⎠

⎛

⎜⎜
⎝

�u0(k)

�u1(k)

�u2(k)

�u3(k)

⎞

⎟⎟
⎠ .

(8.83)

8.4.2.3 Reference Input Calculation

In the following, multiplicative actuator faults in the motors are considered. These
faults cause the change ui(t) → fi(t)ui(t), i = 0, 1, 2, 3, in (8.76)–(8.81).

Consequently, the reference model is changed as described in Sect. 8.2.3, using
the fault estimations f̂i(t), i = 0, 1, 2, 3. Under the assumption that f̂i(t) ∼= fi(t), i =
0, 1, 2, 3, the error model input matrix becomes:

Bf

(
θd
3 (k), θd

4 (k), f (k)
)

=

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

0 0 0 0
−f0(k)Blθ

d
3 (k) −f1(k)Blθ

d
4 (k) f2(k)Blθ

d
3 (k) −f3(k)Blθ

d
4 (k)

0 0 0 0
f0(k)Blθ

d
4 (k) −f1(k)Blθ

d
3 (k) −f2(k)Blθ

d
4 (k) f3(k)Blθ

d
3 (k)

0 0 0 0
f0(k)B3Ts f1(k)B3Ts f2(k)B3Ts f3(k)B3Ts

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

To make the robot track a desired trajectory, proper values of uref
i , i = 0, 1, 2, 3,

should be fed to the reference model, such that its state equals the one corresponding
to the desired trajectory. In the following, a circular trajectory is chosen and defined
as follows:

xref(t) = ρ cos (ϕref(t)) (8.84)

yref(t) = ρ sin (ϕref(t)) (8.85)

ϕref(t) = 2πt

T
(8.86)

where ρ is the circle radius and T is the desired revolution period around the circle
center.

Taking the derivatives and second derivatives of (8.84)–(8.86), considering (8.76),
(8.78) and (8.80), and replacing into the faulty versions of (8.76)–(8.81), the follow-
ing is obtained:
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Aref (t)

⎛

⎜
⎜⎜
⎝

uref
0 (t)

uref
1 (t)

uref
2 (t)

uref
3 (t)

⎞

⎟
⎟⎟
⎠

= Bref (t)

with:

Aref (t) =
⎛

⎜
⎝

−f̂0(t)Bl sinϕ(t) −f̂1(t)Bl cosϕ(t) f̂2(t)Bl sinϕ(t) f̂3(t)Bl cosϕ(t)
f̂0(t)Bl cosϕ(t) −f̂1(t)Bl sinϕ(t) −f̂2(t)Bl cosϕ(t) f̂3(t)Bl sinϕ(t)

f̂0(t)B3 f̂1(t)B3 f̂2(t)B3 f̂3(t)B3

⎞

⎟
⎠

Bref (t) =
⎛

⎜
⎝

ρ 2π
T

[
Al sin 2πt

T + (
ω(t) − 2π

T

)
cos 2πt

T

]− cx(t)

ρ 2π
T

[(
ω(t) − 2π

T

)
sin 2πt

T − Al cos 2πt
T

]− cy(t)

−A33 (ω(t)) 2π
T − cϕ(t)

⎞

⎟
⎠

Finally, the reference model inputs uref
i (t), i = 0, 1, 2, 3, are obtained as:

⎛

⎜⎜⎜
⎝

uref
0 (t)

uref
1 (t)

uref
2 (t)

uref
3 (t)

⎞

⎟⎟⎟
⎠

= Aref (t)
†Bref (t)

Remark: The obtained values uref
i (t), i = 0, 1, 2, 3, depend on the specifications,

defined by the radius ρ and revolution period T of the desired circular trajectory
(8.84)–(8.86). Special care should be taken in choosingρ andT , such that the resulting
reference inputs do not cause the motors to work near/in their saturation region.

Remark: The reference input calculation presented in this section can be applied to
obtain the tracking of a wider class of trajectories. In particular, if xref (t), yref (t),
ϕref (t) ∈ C2 in some time interval [t0, tf ], then Bref (t) takes the following form for
t ∈ [t0, tf ]:

Bref (t) =
⎛

⎝
ẍref (t) − Alẋref (t) + ω(t)ẏref (t) − cx(t)
ÿref (t) − Alẏref (t) − ω(t)ẋref (t) − cy(t)

ϕ̈ref − A33 (ω(t)) ϕ̇ref (t) − cϕ(t)

⎞

⎠

In this way, most of the trajectories that are of interest in mobile robot applications
can be obtained, e.g. polynomials, conic and polygonal trajectories.

8.4.2.4 Design of the FTC Scheme Using a Switching Framework

When the polytopic conditions presented in Sect. 2.5 are applied to some polytopic
approximation of the four wheeled omnidirectional mobile robot quasi-LPV model

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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(8.83), it is found that a solution does not exist due to the loss of controllability
occurring for θd

3 = θd
4 = 0, values for which the input matrix becomes:

Bθd
3=θd

4=0 =
(

O5×1 O5×1 O5×1 O5×1

B3Ts B3Ts B3Ts B3Ts

)
(8.87)

Due to the fact that the sets described by the polytopic approximations are con-
vex, it is straightforward that any polytopic approximation of the admissible values
for θd

3 (k) = sin (ϕ(k)) Ts and θd
4 (k) = cos (ϕ(k)) Ts will contain the origin, i.e. the

singularity (8.87) of the input matrix.
However, this problem can be avoided using a switching LPV framework, by

splitting the subset of the parameter space generated by θd
3 and θd

4 in more regions,
such that in each region the resulting polytopic approximation does not include the
origin.

More specifically, the (quasi-)LPV error system (8.5) is modified by including a
switching part, as follows:

σ.e(τ ) = Aξ (θ(τ )) e(τ ) + Bξ (θ(τ ))�uc(τ )

with ξ = 1 ∀θ ∈ �1, ξ = 2 ∀θ ∈ �2, . . ., ξ = Z ∀θ ∈ �Z , where �1, . . . , �z are
subsets of the varying parameter space �, such that � = �1 ∪ �2 ∪ · ∪ �Z . In each
subset �ξ , ξ = 1, . . . , Z , the system is described by a polytopic combination of
vertex. Then, the error-feedback control law is chosen to be:

�uc(τ ) = Kξ (θ(τ )) e(τ )

and the virtual actuator reconfiguration structure is expressed as:

�u(τ ) = Nξ

(
θ(τ ), f̂ (τ )

) (
�uc(τ ) − Mξ (θ(τ )) xv(τ )

)

σ.xv(τ ) =
(

Aξ (θ(τ )) + B∗
ξ (θ(τ )) Mξ (θ(τ ))

)
xv(τ ) +

(
Bξ (θ(τ )) − B∗

ξ (θ(τ ))
)

�uc(τ )

with:
Nξ

(
θ(τ ), f̂ (τ )

)
= Bξf

(
θ(τ ), f̂ (τ )

)
B (θ(τ ))

Bξf (θ(τ ), f (τ )) = Bξ (θ(τ )) F (f (τ ))

B∗
ξ (θ(τ )) = Bξf

(
θ(τ ), f̂ (τ )

)
Nξ

(
θ(τ ), f̂ (τ )

)

Then, by using a common fixed Lyapunov function, the design conditions appear to
be only a slight modification of the ones provided in Sect. 2.5.

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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Remark: In general, other Lyapunov functions, e.g. parameter-dependent ones [27],
could be used for control design of switched LPV systems. However, in the appli-
cation to the four wheeled omnidirectional mobile robot, a common fixed Lyapunov
function has proved to be enough for stabilization and pole clustering in the desired
LMI region D, and it has been preferred due to its simplicity.

In the case of the four wheeled omnidirectional mobile robot, the quadrants have
been considered as regions, withϕ = iπ/2, i ∈ Z being the switching condition such
that:

ξ =

⎧
⎪⎪⎨

⎪⎪⎩

1 if cosϕ ≥ 0 AND sinϕ ≥ 0
2 if cosϕ ≥ 0 AND sinϕ < 0
3 if cosϕ < 0 AND sinϕ < 0
4 if cosϕ < 0 AND sinϕ ≥ 0

A triangular approximation has been used in each region, for the pair {θd
3 , θ

d
4 }, with

the following structure:

(
θd
3

θd
4

)

∈ Co

{(±Ts

0

)
,

(
0

±Ts

)
,

(±Ts

±Ts

)}

where Co denotes the convex set, and whether± is+ or− depends, for each varying
parameter, on the region that is being considered.

The polytopic approximation of the four wheeled omnidirectional mobile robot
error model (8.83) has been obtained by considering Ts = 0.04 s and ω ∈
[−2.5 rad/s, 2.5 rad/s].

The controller and the virtual actuators, one for each wheel, have been designed3

to assure quadratic stability and quadratic D-stability in:

D = {
z ∈ C : Re(z) > 0.40,Re(z)2 + Im(z)2 < 0.99972

}
(8.88)

The LMIs have been solved using the YALMIP toolbox [24] and the SeDuMi
solver [25].

8.4.2.5 Results

Three control experiments have been considered, where the robot started from dif-
ferent initial states:

• Experiment 1

(
x(0) vx(0) y(0) vy(0) ϕ(0) ω(0)

)T = (
1.5 0 0 0 0 0

)T

3The state can be directly estimated from the available sensors, thus no observer has been designed.
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• Experiment 2

(
x(0) vx(0) y(0) vy(0) ϕ(0) ω(0)

)T = (
1 0 0 0 0 0

)T

• Experiment 3

(
x(0) vx(0) y(0) vy(0) ϕ(0) ω(0)

)T = (
0 0 0 0 0 0

)T

and tracked the desired trajectory, a circle centered in the origin of the (x − y)
plane with a radius of 1m and a revolution period of 20 s, generated from the initial
reference state:

(
xref(0) v

ref
x (0) yref(0) v

ref
y (0) ϕref (0) ωref (0)

)T = (
1 0 0 π

10 0 π
10

)T

The considered fault scenario is a total loss of the first wheel motor starting from
time t = 20 s:

f0(t) =
{
1 if t < 20 s
0 if t ≥ 20 s

Figure8.18 shows the tracking of the desired circular trajectory in the (x − y) plane
for Experiment 1, obtained in a simulation environment. It can be seen that, in the
case where the proposed FTC technique is not applied, the robot trajectory deviates
from the reference trajectory after the fault appears. On the other hand, adding the
virtual actuator to the control loop increases the tracking performance of the robot.
Table8.4 resumes the mean squared errors for the trajectory tracking in all the three
considered experiments, obtained in a simulation environment. The improvement
brought by the proposed FTC strategy on the tracking performance can be seen
clearly in all the considered experiments.

Fig. 8.18 Tracking of the
desired circular trajectory:
(x − y) plane (Simulation 1).
© 2014 IEEE. Reprinted,
with permission, from: D.
Rotondo, V. Puig, F. Nejjari,
J. Romera. A fault-hiding
approach for the switching
quasi-LPV fault tolerant
control of a four wheeled
omnidirectional mobile
robot. IEEE Transactions on
Industrial Electronics,
62(6):3932–3944, 2015
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Table 8.4 Mean squared errors without and with FTC (simulation). ©2014 IEEE. Reprinted, with
permission, from: D. Rotondo, V. Puig, F. Nejjari, J. Romera. A fault-hiding approach for the
switching quasi-LPV fault tolerant control of a four wheeled omnidirectional mobile robot. IEEE
Transactions on Industrial Electronics, 62(6):3932-3944, 2015

e21 e22 e23 e24 e25 e26
Sim.1 without FTC 0.024 0.004 0.022 0.003 1.438 0.025

Sim.1 with FTC 0.007 0.001 0.002 0.001 0.297 0.016

Sim.2 without FTC 0.018 0.003 0.022 0.003 1.440 0.029

Sim.2 with FTC 0.001 0.000 0.001 0.001 0.291 0.020

Sim.3 without FTC 0.037 0.007 0.020 0.003 1.440 0.027

Sim.3 with FTC 0.021 0.004 0.002 0.001 0.295 0.023

Fig. 8.19 Tracking of the
desired circular trajectory:
(x − y) plane (Experiment
1). ©2014 IEEE. Reprinted,
with permission, from: D.
Rotondo, V. Puig, F. Nejjari,
J. Romera. A fault-hiding
approach for the switching
quasi-LPV fault tolerant
control of a four wheeled
omnidirectional mobile
robot. IEEE Transactions on
Industrial Electronics,
62(6):3932–3944, 2015
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Figures8.19, 8.20 and 8.21 show experimental results for Experiment 1, while
Table8.5 resumes the mean squared errors for the trajectory tracking in all the three
considered experiments. The results demonstrate that the omnidirectional mobile
robot is able to operate under a severe fault occurrence, e.g. the total loss of one
motor, if an appropriate fault-hiding strategy is implemented.

Figures8.19 and 8.20 show the tracking of the desired circular trajectory in the
(x − y) plane and a comparison between the system states and the reference ones.
When the proposed FTC strategy is applied, all the system states go to the reference
ones, i.e. the tracking errors go to zero, except for a steady-state error in the ϕ angle.
The addition of an integral action could eliminate such error, even though at the
expense of a probable decrease in the system performance, as well as the appearance
of the need to introduce anti-windupmechanisms to avoid undesired effects due to the
motor saturation nonlinearities. Finally, in Fig. 8.21, the control inputs are presented.
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Fig. 8.20 Trackingof the desired circular trajectory: states (Experiment 1).©2014 IEEE.Reprinted,
with permission, from: D. Rotondo, V. Puig, F. Nejjari, J. Romera. A fault-hiding approach for the
switching quasi-LPV fault tolerant control of a four wheeled omnidirectional mobile robot. IEEE
Transactions on Industrial Electronics, 62(6):3932–3944, 2015
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Fig. 8.21 Tracking of the desired circular trajectory: inputs (Experiment 1). ©2014 IEEE.
Reprinted, with permission, from: D. Rotondo, V. Puig, F. Nejjari, J. Romera. A fault-hiding
approach for the switching quasi-LPV fault tolerant control of a four wheeled omnidirectional
mobile robot. IEEE Transactions on Industrial Electronics, 62(6):3932–3944, 2015
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Table 8.5 Mean squared errors without and with FTC (experimental). ©2014 IEEE. Reprinted,
with permission, from: D. Rotondo, V. Puig, F. Nejjari, J. Romera. A fault-hiding approach for the
switching quasi-LPV fault tolerant control of a four wheeled omnidirectional mobile robot. IEEE
Transactions on Industrial Electronics, 62(6):3932–3944, 2015

e21 e22 e23 e24 e25 e26
Exp.1 without FTC 0.110 0.017 0.081 0.016 7.284 0.259

Exp.1 with FTC 0.009 0.001 0.002 0.001 2.023 0.014

Exp.2 without FTC 0.048 0.006 0.038 0.010 1.814 0.158

Exp.2 with FTC 0.006 0.001 0.004 0.002 3.630 0.024

Exp.3 without FTC 0.085 0.015 0.051 0.012 1.757 0.153

Exp.3 with FTC 0.024 0.004 0.003 0.002 3.417 0.026

It can be seen that the control inputs are such that all the motors are working in their
linear regions. Moreover, under fault occurrence, the effect of the first wheel on the
system is redistributed among the remaining wheels to achieve fault tolerance.

8.5 Conclusions

In this chapter, anFTCstrategy based onmodel reference control and virtual actuators
has been proposed for LPV systems subject to actuator faults. The proposed FTC
strategy adapts the reference model to the faults and utilizes the virtual actuator
technique in order to recover the nominal stability and behavior of the error model,
with some minimum or graceful performance degradation.

The overall control loop is made up by an LPV error feedback controller, an LPV
error observer and the LPV virtual actuator. It has been shown that the principle
of separation holds, since there exists a similarity transformation that brings the
augmented model to a block-triangular form. Hence, the stability and the satisfaction
of the desired specifications can be assessed separately.

The potential and performance of the proposed approach have been demonstrated
with two different examples: a twin rotor MIMO system and a four wheeled omni-
directional mobile robot, showing promising results.

Future research on this topic will aim at improving the robustness of the proposed
FTC strategy against model uncertainties and errors in the fault estimation.
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Chapter 9
Fault Tolerant Control of Unstable LPV
Systems Subject to Actuator Saturations
and Fault Isolation Delay

The content of this chapter is based on the following works:

• [1] D. Rotondo, J.-C. Ponsart, D. Theilliol, F. Nejjari, V. Puig. A virtual actuator
approach for the fault tolerant control of unstable linear systems subject to actuator
saturation and fault isolation delay. Annual Reviews in Control, 39:68–80, 2015.

• [2]D. Rotondo, J.-C. Ponsart, D. Theilliol, F. Nejjari, V. Puig. Fault tolerant control
of unstable LPV systems subject to actuator saturations using virtual actuators. In
Proceedings of the 9th IFAC Symposium SAFEPROCESS-2015: Fault Detection,
Supervision and Safety for Technical Processes, pages 18–23, 2015.

• [3] D. Rotondo, J.-C. Ponsart, F. Nejjari, D. Theilliol, V. Puig. Virtual actuator-
based FTC for LPV systems with saturating actuators and FDI delays. In
Proceedings of the 3rd Conference on Control and Fault-Tolerant Systems, pages
831–837, 2016.

9.1 Introduction

Real-world actuators are always subject to limits in the magnitude of the manipu-
lated input. The control techniques that ignore these actuator limits can be affected
by degraded performance, andmay even lead to instability of the closed-loop system.
Hence, recent research has focused on the analysis and synthesis of control systems
with saturating actuators [4, 5]. The developed solutions mainly use two approaches:
the two-step paradigm, also called anti-windup compensation [6, 7], where a con-
troller which does not explicitly take into account the saturation is designed, and
then a compensator is added to handle the saturation constraints; and the one-step
paradigm, also called direct control design [8, 9], where the input constraints are
taken into account at the controller design stage.

© Springer International Publishing AG 2018
D. Rotondo, Advances in Gain-Scheduling and Fault Tolerant Control Techniques,
Springer Theses, https://doi.org/10.1007/978-3-319-62902-5_9
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It is important to consider the actuator saturation constraints in the application
of an FTC strategy, especially when actuator faults are considered. In fact, fault tol-
erance against actuator faults is usually achieved redistributing, in some way, the
control effort corresponding to the faulty actuators among the remaining healthy
ones. This redistribution may lead to saturation of both the faulty and the healthy
actuators. Thus, if this fact is neglected in the FTC systemdesign, severe performance
degradation or instability may occur [10]. Some recent works have considered the
problemof FTC systems subject to actuator saturations. [11] show that failures result-
ing from loss of actuator effectiveness in systems with input saturations can be dealt
with in the context of absolute stability theory framework. [12] present two kinds
of fault tolerant controllers (fixed-gain and adaptive) for singular systems subject
to actuator saturation. Both of these two controllers are in the form of saturation
avoidance feedback. [13] develop a fault tolerant control scheme that can achieve
attitude tracking control objective for a flexible spacecraft in the presence of partial
loss of actuator effectiveness fault and actuator saturation using sliding mode con-
trol. The solution proposed by [14] avoids to use the failed control actuators in the
presence of a fault. Also, concepts such as graceful performance degradation [15,
16] and reference reconfiguration [17, 18] have been introduced in the context of
FTC of systems subject to actuator saturations. In Chap. 8, it has been shown that,
by embedding the saturations in the varying parameter vector, the LPV paradigm
can be used to deal with them. However, the proposed approach fails when applied
to open-loop unstable systems, for which special care should be taken. In spite of
the importance of developing a valid FTC strategy for unstable systems subject to
actuator saturations, this problem has been considered only by a few works. [19]
has proposed an LTV fault tolerant compensator, using the relevant ability of LTV
compensators to achieve simultaneous stabilization of several systems. An active
FTC scheme based on gain-scheduled H∞ control and neural network for unstable
systems has been proposed by [20]. Finally, [21] have developed a robust fault tol-
erant scheme based on variable structure control for an orbiting spacecraft with a
combination of unknown actuator failures and input saturation.

However, even though an active FTC system can react to faults more effectively
than a passive FTC system, passive FTC techniques are preferred to the active ones
when dealing with unstable systems [10, 19, 21]. In fact, the active FTC strategies
require an FDI module, and when unstable systems are considered, the time delay
between the appearance of the fault and the moment in which the active strategy
is activated (at the fault detection or isolation time) may destabilize the system.
According to the author’s knowledge, [20] is the only work dealing with active FTC
for unstable systems. However, in this reference, the issues arising from the FDI time
delay were not considered. Also, another issue that has not been considered is the
fact that, when dealing with unstable systems, the stability properties guaranteed by
the control design are regional, i.e. hold only for inputs up to some size or for initial
states inside a region of the state space [22]. The fault appearance, and the subse-
quent control system reconfiguration brought by the active FTC strategies change
the regional stability properties of the control system, so it is necessary to take into
account this fact explicitly when the system is subject to actuator saturations.

http://dx.doi.org/10.1007/978-3-319-62902-5_8
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The main contribution of this chapter consists in the design of an active FTC strat-
egy for unstable LPV systems subject to actuator saturation. Under the assumption
that a nominal controller has been already designed using the direct control design
paradigm to take into account the saturations, virtual actuators are added to the con-
trol loop for achieving fault tolerance against a predefined set of possible faults. In
particular, faults affecting the actuators and causing a change in the system input
matrix are considered. The design of the virtual actuators is performed in such a
way that, if at the fault isolation time the closed-loop system state is inside a region
defined by a value of the Lyapunov function, the state trajectory will converge to zero
despite the appearance of the faults. Also, it is shown that it is possible to obtain some
guarantees about the tolerated delay between the fault occurrence and its isolation.
Moreover, the design of the nominal controller can be performed so as to maximize
the tolerated delay.

It should be pointed out that, although the Hammerstein-Wiener formulation of
the virtual actuators can be used to deal with the saturations, the approach proposed in
this chapter can be distinguished from the one introduced in [23] since less restrictive
assumptions are required. In particular, some delay in the fault isolation is accepted,
and the system matrix could be non-Hurwitz. In fact, although applicable to stable
systems, the approach proposed hereafter focuses on the unstable ones.

9.2 Preliminaries

Consider the autonomous nonlinear system:

σ.x(τ ) = g (x(τ )) (9.1)

where x ∈ R
nx is the state and g denotes a nonlinear function. For x(0) = x0 ∈ R

nx ,
let us denote the trajectory of the system (9.1) as ψ(τ , x0). Then, the domain of
attraction of the origin is:

S :=
{
x0 ∈ R

nx : lim
τ→+∞ ψ(τ , x0) = 0

}
(9.2)

Let P � 0 and denote:

E(P, ρ) = {
x0 ∈ R

nx : xTPx ≤ ρ
}

(9.3)

and let V (x(τ )) = x(τ )TPx(τ ) be a candidate Lyapunov function. The ellip-
soid E(P, ρ) is said to be contractively invariant if σ.V (x(τ )) < 0 for all x ∈
E(P, ρ)\{0}. Clearly, if E(P, ρ) is contractively invariant, it is inside the domain
of attraction S [24].
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Remark: As stated in [25], there is a tradeoff between the degree of approximation
of the domain of attraction and the simplicity of the representation. In the literature,
several shapes for determining contractively invariant regions have been considered,
e.g. polytopes, but ellipsoids are widely used due to their simplicity. For this reason,
ellipsoids have been considered in this chapter, even though the general idea behind
the developed theory could be adapted to more complex shapes, at the expense of
increasing the complexity of the approach.
Now, let us consider the following LPV system subject to actuator saturations:

σ.x(τ ) = A (θ(τ )) x(τ ) + Bsat (u(τ )) (9.4)

y(τ ) = Cx(τ ) (9.5)

where x ∈ R
nx is the state, u ∈ R

nu is the control input, y ∈ R
ny is the measured

output, A (θ(τ )) ∈ R
nx×nx is the parameter varying statematrix,whose values depend

on the vector θ(τ ) ∈ � ⊂ R
nθ , B ∈ R

nx×nu is the input matrix, C ∈ R
ny×nx is the

output matrix, and sat : Rnu → R
nu is the saturation function, defined as in (8.28):

sat (u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

sat1(u1)
...

sat j (u j )
...

satnu (unu )

⎞
⎟⎟⎟⎟⎟⎟⎠

sat j (u j ) =

⎧⎪⎨
⎪⎩

uMAX
j

u j

−uMAX
j

i f u j > uMAX
j

i f
∣∣u j

∣∣ ≤ uMAX
j

i f u j < −uMAX
j

(9.6)

For an output feedback law u(τ ) = h (y(τ )) = h (Cx(τ )), let us define L(u, uMAX )

the region of the state space in which the actuators are not saturated.
Let us consider the preliminary problem of designing an LPV dynamic output

feedback controller for the system (9.4)–(9.5):

σ.xc(τ ) = Ac (θ(τ )) xc(τ ) + Bc (θ(τ )) y(τ ) (9.7)

uc(τ ) = Cc (θ(τ )) xc(τ ) + Dc (θ(τ )) y(τ ) (9.8)

where xc ∈ R
nx is the controller state and uc ∈ R

nu is the controller output, such that
if u(τ ) = uc(τ ), then E(P, 1) ⊆ S and E(P, 1) ⊆ L(u, uMAX ), i.e. the controller
will be such that for any initial closed-loop state vector satisfying:

(
x(0)T xc(0)T

)
P

(
x(0)
xc(0)

)
≤ 1 (9.9)

the control input never saturates, and the closed-loop state trajectory converges to
the origin. For the sake of simplicity, only the CT case will be considered in the
following.

http://dx.doi.org/10.1007/978-3-319-62902-5_8
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In order to achieve this objective, the following theorem is proposed, obtained as
an extension of a similar theorem presented for the LTI case in [26].

Theorem 9.1 (Design of a non-saturating stabilizing LPV output feedback con-
troller) Let X,Y ∈ S

nx×nx , F(θ) ∈ R
nx×ny , K (θ) ∈ R

nu×nx and L(θ) ∈ R
nu×ny be

such that:
He {X A(θ) + F(θ)C} ≺ O (9.10)

He {A(θ)Y + BK (θ)} ≺ O (9.11)

⎛
⎜⎝

X I CL( j)(θ)
T

I Y K( j)(θ)
T

L( j)(θ)C K( j)(θ)
(
uMAX
j

)2
⎞
⎟⎠ � O

∀ j = 1, . . . , nu
∀θ ∈ �

(9.12)

Then, the controller (9.7)–(9.8), with τ = t and matrices calculated as:

(
Ac(θ) Bc(θ)
Cc(θ) Dc(θ)

)
=
(
Z XB
O I

)−1

· · ·

· · ·
(− (A(θ) + BL(θ)C)T − X A(θ)Y F(θ)

K (θ) L(θ)

)(−Y O
CY I

)−1 (9.13)

Z = X − Y−1 (9.14)

is such that, for the closed-loop system obtained with u(t) = uc(t), E(P, 1) ⊆ S and
E(P, 1) ⊆ L(u,α) where:

P =
(
X Z
Z Z

)
(9.15)

Proof The proof follows the reasoning developed in [26] in the case of LTI systems,
and is based on demonstrating that if (9.10)–(9.12) hold and the controller matrices
are calculated as in (9.13), then E(P, 1) is contractively invariant, i.e. by defining the
quadratic Lyapunov function V (x(t)) = x(t)TPx(t), it is obtained that V̇ (x(t)) < 0
for all x ∈ E(P, ρ)\{0}. Since E(P, 1) is contractively invariant, it is inside the
domain of attraction S [24] such that the stability is guaranteed over the whole set
of possible values of θ. �

The conditions provided by Theorem 9.1 rely on the satisfaction of infinite con-
straints, due to the fact that (9.10)–(9.12) should hold for all the possible values of
θ. However, by considering a polytopic approach, as already described in Chap.2,
(9.10)–(9.12) can be transformed in a finite number of LMIs, as shown by the fol-
lowing corollary.

Corollary 9.1 (Design of a non-saturating stabilizing polytopic LPV output feed-
back controller)Assume that the LPV system (9.4) is polytopic, i.e. thematrix A (θ(t))
can be written as:

http://dx.doi.org/10.1007/978-3-319-62902-5_2


220 9 Fault Tolerant Control of Unstable LPV Systems …

A (θ(t)) =
N∑
i=1

μi (θ(t)) Ai (9.16)

with coefficients μi (θ(t)) such that (2.5) holds:

N∑
i=1

μi (θ(τ )) = 1, μi (θ(τ )) ≥ 0, ∀i = 1, . . . , N , ∀θ ∈ � (9.17)

and let X,Y ∈ S
nx×nx , Fi ∈ R

nx×ny , Ki ∈ R
nu×nx and Li ∈ R

nu×ny , i = 1, . . . , N,
be such that:

He {X Ai + FiC} ≺ O ∀i = 1, . . . , N (9.18)

He {AiY + BKi } ≺ O ∀i = 1, . . . , N (9.19)

⎛
⎜⎝

X I CLT
i( j)

I Y K T
i( j)

Li( j)C Ki( j)

(
uMAX
j

)2
⎞
⎟⎠ � O

∀i = 1, . . . , N
∀ j = 1, . . . , nu

(9.20)

Then, the controller (9.7)–(9.8), with:

(
Ac (θ(t)) Bc (θ(t))
Cc (θ(t)) Dc (θ(t))

)
=

N∑
i=1

μi (θ(t))

(
Ac,i Bc,i

Cc,i Dc,i

)
(9.21)

and vertex controller gains calculated as:

(
Ac,i Bc,i

Cc,i Dc,i

)
=
(
Z XB
O I

)−1 (− (Ai + BLiC)T − X AiY Fi
Ki Li

)(−Y O
CY I

)

(9.22)

with Z defined as in (9.14) is such that, for the closed-loop system obtained with
u(t) = uc(t), E(P, 1) ⊆ S and E(P, 1) ⊆ L(u, uMAX ) with P defined as in (9.15).

Proof It follows from the basic property of matrices [27] that any linear combination
of negative (positive) definite matrices with non-negative coefficients, whose sum is
positive, is negative (positive) definite. Hence, using the coefficients μi (θ(t)), taking
into account (9.17), (9.10)–(9.12) follow directly from (9.18)–(9.20). �

Remark: The shape of the ellipsoidal invariant set can be fixed, or forced to be
optimized in some desired sense, e.g. optimizing det (X) or trace(X), during the
application of Theorem 9.1/Corollary 9.1. However, this optimization could lead to
an ellipsoid that favors some state variables more than the others, which may be
undesired in some situations.

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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Also, the following lemmagives a constraint on the scalar product of two vectors [28].

Lemma 9.1 (Magnitude of the scalar product of two vectors) Given two vectors m
and x, the existence of Q � O such that:

(
Q−1 Q−1m

mTQ−1 γ2

)
� O (9.23)

implies that |mTx | ≤ γ ∀x ∈ E(Q, 1).

Proof This lemma is a direct consequence of applying Schur complements [29] to
(9.23). �

9.3 Problem Statement

Let us consider the following LPV system subject to actuator saturations:

ẋ(t) = A (θ(t)) x(t) + B(t)sat (u(t)) (9.24)

y(t) = Cx(t) (9.25)

with:

B(t) =
{
B

B f ∈ B(1)
f , . . . , B

(n f )

f

t < t f
t ≥ t f

(9.26)

where B ∈ R
nx×nu and the corresponding LPV system obtained from (9.24)–(9.25),

that corresponds to (9.4)–(9.5)will be referred to asnominal inputmatrix andnominal
system, respectively, B f ∈ R

nx×nu and the corresponding LPV system obtained from
(9.24)–(9.25) will be referred to as faulty input matrix and faulty system, respectively,
t f ∈ R

+ is the fault occurrence time and the function sat (u(t)) is defined as in (9.6).

The n f matrices B(1)
f , . . . , B

(n f )

f ∈ R
nx×nu are such that:

rank
(
B(h)

f

)
< rank (B) (9.27)

and the pairs: (
A(θ), B(h)

f

(
B(h)

f

)†
B

)
(9.28)

are stabilizable, ∀θ ∈ � and ∀h = 1, . . . , n f .
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Problem 1 Assume that an output feedback controller (9.7)–(9.8) has been designed
for the nominal system using Theorem 9.1, such that E(P, 1) ⊆ S and E(P, 1) ⊆
L(u, uMAX ), and let us consider the control law:

u(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uc(t)
u(1)

f (t)
...

u
(n f )

f (t)

t < tI
t ≥ tI ,B(t) = B(1)

f
...

t ≥ tI ,B(t) = B
(n f )

f

(9.29)

where tI ∈ R
+, tI ≥ t f is the fault isolation time, that is assumed to be provided by

an FDI module. Design u(1)
f (t), . . . , u

(n f )

f (t) and maximize ν f ∈]0, 1] such that, for
all t ≥ tI , E(P, ν f ) is contractively invariant for the system (9.24)–(9.25) with the
control law (9.29), and E(P, ν f ) ⊆ L(u, uMAX ). �


In other words, in Problem 1, it is wished to design u(1)
f (t), . . . , u

n f

f (t) and max-
imize the value of ν f such that it is guaranteed that if at the fault isolation time tI :

(
x(tI )T xc(tI )T

)
P

(
x(tI )
xc(tI )

)
≤ ν f (9.30)

then the control input will not saturate for all t ≥ tI , and the state trajectory will
converge to the origin.

It is clear that under the assumption of instantaneous fault isolation, if the closed-
loop state trajectory has reached E(P, ν f ), the solution of Problem 1 guarantees the
state trajectory convergence under fault occurrence. However, this is not the case
when there is a delay in the fault isolation, i.e. tI − t f > 0. In fact, between the
occurrence of the fault, that changes the system input matrix from B to some B(h)

f ,

and the fault isolation time, when the appropriate control u(h)
f begins to be applied,

there is a time intervalwhere the system is driven by the nominal control uc(t). During
this period, there is no guarantee that, if the system has reached E(P, ν f ) at time t f , it
will stay inside this region until tI . This fact can lead to severe consequences, because
if the state trajectory leaves E(P, ν f ) before tI , the system could be destabilized [20].

Given
[
x(t f )T xc(t f )T

]T ∈ E(P, ν f ), let us define, for the faulty system (9.24)–

(9.25) withB(t) = B(h)
f , h = 1, . . . , n f , under control law u(t) = uc(t), the critical

fault isolation time
�

t
(h)

I

(
x(t f ), xc(t f )

) ≥ t f as the time instant such that:

⎡
⎢⎢⎣

x

(
�

t
(h)

I

)

xc

(
�

t
(h)

I

)
⎤
⎥⎥⎦ ∈ E(P, ν f ) (9.31)
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but: ⎡
⎢⎢⎣

x

(
�

t
(h)

I + tε

)

xc

(
�

t
(h)

I + tε

)
⎤
⎥⎥⎦ /∈ E(P, ν f ) (9.32)

for all tε > 0.
Hence, it is interesting to solve the following problem, that improves the overall

system robustness against the time isolation delay.

Problem 2 Find, among the output feedback controllers (9.7)–(9.8) that can be
obtained from Theorem 9.1, the one that maximizes minh=1,...,n f t̂

(h)
I

(
x(t f ), xc(t f )

)
for all

[
x(t f )T xc(t f )T

]T ∈ E(P, ν f ), where t̂
(h)
I

(
x(t f ), xc(t f )

)
is an estimation of

�

t
(h)

I

(
x(t f ), xc(t f )

)
.

Remark: The critical fault isolation time indicates that the guarantees of non-
saturating control input and state trajectory convergence to the origin given by the

solution of Problem 1 are lost if tI >
�

t
(h)

I

(
x(t f ), xc(t f )

)
. It is worth highlighting that

the conditions given in this chapter are sufficient, as always happens when using Lya-
punov theory results.Hence, it is possible that the systemexhibits state trajectory con-

vergence to zero with non-saturating control input even if tI >
�

t
(h)

I

(
x(t f ), xc(t f )

)
.

9.4 Design of Non-saturating Stabilizing LPV Virtual
Actuators

The solution to Problem 1 proposed in this chapter relies on LPV virtual actuators,
with a structure similar to the one presented in Chap.8, but with the remarkable
difference that the reference model is not used. In particular, the considered LPV
virtual actuators are as follows:

ẋ (h)
v (t) = (

A (θ(t)) + B(h)
∗ M (h) (θ(t))

)
x (h)

v (t) + (
B − B(h)

∗
)
uc(t) (9.33)

u(h)
f (t) = N (h)

(
uc(t) − M (h) (θ(t)) x (h)

v (t)
)

(9.34)

where h = 1, . . . , n f , x (h)
v are the virtual actuators states with x (h)

v (tI ) = 0, M (h)

(θ(t)) ∈ R
nu×nx are the virtual actuators gains to be designed, and the matrices N (h)

and B(h)∗ are given by:

N (h) =
(
B(h)

f

)†
B (9.35)

B(h)
∗ = B(h)

f N (h) = B(h)
f

(
B(h)

f

)†
B (9.36)

http://dx.doi.org/10.1007/978-3-319-62902-5_8
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Fig. 9.1 Overall fault tolerant control scheme. After [1]

Also, in order to obtain the fault-hiding characteristic, the output equation (9.25) is
slightly changed after tI , as follows:

y(t) = C
(
x(t) + x (h)

v (t)
)

t ≥ tI , B(t) = B(h)
f (9.37)

The overall fault tolerant control scheme, made up by the system (9.24) with output
equation (9.37) and control law (9.29), the output feedback controller (9.7)–(9.8)
and the virtual actuators (9.33)–(9.34), is shown in Fig. 9.1 (the dependence of some
matrices on the vector of varying parameters θ(t) has been omitted).

Then, the following theoremprovides the conditions to design the virtual actuators
with guarantees that, if at the fault isolation time tI , the closed-loop system state is
inside E(P, ν f ), the state trajectory will converge to zero despite the change of the
input matrix from B to B(h)

f due to the fault.

Theorem 9.2 (Design of non-saturating stabilizing LPV virtual actuators) Let
X−1

va ∈ S
nx×nx and �(h) (θ) ∈ R

nu×nx , h = 1, . . . , n f be such that:

He

{(
ν f Acl(θ)P−1 O2nx×nx

ν f A
(h)∗ (θ)P−1 A(θ)X−1

va + B(h)∗ �(h)(θ)

)}
≺ O (9.38)
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⎛
⎜⎜⎝

X−1
va �

(h)

(k) (θ)
T

�
(h)

(k) (θ)

(
α j∥∥∥N (h)
( j)

∥∥∥−μ f

)2

n(h)

ũ

⎞
⎟⎟⎠ � O

j = 1, . . . , nu∥∥∥N (h)

( j)

∥∥∥ �= 0
(9.39)

hold ∀θ ∈ �, where:

Acl(θ) =
(
A(θ) + BDc(θ)C BCc(θ)

Bc(θ)C Ac(θ)

)
(9.40)

A(h)
∗ (θ) =

((
B − B(h)∗

)
Dc(θ)C

(
B − B(h)∗

)
Cc(θ)

)
(9.41)

μ f = max
E(P,ν f )

‖uc‖ (9.42)

n(h)

ũ is the number of non-zero elements in N (h)

( j) , and k in (9.39) takes values corre-

sponding to the indices of the non-zero elements in N (h)

( j) . Then, if the virtual actuators

gains M (h)(θ) in (9.33)–(9.34) are calculated as M (h)(θ) = �(h)(θ)Xva, E(P, ν f ) is
contractively invariant for the system (9.24)–(9.25) with the control law (9.29), and
E(P, ν f ) ⊆ L(u,α), ∀t ≥ tI .

Proof When the system is working in the region L(u,α), there exists a similarity
transformation that transforms the closed-loop systemmade up by the system (9.24),
with output equation (9.37) and control law (9.29), the nominal controller (9.7)–(9.8),
and the virtual actuator (9.33)–(9.34), in an equivalent block-triangular form:

(
ẋ (h)
cl (t)

ẋ (h)
v (t)

)
=
(

Acl(θ) O2nx×nx

A(h)∗ (θ) A(h)
v (θ)

)(
x (h)
cl (t)

x (h)
v (t)

)
(9.43)

where:

x (h)
cl (t) =

(
x (h)

w (t)

xc(t)

)
(9.44)

x (h)
w (t) = x(t) + x (h)

v (t) (9.45)

A(h)
v (θ) = A(θ) + B(h)

∗ M (h)(θ) (9.46)

By considering:

V2(t) =
(
x (h)
cl (t)

x (h)
v (t)

)T ( P
ν f

O2nx×nx

Onx×2nx Xva

)(
x (h)
cl (t)

x (h)
v (t)

)
(9.47)
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with Xva � 0 to assess the stability of (9.43), the following Lyapunov inequality is
obtained:

He

{( P
ν f

O2nx×nx

Onx×2nx Xva

)(
Acl(θ) O2nx×nx

A(h)∗ (θ) A(h)
v (θ)

)}
≺ O (9.48)

that is equivalent to its dual version [30]:

He

{(
Acl(θ) O2nx×nx

A(h)∗ (θ) A(h)
v (θ)

)(
ν f P−1 O2nx×nx
Onx×2nx X−1

va

)}
≺ O (9.49)

that can be brought to the LMI form (9.38) by considering �(h)(θ) = M (h)(θ)X−1
va .

Provided that, if (9.38) holds, then the convergence of the closed-loop trajectories
of (9.43) to zero is assured as long as the inputs u do not saturate, the remaining of
the proof will demonstrate that, if the LMIs (9.39) hold and:

(
x(tI )T xc(tI )T

)T ∈ E (P, ν f
)

(9.50)

then the additional effort brought by the virtual actuator will not cause the saturation
of the control inputs u.

To this aim, since (9.34) is equivalent to:

u(h)
f, j (t) = N (h)

( j)

(
uc(t) − M (h)(θ)x (h)

v (t)
)

(9.51)

where u(h)
f, j , j = 1, . . . , nu , denotes the j-th input, the condition of non-saturation

can be written as:
∣∣∣u(h)

f, j (t)
∣∣∣ =

∣∣∣N (h)
( j)

(
uc(t) − M(h)(θ)x(h)

v (t)
)∣∣∣ ≤

∥∥∥N (h)
( j)

∥∥∥ (‖uc(t)‖ +
∥∥∥M(h)(θ)x(h)

v (t)
∥∥∥)

≤
∥∥∥N (h)

( j)

∥∥∥ (μ f +
∥∥∥M(h)(θ)x(h)

v (t)
∥∥∥) ≤ αi

(9.52)
that leads to: ∥∥∥N (h)

( j)

∥∥∥ (μ f + ∥∥M (h)(θ)x (h)
v (t)

∥∥) ≤ α j (9.53)

For values of j such that
∥∥∥N (h)

( j)

∥∥∥ = 0, (9.53) is obviously satisfied. On the other hand,

when
∥∥∥N (h)

( j)

∥∥∥ �= 0, (9.53) becomes:

∥∥M (h)(θ)x (h)
v

∥∥ ≤ α j∥∥∥N (h)

( j)

∥∥∥ − μ f (9.54)

At the expense of introducing conservativeness, it is possible to transform (9.54),
whose left-hand side concerns the norm of a vector, into a condition about the norms
of scalars. This is done by taking advantage of the fact that only the rows of M (h)(θ)
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corresponding to non-zero elements of N (h)

( j) will contribute to u(h)
f, j in (9.51). By

denoting these rows as M (h)
k (θ), and the number of non-zero elements of N (h)

( j) as

n(h)

ũ , (9.54) can be replaced by:

√√√√√
nu∑

k=1,N (h)

( j)k �=0

∣∣∣M (h)
k (θ)x (h)

v

∣∣∣2 ≤ α j∥∥∥N (h)

( j)

∥∥∥ − μ f (9.55)

that holds if:

∣∣∣M (h)
k (θ)x (h)

v

∣∣∣ ≤

(
α j∥∥∥N (h)

( j)

∥∥∥ − μ f

)
√
n(h)

ũ

k = 1, . . . , nu
N (h)

( j)k �= 0
(9.56)

Applying Lemma 9.1, it is obtained that the existence of Q � O such that:

⎛
⎜⎜⎝

Q−1 Q−1
(
M (h)

(k) (θ)
)T

M (h)

(k) (θ)Q
−1

(
α j∥∥∥N (h)
( j)

∥∥∥−μ f

)2

n(h)

ũ

⎞
⎟⎟⎠ � O

k = 1, . . . , nu
N (h)

( j)k �= 0
(9.57)

implies that (9.56) holds ∀x (h)
v ∈ E(Q, 1). By choosing Q = Xva , and applying the

change of variable �(h)(θ) = M (h)(θ)X−1
va the LMIs (9.39) are obtained.

Finally, it is needed to demonstrate that if (9.50) holds, then x (h)
v (t) ∈ E(Xva, 1)

∀t ≥ tI . This is straightforward, since (9.50) corresponds to (9.30), that is equiva-
lent to (

x(tI )T xc(tI )T
) P

ν f

(
x(tI )
xc(tI )

)
≤ 1 (9.58)

and, since x (h)
v (tI ) = 0 (see Eq. (9.33)), x(tI ) in (9.58) can be replaced with x (h)

w (tI ),
thus obtaining that V2(tI ) ≤ 1, where V2(t) is defined in (9.47). Due to the fact that
V̇2(t) < 0 ∀t ≥ tI , it follows that x (h)

v (t) ∈ E(Xva, 1). �

By relying on a polytopic representation, it is possible to transform the infinite
number of conditions provided by Theorem 9.2 in a finite number of conditions, as
stated by the following corollary.

Corollary 9.2 (Design of non-saturating stabilizing polytopic LPV virtual actua-
tors) Assume that the matrices A (θ(t)), Ac (θ(t)), Bc (θ(t)), Cc (θ(t)), Dc (θ(t)) are
polytopic as in (9.16) and (9.21), with the coefficients μi (θ(t)) satisfying (9.17), and
that the virtual actuator gain is chosen as:
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M (h) (θ(t)) =
N∑
i=1

μi (θ(t))M
(h)
i (9.59)

and let X−1
va ∈ S

nx×nx and�
(h)
i ∈ R

nu×nx , h = 1, . . . , n f , i = 1, . . . , N, be such that:

He

{(
ν f Acl,i P−1 O2nx×nx

ν f A
(h)
∗,i P

−1 Ai X−1
va + B(h)∗ �

(h)
i

)}
≺ O (9.60)

⎛
⎜⎜⎝

X−1
va

(
�

(h)

i(k)

)T

�
(h)

i(k)

(
α j∥∥∥N (h)
j

∥∥∥−μ f

)2

n(h)

ũ

⎞
⎟⎟⎠ � O

j = 1, . . . , nu∥∥∥N (h)
j

∥∥∥ �= 0
(9.61)

hold ∀i = 1, . . . , N, where:

Acl,i =
(
Ai + BDc,iC BCc,i

Bc,iC Ac,i

)
(9.62)

A(h)
∗,i =

((
B − B(h)∗

)
Dc,iC

(
B − B(h)∗

)
Cc,i

)
(9.63)

μ f is defined as in (9.42), n(h)

ũ is the number of non-zero elements in N (h)

( j) , and k in

(9.61) takes values corresponding to the indices of the non-zero elements in N (h)

( j) .

Then, if the vertex virtual actuators gains in (9.59) are calculated as M (h)
i = �

(h)
i Xva,

E(P, ν f ) is contractively invariant for the system (9.24)–(9.25) with control law
(9.29), and E(P, ν f ) ⊆ L(u,α), ∀t ≥ tI .

Proof It follows the reasoning provided in Corollary 9.1 and thus it is omitted. �

Remark: The feasibility of the conditions (9.38)–(9.39) provided by Theorem 9.2
depends on the value of ν f . The smaller is ν f , the more likely is the feasibility of
(9.38)–(9.39). Notice that, due to the block-triangularity of the state matrix in (9.43),
a necessary condition for the closed-loop stability is that A(h)

v (θ), defined as in (9.46),
is stable. A necessary condition for the existence ofM (h)(θ) such that A(h)

v (θ) is stable

is the stabilizability of the pair
(
A(θ), B(h)∗

)
, which explains why the stabilizability

of the pairs (9.28) ∀θ ∈ � and ∀h = 1, . . . , n f was requested.

Remark: Solving Problem 1 using Theorem 9.2/Corollary 9.2 involves finding μ f as
in (9.42). μ f can be found using optimization algorithms, e.g. the fmincon function
in the Matlab Optimization Toolbox [31]. Due to the linearity of the control input
uc with respect to the states x and xc (see Eq. (9.8)), it is possible to reduce the
inequality constraint given by E(P, ν f ) to an equality constraint, by searching the
maximum of uc on the frontier of E(P, ν f ).
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9.5 Robustness of the Controller Against Fault Isolation
Delays

As a first step to solve Problem 2, let us consider the following theorem, that provides
t̂ (h)
I

(
x(t f ), xc(t f )

)
for all

[
x(t f )T xc(t f )T

]T ∈ E(P, ν f ).

Theorem 9.3 (Estimation of the critical fault isolation time) Let λ(h) ∈ R
+ be such

that:

− 2λ(h)P + He

{
P

(
A(θ) + B(h)

f Dc(θ)C B(h)
f Cc(θ)

Bc(θ)C Ac(θ)

)}
≺ 0 ∀θ ∈ �

(9.64)
and let

[
x(t f )T xc(t f )T

]T = x f ∈ E(P, ν f ). Then:

[
x(t)T xc(t)T

]T ∈ E(P, ν f ) ∀t ∈
[
t f , t̂

(h)
I

(
x(t f ), xc(t f )

)]
(9.65)

with:

t̂ (h)
I

(
x(t f ), xc(t f )

) = t f + 1

2λ(h)
ln

(
ν f

xTf Px f

)
(9.66)

Proof The faulty system (9.24)–(9.25), with B(t) = B(h)
f , together with the out-

put feedback controller (9.7)–(9.8), can be rewritten in the closed-loop autonomous
form as:

(
ẋ(t)
ẋc(t)

)
=
(
A (θ(t)) + B(h)

f Dc (θ(t))C B(h)
f Cc (θ(t))

Bc (θ(t))C Ac (θ(t))

)(
x(t)
xc(t)

)
(9.67)

Let us apply Corollary 2.1 to (9.67) using the region Re(z) < λ(h), that corresponds
to (2.48):

fD(z) = α + βz + βTz∗ = [
αkl + βkl z + βlk z

∗]
k,l∈{1,...,m} (9.68)

with α = −2λ(h) and β = 1, such that (2.65):

α ⊗ P + β ⊗ PA(θ) + βT ⊗ A(θ)TP
= [

αkl P + βkl P A(θ) + βlk A(θ)TP
]
k,l∈{1,...,m} ≺ O ∀θ ∈ �

(9.69)

reads as:

− 2λ(h)P + He

{
P

(
A(θ) + B(h)

f Dc(θ)C B(h)
f Cc(θ)

Bc(θ)C Ac(θ)

)}
≺ 0 (9.70)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
http://dx.doi.org/10.1007/978-3-319-62902-5_2
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Hence, if (9.70) holds, (2.67):

1

2

V̇ (x(t))

V (x(t))
∈ D ∩ R (9.71)

is true for the quadratic function:

V (x(t), xc(t)) = (
x(t)T xc(t)T

)
P
(
x(t)T xc(t)T

)T
(9.72)

that implies:

V (x(t), xc(t)) ≤ V (x f )e
2λ(h)(t−t f ) = xTf Px f e

2λ(h)(t−t f ) (9.73)

By considering the condition V (x(t), xc(t)) ≤ ν f , that defines E(P, ν f ), it is
straightforward to obtain (9.65). �

From (9.66) it can be seen that, to attain a solution to Problem 2, it is necessary to
minimize λ = max

h=1,...,n f

λ(h). Hence, this solution is given by the following corollary,

which is obtained combining Theorems 9.1 and 9.3.

Corollary 9.3 (Design of a robust against fault isolation delay output feedback con-
troller) Let X,Y ∈ S

nx×nx , F(θ) ∈ R
nx×ny , K (θ) ∈ R

nu×nx , L(θ) ∈ R
nu×ny , F (h)(θ)

∈ R
nx×ny and N (h)(θ) ∈ R

nx×nx , h = 1, . . . , n f , correspond to the solution to the
following constrained minimization problem:

min λ (9.74)

subject to (9.10)–(9.12), λ ≥ 0 and:

− 2λ

(
X I
I Y

)
+ He

{(
X A(θ) + F (h)(θ)C N (h)(θ)

A(θ) + B(h)
f L(θ)C A(θ)Y + B(h)

f K (θ)

)}
≺ 0

∀h = 1, . . . , n f
∀θ ∈ �

(9.75)

Then, the output feedback controller (9.7)–(9.8), with matrices calculated as
(9.13)–(9.14) maximizes min

h=1,...,n f

t̂ (h)
I

(
x(t f ), xc(t f )

)
for all

[
x(t f )T xc(t f )T

]T ∈

E (P, ν f
)
, where t̂ (h)

I

(
x(t f ), xc(t f )

)
is the estimation of

�

t
(h)

I

(
x(t f ), xc(t f )

)
obtained

as (9.66) with P defined as in (9.15).

Proof The design condition (9.75) corresponds to the analysis condition (9.64) with
λ = λ(h). In fact, by applying a congruent transformation to (9.64) with:

� =
(
I 0
Y −Y

)
(9.76)

http://dx.doi.org/10.1007/978-3-319-62902-5_2
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and λ = λ(h), the following is obtained:

− 2λ

(
X I
I Y

)
+ He

{(
X A(θ) + XB(h)

f Cc(θ) ϒ(h)(θ)

A(θ) + B(h)
f Dc(θ)C A(θ)Y + B(h)

f Dc(θ)CY − B(h)
f Cc(θ)Y

)}
< 0

(9.77)
with:

ϒ(h)(θ) = X A(θ)Y + XB(h)
f Dc(θ)CY − XB(h)

f Cc(θ)Y + Z Bc(θ)CY − Z Ac(θ)Y
(9.78)

From (9.77), (9.75) can be obtained using the following change of variables:

(
N (h)(θ) F (h)(θ)
K (θ) L(θ)

)
=
(
X A(θ)Y 0

0 0

)
+
(
Z XB(h)

f

0 I

)(
Ac(θ) Bc(θ)
Cc(θ) Dc(θ)

)(−Y 0
CY I

)

(9.79)

Since a common λ is being used, it is clear that λ = max
h=1,...,n f

λ(h), and by minimizing

λ, we are maximizing min
h=1,...,n f

t̂ (h)
I , defined as in (9.66). �

Also in this case, by relying on a polytopic representation, it is possible to obtain
conditions that can be applied for the design, as stated by the following corollary.

Corollary 9.4 (Design of a robust against fault isolation delay polytopic output
feedback controller) Assume that the LPV system (9.24)–(9.25) and the output
feedback controller (9.7)–(9.8) are polytopic, i.e. the matrices A (θ(t)), Ac (θ(t)),
Bc (θ(t)), Cc (θ(t)), Dc (θ(t)) can be written as in (9.16) and (9.21), with the coeffi-
cients μi (θ(t)) satisfying (9.17), and let X,Y ∈ S

nx×nx , Fi ∈ R
nx×ny , Ki ∈ R

nu×nx ,
Li ∈ R

nu×ny , F (h)
i ∈ R

nx×ny and N (h)
i ∈ R

nx×nx , h = 1, . . . , n f , i = 1, . . . , N, cor-
respond to the solution of the constrained minimization problem (9.74):

min λ (9.80)

subject to (9.18)–(9.20), λ ≥ 0 and:

−2λ

(
X I
I Y

)
+ He

{(
X Ai + F(h)

i C N (h)
i

Ai + B(h)
f LiC A(θ)Y + B(h)

f Ki

)}
≺ 0

∀h = 1, . . . , n f
∀i = 1, . . . , N

(9.81)

Then, the controller (9.7)–(9.8), with matrices calculated as in (9.21)–(9.22) maxi-
mizes min

h=1,...,n f

t̂ (h)
I

(
x(t f ), xc(t f )

)
for all

[
x(t f )T xc(t f )T

]T ∈ E (P, ν f
)
, where t̂ (h)

I

(
x(t f ), xc(t f )

)
is the estimation of

�

t
(h)

I

(
x(t f ), xc(t f )

)
obtained as (9.66) with P

defined as in (9.15).

Proof It follows the reasoning provided in Corollary 9.1 and thus it is omitted. �
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Finally, in case that the design of an FTC system that solves Problems 1 and 2 at
the same time is desired, the following algorithm summarizes the necessary steps to
do so.

Step 1: Find X , Y , Fi , Ki , Li , F
(h)
i , N (h)

i , h = 1, . . . , n f , i = 1, . . . , N that
minimize λ ≥ 0 subject to (9.18)–(9.20) and (9.81).
Step 2: Calculate the controller matrix functions Ac (θ(t)), Bc (θ(t)),
Cc (θ(t)), Dc (θ(t)) using (9.21)–(9.22).
Step 3: Find X−1

va , �
(h)
i , h = 1, . . . , n f , i = 1, . . . , N that maximize μ f

subject to (9.60)–(9.61).
Step 4: Calculate the virtual actuator vertex gains M (h)

i = �
(h)
i Xva .

Algorithm 1: Algorithm for solving Problems 1 and 2

9.6 Example

Let us consider an open-loop unstable LPV system subject to actuator saturations as
in (9.24)–(9.25), with:

A (θ(t)) =
(
2 + θ(t) 0

1 1.5

)
θ ∈ [−1, 1]

B(t) =

⎧⎪⎪⎨
⎪⎪⎩

B =
(
2 0
0 1

)
t < t f

B f =
(
2 0
0 0

)
t ≥ t f

C =
(
1 0
0 1

)

and sat (u) defined as in (9.6), with uMAX
i = 10, i = 1, 2.

The matrix A (θ(t)) can be easily expressed in the polytopic form (9.16) with:

A1 =
(
1 0
1 1.5

)
A2 =

(
3 0
1 1.5

)

By choosing X = I in order to guarantee that, if xc(0) = 0, the input will never
saturate, and the state trajectory will converge to the origin if x1(0)2 + x2(0)2 ≤ 1,
Corollary 9.1 is applied, providing the following solution to the LMIs (9.18)–(9.20):

Y =
(
20.7646 −8.5567
−8.5567 23.2966

)
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F1 =
(−16.9244 0

−1.0000 −14.6153

)
F2 =

(−23.9527 0
−1.0000 −14.6153

)

K1 =
(−17.3400 −2.1823

7.0320 −34.9140

)
K2 =

(−33.9554 4.6475
8.6895 −33.2737

)

L1 =
(−0.9980 −0.3504

−0.4759 −1.4632

)
L2 =

(−1.7132 −0.5390
0.0046 −1.2606

)

Then, the controller matrices are calculated using (9.22), as follows:

Ac,1 =
(−17.0033 −0.5609

−0.2593 −14.0042

)
Ac,2 =

(−22.4814 −0.1261
−0.7687 −14.0818

)

Bc,1 =
(−15.8464 0.4370

−0.8999 −13.8432

)
Bc,2 =

(−21.7951 0.8325
−1.5366 −14.0479

)

Cc,1 =
(

0.0315 0.1215
−0.1473 0.1562

)
Cc,2 =

(
0.1168 −0.0663
0.2050 0.2413

)

Dc,1 =
(−0.9980 −0.3504

−0.4759 −1.4632

)
Dc,2 =

(−1.7132 −0.5390
0.0046 −1.2606

)

and the Lyapunov matrix is given by (9.15):

P =

⎛
⎜⎜⎝

1.0000 0 0.9433 −0.0208
0 1.0000 −0.0208 0.9494

0.9433 −0.0208 0.9433 −0.0208
−0.0208 0.9494 −0.0208 0.9494

⎞
⎟⎟⎠

Problem 1, as described in Sect. 9.4, is solved applying an iterative optimization
algorithm, obtaining a maximum value ν f = 0.04, that corresponds to a value of μ f ,
defined as in (9.42), equal to 1.5040.

Then, by applying Corollary 9.2, the matrix Xva and the virtual actuator gains
M1, M2 are given by

Xva =
(
0.2841 0.5611
0.5611 1.3431

)

M1 =
(−3.0973 −5.9092

0 0

)
M2 =

(−3.6264 −4.9828
0 0

)

Let us consider a simulation that lasts 20 s with x(0) = (
1 0
)T
, xc(0) = (

0 0
)T
,

θ(t) = sin(5t), and t f = 0.5 s. At first, the assumption of instantaneous fault isola-

tion is done, i.e. tI = t f . Since
(
x(0)T xc(0)T

)T ∈ E (P, 1), the state trajectory will
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Fig. 9.2 State trajectory, t f = tI = 0.5 s

Fig. 9.3 Control inputs,
t f = tI = 0.5 s
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converge towards the origin and the control input will not saturate in the time interval
[0, t f ], as shown in Figs. 9.2 and 9.3, respectively.
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Fig. 9.4 Lyapunov function
V (t), t f = tI = 0.5 s
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Also, as shown in Fig. 9.4, the evolution of the Lyapunov function

V (t) =
(
xcl(t)
xv(t)

)T (
P O4×2

O2×4 ν f Xva

)(
xcl(t)
xv(t)

)

is such that V (t f ) = 0.0364 < ν f = 0.04. Hence, according to Corollary 9.2, the
activation of the virtual actuator at time tI = t f guarantees that the system trajectory
will converge to the origin with non-saturating control inputs despite the change in
the input matrix from B to B f . This is shown in Fig. 9.2, where it can be seen clearly
that, due to the activation of the virtual actuator, the states xv1 and xv2 take values
different from zero, and in Fig. 9.3, where the reconfiguration of the control inputs
brought by the change in the control law from uc(t) to u f (t) is depicted. Also, as
expected, the Lyapunov function V (t) takes decreasing-in-time values despite the
fault occurrence, as shown in Fig. 9.4.

To conclude the analysis of the results, let us analyze the trajectories in the phase
planes, shown in Figs. 9.5, 9.6 and 9.7. It can be seen that the evolution of x(t),
xc(t) and xv(t) is such that at time tI all the states are inside E(P, ν f ), whose
projections in the considered phase plane are depicted in magenta color. After tI , the
state xw(t) = x(t) + xv(t) continues smoothly the evolution of the state x(t) before
tI ; on the other hand, x(t) will eventually converge to the origin because both xw(t)
and xv(t) will do so.

Let us now consider the more realistic case where tI > t f , using the results
obtained in Sect. 9.5. The application of Theorem 9.3 gives a value λ = 1.9197,
that corresponds to:

t̂I = t f + 1

3.8394
ln

(
0.04

xTf Px f

)

At time t f = 0.5 s, xTf Px f = 0.0364, such that t̂I = 0.025 s, i.e. if the fault isolation
is performed within 0.025 s, the system state is guaranteed to be inside E(P, ν f )
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Fig. 9.5 Phase plane of x(t)
and xw(t), t f = tI = 0.5 s
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Fig. 9.6 Phase plane of
xc(t), t f = tI = 0.5 s
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for ν f = 0.04 when the control u f (t) begins to be used instead of uc(t). This is
confirmed by the simulation, as shown in Fig. 9.8. It is worth remarking that t̂I is
only an estimation of the critical fault isolation time that, for the considered example,

can be determined by various simulations as
�

t I = 0.748 s.
By applying Corollary 9.4, a value λ = 0 is achieved with the controller matrices:

Ac,1 =
(−15.0033 −3.8448

−4.6729 −23.0056

)
Ac,2 =

(−14.4869 −3.9639
−4.3637 −23.0946

)

Bc,1 =
(−11.6573 4.2273

−3.1405 −17.6345

)
Bc,2 =

(−11.7806 2.8664
−2.7281 −17.5742

)
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Fig. 9.7 Phase plane of
xv(t), t f = tI = 0.5 s
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Fig. 9.8 Phase plane of x(t)
and xw(t), t f = 0.5 s,
tI = 0.525 s
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Cc,1 =
(

0.2476 0.0168
−0.0335 −0.1618

)
Cc,2 =

(−0.0125 0.0227
−0.0633 −0.0698

)

Dc,1 =
(−1.5938 −3.1773

−0.8091 −2.5079

)
Dc,2 =

(−2.5406 −2.5509
−1.0639 −2.7606

)

and Lyapunov matrix:

P =

⎛
⎜⎜⎝

1.0000 0 0.9143 −0.1412
0 1.0000 −0.1412 0.6099

0.9143 −0.1412 0.9143 −0.1412
−0.1412 0.6099 −0.1412 0.6099

⎞
⎟⎟⎠
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Fig. 9.9 Comparison between the state trajectories obtained with the controllers designed using
Corollaries 9.1 and 9.4 (λ = 0, t f = 0.5 s), respectively, when no fault isolation is performed during
the simulation
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Fig. 9.10 Control inputs with and without applying Corollary 9.4, t f = 0.5 s, and no fault isolation
during the simulation (tI > 20 s)

Notice that achieving the caseλ = 0, thatwould correspond to t̂I = ∞using (9.66), is
equivalent to the existence of a nominal controller that is robust against the considered
fault. In fact, by repeating the simulation with this controller, assuming that the fault
is not isolated during the simulation, it can be seen that the state trajectory with the
nominal controller will still converge to zero despite the fault occurrence (see blue
line in Fig. 9.9). On the other hand, the closed-loop system with the controller that
had been designed without applying Corollary 9.4, i.e. using Corollary 9.1, is such
that the state trajectory diverges if no fault isolation is performed (see red line in
Figs. 9.9 and 9.10).
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9.7 Conclusions

In this chapter, the problem of FTC of unstable LPV systems subject to actuator
saturation and fault isolation delay has been considered. The adopted solution relies
on virtual actuators, a fault-hiding active FTC strategy that reconfigures the faulty
plant instead of the controller. Some conditions have been obtained for designing the
virtual actuators in such a way that it is guaranteed that, if at the fault isolation time
the closed-loop system state is inside a region defined by a value of the Lyapunov
function, the state trajectory will converge to zero despite the fault and, moreover,
the inputs will not saturate at any time. Afterwards, the problem of delays in the fault
isolation has been considered by showing that an estimation of the allowed fault
isolation delay can be obtained by analyzing the Lyapunov function using the notion
of LMI regions. Moreover, the nominal controller can be designed so as to maximize
the allowed fault isolation delay.

A numerical example has shown the effectiveness of the proposed strategy. In
particular, it has been demonstrated that the proposed design strategy enhances the
performances of the control system against fault isolation delay. As a special result
of the design conditions, it has been obtained a controller that is robust against the
considered fault, such that no fault isolation is needed for the system to keep its
stability, and for the state trajectory to converge asymptotically to zero under fault
occurrence.
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Chapter 10
Conclusions and Future Work

This thesis has proposed some contributions to the field of LPV systems, with an
emphasis to their application to FTC. This chapter summarizes the work presented
in this thesis, in order to review the main conclusions and explore the possibilities
of further research.

10.1 Conclusions

LPV and TS systems can incorporate the nonlinear and time-varying behavior of
some systems, allowing to deal with them using linear-like techniques. They have
been investigated throughout the last decades, and several theoretical results have
been presented in the literature. Nevertheless, there is still space for further investi-
gation, and this thesis has contributed to the advancement of the state-of-the-art of
this field.

• Chapter 3 has addressed the strong similarities between polytopic LPV and TS
models. It has been shownhow techniques developed for the former framework can
be easily extended in order to be applied to the latter, and vice versa. In particular,
the method for automated generation of LPV models by nonlinear embedding
has been extended to generate automatically TS models from a given nonlinear
system. Similarly, the method for the generation of a TS model based on the
sector nonlinearity concept has been extended to the problem of generating a
polytopic LPV model for a given nonlinear dynamical system. With these many
alternatives for the generation of LPV/TS models, it becomes relevant to compare
the obtainedmodels in order to choose which one could be considered the best one.
To this end, two measures have been proposed, the first one based on the notion
of overboundedness, and the second one based on region of attraction estimates.
Results obtained with a mathematical example have shown that the automated
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generation via nonlinear embedding provides less conservative models than the
automated generation via sector nonlinearity, which has been justified using the
mean-value theorem.

• Chapter 4 has considered the problem of designing an LPV state-feedback con-
troller for uncertain LPV systems. The controller has been designed such that
some desired performances are achieved in the robust LPV sense, i.e. for each
possible value that the scheduling parameters and the uncertainty can take. Some
well-known results obtained in the last decades in the robust and in the LPV
control fields have been extended to obtain conditions that can be used to solve
this problem. The provided solution relies on a double-layer polytopic description
that takes into account both the variability due to the scheduling parameter vec-
tor and the uncertainty. The first polytopic layer manages the varying parameters
and is used to obtain the vertex uncertain systems, where the vertex controllers
are designed. The second polytopic layer is built at each vertex system so as to
take into account the model uncertainties and add robustness into the design step.
The problem has been tackled using both a common quadratic Lyapunov function
and a parameter-dependent quadratic Lyapunov function. In both cases, under
some assumptions, a finite number of LMIs, that can be solved efficiently using
available solvers, has been obtained. The proposed technique has been applied to
numerical examples, showing that it achieves correctly the desired performances,
i.e. robust D-stability and robust H∞ performance, whereas the traditional LPV
gain-scheduling technique fails.

• Chapter 5 has considered the problem of designing a parameter-scheduled state-
feedback controller that satisfies a new kind of specifications, referred to as shifting
specifications. In particular, the concepts ofD-stability,H∞ performance,H2 per-
formance, finite time boundedness and finite time stability have been extended in
a shifting sense, introducing the shifting D-stability, shifting H∞ performance,
shifting H2 performance, shifting finite time boundedness and shifting finite time
stability specifications. The main idea behind these new specifications is to intro-
duce some varying parameters, or using the existing ones, to design the controller
in such a way that different values of these parameters imply different perfor-
mances. The solution to the design problem, expressed in the form of LMIs for
which a feasible solution should be found, has been obtained using a common
quadratic Lyapunov function. The results obtained with academic examples have
demonstrated the effectiveness and some characteristics of the proposed approach.
In particular, in contrast with the classical specifications, the design using the shift-
ing ones has allowed selecting different performances for different values of the
scheduling parameters, thus allowing the online variation of the control system
performance.

• InChap. 7, the idea of the robust LPVpolytopic technique has been applied to FTC,
giving rise to different strategies. A passive FTC strategy has been obtained by
considering the faults as exogenous perturbations that should be rejected. An active
FTC strategy has been obtained by considering the faults as additional scheduling
parameters. Finally, a hybrid FTC strategy has been obtained by taking into account
explicitly the fault estimation uncertainty during the design step. It has also been

http://dx.doi.org/10.1007/978-3-319-62902-5_4
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shown how the proposed FTC strategy can be used for the implementation of
a bank of controllers, such that the signal provided by the fault diagnosis unit
determines which controller should be active at a given moment. The advantage of
the reconfigured controllers with respect to the non-reconfigured ones lies in that
the formers have to copewith specific faults and allow to improve the performances
in the non-faulty case using the nominal controller, whose design does not take
into account the possibility of fault occurrence. The proposed method has been
applied to solve the FTC problem for a quadrotor UAV. The results presented have
shown the relevant features of the proposed FTC strategy, that is able to improve
the performances under fault occurrence. In particular, whereas the passive FTC
shows some limited tolerance capability, because of the appearance of steady-state
errors due to the fault effect, the active FTC technique can achieve a perfect fault
tolerance as long as the fault is correctly estimated. However, as the uncertainty
in the fault estimation increases, so does the error between the real trajectory
and the reference one. By applying the proposed hybrid FTC method, the overall
performance can be improved, thus reducing the effect that the fault estimation
error has on the closed-loop response. The introduction and comparison of some
performance measures have allowed confirming numerically such analysis.

• Chapter 8 has proposed an FTC strategy for LPV systems subject to actuator faults
based onmodel reference control and virtual actuators. The proposed FTC strategy
adapts the reference model to the faults and utilizes the virtual actuator technique
in order to recover the nominal stability and behavior of the errormodel, with some
minimum or graceful performance degradation. The overall control loop is made
up by an LPV error feedback controller, an LPV error observer and the LPV virtual
actuator. It has been shown that the principle of separation holds, since there exists
a similarity transformation that brings the augmented model to a block-triangular
form. Hence, the stability and the satisfaction of the desired specifications can be
assessed separately. The potential and performance of the proposed approach have
been demonstrated with two different examples: a twin rotor MIMO system and a
four wheeled omnidirectional mobile robot, showing promising results.

• In Chap. 9, a solution to the problem of FTC of unstable LPV systems subject to
actuator saturation and fault isolation delay based on virtual actuators has been
proposed. Some conditions have been obtained for designing the virtual actuators
in such a way that it is guaranteed that, if at the fault isolation time the closed-loop
system state is inside a region defined by a value of the Lyapunov function, the
state trajectorywill converge to zero despite the fault and, moreover, the inputs will
not saturate at any time. Afterwards, the problem of delays in the fault isolation
has been considered by showing that an estimation of the allowed fault isolation
delay can be obtained by analyzing the Lyapunov function using the notion of LMI
regions. Moreover, the nominal controller can be designed so as to maximize the
allowed fault isolation delay. A numerical example has shown the effectiveness
of the proposed strategy. In particular, it has been demonstrated that the proposed
design strategy enhances the performances of the control system against fault
isolation delay. As a special result of the design conditions, a controller that is

http://dx.doi.org/10.1007/978-3-319-62902-5_8
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robust against the considered fault has been obtained, such that no fault isolation
is needed for the system to keep its stability, and for the state trajectory to converge
asymptotically to zero under fault occurrence.

10.2 Perspectives and Future Work

This section resumes the open issues that could be addressed in future work.

• The measures proposed in Chap. 3 have shown to be objective criteria that can
be used to select which model can be considered the best one. However, in the
general case, which model is the best one also depends on the context in which
the model is used, i.e. whether it is used for stabilization or observation, and
which structure of controller/observer is used to achieve the desired goal. It seems
clear that an important issue to be addressed in future research is the development
of an automatic procedure that selects the best model during the design step,
taking into account what the model is used for, and the chosen structure for the
controller/observer.

• The dilation of the matrix inequality characterizations and the introduction of
auxiliary variables allow using parameter-dependent Lyapunov functions in order
to assess stability or other desired specifications. Appendix A has shown how new
dilated LMIs for the FTB and the FTS analysis can be obtained in the case of DT
systems. In Chap. 4, these results allowed using a parameter-dependent quadratic
Lyapunov function for solving the problem of robust finite time state-feedback
control of uncertain LPV systems. However, the obtention of dilated LMIs for
the FTB/FTS analysis of CT systems is still an open issue that requires further
investigation. This step is necessary in order to obtain conditions for the design
of robust FTB/FTS polytopic state-feedback controllers for uncertain CT LPV
systems.

• The examples in Chap. 5 have demonstrated how the design using shifting specifi-
cations allows varying online the control system performance. However, the LMIs
to be solved in order to design the controller, have been obtained using a common
quadratic Lyapunov function, which is potentially conservative. An interesting
line for future research would be investigating the application of other types of
Lyapunov functions, e.g. parameter-dependent ones, in order to decrease the con-
servativeness of the solution. Also, a future comparison of the proposed approach
with the use of parameter-dependent weighting functions could be interesting.

• The theory developed in Chap. 7 has been applied successfully to a quadrotor UAV
simulator. Future research will be aimed at applying the proposed FTC strategy to
a real set-up. This goal brings additional challenges, due to the presence of many
sources of uncertainties that must be taken into account in order to enforce the
robustness of the FTC strategy. Moreover, since the inclusion of an FDI module
can potentially allow increasing the obtainable performance, future research could
investigate FDI and fault estimation algorithms that can be applied successfully to
quadrotor UAVs.

http://dx.doi.org/10.1007/978-3-319-62902-5_3
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• The technique developed in Chap. 8 has achieved fault tolerance using a mix of
reference model reconfiguration and virtual actuators. However, the theory has
been developed under the assumption of perfect knowledge of the system model
and perfect fault estimation. Future research on this topic will aim at improving
the robustness of the proposed FTC strategy against model uncertainties and errors
in the fault estimation.

• The approach developed in Chap. 9 for the FTC of unstable LPV systems subject
to actuator saturations and fault isolation delays has been devoted to regulation, i.e.
convergence of the state trajectory to zero. However, in many control applications,
it is desired that the state trajectory tracks a desired reference trajectory. Future
research will extend the proposed technique to solve the problem of fault tolerant
tracking of open-loop unstable LPV systems subject to actuator saturations and
fault isolation delays.

http://dx.doi.org/10.1007/978-3-319-62902-5_8
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Appendix A
Dilated LMIs for the Finite Time
Boundedness and Stability Analysis
of Discrete-Time Systems

The content of this appendix is based on the following work:

• [1] D. Rotondo, F. Nejjari, V. Puig. Dilated LMI characterization for the robust
finite time control of discrete-time uncertain linear systems. Automatica, 63:16–
20, 2016.

When the robust finite time control of uncertain linear systems is considered, the
existing works either use a common Lyapunov function [2] or rely on differential
linear matrix inequalities (DLMIs) [3]. Recently, [4] showed that, by dilating the
matrix inequality characterizations and introducing auxiliary variables, the techni-
cal restriction to a common Lyapunov variable could be overcome. The suggested
approach led to a new set of matrix inequalities that included the original ones as
a particular case, and that had a structure such that parameter-dependent Lyapunov
functions could be easily applied in the case of real polytopic uncertainty, with the
consequence of reducing the conservatism. This idea has been successfully applied
to the case of pole clustering [5],H2 andH∞ control [6]. However, the cases of FTS
and FTB have never been tackled before using the aforementioned approach.

In this appendix,weprovidenewdilatedLMIcharacterizations for theFTBand the
FTS analysis. The dilated LMIs have the relevant feature of decoupling between the
Lyapunov and the systemmatrices. This fact allows consideringparameter-dependent
Lyapunov functions easily, thus decreasing the conservativeness with respect to the
classical quadratic results.

The following lemma, known as Schur complement will be used [7].

Lemma A.1 Let a matrix � = �T be such that:

� =
(

�11 �12

�T
12 �22

)
(A.1)
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Then, the following three conditions are equivalent:

1. � ≺ O
2. �11 ≺ O, �22 − �T

12�
−1
11 �12 ≺ O

3. �22 ≺ O, �11 − �12�
−1
22 �T

12 ≺ O

Proof See [7]. �

Also, let us recall the following result, known as Elimination Lemma [8, 9].

Lemma A.2 Let matrices E ∈ R
nY×nE , D ∈ R

nD×nY and Y ∈ S
nY×nY be given.

Then, the following two conditions are equivalent:

1. The following two conditions hold:

{
E⊥Y

(
E⊥)T ≺ O

EET � O
i f nY > nE

i f nY ≤ nE
(A.2)

{ (
DT

)⊥
Y D⊥ ≺ O

DTD � O
i f nY > nD

i f nY ≤ nD
(A.3)

2. There exists a matrix F ∈ R
nE×nD such that:

Y + He {EFD} ≺ O (A.4)

Proof See [8]. �

Hereafter, new dilated LMIs for analyzing the finite time boundedness and the finite
time stability properties of discrete-time LTI systems are obtained, as stated by the
following theorems.

Theorem A.1 (Extended FTB of DT LTI systems) The DT LTI system:

{
x(k + 1) = Ax(k) + Bww(k)
w(k + 1) = Ww(k)

(A.5)

is FTB with respect to (c1, c2, T, R, d) if there exist positive scalars α, λ1, λ2 with
α ≥ 1, two positive definite matrices Q1 ∈ S

nx×nx and Q2 ∈ S
nw×nw , and two

matrices S1 ∈ R
nx×nx and S2 ∈ R

nw×nw such that:

⎛
⎜⎜⎜⎝

−α
(
S1 + ST1 − Q1

)
S1AT O O

AS1 −Q1 Bw O

O BT
w −αQ2 WTS2

O O ST2 W Q2 − S2 − ST2

⎞
⎟⎟⎟⎠ ≺ O (A.6)
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and (2.92)–(2.94):

λ1R
−1 ≺ Q1 ≺ R−1 (A.7)

O ≺ Q2 ≺ λ2 I (A.8)( c2
αT − λ2d

√
c1√

c1 λ1

)
� O (A.9)

hold.

Proof The proof is inspired by the results obtained in [4]. We must show that (2.91)
with A(θ) = A, Bw(θ) = Bw and W (θ) = W :

⎛
⎜⎜⎜⎝

−αQ1 Q1AT O O

AQ1 −Q1 Bw O

O BT
w −αQ2 WTQ2

O O Q2W −Q2

⎞
⎟⎟⎟⎠ ≺ O (A.10)

is equivalent to (A.6).
We first show that (A.10) implies (A.6). In fact, if (A.10) holds, we can choose

S1 = ST1 = Q1 and S2 = ST2 = Q2 in (A.6) and recover (A.10).
It remains to show that (A.6) implies (A.10). To do so, let us assume that (A.6)

holds, and let us notice that it can be rewritten as:

⎛
⎜⎜⎜⎜⎝

αQ1 O O O

O −Q1 Bw O

O BT
w −αQ2 O

O O O Q2

⎞
⎟⎟⎟⎟⎠ + He

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

−αI O
A O
O WT

O −I

⎞
⎟⎟⎠

(
S1 O
O S2

) (
I O O O
O O O I

)
⎫⎪⎪⎬
⎪⎪⎭

≺ O (A.11)

such that Lemma A.2 can be applied with:

Y =

⎛
⎜⎜⎜⎝

αQ1 O O O

O −Q1 Bw O

O BT
w −αQ2 O

O O O Q2

⎞
⎟⎟⎟⎠ (A.12)

E =

⎛
⎜⎜⎝

−αI O
A O
O WT

O −I

⎞
⎟⎟⎠ (A.13)

E⊥ =
(
A αI O O
O O I WT

)
(A.14)
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F =
(
S1 O
O S2

)
(A.15)

D =
(

I O O O
O O O I

)
(A.16)

Hence, (A.2) becomes:

(
αAQ1AT − α2Q1 αBw

αBT
w WTQ2W − αQ2

)
≺ O (A.17)

that, using a congruence transformation with diag(α−1 I, I ), is equivalent to:

(
α−1AQ1AT − Q1 Bw

BT
w WTQ2W − αQ2

)
≺ O (A.18)

According to Lemma A.1, (A.10) is equivalent to (A.18), thus completing the
proof. �

Theorem A.2 (Extended FTS of DT LTI systems) The DT LTI system:

x(k + 1) = Ax(k) (A.19)

is FTS with respect to (c1, c2, T, R) if there exist positive scalars α, λ, with α ≥ 1,
a positive definite matrix Q ∈ S

nx×nx and a matrix S ∈ R
nx×nx such that:

(−α
(
S + ST − Q

)
STAT

AS −Q

)
≺ O (A.20)

and (2.98)–(2.99) hold: (
c2
αT

√
c1√

c1 λ1

)
� O (A.21)

λ1R
−1 ≺ Q1 ≺ R−1 (A.22)

Proof It is a direct consequence of Theorem A.1, when Bw = O , W = O and
d = 0. �
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Appendix B
Proof of the Independence of the Matrix
B∗ (θ(τ )) from f (τ )

In this appendix, it is proved that the matrix B∗ (θ(τ )), introduced in (8.17), as
follows:

B∗ (θ(τ )) = B f (θ(τ ), f (τ )) N
(
θ(τ ), f̂ (τ )

)
(B.1)

with:

N
(
θ(τ ), f̂ (τ )

)
= B f

(
θ(τ ), f̂ (τ )

)†
B (θ(τ )) (B.2)

is independent from f (τ ).
Let us assume that the nominal input matrix B (θ(τ )) is full, as follows:

B (θ(τ )) =

⎛
⎜⎜⎜⎝

b11 (θ(τ )) b21 (θ(τ )) · · · b1nu (θ(τ ))

b12 (θ(τ )) b22 (θ(τ )) · · · b2nu (θ(τ ))
...

...
. . .

...

bnx1 (θ(τ )) bnx2 (θ(τ )) · · · bnxnu (θ(τ ))

⎞
⎟⎟⎟⎠ (B.3)

Without loss of generality, the case where the first n f actuators are completely lost,
i.e. where the matrix F ( f (τ )) in (8.11) takes the following form:

F ( f (τ )) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · fn f +1(τ ) 0 · · · 0
0 0 · · · 0 fn f +2(τ ) · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · fnu (τ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.4)
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is considered. Hence, the matrix B f (θ(τ ), f (τ )), calculated following (8.10), is1:

B f (θ(τ ), f (τ )) =

⎛
⎜⎜⎜⎝
0 0 · · · 0 b1(n f +1) fn f +1 b1(n f +2) fn f +2 · · · b1nu fnu
0 0 · · · 0 b2(n f +1) fn f +1 b2(n f +2) fn f +2 · · · b2nu fnu
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 bnx (n f +1) fn f +1 bnx (n f +2) fn f +2 · · · bnxnu fnu

⎞
⎟⎟⎟⎠
(B.5)

that can be rewritten as:

B f (θ(τ ), f (τ )) = �(θ(τ ))ϒ ( f (τ )) (B.6)

with:

�(θ(τ )) =

⎛
⎜⎜⎜⎝

b1(n f +1) (θ(τ )) b1(n f +2) (θ(τ )) · · · b1nu (θ(τ ))

b2(n f +1) (θ(τ )) b2(n f +2) (θ(τ )) · · · b2nu (θ(τ ))
...

...
. . .

...

bnx (n f +1) (θ(τ )) bnx (n f +2) (θ(τ )) · · · bnxnu (θ(τ ))

⎞
⎟⎟⎟⎠ (B.7)

ϒ ( f (τ )) =

⎛
⎜⎜⎜⎝
0 0 · · · 0 fn f +1(τ ) 0 · · · 0
0 0 · · · 0 0 fn f +2(τ ) · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · fnu (τ )

⎞
⎟⎟⎟⎠ (B.8)

Then, B f

(
θ(τ ), f̂ (τ )

)†
can be calculated as follows [10]:

B f

(
θ(τ ), f̂ (τ )

)† = ϒ
(
f̂ (τ )

)T (
ϒ

(
f̂ (τ )

)
ϒ

(
f̂ (τ )

)T)−1 (
�(θ(τ ))T � (θ(τ ))

)−1
� (θ(τ ))T

(B.9)

It is quite straightforward to show that:

ϒ
(
f̂ (τ )

)T
(

ϒ
(
f̂ (τ )

)
ϒ

(
f̂ (τ )

)T
)−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
1

f̂n f +1(τ )
0 · · · 0

0 1
f̂n f +2(τ )

· · · 0

...
...

. . .
...

0 0 · · · 1
f̂nu (τ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.10)

1Dependence of the elements bi j and f j , i = 1, . . . , nx , j = n f + 1, . . . , nu , on θ(τ ) and τ ,
respectively, is skipped to ease the notation.
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such that, under the assumption that f̂ (τ ) ∼= f (τ ):

B∗ (θ(τ )) = B f (θ(τ ), f (τ )) B f (θ(τ ), f (τ ))† B (θ(τ ))

= B (θ(τ ))

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · fn f +1(τ ) 0 · · · 0
0 · · · 0 fn f +2(τ ) · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · fnu (τ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

· · ·

· · ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
1

fn f +1(τ )
0 · · · 0

0 1
fn f +2(τ )

· · · 0

...
...

. . .
...

0 0 · · · 1
fnu (τ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
�(θ(τ ))T �(θ(τ ))

)−1
�(θ(τ ))T

= B (θ(τ ))

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0
0 0 · · · 0 1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
�(θ(τ ))T �(θ(τ ))

)−1
�(θ(τ ))T

(B.11)

that does not depend on f (τ ). This completes the proof.
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